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Chapter 1

Introduction

In general terms, extreme events can be interpreted as: catastrophes, disasters,
crisis, and crashes. For the purposes of this thesis, an extreme event can be
defined as an event that has a small chance of occurrence, but has a high
impact on the phenomenon in study.

The number of fields where there is an interest in the study of extremes
is quite extensive: hydrology, seismology, climatology, economics, insurance,
finance, epidemiology, medicine, and even in sports science.

Let us take the example of flooding. A common problem is to propose the
height of a river barrier, such that it is feasible to build and it is unlikely to be
breached. A useful way to approach this issue is to build the barrier up to a
level, which is expected to be breached once every hundred years, for example.
But to know what height this is, one needs to study extreme data. Similar

examples or motivations can be posed for each of the fields listed.
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In the thesis, we focus on financial extremes, keeping in mind the following
questions: what is an extreme?, how likely is it to occur?, what would be the
impact of its occurrence?, and what can be done with this information?

The case of the univariate framework has been developed quite extensively
in the last 50 years. The aim of this work is to model multivariate behaviors
of extremes. Multivariate extremes is a relatively new area and as such, it
is still in development. Beside, the theory states that, unlike the univariate
framework, there is not a unique parametric family of multivariate extreme
distributions. An important part of a multivariate model is the dependence
structure. The selection of the parametric form will determine the dependence
structure, and in most of the cases, it is a rigid structure, in the sense that it
hardly embraces different types of dependence among the variables.

The variables we are modelling are semi-heavy and heavy tailed variables,
generically denoted by X. This means, firstly, that the variables do not have an
upper limit (or lower limit, if the study is the left tail). The second consequence
is that the variables we are modelling are such that: E(X"™) = oo, for some r <
0o. This means our model does not include light-tailed variables. We consider
this assumption as reasonable as a first attempt of modelling extremes.

We introduce a model that applies exclusively to the tails. We do not
assume any model for any other region and it is not the concern of the thesis.

We propose a mixture of individual models which have the following fea-

tures:
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e They belong to the same parametric family.

e They embrace different dependence structure from each other.

e They have marginal coherence.
e They have a simple parametric form.

It is important to notice that we are assuming that the only form of asymp-
totic independence of each individual model is the exact independence. In
other words, two variables can either be asymptotically dependent or exact‘
independent.

Let X = (X},...,X4) be the random vector in study. Let C be the class
of non-empty subsets of the set B = {1,...,d}. Denote C = (C,...,Cy),
where each C} is an index variable over the set B, i.e., C; denotes a collection
of the elements in X. Note that U‘;':l Cj = B. For example, if C; = (1,2),
then X¢, = (X1, X2); as well, Xp = X.

We define a latent variable AD(C) such that:

X | AD(C;) means the elements in X¢; are asymptotically dependent and
the elements in Xp\c; are exact independent, for j = 1,...,d".

A natural question is to determine which of the variables AD(Cj), for
C; € C, are plausible for describing a given set of data. For example, if

d =3, interest would be on determining the feasibility of the different possible

asymptotic dependencies among X, X3, and Xj.!

'With this definition, it is clear that if Cj, a collection of a single element, is plausible
k]



Chapter 1. Introduction 5

The mixture model we propose is expressed, in general terms, as:
&
> w; f5(X]AD(Cy)),
j=1
where 0 < w; < 1 and ) w; =1, and f; is the individual model associated to
the asymptotic dependence structure given by the latent variable AD(C}).

The individual models are parametric models defined with a special con-
struction of dependent variables, such that the asymptotic dependence relies
only on one interpretable parameter. This parameter, let it be 8, does not
have any consequential influence on the univariate marginals. As well, 4 is
common to all the individual models. Although, in principle, this fact seems
restrictive, it must be noticed that the weights of the mixture model play as
well an important role in the general dependence structure. Therefore, the
relevant information regarding asymptotic dependence of individual model f;
is given by the pair (w;, ).

In general terms, the mixture models can be seen as model selection or
model averaging interpretations. We study the application of both interpre-
tations. However, we found that the model averaging approach respects the
flexibility of the mixture model. Therefore we need to stress that this repre-
sentation is not constructed so that only one model is chosen. In the same

sense, we are not assuming that only one model is correct.

then all the collections with a single parameter are plausible. In fact, according to our model,

all of them are simplified in a single model, where every variable is exact independent to

each other.
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For example, consider, once more, the case where d = 3. Suppose the
asymptotic dependence of the pair (X7, X2) is stronger than in the pair (X3, X3).
It is clear that this behavior of data cannot be explained with the model selec-
tion approach, since the only asymptotic dependence information is contained
in 8, which is common for both pairs. However, the model averaging approach
can tackle this problem. Suppose C; = (1,2), so that w, is the weight of
the model where X; and X, are asymptotically dependent. In a similar way,
assume wo is the weight of the model where X; and X3 are asymptotically
dependent, whereas wj is the weight of the model where the three variables
are asymptotically dependent. Therefore, the asymptotic dependence of the
pair (Xi, X3) is given by the information in (w;,ws,8), whereas for the pair
(X1, X3), the information is in (w,,ws,#). Hence, by no means, the mixture
model, seen as model averaging, can be seen as rigid for having a common 6.

In terms of inference problems in extremes, we study two cases. The first
case is the main purpose of this model, which is the prediction, via the model
averaging interpretation.

The second type of problem is the asymptotic dependence determination.
In a broad sense, the task was to select the most likely individual model, i.e., a
model selection problem. The reason to study this problem is to make a com-
parison with standard estimations in literature, since the interpretation of a
dependence structure in a mixture model cannot be compared straightforward

to a single model dependence structure.
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It is our belief that the importance of the mixture model is not the de-
termination of a unique model, but the prediction produced by spreading the
uncertainty via a flexible model averaging.

Finally, the mixture models inference has been extensively developed inside
the Bayesian paradigm, through the Markov Chain Monte Carlo and reversible
jump methods. Therefore, this will constitute the inference basis of the thesis.
The conjunction of these methodologies gives us the advantage of estimating
the parameters of the individual models, the weights of the mixture model and
the predictions in only one stage.

The overview of the thesis is as follows:

In Chapter 2, we present the fundamentals of the Extreme Value Theory, both
the univariate and the multivariate cases.

We present some basics of the Bayesian paradigm in Chapter 3.

The following two chapters deal with the construction of a family of uni-
variate and bivariate distributions which can be the basis of the mixture model.

In Chapter 4, we introduce the first bivariate models we constructed before
getting to the final bivariate model. We study their properties and limitations.

The Chapter 5 consists of our final bivariate model. We present its prob-
abilistic and statistical features. We do some simulation cases to show the
inference procedures feasibility.

We present the generalization of the bivariate model in Chapter 6, which

is the mixture model. We begin with the explanation of the trivariate model,
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before stepping into the general multivariate model. As in the bivariate case,
simulation cases are given for the trivariate case.

In Chapter 7, we proceed with the financial applications. It is divided
mainly in two parts: a dependence structure study and a portfolio study case.

Finally, in Chapter 8, we present our conclusions.



Chapter 2

Extreme Value Theory

This section is dedicated to the foundations of Extreme Value Theory (EVT).
We begin by explaining what an extreme event is, and then following on how
it can be measured. In general, there are two methods to treat extremes:
studying the behavior of the largest of the observations, or the observations
exceeding a given threshold. These methods are, respectively, the Maximum
and the Peaks Over the Threshold (POT) methods. Although the methodolo-
gies are different in principle, there is a strong relationship between them.

In the first part of this section (Section 2.1), we introduce the most impor-
tant features of the univariate EVT. We present the connections and differences
between both the Maximum and POT methods. The typical concept in this
section is the asymptotic behavior of variables: how does a variable behave
and what are its properties when it takes large values. The main goal is to

develop asymptotic models for extremes and to describe their properties.
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In Section 2.2 we consider the multivariate case. The easiest way to do this
is to begin with the bivariate framework. Naturally, the multivariate EVT can
be explained as well by the Maximum or the POT methodologies. As in the
univariate case, the aim is to develop asymptotic models, but this time for
a set of variables. One of the interesting issues in this section is to find the
connections between multivariate and univariate cases: which properties are
inherited or remain and which ones differ. We anticipate that there is an
important difference in both frameworks, due mainly to the need of modeling
the dependence among variables (as in any multivariate case). Thel.refore, in
this section, special attention has to be kept on the dependence structure of

the asymptotic models.

2.1 Univariate Framework

An extreme value can be explained as a very large or a very small value. What
is a magnitude such that it can be called a large or small value depends on
the nature of the data. What in a specific case could be called a large or small
value, in a different context, can be a common value. And this is the essence
of the extremes: they are not common, they are rare. Therefore, we need
to know the nature of the data so that we can spot the difference between
something common and something rare. Hence, in probability terms, one of
the extremes features is that they have a low probability of occurrence.

However, in EVT, it does not suffice to be rare to define an extreme. As



Chapter 2. Extreme Value Theory 11

we mentioned above, an extreme value is a large or small magnitude value.
What we mean with this is that its presence must have an impact in order
to be worthwhile to study. This impact is measured as the large or small
magnitude. However, we focus on large extremes for the sake of explanation
(later, it will become clear why this is the case).

Therefore, we now can define an extreme as an event of low probability of
occurrence which has a large magnitude.

The next issue is to propose how to measure the presence of extremes. One
way, given a sample, is to look at the largest value. This procedure is the basis

of the maximum methodology, which is the beginning of our explanation.

2.1.1 Maximum Approach and Extreme Distributions

Assume that the data come from a specific non-degenerate probability distri-

bution F. Define the right endpoint of F as follows:

Definition 2.1.1. Xy is the right endpoint of the probability distribution F of
the random variable X, if and only if:

Xo =sup{z € R: F(z) < 1}.

Since we are not dealing with light tails, we have that Xy = co. However,
for explanation purposes of this chapter, we keep the notation of Xj.

The aim is to denote the large values as those which are in the neighborhood
of the right endpoint of a distribution. Given a sample, a reasonable way to

approach to the right endpoint is to study the sample maximum. The next
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question is to study the properties of this statistic, so that we can establish if
it is the only information needed.

Let X, X5,... be a sequence of independent and identical distributed
(i.i.d.) real variables with probability distribution F. Define M, as the max-
imum of a sequence of size n. Then, its distribution can be expressed as

follows:

(2.1)
= F"(z) .

The reason why we can focus on the maximum in our explanation is because

the minimum framework can be implied by the following relation:
Maz(X) = =Min(-X),

for X = (X1,...,Xn)
Once we have the distribution of the maximum, we need to study its prop-
erties. The first property is that A, converges almost surely (a.s.) to the right

endpoint as we state in the next property (see Resnick (1987)).

Property 2.1.1. Mazimum a.s. convergence
M, =5 X,.

We need to standardize M, in a way such that we get a non-degenerate
function. One concept that will help us to standardize the maximum is maz-
stability (see the introduction of this concept in de Haan (1984)), which we

define now.
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Definition 2.1.2. Maz-Stability
A r.v. X is said to be maz-stable if there exist constants a, > 0 and b, € R,

such that for X,,...,X,, independent copies of X
M, = max(X;,...,X,) 2 anX + by; (2.2)
for any integer n > 2.

The expression Y £ 7 stands for “Y has the same distribution as Z”. In
other words, if X is max-stable then, there exists a standardization A} for
the maximum

M= }l[n—bn,
an

such that AL and X have the same distribution. We will refer to such a, and
b, as the normalizing constants.

Because of the ease of computation, the max-stability is an ideal property
for a r.v. However, just a few distribution functions have this property. Nev-
ertheless, as we will state further, the max-stable distributions are the only
possible families of non-degenerate limit distributions for the maximum.

We present two cases as illustration of the max-stability and the lack of it.

Example 2.1.1. Mazx-stability case
Let F(z) = exp(—z~?), forz,a > 0. The question is to determine whether

it is maz-stable or not.

We need to find a, and b, such that
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Fa,z +b,) = F(z),
ie.
exp(—n(a,z + b,) ™) = exp(—z™?),

which holds if we pick a, = n'/* and b, = 0.
Example 2.1.2. Uniform. A non maz-stability case

Recall that the uniform distribution is F(z) = z, for z € (0,1). As in
the previous example, we are aiming to find if the maz-stability holds for this
model.

Thus, we need to find a, and b, such that

(anz+b,)" =1z, forallz € (0,1),n € N.

However, the left hand side of the equation is a polynomial of degree n, whereas
the right hand side is of degree 1. Therefore, there is a solution only when
n = 1. Therefore, we conclude that the Uniform distribution is not a maz-
stable distribution.

We present the standardized maximum characterization theorem, which

constitutes the main theorem for the EVT, from Fisher and Tippett (1928)

(refer to Resnick (1987) for the complete proof).

Theorem 2.1.3. Fisher-Tippett theorem
Let X be a non-degenerate r.v. with distribution function F and suppose

there exists constants a, > 0 and b, € R, such that

F™(apnx + b,) = G(x) (2.3)
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or in other words,

P (M"a‘ b") — G,}!

as n — 0o, for a non-degenerate distribution G. Then, G must be of one of

the following types:

1. Extreme Fréchet type

0, <0,

exp{—(z)™®}, >0, a>0
2. Extreme Weibull type

Gl = vy = TR 250 a0

3. Extreme Gumbel type
G(z) = A(z) =exp{-€e~*}, z €R.

We will refer to the three types as the extreme value distributions.

There are some important things to notice. The first one is that it is pos-
sible to transform among the three types of distributions. If X is an Extreme
Fréchet variable, then log(X*) has an Extreme Gumbel distribution. Simi-
larly, if X is an Extreme Weibull variable then —log(—X©) has an Extreme

Gumbel distribution.

17This limit stands for convergence in distribution.
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The second one is that a variable with the extreme Weibull distribution
is different from a Weibull distributed variable. In fact, if X has a extreme
Weibull distribution, then Y = —X is a Weibull distributed variable.

The last thing to note is that the extreme value distributions are the only
max-stable distributions. On one side, it is easy to see that all the extreme
distributions are max-stable. On the other side, if a distribution is max-stable,
then the expression in (2.2) and the condition (2.3) are equivalent. Then if a
distribution is max-stable, it must be of the type of one of the three extreme
distributions.

The next question is: how does this result help with the inference of ex-
tremes? The answer relies on the concept of Maximum Domain of Attraction

(MDA).

2.1.1.1 Maximum Domain of Attraction

We present the general ideas of the MDA. A wide extension of this topic can
be found in the works of Resnick (1987), Kotz and Nadarajah (2002), and
Embrechts et al. (1997).

The general problem in extreme values is the following: let X be a r.v.
with a distribution function F, and let X = (X},...,X,) be a replica of X.

Denote the survival function of F as:
F(z)= P(X >1)=1- F(z).

The aim is to determine the distribution of the maximum Af,. Consider
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Theorem 2.1.3. What follows is to find conditions for F, a,, and b, in order
to determine which extreme distribution is the corresponding maximum limit.
These conditions constitute the concept of Maximum Domain of Attraction,

which we define as follows.

Definition 2.1.3. Mazrimum Domain of Attraction
A non-degenerate distribution F is said to belong to the Maximum Domain

of Attraction of an Extreme distribution G, i.e. F € MDA(G), if there exist

a, >0 and b, such that

lim, o F"(anz + b,) = G(z),

or equivalently
lim, 00 NF(anz + b,) = = In G(z).

Different types of Extreme distributions lead to different types of tail heav-
iness. Therefore, a way to characterize the MDA of an Extreme distribution
is through a necessary rate of decay for the original distribution. We will only
describe the main features of each of the domains and the distributions that
belong to each of them. Refer to Resnick (1987), Kotz and Nadarajah (2002),
and Embrechts et al. (1997) to see the conditions for F and the normalizing
constants.

Maximum Domain of Attraction of .

The MDA of ® consists of regularly varying distributions, which are de-

scribed in Appendix A. We can derive the domain of attraction if we study
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the tail of ®,:

—2a

D(z) =1 —exp(—z™®) =27% - $2| +...~27Y

as * — 0o. Therefore, ®, € RV_,, i.e. ®, behaves as a power function for
large values of z and the distributions that have it as their limit distribution
of the maximum should behave similarly.

In general, the distributions that belong to this MDA are fat-tailed. This
means that some moments might not exist. In fact, if we define the density as

f(z) = —£ ®(z), then the mth-momentum of X, given by:
E[X™] =/ z™ f(z)dr,
0

is finite iff m < a.

The most important models that belong to this domain of attraction are
the Pareto, the Burr, and the Cauchy distributions.

Maximum Domain of Attraction of V.

Since the Extreme Weibull distribution is related to the Fréchet with a
change of sign and a reciprocal, then it involves as well power functions on the
tail, but for finite right endpoint distributions. Two examples of distributions
of this domain are the Uniform and the Beta distributions.

Maximum Domain of Attraction of the Gumbel Distribution, A.

The Extreme Gumbel involves lighter tailed variables, since:

1—-A(z) =1-exp{—exp{—z}} = exp(—z) + o(e™*),
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as x — 00. Therefore, it will characterize exponential tails. In contrast with
the previous MDA, distributions with infinite or finite right endpoints can
belong to the extreme Gumbel distribution.

In the Fréchet case, we found that some of the moments were not finite. In
the Gumbel case, all the moments exist, as the following property notes (see

Resnick (1987)).

Property 2.1.2. Moments of Gumbel

Let X be a r.v. with distribution F, such that F € M DA(A). Then
E[(X4)™] < o0, for m >0,
and X4 = maz(0, X).

Some of the models that belong to this domain are the exponential, the

normal, the Weibull, and the gamma distributions.

2.1.2 The General Extreme Value Distribution

We now present a model that includes all the extreme models detailed in the
previous section. This general model facilitates inference, since it includes
the three extreme distributions in one model: the generalized extreme value

distribution of Jenkinson (1955).

Definition 2.1.4. The Generalized Extreme Value Distribution

Define H, the generalized extreme value distribution (GEVD), as:

H(:r)=exp{— (1+k(”’;"))-l/k}, (2.4)
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for (1+k(’”—;‘ﬁ)) >0, u,k€R, ando > 0.

The three extreme distributions are included on this model, since:
o If k>0, then Hy = &, a = 1/k, andx>u—%.

o Ifk<0,thenHk=\Il,a=1/k,andx<u—%.

Fad 23

o If kK = 0, then Hy, = A, since lim, (1 +k (%:—-‘i))_l/’c = (% ), and

z €R.

Therefore, with this representation, inference is just a matter of estimating
the parameter set and the MDA will be given by the estimate of k.

There are two classical ways to make inference of this model. The first one
divides the data into blocks of the same length. In each individual block, the
maximum is registered. Of course, the smaller the length of the blocks, the
more data will be obtained. However, the asymptotics behind (2.4) will not
be plausible. On the other hand, if the length is chosen too large, the amount
of data would be too scarce. The common procedure is to fix the length on a
practical basis. For example, in environmental analysis, it is common to take
the annual maximum in order to avoid any seasonality. In the financial case,
a common choice is to take the daily maximum. In any of these examples, it
is reasonable to suppose the maxima would be equally distributed. Thus, it is
assumed the data follow the model in (2.4) exactly.

The next step is to use maximum likelihood estimation (MLE). This method-

ology has some drawbacks for estimating, since the support of the variable
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depends on the parameter space. Smith (1985) showed the following features

of the MLE;

e When k£ > —0.5, the information matrix is finite and standard asymp-

totic properties for MLE hold.
e When —1 < k < —0.5, the MLE exist but are not asymptotically normal.

e when k < —1, the MLE may not exist.

In practice, the issue of the choice of the norming constants, a, and b,, is
solved as follows (see Coles (2001)):

Suppose

P (11—";"—”" < :z:) ~ H(z),

n

for large n and where H is a member of the GEV family.

Then,

P(M,<z)=~H (‘” ;nb"> = II*(z),
where H* is a different member of the same GEV family (meaning, the same
parameter k). Hence, a GEVD can be fitted approximately to the untrans-
formed maxima, without affecting the extreme value type. In practice, it is
irrelevant to estimate the scale and location parameters of H*, instead of those
of H. In this way, it is not necessary to estimate the norming constants.

The second option is to fit the model assuming that the data belong to the

MDA of Hi. It is clear that it is a completely different approach. Recall that
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belonging to the MDA of Hj is equivalent to
limy o0 nF(anz + b,) = — In H(z).

Then, the convergence is more related to the tail of the distribution, rather
than the maximum.

Let X, X5,..., X, bei.i.d. observations with a distribution F, such that
F € MDA(H,). Define the order statistics as X1,n 2 Xon 2 ... 2 Xy 0.
Then, the usual way to proceed is to take the largest observations, say the
m largest v_alues. The value of m must grow as n does, but it should remain
small in comparison with n, since it is the tail behavior that is needed. In
general terms, m{n) = oo and m(n)/n — 0, as n — oo. We will present two
typical estimators when dealing with this approach: the Pickands and the Hill
estimators.

The first estimator is introduced in Pickands (1975).

Definition 2.1.5. Pickands Estimator
We define the Pickands estimator of k as:

Xm,n - X2m,n
X2m,n - X4m,n

IAc,i‘n =—In(2) xIn

The consistency of this estimator depends on the choice of m (see Pickands
(1975) for details), but with the conditions on m mentioned earlier, it is at
least consistent in probability.

The next estimator will deal only with the k > 0 case, and it is called the

Hill’s estimator (see Embrechts et al. (1997)). It uses the upper m statistics,
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where m can be defined as in the Pickand’s estimator.

Definition 2.1.6. Hill’s Estimator

We define the Hill’s estimator of k as:

m -1
TH -1
kpn=1{m _;_ InX;,-InX,,, ,
i=1

where m/n — 0.

The different ways to derive this estimator can be found in Embrechts et
al. (1997). They use the fact that the case k > 0 consists of distributions
whose tails are regularly varying functions.

Pickands and Hill’s estimators give a different view on how to treat data:
extreme relevant data does not necessarily consist of the block maxima, but on
the observations that exceed a large value. This procedure is directly related

to the excesses over the threshold approach. We will elaborate on this question

in the next section.

2.1.3 Peaks Over the Threshold Approach

Assume that the variable X belongs to the MDA for some H, as in (2~4)-

Then, recall that the following condition holds:

N —1/k
im0 nF(anz + by) = (1 +k (x - p)) .

We can see from this expression a hint of how the tail of the distrl

tion should look like. Keeping this in mind, we make the de
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Generalized Pareto distribution. Balkema and de Haan (1974) derived it as a
limit of Residual Life models, whereas in parallel, Pickands (1975) derived it
working with order statistics. As well, there is the early work of Hill (1975)
where a characterization of the tail of any distribution is given, and the final

distribution proposed is a Pareto distribution.

Definition 2.1.7. Generalized Pareto Distribution
We define the distribution Gy for B > 0 as the Generalized Pareto Distribu-
tion (GPD) by

Gy, p(x) =1- (1 + %) —l/k, (2.5)

withx >0, when k>0, and 0 <z < —f/k, when k < 0.

Of course, if we consider limy_o Gk g, we get the expression: Gg(z) =
1 —e %8,
In order to extend on the importance of the GPD, we need to define the

excess distribution (see Embrechts et al. (1997)).

Definition 2.1.8. Ezcess Distribution

Define the excess distribution Fy, of a r.v. X over a value u by
Fzr)=P(X-u<z|X>u).

We define the value u as a threshold. Therefore, a threshold u is the value
where a distribution F, can be defined for all the values above u.

The next theorem will present the relation between the excess distribution
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and the GPD. Moreover, it will present a connection as well with the GEVD

(see Embrechts et al. (1997)).

Theorem 2.1.4. GPD-GEVD Relation

Let Hy ., denote a GEVD with shape parameter k, and let X be a r.v. with
a distribution function F and a right endpoint Xo. Then F € MDA(II}) iff
there exists a positive measure function a(-) such that for 1 + &z > 0:

X—u
a(u)

Therefore, the limit distribution of a properly scaled excess over a high

lim,.,x, P ( >z, | X > u) = Gea(z). (2.6)

threshold is the GPD, with the same shape parameter as that of the domain
of attraction of F.

It is useful to introduce the scale effect of a(u) into the GPD and thus,
we get that B = a(u) for the expression (2.5). Hence, when a large enough
threshold is chosen, the GPD is a good limit distribution for the excesses over

this threshold, i.e.
P(X—u>z|X >u) = Grp(z), forz >0, (2.7)

It is worthwhile to remark on a couple of things. First of all, regardless
of the approach of using the information (whether it is via the maximum or
the excesses over a threshold), the main parameter to estimate is a shape
parameter common to both approaches. This should not surprise us, since
we saw in the Pickands’ and Hill’s estimators that when estimating k for the

maximum in the MDA case, it was necessary to include some information from
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the tails. In fact, both estimators involved the excesses over a fixed threshold
(e.g., the Hill estimator used the mth order statistic).

The second thing to notice is that the scale parameter will depend on the
threshold selected. The selection of the threshold will play an important role
in inference. Notice what happens when we change a threshold level. Suppose
we have a GPD variable X, say G, , such that X > 0, i.e. the initial threshold

is 0. Then, when we adjust the threshold level to u > 0, we get:

(1 + 5+ u)) e
S\ /k

P(X>z+4+u|lX>u) = (1+§u)

r \ Yk (2.8)
_ (1 b A)

= Gk, p+ku(T).

As would be expected, a change in threshold would only affect the scale
parameter. Thus, the GPD is closed to changes in threshold levels. However,
this property is not so simple when making inference. The higher the threshold
is chosen, the better the asymptotics of G in Theorem 2.1.4 will hold. In
this way, the higher the threshold, the better is the approximation in (2.7).
Nevertheless, the amount of data included is less. Therefore, the variance of
the estimates will be larger. We will extend on threshold selection in the next
section.

For a x > u, the survival distribution can be split as follows:
Fz)=P(X >u)P(X —u>z—u|X >u) = Fu)Fy(z — u). (2.9)

For the second factor, define y = x — u as the excess. Then, with a proper
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selection of u and by (2.7), Fu(y) = Gy, s(v).

There are two ways to proceed for the first factor: choose a parametric or
a non-parametric model, e.g. the empirical distribution.

Suppose u is given for a sample of size n. Let z7,z3,...,z;, be the observa-
tions that exceed u and (1), Z(2), - - - , Z(n-m), the rest of them. As well, define
© as the whole parameter space. Assume that the empirical distribution is

selected to model the observations that fail to exceed u and denote it as F.

Then, the likelihood function is represented as

n-m ~ m 1 k . ~1/k-1
L(©)= { H F(.’L’(j))} x F(u)™ H -B (1 + -ﬁ—(x, - u)) . (2.10)
j=1 i=1
The most common way to estimate the parameters is by MLE. As in the

maximum case, the regularity conditions fail to hold when k < —0.5. Refer to

Smith (1985) for details.

2.1.3.1 Threshold Selection and Inference

As we stated, the relevance of the selection of a threshold consists on a trade
off between the variance and the bias of the excesses modeling. The task is to
get the smallest threshold for which the GPD fits reasonably well the excesses.

The first option to treat the threshold (and most common) is to fix it at a
high level. This level could even be imposed to the analysis beforehand. For
example, consider the case of studying the losses over a million pounds in an
insurance company, where this threshold is fixed just because a million pounds

is a high value, rather than having a deeper statistical meaning.
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We present two other options where the value of the threshold is estimated.
The first one is based on the relation between the threshold and the mean
excess function, and it can be found in Coles (2001) and Embrechts et al.
(1997).

Define the mean excess function as follows.

Definition 2.1.9. Mean Fzxcess Function

Let X be a r.v. with distribution function F' and right endpoint Xo. Then,

for a fired u < Xy,

e(u) = E[X —u|X > 4]
is the mean excess function.

In the case of the GPD, the mean excess function is computed as follows:

1 Xo __ _Btku
(1) = s / Flz)dr = 5220,

for k <1, u < Xy, and 8+ ku > 0.

This shows a linear relation between e(u) and u, for £ < 1.

Suppose there is a sample X,,..., Xn, and for which X7,..., X}, are the
excesses over a threshold u. The mean excess function can be approximated
by the empirical estimation:

en(u) = —%Z (X! —u).

Then, the first threshold selection method consists on choosing a threshold

u* for which e(u) is approximately linear, for all u* < u < X.
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Although this method assumes that k < 1, it is widely used to fix a thresh-
old for any type of tail behavior.

We now present the last threshold selection method. Suppose the GPD
fits some data above a threshold. Then, recall from (2.8) that a change in the
threshold only affects the scale parameter. In other words, the value of k& does
not change. In this way, the method consists on choosing a value u*, for which
the estimates k, are considerably stable, for any u* < u < Xg.2

The last two methods are graphical based. It is a matter of visually sensing
where a linear or a stable behavior is achieved. The difference between the two
methods is that the first one is an estimation previous to inference. Whereas
for the secoﬁd method, estimates must be carried out for a range of different
thresholds.

We present an application of this method on real data on Figure D.17.
On the real data analysis of Section 7.1, we aimed to select a threshold as a
quantile of the marginal data. In fact, we opted to choose the same quantile
for all the variables. Following the criteria of the threshold selection methods
we described, the figures suggest a linearity on ME above a threshold of a
quantile of 0.96. For the estimates of k, we present as well its 95% confidence
intervals. In some of the cases, when the threshold was above the quantile
0.98, the estimates were below -0.5. Therefore, the confidence intervals could

not be computed, since the regularity conditions do not hold. However, around

2The parameter 3, has to be estimated as well.
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the selected threshold (quantile 0.96), the estimates were just above 0. Then,
the regularity conditions hold, and the estimates suggest some stability.

The topic of goodness of fit in extremes has been explored extensively. The
first natural methods consist on graphics, for example: Q — @ and log @Q —
Q plots, and for the POT approach, the mean excess function graphic (see,
for example, Beirlant et al. (2006) or Coles (2001)). However, in the POT
approach, if the threshold is chosen based on the mean excess function plot,
as we explained, it is not possible to use it as a goodness-of-fit tool.

In the case of goodness-of-fit parametric methods, a wide treated case is
testing K = 0 vs k # 0 (see (2.4) and (2.5). The works of Bardsley (1977),
Hosking (1984), and Otten and van Montfort (1978) focus on the maximum
approach, i.e. the goodness-of-fit of the GEVD, for both the k =0 vs k # 0,
and the one sided hypothesis tests (either £ > 0 or k < 0), and Stephens
(1977) focuses only on testing k =0 vs k # 0.

For the POT approach, Davison and Smith (1990) treat the case k = 0 vs
k # 0 in the GPD, whereas Beirlant et al. (2006) and Choulakian and Stephens
(2001) test the GPD fit for MLE’s. This goodness-of fit literature works with
modification of tests as: Kolmogorov-Smirnov, Anderson and Darling, Jackson
and Cramér-von Mises.

We end the univariate section with a summary of the extreme values fun-
damentals. We found that there are two approaches to deal with the extremes:

the maximum and the excesses over a threshold approaches. Whichever ap-
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proach is chosen, the model is linked with the behavior of the variable on its
tail. This tail behavior is characterized by one single shape parameter. Both
approaches are so related, that both models share this shape parameter. We
found that, although theoretically, the maximum approach does estimate the
tail behavior via the shape parameter, some information can be discarded from

the sample. This is why we prefer the POT framework when making inference.

2.2 Multivariate Framework

During the last twenty years or so, significant attention has been given to in-
ference methods for multivariate extremes, following original work of Smith et
al. (1990) and Tawn (1988). Such a framework has not been easy to set up
and most of the literature has focused on the bivariate case. Any multivari-
ate extreme model has two aspects: the marginal model and the dependence
structure. The marginal models, as we explained in the previous section, are
typically members, or belong to the domain of attraction, of the univariate
extreme value family of distributions.

The main focus on multivariate study is the dependence structure on the
extremes. Since any attempt to model this structure should be able to embrace
light and heavy tails (meaning that some moments might not exist), traditional
dependence measures of covariance such as the Pearson correlation coefficient
or Spearman’s p are not useful.

In the multivariate case, the first attempts to create a dependence structure
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on the distribution of the maximum are given in Gumbel (1958), Tiago de
Oliveira (1958), Sibuya (1960), and the point process representations of de
Haan and Resnick (1977). We will focus on a version of de Haan and Resnick
(1977), where it can be seen that the multivariate extreme models do not
have a unique representation (see as well Resnick (1987), Kotz and Nadarajah
(2002), Coles and Tawn (1991), and Ledford and Tawn (1996)).

The aim of this section is to set the foundations of the representations of
the multivariate extreme models and their properties.

We will denote vectors as X, for r.v., and x for fixed values. We will keep
the subindex for the sequences indices and for order statistics. Thus, to denote
the elements of a vector, we will use the superindex, e.g. x = (z),...,z(@),

And to order vectors: x >y means ) > yU), for j=1,...,d.

2.2.1 Multivariate Maximum Asymptotics

The first framework we will explain can be found in de Haan and Resnick
(1977), Resnick (1987), and Kotz and Nadarajah (2002).

The aim is to model the behavior of a random vector X = (XM,... X@) €
R4. Assume X has a joint distribution F', which means that for a fixed vector

x = (2., 2@).
F(x)=P(X® <z® XD < gy,

In multivariate analysis, there is no unique definition of the maximum, since

there are different ways to order vectors. The common practice is to define it
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as the vector of the marginal maximum (therefore, the sample maximum are
not necessarily real observed data).
Suppose {(X®1,..., XCd) i=1,...,n} are i.i.d. d-variate vectors with

distribution F. Define M, the sample maximum as
M, = (M{D, MO, ..., MP),

where MY = maz(X@), ... X®)) for j=1,...,d.
As in the univariate case, we seek to find a limit distribution for M, and

its properties. The distribution of the maximum is computed as follows:

PM, <x) =PRY <z®, . AP < @)
=1L, P(XGV <20 . X 6D < x(d))
= (F(x))"
= F™(x).
The class of the max-infinitely divisible (max-id) distributions is that where
F™ is a distribution for n > 0. We use the following theorem to define this

class (see Resnick (1987)):

Theorem 2.2.1. Maz-Infinitely Divisible Distributions

A distribution F' is maz-id if and only if F'/t is a distribution Yt > 0.

