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Abstract 

This paper investigates a capacitated planar location-allocation problem with facility fixed cost. A zone-

based fixed cost which consists of production and installation costs is considered. A nonlinear and mixed 

integer formulation is first presented. A powerful three stage Cross Entropy meta-heuristic with novel 

density functions is proposed. In the first stage a covering location problem providing a multivariate normal 

density function for the associated stochastic problem is solved. The allocation values considering a 

multinomial density function are obtained in the second stage.  In the third stage, single facility continuous 

location problems are solved. Several instances of various sizes are used to assess the performance of the 

proposed meta-heuristic. Our approach performs well when compared with the optimizer GAMS which is 

used to provide the optimal solution for small size instances and lower/upper bounds for some of the larger 

ones. 

 

Keywords: Meta-heuristics, Evolutionary methods, Planar location, Cross Entropy, GAMS. 

 

1. Introduction 

In this study, we are interested in determining the optimal or best location of m capacitated facilities in 

the continuous space with the presence of zone-based facility fixed cost.  The objective is to minimize the 

total cost which includes the cost of transportation, installation, production and the cost for the unmet 

demand. This new logistical problem is first formulated as a nonlinear and mixed integer programming 

problem. The software GAMS is used to find optimal solution for small/medium size instance and also to 

provide lower/upper bounds for the larger ones. A new Cross Entropy meta-heuristic based on three stages 

is then proposed using appropriate density functions.   
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We briefly review those recent papers that address planar location problems that are closely related to 

ours. Since the planar location-allocation (LA) problem, also known as the Multi-Source Weber problem 

(MSWP), was proposed in the sixties by Cooper (1963), recent advances are put forward including among 

others Shöbel and Scholz (2010), and Brimberg and Drezner (2013). The former proposed a new approach 

which they call the Big Cube Small Cube to optimally solve the 2 and 3 facilities in higher dimensions.This 

is based on the Big Square Small Square method originally given by Hansen et al. (1981). The latter 

developed an improved implementation of Cooper’s alternate locate allocate algorithm which is further 

enhanced by a transfer follow-up. When the facilities have a limited capacity, the problem becomes the 

capacitated MSWP. Brimberg et al. (2014) proposed a new local search approach is embedded within 

Variable Neighborhood Search for solving the multi-source Weber problem. The algorithm switches 

between the continuous model and its discrete counterpart until no further improvement can be found in 

either. Luis et al. (2009) provided constructive and adaptive heuristics to generate initial solutions. . 

Mohammadi et al. (2010) used a new method that uses two genetic algorithms for capacitated multi source 

Weber problem. The first, solves the location problem while the second, solves the allocation problem. A 

GRASP-based heuristic was also proposed by Luis et al. (2011) where adaptive learning is used to 

construct the restricted candidate list. Akyüzet al. (2013) proposed two types of branch and bound 

algorithms for the capacitated MSWP. The first is an allocation space based-branch and bound algorithm 

whereas the second is based on the partition of the location space. 

Several researches are also in uncertain environment. Durmazet al. (2009) used a discrete 

approximation technique to address this problem with probabilistic customer locations Mousavi and 

AkhavanNiaki (2013) studied a capacitated location allocation problem with stochastic location and fuzzy 

demand. Three fuzzy programming models were developed and a hybrid intelligent algorithm was provided 

to solve the problem. 

The above location allocation problems do not consider fixed cost in the continuous space. However, 

there are situations in practice which may include zones with high installation cost. These can be modeled 

using fixed cost. Brimberg et al. (2004) introduced the multi-source Weber problem with constant opening 

cost in the continuous space. They developed a solution method uses a multi-phase heuristic that first 

solves a discrete version of the problem by existing methods to obtain an estimate of the optimal number of 

facilities. Brimberg and Salhi (2005) are among the ones that introduced a zone-dependent fixed cost for 

the incapacitated single facility location-allocation problem in the continuous space.  An efficient algorithm 

that determines the solution optimally was proposed. The authors also provide a simple but an informative 

illustrative example.  For a review on the continuous location problem in general, see Drezner et al. (2001), 

and Brimberget al. (2008). 
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To the best of our knowledge, this is the first time the meta-heuristic Cross Entropy (CE) is developed to 

solve this complex continuous location problem. 

The remainder of the paper is organized as follows. In the next section, a nonlinear and integer 

programming formulation is proposed. A meta-heuristic using a Cross Entropy algorithm is presented in 

section 3. Computational results are given in section 4. Sensitivity Analysis is provided in section 5. The 

last section summarizes our conclusions and highlights some research areas. 

