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ABSTRACT 

Occupancy, defined as the proportion of sites occupied by a species, is a state variable 

of interest in ecology and conservation. When modelling species occupancy it is cru­

cial to account for the detection process, as most species can remain undetected at sites 

where present. This is usually achieved by carrying out separate repeat visits to each 

sampling site but other methods are sometimes used, such as surveying spatial sub­

units within each sampling site, or even collecting detection data continuously along a 

transect, during a single visit. This thesis deals with two aspects of occupancy model­

ling: (i) we explore issues related to the design of occupancy studies, including the 

trade-off in survey effort allocation between sites and repeat visits, sample size deter­

mination and the impact of sampling with replacement in studies based on spatial rep­

lication; and (ii) we develop and evaluate new models to estimate occupancy from 

species detection data collected along transects, motivated by the analysis of a data set 

from a Sumatran tiger Panthera tigris sumatrae survey which followed this type of 

sampling protocol. The models we propose, which describe the detection process as a 

continuous point process, can account for clustering and/or abundance-induced het­

erogeneity in the detection process and represent a step forward with respect to current 

modelling approaches which involve data discretisation and two-stage ad hoc proce­

dures. 
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1 INTRODUCTION 

1.1 The study a/wildlife populations 

Drawing inferences about the state of wildlife populations is of central interest for eco­

logical studies as it allows the evaluation of scientific hypotheses concerning the be­

haviour of the system. Furthennore, in the conduct of wildlife management and biodi­

versity conservation, learning about the state of the population allows the assessment 

of whether management objectives are met and state-dependent decisions to be made. 

Wildlife monitoring provides a feedback link between implementation and manage­

ment, a crucial element for the decision-making process (Possingham et al. 2001), 

which is particularly useful when framed within an adaptive management strategy 

(Salafsky, Margoluis & Redford 2001; McCarthy & Possingham 2007). 

Unfortunately, at present biodiversity is being lost worldwide at a rate several orders 

of magnitude higher than the typical background extinction rate (Barnosky et al. 

2011), comparable only to rates during mass extinction events. The loss and degrada­

tion of habitats, the overexploitation of natural resources, and the introduction of alien 

and invasive species are all factors that have driven many species to the brink of ex-
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tinction, a situation which is only expected to worsen under the predicted effects of 

climate change (Millennium Ecosystem Assessment 2005). With an ever-growing 

need to protect, restore and/or manage wildlife species, communities and ecosystems, 

interest in the development and evaluation of informative and efficient wildlife moni­

toring tools is paramount. 

1.1.1 Abundance and occupancy as state variables in wildlife studies 

There are different state variables that can be used in the study of wildlife populations 

and the choice on which one to use is very much dependent on the objectives of the 

study (Yoccoz, Nichols & Boulinier 2001). The selected state variable should provide 

a useful characterization of the system and allow discrimination among relevant com­

peting hypotheses, therefore yielding useful information to be fed back to manage­

ment. 

For a single species, abundance or population size is a commonly used state variable 

(Borchers, Buckland & Zucchini 2003). Methods for estimating abundance include 

well-developed techniques such as closed-population mark-recapture (Otis et al. 1978) 

and distance sampling (Buckland et al. 2001; Buckland et al. 2008). However, while 

the information on abundance provides a powerful characterization of the population, 

collecting data for its estimation in general requires substantial effort and can therefore 

become too time-consuming and costly when the scale of the study is large. 

Occupancy, defined as the proportion of sites occupied by a species, can also be a use­

ful state variable in the context of single-species studies (MacKenzie et al. 2006). Oc­

cupancy is a concept widely used in ecology. It is central for determining the geo­

graphic range of species, and it is one of the state variables considered in the criteria 
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for assessing the conservation status of species (IUCN 2001). Occupancy is also often 

used as the response variable in the modelling of habitat relationships (e.g. Fleishman 

et at. 2002; Reunanen et al. 2002) and is a fundamental concept in metapopulation 

studies (Hanski 1999), which focus on the investigation of occupancy dynamics in 

patchy populations. 

Occupancy has been proposed as an informative state variable for large-scale monitor­

ing programmes (MacKenzie et al. 2006, pp. 41-44). Given that there is an obvious 

relationship between abundance and occupancy (a site is occupied if site abundance is 

greater than zero), occupancy can be viewed as a surrogate of abundance. For abun­

dant species, a decline in abundance might not be reflected as a decline in occupancy, 

however occupancy can be informative when monitoring rare species. One of the rea­

sons why occupancy is an attractive state variable to work with is that its estimation 

generally requires less effort in data collection than that required in programmes aimed 

at estimating abundance, something particularly relevant when working at large geo­

graphical scales. Furthermore, since in general the data required for estimating species 

occupancy are relatively easy to collect, these surveys are well suited to be imple­

mented as volunteer-based programmes (e.g. Kery, Gardner & Monnerat 2010; 

Sewell, Beebee & Griffiths 2010) which can help in obtaining larger sample sizes. The 

relative ease of data collection can also facilitate the involvement of local people in 

monitoring activities through participatory monitoring programmes, initiatives that 

help promote the engagement of the local communities in conservation efforts 

(Danielsen, Burgess & Balmfort 2005). 
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1.1.2 The issue of imperfect detection 

Once an appropriate state variable is chosen, attention has to be paid to how to esti­

mate it in the most meaningful way. When studying wildlife populations a major issue 

to consider is that individuals often remain undetected even when present at a site 

(Y occoz, Nichols & Boulinier 2001). This is true for most animal species and has been 

shown to be a potential issue even for sessile species such as plants (Chen et al. 2009). 

It is possible as well for the wrong species to be mistakenly recorded as the species of 

interest, thus yielding false positives in the data. For some species and types of surveys 

false positives can be of concern. For instance they have been shown to be an issue in 

call-based occurrence surveys of anuran and bird species (McClintock et al. 20 10). 

However, since false positives are in general far less of a problem than false negatives, 

statistical models of wildlife populations often assume a detection process in which 

such misclassifications are not possible. 

In abundance estimation, the issue of imperfect detection has long been recognized 

and dealt with. For instance, closed-population mark-recapture studies account for in­

dividual detectability by recording whether (naturally or artificially) marked individu­

als are recaptured in successive recapture attempts. These recaptures, which can be 

actual physical recaptures or simply resightings, provide information on the probabil­

ity of capturing individuals (Le. individual detectability) and thus help to obtain a bet­

ter abundance estimate. In distance sampling, the method of accounting for imperfect 

detection is to model detectability as a function of distance, based on the recorded dis­

tances at which individuals are detected from the line transect or point of count. 
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Obviously, imperfect detection is also a problem for studies aimed at estimating occu­

pancy. While surveys of empty sites necessarily yield non-detections (in the absence 

of false positive errors), surveys of occupied sites can lead both to detections and to 

non-detections. Therefore, if not accounted for, imperfect detection can induce nega­

tive bias in the estimation of occupancy. Furthermore, temporal variation in detection 

probability can confound the estimation of occupancy trends (Kery et al. 20 I 0), while 

its spatial variation may lead to incorrect inferences regarding habitat relationships 

(Tyre et al. 2003; Gu & Swihart 2004; MacKenzie 2006) and therefore to incorrect 

predictions about the distribution of the species (Kery 2011). 

Despite the problems associated with imperfect detection, this issue had received little 

attention in the context of estimating species occupancy until relatively recently. Its 

treatment was limited to two-step ad hoc approaches (Geissler & Fuller 1986; Azuma, 

Baldwin & Noon 1990; Nichols & Karanth 2002) until a model-based method that ac­

counted explicitly for detection probability while estimating occupancy was proposed 

independently by MacKenzie et al. (2002) and Tyre et al. (2003). These methods are 

based on a discrete sampling protocol in which repeat detection/non-detection surveys 

are carried out at the sampling sites. A major advantage of the model-based approach 

over ad hoc techniques is that it provides a flexible framework to compare competing 

hypothesis about factors affecting occupancy and detectability. As formulated by 

MacKenzie et al. (2002), the model also allows for survey-specific variation in detect­

ability to be accounted for. 

Since its publication, the occupancy modelling approach of MacKenzie et al. (2002) 

and Tyre et al. (2003), to which for simplicity we refer in this thesis as the 'basic oc-
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cupancy model', has been widely accepted by ecologists as a tool to study wildlife 

populations. This is reflected by the large and growing number of published studies 

that use or discuss this technique (Figure 1-1). 
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Figure 1-1 Number of new citations per year for MacKenzie et al. (2002), according 
to Web of Knowledge (© Thomson Reuters), accessed 02/ April/2012. 

The growing interest in this framework and its developments has been fuelled by the 

availability of several software packages for model fitting. These include: GUll-based 

program MARK (White & Burnham 1999) and its R interface package, R-Mark 

(Laake & Rextad 2008), which were originally developed for fitting mark-recapture 

models (Williams, Nichols & Conroy 2002) but have been extended to include 

occupancy models; PRESENCE (Hines 2006), a GUI-based program specifically 

written to fit occupancy models; and finally the new R-package Unmarked (Fiske & 

Chandler 2011) which, based on a hierarchical model formulation, is being developed 

with the aim of providing a unified framework for modelling data from unmarked 

1 GUI: Graphical User Interface 
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individuals. All these packages are based on maximum-likelihood inference but the 

models can also be very easily implemented and fitted in the Bayesian framework 

using ready-made software packages for Markov chain Monte Carlo (MCMC) 

analysis such as WinBUGS (Lunn et al. 2000) or JAGS (Plummer 2003). WinBUGS 

code can be found for instance in Kery & Schaub (2012, chapter 13). 

1.2 Thesis motivation 

This thesis deals with species occupancy modelling. Broadly, the work carried out in 

the thesis has two components: (i) we explore issues related to the design of occupancy 

studies and (ii) we develop new models to estimate occupancy from species detection 

data collected along transects, with the analysis of a data set from a Sumatran tiger 

survey as a motivating example. We concentrate on single-species (cf. co-occurrence 

models, e.g. MacKenzie, Bailey & Nichols 2004) and on single-season data (although 

we touch upon multiple-season studies when looking at study design). While the focus 

of the thesis is on occupancy as a state variable, our work links with the estimation of 

abundance from spatially-replicated repeated counts of unmarked individuals (Royle 

2004b), as we will discuss later. 

Study design is an important step in any statistical study involving sampling. It is only 

through careful study design that we can ensure good chances of obtaining meaningful 

results in the most efficient way. Properly addressing the design stage is particularly 

crucial for studies in ecological and conservation programmes, as resources are often 

very limited, particularly in developing countries where many of the world's most bio­

diverse areas are located. Unfortunately, it is not rare for study design to be disre­

garded in wildlife monitoring programmes, which often renders the outcome of moni-
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toring efforts to be largely uninformative (Y occoz, Nichols & Boulinier 2001; Legg & 

Nagy 2006). Occupancy modelling is a relatively new area within wildlife monitoring 

so, although some work has been carried out previously addressing the design of oc­

cupancy surveys (Field, Tyre & Possingham 2005; MacKenzie & Royle 2005; Bailey 

et al. 2007), the investigation of design issues remains an active area of development. 

The second area of research in this thesis is motivated by the fact that, in some cases, 

the collection of species detection data for occupancy estimation is carried out con­

tinuously along a transect, rather than using a discrete replicate sampling protocol with 

separate repeat visits to each sampling site. For instance, this type of survey has been 

applied recently to monitoring large carnivores, such as tigers in India (Hines et al. 

2010) and Sumatra (data in this thesis), and snow leopards in Mongolia (McCarthy et 

al. 2010). Species detection data are also sometimes collected continuously during an 

interval of time, for instance in camera-trap surveys. Traditionally, such 'continuous' 

data have been analysed to estimate occupancy by discretizing the transect (or time 

interval) into shorter segments, assigning a '1' to each segment when there was at least 

one detection in the segment and a '0' otherwise, and then using an appropriate model 

from among those developed for discrete sampling protocols. In this thesis we develop 

new models that provide a more natural description for the detection process in such 

surveys, eliminating the need to divide transects into segments, which can be arbitrary 

and can lead to loss of information. 
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1.3 Sumatran tiger survey data 

1.3.1 The Sumatran tiger 

Tigers were once widely distributed in Asia, ranging from Turkey to eastern Russia, 

however today they only persist in less than 7% of their historic range. Tiger occu­

pancy continues declining at present and, in fact, it has dropped dramatically in recent 

years (Sanderson et al. 2006; Dinerstein et al. 2007), with fewer than 3,500 individuals 

thought to remain in the wild. Overhunting has been the main driver of tiger decline 

across its range, while habitat loss and fragmentation have played locally an important 

role in some regions (Walston et al. 2010). Over the last century, tigers have disap­

peared from southwest and central Asia, from large areas of southeast and eastern Asia 

and from the Indonesian islands of Java and Bali, with several subspecies being wiped 

out in the process. Within Indonesia, tigers still persist on the island of Sumatra. 

The Sumatran tiger Panthera tigris sumatrae is a subspecies of tiger that occurs only 

in Sumatra, in habitats ranging from lowland forest to sub-mountain and mountain for­

est, including some peat swamp forests. It is classified as Critically Endangered in the 

Red List of Threatened Species by the International Union for the Conservation ofNa­

ture (lUCN) due to the small size of its remaining population, estimated to be just a 

few hundred, and which appears to continue to be declining (Linkie et al. 2008). Su­

matran tigers are under threat due to a combination of factors, including habitat de­

struction and degradation. Habitat loss in Sumatra is severe due to the expansion of oil 

palm and acacia plantations. In fact the island has one of highest rates of conversion 

from intact forest to non-forest in southeast Asia, with an average annual rate of defor­

estation of 2.1 % (Uryu et al. 2010). Poaching of tigers is also a major problem as is the 



1 INTRODUCTION 10 

depletion of their prey-base (Linkie et af. 2003). Given the critical situation of the Su-

matran tiger, and the fact that it is such an iconic species, it is not surprising that sev-

eral organizations, Indonesian and international, are working for its conservation and 

that large amounts of money are invested in trying to prevent its extinction . 

Figure 1-2 Sumatran tiger Panthera tigns JIImatrae captured by a camera trap at Kennci­
Seblat National Park (pho to: M. Linkie, Fauna & Flora International). 

Since good data on the population of Sumatran tigers at the landscape-level were lack-

ing, the recent 'National Tiger Recovery Plan ' from the Indonesian Ministry of For-

estry (Ministry of Forestry of Indonesia 2010) placed a strong emphasis on the devel-

opment of a robust monitoring protocol to measure tiger population trends. To accom-

plish thi s, a partnership between non-governmental conservation organizations work-

ing across all the Sumatran tiger landscapes and the Indonesian Ministry of Forestry 

was established, resulting in the implementation of a jo int Sumatra-wide survey. In 
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this thesis we used data from this survey as a motivating example to develop and ex­

plore statistical models for estimating species occupancy. 

1.3.2 Island-wide tiger detection data set 

In the period 2007-2009, eight wildlife conservation organisations (Fauna & Flora In­

ternational, FFI; the Wildlife Conservation Society, WCS; the Durrell Institute of Con­

servation and Ecology from the University of Kent, DICE; the World Wildlife Fund, 

WWF; the Zoological Society of London, ZSL; the Leuser International Foundation, 

LIF; the Rhino Foundation of Indonesia and the Sumatran Tiger Protection and Con­

servation Foundation) partnered with the Indonesian Ministry of Forestry to conduct 

simultaneous tiger field surveys across Sumatran rainforests, following a common 

sampling protocol. 

The aim of the joint survey initiative was to obtain baseline information about the Su­

matran tiger population over the whole island. Sumatra is a large island, in fact the 

sixth largest in the world with a total area of 473,481 km2
. Despite large deforestation, 

in 2008-9, forests still covered an area of about 128,000 km2 (Uryu et al. 2010). The 

rainforests in Sumatra are dense (Figure 1-3, left), and tigers are wide-ranging, cryptic 

and elusive. This, together with the fact that in Sumatra's rainforests tigers occur at 

low densities (Linkie et al. 2006), render direct observations of tigers extremely un-

common. 

Obtaining indirect observations from camera-trapping is a survey method commonly 

used to study tiger populations in the wild (Linkie et al. 2010). In the case of tigers, 

camera-trapping provides information at the individual level given that tigers can be 

uniquely identified from their stripe patterns. This allows capture-recapture techniques 



1 INTRODUCTION 12 

to be used to estimate tiger abundance and density (Karanth 1995; Karanth & Nichols 

1998). However, while being a useful and powerful survey technique, camera-trapping 

is also very resource intensive and is therefore more suited for surveys carried out at 

relatively small scales. 

Due to the large scale of the Sumatran tiger survey and the difficulties in detecting tig­

ers, occupancy was chosen as a state variable for monitoring and the agreed sampling 

protocol consisted of footprint surveys. Despite claims that individual tigers can be 

identified from their footprints in some environments (e.g. Sharma, Ihala & Sawarkar 

2005), in general the reliability of such identifications has been much questioned 

(Karanth et al. 2003). Consequently in this survey there was no attempt to identify in­

dividual tigers and the data collected reflect detection/non-detection at the species 

level. 

Detecting tiger footprints is definitely easier than detecting tigers directly. However it 

still remains a challenging task given that only a small fraction of the forest floor can 

be inspected and that footprints are difficult to detect depending on the forest floor 

conditions (Figure 1-3, right). Even experienced surveyors can miss footprints present 

in a section assessed. Therefore, when estimating tiger occupancy from such data, it is 

crucial to model the detection process explicitly, so that false absences recorded at oc­

cupied sites can be accounted for. On the other hand, it is reasonable to expect false 

positives to be rare given that tiger footprints are easily distinguished from those of 

other sympatric carnivore species by their larger size. Hence, all the work developed in 

this thesis is under the assumption that the rate of false positives in the data is negligi­

ble. 
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Figure 1-3 Forest ~eft) and fore st floor covered with leaf litter (right) at Kerinci­
Seblat National Park 

13 

The agreed sampling protocol consisted of surveying 17 km x 17 km grid cells, and 

recording information on the location of tiger footprint detections along transects with 

a GPS (Figure 1-4). Within each of the grid cells, a team of four or five people sur-

veyed forest trails, often along ridges. These routes were chosen given that , in the rug-

ged Sumatran landscapes, tigers tend to use ridges to move around their territories and 

therefore the trails were more likely to contain tiger footprints. Since in practice only a 

very narrow strip of the forest floor is assessed in such surveys, all detections were 

considered to be made on the transect (i.e. the data do not consist of detections at dif-

ferent distances from the transect) . Grid cell size was chosen based on the home-range 

size of adult male Sumatran tigers with the idea of allowing changes in the population 

of tigers to be better reflected as changes in the proportion of grid cells occupied, i.e . 
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as tigers disappear, cells become empty. For much greater cell sizes many individuals 

may disappear while a cell remains ' occupied ' by the species. 

Figure 1-4 Survey team members recording a tiger footprint detection at Kerinci­
Seblat National Park (left) and close-up of a tiger footprint in the mud (right). 

The surveys were conducted in all tiger habitat types, from sea-level peat swamp for-

ests to the forest surrounding the volcanic peak of Mount Kerinci (Sumatra ' s highest 

point at 3,805 m above sea level) and focussed primarily on protected areas. Overall , a 

total of 13,51 I km of transects were surveyed in 394 grid cells that covered tiger land-

scapes across all eight mainland Sumatran provinces (Figure 1-5). Tiger footprints 

were detected in 206 grid cells. 

The data were provided for analysis after being processed to obtain a detectionlnon-

detection history. To construct the history, transects were divided into segments of 1 
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km in length, assigning ' l ' to those segments containing at least one detection and ' 0 ' 

otherwise. 
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Figure 1-5 Map of Sumatra showing the grid cells used for the survey. The cells cor­
responding to Kerinci-Seblat national part are coloured in green. 

1.3.3 Kerinci-Seblat tiger detection data set 

A subset of the data corresponding to the surveys carried out in the forests in and 

around Kerinci-Seblat National Park, the largest national park in Sumatra (13 ,971 

km2), was made available in raw format. The data set included the geographical loca-
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tion of each tiger footprint detection together with infonnation on the actual route 

walked within each sampling site. This part of the data set was collected by Fauna and 

Flora International and the Durrell Institute of Conservation and Ecology during 2007 

and 2008. 

The surveys at Kerinci-Seblat covered a total distance of 2826.5 km within 89 sam-

piing sites (17 km x 17 km grid cells). The distance surveyed per site varied from 1.8 

km to 108.3 km, and was typically around 15-45 km (Figure 1-6). Within each cell the 

surveys were often made up of several transects which varied in length from 0.5 to 

40.1 km, with most in the range 3-21 km. Tiger footprints were detected in 66 of the 

cells, which gives a naIve occupancy estimate (# sites with detection / # sites) of 0.74. 
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Figure 1-6 Survey lengths of individual transects and total distances walked within 
each 17x17 km sampling site in the tiger surveys at Kerinci-Seblat national park. In 
the plot the y-axis is limited for clarity to 70 km; for one of the cells a larger distance 
was surveyed (108.3 km). 
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1.4 General thesis methodology 

The work in this thesis was carried out within the maximum-likelihood inference 

framework Models were implemented in MATLAB (the Mathworks Inc., version 7.12 

or earlier) unless otherwise stated. Maximum-likelihood estimates were obtained by 

numerical minimization of the negative log-likelihood function using the optimization 

routine fminsearch, which implements the Neider-Mead simplex search algorithm 

(Neider & Mead 1965). As fminsearch is an unconstrained optimization function, pa­

rameters were transformed to the logistic or log scale as appropriate prior to computa­

tion. The logit transformation was used for the probability parameters, such as occu­

pancy and detection probabilities, which are constrained to the interval [0,1]. The log 

transformation was used for those parameters that were constrained to [0,00), such as 

detection rates or average abundance. When covariates were incorporated into the 

models, this was done on the transformed scale following a generalized linear model 

approach. 

Standard errors were derived on the transformed scale (logistic or log) with the func­

tion mlecov, which returns an approximation to the asymptotic variance-covariance 

matrix of the maximum-likelihood estimators. This function computes a finite differ­

ence approximation to the negative hessian of the log-likelihood evaluated at the 

maximum-likelihood estimates (i.e. the observed information matrix; Morgan 2008, p. 

78) and returns its inverse. Standard errors on the original parameter scale (probability 

or rate) were calculated from those obtained on the transformed scale using the delta 

method approximation (Davison 2003, pp. 33-35). 
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Model selection was carried out using the Akaike Information Criterion, or AIC 

(Akaike 1973; Burnham & Anderson 2002). The AIC is founded in information theory 

and is defined as 

Ale = -ZL(9Ix) + ZK I (1.1) 

where L(9Ix) is the maximum value of the log-likelihood function given the observed 

data x (Le. the value of the log-likelihood evaluated at the maximum-likelihood esti-

mates 9) and K is the number of parameters in the model. The AIC provides a meas-

ure of the relative goodness of fit of a statistical model, with the smaller the AIC, the 

better the fit of the model. The AIC reflects the principle of parsimony, that is, the 

trade-off between under-fitting and over-fitting. The first term in (l.1) represents a 

measure of how well the model fits the data and can be reduced by introducing more 

parameters in the model. However, the second term acts as a penalty term, getting lar-

ger as more parameters are included. Hence, complicating the model results in a trade-

off in terms of model support. 

Since it is not the absolute value of the AIC that matters, but the differences between 

the AICs of the models included in the candidate set, normally the so-called ~AICs are 

reported. The ~AIC for model i is calculated as 

that is the difference between the AIC of model i and the AIC of the best-fitting , 

model in the candidate set (i.e. the lowest AIC). Of course, the best model in the set 

has a ~AIC equal to zero. 
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A modification of the Ale for small sample sizes, based on a second-order bias correc-

tion (Hurvich & Tsai 1989), exists as follows 

2K(K + 1) 
AICc = AIC + , 

n-K-1 
forn> K + 1, 

where n is the sample size. Alec has an additional correction term which, when n is 

large with respect to K, is negligible. Therefore as the sample size increases the Alec 

converges to the Ale. As the Ale may perform poorly when there are too many esti-

mated parameters in relation to the size of the sample, the use of the Alec variant is 

recommended in general (e.g. Anderson 2008, pp. 60-61). However, in the context of 

occupancy modelling, the question of what constitutes the effective sample size (e.g. 

number of sampling sites? number of detections? something else?) remains open 

(MacKenzie et al. 2006, p. 80). For this reason, throughout this thesis the Ale was 

used. An exception was the analysis of tiger data in section 2.3 for which the Alec was 

used, taking the number of sampling sites as the effective sampling size (as calculated 

by program MARK). 
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1.5 Thesis structure and contributions 

This thesis is organized into four core chapters. Chapter 2 presents the main models 

that have been developed to date to study species occupancy while accounting for im­

perfect detection. All these models assume that the sampling protocol consists of repli­

cate discrete surveys at a number of sites. We start the chapter by presenting in detail 

the basic occupancy model and exploring its properties, including the conditions that 

lead to boundary estimates. We then provide an overview of model extensions and re­

lated model developments that have been proposed in the literature, focusing on those 

that are particularly relevant for the rest of the work in this thesis. We conclude this 

chapter by applying the models to the analysis of the Sumatra-wide tiger data set. 

