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Chapter 1

Introduction

In general terms, extreme events can be interpreted as: catastrophes, disasters, 

crisis, and crashes. For the purposes of this thesis, an extreme event can be 

defined as an event that has a small chance of occurrence, but has a high 

impact on the phenomenon in study.

The number of fields where there is an interest in the study of extremes 

is quite extensive: hydrology, seismology, climatology, economics, insurance, 

finance, epidemiology, medicine, and even in sports science.

Let us take the example of flooding. A common problem is to propose the 

height of a river barrier, such that it is feasible to build and it is unlikely to be 

breached. A useful way to approach this issue is to build the barrier up to a 

level, which is expected to be breached once every hundred years, for example. 

But to know what height this is, one needs to study extreme data. Similar 

examples or motivations can be posed for each of the fields listed.

2
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In the thesis, we focus on financial extremes, keeping in mind the following 

questions: what is an extreme?, how likely is it to occur?, what would be the 

impact of its occurrence?, and what can be done with this information?

The case of the univariate framework has been developed quite extensively 

in the last 50 years. The aim of this work is to model multivariate behaviors 

of extremes. Multivariate extremes is a relatively new area and as such, it 

is still in development. Beside, the theory states that, unlike the univariate 

framework, there is not a unique parametric family of multivariate extreme 

distributions. An important part of a multivariate model is the dependence 

structure. The selection of the parametric form will determine the dependence 

structure, and in most of the cases, it is a rigid structure, in the sense that it 

hardly embraces different types of dependence among the variables.

The variables we are modelling are semi-heavy and heavy tailed variables, 

generically denoted by X . This means, firstly, that the variables do not have an 

upper limit (or lower limit, if the study is the left tail). The second consequence 

is that the variables we are modelling are such that: E (X r) =  oo, for some r <  

oo. This means our model does not include light-tailed variables. We consider 

this assumption as reasonable as a first attempt of modelling extremes.

We introduce a model that applies exclusively to the tails. We do not 

assume any model for any other region and it is not the concern of the thesis.

We propose a mixture of individual models which have the following fea­

tures:
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• They belong to the same parametric family.

• They embrace different dependence structure from each other.

• They have marginal coherence.

• They have a simple parametric form.

It is important to notice that we are assuming that the only form of asymp­

totic independence of each individual model is the exact independence. In 

other words, two variables can either be asymptotically dependent or exact 

independent.

Let X  =  ( X j , . . . ,  Xd) be the random vector in study. Let C  be the class 

of non-empty subsets of the set B =  { 1, . . . , d}. Denote C  =  (C i , . . .  ,C d>), 

where each Cj is an index variable over the set B, i.e., Cj denotes a collection 

of the elements in X . Note that (J j= iC j =  B. For example, if Cj =  (1,2), 

then X cj =  {X i ,X 2); as well, X B =  X .

We define a latent variable A D (C ) such that:

X  | A D (Cj) means the elements in X c, are asymptotically dependent and 

the elements in X B\Cj are exact independent, for j  =  1, . . . ,  d!.

A natural question is to determine which of the variables A D (C j), for 

Cj € C, are plausible for describing a given set of data. For example, if 

d =  3, interest would be on determining the feasibility of the different possible 

asymptotic dependencies among X \,X 2, and X 3.x

1With this definition, it is clear that if C j, a collection o f a single element, is plausible
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The mixture model we propose is expressed, in general terms, as:

d'

j=1

where 0 <  Wj <  1 and 2̂ wj =  1, and f j  is the individual model associated to 

the asymptotic dependence structure given by the latent variable AD(Cj).

The individual models are parametric models defined with a special con­

struction of dependent variables, such that the asymptotic dependence relies 

only on one interpretable parameter. This parameter, let it be 8, does not 

have any consequential influence on the univariate marginals. As well, 8 is 

common to all the individual models. Although, in principle, this fact seems 

restrictive, it must be noticed that the weights of the mixture model play as 

well an important role in the general dependence structure. Therefore, the 

relevant information regarding asymptotic dependence of individual model f j  

is given by the pair (Wj,8).

In general terms, the mixture models can be seen as model selection or 

model averaging interpretations. We study the application of both interpre­

tations. However, we found that the model averaging approach respects the 

flexibility of the mixture model. Therefore we need to stress that this repre­

sentation is not constructed so that only one model is chosen. In the same 

sense, we are not assuming that only one model is correct.

then all the collections with a single parameter are plausible. In fact, according to our model, 

all o f them are simplified in a single model, where every variable is exact independent to

each other.
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For example, consider, once more, the case where d =  3. Suppose the 

asymptotic dependence of the pair (A i, A 2) is stronger than in the pair (Ai, A 3). 

It is clear that this behavior of data cannot be explained with the model selec­

tion approach, since the only asymptotic dependence information is contained 

in 0, which is common for both pairs. However, the model averaging approach 

can tackle this problem. Suppose C\ =  (1, 2), so that w-\ is the weight of 

the model where X\ and A 2 are asymptotically dependent. In a similar way, 

assume w2 is the weight of the model where X\ and A 3 are asymptotically 

dependent, whereas w3 is the weight of the model where the three variables 

are asymptotically dependent. Therefore, the asymptotic dependence of the 

pair (Ai, A 2) is given by the information in (u;i,iu3,0), w'hereas for the pair 

(Ai, A 2), the information is in (w2,W3,0). Hence, by no means, the mixture 

model, seen as model averaging, can be seen as rigid for having a common 6.

In terms of inference problems in extremes, we study two cases. The first 

case is the main purpose of this model, which is the prediction, via the model 

averaging interpretation.

The second type of problem is the asymptotic dependence determination. 

In a broad sense, the task was to select the most likely individual model, i.e., a 

model selection problem. The reason to study this problem is to make a com­

parison w'ith standard estimations in literature, since the interpretation of a 

dependence structure in a mixture model cannot be compared straightforward 

to a single model dependence structure.
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It is our belief that the importance of the mixture model is not the de­

termination of a unique model, but the prediction produced by spreading the 

uncertainty via a flexible model averaging.

Finally, the mixture models inference has been extensively developed inside 

the Bayesian paradigm, through the Markov Chain Monte Carlo and reversible 

jump methods. Therefore, this will constitute the inference basis of the thesis. 

The conjunction of these methodologies gives us the advantage of estimating 

the parameters of the individual models, the weights of the mixture model and 

the predictions in only one stage.

The overview of the thesis is as follows:

In Chapter 2, we present the fundamentals of the Extreme Value Theory, both 

the univariate and the multivariate cases.

We present some basics of the Bayesian paradigm in Chapter 3.

The following two chapters deal with the construction of a family of uni­

variate and bivariate distributions which can be the basis of the mixture model.

In Chapter 4, we introduce the first bivariate models we constructed before 

getting to the final bivariate model. We study their properties and limitations.

The Chapter 5 consists of our final bivariate model. We present its prob­

abilistic and statistical features. We do some simulation cases to show the 

inference procedures feasibility.

We present the generalization of the bivariate model in Chapter 6, which 

is the mixture model. We begin with the explanation of the trivariate model,
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before stepping into the general multivariate model. As in the bivariate case, 

simulation cases are given for the trivariate case.

In Chapter 7, we proceed with the financial applications. It is divided 

mainly in two parts: a dependence structure study and a portfolio study case. 

Finally, in Chapter 8, we present our conclusions.



Chapter 2

Extreme Value Theory

This section is dedicated to the foundations of Extreme Value Theory (EVT). 

We begin by explaining what an extreme event is, and then following on how 

it can be measured. In general, there are two methods to treat extremes: 

studying the behavior of the largest of the observations, or the observations 

exceeding a given threshold. These methods are, respectively, the Maximum 

and the Peaks Over the Threshold (POT) methods. Although the methodolo­

gies are different in principle, there is a strong relationship between them.

In the first part of this section (Section 2.1), we introduce the most impor­

tant features of the univariate EVT. We present the connect ions and differences 

between both the Maximum and POT methods. The typical concept in this 

section is the asymptotic behavior of variables: how does a variable behave 

and what are its properties when it takes large values. The main goal is to 

develop asymptotic models for extremes and to describe their properties.

9
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In Section 2.2 we consider the multivariate case. The easiest way to do this 

is to begin with the bivariate framework. Naturally, the multivariate EVT can 

be explained as well by the Maximum or the POT methodologies. As in the 

univariate case, the aim is to develop asymptotic models, but this time for 

a set of variables. One of the interesting issues in this section is to find the 

connections between multivariate and univariate cases: which properties are 

inherited or remain and which ones differ. We anticipate that there is an 

important difference in both frameworks, due mainly to the need of modeling 

the dependence among variables (as in any multivariate case). Therefore, in 

this section, special attention has to be kept on the dependence structure of 

the asymptotic models.

2.1 Univariate Framework

An extreme value can be explained as a very large or a very small value. What 

is a magnitude such that it can be called a large or small value depends on 

the nature of the data. What in a specific case could be called a large or small 

value, in a different context, can be a common value. And this is the essence 

of the extremes: they are not common, they are rare. Therefore, we need 

to know the nature of the data so that we can spot the difference between 

something common and something rare. Hence, in probability terms, one of 

the extremes features is that they have a low probability of occurrence.

However, in EVT, it does not suffice to be rare to define an extreme. As
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we mentioned above, an extreme value is a large or small magnitude value. 

What we mean with this is that its presence must have an impact in order 

to be worthwhile to study. This impact is measured as the large or small 

magnitude. However, we focus on large extremes for the sake of explanation 

(later, it will become clear why this is the case).

Therefore, we now can define an extreme as an event of low probability of 

occurrence which has a large magnitude.

The next issue is to propose how to measure the presence of extremes. One 

way, given a sample, is to look at the largest value. This procedure is the basis 

of the maximum methodology, which is the beginning of our explanation.

2.1.1 Maximum Approach and Extreme Distributions

Assume that the data come from a specific non-degenerate probability distri­

bution F. Define the right endpoint of F  as follows:

D efinition 2.1.1. X q is the right endpoint o f the probability distribution F of 

the random variable X, if and only if:

Xo =  sup {x  € R : F (x) <  1}.

Since we are not dealing with light tails, we have that X q =  oo. However, 

for explanation purposes of this chapter, we keep the notation of X q.

The aim is to denote the large values as those which are in the neighborhood 

of the right endpoint of a distribution. Given a sample, a reasonable way to 

approach to the right endpoint is to study the sample maximum. The next



Chapter 2. Extreme Value Theory 12

question is to study the properties of this statistic, so that we can establish if 

it is the only information needed.

Let X 1,X 2, . . .  be a sequence of independent and identical distributed 

(i. i. d.) real variables with probability distribution F. Define Mn as the max­

imum of a sequence of size n. Then, its distribution can be expressed as 

follows:

(2.1)
P (M n < x )  =  P ( X x < x , . . . , X n < x )

=  F n(x) .

The reason why we can focus on the maximum in our explanation is because 

the minimum framework can be implied by the following relation:

Max(X)  =  - M i n ( - X ) ,

for X  =  X n).

Once we have the distribution of the maximum, we need to study its prop­

erties. The first property is that Mn converges almost surely (a.s.) to the right 

endpoint as we state in the next property (see Resnick (1987)).

P roperty  2.1.1. Maximum a.s. convergence

M n  ^  X Q.

We need to standardize Mn in a way such that we get a non-degenerate 

function. One concept that will help us to standardize the maximum is max- 

stability (see the introduction of this concept in de Haan (1984)), which we

define now.
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D efinition 2.1.2. Max-Stability

A r.v. X  is said to be max-stable if there exist constants an >  0 and bn € R, 

such that for X \,. . . ,  X n, independent copies of X

M„ =  max ( X i , . .. , X n) =  anX +  bn; (2.2)

for any integer n >  2.

The expression Y  =  Z  stands for “Y  has the same distribution as Z” . In 

other words, if X  is max-stable then, there exists a standardization M* for 

the maximum

such that M* and X  have the same distribution. We will refer to such an and 

bn as the normalizing constants.

Because of the ease of computation, the max-stability is an ideal property 

for a r.v. However, just a few distribution functions have this property. Nev­

ertheless, as we will state further, the max-stable distributions are the only 

possible families of non-degenerate limit distributions for the maximum.

We present two cases as illustration of the max-stability and the lack of it.

Exam ple 2.1.1. Max-stability case

Let F(x)  =  exp(—x~Q), for x, a >  0 . The question is to determine whether 

it is max-stable or not.

We need to find an and bn, such that



Chapter 2. Extreme Value Theory 14

F n{anx  +  bn) =  F(x) ,

i.e.

exp ( -n (a „x  +  bn)~a) =  exp (-aT Q), 

which holds if we pick an =  n1/,Q and bn =  0.

Exam ple 2.1.2. Uniform. A non max-stability case

Recall that the uniform distribution is F(x)  =  x, for x  G (0,1). As in 

the previous example, we are aiming to find if the max-stability holds for this 

model.

Thus, we need to find an and bn such that

(anx  +  bn)n =  x, for all x  G (0,1), n G N.

However, the left hand side of the equation is a polynomial of degree n, whereas 

the right hand side is of degree 1. Therefore, there is a solution only when 

n =  1. Therefore, we conclude that the Uniform distribution is not a max- 

stable distribution.

We present the standardized maximum characterization theorem, which 

constitutes the main theorem for the EVT, from Fisher and Tippett (1928) 

(refer to Resnick (1987) for the complete proof).

T heorem  2.1.3. Fisher-Tippett theorem

Let X  be a non-degenerate r.v. with distribution function F  and suppose 

there exists constants an >  0 and bn G R, such that

F n(anx  +  bn) - t  G(x) (2.3)
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or in other words,

p { ' M n _ b n \

a„

as n —► oo, for a non-degenerate distribution G. Then, G must be of one of 

the following types:

1. Extreme Frechet type

G(x) =  4>(x) =

2. Extreme Weibull type

G{x) =  ${x )  =

3. Extreme Gumbel type

0, x <  0 ,

e x p { —(x) ° }  , x  >  0, a >  0

exp { —(—z)“ } , x  <  0, a >  0 

1, x >  0 .

G(x)  =  A(x) =  exp { —e x} , x  € R.

We will refer to the three types as the extreme value distributions.

There are some important things to notice. The first one is that it is pos­

sible to transform among the three types of distributions. If X  is an Extreme 

Frechet variable, then log(V ") has an Extreme Gumbel distribution. Simi­

larly, if X  is an Extreme Weibull variable then — log(—X a) has an Extreme 

Gumbel distribution.
^ h is  limit stands for convergence in distribution.
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The second one is that a variable with the extreme Weibull distribution 

is different from a Weibull distributed variable. In fact, if A  has a extreme 

Weibull distribution, then Y =  —X  is a Weibull distributed variable.

The last thing to note is that the extreme value distributions are the only 

max-stable distributions. On one side, it is easy to see that all the extreme 

distributions are max-stable. On the other side, if a distribution is max-stable, 

then the expression in (2.2) and the condition (2.3) are equivalent. Then if a 

distribution is max-stable, it must be of the type of one of the three extreme 

distributions.

The next question is: how does this result help with the inference of ex­

tremes? The answer relies on the concept of Maximum Domain of Attraction 

(MDA).

2.1.1.1 M axim um  D om ain o f  A ttraction

We present the general ideas of the MDA. A wide extension of this topic can 

be found in the works of Resnick (1987), Kotz and Nadarajah (2002), and 

Embrechts et al. (1997).

The general problem in extreme values is the following: let A  be a r.v. 

with a distribution function F, and let X  =  ( A i , . . . ,  A n) be a replica of A . 

Denote the survival function of F  as:

F(x)  =  F (A  >  x)  =  1 -  F(x) .

The aim is to determine the distribution of the maximum Mn. Consider
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Theorem 2.1.3. What follows is to find conditions for F, o„, and bn in order 

to determine which extreme distribution is the corresponding maximum limit. 

These conditions constitute the concept of Maximum Domain of Attraction, 

which we define as follows.

D efinition 2.1.3. Maximum Domain of Attraction

A non-degenerate distribution F is said to belong to the Maximum Domain 

of Attraction of an Extreme distribution G, i.e. F  € MDA(G) ,  if there exist 

an >  0 and bn such that

limn—voo F  (anX "1“ 6n) — G(x'),

or equivalently

limn—>oo nF(a„x +  bn) =  -  In G(x).

Different types of Extreme distributions lead to different types of tail heav­

iness. Therefore, a way to characterize the MDA of an Extreme distribution 

is through a necessary rate of decay for the original distribution. We will only 

describe the main features of each o f the domains and the distributions that 

belong to each of them. Refer to Resnick (1987), Kotz and Nadarajah (2002), 

and Embrechts et al. (1997) to see the conditions for F  and the normalizing 

constants.

M axim um  D om ain o f  A ttraction  o f  <f>.

The MDA of i> consists of regularly varying distributions, which are de­

scribed in Appendix A. We can derive the domain of attraction if we study
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the tail of $ Q:

_ x *
$a(x)  =  1 -  e x p (-a r Q) =  x~Q ----- —

as x  —>■ oo. Therefore, G RV_a, i.e. $ a behaves as a power function for 

large values of x  and the distributions that have it as their limit distribution 

of the maximum should behave similarly.

In general, the distributions that belong to this MDA are fat-tailed. This 

means that some moments might not exist. In fact, if we define the density as 

f ( x )  =  —-¿¿$(x), then the mf/¿-momentum of X , given by:

is finite iff m <  a.

The most important models that belong to this domain of attraction are 

the Pareto, the Burr, and the Cauchy distributions.

M axim um  D om ain  o f  A ttraction  o f

Since the Extreme Weibull distribution is related to the Frechet with a 

change of sign and a reciprocal, then it involves as well power functions on the 

tail, but for finite right endpoint distributions. Two examples of distributions 

of this domain are the Uniform and the Beta distributions.

M axim um  D om ain  o f  A ttraction  o f  the G um bel D istribution , A.

The Extreme Gumbel involves lighter tailed variables, since:

1 — A(x) =  1 — exp { — exp { —x } }  =  exp(—x) +  o(e x),
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as x  —t oo. Therefore, it will characterize exponential tails. In contrast with 

the previous MDA, distributions with infinite or finite right endpoints can 

belong to the extreme Gumbel distribution.

In the Frechet case, we found that some of the moments were not finite. In 

the Gumbel case, all the moments exist, as the following property notes (see 

Resnick (1987)).

P rop erty  2.1.2. Moments of Gumbel

Let X  be a r.v. with distribution F , such that F  € MDA(A) .  Then

and X+ =  m ax(0, X ).

Some of the models that belong to this domain are the exponential, the 

normal, the Weibull, and the gamma distributions.

2.1.2 The General Extreme Value Distribution

We now present a model that includes all the extreme models detailed in the 

previous section. This general model facilitates inference, since it includes 

the three extreme distributions in one model: the generalized extreme value 

distribution of Jenkinson (1955).

D efinition 2.1.4. The Generalized Extreme Value Distribution 

Define H, the generalized extreme value distribution (GEVD), as:

E[ {X+)m] <  oo, for m >  0,

(2.4)
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for  ( l  +  k >  0, n, k G R, and a > 0.

The three extreme distributions are included on this model, since:

• If k >  0, then 77* =  $ , a  =  1 /k, and x > ¡j, — y .
k

• If k <  0, then Hk =  ^ , a =  l/k, and x < fx — j .
K

• If k =  0, then 77*. =  A, since lim^oo ( l  +  k ( ^ H))  ^  =  e~^~^), and 

r 6 l .

Therefore, with this representation, inference is just a matter of estimating 

the parameter set and the MDA will be given by the estimate of k.

There are two classical ways to make inference of this model. The first one 

divides the data into blocks of the same length. In each individual block, the 

maximum is registered. Of course, the smaller the length of the blocks, the 

more data will be obtained. However, the asymptotics behind (2.4) will not 

be plausible. On the other hand, if the length is chosen too large, the amount 

of data would be too scarce. The common procedure is to fix the length on a 

practical basis. For example, in environmental analysis, it is common to take 

the annual maximum in order to avoid any seasonality. In the financial case, 

a common choice is to take the daily maximum. In any of these examples, it 

is reasonable to suppose the maxima would be equally distributed. Thus, it is 

assumed the data follow the model in (2.4) exactly.

The next step is to use maximum likelihood estimation (MLE). This method­

ology has some drawbacks for estimating, since the support of the variable
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depends on the parameter space. Smith (1985) showed the following features 

of the MLE:

• When k >  —0.5, the information matrix is finite and standard asymp­

totic properties for MLE hold.

• When — 1 < k <  —0.5, the MLE exist but are not asymptotically normal.

• when k <  — 1, the MLE may not exist.

In practice, the issue of the choice of the norming constants, an and bn, is 

solved as follows (see Coles (2001)):

Suppose

for large n and where II is a member of the GEV family.

Then,

P { M n < * ) * / /  )  =  //* (* ),

where H* is a different member of the same GEV family (meaning, the same 

parameter k). Hence, a GEVD can be fitted approximately to the untrans­

formed maxima, without affecting the extreme value type. In practice, it is 

irrelevant to estimate the scale and location parameters of II*, instead of those 

of H.  In this way, it is not necessary to estimate the norming constants.

The second option is to fit the model assuming that the data belong to the 

MDA of Ilk- It is clear that it is a completely different approach. Recall that
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belonging to the MDA of Ilk is equivalent to

lim ^oo nF(anx +  bn) =  -  In II(x).

Then, the convergence is more related to the tail of the distribution, rather 

than the maximum.

Let X\, X 2, . . .  ,X n be i. i. d. observations with a distribution F, such that 

F  E M DA(Hk). Define the order statistics as V iifl >  X 2,n >  . . .  > V ni„. 

Then, the usual way to proceed is to take the largest observations, say the 

m largest values. The value of m must grow as n does, but it should remain 

small in comparison with n, since it is the tail behavior that is needed. In 

general terms, m(n) —t oo and m(n)/n —> 0, as n —t oo. We will present two 

typical estimators when dealing with this approach: the Pickands and the Hill 

estimators.

The first estimator is introduced in Pickands (1975).

D efinition 2.1.5. Pickands Estimator

We define the Pickands estimator of k as:

=  “ ln(2) x I n - -------— ------.
2m, n 4m, n

The consistency of this estimator depends on the choice of m  (see Pickands 

(1975) for details), but with the conditions on m mentioned earlier, it is at 

least consistent in probability.

The next estimator will deal only with the k >  0 case, and it is called the 

Hill’s estimator (see Embrechts et al. (1997)). It uses the upper m statistics,
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where m can be defined as in the Pickand’s estimator.

D efinition 2.1.6. Hill’s Estimator

We define the Hill’s estimator of k as:

( m
m -l ^ \ n X jtn -\ n X  

j =i

where m/n —>• 0.

The different ways to derive this estimator can be found in Embrechts et 

al. (1997). They use the fact that the case k >  0 consists of distributions 

whose tails are regularly varying functions.

Pickands and Hill’s estimators give a different view on how to treat data: 

extreme relevant data does not necessarily consist of the block maxima, but on 

the observations that exceed a large value. This procedure is directly related 

to the excesses over the threshold approach. We will elaborate on this question 

in the next section.

2.1.3 Peaks Over the Threshold Approach

Assume that the variable X  belongs to the MDA for some / / ,  as in (2.4). 

Then, recall that the following condition holds:

-\ / k

l i m ^ o o  nF(anx + bn) =  ^ 1  +  k j ^

We can see from this expression a hint of how the tail of the dMril
r i

tion should look like. Keeping this in mind, we make the dcf:>r^,̂ V(’t
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Generalized Pareto distribution. Balkema and de Haan (1974) derived it as a

limit of Residual Life models, whereas in parallel, Pickands (1975) derived it 

working with order statistics. As well, there is the early work of Hill (1975) 

where a characterization of the tail of any distribution is given, and the final 

distribution proposed is a Pareto distribution.

D efinition 2.1.7. Generalized Pareto Distribution

We define the distribution Gk,p for ¡3 >  0 as the Generalized Pareto Distribu­

tion (GPD) by

with x >  0, when k >  0, and 0 <  x <  —fi/k, when k <  0.

Of course, if we consider lim ^o Gk,g, we get the expression: G$(x) =  

1 -  e~x!0.

In order to extend on the importance of the GPD, we need to define the 

excess distribution (see Embrechts et al. (1997)).

D efinition 2.1.8. Excess Distribution

Define the excess distribution Fu of a r.v. X  over a value u by

We define the value u as a threshold. Therefore, a threshold u is the value 

w'here a distribution Fu can be defined for all the values above u.

(2.5)

Fu(x) =  P ( X  — u < x \ X  > u ) .

The next theorem will present the relation between the excess distribution
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and the GPD. Moreover, it will present a connection as well with the GEVD 

(see Embrechts et al. (1997)).

T heorem  2.1.4. GPD-GEVD Relation

Let Hkt(j'H denote a GEVD with shape parameter k, and let X  be a r.v. with 

a distribution function F and a right endpoint X o . Then F  E M DA(IIk) iff 

there exists a positive measure function a(-) such that for  1 +  £x >  0:

limu^xo P  ( X . “  >  x, | X  > u )  =  Gz,i(x). (2.6)
V a\u) )

Therefore, the limit distribution of a properly scaled excess over a high 

threshold is the GPD, with the same shape parameter as that of the domain 

of attraction of F.

It is useful to introduce the scale effect of o(it) into the G PD  and thus, 

we get that /? — a(u) for the expression (2.5). Hence, when a large enough 

threshold is chosen, the GPD is a good limit distribution for the excesses over 

this threshold, i.e.

P ( X  - u >  x \ X  >  u) «  Gk.p{x), for x >  0. (2.7)

It is worthwhile to remark on a couple of things. First of all, regardless 

of the approach of using the information (whether it is via the maximum or 

the excesses over a threshold), the main parameter to estimate is a shape 

parameter common to both approaches. This should not surprise us, since 

we saw in the Pickands’ and Hill’s estimators that when estimating k for the 

maximum in the MDA case, it was necessary to include some information from
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the tails. In fact, both estimators involved the excesses over a fixed threshold 

(e.g., the Hill estimator used the mth order statistic).

The second thing to notice is that the scale parameter will depend on the 

threshold selected. The selection of the threshold will play an important role 

in inference. Notice what happens wThen we change a threshold level. Suppose 

we have a GPD variable X , say Gk,p, such that X  >  0, i.e. the initial threshold 

is 0. Then, when we adjust the threshold level to u >  0, we get:

As would be expected, a change in threshold would only affect the scale 

parameter. Thus, the GPD is closed to changes in threshold levels. However, 

this property is not so simple when making inference. The higher the threshold 

is chosen, the better the asymptotics of Gk,p in Theorem 2.1.4 will hold. In 

this way, the higher the threshold, the better is the approximation in (2.7). 

Nevertheless, the amount of data included is less. Therefore, the variance of 

the estimates will be larger. We will extend on threshold selection in the next 

section.

For a x >  u, the survival distribution can be split as follows:

F (x ) =  P (X  >  u )P (X  — u >  x — u\X  >  u) =  F (u )F u(x — u). (2.9)

P {X  > x  +  u | X  > u)

(2.8)

— G k, p+ku(-E) •

For the second factor, define y =  x  — u as the excess. Then, with a proper
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selection of u and by (2.7), F u(y) «  Gk,p(y)-

There are two ways to proceed for the first factor: choose a parametric or 

a non-parametric model, e.g. the empirical distribution.

Suppose u is given for a sample of size n. Let x{, x\,. . . ,  x*m be the observa­

tions that exceed u and X(i),X(2), ■ ■ ■ ,X(n-m)i the rest of them. As well, define 

0  as the whole parameter space. Assume that the empirical distribution is 

selected to model the observations that fail to exceed u and denote it as F, 

Then, the likelihood function is represented as

{
n - m  I n  m i /  b \

■ <2 i °)

The most common way to estimate the parameters is by MLE. As in the 

maximum case, the regularity conditions fail to hold when k <  —0.5. Refer to 

Smith (1985) for details.

2.1.3.1 Threshold Selection and Inference

As we stated, the relevance of the selection of a threshold consists on a trade 

off between the variance and the bias of the excesses modeling. The task is to 

get the smallest threshold for which the GPD fits reasonably well the excesses.

The first option to treat the threshold (and most common) is to fix it at a 

high level. This level could even be imposed to the analysis beforehand. For 

example, consider the case of studying the losses over a million pounds in an 

insurance company, where this threshold is fixed just because a million pounds 

is a high value, rather than having a deeper statistical meaning.
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We present two other options where the value of the threshold is estimated. 

The first one is based on the relation between the threshold and the mean 

excess function, and it can be found in Coles (2001) and Embrechts et al. 

(1997).

Define the mean excess function as follows.

D efinition 2.1.9. Mean Excess Function

Let X  be a r.v. with distribution function F  and right endpoint X q. Then, 

for a fixed u < Xo,

is the mean excess function.

In the case of the GPD, the mean excess function is computed as follows:

for k <  1, u <  Xo, and ft +  ku >  0.

This shows a linear relation between e(u) and u, for £ < 1.

Suppose there is a sample X i , . . . ,  X „, and for which X * , . . . ,  X a r e  the 

excesses over a threshold u. The mean excess function can be approximated 

by the empirical estimation:

Then, the first threshold selection method consists on choosing a threshold

e(u) =  E [X -  u | X  >  u]

>=i

u* for which e(u) is approximately linear, for all u* <  u <  X q.
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Although this method assumes that A: <  1, it is widely used to fix a thresh­

old for any type of tail behavior.

We now present the last threshold selection method. Suppose the GPD 

fits some data above a threshold. Then, recall from (2.8) that a change in the 

threshold only affects the scale parameter. In other words, the value of k does 

not change. In this way, the method consists on choosing a value u*, for which 

the estimates ku are considerably stable, for any u* < u <  X q.2

The last two methods are graphical based. It is a matter of visually sensing 

where a linear or a stable behavior is achieved. The difference between the two 

methods is that the first one is an estimation previous to inference. Whereas 

for the second method, estimates must be carried out for a range of different 

thresholds.

We present an application of this method on real data on Figure D.17.

On the real data analysis of Section 7.1, we aimed to select a threshold as a

quantile of the marginal data. In fact, we opted to choose the same quantile

for all the variables. Following the criteria of the threshold selection methods

we described, the figures suggest a linearity on ME above a threshold of a

quantile of 0.96. For the estimates of k, we present as well its 95% confidence

intervals. In some of the cases, when the threshold was above the quantile

0.98, the estimates were below -0.5. Therefore, the confidence intervals could

not be computed, since the regularity conditions do not hold. However, around

2The parameter ¡3U has to be estimated as well.
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the selected threshold (quantile 0.96), the estimates were just above 0. Then, 

the regularity conditions hold, and the estimates suggest some stability.

The topic of goodness of fit in extremes has been explored extensively. The 

first natural methods consist on graphics, for example: Q — Q and log Q — 

Q plots, and for the POT approach, the mean excess function graphic (see, 

for example, Beirlant et al. (2006) or Coles (2001)). However, in the POT 

approach, if the threshold is chosen based on the mean excess function plot, 

as we explained, it is not possible to use it as a goodness-of-fit tool.

In the case of goodness-of-fit parametric methods, a wide treated case is 

testing k =  0 vs k ^  0 (see (2.4) and (2.5). The works of Bardsley (1977), 

Hosking (1984), and Often and van Montfort (1978) focus on the maximum 

approach, i.e. the goodness-of-fit of the GEVD, for both the k =  0 vs k ^  0, 

and the one sided hypothesis tests (either k >  0 or k <  0), and Stephens 

(1977) focuses only on testing k — 0 vs k ^  0.

For the POT approach, Davison and Smith (1990) treat the case k =  0 vs 

k ^  0 in the GPD, whereas Beirlant et al. (2006) and Choulakian and Stephens 

(2001) test the GPD fit for MLE’s. This goodness-of fit literature works with 

modification of tests as: Kolmogorov-Smirnov, Anderson and Darling, Jackson 

and Cramér-von Mises.

We end the univariate section with a summary of the extreme values fun­

damentals. We found that there are two approaches to deal with the extremes: 

the maximum and the excesses over a threshold approaches. Whichever ap­
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proach is chosen, the model is linked with the behavior of the variable on its 

tail. This tail behavior is characterized by one single shape parameter. Both 

approaches are so related, that both models share this shape parameter. We 

found that, although theoretically, the maximum approach does estimate the 

tail behavior via the shape parameter, some information can be discarded from 

the sample. This is why we prefer the POT framework when making inference.

2.2 Multivariate Framework

During the last twenty years or so, significant attention has been given to in­

ference methods for multivariate extremes, following original work of Smith et 

al. (1990) and Tawn (1988). Such a framework has not been easy to set up 

and most of the literature has focused on the bivariate case. Any multivari­

ate extreme model has two aspects: the marginal model and the dependence 

structure. The marginal models, as we explained in the previous section, are 

typically members, or belong to the domain of attraction, of the univariate 

extreme value family of distributions.

The main focus on multivariate study is the dependence structure on the 

extremes. Since any attempt to model this structure should be able to embrace 

light and heavy tails (meaning that some moments might not exist), traditional 

dependence measures of covariance such as the Pearson correlation coefficient 

or Spearman’s p are not useful.

In the multivariate case, the first attempts to create a dependence structure
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on the distribution of the maximum are given in Gumbel (1958), Tiago de 

Oliveira (1958), Sibuya (1960), and the point process representations of de 

Haan and Resnick (1977). We will focus on a version of de Haan and Resnick 

(1977), where it can be seen that the multivariate extreme models do not 

have a unique representation (see as well Resnick (1987), Kotz and Nadarajah 

(2002), Coles and Tawn (1991), and Ledford and Tawn (1996)).

The aim of this section is to set the foundations of the representations of 

the multivariate extreme models and their properties.

We will denote vectors as X , for r.v., and x  for fixed values. We will keep 

the subindex for the sequences indices and for order statistics. Thus, to denote 

the elements of a vector, we will use the superindex, e.g. x  =  (x ^ \ . . .  ,x ^ ) .  

And to order vectors: x  >  y  means >  y^'); for j  — 1 , . . . ,  d.

2.2.1 Multivariate Maximum Asymptotics

The first framework we will explain can be found in de Haan and Resnick 

(1977), Resnick (1987), and Kotz and Nadarajah (2002).

The aim is to model the behavior of a random vector X  =  (X ^ \  . . . ,  X ^ )  € 

R d. Assume X  has a joint distribution F, which means that for a fixed vector 

x  =  (a^1) , . . .  , x ^ ) :

F (x ) =  P {X {1) <  z (1), . . . ,  X {d) <  x (d)).

In multivariate analysis, there is no unique definition of the maximum, since 

there are different ways to order vectors. The common practice is to define it
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as the vector of the marginal maximum (therefore, the sample maximum are 

not necessarily real observed data).

Suppose =  l , . . . , ra }  are i. i. d. d-variate vectors with

distribution F. Define M n, the sample maximum as

M n =  M n\  • • • , ,

where M u '1 =  m ax(X ^ ,j\ . . . ,  X^n̂ ) ,  for j  =  1 , . . . ,  d.

As in the univariate case, we seek to find a limit distribution for M „ and 

its properties. The distribution of the maximum is computed as follows:

P{ M „ <  x) =  P (M i1] <  x^\ . . . ,  M id) <  x ^ )

= n i u  p ( x w  <  x w , . . . ,  x (i’d) <  x ^ )

=  (^ (x ))n

=  F n(x).

The class of the max-infinitely divisible (max-id) distributions is that where 

F n is a distribution for n >  0. We use the following theorem to define this 

class (see Resnick (1987)):

T h eorem  2.2.1. Max-infinitely Divisible Distributions

A distribution F  is max-id if and only if F 1̂  is a distribution V i >  0.

Regarding the distribution of the maximum, if the joint probability of the 

maximum is a max-id distribution, then it follows that the joint distribution 

of the original variables is a distribution as well.
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The max-id concept will play the role that max-stability did in the univari­

ate case, see (2.2) in Section 2.1: It will characterize the extreme multivariate 

distribution.

As in Section 2.1, see (2.3), in the univariate case, seeking for a non­

degenerate limit distribution of the standardized maximum is analogous to 

seeking constants > 0 , . . . ,  a $  >  0 and b „\ . . . ,  bn\ such that for M „ and 

X „  defined as before:

where x  =  (x^\ . . .  , x ^ ) .  We will call G  the class of multivariate EV distri­

butions.

If we let x =  oo in (2.11), for all m ^  j , for some j  € { l , . . . , d } ,  

then we will get the j  — th marginal, Fj. Therefore, the limit of the marginal 

distribution is expressed as follows:

for j  =  1 Hence, the marginals of G must be a non-degenerate EV

distribution.

the asymptotic exact independence and complete dependence cases.

( 2 . 11)

( 2 . 12)

Two special extreme (in terms of dependence structure) cases arise on G:

D efinition 2.2.1. Asymptotic Exact Independence and Complete Dependence
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The E V  distribution G follows an asymptotic exact independence if

G {x) =  G l { x ^ ) - - - G d(xW ). (2.13)

The EV  distribution G follows asymptotic complete dependence if 

G {x ) =  min {G i(x (1)), . . . ,  Gd(x(<i)) }  .

We will discuss more dependence structures in the following sections.

2.2.2 Characterization of the Multivariate EVD

In this section we will find a characterization of the multivariate EV distribu­

tion (MEVD) G.

Recall the max-stability concept from Section 2.1, see (2.2). In a similar 

way, we can define it for the multivariate case.

D efinition 2.2.2. Multivariate Max-stability

A distribution G(x) is max-stable for x  € Rd, if there exist functions 

a ^ (t )  >  0 and fi^\t) for j  =  1 , . . . , d  and all t >  0, such that for any 

x:

Gt(x) =  G  (a (1)(i)x (1) +  0 {1)(t) , . . . ,  a {d){t)xw  +  0 (d\ t) ) .