 

2. A Capacitated Multi-Source Weber Problem with Facility Fixed Cost 

Consider there are n customers (demand points) indexed by i and m facilities indexed by j. The 

following notation is used. We first divide the space into n zones and introduce a binary variable 𝑧𝑗𝑖 that 

defines whether or not facility j is located in zone i. It is assumed that the distance between each customer 

and a facility is Euclidean. We formulate the problem as a 0-1 nonlinear and mixed integer programming 

model. We first provide the necessary notations followed by the mathematical formulation. 

Notation 

Sets/Indices 

set of  zones (demand points) in the continuous space indexed by i , {i=1,2,…,n} N 

set of new facilities to be located indexed by j, {j=1,2,…,m} K 

 

Parameters 

Coordinates of  customer i 𝐴𝑖 = (𝑎𝑖, 𝑏𝑖) 

Demand of customer i 𝑑𝑖 

Capacity of  facility j sj 

Unit production cost of  facility j in zone i   𝑝𝑗𝑖 

Installation cost of  facility j in zonei   𝑓𝑗𝑖 

Production capacity of  facility j in zone i   𝑠𝑗𝑖 

Importance of customer i Ci 

Maximum distance a facility can be located from a center of a zone to be considered as 

part of that zone 

  𝑅 

Penalty cost for unmet demand which is set to a large amount M   

 

Decision variables 

Coordinate of  facility j in the plane 𝑋𝑗 = (𝑥𝑗, 𝑦𝑗) 
 

distance between customer i and facility j D(Xj,Ai) 

amount supplied from facility j to customer i 𝑇𝑗𝑖 

1 if facility j is located in zone i; 0 otherwise  𝑧𝑗𝑖 

Unmet demand of customer i( i iq d )  𝑞𝑖 
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Formulation 

 

(1) min ∑ ∑ 𝑇𝑗𝑖 ∙ 𝐷(𝑋𝑗, 𝐴𝑖)

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ ∑ 𝑧𝑗𝑖𝑝𝑗𝑖

𝑛

𝑖=1

𝑚

𝑗=1

∑ 𝑇𝑗𝑖

𝑛

𝑖=1

+ ∑ ∑ 𝑧𝑗𝑖𝑓𝑗𝑖

𝑛

𝑖=1

𝑚

𝑗=1

+ 𝑀 ∑ 𝐶𝑖

𝑛

𝑖=1

(
𝑞𝑖

𝑑𝑖
) 

 Subject to 

(2) ∑ 𝑧𝑗𝑖

𝑛

𝑖=1

∙ 𝐷(𝑋𝑗, 𝐴𝑖) ≤ 𝑅, ∀𝑗 = 1,2, … , 𝑚 

(3) ∑ 𝑧𝑗𝑖

𝑛

𝑖=1

= 1, ∀𝑗 = 1,2, … , 𝑚 

(4) ∑ 𝑧𝑗𝑖

𝑚

𝑗=1

≤ 1, ∀𝑖 = 1,2, … , 𝑛 

(5) ∑ 𝑇𝑗𝑖

𝑛

𝑖=1

≤ ∑ 𝑧𝑗𝑖

𝑛

𝑖=1

𝑠𝑗𝑖 , ∀𝑗 = 1,2, … , 𝑚 

(6) ∑ 𝑇𝑗𝑖

𝑚

𝑗=1

+ 𝑞𝑖 = 𝑑𝑖,   𝑖 = 1,2, … , 𝑛 

 𝑇𝑗𝑖 ≥ 0, 𝑧𝑗𝑖 ∈ {0,1}, 𝑞𝑖 ≥ 0, 𝑋𝑗 = (𝑥𝑗 , 𝑦𝑗) ∈ ℝ+   ∀𝑖, 𝑗 

Equation (1) is the objective function which is made up of four terms. These include the transportation 

cost, the production cost, the installation cost and the cost associated with the unmet demand. Constraint set 

(2) guarantees that if the distance between facility j and zone i is greater than R, then 𝑧𝑗𝑖 = 0 (i.e., facility j 

does not belong to zone i), otherwise 𝑧𝑗𝑖 = 1. Constraint set(3) states that facility j is installed only in one 

zone whereas constraint set (4) shows that only one facility could be located in any zone at most. Constraint 

set (5) is the capacity constraint (i.e., the production at facility j is not violated in zone i) and constraint set 

(6) guarantees that the sum of the assigned and the unmet demand at each customer is equal to the demand 

of that customer. 

This formulation is used in the optimizer GAMS to produce the optimal solution for small size 

problems, and lower and upper bounds for the larger ones. These results will be used to evaluate the 

performance of a solution method based on the evolutionary meta-heuristic Cross Entropy (CE) which we 

propose next. 