Regarding the distribution of the maximum, if the joint probability of the
maximum is a max-id distribution, then it follows that the joint distribution

of the original variables is a distribution as well.
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The max-id concept will play the role that max-stability did in the univari-
ate case, see (2.2) in Section 2.1: It will characterize the extreme multivariate
distribution.

As in Section 2.1, see (2.3), in the univariate case, seeking for a non-
degenerate limit distribution of the standardized maximum is analogous to
seeking constants ag) >0,... ,ag,d) > 0 and bs,l), .. ,bs,d), such that for M,, and

X, defined as before:

(1) _ 0 @ _ @
p (A_[z__"_" <gw M b x(d))

(1) - e (d)
n n (2.11)
=F" (a%l)x(l) +o,. .., aP @ 4+ bs,d)) — G(x), as n — oo,
where x = (z(1),...,z2@). We will call G the class of multivariate EV distri-

butions.
If we let 2™ = oo in (2.11), for all m # j, for some j € {1,...,d},
then we will get the j — th marginal, F;. Therefore, the limit of the marginal

distribution is expressed as follows:

F7 (0929 +b0)) — G;(21), as n — oo, (2.12)
for j = 1,...,d. Hence, the marginals of G must be a non-degenerate EV

distribution.
Two special extreme (in terms of dependence structure) cases arise on G:

the asymptotic exact independence and complete dependence cases.

Definition 2.2.1. Asymptotic Ezact Independence and Complete Dependence
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The EV distribution G follows an asymptotic exact independence if
G(z) = G1(zW) - Gy(z'P). (2.13)
The EV distribution G follows asymptotic complete dependence if
G(z) = min {G1(zM),..., G4z D)} .

We will discuss more dependence structures in the following sections.

2.2.2 Characterization of the Multivariate EVD

In this section we will find a characterization of the multivariate EV distribu-
tion (MEVD) G.
Recall the max-stability concept from Section 2.1, see (2.2). In a similar

way, we can define it for the multivariate case.

Definition 2.2.2. Multivariate Maz-stability

A distribution G(x) is maz-stable for x € RY, if there exist functions
al)(t) > 0 and BYUNt) for j = 1,...,d and all t > O, such that for any
T

G'(z) = G (aP )z + 1), ..., aD()z) + (1))

Therefore, G1/* is a distribution for all n > 0, then all the max-stable
distributions are max-id. As in the univariate case, the class of max-stable
distributions have an important use as the next theorem shows (cf. Resnick

(1987)).
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Theorem 2.2.2. The class of multivariate extreme value distributions is the

class of the maz-stable distributions with non-degenerate marginals.

This theorem gives us the first characterization of the MEVD: these are
max-stable distributions.

In order to go further in the analysis, it is useful to separate the marginal
effects from the joint distribution via standardization. In the next definition,

we present the inverse function.

Definition 2.2.3. Inverse Function
Let F be a non decreasing function on R. Then, define the inverse (or more

precisely, the left continuous inverse) as:
Fe(z)=inf{y: F(y) > z}.

The most common way to standardize the variables is through the marginal

transformation

1

XN = o~
B = "R xoy

so that the marginal distributions are unit Fréchet with distribution function:
F~(x(j)) = exp _L
7 @ [
for j =1,...,d. This transformation does not change the multivariate extreme

structure of the joint distribution, as the following theorem shows (cf. Resnick

(1987) for the proof).

Theorem 2.2.3. Fréchet Transformations



Chapter 2. Extreme Value Theory 37

Suppose G is a MEVD with continuous marginals G;. Define the transfor-

mations

1

Uj=—m,f07‘]=l,...,d,

and for € R?
G*(z) = G(UF (2M),..., U5 (z'9)), (2.14)
then, G* has unit Fréchet marginals and G is a MEVD iff G* is MEVD.
We now present the characterization of the domain of attraction of the
MEVD.

2.2.2.1 A Necessary Condition for MDA

The first condition is elaborated from a Poisson Process point of view and it
can be found in Kotz and Nadarajah (2002).

Let X® = (XG0 . XGd) fori=1,...,00, be random vectors with dis-
tribution function F € M D A(G) and marginals F}. Define as well U; (X #4)) =
—1/log F; (X("j)), for j = 1,...,d. Let, Sy be the (d-1)-dimensional unit sim-

plex:

Sy = {(wl,...,wd_l) : Z‘:—lwk <luy2>20,k=1,...,d- 1},
and define the transformation vector:

Ty, ...,y @) = (E‘f y® O/ Sy ®) e - y<k>)_

Then
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P, = {(U1(X®D)/n,...,Uy(XCD)/n) i = 1,...,n} = P,as n = oo,

where P is a non-homogeneous Poisson Process on R% with an intensity mea-

sure u such that
(T (dr,dw)) = r=2dr H(dw),
for r > 0 and w € S, where H is a non-negative measure on S; such that

H(Ss)=dand | wiH(dw)=1,fork=1,...,d-1.
Sq

Then, the transformed MEVD G*, as in (2.14), can be written as
G*(y(l), . ,y(d)) = exp {—V(y(l), - ,y(d))} , (2.15)

where V is called the exponent measure function, such that:

VD, vD) = pn({0,4M] x ... x [0,yD]}%)

d-1
=/ mazx (wl/y“),wg/y(z),. ey (1 - Zwk) /y(d)) H(dw).
Sa k=1

It is clear that there is not a unique representation of the limit MEVD.
As it can be seen, this representation works with pseudo-polar coordinates via
T. However, it is H which determines the dependence structure of the model.
The strength of the dependence will rely on where H puts the mass.

Therefore, there are as many limit distributions G* as H functions can be
defined. There are two ways to define H: with a parametric or with a non-
parametric model. As examples of parametric models, we have the Logistic,

Bilogistic, and Gaussian models. Different parametric models lead to different
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type of dependence (see Tawn (1988), Tawn (1990), and Smith et al. (1990)),
and as we will show, some models can embrace different types of dependence.
Therefore, it is a difficult task to construct a parametric family of models
which can be flexible enough to fit the complexity in the multivariate extremes
framework. For the purposes of the thesis, we are interested in the complexity
of the dependence among the variables. The aim in this respect, therefore,
is the construction of a flexible model for which a high number of types of
dependence is achieved. We will address again this issue in the bivariate
section. For more models and their properties, refer to Joe (1994), Tawn
(1994), and Kotz and Nadarajah (2002).

We now focus on the bivariate case. The bivariate case is the most studied

and it is where we need to point out further concepts and theories.

2.2.3 Bivariate Framework

In this section we will present the main results of the bivariate extremes frame-
work. To begin with, we give the bivariate equivalent characterization of Sec-
tion 2.2.2.1 (refer to Coles (2001). We then give a second representation of the
maximum, the representation of Pickands (1981). Refer to Kotz and Nadara-

jah (2002) for more characterizations.
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2.2.3.1 Bivariate Maximum Model

Let X and Y be independent random variables, unit Fréchet distributed (i.e.
Fx(z) = e~'/%, and equivalently for Y). Let X; and Y; be copies of X and Y,

respectively for ¢ = 1,...,n. Define:

M (n_lmax(Xl, ey Xp),n 7 'max(, ., Y,,)) . (2.16)

The form of the marginal distributions of M, are expressed as:
P (n'maz(Xy,...,Xa) <z) = eV £>0, foralln > 1,

(and similarly for the second marginal) since the Fréchet is a max-stable dis-
tribution.

We present the equivalent version of Theorem 2.1.3 (see Coles (2001)).

Theorem 2.2.4. Define M as in (2.16) for (X;,Y:), independent vectors

with unit Fréchet marginals, fori=1,...,n. Then, if
P(M; <z) — G(z), as n = o0,

for z = (z,y), = > 0,y > 0, and where G 1is a non-degenerate distribution.

Then, G has the following representation:
G(z,y) = exp {~V(z,y)}; (2.17)

where

Viz,y) =2 /0 maz(w/z, (1 - w)/y)dH (w), (2.18)
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for H, a distribution satisfying:
1
/ wdH(w) = 1/2. (2.19)
0
For example, define:
dff(w) = 0.5 ﬂ[w=1] +0.5 nlw:o] .
Then, G is expressed as:
G(z,y) =exp{— (z7'+y™1)}.

Therefore, X and Y are asymptotically exact independent.

Similarly, define:

dH(’LU) = ]]-[w=0.5] f
Then, G is has the following form:

G(z,y) =exp{-maz(z~',y7")}
= min {exp(—z~1),exp(-y~1)}.
Therefore, X and Y are asymptotically complete dependent.
A feature to notice about V is that it is a homogeneous function of order

—1, which means:

V(cz,cy) = cWV{(z,y), (2.20)

for a constant ¢ > 0.

Another equivalent expression for G is the representation of Pickands (1981):

c-en(- (1) a(5):
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where:

A(w) = / maz {w(l - ), (1 - w)q} dH(q),

and its main features are:
o mar(w,1 —w) < A(w)<lfor0<w< 1,
o A is convex.

Similarly to the previous examples, if we set A(w) = 1, Yw € [0,1].
Then X and Y are asymptotically exact independent, whereas when A(w) =
maz(w,1 —w), then X and Y are asymptotically complete dependent.

Since these conditions and (2.19) are satisfied for an infinite number of
functions (meaning infinite possible forms for V or A), there is no unique
representation of the distribution of the maximum in the bivariate case.

As we stated in the multivariate representation, parametric models can be
assumed for V or A, and therefore, different measures lead to different type of
dependence, and as we will show, some models can embrace different types of
dependence.

Similarly to the univariate maximum approach, the selection of the block
for the maximum is an issue to consider. As well, some information might be
wasted when considering this approach. Therefore, we present the bivariate

version of Section 2.1.3.
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2.2.3.2 Bivariate POT Approach

In this section, we present the bivariate version of the POT approach. The
generalization to the multivariate case is straightforward from (2.22).

Recall from (2.9) that a univariate tail can be split as:
Fx(z)=P(X >u)P(X —u>z—u|X >u) =Fx(u)Fx,(z — u),
where FX,u» can be approximated by a GPD for a large u, i.e.
k -1/k
P(X >z)= P(X > u) (1+-ﬂ—(x—u)) , for z > u.

A simplistic procedure is to introduce the effect of P(X > u) in one pa-

rameter (see Coles (2001) for estimations and implications), as follows:
k -1/k
PX<z)=1-g, (1 + B—(:r - u)) , forx > u. (2.21)

Suppose X and Y have a joint distribution F' and marginal distributions

as the expression in (2.21), for X > u, and Y > u,. Then, the variables

~1/k:\ \ 1
X‘=—(log(1—<x (1+§j(X—u,)) )) , and

o= (o e 3-) ™)

have marginal unit Fréchet distributions for X > u; and Y > u,, and the joint

distribution F* of the pair (X*,Y*) can be approximated, for large n, as (see
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Coles (2001)):

F*z'y) = (F(a,y)'""

~ exp {—V (n~1z*, n-1y")}'/"

= exp {-V (=", 1)}

The second line holds from Theorem 2.2.4, whereas the third line, from (2.20).

This means that for large u, and u,:
F(z,y) = F*(z*,y*) = exp {-V (2*,y*)}, for = > u,, y > u,. (2.22)

The next question is how we can fit model (2.22) to extreme data. The
answer is formulated by censoring the observations as stated in Smith (1994)
and Ledford and Tawn (1996). We divide R? into four different regions as
follows:

{RU; 1= n'[X>’ux]7j = 11[Y>uy]} ’ (223)

as Figure D.1 shows. Then, model (2.22) applies directly to region R;;. How-
ever, data falling on other regions also contribute to the information of the
tails. For example, an observation in R,q means only z is extreme. Hence, the

contribution to the likelihood function of this observation is given by:

P(X=:z:,Y<uY)=%E .
T lz,uy)

Therefore, a Y is censored, i.e. it is only known to be below uy.

The censoring process is explained as follows:
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Let x = {(z1,1),...,(Zn,yn)} be a replica of size n of the pair (X,Y)
with joint distribution function F' with parameter w, for which (2.22) holds
for high thresholds ux and u, of X and Y, respectively. Then, the likelihood

function for the extreme data is given by:

n

L(w|x) = [ [ 9w | (z:, ),

i=1

where )
82F .
253 0y if (z,y) € Rn
6F :
E'(x,uy) if (.l', y) € RIO

gw| @ m) = < (2.24)

%—Z lf (x,y) S Ro]

(uz,y)

F(uza uy) if (x,y) € ROO,

where F(z,y) is as in (2.22).

It is important to notice that, although this model incorporates the infor-
mation in the regions Rjp, R0, and Ry, the support is on the region Rj;.
This fact will play an important role when we introduce our model, since we
will present two versions of how to treat data in our model: a modification of
the censoring of Smith (1994) and a modeling of the three regions Ry, Ry,
and R;; (see Section 5.5).

As in the bivariate maximum approach, the joint distribution in the tails
depends on the definition of the measure V. Therefore, the representation is
not unique and the usual way to proceed is to define a parametric model for

V. The choice of V will determine the dependence structure of the model. In
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order to study the joint tail behavior implied by a form of V and to compare

it with other families, some extreme parameters must be introduced.

2.2.3.3 Bivariate Extreme parameters

The first parameter to define was introduced in Sibuya (1960). It measures
the asymptotic dependence between two variables when considering the tail.
This parameter will play an important role in the following chapters, since it

will determine the dependence structure of our bivariate model.

Definition 2.2.4. Tail Dependence parameter x

Let X andY have the same marginal distribution. Then define the follow-

ing asymptotic dependence measure:
X = limy 0o P(X > ulY > u). (2.25)
The following cases are defined from this parameter:
e x=1: X and Y are complete tail dependent.
e x =c>0: Xand Y are asymptotically or tail dependent.
e x =0: X and Y are asymptotically or tail independent.

Define, as well, as in Coles (2001), the following parameter for 0 < r < 1:

_ logP(Fx(X)<r, Fy(Y) <)
x(r) =2- log P (Fx(X) <71)
_ IOgP(Fx(X) <r, Fy(Y) < 7‘)
logr

(2.26)

=2

'
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for Fx and Fy, the marginal distributions of X and Y. The relation with the

parameter x is the following:
lim,1 x(7) = x.

The parameter x(r) is a helpful empirical tool for inference. The value in
(2.26) can be plotted for different values of r, and the graphic can help to
have a guess when r approaches 1 where ¥ is expected to be. In Chapter 6 we
present some examples of this parameter.

In fact, x has the following relation with the exponent measure in (2.18):
x=2-V(1,1).

Recall the Figure D.1 (in this case u, = u,). A complete tail dependence
(x = 1) case would mean that all the observations for which the Y component
is above u,, are expected to lie on Ry, for a large u,,.

Some problems can arise when x is close to zero in the classical inference
approach, i.e. when there is near independence. For example, Coles and Tawn
(1991) found some examples where the exponent measure V' (recall (2.18))
places all the mass on the vertices of S,, thus, the densities of IT (recall (2.18))
present discontinuities. This problem is found in both approaches: the maxi-
mum and the POT. In fact, as Coles and Tawn affirm, in the POT approach,
the joint distribution fails to factorise into the product of the marginals in the
tail independence or near independence cases, and even more, the joint distri-

bution gives as well a zero probability to the case of both variables exceeding
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a high threshold.

On the other hand, Tawn (1988) found some examples where the indepen-
dence case implies nonregular behavior in the classic estimation framework.
However, Tawn was able to find in a couple of cases an asymptotic behavior
of the MLE of the parameters. As a consequence of these difficulties in the
classical approach, Tawn’s tests of independence present some problems when
constructing them. This framework can only test exact independence against
the tail dependence.

Suppose X and Y are unit Fréchet distributéd and nonnegative associated.
Ledford and Tawn (1996) introduced a way to estimate smoothly the depen-
dence structure between the asymptotic dependence and exact independence.
Ledford and Tawn had the target to set a model between the following two

cases:

cr~! for asymptotic dependence, and 0 < ¢ < 1.
P(X>rY >r)~
r=2  for exact independence,

(2.27)

for large r.
Thus, Ledford and Tawn introduced a parameter 7 (defined as the coeffi-
cient of tail dependence) that governs the power of r in between these extreme

dependence cases, such that:

PX >nrY >r)~LE)r V" asr - oo, (2.28)
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where 0 < < 1, and L(r) is a slow varying function, meaning that:
limy o L(tr)/L(E) = 1,

for fixed r > 0.

We can relate x and n with the following expression:
P(X >r|Y >r)~ L)'/ asr — . (2.29)

Hence, the extreme dependence cases are as follows, with the restriction that

L(r) » 0, as r — oo
e 7 =1/2 and L(r) = 1: exact independence (x = 0).

e 1/2 < 5 < 1: asymptotic independence (x = 0) and the variables are

positively associated.

e 0 < 7 < 1/2: asymptotic independence (x = 0) and the variables are

negatively associated.
e =1 and £(r) = 1. complete asymptotic dependence (x = 1).

n=1and L(r) = 0, as r = oco: asymptotic dependence (0 < x < 1).

Consider a tail independence case where n € (1/2,1), and suppose it is
assumed that the parametric family to model the joint distribution only em-
braces the exact tail independence and tail dependence cases. Then, such a

model will tend to underestimate the joint survival distribution over a large
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r. The introduction of the parameter n has the purpose to distinguish the
strength of the independence.

Ledford and Tawn model the type of extremal dependence with the pa-
rameter 77 and the strength of this dependence, with £(r). Ledford and Tawn
then give different parametric models for each case of 7, i.e. for each type of

dependence. In order to estimate 7, they use the fact that for Z = min(X,Y):
P(Z>r)=P(X>nrY >r)~LE)r V1 asr o oo,

i.e., they transform a bivariate problem into a univariate problem. Since
P(Z > r) is a survival function, it can be approximated with a GPD(k*,0*).
So, n = k*, which makes clear that the restriction on the estimation must be
set: k* € [1/2,1], for the positive associated variables. Ledford and Tawn give
some tests for dependence using likelihood ratios. Once this is done, a para-
metric family will be fixed for the bivariate model (for example, the bivariate
normal distribution when 1/2 < n < 1).

The parameter 7 suggests tail dependence when it is near 1. For the rest of
the range, it gives a measure of the tail independence. For the same purpose,
Coles et al. (1999) defined another measure of asymptotic dependence, denoted
as Y.

Let X and Y be r.v. with Fréchet marginals. Then, define the following

measure:

—rn . 2logP(X >71)
X(r) = logP(X >7,Y >r)

1
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where —1 < X(r) < 1. Define as well:
X = lim, 00 X(7)
Then, X is another measure of the strength of the tail independence, for which
-1<x <1, and:
o If Y=1: X and Y are asymptotically (tail) dependent.

e If Y=0: X and Y are exact independent.

o If X € (0,1): X and Y are asymptotically (tail) independent and the

variables are positively associated.

e If ¥ € [-1,0): X and Y are asymptotically (tail) independent and the

variables are negatively associated.

Coles et al. (1999) give priority on the estimation of X: only when ¥ is
estimated significantly near 1, then it is worth to estimate x. Therefore, the
test of tail independence against tail dependence is through a test of ¥ < 1
against Y = 1, rather than y = 0 against xy > 0.

The estimation of X is similar to 5, since the following relation holds:
X=2n-1

Both x and ¥ determine all the possible asymptotic dependence types, as

we summarize in the following remark.

Remark 2.1. Asymptotic Dependence Types

Xand Y are:
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o Complete tail dependent if x = 1.

o Tail dependent if 0 < x <1 (and X =1).
e Ezact independent if x =0 and ¥ = 0.

e Tuail independent if x =0 and -1 <X < 1.

An interesting framework is that of Ramos and Ledford (2009). They mix
the classic multivariate model with 7, but with the parameter included in the
model. Let X and Y have Fréchet marginals. Define (S,T) = (X/u,Y/u)
for X and Y larger than a large u. Ramos and Ledford propose the following

model:

P(S>sT>t)= v [(psr*/n +(8)"- ((ps)-ua 4 (;)“/“) °”"] |

where (s,t) € [1,0)%, v >0, 7 € (0,1], @ >0, and p > 0.

The joint model recognizes the presence of 7. Then, inference is carried
out using MLE.

An applied work was developed by Poon et al. (2004). Here we present the
main features of Poon et al. (2004). Consider two random variables, X and Y,

with distribution functions Fx and Fy. Apply the following transformations:

B 1 1

= X)) LT el @) (2:30)

so that both S and T have marginal Fréchet distributions. Working with S and

T is theoretically equivalent to working with X and Y for the joint survival,
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since:
PX>z,Y>y) =P(S> T
' yr = log(Fx(z))’ log(Fy (y)) (2.31)
= Fsr(s,t),
where s = —mle—(x)), and t = _log(Fly(y))'

As in the case where the dependence parameter is 7, the choice of the
parametric model of Fgr will depend on 'the estimated values of x and ¥. In
fact, only when ¥ is near 1, is the tail dependence x estimated.

The model that results from this framework is a quasi copula one. For
more details of copula based models, see Heflernan (2000) and Joe (1997).
A problem with the copula model is that although in theory the transforma-
tions do not change the dependence structure, in practice the estimation of
the marginals (which is generally done via empirical distributions) leads to in-
accuracies. As well, there is no clear evidence on how much any inexactitude
will affect the accuracy of the joint model.

A clear and concise discussion that considers the disadvantages of the cop-
ula model is given in Mikosch (2005). Among other issues, Mikosch discusses
the problems of fixing the marginals to a standard distribution. This standard
procedure in the extreme values framework is a well known difficulty when
making inference. Mikosch addresses that, although fixing the marginals is

relevant from a probabilistic point of view, when dealing with data, it becomes

3The main difference with the copula models is that the S and T transformations do not

have a support on [0, 1}2.
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hard work, since the marginal distributions are unknown. Mikosch addresses
as well, that in practice, the split of the marginals and the dependence struc-
ture when using copulas, implies a great uncertainty for just one sample. In
brief, it is unclear how sensitive the copula estimations are to the fixing of the
marginals.

Finally, we need to discuss the flexibility of parametric multivariate mod-
els, regarding their dependence structure. So far, the determination of the
asymptotic dependence among variables has not been a clear procedure. When
selecting a parametric model family either in the maximum or the POT meth-
ods, the asymptotic dependence is determined for all the subsets of variables.
Some family of models have improved the flexibility of modeling extremes. For
example, the introduction of the asymmetric logistic model by Tawn (1988)
solved the problem of non-exchangeable variables. However, the model asymp-
totic dependence structure is determined only through one single parameter.
In the bivariate case, this does not seem to be too restrictive, and some models,
as that in Ramos and Ledford (2009), can even model different tail indepen-
dence behaviors through an additional parameter. However, although most of
the bivariate cases have straightforward generalizations, these turn out to be
restrictive. For example, it is a hard task to model, with a single parametric
model, different asymptotic dependence for different combinations of variables.
The MEVD's have the property that pairwise asymptotic exact independence

implies d—dimensional asymptotic exact independence. Therefore, pairwise
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analysis can help to select a given parametric family of models. However, the
help of the pairwise analysis is restricted, since the multivariate asymptotic
dependence is uniquely determined by the pairwise dependence.

In order to overcome the lack of flexibility, some attempts have been given
by Joe (1990) and Tawn (1990). We focus on the latter work. Tawn (1990) in-
troduced the multivariate asymmetric model, following the works of Dagsvik
(1988) and McFadden (1978). This model was planned to model different
types of dependencies among the variables. The way Tawn constructed the
individual models is a hierarchical model similar to the individual models of
our multivariate model. Tawn (1990) modeled different combinations of sub-
sets of the d—dimensional problem, as our model will do. However, we find
three differences with our work. The first one is the definition of the latent
variables in the hierarchical model. In our case, each variable of the multi-
variate model is explicitly defined by its subvariables. The second difference is
that the model in Tawn (1990), although includes all the possible dependen-
cies among the variables, it is not defined as a mixture model. Finally, Tawn
(1990) worked with the maximum of GPD variables. The model leads to an
overparametrization in most of the applications. Therefore, inference has to
be combined with the understanding of the application, so that the model
can be simplified. Even in the simplified version, the form of the density was
not easy to handle. In fact, in the application, Tawn (1990) implemented a

model selection framework, over a set of simplified versions of the multivariate
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asymetric model. The models were tested against each other using likelihood
ratio tests.

We believe the Bayesian mixture models are a helpful framework to over-
come the difficulties. The aim of the thesis is to overcome the difficulty of the
lack of flexibility of the classical models regarding the asymptotic dependence.
The way we construct the individual models and the closure of the high dimen-
sion distribution to marginalization, coupled with the Bayesian paradigm, the
MCMC and the reversible jump methodologies, ease the estimation of both

the marginal parameters and a wide tail dependence structure.

2.2.4 Summary

In this chapter, we have presented the ideas on the EVT that we believe are
sufficient to have a clear idea of the difficulties and challenges that this theory
implies.

We have seen that there exist two approaches to study extremes: the Max-
imum and the POT. Both methodologies give similar results, theoretically.
However, we saw that the maximum approach is vulnerable to dismiss some
of the information on the extremes. Hence, we have adopted the POT as our
general approach.

Regarding the inference, the univariate framework has been well developed
during the last decades. However, it is on the multivariate framework where

there is a lot to improve on. The main reason relies on the fact that there is not
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a unique representation of the limit distribution for the vector maximum. This
fact has the consequence of not having a direct way to set a tail dependence
structure. We will present a multivariate framework based on a mixture model
that will have individual models with an easy parametric representation, where
the tail dependencies among any subset of the variables can be calculated, just
via the parameters of our model.

There is a vast literature dealing on the bivariate case. Most of the litera-
ture has the copulas as the main approach to study the bivariate framework.
As we have established, theoretically, the transformation of the variables in
order to get standard marginal distributions does not change the theoretical
dependence structure. However, it does affect when making inference. We
present a way to construct parametric families, such that the parameters of a
joint distribution determine directly the dependence structure.

The natural inference approach of dealing with mixture models is the

Bayesian paradigm, which is what we treat in the next chapter.
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Bayesian Theory

In this chapter we will present a review of the Bayesian framework. Since it
is a big area we will only focus on the ideas we will use in this work.
Regarding the theoretic foundations, some authors have attempted to ex-
plain the Bayesian paradigm by providing an axiomatic system for the rational
behavior involved when dealing with statistic problems, e.g. refer to Bernardo
and Smith (1995), Lindley (1985), and Robert (1994). This system places the
statistician in a consumer environment of the type found in Samuelson (1948),
Chapter V. In general terms, the system can be summarized in the following

axioms (see, for example Bernardo and Smith (1995)):

e Comparability: the statistician can set preferences over consequences.
e Transitivity of preferences: there exists a rational choice of preferences.

e Consistency of preferences: additional information does not affect the

58
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preferences.

e Precise quantification of uncertainty of events via probability functions

With this framework, the authors provide a rational decision making sys-
tem, which they claim leads to the Bayesian paradigm.

On the other hand, functionally Bayesian statistics works through the con-
struction of prior distributions on parameters of statistical models. These
priors are updated to the posterior distribution once data have been observed.
Hence, the posterior distribution constitutes the main function of Bayesian
inference.

The outline of this chapter is as follows: In Section 3.1 we present the
basic definitions and the general ideas of Bayesian inference. In Section 3.2
we present simulation and Markov Chain Monte Carlo (MCMC) methods.
In Section 3.3 we present a particular tool we will use when simulating: the
Reversible Jump MCMC. In Section 3.4 we make a review of the Bayesian
statistics applied to the EVT, and lastly, in Section 3.5, we present our con-

clusions.

3.1 The Bayesian Idea

Suppose a parametric family is assumed as a model for data. In terms of prob-
ability functions, for the Bayesian approach, a joint model of the observations

and the parameters is constructed.
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A general representation of the joint model of both the data and the pa-
rameters is found in Schervish (1995), and is as follows:

Suppose a r.v. X, given the parameter ©, has a continuous distribution
function fxje(z|6). Define the distribution of the parameter as fe(6). Then,

the joint distribution has the form:
P((X,6)€B)= [[11(X,0) € Bl fxo(c|0)fa(@)dzds. (1)

From this representation, we can identify the main functions that are involved.

3.1.1 Prior Distribution

The distribution of the parameter fo() is defined as the prior distribution.
This function describes the uncertainty of the parameters prior to any in-
formation provided by the data. Thus, in principle, even with no sampling,
some information can be established for the parameters, such as the inclusion
of information coming from personal and/or experts opinions. This informa-
tion would be included exclusively in the parameters of fg, which are called
hyperparameters.

For example, suppose the r.v. X is such that X|0 ~ N(6,1). Assume that
it is believed that @ is positive, so that an exponential prior can be set, which

means:
fe(0) = 76_70’

for § > 0, and where v > 0 is the hyperparameter. Hence, the beliefs are
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included exclusively in fg(0).

Another option is the choice of assuming no information is given prior to
data. Such a prior is called non-informative and often is improper. This is a
widely used approach in practice. For more on non-informative priors, we refer
the reader to Bernardo and Smith (1995), Box and Tiao (1973), and Gelman

et al. (2003).

3.1.2 Posterior Distribution

In (3.1), the prior distribution is complemented by the conditional model
f(z|8).) Both functions form the joint model for the pair (X,0), since
f(z,0) = f(z|0)f(#). Once we have observed the data z, we set X = z
and the function given the sample is called the posterior distribution, and is

as follows:

C1GON6)  1(=8)6)
JO2) ===y = Ti=19)/(0)d6 (3.2)

This expression is known as the Bayes’ rule and constitutes the updating
rule of the Bayesian framework.

The denominator is not a function of 8. Therefore, the posterior distribu-
tion is determined by f(z|8)f(6) up to a constant of proportionality. Thus, it
is common to express it via:

f(6]z) o (] 6)f(9). (3.3)

1For the sake of explanation, we will drop the subindices on the distributions.
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The posterior distribution is the function from where inference about the
parameters can be made. For example, an estimator g is commonly selected
as the posterior mean or median.

Suppose 8 is a single parameter. An interval estimator of level p for 8 in the
posterior distribution is called a credibility interval and is of the form (él, 92),

where:

P8, <0< by)z) =p.

In many cases, the posterior is intractable for analytic results, such as the
computation of the moments (provided they exist) or even the probability of
a set. Hence, it is necessary to rely on sampling methods, such as the MCMC
methods, which will be described later.

In general terms, the sampling overcomes the intractability of the posterior
via the approximation of it by the empirical distribution of a sample. This
means that, if 8 is the random variable of interest and we sample 6;,...,0y
from the posterior f(6|z) and if the interest relies on the computation of the

mean of 8, then:
1 X
=) 6.
ZUEES DS
More generally,

JEQUBEEES SO

In the next section, we will present some of the most important simulation

methods found in the Bayesian literature.
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3.2 Markov Chain Monte Carlo Methods

For a detailed explanation and applications of MCMC methodology, we refer
the reader to Casella and Robert (1999), Gelman et al. (2003), Robert (1994),
Smith and Roberts (1993), and Tierney (1994).

Suppose we want to draw a r.v. Z with distribution function F' and density
f, which in this case is the posterior distribution and we define it as the target

function.

The simplest method to sample from is called direct sampling. Suppose F

has an inverse F'<, then a single draw is given by:
z=F*“(u)

where u is a standard uniform r.v. Thus, the sample, say z,..., 2,, consists

of i.i.d. draws.
However, in practice, the form of F~ will rarely be analytically tractable

and its form is generally unknown. Specially, in the case when Z is a vector.

3.2.1 Rejection Sampling

The Rejection Sampling method works when it is not possible to sample from

the target function f, but there exists a function g(z) such that:
e It is possible to draw samples from it.

o There exists a constant Al > 0, such that f(2)/g(z) < M for all 2.
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The g function need not integrate to 1, but because of the second condition,
it needs to have a finite integral. The g function gives a reference for the

behavior of f. The algorithm goes as follows:

1. Generate a proposal z from g and v from a unit uniform distribution.

2. If f(2)/(Mg(z)) < u, accept z as coming from f, otherwise, return to

step 1.

As in the direct sampling method, the sample 21,.. ., 2, consists of i. i. d. draws.

Unfortunately, when f is not tractable, it is difficult to find a suitable g
function. Therefore, more sophisticated methods have to be found, such as
MCMC.

When the direct or the rejection sampling are not useful, it is common to
drop the possibility of drawing i.i.d. samples. The way to proceed then is
to set up a Markov Chain Z,, for which f is the stationarity density, which
means:

Z, -5 Z~
Then, from the ergodic theorem, or more specifically, the Berkhoff theorem-

refer to Birkhoff (1942) and Wiener (1939):
1 N
¥ Z;h(Zn) - / hZ)f(Z)dZ as N — o,

with probability one, for a real-valued measurable function h. Thus, the mean
of the Markov Chain Z, is, in the limit, the same as the process of the direct

or rejecting sampling. However, the variance from the Markov Chain is larger.
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Hence, the natural question is how to set up a Markov Chain for which f

is the stationarity density.

3.2.2 Gibbs Sampler

The first Markov Chain (MC) sampling we are describing is the Gibbs sampler-
refer to Smith and Roberts (1993), Casella and Robert (1999) and Gelman et
al. (2003).

Suppose the variable Z is a vector that can be divided into d subvectors,
so that Z = (Z,,...,Z4). The aim is to draw a MC which, for notational
convenience, we now represent as Z\1,..., ZN),

Define Z_; as the vector with all the elements in Z, except those of Zj,
ie.: |

Z__j = (Zl,...,Zj_l,Zj-i»l,-"yZd)‘ (34)

Then, the Gibbs sampler works when the conditional distributions f(Z;| Z_;)
are known and it is possible to draw, directly or by rejection, samples from

them, for j =1,...,d. Hence, the algorithm proceeds as follows at iteration ¢:
1. Sample Zt) from f(2Z,| 2% M,
2. Similarly, sample Z(t) from f(Z; IZ(t) Z(t)l,ZJ(ill), ‘gt_l)).
3. Proceed until t = N.

However, frequently, it is not possible to sample from the conditional pos-

terior distributions. Therefore, it necessary to modify this method for those
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cases.