Therefore, G l n̂ is a distribution for all n > 0, then all the max-stable 

distributions are max-id. As in the univariate case, the class of max-stable 

distributions have an important use as the next theorem shows (cf. Resnick 

(1987)).
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T heorem  2.2.2. The class of multivariate extreme value distributions is the

class of the max-stable distributions with non-degenerate marginals.

This theorem gives us the first characterization of the MEVD: these are 

max-stable distributions.

In order to go further in the analysis, it is useful to separate the marginal 

effects from the joint distribution via standardization. In the next definition, 

we present the inverse function.

D efinition 2.2.3. Inverse Function

Let F  be a non decreasing function on R. Then, define the inverse (or more 

precisely, the left continuous inverse) as:

The most common way to standardize the variables is through the marginal 

transformation

so that the marginal distributions are unit Frechet with distribution function:

for j  — 1 , . . . ,  d. This transformation does not change the multivariate extreme 

structure of the joint distribution, as the following theorem shows (cf. Resnick 

(1987) for the proof).

F*~(x) =  inf {y  : F (y) >  x }.

T h eorem  2.2.3. Fréchet Transformations
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Suppose G is a MEVD with continuous marginals Gj. Define the transfor­

mations

Uj =  " lo g  G f i x ^ y  for j  =  • • • ’ d’

and for x  € M.d

CT(x) =  G  ( U r  (*(1)) , . .  •, U t  {x {d)) ) , (2.14)

then, G* has unit Frechet marginals and G is a MEVD iff G* is MEVD.

We now present the characterization of the domain of attraction of the 

MEVD.

2.2.2.1 A  Necessary Condition for M D A

The first condition is elaborated from a Poisson Process point of view and it 

can be found in Kotz and Nadarajah (2002).

Let =  (X ^ ,x\ . . . ,  X (i’^), for i =  1, . . . ,  oo, be random vectors with dis­

tribution function F  € M D A (G ) and marginals Fj. Define as well Uj (V ^ ’-d) =  

—1/ log Fj ( X ^ ) , for j  =  1 , . . . ,  d. Let, Sd be the (d-l)-dimensional unit sim­

plex:

Sd =  | (t c i , . . . ,ied_i) : <  1,«'* >  0,k  =  1, . . .  , d -  l j ,

and define the transformation vector:

T ( vm,..., #M) = (e ; !/'*>. vm !  E i  • • •. y{i)l  E U  vm )  ■

Then
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Pn =  {  (£/i (X (u ))/n , • • •, Ud(X M )/ n )  , i =  1, . . . ,  n }  -> P, as n -> oo,

where P  is a non-homogeneous Poisson Process on R+ with an intensity mea­

sure /x such that

n(T<~(dr,d'w)) =  r~2drH(dw),

for r >  0 and w  £ Sj, where II is a non-negative measure on Sd such that

H(Sd) =  d and j  WkH(dw) =  1, for k =  1, . . .  ,d  — 1.
Jsd

Then, the transformed MEVD G*, as in (2.14), can be written as

G*(y{1), . . . , y {d)) =  exp { —V(j/(1), . . .  , y ^ ) }  , (2.15)

where V  is called the exponent measure function, such that:

V (y (1), . . . , y (rf)) = / / ( { [ 0,y (1)] x . . .  x [0,y (d)] } c)

/y[d̂ j H(dw).

It is clear that there is not a unique representation of the limit MEVD.

As it can be seen, this representation works with pseudo-polar coordinates via 

T. However, it is H  which determines the dependence structure of the model. 

The strength of the dependence will rely on where II puts the mass.

Therefore, there are as many limit distributions G* as II functions can be 

defined. There are two ways to define IP. with a parametric or with a non- 

parametric model. As examples of parametric models, we have the Logistic, 

Bilogistic, and Gaussian models. Different parametric models lead to different
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type of dependence (see Tawn (1988), Tawn (1990), and Smith et al. (1990)), 

and as we will show, some models can embrace different types of dependence. 

Therefore, it is a difficult task to construct a parametric family of models 

which can be flexible enough to fit the complexity in the multivariate extremes 

framework. For the purposes of the thesis, we are interested in the complexity 

of the dependence among the variables. The aim in this respect, therefore, 

is the construction of a flexible model for which a high number of types of 

dependence is achieved. We will address again this issue in the bivariate 

section. For more models and their properties, refer to Joe (1994), Tawn 

(1994), and Kotz and Nadarajah (2002).

We now focus on the bivariate case. The bivariate case is the most studied 

and it is where we need to point out further concepts and theories.

2.2.3 Bivariate Framework

In this section we will present the main results of the bivariate extremes frame­

work. To begin with, we give the bivariate equivalent characterization of Sec­

tion 2.2.2.1 (refer to Coles (2001). We then give a second representation of the 

maximum, the representation of Pickands (1981). Refer to Kotz and Nadara­

jah (2002) for more characterizations.
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2.2.3.1 Bivariate M axim um  M od el

Let X  and Y  be independent random variables, unit Frechet distributed (i.e. 

Fx {x) =  e~llx, and equivalently for y ) .  Let X, and Vj be copies of X  and Y, 

respectively for i =  1 , . . . ,  n. Define:

M* =  (n~lm ax{X i , . .. ,X n),n ~ 1m a x (Y i,... ,Yn)) . (2.16)

The form of the marginal distributions of M* are expressed as:

P  {n~lm a x (X i,. . . ,  X n) <  x) =  e~1/x, x  >  0, for all n >  1,

(and similarly for the second marginal) since the Frechet is a max-stable dis­

tribution.

We present the equivalent version of Theorem 2.1.3 (see Coles (2001)).

T h eorem  2.2.4. Define M * as in (2.16) for  (Xi,Yi), independent vectors 

with unit Frechet marginals, for i =  1, . . .  ,n. Then, if

p {m :  <  x) — > G(x), as n —> oo,

for x  =  (x ,y ), x >  0,y >  0, and where G is a non-degenerate distribution. 

Then, G has the following representation:

G(x, y) =  exp { - V { x ,  y) }  ; (2.17)

where

max(w/x, (1 — w)/y)dll(w), (2. 18)
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for H, a distribution satisfying:

=  1/ 2.

For example, define:

41

(2.19)

dH(w) =  0.5 l[u,=i] +0.5 l[u,=o] •

Then, G  is expressed as:

G (x ,y )  =  e x p { -  (aT1 +  y-1) }  •

Therefore, X  and Y  are asymptotically exact independent.

Similarly, define:

G?//(zn) — l[u)=o.5] •

Then, G  is has the following form:

G(x, y) =  e x p { — m.ax(x~l,y~ 1)}

=  min {exp(—a:_1),exp(—y-1)} .

Therefore, X  and Y  are asymptotically complete dependent.

A feature to notice about V  is that it is a homogeneous function of order 

— 1, which means:

V (cx,cy) =  c~lV {x ,y ), (2.20)

for a constant c >  0.

Another equivalent expression for G  is the representation of Pickands (1981):

G(ll!/) = ex p {-(H H ^ )};



Chapter 2. Extreme Value Theory 42

where:

A(w) -<?) , ( !  -w )q }d H (q ),

and its main features are:

• max(w, 1 — w) <  A(w) <  1 for 0 <  w <  1;

• A  is convex.

Similarly to the previous examples, if we set A(w) =  1, Vie 6 [0,1]. 

Then X  and Y  are asymptotically exact independent, whereas when A(w) =  

m ax(w , 1 — w), then X  and Y  are asymptotically complete dependent.

Since these conditions and (2.19) are satisfied for an infinite number of 

functions (meaning infinite possible forms for V  or A ), there is no unique 

representation of the distribution of the maximum in the bivariate case.

As we stated in the multivariate representation, parametric models can be 

assumed for V  or A, and therefore, different measures lead to different type of 

dependence, and as we will show, some models can embrace different types of 

dependence.

Similarly to the univariate maximum approach, the selection of the block 

for the maximum is an issue to consider. As well, some information might be 

wasted when considering this approach. Therefore, we present the bivariate

version of Section 2.1.3.
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2.2.3.2 Bivariate POT Approach

In this section, we present the bivariate version of the POT approach. The 

generalization to the multivariate case is straightforward from (2.22).

Recall from (2.9) that a univariate tail can be split as:

F x (x) =  P (X  > u )P (X  -  u >  x  -  u\X  > u )  =  F x (u )F x ,u(x -  u),

where F x,u> can be approximated by a GPD for a large u, i.e.

(  k \ ~1/k
P (X  >  x) «  P (X  > u) l 1 +  - ( x  -  u)J , for x > u.

A simplistic procedure is to introduce the effect of P (X  >  u) in one pa­

rameter (see Coles (2001) for estimations and implications), as follows:

—l/fc/  \-l/K
P (X  < x )  =  l - ç u i l  +  -p(x -  u)\ , for x  > u. (2.21)

Suppose X  and Y  have a joint distribution F  and marginal distributions 

as the expression in (2.21), for X  > ux and Y >  uy. Then, the variables

X ' =  -  tlog t l  - i *  (l + - !i j ) )  )^) , and

Y’ = -  (log ( i  -  C, (i + -  “» l ) " '^ ) )  •

have marginal unit Frechet distributions for X  > ux and Y  >  uy, and the joint 

distribution F* of the pair (X *,Y *) can be approximated, for large n, as (see
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Coles (2001)):

F*(x\y*) =  (F n(x*,y*))1/n

«  exp {—V (n- 1x*, n~1y*)}l̂ n 

= exp {—V (x*,y*)} .

The second line holds from Theorem 2.2.4, whereas the third line, from (2.20). 

This means that for large ux and uy:

F (x, y) =  F*(x*,y*) «  exp { - V  (x*, y*)} , for x > ux, y >  uy. (2.22)

The next question is how we can fit model (2.22) to extreme data. The 

answer is formulated by censoring the observations as stated in Smith (1994) 

and Ledford and Tawn (1996). We divide K2 into four different regions as 

follows:

{Rij', i =  H-[x>ux]>3 -̂[v̂ >uv]}  > (2.23)

as Figure D .l shows. Then, model (2.22) applies directly to region R n . How­

ever, data falling on other regions also contribute to the information of the 

tails. For example, an observation in Rio means only x  is extreme. Hence, the 

contribution to the likelihood function of this observation is given by:

P (X  =  x ,Y  <  uY) =
8F_
Sx (x,uv)

Therefore, a Y  is censored, i.e. it is only known to be below uy-

The censoring process is explained as follows:
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Let x  =  .. •, (xn,yn)}  be a replica of size n of the pair (V , V)

with joint distribution function F  with parameter oj, for which (2.22) holds 

for high thresholds ux  and uy of X  and Y, respectively. Then, the likelihood 

function for the extreme data is given by:

n

£ M x ) = n s M t e ’ tt))»
¿=1

where /
s2f
6xSy (x,y)

if (x ,y )  G Rn

g{u\(Xi,yi))

SF_ I
Sx l(x,u„)
SF
Sy

if (x ,y )  G R w 

if (x, y) € Roi

F(ux,uy) if (x,y)  E Roo,

(2.24)

where F( x , y )  is as in (2.22).

It is important to notice that, although this model incorporates the infor­

mation in the regions R\0, Rio, and Rqo, the support is on the region Rn . 

This fact will play an important role when we introduce our model, since we 

will present two versions of how to treat data in our model: a modification of 

the censoring of Smith (1994) and a modeling of the three regions R 10, Rqi, 

and Rn  (see Section 5.5).

As in the bivariate maximum approach, the joint distribution in the tails 

depends on the definition of the measure V. Therefore, the representation is 

not unique and the usual way to proceed is to define a parametric model for 

V. The choice of V  will determine the dependence structure of the model. In
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order to study the joint tail behavior implied by a form of V  and to compare 

it with other families, some extreme parameters must be introduced.

2.2.3.3 Bivariate E xtrem e param eters

The first parameter to define was introduced in Sibuya (1960). It measures 

the asymptotic dependence between two variables when considering the tail. 

This parameter will play an important role in the following chapters, since it 

will determine the dependence structure of our bivariate model.

D efin ition  2.2.4. Tail Dependence parameter \

Let X  and Y  have the same marginal distribution. Then define the follow­

ing asymptotic dependence measure:

The following cases are defined from this parameter:

• x  =  1 •' X  and Y are complete tail dependent.

• x  =  c >  0: X  and Y are asymptotically or tail dependent.

• x  — 0: X  and y  are asymptotically or tail independent.

Define, as well, as in Coles (2001), the following parameter for 0 <  r <  1:

X =  lim„_+ooP ( X  > u\Y > u). (2.25)

X(r) =  2 -

=  2 -

log P ( F x ( X ) < r , F Y( Y ) < r )  
log P ( F x ( X ) < r )  

\ogP(Fx ( X ) < r , F Y( Y ) < r )  
log r

(2.26)
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for Fx  and Fy, the marginal distributions of X  and Y.  The relation with the 

parameter x  is the following:

limr_>i x (r) =  X-

The parameter x(r ) is a helpful empirical tool for inference. The value in 

(2.26) can be plotted for different values of r, and the graphic can help to 

have a guess when r approaches 1 where x  is expected to be. In Chapter 6 we 

present some examples of this parameter.

In fact, x  has the following relation with the exponent measure in (2.18):

X =  2 — V (l, 1).

Recall the Figure D .l (in this case ux =  uy). A complete tail dependence 

(y  =  1) case would mean that all the observations for which the Y  component 

is above uy are expected to lie on R\\, for a large uy.

Some problems can arise when x  is close to zero in the classical inference 

approach, i.e. when there is near independence. For example, Coles and Tawn 

(1991) found some examples where the exponent measure V  (recall (2.18)) 

places all the mass on the vertices of Sp, thus, the densities of II (recall (2.18)) 

present discontinuities. This problem is found in both approaches: the maxi­

mum and the POT. In fact, as Coles and Tawn affirm, in the POT approach, 

the joint distribution fails to factorise into the product of the marginals in the 

tail independence or near independence cases, and even more, the joint distri­

bution gives as well a zero probability to the case of both variables exceeding
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a high threshold.

On the other hand, Tawn (1988) found some examples where the indepen­

dence case implies nonregular behavior in the classic estimation framework. 

However, Tawn was able to find in a couple of cases an asymptotic behavior 

of the MLE of the parameters. As a consequence of these difficulties in the 

classical approach, Tawn’s tests of independence present some problems when 

constructing them. This framework can only test exact independence against 

the tail dependence.

Suppose X  and Y  are unit Frechet distributed and nonnegative associated. 

Ledford and Tawn (1996) introduced a way to estimate smoothly the depen­

dence structure between the asymptotic dependence and exact independence. 

Ledford and Tawn had the target to set a model between the following two 

cases:

for large r.

Thus, Ledford and Tawn introduced a parameter 7? (defined as the coeffi­

cient of tail dependence) that governs the power of r in between these extreme 

dependence cases, such that:

P (X  >  r ,Y  > r) ~
- i for asymptotic dependence, and 0 <  c <  1.

for exact independence,
(2.27)

P ( X  >  r, Y  >  r) ~  £ (r)r 1/,r?, as r —> oo, (2.28)
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where 0 <  rj <  1, and £{r)  is a slow varying function, meaning that:

C(tr)/£(t) =  1,

for fixed r >  0.

We can relate y  and V with the following expression:

P (X  >  r\Y >  r) ~  £ (r )r1~1/T', as r —> oo. (2.29)

Hence, the extreme dependence cases are as follows, with the restriction that 

£(r)  0, as r - »  oo:

• r] =  1/2 and £(r)  =  1: exact independence (y  =  0).

• 1/2 <  T] <  1: asymptotic independence (y =  0) and the variables are 

positively associated.

• 0 <  r) <  1/ 2: asymptotic independence (y  =  0) and the variables are 

negatively associated.

• T) =  1 and £(r)  =  1: complete asymptotic dependence (y  =  1).

• r) =  1 and £(r)  -** 0, as r —>■ oo: asymptotic dependence (0 <  y  <  1).

Consider a tail independence case where 7? € (1 /2 ,1), and suppose it is 

assumed that the parametric family to model the joint distribution only em­

braces the exact tail independence and tail dependence cases. Then, such a

model will tend to underestimate the joint survival distribution over a large
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r. The introduction of the parameter 77 has the purpose to distinguish the 

strength of the independence.

Ledford and Tawn model the type of extremal dependence with the pa­

rameter 77 and the strength of this dependence, with C{r).  Ledford and Tawn 

then give different parametric models for each case of 77, i.e. for each type of 

dependence. In order to estimate 77, they use the fact that for Z  — m in(X, Y):

P(Z > r) — P(X > r,Y > r) ~  C(r)r~1^, as r 00,

i.e., they transform a bivariate problem into a univariate problem. Since 

P (Z  > r) is a survival function, it can be approximated with a GPD(A:*,<7*). 

So, 77 =  k*, which makes clear that the restriction on the estimation must be 

set: k* € [1/2,1], for the positive associated variables. Ledford and Tawn give 

some tests for dependence using likelihood ratios. Once this is done, a para­

metric family will be fixed for the bivariate model (for example, the bivariate 

normal distribution when 1/2 <  77 <  1).

The parameter 77 suggests tail dependence when it is near 1. For the rest of 

the range, it gives a measure of the tail independence. For the same purpose, 

Coles et al. (1999) defined another measure of asymptotic dependence, denoted 

as x-

Let X  and Y  be r.v. with Frechet marginals. Then, define the following 

measure:

=  2 log P (X  >  r) _
log P ( X > r , Y > r )  ’
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where — 1 <  x ( 0  < 1. Define as well:

X = lim^oo x(r)

Then, x  is another measure of the strength of the tail independence, for which 

— 1 <  X < 1, and:

• If x  — 1: V  and Y  are asymptotically (tail) dependent.

• If x  — 0: X  and Y  are exact independent.

• If x  € (0,1): X  and Y  are asymptotically (tail) independent and the 

variables are positively associated.

• If x  £ [—1,0): X  and Y  are asymptotically (tail) independent and the 

variables are negatively associated.

Coles et al. (1999) give priority on the estimation of only when x  is 

estimated significantly near 1, then it is worth to estimate X- Therefore, the 

test of tail independence against tail dependence is through a test of x  <  1 

against x  =  1, rather than x  — 0 against x  > 0.

The estimation of x  is similar to r), since the following relation holds:

X =  2tj- 1.

Both x  and x  determine all the possible asymptotic dependence types, as 

we summarize in the following remark.

Rem ark 2.1. Asymptotic Dependence Types

X  and Y are:
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• Complete tail dependent if x =  1*

• Tail dependent if 0 < x  < 1 (and\ =  !)■

• Exact independent if x  =  0 and x =  0.

• Tail independent if x  =  0 and — 1 <  x  <  1 •

An interesting framework is that of Ramos and Ledford (2009). They mix 

the classic multivariate model with p, but with the parameter included in the 

model. Let X  and Y  have Frechet marginals. Define (S, T) — (X/u,Y/u) 

for X  and Y  larger than a large u. Ramos and Ledford propose the following 

model:

P (S  >  s ,T  >  t) , - i (ps) V* +  ( j )  N -  ((p s) xt° +  ( j )  '  )
a/i)

where (s, t) e  [1, oo)2, v >  0, p € (0,1], a >  0, and p >  0.

The joint model recognizes the presence of p. Then, inference is carried 

out using MLE.

An applied work was developed by Poon et al. (2004). Here we present the 

main features of Poon et al. (2004). Consider two random variables, X  and Y, 

with distribution functions Fx  and Fy. Apply the following transformations:

lo g (F * (X )); T  l o g (M K ) ) ; (2.30)

so that both S and T  have marginal Frechet distributions. Working with S and 

T  is theoretically equivalent to working with X  and Y  for the joint survival,
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since:

P{X > x,Y > y) =  P ( s  > — 1 T >  -T—r - f .V  log (Fx (x)) log (FY(y))J

=  Fs,t(s, t) ,

where s  =  and t =

As in the case where the dependence parameter is 77, the choice of the 

parametric model of Fs,t will depend on the estimated values of x  and X- In 

fact, only when \ Is near F Is the tail dependence x  estimated.

The model that results from this framework is a quasi copula one.3 For 

more details of copula based models, see Heffernan (2000) and Joe (1997). 

A problem with the copula model is that although in theory the transforma­

tions do not change the dependence structure, in practice the estimation of 

the marginals (which is generally done via empirical distributions) leads to in­

accuracies. As well, there is no clear evidence on how much any inexactitude 

will affect the accuracy of the joint model.

A clear and concise discussion that considers the disadvantages of the cop­

ula model is given in Mikosch (2005). Among other issues, Mikosch discusses 

the problems of fixing the marginals to a standard distribution. This standard 

procedure in the extreme values framework is a well known difficulty when 

making inference. Mikosch addresses that, although fixing the marginals is

relevant from a probabilistic point of view, when dealing with data, it becomes

3The main difference with the copula models is that the S  and T  transformations do not 

have a support on [0, l]2.
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hard work, since the marginal distributions are unknown. Mikosch addresses 

as well, that in practice, the split of the marginals and the dependence struc­

ture when using copulas, implies a great uncertainty for just one sample. In 

brief, it is unclear how sensitive the copula estimations are to the fixing of the 

marginals.

Finally, we need to discuss the flexibility of parametric multivariate mod­

els, regarding their dependence structure. So far, the determination of the 

asymptotic dependence among variables has not been a clear procedure. When 

selecting a parametric model family either in the maximum or the POT meth­

ods, the asymptotic dependence is determined for all the subsets of variables. 

Some family of models have improved the flexibility of modeling extremes. For 

example, the introduction of the asymmetric logistic model by Tawn (1988) 

solved the problem of non-exchangeable variables. However, the model asymp­

totic dependence structure is determined only through one single parameter. 

In the bivariate case, this does not seem to be too restrictive, and some models, 

as that in Ramos and Ledford (2009), can even model different tail indepen­

dence behaviors through an additional parameter. However, although most of 

the bivariate cases have straightforward generalizations, these turn out to be 

restrictive. For example, it is a hard task to model, with a single parametric 

model, different asymptotic dependence for different combinations of variables. 

The MEVD’s have the property that pairwise asymptotic exact independence 

implies d—dimensional asymptotic exact independence. Therefore, pairwise
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analysis can help to select a given parametric family of models. However, the 

help of the pairwise analysis is restricted, since the multivariate asymptotic 

dependence is uniquely determined by the pairwise dependence.

In order to overcome the lack of flexibility, some attempts have been given 

by Joe (1990) and Tawn (1990). We focus on the latter work. Tawn (1990) in­

troduced the multivariate asymmetric model, following the works of Dagsvik 

(1988) and McFadden (1978). This model was planned to model different 

types of dependencies among the variables. The way Tawn constructed the 

individual models is a hierarchical model similar to the individual models of 

our multivariate model. Tawn (1990) modeled different combinations of sub­

sets of the d—dimensional problem, as our model will do. However, we find 

three differences with our work. The first one is the definition of the latent 

variables in the hierarchical model. In our case, each variable of the multi­

variate model is explicitly defined by its subvariables. The second difference is 

that the model in Tawn (1990), although includes all the possible dependen­

cies among the variables, it is not defined as a mixture model. Finally, Tawn 

(1990) worked with the maximum of G PD  variables. The model leads to an 

overparametrization in most of the applications. Therefore, inference has to 

be combined with the understanding of the application, so that the model 

can be simplified. Even in the simplified version, the form of the density was 

not easy to handle. In fact, in the application, Tawn (1990) implemented a 

model selection framework, over a set of simplified versions of the multivariate
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asymétrie model. The models were tested against each other using likelihood 

ratio tests.

We believe the Bayesian mixture models are a helpful framework to over­

come the difficulties. The aim of the thesis is to overcome the difficulty of the 

lack of flexibility of the classical models regarding the asymptotic dependence. 

The way we construct the individual models and the closure of the high dimen­

sion distribution to marginalization, coupled with the Bayesian paradigm, the 

MCMC and the reversible jump methodologies, ease the estimation of both 

the marginal parameters and a wide tail dependence structure.

2.2.4 Summary

In this chapter, we have presented the ideas on the EVT that we believe are 

sufficient to have a clear idea of the difficulties and challenges that this theory 

implies.

We have seen that there exist two approaches to study extremes: the Max­

imum and the POT. Both methodologies give similar results, theoretically. 

However, we saw that the maximum approach is vulnerable to dismiss some 

of the information on the extremes. Hence, we have adopted the POT as our 

general approach.

Regarding the inference, the univariate framework has been well developed 

during the last decades. However, it is on the multivariate framework where 

there is a lot to improve on. The main reason relies on the fact that there is not
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a unique representation of the limit distribution for the vector maximum. This 

fact has the consequence of not having a direct way to set a tail dependence 

structure. We will present a multivariate framework based on a mixture model 

that will have individual models with an easy parametric representation, where 

the tail dependencies among any subset of the variables can be calculated, just 

via the parameters of our model.

There is a vast literature dealing on the bivariate case. Most of the litera­

ture has the copulas as the main approach to study the bivariate framework. 

As we have established, theoretically, the transformation of the variables in 

order to get standard marginal distributions does not change the theoretical 

dependence structure. However, it does affect when making inference. We 

present a way to construct parametric families, such that the parameters of a 

joint distribution determine directly the dependence structure.

The natural inference approach of dealing with mixture models is the 

Bayesian paradigm, which is what we treat in the next chapter.



Chapter 3

Bayesian Theory

In this chapter we will present a review of the Bayesian framework. Since it 

is a big area we will only focus on the ideas we will use in this work.

Regarding the theoretic foundations, some authors have attempted to ex­

plain the Bayesian paradigm by providing an axiomatic system for the rational 

behavior involved when dealing with statistic problems, e.g. refer to Bernardo 

and Smith (1995), Lindley (1985), and Robert (1994). This system places the 

statistician in a consumer environment of the type found in Samuelson (1948), 

Chapter V. In general terms, the system can be summarized in the following 

axioms (see, for example Bernardo and Smith (1995)):

• Comparability: the statistician can set preferences over consequences.

• Transitivity of preferences: there exists a rational choice of preferences.

• Consistency of preferences: additional information does not affect the

58
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preferences.

• Precise quantification of uncertainty of events via probability functions

With this framework, the authors provide a rational decision making sys­

tem, which they claim leads to the Bayesian paradigm.

On the other hand, functionally Bayesian statistics works through the con­

struction of prior distributions on parameters of statistical models. These 

priors are updated to the posterior distribution once data have been observed. 

Hence, the posterior distribution constitutes the main function of Bayesian 

inference.

The outline of this chapter is as follows: In Section 3.1 we present the 

basic definitions and the general ideas of Bayesian inference. In Section 3.2 

we present simulation and Markov Chain Monte Carlo (MCMC) methods. 

In Section 3.3 we present a particular tool we will use when simulating: the 

Reversible Jump MCMC. In Section 3.4 we make a review of the Bayesian 

statistics applied to the EVT, and lastly, in Section 3.5, we present our con­

clusions.

3.1 The Bayesian Idea

Suppose a parametric family is assumed as a model for data. In terms of prob­

ability functions, for the Bayesian approach, a joint model of the observations

and the parameters is constructed.
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A general representation of the joint model of both the data and the pa­

rameters is found in Schervish (1995), and is as follows:

Suppose a r.v. X ,  given the parameter ©, has a continuous distribution 

function fx\e{x \ 9). Define the distribution of the parameter as fe{9).  Then, 

the joint distribution has the form:

p ( ( x , e ) e B )  = J f  t [ ( x , Q)  £ B]fxle(x\d)fB(e)dxde. (3.1)

From this representation, we can identify the main functions that are involved.

3.1.1 Prior Distribution

The distribution of the parameter /©(#) is defined as the prior distribution. 

This function describes the uncertainty of the parameters prior to any in­

formation provided by the data. Thus, in principle, even with no sampling, 

some information can be established for the parameters, such as the inclusion 

of information coming from personal and/or experts opinions. This informa­

tion would be included exclusively in the parameters of /©, which are called 

hyperparameters.

For example, suppose the r.v. X  is such that A| 9 ~  N (9 ,1). Assume that 

it is believed that 9 is positive, so that an exponential prior can be set, which 

means:

fe (9 )  =  7e-70,

for 6 >  0, and where 7 >  0 is the hyperparameter. Hence, the beliefs are
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included exclusively in fe(0).

Another option is the choice of assuming no information is given prior to 

data. Such a prior is called non-informative and often is improper. This is a 

widely used approach in practice. For more on non-informative priors, we refer 

the reader to Bernardo and Smith (1995), Box and Tiao (1973), and Gelman 

et al. (2003).

3.1.2 Posterior Distribution

In (3.1), the prior distribution is complemented by the conditional model 

f { x \ 9 ) }  Both functions form the joint model for the pair (A ,0 ) , since 

} {x ,9 )  =  f(x\6)f(0 ).  Once we have observed the data x, we set A  =  x 

and the function given the sample is called the posterior distribution, and is 

as follows:

, _  f W ) m  =  f m m
m  } f(x) S f (x \ m 0 )d 0 '

(3.2)

This expression is known as the Bayes’ rule and constitutes the updating 

rule of the Bayesian framework.

The denominator is not a function of 9. Therefore, the posterior distribu­

tion is determined by f(x\ 9)f(9)  up to a constant of proportionality. Thus, it 

is common to express it via:

1(0\ * ) (x /(x |  # )/(» ) . (3.3)

1For the sake of explanation, we will drop the subindices on the distributions.
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The posterior distribution is the function from where inference about the 

parameters can be made. For example, an estimator 9 is commonly selected 

as the posterior mean or median.

Suppose 9 is a single parameter. An interval estimator of level p for 9 in the 

posterior distribution is called a credibility interval and is of the form (9i ,92), 

where:

P(9i < 9  < 92\x ) = p .

In many cases, the posterior is intractable for analytic results, such as the 

computation of the moments (provided they exist) or even the probability of 

a set. Hence, it is necessary to rely on sampling methods, such as the MCMC 

methods, which will be described later.

In general terms, the sampling overcomes the intractability of the posterior 

via the approximation of it by the empirical distribution of a sample. This 

means that, if 9 is the random variable of interest and we sample 0 j , . . .  ,9^ 

from the posterior f(9\ x) and if the interest relies on the computation of the 

mean of 9, then:

1 =  1

More generally,
r l N

’  »=1

In the next section, we will present some of the most important simulation 

methods found in the Bayesian literature.
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3.2 Markov Chain Monte Carlo Methods

For a detailed explanation and applications of MCMC methodology, we refer 

the reader to Casella and Robert (1999), Gelman et al. (2003), Robert (1994), 

Smith and Roberts (1993), and Tierney (1994).

Suppose we want to draw a r.v. Z  with distribution function F  and density 

/ ,  which in this case is the posterior distribution and we define it as the target 

function.

The simplest method to sample from is called direct sampling. Suppose F  

has an inverse F*~, then a single draw is given by:

z =  F*~(u)

where u is a standard uniform r.v. Thus, the sample, say Zi,. . .  ,zn, consists 

of i. i. d. draws.

However, in practice, the form of F*~ will rarely be analytically tractable 

and its form is generally unknown. Specially, in the case when Z  is a vector.

3.2.1 Rejection Sampling

The Rejection Sampling method works when it is not possible to sample from 

the target function / ,  but there exists a function g(z) such that:

• It is possible to draw samples from it.

• There exists a constant M  >  0, such that f(z)/g(z) <  M  for all 2.
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The g function need not integrate to 1, but because of the second condition, 

it needs to have a finite integral. The g function gives a reference for the 

behavior of / .  The algorithm goes as follows:

1. Generate a proposal z from g and u from a unit uniform distribution.

2. If f(z )/ (M g(z))  <  u , accept z as coming from / ,  otherwise, return to 

step 1.

As in the direct sampling method, the sample Z\, . . . ,  z„ consists of i. i. d. draws.

Unfortunately, when f  is not tractable, it is difficult to find a suitable g 

function. Therefore, more sophisticated methods have to be found, such as 

MCMC.

When the direct or the rejection sampling are not useful, it is common to 

drop the possibility of drawing i. i. d. samples. The w'ay to proceed then is 

to set up a Markov Chain Zn, for which /  is the stationarity density, which 

means:

Zn ^ + Z ~ f .

Then, from the ergodic theorem, or more specifically, the Berkhoff theorem- 

refer to Birkhoff (1942) and Wiener (1939):

1 N r
-  h(Zn) -*  I h (Z )f(Z )dZ  as N  -+ oo,

Tl~l "

with probability one, for a real-valued measurable function h. Thus, the mean 

of the Markov Chain Zn is, in the limit, the same as the process of the direct 

or rejecting sampling. However, the variance from the Markov Chain is larger.
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Hence, the natural question is how to set up a Markov Chain for which /  

is the stationarity density.

3.2.2 Gibbs Sampler

The first Markov Chain (MC) sampling we are describing is the Gibbs sampler- 

refer to Smith and Roberts (1993), Casella and Robert (1999) and Gelman et 

al. (2003).

Suppose the variable Z  is a vector that can be divided into d subvectors, 

so that Z  =  ( Z j , . . . ,  Zd). The aim is to draw a MC which, for notational 

convenience, we now represent as Z^\ . . . ,  Z^N\

Define Z_j as the vector with all the elements in Z, except those of Zj,

i.e.:

Z_j =  (Z 1, . . . , Z j _1,Z j+1, . . . , Z (/). (3.4)

Then, the Gibbs sampler works when the conditional distributions f ( Z j | Z_j) 

are known and it is possible to draw, directly or by rejection, samples from 

them, for j  =  1, . . . ,  d. Hence, the algorithm proceeds as follows at iteration t:

1. Sample from f{Z\\ Zi*j~^).

2. Similarly, sample Zj^ from f(Zj\Z[l\ . . . ,  Zj^j, z j ^ x\ . . . ,  Zj ~^).

3. Proceed until t =  N.

However, frequently, it is not possible to sample from the conditional pos­

terior distributions. Therefore, it necessary to modify this method for those
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cases.

3.2.3 M C M C  Metropolis-Hastings

The MCMC methods are used to deal with a target distribution that is not 

possible to sample, directly or by rejection. They constitute a clever and 

versatile modification of the rejection sampling. In this case, the g function 

is substituted by a transition or proposal distribution, which depends only on 

the previous draw, and which we define as T(zt\ zt~i). When the transition 

distribution is not symmetric, i.e. T{zt\zt- X) ^  T{zt-i\zt), the method is 

called Metropolis-Hastings.

As the g function in rejection sampling, T  has to be a function that is 

possible to sample from. However, the second condition of rejection sampling 

is substituted by a rejection criteria that involves the previous state.

Let /  be the target density of Z. We define the algorithm at iteration t as 

follows:

1. Draw z* from T(Z\ zt- i) .

2. Define r, the acceptance ratio as:

f(z*)  . T(z*\zt- i )
r / ( * _ ! )  ’ T(Z(_i| z*) ’ 

and, consequently, define:

z* with probability min(r, 1)
zt =

(3.5)

(3-6)
Zt-1 otherwise.
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Then, the sample (Z\,. . . ,  Z^) is a M.C. that has /  as its stationarity 

density. For the proof of this convergence, please refer to Gelman et al. (2003) 

and Tierney (1994).

The speed of the convergence will depend on each case. For models where 

information of the behavior near the mode of the distribution is required, 

the convergence speed will be quicker than cases where the very high or low 

quantiles are required. Since the starting point is hardly a representative 

value, some of its following values will share the same feature. This fact leads 

to the burn-in concept. This is the amount of values that are dropped from 

the sampling. For example, in some our applications, we drop the first 1,000 

observations, out of 10,000.

3.2.4 Metropolis-Hastings within Gibbs sampler

We used the Metropolis-Hastings (M-H) within Gibbs Sampler method, wdiich 

is a slight modification of the Gibbs sampler. Instead of drawing via direct or 

rejection sampling, a MCMC M-H is used.

Define Z  =  (Z\,. . . ,  Zj), in a convenient order, and Z -j  as in (3.4). Then, 

the algorithm proceeds as follows:

1. Pick starting values (Z [°\. . . ,  Z ^ ) .

2. At iteration t , sample via MCMC M-H from

! ( z t \z[‘\ y{t) y(t-1) y(t — l)\
• > ¿j+l b
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for j  =  1, . . . ,  d.

3. Proceed until t =  N.

3.3 Reversible Jump MCMC

In many Bayesian problems involving model uncertainty, MCMC algorithms 

are required to “jump” from one model to another. In this case, the most 

common procedure is known as the Reversible Jump MCMC of Green (1995).

Suppose we need to select a parametric model for a r.v. X, out of K  

models: M y , , AIK, each one having a parameter vector 6k of dimension dk, 

for k =  1, . . . ,  K.  Define the individuals models as f(x\ 9k, Alk), and for Model 

k define the posterior as f(Qk| AIk), and the prior of 6k, as nk.

The general idea of Reversible Jump MCMC is to sample from a joint 

target distribution for the pair (k ,8k), say f ( k ,8k). Define y =  (k, 8k), so that 

the target distribution is f (y ) .  The jump at step t will only depend on the 

(t — 1 )th step. Thus, a Markov chain is constructed, whose limit distribution 

must match with the target distribution. This limit is achieved if the Markov 

Chain follows the detailed balance requirement, which we will explain. Once 

the joint sample is achieved, the selection of a model wall be based on the 

empirical frequencies of k, so that, for example, the selected model should 

coincide with the empirical mode of k. We now describe in some extension the 

algorithm:
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Select an initial model Mq with initial parameter vector 60. The first 

step is to propose a jump to a model Mk-. In a general notation, denote 

the probability of jumping from model k to A;* as Jk,k*• If -A/** =  -A/*, then 

the next step is a single MCMC simulation, thus a new 6k must be sampled. 

Otherwise, it is necessary to compare the models in order to accept or reject 

il/fe». To do so, we need to address a couple of issues.