In Chapter 3 we look at issues related to the design of occupancy studies based on the 

basic occupancy model. We look at the optimal allocation of survey effort into number 

of sampling sites and number of repeat visits per site, the determination of sample size 

to achieve a given power to detect a difference in occupancy between two samples, 

and the impact of sampling with replacement in occupancy studies based on spatial 

replication. 

In Chapter 4 we propose and evaluate new occupancy models that are useful for sam­

pling situations in which detection data are collected continuously along a transect (as 

in the Sumatran tiger survey) or interval of time. These models are based on describing 

the detection process as a point process rather than on artificially discretizing the data 

as was previously normally done when analyzing this kind of data. We start with a 

simple model that assumes independence among detections. We then relax the as-
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sumption of independence to cover cases in which there is clustering in the detections, 

which we model using Markov-modulated Poisson processes (MMPPs). 

In Chapter 5 we extend the models proposed in Chapter 4 to the case in which there is 

abundance-induced heterogeneity in the detection process. These models describe the 

species detection process as resulting from the superposition of individual point proc­

esses, and provide an estimate of population abundance. We first propose a model 

based on the assumption of independent detections and then present a model that ac­

counts for clustering in the detections. Both in Chapter 4 and Chapter 5, we illustrate 

the utility of the models proposed by fitting them to the tiger data set from Kerinci­

Seblat National Park. 

Part of the work from this thesis has been published in the following papers: 

Sections 2.1.3 and 3.1 in Methods in Ecology and Evolution (Guillera-Arroita, 

Ridout & Morgan 2010) 

Section 2.3 in PLoS ONE (Wibisono et al. 2011) 

Section 3.4 in Methods in Ecology and Evolution (Guillera-Arroita 2011) 

Chapter 4 in Journal of Agricultural, Biological, and Environmental Statistics 

(Guillera-Arroita et al. 2011) 

Chapter 5 in Methods in Ecology and Evolution (Guillera-Arroita et al. 2012) 

The work in Section 3.2 has been accepted for publication in Methods in Ecology and 

Evolution. 



2 OCCUPANCY MODELS BASED ON 

DISCRETE SAMPLING 

This chapter presents a review of models for the analysis of species occupancy data 

while accounting for imperfect detection based on discrete sampling protocols. The 

first part of the chapter, section 2.1, is devoted to describing in detail the basic occu­

pancy model, including the model formulation, assumptions and properties of its 

maximum-likelihood estimators. This model, initially proposed by MacKenzie et al. 

(2002) and Tyre et al. (2003), has received wide acceptance as a tool among ecologists 

and provides the basis for model extensions that have been subsequently developed. 

The chapter then continues with section 2.2, which provides a general review of the 

models that have been suggested in the literature to relax some of the assumptions of 

the basic occupancy model. Emphasis is put on some extensions that are particularly 

relevant for the work developed in this thesis: (i) a model that relaxes the assumption 

of independence between adjacent replicates (Hines et al. 2010) and (ii) models for 

heterogeneous detection probabilities (Royle 2006), including a model extension to 

account for abundance-induced heterogeneity in detection probability (Royle & 
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Nichols 2003). We also discuss a related model that allows estimating abundance from 

replicated counts (Royle 2004b), as well as an extension of the basic single-season oc­

cupancy model to estimate the processes underlying occupancy dynamics (i.e. local 

extinction and colonization) from multiple-season data (MacKenzie et af. 2003). To 

conclude the chapter, section 2.3 provides an illustration of the application of the dis­

cussed single-season occupancy models to the analysis of the island-wide Sumatran 

tiger dataset. This work has been published in Wibisono et al. (2011), while some of 

the results in section 2.1.3 feature in Guillera-Arroita, Ridout & Morgan (2010). 

2.1 Basic occupancy model 

2.1.1 Detection/non-detection data 

The occupancy model proposed by MacKenzie et af. (2002) and Tyre et al. (2003) as­

sumes a sampling protocol in which a number of discrete replicate surveys, K, are car­

ried out at a number of sampling sites, S, during a single sampling season, recording 

whether the species of interest was or was not detected at each of the individual sur­

veys. The idea behind having replication within sites is to be able to estimate sepa­

rately site occupancy probability (ljJ) and species detection probability given occu­

pancy (p). If no replication is used the quantity estimated by considering the propor­

tion of sites where the species was detected would be the product ljJp, therefore under­

estimating species occupancy if detection is not perfect (p < 1). In practice, the repli­

cation is often achieved by carrying out repeated surveys of the sampling sites at dif­

ferent points in time throughout the sampling season, but other kinds of replication 

involving a single visit to each site are possible (MacKenzie et al. 2006). For instance 

this can be achieved by having simultaneous independent surveys by different observ-
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ers or simultaneous independent detection methods. Replication can also be achieved 

spatially by surveying different sectors (subunits) within each sampling site (Figure 

2-1). If detectability is constant, a design based on replicate surveys within a single 

visit may be more efficient if there is considerable expense involved in accessing the 

sites. However, if detectability varies, e.g. daily, the resulting heterogeneity in detec-

tion probability among sites can induce bias in the estimation of occupancy 

(MacKenzie et al. 2006; Royle 2006). In this case a sampling protocol based on multi-

pie visits would be a better option, as this allows each site to be surveyed under a 

range of conditions. 
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Figure 2-1 Four sampling sites and their sampling subunits in a hypothetical occu­
pancy study with spatial replication. 

The detection/non-detection history resulting from data collection is normally ex-

pressed as a matrix of' 1 's and 'O's, denoting respectively whether the species was de-

tected or not at each particular survey (Figure 2-2). This type of data is often referred 

to as 'presence/absence data'. However, since lack of detection cannot unequivocally 

be associated with species absence, a more appropriate term is 'detection/non-

detection data'. Note that the number of replicates carried out at each sampling site, Ki , 

does not need to be the same necessarily and the model can readily accommodate 

missing observations. 
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Figure 2-2 Example of detection history data set where S sites are surveyed K times 

2.1.2 Modelformulation and assumptions 

The model describes the detection data at sites occupied by the species as a series of 

independent Bernoulli trials with probability of success p. The occupancy status for 

each site is the outcome of a Bernoulli trial with probability l/J and is assumed to re-

main constant during the whole sampling season. Since the species can be absent from 

some of the sites the model is in fact a zero-inflated binomial model (Hall 2000), with 

1 - l/J determining the zero-inflation. The corresponding likelihood function given 

detection history h is 

s 

L(l/J,plh) = n{l/Jpdi (l- p)Ki-di + (l-l/J)I(d i = O)}, (2.1) 
i=l 

where di is the number of detections at site i and I (.) represents the indicator function, 

which takes the value one when the expression in brackets is true and zero otherwise. 

There are two possible explanations for site histories without detections: either (i) the 
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species was present at the site but was not detected at any of the repeat surveys or (ii) 

it was not present at the site. Note that the likelihood considers the data at each site as 

the particular sequence of detections/non-detections rather than as the number of de­

tections, and therefore there are no associated combinatorial terms. While these terms 

do not involve the parameters, and consequently do not affect their estimation, the dis­

tinction above is relevant for the models to be comparable with those that allow for 

survey-specific detection probability (section 2.1.4). 

In a hierarchical formulation (Royle & Dorazio 2008, p. 106) the model can be inter­

preted as the superposition of two linked stochastic processes, 

system process: zi - Bernoulli(lj!) 

observation process: dij - Bernoulli(ziP), 

where zi is the occupancy status for site i and dij is the outcome of replicate survey 

j at site i. The observation process describing the data is conditional on the system 

process, which models the ecological process and is in general the focus of inference. 

In summary, the basic occupancy model makes the following assumptions: 

(i) Sites are closed to changes in occupancy during the sampling season, that is, 

the occupancy status of each site remains the same for all the survey replicates. 

When replication is achieved spatially this assumption is violated if only part 

of the site is occupied by the species (see section 3.4); 

(ii) Occupancy probability is constant across sites (or its variation is modelled by 

site covariates; see section 2.1.4); 
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(iii) Detection probability is constant across sites and replicates (or its variation is 

modelled by site/survey covariates; see section 2.1.4); 

(iv) Detections of the species are independent, that is, whether the species is de­

tected at a survey replicate or not does not depend on whether it was detected 

in other replicates; 

(v) There are no false positives in the data, that is, there are no detections of other 

species misidentified as detections of the species of interest. 

MacKenzie et af. (2006, pp. 104-108) provide some discussion on the impact that vio­

lating these assumptions has on the estimators. Model extensions have been proposed 

to address some cases in which these assumptions are not met (see section 2.2). 

2.1.3 MLEs and estimator properties 

In order to explore the general properties of the maximum-likelihood estimators 

(MLEs) for the basic occupancy model, a standard survey design with K surveys car­

ried out in S sampling sites is assumed. The likelihood function corresponding to the 

constant probability occupancy model for a standard design can be rewritten in a com­

pact form as follows 

(2.2) 

where Sd is the number of sites where the species was detected at least once, dT = 

IT=l di is the total number of detections in the detection history and p' = 1 -

(1 - p)K is the probability of detecting the species in at least one of the K surveys car­

ried out at an occupied site. Note that (Sd, dT ) is a sufficient statistic as it summarizes 
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the detection history with no loss of infonnation. MacKenzie et al. (2006, p. 95) point 

out that the analytical solution for the MLEs satisfies the equations 

(2.3) 

that is, as p* gets smaller, the estimate of occupancy (jj increases and the estimate of 

detection probability p decreases compared to the naive estimates obtained assuming 

that the species was not missed at any of the occupied sites: (jjnaive = Sd/S and 

Pnaive = dT/(Sd K ). The expressions in (2.3) can be easily derived using the parame-

terization proposed by Morgan, Revell & Freeman (2007) for simplifying the likeli-

hood of site occupancy models. Setting 0 = l/Jp., the probability that a site is occupied 

and the species is detected there, in (2.2) leads to 

a factorization of the likelihood into two parts, each one only involving one of the pa-

rameters (0 or p). In the first part it is straightforward to see that 8 = Sd/S, the pro-

portion of cells where the species was detected, and that therefore the estimate of oc-

cupancy (jj satisfies (2.3). The MLE expression for detection probability can be easily 

derived by differentiating the second part of the likelihood function in (2.4) and setting 

this equal to zero. 

Evaluating the perfonnance of the model via simulations, MacKenzie et al. (2002) 

noted that, when working with small probabilities of detection, they sometimes ob-

tained estimates of occupancy that tended to 1. Here we show how the detection histo-
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ries that result in boundary occupancy estimates ($ = 1) can be easily identified ana-

lytically. For this, let us start considering separately the part of the likelihood involving 

the parameter p, which we call here function h 

( 
P )dT {Cl _ P )K}Sd 

h(p) = -
1- P p* 

(2.5) 

The condition in (2.3) fulfilled by the points of h(p) with first derivative equal to zero 

can be rewritten for convenience as 

x K = xB + (1 - B), (2.6) 

where x = 1- p, B = KSd/dT • Note that here 'hats' are removed from the notation, 

to recognize that not all the solutions of (2.6) lead to MLEs. Since p is a probability 

then x E [0,1]. Also, given that the number of sites where the species was detected 

cannot exceed the total number of detections (i.e. Sd ~ dT ), then B E [1, K]. Regard-

less of B, (2.6) has a trivial solution for x = 1, that is, p = O. Let g(x) = x K and 

[(x) = xB + (1 - B). It is easy to see that (2.6) has a second real solution with 

p > 0 as long as Sd *" dT , that is, B *" K (Figure 2-3, b-d). Since there are two solu-

tions, both of them cannot be maxima. Evaluating (2.5) at the trivial solution, applying 

I'Hopital's rule, we have 

. . pdT . pdT-Sd 
hm h(p) = hm -( *)S = C . hm ( *)0 ' 
p--->O p--->O P d p--->O P 

(2.7) 

where C is a constant. This expression is equal to zero if dT *" Sd so, given that h(p) 

cannot be smaller than zero, this solution must be a minimum of the function and 
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therefore the non-trivial solution is a maximum. When dT = Sd (Figure 2-3a), since 

there is only one solution to (2.6), then p = 0 must correspond to a maximum. This is 

easily verified considering that, in this case, the expression in (2.7) is larger than zero 

and that, for instance, h(p) evaluated at p = 1 is zero, that is, the function is smaller 

for values other than p = o. 

As both t/J and p are probabilities, they are restricted to [0, 1]. However according to 

(2.3) -$ would take values larger than unity if p' < Sd/S, or equivalently, considering 

that p' = pSdK/dT, ifp < dr/(SK), that is, x > 1 - dT/(SK). It can be easily seen 

(Figure 2-3) that g(x) and [(x) cross for x :s; 1 - dr/(SK), and that therefore (2.6) 

has a non-trivial solution not leading to t/J > 1, if 

[(1- dr/(SK)) ~ g(1- dr/(SK)), (2.8) 

that is, if 

(2.9) 

If the data do not fulfil this condition, then the expressions for the MLEs in (2.3) are 

not valid. The maximum of the likelihood function is in this case on the boundary 

-$ = 1. Maximizing (2.2) evaluated at t/J = 1, we obtain that fJ = dr/(SK). 

The inequality in (2.9) indicates that the occupancy estimate hits the boundary when 

the proportion of sites where the species was not detected (left term) is smaller than the 

proportion of zeros in the history raised to the power of K (right term). This suggests 
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that boundary estimates may be an issue when working with small sample sizes and 

low probabilities, especially when the amount of replication is small. 
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Figure 2-3 Condition for boundary occupancy estimate: scenarios (a) and (b) lead to 
boundary estimate, (c) and (d) lead to a non-boundary estimate. In (a) dr = Sd (i.e. 
B = K), while in (d) dr = SdK (i.e. B = 1). This example was generated with 
S = 100, Sd = 75, K = 3 and (a) dr = 75, (b) dr = 100, (c) dr = 150 and (d) 
dr = 225. The black triangles in the x-axis represent the value corresponding to the 
actual MLE for detection probability. Note: g(x) = XK, [(x) = xB + (1 - B), 
B = KSd/dr and x = 1 - p, with x> 1- dr/(SK) being not feasible. 
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In summary, the MLEs of the basic occupancy model are such that: 

(i) if dT = Sd (i.e. the species is detected at most once at any site with detec-

tions; Figure 2-3a) there is only one solution for (2.6), p = 0, which is a 

maximum of (2.5) and leads to a boundary occupancy estimate, (jJ = 1, and 

p = dr/(SK). 

(ii) if dT = SdK (i.e. the species is detected at all survey replicates at all sites 

where detected; Figure 2-3d) there are two solutions for (2.6), the trivial 

solution, which is a minimum of (2.5), and a second one, which is the 

maximum, for x = 0, that is, p = 1. In this case the occupancy estimate 

coincides with the naive estimate, (jJ = Sd/S, and p = 1, as given by (2.3). 

K 
(iii) if e-:d

) < (1 - ;;) (Figure 2-3b) there are two solutions for (2.6), the 

trivial solution, which is a minimum of (2.5), and a second one, which is 

the maximum and leads to a boundary occupancy estimate, (jJ = 1, and 

p = dT/(SK). 

K 
(iv) if e-:d

) ~ (1 - ;;) (Figure 2-3c) there are two solutions for (2.6), the 

trivial solution, which is a minimum of (2.5), and a second one, which is 

the maximum and leads to an occupancy estimate which lies within the 

probability boundaries, determined as in (2.3). 

A graphical representation of all the MLEs obtainable for a given design illustrates the 

issues resulting from small sample sizes and the effect that increasing the number of 

sites or replicates has on the quality of the estimates (Figure 2-4). Given a finite num-
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ber of sites S and replicates K there is a finite number of histories that can be theoreti­

cally observed (i.e. 2KS possible combinations of zeros and ones). Under the model 

with constant probabilities of occupancy and detectability, all those histories that share 

the same (Sd, dT ), which are sufficient statistics, produce the same estimates of occu­

pancy and detection (2.3). This results in (S + 1){1 + S(K - 1) /2} possible estimate 

points in the parameter space, represented as dots in the figure, with dotted lines con­

necting estimates for histories that share Sd, from Sd = 1 (bottom) to Sd = S (top). 

Moving along the lines from right to left, dots correspond to histories with a decreas­

ing dT, from a maximum KSd to a minimum Sd' At the right-most side of the graph, 

estimates correspond to the naive estimates and 'bend' upwards as detectability gets 

smaIler. 

When sample sizes are very small, there are only a few distinct detection histories that 

can be observed and, correspondingly, few possible parameter estimate values (Figure 

2-4a). The parameter space is sparsely covered by the potential values for the MLEs, 

which indicates that the estimators are not precise, an effect more pronounced as prob­

abilities of occupancy and detection get smaller. In fact there are no solutions covering 

the area corresponding to the lowest probabilities, which causes the estimator to be 

substantially biased in this region. As more samples are added to the study, the MLE 

solutions cover more of the probability space. Additional replication results in a better 

coverage of the area corresponding to low probabilities of detection (Figure 2-4b), 

while an increase in the number of sampling sites achieves a more even coverage in 

the area corresponding to high probabilities of detection (Figure 2-4c). When the 

amount of replication is large the MLEs coincide with the naiVe estimates in most 

cases as p. is close to unity, except for very low values ofp. 
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Figure 2-4 Maximum-likelihood estimates for all possible detection histories observ­
able under a standard design with Sand K (a) 10,3, (b) 10,9, (c) 30, 3, (d) 30,9, (e) 
100, 3, (f) 100, 9, with no assumptions made about true values of the parameters. 
Dotted lines connect estimates for histories that share Sd, from 1 (bottom) to S 
(top). For clarity (e) and (f) have been plotted without lines and using smaller mark­

ers. 
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Likelihood theory provides tools for approximating the properties of the MLEs when 

the sample size is large. The theory indicates that the estimators are asymptotically 

unbiased and normally distributed (Morgan 2008, p. 78). The asymptotic variance-

covariance matrix of the maximum-likelihood estimators can be derived by inverting 

the expected Fisher information matrix, i.e. the expectation of the second derivative of 

the negative log-likelihood with respect to the parameters 8, which has elements 

where L = 10g(L) is the log-likelihood function. MacKenzie and Royle (2005) pro-

vide the expression for the asymptotic variance of the occupancy estimator. Here we 

derive the remaining elements of the variance-covariance matrix. 

For the model under consideration, the first derivative of the log-likelihood function, 

the scores vector, is 

G = [:~ 
(2.10) 

dr - KSdP _ (S - Sd)l/JK(1 - p)K-l]. 
p(1- p) 1 -l/Jp' 

The elements of the observed information matrix 0, defined as minus the Hessian ma-

trix of L, are 
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a 2 £ Sd (S - Sd)p*2 
0[1,1] = - al/J2 = l/J2 + (1-l/Jp*)2 

a2 £ (S - Sd)K(l- p)K-l 
0[1,2] = - al/Jap = (1 _l/Jp*)2 

a 2 £ d T KSd - d T 
0[2,2] = - -a 2 = 2 + ( )2 P p l-p 

(S - Sd)l/JK(l- p)K-l 
(1 - p)(l _l/Jp*)2 (l/Jp' - 1 + K -l/JK). 

Since the expectations for the data are 

IE[Sd] = Sl/Jp* 

IE[dT ] = Sl/JpK, 

the expected information matrix I = IE[O] has elements 

Sp' 
1[1,1] = l/J(1 -l/Jp*) 

SK(1- p)K-l 
1[1,2] = (1 -l/Jp*) 

_ SKl/J { _ Kp(1- p)K-l(l-l/J)} 
1[2,2] - p(l _ p) 1 1 -l/Jp* ' 

(2.11 ) 

(2.12) 

which in this case, given (2.3), are the same as those of the observed information ma-

trix evaluated at the MLEs. Finally, the elements of the asymptotic variance-

covariance matrix, I = I-l, are given by 
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t/J { 1 - p' } 
I[l,l] = var( $) = S (1 - t/J) + p' _ Kp(1- p)K-l ' 

~ ~ -p { 1- p' } 
I[1,2] = cov( t/J, p) = s p* _ Kp(l _ P )K-l ' (2.13) 

~ P(1-p){ p' } 
I[2,2] = var(p) = SKt/J p* _ Kp(l _ p)K-l . 

Looking at (2.13) it can be seen that, as p* approaches unity, that is, as the probability 

of missing the species at occupied sites approaches zero, 

(i) the variance of the occupancy estimator -$ tends to the variance dictated by 

the binomial proportion t/J(1- t/J)/S and decreases as the number of sites 

increases (Figure 2-5); 

(ii) the variance of the detection probability estimator p tends to p(l- p)/ 

(SKt/J) and decreases as the total effort (SK) increases regardless of 

whether it is spent on surveying more sites or more replicates within each 

site; 

(iii) the covariance approaches zero. 
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Figure 2-5 Asymptotic variance of the occupancy estimator X S for different levels 
of occupancy, given detection probability p = 0.5, S sampling sites and replication: K 
= 2 (dash-dot), K = 3 (dotted), K = 4 (dashed) and K = 10 (solid). For K = 10, the 
probability of missing the species at an occupied site is close to zero and therefore 
the variance is that of a binomial experiment. 

Likelihood theory tells us that asymptotic approximations are good when the sample 

size is large enough, however it does not tell us how large it needs to be. Figure 2-6 

illustrates graphically how the properties of the MLEs under the constant occupancy 

model depart from the asymptotic approximation for a combination of design parame-

ter values that is realistic within the context of ecological studies (SK = 168 units of 

total effort). As might be expected, the difference between the approximate and actual 

estimator distributions is larger for low probabilities of occupancy and detection. For 

small probabilities of occupancy and detection the estimators have strong bias, with 

many of the detection histories resulting in boundary estimates (dots at the top left of 

the plot). As probabilities increase, the true distribution of the MLEs becomes closer to 

the bivariate normal distribution predicted by the asymptotic approximation. 
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Figure 2-6 Actual and asymptotic distribution of the MLEs for different underlying 
probabilities of occupancy and detection (marked with a triangle) under a design 
with 168 units of total effort: (a) 5 = 12 sites and K = 14 replicates; (b) and (c) 5 = 
56 sites and K = 3 replicates. The combination of 5 and K chosen for each case is 
the optimal design in terms of minimizing the variance of the occupancy es timator. 
Plots show part of the distribution that contains 0.999 probability. In the top row, 
no point that is excluded has higher probability that any of the points displayed 

(based on 106 simulated data sets). 
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As a means to reduce the bias in the occupancy estimator due to small sample size, 

Moreno & Lele (2010) propose the use of a penalized likelihood approach. They de-

rive a heuristic penalty term which shrinks the occupancy MLE towards the na'\ve oc-

cupancy estimator when the sample size is small. In a simulation study they show that 

the mean and median of the maximum penalized likelihood estimator (MPLE) tends to 
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be closer to the true occupancy value than the MLE's, except when the probability of 

occupancy is large, when the MPLE can be biased. 

2.1.4 Introducing covariates 

The assumptions of constant occupancy and detectability are often not adequate. 

Commonly these quantities vary with diverse factors, some of which may be recorded 

in the field. The model structure discussed so far can be modified to incorporate co­

variates to describe how occupancy and detectability change with these factors, for 

instance following a generalized linear model framework. As both quantities are prob­

abilities the logit function, which is bounded between 0 and 1, is an appropriate link 

function, and is commonly used. 