3.2.3 MCMC Metropolis-Hastings

The MCMC methods are used to deal with a target distribution that is not
possible to sample, directly or by rejection. They constitute a clever and
versatile modification of the rejection sampling. In this case, the g function
is substituted by a transition or proposal distribution, which depends only on
the previous draw, and which we define as T(z;| z,—;). When the transition
distribution is not symmetric, i.e. T(z]2:—1) # T(2¢-1]| %), the method is
called Metropolis-Hastings.

As the g function in rejection sampling, T has to be a function that is
possible to sample from. However, the second condition of rejection sampling
is substituted by a rejection criteria that involves the previous state.

Let f be the target density of Z. We define the algorithm at iteration ¢ as

follows:
1. Draw 2* from T(Z| z;—1).

2. Define r, the acceptance ratio as:

_ (20 | T(z z)
"= f(zo1) ~ T(z-1]2*)’ (3.5)

and, consequently, define:

z*  with probability min(r,1)
2y = (36)

21 Otherwise.
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Then, the sample (Z;,...,Zy) is a M.C. that has f as its stationarity
density. For the proof of this convergence, please refer to Gelman et al. (2003)
and Tierney (1994).

The speed of the convergence will depend on each case. For models where
information of the behavior near the mode of the distribution is required,
the convergence speed will be quicker than cases where the very high or low
quantiles are required. Since the starting point is hardly a representative
value, some of its following values will share the same feature. This fact leads
to the burn-in concept. This is the amount of values that are dropped from
the sampling. For example, in some our applications, we drop the first 1,000

observations, out of 10,000.

3.2.4 Metropolis-Hastings within Gibbs sampler

We used the Metropolis-Hastings (M-H) within Gibbs Sampler method, which
is a slight modification of the Gibbs sampler. Instead of drawing via direct or
rejection sampling, a MCMC M-H is used.

Define Z = (Z1,..., Z4), in a convenient order, and Z_; as in (3.4). Then,

the algorithm proceeds as follows:
1. Pick starting values (Z,..., Ztgo)).

2. At iteration t, sample Z}t) via MCMC M-H from

(Z IZ(t) Z(t)li Z_y(:—ll)’ Z‘(it‘l))’
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for j=1,...,d

3. Proceed until ¢t = N.

3.3 Reversible Jump MCMC

In many Bayesian problems involving model uncertainty, MCMC algorithms
are required to “jump” from one model to another. In this case, the most
common procedure is known as the Reversible Jump MCMC of Green (1995).

Suppose we need to select a parametric model for a r.v. X, out of K
models: Afy,..., Mg, each one having a parameter vector ) of dimension dy,
for k =1,..., K. Define the individuals models as f(z| 0k, M), and for Model
k define the posterior as f(6;| M), and the prior of b, as 7.

The general idea of Reversible Jump MCMC is to sample from a joint
target distribution for the pair (k,6;), say f(k,8;). Define y = (k,6;), so that
the target distribution is f(y). The jump at step ¢ will only depend on the
(t — 1)th step. Thus, a Markov chain is constructed, whose limit distribution
must match with the target distribution. This limit is achieved if the Markov
Chain follows the detailed balance requirement, which we will explain. Once
the joint sample is achieved, the selection of a model will be based on the
empirical frequencies of k, so that, for example, the selected model should
coincide with the empirical mode of k. We now describe in some extension the

algorithm:



Chapter 3. Bayesian Theory 69

Select an initial model Af, with initial parameter vector 6,. The first
step is to propose a jump to a model Afi«. In a general notation, denote
the probability of jumping from model k to k* as Ji j». If My = Al then
the next step is a single MCMC simulation, thus a new 6, must be sampled.
Otherwise, it is necessary to compare the models in order to accept or reject
Mj+. To do so, we need to address a couple of issues.

The first one is that the jump from Af; to Alj« involves as well a jump from
6% to O, which might imply a change of dimension. Therefore, f(z|0, M)
and f(z| 6+, M+) are not comparable yet. In order to deal with this change
of dimension, an auxiliary r.v. u, with distribution J(u|k,k*,6;), must be
drawn. This variable will help to fill the gap between the dimensions di and
di-. The way to do so is by defining a deterministic function of u, say g i,
such that (6, u*) = gi 4+ (Ok, u). Thus, di + dim(u) = di- + dim(u*). Finally,
the last factor to consider is the Jacobian of the transformation g k-

Suppose y € A and y* € B. Then, it is necessary that the probability of
accepting the move from y to y*, say a(y, y*), must hold the detailed balance

requirement. This is expressed as:

/ T () B (ul O)aly, y*) dy du = _/ (W) B k(0] O1e) a(y*, y) dy” du’;
R R

where R = (y,y*) € Ax B, and B~ (u| k) = Ji k- J (u] k, k*, 6;), and similarly

for By p(u*| Ox+).



Chapter 3. Bayesian Theory 70

Assume gy x+ is differentiable, then a valid choice for « is:
a(y,y*) = min(l,r).

where r is a the acceptance ratio of model k, and is expressed as:

_ Sz Okes My )p(6se
f(2| Ok, My)p(6

Mioe )Tge N Jie ke (W) K* K, Or+) y 'ng,k'(ek»u)
A[k)ﬂ-k Jk,k‘J(ul k, ktvak) v(ekvu)

(3.7)

Therefore, the rule equivalent to (3.6) would be:

(k*,0;+) with probability min(r, 1)
(k' + 1, 0k+l) =
(k,6;) otherwise.

3.4 Bayesian Methods in EVT

In this section we will expose a brief summary of the literature that combines
the Bayesian framework and the EVT. So far, the Bayesian framework has not
been a great influence on the EVT. The few works there are, are applied to a
univariate environment. The reason for this is that the multivariate EVT is
still in an early development stage.

However, the path to the Bayesian framework is clear with the current mul-
tivariate theory: for example, given the representation in (2.15), a parametric
model must be selected for H, so that prior distributions can be defined to
the parameters of H. Therefore, a posterior distribution can be assigned to

the MEVD. The same would work for the parameters of any copula, such as
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those used in Poon et al. (2004).

A good review of the Bayesian framework in the EVT is given in Coles and
Powell (1996). Coles and Powell affirm that the Bayesian applications were
almost limited to give some priors for specific cases of the GEV. Pickands
(1997) proposes a prior distribution for the GPDy g as:

1
f(k,B) x En[ﬂ>0]-

Although this prior has the drawback that it depends on the threshold u (recall
that the scale parameter of the GPD in the POT depends on the choice of the
threshold, see (2.8)), it constitutes the first attempt to work with a Bayesian
framework with the GPD.

Some other works have gone beyond only specification of prior distribu-
tions. One of them is Coles and Tawn (2005): they give a complete Bayesian
approach, using the point process of Smith (1989) applied to wave surges.
Coles and Tawn compare it with classical estimators and deal with model
issues such as seasonality.

In previous work, Coles and Tawn (1990) defined a spatial model for annual
maximum sea levels. Ever since, environmental extreme statistics have relied
widely on these models. One of these works is Cooley et al. (2007) where a
Bayesian hierarchical model is applied, using the high threshold approach.

In Bottolo et al. (2003), a complete Bayesian model was introduced to
model large insurance claims. Bottolo et al. (2003) used a model where a

Reversible Jump MCMC was needed. This model adjusts as well to difficulties
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such as seasonality.

Recently, Ferraz et al. (2011) proposed a combination of a mixture of
gamma distributions for the data under a high threshold and a GPD to model
the tails.

Guillote and Perron (2008) define a way to estimate the dependence func-
tion of Pickands’ representation in (2.21) via non-parametric methods and a
Bayesian approach for the marginals.

One more Bayesian topic to address is the work done on elicitation. In
Coles and Tawn (1996), an application to rainfall data is introduced. This
paper is innovative because it incorporates experts knowledge to the GEVD
through the quantiles of the model. If we invert the GEVD, the (1-p) quantile

is given by:

¢ = 2 [(~log(1 - p)) ™ —1].

Coles and Tawn selected three quantiles, say ¢; < g2 < g3, and in order to
avoid dependence among them, they worked with the differences ¢, = q; — |,
G2 = @2—q1, and §3 = g3 — qa. Therefore, it was assumed that the §; are gamma
distributed. It was possible to ask the experts two estimates (since the gamma
has two parameters) of each §;, in order to determine the hyperparameters
of the gamma distributions. This elicitation resulted in an improvement of
the estimates: the Bayesian interval constructed was half of the width of the
corresponding classical confidence interval.

There are two other Bayesian works that we will discuss in Section 6.4,
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which are Coles and Pauli (2002) and Apputhurai and Stephenson (2011),

once we have introduced our multivariate model.

3.5 Conclusions

We presented in this chapter, the main ideas involved in the Bayesian frame-
work. All of them will help us to build a framework to model our extreme
data. Besides, we introduced the main sampling algorithms that will allow us
to do the inference in our model.

So far, the EVT is practically a desert area in terms of Bayesian applica-
tions. This means a huge amount of exploration is expected in the forthcoming
years. We expect that, since the essence of the extremes makes them scarce,
so that any additional information to data can make a considerable difference
when making inference. Besides, as we will show later, the Bayesian estima-
tions avoid some difficulties that arise when working with MLE, in the classical

framework.
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Interim Bivariate Models

The purpose of this chapter is to show the development of the framework for
building the form of the final individual model of the mixture model. The best
way to construct a multivariate model is to start with the simplest version:
the bivariate model. Once we find the final model, we will generalize it to the
trivariate or the general multivariate case. This final biariate individual model
will be given in Chapter 5.

We seek a model for which the following properties hold:

1. — Realistic marginal tail models.
2. — Simplicity of the joint and marginal distributions. (4.1)
3. — Embrace different types of asymptotic dependence.
We begin this chapter with some first attempts, which get rejected because
of at least one of these properties. Then, we modify the features until we obtain

the final model. The final model will be presented in the next chapter. For a

74
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specific model we construct its joint distribution and we derive the tail depen-
dence structure the way we mentioned in Section 2.2: via the standardization
of the marginals. We work with Fréchet marginals, so that the corresponding
transformations are as follows (recall (2.30)):

1 1

3= g X) L g ()

Thus, the joint distribution is expressed as follows (recall (2.31)):

1 1
P02 >0 =P (> ey T mwEm) |,
=P(S>sT>t).

We believe the tail dependence parameter x is a proper measure of the tail
dependence between variables. Recall from (2.25) that it can be expressed as:

P(T>s,8>s)
P(S>s) '’

X =limg 00 P(T > 5] S > s) =lim, 0o
and for any marginal Fx (or similarly for Fy):
P(S>s)=P(X>Fy (e7*)) =1- eVl

as s — 0.

We need to recall as well the definition of the tail coefficient from (2.28):
P(S>s,T>3s)~ L(s)s™", as s = oo, (4.3)

where 0 < 7 < 1 and L is a slow varying function (recall Appendix A for the

definition and some examples). Therefore (and recalling (2.29)), we get that

P(S > s|T > s) ~ L(s)s 1/ as s — oco.
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The coefficient n will help us to identify the asymptotic form of the model.

In order to compute (4.2) we:

1. Compute the marginal distributions.
2. Compute the marginal inverse distributions or its asymptotic form.

3. Compute the joint survival function for the transformed variables S and

T.

4. Look at the asymptotic form of P(S > s|T > s).

We present some general bivariate models, which we build through the
Common Variable Method or the Trivariate Reduction Method. Let X and Y
be positive random variables to “join together”. We seek to split the marginal
and the joint effects using different random variables, which we will onwards
call (random) subvariables. Thus, those subvariables which are present in
both X and Y will deal just with the joint structure and the subvariables
exclusive to X or Y, will deal with the marginal behavior. This method has
been applied by Ahmed (1961) and Walhin and Paris (2000) in convolution
of Poisson variables, whereas Sarabia and Gomez (2008) present a review of
the literature in this method for both discrete and continuous variables, with
different types of associations among subvariables.

The present chapter has: Section 4.1 which presents the convolution mod-

els, and Section 4.2 explains the first product model.
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4.1 Convolution Models

Our starting point is to represent each variable as the sum of two subvariables.
This representation leads to the well known convolution distributions. The

models have the following general representation:

X= A+B,
(4.4)
Y= A+C,
with all A, B, and C positive and mutually independent.
This type of model is a simple way of creating dependence between vari-
ables. The magnitude of the subvariable A will settle the dependence struc-
ture: the larger the magnitude of A, the more related X and Y will be. As

a consequence, when the second moment exists for each subvariable, we have
that
Cov(X,Y) =Cov(A+ B,A+C)

= Cov(A, A) + Cov(A, C) + Cov(B, A) + Cov(B, C)

= Cov(A, A) = Var(A).
Thus, the dependence between variables is determined only by the common
subvariable, through its variance.

We start by looking at exponential models for the subvariables. Although

we know these models do not have the first property in (4.1), since the as-
sumption of having exponential marginals is very restrictive, we consider this

case to get into the computations involving on the convolution framework.
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4.1.1 Convolution Model 1. Unit Exponential Models

As a start, we consider the model:

X= A+B,
(4.5)
Y= A+C,
with independent B, C ~ Exp (1) and A ~ Exp ().
It is easy to see that as a decreases, the tail dependence would increase,
since E(A) = 1/a.
As we mentioned previously, the first thing to look at is the marginal

distributions. So we have that

Fx(z) =P(B<z—-A)
. /Oz P(B <z —ala)fa(a)da
= /Jc (1 — e~@=9)ge%dy

X
=1—e"2 — ae"’/ e~(e-Dag,
0

=1-e*®—qae™” ( ! ) (1 — e~y
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For notation purposes, we define the G function as:
Gx(s) = F (), (47)

which, in this case, is the same as Gy (s), since both have the same distribution.
Thus, we can define G(s) = Gx(s) = Gy(s). So, we can compute the joint
survival function of the transformed variables as follows:
P(S>s,T>s) =P(-1/log(Fx) > s,—1/log(Fy) > s)
= P(Fx > exp(—1/s), Fy > exp(—1/s))
= P(A+ B > Fi(exp(—=1/s)), A+ C > Fy (exp(—1/s)))
= P(B > Gx(s) — A,C > Gy(s) — A)
= /P(B > G(s) —a,C > G(s) — a|a) fa(a)da

o o}

G(s)
= / e~ 2(Cle)-e)geaedq P (B >0,C > 0|a) fa(a)da
0 G(s)

G(s)
— ae—2G(s)/ e—(a-—2)ada+e—aG(a)
0

= ae—2G(3) (___1_.) (1 - e—(a—2)G(s)) + e_ac(a)

a—2
__“ e—26(s) _ o e—aC(s) 4 g=aGls)
a—2 a—2
_ @ _2G(s) 2 .G
=—ce€ —_—e .
a—2 a—2

Hence, the joint survival function is represented in two parts:

a —2G(s) _ 2 —-aG(s) 2
a—2 ¢ a—2 € @

P(S>s,T>s)= (4.8)
(2G(s) + 1)e~2C( a=2

We present the dependence structure of this model in the following theorem.
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Theorem 4.1.1. Tail Dependence in Simple Exponential Model

Let X and Y be defined as in (4.5), then the tail dependence is given by

3 %1__—5—), O<axl
X = (4.9)
0, a>1.

We present the proof in Appendix B.1. In Figure D.2 we plot the shape of
the tail dependence given in (4.9). As it can be seen, when a tends to zero,
X tends to one. And when a gets closer to one, the tail dependence tends to
zero. Hence, this type of model only allocates asymptotic dependence when
a < 1, which is the interval where the expected value of A is larger than the
corresponding B and C, which means that the subvariable A is large enough
to give a common dependence to both variables in the tails. The next task
is to represent the subvariables as general exponential variables. However, we

are aware that these models do not have the first property in (4.1), i.e., they

do not embrace a wide range of types of tails.

4.1.2 Convolution Model 2. General Exponential

We present the general exponential convolution model:

X= A+B,
(4.10)
Y= A+C,
with independent B ~ Exp (8), C ~ Exp (7), and A ~ Exp (a). For the ease

of explanation, and without losing generalization, we will suppose 8 > 7.
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As in the simple case, we begin with the calculation of the marginal distri-

bution.
Fx(z) = P(B<z~-A)
- / P(B < & — a| a) fa(a)da
0

= / (1 — e PlE=9))ae™2dq
0

=1-—e —qe P (—{—) (1 - (A=)

—-——e ——
a—-p a—

(
1+ ﬂﬁe“”—aaﬂe"”c a# B;
a— ——
Fx(z) = § (4.11)
\ 1-(azx+1)e a=j
( Y - a
1+ e™ — e a#y
a—7 -7
Fy(y) = 4
1—(ay+1)e a=71.
\

Thus, we note the marginals are mixtures of exponential distributions.

In the next theorem, we introduce the dependence structure derived by

this model.

Theorem 4.1.2. Tail Dependence in Exponential Model

Define X and Y as in (4.10). Then, the tail dependence between X and Y
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s given by:

e N\
- (175) (1-8) 7 a<a<s

0, y<B<aory<a<p.
(4.12)

We present the proof in Appendix B.2. This theorem states that there is tail
dependence only when « is the smallest parameter, which means, only when
E(A) > maz{E(B), E(C)}. This makes sense as in the simple exponential
case: the larger the magnitude of the subvariable A, the larger the dependence
between the variables.

As we have mentioned previously, the exponential based models have the
purpose of getting us to grips with the maths involved. The exponential dis-
tribution is a model with tails that are too light, so that it cannot be expected
to fit a wide range of extreme data. This means that the exponential based
models violate the first property in (4.1). The next step is to modify the distri-
bution of the subvariables, so that heavier tails can be embraced. The GPD is
the natural distribution to fit any type of tail, as we saw in Chapter 2. Hence,

we propose in the next section a model that convolutes GP distributions.

4.1.3 Convolution Model 3. GPD

The GPD is the non-degenerate limit distribution of the tail of any distribu-
tion. Therefore, if the convolution model works for any distribution, then it is

expected to work with the GPD. The tail characterization of this model will
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not depend on the value of the scale parameter of the GPD. Therefore, we will
set it as 1 for all the subvariables.

We define the convolution model as in the previous cases:

X= A+B,
Y= A+C,
with independent A ~ GPD (k;,1), B ~ GPD (k2,1), and C' ~ GPD (k3,1),
for k4 > 0, k3 > 0 and k3 > 0.

Firstly, as in the exponential case, we derive the marginal distributions. So
Fx(z) = /Ow P(B < z — ala)fa(a)da
= /m [1—(1+ k(2 - a))'l/kz] (1+ kya)~V*=1da
0
=1—/71+b@—a»ﬂha+hwﬂﬂrww
0

However, this integral does not have an analytical solution. Nevertheless,
Barbie and McCormick (2005) introduced a way to compute convolutions of
regularly varying distributions. Recall the definition of regular variation in

(A.1), then

Fa(tr) _ (L+kta)™™ ),
Fat)  (L+kit)" 1k ’

limt—voo

for ky > 0. Therefore, F4 € RV_; /ky» and similarly Fp € RV, [k
Define the convolution operation on two distributions ' and G, for random

variables W and Z, respectively, as:

FxG(w)=P(W + Z < w).
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The main results of Barbie and McCormick need some requirements on
the distributions to convolute. For example, Barbie and McCormick (2005)

defined the following concept:

Definition 4.1.1. Asymptotic Smoothness

A function f is asymptotically smooth with index —a if

. . f(1 —=)) = f()
limg_olim sup su —a|=0.
oo lm e 0<}:L']p<6 zf(t)

This property, as Barbie and McCormick state, is held by those distri-
butions functions F for which F is regular varying and has an ultimately
monotone density. Hence, the GPD is asymptotically smooth.

Barbie and McCormick defined as well the following:

Definition 4.1.2. Right Tail Dominance

A distribution F is right tail dominant if

lim; 00 =0,

for any 6 > 0, which is clearly held by the GPD.

Denote, as well, the truncated mean of the distribution F as:

¢
ur(t) = / zdF(x), for t > 0.
0

The result of Barbie and McCormick (2005) divides into two cases. The

first one is related to light tails.

Theorem 4.1.3. Convolution of Light Tails
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Let F and G be two distributions, such that F € RV_o and G € RV_g
with a A B > 1. Assume F and G are asymptotically smooth and right tail

dominant. Then,
1— F G(t) = Ft) + G(0) + 7 (eF Oria(®) + FGORe(0) (1 + (),
as t — oo.

In the GPD case, this result applies when k; V ks < 1, which is the case
when both means exist, and are the following:
pralt) = g (1-(1+ kit) 54, and pur (1) = £ (1 —a+ kzt)"k‘-:“).
Therefore,
FaxFy(t) ~1=TFa(t) = Falt) + gy Fal®) (7 = 711 + kot) %)

+aam Fa®) (71— 11+ k) TE )
~1— (1 - m) Falt) — (1 - m) Fs(t),

as t — oo, for ky, ko < 1.

Therefore,

Fx(t) = 1—F4(t) — Fp(t), as t = oo. (4.13)

However, this means that the tail of the marginal is asymptotically equivalent
to the heaviest of the tails of A or B. Thus, the joint model can only imply
either complete tail dependence or exact tail independence. Therefore, this
model does not have the third property in (4.1).

The next theorem of Barbie and McCormick (2005) corresponds to heavy

tail distributions.
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Theorem 4.1.4. Convolution of Heavy Tail Distributions
If F and G are asymptotically smooth distributions on R*, such that F €

RV_o and G € RV_g, with aV B < 1, then

1-FxG(t)-F(t) - G(t)

— a+8 _ ga _ 9B
-F—(t)é(t) —I(a,B)+I(5,a)+2 2 2 ’

limt—)oo

1/2
with I{a,B) = / (1 = w)™ = 1)fw?"dw, and similarly for I(B,a).
0

Therefore, for the GPD case, we have:

Fux Fg(t) ~1—TF4(t)— Fp(t)
—Fa(t)Fp(t) [21/k1+1/k2 — 2% — 28 4 [(1/ky, 1/ko) + 1(1/kz, 1/ky)]
as t — oo, for k1, ks > 1, and with the I function defined as previously .

Hence,

Fx(t) ~1—=TF4(t) — Fg(t), as t = oo.

Therefore, as in the previous case, the fourth condition in (4.1) does not hold.

In conclusion, the convolution models offer an easy expression of the general
dependence between variables. As well, they constitute realistic and non-
standard marginal tail models. However, they can only produce complete tail
dependence or exact tail independence. Therefore, these models do not fulfill
all the conditions in (4.1). In the next section, we present a modification of

the convolution model to overcome the problems identified in this section.
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4.2 Product Models

The convolution models failed to embrace different types of asymptotic de-
pendence. They lacked as well a mathematically simple representation of the
distributions. These two facts are related, since the mathematics involved in
the convolution operation as defined in (4.4) only lead to the extreme tail

dependence cases.

In this section, we present another trivariate reduction method that eases

the computation of the distributions: the product model.

4.2.1 General GPD Product Model
The general representation of the product model is as follows:

X = (Bx D),
(4.14)

Y= (CxD).
This model can be viewed as a modification of the convolution model, since it

is precisely a convolution in log scale, where:
log X =log B +log D, and logY = log C + log D.

For ease of explanation, we will take A = D~!. As in any trivariate reduc-

tion model, of main importance is the choice of the subvariables distributions.
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However, with the following model, we can get a GPD representation:

X=(BA), (4.15)

Y= (C/A),
with independent B ~ Exp (o), C ~ Exp (a3), A ~ Ga(8,0), for {6,a1,a2,0} €
R%. Notice that we could have written, for example, B/A as B x D, where
D ~ Inv-Gamma (6, o), so that it had a proper product representation. How-
ever, we keep the first representation for ease of explanation.

Then, the marginal is as follows:

P(X <z) =P(B<Az) = / P(B < az|a)f4(a)da
0
6 / [1 _ e—alaz] e—-oaaﬂ—lda
0
o0
=1- a_"/ e—aotarz),6-1 4,

0

=1—(1+%‘~x)_0,

and, similarly:
—1-(1422,)7
Py <y)=1-(1+ ay) .
Thus, the marginals for X and Y are GPD (1, %¢) and GPD (3, %2), respec-
tively.

On the other hand, the joint survival function is given by:

P(X>z,Y>y) = / P(B > axz,C > ay|a)fa(a)da
0

)
- 0% e—a(a+alx+a2y)a0—lda
I 0

=1 (1+ fazton)™?
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forx >0,y > 0.
Consequently, this model leads to equivalent marginal tails, since both have
the same shape parameter. Therefore, it is not a realistic model; it violates

the first condition in (4.1). Hence, we need to modify the tail of each variable.

4.2.2 Exponential-Gamma Model 1

The model we present in this section modifies the shape of the distributions

of the previous model by adding two shape parameters as follows:

X = (B/A¥,
(4.16)
Y= (C/A);

with independent B ~ Exp (a;), C ~ Exp(az), A ~ Ga(8,1), with
{01 ag, 02, ¢1, ¢2} € R_s'.

We will denote this as Model 1.
Note that in the previous model, the parameter ¢ did not have an important
role, since the parameters a; and a3 can be taken as the scale parameters. This

is the reason why we fixed o = 1.
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4.2.2.1 Marginal Behavior

The marginal distribution is given by:

P(X <z) = P(B< Az¥) =/°°P(Bga:cw%|a) faa)da
_ 0

o0

1
1 —omaz¥1 —-a ,0-1 4.17
= 1@ A [1 —e™ :, e %a" ‘da ( )

1\-0
=1- (1+a1:v¢1) ,
and, similarly:
-6
P(Y<y)=1- (1+a2yw—1z) .
These lead to the following densities:

0 1 a1\ —0-1 1 1\ —0-1
fx(%)=%wl1 1(1+alx'”11) «'defy(y)=%ywl2 1(1+azyw12) :

(4.18)
Thus, it means that Fx and Fy are Burr type XII (Burr-XII) distributions. We
now describe the main properties of the Burr-XII distribution. Refer to Burr
(1942), Fry (1993), Johnson et al. (1994), Rodriguez (1977), and Tadikamalla
(1980) for more details.

For X as in (4.16), define, as in Burr (1942), Z = a; X1, then
fz(2) =601 +2)7%1,
z > 0. Therefore, the rth-moment of X is given by:

0
E(Xr) =E (al—rwlzr%) = a;rwleBe(m/)l + 1’9 _ rz/)l), forr < E,

where Be(w, v) is the Beta function. In particular, X will have a finite mean

only when ; < 6. Hence, the marginal distributions covers heavy tails.
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Another feature of the Burr-XII distribution is the characterization of the
shape of the density via the mode. The derivative of the density of X in (4.18)

is expressed as:
—6-1 -1
—fx(x = 2 1+a1xv’% 1-1y) — 6+1)alcc'%1 1+a1xﬁ .
T 2

Hence, the mode is given by:

o (_1-wv \" o
X = (m) ,for¢1<1,

and therefore:
e The marginal of X is unimodal if ;8 + ¥, (1 + ;) < 1.
e The marginal of X is L-shaped if a;8 + ¢1(1 + a;1) > 1.

In Figure D.3, we present an example of each one of these cases.

Rodriguez (1977) gives a more detailed analysis of the Burr-XII distribu-
tion. One of the interesting results is the following: suppose W|w; ~ Weibull,
with w; a scale parameter, and that w; ~ Gamma. Then, IV ~ Burr XIIL
Another source of Burr-XII distributions is Fry (1993), who treats both the
univariate and multivariate cases of all types of Burr distributions. Neverthe-
less, these models differ considerably from the models we are introducing.

Compared to the GPD product model of Section 4.2.1, Model 1 leads to

different marginal distributions.
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4.2.2.2 Dependence Structure and Joint Distribution

In the next theorem, we present the tail dependence structure and its proof
can be found in Appendix B.3.
Theorem 4.2.1. Tail Dependence of the Ezponential-Gamma Model 1
Define X andY as in (4.16). Then, the tail dependence between X and Y
18:
x=2" (4.19)
And the following special cases are hold:

1. If 0 - 0o, X and Y are asymptotically exact independent.

2. If0 >0, X and Y are asymptotically complete dependent.

Therefore, when studying the tail dependence structure of two variables,
inference should focus on the estimation of §. As a last step before this infer-
ence, we present the joint distribution:

Fxy(z,y) =P(X <zY <y)

o0

P(B < z¥a,C < y¥ia)f4(a)da

oo 1 1
= s 1—e e’ ) ] gmeaan™? ) gmegf-14,
HONA
1

=1- (1 +a1xW) - (1 +a2ywlz) + (1+a1x'h +a;;yw2) ,

Il
S~

(4.20)
and, consequently, the joint density is:
o 1 13 1 1\ —6-2
fxy(z,y) =6(0+1) " ¥ yve (1 + ayz¥r + agywz) . (4.21)
'1Y2
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It is worth noticing the difference between the joint distribution in (4.20)
and the corresponding convolution model in (4.13), where we could only take

either the tail of the marginal of X or that of Y. In the current model, we

have the joint survival term given by:
1 1\~
P(X >z, Y >y) = (l + a1z v +02y”2) )

which represents the dependence structure and makes possible as well the tail

dependence, rather than only the exact and complete dependence. The next

step is about inference for Model 1.

4.2.2.3 Inference Exclusive to §. Model 1

We use the MLE for Model 1, since this methodology works. However, in

general, we will use the Bayesian framework.
Let D = (X,,,Y,) be asample of ni. i. d. vectors, where X, = (z3,.. ., x,)T

and Y, = (y1,...,ys)7. Define the parameter space as @ = R} and define

w € Q as:
w = {0, o1, 02,91, 42} .

Then, from (4.21), the likelihood function of Model 1 is given by:

L
v,

ooz \"r & H a AN
L(w|D) = (0(0+1) 1/111/12) Hx,- Y; 1+ oz + ay, :
=1
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and, consequently the log-likelihood function is:

l[(w|D) =logL(w|D)
=nlogd + nlog(d+ 1) + nlog (%ﬁ%) + (J)IT —-1)3°"  log =
+ (i -3 logy; — (0+2)3 1, log (1 + alzrw‘ +a y'”L
(4.22)
As a first step, we fix the elements of w as known, except for §. The aim

of this section is to study the properties of the MLE of §. Therefore, we need

to find this estimator as follows:

d . e -
(0|D) '5 9—— Z og (1"‘(11(1) 'i"CY-zyl s

)

2 — M+ (M?+4)/2
2M ’

and denote:

GI,_.

1
Zlog (1 + a1z + gy,

then

d ~
351(9113)—0‘:'9—

for which, the only positive solution for all the parameter space is:

1 1 2 2\ 1
;1.1 “ _= 4.23
) M+2<1+(M)) 5 (4.23)
and given that
d? n n
n__"__ <o, 4.24
gz D) =~ — oy < (4.24)

we conclude § provides a maximum.
Recall from (4.19) that the tail dependence is expressed as x = 279, then

the extreme tail dependence cases are given by:
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e If Al — o0, then b 0, then x = 1. Therefore, X and Y are asymptot-

ically complete dependent.
o If AT — 0, then 6 — 0o, then x = 0. Therefore, X and Y are asymptot-
ically exact independent.

The first feature of 8 is consistency, as the following theorem demonstrates.

Theorem 4.2.2. Consistency of ]

The MLE 8 of 0 found in (4.23) is consistent, i.e.:
8- 0. (4.25)

In Appendix B.4 the conditions for which 8 25 9 are established.
The second feature of 8 is asymptotic normality. We establish this prop-
erty in the following theorem (see Newey and McFadden (1994) or Schervish

(1995)).
Theorem 4.2.3. Asymptotic Normality of MLE
Let g be an MLE of a parameter p. Then, under reqularity conditions
VA(B—¢) 5 N (0,17(@), (4.26)
where I(-) is the Fisher information matriz.

In Appendix B.5, we prove that the regularity conditions hold for (4.26).
For the construction of confidence intervals for 8, we need to elaborate a

bit further, since 8 > 0. Rearranging (4.26), we get that:

=9 _P-p 4
(nI(p))-1/2 ~ SD() — N(0,1), (4.27)
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where S D stands for Standard Deviation.

Define g(8) = log(f). Then, by invariance of the MLE, g(8) is an MLE of

g(0). Therefore,

log(t?) log(8) 4 4y N (0,1).
SD(log(O))

By the Taylor expansion of log(a) around 6, we get that:

log(g) zlog(9)+% (0—5) 2‘02 (0 0) +...
which leads to the following approximation:
log (9) ~ log(6) + = (9 0) .

Therefore:
which means:

Hence,

SD lzg(e))

This approximation leads to the following construction of the 95% confidence

interval:

P (0exp{ 1.96 SD(log(d) /o} <6 < Bexp {1 96 SD(log(d) )/9}) ~ 0.95.

Then, for data D and the log-likelihood defined as in (4.22), we make the

following approximation:
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where

6=0

7(2) _ 15 % 0D

n — 662
=1

Therefore, the 95% confidence interval is given by:

~ 1.96 ~ 1.96
0 exp 1o ,0exp

G )

We present an illustration for inference with this method. We simulated
observations from model (4.16). We consider four levels of tail dependence:
6 € {5,3,1,1/3,0.2}. In terms of heaviness of the marginal tails, we split
data in heavy tails: 9;/6 = 1 and ¢,/ = 1.5; and light tails: /6 = 0.25
and ¥,/0 = 0.2. We simulated 500 observations for each model, with 10
replications for each model. In Table C.1 we show the the estimations of 6, x,
and 95% confidence intervals via the MLE method. We present, as well, the
standard error of the replications. As it can be seen, 8 is considerably close to

all the true values of 0, all the confidence intervals contain the true value 6,

and the standard errors are small.

4.2.2.4 Summary of Model 1

Model 1 represents a framework that embraces a wider range of tail behavior
than the previous models. Even more, consistency and asymptotic normality
is achieved for the dependence parameter §. However, before going further on

the inference, we need to address some drawbacks of the model.
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If we look at the marginal tail in (4.17), we can approximate it by:
1-P(X <L)~ al_ox_w%,

for large z. Then, 8 dictates both the marginal tail and the dependence struc-
ture. And, for large data, there exists an identification issue between § and
11 or ¥,. Hence, the second property of (4.1) is violated in Model 1, since the
marginal tails are linked to the dependence structure. Therefore, we need to
isolate @ only to model the joint behavior.