 

3. A Cross Entropy solution method 

In this section we first provide the basic CE algorithm which serves as a basis for our new CE meta-

heuristic. This is followed by a subsection explaining some of the main steps of the algorithm. 
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3.1. The basic CE algorithm 

The main idea of Cross Entropy (CE) was originally introduced by Rubinstein (1997). CE is an 

evolutionary technique that is related to the design of an effective learning mechanism which is used 

throughout the search. For background knowledge, applications and recent references on Evolutionary 

methods, the reader may consult the interesting paper on location-routing by Prodhon (2011). The main 

principle of CE is to associate an estimation problem to the original combinatorial optimization problem. 

This is called the associated stochastic problem which is characterized by a density function 𝜙. This 

stochastic problem is then solved by identifying the optimal sampling density 𝜙∗, which is the one that 

minimizes the Kullback-Leibler distance with respect to the original density 𝜙. This distance is also known 

as the CE between 𝜙 and 𝜙∗. The minimization of the CE leads to the construction of “optimal” updating 

rules for the density function, and consequently to the generation of improved feasible solutions. The 

method terminates when the convergence to a point in the feasible region is achieved. The main features of 

the CE algorithm were discussed by de Boer et al. (2005).The application of CE in the area of optimization 

can be found in Kroese and Rubinstein (2005). Specific combinatorial problems such as the max-cut 

problem, the travelling salesman problem and the capacitated vehicle routing problem were solved by 

Rubinstein and Kroese (2004). A new meta-heuristic scheme for the Integer Knapsack Problem with setups 

was presented by Caserta et al. (2008). The authors proposed a CE based scheme with an “intelligent” 

mechanism aimed at choosing the items to be in the knapsack. Caserta and Quinonez Rico (2009) 

developed a Lagrangean-based method that transforms the capacitated problem into a set of disjoint 

uncapacitated lot-sizing problems that are solved by an efficient CE-based algorithm. Recently, Bekker and 

Aldrich (2011) applied CE for multi-objective optimization problems.  A classical CE algorithm is given in 

Algorithm 1.  

 

Algorithm 1: A Cross Entropy (CE) for optimization problems 

Step 1: Define the initial parameters of the density function 𝜙 for the associated stochastic problem. 

Step 2: Generate a solution vector (𝑋1, … , 𝑋𝑁)  for the problem via Monte Carlo simulation based on 

the density function 𝜙. 

Step 3: Calculate the objective function of the problem for each of the solution in(𝑋1, … , 𝑋𝑁) and select 

the best solution. 

Step 4: Update the parameters of the density function 𝜙 based on the best solution. 

Step 5: If the stopping criterion is satisfied stop, otherwise go to Step 2. 
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3. 2.The proposed CE algorithm 

In this paper, we present a CE algorithm to solve the capacitated multi-source Weber problem defined 

in Section 2 (Eqs. 1-6). We consider two density functions to generate vectors for identifying the location 

and the customer allocation for each facility (Step 2). Let us define a family of density functions 𝜙 on X, 

and use a 2-dimensional multivariate normal density function for locating facilities under the following 

probability distribution function: 

  (7) 𝜙(𝑋, 𝜇, Σ) = 𝑒−(𝑋−𝜇)Σ−1(𝑋−𝜇)𝑇 2⁄
1

Σ1 2⁄ 2𝜋
⁄  

Where X=(x,y) is 1-by-2 vector representing the x and y coordinates of facility locations, 

𝜇 = (𝜇𝑥, 𝜇𝑦) is the mean of facility locations and Σ is a 2-by-2 covariance matrix which is a symmetric 

positive definite matrix.  

We estimate X via Monte Carlo simulation. In this regard, X could be estimated by drawing a random 

sample 𝑋1, … , 𝑋𝑁 from 𝜙(𝑋, 𝜇, Σ). Hence, the multinomial density function is applied for allocating 

customers to facilities under the following probability distribution function: 

(8) 𝜙(𝑇, 𝑠, 𝑝) =
𝑠!

𝑇1! ⋯ 𝑇𝑛!
𝑝1 … 𝑝𝑛 

Where 𝑠 is an integer number, 𝑇 = (𝑇1, … , 𝑇𝑛) denotes the 1-by-n vectors of the allocation values and 

𝑝 = (𝑝1 … 𝑝𝑛) is the probabilities of allocating facilities to n customers. We wish to estimate T via Monte 

Carlo simulation by drawing a random sample 𝑇1, … , 𝑇𝑁 from 𝜙(𝑇, 𝑠, 𝑝), where N is the CE population 

size.  At each iteration, the best solutions (elites) found in the previous iterations are also used to update the 

parameters of the associated probability distribution function. This updating scheme is given next.  

The proposed CE is made up of three stages. In the first stage, we consider the problem as a continuous 

covering location problem and find the location of the facilities using (7) until one of the stopping criteria is 

met. This includes the convergence or the maximum number of iterations whichever comes first. In the 

second stage, we solve the allocation problem based on the location found in the first stage using (8). 