The probability of occupancy can vary with site characteristics such as habitat type, 

elevation, climatic conditions or distance to some focal point (e.g. water source or hu­

man settlement). In fact, often the primary objective of the study is to assess these po­

tential relationships. Using the logit link function, the probability of occupancy is ex­

pressed as a function of site-specific covariates as 

(2.14) 

where flo .. , fln are the regression coefficients and Xli ... xni are the values of the n co­

variates for site i. Site-specific covariates can vary from site to site, but remain con­

stant within the sampling season. Under the assumption of closure, the occupancy 

status of sites is supposed to remain constant within the sampling season and, there­

fore, only site-specific covariates are appropriate for modelling occupancy probability. 
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The probability of detecting the species at an occupied site can also be modelled as a 

function of covariates. Here there are two types of covariates that may be considered: 

(i) site-specific and (ii) survey-specific. Examples of survey-specific covariates in­

clude time of day, weather conditions or observer skills. The probability of detecting 

the species at site i during survey j can be expressed as 

(2.15) 

where ao ... an +m are the regression coefficients, Xli ... Xni are the values of the n site­

specific covariates for site i and Ylij ... Ymij are the values of the m survey-specific 

covariates for site i and survey j. Note that, although for convenience we have used the 

same notation for the site-specific covariates in (2.14) and (2.15), these do not need to 

be the same. Obviously, when survey-specific covariates are incorporated, the data can 

no longer be summarized by the number of detection at each site, db as in (2.1). 

By using a logit link function for site occupancy, the modelling framework under con­

sideration can be interpreted as a generalization of logistic regression analysis to ac­

count for uncertainty on the true or false nature of recorded absences. Under perfect 

detection (i.e. p = 1), the model for site occupancy reduces to the standard logistic re-

gresSJOn. 
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2.2 Model extensions and related models 

2.2.1 Overview 

Since the publication of the basic occupancy model, several extensions have been pro­

posed to relax some of its assumptions. Figure 2-7 presents an overview of the most 

relevant model extensions together with other related models also developed to ana­

lyze detection data of unmarked individuals, indicating the journal articles in which 

they were presented. The diagram includes the models developed in this thesis, thus 

setting them in the context of the relevant literature. In the diagram, model extensions 

are connected by solid lines, while dashed lines are used to highlight relationships be­

tween models. Different colours are used to indicate the type of data described by the 

models. This way we distinguish between the models that rely on discrete detec­

tion/non-detection data (in blue), and those developed in this thesis for detection data 

collected on a continuous interval of time/space (in orange). The diagram also includes 

models for data on repeated counts (displayed in green). Although these models are 

essentially different in that they use a different kind of data, and focus on the estima­

tion of abundance, we will see how they are closely related to the work developed in 

this thesis. 

In the next sections we provide some detail regarding those models in the diagram 

(marked with a star) that are particularly relevant to the work carried out in this thesis. 

Note that, while the diagram summarizes models for detection data of unmarked indi­

viduals, this summary is not exhaustive. For instance, the whole class of distance sam­

pling techniques are excluded, as these are less directly related to our work. 
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2.2.2 Clustered detections within sites 

As noted in section 2.1.2, the basic occupancy model makes a 'closure assumption' 

that the occupancy status of each site is constant across replicates. When the sampling 

scheme is based on temporal replication (Le. assessing the same location at different 

points in time), this requires site occupancy status to remain unchanged throughout the 

sampling season. For the closure assumption to hold when data are collected by spatial 

sampling within sites (Figure 2-1), all subunits in sites occupied by the species should 

be occupied. However this is not necessarily always true and the species may occupy 

the sites partially. We discuss in more detail issues related to the 'closure assumption' 

in section 3.4, but a key idea is that, if changes in availability among survey replicates 

occur completely at random, no bias is induced in the site occupancy estimator ($). 

The occupancy estimator now reflects the probability that part of the site is occupied 

by the species. A similar situation arises for surveys based on signs if, at the time of 

survey, signs only occupy the sites partially (even if sites are fully occupied by the 

species). There has to be independence in the availability of signs for detection among 

survey replicates for the occupancy estimator to be unbiased. 

However, the assumption of random changes in species availability among survey rep­

licates (which leads to independent detections as assumed by the model) is not always 

appropriate. For instance, when spatial replicates are drawn from partially occupied 

sites, dependence may be induced by the way spatial subunits are chosen spatially, as 

in some scenarios the occupancy status of subunits that are close will tend to be corre­

lated. This is something to consider when designing a study, however sometimes sam­

pling designs that suffer from lack of replicate independence are preferred, e.g. due to 

logistics. This situation arises for instance in surveys carried out along transects, in 
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which replicates are defined as adjacent transect segments, such as in the Sumatran 

tiger data set. To account for the resulting dependence in the analysis of such detection 

data, Hines et al. (2010) propose a refinement of the basic occupancy model to incor­

porate first-order Markovian dependence between adjacent replicates. They applied 

this model to a tiger sign data set from India and showed that disregarding the depend­

ence between consecutive replicates induces a negative bias in the occupancy estima­

tor. 

The model they present, to which they refer as the 'Markov process for segment occu­

pancy model', defines the following two parameters for the probability that the species 

is available for detection at a survey replicate (i.e. segment) 

(i) 0: probability that the species is available for detection at a survey replicate 

given it was not available for detection at the previous replicate, 

(ii) 0': probability that the species is available for detection at a survey repli­

cate given it was available for detection at the previous replicate. 

The remaining two parameters of the model are: 1/J, the probability of site occupancy, 

and p, the probability of detection given the species is present and available for detec­

tion at a survey replicate (denoted Pa in section 3.4). The detection process at occupied 

sites is described as a Hidden Markov model (Figure 2-8). If 0 and 0' differ from each 

other, clustering is induced in the detections. It is reasonable to expect that 0' > 0, 

which would imply that it is more likely for the species to be available for detection at 

a survey replicate if it was available at the previous one. 
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()' 

Detected at 
a segment 

1 - ()' 

1-(} 

() 

Figure 2-8 Hidden Markov chain describing the detection process at occupied sites 
for the 'Markov process for segment occupancy model' 

It is only when there is Markovian dependence in the occupancy status of survey repli-

cates (i.e. () =f::. ()') that the three processes (site occupancy, availability for detection at 

a replicate and detectability at replicates where the species is available) become identi-

fiable from data obtained following the standard sampling protocol (we discuss this 

further in section 3.4). 

Note that, while the motivating scenario for the development of this model was a sur-

vey based on spatial replication (i.e. transect segments), the approach is also applicable 

to sampling situations based on temporal replication. In such studies, lack of inde-

pendence can also be an issue if replicate surveys are carried out close in time with 

respect to the movement patterns of the species. 
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The likelihood for this model can be written as 

(2.16) 

where 7r is the vector of initial replicate occupancy, P t = [0 p] if the replicate t re-

suited in detection and [1 1 - p] otherwise, diag(P t) is the matrix that has the 

elements of Pt as diagonal and ~ is the transition matrix of the Markov chain given by 

[
1- 8 

~= 
1- 8' 

While (2.16) assumes that the four parameters are constant, the model can be readily 

extended to accommodate site covariates in any of the parameters, and survey covari-

ates in 8, 8 ' and p. 

Worried about potential unidentifiability of the parameters, Hines et al. (2010) devel-

oped a second model as an approximation to the process generating the data, which 

they call the 'trap response model'. In this case the assumption is that the species is 

present in all survey replicates but that there is dependence in the detection from adja-

cent replicates. The model defines the following two parameters for the probability of 

detecting the species at a replicate 

(i) p: probability that the species is detected at a survey replicate given it was 

not detected at the previous replicate, 

(ii) p': probability that the species is detected at a survey replicate given it was 

detected at the previous replicate. 



2 OCCUPANCY MODELS BASED ON DISCRETE SAMPLING 48 

The detection process at occupied sites in this model is described as a Markov chain 

(Figure 2-9). While this model was proposed as an approximate description for the 

scenario of interest, in which the species is actually not available for detection at all 

replicates, Hines et al. (2010) point out that this model can be directly useful for other 

sampling situations. 

i-p' 

p' i-p 

p 

Figure 2-9 Markov chain describing the detection process at occupied sites for the 
'trap response model' 

The interpretation of both the 'Markov process for segment occupancy model' and the 

'trap response model' as particular cases of a more general two-state Markov-

modulated Bernoulli process model (2-MMBP) is discussed in section 4.2.2. 



2 OCCUPANCY MODELS BASED ON DISCRETE SAMPLING 49 

2.2.3 Heterogeneity in detection probability 

Heterogeneity in detection probability can induce bias in the estimator of occupancy 

(Royle & Nichols 2003; MacKenzie et al. 2006; Royle 2006), with greater bias for 

higher levels of heterogeneity, low detection probability and small sample sizes. 

Minimizing heterogeneity through proper study design, plus collecting and incorporat-

ing relevant covariates into the model, is essential to obtain reliable occupancy esti-

mates. However, sometimes some degree of heterogeneity remains which may be dif-

ficult or practically impossible to capture through the use of covariates. In such cir-

cumstances, mixture models can be used to account for unexplained variation in detec-

tion probability across sampling sites (Royle 2006). Using a finite (discrete) mixture 

on detection probability, the model in (2.1) is extended as 

L(I/>,8Ih) = 0 [I/> ~,rp,'!;(1- Pm)K,-d, Pr(PmI 8 )} 

+ (1 - I/»I(d, = 0) l' 
(2.17) 

where Pm are each of the M possible detectability values and Pr(PmI8) is the prob-

ability mass function of a discrete distribution with parameters 8. Similarly, using a 

continuous mixture for detectability we have 

L( 1/>, 81h) = 0 [I/> f (pd'(1 - P )K,-d, [(pI8) }dp 

+ (1 -l/J)l(di = 0)] I 

(2.18) 
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where [(p IB) is the probability density function of a continuous distribution. In gen-

eral, maximizing (2.18) to obtain parameter estimates involves evaluating the integral, 

which can always be done numerically. However, a convenient choice for [(pIB) that 

avoids the need for numerical integration is the beta distribution. Since a beta mixture 

of binomials results in a beta-binomial distribution (Johnson, Kemp & Kotz 2005, p. 

374), the model in (2.18) results in a zero-inflated beta-binomial which has an explicit 

closed expression for its likelihood 

L(l/J, a, f3lh) 

(2.19) 

where a and f3 are the parameters of the beta mixing distribution and with ro the 

Gamma function. 

Royle (2006) shows that in occupancy models it might not be possible to distinguish 

alternative mixture distributions from the data, a result in line with the findings of Link 

(2003) in the context of closed population mixture models for estimating population 

size. This 'identifiability problem' implies that models leading to considerably differ-

ent occupancy estimates might receive identical support from the data. How large an 

effect the misspecification of the heterogeneity model has is related to the amount of 

heterogeneity and the mean detection probability. Royle (2006) cautions that cases 

with high levels of heterogeneity and low detection probabilities could be considered 

as situations in which occupancy cannot be reliably estimated. 
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2.2.4 Abundance-induced heterogeneity in detection probability 

Differences in site abundance can be the main source of heterogeneity in species de­

tectability in occupancy studies. For most systems it is reasonable to expect that the 

more individuals at a site, the easier it is to detect the species. In order to address this 

type of heterogeneity, Royle & Nichols (2003) propose a mixture model in which local 

abundance is the source of heterogeneity in detectability. 

The key to the model is to consider that the species is detected at a site during a par­

ticular survey unless all the individuals present are missed. Therefore, assuming that 

all the individuals are equally and independently detectable during the survey, the 

probability of detecting the species at a site i in which ni individuals are present is 

(2.20) 

where r is the probability of detecting an individual. Naturally site abundance (ni) is 

unknown, so to account for its variability a mixture is used and inference is made on 

the parameters of the mixing distribution. Assuming that the number of individuals at a 

site remains constant during the whole survey period, the likelihood for the resulting 

model can be written as 

(2.21 ) 

where Pi is a function of individual detectability and local abundance as indicated in 

(2.20) and Pr(n£l(1) is the mixing distribution describing local abundance with pa­

rameters (1. While the basic occupancy model assumes that the system is closed to oc-
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cupancy changes, here the assumption is that the system is closed to changes in local 

abundance. 

A natural choice for Pr(ni I e) is the Poisson distribution which leads to the likelihood 

(2.22) 

where A. is the parameter of the Poisson distribution. Although for simplicity here the 

parameters are assumed constant, the model can accommodate covariates. Site and 

survey covariates can be used to describe individual detectability r. Site covariates can 

also be used to describe mean local abundance A.. Covariates can be incorporated fol-

lowing a generalized linear model framework, as in section 2.1.4, via a logit link func-

tion for r and a log link function for A.. 

The Poisson distribution assumes that individuals occur completely at random, that is, 

whether an individual occurs at a site or not is independent of whether others are pre-

sent. This assumption can be relaxed using other mixture distributions such as the 

negative-binomial, which allows for overdispersion with respect to the Poisson, al-

though it has been noted that this model is often difficult to fit (Royle & Nichols 

2003). Allowing for zero-inflation has also been shown to be relevant for some data 

sets (Wenger & Freeman 2008). Underdispersion could be dealt with using a weighted 

Poisson distribution (e.g. Ridout & Besbeas 2004). Non-parametric finite mixtures are 

possible as wel\. In fact the basic occupancy model can be seen as a particular case of 

the abundance model with a finite mixing distribution for site abundance with only 

two support points, one of them at ni = 0, with Pr(ni = 0) = 1 -ljJ and Pr(ni = 
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n) = l/J. While non-parametric distributions can be useful in some cases due to their 

flexibility, a key benefit of using a parametric distribution for abundance is the reduc­

tion in the number of parameters to be estimated, as well as the possibility to accom­

modate covariates. 

Subject to the assumptions of the model being met, the mean of the estimated mixing 

distribution (e.g. it for the Poisson) may be interpreted as an estimate of average site 

abundance. Although site occupancy is not a formal parameter in the formulation of 

the abundance model it can be immediately derived as the probability of having at 

least one individual given the abundance distribution (e.g. l/J = Pr(ni > 0) = 1 -

e-A, if a Poisson is used). 

Of course, the ability of the model to estimate abundance depends on whether species 

detectability and site abundance are indeed linked. For instance, it is obvious that in­

ference about abundance is not possible from species detection/non-detection data if 

the species is so abundant that species detection at occupied sites is almost certain. It is 

also reasonable to expect that the extent to which the estimated abundance provides a 

good reflection of the actual abundance depends on whether there are other sources of 

heterogeneity in detectability that are not accounted for. 

Royle (2006) notes that ni does not necessarily need to be interpreted as site abun­

dance and that this model can also be merely seen as an alternative way to accommo­

date heterogeneity in detection probability, with ni being a generic random effect that 

induces variation in p. 
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2.2.5 Abundance model for repeated counts: the binomial 'N-mixture model' 

Rather than just recording the detection/non-detection of the species, sometimes 

counts of detected individuals can be recorded in each of the replicate surveys of sam-

piing sites (Figure 2-10). Given that counts contain more information than simple de-

tection/non-detection records, we can expect abundance to be estimated more reliably 

from such data. For this purpose, Royle (2004b) proposes a model that describes the 

counts recorded at site i, cu' as binomially distributed Cu - Bin(ni, r). As in the 

Royle-Nichols model, r represents the probability of detecting during a survey visit an 

individual present at the site and ni is the number of individuals at the site, which is 

assumed to remain constant during the whole survey period. Since ni is unknown, a 

mixture is used to account for its variability and inference is made on the parameters 

of the mixing distribution. 

replicates 

1 2 3 4 5 K 

0 1 0 2 0 

2 0 0 0 3 1 2 

3 0 0 0 0 0 

4 0 1 0 0 0 

5 0 0 0 4 0 0 

.~ 6 0 0 0 0 0 0 
ell 

7 0 0 0 0 0 

8 2 0 0 0 

9 0 0 0 0 0 0 

S 0 2 2 0 

Figure 2-10 Example of count history data set where S sites are surveyed K times 
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The likelihood can be written as 

L(T,8Ih) = n ( f [{Ii (~~) T"/(l - T)n,-,'1} pr(ndO)]) , (2.23) 
1=1 nt=max(cij) ]=1 

where Pr(ni 10) is the mixing distribution describing local abundance with parameters 

O. Note that, by using a binomial distribution to describe the counting process, the 

model implicitly assumes that no individual is counted more than once within each 

survey visit. So, although we treat this as a model for detection data of unmarked indi-

viduals (e.g. in Figure 2-7), the model in fact implies that somehow the surveyor can 

distinguish individuals within a single survey (for instance due to the characteristics of 

the survey itself). 

In the literature this model is often simply referred to as the 'N-mixture model'. This 

terminology highlights the fact that the mixing component is based on site abundance, 

however it can be confusing. For instance, the Royle-Nichols model is also based on 

such a mixture. In this thesis when referring to this 'N-mixture model' we indicate the 

type of data (i.e. 'repeated counts', c.f. detection/non-detection in Royle-Nichols). In 

places we also use the term 'binomial N-mixture moder, to distinguish it from models 

we propose which use a different detection process. 

2.2.6 Multiple-season occupancy model 

Often, rather that estimating occupancy at a given point in time, there is interest in as-

sessing how occupancy changes over time. In this case, the sampling protocol involves 

collecting detection/non-detection data at a number of sampling sites over several 

sampling seasons, with repeat surveys being carried out within each season. The de-
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sign therefore involves two levels of replication with primary sampling periods (i.e. 

seasons) and secondary sampling periods nested within each primary period (i.e. re­

peat surveys). 

One option for the analysis of multiple season data is to fit the basic (single-season) 

occupancy model in section 2.1 separately to each season's data set. In practice this 

implies an assumption of independence in the occupancy status of each site between 

seasons. However, depending on the species and time scale of the survey, there might 

be dependence in the occupancy status of sites between seasons. Multiple-season data 

can be analyzed by explicitly modelling the mechanisms underlying occupancy dy­

namics as a first-order Markov chain (MacKenzie et al. 2003). Each state of the two­

state Markov chain represents the occupancy status of a given site, occupied or empty 

(Figure 2-11). A key assumption of the model is that the system is closed to changes in 

site occupancy within seasons but occupancy is allowed to change between seasons. 

Transitions between states are governed by the probabilities of colonization y and lo­

cal extinction E, and only depend on the occupancy status at the previous time step. 

Since, due to imperfect detection, the state 'occupied' in the Markov chain is not per­

fectly observed, the model is a Hidden Markov model. As in the basic single-season 

occupancy model, detection/non-detection data from repeat surveys at occupied sites 

are modelled as a series of independent Bernoulli trials with probability p. 



2 OCCUPANCY MODELS BASED ON DISCRETE SAMPLING 57 

1-E 

~ 

1 

E 

y 

Figure 2-11 Hidden Markov chain in the multiple-season occupancy model. 

The likelihood can be written as 

1-y 

(2.24) 

where S is the number of sampling sites, T is the number of seasons, l/Jl is the initial 

occupancy probability, ~o = [l/Jl 1 -l/Jd, Ph- t is a column vector with entries de-t, 

noting the probability of observing the detection history hi,t in site i and season t, 

conditional upon occupancy state, diag(Phi,t) is the diagonal matrix with the elements 

of Phi,t along its diagonal and ~ is the transition matrix ofthe Markov chain given by 

_ [1- E E] 
~- . 

Y 1-y 

While (2.24) assumes that the parameters are constant, the model can be readily ex-

tended to accommodate site covariates in any of the parameters. Colonization and 10-

cal extinction probabilities can also be expressed as a function of inter-season-specific 

covariates, and detection probability as a function of survey-specific characteristics. 
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2.3 Application example: analysis of Sumatran-wide tiger data set 

As an illustration, here we present the application of the occupancy modelling frame­

work discussed in this chapter to the analysis of the island-wide Sumatran tiger data 

set described in section 1.3.2. 

2.3.1 Method'S 

To match the discrete sampling protocol assumed by the models used, in which a 

number of replicate surveys are conducted within each sampling site, a detection/non­

detection history had been constructed by dividing transects into segments of 1 km in 

length, assigning' l' to those containing at least one detection and '0' otherwise. For 

the analysis, data were further collapsed into 5 km segments. This length was chosen 

to mitigate the dependence between consecutive replicates that, given tiger movement 

patterns, could be expected at smaller scales, but without compromising the results by 

the loss of data that would result when choosing a very coarse replicate length. To as­

sess the robustness of the results to moderate changes in the definition of replicates, 

models were also run using different segment lengths (4 and 6 km). 

Tiger detection/non-detection data were analyzed to estimate site occupancy ljJ using 

the basic occupancy model and three of the extensions presented in section 2.2: the 

'clustering model' (section 2.2.2), the 'beta-binomial model' (section 2.2.3) and the 

Royle-Nichols 'abundance model' (section 2.2.4). The 'clustering model' was consid­

ered relevant as lack of independence between detections in consecutive transect seg­

ments could potentially remain. The other two model types were included in the analy­

sis to relax the assumption of constant detection probability across sites. Although the 

surveys followed a well-specified common sampling protocol, some heterogeneity in 



2 OCCUPANCY MODELS BASED ON DISCRETE SAMPLING 59 

species detectability could be expected given the large spatial scale of the survey and 

the fact that the survey period spanned over two years. For instance, different teams 

surveyed different areas and surveys were subject to different meteorological condi­

tions, which could have an impact on how easily the species was detected. Most im­

portantly tiger abundance is likely to change depending on site characteristics and 

therefore species detectability can be expected to vary, with more footprint detections 

at sites with more individuals. For the discrete mixture that describes species site 

abundance in the' abundance model', a Poisson distribution and two of its generaliza­

tions to allow for zero-inflation and overdispersion (i.e. negative-binomial) were used. 

We incorporated site covariates into the models to explore the potential influence of 

biophysical and anthropogenic threat factors on occupancy. Tiger site occupancy was 

expected to vary across Sumatra, given that the island has a diverse topography rang­

ing from prey-rich lowlands to less productive rugged montane areas. Anthropogenic 

threats were also expected to be relevant predictors of tiger occupancy, with deforesta­

tion in particular being considered likely to be important. A set of nine potential ex­

planatory variables was provided with the data set. These covariate data were extracted 

using ArcGIS v9.3 software (ESRI) from layers obtained from several sources (Table 

2-1). Elevation, slope and distance covariates were extracted at a 30 m x 30 m resolu­

tion and a single value per site was obtained by averaging all the pixel values within 

each site. 
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Table 2-1 Set of candidate predictor variables considered for the analysis of the Su­
matran tiger data set. Original data were obtained from the following sources: 1 -
Digital Elevation Model from the Shuttle Radar Topography Mission (Rabus et al. 
2003), 2 - Indonesian National Coordination Agency for Surveys and Mapping, 3 -
Indonesian Ministry of Forestry, 4 - forest cover map (Uryu et al. 2010) 

Covariate 

elevation l 

distance to roads2 

distance to settlement2 

protection status3 

distance to forest4 

distance to forest edge4 

forest cover 4 

deforestation 4 

Description 

average elevation of the site 

average slope of the site 

average distance to nearest road 

average distance to nearest settlement 

1: site mostly inside a protected area, 0: otherwise 

average distance to nearest forest patch 

average distance to forest edge from within the 
forest 

percentage of the site covered by forest 

forest area (ha) removed between 2000 and 2008 

Candidate explanatory variables were standardized using a z-transformation. To assess 

for collinearity, Pearson correlations were calculated between the nine covariates. Two 

pairs of variables showed strong significant correlation: elevation and slope (r = 0.80, 

p < 0.001); forest cover and distance to forest (r = -0.78, P < 0.001). Covariates within 

each ofthese pairs were not included together within the same models. 

The analysis was performed obtaining maximum-likelihood estimates by numerical 

maximization, using the R-package RMark 2.0.1 to run program MARK 6.1 for the 

basic occupancy and abundance (Poisson and negative binomial) models and our own 

MA TLAB scripts for the clustering, beta-binomial and abundance (zero-inflated Pois-
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son) models. Model selection was perfonned using AICc to compare model fit, with 

the effective sample size defined as the number of sampling sites. For the best model, 

individual site estimates (occupancy and abundance) were derived from the regression 

coefficient estimates (/l). 

2.3.2 Results 

Tiger footprints were detected in 206 out of 394 cells, which corresponds to a naiVe 

occupancy estimate of 0.52. The model in the candidate set that best explained the ob­

served data was an 'abundance model' based on a Poisson mixture distribution to de­

scribe site abundance and four covariates in the regression on its parameter II.: average 

distance to forest, elevation, recent deforestation and protected area status. This model 

had much stronger support than the constant model 11.(. )r(.) (MICe = 60.7; Table 

2-2) and was considerably better than the best competing model with one covariate 

less (model without protected area status; MICe = 7.5). Adding one extra covariate 

only marginally improved model fit. The confidence interval for the corresponding 

regression coefficient (distance to road) included zero while the rest of the regression 

coefficients remained practically the same. 