Another drawback of Model 1 is the fact that it does not factorize to the
marginal effects when considering the tail independence case (§ — o). In

fact, if we proceed as in Johnson et al. (1994) (p.687):

) AN
P(XSG wlx) =1—(1+—0-)

1
=1—-exp —010g(1+£%_‘—>}
& A
=1—exp{ —0 -’—0—’--—-;-(%) +...

i

=]—e" , as 0 — o0,
which means that the tail independent case implies directly that the marginal
tails must be exclusively of the Gumbel type, which is not a heavy-tailed type.

In the next chapter, we introduce changes in Model 1 to deal with the

drawbacks found here.



Chapter 5

The Bivariate Model

In this chapter we introduce the bivariate model, which will overcome the
drawbacks of the models found in Chapter 4. This model will become the in-
dividual bivariate model of the mixture model introduced in the next chapter.
In fact, it will determine the way to construct the parametric family of all the
individual models in the mixture model.

In Section 5.1, we introduce the representation of the final model (Model
2). The marginal distribution derivation is found in Section 5.2. The joint
distribution and the dependence structure are presented in Section 5.3.

In Section 5.5 we discuss what type of data Model 2 can be used for. We
define the regions where the data is modelled. As well, we define two ways of
dealing with data. However, we will only keep one of them for the rest of the
thesis.

We present some similarities and comparisons of Model 2 with the literature

99
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in Section 5.4.
Finally, in Section 5.6, we deal with inference for both the MLE and the
Bayesian framework. This includes the introduction of the likelihood and

posterior functions for the different ways of dealing with data.

5.1 Exponential-Gamma Model 2

As a modification of (4.16), we propose the following bivariate model:

X = (1+B/A)e,
(5.1)

Y= (1+C/A)%;
with independent B ~ Exp(a;), C ~ Exp(as), A ~ Ga(0,1), ay,04,0 > 0,
and £,&% > 0.
There are two fundamental changes to this model and they are related to

eliminating the drawbacks of Model 1 in Section 4.1.1:

1. The appearance of # in the exponent. This will improve estimation
performance, since it will separate the marginal from the joint estimation

of the shape parameters.

2. The inclusion of the “1+” term. This will facilitate the model to factorize

into the marginals in the tail independence case (i.e. as 8 — oc).

The second change implies that we are only able to model data larger than

1. However, there is no loss of generality, since, as we will address later, Model
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2 fits heavy and semi-heavy tailed distributions. Therefore, a change of scale
on the observations does not affect the tail behavior. In a broad sense, instead
of defining the origin in the support of the random vector (X,Y’) in (0,0), we

are defining it in (1, 1).

5.2 Marginal Distributions: Model 2

In order to illustrate the effect of 6 in the exponent, and to sketch the changes
we are making on the distributions, we compute the marginal distribution.
This is given by:

Fx(z) =P(B < (z/% —1)A)

- /oo P(B < (z'%' — 1)a | a) fa(a)da
0

=11 * - 1/6& _ N 0-1
=1- 1 /0 eXP( aia(z'/% — 1)) exp(—a)a®~!da (5.2)
o
=1- F(IT)/ exp ( — a(1 + a1 (z/% - 1))a® 'da
0

1 -6
=1~ (1 + ay(z? — 1)) ,

and so the marginal density function is given by:

) = () (L anfem - 1)

1

With the introduction of 6 in the exponent, we eliminate its influence on
the shape parameter of the marginal tail, since:

1 -6
P(X >z) = (1 + oy (2% — 1)) -
5.

0

-1
Ra;r ‘1, as T — 00.



Chapter 5. The Bivariate Model 102

In Section 4.1.1, we saw that Model 1 has a Burr-XII marginal distribution,

and recall that W ~Burr-XII(c, k), if
PW<w)=1-(1+w)"*, forw >0,

or, including é and =, location and scale parameters, respectively:

(w—8)°

c

—k
P(Wgw)=1—(1+ ) , for w > 4.

Thus, the marginal model in (5.2) is not Burr-XII. However, because of the
similarity, we will refer it as a quasi Burr-XII type.
It is possible to compute the rth-moment, similarly to Model 1, as follows:

For X defined as in (5.1), define Z = a, (Xbi—l - 1). Then
fz(z) = 6(1 4 2)7°%.
Therefore, the rth-moment of X is given by:
E(X")=E (a;"’flu + Z)faﬁ) = a]"%p /0 T (14 2ytam0-1gs,

which yields:
o0 ifr> (il
E(X") = o
aj st ., 1
—ﬁ&— ifr < f_l

Hence, the heaviness of the tail depends only on the shape parameter &;.

Therefore, the marginals of the final model cover heavy tails.

The case when 8 — oo will play an important role in the coming sections.
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Thus, we present how the marginal behaves as § — oo:
1 -0
P(X >z) = (1 +ay (2% — 1))

-0

~ (1 + alloszzjl_)
9 .
(5.4)

= exp {-—al log xé}

a1

=z &, as f > o0.

In the first approximation, we used the following:

o _
#-1 ~logz, as p = 0. (5.5)

The expression in (5.4) is an improvement from Model 1, where an asymptotic
expression for P(X > z) when 6 — oo was not possible to achieve.
Similar to Burr-XII distributions, we can characterize the shape of the

density via the mode. The derivative of the density in (5.3) is given by:
d (1-6&)ar .1 _o 1 —-6-1
EfX(x) = 0—5%1‘9‘1 (1+a1($9£1 - 1))

2, 1 —0-2
—w—-;-)ﬁl—mmd (1+a1(zﬁf - 1)) ,
1

which is equal to zero if and only if

(1-66) T %
ar(0+1) 1_q +a11:7’é—1‘

Then, the mode is given by

i = ((1 —66,)(1 - al))oel |

af(1+ &)

Hence, the marginal density is:

e Unimodal, when a;(1 +6) + 6, < 1.
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e L-shaped, when a;(1+8) + 6£, > 1.

We present two examples of each case in Figure D.4.

5.3 Joint Distribution and Dependence

Here, we introduce the joint survival and joint distributions for Model 2, as

follows:
Fx,y(:c,y) =P(X >z,Y >y)

= P(B > (z/% - 1)A,C > (y'/% - 1)A)

o o]
= T“(IT)/ exp ( — a1a(z/% — 1) — aga(y"/® — 1) — a)ag'lda
0
B I_‘%/o exp(—a(l+ 0 zV% — @ + agy'/%? - ay) )a®"'da
e 1 -9
= (1 + al(xen — 1) + a2(y052 _ 1)) :
(5.6)

and hence

(0 + 1)(116!2

1y 1L 1 L ~-6-2
Ty (1 +ay(z% — 1) + ap(y®2 — l)) .
08,2

f(zy) = <
(5.7)
From (5.6), we can see that the joint distribution is closed to marginaliza-
tion, since:
— 1 -0
Fxy(z,1) = (1 + (% — 1)) ,
which is the marginal survival function of X.

The next issue to consider is the asymptotic properties of the model. De-

fine, as in Theorem (2.2.3), and as in (2.30), the S and T transformations
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as:
1 1
= — d T=————. .
log Fx(X) " log Fy (Y) (58)
Then, the joint survival distribution of S and T is given by:
- ~1 _1 -0
Fsr(s,t) ={(1—e )"+ (1-e"1t)77 -1
{-e) T mem) ™ -1f 59

-6
R {s% +t5 - 1} )
for large s and t (see Appendix B.6 for details).

The following theorem shows that the asymptotically complete dependence

and the asymptotically exact independence rely only on 6, as in Model 1.

Theorem 5.3.1. Tail Dependence Characterization

Define X and Y as in (5.1), then:
1. If  — oo, then X and Y are asymptotically exact independent;
2. If 0 = 0, then X and Y are asymptotically complete dependent.

We present the proof in Appendix B.6. As can be seen from the proof, the
distribution of the model splits into the product of both marginals when the
independence case is considered. This is precisely the advantage of including
the “14” term in (5.1). In a similar result, we find that in the limit of 8 — oo,
the joint survival function behaves as a complete dependence function.

As a final step, we need to introduce the dependence structure of Model 2

via the following theorem:.

Theorem 5.3.2. Tail Dependence of Model 2
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Define X andY as in (5.1). Then, the tail dependence between X and Y
1s:

x =272 (5.10)

Therefore, for the asymptotic dependence, inference should focus on the
estimation of §. We present the proof of the theorem in Appendix B.7.

We note that the model, for finite 8, is always modeling a tail dependence.
However, for inference purposes, a large 8 would indicate a very small depen-
dence, which could suggest exact independence.

In a Bayesian setting, where prediction takes on importance, forming a
prediction with a posterior for # centered on a large value will effectively
be equivalent to prediction assuming tail independence. Also, it avoids the
decision as to whether to take a model as independent or not. We regard this

as an advantage of the Bayesian Model.

5.4 Model 2 and the Literature

It is important to notice some similarities of Model 2 with models in the

literature.

From Theorems 5.3.1 and 5.3.2, we established that:
e limg_,o x = 1: complete dependence.

e limg_, o x = 0: exact independence and the joint distribution factorises

into the marginal distributions.
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These dependence limits are equivalent to those of Ledford and Tawn (1996)
in (2.27). In contrast to Ledford and Tawn, we smooth between the extremal
dependences via the posterior of 8, since x only depends on this parameter.
The problems in estimation and in the tests found in the classical approach can
be avoided within the Bayesian framework, i.e. using the posterior distribution
of 6. This aspect of Bayesian inference will be presented in Section 5.6.
Regarding the dependence measures described previously, we have that for

Model 2:

2log P(S > s) —1—1im 2logs

—_——1=1, (5.11
log P(S > s, T > s) logf + log s (5.11)

for 6 < oo. Therefore, this parameter suggests that there always exists a
dependence between the variables for finite §. This result is in accordance
with the following:

P(S>s,T>s)~27%",
as s — oo, which means that n = 1.

This agrees with our model, but it is not a disadvantage. Our claim is that
the posterior distribution for 4 is all that is needed. Similar to a prior on p,
a correlation parameter in a normal distribution, a prior on (-1,1), there is
no point mass at 0. If independence holds, then a posterior accumulating at 0
will occur, but no point mass.

It is worth to stress that Model 2 assumes either tail dependence or exact
independence of the variables. Therefore, no other type of independence is

assumed.
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Regarding the form of the joint distribution and its properties, the result
in (5.10) might recall some of the following copulas (refer to Heffernan (2000)
for the notation and the references): the BB1, BB4 and BB7 of Joe (1997) on
both their upper and lower tail, the BB3 of Joe (1997) on its upper tail, and
the lower tail of the Pareto copula. However, we will only focus on two similar
models: the lower joint tail of the Clayton distribution found in Ledford and
Tawn (1996) and the bivariate logistic extreme value distribution.

Clayton (1978) constructed a bivariate model to study disease incidence in
parents and offsprings. For Z and W, random variables with joint distribution

F, and joint density f, define the hazard functions as:
d o o]
Az(z;w) = e {-log F(z,w)} = / f(z,v)dv/F(z,w),
and
d o0
Awlws2) = 5o {=log Pz w)y = [ flu,w)du/F(z,w).

Define, as well, the bivariate failure rate as:

flu,w)
F(z,w)

l(z,w) =

Clayton was looking for a family of distributions for which:

l(z,w) _
Az(z;w)dw(w;z)

b,

for a constant ¢ > 0. In other terms, a joint distribution for which:

f(z,w)/zoo/:of(u,v)dvdu=¢/jof(u,w)du/woof(z,v)dv.
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Clayton found that:

R S

f(z,w)=¢a'(z)b'<w)(1+(¢—1)[a<z>+b(w)}) U Ga2)

where a(+) and b(-) are non-decreasing functions with a(0) = b(0) = 0. Clayton
suggests a parametric form for these functions depending on some regression

coefficients. For the case of z, let the regression coefficient be 7, then:
a(z) x (z = k)" exp (87u),

with u a covariate of z, and similarly for w.

Model 2 is almost (5.12) when:

1

OI‘0=¢—;—I,

¢=1+

| =

and thus, the joint densities are comparable. What differentiates Model 2 is

the form of the functions a(-) and b(-):
1. Their support is (1,00).

2. Their parametric form depends on 8, so that their scale parameters do

not depend on 6.

Consider the representation of the model when transforming the variables
to Fréchet marginals given in (5.9), i.e., for large £ and y or equivalently, for

large s and ¢, we have:

-0

P(X >z,Y >y)=P(S>sT>t)~ (s +/ - 1) (5.13)
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This expression is equivalent to the Clayton distribution (when applied to
copulas), which is classified as an asymptotic dependence case by Ledford and

Tawn. The survival function is:
— . — -8
F(s,t) = (G (s)"VB + G (8)" V8 — 1) : (5.14)

where G~ is the unit Fréchet survivor function and 8 > 0. This representation
is the same as that of (5.13).

On the other hand, the expression (5.13) is similar to the exponent measure
V, see (2.17), of the bivariate logistic extreme value distribution, which is a

distribution of componentwise maxima; and is expressed as:
V,(s,t) = (s"V7 4+ ¢71)7,

where 0 < v < 1.

The same result is found in the Clayton distribution where £(s) = 27¢ and
in the bivariate logistic, where £(s) =2 — 277.

Regarding the equality of the models (5.13) and (5.14), we need to make
clear a couple of points. First of all, the equality holds only for the survival
function for large values. The second and most important point is that we
have constructed a model that differs with copula literature. In Model 2, the
dependence structure is dictated by the definition of the variables, so that it
is linked to the marginals, whereas in the copula literature, the dependence
and the marginal structure are split. Therefore, we are not explicitly working

with copulas.
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5.5 Data Characterization for Model 2

In this section we describe what type of data can be modelled by Model 2. As
we mentioned in previous sections, we are modelling positive random variables,
let them be X* and Y*. We describe two ways to proceed with extreme data.

Recall from Section 2.2.3.2, and as Figure D.1 shows, we have divided R?

into four regions as follows:
{R:ﬁ 1= 11[x'>ux.],]' = n[Y‘)uyn]} ) (5.15)

for ux+ and uy-«, positive high thresholds of X* and Y™*, respectively.

As a first step, we transform the variables X* and Y* as follows:
X=X"+1l,andY =Y"+1, (5.16)

for (X*,Y*) € {(0,ux-), (0, uy-)}".
The dependence structure of the original variables is conserved, since the
location shift does not affect the value of x. The transformed variables have

the following support:
(X,Y) € {(Lux) x (1,uy))}",

with ux = ux~ + 1, and uy = uy» + 1. Then, with respect to the transformed

variables, R? is divided into four regions as follows:
{Rij; i= n[X>ux]1j = n[Y>uy]} . (517)

Then, these regions are represented in Figure D.1, with the origin in (1, 1).
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We consider that data in R, (and as a consequence, transformed data in
Rgo) do not contribute with any relevant information of the extremes. Hence,
we focus in modelling data falling in regions Ryo, Rg;, and Ry;.

We assume X and Y have Model 2 as distribution. However, since we are
ignoring the region (1,ux) x (1,uy), we need to truncate the distribution by

the following factor:

1 - F(ux,uy) = (1 + a; ( ;S‘ - 1))—0-}- (1 + ay (u)’# - 1))—0
N 3 -0
—(1+al( 43 —1> +a2( 2 —1>> :
(5.18)
Consider a sample of size n of X and Y, say D, is given. In this way,
D={(zi:),i=1,...n}. Let w = {8, 01,&,22,&} € R =RE.
Firstly, we introduce the “censored data” approach. This approach is
equivalent to the model expressed in (2.24) in Section 2.2.3.2. The differ-
ence is that we are not interested in observations falling on the region Ry, i.e.

we discard the observations in Rgg.

Then, the likelihood of the censored case, similarly to (2.24), is given by:

L(w|D) = Hg wl (zi, %)), (5.19)
where
[ (1= Flux,ur)™ x f(@ow) it (,u) € Ry
9wl (zu)) = (1~ Flux,uy))™" x §—§|(mi,uy) if (i,4:) € Ruo

(1 — Flux,uy))”" x & if (xi,3:) € R,

3% |("X»lli)

\
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where, from (5.6) and (5.7):

S, R E | 1 -6-2
f(l‘i,yi) = (.(_0_';2‘2—:‘2) z:il y19£2 (1 + 011(.’171-051 _ 1) +a2(yi0£2 _ 1))

1 1 —0-1

g—)F(l(:vi,uy) (Ef‘) x“l (1 +ar (@[ = 1) + an(uy” — 1))
e ~6-1
%}E’l(ux,yi) = ( ) y19£2 <1+a1( 061 - 1)+az( — l)) .

On the other hand, we introduce the “non-censored data” approach. The
transformed variables are the same as in (5.16), and the interest is as well in
the regions Ry, Ry, and R;;. For the same sample D and same parameter

vector w, the likelihood function of the non-censored approach is given by:

LwD) = (@5e2)" x (1 - Flux,uy))™

. -0-2

1y o1 g
[T, = ly:g 1(1-'-0‘1( = 1) + oy —1)) ,
(5.20)

for (zi,y:) € {Rpo}, fori=1,...,n
We divide extremes inference in two objectives: tail dependence determina-
tion and prediction. The first one consists only in the estimation of 8, whereas
the second one focuses on fitting Model 2 to predict values of X* and Y*.
Both the censored and the non-censored approaches can achieve both the
tail dependence determination and the prediction. The only difference between
both approaches is the form of the likelihood. Therefore, we opt to treat data

with the non-censored approach for all the analysis in the thesis.
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5.6 Inference for Model 2

In this section we explain the inference for Model 2, via both MLE and
Bayesian methodologies. Although we have already stated we are using the
Bayesian paradigm as the basis of inference of the thesis, we need to make a
comparison of both methodologies. For this purpose, we compare the estimates
of both the MLE and the Bayesian frameworks, in simulations of observations
of Model 2. As we will show, the MLE has some problems with some parameter
regions, whereas the Bayesian estimation overcomes these difficulties.

Finally, in Section 5.6.3, we present a general simulation case, where Model

2 is fitted to simulated data of different models.

5.6.1 MLE Approach

The only purpose of the simulation of Model 2 is the comparison of estimates
of MLE and the Bayesian paradigm. Therefore, it is not necessary to focus
on thresholding data. Therefore, we simulate observations of Model 2 in the
region: (1,00)2. In other words, we are setting ux = uy = 1 for the definitions
in Section 5.5. As a consequence, the truncation factor in (5.18) is given by:
1 - Flux,uy) =1.

Recall the likelihood function in (5.20). The MLE has to be evaluated using
numerical methods. The standard procedure is to use a Newton-Raphson

algorithm to maximize the log-likelihood [(w]D ). However, the MLE has been
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found to present some regularity problems in some regions for a wide variety
of models; see, for example, Tiago de Oliveira (1980) and Tawn (1988). Tawn
(1988) illustrated that for the independent case in the logistic model, the MLE
had nonregular behavior. For a wider discussion on inference problems when
considering the MLE, we refer the reader to the papers of Coles and Tawn
(1991) and Tawn (1990).

We simulated observations from Model 2, using the representation in (5.1).
The cases are similar to the illustration of Section 4.2.2.3.

We consider four levels of tail dependence: 6 € {5,3,1,1/3,0.2}. In terms
of heaviness of the marginal tails, we split data into light tails: & = 0.1 and
& = 0.15; and heavy tails: & = 1 and & = 1.5. Regarding the amount of
data, we simulated large samples of 500 observations for each model and small
samples, with 70 observations, with 10 replications for each model. We chose
70 as a low amount of data in accordance with the real data analysis made in
Section 7.2. In Table C.2 we show the estimations of the parameters of Model
2, as well as y, via the MLE method. For the 95% confidence intervals of 6, we
assumed asymptotic normality, similarly to that described in Section 4.2.2.3.
For the cases of low and semi low dependence (6 = 5 and @ = 3, respectively),
we presented the left 95% confidence intervals for x. For the rest of the cases,
centered 95% confidence intervals of x were given. We present, as well, the
standard error of the replications.

As it can be seen, in the low dependence case, the point estimation is poor
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for all the parameters. The specific case of the estimation of 8 could be fixed
with a reparametrization. However, the left 95% confidence intervals of x
are too wide in the small sampling, for example (0,0.54) in the light tails case
(compared to the Bayesian credibility intervals of the following section), which
should not be affected by a reparametrization. For the large sampling and low
dependence cases, although the point estimations are not accurate enough, the
confidence intervals show a good precision. This fact, as well, might suggest a
reparametrization in order to improve the point estimations.

For the rest of the cases, the point estimations and the centered confidence
intervals seem accurate for any sampling size.

In order to test the point estimation of the MLE of this parametrization, we
increased the sampling size to 1000 observations, only for the low dependence
cases. We present the estimation in Figure C.3. The increase of the amount
of data makes the MLE method produce more accurate estimation. This fact
will be important for the Bayesian estimation as well, since, for large sample
sizes, both methods are effectively equivalent.

We did not consider any reparametrization, since we found the Bayesian

estimates worked well for all the cases, as we show in the following section.
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5.6.2 Bayesian Estimation

Given the likelihood function in (5.20), we can express the posterior model as

follows:
pa(w|D) x 7(w) x (M) x (1 = F(ux,uy))
06:1&2
-6-2
0 gy (1 +aa (T~ 1) + an (5 ~ 1)) -
1= 1 ) 1) ) ’
(5.21)

where 7(w) is the prior density distribution of the parameters, and where
1 — F(ux,uy) is given by (5.18).

The parameter space is 2 = R% and all the parameters are assumed to be
independent. We considered independent exponential distributions as priors.

We define the log-posterior as Ip(w|D) = log(pa(w|D)). We assume
independent prior distributions and express them as m(w;) = dwje’“”a“f, where
wj is an element in w. For example, m(ws) is the prior of the parameter 8, with
hyperparameter 4,,.

Define the subset &j as the elements in w, excluding w;. Therefore, the

conditional log-posterior distributions can be written as follows:
0+1 1
Ip(6 wy) = RE— —_ ;) —
(0| D, ws) nlog( 7 )+0€lZlog(x) P
1
+0—€2‘ Z log(y,-) + Ky —n log (1 - F(UX, ’UY))

o 1
~0+2)Y log (1 an(a — 1)+ gy — 1)),
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and

lp(al |D,w_al) = nlog(al) - 5ala1 -n log (1 - F(Ux,Uy)) + Kal

~(0+2) o (14 nleT =)+ a6 - 1),

(5.22)
and
Ip(& | D,wg) = —nlog(&r) + Zlog z:) — 6,61 — n log (1 — Flux,uy))
L 1
-6+ 2)Zlog (1 + oy (2 — 1) + ao(y/*? — 1)) + K¢,
and

Ip(az | D,Wg;) = nlog(as) — da,a0 — n log (1 — Fux,uy)) + Ka,

—(0+2)Zlog(1+al( ,0;—1)4'0(2( %—1))
and

Ip(&2|D,wg;) = —nlog(ée) S Zlog ¥i) — 0g;&2 — n log (1 — F(ux, uy))

1
6§
I

—(0+2)Zlog <1+a1( - 1)-{—az(y'962 —1)) + Ke,,
where the K,; term represents the logarithm of the normalizing factor of the
conditional log-posterior of w;.

We chose the Metropolis-Hastings within Gibbs sampler (see, for example,
Tierney (1994)) method to draw samples. The proposal distribution we pick
in each case was a log-normal distribution. The standard deviation was tuned
such that the acceptance rate was in the interval [0.35,0.40], see for example
Gelman et al. (2003).

The simulation data consisted of the same simulations as in the MLE case.

Therefore, the thresholds are set as ux = uy = 1.
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We drew samples from the conditional log-posteriors defined in (5.22). For
every sample of w, we sampled a prediction of X and Y with the representation
in (5.1), and we denote the predictive sample as X°. The run sizes were 20,000.

In Figure D.5, we plotted the empirical means for different sizes of an
MCMC sample of §. The first two plots show that, after 1000 samples, the
means have stabilized. For the third and the fourth examples, the stabilization
levels were around 3000 and 2000, respectively. Therefore, we chose these as
burn-in levels. In general, the burn-in levels were not larger than 20% of the
run size.

Let w® be the MCMC sampling of w, given the data. We provide the pa-
rameter estimate with both the mean and the median of w®. The results were
very similar. However, we found that the median approach was fitting better
to the simulation case when considering that the variables were generated by
our model. Thus, we select onwards a median criteria for Bayes inference.

The general form of the table describing the Bayesian inference includes
the estimation for all the parameter space and additionally, we give the central
95% credibility intervals for the parameter 6, and for the tail dependence, ¥,
except for the low dependence case, where the left 95% credibility interval is
presented.

We chose unit exponential distributions for all the priors in an attempt to
be non informative but not excessively, except for . Since the main purpose

of our model is the tail dependence structure, we will only discuss the selection
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of the value of the hyperparameter . Any prior belief on a bivariate model
can be seen as a belief in the strength of the tail dependence. Therefore, we
must evaluate how sensitive y is to the hyperparameter dy, i.e. we need to

compute the prior expected value of x and see how related they are:

Er, [X] = / 27075, (85)d0

= / 2785e7%%d9 (5.23)

0

T e+ log(2)

This expression makes very simple the elicitation on the tail dependence struc-
ture. We set Jg = log(2), since this means E[x] = 0.5, i.e., our initial belief
is that there exists a medium tail dependence structure. For the rest of the
parameters, we chose unitary exponential prior distributions.

If we would like to consider a non-informative prior, we would need to keep
the exponential as flat as possible. Then, we would need to consider the limit
case in (5.23) when §p — oo. When a flat prior is considered, the prior tail

dependence structure can be expressed as:
lims, E[27%] = 1.

Therefore, fixing a flat prior implies a belief of a complete tail dependence.
This result can be related with the failure cases of the MLE: if a flat prior
is chosen, the prior belief is a complete tail dependence. Therefore, it would
need a great amount of data to get realistic estimation in the case of actual

tail independence.



Chapter 5. The Bivariate Model 121

We show in Table C.5 the estimates of the simulation data. The improve-
ment in estimation is evident for those cases where the MLE did not show
great performance (i.e., the low dependence structure). The point estimations
have an acceptable accuracy for all the dependence cases, and the credibility
intervals for the low and semi low dependence cases for the small sample size
are smaller than the confidence intervals of the MLE. The only issue to ad-
dress is that in the semi low dependence cases, the estimates of 6 for the small
sample is more accurate than the large sample. The reason for this is that
the size of the replication is low. Besides, the credibility interval for x is more
narrow in both cases, which reveals the improvement in the estimation when
increasing the sample size.

Therefore, we can proceed to apply the Bayesian paradigm with more con-

fidence for any size of data and any type of asymptotic dependence.

5.6.3 General Simulation Case

In this section, our interest relies on fitting our model with any kind of tails.
Therefore, we simulated data coming from different types of GPD (recall that
the GPD is the limit distribution of the excesses over a high threshold). The
purpose of this case is to look at the responses that our model has to different
types of tail dependence structures and different types of tail heaviness.

We drew 1000 bivariate samples, with 10 replications for each model, from

the following dependence structures:
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e Independently.

o Tail dependence: Clayton copula (recall 5.12) considering four levels
of tail dependence: ¢ € {1.2,4/3,2,4,6} (which correspond to § €

{5,3,1,1/3,0.2}).
e Tail independence: Gaussian copula with p = 0.5.

In terms of heaviness of the marginal GPD tails, we split data in light tails:
& =0.1 and & = 0.15; and heavy tails: §&; =1 and & = 1.5.

The Bayesian inference is carried out as described in Section 5.6.2.

Define the simulated variables as X* and Y*. Then, we only model the

observations in the region:

{(O’ UX‘)’ (O’UY‘)}C’

where ux- and uy. were chosen as the 95% quantile of X* and Y*, respectively.

We transformed the data as in (5.16):
X=X"+1,andY =Y"+1, (5.24)

for (X*,Y*) € {(0,ux+), (0,uy+)}".

Then, we drew MCMC simulations via the method explained in Section
5.6.2. We took a sample of 10,000 simulations with a burn-in of 500. The
log-normal distribution was chosen as the proposal distribution.

The summary of the Bayesian inference is presented in Table C.6, which

shows the following features:
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e The exact independence case is estimated with a large 6.

Slight over estimation of x for low tail dependence cases. However, x is

contained in the credibility intervals.

e Accurate estimation of x for medium and high tail dependence cases.

Over estimation of x for tail independence case.

The accuracy of the estimations is not a big issue, since the amount of data
in R was between 57 and 97 observations. The only issue that seems to be
important is the over estimation of x in the tail independence case. However,
as we stated before, we are not modelling other type of tail independence,
rather than the exact independence.

However, as the main purpose of the model is the prediction, we study in
Figures D.6 and D.7 how the model predicts in some scenarios.

The first scenario is the exact independence (heavy tailed). On the left
side of Figure D.6 we plot the transformed data (recall (5.24)), whereas in
the right side, the predictive sample, both in log-log scale. It can be seen the
behavior of a lack of association in the tails, which is confirmed in the plots of
both the empirical and predictive x(u), in the first row of Figure D.7.

The following scenario is the tail independence case, with heavy tail. The
figures show that the model tends to overestimate the dependence. The be-
havior of the sampling has almost as much association as the next scenario:

tail dependence when x = 0.125. As we noted in this chapter, Model 2 does
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not cover different types of tail independence. Therefore, we have to keep in
mind that, for those cases, the prediction will tend to show a low dependence
behavior.

Finally, the last two scenarios denote low and high dependence. In both of
them, both the scatter plots and the plots of x(u) denote a low and a strong
dependence among the samplings, respectively.

It is worth to notice that the parameters and predictive samplings are run
at the same time. Therefore, avoiding a two-stage inference. This feature will
be kept in the inference of the mixture model.

In summary, we presented in this section the form of a bivariate model,
which is the base of the multivariate mixture model that we are presenting in
the next section. The model has a simple dependence structure and is closed
to marginalization. For the construction of the multivariate model, we will try
to keep this features in higher dimensions. As well, the Bayesian paradigm
turned out to be the better approach for inference, which is a desirable feature

for the mixture models.
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The Multivariate Model

We present in this chapter a generalization of Model 2 to the multivariate set-
ting. The way to generalize is not trivially achieved from (5.1). We anticipated
that the proposed model is a mixture of models of different tail dependence
structure. Inference with a mixture model can be seen either as a model se-
lection or as a model averaging problem. This fact will play an important role
in this chapter, since the objective differs substantially from one option to the
other.

Section 6.1 presents some dependence definitions for the multivariate case.
Section 6.2 deals with the trivariate model, its properties and inference. Sim-
ilarly to Model 2, we establish a preference over one method of dealing with
data. In Section 6.3 we introduce the general multivariate model. Section 6.4
presents the similarities of the multivariate model with some relevant models

in the literature. Finally, Section 6.5 contains a discussion of the multivariate

125
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models.

6.1 Multivariate Dependence

We need to define different types of dependence within a multivariate model.
We treated extensively the parameter x, which measures the tail dependence
between two variables in Chapters 2, 4, and 5. A multivariate expression of the
extreme cases of x (i.e. considering the distribution of the tails, rather than

the distribution of the maximum) was introduced by de Haan and Resnick

(1977).

Definition 6.1.1. Multivariate complete tail dependence and eract indepen-
dence.

Let S = (S1,...,54)! be a vector of random variables with the same uni-
variate marginal distribution.

Then, there is d-dimensional exact tail independence if for each subset

{71, 3r} of {1,...,d = 1}:

lim,oo P (S, > s,...,Sj, > 8|Sk >s)=0. (6.1)

fork ¢ {j1,...,5:}.

INote that the vector notation has changed from Section 2.2.1. The reason for this is

that in the current chapter, there is no risk of confusion with other representations (as was

the case for order statistics).
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Similarly, there is d-dimensional complete tail dependence if:
lims_,ooP(Sz >8,...,5> SISI > S) =1.

Note that the conditional could be on any variable, since they have the
same univariate marginal distribution.

In the exact tail independence case, this means that any subset of S is
made up of exact tail independent random variables. On the other hand, in
the complete tail dependence case, the d components must be complete tail
dependent.

These definitions denote the complete tail dependence and exact indepen-
dence cases. However, we can extend the complete tail dependence concept to

define the tail dependence case.

Definition 6.1.2. Multivariate tail dependence
Let S = (Si,...,54) be a vector of random variables with the same uni-
variate marginal distribution. Then, there is d-dimensional tail dependence, if

for each subset {ji,...,j.} of {2,...,d}:
0 < limyso P(Sj, > s,...,8;, >8] S, >s)< 1.

Hence, if there is d-dimensional tail dependence in S, a vector of d variables,
then there is (d — j)-dimensional tail dependence in any subset of S of size
(d—3j),forj=1,...,(d=1).

However, we need to define the tail dependence in a different way. Assume

we have S = (S5i,...,5;), a vector of random variables. We are aiming to
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model these variables with a joint distribution F. Then, F' can fix any type of
tail dependence on different disjoint subsets of S. For example, half of them
can be exact tail independent and the other half, tail dependent. Thus, we find
it more convenient to define tail dependence in terms of the joint distribution

F. We define this dependence as follows:

Definition 6.1.3. M-tuple Tail Dependence

Let S = (S,...,84), for d > 2, be a vector of random variables with the
same marginal distribution and a joint distribution F. Then, the distribution
F is said to have m-tuple tail dependence, if there exists an m (1 < m < d),

for which the following holds:

sup <k:V{j,....5}€{1,...,d},

ksd (6.2)
0 <limgyo P(S;, > 5,...,5;, >58|5;,>s) < 1} =m.

Therefore, an m-tuple dependence of a model of d variables is the maxi-

mum number of tail dependent (including complete dependent) variables. In

connection with the definition of de Haan and Resnick (1977), Fs has m-tuple

dependence if the maximum dimension of tail dependence of all the subsets of

Sism,for0<m < d.

Recall that for any r.v. (Si,...,S,):
P(S1>8...,5%>s)<P(S;>58,...,5-1>854+1>58...,5 > s),

for some k € {1,...,r}.