Finally, in stage three we solve m separate single continuous facility location problems while considering 

the allocation already found.  

 

3.3. Explanation of  the main steps 

In Stage I, a continuous covering location problem is solved to determine the location of the facilities. 

In the proposed problem, customer i is assigned to facility j if 𝐷(𝑋𝑗, 𝐴𝑖) ≤ 𝐶𝑅 with CR  being a 

predetermined covering radius. At each iteration the covering matrix is computed. The error value is 
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obtained based on the variance between the best obtained locations for each facility at iteration t. The mean 

of the errors for all facilities is calculated as the error value at iteration t. Also, in Stage II, the error value is 

obtained based on the difference between the probability of allocating the demands to facility j at iterations 

t and t-1.  

The mean of the errors for all facilities is then calculated as the error value at iteration t. In Stage III, a 

post optimization is carried out based on Cooper’s Alternating Transportation-Location Heuristic (Cooper, 

1972). Since the allocation values (i.e., the value of 𝑞𝑖) and the cost representing the unmet demand are 

determined in phase II,our problem reduces to solving m independent continuous location problems with 

the aim of minimizing the total cost. We define for each facility j, the cost “𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗” as follows:  

(9) 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗 = ∑ 𝑇𝑗𝑖 ∙ 𝐷(𝑋𝑗, 𝐴𝑖)

𝑛

𝑖=1

+ ∑ 𝑧𝑗𝑖𝑝𝑗𝑖

𝑛

𝑖=1

∑ 𝑇𝑗𝑖

𝑛

𝑖=1

+ ∑ 𝑧𝑗𝑖𝑓𝑗𝑖

𝑛

𝑖=1

∀𝑗 = 1, . . , 𝑚 

 

Let 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗
1 and 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗

2 be the cost of facility j before and after the implementation of 

phase III, respectively. The well known Weiszfeld equations are then used to update the new location of 

facility j: 

𝑦𝑗
(𝑔)

=
∑ 𝑤𝑗𝑖𝑏𝑖

𝑛
𝑖=1 𝐷(𝑋𝑗

(𝑔−1)
, 𝐴𝑖)⁄

∑ 𝑤𝑗𝑖
𝑛
𝑖=1 𝐷(𝑋𝑗

(𝑔−1)
, 𝐴𝑖)⁄

, and 𝑥𝑗
(𝑔)

=
∑ 𝑤𝑗𝑖𝑎𝑖

𝑛
𝑖=1 𝐷(𝑋𝑗

(𝑔−1)
, 𝐴𝑖)⁄

∑ 𝑤𝑗𝑖
𝑛
𝑖=1 𝐷(𝑋𝑗

(𝑔−1)
, 𝐴𝑖)⁄

,  

Where 𝑋𝑗
(𝑔)

= (𝑥𝑗
(𝑔)

, 𝑦𝑗
(𝑔)

) denotes the location of facility j at iteration g and 𝐴𝑖 = (𝑎𝑖, 𝑏𝑖)the 

coordinates of customer i. This procedure is carried out until there is no significant change in the location 

of facility j. The corresponding values of 𝑧𝑗𝑖 are then determined and the fixed costs including the 

production cost and the installation cost for facility j are computed leading to the evaluation of 

𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗 in (9). 

In summary, for each facility j=1,…,m, if 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗
2 < 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗

1, the new location j is 

selected, otherwise the previous location is retained. A pseudo-code of the proposed Cross Entropy (CE) 

algorithm is given in Algorithm 2. 
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Algorithm 2: Cross Entropy (CE) for the Capacitated Multi-Source Weber Problem  

1: Determine the population size and the number of elite solutions,𝑒𝑟𝑟𝑜𝑟0 (initial error), 𝜀(Min 

error) and maxiter (the max number of iterations),  

Stage I: (Solving the continuous covering problem) 

Repeat 

2: Generate the initial multivariate normal distribution parameters (Mean and covariance) based 

on the x and y coordinates of the zones.  

Draw a sample population 𝑋1, … , 𝑋𝑁~𝑀𝑉 𝑁𝑜𝑟𝑚𝑎𝑙(𝑋, 𝜇𝑥
𝑡 , 𝜇𝑦

𝑡 , Σ𝑡). 