There was no support for zero-inflation in the abundance distribution. Allowing for 

zero-inflation in the best fitting model led to a 1.5-unit increase in AIC, with a low 

zero-inflation parameter estimate (0.06) and practically the same regression coeffi­

cients as before. Models that allowed for overdispersion either did not provide a better 

fit or failed to converge. 
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Table 2-2 Model selection for the Poisson abundance model: best model among 
those with a given number of parameters Npar. Replicate length 5 km. 

Model Npar AIC ~AIC -2£ 

,1(. )r(.) 2 2187.9 60.7 2183.9 

A(dforest)r(. ) 3 2149.5 22.3 2143.5 

A(dforest + PA)r(.) 4 2140.6 13.4 2132.5 

A(dforest + elev + defor)r(.) 5 2134.7 7.5 2124.5 

A(dforest + PA + elev + defor)r(.) 6 2127.2 0.0 2115.0 

A(dforest + PA + elev + defor + droad)r(.) 7 2127.8 0.6 2113.5 

Note - dforest: distance to forest, PA: protection status, elev: elevation, defor: deforestation 
and droad: distance to roads. L is the maximum value of the log-likelihood. 

The regression coefficients for A in the best model (Table 2-3) suggest that tiger site 

abundance, and therefore occupancy, was higher in habitat that was at lower elevation, 

closer to forest patches, with less recent forest clearance and within protected areas, 

results that are consistent with the initial expectations. The estimate and standard error 

(in brackets) for individual detection probability f was 0.13 (0.017) and the estimated 

X averaged across the entire island was 1.5 (0.20). The averaged derived occupancy 

estimate was 0.72 (0.039). The maps in Figure 2-12 show the estimated X and $ for 

each of the sampling sites. 
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Table 2-3 Best model estimated regression coefficients and odds ratios for a one unit 
increase in each of the covariates with standard errors in brackets. 

Covariate Regression coefficient Odds ratio 

fJ OR = eP 

elevation -0.23 (0.073) 0.79 (0.058) 

distance to forest -0.63 (0.116) 0.53 (0.062) 

deforestation -0.28 (0.085) 0.76 (0.064) 

protection status 0.39 (0.125) 1.48 (0.185) 

The basic, clustering and beta-binomial models provided a considerably worse fit to 

the data than the abundance model. Twice the negative maximised log-likelihood for 

the corresponding saturated models (with all covariates in ljJ) was respectively 50.0, 

24.4 and 12.8 units worse than that for the best abundance model (which has four co-

variates). Therefore these models do not have support as good explanations for the ob-

served data and there was no need to carry out covariate model selection within these 

model structures. 

Moderate variations in the segment length used to define the spatial replicates did not 

lead to substantial changes in the results. The same model provided the best explana-

tion for the data at 4 krn and 6 krn, and the support of the next highest ranked models 

remained consistent (Table 2-4). 
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(a) 

" 

(b) 

Figure 2-12 Site estimates for the best-fitting model: (a) estimated site average abun­
dance and (b) derived site occupancy. Dots represent sites with detections. 
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Table 2-4 Model selection for the Poisson abundance model: best model among 
those with a given number of parameters Npar. Replicate length 4 km and 6 km. 

Model (4 km) Npar AIC .t:.AIC -2£ 

A(. )r(.) 2 2496.2 55.8 2492.2 

A(dforest)r(. ) 3 2459.4 19.0 2453.3 

A(dforest + defor)r(.) 4 2452.3 11.9 2444.2 

A(dforest + elev + defor)r(.) 5 2445.5 5.1 2435.3 

A(dforest + PA + elev + defor)r(.) 6 2440.4 0.0 2428.2 

A(dforest + PA + elev + defor + droad)r(.) 7 2441.5 1.1 2427.2 

Model (6 km) Npar AIC .t:.AIC -2£ 

A(. )r(.) 2 1937.0 51.5 1933.0 

A(dforest)r(. ) 3 1906.2 20.6 1900.1 

A(dforest + defor)r(.) 4 1896.3 10.8 1888.2 

A(dforest + PA + defor)r(.) 5 1890.7 5.2 1880.5 

A(dforest + PA + elev + defor)r(.) 6 1885.5 0.0 1873.3 

A(dforest + PA + elev + defor + droad)r(.) 7 1886.8 1.3 1872.5 

Note - dforest: distance to forest, P.A: protection status, elev: elevation, defor: deforestation 
and droad: distance to roads. L is the maximum value of the log-likelihood. 
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2.3.3 Goodness-oi-fit 

As a goodness-of-fit check we ran a test based on parametric bootstrapping. The test 

was run for the best ranking model using the functionparboot in package Unmarked 

(version 0.9-3). This function simulates data sets according to the given model and, for 

each simulation, refits the model and evaluates a user-specified fit-statistic. Finally it 

compares the observed fit-statistic with the sampling distribution obtained from the 

simulations. As a fit-statistic we used three metrics of discrepancy: 

(ii) Pearson's chi-square: m2 = Li Lj (Oi) - Ei})2 / Ei} , 

2 
(iii) Freeman-Tukey chi-square: m3 = Li Ll.J Oij -.Jll0) , 

where the Oil 's are the observed data, each representing the outcome of survey j at site 

i, and Eij are the expected probabilities of observing a '1' in survey j at site i, given 

the estimated parameters. 

The results from running the test with 100 simulations did not indicate evidence of 

lack-of-fit with any of the three fit-statistics (Figure 2-13). The corresponding p-values 

were 0.69, 0.99 and 0.62. 
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Figure 2-13 Model fit assessment by parametric bootstrapping based on three dis­
crepancy metrics: (a) ml: sum of squared residuals, (b) m2: Pearson's chi-square, (c) 
m3: Freeman-Tukey chi-square. The dotted line is the observed statistic. The histo­
gram represents the sampling distribution based on 100 simulations. 

67 



2 OCCUPANCY MODELS BASED ON DISCRETE SAMPLING 68 

2.3.4 Discussion 

Understanding how underlying model assumptions are met is essential to the correct 

interpretation of the estimates obtained. The 'abundance model' that was ranked top in 

this analysis assumes that differences in abundance are the only source of heterogene­

ity in site-specific detection probabilities; otherwise bias may be induced in the estima­

tors. In this study, a well-defined protocol was developed and implemented to mini­

mize heterogeneity in detection probability. Nevertheless, some residual, unmodelled 

heterogeneity may still have remained, e.g. detecting footprints is easier in wetter sub­

strates and surveys were conducted over both wet and dry seasons. The model also 

assumes that tiger site abundance closely fits a Poisson distribution. Tigers are territo­

rial so it could be expected that their distribution exhibits some degree of under­

dispersion. Finally, as explained in section 2.2.4, the model is based on a functional 

dependence between species detectability Pi and the number of individuals ni at a site 

of the form Pi = 1 - (1- r)ni where r is the individual detectability. This relation­

ship implies that all individuals within each site are equally detectable at any replicate 

survey (i.e. transect segment here), that is, the system is closed to changes in abun­

dance. In our survey, sites were larger than female tiger territories, which might have 

little overlap (Karanth & Nichols 2002). The assumption of equal detectability in any 

replicate would therefore be violated, as not all of the tiger territories in the site would 

overlap with each transect segment. However, a relationship of increased detection 

probability with increased abundance can still be expected, with greater tiger numbers 

resulting in an increase in the area within a site covered by their territories, where the 

species is detectable. When there are few individuals per site and low detectability, the 

binomial expansion of (1 - r)ni shows that the relationship assumed by the model is 
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well approximated by a linear function, Pi = rni> which would be compatible with a 

scenario of site coverage proportional to abundance. Therefore, although we are cau­

tious about interpreting our.it estimates as absolute numbers, we believe they provide a 

valuable tool to assess differences in relative tiger abundance across the landscape and 

their relationship to environmental and anthropogenic factors. 

We ran a test to assess how our best ranking model fits the data. It is important to 

highlight here that goodness-of-fit is an area that has been explored very little to date 

in the context of occupancy modelling. To our knowledge, the only work that ad­

dresses this issue is MacKenzie and Bailey (2004), which explores the performance of 

a goodness-of-fit test for the basic occupancy model. The approach followed in their 

paper is also based on parametric bootstrapping but is different from the one used here 

in that it computes a fit-statistic from the observed and expected frequencies of en­

counter histories. One difficulty with this type of approach is that it can be difficult to 

implement when dealing with large histories and when missing values or continuous 

covariates are present. The method included in package Unmarked, which we use in 

our analysis, is much easier to implement. However there has not been any study for­

mally evaluating the performance of this method and the various fit statistics that can 

be used for the different kinds of occupancy models, so this remains an area that re-

quires further development. 



3 STUDY DESIGN FOR THE BASIC 

OCCUPANCY MODEL 

To ensure that studies provide meaningful results, and that therefore valuable monitor­

ing resources are not wasted, it is critical to pay attention to survey design (Yoccoz, 

Nichols & Boulinier 200 I; Legg & Nagy 2006). It is not only important to design the 

study so that what are considered biologically significant results can indeed be de­

tected, but also to ensure that this is achieved in an efficient way. 

In this chapter we examine various aspects related to study design for the basic occu­

pancy model. The first three sections deal broadly with the same topic: the determina­

tion of how much survey effort is required and how this effort is best allocated, that is, 

how to choose the number of sampling sites S and the number of replicate surveys K. 

First, in section 3.1 we address study design assuming that the design target is set in 

terms of estimator quality. The main focus of this section is on survey effort trade-offs. 

We discuss optimal replication recommendations derived from large-sample properties 

of the estimators, which we extend to consider cases with detection probability as part 

of the design criteria. The need to use simulations for design when the sample size is 

small is also illustrated. This work has been published in Guillera-Arroita et af. (2010). 
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Second, in section 3.2 we address study design from the point of view of achieving a 

given power to detect a difference in occupancy between two samples, for instance 

changes between two points in time. The focus of the section is on determining the 

number of sites than need to be surveyed. We assume that the amount of replication is 

already decided upon, however we also explore how this choice affects the required 

sample size. An approximate formula for sample size determination is derived and its 

performance is assessed via simulations. The performance of alternative significance 

tests is also explored in this context. This work has been accepted for publication in 

Methods in Ecology and Evolution. 

Third, in section 3.3 we revisit the work in section 3.1 formally acknowledging that 

the initial information on the parameter estimates, which is required as input for study 

design, is usually very uncertain. We discuss Bayesian and sequential design ideas, 

methods that provide more robust designs in the face of poor initial parameter esti­

mates. In particular we evaluate the performance of a two-stage design. We show how 

such an approach can provide increased efficiency compared to a single-stage design 

and we explore how the optimal allocation of effort into the two stages changes de­

pending on the prior parameter knowledge. 

Finally, to complete the chapter, in section 3.4 we discuss a somewhat different design 

aspect. We review the assumption of closure made by the basic occupancy model and 

show that the general recommendation of sampling with replacement given by Kendall 

and White (2009) for occupancy studies based on spatial replication in which the spe­

cies occupies the sites partially is not always adequate. This work has been published 

in Guillera-Arroita (2011). 
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3.1 Optimal replication 

3.1.1 Background 

Several papers have addressed the issue of study design in the context of occupancy 

modelling, and in particular the allocation of survey effort into number of sampling 

sites and amount of replication within sites. MacKenzie et al. (2002), Tyre et al. 

(2003) and Field et al. (2005) provide some guidance on the choice of number of rep­

licate surveys based on simulations. MacKenzie and Royle (2005) present the first de­

tailed investigation of this subject, deriving recommendations based on the analytic 

consideration of the large-sample properties of the occupancy estimator for different 

survey designs and cost functions. Bailey et al. (2007) describe a software tool (GEN­

PRES) developed for exploring design trade-offs for different occupancy models, us­

ing either analytic approximations or simulations. 

In this section we explore the issue of study design for the basic occupancy model 

when the design target is set in terms of estimator quality, focusing on survey effort 

allocation trade-offs. We discuss corresponding design recommendations based on 

large-sample properties of the estimators, extending existing guidelines for the case in 

which detection probability is a parameter of interest. We also provide an overview of 

the complete design procedure, illustrating the need to use simulations for design when 

sample size is small. Throughout this section (and likewise in sections 3.2 and 3.1) we 

assume a standard survey design and that all the individual surveys involve the same 

cost. Consequently our constraint when assessing optimality is total survey effort, that 

is, the product of the number of sampling sites and the number of replicate surveys per 

sites (E = SK). 
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3.1.2 Design recommendations based on asymptotic approximations 

Design recommendations can be derived for a standard survey design using the as­

ymptotic variance-covariance expressions in (2.13) which describe analytically how 

estimator precision changes with changes in design parameters. These expressions as­

sume that both occupancy and detection probabilities are constant in time and space. 

Although in practice this simplification may not always be reasonable, it is convenient 

in order to provide general study design guidelines. Note also that these expressions 

are a function of 1/J and p. Therefore in order to identify an optimal design it is neces­

sary to assume some values for the parameters to be estimated. 

In the sampling protocol under consideration there are different ways to allocate the 

total survey effort available: one may survey more sites with less replication per site or 

vice versa. For a fixed total effort E, increasing replication has two opposing effects on 

the variance of $: (i) it decreases the additional term introduced to the binomial pro­

portion variance due to imperfect detection, as the more replication the less likely it is 

to miss the species at occupied sites and the more precisely detection probability is 

estimated; (ii) it increases the binomial proportion variance due to the reduction in 

number of sampling sites. Therefore there is an optimal amount of replication to carry 

out with respect to the variance of the occupancy estimator. For instance, if 1/J = 0.5 

and p = 0.4 the variance is minimized if each site is surveyed four times (Figure 3-1). 



3 STUDY DESIGN FOR THE BASIC OCCUPANCY MODEL 74 

3.0 

~ 2.0 

1.0 

8 10 

2.0 

w 1.5 

~ ... 
:> 1.0 

4 Ii 8 10 
K 

0.0 

-0.5 
w 

'" 
l-1.0 
> 
0 
u 

-2.0 
2 4 6 8 10 

K 

Figure 3-1 Asymptotic variance and covariance of the occupancy and detectability 
estimators as a function of the number of replicates K given a fixed effort E = SK, 
t/J = 0.5 and p = 0.4. The dashed line in the first plot shows the variance of the oc­
cupancy estimator under perfect species detection (p = 1). 

The optimal replication results are independent of the total effort employed (assuming 

the sample size is large). This can be seen immediately by substituting S = E / K in 

(2.13), as E only scales the variance-covariance expressions 
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~ 1 { 1- p' } 
var(l/J) = "El/JK (1-l/J) + p' _ Kp(l- p)K-l ' 

A 1 P(1-P){ p' } 
var(p) = E l/J p' - Kp(l _ p)K-l ' (3.1 ) 

~ A 1 { 1 - p' } 
coV(l/J,p) = -"E pK p' _ Kp(l- p)K-l . 

MacKenzie and Royle (2005) provide a table with the optimal number of replicate 

surveys to carry out per site to minimize the variance of the occupancy estimator, as a 

function of the assumed values for l/J and p (Table 3-1a in page 79). Some general ob-

servations can be drawn from these results (also illustrated by Figure 3-2). On the one 

hand, the higher the detection probability the lower the optimal replication, which is 

expected as fewer visits are necessary to establish with reasonable certainty whether 

sites are occupied or not. When p is high the optimal design is always K = 2 and any 

effort invested in extra replication (K > 2) is 'wasted' with the variance increasing as 

S is reduced, as dictated by the variance of a binomial proportion. On the other hand, 

the higher the occupancy probability the higher the optimal replication is. The extra 

variance due to imperfect detection has more impact for high occupancy probabilities 

(Figure 2-5) and therefore it is more relevant to have replication in these cases. This 

leads to the general recommendation of surveying more sites less intensively for rare 

species and fewer sites more intensively for common species. It is useful when consid-

ering the results in Table 3-1 to realize that, although the optimal amount of replication 

is quite high when occupancy is high and detectability is low, the shape of the variance 

curve is in these cases rather flat around the maximum, so moderate departures from 

the optimal replication are not very critical (Figure 3-2). It is also worth noting that, in 

general, using less replication than the optimal has more impact than vice versa. 
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Figure 3-2 Asymptotic variance of the occupancy estimator as a function of the 
number of replicates K given a fixed effort E, and different levels of occupancy and 
detection probability (black p = 0.8, green p = 0.5, red p = 0.2). 

Recommendations can also be produced after incorporating the variance of p as part of 

the design criterion, which is useful when detectability is itself a parameter of interest. 

While for many studies the primary object of inference is the probability of occupancy, 

with the probability of detection being regarded merely as a nuisance parameter, there 

are circumstances when the latter is a quantity of interest in its own right. For instance, 

this is the case when there is interest in evaluating the performance of detection meth-

ods (e.g. Mortelliti & Boitani 2008). Detectability may also be of interest when it re-

fleets some important characteristic of the ecological system. For example it could be 

associated with reproduction (Best & Petersen 1982). Detectability estimates provide 

information on the number of times that a site needs to be visited before stating with a 

given degree of certainty whether the species of interest is present or absent at that par-

ticular location. This information can be especially relevant in the context of environ-

mental impact assessments. Under these scenarios there is interest in obtaining a pre-

cise estimate of detection probability. 
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Like the variance of.,p, the variance of fi also starts by decreasing as more replication 

is added to the design but then, as p* approaches unity, the variance of fi tends to a 

constant level as then it is dictated by the total amount of effort, no matter whether the 

effort is spent on additional sites or replicates (Figure 3-1). This indicates that includ­

ing p as part of the design criterion will lead to recommendations with more replicates 

to survey per site. 

There are different criteria that can be used for optimal design when there is more than 

one parameter of interest. For a discussion of the merits of the different methods see 

Atkinson and Donev (1992, p. 106). One common approach is to minimize the trace of 

the variance-covariance matrix, that is, the sum of the variances of the parameters. 

This is called A-optimality. Alternatively, D-optimality minimizes the determinant of 

the variance-covariance matrix, that is, the area of the elliptical confidence region de­

termined by the multivariate normal distribution of the estimators assuming large sam­

ple. Note that only considering the variance of fi as a criterion for design would sug­

gest that the best option is to sample one site and dedicate all the effort to further repli­

cation within this site. It is obvious that this is not an appropriate approach, as there is 

no guarantee that the species would be present in the site and therefore that informa­

tive data on its detectabi lity can be collected. The asymptotic variance of fi always de­

creases with K, however as K increases to such levels that the number of sites becomes 

very low, the asymptotic approximations are no longer suitable. Of course, if the aim 

of the study is solely to estimate detectability, then the obvious approach would be to 

dedicate all the survey effort to sample sites where the species is known to exist. 
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The optimal number of replicate surveys to be carried out at each sampling site using 

the A-optimality and D-optimality criteria for design is presented in Table 3-1 band 

Table 3-1 c. Broadly the patterns are similar to those of Table 3-1 a but, as expected, the 

optimal number of replicates increases, driven by the variance of p. The largest 

changes are observed for low probabilities of occupancy and low probabilities of de­

tection respectively. As happens when we consider the variance of the occupancy es­

timator only, the optimal number of replicate surveys in these two cases is determined 

by the parameter values (ljJ and p) irrespective of the survey total effort (E). 

Given (3.1) it is evident that that the optimal number of replicates is the same regard­

less of whether the study is designed to (i) minimize survey effort for a target estimator 

variance (measured through any of the three criteria discussed above) or (ii) minimize 

estimator variance for a target survey effort. Once the amount of replication is decided, 

then the number of sites to survey is to be determined. If the study is designed to 

minimize estimator variance for a given survey effort E, then the number of sites is 

derived as S = E / K. On the other hand, if the study is designed to minimize the sur­

vey effort needed to achieve a target estimator variance, the number of sites is derived 

using the expressions in (2.13). The following section provides a diagram showing the 

complete design procedure, including the consideration of small sample sizes and con­

sequent need to use simulations as a tool for design. 
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Table 3-1 Optimum number of replicate surveys to be carried out at each sampling 
site for a standard design with constant per-survey costs when the criterion for de­

sign is based on minimizing (a) the variance of ljj (MacKenzie and Royle 2005), (b) 
the sum of variances of ljj and p (A-optimality) and (c) the determinant of the vari­
ance-covariance matrix (D-optimality); based on estimator properties that assume 
large sample sizes. 

l/J 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(a) 

p 0.1 14 15 16 17 18 20 23 26 34 
0.2 7 7 8 8 9 10 11 13 16 
0.3 5 5 5 5 6 6 7 8 10 
0.4 3 4 4 4 4 5 5 6 7 
0.5 3 3 3 3 3 3 4 4 5 
0.6 2 2 2 2 3 3 3 3 4 
0.7 2 2 2 2 2 2 2 3 3 
0.8 2 2 2 2 2 2 2 2 2 
0.9 2 2 2 2 2 2 2 2 2 

(b) 

p 0.1 19 16 17 17 19 20 23 27 34 

0.2 13 10 9 9 9 10 11 13 16 

0.3 10 7 7 6 6 7 7 8 10 

0.4 8 6 5 5 5 5 5 6 7 

0.5 7 5 4 4 4 4 4 5 6 

0.6 6 4 4 3 3 3 3 4 4 

0.7 5 4 3 3 3 3 3 3 4 

0.8 4 3 3 2 2 2 2 2 3 

0.9 3 2 2 2 2 2 2 2 2 

(c) 

p 0.1 19 19 20 21 23 24 27 30 36 

0.2 9 10 10 11 11 12 13 14 17 

0.3 6 6 7 7 7 8 8 9 11 

0.4 5 5 5 5 5 6 6 7 8 

0.5 4 4 4 4 4 4 5 5 6 

0.6 3 3 3 3 3 4 4 4 5 

0.7 3 3 3 3 3 3 3 3 4 

0.8 2 2 2 2 2 2 3 3 3 

0.9 2 2 2 2 2 2 2 2 2 
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3.1.3 Small sample size considerations and design procedure 

Small sample sizes are not uncommon in ecological studies. In particular they are fre­

quently encountered in surveys linked to conservation projects, as these often have 

limited resources and tend to focus on rare species. Pilot studies, by their nature, also 

tend to deal with relatively small amounts of data. Designing an occupancy study 

based on large-sample approximations is not appropriate if the intended sample size is 

small, especially when dealing with rare and elusive species, as then the probabilities 

of occupancy and detection are low. Under these circumstances, the actual quality of 

the estimators may be very different from that predicted by the asymptotic expressions 

(Figure 2-6) and the design identified as optimal using large sample approximations 

may not be the best available (as illustrated in an example below). In these cases the 

most appropriate method for designing a study relies on the use of simulations. 

Figure 3-3 illustrates the design procedure for occupancy surveys when the design tar­

get is set in terms of estimator quality. Study design should start with a clear statement 

of the project requirements regarding the quality of the estimators (e.g. maximum al­

lowed variance) and total survey effort available. With this in mind the design can be 

made to either (A) maximize the quality of the estimators or (B) minimize the total 

effort employed. Initial values for the parameters to be estimated need to be assumed. 

These can be based on the results of a pilot study, on studies carried out for the same 

or similar species in comparable circumstances or on expert opinion (see section 3.3 

for methods to formally address the uncertainty in the initial estimates). The first issue 

to address is whether the sample size can be considered large enough to base the 

choice of design parameters on asymptotic approximations. If the total effort available 

is large and the probabilities of occupancy and detectability are expected to be rela-
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tively high, the design can be based safely on these approximations. Otherwise, a 

simulation study is required, in which the actual quality of the estimators is evaluated 

for different design parameters. To assist in this process, we developed a software tool 

(SODA) that runs an automated search for a suitable design, given the assumptions 

and requirements specified by the user (Appendix A.I). Once a candidate design is 

identified, either through asymptotic approximations or simulations, it is necessary to 

verify whether it fulfils the project requirements. If it does, the study can proceed to 

data collection. Otherwise, if no suitable design is found, the objectives and constraints 

of the project need to be reconsidered: can more resources be allocated to this study? 

Could less precise estimates still be informative for the purpose of the study? If the 

answer to these questions is negative the study should not continue as it would be a 

waste of resources that could be used elsewhere. If the project objectives or constraints 

are redefined, a new design should be sought given the new requirements. 