Assume F' has m-tuple tail dependence and that {j,...,jm} € {1,...,d}
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are tail dependent elements of S. Then it is clear that F has a (m — k)-

dimensional tail dependence, for k =2,...,(m — 1), i.e.
0 < lims_)m P (Sj*Z > S,. . ’Sj*m—k > S | Sj*l > S) S 1,

for {j*1,...,J*m-x}, any subset of size (m — k) of {j1,...,Jm}.

The task of a multivariate model is to determine a joint model F' which
works for any combination of m tail dependent variables. Therefore, high
flexibility for the model is required. As we will expose later, we propose a
mixture model to achieve this flexibility.

Finally, we introduce some notation for multivariate tail dependence.

Definition 6.1.4. Notation of Tail Dependence.

Let S = (Si,...,54) be a vector of random variables with the same uni-
variate marginal distribution. Then, for {ji,...,jm} a subset of {1,...,d},
define:

X{Jl’y]m} = lims—)w P (sz > S, ve ey S]m > SI S]l > 8) .
And in the case when m = d, we can simplify the notation as:
X{jl,...,jd} = Xd-

As well, for {j1,...,jt}, a subset of {1,...,d} and a disjoint set of {j1,...,Jm},

define:

X{ljsyoimb it viz]} = limg 0o P (Sj1 >58,...,8j, >5|Sj; >8,...,55: > s) .
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Note that x5 = x for the bivariate case.
The tail dependence definitions that we introduced in this section, will help
to construct our generalization of Model 2. In order to ease the explanation

of the multivariate framework, we firstly present the trivariate model.

6.2 Trivariate Model

Here, we present a trivariate model, which helps on settling the way to gener-

alize Model 2 to the multivariate setting.

6.2.1 Trivariate Model Motivation

Let X = (Xi, X2, X3) be a vector of random variables. Similarly to Model 2,

we are aiming to find a model for regions of the form:
R= {(1’UX1) X (l,qu) X (l’uX3)}ca

for ux;, a high threshold of X, for j =1,2,3.

A desirable feature of a multivariate model is the recovery of the bivariate
structure of Model 2, when marginalizing all the variables, save two. Therefore,
as a first attempt of represention, and prompted by (5.1), we consider the

representation of these variables as follows:

Xi= (14 Bi/A)"%;
Xo= (14 By/Ay)%%; (6.3)

Xz = (1+ B3/A3)%5;
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In Chapter 5, we saw that the subvariable B represented the scale of each
variable, whereas the parameter £ represented the marginal tail. Therefore, it
is reasonable to select them as: independent B; ~ Exp(«;), 8,a1,& > 0, i.e.
they belong exclusively to X, for i = 1,2,3.

The subvariable A though, must be modified, since it represents the depen-
dence among the variables. One requirement is that Ay = A;, when X; and
X; are tail dependent. Let A; ~ Ga(6;,1) with joint density fa, for j =1,2,3
and where A = (A1, A, A3).

In representation (6.3), the marginal distributions are equal to those of

Model 2, i.e. they are quasi Burr-XII type, and are as follows:
1 —0;
Fx,(z)=1- (1 +a; (z% - 1)) ” (6.4)

with £ > 1, and for j = 1,2, 3.

The first issue to study is the bivariate structure. Recall that in Model
2, we assumed that theoretically, there exists tail dependence between two
variables, and that this dependence was measured by a single parameter 6. In
order to get that representation, we needed to set a common subvariable A
for both variables. This feature will help us to develop the form of the joint
distribution. However, we firstly need to clarify a tail dependence issue in the
generalization.

When working with only two variables, and when the main purpose of
the study is the structure of the tails, it is convenient for us to model the

variables as tail dependent when 6 is finite (see Section 5.3). However, in



Chapter 6. The Multivariate Model 132

multivariate analysis with dimension larger than 2, it is helpful to differentiate
the tail dependent and the exact tail independent variables, and to represent
the exact tail independent variables in the joint model directly as the product
of their marginal distributions.

In order to study the bivariate structure, let X; and X, be the variables of
interest. We can define the joint model of A; and A, if we marginalize with

respect to Aj:
o0
fava(a1,a2) = / Ia(a1,a2,a3)das.
0

We propose to model it as:

e 11 e—(a1+a2)
fanaa(e1,02) = w1 530" Njmmazma) +02 Fra S

I(9)

a‘;h—lagz—l Lo, 4,5
(6.5)

where 0 < w; <1, 0 < wy <1, and w; + wg = 1. Therefore, the joint survival
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distribution, F* of the variables is:

F;'l,Xz(xl’x?) = P(Xl > xl,XQ > 1’2)

= p(B1 > ( nE _ )A1,32 > ( G _ l)Az)
// (B1 > 9‘5‘ - 1)a1,32 > ( ne _ 1)a2|a1,a2)

X fAl’A2 (0,1, ag)dal dag

1 1
Y —a[l+al<zfﬁ—l)+a2(z25—l)] P
= —"’—1—/ e a’ ‘da
0

IN0)

w o X —ay [l+a1(zf¥lﬁ—l)] 8,1
BN /0 /0 € a

1

—az [l+a2 (%252 —1)] 0,1
X e a;’” daiday

<1+a1( i —1) + sz} % —1))
<1+a ( e -1))—01 (1+a2(x§;_‘2 _ 1))_ N

-8

for x1,2, > 1.
Thus, the joint survival function is a mixture of Model 2 and the product
of the survival marginals as in (6.4). However, the model in (6.6) produces

the following univariate survival marginal:

—F;(l(zl) =FX1,X2(‘/L‘1a1)
—ol

<1+a1( fex -1))—0+w2 (1+a1( e -1)) ,

(6.7)
and similarly for 7}2. This expression differs to that one in (6.4), unless

0 = 6,. Hence, in order to mantain dimensional coherence, we propose the
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joint density of A as:

| e o4 e~(rtaz) 6-1,6-1
fAl,Az(al,GQ)zwl ma ]l[a1=a2=a] +ws _F—(O)Tal aq n[al;eaz], (6-8)

where 0 < w; € 1,0 < wy € 1, and wy +w, = 1. In this way, the joint survival
distribution, F~ is expressed as:

—. 1 1 -4

Fy x,(T1,2) =w (1 + (Jq(a:{"“1 - 1) + ap (.27;52 - 1))

+w, (1 + o (:cf“ - 1)) <1 + g (129‘2 - 1)) )
(6.9)
In this way, the survival marginals are as in (6.4), since the marginals of (6.8)
are gamma, densities.

Although we have set a unique € for the marginals and for the dependence
structure in model (6.9), the nature of the mixture model has not changed: it
is a mixture of a tail dependence and an exact tail independence. Even more,
as we saw in expression (5.3), § does not affect the marginal tail.

From now on, we will interpret the expression (6.9), as an average of mod-
els. This is a standard topic in a Bayesian framework, see for example Leamer
(1978) and Raftery et al. (1995). In this type of model, there are two main
options: treat it as a model selection problem or as a model averaging problem.
For both methodologies, it is necessary to estimate the weights w;. However,
in model selection, only the model with the largest value of weight w; is se-
lected. In contrast, the model averaging takes into account the uncertainty in

all the models, so that no model is discarded.
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The methodology that we develop in Section 6.2.3 will allow us to select

either case. However, we opt to follow the criteria:

e Treat the problem with model selection framework if the aim is to select

a type of tail dependence.

e Treat the problem with model averaging framework in any other case,

for example, if the aim is prediction.

It is clear that, if we opt for the model selection framework, the tail depen-
dence structure is either exact tail independence or tail dependence, according
to the selected model.

For the case of model averaging, we need to extend on the computation of
the tail dependence structure, which for model (6.9) is shown in the following

theorem.

Theorem 6.2.1. Tail dependence structure of F*

Let X, and X, be random variables with representation as in (6.3), and
for which the joint density of the subvariables A, and A is given by (6.8), i.e.
X1 and X, have (6.9) as joint survival function. Then, the tail dependence

parameter x, denote for F~ as x*, is given by:
X' =w 270, (6.10)

We present the proof in Appendix B.8.

This result implies the following tail dependence structure for X; and X:
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e Exact tail independence if 8§ — oo.
e Exact tail independence if wy = 0.
e Tail dependence in any other case.

The mixture model, seen as model selection, implies a model identifiability
issue, since:

a1 _a2 a1 _e2
: * — T . 3 3
limg,oo Fx, x,(T1,22) = w12y ' 2 2 +woxy M 7,72

Therefore, for large 6, both models are equivalent. This is why tail indepen-
dence is achieved when 8 — oo or when w; = 0. A practical way to overcome
this issue is to truncate 0 to a large value, for example 6 € (0,5). In this way,
w; should be expected to be close to 0 for the independence case. However, we
choose to keep 6 > 0 to study the theoretical properties of the representation.

For inference purposes, we find it convenient to restructure the marginal

bivariate survival function as follows:

for z;, 2, > 1.

Hence, we are fixing the exact tail independent model as the product of
exact independent marginals when § — oo.

This representation drops the dimensional coherence. However, we do not

find this feature as critical for inference. The purpose of the introduction of this
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representation is the ease of inference. Therefore, expressing the independent
component without the presence of 8 will facilitate the inference algorithm.
As well, the exclusion of 4 in the independent component does not result in
a severe inconvenience, since § is only modelling the dependence. Hence, it is
reasonable to leave only the product of marginal tails in this component.

The correspondent univariate marginal survival function of X is given by:
—_— —_— 1 -6 _o)
Fxl(i) = Fxl,xz(.’rl, 1) = uw (1 + (IL‘{)El - 1)) + wo I, 4 ’

and similarly for Fy,.

Although we are dropping the dimensional coherence of model (6.9), the
choice of model (6.11) will facilitate the inference.

For the model average choice, we have that the tail dependence is the
same as in Theorem 6.2.1. This means, if x is the tail dependence parameter

associated to the model in (6.11), then:
x =272 (6.12)

The bivariate marginal model implied by (6.11) will give the motivation for
the trivariate model: a mixture model of different tail dependence components.
Thus, we need to define the different types of tail dependence components

involved in a trivariate analysis.



Chapter 6. The Multivariate Model 138

6.2.2 Trivariate structure

Motivated by the bivariate mixture model in (6.11), we aim to construct the
trivariate generalization via a mixture model. First of all, we need to introduce

some notation.

Define the following latent variables, regarding tail dependence:
e TI, if Fx has triple exact tail independence.

e DD;(8), if Fx has double tail dependence, and X; and X are tail

dependent, for j # k and j,k € {1,2,3}.
e TD(0), if Fx has triple tail dependence.

Therefore, the general trivariate model we propose has the following form:
Fx = wy Fxjrr+w2 Fx|pp, , +w3 Fx| ppy 3+ w1 Fx| pp, s +ws Fx|7p, (6.13)

with0<w; <1,forj=1,...,5and $o_,wy = 1.

As in the previous section, we construct a model with dimensional coher-
ence.

The next step is to characterize each of the mixture components in (6.13).
The first one is the simplest: the model with triple exact independence. The

joint distribution is the product of the marginals as in the second factor in
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(6.9), as we now write down:

Fxr1(z1,22,23) = P(X1 > 71, X2 > 72, X3 > 23| T)

= (1+a1($fé—‘ - 1)>_0 (1+02($2§é—2 - 1))—9 (6.14)
(1vas(s 1))

The second component to develop is the generic model with double tail
dependence: DD;(0), for j # k, and j,k € {1,2,3}. This means X; and
Xy are tail dependent, and X, is exact tail independent. For example, let
DD, 2(0) be the model to illustrate. Then, motivated by (6.9), the form of

this component is as follows:
al i 1 -0
FX|DD1,2('7:1,1'2,1'3) = (1 + o (xf“ - 1) + as (;1;2"52 - 1))

X (1+a3(z§%3 - 1))—0.

Finally, for the last component in the mixture model, the model with triple

(6.15)

tail dependence, it is clear that we need to set a common 6 for X,;, X5, and

X3. This means:

1 _, 6o
fA|TD(al,az,as) = me a’ ln[a1=az=as=a] .
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Thus, the joint survival of the model with triple dependence is expressed as:

fxlTD(.Tl,.'IJg,.’L‘g) = P(X1 > fIIl,Xz > II)2,X3 > 1’3|TD)

= P(B1 > ( i _ 1)A1,32 > ( % _ l)Az,
By > ( s _ 1)A3)
/// ( L > 9“ - 1)a1,32 > ( - 1)02,

B; > ( 953 —_ 1)a3|al) fA|TD(a1,a2,a3) da, das da3

1 1
] o0 —a[1+al(zl —l)+a2(zﬁ;)+a3(zfﬁ—l)] o—1
= W/ e a’‘da
0
1 -0
(1 +a1( o 1) +a2(z§" - 1) +O’3( o _ 1)) .

(6.16)

A

Suppose the model selection approach is chosen. Then, the asymptotics of

the triple dependence model are given by:
P(S) > 5,5 >5,8>s|TD)~ 3%, as s - o0,

where S; is defined as
1
S] - 1]
log Fx;|7p(Xj)

(6.17)

for j = 1,2,3. Therefore, from Definition 6.1.4, the tail dependence parameter

x for the triple dependence model is computed as:
= 3—0
X3|TD , (6.18)

and

X{1,2}|TD = X{13}|TD = X{2,3}|TD = 279
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and
2 6
X{[3,1.2)}ITD = limyL e P(S3 > SI S1 > s, Sy > S,TD) = (g) ,

which is the same for x(jg,11,3y 70 and Xx{u 2,33 TD-

If we combine (6.14), (6.15), and (6.16), we can introduce the trivariate

model with dimensional coherence, setting x = (2, 22, r3), as:

Fx(x) = w1(1+a1( % 1))—9(14-02(17;_2; - 1))-0(14-013(1:;‘;3 - 1))

with0<wp < 1,fork=1,...,5and ¥ 0_, up = 1.

The model in (6.19) is achieved by the representation in (6.3), with:
fala1,az,a3) = wy (T}))g) e~(m+aztas) (g g, a3)0—1
+w;y (r(})) ) P71 Lo map=a) (6705 7Y)
+us () €77 Doy (70
Wy ( o2 )e_a“o " Ljazmag=a) (67a]7")

1 — -
+ws (TO)) e %1 n[al=a2=as=a] .

In order to show the dimensional coherence of model (6.19), we now show the
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form of a bivariate marginal function:

F;ﬁ,xz(xlv Ty) = F;((xl,x% 1)

L -8 L -8
= w*(l + o (zf“ - 1)) (1 + ag(:v;“’ - 1))

+(1 —w,) (1 + o (zf%‘ - 1) +a2(x2é—2 - 1))—0,
(6.20)

where w, = w; + w3 + wy. This representation is equivalent to that in (6.9),
for which we already know it has dimensional coherence.

For the Model Selection approach, the tail dependence structure depends
on the selection of the model. However, for the Model Averaging approach,

we present the dependence structure in the following theorem.

Theorem 6.2.2. Trivariate tail dependence structure
Let X = (X1, X2, X3) be a random vector with joint survival function as in

(6.19). Then, from Definition 6.1.4 the following holds:

o The tail dependence parameter x3 of the model is given by:

x5 =ws37°. (6.21)

o The pairwise tail dependencies are given by:
X{12) = (w2 + ws) 279,
X{13) = (w3 + ws) 279, (6.22)

Xz2,3} = (w.;] + w5) 2_0.



Chapter 6. The Multivariate Model 143

o And, finally:

)
* _ Ws g
X3y = (w +w5) (3) )
Ws 2\*
X3 = (w3+w5) <§> , (6.23)

« _ Ws 2 o
X312 T\ +ws/ \3/
The proof can be found in Appendix B.9. This theorem gives the following

tail dependence structure for Fy:
. 7;( has triple tail dependence if § < oo and ws # 0.
° —F_;( has, at most, double tail dependence in any other case.

The trivariate model introduced in (6.19) has advantageous properties.
From (6.22) we can notice that, although 6 is common to all the individual
models with tail dependence, the strength of tail dependence varies from pair to
pair. Other advantages are dimensional coherence and easy of computation of
the tail dependence parameters for the Model Averaging approach. However,

the inference methodology of Section 6.2.3 is more convenient to be applied
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with a modified version of (6.19), motivated by (6.11), which is expressed as:

with 0 <wy <1,fork=1,...,5and So_ wy = 1.

Similarly to what happened to the model (6.11), we drop dimensional co-
herence, and the tail dependence asymptotics are just approximations of those
of model (6.19). However, we find model (6.19) more convenient for inference
purposes, although we pay the brice of dropping the features of dimensional
coherence and the ease of tail dependence structure computation for the Model
Averaging approach.

Therefore, for Fx defined as in (6.24), we approximate the tail dependence
parameters with the results in Theorem 6.2.2.

As it occurred with model (6.19), the approximation is motivated by the
fact that representing any exact independent factor as (1 + (xfé_’ - 1)) -6,
or as (x;%’l) , should not affect the dependence structure among the variables,
for j € {1,2,3}.

In the next section, we deal with the inference of the trivariate model,
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which will use model (6.24) as basis.

6.2.3 Trivariate Inference

Recall the model in (6.24) is defined by five components or models. We denote

the models, recalling the latent variables in (6.13), as follows:

o M, = Fx|71.
[ A[z = FXIDDLT
° A[g = FX|DD1,3-

L] A[,; = FX|DD2'3-

Ms = Fx|rp.

Define the parameter space of model Ay as ), for k= 1,...,5, then define

the following parameters:
o Wi ={ay,,03,61,8&,6) € Q) =RS.
o Wy =wy=ws=ws;={0,01,02,03,&,&,&} € N =R

Therefore, 2y = Q3 = Q4 = Qs.

6.2.3.1 General Details of Reversible Jump

The way we are making inference is via the Reversible Jump MCMC method,

which was described in Section 3.3. A jump from model Af; to model Al
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depends on the posterior distributions for each model, and the distribution of
an auxiliary r.v. u, which deals with the change in dimensions from € to €.
(see expression (3.7)).

For jumps involving only k£ = 2,...,5, there is no change of dimension.

Therefore, if a jump from model k to model k* is proposed, then:
Wie = G g (Wi) = wi,

for k and k* in {2,...,5}.
Although ] has a different dimension, we can add 6 to modify the param-

eter space, but not the posterior of Af;, as follows:
w; = (w1,6),

and then, we can define the change of dimension similarly to the previous
cases, i.e.:

w1 = g1{wi) = wk, and wi = gy (w1) = wy,

for k =2,...,5. Thus, the modified parameter space of Af; would be ; = R7.

This means:

Q=QI=...=Q5=R1,
and then, we define the unique parameter vector as:
w= {0’ ag, (g, O3, él’ 52’ &3} (S Q.

Hence, with this modification, the deterministic functions gy 4+ are equal to

the identity, so there is no need of the auxiliary r.v. to cope with the change
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of parameter space, and:

‘ Vg ke (Wi) ~1

Vwk

If we propose model M+ with probability 1/4 for k* =1,...,5, then
Jio g = i pe

Therefore, the jump ratio defined in (3.7) only depends on the ratio of the
posterior (or log-posterior) distributions.

Recall from Section (3.3) that the Reversible Jump MCMC consists of
two steps: a jump and a single sample from the model in turn. We use
the Metropolis-Hastings within Gibbs sampler method to draw samples, as in
Model 2 (recall Section 3.2.4). Therefore, we need two pieces of information
for each model: the log-posterior distributions for the jump part and the
conditional log-posterior distributions for the sampling.

Prior to describing the distributions of each model, we need to establish
the form of the prior distributions. Similarly to Model 2, in Section 5.6.2, we
define the priors as independent exponential distributions.

For the Mj5 case, similarly to the bivariate model (see (5.23)), we have that:
Ex,, [xs] = /3—07r69|1\15(50)d9
(e o]

= / 37%5pe7%%40
0

- de + log(3) '
Then, if we set our initial belief as E [x3] = 0.5, then 85 = log(3).

For the double tail dependent models, we set §; = log(2), and for the rest

of the parameters, we set the priors as unit exponential distibutions.



Chapter 6. The Multivariate Model 148

Therefore, the priors are expressed as:

7(0) = log(3) exp {—log(3) 6}, for A,
7(0) = log(2) exp {—1og(2) 8}, for My, My, My,
7(6) =1, for My,

and for any model:

71'((1,.) = exP{-ar} ’

77(61‘) = exp {"{r} )
forr=1,2,3.

Before moving to the characterization of each model, we need to discuss an
important issue of model (6.24), which we addressed in the previous section.

We know from Model 2 that:
limg_oo My, = M,

for k =2,...,4. As well, it can be easily verified from Part 1 of the proof in

Appendix B.6, that

1

1 B 1 -8
limo—boo (1 + oy (Cl?fsl - 1) + as ((L‘r_;’62 - 1) + a3 (.’L‘;;£3 - 1))
- ~23
= (:::1 Sp, 2z, ‘3).

Therefore:

Y

limg_,oo Afs = A[]

Hence, model (6.24) has an identification issue when the variables are exact
independent. This fact is not a problem when the inference approach is model

averaging (on which we will extend later). However, when the model selection
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approach is selected, there is a strong equivalence between a tail dependence
model with a large 6 and model Af;. We will deal with this issue further to

make it clear, after we have exposed the inference.

6.2.3.2 Data Characterization for Trivariate Model

Recall from Section 5.5 that we are interested in positive variables, let them
be X}, X3, and X3, and that there are two different objectives in inference:
tail dependence determination and prediction.

Similarly to Section 5.5, we divide R? in the following regions:
{Rfjk; 0= Uxpsun s J = Uxgouyg) B = n[X;)ux;]} , (6.25)

for ux;, ux; and ux;, positive high thresholds of X7, X3, and X3, respectively.
Then we only consider data in the region {Rg}“ and consider, as well, the

following transformations:

X1=X+1, Xo=X}+1, and X5 = X3 +1, (6.26)

c

for (X;1X57X§) € {(O’UXf)a(Ov Ux;)a(oa UX;)} .

Therefore, the division of R3 for the transformed variables is:

{Rijk; 1= ]]-[X1>uxl]’j = n[Xz)ux2]7 k= n[X3>ux3]} ’ (627)

for ux, = ux; +1, ux, = ux; +1 and ux, = ux; + 1.
We model the vector (X, X2, X3) with the mixture model in (6.24). As

we have already stated, there are two options to deal with a mixture model:
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assume only one model is correct and treat the problem as model selection or
recognise an uncertainty spread over different models, which is the target of
the model averaging approach.

Consider the sample D of size n of model (6.24), such that:
D = {(z1,, %24, 234),t = 1,...,n},

and let @; be the subset: @; = w\ {w;}, for w; € w.
Similarly to Section 5.5, we need to truncate every model, since we are
ignoring the region Ryg. Define u = (uy,,ux,, ux;), then the density of the

non-censored trivariate Model j is as follows:

fun () = Ll Trens iz oz (6.28)
1- M,-(u)

for f}s,, the density of trivariate model j of the mixture model (6.24) and for

Fjyy, its trivariate joint distribution, for 7 =1,...,5.

In order to compute the denominator in (6.28), we use the following relation

for any trivariate joint function:
1 - Fx == FX] + sz + —F-Xa - fxl’xz - ?XI,XI! - FX2.X3 +?x, (6-29)

where _F—xj is the univariate marginal survival function of X, and ij, Xp 1S
the marginal bivariate survival function of X; and Xy, for j and k in {1, 2,3}.
Trivariate M1. TI.

For the triple independent model, we know that the trivariate joint distri-
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bution satisfies the following:
_o o2 _oa _oa1 _og e; _=3 _oa a3

— [31 £2 €3 __
1~ Fu,(u) = uy,' +uy,? +uy, Uy, uy,

_o _o2 _o3
3 £3 &3
Fuy Uy, Uy -

Therefore, the joint density function for the triple independent model is:

_ [ one03 :L‘l-(%‘L+l) $2_(%22+1) x;(%&“)
fMl (XIw) B ( 515253 > 1-— FAll(u) )

Therefore, the log-posterior is the following;:

Ip(w|D, M) = nlog (%11%3%1) — i logm — 230 logza; + Ky

-8 3 logzz; — nlog (1= Fay(u)) + log may, (w),
where Ky, is the logarithm of the normalizing constant of the posterior dis-

tribution.

Hence, the conditional log-posterior distributions are as follows:

Ip(oy|D, My, a7) = nlogay — (%11) Sorlogzy — nlog (1l = Fap,(u))

—q + Kan
Ip(ce|D, My, 02) = nlogos — (%f) > i1 log 2 — n log (1 = Fiy (u))
—Q2 + Kazv

Ip(as|D, M;,a3) = nlogaz — (%31) Yoi, logzsi —nlog (1 — Far,(u))

—Q3 + A’aa,

(&ID, M &) = —nlogés — () Ty log i — n log (1 = Fi, (u))

-1+ Ky,



Chapter 6. The Multivariate Model 152

Ip(&|D, My, &) = —nlogé, — (%3) Y1 logza; —nlog (1 — Fay(u))

—52 + KEz’

Ip(&|D, M1,&3) = —nlogé&s — (%f) St logzs; —nlog (1 — Fyy(u))

_53 + KE:;’

where the K,,; term represents the logarithm of the normalizing factor of the
conditional posterior of w;.

Trivariate M2. DD, .

For the double dependent model A2, the joint distribution holds the fol-

lowing:

-6
l—FMz(u)= (1+01(U;€: —1))
1
- (1+a1(u§fl‘ —-1) +
-6 a3 RN -0 o,
(e 1)) i - (e -1)) i
_1- A o
+(1+a1( i —1)+

Hence, the joint density function in this case is as follows:

-1 -1
73 0(
Ilfl 1.2 2

_ (8+D)a1az03 1'3
sz(Xlw)— ( 6616263 ) l-FAlz(u)

N L -6-2
X (1 +a; (z{’“ - 1) + az(z,"? — 1)) ;

Then, the log-posterior is expressed as:

+
VY
—

+
Q

N
N
I~
&8
|
[y
N’
N’
&
+
1~
>

Ip(w|D, M) = nlog (—Lu“glg'gg ) +nlog (&) — 2 Y% log s,
+'0:f—1 i=1 log T1i + g%, Son log sy

—(0+2)5" log (1 + oy (1‘;927 - 1) + aj (1‘35? - 1))

—n log(1 — Fap(u)) + log mar, (W) + Kay,,
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where Ky, is the logarithm of the normalizing constant of the posterior dis-

tribution.

If we define:

n 1 1
So(w) = (8+2) Y log (1 + o (x;f; _ 1) + g (x;;.z _ 1)) .
i=1
Then, the conditional log-posterior distributions are as follows:
Ip(9|D, M3, 0) = nlog (&) + 52—1 S logxy; + 0%2 Yo log sy
—So(w) — n log(1 — Fiy,(u)) —log(2) 8 + K,

Ip(ay|D, My, a7) = nloga; — a1 — Sa(w) — n log(1 — Fa,(u)) + Ky,

Ip(as|D, M, @3) = nlogas — az — Sa(w) — n log(l — Far,(u)) + Koy,
Ip(as|D, Mz, @3) = nlogas — §2 3 1, logzs; — as

—n log(1 — Fas,(u)) + Ko,

(6D, My, &) = —nlogé — & + gt 2oL, log 21,5 — Sa(w)

—n log(1 — Fap,(u)) + Ky,

Ip(&|D, My, &) = —nlogé — & + aé; Yo logza; — Sy(w)

-n log(l - F)\[z(ll)) + K&,,

lp(§3|D, Mz,-ﬁ_:;) = -—nlogé&s — %f ?:1 log x3; — &3

—n log(l — Fas,(u)) + K,

where the K, term represents the logarithm of the normalizing factor of the

conditional posterior of w;.
The results of A/3(DD;3) and M4(DD,3) are similar to those showed in

this section. Therefore, me move ahead to model Af;.
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Trivariate M5. TD.

The joint distribution of A5 satisfies the following:

3 1 -0
1-— F]us(u) = Z (1 + a; (u;:]’ - 1))
—
j 1 N »
_ (1 +ay (u;’;; - 1) +as (u;’;; - 1))
1 1 -8
- (1 + o (u;’fll - 1) + a3 (u;’(‘; - 1))
1 . -6
- (1 + o (u)ef; - 1) + 03(11,;(? - 1))
L L L -0
+ (1 + o (u;’(‘l‘ - 1) + g (u;‘: - 1) + a3 (u;‘; - 1)) :

Then, the last joint density we present is as follows:

1 1 Lo
Ff—f—l % 11:“3 1

— (6+2)(0+1)anazas | L1 ) 3
fl\[s(xlw) - ( 02¢,1€2€3 ) 1— FAIS(U)

1 1 1 ~6-3
x (1 +a (:cf“ - 1) + ay (:105362 - 1) + a3 (z;"a - 1)) ;

Therefore, the log-posterior goes as follows:

p(w|D, My) = nlog (12220042) 4 tog myy (w) + 5 1, log 2y,
+o6 2o 108 T2 + 555 S0 log 23 — (6 + 3)
1 1 a1
S, log (1 + al(xff,-‘ - 1) + a3 (xg? - 1) + a3 (zg_? - 1))
-n log(l - F)\]s(ll)) + KMS,
where Ky, is the logarithm of the normalizing constant of the posterior dis-

tribution.

If we define:

S(w) = (0+3)Xn:10g <1+a1(xf? - 1) +ag(x§? - 1) +ag(x§5 - 1))

i=1
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Then, the conditional log-posterior distributions are expressed as:

Ip(8|D, Ms,8) = nlog ((ﬁ%(;ﬂ) + Ko~ log(3)0+ ;- S0, log
+§é“2 Do log o+ 52—3 S logzs;
—nlog(l — Fag(u)) -'S(w),

Ip(aq|D, Ms,a1) = nlog oy — oy — nlog(l — Fpy(u)) + Ka, — S(w),
Ip(as|D, Ms,a2) = nlog g — az — nlog(l — Fyy(u)) + Ko, — S(w),

Ip(as|D, M;,a3) = nlogas — az — nlog(l — Fa(u)) + Kqy — S(w),

Ip(&|D, A[57€_1) = -—nlogé —& + K¢, + % ZLI log

—nlog(1l — Fyy(u)) — S(w),

Ip(&|D, M;5,&) = — nlogle —&+ Ke, + @%; Yo logxa;

—TllOg(l - Fl\ls(u)) - S(O)),

Ip(&s|D, M5, &) = —nlog€s — &3 + Kg, + gz 200w, log 23,4
-n log(l - FMS(U)) - S(w),

where the K, term represents the logarithm of the normalizing factor of the
conditional posterior of w;.

Although we are not analyzing the censored case, we note that the censoring
becomes more cumbersome as the dimension increases, since the likelihood
splits into more combinations of partial derivatives of the joint model, as in

(5.19).
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6.2.3.3 Reversible Jump MCMC

The aim of the Reversible Jump MCMC depends on the objective of the anal-
ysis: in the case the asymptotic dependence determination is required, then,
it is necessary to sample from w, and {wk,T}Ll. In the case of prediction, the
algorithm is quite similar, except for the fact that a sample of X is drawn on
each step, regardless whether the proposed jump is accepted or not.

The sampling for X at step k(t) is as follows:

o If k(t) = 1, sample a uniform u;. Then

X5t =u, V", (6.30)
for j =1,2,3.

o If k(t) = 2, sample A from Gamma(6(t), 1), B; from Exp(a;(t)), and a

uniform u. Then
X5 (t) = (1+ B;/A)’P%® and X5(t) = uf’(‘_%
for j=1,2.
o If k(t) = 5, sample A from Gamma(6(t), 1) and B; from exp(a;(t)).Then
X5(0) = (1+ B, /4060,

for j =1,2,3.

The cases where k(t) = 3 and k(t) = 4 are similar to k(t) = 2.
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In any of the individual models, we sample X(t) until X(t) € {Roo0}°.

In this way, X forms a sample of the predictive distribution of X. In
the prediction approach, although the algorithm returns a sample of w and
{wi}:_,, they are not the crucial information. |

For the model selection approach, the most relevant information is in
{wk}2=1. The iterations in the RJ are continued until the processes {u’k}i=1
stabilize. Assume the stabilization is achieved at ¢ = T. Then, all the neces-
sary information is contained in both {u,vk},‘r;:1 and w® = {wls veeny Wi

Finally, we close the discussion of the trivariate model with some simulation

cases.

6.2.4 Trivariate Simulation

We made two simulation cases. The objective of the first case is to study the
Model Selection approach. Therefore, we draw observations of the trivariate
model, and then we are interested in how the Reversible Jump recognizes the
dependence structure for which the data are simulated. The analysis will focus
on the estimation of wy,...,ws, and of 6.

For the second case, we are interested in the implementation of the Model
Averaging approach. Similarly to Section 5.6.3 we draw simulations from a
multivariate copula of GPD variables. The objective of this simulation is the

prediction of the variables in the tails.
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6.2.4.1 Simulations for Model Selection

We simulate observations for each model similarly to the simulations in Section
5.6.2. We simulate X1, X,, and X3 in {(0,1)}", i.e., we are setting ux, = uy, =
ux, = 1 in the region (6.27).

Regarding the number of observations, the data is divided into small sam-
ple: n = 70, medium sample: n = 150, and large sample: n = 300 (except for
the Al case, where a large sample is not needed). Regarding the heaviness of
the tails, we proceed as in Model 2 in Section 5.6.3: a block of heavy-tailed
and another of light-tailed models.

As the scale parameters do not have a great importance in the tail depen-

dence structure, we fix them to 0.5, which means:
a; = a9 = a3 = 0.5.
For the marginal shape parameters, we proceed as follows:
e For heavy-tailed models: & =2, & = 3, and & = 2.5.
e For light-tailed models: & = 0.1, & = 0.2, and &; = 0.15.
Regarding the priors, we fix the hyperparameters to 1, i.e.:
bo; =1, for all w; € w.

The sizes of the sampling for the Reversible Jump are set up to 10°, until a
level which was appropriate to assume that the processes {uvk}2=l were stable.

We plot in Figure D.8 two processes to show how they stabilize.
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In Table C.4 we present the results when simulating from model Afy, i.e.
we draw simulations of independent Paretos, as in (6.30). We can appreciate
that practically most of the times, the jumping process stays in Af;.