3: For each random vector 𝑋𝑙 = (𝑥𝑙 , 𝑦𝑙) (l=1,…,N), solve the model as a continuous covering 

location problem  

4: Select the best solution of the sample population(elites) as 𝑋𝑒𝑙𝑖𝑡𝑒
𝑡 = (𝑥𝑒𝑙𝑖𝑡𝑒

𝑡  , 𝑦𝑒𝑙𝑖𝑡𝑒
𝑡 ) 

5: Update 𝜇𝑥, 𝜇𝑦 𝑎𝑛𝑑 Σ as follows: 

 

𝜇𝑥
𝑡 = 𝑚𝑒𝑎𝑛(𝑥𝑒𝑙𝑖𝑡𝑒

𝑡 ) 

𝜇𝑦
𝑡 = 𝑚𝑒𝑎𝑛(𝑦𝑒𝑙𝑖𝑡𝑒

𝑡 ) 

Σ𝑡=covariance(𝑥𝑒𝑙𝑖𝑡𝑒
𝑡  , 𝑦𝑒𝑙𝑖𝑡𝑒

𝑡 ) 

𝑒𝑗
𝑡 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑒𝑙𝑖𝑡𝑒

𝑡 , 𝑦𝑒𝑙𝑖𝑡𝑒
𝑡 )𝑗, ∀ 𝑗 = 1, … , 𝑚  

𝑒𝑟𝑟𝑜𝑟 𝑡 = 𝑚𝑒𝑎𝑛(𝑒𝑗
𝑡) 

Until   ( 𝑒𝑟𝑟𝑜𝑟  𝑡 ≤ 𝜀 ∨ t >maxiter)   t ← t + 1  

Stage II: (Solving the allocation problem) 

Repeat 

6: Generate initial multinomial distribution probabilities for allocating demands (P
0
) and draw a 

sample population 𝑇1, … , 𝑇𝑁~𝑀𝑁𝑜𝑚𝑖𝑎𝑙(𝑃𝑡). 

7: For each random vector 𝑇𝑙(l=1,…,N) solve the Capacitated Multi-Source Weber Problem.  

8: Select the best solution for the sample population(elites) 

9: Update P
t 
as follows (𝑇𝑗𝑖

𝑡,𝑒𝑙𝑖𝑡𝑒
denotes the best allocation values from facility j to customer i at 

iteration t): 

𝑝𝑗
𝑡 = (𝑝𝑗1

𝑡 , … , 𝑝𝑗𝑛
𝑡 ) = (𝑇𝑗1

𝑡,𝑒𝑙𝑖𝑡𝑒 ∑ 𝑇𝑗1
𝑡,𝑒𝑙𝑖𝑡𝑒 ,

𝑖

… ,⁄ 𝑇𝑗𝑛
𝑡,𝑒𝑙𝑖𝑡𝑒 ∑ 𝑇𝑗𝑖

𝑡,𝑒𝑙𝑖𝑡𝑒

𝑖

⁄ ) , ∀ 𝑗 = 1, … , 𝑚 

𝑒𝑗
𝑡 = 𝑝𝑗

𝑡 − 𝑝𝑗
𝑡−1                      ∀ 𝑗=1,…,m 

 𝑒𝑟𝑟𝑜𝑟 𝑡 = 𝑚𝑒𝑎𝑛(𝑒𝑗
𝑡) 

Until   ( 𝑒𝑟𝑟𝑜𝑟  𝑡 ≤ 𝜀 ∨ t >maxiter)   t ← t + 1 

Stage III: (Solving the facility location problem) 

10: For each facility j (m separate single facility location problem) 

Calculate "𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗
1(𝑋𝑗

(𝑆𝑡𝑎𝑔𝑒 𝐼)
, 𝑇𝑗

(𝑆𝑡𝑎𝑔𝑒 𝐼𝐼)
)",where 𝑋𝑗

(𝑆𝑡𝑎𝑔𝑒 𝐼)
is the location value 

obtained in Stage I and 𝑇𝑗
(𝑆𝑡𝑎𝑔𝑒 𝐼)

 is the allocation values obtained in Stage II for facility j.  

 Repeat  
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 Update 𝑋𝑗
(𝑔)

 based on the Weiszfeld equations (𝛿 is Min error): 

 Until  (𝑋𝑗
(𝑔)

− 𝑋𝑗
(𝑔−1)

≤ 𝛿) g ← g + 1 

 Calculate "𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗
2(𝑋𝑗

(𝑔)
, 𝑇𝑗

(𝑺𝒕𝒂𝒈𝒆 𝑰𝑰)
)" value for facility j. 

 if 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗
2 < 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑗

1 then 𝑋𝑗
∗ = 𝑋𝑗

(𝑔)
else 𝑋𝑗

∗ = 𝑋𝑗
(𝑆𝑡𝑎𝑔𝑒 𝐼)

 (where 𝑋𝑗
∗ is the best 

location value for facility j) 

 

 

4. Computational results 

The CE algorithm is implemented in Matlab and run on a Core i5 at 2.53 GHz with 3GB of RAM 

memory. The CE parameters for Stage I and Stage II are the following: (population size, elite size)=(300, 

15) and (500, 25), respectively. The covering radius for stage I is 1.5, R=0.4 and M=10,000. We tested our 

approach in small/medium size instances (n=20 to 100 with a step size of 20) and large ones (n=200, 300, 