Example 

As an illustration of the design process let us assume that: (i) our target is for the occu­

pancy estimator to be approximately unbiased with a maximum SE of 0.075, i.e. max­

imum root mean square error (RMSE) = 0.075, (ii) the maximum effort that can em­

ployed in the study, Emax, is 350 and (iii) the probabilities of occupancy and detectabil­

ity are thought to be tjJ ;:::: 0.2 and p ;:::: 0.3. To start with we can look at the recommen­

dations derived from the asymptotic properties of the estimators to identity the optimal 

number of replicates to be used, in this case K = 5 (Table 3-1 a). Let us first assume 

that the priority is to minimize the variance oftjJ (option A in Figure 3-3). In this case 

we will make use of the total available effort and the number of sites to be surveyed is 

derived as S = E / K = 70. We should now evaluate the variance of the occupancy es-
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timator under this design (K = 5 and S = 70) to verify whether it is within the target. 

From (2.l3) we getthat var($) = 0.0033, which gives a SE of 0.057. Assuming large 

sample size, the estimator is unbiased, so its RMSE is also 0.057. This is within the 

target set (0.057 < 0.075) so the design seems good. In order to verify that the approx­

imations made were appropriate we would now run simulations. From 50,000 simula­

tions we estimate that the actual SE of the occupancy estimator (0.070) is higher than 

predicted by the approximation (0.057), although still within the project target, so the 

design could be kept. However, given that the approximation was not very accurate it 

may be worth exploring other combinations of parameters as there is no guarantee of 

the optimality of the chosen design. For instance, a design with K = 6 and S = 58 

would be a better choice (Table 3-2). 

Let us now repeat the process assuming that the priority is on minimizing the total ef­

fort E (option B in Figure 3-3). Now the number of sites to be surveyed is derived 

from the expression of the asymptotic variance of the occupancy estimator in (2.13), 

setting yare $) to the maximum allowed (0.075 2
), which gives S = 41. The total effort 

required for this design (205) is within the target that our project set (350) so the de­

sign seems good. However, simulations show that the occupancy estimator has some 

bias and large variance; its RMSE (0.1391) is almost twice the maximum RMSE al­

lowed by the project (0.075), which renders this design unsuitable. The asymptotic 

approximation is poor for the sample size so it is best to choose the design via simula­

tions. By exploring different combinations of K and S we can identify the design that 

fulfils the variance target with minimum effort. In this case, K = 7 and S = 43 would 

be a good choice. Note that the number of replicates (7) differs from the optimal num-
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ber suggested by the asymptotic approx imat ions (5) and the total effort required IS 

substantially larger (30 1 vs. 205). 
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Table 3-2 Actual and asymptotic root mean-squared errors for $ and p under differ-
ent study designs assuming underlying probabilities ljJ = 0.2 and p = 0.3. 

K 

4 5 6 7 8 9 

E~250 

S 62 50 42 36 31 28 

aRMSE $ / P (xl02) 6.9/9.6 6.8/8.6 6.917.9 7.117.5 7.517.3 7.817.1 

RMSE $ / P (xlO2) 12.6/10.1 10.6/9.3 9.6/8.7 9.3/8.4 9.6/8.2 9.6/8.0 

RMSE' $ / P (xlO2) 9.3/9.7 8.2/9.0 7.7/8.4 7.5/8.1 7.7/8.0 7.917.7 

Boundary estimates 1.1% 0.7% 0.5% 0.5% 0.5% 0.5% 

E~300 

S 75 60 50 43 37 33 

aRMSE $ / P (xlO2) 6.3/8.7 6.217.9 6.317.3 6.6/6.9 6.9/6.7 7.2/6.5 

RMSE $ / P (xlO2) 10.1/9.2 8.4/8.4 7.817.8 7.517.5 7.917.4 8.117.2 

RMSE' $ / P (xI02) 8.2/8.9 7.2/8.2 6.917.7 6.717.4 7.017.3 7.217.1 

Boundary estimates 0.5% 0.3% 0.2% 0.2% 0.2% 0.3% 

E~350 

S 87 70 58 50 43 39 

aRMSE $ / P (xlO2) 5.8/8.1 5.717.3 5.9/6.8 6.116.4 6.4/6.2 6.6/6.0 

RMSE $ / P (xlO2) 8.3/8.5 7.017.6 6.617.2 6.7/6.9 6.9/6.7 7.116.6 

RMSE' $ / P (xlO2) 7.4/8.4 6.517.6 6.317.2 6.3/6.9 6.5/6.6 6.6/6.5 

Boundary estimates 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 

A-opt criterion (xlO3) 14.1 10.7 9.5 9.2 9.3 9.3 

D-opt criterion (xlO-5
) 3.28 2.21 1.95 1.96 2.04 2.05 

E is the total survey effort and K the amount of replication. Asymptotic root mean-squared error 
(aRMSE) was obtained analytically. Actual root mean-squared error (RMSE) was estimated from 
5000 simulations. The frequency of boundary estimates ($ = 1) and the actual root mean squared 
error after removing these (RMSEj are shown. For E = 350, the sum of the mean-squared errors 
(A-optimality criterion) and the determinant of the MSE matrix (D-optimality criterion) are also 
reported. 
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3.2 Power analysis 

3.2.1 Background 

Rather than simply making inference about species occupancy at a given point in time, 

area or habitat type, studies often ultimately aim to make inference about potential dif­

ferences in occupancy. The interest might be in assessing differences temporally (e.g. has 

occupancy changed since the last survey?) or spatially (e.g. is occupancy different in these 

two areas or habitat types?). These types of question can be relevant in various applica­

tions, from theoretical ecological studies to more applied impact assessments. 

In this section we reconsider the design of occupancy studies when the interest is in 

assessing whether there are differences in occupancy between two samples, e.g. two 

points in time, areas or habitat types. The design procedure discussed in section 3.1 is 

based on targets set in terms of estimator precision: once the amount of replication is 

decided upon, sample size is determined either as the minimum number of sites to 

achieve this estimator precision target or as many sites as allowed by the available ef­

fort (and checking whether the target is met). Alternatively, the criterion for selecting 

the size of the sample can be expressed in terms of power, that is, the probability that 

the study will detect a significant difference in occupancy, given that the true differ­

ence is of a given size (Cohen 1988). A particularly beneficial aspect of power analy­

sis is that it requires an explicit consideration of what constitutes a biologically signifi­

cant result, allowing us to determine whether a given design renders our study a good 

chance of producing statistically significant results when the actual effect size is bio­

logically significant. 
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While simulations provide a tool for power analysis, they can be time-consuming. 

Closed formulae can sometimes be derived to determine more easily the sample size 

required to achieve a given power. The development and performance evaluation of 

such formulae for a test comparing two independent binomial proportions has received 

a lot of attention in the literature (e.g. Cochran & Cox 1957 p.27; Fleiss 1973 p.30; 

Casagrande, Pike & Smith 1978; Walters 1979; Fleiss, Tytun & Ury 1980; Ury & 

Fleiss 1980; Dobson & Gebski 1986; Gordon & Watson 1996; Vorburger & Munoz 

2006). These formulae are routinely used in different areas, such as the design of clini­

cal trials (Donner 1984). However, since they assume that the outcome of the experi­

ment, whether success or failure, is always observed without error, they are not appli­

cable for occupancy studies, except for the unusual case in which species detection is 

perfect or enough replicate surveys are carried out to ensure its detection is practically 

certain. 

To our knowledge, sample size formulae for models that account for imperfect detec­

tion when comparing two independent binomial proportions have not been proposed 

or evaluated to date. In this section we address this problem. We provide an approxi­

mate expression to calculate power and derive a closed-formula that allows the num­

ber of sites that need to be sampled to be determined, while accounting for species de­

tectability. Using this expression we examine how the required sample size changes 

depending on the allocation of survey effort between number of sites and number of 

replicate visits and thus revisit the issue of optimal replication addressed in section 3.1 

from the point of view of minimizing the variance of the estimator in single-season 

studies. Since the derived sample size formula involves asymptotic approximations its 

performance needs to be assessed, as this is essential to understand its applicability. 
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For this we ran simulations and checked how the resulting sample sizes compare to 

those indicated by the formula. In connection to this we evaluate the performance of 

various significance tests. In the context of studies that assess occupancy changes in 

time, we also address the case in which Markovian dependence is assumed in the oc­

cupancy status of sites between seasons, and illustrate the utility of our results when 

designing to detect a trend in multiple-season studies. 

3.2.2 Power expression 

A formula to assess the power to detect a difference in occupancy that would be 

achieved under a given study design and underlying probabilities of occupancy and 

detection can be derived by considering the properties of the estimators. Here we as­

sume again a standard sampling design in which K replicate surveys are carried out at 

S sampling sites, and constant probabilities of occupancy and detection. Under the as­

sumption of large sample size, the maximum-likelihood estimator of occupancy is un­

biased and normally distributed..jJ - N(tP, (12), where (12 is the asymptotic variance 

of the occupancy estimator in (2.13). As discussed before, (12 has the form of the vari­

ance ofa binomial proportion with an extra term F = (1 - p*)/{p* - Kp(1- p)K-l} 

introduced by the imperfect detection. The term F is a function of detectability p and 

the number of replicate surveys per site K, and tends to zero as p' tends to 1. 

Let tPl and tP2 be the true underlying occupancy probabilities in the two samples. For 

a significance level a (type I error), the critical region for a 2-tailed test is bounded 

by ±Za/2 .J (1{+(1i. Consequently, the power to detect a difference in occupancy, that 

is, the probability of observing a difference that falls within the critical region, is 
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(3.2) 

where (Jl = l/1i(1-l/1i + Fi)/Si i E {1,2}, f3 is the probability of type II error and 

ct>(x) the value of the cumulative distribution function for the standard normal distri-

bution at x. 

Let R be the proportional difference in occupancy, so that l/12 = l/11 (1 - R), with 

R > 0 representing a decline, and R < 0 an increase. Note that R E [(l/11 - 1)/l/11' 1] 

to ensure that l/12 E [0, 1]. The plot of G as a function of effect size (R here) is known 

as the 'power curve' of the test (Figure 3-4). All power curves pass through (0, a) 

since an effect of magnitude zero corresponds to the null hypothesis which by defini-

tion is rejected with probability a. As the effect size increases, the probability of re-

jecting the null hypothesis increases. For a given effect size, power increases as the 

number of sampling sites increases (Figure 3-4a). Power also increases with the num-

ber of replicate surveys (Figure 3-4b), approaching the power expected for a binomial 

experiment with perfect detection as p' tends to one (but note that here increasing rep-

lication implies an increase in total effort; see section 3.2.4 for fixed survey effort). A 

similar behaviour takes place for increases in detection probability, with power saturat-

ing as p tend to one (Figure 3-4c). The larger the initial occupancy probability l/11, the 

larger the power to detect a given proportional difference R, as this translates into a 

larger absolute occupancy difference l/11 - l/12 (Figure 3-4d). 
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Figure 3-4 Power curves for testing a difference in occupancy between two samples. 
In all four panels the solid line represents a reference case with "'1 = 0.5 and p = 
0.5, K = 3, S = 100 for both survey periods. In each panel one of these parame­
ters is changed: (a) S = 50 (dash), S = 500 (dot); (b) K = 2 (dash), K = 6 (dot); (c) P 
= 0.3 (dash), p = 1.0 (dot); (d) "'1 = 0.3 (dash), "'1 = 0.7 (dot). Significance level set 
to a = 0.05. Note R < 0 represents cases in which there is an increase in occupancy 
probability. 
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3.2.3 Sample size formula 

Equation (3.2) can be solved numerically to determine the number of sites that need to 

be surveyed to achieve a given power. However, an approximation is possible that 

gives a convenient expression in closed form. Without loss of generality it can be as-

sumed that l/Jl -l/J2 > O. In this case the second term in equation (3.2) can be consid-

ered negligible as it represents the probability of detecting an apparent increase when 

in reality there is a decline. This probability will be small and corresponds to cases in 

which an incorrect inference about the sign of the occupancy difference would have 

been made. The power to detect can therefore be written now as 

(3.3) 

From (3.3), assuming that the same number of sites are to be surveyed in both occa-

sions, and considering that by definition 1 - fJ = <I>(zp), and by symmetry <I>(x) = 

1 - <1>( -x), the number of sites S that have to be surveyed to achieve a given power 

to detect a difference in occupancy can be derived as a function of the significance 

level and effect size, given l/Jv Pi' P2, Kl and K2, as 
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3.2.4 Survey effort allocation trade-off 

The trade-off in survey allocation was discussed in section 3.1, in tenns of the optimal 

amount of replication to minimize estimator variance (or other related criteria). Obvi­

ously, this trade-off can also be appreciated when looking at survey design from the 

point of view of the power to detect an occupancy difference between two samples. 

Figure 3-5 explores this and shows how the amount of total survey effort E = KS 

needed to detect a 50% occupancy decline with power = 0.8 changes depending on 

how much replication is used. The same general observations as in Figure 3-2 can be 

made. When detectability is high the design requiring minimum effort is always that 

with K = 2. As p decreases, the optimum K increases (and so does the required 

minimum effort). The higher the initial occupancy, the larger the optimum K. Choos­

ing K smaller than the optimum has a much greater impact than otherwise. 

In fact, for the scenarios under consideration in Figure 3-5, which assume that detect­

ability is the same in both seasons, the value of K that minimizes the total survey effort 

required for achieving the target power largely corresponds to that which minimizes 

the variance of the occupancy estimator for the first survey season. There is only some 

slight discrepancy in more extreme cases of very low detectability together with high 

initial occupancy, as then the optimal K to minimize the variance of 1./Jl differs more 

from that required to minimize the variance of 1./J2' In these cases the optimal K in 

tenns of power was slightly lower, as we were assessing a decline, and thus the opti­

mal K to minimize the variance of 1./J2 would be lower than that of 1./Jl· 

Finally note in Figure 3-5b that, as 1./Jl decreases, effort increases. This is because the 

smaller the 1./Jl' the smaller is the absolute occupancy difference to be detected. 
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Figure 3-5 Minimum survey effort (E = SK) to achieve 80% power to detect a 50% 
decline in occupancy, for varying K and different scenarios of initial occupancy 1/J1 
and detectability p (a = 0.05). In both seasons p and K are kept the same. Top pan­
els (a) display cases with the same 1/Jl (black p = 0.8, green p = 0.5, red p = 0.2) 
while lower panels (b) compare cases with the same p (black 1/Jl = 0.8, green 1/Jl = 
0.5, red 1/J1 = 0.2). 

3.2.5 Testingfor significance in occupancy differences 

Various approaches can be used for testing the null hypothesis of no difference in oc-

cupancy between two samples (tP1 and tP2) ' One possibility is to determine signifi-

cance based on a z-test. Since the estimator of occupancy $ is unbiased and normally 

distributed with mean tP and variance (52 , the random variable D = $1 - $2 is nor-

mally distributed D - N (tPl - tP2, (5{ + (5i). Under the null hypothesis of no differ-
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ence D - NCO, (Jf + (Ji) so, for a given significance level a, the critical region for a 

two-tailed test is bounded by ±Za/2 .J (Jf + (Ji, where za/2 is the upper 100aj2-

percentage point for the standard normal distribution. Consequently, a difference 

would be considered significant if 

where .,pi are the maximum-likelihood estimates of occupancy and Bi are the corre-

sponding estimated standard errors, i E {1, 2}. This is in fact a Wald test (Morgan 

2008, p. 101) and is equivalent to assessing whether the confidence interval for the 

estimate of the difference in occupancy .,p1 -.,p2 includes zero. In practice, the likeli-

hood maximization is usually done via a logistic reparameterization. The test could in 

principle also be performed on the logistic scale, considering a difference significant if 

> Za/2, 

where Pi = logit(.,pa are the parameter estimates on the logistic scale and BPi are their 

corresponding estimated standard errors. 

Another possibility is to carry out a likelihood-ratio test (Morgan 2008, p. 80), which 

compares the fit of two models, where one (the null) is a special case of the other (the 

alternative). The test involves fitting both models and is based on the ratio of their 

maximum-likelihood values. The null model here would be a model with a common 

parameter for occupancy across both periods (1/11 = 1/12 = 1/1) 
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L(tjJ,PlIP2Ih) = {tjJSdlp~Tl(1_ Pl)K1Sdl-dTl} (1- tjJpDS1-Sdl 

X {tjJSd2P:T2 (1 - P2)K2Sd2-dT2 } (1 _ tjJp;)S2-Sd2, 

while the alternative would allow for different occupancy parameters for each of the 

two periods. In practice this involves fitting two separate models, one to each data set. 

A difference would be considered significant at the a level if 

- 2Lo + 2LA > X~:l' 

where Lo and LA are the maximum log-likelihood values for the null and alternative 

models respectively and X~:l is the upper 100a-percentage point for the chi-square 

distribution with one degree of freedom. 

A third option is to perform a score test (Morgan 2008, pp. 102-103), which would 

render an occupancy change to be significant at the a significance level if 

where G is the scores vector and J is the information matrix for the alternative model 

evaluated at the MLEs of the null model. The score test may be performed using either 

the expected or the observed information matrix. In general the former is preferred as 

it has been shown that it outperforms the latter in some applications (e.g. Catchpole & 

Morgan 1996) and that the use of the observed information can be problematic in 

some others (e.g. Morgan, Palmer & Ridout 2007). Since the alternative model is 

equivalent to analyzing the two occupancy data sets separately, we have that 
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o ) ( 11 and 1= 
O2 0 

where Gb 0i and Ii are the basic occupancy model scores vector and information ma-

trices for time i, i E {1, 2}, given by (2.10), (2.11) and (2.12). 

3.2.6 Performance of significance tests 

The Wald, likelihood-ratio and score tests are all based on asymptotic approximations 

and are asymptotically equivalent under the null hypothesis. However, for small sam-

pie sizes, the tests can produce contradictory results and an obvious question arises: 

which test to use? There are some general properties of the tests that can influence this 

choice. On the one hand the likelihood-ratio test has the disadvantage that it requires 

fitting both the null and alternative models, while the other tests require fitting only 

one (alternative model for Wald test; null model for score test). However, since the 

models under consideration are rather simple, this feature is not crucial for this appli-

cation. On the other hand, the likelihood-ratio test and the score test based on the ex-

pected information matrix have an interesting property: they are invariant under a 

reparameterization, unlike the Wald test. Of course, in any case, the most important 

consideration is the actual performance of the tests when the sample size is small. In 

order to assess this we ran simulations comparing the power achieved by each of them 

for increasing effect size R. We started with zero effect, to check whether the size of 

the tests was close to the nominal significance level. We first assessed a scenario with 

l/Jl = 0.8, P = 0.5, S = 50 and K = 3, used as a reference case. We then simulated 

variations of this scenario, by changing one parameter at a time (Table 3-3). 
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Table 3-3 Scenarios simulated to assess the performance of significance tests for dif­
ferences in occupancy probability. The parameter value that is changed with respect 
to the reference case is underlined. 

Scenario l/11 p S K p' 

Case 1: Reference case 0.8 0.5 50 3 0.875 

Case 2: Increase p 0.8 0.8 50 3 0.992 

Case 3: Increase S 0.8 0.5 250 3 0.875 

Case 4: Decrease l/11 0.4 0.5 50 3 0.875 

Case 5: Increase K 0.8 0.5 50 1 0.992 

Case 6: Increase K 0.8 0.5 50 lQ 0.999 

Note: p' = 1 - (1 _ p)K 

In all scenarios 5000 simulations were run, which should provide sufficiently precise 

power estimates (SE = ..)0.5(1 - 0.5)/5000 = 0.007 for power = 0.5, the most de-

manding case). In each simulation, maximum-likelihood estimates and corresponding 

standard errors were obtained on the logistic scale. Standard errors on the probability 

scale were obtained using the delta-method approximation. Significance was deter-

mined at three significance levels (a = 0.05, 0.10 and 0.20) via the following tests: 

(i) Wald test (probability and logistic scale), 

(ii) Likelihood-ratio test, 

(iii) Score test with expected information matrix, 

(iv) Score test with observed information matrix (probability and logistic scale). 

Note that the score test based on the expected information matrix is invariant to a 

reparameterization, but this property does not hold when the observed information ma-

trix is used (Boos 1992). 
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Power for each scenario was calculated as the proportion of simulations in which a 

significant decline was detected. The simulation results for the reference case show 

that the performance of the tests is very different (Figure 3-6). In particular the follow­

ing observations can be made: 

(i) Score tests based on the observed information matrix behave badly on both 

the probability and logistic scales, with power markedly decreasing as R 

increases; 

(ii) The score test based on the expected information matrix has very similar 

performance to the likelihood-ratio test (although there is some divergence 

for high values of R); 

(iii) The Wald test has considerably lower power on the logistic scale than on 

the probability scale; 

(iv) The Wald test on the probability scale has higher power than the likeli­

hood-ratio and score tests. The difference in their performance depends on 

the significance level and is higher for lower a. 

If detectability increases the tests agree more, all showing very similar performance in 

case 2 for R < 0.5 (Figure 3-7). However the score test based on the observed infor­

mation matrix still behaves oddly, with marked power decrease for higher effect sizes. 

The rest of the results (Appendix A.2) show that, as might be expected, increasing the 

sample size (cases 3, 5 and 6) also results in more similar test performance except, 

once again, for the score-observed test. Interestingly, while this problem practically 

disappears when increasing the number of replicates from 3 to 10 (case 6), it is still 
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evident in a scenario with a 5-fold increase in the number of sites (case 3). The results 

from a scenario with lower initial occupancy (case 4) lead to the same observations as 

those discussed for the reference case, now of course with the power being lower. 

Overall, in our simulations the Wald test on the probability scale performs better than 

any of the other tests evaluated. The test shows higher power than other tests while 

having the right size, which suggests it is a good choice for this type of study. How­

ever, if performed on the logistic scale, the Wald test shows considerably decreased 

power in some scenarios (case 1 and 4). Indeed, it has been shown that the Wald test 

can produce misleading results when working with discrete probability distributions 

under certain parameterizations (Vaeth 1985). Hauck and Donner (1977) showed for 

instance that the test has an aberrant behaviour when testing the equality of two pro­

portions on the logistic scale, losing power as the difference between them increases. 

Our results suggest evidence of an aberrant behaviour when dealing with the compari­

son of two proportions (e.g. occupancy values) under imperfect detection. 

Both the likelihood-ratio and the score tests show inferior performance compared to 

the Wald test on the probability scale. In particular, the score test based on the ob­

served information matrix displays an aberrant behaviour for some of the scenarios 

investigated. In fact, the test statistics are often negative in these cases (compare Fig­

ures 3-8 and 3-9). Such behaviour has been previously observed for zero-inflated Pois­

son models (Morgan, Palmer & Ridout 2007), where negative test statistics are ob­

tained in a test assessing whether zero-inflation is different from zero. This is in fact a 

similar case to ours as our test assesses whether zero-inflation differs in two zero-

inflated binomial samples. 
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Figure 3-6 Power to detect an occupancy decline for different significance tests in 
simulation case 1 (black dot on y-axis indicates significance level) 
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Figure 3-7 Power to detect an occupancy decline for different significance tests in 
simulation case 2 (black do t on y-axis tndicates significance level) 



(a) 

(b) 

3 STUDY DESIGN FOR THE BASIC OCCUPANCY MODEL 101 

• • • 
• • • 

• • 4 • •• ••• • • • • 
• 

~ .. 
• •• 

•• 

••• • * · ," ... .. ~. .. . 

• 

• 
• • 
• 

-20 

• 

I 
30 

25 

• 20 • 
15 

•• 10 

5 

-5 

-10 

• 

-5 

-1 0 

• • • .. 
• • 

• • 

• 

0 

• 

• • 

30 0 

Figure 3-8 Scatter plo t of the score test statistic based on d1e expected information 
matrix (1) with respect to d1e score test statistic based on the observed information 

matrLx on the probability scale (0 ) for simulation case 1 (1/Jl = 0.8, P = 0.5, S = 50, 
K = 3), for effect size (a) R = 0.25 and (b) R = 0.5. The dueshold to determine sig­

nificance at the a = 0.05 level is 3.84. 
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Figure 3-9 Scatter plot of the score test statistic based on the expected information 
matrL" (1) with respect to the score test statistic based on the observed information 

matrL" on the probability scale (0 ) for simulation case 6 (1/11 = 0.8, P = 0.5, S = 50, 
K = 10), with effect SlZe (a) R = 0.25 and (b) R = OS The threshold to determine 

significance at the a = 0.05 level is 3.84. 
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3.2.7 Sample size formula performance 

In order to verify the performance of the formula in (3.4) we again ran simulations and 

compared the survey effort required to achieve a given power to detect an occupancy 

decline as indicated by both approaches under various scenarios. We explored differ­

ent values of initial occupancy (1/Jl = 0.2, o.s and 0.8), detection probability (p = 0.2, 

0.5 and 0.8), and effect size (R = 0.5 and 0.3) under a range of replication levels (K = 2 

to 6), using a significance level a ofO.OS. We simulated scenarios with increasing lev­

els of total survey effort in steps of 10%, starting from the survey effort indicated by 

the formula to achieve a power of 0.7, and stopping when the power achieved in the 

simulations was larger than 0.9. As before, we ran SOOO simulations per scenario. For 

each simulation, we assessed significance according to three methods: Wald tests on 

the probability and logistic scales, and a likelihood-ratio test. Score tests were not in­

cluded in these simulations but, according to the results in section 3.2.6, we can expect 

the score test based on the expected information matrix to perform similarly to the 

likelihood ratio test, while the test based on the observed information matrix is not in­

teresting due to its aberrant behaviour. We also ran simulations to verify the size of the 

tests for the scenarios described above with the design suggested by the formula for 

R = O.S and power = 0.8. 