The next case we want to expose is the model with triple dependence, i.e.
M5, We draw the samples via the representation in (6.3). In Table C.7 we
present the results. For the small size sample, the method estimates accurately
ws, except when # > 3 and when 6 > 4 in light-tailed and heavy-tailed models,
respectively. For the medium size sample, the difficulties arise when 8 > 4 and
when 6 > 4.5 in light-tailed and heavy-tailed models, respectively. We can see
that the inaccuracies are due to the lack of data. We drew a large sample with
n = 300 to illustrate this idea. We present the results in Table C.8. We can
see that the difficulties arise, in both cases, only when 8 > 7.

Finally, to represent the models with double dependence, we simulate ob-
servations from Afy. The way to do so is by simulating X; and X, as in Model
2 (see Section 5.6.3), and X3, an independent Pareto, as in Afy. The results
for the small and medium size samples are showed in Table C.10. We can
appreciate that the methodology can distinguish accurately the model Af; for
x > 0.13, ie., for 8 < 3 in heavy tails and 8 < 3, for light-tails. For the
medium size sample, the accuracy extends to € < 3.5, in both heavy and light
tails. As a last step, we present the results of a large sample, n = 300, in Table
C.9. We can notice that the accuracy is acceptable for § < 5, for both heavy

and light tails.
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We highlighted the cases where the identification presents some difficulties.
However, as it can be seen in the figures, the difficulties appear when the value
of 8 is considerably large. Therefore, from the discussion of the identifiability

of Sections 6.2.3.1 and 5.6, the results are in accordance with what we expect.

6.2.4.2 Simulations for Model Averaging

The simulations for Modeling Averaging are similar to those in Section 5.6.3,
since we are not simulating from the trivariate model. We are aiming to fit the
trivariate model to the region {Rooo}¢ (recall (6.25)) for different dependence
structures.

For all the cases, the marginal distributions are GPD’s with the following

notation:
e Light tails: k; = 0.1, k; = 0.15, and k3 = 0.125,
e Heavy tails: k; =1, k; = 1.5, and k3 = 1.25,

with 8 =1 for all of them (see (2.5) for the GPD representation).
In terms of joint structure, we simulated from four cases, which will be

explained later:
e Triple medium tail dependence.
e Triple high tail dependence.

e Exact Independence.
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e Double medium tail dependence.

We simulate 1500 observations in R3. Then, only the observations in
{Rooo}° are taken into account. The threshold ux; is selected as the 0.95
quantile of X7, for j = 1,2,3. Then, selected data is transformed via (6.26),
this means, if the selected variables are X7}, X3, and X3, then, the transformed

variables X, X3, and X3 are:
Xi=X{+1, Xo=X;+1, and X3 = X3 +1,

for (X7, X3, X3) € {(0,ux;), (0,ux;), (0, ux;)}".

Therefore, the trivariate model (6.24) is fitted to X, X, and Xj.

Recall the aim of Model Averaging approach is the prediction. Therefore,
opposite to the previous simulation cases, we are not interested in estimating
the parameters. The inference methodology followed is the one described in
Section 6.2.3.3, where we asserted the crucial information of this approach
consists in X5, the prediction sampling.

We use graphic tools to study how the prediction methodology works.

Recall the definition in (2.26), where for 0 < u < 1:

log P (X, < Fx;(u), Xa < Fx,(u))
log u

x(u) =2~

)
where the inverse marginal distributions and the joint probability are estimated

by its empirical versions.

In a similar way, we can define, for 0 < u < 1:

5 logP(X1 < Fx(u), X2 < Fx,(u), X3 < F/{"a(u))
logu

x3(u) =

Y
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and we estimate it with the empirical distributions, as with x(u).

Therefore, the graphic tools we use are the following:

e Bivariate marginal scatter plots: prediction sampling vs data.

e Sampling x(u) vs data x(u).

e Sampling x3(u) vs data x3(u), where applicable.

Simulations for triple medium tail dependence

For the first case, we simulate X,;, X3, and X3 from a Clayton copula
with ¢ = 2 (recall 5.12), and with light GPD marginals. This model implies
x3 = 1/3, and x = 0.5, for any pair.

We present in the first line of Figure D.9 the scatter plots for the three
different pairs in log-scale, whereas in the bottom line, the predictive sam-
pling is shown for each case. The thresholds are not as noticeable as in the
bivariate case (see Figure D.6), since there are observations which are below
the thresholds for the two variables in the graph, but above the threshold of
the third variable. The predictive samplings give a similar behavior as the
data. In fact, the three predictive samplings give a characteristic behavior of
medium tail dependent variables.

On the upper line of Figure D.10 we show the graphics of the empirical
x(u) for two different pairs of the variables, and the empirical x3(u). In the
bottom line we present the same graphics for the predictive sampling. The

three bottom plots look like a smooth version of the empirical graphics for
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medium and large values of u, which suggests a good fit of the bivariate and
trivariate tail dependence. Even more, these graphics show a considerable
accurate estimation of the theoretical values of x and x3, through the graphical
method.

Simulations for triple high tail dependence

For the triple high tail dependence case, we simulate X;, X5, and X3 from
a Clayton copula with ¢ = 6 and with light GPD marginals. This model
implies x3 = 0.802, and x = 0.871, for any pair.

The first line of Figure D.11 shows the scatter plots in log-scale for the pairs
(X1,X2) and (X1, X3), whereas in the bottom line the predictive sampling is
shown for each case. The predictive samplings show the strong pair relation
of data.

The upper line of Figure D.12 shows the graphics of the empirical x(u)
for two different pairs of the variables, and the empirical x3(u). The bottom
line presents the same graphics for the predictive sampling. The three bottom
plots do not look as smooth as those in the medium tail dependence case.
However, they look as a smoother version of the empirical graphics. As well,
the estimated value of x3 suggested by the graphic is considerably accurate,
whereas the estimation of x is overestimated, but in accordance with high tail
dependence.

Simulations for exact independence

In this case we simulated independently X, X5, and X3 from light GPD’s.
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The first line of Figure D.13 shows the scatter plots in log-scale for the
pairs (X7, X3) and (X}, X3), whereas the second line the predictive sampling
is shown for each case. The predictive samplings show the same independent
relation in the tails as the data.

The third line of Figure D.13 shows the graphics of the empirical x(u) for
two different pairs of the variables. The bottom line presents the same graphics
for the predictive sampling. The bottom plots seem to be a smooth version of
thg empirical graphics. The important part is that they do not show any tail
dependence.

Simulations for double medium tail dependence

For the triple high tail dependence case, we simulate X; and X, from
a Clayton copula with ¢ = 2, and with light GPD marginals, whereas X3
is simulated independently from a GPD with light tail. This model implies
x = 0.5 for X; and X,.

The first line of Figure D.14 shows the scatter plots in log-scale for the pairs
(X1, X2) and (X3, X3), whereas in the second line the predictive sampling is
shown for each case. The predictive samplings show the same association in
tails as the data: for the pair (X3, X,) there exists a strong relation in the
tails, whereas for the pair (X1, X3), there is no evident association.

The third line of Figure D.14 shows the graphics of the empirical x(u) for
the pairs (X3, X2) and (X1, X3). The bottom line presents the same graphics

for the predictive sampling. The bottom plots seem to be a smooth version of
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the empirical graphics. For the pair (X, X3), the graphic shows a tail depen-
dence with x close to 0.5, whereas for the pair (X}, X3), it shows independence.
Once we have shown the main features of the trivariate mixture model, we

can set the multivariate generalization.

6.3 Multivariate Model

The generalization to the multivariate setting is quite straightforward, after
the introduction of the trivariate model.

Let X = (X3,...,X4) be a vector of r.v. in {(1,00)?}.

We define latent variables that determine multivariate models with different

tail dependence as follows:
e TI,if Fx has d-tuple tail independence.

e MD;,,. (6), if Fx has M-tuple tail dependence, and (Xju,, ..., Xjsy,)

J*M

are d-dimensional tail dependent, for {j*;,...,7*x} € {1,...,d}, 2 £

M<d

For example, 2Dj34(6) is the model with double tail dependence between the
variables (X3, X4).

We propose the following model averaging:

d d
Fx= w Fxjr1 + Z z u’g(k;,kg,?)fmekl,k, +...+

k2=1 ky=ka+1
d d d

Do D D) Wekeka A FXIMD ey,

krp=1 kpoy=kpr+1 ky=ka+1

(6.31)
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where g(ki, ..., kas, M) : NM*1 — N, enumerates the weights, and 0 < w; < 1,

for j=1,...,dr and Z?L w; = 1, where:

e () () (1) (oo (53)

for d > 2, is the total number of individual models.

Similarly to the marginal bivariate and the trivariate models introduced
in (6.6) and (6.19), respectively, we construct a model with dimensional co-
herence. Therefore, as a first attempt of a multivariate model, we propose

the following parametric form for each individual model in (6.31), for x =

(.’l'l, P ,.’L'd)I
d L -6
— L
Fym(x) =]] (1 +aj(z; " - 1)) . (6.33)
j=1
e e -8

— .
FleDkl ----- ks (X) - (1 +ak, (‘rkxkl - 1) +.. +agy, (‘rkh’;u - 1))

ka—m _1 -9
X H (1+aj(:cj ] —1)) ’
=k
(6.34)
where {kf, ey k;_M} is the complement of {k,...,kar}.

We define Fyx with components represented by (6.33) and (6.31), as the
multivariate mixture model with marginal coherence. \We show the marginal
coherence as follows:

Suppose we marginalize Fyx with respect to X;, for i € {1,...,d}. Define
z=(z,...,2; =1,...,z4). Then the previous components are expressed as:

Fam@= 1T (1+e(5% 1)

j=1j#i
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For each of the rest of the components, we have two options:
o ifie {ki,...,ki\_y}:

L 1 -0
— e .
FXIMDkl ..... ks (z) = (1 + ay, (zklkl — 1) + ..ot ag,, (zk,:M - 1))

o if i € {ki,...,kar}, say i = k;, then:

1 1
(Z) = (1 + g, (Z:fkl - 1) +.. oy, (‘:”ig’.l_1 - 1)
1

1

-8
LTIy I3
+ak,.+l(zif‘l“ - 1) +...+agy (Ik;\:M - 1))

k3 1 -6
xH(1+aJ 05’—1)) .

j=k}

These components are identical as those in (6.31), but with one dimension
less. For example, the second factor of (6.31) would be expressed as:

d d
Z Z uyg(klsk2v2)Fxl2Dkl,k2(z)’

ko=1,ka#i k1=ka+1,k1#i

which has (dgl) components.
Hence, the marginal model has a total of 2+ (2("‘1) %), for d > 2. Therefore,

there exists marginal coherence in model (6.31).

Theorem 6.3.1. Multivariate tail dependence structure
Let X = (X,...,Xq) be a random vector with joint survival function as
in (6.31) with individual components as in (6.33) and (6.84).

Then, from Definition 6.1.4 the following holds:
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o The tail dependence parameter x3 of the model is given by:
X; = Wyq d_07
where wy s the weight of the d—tuple model component.

e The pairwise tail dependence for the pair {i,j} is given by:
Tl,j
X{ig) = 27° Z Wa(i M) (6.35)
k=1

where B(i,j, M) : N* x {1,...,T;;} = N enumerates the weights where

neither X; nor X; are eractly independent, and where:

T,j=1+(d-2)+ (d;2) +(d;3)+...+ (§)+(§)
ford > 3.

We show in Appendix B.10 the proof of the theorem.

Similarly to the bivariate and trivariate mixture models, we introduce a
helpful modification of the multivariate mixture model with marginal coher-
ence. This modification has the same representation as that in (6.31), but the

individual components are represented as follows:

- 4 _u
Fxiri(x) =[] “.

Jj=1
1 1

-0
— 1 -
Fx| MDyy,...kp (X) = (1 + ax, (x:fkl - 1) + .ot agy, (xkil;u - 1))

ki_rs o

&

x [T 2,
=k

(6.36)
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where {k{,...,kj_p} is the complement of {ky,...,kx}.

In this way, it is clear that this modification drops the marginal coherence.
However, as we saw in the trivariate mixture model, the inference methodology
is simplified if we express an independent model as a Pareto distribution.

The parameter space can be defined, similarly to the procedure in Section
6.2.3, as:

w={0,ai,...,a4,6,...,6} € 2 =R¥

Notice that we are adding the parameter 8 to the exact independent case,
although it is not used in the individual model. Similarly to the trivariate
model, the unification of parameter spaces will be useful when applying the
Reversible Jump methodology.

The prior distributions are set as independent exponential with hyperpa-
rameters 4, , for wy € w.

As in the trivariate case, the tail dependence structure is the same as the
dimensional coherence model in Theorem 6.3.1.

The next step is to select either mode] averaging or model selection as the
best way to approach the problem.

Define the variable in study as X* = (X},...,X]). We transform the
variables, similarly to (6.26), as X; = X + 1. Therefore, the mixture model

is applied to the region:

{(Lux,) x.ox (L ux,)}*,
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where ux; = u x;+1, and where u x; is a positive high thresholds of X*, for
ji=1,...,d

Finally, define the transformed data D of size n as
D= {(z14,..-,%4i),t = 1,...n}.
Hence, we can reexpress the multivariate mixture model as:
Fx =un f}\h +...+ wy, FM‘,T,
or, in terms of the posterior distribution:
px(w) = w; p(w| D, M) + ... + way p(w| D, Myy),

where p(w| D, M}) is the posterior distribution of individual model My, given
the data D, for k=1,...,dr.

It is important to notice that the density function of each model must be
truncated individually as shown in Sections 5.5 and 6.2.3.2.

Then, the Reversible Jump methodology is applied: drawing samples of w
and of {wy,...,wy,} for the model selection approach or sampling X for the
prediction or model averaging approach.

Finally, we need to discuss the extension of the multivariate model. This
model is formed by a mixture of individual models which split the variables
into two groups with respect to #: a group with tail dependence measured by
# and an exact independent group. Therefore, these individual models cannot

recover a dependence structure of more than two groups of dependence. For
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example, in the 4-dimensional case, if X; and X, are medium tail dependent
and X3 and X4 are high tail dependent, then, the individual models (except
for the exact independent one) can only give one tail dependence structure,
measured by 8. In this sense, the model selection is not able to recover this
structure.

However, the model averaging approach is flexible enough to give different
tail dependencies to different pairs, as we saw in Theorems 6.2.2 and 6.3.1.
Recall we interepret model averaging as the lack of certainty on which model
is the correct one. In this way, we were spreading the uncertainty among
different models. This spreading translates into flexibility of the model in the
tail dependence structure: the tail dependence does not depend only on 6.

Nevertheless, we need to stress that the objective of the model averaging
approach is the prediction, and as such, the computation of the tail dependence

parameters is not crucial on the analysis.

6.4 QOur Multivariate Model and Literature

It is worth to discuss the works of Coles and Pauli (2002) and Apputhurai
and Stephenson (2011), since they have some similarities with our Bayesian
framework.

Coles and Pauli introduced a Bayesian model that includes both asymptotic
dependence and independence. The model is constructed via the product of

two bivariate survivor functions $; and S;, with uniform marginal distributions
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as follows:

S(ur,ug) = (Si(u1, u2)))? (Sa(ur, u2)))' ™,

for 0 <wup,up <1.
If we define x = lim,_; 51(—2'7"‘), and similarly for x; and y2, then the tail

dependence of the model would be given by:

x =xDe ™
Define, as well
) 2log(l — u)
X = limy 4 ————,
X = e e S(uy )

and similarly for ¥, and X,. Then, if S; is chosen asymptotically dependent
and S,, asymptotically independent (meaning that X, = 1, and x; = 0), then

x = 0, i.e., the model S is asymptotically independent, with

g+ (2- 9,
2—-q+qx;

X=
unless q¢ = 1, for which case, S is asymptotically dependent with x = x;.
Coles and Pauli (2002) chose S; and S, as follows:
Sy(ur,ug) = (1= w)'* + (1 —u)' ™ = 1)TF, k> 1,
Sa(ur, ug) = (1 = ug)(1 — up).
Then, the estimation of the parameter q determines the tail dependence struc-

ture. This estimation is carried out via the Bayesian framework and MCNIC

methodology. Finally, they propose the following generalization:

d Tl—k' d
o (Zu —u)" O+ 1 - d) [0 - w)-e,
i=1

j=1
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for u = (uy,...,uq), and 0 < uy,...,ug < 1. Thus, the pair i and j are
asymptotically dependent only when ¢; = 1, Vj. And, if that is the case
and the pair ¢ and m are as well asymptotically dependent, then it follows
immediately that j and m are asymptotically dependent. This is not the case
for our model in (6.31), since the weights of the factors involving the ¢, j and

m elements can be 0, except for the following factors:

(1+a,~(a:f%‘ - 1) +aj(ar;—27 —1))_0 and
(1ot 1)+ (o35 1))

We believe that the only similarity with our framework worth to discuss deeply
is that of the bivariate case. Coles and Pauli (2002) managed to represent
both asymptotically dependence and independence in one single model, via
a parameter ¢ that determines either form of tail dependence. The resulting
model is the product of a tail dependent model (a Clayton one, which we know
has a connection with our model, see Section 5.4) and a complete independent
model, both of them to the g-th power. However, Coles and Pauli do not study
the relation between the parameters ¢ and k, which (as we know, since it is
related to our parameter 8) determines as well the dependence structure.
Therefore, the option of representing both asymptotic dependences in one
model is tempting. However, it involves the introduction of one more pa-
rameter which must be done more carefully, because of its relation with the
parameter k (or, in our case, #). In the case of our bivariate model, for ex-

ample, the case where 8 — oo (exact independence), and ¢ = 1 cannot occur
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simultaneously.

Hence, we opt to keep the dependence structure in one single parameter,
with the consequence of representing asymptotic independence only by the
complete tail independence.

On the other hand, Apputhurai and Stephenson (2011) introduced a model
averaging framework for the bivariate case. Apputhurai and Stephenson se-
lected an asymptotically dependent and two asymptotically independent mod-
els to average. The Reversible Jump methodology is followed for inference in
a Bayesian framework.

A natural suggestion of the work of Apputhurai and Stephenson (2011)
is to introduce an asymptotically independent model in our model averag-
ing. However, introducing any asymptotic independent model would break
the representation in (5.1) or (6.3), which are the basis of the construction of
our model. Therefore, we opt to keep the dependence structure only on the

parameter 6.

6.5 Discussion of Multivariate Framework

In this section, we have presented the generalization of the bivariate model in
(5.6). The resulting model is an averaging of models of variables represented
via the common variable method, as in the bivariate case (see the expression
(5.1), for example). The model is expressed in equation (6.31).

There are two ways to proceed under this model: the model selection and
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the model averaging.

In the model selection approach, only one model is chosen, and this will
determine the whole dependence structure. In the model averaging approach,
prediction is the main objective of analysis. The main difference with the
model selection is that the determination of the correct model is not crucial.
Instead, we let all the combinations of different types of tail dependence to
contribute to the joint probability.

We showed as well, that the Reversible Jump within a Bayesian framework
is a reasonably accurate methodology to estimate the parameters and the

weights. Therefore, we can proceed to real data applications.
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Illustrations

In this section we present real financial data analyses. In Section 7.1, we
describe the data we are analyzing. We did two different types of analysis: the
tail dependence determination analysis and the portfolio loss analysis.

The tail dependence determination analysis divides into two parts: a bi-
variate analysis presented in Section 7.2, and a trivariate analysis, presented
in Section 7.2.2.

The portfolio analysis constitutes an application of prediction analysis.
This analysis is presented in Section 7.3.

Finally, we close with the conclusions of the illustrations in 7.4.

7.1 Data Description

We carried out a financial data analysis similar as that used in Poon et al.

(2004). The data consisted of daily return levels of five equity indices: French

176
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CAC 40, German DAX, Japanese Nikkei 225, English FTSE 100, and US S&P
500. All of them run from April, 1993 until July, 2003.! The total number of
observations is 2665. We plot in Figure D.15 an example of a series (CAC 40).

As in Poon et al. (2004), we took the previous day return for the S&P 500
observations, since the US market is the last one to close and any change on
it will be more likely to influence on the very next day. In accordance with
the work in Poon et al. (2004), we also applied the GJR-GARCH filter (see
Glosten et al. (1993) for the explanation of it) in order to get rid of any high
volatility clustering. Although we found that the application of this filter did
not make a huge difference on the marginal tail behavior, we worked with the
filtered data. In Figure D.16 we present the filtered and unfiltered data for
the CAC 40 case.

In Section 2.1.3.1, we suggested the 0.9G quantile as a threshold for every
variable. In Figure D.17, we presented the threshold selection tools for some
of the indices.

Recall the threshold selection methods used the GPD as a univariate tail
model. We assume this threshold sets a point where the extreme observations
begin, rather than where a GPD must be fitted. In this sense, we use the same
threshold selection, although the marginals are not GPD. In fact, we fix the

threshold on the 0.95 quantile, to set it to the closest pragmatic value.

They can be downloaded from MATLAB or directly from http://finance.yahoo.com.

The tickers symbols are: "FCHI, "GDAXI, "N225, "FTSE, and “GSPC, respectively.


http://finance.yahoo.com
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We split the data into negative and positive. For each part, we fixed the

threshold as the 0.95 quantile of each Index. The region to study is:
RF = {(0,ux;) X ... x (0,ux;)}°, (7.1)

where u x; is the 0.95 quantile of the index X7.

We did two types of analysis: the tail dependence determination and the
portfolio analysis. On the last step before the fitting, we transformed the
extreme observations as we stated in Section 5.5, for the bivariate case and in

Section 6.2.3.2, for the trivariate case. The transformations are given by:
Xi=X7+1,..., Xg=X;+1, (7.2)

for (X7,...,X]) € {(O, Uxi)y oo (O,uX;)}c, with d = 2 in the bivariate case,

and d = 3 in the trivariate case.

7.2 Tail Dependence Determination Analysis

The aim of this section is to study the dependence among indices in the region

RF in (7.1). This study splits into bivariate and trivariate analysis.

7.2.1 Bivariate Dependence Determination

We took all the different pairs of the filtered data for both the right and the left
tail. We present the scatterplots of three pairs in Figure D.18. As the analysis
will show further, and as the Figure D.19 can illustrate, the first two pairs

represent medium tail dependence, whereas the last one, low tail dependence.
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Inference was made via Metropolis-Hastings as described in Section 5.6.2,
with the posterior as in (5.21). The prior distributions were unit exponential
distributions, except for 8, for which the prior was exponential distribution
with hyperparameter §g = log(2). We drew 20,000 posterior observations with
a burn-in of 500. The estimation of each parameter was taken as the median
of the posterior sampling. We present in Table C.11 the Bayesian estimations
of the parameters for all the possible pairs of Indices. We give as well the 95%
credibility intervals for both 4 and x.

Finally, to compare our results we did the following:
e We estimated X with the methodology found in Ledford and Tawn (1996).

e We tested the asymptotic independence with Falk and Michel (2006)

methodology, found in the POT package in R.

e When there is no evidence to accept asymptotic independence, we fit
5 models to data: the logistic, asymmetric logistic, negative logistic,
asymmetric logistic, mixed and asymmetric mixed models. We used
as well the POT package in R , which uses the MLE approach. We
considered only the model with the lesser Akaike Information Criteria,

and we give the estimate of x for this model.

o For those cases where the MLE presented problems to compute, we used

the non-parametric estimator of x found in Poon ¢ ¢] (2004).

As Table C.11 shows, we can classify the pairs of Indices regarding their
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tail dependence structure as follows for both right and left tails:

e Medium tail dependence: France-UK, France-Germany, and Germany-

UK;

e Low tail dependence: UK-US, France-US, Germany-US left tail, and

Japan-US left tail;

e Presumably tail independence: Japan-UK, France-Japan, Germany-Japan,

Germany-US right tail, and Japan-US right tail.

The results are in accordance with the estimates of x by Poon et al. (2004)
methodology. In general, the censored approach estimates tend to underesti-
mate the dependence. As well, the results agree regarding the economic view
of the relationships among the countries involved. In fact, the results show
a higher relation in the left tail (in comparison to the right tail) of the pairs
Germany-US and Japan-US. This fact might show the effects of bad perfor-
mance in the US index, in the German and Japanese markets. In fact, for
all the cases but Japan-UK, the tail dependence in the left tail is larger than
the tail dependence on the right tail, meaning that a bad performance is more

likely to affect the rest of the countries, rather than a good performance.

7.2.2 Trivariate Dependence Determination

In this section, we analyze the same real data as in the previous section, but

with the trivariate framework established in Section 6.2. \We are interested
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in which type of model is the one that has the heaviest weight on the model
averaging. Therefore, the problem is treated as a model selection one.

The model selection is carried out via the Reversible Jump methodology
as described in Section 6.2.3.3, which consisted in 10,000 jumps. The re-
sults are shown in Table C.12. As it can be seen, the following cases are in
accordance with the bivariate results (compare it with Table C.11): France-
Ger-Jap, France-Ger-US, France-Jap-UK, France-UK-US, Ger-Jap-UK, and
Ger-UK-US.

The left tail of France-Jap-US is the only case to be chosen independent.
On the other side, the right tail is selected as triple tail dependent. However,
as the estimates of Table C.13 show, the tail dependence is low, as expected.

Finally, for the following cases, the selected model is the triple dependence
model: France-Germany-UK, Ger-Jap-US, and Jap-UK-US. The former case
is expected to be triple tail dependent. However, this was not the case for
the two other cases. The estimates are shown in Figure C.13. This figure
shows that the only group with medium triple tail dependence is the France-
Germany-UK case, for both tails. For the rest of the cases, the estimates of
x3 show a low triple tail dependence.

The analysis of this section show that the dependence estimated by the
model is in accordance with a standard extreme methodology. As well, the
results were in accordance with the economic interpretation of the data. There-

fore, we can proceed to the next study, where we make a prediction analysis.



Chapter 7. Illustrations 182

7.3 Portfolio Loss Analysis

This section deals with the minimization of the loss of an investment portfolio
consisting of pairs of the indices data.
Suppose there is an investment portfolio L consisting of d assets returns,

i.e. it is expressed as:

d
PS =Y "mYy,
k=1

where 0 < my, < 1 is the portfolio allocation of asset k, i.e. the proportion
invested in asset k, for k = 1,...,d, so that E‘; my = 1. Then, the following
issue might be of interest: given the historical data of the assets, what would
be the asset allocation that minimizes the maximum loss of PS?, or in other
words, what is the asset allocation that minimizes the value at risk of the
portfolio?

It is clear that we have to focus on the left tail of the variable P.S, meaning,
the negative changes on PS. Define the random variable L as the loss of the
portfolio, i.e. L = —(PS). Hence, the way to respond to this problem will be
to find a combination of my,...,my such that P(L > u}) is minimized, for
a large value uj. We will assume that a loss greater or equal to 90% of the
portfolio is large enough to represent an extreme value.

For ease of explanation and without lose of generalization, we will assume

the portfolio consists of two assets, so the loss L,, is given by:

L:, =mX! + (1 -m)X],
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for 0 < m <1, and where X; = -Y}, for j = 1,2.
There are two regions to consider in this study. The first one is the extreme
portfolio loss region RL}, = {Lm > u}_}, which will help us to define a high

threshold. This region can be represented as:
RL;, .. = {(X1,X3) :mX; + (1 -m)X; > uj }, (7.3)

where u} is the 0.9 quantile of L. The form of RL7, ,. is presented in Figure
D.20, for a given m. The first aim of the analysis is to predict observations in
RL}

- .
Mos

Let the historical variable X be:
D* = {(a},,23,),i=1,...n}.

We assume the historical portfolio loss allocation has been fixed at m = 0.5,

so that the historical loss Lg 5| p+ can be expressed as:

n

i=1

8.5|D‘ = {0.5 ‘T;,i + 0.5 1‘;"'}

for i = 1,...,n. In this way, we define the historical extreme portfolio loss

region as:
RL8'5*u20A5 |D* = {(:I:;,,-, :l';,i) € D* H 05 x:“' + 05 .T;"- Z ’U,zo's} ’ (7.4)

where uj . is the 0.9 quantile of Lgsp.. Once the threshold has been set,
the general extreme portfolio loss region is completely determined in (7.3) for
a given m, and substituting uj  with u} ,. Therefore, the next step is to

predict observations in RL’"*“ios’ for any m € [0, 1].
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The second region to consider is where the data is taken from. We consider

the observations inside the region:
RDy; = {(0,u3,,) x (0,u},.)}° .

This means, the region the data is taken from is as in Figure D.1, with ux =
uy = u}, . This fact does not affect the inference, since RL;"»"ZO_s C RD, for
all m € [0,1].

Since the aim of the analysis is the prediction, the data are transformed as
in (7.2), i.e.

»
T =T, +1, and 2o =23, + 1,

for (z1;,25;) € RD"ios’ for i = 1,...n. Therefore, the transformed data we

are modelling is given by:
D= {(xl,hm?,i) € {(l’uLo.s) X (l’uLo.s)}c}
i=1
where ugy, = uz, +1.
Then, the way to proceed is a modified version of the Reversible Jump
methodology described in Section 6.2.3.3.

The joint model we will adjust to the transformed data will be that in

(6.24), which reduces to the following expression for the bivariate case:
- o e -1
FX(X) =u (xl 'y 2) (l—FMl(uLo.s))

. 1 1 —
+wn (1= Fagy(uz6,))” (1 + a1 (2l = 1) + (o] - 1)) ,

where

21 22 -1 _x2
— — §1 €2 _ p
1 FMI(UL°-5) =Upgs + ULys ULos YLos s
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and

-6
1= Fap(uLos) = (1 + o (“ﬁ,‘s - 1))
-0
+ (1 + as (u,‘jff5 - 1))
-8
— (1 + o (uzzls - 1) + as (uﬁ’s - 1)) .

Since we have transformed the variables, we need to redefine the region we

are sampling from as:
Rl g1 = {(215,223) €D :maii + (1 —m) 22 2 ures}, (7.5)

for a given m € [0, 1].

The modified Reversible Jump algorithm is as follows:
e Set a grid M in [0,1].
e At step ¢, propose a jump to model k* (for k* = 1,2).

o If the jump is rejected, sample X7, and X7, from model k; in region

RLpu,,, (recall (7.5)) for every m € M.

e If the jump is accepted, sample via Metropolis-Hastings a parameter
vector w from model k*, and then sample X7, and X35, from model k*

in region RLmu,, 5 for every m € M, and set kpyy = K*.

e After a reasonable number of samplings (le,Xgm) is achieved for
every m € Ml, assume it to converge to the predictive joint distribu-
tion of (X3, X2) in region Rlmy,,,, and define the sampling as X3 =

(xl m? Xim)'
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e Once the sampling has been achieved, define the predictive loss LY, as
follows:

LS =mX;, + (1 —-m)X; (7.6)

2,m»

for every m € M.
e Select m* € M, where m* minimizes the median of LS.

We chose a sample size of 2.5 x 10° and an interval width of 0.02 for the
grid M. We present in Figure D.21 the graphic of the median of L3 for
every m € M, for each pair of indices. Although the graphics do not show a
quite smooth behavior, the tendency is clear in all the cases. In order to get
a smoother version, the sample must be increased and the width of the grid
decreased. However, we did not consider an excessive smoothness an important
feature, given the average computing time, which was 184.5 minutes per pair
of Indices. In Table C.14 we present the portfolio allocation that minimizes
the median of L3,

In Table C.11, we showed the three strongest dependencies were given by
the pairs: France-UK, France-Germany, and Germany-UK. In all of these pairs,
the optimum allocation suggests a 100-0 allocation, except for the pair France-
Germany, which was a 91-9 allocation. This fact makes economic sense, since
if two assets have a strong dependence, then the minimum loss is achieved
when allocating the most on the asset with less expected loss.

Consider the cases: France-UK, France-Germany, and Germany-UK. In
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order to show which Index has a larger expected loss, we did the following:
we computed the marginal predictive mean excess over the threshold u,_, for
each Index of each pair. This means, u;_. varies from pair to pair. Therefore,
the marginal predictive mean excess is different for the same Index from pair to
pair. Finally, the results are transformed to the original change of the Indices.
We show in Table C.15 the results for these cases. The results confirm that
indeed the Index with the lesser predictive excess loss is the one that takes the
higher allocation.

On the other hand, for those cases where the tail dependence was deter-
mined as low in the previous section, the optimum allocation is split not as
extremely as in the medium tail dependent pairs.

In order to verify the fit of the predictions, we made a comparison of
histograms. Suppose m* is the optimum allocation. Then, on one hand, we
present the empirical histogram of the observations in region RLm‘,u‘Lo‘le
(see (7.4)) for the transformed data. This means, the historical transformed
observations for which the optimum allocation portfolio exceeds u} .. On
the other hand, we present the histogram of the samplings inside the region

RLS

m*u}
r Lo

.= {LS. > uj,,} (recall expression (7.6)).

The histograms are shown in Figure D.22 for four pairs of Indices. The
predictive histograms show quite similar shapes and levels to the historical
histograms. This fact suggests a good fit of the predictions.

Therefore, we can proceed to define the generalization of the portfolio al-
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location. Assume the analysis consists of d assets returns , which are:
(Yr,...,Y; €eRY.

We only consider the negative returns of the assets, and define the variables
X;=-Yforj=1,...,d

The general loss function is expressed as:
d
*  __ Y*
Ly, = E m; X7,
=1

for m = (my,...,my), and where 0 < m; <1, for j = 1,...,d, and my =

1- Z‘Iim]

Let the historical variable X be:
D= {(m;,,-,...,:r;'i),i = 1,...n} .
The, the historical loss function for a given allocation m is given by:
d
i=1

for m = (m,...,ma), and where 0 < m; < 1, for j = 1,...,d, and myg =

d
1—21 m,-.

Assume a fixed historical portfolio loss allocation at mg = (my,,...,mg),

n
’
i=1

with0 < mj, < 1,for j=1,...,d, and mgy = 1 = 3_$m;.