400, 500, 1000). The customers are located in the grids of the rectangular areas that depend on the value of 

n. For example for n=20, the (x-y) coordinates of the 20 customers are generated at the grid points of the 

54 rectangle where customer 1 is at position (1,1), customer 2 at (2,1), etc. The remaining instances are 

generated in the same way using the following rectangles: 65 (n=30), 85 (n=40), 1010 (n=100), 

2010 (n=200), 2015 (n=300), 2020 (n=400), 2520 (n=500), 4025 (n=1000).  The demand of the 

customers is randomly generated in the range [1,10].  The capacity of the facilities is based on the size of 

the problem and it is randomly generated in the range [45, 60]. As we introduced the cost for the unmet 

demand, we constrained the choice of the capacities in such a way that the sum of the capacities of all the 

open facilities is smaller than the total customers demand. The fixed cost is randomly generated in the 

range [800,1000].  The importance of each customer and the unit production cost are both set to 1. 

We carried out our experiments using two scenarios. The first one deals with small/medium size 

instances whereas the second treats the large instances. We compare the obtained CPU time and the 

objective function value of the proposed algorithm with GAMS software using Baron Solver. We ran the 

algorithms ten times for each instance and report the following statistics. These include the average (Aver), 

best value (Best), standard deviation (Std) and the Coefficient of Variation (CV) of the objective function 

found. The percent deviation from the best-known solutions found by GAMS is also reported as (Dev) 

which is computed as follows: 

 𝐷𝑒𝑣 =
𝐹𝑏𝑒𝑠𝑡 − 𝐹∗

𝐹∗
× 100 

 Where F
best

 is the total cost found by the proposed (CE) algorithm and F* refers to the cost of the best 

solution (or the optimal/upper bound) found by GAMS within the allowed CPU time.  
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Scenario 1 (small/medium size instances) 

In this experiment, we report the results for n=20 to 100, with m= 2 to 10. GAMS is used to yield optimal 

solutions. According to Table 1, the proposed CE algorithm provides solutions that are close to those 

obtained by the optimizer GAMS, with deviations being less than 2% in most cases. In addition, our 

heuristic requires a tiny fraction of the CPU time used by GAMS. 

 

Scenario 2 (Large size instances) 

We applied our CE algorithm for large instances up to n=1000 and m=100, see Table 2. Though 

GAMS showed to be relatively slower, we let it run for up to 5 hours so we can report Lower Bound (LB) 

and Upper Bound (UB).The deviation from the UB value and the CPU time if the solution is found within 

the set time of 5hrs are also reported in Table 2. In summary, the proposed CE algorithm outperformed the 

optimizer GAMS which, in most cases, failed to provide values for LB or UB within the allowed CPU time.  

 

TABLE 1- COMPARISON BETWEEN RESULTS OF THE PROPOSED ALGORITHM (CE) AND GAMS 

 

# N m 

GAMS 

(Baron solver) 

Proposed Algorithm(CE) 
Dev (%) 

F
best

 Time(Sec.) 