The first one is that the jump from Mk to Mk- involves as well a jump from 

6k to 6k-, which might imply a change of dimension. Therefore, f (z\ 8k, Mk) 

and f (z\6k-,Mk')  are not comparable yet. In order to deal with this change 

of dimension, an auxiliary r.v. u, with distribution J(u\ k, k*, 6k), must be 

drawn. This variable will help to fill the gap between the dimensions dk and 

dk*. The way to do so is by defining a deterministic function of u, say gk,k-, 

such that (6k- ,u *) =  gk,kf (6k,u). Thus, dk +  dim.{u) =  dk• +dim(u*). Finally, 

the last factor to consider is the Jacobian of the transformation gk,k*•

Suppose y £ A  and y* £ B. Then, it is necessary that the probability of 

accepting the move from y to y*, say a(y,y*), must hold the detailed balance 

requirement. This is expressed as:

[  f (y )  /3k,k'(u\6k)a(y,y*)dydu =  f  f(y* )0k-A u*\0k-)oc(y*,y)dy*du*;
J r  J r

where R =  (y ,y *) £ A x B ,  and 6k) =  J k, k ' J { u I k,k*,6k), and similarly

for &*tfc(u*|0fc.)-
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Assume is differentiable, then a valid choice for a  is:

a{y,y*) =  m in(l,r).

where r is a the acceptance ratio of model k, and is expressed as:

r _  f ( z 1 i hlk*)p(0k* 1 Jk-,k J(u*\ k*,k, 6k-) V gk,k'{6k, it)
f{z\dk,Mk)p{ek\Mk)'Kk Jk,k*J{u\k,k*,6k) X V(0jfe,u)

(3.7)

Therefore, the rule equivalent to (3.6) would be:

(& +  1) f̂e+i)

/
(fc*j f̂c*)

(A:, 0/b)

with probability min(r, 1) 

otherwise.

3.4 Bayesian Methods in EVT

In this section we will expose a brief summary of the literature that combines 

the Bayesian framework and the EVT. So far, the Bayesian framework has not 

been a great influence on the EVT. The few works there are, are applied to a 

univariate environment. The reason for this is that the multivariate EVT is 

still in an early development stage.

However, the path to the Bayesian framework is clear with the current mul­

tivariate theory: for example, given the representation in (2.15), a parametric 

model must be selected for H, so that prior distributions can be defined to 

the parameters of H. Therefore, a posterior distribution can be assigned to 

the MEVD. The same would work for the parameters of any copula, such as
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those used in Poon et al. (2004).

A good review of the Bayesian framework in the EVT is given in Coles and 

Powell (1996). Coles and Powell affirm that the Bayesian applications were 

almost limited to give some priors for specific cases of the GEV. Pickands 

(1997) proposes a prior distribution for the GPDk,$ as:

f ( k , 0 )  OC l[/3>0] .

Although this prior has the drawback that it depends on the threshold u (recall 

that the scale parameter of the GPD in the POT depends on the choice of the 

threshold, see (2.8)), it constitutes the first attempt to work with a Bayesian 

framework with the GPD.

Some other works have gone beyond only specification of prior distribu­

tions. One of them is Coles and Tawn (2005): they give a complete Bayesian 

approach, using the point process of Smith (1989) applied to wave surges. 

Coles and Tawn compare it with classical estimators and deal with model 

issues such as seasonality.

In previous work, Coles and Tawn (1990) defined a spatial model for annual 

maximum sea levels. Ever since, environmental extreme statistics have relied 

widely on these models. One of these works is Cooley et al. (2007) where a 

Bayesian hierarchical model is applied, using the high threshold approach.

In Bottolo et al. (2003), a complete Bayesian model was introduced to 

model large insurance claims. Bottolo et al. (2003) used a model where a 

Reversible Jump MCMC was needed. This model adjusts as well to difficulties
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such as seasonality.

Recently, Ferraz et al. (2011) proposed a combination of a mixture of 

gamma distributions for the data under a high threshold and a GPD to model 

the tails.

Guillote and Perron (2008) define a way to estimate the dependence func­

tion of Pickands’ representation in (2.21) via non-parametric methods and a 

Bayesian approach for the marginals.

One more Bayesian topic to address is the work done on elicitation. In 

Coles and Tawn (1996), an application to rainfall data is introduced. This 

paper is innovative because it incorporates experts knowledge to the GEVD 

through the quantiles of the model. If we invert the GEVD, the (1 — p) quantile 

is given by:

Qp =  f  [ ( — log(l — p))_fc -  l] •

Coles and Tawn selected three quantiles, say <?i <  <72 <  93> and in order to 

avoid dependence among them, they worked with the differences qi =  q\ — l, 

Q2 =  Q2 — Q\, and <73 =  <73 — <72• Therefore, it was assumed that the qx are gamma 

distributed. It was possible to ask the experts two estimates (since the gamma 

has two parameters) of each qix in order to determine the hyperparameters 

of the gamma distributions. This elicitation resulted in an improvement of 

the estimates: the Bayesian interval constructed was half of the width of the 

corresponding classical confidence interval.

There are two other Bayesian works that we will discuss in Section 6.4,
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which are Coles and Pauli (2002) and Apputhurai and Stephenson (2011), 

once we have introduced our multivariate model.

3.5 Conclusions

We presented in this chapter, the main ideas involved in the Bayesian frame­

work. All of them will help us to build a framework to model our extreme 

data. Besides, we introduced the main sampling algorithms that will allow us 

to do the inference in our model.

So far, the EVT is practically a desert area in terms of Bayesian applica­

tions. This means a huge amount of exploration is expected in the forthcoming 

years. We expect that, since the essence of the extremes makes them scarce, 

so that any additional information to data can make a considerable difference 

when making inference. Besides, as we will show later, the Bayesian estima­

tions avoid some difficulties that arise when working with MLE, in the classical

framework.
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Interim Bivariate Models

The purpose of this chapter is to show the development of the framework for 

building the form of the final individual model of the mixture model. The best 

way to construct a multivariate model is to start with the simplest version: 

the bivariate model. Once we find the final model, we will generalize it to the 

trivariate or the general multivariate case. This final biariate individual model 

will be given in Chapter 5.

We seek a model for which the following properties hold:

1. — Realistic marginal tail models.

2. — Simplicity of the joint and marginal distributions. (4-1)

3. — Embrace different types of asymptotic dependence.

We begin this chapter with some first attempts, which get rejected because 

o f at least one of these properties. Then, we modify the features until we obtain 

the final model. The final model will be presented in the next chapter. For a

74
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specific model we construct its joint distribution and we derive the tail depen­

dence structure the way we mentioned in Section 2.2: via the standardization 

of the marginals. We work with Frechet marginals, so that the corresponding 

transformations are as follows (recall (2.30)):

S =  —: r; T =  —-log (FX(X )Y  * iog(Fy-(r))- 

Thus, the joint distribution is expressed as follows (recall (2.31)):

P (X  >  x ,Y  > y) = P [  S > ~ , * , N, , T > ~ ,
\ log(F*(:r)) log (F y (y ))/

(4.2)

=  P  (S >  s ,T  > t ) .

We believe the tail dependence parameter x  is a proper measure of the tail 

dependence between variables. Recall from (2.25) that it can be expressed as:

P  (T >  s ,S  > s)
X =  lim^oo P ( T  >  s\S > s) =  lims

P (S  >  s)

and for any marginal F* (or similarly for Fy):

P ( S  > s) =  P ( X  >  F £  (e-1/s) )  =  1 - e - 1/s

as s oo.

We need to recall as well the definition of the tail coefficient from (2.28):

P(S  >  s, T  > s) ~  £ (s )s_1/ ,̂ as s -> oo, (4.3)

where 0 <  r} <  1 and £  is a slow varying function (recall Appendix A for the 

definition and some examples). Therefore (and recalling (2.29)), we get that

P ( S > s | r > s ) ~ £ ( s ) s 1- 1/ ’i, as s —» oo.
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The coefficient r] will help us to identify the asymptotic form of the model.

In order to compute (4.2) we:

1. Compute the marginal distributions.

2. Compute the marginal inverse distributions or its asymptotic form.

3. Compute the joint survival function for the transformed variables S and 

T.

4. Look at the asymptotic form of P (S  >  s | T > s).
* *

We present some general bivariate models, which we build through the 

Common Variable Method or the Trivariate Reduction Method. Let X  and Y  

be positive random variables to “join together” . We seek to split the marginal 

and the joint effects using different random variables, which we will onwards 

call (random) subvariables. Thus, those subvariables which are present in 

both X  and Y  will deal just with the joint structure and the subvariables 

exclusive to X  or Y, will deal with the marginal behavior. This method has 

been applied by Ahmed (1961) and Walhin and Paris (2000) in convolution 

o f Poisson variables, whereas Sarabia and Gomez (2008) present a review of 

the literature in this method for both discrete and continuous variables, with 

different types of associations among subvariables.

The present chapter has: Section 4.1 which presents the convolution mod­

els, and Section 4.2 explains the first product model.



Chapter 4. Interim Bivariate Models 77

4.1 Convolution Models

Our starting point is to represent each variable as the sum of two subvariables. 

This representation leads to the well known convolution distributions. The 

models have the following general representation:

X  =  A +  B, 

Y =  A +  C,
(4.4)

with all A, B, and C  positive and mutually independent.

This type of model is a simple way of creating dependence between vari­

ables. The magnitude of the subvariable A will settle the dependence struc­

ture: the larger the magnitude of A, the more related X  and Y  will be. As 

a consequence, when the second moment exists for each subvariable, we have 

that

C ov (X ,T ) = C o v(A +  B ,A  +  C)

=  Cov(A, A) +  Cov(A, C) +  Cov(B, A) +  Cov(B, C)

=  Cov(A,A) =  Var(A).

Thus, the dependence between variables is determined only by the common 

subvariable, through its variance.

We start by looking at exponential models for the subvariables. Although 

we know these models do not have the first property in (4.1), since the as­

sumption of having exponential marginals is very restrictive, we consider this 

case to get into the computations involving on the convolution framework.
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4.1.1 Convolution Model 1. Unit Exponential Models

As a start, we consider the model:

X =  A +  B,
(4.5)

Y =  A +  C,

with independent B, C  ~  Exp (1) and A  ~  Exp (a).

It is easy to see that as a decreases, the tail dependence would increase, 

since E(A) =  1/a.

As we mentioned previously, the first thing to look at is the marginal 

distributions. So we have that

Fx {x) =  P (B  < x — A)

Therefore, we can define the marginal as follows:

(4.6)
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For notation purposes, we define the G function as:

Gx(a) =  FZ  {e- '/ ') ,  (4.7)

which, in this case, is the same as G y(s), since both have the same distribution. 

Thus, we can define G(s) =  G x{s)  =  Gy(s). So, we can compute the joint 

survival function of the transformed variables as follows:

P(S > s , T >  s) = P(-l/\og(Fx ) > s, -l/log(Fy) > s)

=  P ( F X >  e x p ( - l/s),Fy >  exp(—1 /s))

=  P (A  +  B >  F x ( e x p ( - l/ s ) ) ,A  +  C  >  Fy ( e x p ( - l / s))) 

=  P ( B >  Gx (s) — A ,C  >  Gy(s) -  A)

=  j  P ( B  >  G(s) — a ,C  >  G(s) — a | a) f A{a)da

f G  (s) roc
=  /  e - 2iG(s)- a)a e -aada +  /  P { B  >  0, C >  0| a) f A(a)da 

Jo Jg(s)

=  ae~2Ĝ
f G(s)

/  e - (Q- 2)ada +  e -°G(s) 
Jo

=  ae~2Ĝ ^  1 ^  _  e -(a -2 )G (s )^  +  p -o G ( .)

Q e -2G (s) — a  e _ a G ^  +  e _ a G ŝ^
a — 2 a — 2

J L _  e -2 G (.)  -  2  P-oG («)_
a — 2 a — 2

Hence, the joint survival function is represented in two parts:

P(S  >  s ,T  >  s) =  <

a
a — 2

2G(s) _ r “GW
a — 2

a  /  2
(4.8)

(2G(s) +  l)e -2G^  a =  2.

We present the dependence structure of this model in the following theorem.
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T h eorem  4.1.1. Tail Dependence in Simple Exponential Model

Let X  and Y  be defined as in (4-5), then the tail dependence is given by

2(1 - q )

X = 2 — a
-, 0 <  a <  1

(4.9)
0, a  >  1.

We present the proof in Appendix B.l. In Figure D.2 we plot the shape of 

the tail dependence given in (4.9). As it can be seen, when a tends to zero, 

X tends to one. And when a  gets closer to one, the tail dependence tends to 

zero. Hence, this type of model only allocates asymptotic dependence when 

a  <  1, which is the interval where the expected value of A is larger than the 

corresponding B and C, which means that the subvariable A is large enough 

to give a common dependence to both variables in the tails. The next task 

is to represent the subvariables as general exponential variables. However, we 

are aware that these models do not have the first property in (4.1), i.e., they 

do not embrace a wide range of types of tails.

4.1.2 Convolution Model 2. General Exponential

We present the general exponential convolution model:

A +  B, 

Y =  A +  C,
(4.10)

with independent B  ~  Exp (¡3), C  ~  Exp (7), and A  ~  Exp (a). For the ease 

of explanation, and without losing generalization, we will suppose /3 >  7 .
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As in the simple case, we begin with the calculation of the marginal distri­

bution.

Fx (x) =  P (B  <  x  — A)

P (B  < x  — a\ a)fA{a)da

(1 -  e - ß{x~a))a e -Qada

=  1 -  e~ax Q e -ß x  i a e -a x  a —ß ' a —0

ß=  1 +  —^  e~ax -
a -ßx

a — ¡3 ~ a — P 
Therefore, we can define both marginals as follows:

Fx (x) =

ß1 +  —^  e~ax -
a — ß  a — ß

1 — (ax +  1) e~ax

a e - ßx a ^ ß ;

a  =  ß.

(4.11)

F y(y ) =  <

1 +  — t—  e~ay -
a —7 a —7

a ^  7;

1 — (ay  +  l ) e  ay a  =  7.

Thus, we note the marginals are mixtures of exponential distributions.

In the next theorem, we introduce the dependence structure derived by 

this model.

T h eorem  4.1.2. Tail Dependence in Exponential Model

Define X  and Y as in (4-10). Then, the tail dependence between X  and Y
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is given by:

/

X =

V
0 ' y < ß < a o r j < a < ß .

(4.12)

We present the proof in Appendix B.2. This theorem states that there is tail 

dependence only when a  is the smallest parameter, which means, only when 

E ( A ) >  max {E(D) ,  E (C )}.  This makes sense as in the simple exponential 

case: the larger the magnitude of the subvariable A, the larger the dependence 

between the variables.

As we have mentioned previously, the exponential based models have the 

purpose of getting us to grips with the maths involved. The exponential dis­

tribution is a model with tails that are too light, so that it cannot be expected 

to fit a wide range of extreme data. This means that the exponential based 

models violate the first property in (4.1). The next step is to modify the distri­

bution of the subvariables, so that heavier tails can be embraced. The GPD is 

the natural distribution to fit any type of tail, as we saw in Chapter 2. Hence, 

we propose in the next section a model that convolutes GP distributions.

The GPD is the non-degenerate limit distribution of the tail of any distribu­

tion. Therefore, if the convolution model works for any distribution, then it is

4.1.3 Convolution Model 3. GPD

expected to work with the GPD. The tail characterization of this model will
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not depend on the value of the scale parameter of the GPD. Therefore, we will 

set it as 1 for all the subvariables.

We define the convolution model as in the previous cases:

X  =  A +  B,

Y =  A +  C,

with independent A ~  GPD(&i,l) ,  B  ~  GPD(A)2,1), and C  ~  GPD(fc3, l ) ,  

for k\ >  0, k2 >  0 and k3 >  0.

Firstly, as in the exponential case, we derive the marginal distributions. So

Fx P (B  <  x a\ a)fA{a)da

(1 + k2(x -  a))-1/fc2] (1 + kxa ) -xik' - lda

=  1 -  [ X (1 +  k2(x -  a))~1/ fc2( 1 +  M " 1/fcl-1<*a.
Jo

However, this integral does not have an analytical solution. Nevertheless, 

Barbie and McCormick (2005) introduced a way to compute convolutions of 

regularly varying distributions. Recall the definition of regular variation in 

( A l ) ,  then

F A(tx) (1 +  kitx) 1/fcl 
F A(t) ~  (1 +  Ä

= x -l/ki i

for ki >  0. Therefore, F A G RV-i/^, and similarly F b € /?F-i/itr

Define the convolution operation on two distributions F  and G, for random 

variables W  and Z, respectively, as:

F  * G(w) =  P (W  +  Z <  w).
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The main results of Barbie and McCormick need some requirements on 

the distributions to convolute. For example, Barbie and McCormick (2005) 

defined the following concept:

D efin ition  4.1.1. Asymptotic Smoothness

A function f  is asymptotically smooth with index —a if

lim ^o lim sup sup
t—>oo 0<|x|<5

f ( t ( l  -  x)) ~  f { t )  
x f ( t )

This property, as Barbie and McCormick state, is held by those distri­

butions functions F  for which F  is regular varying and has an ultimately 

monotone density. Hence, the GPD is asymptotically smooth.

Barbie and McCormick defined as well the following:

D efin ition  4.1.2. Right Tail Dominance 

A distribution F  is right tail dominant if

\unt-+oo =  0,

for any 5 >  0, which is clearly held by the GPD.

Denote, as well, the truncated mean of the distribution F  as:

LiF(t) =  f  xdF(x), for t >  0.
Jo

The result of Barbie and McCormick (2005) divides into two cases. The 

first one is related to light tails.

T h eorem  4.1.3. Convolution of Light Tails
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Let F  and G be two distributions, such that F  G RV-a and G G RV-p 

with a  A ¡3 >  1. Assume F  and G are asymptotically smooth and right tail 

dominant. Then,

1 - F *  G(t) =  F{t) +  G(t) +  y (aF{t)pG(t) +  0G(t)pF(t)) (1 +  o{t)),
V

as t —» oo.

In the GPD case, this result applies when fci V 1*2 <  1, which is the case 

when both means exist, and are the following:

/ W O  =  ( l  -  ( !  +  and p FB(t) =  x f e  ( l  -  (1 +  M ) ~ ^ +1)-

Therefore,

Fa * Fs(t)  «  1 -  F A(t) - T b (I) +  ( r ‘ -  r ‘ ( i  +  *2t ) ' £ +‘ )

+ E a ^ T r * W  ( i - 1 - i - 1(i +  * 1i ) “ * '" 1)

*  1 -  ( ‘  -  m h m )  F aW  -  ( i -  * ^ 7)  F e(t) ,

as t -> oo, for fci, fc2 <  1.

Therefore,

Fx (t) « 1 -  F^(i) — F B(t), as t —> oo. (4-13)

However, this means that the tail of the marginal is asymptotically equivalent 

to the heaviest of the tails of A or B.  Thus, the joint model can only imply 

either complete tail dependence or exact tail independence. Therefore, this 

model does not have the third property in (4.1).

The next theorem of Barbie and McCormick (2005) corresponds to heavy

tail distributions.
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T h eorem  4.1.4. Convolution of Heavy Tail Distributions

If F  and G are asymptotically smooth distributions on R +, such that F  G 

i?V_Q and G G RV-p, with a V ¡3 <  1, then

linit.»«, 1 F- * ...=  I  (a, ß) +  I(ß, a) +  2a+0 - 2 a -  23,
F(t)G(t)

with
f l / 2

I (a ,ß )  =  I ((1 — w) “ —1 )ßw & 1dw, and similarly for I (ß, a).
Jo

Therefore, for the GPD case, we have:

FA * F B(t) «  1 -  F A(t) -  F B(t)

- F A(t)FB(t) -  2a -  2  ̂+  I{l/ku l/k2) +  / ( l/ h , lA i ) ]

as t —> oo, for ki,k2 >  1, and with the /  function defined as previously .

Hence,

Fx (t) ~  1 -  F^(i) -  F B(i), as t - t  oo.

Therefore, as in the previous case, the fourth condition in (4.1) does not hold.

In conclusion, the convolution models offer an easy expression of the general 

dependence between variables. As well, they constitute realistic and non­

standard marginal tail models. However, they can only produce complete tail 

dependence or exact tail independence. Therefore, these models do not fulfill 

all the conditions in (4.1). In the next section, we present a modification of 

the convolution model to overcome the problems identified in this section.
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4.2 Product Models

The convolution models failed to embrace different types of asymptotic de­

pendence. They lacked as well a mathematically simple representation of the 

distributions. These two facts are related, since the mathematics involved in 

the convolution operation as defined in (4.4) only lead to the extreme tail 

dependence cases.

In this section, we present another trivariate reduction method that eases 

the computation of the distributions: the product model.

4.2.1 General GPD Product Model

The general representation of the product model is as follows:

A  =  ( B x D ) ,
(4.14)

Y =  (C x D ).

This model can be viewed as a modification of the convolution model, since it 

is precisely a convolution in log scale, where:

log X  =  log B  +  log D, and log Y  =  log C +  log D.

For ease of explanation, we will take A  =  D~l . As in any trivariate reduc­

tion model, of main importance is the choice of the subvariables distributions.
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However, with the following model, we can get a GPD representation:

* =  (B/A), 

Y =  (C/A),

(4.15)

with independent B  ~  E xp(a i), C  ~  Exp (a2), A ~  Ga(0,a),  for { 0 ,a i ,a 2,cr}  £ 

M+. Notice that we could have written, for example, B/A as B  x D, where 

D  ~  Inv-Gamma (9, a), so that it had a proper product representation. How­

ever, we keep the first representation for ease of explanation.

Then, the marginal is as follows:

P ( X  <  x )
poo

=  P {B  <  Ax)  =  j  P (B  <  ax| a)/^(a)da
Jo

poo

= W) J  t 1 -  e ~ ° ia1  e - a a a ö - 1 d a
poo

= l ~ W ) j  e -a{°+a'x)ae- 1da

=  i - ( i + » _",

and, similarly:

P (Y  < y) =  1 -  ( l  +  ^ y )

Thus, the marginals for X  and Y  are G PD  (|, and G PD  (|, 2̂ ) ,  respec­

tively.

On the other hand, the joint survival function is given by:

poo
P ( X  > x , Y  >  y) — /  P (B  >  ax ,C  >  ay\a)fA(a)da

Jo
poo

= f ® j  e -a(a+aix+a2y)ae- lda

_  j  _  _(. otix+at2y'j-d
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for x  >  0, y >  0.

Consequently, this model leads to equivalent marginal tails, since both have 

the same shape parameter. Therefore, it is not a realistic model; it violates 

the first condition in (4.1). Hence, we need to modify the tail of each variable.

4.2.2 Exponential-Gamma Model 1

The model we present in this section modifies the shape of the distributions 

of the previous model by adding two shape parameters as follows:

X  =  (B/A) * ;

Y =  (C/AY2;

with independent B  Exp(ax), C  Exp (a2), A Ga (0 ,1), with

(4.16)

{ 0, a j, q 2, tpi, ^ 2}  €  R+.

We will denote this as Model 1.

Note that in the previous model, the parameter a did not have an important 

role, since the parameters ot\ and can be taken as the scale parameters. This 

is the reason why we fixed a =  1.
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4.2.2.1 Marginal Behavior

The marginal distribution is given by:

P (X < x )  =  P(B < Ax^i) =  J P (j3 < ax^\aj fA{a)da

=  W ) i QC° [ 1 ~  e_QiaX^ ] e ^ a ^ d a  (417 )

=  1 — 1̂ +  a i z ’T j  ,

and, similarly:

P {Y  <  y) =  1 -  ( l  +  a 2y ^  .

These lead to the following densities:

da2
f a

(4.18)

f)Oi\ _i__, / i \ — p— i
f x ( x )  =  -T -x^ i i l  +  Ofjx^J and fY(y)

- e - i

Thus, it means that Fx  and Fy are Burr type XII (Burr-XII) distributions. We 

now describe the main properties of the Burr-XII distribution. Refer to Burr 

(1942), Fry (1993), Johnson et al. (1994), Rodriguez (1977), and Tadikamalla 

(1980) for more details.

For X  as in (4.16), define, as in Burr (1942), Z =  ctiX ^i, then

f z (z) =  e(i +  z ) - e-\

z >  0. Therefore, the ri/i-moment of X  is given by:

E ( X r) =  E  ( a - r^ Z r* )  =  a ^ 'd B e ir tp ! +  1 , 9 -  r ^ ) ,  for r <

where Be(w, v) is the Beta function. In particular, X  will have a finite mean 

only when <  6. Hence, the marginal distributions covers heavy tails.
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Another feature of the Burr-XII distribution is the characterization of the 

shape of the density via the mode. The derivative of the density of X  in (4.18) 

is expressed as:

d_
dx ‘

Qdx _L_o /  j_\ -Ö-1 X  /  x \fx(x) = — ^ l  +  a i X^ i J  (1 -  ^ i )  -  ( 0 + 1 ^ 1  +

Hence, the mode is given by:

X  = l - ^ i
a ^ e  +  ipi)

'h
, for ij) I <  1,

and therefore:

• The marginal of X  is unimodal if aid +  ipi(l +  c*i) <  1.

• The marginal of X  is L-shaped if a\9 +  ip\(l +  ou) >  1.

In Figure D.3, we present an example of each one of these cases.

Rodriguez (1977) gives a more detailed analysis of the Burr-XII distribu­

tion. One of the interesting results is the following: suppose W\w\ ~  Weibull, 

with w\ a scale parameter, and that w\ ~  Gamma. Then, IF ~  Burr XII. 

Another source of Burr-XII distributions is Fry (1993), who treats both the 

univariate and multivariate cases of all types of Burr distributions. Neverthe­

less, these models differ considerably from the models we are introducing.

Compared to the GPD product model of Section 4.2.1, Model 1 leads to 

different marginal distributions.
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4.2.2 .2  D ependence Structure and Joint D istribution

In the next theorem, we present the tail dependence structure and its proof 

can be found in Appendix B.3.

T h eorem  4.2.1. Tail Dependence of the Exponential-Gamma Model 1

Define X  and Y  as in (f.16). Then, the tail dependence between X  and Y  

is:

X  =  2 ~ 9. (4.19)

And the following special cases are hold:

1. I f 6 —► oo, X  and Y  are asymptotically exact independent.

2. If 0 - »  0, X  and Y  are asymptotically complete dependent.

Therefore, when studying the tail dependence structure of two valuables, 

inference should focus on the estimation of 6. As a last step before this infer­

ence, we present the joint distribution:

F x ,y ( x , y) =  P {X  < x , Y  < y )

P(D  < x * ia ,C  <  y^a)fA(a)da

=  1 — 1̂ +  aix^i j  — 1̂ +  a2y '>’2)  +  1̂ +  aix^i +  a^y*2)  ,

(4.20)

and, consequently, the joint density is:

fx,y{x, y) =  0(0 + 1)  -—-x*i ( 1  +  aix^ + a2y^ ) . (4 .2 1 )
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It is worth noticing the difference between the joint distribution in (4.20) 

and the corresponding convolution model in (4.13), where we could only take 

either the tail of the marginal of X  or that of Y . In the current model, we 

have the joint survival term given by:

/  1 \
P ( X  > x, Y  > y) =  (1 +  a i x ^  +  ) ,

which represents the dependence structure and makes possible as well the tail 

dependence, rather than only the exact and complete dependence. The next 

step is about inference for Model 1.

4.2.2.3 Inference Exclusive to 6. Model 1

We use the MLE for Model 1, since this methodology works. However, in 

general, we will use the Bayesian framework.

Let D  =  (X n, Y n) be a sample of n i. i. d. vectors, where X „  =  (x\,.. .  , x n)T 

and Y n =  (y1;. . . ,  yn)T. Define the parameter space as Cl =  and define 

w € D as:

Then, from (4.21), the likelihood function of Model 1 is given by:

L(uj\ D ) =  ( w + l ) ^ )  n ^ " 1̂ ~ 1 ( 1 +  aia:^ + a 2 y ^ )  ’
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and, consequently the log-likelihood function is:

¿(u;|D) =logL(u ;|D )

=  n log 6 +  n log(0 +  1) +  n log +  ( ^  -  1) £ ”= j logx {

+  ( ¿ j  - 1 )  E I L  l lo s Vi ~ & +  2 ) E " = i  lo g  ( 1 +  « 1 ^ '  +  «2 1 /,
(4.22)

As a first step, we fix the elements of w as known, except for 6. The aim 

of this section is to study the properties of the MLE of 6. Therefore, we need 

to find this estimator as follows:

d _  n n D ) =  _  +  —STT-t^C1 =  1 N

1 +  a ix ?1 + a 2y'iV>2

and denote:

M - ; i > (1=1 N
1 +  anx*1 +  a2yt

then

d i m m  n -  ■ Ö 2 -  w  ±  ( w 2 +  4>,/2 
d e l(e  I » ) - « - ! = * ■ # - -----------2Ä7

for which, the only positive solution for all the parameter space is:

2\ i/2

ö“ i7 + K 1+(il)
1
2 ’

and given that

(4.23)

(4.24)

we conclude 6 provides a maximum.

Recall from (4.19) that the tail dependence is expressed as x  =  2~8, then 

the extreme tail dependence cases are given by:
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• If M  -> oo, then 9 -> 0, then x  =  1- Therefore, X  and Y  are asymptot­

ically complete dependent.

• If M  0, then 9 oo, then x  — 0- Therefore, X  and Y  are asymptot­

ically exact independent.

The first feature of 6 is consistency, as the following theorem demonstrates.

T h eorem  4.2.2. Consistency of 6

The MLE 9 of 9 found in (f.23) is consistent, i.e.:

0 A  0. (4.25)

^ p
In Appendix B.4 the conditions for which 9 — >• 9 are established.

The second feature of 9 is asymptotic normality. We establish this prop­

erty in the following theorem (see Newey and McFadden (1994) or Schervish 

(1995)).

T h eorem  4.2.3. Asymptotic Normality of MLE

Let Ip be an MLE of a parameter p. Then, under regularity conditions

Vn(p  ~  <p) A  N  (0, /  * (£ )),

where /(•) is the Fisher information matrix.

(4.26)

In Appendix B.5, we prove that the regularity conditions hold for (4.26). 

For the construction of confidence intervals for 9, we need to elaborate a 

bit further, since 9 >  0. Rearranging (4.26), we get that:

p - p p — p d
(nI(p) ) -V2 SD (p ) N (  0, 1) , (4.27)
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where SD  stands for Standard Deviation.

Define g{8) =  log(0). Then, by invariance of the MLE, g{8) is an MLE of 

g{6). Therefore,

log(fl) -  log(0)
SD(\og(8))

N (  0, 1).

By the Taylor expansion of log(0) around 6, we get that:

log (?) «  log(#) + \ ( « - « ) -  ¿ 5  (» -  ? ) 2 +  • • •

which leads to the following approximation:

log 0  «  log(0) +  \ ~  0) ■

Therefore:

which means:

Var (log {&))  *  j 2Var {&) , 

SD  (log ( 0) )  »  ±SD  ( 0)  .

Hence,

log(0) -  log(0) d ,
SD(\og(9))

6
N (  0, 1) .

This approximation leads to the following construction of the 95% confidence 

interval:

P  ( 0 exp ( -1 .9 6  5D (log (0 ))/0 } <  0 <  0 exp (1 .9 65£>(log(0))/0}) *  0.95.

Then, for data D  and the log-likelihood defined as in (4.22), we make the 

following approximation:

SD(log(8)) ( n W ) )

8 *  0 '
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where

'~0 = 4 £ s> id>
1=1

Therefore, the 95% confidence interval is given by:

o=o

' * ✓ \ *

0exp < 1.96
► ,9 exp <

1.96
>

[ ( - o r * ]

We present an illustration for inference with this method. We simulated 

observations from model (4.16). We consider four levels of tail dependence: 

6 E {5 ,3 ,1 ,1 /3 ,0 .2 }. In terms of heaviness of the marginal tails, we split 

data in heavy tails: ipx¡9 =  1 and ip2/9 =  1.5; and light tails: ip\/9 =  0.25

and xp2/9 =  0.2. We simulated 500 observations for each model, with 10 

replications for each model. In Table C .l we show the the estimations of 9, y, 

and 95% confidence intervals via the MLE method. We present, as well, the 

standard error of the replications. As it can be seen, 9 is considerably close to 

all the true values of 9, all the confidence intervals contain the true value 9, 

and the standard errors are small.

4.2.2.4 Summary of Model 1

Model 1 represents a framework that embraces a wider range of tail behavior 

than the previous models. Even more, consistency and asymptotic normality 

is achieved for the dependence parameter 9. However, before going further on 

the inference, we need to address some drawbacks of the model.
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If we look at the marginal tail in (4.17), we can approximate it by:

1 — P (X  <  x) na Oj 6x  ,

for large x. Then, 6 dictates both the marginal tail and the dependence struc­

ture. And, for large data, there exists an identification issue between 6 and 

ipi or ip2- Hence, the second property of (4.1) is violated in Model 1, since the 

marginal tails are linked to the dependence structure. Therefore, we need to 

isolate 6 only to model the joint behavior.

Another drawback of Model 1 is the fact that it does not factorize to the 

marginal effects when considering the tail independence case (9 —>• oo). In 

fact, if we proceed as in Johnson et al. (1994) (p.687):

which means that the tail independent case implies directly that the marginal 

tails must be exclusively of the Gumbel type, which is not a heavy-tailed type. 

In the next chapter, we introduce changes in Model 1 to deal with the

1 — e x^ ,  as 6 —y oo,

drawbacks found here.



Chapter 5

The Bivariate Model

In this chapter we introduce the bivariate model, which will overcome the 

drawbacks of the models found in Chapter 4. This model will become the in­

dividual bivariate model of the mixture model introduced in the next chapter. 

In fact, it will determine the way to construct the parametric family of all the 

individual models in the mixture model.

In Section 5.1, we introduce the representation of the final model (Model 

2). The marginal distribution derivation is found in Section 5.2. The joint 

distribution and the dependence structure are presented in Section 5.3.

In Section 5.5 we discuss what type of data Model 2 can be used for. We 

define the regions where the data is modelled. As well, we define two ways of 

dealing with data. However, we will only keep one of them for the rest of the 

thesis.

We present some similarities and comparisons of Model 2 with the literature

99
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in Section 5.4.

Finally, in Section 5.6, we deal with inference for both the MLE and the 

Bayesian framework. This includes the introduction of the likelihood and 

posterior functions for the different ways of dealing with data.

5.1 Exponential-Gamma Model 2

As a modification of (4.16), we propose the following bivariate model:

(1 +  B/A)6il; 

Y =  (1 + C / A )0b]

(5.1)

with independent B  ~  E xp(a i), C  ~  E xp(a2), A  ~  G a (0 ,1), c*i,Q\,0 >  0, 

and 6 , 6  >  0 .

There are two fundamental changes to this model and they are related to 

eliminating the drawbacks of Model 1 in Section 4.1.1:

1. The appearance of 6 in the exponent. This will improve estimation 

performance, since it will separate the marginal from the joint estimation 

of the shape parameters.

2. The inclusion of the “1+ ” term. This will facilitate the model to factorize 

into the marginals in the tail independence case (i.e. as 9 —» oo).

The second change implies that we are only able to model data larger than 

1. However, there is no loss of generality, since, as we will address later, Model
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2 fits heavy and semi-heavy tailed distributions. Therefore, a change of scale 

on the observations does not affect the tail behavior. In a broad sense, instead 

of defining the origin in the support of the random vector (X , Y ) in (0,0), we 

are defining it in (1, 1).

5.2 Marginal Distributions: Model 2

In order to illustrate the effect of 6 in the exponent, and to sketch the changes 

we are making on the distributions, we compute the marginal distribution. 

This is given by:

Fx (x) =  P(B  <  (ad/^i _  i)A )
PO O

=  /  P ( B <  (x 1̂ 1 -  l)a  I a)fA{a)da
Jo

P O O

= = l ~ W ) j  exP ( -  OiXa{xl/eil -  1)) exp(—a)ae_1da ^  ^

POO

=  1 -  J  exp ( — a (l -I- a i(x 1/6Çl — 1 ))a e_1da 

=  1 ~  ( l  +  a u (x ^  -  1) )  ,

and so the marginal density function is given by:

( l  +  O i ( ^ - l ) )

With the introduction of 9 in the exponent, we eliminate its influence on 

the shape parameter of the marginal tail, since:

P (X  > x) =  1̂ +  ai(x*«i -  l ) j  

- 0  - i« » f i  «i , as x —* oo.

(5.3)
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In Section 4.1.1, we saw that Model 1 has a Burr-XII marginal distribution, 

and recall that W  ~Burr-XII(c, k), if

P (W  <  w) =  1 — (1 +  wc)~k , for w >  0,

or, including 8 and 7, location and scale parameters, respectively:

P(\V <  w) =  1 — ^1 +  —  — ^ , for w > 8.

Thus, the marginal model in (5.2) is not Burr-XII. However, because of the 

similarity, we will refer it as a quasi Burr-XII type.

It is possible to compute the rt/i-moment, similarly to Model 1, as follows: 

For X  defined as in (5.1), define Z =  a\ — 1^. Then

fz(z) = e(i + z)-e- 1.

Therefore, the rth-moment of X  is given by:

E { X r) =  E  (c*rre$1(l  +  Z )reil)  =  a i r6il9Jo (1 +  z)re 1̂~e~1dz,

which yields:

E { X r) =
00 if r >  j-— ti

r { l  Cl

Hence, the heaviness of the tail depends only on the shape parameter

Therefore, the marginals of the final model cover heavy tails.