Figure 3-10 compares the simulation results with curves obtained using the sample 

size formula for R = O.S and power = 0.8. In all cases, the sample size determined by 

the closed-formula was similar to that indicated by the simulations, which tended to 

suggest somewhat higher sampling effort. Consistent with the results obtained in sec­

tion 3.2.6, the simulations indicated that a greater sampling effort was required when 

significance was assessed with a likelihood-ratio test compared to the Wald test on the 
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probability scale. The results from the Wald test on the logistic scale were very similar 

to those from the Wald test on the probability scale when the probability of occupancy 

was not high. When l/Jl= 0.8 (and therefore sample sizes were small) the Wald test on 

the logistic scale appeared to have considerably lower power, thus requiring greater 

sampling efforts to detect a change. The size of the Wald test on the probability scale 

and the likelihood-ratio test was reasonably close to the nominal significance level 

(Figure 3-11). 

The discrepancy between the formula and simulation results is due to the underlying 

assumptions not being perfectly met for some of the sample sizes under consideration. 

For instance, for the case of l/Jl = 0.8, P = 0.5 and K = 2 in Figure 3-10, the asymp­

totic variance for the occupancy estimator for l/J2 = 0.4 when 78 sites are surveyed is 

0.0081, while the true variance according to simulations is about 50% higher (0.0123). 

This underestimation explains, at least partly, why the sample size required according 

to the formula (78 sites) was smaller than that suggested by the simulations (96 sites). 

The formula expected more precise occupancy estimators for such conditions, so that 

therefore it would be easier to detect differences between them. It should thus be kept 

in mind that the formula's outcome represents a lower bound and that, in some situa­

tions, more effort might be needed in the study. The sample size simulation results for 

R = 0.3 (Figure 3-12) show more agreement between the formula and the simulations, 

which is expected as detecting a smaller effect implies larger sample sizes, and thus 

less discrepancy with the large-sample approximations. 
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Figure 3-10 Number of sampling sites required to achieve 80% power to detect an 
occupancy decline R = 0.5 as indicated by the formula (thick black line) and simula­
tions (red: \Xfald test on probability scale; blue: \Xfald test on logistic scale; green: like­
W10od-ratio test), for vary1l1g levels of replication (K survey visits per site), and dif­
ferent scenarios o f initial occupancy (ljJl ) and detection probability (P). Significance 

level was set to ex = 0.05. 
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Figure 3-11 Size aclu eved by the tests in the simulations (red : \,\/ald test on probabil­
ity scale; blue: Wald test o n logistic scale; green: likelihood-ratio test) for the designs 
indicated by the formula to achieve a power = 0.8 to detect a decline in occupancy 
R = 05, for varying levels of replication (K survey visits per site) and different sce­
narios o f initial occupancy (tfJl ) and detection probability (P ). The black dashed line 

represents the no minal significance level (a = 0.05). 
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Figure 3-12 Number of sampling sites required to achieve 80% power to detect an 

occupancy decline R = 0.3 as indicated by the formula (thick black line) and simula­
tions (red: Wald tes t on probability scale; blue: Wald test on logistic scale; green: like­
W100d-ratio tes t), for varying levels o f replication (K survey visits per site), and dif­
ferent scenarios of initial occupancy (l/Jl) and detection probability (P). Significance 

level was set to ex = 0.05. 
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3.2.8 Applicability to cases with Markovian dependence in site occupancy status 

We have so far implicitly assumed that the two samples that want to be compared can 

be considered independent, i.e. the occupancy status of the sites in one sample does 

not depend on the other sample. Two samples are independent if they consist of differ-

ent sampling sites, for instance when comparing occupancy between two geographical 

locations or habitat types. Studies assessing changes between two points in time may 

also sample different sites, although often the same sites are sampled in both seasons. 

Even so, the assumption of independence can still be valid, for example when dealing 

with species that display a low degree of site fidelity or when the time elapsed between 

seasons is sufficiently long so that the changes can effectively be considered random. 

For those cases with dependence in the occupancy status of sites between seasons, data 

can be analyzed with a model that explicitly describes the process underlying occu-

pancy dynamics as a first-order Markov chain (MacKenzie et al. 2003), as we de-

scribed in section 2.2.6. The MLEs of the occupancy estimators in the two-season 

Markovian model have the same expression and variance as when assuming independ-

ence (Appendix A.4). However the covariance is no longer zero and the variance of 

the difference in occupancy l5 is var(l5) = 8f + 81 - 2cov(.,p11 .,p2). The covariance 

is larger than zero when the site occupancy status is positively correlated (1 - e > y). 

This means that the sample size formula in (3.4) provides a conservative design in case 

such dependence is present. The formula can be extended to the Markovian case as 

2 

(
Za/2 + ZP) 

s = ([1 + 12 - 21c) l/J1 -l/J2 ' 



3 STUDY DESIGN FOR THE BASIC OCCUPANCY MODEL 109 

3.2.9 Applicability to multiple-season studies with more than two seasons 

Very little has been published regarding the design of multiple-season occupancy stud­

ies. Two exceptions are MacKenzie (2005) and Field, Tyre & Possingham (2005), 

which explore scenarios involving a linear trend in occupancy on the logistic scale un­

der the assumption of independence between seasons. MacKenzie (2005) presents a 

brief exploration showing how the coefficient of variation of the estimated trend pa­

rameter decreases as more seasons are added to the study (keeping the interval be­

tween seasons constant). Field, Tyre & Possingham (2005) use power analysis simula­

tions to explore the optimal allocation of effort under a scenario involving three sea­

sons and exponentially increasing survey costs. 

In this section we have considered a scenario with two survey seasons. When the tar­

get number of seasons is moderately larger than two, sample size determination based 

on the change expected between the first and last season can still provide some useful 

(conservative) guidance, as we can normally expect the power not to be radically dif­

ferent to that obtained considering the trend across all seasons. To illustrate this we ran 

a small simulation study, assuming a scenario with a declining trend in occupancy 

(linear on the logit scale) over four seasons, so that logit(1/.Ia = P1 + Pt * (i - 1), 

i = 1, ... ,4. We explored different scenarios of initial occupancy (1/.11 = 0.2,0.5 and 

0.8) and overall decline between seasons one and four (R4 = 0.5,0.3 and 0.15), with 

p = 0.5 and K = 3. We run 5000 simulations for each scenario and estimated the 

power to detect a significant trend (i.e. Pt significantly different from zero in a Wald 

test) for the following sampling situations: (a) S sites surveyed in all four seasons, (b) 

S sites surveyed in the two first seasons, (c) S sites surveyed in the first and last sea­

sons, (d) 2S sites surveyed in the two first seasons and (e) 2S sites surveyed in the first 
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and last seasons. In all cases, 5 = 200. Note that (a) , (d) and (e) involve the same total 

survey effort (45), while cases (b) and (c) involve half the amount (25). 

The results show that the power estimated when only the first and last seasons are con-

sidered is generally similar to that obtained from considering all four seasons (Table 

3-4, compare columns a and c). In fact, if a linear trend is indeed expected and the fo-

cus is on estimating overall change, concentrating all the survey effort in the first and 

last seasons provides a more powerful design (Table 3-4, compare columns a and e). 

Note nevertheless that a design with various sampling seasons may be more robust for 

estimating a trend when there is noise because of variations from season to season on 

top of the trend and allows detecting departures from linearity. 

Table 3-4 Power to detect a declining trend in occupancy (linear on the logit scale) 
when the trend is estimated based o n (a) four seasons, (b,d) ftrst and second season 
and (c,e) first and last season. In (a-c) S = 200 sites; in (d,e) all survey effort was 

concentrated in two seasons (i.e. 400 sites per season). Pt is the rate o f seasonal 
change on the logit scale, corresponding to a proportional decline R4 between sea-

sons 1 and 4. Different scenarios o f initial occupancy t/Jl and R4 are assessed with 
K = 3, P = 0.5, a = 0.05. Computed from 5000 simulatio ns . 

Seasons 1,2,3,4 1,2 1,4 1,2 1,4 

Nr. of sites S S S 2S 2S 

R4 1/;1 fir (a) (b) (c) (d) (e) 

0.5 0.8 -0.597 1.000 0.412 1.000 0.724 1.000 

0.5 -0.366 0.995 0.314 0.992 0.565 1.000 

0.2 -0.270 0.707 0.138 0.669 0.249 0.927 

0.3 0.8 -0.382 0.981 0.158 0.970 0.327 1.000 

0.5 -0.206 0.748 0.136 0.705 0.223 0.945 

0.2 -0.143 0.294 0.074 0.275 0.101 0.491 

0.15 0.8 -0.211 0.523 0.062 0.456 0.118 0.781 

0.5 -0 .101 0.254 0.060 0.233 0.088 0.409 

0.2 -0.066 0.099 0.048 0.097 0.058 0.162 
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3.3 Bayesian design and sequential methods 

3.3.1 Background 

In section 3.1 we have examined the issue of survey effort allocation in single-season 

occupancy studies. As we pointed out, in order to determine the optimum amount of 

replication to be used in such studies, knowledge about the parameters is needed as the 

information matrix is a function of their values. However, the values of the parameters 

are evidently not known. In fact, given that these are the object of estimation, it is rea­

sonable to expect that there will be a considerable degree of uncertainty regarding their 

values. Designing a study based on poor initial estimates may translate into significant 

loss in estimator performance, as we illustrate below. 

In this section we revisit the issue of survey effort allocation, exploring methods to 

obtain more robust designs in the face of uncertain initial parameter estimates, using 

the variance of the occupancy estimator as a criterion for design. One way of formally 

dealing with uncertainty in the initial parameter estimates is to follow a 'Bayesian ex­

perimental design' approach (Chaloner & Verdinelli 1995). This method involves 

specifying a prior distribution for the unknown parameters and selecting a design that 

optimizes the expectation of the chosen design criterion with regard to this prior. An­

other approach is to use 'sequential methods'. These involve dividing the experiment 

into a number of stages, with each subsequent stage being designed after updating the 

initial estimates based on the data collected up to that stage (e.g. Abdelbasit & Plackett 

1983). The key idea is that the design can be steered towards the optimal design as we 

learn about the parameter values. Bayesian and sequential ideas can of course be com­

bined within a single design problem (e.g. Ridout 1995). 
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3.3.2 Impact o/poor initial estimates 

The impact of poor initial estimates on the quality of the occupancy estimator can be 

assessed by comparing its asymptotic variance when the amount of replication (K) is 

chosen based on the initial estimates (t/Jo, Po), with that obtained if the true parameter 

values (t/J, p) were known. 

Table 3-5 shows such an assessment for three scenarios of initial estimates: 

(a) t/Jo = 0.8, Po = 0.3, K = 8, 

(b) t/Jo = 0.5, Po = 0.5, K = 3, 

(c) t/Jo = 0.3, Po = 0.8, K = 2, 

and all combinations of true parameter values with t/J and P ranging from 0.2 to 0.8 in 

steps of 0.1, with K chosen to minimize the variance of {j (Table 3-1 a in page 79). As 

expected, the impact of having poor estimates is larger the further the initial estimates 

are from the true estimates, with the perfonnance deterioration being generally larger 

the more different the chosen K is compared to the optimum K according to the true 

parameter values. For instance, when t/Jo = 0.5 Po = 0.5 (K = 3), perfonnance loss is 

much greater ift/J = 0.8 P = 0.2, which corresponds to an optimum amount of replica­

tion K
opt 

= 8, than if t/J = 0.2 P = 0.8 for which Kopt = 2. Also, the results suggest 

that when Po is correct there is relatively little effect of mispecifying t/Jo, compared to 

the effect of mispecifying Po when t/Jo is correct. Note that, assuming large sample 

size, these results are independent of the total survey effort E, as E is only a scaling 

factor in the expression of the asymptotic variance of the occupancy estimator (3.1). 
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Table 3-5 Robustness of the 'optimal' occupancy study design to poor initial esti­

mates for different scenarios of true occupancy and detectability (1/J. p) and three 

scenarIos of initial assumed parameter values (1/Jo. Po ), marked in bold font. T he val­

ues shown are the ratio between the asymptotic variance of 1jj that would be ob­
tained if the design would be based on the true parameter values and that chosen 
based on the assumed initial parameter values. The design criterion is to minimize 

the asymptotic variance of 1/J. 

(a) ljJ 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.2 0.99 0.97 0.92 0.82 

0.3 0.98 ITQQ] 
0.4 0.82 0.89 

p 0.5 0.7 

0.6 

0.7 

0.8 

(b) ljJ 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.2 

0.3 

0.4 0.96 0.93 0.89 0.85 

p 0.5 1.00 1.00 1.00 ITQQ] 1.00 0.95 0.86 

0.6 0.92 0.95 1.00 1.00 1.00 1.00 1.00 

0.7 0.79 0.80 0.82 0.85 0.89 0.96 1.00 

0.8 0:71 0.72 0.72 0.74 0.75 0.78 0.84 

(c) 
ljJ 

1.5 

0.4 0.5 0.6 0.7 0.8 

0.2 

0.3 

0.4 
1.0 

P 0.5 

0.6 

0.7 1.00 1.00 1.00 1.00 1.00 1.00 0.92 

0.8 1.00 11.00 11 .00 1.00 1.00 1.00 1.00 <0.4 



3 STUDY DESIGN FOR THE BASIC OCCUPANCY MODEL 114 

3.3.3 Bayesian design 

Here we provide an example of optimal replication determination following a Bayes-

ian experimental design approach. We characterized the initial knowledge about the 

parameters using either independent uniform priors or a bivariate logit-normal prior, 

and identified the value of K that minimizes the expected asymptotic variance of the 

occupancy estimator over that prior 

[ ( ~)] (J Kl/Jo { 1 - p~ } 
IE var l/Jl = JJ E (1 -l/Jo) + p~ _ KPo(1 _ PO)K-l 

(3.5) 

where f(l/Jo, Po) denotes the probability density function of the prior. The integration 

was performed numerically using the in-built MA TLAB function dblquad, which evalu-

ates a double integral over a rectangle. 

As expected, the resulting optimum K is an intermediate value compared to those that 

would have been selected based on particular parameter values within the prior (Figure 

3-13). Of course, the choice of prior has an impact. If the prior is too concentrated then 

there is the risk of decreased performance if the true parameter values happen to lie 

outside its range, as we have seen in Table 3-5 for the extreme case of a single initial 

estimate value. On the other hand, if the prior is too dispersed then this can result in 

efficiency loss as the design is no longer specifically constructed for the underlying 

scenario. In the following section we leave Bayesian design and move to a different 

approach (sequential design), but in section 3.3.5 we will see how both methods can be 

integrated. 
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Figure 3-13 Examples of Bayesian optimal design to minimize the variance of $. 
The numbers represent the optimal K for each case. The initial estimate information 
used is: (a) a single value (each point in the grid; this case is mcluded for reference), 
(b) a uniform pnor (each square) and (c) a bivariate logit-normal In (c) the three ex­
amples correspond to (i) Jl = [logit(03), logit(02)], 1: = [0.15, 0; 0, 0.15], (ii) 
Jl = [logit(07), logit(0.6) ]' 1: = [005, 0; 0, 005], and (iii) Jl = [logit(03), logit(0 7)] , 
1: = [0 .05, -0.04; -0.04, 0.05] , where Jl and 1: are respectively the vector of means and 
the variance-covariance matrLx on the logit scale; contours enclose 0.5 and 0.95 
probability. The prior can represent an educated guess about the parameter values or 

the estimates resulting from a previous study. 
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3.3.4 Two-stage sequential design 

Here we consider a two-stage sequential design for occupancy studies, in which 

IOOZ% of the total survey effort (£) is employed in the first stage (or pilot phase) and 

the remaining effort is used in the second stage . For simplicity we assume that the ef-

fort corresponding to the second stage is allocated to new sampling sites (i .e. sites dif-

ferent from those sampled in stage 1). The optimal amount replication for stage 2 (K2) , 

based on the updated parameter information, might be different from that identified for 

stage 1 (K1 ) based on the initial parameter estimates (Figure 3-14). 

Figure 3-14 H ypo thetical examples o f a two-stage design w here each row represents 
a sampling site and each square within a row a survey VISIt:. Stage 1 IS represented by 
grey squares and Stage 2 by white squares. In (a) Stage 2 uses less replicanon than ill 

Stage 1, while in (b) it is the other way around . 
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We consider the following two-stage procedure: 

(i) Based on the initial point estimates (l/Jo,Po), choose the design for stage 1, 

i.e. identify the optimal Kb and from this Sl = round[£ZjKd; 

(ii) Collect data (summarized by Sd
1

, dT1 ) and analyze them to obtain the esti-

(iii) Based on the updated parameter knowledge (i.e. estimates $11 Pi), choose 

the design for stage 2, i.e. identify the optimal Kz, and from this S2 = 

£1oor[£(1- Z)/Kz]; 

(iv) Collect data (summarized by Sd
2

, dT2 ) and analyze the full data set, from 

both stages, to obtain MLEs ($z, pz)· 

The likelihood for the resulting two-stage design is the product of the contributions 

from the two stages 

where PK
1 

= 1 - (1 - p)Kl and PK
2 

= 1 - (1- p)K2
• Given the expressions for the 

expected information matrix for a single-stage design (2.12), the elements of the in-

formation matrix for the two-stage design are 
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5 • 5 • 1[11] - lPK1 2PK2 

, - t/J(1 - t/Jp~) + t/J(1 - t/Jp~) , 

[ ] 
51Kl(1- p)KC1 52K2(1- p)K2 -1 

1 1 2 = + --=----=----
, (1 - t/JP~1) (1 - t/Jp~) , 

1[2,2] = 51K1t/J {1- K1P(1- p)KC1(1_ t/J)} 
p(l - p) 1 - t/JP~1 

(3.6) 

+ 52K2t/J {1- K2P(1- p)KZ-l(l_ t/J)} 

p(l - p) 1 - t/JP~2 ' 

and the asymptotic variance of the final occupancy estimator is yare $2) = 1-1 [1,1] = 

1[2,2]/(1[1,1] . 1[2,2] - 1[1,2] . 1[1,2]). This expression is conditional on the out-

come of the first stage ($v Pi)' as this determines the design for the second stage (K2 

and 52)' We can compute the unconditional variance of the occupancy estimator by 

taking the expectation of the variance over all the possible outcomes of the first stage 

IE[var($2)] = II var($21t/J,p,Kv K2,51,52)' Pr($vPllt/J,p,5v K1 ), (3.7) 

'V1jj1 'VP1 

This expression is ultimately a function of the initial estimates t/Jo, Po, the true parame-

ter values t/J, p, and of E and Z. 

To assess the efficiency of the two-stage design with respect to a single-stage design 

we computed the ratio between the expected asymptotic variance in (3.7) and the as-

ymptotic variance for a single-stage design, as in (2.13), for the same scenarios of ini-

tial estimates and true parameter values as in section 3.3.2. Assuming large sample 

size we considered that the MLEs resulting from the first stage in the two-stage design , 

($v Pi) were distributed according to a bivariate log it-normal with mean [logit(t/J), 
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logit(p)] and variance-covariance matrix l;L on the logit scale (and therefore we re­

placed the double summation in the expectation by a double integration). We derived 

l;L from (2.13) using the delta method. For each value of ($l,Pl) we identified the 

optimum K2 that minimizes the variance of $2 and finally computed the actual vari­

ance of $2 given the true parameter values. These efficiency calculations were carried 

out in MA TLAB, and the integration was carried out numerically using dblquad. 

Table 3-6 shows the efficiency of the two-stage design for a scenario of total effort 

E = 1000 and with an equal allocation of effort between the two stages (i.e. Z = 0.5). 

It can be immediately seen than the sequential approach has great potential for per­

formance improvement with respect to the single-stage design (green cells). Of course, 

the efficiency of the two-stage design is greater the more different the initial estimates 

are with respect to the real parameter values (or, rather, the greater the difference in the 

associated K's is), as these are the cases when there is a greater loss in performance in 

the single-stage design. The two-stage design can result in performance loss if the ini­

tial estimates lead to the 'correct' optimum K. In this example there is only ever very 

marginal loss but we will later see how this can be more pronounced in other scenar­

ios. Table 3-7 shows the efficiency of the two-stage design with respect to the ideal 

design scenario, i.e. a single-stage design based on the true parameter values. This ta­

ble, which is equal to the element-wise product of Tables 3-5 and 3-6, shows that the 

two-stage design can considerably approach the best achievable performance. Of 

course there can still be some loss with respect to the ideal case, as indicated by the red 

cells in the tables, but it is evident that the two-stage design is significantly more ro­

bust to poor initial estimates than the single-stage design (evaluated in Table 3-5). 
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Table 3-6 Efficiency of the two-stage design with respect to the single-stage design 
for different scenarios o f true occupancy and detectability (1J;, p) and three scenarios 
of initial assumed parameter values (1J;o, Po), marked in bold font. The values shown 

are the ratio between the expected asymptotic variance of 1f; for the single-stage de-

sign and the asymp totic variance of 1f; fo r the two-stage design. The design criterion 
is to minimize the asymptotic variance of 1J; . E = 1000 and Z = 0.5 

(a) ljJ 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.2 0.96 0.97 0.97 0.98 0.99 1.03 1.09 
0.3 1.00 1 0.981 
0.4 1.13 1.06 

p 0.5 1.22 
0.6 
0.7 
0.8 

(b) 
ljJ 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.2 
0.3 
0.4 1.01 1.04 1.07 1.12 

P 0.5 0.98 0.98 0.98 1 0.99 1 1.00 1.03 1.09 

0.6 1.07 1.06 1.03 1.01 0.99 0.99 1.00 

0.7 1.16 1.15 1.13 1.11 1.09 1.05 1.00 

0.8 1.21 1.20 1.20 1.19 l.18 1.15 1.12 

(c) 
ljJ > 1.5 

0.5 0.6 0.7 0.8 

0.2 
0.3 
0.4 

1.0 

P 0.5 
0.6 
0.7 0.99 0.99 0.99 0.99 1.01 1.07 

0.8 1.00 11.00] 1.00 1.00 1.00 1.00 1.00 <0.4 
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Table 3-7 E fficiency of the two-stage design with respect to the ideal case (i.e. single-
stage design with known parameter values) for different scenarios o f true occupancy 
and detectability (l/J. p) and three scenarios o f initial assumed parameter values 
(l/Jo. Po), marked in bold font. The values shown are the ratio between the asymp-

totic variance of $ fo r the ideal design and the expected asymptotic variance of $ 
for the two-stage design. The design criterion is to minimize the asymp to tic variance 
of l/J . E = 1000 and Z = 0.5. 