Then, the extreme portfolio region is defined as:

RL:no,uimolD' = {(II,...,.T;) PMp Ty + .. Mg Ty > “'Zmo} ,
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where UJ,,, 15 8 high quantile of Ly, say 0.9. The aim is to predict observa-
tions in RLm4; , for a given allocation m.
mg

The data is taken from the following region:

RDy; = { (o,u;mo) X ... X (o, u;mo) }

The next step is to transform the variables as follows:
Ty = .’II;’,- +1,...,24i = l‘:“ +1,
for (z3,,...,23;) € RDy; . In this way, the region we are modelling the
: mo

transformed data is given by:

RD“LmO = { (l,uLmo) X...X (l,U,Lmo)} .

On the other hand, the region we are sampling from is given by:
RLm‘uLmo ID = {(Il,. . ,Id) Tt . MgTy 2 ‘uLmo} .

Then, the way to proceed is a modified version of the Reversible Jump as
in the bivariate portfolio case. The joint model that underpins the algorithm
is the multivariate model averaging procedure presented in Section 6.3. The
following step is to construct a joint predictive sampling distribution from this
multivariate joint model.

The modified Reversible Jump algorithm is as follows:
e Set a grid M in [0, 1]%.

e At step t, propose a jump to model k* (for k* = 1,...,dr, where dr is

as in (6.32)).
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e If the jump is rejected, sample X{ ..., X3m from model k, in region

RLy Limg? for every m € M.

e If the jump is accepted, sample via Metropolis-Hastings a parameter
vector w from model k*, and then sample X7, ..., X7, from model k*

in region RLpy Limg? for every m € M, and set k;y = k*.

e After a reasonable number of samplings (X ..., X, 3m) is achieved for
every m € M, assume it to converge to the predictive joint distribution
of (X1,...,Xa) in region RLmy,,, , and define the sampling as X3 =
(x5

I,m»> "

ey XS m)-

e Once the sampling has been achieved, define the predictive loss LS as
follows:

L,Sn=m1X‘Em+...+de§_m,

for every m € M.

e Select m* € M, where m* minimizes the median of L3,

7.4 Conclusions

This section presented some applications of the models developed in Chapters
5 and 6.
The first illustration was a bivariate application. We fitted the bivariate

model to financial data, in order to determine the tail dependence. In general
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terms, the estimates looked in accordance with extremes methodologies, as
that in Poon et al. (2004).

The multivariate model we are proposing is a mixture model. The appli-
cation of this model depends on the problem, whether it is a model selection
or model averaging. We viewed the model selection as a tail dependence de-
termination.

For the trivariate case, we did a model selection application, which is trans-
lated as a tail dependence structure determination. The results of this analysis
showed a behavior in accordance with was found in the bivariate analysis.

Both the bivariate and trivariate analysis showed acceptable results from
an economical perspective.

We did a prediction application in the portfolio analysis section. We found
convenient to choose the model averaging interpretation of the mixture model,
since it spreads the uncertainty among different models, rather than selecting
only one of them. The methodology we proposed was the Reversible Jump with
a Metropolis-Hasting MCMC sampling. We proposed an algorithm to sample
predictions of each plausible model. Although the prediction application was
limited to the bivariate case, we presented the straightforward generalization
of the algorithm. The predictions of the mixture model helped us to solve a
portfolio analysis problem. The predictions were joined to describe the be-
havior of the portfolio loss variable. We showed the fit of this procedure was

accurate, in accordance with the data. Therefore, the model and methodolo-
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gies we presented seem to be flexible enough to transcend to other type of
applications via the prediction.

Hence, we find that the main purpose of the mixture model we present is
the prediction, since it is on that when the model becomes more flexible, rather
than selecting one model. Beside, the majority of applications or problems can

be attacked, from a Bayesian perspective, with prediction.
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Conclusions

8.1 Final Discussion

The aim of the dissertation was to present a multivariate model for extremes.
We opted for a mixture of models with different asymptotic dependencies.
The first objective was to construct a parametric family of models with the

following features:
e Interpretable parametric form.
o Sufficient asymptotic dependence structure.
e Fitting a realistic range of tails.

In Chapter 4, we introduced some models constructed via the Common
Variable method. Studying their properties, we found they cannot fit all of

the four requirements.

193
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In Chapter 5, we presented a modification of the models, where all the
requirements were achieved. The marginal distributions are quasi Burr-XII
type. An important feature was that the tail dependence relies only on one
single parameter, §. The parametric form of the bivariate model is simple
and inference was developed with Bayesian methods. The tail dependence

structure is as follows, for X; and Xj:

e if § — oo, then X, and X, are tail independent, in fact, they are exactly

tail independent.

e if § — 0, then X, and X, are completely tail dependent.

Anywhere else, the tail dependence measure x has the following form: y = 27°.
In the exact independent case, the model factorizes into the product of Pareto
marginals.

We want to make clear that we are aware that our model only fits tail
dependence and exact independence, and no other type of tail independence is
covered. However, we believe this model is a valid first attempt of an individual
component of the mixture model.

Another important feature of the bivariate model is the simplistic construc-
tion of dependent variables. This feature made possible the introduction of
the triple dependent model, and in general, the m—tuple dependent model.
As in the bivariate case, in every m—tuple dependent model, the asymptotic

dependence is governed exclusively by 6.
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We introduce the multivariate model in Chapter 6, i.e. the mixture of
models with different possible combinations of dependencies. In principle,
this might seem to drop the simplicity of the bivariate model. However, each
individual model of the averaging constitutes a simple version of a parametric
model constructed via the common variable method, as in the bivariate case.

Each individual model splits into two parts: the tail dependence and the
exact independence parts. We presented a model where the tail dependence
part is an m—tuple dependent model constructed as in the bivariate case.
On the other hand, the exact independent part consists of the product of
univariate quasi Burr-XII type models. In this way, this model has marginal
coherence.

Every mixture model can be interpreted in two ways: as a model selection
or as a model averaging problem.

The model selection approach assumes only one model is correct. There-
fore, its objective is to estimate the model that fits the best the data, i.e. only
one model describes the data. This turns out to be quite restrictive, since
there is only one measure of asymptotic dependence for all the asymptotic
dependent variables. Hence, it is not possible to model different strengths of
asymptotic dependence among different subsets of variables.

On the other hand, the model averaging approach recognizes the uncer-
tainty of the problem and spreads it over the individual components. There-

fore, no individual model is assumed to be the only one to describe data. The
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asymptotic dependence structure of this approach results quite flexible, since
for different subsets of the vector of variables, different asymptotic asymptotic
dependencies can be achieved.

Hence, we strongly opt for the model averaging approach. The only reason
why we used the model selection approach was to compare our results in
Chapter 7 with standard procedures in extremes.

When coming to inference, we used the reversible jump methodology within
the Bayesian paradigm. MCMC methods were the basic tool for parameter
estimations. Within this inference procedure, we found that a modification
of the model facilitates the whole procedure. Instead of the product of quasi
Burr-XII type marginals, we replaced it by the product of Pareto marginals.
From Chapter 5, we know these two models are equivalent marginal models in
the independent case. Therefore, the asymptotic dependence of the mixture
model is respected.

Finally, in Chapter 7, we presented some applications in the financial area.
We performed an analysis of tail dependences among some indices. The model
seems to fit well enough to the returns, even though their magnitude is small
(recall the tails we are aiming are non-light tails). The dependence structure
measured by 8, seems to identify the relation in tails of the variables, for both
the bivariate and the trivariate case.

In the last part of the applications, we presented a methodology to minimize

the loss of a portfolio, using the multivariate model of Chapter 6. Although
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the results are shown only for two assets portfolios, it can be easily generalized

to any dimension.

8.2 Future Work

We finish presenting the potential topics that could follow this work.

Firstly, a generalization of the marginals would be needed to embrace light
tails. This means, variables for which all the moments are finite.

A second issue is how to get all the forms of tail independence inside the
mixture model, rather than only the exact independence.

The next topic is the application of the multivariate model to a large set of
variables (say more than five). This study would get closer to a real portfolio
application. The algorithm we introduced in Section 7.3 turned out to be
time consuming. The issue of the declaration of a grid for the allocation is
potentially a problem as the dimension increases. Therefore, the special task
on this issue would be the way to minimize the time of the computations.

We saw in Chapter 6 that the asymptotic dependence information is given
by both the weights and 8. Therefore, an important topic is to study the
relation between both.

Finally, it would be interesting to relate the Common Variable construction
with some special topics found in the literature: different tail independence
structures, concomitant tail behavior, spatial extreme statistics, and the study

of negatively associated variables.
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Regular Variation

Regular variation constitutes a wide field and its applications embrace a lot
of areas. Since we are dealing with extremes, there is a natural connection
between the maximum and the tail of the distribution. Information on the
tail of a distribution implies information on the maximum and vice versa.
Regular variation is a property of some functions and its rate of decay. We
will only present the concepts that will help us to explain the extremes theory.

The works in Bingham et.al. (1987) and de Haan (1970) treat extensively this

topic.
Definition A.0.1. Regular Variation

1. A measurable function L : R — R, is said to be slow varying at oo, i.e.

L € RV, if forx > 0:



Appendix A. Regular Variation 199

2. A measurable function H : R — Ry is said to be regular varying at oo

with index 7, i.e. H € RV,, if for x > 0:

limg oo ——- = 2". (A.1)

We present some examples as relevant illustrations of tail behaviors.
Example A.0.1. Let H(t) = log(t°), for c € R. Then, for £ > 0:

— lim,., 08®) +log(z) _

H(t) log(t)

Therefore, H(z) € RVj.
Example A.0.2. Let H(t) = exp(—t°), for c € R. Then, for x > 0:

] exp(—tcxc) e o e B 0 1f r>1
lim;— 00 oxp (1) = limy_, o exp(—t°(z° — 1)) =

oo if0<z<l.

Therefore, H(x) is not a regularly varying function.

Example A.0.3. Let H(t) = t¢log(t), for c € R. Then, for x > 0:

o, 2 08(0) + og(a)) _
telog(t)

Therefore, H(x) € RV,.

Regularly varying functions have a special representation (see Resnick
(1987) and Bingham et.al. (1987)). If we define a slow varying function L(z),

then, any regularly varying function I can be written as:
H(z) = 2" L(z), (A.2)

for r € R.
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Proofs

B.1 Proof of Theorem 4.1.1

We seek to find an asymptotic expression of the joint survival (4.8). In order to
do so, we need to find an expression of the inverse of the marginal distributions,
so that we can compute the function G(s) as in (4.7). However, it is not
possible to have a close form for the inverse, so we use the asymptotic form of

the marginal in (4.6).

.
1-—( a )e" fora>1
a-—1

Fx(z)=¢ 1—-(z+1)e" fora=1 as T — 00.

1—( ! )e“"z for0<a<l.
l-a

\

We will focus our attention to the a # 1 cases, since subsequently we will

200
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be able to distinguish the o = 1 case. With this representation, we can write

down the asymptotic form of the inverse:

( —log<<a;1)(1—x)), a>1

F(z) = { as T — 0o.

—élog((a—l)(l—l‘)), O<axl

\

With this result, it is possible to compute the asymptotic form of the G func-

tion as follows :

e (22 ), an

G(s) = 4 as s — 00.

—%log ((a-1)(1 —e'l/’)) , O0O<axl
\
However, we know that

(1 —exp(—1/s)) = s7! + o(s7'), as s = 0, (B.1)

then, the G function can be expressed as:

4
—log((a 1) s'l>, a>1
83

G(s) = { as § — 00. (B.2)

—élog (a=-1)s71), O<axl

\

Since we have different representations for both the G(s) and the joint
survival function, we will write down the asymptotic form of the latter in
separated cases. In all of them we will recall (B.2) and the joint distribution

in (4.8).
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For the 0 < a < 1 case we have the following result:

6—2(_% log((l—a)s‘l)) _ 2 e—a(—ilog((l—a)s‘l))
a—2 a—2

a 2, 1,2 2 -
=a—_§(1-a)°(3 Y —m(l"a)sl

= -t - 8—2:5 (1—a)s!

P(S>sT>s) =

=2(1—a) s}, as s = o0.
(2-a)

(B.3)

Hence, we can get the expression for the tail dependence:

_2(1——a)
X=-a)

It is worth to note that in (B.3), we can distinguish the coefficient of tail
dependence 7, (recall (2.28)), which is equal to one. If we find a case where

n < 1, then, we can assure that x = 0.

In the @ > 1 and a # 2 case, we have the joint survival function:

— a —2(—log(%—;—l s'l)) _ 2 —a(-—log("—;l- a'l))
P(S>sT>5s) L Pl
2

o« a-—1 28_2 a-—1 as~a
Ta-2\ a a=-2\ o

(a—-12 _ 2 a-1
- s (5

o
) s7%, as s — oc.

We need to look at the asymptotic dominance of any of these two factors.

For the 1 < a < 2 case the joint survival reduces to:

2 a—1 a_a
P(S>sT>s) = 5= > s as s — o0.
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Which leads to a tail coefficient n > 1 and the following expression for the

tail dependence:

—1\*
X=1ims—+0022a(aa ) S-a+l=0,

The next case is when a > 2:

_1)2
P(S>sT>s) = ((%_-31))—6;3’2, as s — oo.

which leads the same x as in the previous case, i.e.

(a~1)? 5!

a-2a® =

X = lim, ;00

Finally, when a = 2 (recalling (B.2) and (4.8)):

P(S>sT>s) =—2log (a; ls—l) )

= —2log (a —

x =0.

then:

Therefore, the relation in (4.9) holds.

B.2 Proof of Theorem 4.1.2

As in the previous proof, we seek to find an asymptotic form for P(S > s, T >

s). Given the form of the marginals in (4.11), it is not possible to have a close
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form for the inverse functions, then we have to use the asymptotic form of

these functions.

Fx(l‘)

Fy(y)

S

1- b=
a—ﬁe
14+ eov
=7
l—aye™
1- -2 e
a—7

as r — oQ.

as y — oo.

a >y

Similarly to the simple exponential case, we will focus on the a # S,

cases, since later on we will be able to distinguish the @ = 8 and a = ~

results. We write the inverse functions down:

(_élog(a;ﬂ(x_l)), 0<a<p

Fi (z) = 4 as T — oo.
\—%log(a;ﬂ(l—m», a>p
(1 a—7
—alog( 7 (y—l)), O<a<y

Fy (y) = ¢ 85 y — 0.
10 (222 (1-9), a4
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Thus, we can define the G functions using (B.1).

4
_élog(ﬂ—as‘l), O<a<p

B
Gx(s) =~ ¢ as s — 00. (B.4)
—llog(a_ﬁs'l), a>f
L e
! Yy—a _,
~—log s , O<a<y
o Y
Gy(s) & as § — 00. (B.5)
_.];log (ﬂ S—l), a>fy
7 «

In order to compute the joint survival function, we need to show that

Gx(s) < Gy(s), when s = co. Recall that v < 8, then, the first case is when

a<y<pg
Gx(s) < Gy(s) :»—élog (ﬂ;as”) < —élog (7;as'l>
@ o
—l-=>1--
B gl
= [>1.

When vy < 8 < a:

1 J5] 1 1 v 1
Gx(s) < Gy(s) < —Blog (1 - E) + -ﬂ-log(s) < -3 log (1 - —a-) + ;log(s)

1

1
= 5 log(s) < - log(s)

&= B>

as § = o0, whereas, wheny < a < 8

1
Gx(s) < Gy(s) <= —a log (1 - %) + élog(s) < —%log (1 - %) + %log(s)

1 1
== log(s) < 5 log(s)
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as § — 00.
Therefore:

Gx(s) < Gy(s), as s = oo.
Hence, it is possible to express the joint survival function as follows:
P(S>s5T>s) =P(B>Gx(s)—A,C>Gy(s)—A)
= /P(B > G(s) —a,C > G(s) —a|A) fa(a)da

Gx(s)
_ / =BCx (5)-a)g~1(Gy (8)-a) g a4 g
0
Gy (s) o0
+/ e—‘Y(GY(s)—a)ae-aﬂda_’_/ ae—aada
Gx(s) Gy (s)

— qe-PCx(8)=1Cy (s) <_1__> (1 = e~le-B-nGx(2)
a—pB—v

4 ae=1Cr() (L) (e=(@=Gx(6) _ g~(@a=mGy (9)) | oGy (o)

a—
— & BGx()=1Gy(s) _ T gaGy(s)
a—B-v a—v
_ pa =1Gv (9)~(a=)Gx(s)
(a=(a—-B-7)

for a# v, a#v+8.

We divide again the study of the joint distribution in cases. Those cases
where 17 > 1 will lead to x = 0, so that we will compute x only when n = 1.

When a < v < 3, the G functions are given by:

Gx(s) = —1log (1 - %) + Llog(s), and Gy (s) =~ —11log (1 - %) + 11og(s)
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as s — 00, thus, the survival function is given by:

a—pf—y a-—y 07

Bla Ja
P(S>s,T>s) ~—% (1 — %) g—Ble (1 — %)7 s _ 1 (l—_g_) 51

ey (1= 1 -5)

~ {a=m)(a-8-7) B

~ =BT 1 Ba N\ A\
N KsTe +s (@=)(a=B=7) (1‘?) (1 ] S

as s = 00, for a constant K, but, since 8 + v > a, the expression reduces to:

T (r—a)(B+r—-0a) -

P(S>sT>s) = [1 _ fa (1 _ 2)‘Y/Or (1 B %)1—7/0:] s

as s — 00, so that 77 = 1 and the tail dependence is

o Ba (1—g>7/a (1_2)1—7/a
RN O [y I ] ’

then 0 < x < 1, as required.

The following case is when 4 < 8 < a, where the G functions are:

Gx(s) =~ —3log (1 — 2) + S log(s), and Gy (s) = —7log (1 — Z) + + log(s)

as s — 00, thus, the survival function is given by:

PS> 8T >8) ~ s (1= 87 (1= )7 = 25 (1= )P oo

— e (1= 1) s (1= £) TP st

~K s 2+ Kos 5+ K387 ),
as s = 0o, for constants Ky, Ky, and K3, but, all the exponents lead to the

7 > 1 case, thus:
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The last case to consider is when v < o < 3. As in the previous cases, we
present the G functions
Gx(s)~ —Lllog (1 - %) + 11og(s), and Gy(s) ~ —%log (1-2)+ %log(s)
as s — 00, then, the survival function is:
o o\*/® -B/a 1) — 1)/ g~a/y
P(S>S,T>3) za—_ﬂ—"/(l—ﬁ) S (l—a)s - (l—a) S

a=y

1-v/a
_ Ba - -1 - -1+7/
aag (1 3) s (1 3) s,

~ Ky s~178le f K, 57/ 4 K3 s™24/e
as s — oo, for constants K3, K5, and K3, where again, all the exponents lead

to the n > 1 case, thus:

Therefore, (4.12) holds.

B.3 Proof of Theorem 4.2.1

The asymptotic form of P(S > s, T > s) is the target as in the previous proofs.
The first step is to find expressions for the marginal inverse functions. Given

the marginals of X and Y in (4.17), we get the following expressions:
1 1
Fy(z) = [al’l ((l—x)“ﬁ—l)] , 88 T — 00,

and

Fy(y) ~ [az" ((l—y)'% —1)]@, as y — 0o,
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then
"
Gx(s) = Fg(e™*) = ag* (1= 1oy 78 — 1)" mar*s®, ass oo,
(B.6)
and
Gy(s) = a;’”s%z, as s — 00. (B.7)

Hence, the joint survival distribution is expressed as follows:

P(S>5T>s) =P(B>Gx(s)%A,C>Gy(s)% A)

1 1
4 o —a(alGx(s)W+azcy(s)W) —a o_ld
= =737 € e a a
r(6) o

1 -6
= (1 + a1 Gx(s)¥r + OtzGY(S)El’.) ’

and using (B.6) and (B.7), the following holds:
P(S>s,T>s)~2%"! ass— oo.

Hence,

x = lim,_,o0 P(S > s|T > s) = 27%.

Therefore, (4.19) holds.

B.4 Conditions of Theorem 4.2.2

We show the conditions for which (4.23) holds. We need to introduce the
following theorem, where the conditions on the density guarantee that a MLE

is consistent. See Newey and McFadden (1994).
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Theorem B.4.1. MLE Consistency Conditions

Suppose z = (21, 22,...) are i.i.d. with density f(z]|6o) and the following
hold:

1. Identification: if 8 # 6o, then f(2]60) # f(z]6), i =1,2,...

2. Compactness: 6y € ©, which is compact or the log-likelihood function

(8] 2) is concave.

3. Continuity: log f(2;|8) is continuous at each 6 € ©.

4. E(supgee |log f(zi| 0)]) < co.
Then the MLE 8 is consistent at 0o, i.e.
-2 .
Regarding our case:
Condition 1 holds if (6] D) has a unique global maximum. But we showed in
(4.23) that this is the case.
Condition 2 holds since d%; 1(0|D) < 0 for all € ©.

Condition 3 clearly holds.

For Condition 4, it suffices to show that
suplog f(X,Y]6) < o0
f6co

with:
log f(X,Y|8) =log (gf;-g X@’T“Yw%“) +10g(6) + log(6 + 1)

~(8+ 2)log (1 + alXVIT'l + ang*li'l)
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which we can write down as
log f(X,Y|0) =k + log(8) + log(8 + 1) — (6 + 2)m,
with
k = log (-g—ig—z— Xw_ll_lY@%_l) and m = log (1 + 011)("%1—1 + O2Y‘”_12-—1) .

Then

log f(X,Y]6) < k + 2log(6 + 2) — (6 + 2)m.

However, 2log(8 + 2) — (8 + 2)m has a finite maximum at §* = 2 — 2, so

log f(X,Y|0) < k+2log (%) -2,

which means Condition 4 holds.
Therefore, the four conditions of Theorem B.4 are satisfied. Hence, (4.25)

holds.

B.5 Proof of Theorem 4.2.3

We need to show the asymptotic normality of 5, as in (4.23). The following
theorem sets the conditions for asymptotic normality to hold. See Schervish

(1995).

Theorem B.5.1. Asymptotic Normality of MLEs
Suppose z1, 2y, ... are i.i.d. with density f(2;|8), where 8 € ©, the param-
eter space. Let 8 be an MLE. Assume 8 is consistent at 6 and the following

conditions hold:
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1. f(z]0) has continuous second derivative with respect to 0.
2. Differentiation can be passed under the integral sign.

3. There exists H,(z,0) such that for each 8, € ©:

d2 d2
<
Iof;loﬁ)sr —'02 log f(zl 00) hand _/62 log f(zl 0) IIr(z, 00),

with lim,_o E (H,(z,60))=0.
4. The Fisher information matriz 1(0) is finite and non-singular.

Then,

-~

V(@ —6o) -5 N (0,I71(6,)) .

Applying this theorem to our model, we know that 0 is consistent and:

Condition 1 holds, as the joint density can be expressed as follows; see (4.21):
f(x,y]0) < 8(6 + 1) K2,

where K = 1+ ala:"ﬁlT + azy*f%z and K92 is continuously differentiable with
respect to 6.

Condition 2 holds, as the support of X and Y does not depend on 6.

For Condition 3, it suffices to show that j% log f(z,y| 6) is differentiable and

has finite mean. However, by (4.24):

d? 1 1
7 log f(z,y|8) = TE T

then, it is differentiable and it has a finite mean. Thus, Condition 3 holds.
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Condition 4 holds, since:

d? 1 1
1(6)= - (ﬁ log £ (3] e)) - Gt T 7O

Hence, 8 is asymptotically normal, i.e. (4.26) holds.

B.6 Proof of Theorem 5.3.1

Part 1. Consider the expansion in (5.5), which sets that, for large 8, we have

PR l°g0("). Then, we can write down the limit of the joint survival as

follows:

-0
P(X>2,Y >y) = (1+a(e% - 1)+ aa(y™ - 1))

1 } log( 1 ) log( : )
~ a1 log(z 81 )+as log(y %2
( 1 log 2 logly )

=~ exp(—o 10g(a:1/5‘ )) exp(—a log(y'/é2))

— x—ﬂl/fly—a2/£2’
as 8 — oo.
which means that the joint density can be expressed as:

. p _%1_j10p _22_4
limg,oo fxy(z,y) = —z @ €—y @,
2

&1

Consequently,
X =1lim, o P(Y>u|X>u)=P(Y >u),

proving the independence in the tail.
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Part 2. Define Gx(s) as in (B.8), i.e.:

6¢
Gx(s) =~ (al‘1 (s%—1)+1) ', ass = 00,
and similarly for Gy(s). Then, the joint survival function has the following
expression:
PX>z,Y>y) =P(S>sT>t)
= (14 01 (Cx(5)/% — 1) + ay(Gy(s)1/% — 1)) ™°
1 1 -6

~ (1+(sa—1)+(ta—1)) ,

for large x and y.

Hence,

PS>sT>t)~s7!,

for large s. Therefore, as P(S > s) & s7!, for large s, then the complete tail

dependence is held.

B.7 Proof of Theorem 5.3.2

The asymptotic form of P(S > s,T > s) is the target as in the previous proofs.

Given the marginal model in (5.2), we get the following expressions:
1 31
Fi(z) = (a;l ((1 _2) b 1) + 1) ,

and

)= (a;l ((1 e 1) N 1)052.
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Then, the G functions are calculated as:
1 051
Gx(s) = F(e™V/*) = (al‘l (35 - 1) + 1) , @s 8§ — 00, (B.8)
and
1 02
Gy(s) =~ (a;l (35 —1) +1) , 85 § — 0O.
Hence, the joint survival distribution is expressed as follows:

P(S>s,T>s) =Pr(B>(Gx(s)/% —1)A,C > (Gy(s)/%2 - 1)A)

o0
= leaﬁ/ exp (—a(l + a1GX(5)1/051 - + azGY(s)l/f)Ez - a2)) a®da
0

=(1+ o1 Gx ()% — ay + Gy (s)V/%:2 — ag)_o

~ (a1 (al'l (s% - 1) + 1) -+ o (a;l (s«% - 1) + 1) - ag)_o
~ (25% —2)_0

~ 20571
as s — 0o.
Hence,

X = lim,_0o P(S > 5| T > s) = 27°.

Therefore, (5.10) holds.

B.8 Proof of Theorem 6.2.1

We know, from expression (6.4), that the marginals have the following form:

o -0
F)*(; (z) = (1 +a; (:c{’“ — 1)) ,
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and similarly for f;z. In this way, the G functions are expressed as:
G, (s) = (F3,)" (e7V/?)
~1/6 o
= (1 +af! ((1 ) R 1) )
231
~ (1 +a? (sl/a - 1))

as s — 0o, and

6&2
Gi,(s) ~ (1 +ayt (M - 1))

Therefore, from the joint survival distribution in (6.9), the survival of S

and T transformations (see (2.30)) is given by:

PS> 8T > ) =Fiom, (63,061,630

)
zw1<1+ (s%—l)) +wys~2

~w 27057 4wy 572,

as s — 0o.
We can see the first term is dominant for w; # 0 for large s. Therefore,

the tail dependence paramater x is given by:
X = limy_o0 P(S* > s|T* > s) = w; 27%.

Hence, (6.10) holds.

B.9 Proof of Theorem 6.2.2

We know, from the proof in Appendix B.8, the G functions are expressed as:

Gx,(s) = (1 +o5t (s? 1) )%, (B.9)
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as s = oo, for j =1,2,3.
Therefore, from (6.19), the joint survival of S* = (S, S5, S3') (see (6.17))

is given by:

Far(s,0,8) = Tx(G3,(6): G351 G5, (9))
I\ 0
~ wy s73 + (wy + w3 + wy) (1 + 235) sl w3 fs!
~ w573 4 (wy + wg + wy) 27072 + ws 3057
4

ws 395! for ws #0

(wy + w3 + w4) 27972 for ws = 0, and mazx(ws, w3, wy) # 0

Q

wys—3 for wy, =1,

\

(B.10)
as s — 0Q.

Hence,
x4 = im0 P(Sy > 5,85 > s| S > s) = ws 37°.

Thus, (6.21) holds.
For the second part of the proof, we will prove (6.22) for X{1}> since for
the rest of the cases, the result follows immediatly.
By (6.20), we know the bivariate marginal is given by:
L -6 1 -0
-F):-l,xz(xl,xg) = w, (1 + o (:cf‘1 - 1)) (1 + ag(:r;" - 1))

-0

+(1 —w.) (1+a1(z{’%‘ —1) +a2(x3%’_ - 1)) )
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where w, = w; + w3 + wy. Therefore, from (B.9):

P(S; > 5,5 >s)mw, s 2+ (1 —w,)27%7, (B.11)

as s = oo. Hence
X{1,2) = liMao0 P(S5 > 8| S > s) = (w2 + w;) 27°,

For the last part of the proof, we use (B.10) and (B.11) to get the following:

XI[SL[lB]} = lims_)oo P(S; > SI Sl* > S, S; > S)

P(S; > s,8; > 5,55 > s)
P (S} > 5,85 >s)

- (z2) ()

Therefore, it is straightforward to see that (6.22) and (6.23) hold for all the

= lim,_00

cases.

B.10 Proof of Theorem 6.3.1

We know, similarly to Proofs B.8 and B.9, the G functions for the univariate

marginal of model (6.31) which holds (6.33) and (6.34), are given by:

0¢;

Gx,(s) = (1 +aj! (s —1) ) (B.12)

as s > oo, for j =1,...,d. As well, we know this representation leads to the

following asymptotic relation:

({00 1)) e
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as 8 = 0o, for j = 1,...,d. This means that for the d—dimensional case of

the averaging, the dominant component of the probability:

P(Sl >s,...,Sd>s)

is the model without exact independence variables for large s. In this way, if

we set wy as the weight of this model, then:

-

P(S) > s,...,5; > s) zwd(1+a1( }l(s)#'—l)-i-...

vau(az e 1))

~wgd s,

as s = 00. Therefore;
Xd = limgno0 P(S2 > 8,...,8: > 3|51 >8) = wad".

For the second part of the proof, we know there exists dimensional coher-
ence for model (6.31) when holds (6.33) and (6.34).

We divide the models in the averaging model in two: those where X; and
X; are tail dependent and those where it is not the case.

Let (3, be the model in the averaging where X; and X; are tail dependent,

such that it can be written as:

1 J1 -6
wg, (1 +a; (Xf“ - 1> + a; (Xj”" - 1) +) x Ilg,,

where Il is the product of the exact independent variables of model ;.

Then, by dimensional coherence, if we marginalize with respect to the rest
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of the variables in model ;, the marginal expression of this model would be

1 L -6
wg, (1 + o (Xf‘" - 1) + q; (X;Ej - 1>) :

Hence, by (B.12) the contribution of model f; to P(S; > s,5; > s), as

given by:

s — 00, would be:
wg, 279571,
For the case where X; and X; are not tail dependent, let it be f,, it'is
clear that by dimensional coherence, the bivariate marginal component of this

model is expressed as:

1 -6 OL -0
wg, (1 + o (X,-”“ - 1)) (1 + a; (Xf’ - 1)) .

Therefore, the contribution of model 8 to P(S; > s, S, > s) would be:

-2
wg,$ 7,

as s — 00.
Hence, the dominant components, as s = oo, in P(S; > 5,5, > s) are

those where X; and X are tail dependent. This means, the following holds:
Ty
P(S1> 5,8, >s)~ ngk 27051,
k=1

as s — oo, where T;; is the number of models where X; and X; are tail
dependent.

Finally, we need to count how many models contain X; and X; as tail
dependent. The easiest way to do it is by counting per type of model as

follows:
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e For d—tuple tail dependent model: 1 case.

e For (d—1)—tuple tail dependent models, only two models have either X;

or X; as exact tail independent. Then, the number in this case is d — 1.

e For (d —2)—tuple tail dependent models we can count the different ways

we can choose the 2 exact independent models. Therefore, the number
is: (dgz).
e The last result holds for d - 3,...,2.

Therefore, the total of components where X; and X; are tail dependent is:

T,-,j=1+(d—2)+(d;2)+(d;3)+...'+<2)+<§),

ford > 3.

Hence, (6.35) holds.
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LOW TAIL DEPENDENCE. LIGHT TAILS LOW TAIL DEPENDENCE. HEAVY TAILS 5
[ x % ¥ a a 0 X ' ¥ a a i
5 0.031 125 1 1 1 -] 0.031 5 7.5 1 1 ;
8 i 0100 Bz Xasm Xorsw @ 2 O Boax Xask Xorew j
N=500 4.99 0.031 4.66 5.34 0.025 0.039 N=500 5.05 0.030 4.72 533 0.025 0.038 1
(0.152) 0.003 0.143 (0.162) (0.003) (0.004) (0.162) (0.004) (0.152) (0.234) (0.004) (0.004) }

SEMI LOW TAIL DEPENDENCE. LIGHT TAILS

!