The case when 0 —> 00 will play an important role in the coming sections.
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Thus, we present how the marginal behaves as 6 —l oo:

-6
P (X  > x) =  1̂ +  a 1(a;e<i — 1)^

«  ( l  + «‘»"g«*)

«  exp | —a\ log x  «T | 

_£1
=  x  £i , as 6 —,► oo.

In the first approximation, we used the following:

(5.4)

zp - l log z, as p —> 0. (5.5)

The expression in (5.4) is an improvement from Model 1, where an asymptotic 

expression for P ( X  > x)  when 8 —» oo was not possible to achieve.

Similar to Burr-XII distributions, we can characterize the shape of the

density via the mode. The derivative of the density in (5.3) is given by:

i i sx  w  = ( i ~ ; i ) a i ^ - 2 ( i ^ . (^ - i ) )

which is equal to zero if and only if

(1 ~  Bji ) =
c*i(# +  l)  1 — cq +  a i z 5̂

Then, the mode is given by

/ ( i - o a x i - o i A * 1
V  o i » ( l  +  f i )  J

Hence, the marginal density is:

• Unimodal, when a i ( l  +  8) +  8£x <  1.
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• L-shaped, when a ^ l  +  6) +  8£i >  1.

We present two examples of each case in Figure D.4.

5.3 Joint Distribution and Dependence

Here, we introduce the joint survival and joint distributions for Model 2, as 

follows:

F x ,y{x, y) = P{X > x,Y >y)

= P(B > (x1̂  -  1 )A, C > (y 1/ ^  _

poo
=  J  exp ( -  a ia {x ll0Zl — 1) -  a 2a(y1/0i2 — 1) — a)a9~lda

poo

~ W) J  e x P  (  -  a ( !  +  aiXl/6il -  ai +  a2y1,eii -  a2) )a9~1da 

=  ( l  +  a 1(a:5iT -  1) +  a 2(y°^ -  1)^ ,
(5.6)

and hence

f ( x , y )  =  x ^ ~ ly ^ ~ l ( l - f  Q i^ 5̂  -  1) +  a 2( y « t  -  1))

(5.7)

From (5.6), we can see that the joint distribution is closed to marginaliza­

tion, since:

F x ,y (x , 1) =  ( l  +  o i ( i i«r -  1) )  ,

which is the marginal survival function of X.

The next issue to consider is the asymptotic properties of the model. De­

fine, as in Theorem (2.2.3), and as in (2.30), the S and T  transformations
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as:

S = and T —
1

log Fx (X)  '  l o g F y ( r ) '

Then, the joint survival distribution of S and T  is given by:

Fs,Hs,t)  =  {(1  - e - 1/ » ) ^  +  (1 - e - 1/ ') "^  -  l }  

S3 |s5 + t* — 1 j  ,

-9

(5.8)

(5.9)

for large s and t (see Appendix B .6 for details).

The following theorem shows that the asymptotically complete dependence 

and the asymptotically exact independence rely only on 9, as in Model 1.

T h eorem  5.3.1. Tail Dependence Characterization 

Define X  and Y as in (5.1), then:

1. If 9 —► oo, then X  and Y are asymptotically exact independent;

2. I f 9 —¥ 0, then X  and Y  are asymptotically complete dependent.

We present the proof in Appendix B.6. As can be seen from the proof, the 

distribution of the model splits into the product of both marginals when the 

independence case is considered. This is precisely the advantage of including 

the “1+” term in (5.1). In a similar result, we find that in the limit of 9 —> oo, 

the joint survival function behaves as a complete dependence function.

As a final step, we need to introduce the dependence structure of Model 2 

via the following theorem.

T h eorem  5.3.2. Tail Dependence of Model 2
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Define X  and Y  as in (5.1). Then, the tail dependence between X  and Y  

is:

X =  2 -0. (5.10)

Therefore, for the asymptotic dependence, inference should focus on the 

estimation of 8. We present the proof of the theorem in Appendix B.7.

We note that the model, for finite 8, is always modeling a tail dependence. 

However, for inference purposes, a large 6 would indicate a very small depen­

dence, which could suggest exact independence.

In a Bayesian setting, where prediction takes on importance, forming a 

prediction with a posterior for 8 centered on a large value will effectively 

be equivalent to prediction assuming tail independence. Also, it avoids the 

decision as to whether to take a model as independent or not. We regard this 

as an advantage of the Bayesian Model.

5.4 Model 2 and the Literature

It is important to notice some similarities of Model 2 with models in the 

literature.

From Theorems 5.3.1 and 5.3.2, we established that:

• l im ^oX =  1: complete dependence.

• lim^oo x  =  0: exact independence and the joint distribution factorises 

into the marginal distributions.
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These dependence limits are equivalent to those of Ledford and Tawn (1996) 

in (2.27). In contrast to Ledford and Tawn, we smooth between the extremal 

dependences via the posterior of 9, since x  only depends on this parameter. 

The problems in estimation and in the tests found in the classical approach can 

be avoided within the Bayesian framework, i.e. using the posterior distribution 

of 9. This aspect of Bayesian inference will be presented in Section 5.6.

Regarding the dependence measures described previously, we have that for 

Model 2:

X =
2 log P(S  >  s )

- l  =  l i n w , , 2 ’° Sr ------- 1 =  1, (5.11)log P (S  >  s ,T  >  s) ............ log 9 +  log s

for 9 <  oo. Therefore, this parameter suggests that there always exists a 

dependence between the variables for finite 9. This result is in accordance

with the following:

P(S >  s ,T  > s) ~  2~es~1,

as s —► oo, which means that 77 =  1.

This agrees with our model, but it is not a disadvantage. Our claim is that 

the posterior distribution for 9 is all that is needed. Similar to a prior on p, 

a correlation parameter in a normal distribution, a prior on (—1, 1), there is 

no point mass at 0. If independence holds, then a posterior accumulating at 0 

will occur, but no point mass.

It is worth to stress that Model 2 assumes either tail dependence or exact 

independence of the variables. Therefore, no other type of independence is

assumed.



Chapter 5. The Bivariate Model 108

Regarding the form of the joint distribution and its properties, the result 

in (5.10) might recall some of the following copulas (refer to Heffernan (2000) 

for the notation and the references): the BB1, BB4 and BB7 of Joe (1997) on 

both their upper and lower tail, the BB3 of Joe (1997) on its upper tail, and 

the lower tail of the Pareto copula. However, we will only focus on two similar 

models: the lower joint tail of the Clayton distribution found in Ledford and 

Tawn (1996) and the bivariate logistic extreme value distribution.

Clayton (1978) constructed a bivariate model to study disease incidence in 

parents and offsprings. For Z  and W , random variables with joint distribution 

F, and joint density / ,  define the hazard functions as:

1 poo
\z{z]w) =  - { - log F (z ,w ) }  =  J  f (z ,v )dv/F(z ,w ),

and

Xw(w;z) = - { - l o g  F (z ,w ) }  =  J  f(u,w)du/F(z,w).

Define, as well, the bivariate failure rate as:

l (z,w) =
f {u ,w)
F{z ,w)'

Clayton was looking for a family of distributions for which:

l(z,w)
\z {z-,w)\w (w ,z) =  <f>,

for a constant (j) > 0. In other terms, a joint distribution for which:

poo poo poo poo
f ( z ,w )  I I f (u ,v )dvdu =  <f> J f (u ,w )du  I f (z ,v )dv .  

J 2  J W  J Z  J W
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Clayton found that:

f ( z ,w )  =  <l>a'(z)b,(w ) ( l  +  (<t>-l)[a{z) +  b(w)]\ , (5.12)

where a(-) and b(-) are non-decreasing functions with n(0) =  6(0) =  0. Clayton 

suggests a parametric form for these functions depending on some regression 

coefficients. For the case of 2, let the regression coefficient be 7, then:

a(z) oc (z — A:)r exp (/3Tu),

with u a covariate of z, and similarly for w.

Model 2 is almost (5.12) when:

i, = 1 + i ore = ̂ ri’

and thus, the joint densities are comparable. What differentiates Model 2 is 

the form of the functions o(-) and b(-):

1. Their support is ( l,oo).

2. Their parametric form depends on 6, so that their scale parameters do 

not depend on 6.

Consider the representation of the model when transforming the variables 

to Fréchet marginals given in (5.9), i.e., for large x  and y or equivalently, for 

large s and t, we have:

P (X  >  x, Y  >  y) =  P(S >  s ,T  >  t) ss (»■/• + 1'/‘  -  1) ' . (5.13)
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This expression is equivalent to the Clayton distribution (when applied to 

copulas), which is classified as an asymptotic dependence case by Ledford and 

Tawn. The survival function is:

F ( M ) =  ( g \ s) - 1/0 +  G * (t)-1'9 - 1 ) ~ \  (5.14)

where G * is the unit Frechet survivor function and ¡3 >  0. This representation 

is the same as that of (5.13).

On the other hand, the expression (5.13) is similar to the exponent measure 

V, see (2.17), of the bivariate logistic extreme value distribution, which is a 

distribution of componentwise maxima; and is expressed as:

v1(s,t) =  ( s - 1̂  +  r ^ ) \

where 0 <  7 <  1.

The same result is found in the Clayton distribution where C(s) =  2~e and 

in the bivariate logistic, where C(s) =  2 — 2-7 .

Regarding the equality of the models (5.13) and (5.14), we need to make 

clear a couple of points. First of all, the equality holds only for the survival 

function for large values. The second and most important point is that we 

have constructed a model that differs with copula literature. In Model 2, the 

dependence structure is dictated by the definition of the variables, so that it 

is linked to the marginals, whereas in the copula literature, the dependence 

and the marginal structure are split. Therefore, we are not explicitly working 

with copulas.
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5.5 Data Characterization for Model 2

In this section we describe what type of data can be modelled by Model 2. As 

we mentioned in previous sections, we are modelling positive random variables, 

let them be X*  and Y*. We describe two ways to proceed with extreme data.

Recall from Section 2.2.3.2, and as Figure D .l shows, we have divided R2 

into four regions as follows:

ji i ^W*>uv'*]} ’ (5.15)

for and u y , positive high thresholds of X* and Y*, respectively.

As a first step, we transform the variables X*  and Y* as follows:

X  =  X* +  1, and Y  =  Y* +  1, (5.16)

for ( X * , y * ) G { ( 0,uA. ) , ( 0, Wy . ) } c.

The dependence structure of the original variables is conserved, since the 

location shift does not affect the value of The transformed variables have 

the following support:

( x , F ) e { ( i , u* ) x ( i , « y ) ) } c ,

with Ux =  ux* +  1, and uy =  u y  +  1. Then, with respect to the transformed 

variables, R2 is divided into four regions as follows:

{ Rij, * H[X>ux]’ J H[V>uy]} • (5.17)

Then, these regions are represented in Figure D .l, with the origin in (1,1).
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We consider that data in Rq0 (and as a consequence, transformed data in 

Roo) do not contribute with any relevant information of the extremes. Hence, 

we focus in modelling data falling in regions R 10, Roi, and i?n.

We assume X  and Y  have Model 2 as distribution. However, since we are 

ignoring the region (1, ) x (1, ity), we need to truncate the distribution by

the following factor:

Consider a sample of size n of X  and Y, say D, is given. In this way,

Firstly, we introduce the “censored data” approach. This approach is 

equivalent to the model expressed in (2.24) in Section 2.2.3.2. The differ­

ence is that we are not interested in observations falling on the region Roo, i.e. 

we discard the observations in Roo-

Then, the likelihood of the censored case, similarly to (2.24), is given by:

- e

1 -  F ( ux , uy ) =

(5.18)

D  =  {(*»><),* =  1,. • -n}.  Let u) =  { 0,ai,f i,<*2, 6 } € =  R+.

n

L{u} | D)  =  l(Zi.ifc))» (5.19)
»=1

where
/

(1 - F ( ux , uy )) 1 x f (xi ,y i)  if (xi,yi) E Ru

g(u) \ (xiiVi')} < (1 F{ux,uyY) x ¿xl(xj,uy) ^ »3/*)  ̂^io

V
if (xj, Ui) G Roi >



Chapter 5. The Bivariate Model 113

where, from (5.6) and (5.7):

/(*•>Vi) =  ( ^ ¡ r ) xih lyi i2 1 ( X +  ~  !)  +  q2(Vii2 ~  1)^

If I (Xi,uy) =  ( f t  ) * ? ' ~ l (X + -  !) + a ^ UP 2 ~  !))

On the other hand, we introduce the “non-censored data” approach. The 

transformed variables are the same as in (5.16), and the interest is as well in 

the regions Rw, Rqi, and i?n . For the same sample D  and same parameter 

vector uj, the likelihood function of the non-censored approach is given by:

¿HD)= (iii f B)nx( 1 -S(«x, «!-))■“

n:=, (i+ - 1)+<*(** - 1)) ' \
(5.20)

for (xi,yi) e  {RooY , for i =  1, . . .  ,n.

We divide extremes inference in two objectives: tail dependence determina­

tion and prediction. The first one consists only in the estimation of 9, whereas 

the second one focuses on fitting Model 2 to predict values of X* and V*. 

Both the censored and the non-censored approaches can achieve both the

tail dependence determination and the prediction. The only difference between 

both approaches is the form of the likelihood. Therefore, we opt to treat data 

with the non-censored approach for all the analysis in the thesis.
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5.6 Inference for Model 2

In this section we explain the inference for Model 2, via both MLE and 

Bayesian methodologies. Although we have already stated we are using the 

Bayesian paradigm as the basis of inference of the thesis, we need to make a 

comparison of both methodologies. For this purpose, we compare the estimates 

of both the MLE and the Bayesian frameworks, in simulations of observations 

of Model 2. As we will show, the MLE has some problems with some parameter 

regions, whereas the Bayesian estimation overcomes these difficulties.

Finally, in Section 5.6.3, we present a general simulation case, where Model 

2 is fitted to simulated data of different models.

5.6.1 MLE Approach

The only purpose of the simulation of Model 2 is the comparison of estimates 

of MLE and the Bayesian paradigm. Therefore, it is not necessary to focus 

on thresholding data. Therefore, we simulate observations of Model 2 in the 

region: (1, oo)2. In other words, we are setting ux =  uy =  1 for the definitions 

in Section 5.5. As a consequence, the truncation factor in (5.18) is given by: 

1 -  F ( ux , uy ) =  1.

Recall the likelihood function in (5.20). The MLE has to be evaluated using 

numerical methods. The standard procedure is to use a Newton-Raphson 

algorithm to maximize the log-likelihood I(u>|D). However, the MLE has been
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found to present some regularity problems in some regions for a wide variety 

of models; see, for example, Tiago de Oliveira (1980) and Tawn (1988). Tawm 

(1988) illustrated that for the independent case in the logistic model, the MLE 

had nonregular behavior. For a wider discussion on inference problems when 

considering the MLE, we refer the reader to the papers of Coles and Tawn 

(1991) and Tawn (1990).

We simulated observations from Model 2, using the representation in (5.1). 

The cases are similar to the illustration of Section 4.2.2.3.

We consider four levels of tail dependence: 9 G {5,3,1,1/3,0.2}.  In terms 

of heaviness of the marginal tails, we split data into light tails: £i = 0.1 and 

£2 =  0.15; and heavy tails: £1 =  1 and £2 =  1-5. Regarding the amount of 

data, wre simulated large samples of 500 observations for each model and small 

samples, with 70 observations, with 10 replications for each model. We chose 

70 as a low amount of data in accordance with the real data analysis made in 

Section 7.2. In Table C.2 we show the estimations of the parameters of Model 

2, as well as x, via the MLE method. For the 95% confidence intervals of 9, we 

assumed asymptotic normality, similarly to that described in Section 4.2.2.3. 

For the cases of low and semi low dependence (9 =  5 and 9 =  3, respectively), 

we presented the left 95% confidence intervals for x • F°r the rest of the cases, 

centered 95% confidence intervals of x  were given- We present, as well, the 

standard error of the replications.

As it can be seen, in the low dependence case, the point estimation is poor
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for all the parameters. The specific case of the estimation of 6 could be fixed 

with a reparametrization. However, the left 95% confidence intervals of \ 

are too wide in the small sampling, for example (0,0.54) in the light tails case 

(compared to the Bayesian credibility intervals of the following section), which 

should not be affected by a reparametrization. For the large sampling and low 

dependence cases, although the point estimations are not accurate enough, the 

confidence intervals show a good precision. This fact, as well, might suggest a 

reparametrization in order to improve the point estimations.

For the rest of the cases, the point estimations and the centered confidence 

intervals seem accurate for any sampling size.

In order to test the point estimation of the MLE of this parametrization, we 

increased the sampling size to 1000 observations, only for the low dependence 

cases. We present the estimation in Figure C.3. The increase of the amount 

of data makes the MLE method produce more accurate estimation. This fact 

will be important for the Bayesian estimation as well, since, for large sample 

sizes, both methods are effectively equivalent.

We did not consider any reparametrization, since we found the Bayesian 

estimates worked well for all the cases, as we show in the following section.



Chapter 5. The Bivariate Model 117

5.6.2 Bayesian Estimation

Given the likelihood function in (5.20), we can express the posterior model as 

follows:

pn(u;|D)oc n(u)) x x (1 - F ( u x ,uY))~n

nr=i xl il V i2 1 ^  - 1) + «2{y°i2 - 1)̂  ;
(5.21)

where 7i(u>) is the prior density distribution of the parameters, and where 

1 — F(ux ,uy ) is given by (5.18).

The parameter space is Q =  R+ and all the parameters are assumed to be 

independent. We considered independent exponential distributions as priors.

We define the log-posterior as lp(u) | D ) =  log(pn(u> | D)). We assume 

independent prior distributions and express them as n(u>j) =  8Uje~UiSui , where 

Uj is an element in cj. For example, is the prior of the parameter 6, with 

hyperparameter 8Ue.

Define the subset u ] as the elements in u>, excluding Uj. Therefore, the 

conditional log-posterior distributions can be written as follows:

(p(0|D,5£)= n l°g ( ^ T ^ )  +  ¿ E l o g ^ )  ~ S°d 

1
+ -Q ^ 2^ \ °g {y i) +  K e ~  n log(l -  F { u x , uy ))

~ ( 9 +  2) 5 1  los  +  -  ! )  +  « 2(y*£2 “  1) ) ,
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and

lp(ct11D,05̂ 7) =  n log (a i) -  i Qlai -  n log (1 -  F{ux ,u Y)) +  K ai

- ( 0  +  2 ) £ l ° g ^ 1 +  <*i(z,9il - 1  ) +  a2(ylH2 - 1 ) ^ ,

(5.22)

and

|D,wi7) =  —nlog (fi) +  ^ - ^ l o g ( x i )  -  — n log (1 -  F(ux ,u y ))

~ (0  + 2) ^ l o g  + o:i(x,e(l — 1) + a 2(t/®£2 ~  1)^ + Q̂i>

and

lp(a2 \T>,iJ^) =  n log(a2) -  Sa2a2 -  n log (l -  F(ux ,uY)) +  K Q2 

-(6 »+  2 )5 7 l°g ^ l +  M ^ 1 - l )  +  a2(y*i2 - 1 ) ^ ,

and

W 6  |D.Wfo) =  -n lo g (6 ) +  ”  ^26 ~ n  log (l -  F(ux ,u y ))

- ( 9  +  2) ^ 2 1°S +  « l f o * 1 -  1) +  a2(yii2 -  1)^ +  A'i2,

where the K Uj term represents the logarithm of the normalizing factor of the 

conditional log-posterior of Uj.

We chose the Metropolis-Hastings within Gibbs sampler (see, for example, 

Tierney (1994)) method to draw samples. The proposal distribution we pick 

in each case was a log-normal distribution. The standard deviation was tuned 

such that the acceptance rate was in the interval [0.35,0.40], see for example 

Gelman et al. (2003).

The simulation data consisted of the same simulations as in the MLE case.

Therefore, the thresholds are set as ux  =  uY =  1.
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We drew samples from the conditional log-posteriors defined in (5.22). For 

every sample of w, we sampled a prediction of X  and Y  with the representation 

in (5.1), and we denote the predictive sample as X s . The run sizes were 20,000.

In Figure D.5, we plotted the empirical means for different sizes of an 

MCMC sample of 9. The first two plots show that, after 1000 samples, the 

means have stabilized. For the third and the fourth examples, the stabilization 

levels were around 3000 and 2000, respectively. Therefore, we chose these as 

burn-in levels. In general, the burn-in levels were not larger than 20% of the 

run size.

Let u s  be the MCMC sampling of u>, given the data. We provide the pa­

rameter estimate with both the mean and the median of w5. The results were 

very similar. However, we found that the median approach was fitting better 

to the simulation case when considering that the variables were generated by 

our model. Thus, we select onwards a median criteria for Bayes inference.

The general form of the table describing the Bayesian inference includes 

the estimation for all the parameter space and additionally, we give the central 

95% credibility intervals for the parameter 9, and for the tail dependence, 

except for the low dependence case, where the left 95% credibility interval is 

presented.

We chose unit exponential distributions for all the priors in an attempt to 

be non informative but not excessively, except for 9. Since the main purpose 

of our model is the tail dependence structure, we will only discuss the selection
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of the value of the hyperparameter 89. Any prior belief on a bivariate model 

can be seen as a belief in the strength of the tail dependence. Therefore, we 

must evaluate how sensitive x  to the hyperparameter 89, i.e. we need to 

compute the prior expected value of \ and see how related they are:

Ense be] =  j 2 - eTTSe(8e)d9
fiO O

=  /  2- e80e - Seede (5.23)
Jo

8e
89 +  log(2) '

This expression makes very simple the elicitation on the tail dependence struc­

ture. We set 89 =  log(2), since this means E [\] =  0.5, i.e., our initial belief 

is that there exists a medium tail dependence structure. For the rest of the 

parameters, we chose unitary exponential prior distributions.

If we would like to consider a non-informative prior, we would need to keep 

the exponential as flat as possible. Then, we would need to consider the limit 

case in (5.23) when 89 —» 00. When a flat prior is considered, the prior tail 

dependence structure can be expressed as:

lim ^ oo  E [2~d] =  1.

Therefore, fixing a flat prior implies a belief of a complete tail dependence. 

This result can be related with the failure cases of the MLE: if a flat prior 

is chosen, the prior belief is a complete tail dependence. Therefore, it would 

need a great amount of data to get realistic estimation in the case of actual

tail independence.
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We show in Table C.5 the estimates of the simulation data. The improve­

ment in estimation is evident for those cases where the MLE did not show 

great performance (i.e., the low dependence structure). The point estimations 

have an acceptable accuracy for all the dependence cases, and the credibility 

intervals for the low and semi low dependence cases for the small sample size 

are smaller than the confidence intervals of the MLE. The only issue to ad­

dress is that in the semi low dependence cases, the estimates of 9 for the small 

sample is more accurate than the large sample. The reason for this is that 

the size of the replication is low. Besides, the credibility interval for x  Is more 

narrow in both cases, which reveals the improvement in the estimation when 

increasing the sample size.

Therefore, we can proceed to apply the Bayesian paradigm with more con­

fidence for any size of data and any type of asymptotic dependence.

5.6.3 General Simulation Case

In this section, our interest relies on fitting our model with any kind of tails. 

Therefore, we simulated data coming from different types of GPD (recall that 

the GPD is the limit distribution of the excesses over a high threshold). The 

purpose o f this case is to look at the responses that our model has to different 

types of tail dependence structures and different types of tail heaviness.

We drew 1000 bivariate samples, with 10 replications for each model, from 

the following dependence structures:
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• Independently.

• Tail dependence: Clayton copula (recall 5.12) considering four levels 

of tail dependence: 4> G {1 .2 ,4 /3 ,2 ,4 ,6 } (which correspond to 6 € 

{5 ,3 ,1 ,1 /3 ,0 .2 }).

• Tail independence: Gaussian copula with p =  0.5.

In terms of heaviness of the marginal GPD tails, we split data in light tails: 

=  0.1 and £2 =  0.15; and heavy tails: £1 =  1 and £2 =  1-5.

The Bayesian inference is carried out as described in Section 5.6.2.

Define the simulated variables as X* and Y*. Then, we only model the 

observations in the region:

{(0, ux*)»(0,wv*)}c ,

where ux* and u y  were chosen as the 95% quantile of X* and Y*, respectively. 

We transformed the data as in (5.16):

X  =  X* +  1, and Y  =  Y* +  1, (5.24)

for ( X % n e { ( 0 , u * . ) , ( 0 , ^ * ) } c.

Then, we drew MCMC simulations via the method explained in Section 

5.6.2. We took a sample of 10,000 simulations with a burn-in of 500. The 

log-normal distribution was chosen as the proposal distribution.

The summary of the Bayesian inference is presented in Table C.6, which 

shows the following features:
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• The exact independence case is estimated with a large 9.

• Slight over estimation of x  for low tail dependence cases. However, x  is 

contained in the credibility intervals.

• Accurate estimation of x  for medium and high tail dependence cases.

• Over estimation of x  for tail independence case.

The accuracy of the estimations is not a big issue, since the amount of data 

in Rq0 was between 57 and 97 observations. The only issue that seems to be 

important is the over estimation of x  m the tail independence case. However, 

as we stated before, we are not modelling other type of tail independence, 

rather than the exact independence.

However, as the main purpose of the model is the prediction, we study in 

Figures D.6 and D.7 how the model predicts in some scenarios.

The first scenario is the exact independence (heavy tailed). On the left 

side of Figure D.6 we plot the transformed data (recall (5.24)), whereas in 

the right side, the predictive sample, both in log-log scale. It can be seen the 

behavior of a lack of association in the tails, which is confirmed in the plots of 

both the empirical and predictive x (u), m the first row of Figure D.7.

The following scenario is the tail independence case, writh heavy tail. The 

figures show that the model tends to overestimate the dependence. The be­

havior o f the sampling has almost as much association as the next scenario: 

tail dependence when x  =  0.125. As we noted in this chapter, Model 2 does
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not cover different types of tail independence. Therefore, we have to keep in 

mind that, for those cases, the prediction will tend to show a low dependence 

behavior.

Finally, the last two scenarios denote low and high dependence. In both of 

them, both the scatter plots and the plots of x iu) denote a low and a strong 

dependence among the samplings, respectively.

It is worth to notice that the parameters and predictive samplings are run 

at the same time. Therefore, avoiding a two-stage inference. This feature will 

be kept in the inference of the mixture model.

In summary, we presented in this section the form of a bivariate model, 

which is the base of the multivariate mixture model that we are presenting in 

the next section. The model has a simple dependence structure and is closed 

to marginalization. For the construction of the multivariate model, we will try 

to keep this features in higher dimensions. As well, the Bayesian paradigm 

turned out to be the better approach for inference, which is a desirable feature

for the mixture models.



Chapter 6

The Multivariate Model

We present in this chapter a generalization of Model 2 to the multivariate set­

ting. The way to generalize is not trivially achieved from (5.1). We anticipated 

that the proposed model is a mixture of models of different tail dependence 

structure. Inference with a mixture model can be seen either as a model se­

lection or as a model averaging problem. This fact will play an important role 

in this chapter, since the objective differs substantially from one option to the 

other.

Section 6.1 presents some dependence definitions for the multivariate case. 

Section 6.2 deals with the trivariate model, its properties and inference. Sim­

ilarly to Model 2, we establish a preference over one method of dealing with 

data. In Section 6.3 we introduce the general multivariate model. Section 6.4 

presents the similarities of the multivariate model with some relevant models 

in the literature. Finally, Section 6.5 contains a discussion of the multivariate

125
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models.

6.1 Multivariate Dependence

We need to define different types of dependence within a multivariate model. 

We treated extensively the parameter x, which measures the tail dependence 

between two variables in Chapters 2, 4, and 5. A multivariate expression of the 

extreme cases of x  (be. considering the distribution of the tails, rather than 

the distribution of the maximum) was introduced by de Haan and Resnick 

(1977).

D efinition 6.1.1. Multivariate complete tail dependence and exact indepen­

dence.

Let S  =  (S i, . . . ,  SdY be a vector of random variables with the same uni­

variate marginal distribution.

Then, there is d-dimensional exact tail independence if for each subset 

0 'i. ■■■Jr} of { l , . . . , d -  1}:

lim^oo P  (Sh >  s , . . . , S j r >  s\ Sh > s) =  0. (6.1)

f o r k  £ { j u - - - , j r } -

1Note that the vector notation has changed from Section 2.2.1. The reason for this is 

that in the current chapter, there is no risk of confusion with other representations (as was 

the case for order statistics).
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Similarly, there is d-dimensional complete tail dependence if: 

lim^oo P  (S2 >  s , . . . ,  Sd >  s| Si > s) =  1.

Note that the conditional could be on any variable, since they have the 

same univariate marginal distribution.

In the exact tail independence case, this means that any subset of S is 

made up of exact tail independent random variables. On the other hand, in 

the complete tail dependence case, the d components must be complete tail 

dependent.

These definitions denote the complete tail dependence and exact indepen­

dence cases. However, we can extend the complete tail dependence concept to 

define the tail dependence case.

D efin ition  6.1.2. Multivariate tail dependence

Let S =  (Si, . . .  ,Sd) be a vector o f random variables with the same uni­

variate marginal distribution. Then, there is d-dimensional tail dependence, if 

for each subset { j i , - . . , j r}  of { 2, . . . ,  d}:

0 <  lim^oo P  (Sj2 >  s , . . . ,  Sjr >  s| Sj, > s) <  1.

Hence, if there is d-dimensional tail dependence in S, a vector of d variables, 

then there is (d — j)-dimensional tail dependence in any subset of S of size 

( d - j ) ,  for j  =  l , . . . , ( d -  1).

However, we need to define the tail dependence in a different way. Assume 

we have S =  (S\,. . . ,  Sd), a vector of random variables. We are aiming to
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model these variables with a joint distribution F. Then, F  can fix any type of 

tail dependence on different disjoint subsets of S. For example, half of them 

can be exact tail independent and the other half, tail dependent. Thus, we find 

it more convenient to define tail dependence in terms of the joint distribution 

F.  We define this dependence as follows:

D efin ition  6.1.3. M-tuple Tail Dependence

Let S =  (S i, . . . ,  Sd), for d >  2, be a vector o f random variables with the 

same marginal distribution and a joint distribution F. Then, the distribution 

F  is said to have m-tuple tail dependence, if there exists an m (1 <  m < d), 

for which the following holds:

sup \k : V { j u . . . , j k} e  { l , . . . , d } ,
L (6.2)

0 < lim^oo P  (Sh >  s , . . . ,  Sjk > s | Sh >  s) <  1 j =  m.

Therefore, an m-tuple dependence of a model of d variables is the maxi­

mum number of tail dependent (including complete dependent) variables. In 

connection with the definition of de Haan and Resnick (1977), Fs has m-tuple 

dependence if the maximum dimension of tail dependence of all the subsets of 

S is m, for 0 <  m <  d.

Recall that for any r.v. (S i , . . . ,  S'r):

P(S\ >  s , . . . ,  Sr >  s) <  P(Si >  s , . . . ,  Sic—i > s, Sfc+i >  s , . . . ,  Sr >  s), 

for some k € (1 ....... r }.

Assume F  has m-tuple tail dependence and that { j i , . . . ,  j m} 6 { 1 , . . . ,  d}
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are tail dependent elements of S. Then it is clear that F  has a (m — k)- 

dimensional tail dependence, for k =  2 , . . . ,  (m — 1), i.e.

0 < lim -̂nx) P  (Sj*2 s , . . . , Sj*m_k > s | ^  1,

for { j * i , . . . ,  j * m- k}, any subset of size (m -  k) of { j u

The task of a multivariate model is to determine a joint model F  which 

works for any combination of m tail dependent variables. Therefore, high 

flexibility for the model is required. As we will expose later, we propose a 

mixture model to achieve this flexibility.

Finally, we introduce some notation for multivariate tail dependence.

D efin ition  6.1.4. Notation of Tail Dependence.

Let S =  (Si,... ,Sd) be a vector o f random variables with the same uni­

variate marginal distribution. Then, for { j i , .. . , j m} a subset o f { 1 , . . . ,  d}, 

define:

X{jl,:.,jm} hms—>00 P  (Sj  ̂ >  s, . . .  , Sjm >  s| Sjt >  s).

And in the case when m =  d, we can simplify the notation as:

X{ji,...,jd} Xd-

As well, f o r { j \ , . . .  , j l },  a subset o f {  1 , . . .  ,d} and a disjoint set o f { j  1, . . . ,  j m}, 

define:

* {[n ... i m ] , =  P  (5h > s , . . . , S j n >  s\ 5,-j > s , . . .  ,Sj; >  s ) .
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Note that X2 =  X f°r the bivariate case.

The tail dependence definitions that we introduced in this section, will help 

to construct our generalization of Model 2. In order to ease the explanation 

of the multivariate framework, we firstly present the trivariate model.

6.2 TVivariate Model

Here, we present a trivariate model, which helps on settling the way to gener­

alize Model 2 to the multivariate setting.

6.2.1 Trivariate Model Motivation

Let X  =  (X\,X2,X3) be a vector of random variables. Similarly to Model 2, 

we are aiming to find a model for regions of the form:

R =  { ( l ,u x i )  x ( l , « x 2) x (1, « x 3) } c ,

for uxj,  a high threshold of Xj, for j  =  1,2,3.

A desirable feature of a multivariate model is the recovery of the bivariate 

structure of Model 2, when marginalizing all the variables, save two. Therefore, 

as a first attempt of represention, and prompted by (5.1), we consider the 

representation of these variables as follows:

* i =  ( l  +  B i / A O ^ 1;

X 2 =  (1 +  B2/A2)d̂ ;  

X 3 =  ( 1 +  B3/A3)6̂ ;

(6.3)
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In Chapter 5, we saw that the subvariable B  represented the scale of each 

variable, whereas the parameter £ represented the marginal tail. Therefore, it 

is reasonable to select them as: independent Bi rsj Exp(tti), 0, a u (i >  0, i.e. 

they belong exclusively to Xi, for i =  1,2,3.

The subvariable A  though, must be modified, since it represents the depen­

dence among the variables. One requirement is that Ak =  Aj, when Xk and 

Xj  are tail dependent. Let A j  ~  Ga {6j, 1 )  with joint density / a , for j  =  1 , 2 , 3  

and where A  =  (Ai, A 2, A3).

In representation (6.3), the marginal distributions are equal to those of 

Model 2, i.e. they are quasi Burr-XII type, and are as follows:

with x  >  1, and for j  =  1,2,3.

The first issue to study is the bivariate structure. Recall that in Model 

2, we assumed that theoretically, there exists tail dependence between two 

variables, and that this dependence was measured by a single parameter 0. In 

order to get that representation, we needed to set a common subvariable A 

for both variables. This feature will help us to develop the form of the joint 

distribution. However, we firstly need to clarify a tail dependence issue in the 

generalization.

When working with only two variables, and when the main purpose of 

the study is the structure of the tails, it is convenient for us to model the 

variables as tail dependent when 6 is finite (see Section 5.3). However, in

(6.4)
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multivariate analysis with dimension larger than 2, it is helpful to differentiate 

the tail dependent and the exact tail independent variables, and to represent 

the exact tail independent variables in the joint model directly as the product 

of their marginal distributions.

In order to study the bivariate structure, let X\ and X 2 be the variables of 

interest. We can define the joint model of A\ and A2 if we marginalize with 

respect to A3:

where 0 < u > i < l , 0 < i c 2 < l ,  and w\ +  w2 =  1. Therefore, the joint survival

We propose to model it as:

,-(01+02)

(6.5)
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distribution, F  * of the variables is:

Fx ux2(xu x2) = P{X\ > x i ,X 2 > x2)

=  p ( b x >  ( x f i  -  1 ) A UB2 > ( x ^  -  \)a 2

=  J f ”  P ( b i -  ! ) « ! >  (arjk  -  l ) a 2

x  fAuA2(au « 2 ) ^ 1  da2

r ° °  —a l + O l  — 1 ^  + Q 2 — 1 ^

Jo , ,

01,02

W1
r(fl)

a8 lda

JW2_
r ( e i ) r ( e 2 ) r  r . - h t - * - 1) ] « ! - '

Jo Jo

—02 l̂+a2 ̂ x22̂ 2 —1̂
fl̂ 2 ^düid(l2

W\ ^1 +  ai^r®*1 ~  l )  +  a 2 ^ 2 i2 -  l )^

+WJ2 ^1 +  Q -l^ i141 ~ 1f j  ^  +  a2 ^ 2 2i2 -  i )^
—#2

( 6.6)

for X\,X2 >  1.

Thus, the joint survival function is a mixture of Model 2 and the product 

of the survival marginals as in (6.4). However, the model in (6.6) produces 

the following univariate survival marginal:

F X i ( x l )  ~  F X i , X 2 ( x l A )

=  W1 ^ l +  a i^ x ,*1 -  1)^  +  W2 ^1 +  a i -  l ) t
(6.7)

and similarly for F x  . This expression differs to that one in (6.4), unless 

0 — 9i. Hence, in order to mantain dimensional coherence, we propose the
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joint density of A  as:

H[ai#a2]> (6.8)

where 0 < w\ <  1, 0 <  w2 <  1, and w1 +  w2 =  1. In this way, the joint survival

In this way, the survival marginals are as in (6.4), since the marginals of (6.8) 

are gamma densities.

Although we have set a unique 8 for the marginals and for the dependence 

structure in model (6.9), the nature of the mixture model has not changed: it 

is a mixture of a tail dependence and an exact tail independence. Even more, 

as we saw in expression (5.3), 8 does not affect the marginal tail.

From now on, we will interpret the expression (6.9), as an average of mod­

els. This is a standard topic in a Bayesian framework, see for example Learner 

(1978) and Raftery et al. (1995). In this type of model, there are two main 

options: treat it as a model selection problem or as a model averaging problem. 