(a) 1j; 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.2 0.96 0.97 0.97 0.97 0.96 0.94 0.90 
0.3 0.94 0.95 0.96 0.96 0.97 0.9810.981 
0.4 0.90 0.89 0.90 0.92 0.92 0.94 

P 0.5 0.84 0.83 0.85 0.85 0.87 
0.6 0.77 0.80 

0.7 

0.8 

(b) 1j; 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.2 0.83 0.83 0.82 0.80 0.76 0.72 

0.3 0.92 0.92 0.91 0.89 0.86 0.82 

0.4 0.98 0.97 0.97 0.96 0.95 0.91 0.86 

P 0.5 0.98 0.98 0.98 1 0.99 1 1.00 0.97 0.94 

0.6 0.99 1.0 1 1.03 1.01 0.99 0.99 1.00 

0.7 0.91 0.92 0.93 0.95 0.97 1.01 1.00 

0.8 0.86 0.86 0.87 0.87 0.89 0.90 0.93 

(c) 
1j; 

> 1.5 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.2 0.73 0.74 0.73 0.71 

0.3 0.84 0.84 0.83 0.80 

0.4 0.92 0.91 0.89 0.87 0.85 0.80 0.74 1.0 

P 0.5 0.95 0.95 0.94 0.93 0.93 0.88 0.82 

0.6 0.99 1.00 1.02 1.00 0.97 0.93 0.90 

0.7 0.99 0.99 0.99 0.99 0.99 1.0 1 0.98 

0.8 1.00 11.00 ] 1.00 1.00 1.00 1.00 1.00 <0.4 
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In the above example we have assumed an equal allocation of effort between the two 

stages (Z = 0.5). However we can expect the efficiency of the two-stage design to 

vary with Z. In fact, we can expect that there is an optimum Z given that the larger the 

value of Z, the more effort is dedicated to improve the knowledge of the parameter 

values during the first stage, but then less effort remains to profit from that improved 

knowledge through a better designed second stage. Figure 3-15 displays the efficiency 

of the two-stage design with respect to the single-stage design as a function of Z for 

the same three cases of initial estimates as above and four scenarios of true parameter 

values, ljJ and p, 

(tl) ljJ = 0.3, P = 0.8, Kopt = 2, (t3) ljJ = 0.3, P = 0.3, Kopt = 5, 

(t2) ljJ = 0.8, P = 0.3, Kopt = 8, (t4) ljJ = 0.8, P = 0.8, Kopt = 2, 

where Kopt indicates the replication that would have been the optimal in each case. As 

Z increases all the curves tend to unity, which is expected given that the case Z = 1 is 

in fact a single-stage design. Some of the curves also tend to bend downwards as Z 

gets small, and therefore there is an optimal Z although, as might be expected, its value 

varies depending on the scenario. Note that in Figure 3-l5a the cases (tl) and (t4) 

(blue and green curves) keep high efficiency even for low Z. This is because in these 

cases K
opt 

takes the same value (= 2) in a relatively large region around (ljJ,p) and 

therefore they are less affected by an increase in the variance of the estimates from 

stage 1. Of course, when working with smaller efforts, we can expect all the curves to 

bend downwards more prominently for low Z, as then the pilot stage involves a 

smaller sample size which would be less informative or even misleading. 



3 STUDY DESIGN FOR THE BASIC OCCUPANCY MODEL 123 

(a) 

(b) 

(c) 

4.0 

3.5 

3.0 

e- 2.5 
~ 

~ 
w 2.0 

1.5 

1.0 ----------

~'II,p-03 , o . e 

--+- 'II, p - 0 e, 0 3 
-- 'II, p= 0 3, 0 3 
~'II, p=oe , oe 

05~~~~--~~~_7~~~~--~~~~ 
o 0 1 0.2 03 0.4 05 06 07 0 e 09 

4 0 

3.5 

3.0 

e-25 
5 

~ 

Z 

w 20 

15 ~ 
10--~~ 
0.50:----::'0::-1 --:0:':2:----:0":3---::0 ':-4 --=-'0 ::-5 ----:0"'6:---:-0'=7--""0 -::e --0::-'-9:----' 

Z 
40 

3.5 

3 0 

~2. 5 

ii 
~ 
W 2.0 

1 5 

10 

0.50 010.2030405060.7 oe 09 
Z 

Figure 3-15 E fficiency o f the t\vo-stage design with respect to the single-stage design 
fo r varying effort allocation bet\veen the stages (Z), for four scenarios of aue occu­
pancy and detectability (l/J, p) and three scenarios o f mitial ass umed parameter val­

ues: (a) l/Jo = 0.8, Po = 0.3, (b) l/Jo = OS, Po = 0.5, (c) l/Jo = 0.3, Po = 0.8. The de­
sign criterion is to minimize til e asymptotic variance o f l/J . £ = 1000. 



3 STUDY DESIGN FOR THE BASIC OCCUPANCY MODEL 124 

Since the above calculations rely on large-sample approximations, we ran simulations 

to assess the actual performance improvement achieved for the same scenarios, first 

with survey effort E = 1000, and then reducing it to E = 500 and 250. For simplicity, 

we selected the optimal level of replication for each stage based on the large-sample 

variance expressions but, in practice, this could have been also obtained via simula­

tions. In the event of obtaining a history with all zeros in the first stage, we used l/Ji = 

0.2 and Pi = 0.2 as updated parameter values. The efficiency of the two-stage proce­

dure was measured as the ratio between the mean square error (MSE) of its occupancy 

estimator and that obtained from a single-stage design, from 5000 simulations. 

The results (Figure 3-16) show that for E = 1000 the actual efficiency of the two-stage 

design is in general very similar to that calculated by numerical evaluation of (3.7), 

and therefore we can also expect these to match for larger effort. The main difference 

is in case (t3) in Figure 3-16c (red line), where the MSE of the single-stage design is 

underestimated by the large-sample approximations. As the effort decreases, the dif­

ferences between the simulations and the numerical evaluation become more notice­

able but the patterns remain broadly the same. The downwards bending of the effi­

ciency curves for low Z is more prominent as we expected, and this effect is more evi­

dent in the simulations, which suggests that in these cases the large-sample approxima­

tions underestimate the MSE of the stage 1 estimator in the two-stage design. Once 

again there are noticeable differences in Figure 3-16c for case (t3) (red line), as well as 

for (t2) (purple line); in these two cases Kapt is larger than the one suggested by 

(l/Jo, Po). The differences are essentially driven by the inaccuracy of the large-sample 

approximation for the single-stage design (leading to an under/overestimation of its 
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MSE). It is interesting to note that the large-sample approximation of the MSE for the 

two-stage design is fairly accurate in these cases. 
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Figure 3-16 Efficiency of the two-stage design with respect to the single-s tage design 
obtained from 5000 simulations for effort levels E = 1000, 500 and 250. Dorted 
lines show the corresponding results derived from large-sample calculations for 
comparison . The graphs display the effiCIency achieved for varying effort allocation 
between the stages (Z), for four scenarios of true occupancy and detectability (1/J, p) 
and three scenarios o f initial assumed parameter values: (a) 1/Jo = 0.8, Po = 0.3 , (b) 
1/Jo = 0.5, Po = 0.5, (c) 1/Jo = 03, Po = 0.8. T he design criterion is to minimize the 
asymptotic vanance o f 1/J . In the graphs we kept the same scale on the y-~.....is for 
comparison purposes, but no te that in some cases there are values larger than 4. 
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The differences between the simulations and the large-sample calculations suggest 

that, when E is of the order of a few hundred units, there is value in addressing study 

design via simulations. Finally note that, for simplicity, in our simulations the bound-

ary estimates from the first stage were not treated in any particular way, although in 

practice one would be wary about directly using these to inform the design of stage 2 

as they can lead to extreme values for K2 • 

3.3.5 Optimal determination ofZfor the two-stage design 

We have assumed up to now that the decision on how to allocate the survey effort into 

the two stages (i.e. the value of Z) was already made. In this section we illustrate how 

Bayesian ideas can be combined into the sequential design approach to identify the 

optimal choice of Z, given the initial knowledge of the parameter values tPo,Po· Here 

we assume that we have a prior distribution characterizing this knowledge. 

The target is to choose a design that provides the best overall performance and thus to 

identify the value of Z that provides the lowest expected occupancy estimator vari-

ance, integrated over the prior. Assuming large-sample results again, this quantity is 

computed as 

IE[var($2)] = J J J J var($2ItPo,po,Kl1 K2,Sl1 S2) 

Po 1/Jo fit iii! 

and is a function of E, Z and the prior f (tPo, Po)· 
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Figure 3-17 displays the results of such computation for a variety of scenarios of prior 

knowledge and two levels of effort E = 500 and 1000. In all cases we assumed a uni­

form prior for simplicity. For the numerical integration we used MATLAB's function 

triplequad to integrate with respect to $1> Pland 1/Jo and then used the function trapz 

to integrate with respect to Po with step 0.01. The design for the first stage (i.e. K1 ) 

was obtained following a Bayesian approach (as in section 3.3.3). However our ap­

proach is not fully Bayesian in that the design for the second stage (i.e. K2 ) was based 

solely on the point estimates from the first stage. This was due to implementation is­

sues (namely limitations in the nesting of integration functions in MATLAB), but does 

not need to be so. Note also that the choice of Kl is made without consideration of the 

two-stage nature of the design. One could instead do a two-dimensional optimization, 

i.e. evaluating the combination of Kl and Z most suitable given the prior. 

It is obvious that if our prior consists of a single point (Figure 3-17, bottom right), the 

optimal choice for Z is 1, as we are implicitly suggesting that we do not have uncer­

tainty regarding the initial values. In such an unrealistic case the best design is of 

course to do a single-stage design. The difference in performance with the two-stage 

design is however not very large for a range of values of Z, as illustrated by the flat­

ness of the curves. As the prior gets wider, and therefore we have more uncertainty, 

there is more benefit in using a two-stage design, as illustrated by the U-shaped curves. 

The location of the optimum depends on the case. It changes with the prior and also 

with the amount of total effort, with the optimum Z shifting to the right (higher values) 

as the total effort gets smaller. 
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3.4 Samplingfor spatial replication 

3.4.1 Background 

In section 2.2.2 we briefly touched on the issue of the 'closure assumption' made by 

the basic occupancy model, in connection with the description of the model proposed 

by Hines et al. (2010) to account for Markovian dependence in species availability be­

tween survey replicates. Here we come back to this issue to discuss the effect that 

sampling with replacement has on the independence among spatial replicates drawn 

from partially occupied sites, and consequently on the occupancy estimator. 

As noted in section 2.2.2, when the sampling scheme is based on temporal replication 

(i.e. assessing the same location at different points in time), the 'closure assumption' 

requires site occupancy status to remain unchanged throughout the sampling season. 

MacKenzie et al. (2006) discuss the impact of violating this assumption. If the species 

is not always available at occupied sites, and availability varies non-randomly during 

the sampling period, then the occupancy estimator ($) may be biased. However, if 

changes in availability among survey replicates occur completely at random, no bias is 

induced, although the interpretation of$ somewhat changes, as it reflects the probabil­

ity that the site is used by the species, rather than permanently occupied. Detection 

probability decreases as it is now composed of two elements: (i) the availability of the 

species at the site during a survey, that is, the probability that the species is using the 

site at the time of survey (e), and (ii) the probability of detecting the species given it is 

available at the site during the survey (which we denote here by Pa to highlight that it 

is conditional on availability). The detection probability estimator (fJ) would in fact be 

estimating the product ePa' On the other extreme, if survey replicates are carried out 
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sufficiently close in time that there are no changes in availability between them, then 

the occupancy estimator would estimate the product ljJ8 while the detection probabili­

ty estimator would estimate Pa. Note that, although with the basic occupancy model it 

is not possible to estimate these three parameters (ljJ, 8, Pa) separately, a sampling pro­

tocol based on the use of simultaneous independent detection methods (Nichols et al. 

2008) or with surveys carried out at two temporal scales (so called 'robust design'), 

allows this to be done. 

Kendall & White (2009) (from now on KW09) review the single-season occupancy 

model and its robustness to violations of the closure assumption, focusing on the case 

when data are collected by spatial subsampling within sites (Figure 2-1). In this situa­

tion the closure assumption is violated if the species is present at a fraction of sampling 

subunits within occupied sites. KW09 used simulations to evaluate the performance of 

the occupancy estimator under different sampling schemes in this situation. They con­

sidered sampling with and without replacement. Under sampling with replacement, 

previously assessed spatial subunits can be revisited in subsequent replicate surveys. 

Under sampling without replacement, spatial subunits are not revisited, that is, each 

replicate survey involves assessing a spatial subunit that has not been assessed pre­

viously. Therefore the number of replicate surveys cannot exceed the total number of 

spatial subunits per site. KW09 distinguish what they call 'exhaustive sampling' as a 

third sampling approach. In 'exhaustive sampling' all available spatial subunits are 

visited once. Based on their results they argue that absence of the species from a subset 

of spatial subunits may induce positive bias in the site occupancy estimator if locations 

are sampled without replacement and the species is not highly mobile. Consequently 

they give a general study design recommendation of sampling with replacement. 
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While raising an interesting issue, KW09 only consider the specific scenario where a 

constant fraction of spatial subunits is occupied within each occupied site (Figure 3-18 

- Scenario A). Here we reexamine their recommendations considering a second scena­

rio which arguably can often provide a more realistic description of ecological sys­

tems, whereby each spatial subunit at occupied sites has a given probability of being 

occupied by the species, regardless of the status of the other subunits (Figure 3-18 -

Scenario B). This results in a variable number of occupied subunits within each occu­

pied site, potentially ranging from zero to the number of subunits under consideration, 

as dictated by a binomial distribution. Like the scenario considered by KW09, the one 

proposed here describes a system with occupancy acting at two spatial scales, but 

without imposing the restriction of a fixed number of occupied subunits within each 

sampling site, as in KW09. This can often be a reasonable assumption as sampling 

sites are defined by the study and are therefore not intrinsically tied with a constant 

proportion of occupied subunits. 

For example, let us assume that we sample forest patches (sites) looking for a bird spe­

cies at certain landscape features (e.g. nest boxes), which define our spatial subunits. 

Scenario B can provide an appropriate description of the system, having a constant 

probability of each nest box (subunit) being occupied, rather than a fixed proportion of 

nest boxes being occupied in each site. Similarly, this scenario could be suitable to de­

scribe data collected during surveys based on tracks, if the species is equally likely to 

leave tracks at any spatial subunit within an occupied site, instead of the tracks always 

covering the same proportion of subunits within a site. 
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Figure 3-18 Four occupied sites and their sampling subunits ill a hypothetical occu­
pancy study with spatial replication. Shaded subunits illcl1cate presence of the species. 
In scenario A) the species is present at a fixed proportion of subunits (5/ 10 = 0.5) in 
all occupied sites. Scenario B) was generated usillg a fDeed probabili ty (0.5) of subunit 
occupancy within occupied sites. 

3.4. 2 Simulation study 

Simulations were used to investigate the occupancy estimator properties in the two 

scenarios described above under different sampling schemes, with and without re-

placement, comparing the results to those obtained by KW09. Since 'exhaustive sam-

piing' is a particular case of sampling without rep lacement, it was treated as such and 

not separately. The fo llowing assumptions were made 

(i) each rep licate survey involves surveying one spat ial subunit, 

(ii) the timing of surveys and characteristics of the species are such that the oc-

cupancy status of each spatial subunit ('species avai labi lity' in KW09) 

does not change between rep licate surveys, that is , replicate surveys are 
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conducted close in time compared to the speed of movement of the species 

or the decay rate of tracks in the case of surveys based on tracks, 

(iii) the probability of detecting the species at an occupied subunit is independ­

ent of other surveys carried out in that subunit. 

To be able to compare the results with those presented by KW09, the same parameter 

values were used, and then variations of these were explored. Sampling with and with­

out replacement of 1000 sites each containing N = 10 spatial subunits was simulated. 

The number of occupied spatial subunits in occupied sites varied from 1 to 10, fixed 

for scenario A and on average for scenario B (Le. 'a out of 10' occupied subunits in 

scenario A and a 'probability of subunit occupancy' of ali0 in scenario B). The 

number of replicate surveys per sampling site, K, varied from 5 to 10 (when sampling 

without replacement the latter corresponds to the 'exhaustive sampling' in KW09). 

Simulations were run with 1000 iterations, occupancy probability ljJ = 0.5 and Pa = 

0.5. To evaluate the performance of the occupancy estimator its RMSE was calcu­

lated. The mean of the estimator was also computed to produce plots that are directly 

comparable to those provided by KW09. To assess the relevance of sampling with or 

without replacement when the number of spatial subunits per site is large, the simula­

tions were repeated with ten times more spatial subunits per site (N = 100), keeping 

the same average/fixed proportion of occupied subunits in occupied sites (number of 

occupied subunits a from 10 to 100 in steps on 10), and the same number of replicate 

surveys per sampling site (K from 5 to 10). 
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3.4.3 Results 

The simulation results confirm that, assuming the system is well represented by scena­

rio A, sampling without replacement increases the RMSE in the estimator of occupan­

cy (Figure 3-19), introducing a positive bias (Figure 3-20), as discussed by KW09. 

However, when the simulated scenario is B, sampling with replacement is the ap­

proach that introduces bias, and therefore in this case it is best to sample without re­

placement. The bias induced is negative, thus underestimating occupancy. One way to 

interpret this is that, if the same subunit is sampled more than once, then there is no 

independence between the species availability status of those replicates, as it is the 

same. In an extreme case, if only one subunit is repeatedly sampled, then all the survey 

replicates have the same availability status and, as discussed in 3.4.1, the occupancy 

estimator estimates the product ljJ8. When sampling with replacement, the induced 

lack of independence in the availability status of some replicates causes the occupancy 

estimator to estimate a value between ljJ and ljJ8, and so to be negatively biased. 

As illustrated by the curves, scenario B without replacement (B 1) and scenario A with 

replacement (A2) produce identical results in terms of properties of the occupancy es­

timator. Indeed both cases are mathematically equivalent (see Appendix A.3). This is 

not surprising as in practice both situations result in each sampling subunit drawn from 

the population having a probability of being occupied that is independent of the status 

of other subunits. In these two cases the observed RMSE value can be approximated 

by the asymptotic variance of the occupancy estimator in (2.13), using as detectability 

parameter p the product of the probability of subunit occupancy in occupied cells 

(aIN) and the probability of detection given species availability (Pa)· The asymptotic 

variances of the occupancy estimator for (i) a = 1, K = 5, (ii) a = 1, K = 10, (iii) a = 
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10, K = 5, and (iv) a = 10, K = 10, are respectively 0.01738,0.00373,0.00027 and 

0.00025 which, under the assumption of unbiasedness due to large sample size, cor­

respond to RMSE values of 0.1318, 0.0610, 0.0164 and 0.0158. These values are close 

to those in Figure 3-19. 

Note that our results do not exhibit the downwards bending of the curves for case A 

observed by KW09 in their Figure 2b when the number of subunits occupied within 

occupied sites is low and few subunits are sampled without replacement. This bending 

would suggest that in these cases the bias of the estimator is smaller if fewer samples 

are collected, a result which is counter-intuitive. Instead the simulations shown here 

indicate that, as expected, it is always best to have a larger number of replicates. Oc­

cupancy estimates at the boundary of the parameter space ($ = 1) were always ob­

tained for the case where there was only one occupied subunit at all occupied sites, 

that is, when there was at most one detection in the history per occupied site (i.e. 

Sd = d
T

). Indeed these results match the theory regarding the conditions for obtaining 

boundary estimates under the basic occupancy model (section 2.1.3), thus supporting 

the validity of our simulations. 

Based on these results it can be argued that the general recommendation given by 

Kendall & White (2009) regarding sampling with replacement in occupancy studies 

based on spatial replication should be taken with care as sampling with replacement 

can introduce estimation bias for scenarios that can be considered ecologically realis­

tic. If the system is better described by a probability of subunit occupancy independent 

of the occupancy status of other subunits within the same site, then a recommendation 

of sampling without replacement would be more appropriate, as a negative bias may 
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be induced in the estimator of occupancy if sampling is done with replacement. It is 

advisable to take this into consideration when designing the sampling protocol rather 

than assuming that selecting samples with replacement is always the best strategy to 

follow. Sometimes sampling with replacement may be logistically costly or impractic­

al; therefore it is important to assess whether it is indeed beneficial for the properties 

of the occupancy estimator. 

The simulation results with 100 spatial subunits per site (Figure 3-21 and Figure 3-22) 

illustrate that in this case it makes little difference which of the two strategies is cho­

sen. The choice of whether to sample with or without replacement is relevant when the 

sample size (i.e. the number of replicates per site, K) is large compared to the number 

of spatial subunits per sampling site (N). When the sampling site contains many sub­

units both approaches yield essentially the same result as, under sampling with re­

placement, the probability of sampling an already sampled subunit is small. It is often 

considered that the binomial distribution (which models the process of sampling with 

replacement) approximates well the hypergeometric distribution (which models the 

process of sampling without replacement) when the sample size is less than a tenth of 

the total population size (Wild & Seber 2000, p. 210), that is, in our case if K < 0.1 N. 

Another issue that influences the relevance of the choice of whether to sample with 

replacement is the mobility of the species (or rate of decay of tracks in the case of 

track surveys) compared to the timing of the replicate surveys. In these simulations it 

was assumed that the occupancy status of each spatial subunit did not change between 

replicate surveys. As pointed out by KW09, when this is not the case and the occupan­

cy status of spatial subunits is independent of their status in previous replicate surveys 

(e.g. for highly mobile species), both sampling strategies yield the same results. 
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Figure 3-19 Root mean square error (RMSE) of the occupancy estimator as a func­
tion of the (fixed/average) number of occupied spatial subunits at occupIed sites 
(a = 1, 2, .. , 10) for different numbers of spatial replicates (K = 5, 6, . .. , 10), based 

on a simulation with probability of occupancy lj; =: 0.5, detection probability Pa =: 

0.5, 1000 sites , N = 10 subunits per site and 1000 iterations . Two subunit occupancy 
scenarios are considered at occupied sites: A) the proportion of occupied subunits is 
fLxed and B) the probability of a subunit being occupied IS fLxed. Two sampling ap­
proaches are evaluated: 1) without replacement and 2) with replacement. 
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Figure 3-20 Mean of the occupancy estimator as a function of the (fn:ed / average) 

number of occupied spatial subunits at occupied sites (a = 1, 2, .. , 10) for different 
numbers of spatial replicates (K = 5, 6, ... , 10), based on a slffiulation with probabil­

ity of occupancy 1jJ = 0.5, detection probability Pa = 0.5 , 1000 sites, N = 10 subunits 
per site and 1000 iterations. Two subunit occupancy scenarios are considered at oc­
cupied sites: A) the proportion o f occupied subunits is fn:ed and B) the probability 
of a subunit being occupied IS fneed. Two sampling approaches are evaluated: 1) 

without replacement and 2) with replacement. 
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Figure 3-21. Root mean square error (RMSE) of d1e occupancy estimator as a func­
tion of llie (fIxed / average) number of occupIed spatial subunits at occupied sites 
(a = 10,20, . . . , 100) for different numbers of spatial replicates (K = 5, 6, ... , 10), 
based on a simulation willi probability of occupancy ljJ = 0.5, detection probability 

Pa = 0.5, 1000 sites, N = 100 subunits per site and 1000 iterations. Two subunit oc­
cupancy scenario s are considered at occupied sites: A) the proportion of occupied 
subunits is fIxed and B) the probability of a subunit being occupied IS fn::ed . Two 
sampling approaches are evaluated: 1) widlOUt replacement and 2) wid1 replacement. 
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Figure 3-22. Mean of the occupancy estimator as a function of the (fe-led / average) 
number of occupied spatial subunits at occupied sites (a = 10, 20, .. , 100) for dif­

ferent numbers of spatial replicates (K = 5, 6, ... , 10), based on a simulation with 
probability of occupancy l/J = 0.5, detection probability Pa = 0.5, 1000 sites , N = 
100 subunits per site and 1000 iterations. Two subunit occupancy scenarios are con­
sidered at occupied sites: A) the proportion of occupIed subunits is fDeed and B) the 
probabili ty of a subunit being occupied is fD::ed. Two sampling approaches are eva­
luated: 1) without replacement and 2) with replacement. 
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3.5 Discussion 

In this chapter we have explored different aspects related to the design of occupancy 

studies. The main focus of the chapter has been on the determination of the number of 

sites and replicates to be used in the study, except for section 3.4, in which we have 

shown that a recent general recommendation of sampling with replacement in occu­

pancy studies based on spatial replication is not appropriate for cases that are ecologi­

cally realistic. 

We have started by considering a standard single-stage occupancy design and we have 

shown how, using asymptotic approximations, we can determine the optimal level of 

replication to be used as well as the number of sampling sites that need to be surveyed 

for the study to yield meaningful results. We have however also illustrated how the 

asymptotic approximations do not hold for samples sizes that are realistic within eco­

logical studies and therefore highlighted the value of using simulations as a tool for 

design. 