SEMI LOW TAIL DEPENDENCE. HEAVY TAILS i

(0.085) (0.008) (0.079) (0.007) (0.007) (0.008)

MEDIUM TAIL DEPENDENCE. LIGHT TAILS

0 X 12 ¥z ) o [} X ¥ ¥: o az

3 0.125 0.75 06 1 1 3 0.125 3 4.5 1 1 E

[ t Oyrw  Oursw  Xusw Xwss [4 2 O Oosx  Xamx Xersk

N=500 2.93 0.13 273 3.15 0.113  0.150 N=500 3.02 0.12 2.84 3.24 0.106 0.140 :

(0.088) (0.008) (0.114) (0.084) (0.007) (0.011)

I
MEDIUM TAIL DEPENDENCE. HEAVY TAILS i

SEMI HIGH TAIL DEPENDENCE. LIGHT TAILS

] x % ¥ a, a; é b'e [ ] a) a;
1 05 0.25 0.2 1 1 1 0.5 1 1.5 1 1
o 2? O Ousw  Xasw  Xorss [ 3 G Besx Xuw X
N=500 1.01 0.497 0.93 1.08 0.475  0.524 N=3%00 1.02 0.493 0.94 110 0.48%5 0519
(0.043) (0.015) (0.040) (0.069) (0.023) (0.015) (0.043) (0.014) (0.040) (0.046) (0.01%) (0.014)

SEMI HIGH TAIL DEPENDENCE. HEAVY TAILS

(0.009) (0.006) (0.008) (0.010) (0.006) (0.005)

{

[ X ¥ 2 1) a; ] X ¥ ¥: a) ag i
0333 0.794 0.083 0.133 1 1 0.333 0.794 0.333 0.5 1 1

6 T B Been Xam Xousm [ 2 i Bew X X !
N=500 0.341 0.789 Q.31 0.37 0.773  0.805 N=850¢ 0.331 0.795 0.30 036 0779 0810
(0.021) (0.012) (0.020) (0.023) (0.012) (0.011) ! (0.012) (0.007) (0.011) (0.013) (0.007) (0.008)

HIGH TAIL DEPENDENCE. LIGHT TAILS HIGH TAIL DEPENDENCE. HEAVY TAILS
() X ¥ ¥2 a ag [ X % ¥ a a .
0.2 0.871 0.050 0.080 1 1 6.2 0.871 03 0.3 1 1 :
] 2-* Oiss  Busw  Xusk  Xorew ] 23 Oisn  bow Xum Xesw
N=500 0.19 0873 0.18 0.21 0.861 0.883 |  N=500 0.195 0.873 0.18 0.21 0.863 0.882 )

(0.009) (0.005) (0.010) (0.010) (0.006) (o.ooe)'

Table C.1: MLE in Bivariate Model 1:

of replications is given in brackets).

estimating 6, n=500 (standard error
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LOW DEPENDENCE AND LIGHT TAILS LOW DEPENDENCE AND HEAVY TAILS i
Ll a oy £ & i L4 o oy & & !
S — [T e
s 1 1ot o.ug‘_J | x 0.031 s 1 1 18 I ox oo ;
N=70 & a ¢ 2 B Xww N=T0 8 a ¢ - L X !
671 351 0.3 63.10% 088 0.543 X 164 208 193 48.10% 115 0.450 :
(121) 2.68 037 (0.128) (0.88) (0.380) Y  (263) 3.34 413 (0.013) (1.02) (0.373)
N=500 @ a ¢ 2 [ Xoax N=s00 & a ¢ [ ax X "
X 154 357 034 34 10% 4 0.062 X 174 183 188 58.10 & 341 0004 ;
Y  (22.3) 382 084 (0.048) (3.02) (D.0N4) Y  (3%8) 1.63 241 (0.038) (1.30) (0.034) i
SEMI LOW DEPENDENCE AND LIGHT TAILS SEMI LOW DEPENDENCE AND HEAVY TAILS 1
] a . & & L a e & & )
3 1 1 01 0.18 I x 0.138 s 1 1 138 [ x oms
N=710 . a ; 2 O X% - N-70 ® a ¢ 2 [ 23 Xown :
X 490 240 035 13.10' 110 0468 X 338 147 145 0008 137 o.3as ;
Y  (102) 119 018 (0.135) (0.66) (0.264) Y (@17 L11 157 (0.133)  (0.66) (0.130) i
N-=500 @ a ¢ 2 Oom Xax N=so0 @ a € 2 [ X \
$25 168 0.17 0026 267 0.157 x 3328 104 108 0003 31 0an :
(8.49) 1.46 031 (0.043) (L.31) (0.067) Y  (0.38) 000 143 (0.030) (0.33) (0.031)
MEDIUM DEPENDENCE AND LIGHT TAILS MEDIUM DEPENDENCE AND HEAVY TAILS __~___}
o a; a & & ] L a e & & e
1 3 1 01 0.1s ' x 0.5 o 1 1 1 t E { x os R
N=T0 ® a I3 2 O Burux Xiew  Xvren N=70 . a & t d LT St Xim X |
X 081 118 0.16 0.5M 054 153 0.346  0.680 X 108 0.0 00 047 081 190 0267 03
Y (0.285) 0.86 0.18 (0.085) (0.13) (0.52) (0.108) (0.058) Y (0.18) 0.03 1.4 (0.059) (0.0m) (0.13) (0.072) (no:vy‘
N=500 @ a ¢ 2’ G Brex Xem Xersx N=s» 8 a & 2 G Ban X Xwe
x 097 103 010 0510 070 119 0438 0.76 X 099 1.00 008  0.503 om 1.3 64 0N
Y (0.12) 1.06 0.18 (0.043) {(0.00) (0.18) (0.0AD) (0.03T) Y {0.00) 1.02 1.48 (0.0332) {(0.07) (0.12) (0.038) (0.02e)
SEMI HIGH DEPENDENCE AND LIGHT TAILS SEMI HIGH DEPENDENCE AND HEAVY TAILA ﬂ__j
° a a & & o L a @ & & e
/s 1 1 03 n.{u.‘J 1 x 0.704 | s 1 1 1 15 X e
N-TO [} « € 2° Giem  Oyram payre Xerew N-.TO L] a € 3’ & i Xim Arwm !
3 031 130 011 0807 031 048 0730 0.862 X 033 118 1.01 0793 033 e® oma  oms .
Y  (0.08) 120 016 (0.036) (0.04) (0.10) (0.081) (0.034) Y  (007) 1.07 151 (C.0S)  (0.04) (0.11) (0.088) (0.035)
N-500 @ a ¢ 2’ O Brex Yo Xetew N-500 @ a ¢ t LYCR P P T
x 0.34 1.02 a.10 0.790 0.20 0.30 0.762 0.818 X 032 0.9 102 0.801 0.20 0.38 e o.RIn :
Y (0.03) 1.00 045 (0.018) (0.03) (0.04) (0.022) (0.018) Y  (0.0S) 086 1.52 (0.01%) (0.08) (0.03) {(0.015) (0.03%
HIGH DEPENDENCE AND LIGHT TAILS HIGH DEPENDENCE AND HEAVY I(u'l{_____“_““j
. e & & J e R 6 | :
e
0.2 1 [ ] 0.8 x 0.871 03 1 [ | 18 J Lx __em -
N=70 [} a [ 3 Gx Bruw Xam  Xurew N=70 [} a ¢ 2’ L TR B un xem
X 020 1.08 010 0.871 014 038 0833 0.007 X 020 111 1.00  O.me8 014 020  0MT 0003 I
Y  (0.04) 1.35 015 (0.023) (0.02) (0.05) {(0.081) (0.015) Y  (0.05) L1T L48 (0.03%) (0.03) (0.07) (0.080) (0.01%)
N=500 o a £ 2° 6w Bnw Xamm Xoron N:-30C @ a € 3’ LYY S Xawm | 5
x 031 050 010 0866 0.8 0324 O848 0.88) X 020 1.0¢ 1.00 0.%08 Ota 033 oms3  oeng .
Y  (0.03) 000 015 (0.008) (0.01) (0.03) (0.010) (0.008) Y  (001) 1.02 150  (0.008) (0.01) {0.01) (0.0U8) {0.004).

Table C.2: MLE estimates in Bivariate Model 2. Standard errors are given
in brackets. Average computing time: 10.9 and 2.9 seconds for N = 500 and

N =70, respectively.
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LOW DEPENDENCE AND LIGHT TAILS

LOW DEPENDENCE AND HEAVY TAILS

0 o o § 2 i J oq o § & E
51 1 01 0.15}i b1 111 y s |
N=100 8 o € 2" By ym N=100 & o €& 20 8y ym
X 52 1801 0175 00% 374 007 X 485 10% 106 0035 380 007
Y (092) 1038 1544 (0.035) (138) (0.050)

| Y (19 1250 0186 (00%) (1) (006)

Table C.3: MLE in Bivariate Model 2 in low tail dependence with large sample

size.

M,. HEAVY TAILS

M,. LIGHT TAILS

a o o & [ & a o ay & & &
0.5 0.5 0.5 2 3 2.5 0.5 0.5 0.5 0.1 0.2 0.15
N wy w3 wa w4 wsg N w) wa wy Wy wg
70 (0.995 0.002 0.001 0.002 0.001 70 | 0.982 0.002 0.006 0.010 0
150 | 0.999 0 0 0 0.001 150 | 0.968 0.014 0.007 0.007 0.003

Table C.4: Trivariate independent simulations and Reversible Jump estima-

tions.
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LOW DEPENDENCE AND LIGHT TAILS

LOW DEPENDENCE AND HEAVY TAILS 2

boe a & & & _ 0 Y A o )
13 1 1 01 oas |-" 0.091 5 1 ] 1 1.5 ! x 0.031 o 4\
N=T0 I} a i 2* [ Xues N=70 I3 o € 2 L Xww K
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1 1 01 oas J (—x 0.135 s 1 ] 1 :
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MEDIUM DEPENDENCE AND LIGHT TAILS MEDIUM DEPENDENCE AND HEAVY TA(LS :
l L4 ) a; & & [ e a a & & .
1 1 1 o1 0as [‘ x X3 1 1 1 1 15 x (X}
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SEMLETJZE,FFBEN,SEAND LIGHT TANLS SEMI HIGH DES:ENBE!!SELA‘F{BHFA_‘V_Y_ '»I“A'II,H__"—_“J
L} a; a & & { L] ay a & & } . .
L_wa 1 1 01 o0as ! r x u.nu_“ s 1 1 1 l,lmj [ x _oms .
N-70 '] a ' a2 Opm  Orem Xasm  Xerew N-70 ® a € 2’ O B Xk Xstw
X 033 131 011 O8N 022 D48 0717 0.860 X 037 102 096 0774 023 OS8T O&TS Ok
Y {0.07) 133 048 (0L.O3T) (D.04) (O.11) {OM66) (0.024) Y (B07) 084 1.4 (HO3M) (0.04) (013} (BUAT) (GU38) :
N-800 @ a € 2 Biom  Ouiew  Xasx X N=-BOO @ a & E O Boiw Xusim Xerem
x 0.34 1.02 010 0700 0320 040 O.TSF 0816 X 032 097 1.0 0797 03" 038 DY OmIY
Y (0.03) 1,00 018 (0.1 (0.03) (0.04) (0.022) (0.018) A 4 (0.03) 0.04 150 (0.019) (0.03) (0L4) (a2} (V.018)
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6 & o & & 6 o @ & & |
0.2 1 1 01 o0as x 0.871 0.2 1 t 1 18 | [4_; o.sT) 3
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Table C.5: Bayesian estimations for Model 2 simulations. Standard errors

are

given in brackets. Average computing time: 76.8 and 21.5 seconds for N = 500

and N = 70, respectively.
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HIGH TAIL DEPENDENCE. LIGHT GFD's HIGH TAIL DEPENDENCE. HEAVY GPDY J
Cipton ¢ x Mes b e k@ [Clyton ¢ x iMm. N Y W :
| P 4 _oM] (Pom 0 1 e [Powe_ 4 om] | Pem 13 M4
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Y (0.058) 0.97 030 (0.031) (0.052) (0.067) (0.034) (0.032) z Y (0.0_52; 0 1.3 (0.077) (Q-BQZL gl_lﬂ'll (llm)(lsl!m A
Chyton & x Marg. Ky o ' n | Clayton ¢ x IM“ Puus L ) 'Y Y
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TAIL INDEPENDENCE. LIGHT GPD's l TAIL INDEPENDENCE. HEAVY GPDs :
Gawsian  p X Marg. k o ks o Gaumian  p X i : Mug Params Iy - ks ” :
| Paaw 05 0 {Paams 01 1o 1 Ll'—’annl s o LP-:&- [l 1 W ‘
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Table C.6: Bayesian estimations for data simulations. Standard errors

given in brackets. Average computing time: 11.9 seconds per replication.

are
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M; (TD). HEAVY TAILS

M; (TD). LIGHT TAILS

N o o o & & & N oo o a & & &
70 05 05 0.5 2 3 2.5 70 05 05 05 01 02 0.15
8 3°% w wa w3 Wg Wg 8 3¢ w Wi Wy Wg wg
0.1 0.90 0.00 0.00 0.00 0.00 1.00 0.1 0.0 0.00 0.00 0.00 0.00 1.00
0.5 0.58 0.00 0.00 0.00 0.00 1.00 0.5 0.58 0.00 0.00 0.00 0.00 1.00
1 0.33 0.00 0.00 0.01 0.00 0.99 1 033 0.02 0.00 0.00 0.00 0.97
2 0.11 0.00 0.00 0.00 0.00 0.99 2 0.11 0.01 0.00 0.00 0.00 0.99
3 0.04 0.00 0.00 0.05 0.00 0.95 3 0.04 0.03 0.13 0.26 0.01 0.57
3.5 0.02 0.00 0.00 0.03 0.00 0.97 3.5 0.02 0.05 0.22 0.01 0.04 0.68
4 0.01 0.23 0.08 0.08 0.28 0.33 4 0.01 0.01 0.01 0.01 0.04 0.93
4.5 0.01 0.00 0.33 0.04 0.00 0.63 4.5 0.01 0.15 0.01 0.38 0.25 0.21
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0.1 090 0.00 0.00 0.00 0.00 1.00 0.1 090 0.00 0.00 0.00 0.00 1.00
0.5 058 0.00 0.00 0.00 0.00 1.00 0.5 0.58 0.00 0.00 0.00 0.00 1.00
1 0.33 0.00 0.00 0.00 0.00 1.00 1 0.33 0.04 0.00 0.00 0.00 0.96
2 0.11 0.00 0.00 0.00 0.00 1.00 2 0.11 0.00 0.00 0.00 0.00 1.00
3 0.04 0.00 0.01 0.00 0.00 0.99 3 0.04 0.04 0.00 0.00 0.00 0.96
4 0.01 0.01 0.04 0.0¢ 0.00 0.93 3.5 0.02 0.01 0.00 0.00 0.00 0.99
4.5 0.01 0.00 0.00 0.45 0.02 0.53 4 0.01 0.08 0.13 0.01 0.13 0.63
5 0.00 0.00 0.00 0.00 0.00 1.00 4.5 0.01 0.02 0.00 0.18 0.00 0.80
5 0.00 0.16 0.00 0.29 0.07 0.48

Table C.7: Trivariate M5 simulations and R. J. estimations: small and medium

size.
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M; (TD). HEAVY TAILS M; (TD). LIGHT TAILS
N a o o & & & N o o o & & &
300 05 05 0.5 2 3 2.5 300 05 05 05 01 02 0.15
8 3% w wy ws wg W 0 3% w; w; w3 wg ws
4.5 0.01 0.01 0.05 0.00 0.00 0.95 4.5 0.01 0.01 0.00 0.60 0.00 0.98
5 0.00 0.00 0.00 0.00 0.00 1.00 5 0.00 0.03 0.00 0.00 0.03 0.93
6 0.00 001 0.05 0.00 0.01 0.94 6 0.00 0.08 0.00 0.02 0.00 0.90
6.5 0.00 0.00 0.00 0.00 0.00 1.00 6.5 0.00 0.02 0.00 0.00 0.00 0.98
7 0.00 0.00 0.00 0.00 0.92 0.08 7 0.00 065 0.01 0.00 0.32 0.01
7.5 0.00 0.06 0.00 0.00 0.94 0.01 7.5 0.00 0.79 0.14 0.01 0.02 0.04
8 0.00 0.00 0.19 0.00 0.00 0.80 8 0.00 0.02 0.00 0.00 0.00 0.98
9 0.00 0.00 0.00 0.02 0.00 0.98 9 0.00 072 0.03 0.03 0.02 0.20

Table C.8: Trivariate Af5 simulations and R. J. estimations: large size.

M; (DD, ;). HEAVY TAILS M,; (DD, 3). LIGHT TAILS

N a oo a & &£ & N oo a o & & &
300 0.5 0.5 0.5 2 3 2.5 300 0.5 0.5 0.5 0.1 0.2 0.15
L) 27wy wa  ws  wg  wg f 2% w; w3 Ws We wy
4 0.06 0.00 1.00 0.00 0.00 0.00 4 0.08 0.14 0.86 0.00 0.00 0.00
4.5 0.04 0.00 1.00 0.00 0.00 0.00 4.5 0.04 0.06 0.94 0.00 0.00 0.00
5 0.03 0.18 0.80 0.01 0.00 0.01 5 0.03 0.25 0.73 0.00 0.00 0.00
6 0.02 0.80 0.20 0.00 0.00 0.00 6 002 0.65 033 0.00 0.00 0.01
7 0.01 099 0.01 0.00 0.00 0.00 7 0.01 1.00 0.00 0.00 0.00 0.00

Table C.9: Trivariate M, simulations and R. J. estimations: large size.



Appendix C.

Tables

230

Mj; (DD, 3). HEAVY TAILS Mj3; (DDy,3). LIGHT TAILS
N o a, ay & & & N a .2 oy & £, &
7 05 05 05 2 3 2.5 70 05 05 05 0.1 0.2 0.5
@ 2° w; wa w3 Wg Wwg 0 2% w; wa 9wy W wg
0.1 0.93 0.00 1.00 0.00 0.00 0.00 0.1 0.93 0.00 1.00 0.00 0.00 0.00
0.5 0.71 0.00 1.00 0.00 0.00 0.00 0.5 0.71 0.01 0.97 0.00 0.00 0.02
1 0.50 0.00 0.99 0.00 0.00 0.01 1 0.50 0.07 0.93 0.00 0.00 0.00
2 0.25 0.28 0.71 0.00 0.00 0.00 2 0.25 0.03 0.97 0.00 0.00 0.00
3 0.13 0.51 0.14 0.09 0.03 0.24 3 013 0.23 0.73 0.01 0.00 0.03
3.5 0.09 0.12 0.87 0.00 0.00 0.00 3.5 0.09 0.46 0.51 0.02 0.00 0.01
4 0.06 0.00 0.96 0.00 0.00 0.03 4 0.06 0.86 0.06 0.01 0.05 0.01
5 0.03 025 0.73 0.00 0.00 0.00 5 0.03 0.60 0.30 0.09 0.00 0.00
M, (DDy3). HEAVY TAILS M; (DD, 3). LIGHT TAILS

N o ay ay & & & N oy a; [e£] & & &
150 0.5 0.5 0.5 2 3 2.5 150 05 05 05 0.1 02 0.15
] 2°¢ w, Wz Wy  We W 8 2= wy w3 Ws  We W
2 025 0.00 1.00 0.00 0.00 0.00 2 0.25 0.00 0.99 0.00 0.00 0.00
3 0.13 0.00 1.00 0.00 0.00 0.00 3 0.13 0.01 0.98 0.00 0.00 0.01
3.5 0.09 0.01 0.99 0.00 0.00 0.00 3.5 0.09 0.06 0.94 0.00 0.00 0.00
4 0.06 0.92 0.08 0.00 0.00 0.00 4 0.06 0.73 0.27 0.00 0.00 0.00
5 0.03 020 0.79 0.00 0.00 0.00 5 0.03 0.23 0.53 0.18 0.00 0.05
6 0.02 0968 0.01 0.00 0.03 0.00 6 0.02 094 0.04 0.00 0.01 0.00

Table C.10: Trivariate Af, simulations and R. J. estimations: small and

medium size.
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FRANCE-UK LEFT TAIL —FRANCE-UK RIGHT TAIL

N=T0 # a § 27 & Oosx Xomx Xuss XPoonotal XLediord Tawn \l\ 7 ¢ a ¢ 2% &x % um Xam xPoonetal ¥ Ledord Tawa
FRAN 073 059 001 060 054 100 05 068 0.57 056 1 FRAN 0F1 101 001 057 038 115 045 067 0.5 L16
UK 1.2 001 UK 072 001

FRANCE-GERMANY LEFT TAIL FRANCE-GERMANY RIGHT TAIL

N-75 & a § 2° &n fcw xm Xem X Logitic X Ledford Twn :N—m # o £ 7' & Mo xm Xem X AymMix X Lediord Tuwa
FRAN 0.77 103 00F 058 037 118 047 067 057 O.RR EPHAN 079 095 001 038 038 108 04T 067 0.38 uyr
GER Lo G0l GER 0.8 061

GERMANY-UK LEFT TAIL GERMANY-UK RIGHT TAIL I

N=?5 8 a € 2° @m by xus Xoom XPoonetul YledirdTown| IN-88 0 o € 2° h b xasx Xusy X Poosetal X Lediord Tewn |

GER 084 05 001 052 097 LM 039 081 148 099 GER 110 039 001 047 0K2 1353 035 057 049 0.8
K 08 001 K 078 001
UK-US LEFT TALL UK-US RIGHT TAIL

N=6T ¢ a € 3° & bos Xxix Xox xPonctal TledordTomi N-70 & o ¢ 237 #g & Jan Xnsy XPoonetal Xledird Thwa

UK 220 108 001 020 1681 377 007 033 0.3% 013 UK 254 001 001 017 170 425 005 031 0 0.38
us 13 001 us 142 001

GERMANY.US LEFT TAIL GERMANY-US RIGHT TAIL
N-T2 0 & § 7% by bery xum o xPoonetal TlelbedToom, N80 & a € 20 Ky oxm xPocu et al. § Lediord Town -
GER 254 081 001 017 LTT 439 008 029 (1] ¥ 14 GER 340 138 0.00 007 24% 019 0 (V1)
s L7 061 s 118 001

FRANCE-US LEFT TAIL FRANCE-US RIGHT TAIL jl

N=67 0 a € 3° by Oom xuss Xun XPoonotal YledbrdTown| IN-68 0 @ € 2% ks b Xoss Xnss xPoosetal X Ledford Dorn

FRAN 243 L0§ 001 0.9 175 386 0.08 030 0.36 048 FRAN 242 161 001 019 137 3% 008 04 o us7
us 1% 601 us 1.27 001
JAPAN-US LEFT TAIL JAPAN-US RIGHT TALL
N-71 8 o ¢ 2' 8y xm xPoonetal, YledordTown| IN-70 0 a § 27 & xm xPoou et al. X Ledhrd Tawa .
JAP 229 124 001 020 163 371 008 042 0 033 ‘{ JAP 401 116 0.01 0.06 264 .16 [ 0.5] 3
Us 11 00l us 148 001 i
JAPAN-UK LEFT TAIL JAPAN-UK RIGHT TAIL
N=T0 & a § 32° 6 xe xPoonetal. YledbrdTawn, IN-68 & a ¢ 2° &y X xPoonetal X Ledfrd Tewn
JAP 383 125 001 00T 262 016 [} 037 JAP 30 120 001 012 202 025 ¢ (V-1
UK 130 001 UK L17 001
FRANCE-JAPAN LEFT TALL FRANCE-JAPAN RIGHT TALL
N-70 0 a € 2 0 xor xPoonetal YledbrdTwwn! [N-68 0 a ¢ 2° & xen x Poon ot al. X Ledtord Tewn |
FRAN 344 127 001 o® 237 018 L] 049 FRAN 365 200 0.2 008 345 018 1] s
JAP 052 0m JAP 0X8 0.01 i
GERMANY-JAPAN LEFT TAIL GERMANY-JAPAN RIGHT TAIL |
N-T 0 o § 2 s xe XPoonetal YledirdTewn' |N=66 & o ¢ 27 6n xex x Poon et al. ¥ Lediord Town |
GER 415 058 001 008 200 0.6 0 oM GER 400 181 0.02 VU6 264 0.6 [] .
JAP 120 001 JAP 131 oy

Table C.11: Bayesian estimations for pair Indices and 95% Credibility Intervals

for 8, and other extreme estimations (average computing time: 21.8s).
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FRANCE-GERMANY-UK. Negative FRANCE-GERMANY-UK. Positive
N NeRyy, My M, My M, M, v SELECTION N NeéRuyr Ms My Ms My M; SELECTION |
(14 18 0.954 o 0 0 0046 TRIPLE DEP 3 jR} 0.943 0 1] 0 0.057 TRIPLE DEP '
GERMANY-JAPAN-US. Negative GERMANY-JAPAN-US. Positive i
N NeRyy My M M, ;, M,  SELECTION N NeéRyy Mg Mg My M; M, SELECTION [
6] 1 0.942 0.007 0 0 0051 TRIPLE DEP (33 13 0.820 0.006 0.006 0.003 0.1668 TRIPLE DEP ]
JAPAN-UK-US. Negative JAPAN.UK-US. Positive :
N NeRuyy Mi M, My M, M, SELECTION N NeRy My M( My M; M, SELECTION
61 1 0432 0001 0 0 0067  TRIPLE DEP 60 1 0.930 0027 0 0.001 0.042 TRIPLE DEP;
FRANCE-JAPAN-US. Negntive FRANCE-JAPAN-US. Pasitive :

N NeRyy My My My M, M, SELECTION N NeRyy My My My M, M, SELECTION ‘,
62 1 0.001 0 [} [} 0.999 INDEPENDENCE 58 2 0.837 1] 0.069 [ 0.093 TRIPLE DEP ,
FRANCE-GERMANY-JAP. Negative FRANCE-GERMANY-JAP. Pasitive |

N NeRyy My My My M, M, SELECTION N NeRyy, Ms My My M; M, SELECTION |
69 3 0,002 0 0 0.968 0.029 JAP INDEP 63 1 001 0 0 0.960 0.040 JAP INDEP ‘
FRANCE-GERMANY-US. Nogative FRANCE-GERMANY-US. Positive s

N NeRyy M My, My, M, M, SELECTION N NeRy, Ms Mg My M; M, SELECTION
61 5 0.002 1] 0 0.924 0074 US INDEP 65 4 0.004 [1] [1] 0.932 0.064 US INDEP {
FRANCE-JAPAN-UK. Negative FRANCE-JAPAN-UK. Pasitive ;

I[N NeRyy Mi My My M, M, SELECTION N NeRyy Ms My M; M; M, SELECTION ‘
62 1 0.002 0 0.958 0 0.040 JAP INDEP 65 2 0.001 0 0.968 0 0.031 JAP INDEP é
FRANCE-UK-US. Negative FRANCE-UK-US. Positive :

N NeRyy Mg My My M M: SELECTION N NeRyy M My My My M, SELECTION |
5 0013 0 0 0.904 0.083 US INDEP 62 8 0011 0 0 0809 0080 USINDEP x
GERMANY-JAPAN-UK. Nogative GERMANY-JAPAN-UK. Pasitive ]i

N NeRy, My M, M, M, M SELECTION N NeRy My M, M, M, M, SELECTION |
62 1 0.001 n 0.934 0 0.0638 JAP INDEP 67 1 0.0011 )] 0.942 1} 0057 JAP INDEP ‘!
GERMANY-UK-US. Nogative GERMANY-UK-US. Positive g'

N NeéRuy Ms M, My M, M, SELECTION N NeRyy, My Mg My M, M; SELECTION \
62 5 0.005 0 0001 0MET 0037 US INDEP 3 ] 0018 0 0 0858 0023 USINDEP ‘

Table C.12:

ing time: 22.2s).

Bayesian Model Selection for trivariate Indices (average comput-
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_F RA[NV(EVE-(}I-EI?’MQNI—}]I{.-Eqntiw FRANCE-GERMANY-UK. Positive
B Paramotor Esthmation. Ms Paramoter Eatl
L4 - ¢ X3 @ax Borem  Xaraswmy  Xa973%0) L4 o 4 Xs Oisx Gmsx Xaosw X3eron
FRAN 088 054 001 0.3% 0.67 119 0.27 0.48 FRAN 000 078 0.01 037 047 1.2% 0.26 0.48
GER 0.57 o0 GER 071 0.01
UK 1.44 o0 UK 088 0.01
GERMANY-JAPAN-US, Negative GERMANY-JAPAN-US. Paositive
i Farmamto Essimtion. M ramen Bettmtion. Mo
L4 a 1 X3 Oux Xxaoeem) L4 a 3 X3 Gux  Xsexy
GER 238 08N 001 007 £76 0.14 GER 333 149 002 0.03 228 0.08
JAP 1.26 0.01 JAP 0.76 0.01
us 1.18 001 us 221 0.02
JAP-UK-US. Negative JAP-UK-US. Positive
. Parametor Estimation. My
[ e S—
L4 a € X3 O Xaoew) o « [ X3 Ow  xXsemy
JAP 280 123 001 00T L.TO 0.15 JAP 254 1.51 002 0.6 1.8 0.13
UK 1.14 0.0 UK 1.20 o0y
us 118 001 124 001
FRANCE-JAPAN-US. Pusitive
i netor Fat )
@ a € X2 Ox  xamm
FRAN 246 1.58 002 0.07 1.77 0.14
JAP .17 001
| us 1.3 0.01

Table C.13: Bayesian Trivariate estimates of triple tail dependence models.
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OPTIMALLY ALLOCATED PORTFOLIO

FRANCE
()1
FRANCE
0.49
FRANCE
0
FRANCE
0.40
iGERMANY
0.34
GERMANY
0
IGERMANY
0.34
1A AN
0.43
JAPAN
0.40
UK
0.52

GERMANY
0.09
JAPAN
051
1K
1
Us
0.00
JAPAN
0.00
UK
1
Us
0.00
LTK
0.57
LIS
0.00
Us
0.48

Table CM I Optimum allocations of different pairs of Global Indices.

PREDICTIVE MEAN DAILY EXCESS LOSS 10% TAIL

FRANCE GERMANY
3.81% 3.87%
FRANCE UK
3.27% 3.06%
GERMANY UK
3.08% 3.23%

mi

2.66%

mi

2.21%

ml

2.35%

Table C.15: Predictive mean daily excess loss over 90% loss threshold of orig-

inal pairs of Global Indices.
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Figure D.l: Bivariate regions: /?0i, Rjqg, and R\\.
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Figure D.2: x in the simple exponential case.

L-SHAPED MARGINAL @, =0.1, 9, =15.8=4

UNIMODAL MARGINAL o) =0.],y, =0.3. 8= 4

Figure D.3: Examples of Model 1 Marginals.
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L-SHAPED MARGINAL a, =0.5,&, = 0.25, 8=4 L-SHAPED MARGINAL @, = 15,8, = 1.5, 8=0.5
0.5
1.4
0.4 -
. 1.0
0.8
0.2
0.64
0.1 - 0.41
\,_ e 0.24
) b 2's 3 1's 3 28 3
X X
UNIMODAL MARGINAL a, =0.1.8, =0.1, 6=4 UNIMODAL MARGINAL a, =0.25,&, =0.3, 9=0.1
0.7
0.104
0.0%4 0.6+
0.0
0.5+
0,074
0.0¢ 0.41
0.0 o]
0.041
0.034 0.24
0.02- 0.14
0.0 .
18 E] g 3 1 2 23 3
x x

Figure D.4: Examples of Model 2 Marginals.
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Figure D.5: MCMC sample means for 6.

g[...
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NON-CENSORED TRANSFORMED DATA (EXACT INDEP-HEAVY) PREDICTIVE SAMPLE IN LOG-LOG SCALE (EXACT INDEP-HEAVY)

?
: 8 1ofi(log())

ogllog(x1)
PREDICTIVE SAMPLE IN LOG-LOG SCALE (TAIL INDEP-HEAVY)

NON-CENSORED TRANSFORMED DATA (TAIL INDEP-HEAVY)

»99(1ofI(Y>

k>g(lofi(X)

NON-CENSORED TRANSFORMED DATA (*»0.125-LIGHT) PREDICTIVE SAMPLE IN LOG-LOG SCALE fc-0125-LIGHT)

7 4 -5 -4 -3 .2
t°g(lofi(X))

og(loo(X1)
PREDICTIVE SAMPLE IN LOG-LOG SCALE fo-0 794). LIGHT

DATA IN LOG-LOG SCALE (x»0.794). LIGHT

Figure D.6: Bayesian predictions for data simulations. Predictions vs data in

log-log scale.
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Figure D.7:

Bayesian predictions for x(u) vs empirical x(u).
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sampling of w for M Heavy tails, N=150 sampling of w for M , Light tails, N=70

02;

on

Figure D.8: Sampling processes of different weights for simulations of the

trivariate model.

Figure D.Q: Simulated data and predictive sampling for trivariate simulations:

medium triple tail dependence.
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X(u) for Data X(and X; Medium Tripla Dap Heavy Y(u) Tor Data X(and Xy Medium Tripla Dep.-Heavy X (u) (or Data X Medium Tnpla Dep -Heavy

X(u)for Sample X* and X* Modium Iripla Dap -Heavy () for Sample X*and X* Medium Tnple Dep.-Heavy X (U for Sample Xs Medum Tnple Dep -Heawy

Figure D.10: Simulated and predictive \(i/) and \3(u) for trivariate simula-

tions: triple medium tail dependence.

X,-X Datain log «cale High Triple Dep-Hoavy X)-XJ Data inlog acale. High Triple Dep-Heavy

Figure D.ll: Simulated data and predictive sampling for trivariate simulations:

triple high tail dependence
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Figure D.12: Simulated and predictive x(u) and xs(u) for trivariate simula-

tions: triple high tail dependence.
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X X Usla Tlog acale Independent-Light X -X Datain log Beala Independent-Light
f n
log*,
Xj X~ sampling in log acate Indopondenl-Light Xj-Xj Sampling in log scale. Independent-Light
(Ju) for Sarple x" * Medium Double Dep Light X(u) lor Sample X® and X*. Medium Double Dep-Lighl

Figure D.13: Simulated data and predictive sampling related graphics for

trivariate simulations: exact independence
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Figure D.l I: Simulated data and predictive sampling related graphics for

trivariate simulations: medium double tail dependence (A'3 exact indepen-

dent).
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FRANCE (CAC)

DAYS

Figure D.15: France CAC 40.

FRANCE CAC 40 UNFW. TERED

. PRANGE CAC 4 FLTERED (NLBIDUALY)

e !

Figure D.16: France CAC 40 filtered and unfiltered series.
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Figure D.17: Threshold selection methods. On the left side, the Mean Excess.

On the right side, estimations of k and its 95% confidence intervals.
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Figure D.18: Scatterplot of excesses over the 0.95 quantile of the filtered pairs:

a) France-UK, b) France-Germany, and c) UK-US.
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Figure D.19: x(u) of filtered pairs: a) France-UK, b) France-Germany, and c)

UK-US.
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Figure D.20: Portfolio analysis tail region RL.
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Figure D.21: Portfolio optimum allocations plots for different Global Indices.

Computing time: 184.5 minutes per pair.
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Figure D.22: Portfolio Loss histograms. Left hand: historical, right hand:

predictive.
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