For both methodologies, it is necessary to estimate the weights Wj. However, 

in model selection, only the model with the largest value of weight Wj is se­

lected. In contrast, the model averaging takes into account the uncertainty in

distribution, F* is expressed as:

-e

(6-9)

all the models, so that no model is discarded.
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The methodology that we develop in Section 6.2.3 will allow us to select 

either case. However, we opt to follow the criteria:

• Treat the problem with model selection framework if the aim is to select 

a type of tail dependence.

• Treat the problem with model averaging framework in any other case, 

for example, if the aim is prediction.

It is clear that, if we opt for the model selection framework, the tail depen­

dence structure is either exact tail independence or tail dependence, according 

to the selected model.

For the case of model averaging, we need to extend on the computation of 

the tail dependence structure, which for model (6.9) is shown in the following 

theorem.

T h eorem  6.2.1. Tail dependence structure of F*

Let X i and X 2 be random variables with representation as in (6.3), and 

for which the joint density o f the subvariables A\ and A2 is given by (6.8), i.e. 

X\ and X 2 have (6.9) as joint survival function. Then, the tail dependence 

parameter x> denote for F* as x*, is given by:

X* =  wl 2 - e. (6.10)

We present the proof in Appendix B.8.

This result implies the following tail dependence structure for X\ and X 2'.
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• Exact tail independence if 9 —> oo.

• Exact tail independence if wx =  0.

• Tail dependence in any other case.

The mixture model, seen as model selection, implies a model identifiability 

issue, since:

Therefore, for large 9, both models are equivalent. This is why tail indepen­

dence is achieved when 9 oo or when wx =  0. A practical way to overcome 

this issue is to truncate 9 to a large value, for example 9 € (0,5). In this way, 

wx should be expected to be close to 0 for the independence case. However, we 

choose to keep 9 >  0 to study the theoretical properties of the representation.

For inference purposes, we find it convenient to restructure the marginal 

bivariate survival function as follows:

for Xi,X2 >  1-

Hence, we are fixing the exact tail independent model as the product of 

exact independent marginals when 9 oo.

lim^oo F*Xl x 2 (x u x2) =  wxx l £l x2 £2 +  w2x 1 £l x 2 i2.

F x ux A x i , x2) = w x x ? 2 -  1
( 6. 11)

_ Q i  _ 0 2

+w 2 x x £l x 2

This representation drops the dimensional coherence. However, we do not 

find this feature as critical for inference. The purpose of the introduction of this



representation is the ease of inference. Therefore, expressing the independent 

component without the presence of 6 will facilitate the inference algorithm. 

As well, the exclusion of 0 in the independent component does not result in 

a severe inconvenience, since 6 is only modelling the dependence. Hence, it is 

reasonable to leave only the product of marginal tails in this component.

The correspondent univariate marginal survival function of X\ is given by:

1 +  o j + w 2x l ( l ,

and similarly for F Xi.

Although we are dropping the dimensional coherence of model (6.9), the 

choice of model (6.11) will facilitate the inference.

For the model average choice, we have that the tail dependence is the 

same as in Theorem 6.2.1. This means, if \ is the tail dependence parameter 

associated to the model in (6.11), then:

X — 2_fl- (6.12)

The bivariate marginal model implied by (6.11) will give the motivation for 

the trivariate model: a mixture model of different tail dependence components. 

Thus, we need to define the different types of tail dependence components 

involved in a trivariate analysis.
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Fxi(x) =  F Xl,x2(x i >1)
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6.2.2 Trivariate structure

Motivated by the bivariate mixture model in (6.11), we aim to construct the 

trivariate generalization via a mixture model. First of all, we need to introduce 

some notation.

Define the following latent variables, regarding tail dependence:

• T7, if Fx  has triple exact tail independence.

• DDj'k(6), if Fx  has double tail dependence, and Xj  and Xk are tail 

dependent, for j  ^  k and j, k £ {1,2,3}.

• TD(9),  if Fx  has triple tail dependence.

Therefore, the general trivariate model we propose has the following form:

F x  =  wi F x \t i + w2 F x \ddi,2+w3 F x \dd1,3 +  w4 F x \dd2,3+wsF x \td , (6.13)

with 0 <  Wj <  1, for j  =  1 , . . . ,  5 and Yll=i u’jt =  1.

As in the previous section, we construct a model with dimensional coher­

ence.

The next step is to characterize each of the mixture components in (6.13). 

The first one is the simplest: the model with triple exact independence. The 

joint distribution is the product of the marginals as in the second factor in
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(6.9), as we now write down:

F x\t i {x \,x2, xz) =  P { X i > x i tX 2 >  x2, X 3 > x3 \TI)

The second component to develop is the generic model with double tail 

dependence: DDjtk{9), for j  ^  k, and j , k  £ {1 ,2,3}.  This means Xj  and 

Xk are tail dependent, and X r is exact tail independent. For example, let 

DDi'2(9) be the model to illustrate. Then, motivated by (6.9), the form of 

this component is as follows:

Finally, for the last component in the mixture model, the model with triple 

tail dependence, it is clear that we need to set a common 9 for X\, X 2, and 

X 3. This means:

(6.15)
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Thus, the joint survival of the model with triple dependence is expressed as: 

P x|t d ( t i , x 2 , £3) =  P(Xi  >  X i ,X 2 >  x2, X 3 >  x 3 | TD)

= P  ( bx > -  \ ) a u B 2 > (x t 2 ~  l)^ 2,

B3 >  -  1) ^ 3)

i i ! ? i
-  1) a i >  B2 > ( x ? 2 - 1) 02,

B3 > ( x ? 3 -  l ) a 3 | a i J / a |t d ( ^ l )  03 ) da\ da2 da3

- a  [ 1 + 0 1 + 0 2  ( + a 3 - l ' )
a6 xdar W / o  6

\

^ 1  +  Q i  ^ i £l -  l )  +  Ot2 |x 2 -  l )  + a 3 ( x 3 <3 - €
(6.16)

Suppose the model selection approach is chosen. Then, the asymptotics of 

the triple dependence model are given by:

P (S 1 >  s,S 2 >  s,S 3 > s\TD)  rs 3~es_1, as s -*  00,

where Sj is defined as

Si =  - i
1

(6.17)
\ogFXj\ T D {X j ) '

for j  =  1,2,3. Therefore, from Definition 6.1.4, the tail dependence parameter 

X for the triple dependence model is computed as:

X3\TD =  3-*. (6.18)

X{1,2} | TD =  X{1,3} I TD ~  X{2,3} | TD =  2-9

and
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and

X{[3],[1,2]} | t d  =  l i m ^ o o  P ( S 3 > s\Si>  s,S2 >  S,TD) =

which is the same for X{[2],[i,3]}|rr> and X{[i],[2,3]}|td -

If we combine (6.14), (6.15), and (6.16), we can introduce the trivariate 

model with dimensional coherence, setting x  =  (a:1,x 2,x 3), as:

Fx(x) = w i(l + 2̂:
1Oil1 0)> a2 (x

—L \ \ — 8
2“ - i ) ) ( l  4- a3 (xt '  - 1 ) )

+U>2 1 +  <*i ( z * -  1 )  + q2( x2 -on* + Q3^3ei3 -or
+w3 1 +  »i — 1̂  + a3[' jMi x3 -on* + a2 (x2 2-or
+Wi 1̂1 + a2[x f> — 1̂  +  a3|' »fex3 -oro +  «1 (x ? 1-or
+W5 I, 1 + ap( z p -  l )  + q2(

r 1 
(¿2 — 1̂  + a3^c*  -  0)- 0

\ '  /
(6.19)

VI3VI0234-> for k = 1,. . . ,5 and £ * =1 « ’it =  1.

The model in (6.19) is achieved by the representation in (6.3), with:

fA(ai,02,a3) =  “ h ( f ( ! ) s ) e  (ai+a2+“3) (a i a2 03)® 1

_*"W2 e aa° 1 •̂[al=a2=o] (e “Sq3 *)

+™ 3 ( f ^ p )  e ~ a a 6 ~ l l [ai=„3=a]

+ w* ( y w )  e~a<l6~1 (e -01̂ - 1)

+ W 5  ( j W j )  e  a° 9~ 1 1 [ai=a2= a3=a] •

In order to show the dimensional coherence of model (6.19), we now show the
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form of a bivariate marginal function:

F x u x 2{ x u x 2) =  F ^ { x u x 2 , 1 )

(6.20)

where wt =  w\ +  w$ +  W4. This representation is equivalent to that in (6.9), 

for which we already know it has dimensional coherence.

For the Model Selection approach, the tail dependence structure depends 

on the selection of the model. However, for the Model Averaging approach, 

we present the dependence structure in the following theorem.

T h eorem  6.2.2. Trivariate tail dependence structure

Let X  =  (X\,X2,X f )  be a random vector with joint survival function as in 

(6.19). Then, from Definition 6.1.4 the following holds:

• The tail dependence parameter 3̂ of the model is given by:

xS =  ” 5 3 *. (6-21)

• The pairwise tail dependencies are given by:

*{1,2} ~  +  w&) 2 e, 

*{1,3} =  (u,3 +  w5) 2~6,

X{2,3} =  (u>4 +  ws) 2 'e-

( 6.22)
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• And, finally:

* { [ 1 ] . [ 2 .3 ] }  =

(  ) ( 2 ]
\ w 4 +  w 5 J  \ 3 j

* { [ 2 ] , [ 1 ,3 ] }  =
(  W5  ) ( 2 )\ w 3 +  w 5 J  \ 3 j

* { [ 31, [ 1 ,2 ] }  =
(  W5  ) ( 2 )\ w 2 +  w 5 J  \ 3 J

(6.23)

The proof can be found in Appendix B.9. This theorem gives the following

tail dependence structure for F x :

• F x  has triple tail dependence if 6 <  oo and w$ ^  0.

• F x  has, at most, double tail dependence in any other case.

The trivariate model introduced in (6.19) has advantageous properties. 

From (6.22) we can notice that, although 9 is common to all the individual 

models with tail dependence, the strength of tail dependence varies from pair to 

pair. Other advantages are dimensional coherence and easy of computation of 

the tail dependence parameters for the Model Averaging approach. However, 

the inference methodology of Section 6.2.3 is more convenient to be applied
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with a modified version of (6.19), motivated by (6.11), which is expressed as:

Similarly to what happened to the model (6.11), we drop dimensional co­

herence, and the tail dependence asymptotics are just approximations of those 

of model (6.19). However, we find model (6.19) more convenient for inference 

purposes, although we pay the price of dropping the features of dimensional 

coherence and the ease of tail dependence structure computation for the Model 

Averaging approach.

Therefore, for Fx  defined as in (6.24), we approximate the tail dependence 

parameters with the results in Theorem 6.2.2.

As it occurred with model (6.19), the approximation is motivated by the 

fact that representing any exact independent factor as ^1 +  otj (^c^3 — 1^  ,

or as , should not affect the dependence structure among the variables,

o

(6.24)

with 0 <  Wk <  1, for k =  1 , . . . ,  5 and wk =  1.

for j  e  {1,2 ,3} .

In the next section, we deal with the inference of the trivariate model,
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which will use model (6.24) as basis.

6.2.3 Trivariate Inference

Recall the model in (6.24) is defined by five components or models. We denote 

the models, recalling the latent variables in (6.13), as follows:

• M\ =  Fx \t i -

• M2 = Fx\DDlt2 -

• A/3 =  Fx |ddi,3-

• Jl/4 =  F x |D£>2,3-

• A/5 =  F x \t d -

Define the parameter space of model A/*, as il*,, for k =  1 , . . . ,  5, then define 

the following parameters:

• cj[ =  { « 1,0:2, a3,£1,̂ 21 £3} € ili =  ®+-

• U>2 =  u>3 =  k>4 =  =  { # ,  «1> « 2 ,  « 3 )  Cl) ^2 )^ 3 }  G i l 2 =  M + .

Therefore, il2 =  il3 =  D4 =  il5.

6.2.3.1 G eneral Details o f  R eversible Jum p

The way we are making inference is via the Reversible Jump MCMC method, 

which was described in Section 3.3. A jump from model A/*, to model A/*,-
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depends on the posterior distributions for each model, and the distribution of 

an auxiliary r.v. u, which deals with the change in dimensions from fl*, to il/,.. 

(see expression (3.7)).

For jumps involving only k =  2 , . . . ,  5, there is no change of dimension. 

Therefore, if a jump from model k to model k* is proposed, then:

Wfc* =  Qk,k* (Wfc) =  CJfc,

for k and k* in { 2 , . . . ,  5}.

Although flj has a different dimension, w'e can add 6 to modify the param­

eter space, but not the posterior of A/j, as follows:

u>i =  (wi,0),

and then, we can define the change of dimension similarly to the previous 

cases, i.e.:

wi =  0fc,i(wfc) =  wfc, and u>fc =  gi,k((*>i) =  Wi.

for k =  2 , . . . ,  5. Thus, the modified parameter space of Mi would be Hi =  R7. 

This means:

=  ill — • • • =  T25 =  R7 ,

and then, we define the unique parameter vector as:

cj =  { 0, 01,02, 013,^1,^2,^3}  G ih

Hence, with this modification, the deterministic functions g w  are equal to 

the identity, so there is no need of the auxiliary r.v. to cope with the change
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of parameter space, and:

Vu>fc

If we propose model il/jt* with probability 1/4 for k* =  1 , . . . ,  5, then

Therefore, the jump ratio defined in (3.7) only depends on the ratio of the 

posterior (or log-posterior) distributions.

Recall from Section (3.3) that the Reversible Jump MCMC consists of 

two steps: a jump and a single sample from the model in turn. We use 

the Metropolis-Hastings within Gibbs sampler method to draw samples, as in 

Model 2 (recall Section 3.2.4). Therefore, we need two pieces of information 

for each model: the log-posterior distributions for the jump part and the 

conditional log-posterior distributions for the sampling.

Prior to describing the distributions of each model, we need to establish 

the form of the prior distributions. Similarly to Model 2, in Section 5.6.2, we 

define the priors as independent exponential distributions.

For the M5 case, similarly to the bivariate model (see (5.23)), we have that:

Se +  log(3)'
Then, if we set our initial belief as E [x ]̂ =  0.5, then Se =  log(3).

For the double tail dependent models, we set Se =  log(2), and for the rest

Jk',k =  Jk,k'-

of the parameters, we set the priors as unit exponential distibutions.
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Therefore, the priors are expressed as:

7r(0) =  log(3) exp { -  log(3) 0} , for M5, 

ir(0) =  log(2) exp { -  log(2) 0} , for M2, M3, M4,

7r(0) =  1, for Mi, 

and for any model:

7r(ar) =  e x p { - a r} ,

7r(̂ r) =  e x p {—£r} ,

for r =  1,2,3.

Before moving to the characterization of each model, we need to discuss an 

important issue of model (6.24), which we addressed in the previous section. 

We know from Model 2 that:

limg-yoo Mk =  Mi,

for k =  2 , . . .  ,4. As well, it can be easily verified from Part 1 of the proof in 

Appendix B.6, that

lim9 -* o o

=  X
( a

^1 +  Qi (z j*1 -  l )  +  a 2( x 2i2 -  l )  +  03(^ 3̂  -
-e

Ol 02 03
£ l  ~  <2 .  £3X0 Xri

Therefore:

lim^oo M5 =  Mi.

Hence, model (6.24) has an identification issue when the variables are exact 

independent. This fact is not a problem when the inference approach is model 

averaging (on which we will extend later). However, when the model selection
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approach is selected, there is a strong equivalence between a tail dependence 

model with a large 0 and model il/j. We will deal with this issue further to 

make it clear, after we have exposed the inference.

6.2.3.2 Data Characterization for Trivariate Model

Recall from Section 5.5 that we are interested in positive variables, let them 

be X i , X £, and X 3, and that there are two different objectives in inference: 

tail dependence determination and prediction.

Similarly to Section 5.5, we divide R 3 in the following regions:

i =  l[*i>ux .],3 =  >«!*.]»k =  > (6-25)

for ux; ,  ux* and ux-,  positive high thresholds of X f ,  X£, and X 3, respectively. 

Then we only consider data in the region {i?ooo}c and consider, as well, the 

following transformations:

X ! =  X {  +  1, X 2 =  X* +  1, and X 3 =  X 3* +  1, (6.26)

for ( X i .X J .X J )  € { ( 0,uxr) , ( 0, Ux| ),(0,i/A-3* ) }C-

Therefore, the division of R 3 for the transformed variables is:

i =  l[Xl>UXj]5J l[A’2>UX2h ^ ■̂[-̂ 3>“X3)^ > (6.27)

for uXl =  uxi  +  1 , u X2 =  +  1 and uXa =  ux - +  1.

We model the vector (Xi,  X 2, X 3) with the mixture model in (6.24). As 

we have already stated, there are two options to deal with a mixture model:
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assume only one model is correct and treat the problem as model selection or 

recognise an uncertainty spread over different models, which is the target of 

the model averaging approach.

Consider the sample D of size n of model (6.24), such that:

D  =  {(ii.j, x2,i, x3li), i =  1 , . . . ,  n } ,

and let uJ] be the subset: aJJ =  u>\ {w,-}, for ujj £ u>.

Similarly to Section 5.5, we need to truncate every model, since we are 

ignoring the region Rooo- Define u =  (ux1,u x2,uX3), then the density of the 

non-censored trivariate Model j  is as follows:

/ M.(x|u>) = / a / j ( X )  ^ [ x i > U X j ,X 2 > U X 2 ’ x 3 > u X 3 (6.28)

for f l j . ,  the density of trivariate model j  of the mixture model (6.24) and for 

its trivariate joint distribution, for j  =  1 , . . . ,  5.

In order to compute the denominator in (6.28), we use the following relation 

for any trivariate joint function:

1 -  Fx =  F x i +  F x2 +  F x3 -  FXux 2 ~  F x ux 3 ~  F x 2,x3 +  F\ , (6.29)

where Fx} is the univariate marginal survival function of Xj, and Fxjtxk, is 

the marginal bivariate survival function of X j and X^, for j  and k in {1 ,2 ,3 }. 

Trivariate M l .  T I.

For the triple independent model, we know that the trivariate joint distri­
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bution satisfies the following:

Qj Q2 e»a _£l Q2 03
1 -  FMl ( u ) =  u * £l +  ux l2 +  u/33 -  ux l l ux <2 -  ux \l ux l 3 -  ux *2 ux l3

a ^

+uxll Uxl3 uxl3 •

Therefore, the joint density function for the triple independent model is:

- t e + o  - t e + o  - ( t f +i)
( c * i a 2a:3 \  X 2  V£2

Therefore, the log-posterior is the following: 

lp(<*\D, M i) =  nlog -  §  Er=i loga:i,i -  §  E "=i loS +  F a/,

- f f  E r= i  log * 3.4 -  n log(l -  F A/l(u )) +  logTTA/.iw),

where F a/j is the logarithm of the normalizing constant of the posterior dis­

tribution.

Hence, the conditional log-posterior distributions are as follows:

ip(ai|D ,A /i,or) =  n loga i -  £ " =1 ~  n lo g (1 “  Fa/ , (u))

—aj -I- K an

/p(a2|D ,A /i,a2) =  n lo g a 2 -  ( f^ )  E?=i log2*,« -  n log (1 -  FA/l(u)) 

—a 2 +  K Q2,

/p (o3|D ,il/i,a j) =  n lo g a 3 — E"=i log *3.» ~  n log (1 -  FA/,(u ))

0̂ 3 -^a3i

Zp(fi|D ,A /!,6) =  - n l o g 6  -  ( f f )  “ n log (1 - F A/l(u))

—£1 +  1,
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M 6 lD > » & )  =  - n lo g k  -  E " = i  l°g^2,i -  n log(l -  FMl(u )) 

—̂ 2 +  K& ,

W6|D, A/i,6) = ~n log£3 — ( § )  Er=i1°g ;r3,i - n  log (l -  FMl(u))

—£3 +  -̂ Q3»
where the K Uj term represents the logarithm of the normalizing factor of the 

conditional posterior of uy  

Trivariate M 2 .  D Di# .

For the double dependent model M2, the joint distribution holds the fol­

lowing:
_£3 £3

ux 3

. *3

1 -  Fa/ »  =  ^1 +  ai -  +  ^1 +  a2 (u%2 -  -I- u

~ ( l  +  ai (u e£  -  l )  +  a 2 (u jg  -  l ) )

-  ( l  +  a j ( u $  -  l ) )  ' u ~ f  -  ( l  +  a 2( u f  -  l ) )  ux

+  ^1 +  a l ( « J l “  l )  +  a2 («X 2 “  0 )

Hence, the joint density function in this case is as follows:

- f f - 1 sir- 1» - 1
f  /■jrlft'l — (  (0+1)alQ2°3'\ X3 X1 __?____
/ "> (X|“ ) -  V  « « . « .  J 1 -  Flh (u)

x f l  +  a , ( ? ! ' '  -  l )  +  « 2(^2“  -  1)^

Then, the log-posterior is expressed as:

(3

- 6 - 2

l p (u \ D ,M 2) n l°g ( i t f i f )  +  nlog ( W  "  t  £ " = 1loS*3,.

+ «h  E"=i +  4  £ "=  1

-(«  +  2 ) E r .1  log  ( 1  +  O . ( 4  -  l )  +  a ,(xt; -  l ) )

- n  log(l -  F A/2 ( u ) )  +  log 7̂ /2»  +  F a/2,
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where K m2 is the logarithm of the normalizing constant of the posterior dis­

tribution.

If we define:

S2(u>) =  (6 +  2 )^ 2  loS ( t  +  « i  (< V  -  l )  +  «2 (xg ?  -  i ) ^  .

Then, the conditional log-posterior distributions are as follows:

lp(9\D, M2,6) =  nlog (^±i) +  ^  E " =  i iog^u  +  ^  E t"=i log * 2,i 

—S2(u)) -  n log( 1 -  FMi(u)) -  log(2) 6 +  K 0, 

lp(ai\B,M 2,cn) =  n loga i -  Qj -  S2(u>) - n  log(l -  FA/2(u)) +  K Ql,

lp(a2\D, M2,a i)  =  n\oga2 -  a 2 -  S2(w) -  n log(l -  FAh(u)) +  K a2, 

lp(a3\D,M2,a i)  =  n lo g a 3 -  ^  E ’LjlagZs.i -  <*3 

- n  log( 1 -  Ta/2(u)) +  K Q3,

Zp(£i|D,J\/2,£i) =  - n l o g ^  - 6  +  ^ E r = i log ^ - ^ M  

- n  log(l -  FA/2(u)) -I- K (l ,

lp{&|D, M 2 , 6 )  =  - n l o g &  -  6  +  E " = i  logx2ti -  S2(uj)
- n  log(l -  FA/2(u)) +  K (2,

lp(£t|D , M2,&)  =  - n lo g & -  £"=1 i°g •̂ •3,1 -  6
- n  log(l -  Fa/2(u )) +  /vi3,

where the K Uj term represents the logarithm of the normalizing factor of the 

conditional posterior of ujj.

The results of M 3(.DDij3) and MA(DD2>z) are similar to those showed in 

this section. Therefore, me move ahead to model il/5.
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Tri variate M 5 .  TD.

The joint distribution of il/5 satisfies the following: 

3 ✓  , _j_ s\ - b
(  Oil M  1

■Oti

n 1 + '

~ ( i  +  >

-e

- 9

- 9

1 -  Fm5 (u ) =  Y l [ 1 +  ai ( US  ”  X)  )

“  ( l  +  «! (“X1 ~ l)  +  «2 (u£2 -  l)^

« l ( US  ~ 1) +  Q^(ux !  - 1 ) )

°2 (u£a - l )  +tt3(«jg - l ) )

+  ( l  +  <*1 («Xi -  l)  +  «2 («** -  l)  +  «3 (u£3 -  l ) )  •

Then, the last joint density we present is as follows:

/ \/  /„I, .N _ / (e+2)(0+l)aio2O3 \ X1; Mb(x |w j -  ^ — j — -
-j__i .A__ i _i__i

. » i l  » «2  »«3JL 2
■fA/s(u )

x ^1 +  c*! -  l )  +  a2 ( x ? 2 -  l )  +  a3

Therefore, the log-posterior goes as follows:

- 9 - 3

lp(u>\D,M5) =  nlog ( " ^ y 2»)  +log7rA/5(u;) +  ^ 7X]r=ilog ;ri,«

+ 5̂  E I U  lo g ^ 2,< +  g£ E I 4  l°g*3.i ~  (^ +  3) x

E r= ij°g ( i + -  i ) + « 2( 4 ?  - 1) + 03( 4 ?  - 1) )

—nlog (l -  FA/5(u)) +  K m5,

where K\jb is the logarithm of the normalizing constant of the posterior dis­

tribution.

If we define:
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Then, the conditional log-posterior distributions are expressed as:

lp(6\B, Ah, 6) =  nlog ( (<m^ +2))  +  K e -  log(3) 9 +  4  E "=i log*M

+ 4  Y .U  lo§ x2,i +  4  £ ”=i lo§ ̂ 3,i 

—nlog (l -  Fa/5(u)) -  S(u>),

lp(ai\D ,A h,ai) =  n logoi -  Qi - n l o g ( l  -  FA/5(u)) +  K Ql -  S(u>), 

/p (o2|D, Jl/5,a j)  =  n log a2 — a 2 — n log(l -  FA/5(u)) +  K Q2 -S (u> ), 

lp(az\D,Ah,ch) =  n loga3 -  a3 -  n log(l -  FA/s(u)) +  F Q3 -F (u ;) ,

¿p(£i|D, A15,H ) =  - n l o g ^  +  +  4  E«"=i logrci.i

—nlog (l -  FA/s(u)) -  S{u)),

ip(&|D, A h ,6 ) =  -  n lo g b  ~  6  +  F i2 +  4  E IU  logx2,i

—nlog (l -  FA/5(u)) -  S{u)),

Ah,Is) =  - « l o g 6  ~  6  +  %  +  4  E?=i 

-n lo g ( l  -  FA/5(u)) -  S(u>),

where the K Uj term represents the logarithm of the normalizing factor of the 

conditional posterior of Uj.

Although we are not analyzing the censored case, we note that the censoring 

becomes more cumbersome as the dimension increases, since the likelihood

splits into more combinations of partial derivatives of the joint model, as in 

(5.19).
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6.2.3.3 Reversible Jump MCMC

The aim of the Reversible Jump MCMC depends on the objective of the anal­

ysis: in the case the asymptotic dependence determination is required, then, 

it is necessary to sample from and {wk,T}\=v  In the case of prediction, the 

algorithm is quite similar, except for the fact that a sample of X  is drawn on 

each step, regardless whether the proposed jump is accepted or not.

The sampling for X  at step k(t) is as follows:

• If k(t) =  1, sample a uniform Uj. Then

(j(t)

*/(o = «7 ’ <6-30)

for j  =  1,2,3.

• If k(t) =  2, sample A  from Gamma(6(t), 1), Bj from Exp(otj(t)), and a 

uniform u. Then

_iaio
X f( t )  =  (1 +  Bj/A)e{m3it) and X 3s (i) =  Uj

for j  =  1, 2.

• If k(t) =  5, sample A  from Gamma(8(t), 1) and Bj from exp(a j(t)).Then

X f( t )  =  (l  +  Bj / A f t m \

for j  =  1,2,3.

The cases where k(t) =  3 and k(t) =  4 are similar to k(t) =  2.
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In any of the individual models, we sample X (f) until X(£) £ {/2ooo}c- 

In this way, X 5 forms a sample of the predictive distribution of X . In 

the prediction approach, although the algorithm returns a sample of uj and 

{u ’t}ic=i, they are n°t the crucial information.

For the model selection approach, the most relevant information is in 

{w k)l=v The iterations in the RJ are continued until the processes 

stabilize. Assume the stabilization is achieved at t =  T. Then, all the neces­

sary information is contained in both {w k}5k=1 and ujs =  {u>f, . . . ,  u jj}.

Finally, we close the discussion of the trivariate model with some simulation 

cases.

6.2.4 Trivariate Simulation

We made two simulation cases. The objective of the first case is to study the 

Model Selection approach. Therefore, we draw observations of the trivariate 

model, and then we are interested in how the Reversible Jump recognizes the 

dependence structure for which the data are simulated. The analysis will focus 

on the estimation of and of 0.

For the second case, we are interested in the implementation of the Model 

Averaging approach. Similarly to Section 5.6.3 we draw simulations from a 

multivariate copula of GPD variables. The objective of this simulation is the 

prediction of the variables in the tails.
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6.2.4.1 Simulations for Model Selection

We simulate observations for each model similarly to the simulations in Section 

5.6.2. We simulate X\, X 2, and X 3 in { (0 ,1 )}C, i.e., we are setting uxt =  ux2 =  

Ux3 =  1 in the region (6.27).

Regarding the number of observations, the data is divided into small sam­

ple: n =  70, medium sample: n =  150, and large sample: n =  300 (except for 

the Mi case, where a large sample is not needed). Regarding the heaviness of 

the tails, we proceed as in Model 2 in Section 5.6.3: a block of heavy-tailed 

and another of light-tailed models.

As the scale parameters do not have a great importance in the tail depen­

dence structure, we fix them to 0.5, which means:

a  1 =  «2 =  <23 =  0.5.

For the marginal shape parameters, we proceed as follows:

• For heavy-tailed models: =  2, £2 =  3, and £3 =  2.5.

• For light-tailed models: £1 =  0.1, £2 =  0.2, and £3 =  0.15.

Regarding the priors, we fix the hyperparameters to 1, i.e.:

=  1, for all ujj Gw.

The sizes of the sampling for the Reversible Jump are set up to 105, until a 

level which was appropriate to assume that the processes {u'fc}̂ .=1 were stable. 

We plot in Figure D .8 two processes to show how they stabilize.
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In Table C.4 we present the results when simulating from model Mi, i.e. 

we draw simulations of independent Paretos, as in (6.30). We can appreciate 

that practically most of the times, the jumping process stays in M x.

The next case we want to expose is the model with triple dependence, i.e. 

il/5. We draw the samples via the representation in (6.3). In Table C.7 we 

present the results. For the small size sample, the method estimates accurately 

u?5, except when 9 >  3 and when 8 >  4 in light-tailed and heavy-tailed models, 

respectively. For the medium size sample, the difficulties arise when 9 >  4 and 

when 9 >  4.5 in light-tailed and heavy-tailed models, respectively. We can see 

that the inaccuracies are due to the lack of data. We drew a large sample with 

n =  300 to illustrate this idea. We present the results in Table C.8. We can 

see that the difficulties arise, in both cases, only when 9 > 7 .

Finally, to represent the models with double dependence, we simulate ob­

servations from M2. The way to do so is by simulating X\ and X 2 as in Model 

2 (see Section 5.6.3), and X 3, an independent Pareto, as in M\. The results 

for the small and medium size samples are showed in Table C.10. We can 

appreciate that the methodology can distinguish accurately the model il/2 for 

X >  0.13, i.e., for 9 <  3 in heavy tails and 9 <  3, for light-tails. For the 

medium size sample, the accuracy extends to 9 <  3.5, in both heavy and light 

tails. As a last step, we present the results of a large sample, n =  300, in Table 

C.9. We can notice that the accuracy is acceptable for 8 <  5, for both heavy 

and light tails.
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We highlighted the cases where the identification presents some difficulties. 

However, as it can be seen in the figures, the difficulties appear when the value 

of 6 is considerably large. Therefore, from the discussion of the identifiability 

of Sections 6.2.3.1 and 5.6, the results are in accordance with what we expect.

6.2.4.2 Simulations for Model Averaging

The simulations for Modeling Averaging are similar to those in Section 5.6.3, 

since we are not simulating from the trivariate model. We are aiming to fit the 

trivariate model to the region {/?ooo}c (recall (6.25)) for different dependence 

structures.

For all the cases, the marginal distributions are GPD’s with the following 

notation:

• Light tails: k\ =  0.1, k2 =  0.15, and k3 =  0.125,

• Heavy tails: k\ =  1, k2 =  1.5, and k3 =  1.25,

with /S =  1 for all of them (see (2.5) for the GPD representation).

In terms of joint structure, we simulated from four cases, which will be 

explained later:

• Triple medium tail dependence.

• Triple high tail dependence.

• Exact Independence.
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• Double medium tail dependence.

We simulate 1500 observations in R+. Then, only the observations in 

{ / W c are taken into account. The threshold ux- is selected as the 0.95 

quantile of XJ, for j  =  1,2,3. Then, selected data is transformed via (6.26), 

this means, if the selected variables are X*, X 2, and X 3, then, the transformed 

variables X i, X 2, and X 3 are:

Therefore, the trivariate model (6.24) is fitted to X\, X 2, and X 3.

Recall the aim of Model Averaging approach is the prediction. Therefore, 

opposite to the previous simulation cases, we are not interested in estimating 

the parameters. The inference methodology followed is the one described in 

Section 6.2.3.3, where we asserted the crucial information of this approach 

consists in X s , the prediction sampling.

We use graphic tools to study how the prediction methodology works.

Recall the definition in (2.26), where for 0 < u <  1:

where the inverse marginal distributions and the joint probability are estimated 

by its empirical versions.

In a similar way, we can define, for 0 <  u <  1:

X j =  X Î +  1, X 2 =  X 2* +  1 , and X 3 =  X 3* +  1 ,

x(u) =  2 -
logP (Xi <  F ^ ( u ) , X i  <  F £ (u ) )

log «

X 3 ( « )  =  2 -
lo g P (X i  < F £ ( u ) , X 2 <  F £ (u ) , X 3 <  F £ » )

log u
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and we estimate it with the empirical distributions, as with x(u).

Therefore, the graphic tools we use are the following:

• Bivariate marginal scatter plots: prediction sampling vs data.

• Sampling x iu) vs data x (u)-

• Sampling X3(u) vs data X3(u)> where applicable.

Simulations for triple medium tail dependence

For the first case, we simulate X i, X 2, and X 3 from a Clayton copula 

with 4> =  2 (recall 5.12), and with light GPD marginals. This model implies 

X3 =  1/3, and x  =  0-5, for any pair.

We present in the first line of Figure D.9 the scatter plots for the three 

different pairs in log-scale, whereas in the bottom line, the predictive sam­

pling is shown for each case. The thresholds are not as noticeable as in the 

bivariate case (see Figure D.6), since there are observations which are below 

the thresholds for the two variables in the graph, but above the threshold of 

the third variable. The predictive samplings give a similar behavior as the 

data. In fact, the three predictive samplings give a characteristic behavior of 

medium tail dependent variables.

On the upper line of Figure D.10 we show the graphics of the empirical 

x(u) for two different pairs of the variables, and the empirical X3(u)- In the 

bottom line we present the same graphics for the predictive sampling. The 

three bottom plots look like a smooth version of the empirical graphics for
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medium and large values of u, which suggests a good fit of the bivariate and 

trivariate tail dependence. Even more, these graphics show a considerable 

accurate estimation of the theoretical values of \ and X3, through the graphical 

method.

Simulations for triple high tail dependence

For the triple high tail dependence case, we simulate X\, X 2, and from 

a Clayton copula with (f) =  6 and with light GPD marginals. This model 

implies \3 =  0.802, and x  =  0.871, for any pair.

The first line of Figure D .ll  shows the scatter plots in log-scale for the pairs 

(X\, X 2) and (X i, X 3), whereas in the bottom line the predictive sampling is 

shown for each case. The predictive samplings show the strong pair relation 

of data.

The upper line of Figure D.12 show's the graphics of the empirical x (u) 

for two different pairs of the variables, and the empirical Xsi11)- The bottom 

line presents the same graphics for the predictive sampling. The three bottom 

plots do not look as smooth as those in the medium tail dependence case. 

However, they look as a smoother version of the empirical graphics. As well, 

the estimated value of Xz suggested by the graphic is considerably accurate, 

whereas the estimation of x  is overestimated, but in accordance with high tail 

dependence.

Simulations for exact independence

In this case wre simulated independently X\, X 2, and X 3 from light GPD’s.
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The first line of Figure D.13 shows the scatter plots in log-scale for the 

pairs (X \ ,X 2) and (X i ,X 3), whereas the second line the predictive sampling 

is shown for each case. The predictive samplings show the same independent 

relation in the tails as the data.

The third line of Figure D.13 showrs the graphics of the empirical \{u) for 

two different pairs of the variables. The bottom line presents the same graphics 

for the predictive sampling. The bottom plots seem to be a smooth version of 

the empirical graphics. The important part is that they do not show any tail 

dependence.

Simulations for double medium tail dependence

For the triple high tail dependence case, we simulate X i and X 2 from 

a Clayton copula with =  2, and with light GPD marginals, whereas X 3 

is simulated independently from a GPD with light tail. This model implies 

X =  0.5 for X i and X 2.

The first line of Figure D.14 shows the scatter plots in log-scale for the pairs 

(X i ,X 2) and (X i, X 3), whereas in the second line the predictive sampling is 

shown for each case. The predictive samplings show the same association in 

tails as the data: for the pair (X j, X 2) there exists a strong relation in the 

tails, whereas for the pair (X i, A 3), there is no evident association.

The third line of Figure D.14 shows the graphics of the empirical \(u) for 

the pairs (X i ,X 2) and (X i, A 3). The bottom line presents the same graphics 

for the predictive sampling. The bottom plots seem to be a smooth version of
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the empirical graphics. For the pair (X i ,X 2), the graphic shows a tail depen­

dence with x  close to 0.5, whereas for the pair (X i , X 3), it shows independence.

Once we have shown the main features of the trivariate mixture model, wre 

can set the multivariate generalization.

6.3 Multivariate Model

The generalization to the multivariate setting is quite straightforward, after 

the introduction of the trivariate model.

Let X  =  ( X j , . . . ,  Xd) be a vector of r.v. in { ( 1, oo)d}.

We define latent variables that determine multivariate models with different 

tail dependence as follows:

• T I, if Fx has d-tuple tail independence.