Time(Sec) 𝑭∗ Best Aver Std CV Best Aver Std CV Best Aver 

1 20 2 0.48 6076 6098 6106 4.83 0.079 6.41 6.64 0.16 2.42 0.36 0.50 

2 20 3 0.34 4652 4664 4669 3.20 0.069 9.33 9.95 0.84 8.41 0.27 0.36 

3 30 2 0.83 7229 7252 7270 7.68 0.106 7.43 7.71 0.19 2.49 0.33 0.57 

4 30 3 0.64 6146 6204 6221 8.33 0.134 10.59 11.35 0.49 4.31 0.94 1.23 

5 40 3 0.95 7756 7860 7879 13.81 0.175 11.58 12.39 0.78 6.28 1.34 1.58 

6 40 4 1.79 7259 7363 7390 15.97 0.216 15.41 16.22 0.58 3.58 1.43 1.81 

7 40 5 2.71 6783 6909 6945 15.58 0.224 19.38 20.82 0.98 4.73 1.86 2.39 

8 60 4 4.88 8183 8287 8320 14.30 0.172 31.92 32.65 0.43 1.31 1.26 1.67 

9 60 5 38.91 7866 8098 8115 10.54 0.130 38.59 40.64 1.09 2.68 2.95 3.16 

10 60 6 55.61 7702 7745 7855 40.36 0.514 43.00 49.23 2.97 6.04 0.56 1.99 

11 80 4 8.16 9373 9451 9486 19.03 0.201 37.69 38.91 1.12 2.88 0.84 1.21 

12 80 5 14.32 9345 9527 9541 9.08 0.095 45.16 48.28 1.35 2.79 1.94 2.09 

13 80 6 90.90 9359 9542 9600 21.80 0.227 56.25 57.33 0.87 1.52 1.95 2.57 

14 80 7 354.51 9431 9687 9712 13.99 0.144 62.85 65.21 1.27 1.95 2.71 2.99 

15 80 8 376.71 9695 9783 9839 31.73 0.322 75.82 77.64 1.85 2.38 0.91 1.49 

16 100 5 28.14 10489 10660 10681 11.61 0.109 52.01 53.71 1.27 2.36 1.63 1.83 

17 100 6 97.45 10539 10855 10892 17.66 0.162 63.65 65.02 1.27 1.95 2.99 3.34 

18 100 7 264.53 10830 11083 11123 30.93 0.278 73.13 75.34 1.51 2.01 2.34 2.71 

19 100 8 408.86 11110 11363 11417 26.22 0.230 79.00 84.34 2.34 2.77 2.28 2.76 

20 100 9 477.11 11461 11679 11738 28.64 0.244 91.15 93.68 1.85 1.98 1.90 2.41 

21 100 10 1046.08 11752 11993 12071 42.03 0.348 102.51 108.70 3.85 3.54 2.05 2.71 
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TABLE 2- RESULTS OF THE PROPOSED ALGORITHM (CE) FOR LARGE PROBLEMS  
 

# N M 
Time(Sec.) F

best
 GAMS(Baron solver) dev. (%) 

Best Avr. Std. C.V. Best Avr. Std. C.V. Time(Sec.) LB UB Best Avr. 

1 200 10 134.68 141.23 4.72 3.34 17217 17259 24 0.14 995 15800 17279 -0.36 -0.12 

2 200 15 230.52 233.26 2.38 1.02 21110 21146 29 0.14 5007 18964 20751 1.73 1.90 

3 200 20 301.71 306.22 3.60 1.17 25657 25770 57 0.22 18000 22479 25349 1.22 1.66 

4 300 10 169.11 176.04 5.64 3.20 18550 18572 13 0.07 4829 17050 18385 0.90 1.02 

5 300 15 294.55 313.45 0.00 0.00 22884 22910 18 0.08 15085 20800 22562 1.43 1.54 

6 300 20 386.85 391.24 3.86 0.99 27388 27483 62 0.23 18000 NF  NF - - 

7 300 30 563.12 582.62 10.26 1.76 37810 38054 128 0.34 18000 NF NF - - 

8 400 10 224.36 230.39 4.76 2.07 19218 19241 18 0.10 7148 17675 19291 -0.37 -0.26 

9 400 20 486.10 498.20 9.17 1.84 28571 28647 51 0.18 18000 NF NF - - 

10 400 30 718.84 732.34 12.03 1.64 38667 38893 157 0.40 18000 NF NF - - 

11 400 40 950.97 973.66 12.56 1.29 50516 50755 213 0.42 18000 NF NF - - 

12 500 10 265.01 276.11 7.72 2.80 19456 19481 23 0.12 18000 17500 19549 -0.48 -0.35 

13 500 20 591.29 610.39 11.10 1.82 29204 29310 77 0.26 18000 NF NF - - 

14 500 30 859.47 879.22 14.81 1.68 39596 39780 127 0.32 18000 NF NF - - 

15 500 40 1163.28 1185.85 18.21 1.54 51290 51622 188 0.36 18000 NF NF - - 

16 500 50 1423.45 1474.23 32.35 2.19 64494 64914 248 0.38 18000 NF NF - - 

17 1000 10 562.31 586.63 15.47 2.64 20330 20352 18 0.09 18000 NF NF - - 

18 1000 20 1276.87 1309.92 22.59 1.72 30889 30979 67 0.22 18000 NF NF - - 

19 1000 30 1892.03 1916.06 21.10 1.10 42033 42216 109 0.26 18000 NF NF - - 

20 1000 40 2485.21 2533.18 29.40 1.16 53678 53941 186 0.34 18000 NF NF - - 

21 1000 50 3085.14 3131.95 23.37 0.75 66141 66384 191 0.29 18000 NF NF - - 

22 1000 100 7151.88 7218.83 46.86 0.65 138602 139247 657 0.47 18000 NF NF - - 

NF= No feasible solution Found 

 

According to the results from both tables it can be noted that there are very small variations in the results of 

the proposed CE algorithm which demonstrates the robustness of our method. This claim is also shown the 

CV values.  It can also be observed that the post optimization stage was influential as it improves the 

solution with an average of about 1% and 2% for small/medium and large size instances, respectively while  

requiring a negligible extra CPU time. 