• if Fx has Jl/-tuple tail dependence, and ( X j . , , . . .  , X j . Af) 

are d-dimensional tail dependent, for { j * i , . . .  ,j*m }  € { l , . . . , d } ,  2 <  

M  <  d.

For example, 2D3 i(6) is the model with double tail dependence between the 

variables (X 3,X 4).

We propose the following model averaging:

d dFx = u’i Fx| tv + E E u’s(fci.fc2.2)Fx|2Dfcl,t2 +••• +
fe2 = l hl=k'2~̂ -\ 

d d dE E -  E Wg(k1,...,kIii,M)F X\MDkl ,
Icm= 1 kkf  _ i = A : a / + 1 f c i = < C 2 + l

(6.31)
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where g(k\,. . .  ,k v , M ) : NAi+1 —> N, enumerates the weights, and 0 < Wj <  1, 

for j  =  1, . . . ,  dr and Yl%i wj ~  where:

for d >  2, is the total number of individual models.

Similarly to the marginal bivariate and the trivariate models introduced 

in (6.6) and (6.19), respectively, we construct a model with dimensional co­

herence. Therefore, as a first attempt of a multivariate model, we propose 

the following parametric form for each individual model in (6.31), for x  =

e i i r 7 ( * ) = n i i + a . i ( * r i' - 1) )  • <c -33>
j = i v '

F*x\MDkl...kJ x )  =  ( i  +  ttfc, - ! ) + • • •  +  ( xImM -  x) )

ju»Kd-M , __
x Y l  - 1

i=K V
(6.34)

where {A-j,. . . ,  k^_M}  is the complement of {A:l5. . . ,  km}.

We define F x  with components represented by (6.33) and (6.34), as the 

multivariate mixture model with marginal coherence. We show the marginal 

coherence as follows:

Suppose we marginalize F x  with respect to for i € { 1, . . .  ,d }. Define 

z =  ( x i , . . . ,  Xi =  1 , . . . ,  id). Then the previous components are expressed as:
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For each of the rest of the components, we have two options:

• if * € *3-W} :

7 x\ MDkl...(z) =  ( i  +  <*** (z*?1 - ! ) + • ■ •  +  ( C M - 1) )

kd-M , 1 \ —0

* II  ( 1 + ^ ( 2/ ij - 1)) ;

• if * € {fci , . . . ,  k\f}, say i =  k{, then:

kd-M /  __ i_ \ -B

x  f l  ( l  +  a^Zj -  1)J .
j=A;J

These components are identical as those in (6.31), but with one dimension 

less. For example, the second factor of (6.31) would be expressed as:

d d
^ 2  E  u’ff(fci.fc2,2)^X|2D*1>2(z),

&2 — k\=*k2 + l,ki î

which has (^ j1) components.

Hence, the marginal model has a total of 2+ i f°r d >  2. Therefore,

there exists marginal coherence in model (6.31).

T h eorem  6.3.1. Multivariate tail dependence structure

Let X  =  ( A j , . . . ,  Xd) be a random vector with joint survival function as 

in (6.31) with individual components as in (6.33) and (6.34).

Then, from Definition 6.1.4 Ike following holds:
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• The tail dependence parameter X3 o f the model is given by:

X*3 =  wdd e,

where wd is the weight of the d— tuple model component.

• The pairwise tail dependence for the pair {/, j }  is given by:

Ti.j

X {t j }= ^ (6.35)

where /3(i,j,M) : N2 x —> N enumerates the weights where

neither Xi nor Xj are exactly independent, and where:

for d >  3.

We show in Appendix B.10 the proof of the theorem.

Similarly to the bivariate and trivariate mixture models, we introduce a 

helpful modification of the multivariate mixture model with marginal coher­

ence. This modification has the same representation as that in (6.31), but the 

individual components are represented as follows:

Tjj — 1 +  (d — 2) +

d

+  • • • +  Qks,

(6.36)
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where {k { , . . . ,  k*d_M} is the complement of {A~i, . . . ,  A^/}.

In this way, it is clear that this modification drops the marginal coherence. 

However, as we saw in the trivariate mixture model, the inference methodology 

is simplified if we express an independent model as a Pareto distribution.

The parameter space can be defined, similarly to the procedure in Section 

6.2.3, as:

u) =  {8 ,a i , . . .  • • • i£d} € SI =  R+d+1.

Notice that we are adding the parameter 8 to the exact independent case, 

although it is not used in the individual model. Similarly to the trivariate 

model, the unification of parameter spaces will be useful when applying the 

Reversible Jump methodology.

The prior distributions are set as independent exponential with hyperpa­

rameters Sjjk, for ujk £ uj.

As in the trivariate case, the tail dependence structure is the same as the 

dimensional coherence model in Theorem 6.3.1.

The next step is to select either model averaging or model selection as the 

best way to approach the problem.

Define the variable in study as X* =  ( X f , . . . , X d). We transform the 

variables, similarly to (6.26), as X j =  X* -f 1. Therefore, the mixture model 

is applied to the region:

{ ( ! , « * , )  x . . .  x ( l , « x d) } c ,
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where u\j =  ux* +  1, and where w** is a positive high thresholds of X*, for 

j  =

Finally, define the transformed data D  of size n as 

D =  { ( x i , i , . . . , x d<i) ,i  =

Hence, we can reexpress the multivariate mixture model as:

F x  =  w\ F +  . . .  +  WdT F\[dr,

or, in terms of the posterior distribution:

Px(w) =  u>i P M  D, M x) +  . . .  +  wdT p(u>| D, MdT),

where p(u>| D, Ah) is the posterior distribution of individual model Ah-, given 

the data D, for k =  1 , . . . ,  dr-

It is important to notice that the density function of each model must be 

truncated individually as shown in Sections 5.5 and 6.2.3.2.

Then, the Reversible Jump methodology is applied: drawing samples of u> 

and of {w i , . . . ,  wdr}  for the model selection approach or sampling X  for the 

prediction or model averaging approach.

Finally, we need to discuss the extension of the multivariate model. This 

model is formed by a mixture of individual models which split the variables 

into two groups with respect to 9: a group with tail dependence measured by 

0 and an exact independent group. Therefore, these individual models cannot 

recover a dependence structure of more than two groups of dependence. For
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example, in the 4-dimensional case, if X\ and X 2 are medium tail dependent 

and X 3 and Xu are high tail dependent, then, the individual models (except 

for the exact independent one) can only give one tail dependence structure, 

measured by 6. In this sense, the model selection is not able to recover this 

structure.

However, the model averaging approach is flexible enough to give different 

tail dependencies to different pairs, as we saw in Theorems 6.2.2 and 6.3.1. 

Recall we interepret model averaging as the lack of certainty on which model 

is the correct one. In this way, we were spreading the uncertainty among 

different models. This spreading translates into flexibility of the model in the 

tail dependence structure: the tail dependence does not depend only on 6.

Nevertheless, we need to stress that the objective of the model averaging 

approach is the prediction, and as such, the computation of the tail dependence 

parameters is not crucial on the analysis.

6.4 Our Multivariate Model and Literature

It is worth to discuss the works of Coles and Pauli (2002) and Apputhurai 

and Stephenson (2011), since they have some similarities with our Bayesian 

framework.

Coles and Pauli introduced a Bayesian model that includes both asymptotic 

dependence and independence. The model is constructed via the product of 

two bivariate survivor functions 5 j and ¿>2, with uniform marginal distributions
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as follows:

S{ui,u2) =  {Si{uu u2)))q (S2{ui,u2)))l~g , 

for 0 <  u\,u2 <  1.

If we define x  =  lhnu_>i > and similarly for xi and X2, then the tail 

dependence of the model would be given by:

q l—o
X =  X1X2 •

Define, as well

X =  limu_>i
2 log(l — u)
log S{u,u) ’

and similarly for x x and X2- Then, if Si is chosen asymptotically dependent 

and S2, asymptotically independent (meaning that Xi =  1. and X 2 =  0 ) ,  then 

X  =  0 ,  i.e., the model S is asymptotically independent, with

q +  ( 2 - q ) \ 2 
2 - 9  +  QX2 ’

unless q =  1, for which case, S is asymptotically dependent with x =  Xi- 

Coles and Pauli (2002) chose S\ and S2 as follows:

SxiuuUi) =  ((1 -  +  (1 -  U2 )1-* -  l ) 1̂  , k >  1,

S2{u i,u2) =  (1 -  « i ) ( l  -  u2).

Then, the estimation of the parameter q determines the tail dependence struc­

ture. This estimation is carried out via the Bayesian framework and MCMC 

methodology. Finally, they propose the following generalization:

s ( u ) =  m i - « > ) « “ - * > + 1 —d )
\j=i /  j =1
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for u =  (u i,. . .  ,Ud), and 0 <  u i,...,U d  <  1. Thus, the pair i and j  are 

asymptotically dependent only when qj =  1, Vj. And, if that is the case 

and the pair i and m are as well asymptotically dependent, then it follows 

immediately that j  and m are asymptotically dependent. This is not the case 

for our model in (6.31), since the weights of the factors involving the i , j  and 

m  elements can be 0, except for the following factors:

^1 +  a ,(x-u -  1 j  +  Q j -  l)^  and

^1 +  Qi ( x te(i -  l )  +  ai ( Xmm -  l ) ^  •

We believe that the only similarity with our framework worth to discuss deeply 

is that of the bivariate case. Coles and Pauli (2002) managed to represent 

both asymptotically dependence and independence in one single model, via 

a parameter q that determines either form of tail dependence. The resulting 

model is the product of a tail dependent model (a Clayton one, which we know 

has a connection with our model, see Section 5.4) and a complete independent 

model, both of them to the q-th powrer. However, Coles and Pauli do not study 

the relation between the parameters q and k, which (as we know, since it is 

related to our parameter 8) determines as well the dependence structure.

Therefore, the option of representing both asymptotic dependences in one 

model is tempting. However, it involves the introduction of one more pa­

rameter which must be done more carefully, because of its relation with the 

parameter k (or, in our case, 9). In the case of our bivariate model, for ex­

ample, the case where 8 -*  oo (exact independence), and q =  1 cannot occur
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simultaneously.

Hence, we opt to keep the dependence structure in one single parameter, 

with the consequence of representing asymptotic independence only by the 

complete tail independence.

On the other hand, Apputhurai and Stephenson (2011) introduced a model 

averaging framework for the bivariate case. Apputhurai and Stephenson se­

lected an asymptotically dependent and two asymptotically independent mod­

els to average. The Reversible Jump methodology is followed for inference in 

a Bayesian framework.

A natural suggestion of the work of Apputhurai and Stephenson (2011) 

is to introduce an asymptotically independent model in our model averag­

ing. However, introducing any asymptotic independent model would break 

the representation in (5.1) or (6.3), which are the basis of the construction of 

our model. Therefore, we opt to keep the dependence structure only on the 

parameter 6.

6.5 Discussion of Multivariate Framework

In this section, we have presented the generalization of the bivariate model in 

(5.6). The resulting model is an averaging of models of variables represented 

via the common variable method, as in the bivariate case (see the expression 

(5.1), for example). The model is expressed in equation (6.31).

There are two ways to proceed under this model: the model selection and



Chapter 6. The Multivariate Model 175

the model averaging.

In the model selection approach, only one model is chosen, and this will 

determine the whole dependence structure. In the model averaging approach, 

prediction is the main objective of analysis. The main difference with the 

model selection is that the determination of the correct model is not crucial. 

Instead, we let all the combinations of different types of tail dependence to 

contribute to the joint probability.

We showed as well, that the Reversible Jump within a Bayesian framework 

is a reasonably accurate methodology to estimate the parameters and the 

weights. Therefore, we can proceed to real data applications.
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Illustrations

In this section we present real financial data analyses. In Section 7.1, we 

describe the data we are analyzing. We did two different types of analysis: the 

tail dependence determination analysis and the portfolio loss analysis.

The tail dependence determination analysis divides into two parts: a bi­

variate analysis presented in Section 7.2, and a trivariate analysis, presented 

in Section 7.2.2.

The portfolio analysis constitutes an application of prediction analysis. 

This analysis is presented in Section 7.3.

Finally, we close with the conclusions of the illustrations in 7.4.

7.1 Data Description

We carried out a financial data analysis similar as that used in Poon et al. 

(2004). The data consisted of daily return levels of five equity indices: French

176
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CAC 40, German DAX, Japanese Nikkei 225, English FTSE 100, and US S&P 

500. All of them run from April, 1993 until July, 2003.1 The total number of 

observations is 2665. We plot in Figure D.15 an example of a series (CAC 40).

As in Poon et al. (2004), we took the previous day return for the S&P 500 

observations, since the US market is the last one to close and any change on 

it will be more likely to influence on the very next day. In accordance with 

the work in Poon et al. (2004), wre also applied the GJR-GARCH filter (see 

Glosten et al. (1993) for the explanation of it) in order to get rid of any high 

volatility clustering. Although we found that the application of this filter did 

not make a huge difference on the marginal tail behavior, we worked with the 

filtered data. In Figure D.16 we present the filtered and unfiltered data for 

the CAC 40 case.

In Section 2.1.3.1, we suggested the 0.96 quantile as a threshold for every 

variable. In Figure D.17, we presented the threshold selection tools for some 

of the indices.

Recall the threshold selection methods used the GPD as a univariate tail 

model. We assume this threshold sets a point where the extreme observations 

begin, rather than where a GPD must be fitted. In this sense, we use the same 

threshold selection, although the marginals are not GPD. In fact, we fix the 

threshold on the 0.95 quantile, to set it to the closest pragmatic value.

lrrhey can be downloaded from MATLAB or directly from http://finance.yahoo.com. 

The tickers symbols are: “FCHI, ‘ GDAXI, ‘ N225, 'FTSE, and 'GSPC, respectively.

http://finance.yahoo.com


Chapter 7. Illustrations 178

We split the data into negative and positive. For each part, we fixed the 

threshold as the 0.95 quantile of each Index. The region to study is:

R F  =  {(0,tt**) x . . .  x (0, « a'* ) }C , (7.1)

where ux- is the 0.95 quantile of the index X*.

We did two types of analysis: the tail dependence determination and the 

portfolio analysis. On the last step before the fitting, we transformed the 

extreme observations as we stated in Section 5.5, for the bivariate case and in 

Section 6.2.3.2, for the trivariate case. The transformations are given by:

X 1 = X *  +  l , . . . , X d =  X d’  +  l ,  (7 .2 )

for E { ( 0, u**) , . . . ,  (0, ujv* ) }c , with d =  2 in the bivariate case,

and d — 3 in the trivariate case.

7.2 Tail Dependence Determination Analysis

The aim of this section is to study the dependence among indices in the region 

R F  in (7.1). This study splits into bivariate and trivariate analysis.

7.2.1 Bivariate Dependence Determination

We took all the different pairs of the filtered data for both the right and the left 

tail. We present the scatterplots of three pairs in Figure D.18. As the analysis 

will show further, and as the Figure D.19 can illustrate, the first two pairs 

represent medium tail dependence, whereas the last one, low tail dependence.
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Inference was made via Metropolis-Hastings as described in Section 5.6.2, 

with the posterior as in (5.21). The prior distributions were unit exponential 

distributions, except for 6, for which the prior was exponential distribution 

with hyperparameter 8q =  log{2). We drew 20,000 posterior observations with 

a burn-in of 500. The estimation of each parameter was taken as the median 

of the posterior sampling. We present in Table C . l l  the Bayesian estimations 

of the parameters for all the possible pairs of Indices. We give as wrell the 95% 

credibility intervals for both 6 and x-

Finally, to compare our results we did the following:

• We estimated x  with the methodology found in Ledford and Tawn (1996).

• We tested the asymptotic independence with Falk and Michel (2006) 

methodology, found in the PO T  package in R.

• When there is no evidence to accept asymptotic independence, we fit 

5 models to data: the logistic, asymmetric logistic, negative logistic, 

asymmetric logistic, mixed and asymmetric mixed models. We used 

as well the PO T  package in R , which uses the MLE approach. We 

considered only the model writh the lesser Akaike Information Criteria, 

and we give the estimate of x  for this model.

• For those cases where the MLE presented problems to compute, we used 

the non-parametric estimator of x  found in Poon et al. (2004).

As Table C . l l  shows, we can classify the pairs o f Indices regarding their
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tail dependence structure as follows for both right and left tails:

• Medium tail dependence: France-UK, France-Germany, and Germany- 

UK;

• Low tail dependence: UK-US, France-US, Germany-US left tail, and 

Japan-US left tail;

• Presumably tail independence: Japan-UK, France-Japan, Germany-Japan, 

Germany-US right tail, and Japan-US right tail.

The results are in accordance with the estimates of x  by Poon et al. (2004) 

methodology. In general, the censored approach estimates tend to underesti­

mate the dependence. As well, the results agree regarding the economic view 

of the relationships among the countries involved. In fact, the results show 

a higher relation in the left tail (in comparison to the right tail) of the pairs 

Germany-US and Japan-US. This fact might show the effects of bad perfor­

mance in the US index, in the German and Japanese markets. In fact, for 

all the cases but Japan-UK, the tail dependence in the left tail is larger than 

the tail dependence on the right tail, meaning that a bad performance is more 

likely to affect the rest of the countries, rather than a good performance.

7.2.2 Trivariate Dependence Determination

In this section, we analyze the same real data as in the previous section, but

with the trivariate framework established in Section 6.2. We are interested



Chapter 7. Illustrations 181

in which type of model is the one that has the heaviest weight on the model 

averaging. Therefore, the problem is treated as a model selection one.

The model selection is carried out via the Reversible Jump methodology 

as described in Section 6.2.3.3, which consisted in 10,000 jumps. The re­

sults are shown in Table C.12. As it can be seen, the following cases are in 

accordance with the bivariate results (compare it with Table C. ll ) :  France- 

Ger-Jap, France-Ger-US, France-Jap-UK, France-UK-US, Ger-Jap-UK, and 

Ger-UK-US.

The left tail of France-Jap-US is the only case to be chosen independent. 

On the other side, the right tail is selected as triple tail dependent. However, 

as the estimates of Table C.13 show, the tail dependence is low, as expected.

Finally, for the following cases, the selected model is the triple dependence 

model: France-Germany-UK, Ger-Jap-US, and Jap-UK-US. The former case 

is expected to be triple tail dependent. However, this was not the case for 

the two other cases. The estimates are shown in Figure C.13. This figure 

shows that the only group with medium triple tail dependence is the France- 

Germany-UK case, for both tails. For the rest of the cases, the estimates of 

Xz show a low triple tail dependence.

The analysis of this section show that the dependence estimated by the 

model is in accordance with a standard extreme methodology. As well, the 

results were in accordance with the economic interpretation of the data. There­

fore, we can proceed to the next study, where we make a prediction analysis.
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7.3 Portfolio Loss Analysis

This section deals with the minimization of the loss of an investment portfolio 

consisting of pairs of the indices data.

Suppose there is an investment portfolio L consisting of d assets returns,

i.e. it is expressed as:
d

p s  =  £ m t r ; ,
fc=1

where 0 <  m jt <  1 is the portfolio allocation of asset k, i.e. the proportion 

invested in asset k, for k =  1 , . . . ,  d, so that J2imk — 1- Then, the following 

issue might be of interest: given the historical data of the assets, what would 

be the asset allocation that minimizes the maximum loss of PS?, or in other 

words, what is the asset allocation that minimizes the value at risk of the 

portfolio?

It is clear that we have to focus on the left tail of the variable PS, meaning, 

the negative changes on PS. Define the random variable L as the loss of the 

portfolio, i.e. L =  —(PS). Hence, the way to respond to this problem will be 

to find a combination of m \,...,m d  such that P(L  > u*L) is minimized, for 

a large value u*L. We will assume that a loss greater or equal to 90% of the 

portfolio is large enough to represent an extreme value.

For ease of explanation and without lose of generalization, we will assume 

the portfolio consists of two assets, so the loss Lm is given by:

L*rn =  mX*1 + ( l - m ) X * 2,
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for 0 < m <  1, and where X* =  —Y*, for j  =  1,2.

There are two regions to consider in this study. The first one is the extreme 

portfolio loss region RL*m =  {L m >  u*Lm} ,  which will help us to define a high 

threshold. This region can be represented as:

= { ( x ; , x ; ) - . m x ;  +  ( i - m ) x ; > u - Lm} ,  (7.3)

where u*L is the 0.9 quantile of L. The form of RL*m u. is presented in Figure 

D.20, for a given m. The first aim of the analysis is to predict observations in

*-0.5

Let the historical variable X  be:

D * =  =  !»•••»*} •

We assume the historical portfolio loss allocation has been fixed at m =  0.5, 

so that the historical loss Lo.5id* can be expressed as:

j o . 5 | d * — ^0.5 +  0.5x2i<|

for i =  1 , . . . ,  n. In this way, wTe define the historical extreme portfolio loss

region as:

^ 0 .5 ,ulo s I D* — { ( x l,i>x2,i) ^ ^  ‘ 0-5 Xj j  +  0.5 x2 >  M£0 5} , (7.4)

where u*Lo& is the 0.9 quantile of L2 5D-. Once the threshold has been set, 

the general extreme portfolio loss region is completely determined in (7.3) for 

a given m, and substituting u*Lm with uL0.s- Therefore, the next step is to 

predict observations in RLmu• , for any m 6 [0, ll.’ 0̂.5 1 *
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The second region to consider is where the data is taken from. We consider 

the observations inside the region:

This means, the region the data is taken from is as in Figure D .l, with ux  =

all m  E [0, 1].

Since the aim of the analysis is the prediction, the data are transformed as

where uLo 5 =  u*Lq 5 +  1.

Then, the way to proceed is a modified version of the Reversible Jump 

methodology described in Section 6.2.3.3.

The joint model we will adjust to the transformed data will be that in 

(6.24), which reduces to the following expression for the bivariate case:

uy =  u*Los. This fact does not affect the inference, since RL*mu. C RD, for' 0̂.5

in (7.2), i.e.:

x iti =  Xj j +  1, and ;r2,i =  x*2 i +  1,

for (£^¿,£2,«) e  for i =  l , . . .n .  Therefore, the transformed data we

are modelling is given by:

D =  \ (xhi,x2'i) € {(1,U£0.S) x (1>u£0.5)}c

1 -  FMl(uLos) =  u

where
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and

1 -  FM2(uLo,s) =  ^1 +  ai (u^ls -  l ) ^

+ ( l + “*(“& - ! ) )  #

-  ( '  +  <'■ ( " U :  -  >) +  " ’ ("S '-- “  0 )  '

Since we have transformed the variables, we need to redefine the region we 

are sampling from as:

RLm,uLo&\d =  {(zi,»,Z2,i) 6 D  : m x u  +  (1 - m ) x 2,i >  (7-5)

for a given m 6 [0, 1].

The modified Reversible Jump algorithm is as follows:

• Set a grid M  in [0,1].

• At step t, propose a jump to model k* (for k* =  1,2).

• If the jump is rejected, sample X f m and X^m from model kt in region 

RLm<ULos (recall (7.5)) for every m € M.

• If the jump is accepted, sample via Metropolis-Hastings a parameter 

vector u> from model k*, and then sample X f<m and from model k* 

in region RLmULo5, for every m € M , and set kt+\ =  k*.

• After a reasonable number of samplings ( X f m,X ^m) is achieved for 

every m € M,  assume it to converge to the predictive joint distribu­

tion of ( X i ,X 2) in region RLmyttLoi, and define the sampling as =
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• Once the sampling has been achieved, define the predictive loss L^, as 

follows:

L* = m X fim + ( l -m )X 2s„, (7.6)

for every m G M.

• Select m* G M , where m* minimizes the median o f

We chose a sample size of 2.5 x 105 and an interval width of 0.02 for the 

grid M. We present in Figure D.21 the graphic of the median of L® for 

every m G 71/, for each pair of indices. Although the graphics do not show a 

quite smooth behavior, the tendency is clear in all the cases. In order to get 

a smoother version, the sample must be increased and the width of the grid 

decreased. However, we did not consider an excessive smoothness an important 

feature, given the average computing time, which was 184.5 minutes per pair 

of Indices. In Table C.14 we present the portfolio allocation that minimizes 

the median of

In Table C .ll, we showed the three strongest dependencies were given by 

the pairs: France-UK, France-Germany, and Germany-UK. In all of these pairs, 

the optimum allocation suggests a 100-0 allocation, except for the pair France- 

Germany, which was a 91-9 allocation. This fact makes economic sense, since 

if two assets have a strong dependence, then the minimum loss is achieved 

when allocating the most on the asset with less expected loss.

Consider the cases: France-UK, France-Germany, and Germany-UK. In
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order to show which Index has a larger expected loss, we did the following: 

we computed the marginal predictive mean excess over the threshold for 

each Index of each pair. This means, ULm, varies from pair to pair. Therefore, 

the marginal predictive mean excess is different for the same Index from pair to 

pair. Finally, the results are transformed to the original change of the Indices. 

We show in Table C.15 the results for these cases. The results confirm that 

indeed the Index with the lesser predictive excess loss is the one that takes the 

higher allocation.

On the other hand, for those cases where the tail dependence was deter­

mined as low in the previous section, the optimum allocation is split not as 

extremely as in the medium tail dependent pairs.

In order to verify the fit of the predictions, we made a comparison of 

histograms. Suppose m* is the optimum allocation. Then, on one hand, we 

present the empirical histogram of the observations in region RLm* „• i d’ 0̂.5

(see (7.4)) for the transformed data. This means, the historical transformed 

observations for which the optimum allocation portfolio exceeds u*Lo&. On 

the other hand, we present the histogram of the samplings inside the region 

R Li ‘ ,u'LQ5 =  { Lm* >  ul0J  (reca11 expression (7.6)).

The histograms are shown in Figure D.22 for four pairs of Indices. The 

predictive histograms show quite similar shapes and levels to the historical 

histograms. This fact suggests a good fit of the predictions.

Therefore, we can proceed to define the generalization of the portfolio al­
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location. Assume the analysis consists of d assets returns , which are:

( Y ^ . . . , Y d* e R d).

We only consider the negative returns of the assets, and define the variables 

X* =  -Y * ,  for j  =  1 , . . . ,  d.

The general loss function is expressed as:

d 

3 = 1

for m  =  (m i, . . . ,  m<j), and where 0 <  mj <  1, for j  =  1, . . . ,  d, and rnd =

1 - U t m j -

Let the historical variable X  be:

The, the historical loss function for a given allocation m  is given by:

Lm ID* 5

for m  =  (m i,. . . , m j), and where 0 <  m7 <  1, for j  =  1, . . . ,  d, and mj  =

Assume a fixed historical portfolio loss allocation at m 0 =  (mi0, . . . , m.d(i), 

with 0 <  mJO < 1, for j  =  1, . . . ,  d, and m ^ =  1 — mj0- 

Then, the extreme portfolio region is defined as:

^ m 0,Ui mo|D* =  { ( : r î , . . . ,x j )  -.171̂ X1 + ■■■+mdoX*d >
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where u*Lmo is a high quantile of Lmo, say 0.9. The aim is to predict observa­

tions in RLm u• , for a given allocation m.

The data is taken from the following region:

for (z* j , . .. ,x*di) G RDU♦ . In this way, the region we are modelling the’ ’ n̂>o

transformed data is given by:

On the other hand, the region we are sampling from is given by:

RLm,ULmo |d =  { ( * 1, • • •, x d) : m ix i +  . . .  +  mdxd >  uLmo } .

Then, the way to proceed is a modified version of the Reversible Jump as 

in the bivariate portfolio case. The joint model that underpins the algorithm 

is the multivariate model averaging procedure presented in Section 6.3. The 

following step is to construct a joint predictive sampling distribution from this 

multivariate joint model.

The modified Reversible Jump algorithm is as follows:

• Set a grid M  in [0, l]d.

The next step is to transform the variables as follows:

xi,i =  x*u  +  l , . . . , x d4 =  x*di -I- 1

• At step t, propose a jump to model k* (for k* =  1, . . . ,  dr, where dr is 

as in (6.32)).
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• If the jump is rejected, sample X f m, . . .  , from model kt in region 

RLm,uLmo, for every m  G M .

• If the jump is accepted, sample via Metropolis-Hastings a parameter 

vector u> from model k*, and then sample X f m, . . . ,  from model k* 

in region /?Lm,Uimo, for every m  € M , and set kt+\ =  k*.

• After a reasonable number of samplings ( X f m, . . . ,  X f m) is achieved for 

every m  € M , assume it to converge to the predictive joint distribution 

of ( X i , . . . ,Xd) in region RLmÛLmo, and define the sampling as X f,  =

• Once the sampling has been achieved, define the predictive loss L^, as 

follows:

Lm =  m i X f  m +  . . .  +  rrtdXf  m,

for every m  G M.

• Select m* G M , where m* minimizes the median of Lf,.

7.4 Conclusions

This section presented some applications of the models developed in Chapters 

5 and 6.

The first illustration was a bivariate application. We fitted the bivariate 

model to financial data, in order to determine the tail dependence. In general
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terms, the estimates looked in accordance with extremes methodologies, as 

that in Poon et al. (2004).

The multivariate model we are proposing is a mixture model. The appli­

cation of this model depends on the problem, whether it is a model selection 

or model averaging. We viewed the model selection as a tail dependence de­

termination.

For the trivariate case, we did a model selection application, which is trans­

lated as a tail dependence structure determination. The results of this analysis 

showed a behavior in accordance with was found in the bivariate analysis.

Both the bivariate and trivariate analysis showed acceptable results from 

an economical perspective.

We did a prediction application in the portfolio analysis section. We found 

convenient to choose the model averaging interpretation of the mixture model, 

since it spreads the uncertainty among different models, rather than selecting 

only one of them. The methodology we proposed was the Reversible Jump with 

a Metropolis-Hasting MCMC sampling. We proposed an algorithm to sample 

predictions of each plausible model. Although the prediction application was 

limited to the bivariate case, we presented the straightforward generalization 

of the algorithm. The predictions of the mixture model helped us to solve a 

portfolio analysis problem. The predictions were joined to describe the be­

havior of the portfolio loss variable. We showed the fit of this procedure was 

accurate, in accordance with the data. Therefore, the model and methodolo­



Chapter 7. Illustrations 192

gies we presented seem to be flexible enough to transcend to other type of 

applications via the prediction.

Hence, we find that the main purpose of the mixture model we present is 

the prediction, since it is on that when the model becomes more flexible, rather 

than selecting one model. Beside, the majority of applications or problems can 

be attacked, from a Bayesian perspective, with prediction.



Chapter 8

Conclusions

8.1 Final Discussion

The aim of the dissertation was to present a multivariate model for extremes. 

We opted for a mixture of models with different asymptotic dependencies.

The first objective was to construct a parametric family of models with the 

following features:

• Interpretable parametric form.

• Sufficient asymptotic dependence structure.

• Fitting a realistic range of tails.

In Chapter 4, we introduced some models constructed via the Common 

Variable method. Studying their properties, we found they cannot fit all of 

the four requirements.

193



Chapter 8. Conclusions 194

In Chapter 5, we presented a modification of the models, where all the 

requirements were achieved. The marginal distributions are quasi Burr-XII 

type. An important feature was that the tail dependence relies only on one 

single parameter, 9. The parametric form of the bivariate model is simple 

and inference was developed with Bayesian methods. The tail dependence 

structure is as follows, for X\ and X 2:

• if 6 —» oo, then X\ and X 2 are tail independent, in fact, they are exactly 

tail independent.

• if 0 —> 0, then X i and X 2 are completely tail dependent.

Anywhere else, the tail dependence measure \ has the following form: \ =  2~e. 

In the exact independent case, the model factorizes into the product of Pareto 

marginals.

We want to make clear that we are aware that our model only fits tail 

dependence and exact independence, and no other type of tail independence is 

covered. However, we believe this model is a valid first attempt of an individual 

component of the mixture model.

Another important feature of the bivariate model is the simplistic construc­

tion of dependent variables. This feature made possible the introduction of 

the triple dependent model, and in general, the m —tuple dependent model. 

As in the bivariate case, in every m —tuple dependent model, the asymptotic 

dependence is governed exclusively by 9.
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We introduce the multivariate model in Chapter 6, i.e. the mixture of 

models with different possible combinations of dependencies. In principle, 

this might seem to drop the simplicity of the bivariate model. However, each 

individual model of the averaging constitutes a simple version of a parametric 

model constructed via the common variable method, as in the bivariate case.

Each individual model splits into two parts: the tail dependence and the 

exact independence parts. We presented a model where the tail dependence 

part is an m —tuple dependent model constructed as in the bivariate case. 

On the other hand, the exact independent part consists of the product of 

univariate quasi Burr-XII type models. In this way, this model has marginal 

coherence.

Every mixture model can be interpreted in two ways: as a model selection 

or as a model averaging problem.

The model selection approach assumes only one model is correct. There­

fore, its objective is to estimate the model that fits the best the data, i.e. only 

one model describes the data. This turns out to be quite restrictive, since 

there is only one measure of asymptotic dependence for all the asymptotic 

dependent variables. Hence, it is not possible to model different strengths of 

asymptotic dependence among different subsets of variables.

On the other hand, the model averaging approach recognizes the uncer­

tainty of the problem and spreads it over the individual components. There­

fore, no individual model is assumed to be the only one to describe data. The
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asymptotic dependence structure of this approach results quite flexible, since 

for different subsets of the vector of variables, different asymptotic asymptotic 

dependencies can be achieved.

Hence, we strongly opt for the model averaging approach. The only reason 

why we used the model selection approach was to compare our results in 

Chapter 7 with standard procedures in extremes.

When coming to inference, we used the reversible jump methodology within 

the Bayesian paradigm. MCMC methods were the basic tool for parameter 

estimations. Within this inference procedure, we found that a modification 

of the model facilitates the whole procedure. Instead of the product of quasi 

Burr-XII type marginals, we replaced it by the product of Pareto marginals. 

From Chapter 5, we know these two models are equivalent marginal models in 

the independent case. Therefore, the asymptotic dependence of the mixture 

model is respected.

Finally, in Chapter 7, we presented some applications in the financial area. 

We performed an analysis of tail dependences among some indices. The model 

seems to fit well enough to the returns, even though their magnitude is small 

(recall the tails we are aiming are non-light tails). The dependence structure 

measured by 0, seems to identify the relation in tails of the variables, for both 

the bivariate and the trivariate case.

In the last part of the applications, we presented a methodology to minimize 

the loss of a portfolio, using the multivariate model of Chapter 6. Although
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the results are shown only for two assets portfolios, it can be easily generalized 

to any dimension.

8.2 Future Work

We finish presenting the potential topics that could follow this work.

Firstly, a generalization of the marginals would be needed to embrace light 

tails. This means, variables for which all the moments are finite.

A second issue is how to get all the forms of tail independence inside the 

mixture model, rather than only the exact independence.

The next topic is the application of the multivariate model to a large set of 

variables (say more than five). This study would get closer to a real portfolio 

application. The algorithm we introduced in Section 7.3 turned out to be 

time consuming. The issue of the declaration of a grid for the allocation is 

potentially a problem as the dimension increases. Therefore, the special task 

on this issue would be the way to minimize the time of the computations.

We saw in Chapter 6 that the asymptotic dependence information is given 

by both the weights and 0. Therefore, an important topic is to study the 

relation between both.

Finally, it would be interesting to relate the Common Variable construction 

with some special topics found in the literature: different tail independence 

structures, concomitant tail behavior, spatial extreme statistics, and the study 

of negatively associated variables.



Appendix A

Regular Variation

Regular variation constitutes a wide field and its applications embrace a lot 

of areas. Since we are dealing with extremes, there is a natural connection 

between the maximum and the tail of the distribution. Information on the 

tail of a distribution implies information on the maximum and vice versa. 

Regular variation is a property of some functions and its rate of decay. We 

will only present the concepts that will help us to explain the extremes theory. 

The works in Bingham et.al. (1987) and de Haan (1970) treat extensively this 

topic.

D efinition A .0.1. Regular Variation

1. A measurable function L : R  —> M+ is said to be slow varying at oo, i.e. 

L G RVo, if for x >  0:

L(tx)
=  i.

198
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2. A measurable function H  : R  -*  R + is said to be regular varying at oo 

with index r, i.e. H e  RVT, if for x >  0:

II (tx)limt—* x >
m

=  x . (A .l)

We present some examples as relevant illustrations of tail behaviors.

Exam ple A .0 .1 . Let H (t ) =  log(fc), for c € R. Then, for x >  0:

H {tx) ,. log(i) +  log(x) 1
lim t_,oo -777-7- =  hm i-voo-------:— ttt------- =  1 .

H{t) log(<)

Therefore, II (x) 6 RVq.

Example A .0.2. Let H (t) =  exp(—tc), for c e  R. Then, for x >  0:

0 i f  x  >  1 

00 i f  0 <  x <  1.
Hindoo - 7-7 ; ,  ■ =  lim^oo exp(—îc(æc - ! ) ) = <exp(—tc)

Therefore, II(x) is not a regularly varying function.

Exam ple A .0.3. Let H(t)  =  £c log(i), for c G R. Then, for x >  0:

tcxc(\og(t) +  log(z))
linit-^oo 

Therefore, H{x)  e  RVC.

tc log{t)
=  a:c.

Regularly varying functions have a special representation (see Resnick 

(1987) and Bingham et.al. (1987)). If we define a slow varying function L(x), 

then, any regularly varying function / /  can be written as:

II (x) =  x TL(x), (A.2)

for t  € R.
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Proofs

B.l Proof of Theorem 4.1.1

We seek to find an asymptotic expression of the joint survival (4.8). In order to 

do so, we need to find an expression of the inverse of the marginal distributions, 

so that we can compute the function G(s) as in (4.7). However, it is not 

possible to have a close form for the inverse, so we use the asymptotic form of 

the marginal in (4.6).

We will focus our attention to the a ^ l  cases, since subsequently we will

for a >  1

Fx(:r) =  1 — {x +  l)e  x for a =  1 as x —> oo.

for 0 <  a <  1.
V

200
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be able to distinguish the a =  1 case. With this representation, we can write 

down the asymptotic form of the inverse:

/
a >  1

F£(*) = as x —> oo.

—— log ( ( a — 1)(1 — x )) ,  0 <  a <  1
a

With this result, it is possible to compute the asymptotic form of the G func­

tion as follows :

G(S) =  .

loS ( ( «  — ! )  (1 -  e_1/s) )  ,

However, we know that

a  >  1

as s —> oo.

0 <  a  <  1

(1 — exp(—1/s ) )  =  s 1 +  o(s x), as s -> oo, (B .l)

then, the G function can be expressed as:

- |og( ( V ) s"‘) ' Q>1
G(s) =  as s —> oo. (B-2)

— — log ((a  — l)s _1) , 0 < a < l
a V

Since we have different representations for both the G(s) and the joint 

survival function, we will write down the asymptotic form of the latter in 

separated cases. In all of them we will recall (B.2) and the joint distribution 

in (4.8).
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For the 0 <  a  <  1 case we have the following result:

P (S >  s ,T  >  s) = ------ - e
a  —  2

_  a  C~ 2(~ n  Iog((l-Q )s *)) _  e - « ( - ^ l o g ( ( l - Q ) s  *))

o  — 2

o
a - 2

q — 2
»

( 1  — a ) «  ( s - 1 ) “ --------- ( 1  — o ) s 'a  v i ,  - i \ i  2  . . _ j
a  — 2  

2(1 — Of)“ S “ -----------  (1 — a)s 1
a  — 2

„ ( 1 - « )  - i=  2 7-------- r s , as s - »  oo.
( 2 - a )

Hence, we can get the expression for the tail dependence:

(B.3)

X =
2(1 - a )
( 2 - o )  •

It is worth to note that in (B.3), we can distinguish the coefficient of tail 

dependence rj, (recall (2.28)), which is equal to one. If we find a case where 

Tj <  1, then, we can assure that x  =  0-

In the a  >  1 and o  ^  2 case, we have the joint survival function:

P ( S > s , T > s )  = 0  c-2(-log( 2
0 - 2 o  —

o  f  a — to 5 1 to 1 2
a  — 2 V o  j ! ° o - 2

( «  -  l )2 -2 2 !
f C L -  1

(o  — 2)o o - 2  \, o
s " , as s —> oo.

We need to look at the asymptotic dominance of any of these two factors. 

For the 1 <  o  < 2 case the joint survival reduces to:

P(S >  s ,T  >  s) =  V s -0 ,2 — a  \ o  / as s —> oo.
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Which leads to a tail coefficient tj > 1 and the following expression for the 

tail dependence:

X =  lim^oo
2

2 — a
a — 1

a

a
—a+1 =  o,

The next case is when a  > 2:

P (S >  s ,T  >  s) = (tt -  1)2 „-2 
(a — 2 )a

s , as s —> oo.

which leads the same x as in the previous case, i.e.

X =  lim,.»«, s 1 =  0.(a — 2)a

Finally, when a  =  2 (recalling (B.2) and (4.8)):

P {S >  s ,T  > s) =  - 2  log e - ^ - ' 0̂ 2̂ * '1))

=  -2  log C2̂ 1)2 s_2 » a« s oo,

then:

x  =  o.

Therefore, the relation in (4.9) holds.

B.2 Proof of Theorem 4.1.2

As in the previous proof, we seek to find an asymptotic form for P(S >  s, T >  

s). Given the form of the marginals in (4.11), it is not possible to have a close
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form for the inverse functions, then we have to use the asymptotic form of 

these functions.

F *(x) «  <

Fy(y) »  <

1 + 13 c~ax 0 < a < ¡3a — p

1 - a x e~ax a = ¡3

1 - a  r - 0 x a > ¡3
a — ¡3

1 + 'y c-ay 0 < a < 7a — 7

1 - a y e~ay a — 7

1 - a  c - i v a > 7
a — 7

as x —► oo.

Similarly to the simple exponential case, we will focus on the a ^ /?, 7 

cases, since later on we will be able to distinguish the a = ¡3 and 0 = 7 

results. We write the inverse functions down:

_ q log ( ~ 7 T~ ^  ’ 0 < a < P

F x(x )  ~  < a s i - i o o .

. ^ l o g ( ^ ( 1 - l ) ) '  a > i s

Fy ( v)  ~  <

- T log ( v - * ) )  >a 7
0 < a < 7

as y -»  00.

“ log ^ ( i - y ) ) ,  «7 \ ot )
> 7
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Thus, we can define the G functions using (B .l).

~ ' ° s ( /3 8 1 ) , o <  Q <  P

Gx (s) « as s -> oo. (B.4)

a > 0

—— log ( —— — s ^  , 0 <  a  <  7
a \ 7 J

Gy(s) «  < as s —> oo. (B.5)

1, / a - 7  '---- log ---------s J , a  >  7
7 V

In order to compute the joint survival function, we need to show that 

Gx(s)  <  Gy(s),  when s oo. Recall that 7 <  /?, then, the first case is when 

a <  7 <  /?:

GxOOcGrOO « — log s ' 1)  < “ log ( 1 ^ S_1)

, a  a
^ ^  1 — "7 > IP 7

P >  7-

When 7 < /3 <  a:

Gx (s) <  Gy(s)  «  - 1  log ( l  -  0  +  J  log(s) <  ~  log ( l  -  1 )  +  i  log(s)

J  log(s) <  ^ 1Qg(s)

P > r ,

as s —> 00, whereas, when 7 <  a < 0

Gx{s)  <  G y(s ) <=> “ “  log ^1 "  ^  “ log(s ) <  ”  log ( i  -  ^ log(s)

-  log(s) <  -  log(s) 
a  7
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as s -» oo. 

Therefore:

Gx(s) < GV(s), as s -» oo.

Hence, it is possible to express the joint survival function as follows:

P(S > s,T > s) =  P(B > G*(s) -  A,C > Gy(s) -  A)

= / p (B> G(s) -  a, C > G(s) -  a | A) fA{a)da 

/•Gx(s)
=  /  e - / 9 ( G x ( » ) - a ) e - 7 ( G  Y ( s ) - a ) a e - a a d a

Jo

pG y(s)  poo
+ /  e- 7(Gy(s)- a)ae-Qada + /  ae~aada 

Jgx(s) Jgy(s)

=  Q e - ^ G x ( 8) - i G y ( . )  /  1  \  n  _  e - ( a - / J - 7 ) G x ( « ) )

V a - / 3 - 7 / v '

_| _a e - 7 G v ( s )  ^  ^  ^  ^e ~ ( a - 7 ) G x ( s )  _  e - ( o - 7 ) G y ( s ) j  _|_ e « G y ( « )

G e-^Gx(«)-7Gy(s) _  1 eaGy(s)
a — ¡5 — 7 a — 7

/da
(a -  7)(a -  ¡3 -  7)

3- 7Gy(s)-(o-7)Gx(s)

for a 7̂  7, a ^ 7 + /?.

We divide again the study of the joint distribution in cases. Those cases 

where 77 >  1 will lead to x =  0, so that we urill compute \  only when 77 =  1 . 

When a  <  7 < /?, the G  functions are given by:

Gx(s) «  log (l -  f ) +  £ log(s), and Gy-(s) «  -  J log (l -  %) + J log(s)
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as s —> oo, thus, the survival function is given by:

. (9/<* a,  (  \ 7 /“
P(5  > s,T > s)

_______ §2_____ (l — * V /a S_ 7/a fl  _  s V  7/,°  s7/ar-l
(a -7)(a-/J-7) V 7 /  V /*/

«  +  *■' -  F = y g ^ J  ( l  -  l Y h  ( l  -  f )
l-7/o

as s —¥ 00, for a constant K, but, since f3 4- 7 > a, the expression reduces to:

P(5 > s,T > s) l _______§2____  ( l  — 2V /a f  1 _
(7 -o)(/8+7-o) \ 7 /  V 0 /

l - 7 /o '
s \

as s —>• 00, so that t] =  1 and the tail dependence is

X  =  1 -
/3a

(7 -  a)(/3 + 7 — q) 1 r o - s ) 1- 7/0

then 0 < x < 1) as required.

The following case is when 7 < (3 < a, where the G functions are:

Gx {s) «  -  J log (1 -  f ) +  3 log(s), and G y ( s )  »  log (l -  £) +  ± log(s) 

as s —> 00, thus, the survival function is given by:

P ( S  >  » ,  T > s) «  ^  ( 1  -  | )  »-■  ( 1  -  1) » - *  -  ¿5 ( 1  -  l Y h s -°h

_  ( l  _  2^ o - l  ( l  _  ¿ \ (« -7 ) /^  - ( a - 7 ).10
( a - 7 )(a—/3—7 ) t 1  a / *  V1  a /  * >

«  Kx s- 2 +  AT2 s~7 + K3 a * ? -1,

as s —¥ 00, for constants K\, A'2, and K3, but, all the exponents lead to the 

Tj > 1 case, thus:

x  =  o .
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The last case to consider is when 7 <  a < /?. As in the previous cases, we 

present the G  functions

Gx(s)  »  q log ( l  -  f )  +  ¿log(s), and GY(s) «  - ^ l o g ( l  -  * ) +  ±log(s) 

as s —> 00, then, the survival function is:

P(S > s,T > s) «  ^  ( l  -  f  ) W“ » -« «  (1 -  i ) » -  -  (1 -  i

-  i— — i (1 -  2 ) s _1 f l  -(or— y)(cif—>3— y) V a /  ^  0 J  1

«  A i +  A 2 « - « /t +  A 3 s~2+^ a,

as s —> oo, for constants K\, A 2, and A 3, where again, all the exponents lead 

to the 7] >  1 case, thus:

X =  0.

Therefore, (4.12) holds.

B.3 Proof of Theorem 4.2.1

The asymptotic form of P(S >  s, T  >  s) is the target as in the previous proofs. 

The first step is to find expressions for the marginal inverse functions. Given 

the marginals of X  and Y  in (4.17), we get the following expressions:

F x ( x )  ~  c*!1 ((1 — x) s — l^J , as x  - »  oo,

and

FY (y )&  [ » 21 ( ( 1 - 2/) * - l ) ]
V>2

, as y —► oo
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then

G x {s ) — Fj^(e~li/s) =  q ^ 1 (̂1 — e_1/,s) - « — 1̂  ~  as s —> oo,

(B.6)

and

Gy(s) & , as s —> oo. (B.7)

Hence, the joint survival distribution is expressed as follows:

P{S >  s ,T  >  s) =  P (B  >  Gx ( s ) ^ A , C >  G y ( s ) ^ A )

=  ^ 1  +  a iG x(s) 'Pl +  a2G y(s)^^ ,

and using (B.6) and (B.7), the following holds:

P(S > s ,T  > s) & 2~6s~l , as s —» oo.

Hence,

X = lim^ooP (S  > s\T >  s) = 2~e.

Therefore, (4.19) holds.

B.4 Conditions of Theorem 4.2.2

We show the conditions for which (4.23) holds. We need to introduce the 

following theorem, where the conditions on the density guarantee that a MLE 

is consistent. See Newey and McFadden (1994).
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T h eorem  B .4.1. MLE Consistency Conditions

Suppose z =  (Z\,Z2, . . . )  are i.i.d. with density f(zi\60) and the following 

hold:

1. Identification: if 9 ^  8o, then f(zi\8) ^  f(zi\90), i =  1, 2, . . .

2. Compactness: 6q € 0 ,  which is compact or the log-likelihood function 

1(61 z) is concave.

3. Continuity: log f(zi\8) is continuous at each 9 € 0 .

4■ E  (supd€e\ log f  (zi\6)\) < o o .

Then the MLE 8 is consistent at 6q, i.e.

8 - ^ 9 .

Regarding our case:

Condition 1 holds if 1(8| D ) has a unique global maximum. But we showed in 

(4.23) that this is the case.

Condition 2 holds since 1(8\ D ) <  0 for all 9 € 0 .

Condition 3 clearly holds.

For Condition 4, it suffices to show that

sup lo g /(X , y| 9) <  oo 
see

with:

log f ( X ,  Y\8) =  log +  iog(0) +  log(0 +  1)

— (9 +  2) log 1̂ +  a i X “ 1 +  c*2y j
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which we can write down as

log f ( X ,  Y\9) =  k +  log(6) +  log(0 +  1) -  {9 +  2)m,

with

k =  \og( ^  ) and m =  log f l  +  •
\ M 2  /  v '

Then

log f ( X ,  Y | 6) <  k +  2 log(0 +  2) -  (9 +  2)m.

However, 2 log(^ +  2) — (8 +  2)m has a finite maximum at 6* =  ^  — 2, so

lo g /(X ,F | 0) < f c  +  21og - 2, 

which means Condition 4 holds.

Therefore, the four conditions of Theorem B.4 are satisfied. Hence, (4.25) 

holds.

B.5 Proof of Theorem 4.2.3

We need to show the asymptotic normality of 9, as in (4.23). The following 

theorem sets the conditions for asymptotic normality to hold. See Schervish 

(1995).

T h eorem  B .5.1. Asymptotic Normality of MLEs

Suppose zi, Z2, . . .  are i. i.d. with density f(zi\ 9), where 9 € ©, the param­

eter space. Let 9 be an MLE. Assume 9 is consistent at 9 and the following

conditions hold:



Appendix B. Proofs 212

1. f(zi\6) has continuous second derivative with respect to 9.

2. Differentiation can be passed under the integral sign.

3. There exists Hr(z,6) such that for each 90 € 0 :

sup
\9—6q\<t

log f(z\60) -  ^  log f(z\ 9) <  Hr(z,90),

with limr_>0 E  (Hr(z , 90))=0.

4■ The Fisher information matrix 1(9) is finite and non-singular.

Then,

V n ( 9 -  90) N  (0, I~1(90)) •

Applying this theorem to our model, we know that 9 is consistent and: 

Condition 1 holds, as the joint density can be expressed as follows; see (4.21):

f ( x , y \ 9 ) < x 9 ( 9 + l ) K ~ 6- 2,

1 1
where K  =  1 +  aix^i +  and K~°~2 is continuously differentiable with

respect to 9.

Condition 2 holds, as the support of X  and Y  does not depend on 9.

For Condition 3, it suffices to show that ^  log f ( x ,  y\ 9) is differentiable and 

has finite mean. However, by (4.24):

d.92 log f (x ,y\ 9) =
1

( 9 +  l ) 2’

then, it is differentiable and it has a finite mean. Thus, Condition 3 holds.
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Condition 4 holds, since:

/ W  =  - i ( ^ l o g / ( x , S| « ) ) = i  +  ^ > 0,

Hence, 6 is asymptotically normal, i.e. (4.26) holds.

B.6 Proof of Theorem 5.3.1

Part 1. Consider the expansion in (5.5), which sets that, for large 6, we have 

z 1/e — 1 ~  Then, we can write down the limit of the joint survival as

follows:

P (X  >  x ,Y  > y) — 1̂ +  a i ( x eii — 1) + a 2(y8i2 — 1))
-e

1 1 \  a i  log(x?l )+Q2 log(y^2 ) \
 ̂ )

-e

«  exp(—ai log(xX/,il)) exp(—a2 l o g ( y 1//i2 ) )

=  x~Ql̂ 1y~a2̂ 2, 

as 9 —>• oo.

which means that the joint density can be expressed as:

lim ^ o o /X(y (x , y)
_ a i _ ia2 _£2_i ii  —  y  i 2

6

Consequently,

X =  lim ^oo P (Y > u | X  >  u) =  P (Y > u) ,

proving the independence in the tail.
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Part 2. Define Gx(s) as in (B.8), i.e.:

Gx(s) ~  ( a f 1 — 1̂  +  1̂  , as s —► oo,

and similarly for Gy(s). Then, the joint survival function has the following 

expression:

P(X >  x ,Y  > y) =  P(S > s, T >  i)

=  ( l + a . f G x W 1« '  -  1) H- « 2(GK(s)’ /9i= -  1 ))“ " 

w f l  +  (ss -  1) +  (f® -  l ) )  ,

for large x  and y.

Hence,

P(S > s, T  >  t) fa s~\

for large s. Therefore, as P(S  > s) «  s_1, for large s, then the complete tail 

dependence is held.

B.7 Proof of Theorem 5.3.2

The asymptotic form of P(S  >  s ,T  >  s) is the target as in the previous proofs. 

Given the marginal model in (5.2), we get the following expressions:

Fx ( x ) =  ( « r 1 ( ( !  -  x )~* ~  J)  +  i ) .

and

F y (v )  =  ( a 2 1 ( ( !  -  y)~* ~  x)  +  i )  & •
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Then, the G functions are calculated as:

G x {s ) =  F j“(e 1/,s) ~  1 — 1̂  +  1̂  , as s —> oo, (B.8)

and

Gy(s) fa ( a 21 ^«5 — 1̂  +  1̂  , as s —> oo.

Hence, the joint survival distribution is expressed as follows:

P (S  >  s ,T  > s) =  Pr(B >  (Gx {s)imi -  1 )A, C  >  {Gy(s)1̂ 2 -  1 )A)

/OO

exp ( —a(l +  a iG x {s )1/eSl -  au +  a 2G y(s)l/0i2 -  a 2)) 

=  (1 +  a . G x i s f ^  -  ai +  a 2GY{s)lle^ -  a 2)~6 

fa ĉ*i ^  — 1^+1^  -  ai +  a2 ( a 21 ( s « — l )  +  1 j  -  a 2̂  

w — 2^

«  2 ' V 1

as s —> oo.

Hence,

X =  lim^oo P(S >  s| T >  s) =  2 e.

Therefore, (5.10) holds.

B.8 Proof of Theorem 6.2.1

We know, from expression (6.4), that the marginals have the following form:
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0ft

«ft

0ft

and similarly for F*Xr In this way, the G  functions are expressed as:

C i ,M  = ( F ; , r  (e -lh

s; f l  +  (s lts — l)

as s —> oo, and

G *2( s ) «  ^1 +  a i 1 (sVe -  1) )

Therefore, from the joint survival distribution in (6.9), the survival of S 

and T  transformations (see (2.30)) is given by:

P (S ’  > s , T - > s )  =  F 'x , ( c j , ( » ) ,G * » )

SW U>i f l  +  — l j  )  + W 2 S-2

ss W\ 2~e S_1 +  W2 s~2,

as s —> oo.

We can see the first term is dominant for w\ ^  0 for large s. Therefore, 

the tail dependence paramater x  is given by:

X =  lim^oo P(S* >  s| T* >  s) =  wi 2 e.

Hence, (6.10) holds.

B.9 Proof of Theorem 6.2.2

We know, from the proof in Appendix B.8, the G functions are expressed as: 

G i,(s) »  ( l  +  a -1 (SV. -  1) )  5', (B.9)
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as s —> oo, for j  =  1,2,3.

Therefore, from (6.19), the joint survival of S* =  (5j*, 52*, 53*) (see (6.17)) 

is given by:

F s- (s,«, s) =  F *  (G i, («), G ^M , GJ,(»))

«  S-3 +  (u>2 +  ^3 +  U>4) (1 +  2s# J s_1 +  tu5 3_fl s-1

«  wi s-3 +  (u>2 +  W3 +  w4) 2~0s~2 +  w5 3~6 s_1

w5 3 e s 1 for w5 ±  0

j<*v \ (w2 +  U)3 +  W4) 2 es 2

S-3
V

for ic5 =  0, and max(w2,w3,w4) ^  0 

for w\ =  1,

(B .10)

as s -*  00. 

Hence,

*3 =  l i n w ,  P (S2* >  s, S ; >  s\Sx' > s )  =  w5 3 "9.

Thus, (6.21) holds.

For the second part of the proof, we will prove (6.22) for X{i,2}> since for 

the rest of the cases, the result follows immediatly.

By (6.20), we know the bivariate marginal is given by:

F*XuX2(xu x2) =  w* ( l  +  « i  ( z f 1 “  i ) )  ( l  +  a 2( * i <2 -  l ) )

+(1 -  w*) ^ l +  ai^Xieil -  l )  +  ot2( x ^ 2 -  l ^ j  ,
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where w* =  w\ +  w3 +  u;4. Therefore, from (B.9):

P (S ; >  s, S2* > s ) ^ w t s~2 +  (1 -  w.) 2" V 1, (B .ll)

as s —¥ oo. Hence

X{i,2} =  P(S2 > s\ > s) =  (w2 +  w5) 2 6.

For the last part of the proof, we use (B.10) and (B .ll) to get the following:

Therefore, it is straightforward to see that (6.22) and (6.23) hold for all the 

cases.

B.10 Proof of Theorem 6.3.1

We know, similarly to Proofs B.8 and B.9, the G  functions for the univariate 

marginal of model (6.31) which holds (6.33) and (6.34), are given by:

^{[3],[1,2]} — ^ms-»oo P ( 3̂ '> Sl >  S, S2 >  s) 

P  (Si >  s, S2 > s, S£ > s )

as s —> oo, for j  =  1 , . . . ,  d. As well, we know this representation leads to the 

following asymptotic relation:
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as s —»• oo, for j  =  1 , . . . ,  d. This means that for the d—dimensional case of 

the averaging, the dominant component of the probability:

is the model without exact independence variables for large s. In this way, if 

we set Wd as the weight of this model, then:

For the second part of the proof, we know there exists dimensional coher­

ence for model (6.31) when holds (6.33) and (6.34).

We divide the models in the averaging model in two: those where Xi and 

Xj are tail dependent and those where it is not the case.

Let Pi be the model in the averaging where Xi and Xj are tail dependent, 

such that it can be written as:

where 11  ̂ is the product of the exact independent variables of model Pi.

P(Si > s, . . . ,Sd> s)

«  wdd 9s *,

as s —> oo. Therefore:

Xd =  lim^oo P(S2 >  s , . . . ,  Sd > s | Si >  s) =  wd d 6.

Then, by dimensional coherence, if we marginalize with respect to the rest
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of the variables in model ¡3\, the marginal expression of this model would be 

given by:

Hence, by (B.12) the contribution of model /?i to P(Si > s, S2 >  s ), as 

s —> 00, would be:

For the case where Xi and Xj  are not tail dependent, let it be /32, it is 

clear that by dimensional coherence, the bivariate marginal component of this 

model is expressed as:

Therefore, the contribution of model (32 to P(S\ > s, 52 >  s) would be:

w02 s~2,

as s —> 00.

Hence, the dominant components, as s 00, in P(S\ >  s,52 > s) are 

those where Xi and X j  are tail dependent. This means, the following holds:

as s -4  00, where Tij is the number of models where Xi and X j  are tail 

dependent.

Finally, we need to count how many models contain Xi and Xj  as tail 

dependent. The easiest way to do it is by counting per type of model as

w0l 2 6 s h

follows:
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• For d—tuple tail dependent model: 1 case.

• For (d— 1)—tuple tail dependent models, only two models have either X, 

or Xj  as exact tail independent. Then, the number in this case is d — 1.

• For (d — 2)—tuple tail dependent models we can count the different ways 

we can choose the 2 exact independent models. Therefore, the number

• The last result holds for d — 3 , . . . ,  2.

Therefore, the total of components where X t and Xj  are tail dependent is:

T  ■1 '<3 1 +  (d — 2) +
d — 2 

2 Hd - 3 
2

for d >  3.

Hence, (6.35) holds.
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LOW TAIL DEPENDENCE. LIGHT TAILS

0 X tf>-2 Ol a 2

5 0031 1.25 1 1 1
0 2~* 02 ’.% 0\>7.i% X2 5%

N=500 4.99 0.031 4.66 5.34 0.025 0.039
(0.152) 0.003 0.143 (0.162) (0.003) (0.004)

SEMI LOW TAIL DEPENDENCE. LIGHT TAILS
0 X €>I a j
3 0.125 0.75 0.6 1 i

0 r * 02 r.% 0yr 5% Xs.s«

N=500 293 0.13 2.73 3.15 0.113 0.150
(0.085) (0.008) (0.079) (0.007) (0.007) (0.008)

MEDIUM TAIL DEPENDENCE. LIGHT TAILS
e X V’a a ( O 2

1 0.5 0.25 0.2
0 2-» 02.!.% 0-17.&« X25* X « 5«

N=500 1.01 0.497 0.93 1.08 0.475 0.524
(0.043) (0.015) (0.040) (0.069) (0.023) (0.015)

SEMI HIGH TAIL DEPENDENCE. LIGHT TAILS
0 X <*] Oj

0.333 0.794 0.083 0.133 1

0 2"* 02!.% 047.5« X 2 5« X'tf.SK

N=500 0.341 0.789 0.31 0.37 0.773 0.805
(0.021) (0.012) (0.020) (0.023) (0.012) (0.011)

HIGH TAIL DEPENDENCE. LIGHT TAILS
0 X 1>i Qi a 2

0.2 0.871 0.050 0.080 1 1
e 2-* 02!,% 0y7.5* X i-5« *y?5«

N-500 0 .1 9 6 0.873 0.18 0.21 0.861 0.883
(0.009) (0.006) (0.008) (0.010) (0.006) (0.005)

LOW TAIL DEPENDENCE. HEAVY TAILS

0 X V»1 to a ( Qj
5 0.031 5 7.5 1 1

0 2~* 02 5« 0y: 5* *2 5« *4' 5«
N=500 5.05 0.030 4.72 5.33 0025 0.038

(0.162) (0.004) (0.152) (0.234) (0.004) (0.004)
SEMI LOW TAIL DEPENDENCE. HEAVY TAILS

0 X * h O ,

3 0.125 3 4.5
0 2“* 02 5« 0.* s% X3W X'** s«

N=500 3.02 0.12 2.84 324 0.106 0140
(0.088) (0.008) (0.114) (0.094) (0.007) (0.011)

MEDIUM TAIL DEPENDENCE. HEAVY TAILS
0 X f h ai 02
1 0.5 1 1.5 1

0 2~* 02 5« 0y* 5« X-» I-* 5«
N=500 1.02 0.493 094 1.10 0.465 0.519

(0.043) (0.014) (0.040) (0.046) (0.015) (0.014)
SEMI HIGH TAIL DEPENDENCE. HEAVY TAILS

0 X i h Oi a 2

0.333 0.794 0.333 0.5 1 1
0 2~* 02HX 047 1% X2S« X *7 5«

N=50Q 0.331 0.795 0.30 036 0.779 0810
(0.012) (0.007) (0.011) (0.013) (0.007) (0.006)

HIGH TAIL DEPENDENCE. HEAVY TAILS
0 X i h Oi

0.2 0-871 0.2 03 1 1
0 2“* 02 S* 04-5« X2« X** 5«

N=500 0.195 0.873 0.18 0.21 0.863 0.882
(0.009) (0.005) (0.010) (0.010) (0.006) (0.006)

Table C .l: MLE in Bivariate Model 1: estimating 9, n=500 (standard error 

of replications is given in brackets).
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LOW DEPENDENCE AND LIGHT TAILS j LOW DEPENDENCE AND HEAVY TAILS \

0 a, Oj Cl Ca * Ol Ci Ca !

s 1 1 0.1 0.15 1 0.031 i » 1 1 1 i.a ] > 0.031

N=70 0 « I 2 -* 08« X«« N=70 0 *» c 2~* Ai« x«m |

X 67.1 9.51 0.9 63  1 0  *> 0 .8 8 0.543 X 164 2.05 1.03 4 8  I » * 1.13 0.450

Y (1 2 1 ) 2 .6 8 0.37 (0.128) (0.58) (0.350) Y (363) 3.34 4.13 (0.013) ( 1 0 2 ) (0.373)

N=5O0 6 « c S'* 08« X«« ; N = 500 0 » 2 -* 0 « X«m

X 16.4 3.57 0.34 3 4 10 » 4 0.062 X 17.4 1.03 1 .8 8 5 8  10 6 3.41 0.004

Y (22.9) 3.82 0.54 (0.048) (2 .0 2 ) (0.084) Y (30.0) 1.63 2.41 (0.036) (1.30) (0.034) i

SEMI LOW DEPENDENCE AND LIGHT TAILS SEMI LOW DEPENDENCE AND HEAVY TAILS

0 C <*2 Cl Ca ' . a , <*» C> Ca

3 1 1 0.1 0.15 ( X 0.125 3 1 1 1.5 ! * 0.135

N=TO 0 2 -* 08« X«« 1 N —TO 0 " c %-* 0 « a<m

X 40.0 2.40 0.25 1 3 1 0 1 .1 0 0.468 X 3.38 1.47 1.45 0.006 1.37 0.366

Y (1 0 2 ) 1 .1 0 0.18 (0.135) (0.60) (0.364) Y (2.17) 1 .1 1 1.57 (0.133) (0 .6 6 ) (0.130)

N -5O0 0 “ 2 -• 08« X »« N = 500 0 A c 3'* 0 « X«m

X 5.35 1.60 0.17 0.026 2.67 0.157 X 3.28 1.04 1 .0 1 0.103 3.31 0  2 0 1

Y («•40) 1.46 0 .2 1 (0,042) < » .« ) (0.067) Y (0.38) o.eo 1.42 (0 .0 2 0 ) ( 0  23) (0.031)

MEDIUM DEPENDENCE AND LIGHT TAILS MEDIUM DEPENDENCE AND HEAVY TAIL*

0 Ql a 3 Cl Ca 0 a , «a Cl Ca

1 1 1 0.1 0.15 ! * 0.5 . 1.5 : X 0.3

N=TO 0 « 2 0 a 1% A m Xam Xurm N -T 0 0 « c a-* 0 »» 0 rm Xam X *m  i

X 0 .0 1 1.18 0.16 0.534 0.54 1.53 0.346 0.680 X 1.08 0.80 0.80 0.472 0.63 1 .0 0 0.367 0.651 :

Y (0.35) 0.06 0.15 (O.OM5) (0.13) (053) (0.106) (0.053) Y (0.18) 0.03 1.4 (0.050) (0.06) ( 0  1 1 ) (0.073) ( 0  037)

N —500 0 a C 2 -* 0 am 07«« Xa 8« Xerm > N—500 0 C 2 -* 0 m 07»« Xi m X*« n

X 0.07 1.03 0 . 1 0 0.510 0.70 l i e 0.438 0.576 i x 0 . 0 0 1 .0 0 0.08 0.503 0.61 1.91 6  431 0.571 1

Y (0.13) 1.06 0.15 (0.043) (0 .0 0 ) (0.16) (0.050) (0.037) ! Y (0 .0 0 ) 1 .0 2 1.48 (0.032) (0.07) (0.131 (0.036) (0.036)

SEMI HIGH DEPENDENCE AND LIGHT TAILS SEMI HIGH DEPENDENCE AND HEAVY TAILS

0 Oj Cl Ca 0 Ol <*a Cl Ca

1/3 0.1 0.15 « 0.704 1 / » 1 1.5 X 0.704

N-TO 0 a c 2  * 0 am 07»« X iA X»7»« N-.70 0 « c 2 * 0 m 0 **« Xi m *7-m  |

X 0.91 1.30 0 .1 1 0.807 0 .2 1 0.46 0.730 0.862 X 0.33 1.16 1 .0 1 0.703 0.33 • 40 0.713 • 654 :

Y (0.06) 1 .2 0 0.16 (0.036) (0.04) (0 .1 0 ) (0.051) (0.024) Y (0.07) 1.07 1.51 (0.038) (0.04) (0 . 1 1 ) (0.058) (0.095)

N —500 0 « c 2  * 0 am 07 8« Xam X*T8« N--500 0 a < 2 * 0  m 07»« XaN )*■ 1«

X 0.94 1.03 o.to 0.700 0.30 0.30 0.762 0.816 X 0.32 0 . 0 0 1 .0 2 0.601 0 . 2 0 0.3« 0  751 0.616

Y (0.03) 1 .0 0 0.15 (0.018) (0.03) (0.04) (0 .0 2 2 ) (0.016) Y (0.03) 0.06 1.52 (0.016) (0.06) (0.03) (0.015) (0.033)

HIGH DEPENDENCE AND LIGHT TAILS HIGH DEPENDENCE AND HEAVY TAILS !

• « 1 c< Ca l 0 *t « 1 Cl Ca 1

0.3 1 1 o.t 0.15 X 0.871 0.3 1 1 1 1.5 | X 0.671

N^ro 0 c 2  * 018« 07 6« Xam Xv-m N~ 70 0 c 3 ' 0 »« 0  m Xi m x»7m ;

X 0 . 2 0 1.05 0 . 1 0 0.871 0.14 0.38 0.823 0.007 X 0 . 2 0 1 .1 1 1 .0 0 0 .6 6 6 0.14 0.30 0.817 0.005 |

Y (0.04) 1.35 0.15 (0.023) (0 .0 2 ) (0.05) (0.031) (0.015) Y (0.05) L it 1.48 (0.038) (0 .0 2 ) ( 6  07) (0.040) ( 0  0 1 0 )

N-- 500 0 « c 2 0 / 8« 07 8« Xam X«7 8« N -500 0 a < 2 0 am 8r n X»m X -m  ;

X 0 .2 1 0 . 0 0 0 . 1 0 0 .8 6 6 0.16 0.24 0.848 0.881 X 0 . 2 0 1.04 1 .0 0 0.660 0.16 0.33 0.659 0.664 .

Y (0.03) 0 . 0 0 0.15 (0 .0 0 0 ) (0 .0 1 ) (0 .0 2 ) (0 .0 1 0 ) (0.008) Y (O.0 1 ) 1 .0 2 1.50 (0.005) (0 .0 1 ) (0 .0 1 ) (0.0(16) (0.0041

Table C.2: MLE estimates in Bivariate Model 2. Standard errors are given 

in brackets. Average computing time: 10.9 and 2.9 seconds for N  =  500 and 

N  =  70, respectively.



Appendix C. Tables 225

LOW DEPENDENCE AND LIGHT TAILS

9 «i «2 6 6

5 1 1 0.1 0.15 X 0.031

N=1000 9 a ( 2-* 9¡% X «

X 5.29 1.801 0.175 0.026 3.74 0.075

Y (1.92) 1.251 0.186 (0.035) (1.11) (0.051)

LOW DEPENDENCE AND HEAVY TAILS

9 « i a ¡ 6 6

5 1 1 1 1.5 X 0.031

N=1000 9 a i 2-* 9-,% ten  j

X 4.85 1.078 1.06 0.035 3.80 0.072 i

Y (0.92) 1.038 1.544 (0.035) (1.38) (0.050) !

Table C.3: MLE in Bivariate Model 2 in low tail dependence with large sample

size.

M ,. H E A V Y  TAILS

o t i Cti a t* C l C l £<

0.5 0.5 0.5 2 3 2.5

N Wl w 2 W 3 W 4 w 5

70 0.995 0.002 0 . 0 0 1 0.002 0 . 0 0 1

150 0.999 0 0 0 O.OOl

M ,. L IG H T  TAILS

O ti a 2 Os e . Ci C<

0.5 0.5 0.5 0.1 0.2 0.15

N Wl w 3 w 3 w 4 w 5

70 0.982 0.002 0.006 0.010 0

150 0.968 0.014 0.007 0.007 0.003

Table C.4: Trivariate independent simulations and Reversible Jump estima­

tions.
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LOW  D EPEND ENC E A N D  LIGH T TAILS 1 LOW  D EPENDENC E A N D  H EA V Y TAILS j

<*| Q j <■ «2 9 a . “ 2 <> (3

5 1 1 0.1 0.1ft X 0.031 ft 1 1 1 1.5
L >

0.031 !

N — to e ft ( 2 * Xu** N =  TO 9 n < 6 m X<M*

x 3.21 1.43 0.13 0.108 1.70 0,307 X 4.39 0.83 0.86 0.051 2.39 0.304

Y < » .M ) 1.12 0.16 (0.093) (0.44) (0.107) Y (0.56) 0.76 1.11 (0.032) (0.30) (0.043) {

N=BOO 9 a i
2 -» • m Xu»* N =  ftOO 9 « ( 2 * •s* X»** i

X 4.7ft 1.38 0.13 0.037 3.24 0.106 X 4.81 1.01 0.87 0.035 3.32 0.100

Y (1.2ft) 1.31 0.18 (0.038) (0,78) (0.007) Y (1.2ft) 0.96 1.33 (0.030) (0.76) (0.040)

SEM I LOW  D EPENDENC E A ND  LIGHT TAILS SEMI LOW  DEPEND ENC E AN D  H EAVY TAILS
J

6 <*i a 3 (3 6 a . « » < 1 6

S I 1 0.1 0.1ft * 0.125 3 1 1 1 1.5
L  * . 0.125

N = TO » « < 1 -* 6g* Xu»« N =  7ll 9 O « 3 '* 9 t% X«**

X 3.9ft 1.34 0.14 0.129 1.57 0.336 X 2.93 0.87 0.93 0.133 1.59 0.331

Y (0.79) 1.18 0.17 (O.OH9) (0.37) (0.093) Y (0.85) 0.86 1.33 (0.089) (0.42) (0.096)

N = 5 0 0 0 « < 2 -* 6a* X»»* N=ftOO 9 <2 « 2 * 6m Xu**

X 3.50 1.00 0.10 0.088 2.60 0.178 X 3.38 0.99 0.97 0.096 3.4ft 0.183

Y (0.97) 1.33 0.17 (0.040) (0.37) (0.053) Y (0.37) 0.86 1.36 (0.036) (0.23) (0.039)

M E D IU M  DEPEND ENC E A N D  LIC H T TAILS M EDIUM  DEPEND ENC E AN D  H EAVY TAILS !

9 O j t , (3 9 a i « 2 <1 (3

1 1 1 0.1 0.16 X 0.6 1.& O.ft

N =  TO 0 «* t 2 » 9 i  t% 6»?>* X2 ** X»? »* N =  TO 6 a € 3 * 6 . 6« 6 .? ,* X :> K X»? *K !