For illustration purposes, we consider Stage II to show the overall reduction in the objective function 

values in terms of the number of iterations. Figures 1A and 1B present the pattern with n=500 and m=40, 

and n=1000 and m=100, respectively. Similar patterns are also observed for most instances. In summary, 

the number of iterations required to find the solution is recorded as 50 for 𝑚 ≤ 10, 60 for 10 < 𝑚 ≤ 50 

and 70 for 𝑚 > 50.  
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FIGURE 1 (A) OBJECTIVE FUNCTION VS. ITERATION 

NUMBER (N = 500, M = 40) FOR STAGE II. 

FIGURE 1 (B) OBJECTIVE FUNCTION VS. ITERATION 

NUMBER (N = 1000, M = 100) FOR STAGE II. 

 

5. Conclusion 

In this section, we analyze sensitivity of two parameters of  the model (CR as a predetermined covering 

radius and R which is maximum distance a facility can be located from a center of a zone to be considered 

as part of that zone) based on the average solution (Av.Dev.), best solution (BestDev.) and average time  

solution (Av.Time). Also, we recorded the results for a given instance with n=100 and m=10 and used a 

combination for CR in [1, 2] and R in [0.2, 0.6]. The results are also reported in Table 3. 

TABLE 3- SENSITIVITY ANALYSIS OF THE PROPOSED MODEL (WITH N=100 AND M=10) 

 

# CR R 

GAMS 

(Baron solver) 

Proposed Algorithm(CE) 
Dev (%) 

F
best

 Time(Sec.) 

Time(Sec) 𝑭∗ Best Aver Std CV Best Aver Std CV Best Aver 

1 1 0.20 1721.30 11924 12076 12154 37.43 0.308 105.89 122.43 13.84 11.30 1.28 1.96 

2 1 0.40 1046.08 11752 12099 12143 26.27 0.216 109.36 122.97 8.49 6.91 2.95 3.33 

3 1 0.60 1168.92 11635 12131 12163 26.65 0.219 108.75 118.28 4.86 4.11 4.26 4.54 

4 1.5 0.20 1721.30 11924 12048 12124 53.38 0.440 108.41 111.15 1.86 1.68 1.04 1.68 

5 1.5 0.40 1046.08 11752 11992.7 12071 42.03 0.348 102.51 108.70 3.85 3.54 2.05 2.71 

6 1.5 0.60 1168.92 11635 11993.1 12117 65.25 0.539 105.68 109.98 2.80 2.54 3.08 4.14 

7 2 0.20 1721.30 11924 12065 12149 56.49 0.465 113.21 116.96 2.78 2.38 1.18 1.88 

8 2 0.40 1046.08 11752 12030.8 12117 49.21 0.406 111.28 118.66 5.10 4.29 2.37 3.10 

9 2 0.60 1168.92 11635 12096.2 12136 24.79 0.204 111.35 115.15 2.22 1.93 3.97 4.31 

 

Figures 2A and 2B present the sensitivity analysis of BestDev. and Av.Dev. values based on R 

amounts, respectively. As shown, by increasing the R, the BestDev. and Av.Dev. values are increased. It 

seems to CR=1.5 results in better solutions which we considered for our instances. 
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FIGURE 2 (A) BEST DEV. VS. R. VS. R. FIGURE 2 (B) AVERAGE DEV. VS. R 

Figures 3A and 3B present the sensitivity analysis of BestDev. and Av.Dev. values based on CR 

amounts, respectively. As shown, by increasing the CR=1.5 and 2 results in better solution in the BestDev. 

and Av.Dev. values. Therefore, based on the above analysis, R is more sensitive than CR in providing 

better solution for the proposed model. 

  

FIGURE 3 (A) BEST DEV. VS. CR.  FIGURE 3 (B) AVERAGE DEV. VS. CR. 

Figures 4A and 4B present the sensitivity analysis of Av.Time. values based on R and CR amounts, 

respectively. As shown, CR is more sensitive than R in CPU time for solving the proposed model. 

  

FIGURE 4 (A) AVERAGE TIME VS. R.  FIGURE 4 (B) AVERAGE TIME VS. CR. 

6. Conclusion 

A capacitated multi-source Weber problem with zone-based fixed cost is investigated. A nonlinear 

mixed integer programming model is presented and tested on small/medium size instances using GAMS. 
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An algorithm based on Cross Entropy (CE) is also proposed using appropriate multivariate normal and 

multinomial density function for the associated stochastic problem. The proposed algorithm generated 

competitive results producing a deviation of less than 2% in most small/medium size instances while 

requiring a tiny fraction of the time needed by GAMS. In particular, for the large size instances, GAMS 

fails to generate lower and upper bounds in most cases even after 5 hours whereas our CE heuristic 

maintains its performance throughout the experiments.  

The present work can be extended to include an adaptive and powerful search approach. This can be 

achieved by adopting a reinforced learning which continually feeds the information found in Stage III back 

into Stage I. The present CE meta-heuristic could also be adapted to address other related continuous 

location problems by appropriately defining the corresponding density functions. 
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