X 0.94 1.22 0.11 0.620 0,55 1.87 0.274 0.681 X 1.27 0.83 0.83 0.414 0.73 3.63 0.163 0.603 1

Y (0.23) l . o a 0.1 ft (0.077) ( 0 .1 1 ) (0.70) (0.109) (0.048) Y (0.21) 0.8 1.37 (0.060) (0.10) (0.53) (0.063) (0.043)

N ^aoo 9 a < 2 '* 9 ,  t% 6tf?g* X i l K X<*<* N=5O0 9 « C 3 * 6 ,1 « •»? »« k m Xu?»*

X 0.9« 1.04 0.10 0.506 0.79 1.23 0.435 0.575 X 1.02 0.98 0.97 0.493 0.83 1.39 0 .406 0.564 .

Y (0.13) 1.06 0.1ft (0.044) (0.09) (0.18) (o.ofts) (0.038) Y (0.09) 0.99 1.48 (0.033) (0.07) (O.IS) (O.U39) (0.038)

SEMI 14ICH DEPEND ENC E A N D  LIC H T TAILS SEMI HIGH DEPEND ENC E A N D  H EAVY TAILS J
9 a , f t ] ( l (3 9 a? (1

1 /3 0.1 0.15 X 0.794 1 /3
’ *

0.7*4

N -T O 9 a « 2 * e Jt% X j  t* Xv?** N — TO 9 « ( 3 * 6 ;* « « .• IK X , i * X » ' n

X 0.33 1.31 0.11 0.801 0.22 0.48 0.717 0.860 X 0.37 1.02 0.96 O.TT4 0.95 O.ftT 0.675 O « « I  :

Y (0.07) 1.33 0.16 (0.037) (0.04) (0.11) (0.056) (0.034) Y (O.OT) 0.94 1.4 (0.038) (0.04) (0.13) (O.OftT) (0 .0 3 ft)

N^-5<I0 9 a ( 2  * X>** X a r iK N —BOO 9 O ( 2 * 6 ,* « 6 v t * X 2 t* Xu? n  "

X 0.34 1.03 0.10 0.790 0.39 0.40 0.759 0.816 X 0.32 0.97 1.01 0.797 0.28 0.38 0.766 0.823

Y (0.03) 1.00 0.1ft (0.019) (0.03) (0.04) (0.032) (0.016) Y (0.03) 0.94 1.50 (0.019) (0.03) (O.IM) (0.022) (0.018)

HIGH DEPEND ENC E A N D  LIGH T TAILS HIGH D EPENDENC E A N D  H EAVY TAILS

0 CT| f t l C> <3 9 a i O j ( , <3

0.3 1 1 0.1 0.16 X 0.871 0.2 1 1 1 l.ft X 0.671

N =  70 9 « ( 3 * 6 2  a* 6 b ? I* X 3** X* r i* N -  70 9 a f 3 * *2 n 6»r »* X :* « X »?** ^

X 0.30 1.03 0 .1 0.870 0.14 0.39 0.817 0.006 X 0.33 1 0.94 0.857 0.16 0.32 o .*m 0.897 i

Y (0.03) 1.27 O.IS (0.019) (0 .0 2 ) (O.Oft) (0.039) (0.014) Y (O.Oft) 1.05 1.39 (0 .0 X 1) (0.03) (0.08) (0.045) (0 1 1 2 0 )

N^ftOO 9 « « 2  * 6 jj* 6 bt B* X »** X*T 1* N —500 9 » c 3 • 6 2 m A m X, >* X«? u*

X 0 .2 1 0.91 0 . 1 0 0.800 0.18 0.24 0.848 0.882 X 0.2 1 1.0 1 0.98 0 . 8 6 6 0.18 0.34 0.848 0.682 '

Y ( 0 .0 1 ) 0.91 O.IS (0.009) (0 .0 1 ) (0 .0 2 ) (0 .0 1 0 ) (0.008) Y (0 .0 1 ) 0.99 147 (O.OOft) (0 .0 1 ) ( "O i l (O.INM) (O.IMM)

Table C.5: Bayesian estimations for Model 2 simulations. Standard errors are 

given in brackets. Average computing time: 76.8 and 21.5 seconds for N  =  500 

and N  =  70, respectively.
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EXACT INDEPENDENCE. LIGHT CPD’»

Marg k, k, Oí

Paran». 0.1 1 0.15 1

N  ̂IWH) 0 « ( 7* k«n X Kmp.

X 4.01 0.94 0 .» 0.033 3.71 0,076 0.046

Y (0.462) 1.07 0.29 (0.1O2) (0.407) (0.021)

LOW TAIL DEPENDENCE. LIGHT GPD'»

Clayton * X Marg. ki «i kt Oí

Paran« 0.20 0.031 Paran» 0.1 1 0.15 1

N = 1000 8 « ( 2 * X«K X&np-

X 2.05 0.97 0.26 0.130 2.37 0.194 0.176

Y (0.205) 1.14 0.29 (0.026) (0.216) (0.256)

Clayton ♦ X Mar g. k| o t kj o}

Paran» 1.35 0.125 Paran» 0.1 0.15 1

N -1000 0 a j-* «m •km Xm XST5» X Emp

X 2.22 0.90 0.27 0.214 1.73 3.01 0.124 0.301 0.248

Y (0.110) 0.94 0.29 (0.017) (0.099) (0.217) (0.017) (0.021)

MEDIUM TAIL DEPENDENCE. LIGHT CPD'i

Clayton ♦ X Marg. k, 0\ k, Oí

Paran» 0.5 paran» 0.1 0.15

N T 1000 a 2 * 015» «»74* Xli» Xkm X EmP

X 1.10 0.64 0.26 U.467 0.85 1.41 0J77 0.557 0.502

Y (0.190) 0.99 0.30 (0.059) (0.151) (0.220) (0.0SU) (0.059)

HIGH TAIL DEPENDENCE. UGHT CrD’»

Clayton 4 X Marg. k. o 1 kj Oí

Paran» 0.794 Paran» 0.1 0.15

N = 1000 8 a 2 * «js* 8n\ Xas» X*TS% X Emp-

X (1.330 0.56 0.28 0.790 0.118 0.462 0.726 0.921 0.794

Y (0.056) 0.97 0.30 (0.031) (0.052) (0.067) (0.034) (0.032)

Cbytoo 8 X Marg. k. Oí k* Oí

Paran» 6 0.871 Paran» 0.1 0.15

N - 1000 8 a c 7* «1.5» «W5» Xl5» x m X î ntp-

X 0.171 0.50 0.34 0.888 0.031 0.265 0.832 0.979 0.870

Y (0.044) 0.99 0.37 (0.027) 0.005) (0.062) (0.036) (0.003)

TAIL INDEPENDENCE. UGHT GPD’*

GauMian P X Marg ki 0\ k* Oí

Paran» 0.5 0 1 Parama 0.1 1 0.15 1

N = 1000 8 < 7'* «i*» •ns% t ía X«14» X Fjnp.

X 1.00 0.73 0.27 0.267 1.48 2.70 0.153 0.359 0.246

Y (0.160) 0.73 0.28 (0.032) (0.143) (0.347) (0.037) (0.037)

EXACT INDEPENDENCE. HEAVY GPD'»

j Marg. k| Ot it Oí i

 ̂ Paraît». 1 1 1.5 \

N - 1000 « a < 7'* fc» X»» X fj"P

* 8.25 1.41 1.20 0.003 6.36 0.024 aou

Y (0.723) 1.47 1.21 (0.002) (0.468) (0.007)

LOW TAIL DEPENDENCE. HEAVY GPD'i

Clayton 4 X Marg Paran» k. •i kt *1

Paran» 0.70 0.031 Paran» 1 1.5 1

N - 1000 8 a < 2* X*» X F*P

x 5.22 0.91 0.93 0.027 143 0.IV3 0.166

Y (0.932) 1.03 1.45 (0.015) (0.439) (0 028)

Claytnn 4 X Marg. Paran» k) Ot k, •l

Parain* 1.33 0.125 Paran» 1 1.6

N - 1000 a < 2-* •is» V « km X«rl» 1 &■(>

* 3.16 0.88 0.94 0.112 109 5.76 0.016 0.335 0236

Y (0.421) OJM 1.35 (0.031) (0186) (0.900) (0.013) (0.030) 1

MEDIUM TAIL DEPENDENCE HEAVY GPD1» i

Clayton 4 X Marg Paran» k. »i kt •»

Paran» 0.5 Paran» 1.5

N -1000 8 a 2 • ^*» km » » « X <

X 1.11 0.61 0.92 0.465 983 1.61 a  328 9563 a &u3

Y (0.186) 0.66 1.42 (0.061) (0.136) (0-393) (9106) (0.054)

HIGH TAIL DEPENDENCE. HEAVY GPD'» j

Clayton 4 X Marg. Paran» ki », k. •í

Paran» 0.794 Paran» ■ 15

N = 1000 8 a 2* •m A»»» km X«t» X K»p ;

X 0.366 0.50 0.92 0.77« 0.268 0.461 0.711 0.930 979«

Y (0.050) 0.94 1.36 (0.027) (0.037) (9071) (0.035) (0(133)

Claytoa 4 X Marg- Pwao» k, », k,

Paran» 6 0.871 Paran» 15

N = 1000 « a 2"* ^ i» L » Xm k«>» X t* l‘  ■

X 0.216 0.52 0.96 0.860 o.ir 0.366 0.614 9616 9970

Y (0.031) 1.07 140 (0.016) (0.030) (0.016) (0.02T) (oum
TAIL INDEPENDENCE HEAVY GPD'»

Ga waian P X Marg Paran» ki k«

Paran» 0.5 0 ftraa» 1 1 1.5 '

N =■ 1000 « a Í 2** «15» « r » Xm l* n tKatp (

X 2.72 0.70 0.91 0.151 1.79 5.U* 0.030 6366 9)46 :

Y (0.370) 0.T6 1.32 (0.039) <0.18T) ( l « « l (o ios) (0 037)

Table C.6: Bayesian estimations for data simulations. Standard errors are 

given in brackets. Average computing time: 11.9 seconds per replication.
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M , (T D ). H EAVY  TAILS

N «1 a  2 « 3 il 6 i <

70 0.5 0.5 0.5 2 3 2.5

0 3 _ s
W i w 2 w j w 4 w B

0 . 1 0.90 0.00 0.00 0.00 0.00 1.00

0.5 0.58 0.00 0.00 0.00 0.00 1.00

1 0.33 0.00 0.00 0.01 0.00 0.99

2 0.11 0.00 0.00 0.00 0.00 0.99

3 0.04 0.00 0.00 0.05 0.00 0.95

3.5 0.02 0.00 0.00 0.03 0.00 0.97

4 0.01 0.23 0.08 0.08 0.28 0.33

4.5 0.01 0.00 0.33 0.04 0.00 0.63

5 0.00 0.11 0.07 0.12 0.01 0.69

M ,(T D ). H EAVY  TAILS

N Oil OCi « 3 £ £i £.

150 0.5 0.5 0.5 2 3 2.5

e 3-»
W i W j W j w 4 w »

0 . 1 0.90 0.00 0.00 0.00 0.00 1.00

0.5 0.58 0.00 0.00 0.00 0.00 1.00

1 0.33 0.00 0.00 0.00 0.00 1.00

2 0.11 0.00 0.00 0.00 0.00 1.00

3 0.04 0.00 0.01 0.00 0.00 0.99

4 0.01 0.01 0.04 0.01 0.00 0.93

4.5 0.01 0.00 0.00 0.45 0.02 0.53

5 0.00 0.00 0.00 0.00 0.00 1.00

M ,  (T D ). LIGH T  TAILS

N Oj 0=2 0=3 il i i i l

70 0.5 0.5 0.5 0 . 1 0.2 0.15

o 3 -® W , w 3 wa w4 W B

0.1 0.90 0.00 0.00 0.00 0.00 1.00

0.5 0.58 0.00 0.00 0.00 0.00 1.00

1 0.33 0.02 0.00 0.00 0.00 0.97

2 0.11 0.01 0.00 0.00 0.00 0.99

3 0.04 0.03 0.13 0.26 0.01 0.57

3.5 0.02 0.05 0.22 0.01 0.04 0.68

4 0.01 0.01 0.01 0.01 0.04 0.93

4.5 0.01 0.15 0.01 0.36 0.25 0.21

5 0.00 0.01 0.04 0.00 0.00 0.29

M s (T D ). LIGHT  TAILS

N 0=1 OCi 0 .3 <1 i l £.

150 0.5 0.5 0.5 0.1 0.2 0.15

0
S - $

W i wa W s w4 W »

0 . 1 0.90 0.00 0.00 0.00 0.00 1.00

0.5 0.58 0.00 0.00 0.00 0.00 1.00

i 0.33 0.04 0.00 0.00 0.00 0.96

2 0.11 0.00 0.00 0.00 0.00 1.00

3 0.04 0.04 0.00 0.00 0.00 0.96

3.5 0.02 0.01 0.00 0.00 0.00 0.99

4 0.01 0.08 0.13 0.01 0.13 0.65

4.5 0.01 0.02 0.00 0.18 0.00 0.80

5 0.00 0.16 0.00 0.29 0.07 0.48

Table C.7: Trivariate M5 simulations and R. J. estimations: small and medium

size.
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M 6 (T D ). H E A V Y  TAILS M , (T D ). L IG H T  TAILS

N <X\ <*2 « . e . N « 1 a 2 a :t i . 6 6

300 0.5 0.5 0.5 2 3 2.5 300 0.5 0.5 0.5 0 . 1 0.2 0.15

e 3 - 8
W i w3 W S w4 wa e 3 - e W l w2 W 3 W 4 W #

4.5 0.01 0.01 0.05 0.00 0.00 0.95 4.5 0.01 0.01 0.00 0.00 0.00 0.98

5 0.00 0.00 0.00 0.00 0.00 1.00 5 0.00 0.03 0.00 0.00 0.03 0.93

6 0.00 0.01 0.05 0.00 0.01 0.94 6 0.00 0.08 0.00 0.02 0.00 0.90

6.5 0.00 0.00 0.00 0.00 0.00 1.00 6.5 0.00 0.02 0.00 0.00 0.00 0.98

7 0.00 0.00 0.00 0.00 0.92 0.08 7 0.00 0.65 0.01 0.00 0.32 0.01

7.5 0.00 0.06 0.00 0.00 0.94 0.01 7.5 0.00 0.79 0.14 0.01 0.02 0.04

8 0.00 0.00 0.19 0.00 0.00 0.80 8 0.00 0.02 0.00 0.00 0.00 0.98

9 0.00 0.00 0.00 0.02 0.00 0.98 9 0.00 0.72 0.03 0.03 0.02 0.20

Table C.8: Trivariate M5 simulations and R. J. estimations: large size.

M j  (D D , ,a). H E A V Y  T A I L S

N « 1 « 2 « 3 i . &

3 0 0 0 .5 0 .5 0 .5 2 3 2 .5

0 2 -e W l w 2 w s W4 w 5

4 0 .0 6 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0

4 .5 0 .0 4 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0

5 0 .0 3 0 .1 8 0 .8 0 0 .0 1 0 .0 0 0 .0 1

6 0 .0 2 0 .8 0 0 .2 0 0 .0 0 0 .0 0 0 .0 0

7 0 .0 1 0 .9 9 0 .0 1 0 .0 0 0 .0 0 0 .0 0

Ma (D Di.a). L IG H T  TA IL S

N «1 OLi Oti i i c .

300 0.5 0.5 0.5 0 .1 0.2 0.15

9 2-8 W l W j w s W4 W5

4 0.06 0.14 0.86 0.00 0.00 0.00

4.5 0.04 0.06 0.94 0.00 0.00 0.00

5 0.03 0.25 0.75 0.00 0.00 0.00

6 0.02 0.65 0.33 0.00 0.00 0.01

7 0.01 1.00 0.00 0.00 0.00 0.00

Table C.9: Trivariate M2 simulations and R. J. estimations: large size,
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M a (D D ,,a). H E A V Y  T A IL S

N <*1 ota a s <1 «2 ( 3

70 0.5 0.5 0.5 2 3 2.5

0 2 -0 W i w3 w3 w4 w8

0.1 0.93 0.00 1.00 0.00 0.00 0.00

0.5 0.71 0.00 1.00 0.00 0.00 0.00

1 0.50 0.00 0.99 0.00 0.00 0.01

2 0.25 0.28 0.71 0.00 0.00 0.00

3 0.13 0.51 0.14 0.09 0.03 0.24

3.5 0.09 0.12 0.87 0.00 0.00 0.00

4 0.06 0.00 0.96 0.00 0.00 0.03

5 0.03 0.25 0.75 0.00 0.00 0.00

M a (D D ,.a . H EA V Y  TAILS

N O i a a <*A il ia 6
150 0.5 0.5 0.5 2 3 2.5

0 2 -e W l W 2 W j w4 w5

2 0.25 0.00 1.00 0.00 0.00 0.00

3 0.13 0.00 1.00 0.00 0.00 0.00

3.5 0.09 0.01 0.99 0.00 0.00 0.00

4 0.06 0.92 0.08 0.00 0.00 0.00

5 0.03 0.20 0.79 0.00 0.00 0.00

6 0.02 0.96 0.01 0.00 0.03 0.00

Ma (D D ,,a). L IG H T  T A IL S

N a , ot2 a 3 i, «2

70 0.5 0.5 0.5 0 . 1 0.2 0.15

0 2"9 W i wa w3 w4 W s

0 . 1 0.93 0.00 1.00 0.00 0.00 0.00

0.5 0.71 0.01 0.97 0.00 0.00 0.02

1 0.50 0.07 0.93 0.00 0.00 0.00

2 0.25 0.03 0.97 0.00 0.00 0.00

3 0.13 0.23 0.73 0.01 0.00 0.03

3.5 0.09 0.46 0.51 0.02 0.00 0.01

4 0.06 0.86 0.06 0.01 0.05 0.01

5 0.03 0.60 0.30 0.09 0.00 0.00

Ma (DD,.a ) .  LIG H T  TAILS

N Oil «2 < * 3 f. ia
150 0.5 0.5 0.5 0 . 1 0.2 0.15

e 2 - » W i W j W j w4 W |

2 0.25 0.01 0.99 0.00 0.00 0.00

3 0.13 0.01 0.98 0.00 0.00 0.01

3.5 0.09 0.06 0.94 0.00 0.00 0.00

4 0.06 0.73 0.27 0.00 0.00 0.00

5 0.03 0.23 0.53 0.18 0.00 0.05

6 0.02 0.94 0.04 0.00 0.01 0.00

Table C.10: Trivariate M2 simulations and R. J. estimations: small and

medium size,
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FRANCE-l’K LEFT TAIL -FRANCE-UK RiGHT TAIL

N- 70 # o i 2* A*s Am Xm Xu« X Pikid etal X Ledford Tiwn

FRAN 0.73 0.39 0.01 0.61 0.34 1.00 0.50 0.69 0.57 03»

UK 1.27 0.01

FRANCE-GERMANY LEFT TAIL

N - 75 • o i i * A« Arss Xm X*« X Ln(d«tlr 5 Ledford Thwd 1

FRAN 0.77 1.03 0.01 0.58 0.57 1.11! 0.47 (1.67 0.57 0.88

GER 1.04 0.01

GERMANY-l'K LEFT TAIL

N -• 75 6 a t 2 • Ass A: ns Xm X«« X P<h)D et al. £ Ledford Tiwn

GER 0.94 0.33 0.01 0..32 0.97 1.34 0.39 0.31 0.46 0.99

UK 0.97 0.01

UK-l’S LEFT TAIL

N - 67 9 a i 2 ' Ass Am Xm X«JS X Pool et al. X Ledford Thwn |

UK 2.29 1.08 0.01 0.20 1.61 3.77 11.07 0.33 0.2» 0.73

l'S 1.31 0.01

GERMANY-US LEFT TAIL

N - 72 9 a l 1 A « A: ns Xm X«« X Pood ft al. X Ledford Taira

GER 2.34 0.91 (1.01 (1.17 1.77 4.39 0.03 0.29 0.27

US 1.71 0.01

FRANCE-US LEFTTAIL

N - 67 9 a 2 ' Ass Am Xm X»m X Pooc at al. $ Ledford Tawn

FRAN 2.43 1.03 0.01 0.19 1.73 3.66 0.08 0.30 0.26 0.93

US 1.30 0.01

JAPAN-US LEFT fail

N - 7| 9 a 2 • As X«s X Pu« at al. X Ledford Tliwu

JAP 2.29 1.24 0.01 0.20 1.63 3.71 U.06 0.32 0
1

0.23

US 1.19 0.01

JAPAN-UK LEFT TAIL

N = 70 9 a ( 2 * As X«% X Pmw et al. X Leditrd Tiwt >

JAP 3.83 1.23 0.01 0.07 2.62 0.16 0.27

UK 1.3(1 0.01

FRANCE-JAPAN LEFT TAIL

N - 70 I a ( 2 * As X*s X Pool at al. X Ledford Tmrtj

FRAN 3.44 1.27 0.01 0.11» 2.37 0.19 0 0.49 |

JAP 0.52 0.01

CERMANY-JAPAN LEFT TAIL

N - 72 9 0 { 2 * As X Pool eta). X Ledford T »n

GER 4.13 0.38 0.01 0.1» 2.01) 0.16 0 0.31

JAP 1.20 0.01

N 67 # a i  2”* A.« Arss toss Xu.« xlVmetaL X Ledford Ta*i

FRAN 0.81 1.01 0.01 0.37 Ö.58 1.1S 0.43 0.67 0.31 1.16

UK 0.72 0.01

FRANCE-GERMANY RIGHT TAIL

N- 67 # o ( 2 * #21% A:« toss X<« X A*ym-Ma X Ledford Tiara

FRAN 0.79 0.95 0.01 0.36 0.36 l.ftt 0.47 0.67 0.36 Ü.97

GER 0.66 0.01

GERMANY-UK RIGHT TAIL

N - 63 • a ( 2 * #3« I, «  to« X«m xP00“ «*«1- XWfordlinr*

GER 1.10 0.99 0.01 0.47 0.62 1.33 0.35 0.37 049 0.M

IK 0.78 0.01

UK-US RIGHT TAIL

N - 70 9 a {  2* A « Am toss X*m xPb0«'*»L X Ledford Tiwi

UK 2.34 (1.01 0.01 0.17 1.70 4.25 0.05 0.31 0 0.3S

US 1.42 O.lil

CERMANY-US RIGHT TAIL

N - 68 9 o ( 3* As x«s

GER 3.M0 1.38 0.01 0.07 2.43 0.19 

US 1.18 0.01

FRANCE-US RIGHT TAIL

X Poos i<»1 S Ledfcrd TMn 

0 0.43

FRAN 2.42 1.61 0.01 0.19 1.37 4.» 0.03 a<2 

US 1.27 0.01

JAPAN-US RIGHT TAIL

N - 70 9 a  (  2 # As x*s

JAP 4.01 1.16 0.01 0.06 2.64 0.16 

US 1.43 0.01

JAPAN-UK RIGHT TAIL

X Pooc H aL X Udfcrd Twn

0 0.31

14 68 f  a < 2 * As X«%

JAP 3.00 1.20 0.01 0.12 2.02 0.23 

UK 1.17 0.01

FRANCEJAPAN RIGHT TAIL

X Pool et iL S IsJfcrd Tbwi'
l

0 0.23 !

N" - 68 9 a ( T* As x«s x Pool etiL X Ledford TWrl ;

FRAN 365 2.00 0.112 0.08 2.45 0.18 0 0.37

JAP 0.89 0.01

GERMANY-JAPAN RIGHT TAIL

N - 68 9 Q 2 # As X*t X Pool et aL X l*dford b n

GER 4,00 1.81 0.02 O.U6 3.64 0.1« 0 0.23

JAP 1.31 0.01

for 6, and other extreme estimations (average computing time: 21.8s).
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| FRANCE-GERMANY-UK. Negative FRANCE-GERMANY-UK. Positive

N N e n m M, m 4 m , Ms M, SELECTION N N €  Rm Mb m 4 Ms Ms Mi SELECTION

67 18 0.954 0 0 0 0.046 TRIPLE DEP 73 13 0.943 0 0 0 0.057 TFUPLE DEP

GERMANY-JAPAN-US. Negative GERMANY-JAPAN-US. Poeitlve

N N € Rui Mb M« M, M, M, SELECTION N N € R „ i Ms m 4 M, M, M, SELECTION

61 1 0.942 0.007 0 0 0.051 TRIPLE DEP HI 5 0.820 0.006 0.006 0.003 0.166 TRIPLE DEP

JAPAN-UK-US. Negative JAPAN-UK-US. Positive

N N e R i „ Mb M« Mb Ms M( SELECTION N N i R m M, M . M« M, M, SELECTION

61 1 0.932 0.001 () 0 0.1)67 TRIPLE DEP 60 1 0.930 0.027 0 0.001 0.042 TRIPLE DEP

FRANCE-JAPAN-US. Negative FRANCE-JAPAN-US. Positive

N N e » m M, M4 M* Ms M, SELECTION N n  e n ,u Mb m 4 M , M, M, SELECTION j

62 1 0.001 0 0 0 0.999 NDEPENDENCE 38 2 0.837 0 0.069 0 0.093 TRIPLE DEP i
FRANCE-GERMANY-JAP. Negative FRANCE-GERMANY-JAP. Pt*ltive I

N N e R ,„ M, M4 M, M, M, SELECTION N N € Rm Mb m 4 M« M, Mi SELECTION !

69 3 0.002 0 0 0.969 0.029 JAPINDEP 63 0.001 0 0 0.960 0.040 JAP INDEP !

FRANCE-GERMANY-US. Negative FRANCE-GERMANY-US. Poaitive !

N N € R . „ Mb m 4 M, Ms Mi SELECTION N n <e r „ , Mb m 4 M, M, M, SELECTION !

61 0.002 0 0 0.924 0.074 US INDEP 65 4 0.004 0 0 0.932 0.064 US INDEP

FRANCE-JAPAN.UK. N,native FRANCE-JAPAN-UK. Pmitive

N N € R „ , Mb m 4 M, M, M, SELECTION ' N N € R i» Mb m 4 Ms M, M, SELECTION j
62 0,002 0 0.958 0 0.040 JAP INDEP | 65 2 0.001 0 0.968 0 0.031 JAP INDEP |

FRANCE-UK-US. Negative FRANCE-UK-US. Poeitive i
N N € R „ , M. m 4 M, Mi Mi SELECTION N N € Rm Mb M . M* M, M, SELECTION ;
68 5 0.013 0 0 0.904 0.083 US INDEP 62 8 0.011 0 0 0.899 0.090 US INDEP j

GERMANY-JAPAN.UK. Negative GERMANY-JAPAN-UK. PmitJve |
N N € R m Mb m 4 M, M, M, SELECTION N N € Rm M , m 4 M , M, M, SELECTION j
62 1 0.001 0 0.934 0 0.063 JAPINDEP 67 1 0.001 0 0.942 0 0.057 JAPINDEP !

GERMANY-UK-US. Negative GERMANY-UK-US. Poeitive 1
N N € R ,„ Mb m 4 M, Ms M, SELECTION N N € R m Mb M . M, M, M, SELECTION i

0.0U5 0 »,1)01 0.987 0,037 0.688 0.023 US 1NDEP

Table C.12: Bayesian Model Selection for trivariate Indices (average comput­

ing time: 22.2s).
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K R A N C K .( ;tC H M A N Y -lJ K . Nagntiva F R A N C E -G E R M A N Y -U K . Positive

Pnrain<H««r (¡«lliiw tloii. M i Param eter E stim ation. Mg

0 «  <  X . 0i  M» 00?.g* X.1ra«K) XSl«’ »*.) 0 O i Xs 0 a 5* 0 »TH XS<»7 6t|

P H A N 0 .8 « 0 .5 4  0 .01  0 .88 0 .0 7  l i e  0 .2 7  0 .4 « P H A N 0 . 0 0 0 .7 8  0 .01  0 .3 7  0 .6 7  1 .23  0 .2 «  0 .4 8

C  K it 0 .5 7  0 .01 CJKR 0.71 0 .01

O K 1.44  0 .01 (IK 0 . 8 8  0 . 0 1

C K K M A N Y -J A P A N -d S . N egative C E R M A N Y -J A P A N -U S . positive

I’nrHinitlnr K>thnatk>ii. M t Parainotor E stim ation. M g

0 “  « &r,% X.imw) 0 °  {  X i  0&» Xsiwt)

G K R 2..18 0 .8 8  0 .01  0 .07 1 .7«  0 .14 ( ¡K R 8 . 8 8 1.40 0 .0 2  0 .0 3  2 .2 8  0 .0 8

J A P 1 .2 «  0 . 0 1 J A P 0 .7 «  0 .01

0 8 I . 1 S 0 . 0 1 118 2 . 2 1  0 . 0 2

J A P - 0 K - 0 8 .  N egatlv* J A P -U K 'U S . Positive

I'nruiiinbir Kallm atton. M» Param eter E n liiM tk m . Mg

0 «  <  » i 0f.t X»IKt) i 0 °  t  X i  0 m  XiiMH)

J A P 2.8 0 1 .28  0 .01  0 .07 1 .76 0 .1 5 J A P 2.54 1.51 0 .0 2  0 .0 0  1 .85  0 .1 3

O K 1.14 0 .01 U K 1 . 1 0  0 . 0 1

0 8 1 . 1«  0 . 0 1 (18 1.24 0.01

P R A N G B -J  A P A N -U 8 . Pualtlv*

l'itr« in n lo r K atlm alion. M« 
® o  I  *i 0f,t »*,«*>

P R A N  2 .4 «  1 .5 «  0 .0 »  0 .0 7  1 .77  0 .14

J A P  1 .17  0 .01

o h  i. s «  o.o i

Table C.13: Bayesian Trivariate estimates of triple tail dependence models.
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O P T I M A L L Y A L L O C A T E D  P O R T F O L I O
F R A N C E G E R M A N Y

().!) 1 0 .0 9
F R A N C E J A P A N

0 . 4 9 0.51
F R A N C E I J K

0 1
F R A N C E U S

0 .4 0 0 .0 0
i G E R M A N Y .] A P A  N

0 .3 4 0.00
G E R M A N Y U K

0 1
1 G E R M A N Y U S

0 .3 4 0 . 0 0
.1 A I • A N LTK

0 .4 3 0 .5 7
.1A  P  A N LIS

0 . 4 0 0 .0 0
U K U S

0 .5 2 0 .4 8

Table CM 1: Optimum allocations of different pairs of Global Indices.

PREDICTIVE MEAN DAILY EXCESS LOSS 10% TAIL

FRANCE GERM ANY ml

3.81% 3.87% 2.66%

FRANCE UK ml

3.27% 3.06% 2.21%

GERM ANY UK ml

3.08% 3.23% 2.35%

Table C.15: Predictive mean daily excess loss over 90% loss threshold of orig­

inal pairs of Global Indices.
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Figures

Figure D.l: Bivariate regions: /?oi, R ¡q, and R\\.

235
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Figure D.2: \  in the simple exponential case.

L-SHAPKD MARGINAL a, -  0.1. y, -  1.3.0- 4 UN1MODAL MARGINAL a, -  0.1, -  0.3.9 «4

Figure D.3: Examples of Model 1 Marginals.
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Figure D.4: Examples of Model 2 Marginals.
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Empirical MCMC Sampling Maan o< 9 Em pirical MCMC Sam pling Maan of 6

200 400 ooo 000 1000 1200 1400 1500 1M0 200C 0 200 *00 « 0  *00 1000 1200 1400 1400
N «

Empirical MCMC Sampling Mean of 8 ______ Empirical MCMC Sampling Maan o* *

r

1000 1500 2000 2500 N00 4000 4500 500C 0

Figure D.5: MCMC sample means for 6,
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N O N -C E N SO R E D  T R A N SFO R M E D DATA (EXACT INDEP-H EAVY) PRED ICT IVE  SA M P L E  IN LOG -LOG SC A LE  (EXACT  INDEP-HEAVY)

? 8
log(log(X|)

N O N -C E N SO R E D  T R A N SFO R M E D  DATA  (TAIL INDEP-HEAVY)

lofl(log(X))

PRED IC T IV E  SA M P L E  IN LO G -LO G  SC A LE  (TAIL INDEP-HEAVY)

N O N -C E N SO R E D  T R A N SFO R M E D  DATA  (*»0.125-LIGHT)

k>g(lofl(X))

P RED IC T IV E  SA M P L E  IN LO G -LO G  SC A L E  fc-0125-LIGHT)

log(loo(X|)

DATA  IN LOG -LO G  SC A L E  (x»0.794). LIGHT

.7 4 - 5 - 4 - 3 - 2 - 1  0 1

t°g(lofl(X))

PRED IC T IV E  SA M P L E  IN LO G -LO G  SC A L E  fo-0 794). LIGHT

Figure D.6: Bayesian predictions for data simulations. Predictions vs data in

log-log scale.
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t(u) for Data. Exact lndependenl«Heavy x(u) for Sample and x j  Exact Independe nt-Haavy

*

0

-1

-
-2

•
H

'

A

I-
*

ï(u) for Data. TeH tndapandant-Haavy l(u) for Sample and Xj. TaN Independent-Heavy

oa G.i o.; ai as
u

x(u) for Data. Low Tall Dependence (x-O.12S)*Ll0ht

l(u) for Data. High Tall Dependence |x*0.7M)-LlflM

a* as oc a? a? as

Figure D.7: Bayesian predictions for x(u) vs empirical x(u)-
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Sam pling  of w for M  Heavy tails, N=150

0 8
07'

r os
04'

02;

0 11

Sam pling of w for M , Light tails, N=70

Figure D.8: Sampling processes of different weights for simulations of the 

trivariate model.

Figure D.(J: Simulated data and predictive sampling for trivariate simulations:

medium triple tail dependence.
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X(u) for Data X( and X; Medium Tripla Dap Heavy y(u) Tor Data X( and Xy Medium Tripla Dep.-Heavy X (u) (or Data X Medium Tnpla Dep -Heavy

X(u) for Sample X* and X* Modium 1 ripla Dap -Heavy ;(u) for Sample X“ and X“ Medium Tnple Dep.-Heavy X (u) for Sample Xs Medium Tnple Dep -Heavy

Figure D.10: Simulated and predictive \(i/) and ,\3(u) for trivariate simula­

tions: triple medium tail dependence.

X,-X Data in log «cale High Triple Dep-Hoavy X)-XJ Data in log acale. High Triple Dep-Heavy

? t

Figure D.ll :  Simulated data and predictive sampling for trivariate simulations: 

triple high tail dependence
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iM for M  X, arid X,. High Tripla Dap. 41000)1 j(ii) far fiala X, and X̂ . High Tripla Pap. Hsavy ^(y) for polo X. High Tripla Oop Hsosy

«1

. . SM os

Ì " t » 5 *
•4 SM 0»
as as «

ass Si

IT *’

«  •» (* oa at tr si 0s " t i oi •< os a* a' as «• u  u  M ,  ,r  u  **

xM ter «ampia Xf on* X*. High Trip* Osp.-Haavy t(u) far «ampia xfand xj High Tripla Oop.-Hoovy I,W for «ampli X*. High Tripla Dap-Ha«^

a« SSI

.

sa as

« • M
ass

l ’ "so* r
•as

sa
aa as

• n 

#rl

Figure D.12: Simulated and predictive x (u) and Xz(u) f°r trivariate simula­

tions: triple high tail dependence.
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X X Uala 111 log acale Independent-Light X -X Data in log Beala. Independent-Light

f "

Xj X̂  Sampling in log acate Indopondenl-Light

log*,

Xj-Xj Sampling in log scale. Independent-Light

(|u) for Sample x " ‘ Medium Double Dep Light X(u) lo r Sample X® and X*. Medium Double Dep-Lighl

Figure D . 13: Simulated data and predictive sampling related 

trivariate simulations: exact independence

graphics for
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Figure D.l l: Simulated data and predictive sampling related graphics for 

trivariate simulations: medium double tail dependence (A'3 exact indepen­

dent).
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Figure D.15: France CAC 40.

Figure D.16: France CAC 40 filtered and unfiltered series.
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Figure D.17: Threshold selection methods. On the left side, the Mean Excess. 

On the right side, estimations of k and its 95% confidence intervals.
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N lM C M M H tM T W  __ ^UMHniVTTM.

s i .  . ; ' . I - S’“l

’•4

Figure D.18: Scatterplot of excesses over the 0.95 quantile of the filtered pairs:

a) France-UK, b) Franee-Germany, and c) UK-US.
Iw N rm  an* MX. foattn  M flu it i  f  m m  * *  O w n . >**► »<*

II

•
*

I  41 r

.I*

Jtt «

1 1 U  t l  II If II II ) "  |i II i l  u  •• #l

44  <k  UK « 4 1 * « * * " «

ai M

Figure D.19: x iu) of filtered pairs: a) France-UK, b) France-Germany, and c)

UK-US.

X j

Figure D.20: Portfolio analysis tail region RL.
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__ PoctfoHo AMocrttan Fran«» Jap «n1U
—
i«

1 -
J
I ’«*
i

i ~
1 ”  
i

...
tun

_
•"* •"* #'< b‘» ■ o* ¿ i  ■■ |‘| —  ̂ i « e ------- — jj—_ ^  1 qj— - —j

Figure D.21: Portfolio optimum allocations plots for different Global Indices. 

Computing time: 184.5 minutes per pair.
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**r n Data ia% tad Laaa

l~

Pranoa-Japan HlMogrtn Pradlcttva 1fl% tad Laaa wiadian

Ilk-

Figure D.22: Portfolio Loss histograms. Left hand: historical, right hand: 

predictive.
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