We have considered how Bayesian and sequential design ideas can be applied to the 

design of occupancy studies, in particular regarding the allocation of survey effort into 

number of sites and replicates. These methods result in designs that are more robust to 

poor initial parameter estimates. We have shown how a two-stage design can provide a 

substantial improvement in efficiency and we have explored how to allocate best the 

effort between the two stages when such a design is used. Although for this we have 

concentrated on the variance of the occupancy estimator as a criterion for design, other 

criteria that involve the detection probability estimator could have been used, as in sec­

tion 3.1. While we have restricted our study to a two-stage design, more stages could 
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potentially be considered. Whether dividing the study into more stages is helpful will 

most likely depend strongly on the quality of the initial estimates. For instance, in the 

context of quantal response data experiments, Abdelbasit & Plackett (1983) show that 

higher-stage designs can be more efficient, but only when the initial estimates are 

rather poor. Our exploration has been largely based on (first-order) asymptotic ap­

proximations. Using second-order variance approximations can potentially lead to 

more accurate design recommendations for smaller sample sizes (e.g. Kalish 1990), so 

this is another possible route for future work. Finally, the effect of relaxing our as­

sumption of previously sampled sites not being revisited in the second stage could also 

be explored. 

When looking at the optimal allocation of effort between number of sites and number 

of replicate surveys (sections 3.1, 3.2.4 and 3.3), we have always assumed a standard 

survey design (single-stage or two-stage) and that all the individual surveys involve 

the same cost. Consequently we have assessed optimality with respect to total survey 

effort (E = SK in the single-stage design; E = SlK1 + S2K2 in the two-stage design). 

However other survey designs or cost functions are of course possible. For instance, 

MacKenzie & Royle (2005) consider a scenario in which the first visit to each site is 

more costly. Field, Tyre & Possingham (2005) use a cost function that accounts for an 

exponentially increasing cost of adding new sites, to reflect a scenario in which sites 

with lowest access cost are chosen first (but note this sampling approach is not ideal as 

access cost and occupancy may not be independent). When other designs or cost func­

tions are more appropriate, the exploration carried out in this chapter could be repro-

duced incorporating these. 



4 OCCUPANCY MODELS BASED ON 

CONTINUOUS SAMPLING 

In some cases, rather than using a discrete replicate sampling protocol, as assumed by 

the occupancy model framework of MacKenzie et al. (2002) and Tyre et al. (2003), 

species detection data are collected continuously along a transect or over an interval of 

time. One example of such a sampling protocol is the Sumatran tiger survey, in which 

the locations of tiger footprint detections along transects were recorded. This kind of 

data can be analyzed by discretizing the transect (or time interval) into segments, as­

signing a 'I' or a '0' to each segment to indicate whether there was at least one detec­

tion in the segment, and then using an appropriate model from amongst those devel­

oped for discrete sampling protocols. For instance, Hines et al. (2010) model tiger 

footprint detections collected along transects in India by discretizing the transects into 

I-km segments. In section 2.3 we provided another example of this approach with the 

analysis of the Sumatran tiger survey data. 

In this chapter we present an alternative framework for modelling species occupancy 

when detection data are collected in a continuous sampling protocol. Our approach, 

based on describing the detection process as a continuous point process, provides a 

more natural description of the data and eliminates the need to divide the transect into 
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discrete segments, which can be arbitrary and may lead to increased bias in the estima­

tor of occupancy and increased chances of obtaining estimates at the boundary of the 

parameter space. The chapter begins with a short introduction to the relevant theory of 

point processes in section 4.1. As a starting point, in section 4.2 we discuss a model 

based on a Poisson process, which is appropriate when the locations of species detec­

tions along the transect can be assumed to be independent. Since this condition is 

likely to be violated for some species, including the tiger, in section 4.3 we relax this 

assumption and propose a model in which detections are described as a clustered point 

process. The model is based on a two-state Markov-modulated Poisson process (2-

MMPP) which provides a structure for modelling clustering in the occurrence of 

events, while being a convenient process to work with due to its mathematical tracta­

bility. To illustrate the application of these two models, in section 4.4 we fit them to 

the Kerinci Seblat tiger data set. The work in this chapter has been published in 

Guillera-Arroita et al. (2011). 

4.1 Introduction to point processes 

A natural framework for the description of data on point occurrences collected along a 

continuous axis is provided by the theory of point processes (for an introduction to the 

fundamental theory see for instance Cox & Isham 1980). A point process is a particu­

lar kind of stochastic process, in which a realization consists of a collection of points, 

each with a well-defined position. Here we limit the term 'point process' to processes 

on the real half-line ~+ = [0,(0), compared to higher-dimensional processes, such as 

spatial point processes which are defined on the real plane ~2. The real half-line often 

represents time, but can also represent distance from an origin along a line. 
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Point processes are frequently used as models for the occurrence of random events in 

varied fields such as seismology (e.g. Vere-Jones 1970), telecommunications (e.g. Lee 

& Fapojuwo 2005), safety and reliability engineering (e.g. Thompson 1988), neurosci­

ence (e.g. Johnson 1996) or finance (e.g. Daykin, Pentikainen & Pesonen 1994). In 

ecology, the collection of data on the location of species or individual detections along 

line transects provides a natural application for this framework. Indeed point processes 

have for instance been used to model detections along transects in the context of dis­

tance sampling studies (Skaug 2006). However, their potential within the occupancy 

modelling framework has not been explored to date. 

Given that our motivating application is the modelling of detections along a transect, 

in this section we present the background material on point processes using the tenns 

'position' and 'distance' to refer to the locations of occurrences on the axis and the 

intervals between them. These tenns could be replaced by 'time' when the axis has 

that interpretation. 

4.1.1 Poisson process 

The simplest point process of all is the Poisson process which assumes that events oc­

cur totally at random along the axis, that is, events are independently and unifonnly 

distributed over the interval of interest. This process is characterized by a single con­

stant A, the intensity (or rate) of the Poisson process. Two properties can be derived 

from the above definition: 
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(i) the number of events in an interval of length L is Poisson distributed with 

parameter )"L, with the numbers of events in disjoint intervals being inde-

pendent; 

(ii) the inter-event distances (i.e. distances until the next occurrence) are a se-

quence of independent exponentially distributed random variables with pa-

rameter).., and mean 1/)... 

The probability mass function for the count of occurrences, D, in an interval of length 

L is therefore 

()"L)de-AL 
Pr(D = d) = --­d! 

d = 0,1,2, ... 

On the other hand, the joint probability density of the inter-event distances l is 

(4.1) 

(4.2) 

where l = {Ll' ... , ld, ld+tl, with it the distance from the beginning of the interval to 

the first event, ld+l the distance from the last event to the end of the interval and 

L - ~d+ll 
- L..i=l i· 

The Poisson process is stationary (the probability distribution of the number of events 

in any interval only depends on the length of the interval) and memoryless (the num-

ber of events in any interval after position x is independent of the number of events 

before x), and it is of central importance in the theory of point process. It provides a 

natural starting point for constructing other more complex processes and it occurs in 

many limiting situations (Cox & Isham 1980, pp 47-48). An important result, analo-
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gous to the Central Limit Theorem for random variables, is that the superposition of 

point processes is asymptotically a Poisson process (subject to the condition that the 

individual processes are such that no process dominates the rest). 

Although the Poisson process is convenient for some scenarios, generalizations that 

relax the requirement of independence are often a more appropriate representation of 

reality. A first useful generalization is to allow the intensity of the process to be a fimc­

tion of the position, A(x), or, even more generally, to let the intensity at position x be a 

function of an observed position-dependent explanatory variable z(x). Such a non­

stationary process is called a non-homogenous (or inhomogeneous) Poisson process 

while, in contrast, the particular case with constant intensity described above is called 

a homogenous Poisson process. In a non-homogenous Poisson process the expected 

number of events in an interval I is 

Al = f A(x)dx . 

In this case the joint probability density function for the inter-event distances I in (4.2) 

generalizes to 

/,(1) = {U A{Xj)} exp (- i A(x)dx ) (4.3) 

where Xj is the position of the j-th detection, i.e. Xj = I.{=l li' 
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4.1.2 Markov-modulated Poisson process 

A further generalization of the Poisson process is the doubly-stochastic Poisson proc­

ess (Cox & Isham 1980, pp. 70-75), also known as the Cox process. In this kind of 

process the position-varying intensity function A(x), rather than being detenninistic as 

in previous examples, is itself the realization of an unobserved stochastic process A(x) 

(hence the term doubly-stochastic). 

A particular type of doubly-stochastic Poisson process is the Markov-modulated Pois­

son process (MMPP), where the intensity of the Poisson process is governed by an un­

observed Markov process. A summary of properties of MMPPs can be found in 

Fischer & Meier-Hellstern (1993). In a n-MMPP, the intensity of the Poisson process 

alternates among n possible values, A = {Av ... , An}, each of them corresponding to 

one of the n states of the underlying Markov process. If n = 1, the MMPP reduces to 

an ordinary Poisson process. 

To specify a MMPP the underlying Markov process needs to be specified. In a 

Markov process the intervals spent in each state, the holding times or sojourn times, 

are independent and exponentially distributed with parameter ~i' Given the exit rate 

from each state, ~i' and the transition probabilities between states in the embedded 

Markov chain, Pij' the (infinitesimal) transition rates from state i to state j, Ilij' are 

derived as Ilij = ~iPij. A Markov process can be characterized by its n x n infinitesi­

mal generator matrix Q, which has elements 
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with the diagonal elements qa ensuring that the sum of the elements in every row is 

zero. 

Apart from Q and A, the state of the Markov process at x = 0 (the beginning of the 

transect) needs also to be provided in order to characterize a MMPP fully. Let rr be the 

initial probability vector of the MMPP, that is, the probability of being in each of the n 

intensity states at x = O. There are two stationary versions of the MMPP depending on 

the choice of rr (Fischer & Meier-Hellstem 1993; Ryden 1994): 

(i) Let D(x) be the number of events in an interval [O,x]. For the counting 

process {D(x)} to be stationary, rr is chosen to be the stationary (or equi-

librium) distribution of the underlying Markov process, rr', which satisfies 

rr'Q = O. (4.4) 

In this case the MMPP is said to be environment-stationary (or time-

stationary). 

(ii) Let X k be the state of the Markov chain at the time of event k and f k the 

distance between events k and k - 1. The sequences {Xd and Uk} are sta-

tionary if rr is chosen to be the stationary vector of the transition probabil-

ity matrix of the Markov chain embedded at the events, rr". The vector rr" 

is 
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rc'A 
rc* = rc' AT (4.5) 

where rc' is given by (4.4) and A is the diagonal matrix 

A = diag{Av ... , An}. In this case the MMPP is started at an event time and 

is said to be interval-stationary. 

As we will see later, the vectors rc' and rc* can be used as a specification of the initial 

probability vector of the MMPP when constructing the likelihood function. The vector 

rc' is appropriate if the realizations of the MMPP start at a random point, while rc* is 

relevant when the realizations start at an event. 

Let us now define F(l) to be the matrix with entries 

that is, the probability that, given the previous detection was generated under state i, 

the current one occurs at a distance smaller than l and is generated under state j. The 

derivative of F(l), tel), is given by (Meier-Hellstem 1987; Ryden 1994) 

t(l) = F'(l) = exp(Cl)A, (4.6) 

where C = Q - A. Note that here 'exp' denotes the matrix exponential function, 

which for a square matrix X is defined as the following convergent power series 

~ 1 k 
exp(X) = ~ k!X . 

k=O 
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From (4.6) the joint probability density of the inter-event distances l for an n-MMPP 

can be written as 

fIClIA, /1) = 1C exp(Cl1) A ... exp(Cld)A exp(Cld+1 ) e, (4.7) 

where 1C is the initial probability vector of the MMPP and eT = [1,1, ... , l]nxl. For 

intervals with no events the only element of l is L, the length from the beginning to the 

end of the transect and (4.7) takes the value 

fIClIA, /1) = 1C exp(CL)e. (4.8) 

Although perhaps most naturally seen as a doubly-stochastic Poisson process, note that 

the MMPP can also be interpreted as a hidden Markov model and as a Markov re­

newal process (Fischer & Meier-Hellstem 1993; Ryden 1994). 

MMPPs are useful for modelling time-varying (or position-varying) intensity rate 

processes and are applied in a variety of areas. They are widely used in telecommuni­

cations where they are often applied to model packetized voice and data streams in 

communication networks such as those from Internet traffic (e.g. Heffes & Lucantoni 

1986; Muscariello et al. 2005). MMPPs have been applied to financial problems (e.g. 

Takada, Sum ita & Takahashi 2011) and have also been utilized to model environ­

mental data including applications related to air pollution exposure (e.g. Ramesh 1995) 

or earthquake occurrence (e.g. Lu 2012). In ecology, the 2-MMPP has been proposed 

to model the detection of individuals along a transect in the context of abundance es­

timation with distance sampling (Skaug 2006). 
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In this chapter we use a 2-MMPP to describe clustered species detection data collected 

along a transect in the context of occupancy modelling. According to a 2-MMPP, spe-

cies detections take place at two different rates A1 and Az, and the interval spent sur-

veying in each of these two states is stochastic and exponentially distributed with pa-

rameters: 111z, the switching intensity from A1 to Az, and I1Z1o the switching intensity 

from Az to A1 (Figure 4-1). The 2-MMPP is sometimes referred to as a Switched Pois-

son process (SPP) and, often, the particular case with one detection rate equal to zero 

is referred to as an Interrupted Poisson process (IPP). 

111z 

I1z1 

Figure 4-1 State transition graph for a two-state Markov-modulated Poisson process 

(2-MMPP) 

The structure of the 2-MMPP induces clustering in the arrival of events, with the in-

terval of time spent in the high-detection rate corresponding to event bursts and the 

degree of clustering increasing as the difference between the two intensity rates of the 

Poisson processes increases, as illustrated in Figure 4-2. Note here as well that the re­

alizations of a homogenous poisson process sometimes display some apparent cluster­

ing, which is a consequence of its property oftotal randomness. Due to its capability to 
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accommodate actual clustering, the 2-MMPP may be, for instance, an adequate repre-

sentation for transect survey data from a species that only partially covers occupied 

sampling sites or when surveying for tracks along trails that individuals of the species 

may follow intermittently. 

(a) 

(b) 

(c) 

o 5 10 15 
time 

20 25 30 

Figure 4-2 Realizations of three point processes of unit rate: (a) homogenous Pois­
son process, il = 1; (b) 2-MMPP, il = [0.5,3], 11 = [0.5,2]; (c) IPP il = [0,5], 
11 = [0.5,2] (particular case of 2-MMPP with one intensity rate zero). 
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4.2 Poisson process occupancy model 

4.2.1 Modelformulation and assumptions 

Let us consider a study with S sampling sites where surveys have been carried out 

along transects, recording the location of each detection of the species. As in section 

2.1.2, here the assumption is that sites are closed to changes in species occupancy 

within the sampling season, and that each site has a probability l/J of being occupied. 

We also assume that detections along each transect at occupied sites can be considered 

independent and so can be modelled as a Poisson process with intensity A, where A 

represents the average number of detections per unit length. Note that, at this stage, we 

consider that occupancy probability l/J and detection intensity it are constant. 

The likelihood function for such a model is constructed as that of a series of independ-

ent Poisson processes but allowing for zero-inflation to account for unoccupied sites, 

thus resulting in a zero-inflated Poisson model. The contribution to the likelihood for a 

site in which the species was detected at least once is 

Rt 

l/J Il {it exp(-AlijJ ... it exp ( -itlijdtJ exp ( -itlijdtj+1)} = l/Jitdte-ALi, 

j=l 

where Ri is the number of independent transects in site i, dij is the number of detec-

tions along transect j in site i and lijl ... lijd"+1 are the inter-detection distances 
lJ 

(Figure 4-3) with l·· defined as the distance to first detection from the beginning of , t11 

the transect and l·· the distance from the last detection until the end of the tran-tJdtj+1 

sect. d· and L· represent the total number of detections and the total length surveyed in 
,t t 
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" . 1 h d ",R( d d L ",R( ",dij+l l h" site l respective y, so t at t = L..j=l ij an i = L..j=lL..k=l ih' T e likelihood 

contribution from a site with no detections of the species is 

that is, either the species was not present at the site or it was present but it was not de-

tected in a total surveyed length Li . Assuming independence between sites, the likeli-

hood for the whole detection data set can be constructed as the product of site likeli-

hoods and written as follows 

s 

L(t/J, A) = n {t/JAd(e-ALi + (1 - t/J)I(d i = On, (4.9) 
i=l 

where 1(.) represents the indicator function. Note that for this model the data can be 

summarized by the total numbers of detections at each site {d i }, given design parame-

ters Sand {Ld. 

fill fi12 Ii13 Ii14 Iils -. ... ... .-. . ~ • transect 1 • • • • 
Ii21 

transect 2 
.. • 

fiil Iiiz 
I- -
IJdij 

I- -
I J dij+1 

.--. .. • .. ... ~ 

• rr • • • J.J transectj 

IiR/1 I iR - liR-
12 13 

~ -. ~ .. ... 
transect Ri • • 

Figure 4-3 Notation used for the inter-detection distances from site i_ 
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To construct the likelihood in (4.9), we interpret the detection data as a series of inter­

detection distances, as in (4.2), rather than directly as a count of detections, as in (4.1). 

The latter would have introduced additional factors Lfi/di !, but we note that these do 

not involve the model parameters and therefore do not affect their estimation. Looking 

at the data in this manner is necessary to make sure that the likelihood function is 

comparable to that corresponding to more general models based on inhomogeneous 

Poisson processes (models with covariates in section 4.2.6 or the MMPP model in sec­

tion 4.3), and for which data can no longer be summarized as a count. 

4.2.2 Relationship to the Bernoulli process occupancy model 

The basic occupancy model discussed in chapter 2 models species detections at an oc­

cupied site as coming from K independent Bernoulli trials, each with probability of 

success p, the detection probability at each survey replicate. Such a random process, 

can in fact be interpreted as a point process along a discretized axis, and consequently 

is sometimes referred to as a Bernoulli process (e.g. Kingman 1993 p. 21). Here we 

adopt this terminology to distinguish this model from the model based on a (continu­

ous) Poisson process. 

The binomial distribution is a good approximation to the Poisson distribution when the 

number of trials is large and the probability of success at each trial is small (Haight 

1967, p. 15). Therefore the Bernoulli process occupancy model will be a good ap­

proximation to the Poisson process occupancy model if the continuous detection data 

are discretized using sufficiently small intervals, that is, if the transect is cut into suffi­

ciently small segments (Figure 4-4). The corresponding parameter p would be 1 -
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exp( -ALI K) , i.e. the probability of having at least one detection In a segment of 

length L I K given a Poisson process with detection rate A. 

PP BP Ikm 
I --.-. .... 

O.R '. 
, O.R . 

.' '. . ., ... ,.,/ 
0.6 .. , 0.6 -... l: 

• .:>0 .. .,..:: .. ~ 
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Figure 4-4 Comparison of the distribution of MLEs for the Poisson process occu­
pancy model (PP) and the Bernoulli process occupancy model (BP) at different seg­
ment lengths when data are generated according to a Poisson process, for A. = 0.25 
detections/km, l/J = 0.25, S = 30 sites and L = 6 km Plots show part o f the distri­
bution that contains 0.999 probability, with no point that is excluded having higher 
probability than any o f the points displayed (based on 10

4 
simulated data sets). 

4.2.3 MLEs and estimator properties 

In order to explore the general properties of the maximum-likelihood estimators for the 

Poisson process occupancy model , let us assume that the total transect length surveyed 

within each site is constant, L, which is equivalent to the assumption of standard sur-

vey design made in section 2.1.3 . The likelihood in (4.9) can now be written in a com-

pact form as follows 
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where dr = LI=l d i is the total number of detections in the survey, Sd is the number 

of sites where the species was detected at least once, and it" = 1 - e-AL is the prob-

ability of not missing the species at an occupied site (denoted it" here for consistency 

with the p* notation in chapter 2). Note that (Sd, dr ) is a sufficient statistic with re-

spect to this model. 

As done in section 2.1.3 for the Bernoulli process occupancy model, the likelihood in 

(4.10) can be rewritten using a reparameterisation of the type suggested by Morgan, 

Revell & Freeman (2007) for simplifying the likelihood of site occupancy models. Set-

ting 8 = l/Jit*, the probability that a site is occupied and the species is detected there, 

leads to 

(4.11 ) 

From this factorization into two parts, each one involving only one of the parameters 

(8 or it), the expressions that the MLEs must fulfil can be easily derived by differenti-

ating and setting equal to zero each of the parts. The MLE for {j is the proportion of 

cells where the species was detected, {j = Sd/S, and therefore the estimator of occu-

pancy ljJ satisfies 

(4.12) 

The MLE for the detection rate parameter X satisfies 
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(4.13) 

There is an evident parallelism between these two expressions and the equivalent ones 

for the Bernoulli process occupancy model in (2.3). It can be seen that, as i* de-

creases, that is, as the estimated probability of detecting the species at an occupied site 

when a transect of length L is surveyed decreases, the estimate of occupancy (ifj) in-

creases and the estimate of detection rate (i) decreases relative to the naive estimates 

obtained assuming that the species is always detected at occupied sites: ifjnaive = 

Sd/S, inaive = dT/(SdL). Similarly to the Bernoulli model, the MLE expressions in 

(4.12) and (4.13) do not always hold and, depending on the observed detection data, 

the actual MLEs may be on the boundary ifj = 1, as we show below. 

Let us denote by h(/\.) the part of the likelihood (4.11) involving /\. 

1 /\.* Sd 
h(/\.) = /\.dT (--T.-) . (4.14) 

Equation (4.13), which is satisfied by those points for which the first derivative of 

h(/\.) is zero, can be conveniently written as an explicit expression for /\. using the 

Lambert W function (Corless et al. 2005), which is defined as the inverse of xe
x

. This 

function, commonly implemented in software packages (e.g. function LambertW in 

MATLAB), is multivalued and has two real branches (Figure 4-5). It is known that the 

solution to an equation of the form aX = x + b is x = -b - W( -a-
b 

log a)/log a. 

Therefore, in our case setting a = edr/Sd, b = 1 and x = -)..LSd/dT, we have that /\. 

satisfies 
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(4.15) 

Note that here ' hats ' are removed from the notation, to recognize that not all the solu-

tions to (4 .15) lead to MLEs. 

w 

. lie 

-I 2 3 x 

-I 

-2 

-3 

-4 

Figure 4-5 The two real branches of the Lambert W function W(x) . The solid line 
indicates the upper branch with W (x) :2: -1, usually called the principal branch 
Wo(x) . The dashed line represents the lower branch with W(x) ~ -1, usually de-

noted W- 1 (x). 

When d
T 

= Sd, in (4.15) both branches of the Lambert W function lead to the same 

solution (A = 0) given that WoC-lle) = W_1C-lle) = -1. Since the solution is 

unique it must correspond to a maximum in the function hCA). When dT "* Sd , there 

are two possible real solutions to (4.15), one corresponding to each real branch of the 

Lambert W function. The solution given by the lower branch, W- 1 , is A = 0, since 
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W- 1 (xe X ) = x. This solution corresponds to a minimum m h(A) given that, if 

AdT AdT-Sd 
lim h(A) = lim (1 )S = C . lim (A )0 = 0, 
A-+O A-+O /1.* d A-+O * 

(4.16) 

where C is a constant. Therefore, the solution given by the principal branch corre-

sponds to a maximum in h(A). Considering this and provided the MLEs are not on the 

boundary, we can write that the MLE for A satisfies 

(4.17) 

where WoC.) is the principal branch of the Lambert W function. 

According to (4.12), $ would take values larger than unity if A* < Sd/S, or equiva-

lentiy, considering that A* = ASdL/dT, if A < dr/(SL). This implies that the MLE 

expressions in (4.12), (4.13) and (4.15) hold when the observed detection history ful-

fils the condition 

(4.18) 

If a detection history does not satisfy (4.18) then the MLEs are 

$ = 1, 
(4.19) 
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In summary, the MLEs of the Poisson process occupancy model are such that: 

(i) if dT = Sd (i.e. the species is detected at most once at any site with detec-

tions) there is only one solution for (4.13), the trivial solution A = 0, which 

is a maximum of (4.14) and leads to a boundary occupancy estimate, 

-$ = 1, and X = dr/(SL). 

(ii) if dT/Sd --t 00 (i.e. there is a very large number of detections of the species 

at sites where it was detected) there are two solutions for (4.13), the trivial 

solution A = 0, which is a minimum of (4.14), and a second one, which is 

the maximum, for A --t 00. In this case the occupancy estimate coincides 

with the naive estimate, -$ = Sd/S, 

( s S ) {d (d -dr )} (iii) if log -s d < - s: + Wo - s: e Sd there are two solutions for 

(4.13), the trivial solution A = 0, which is a minimum of(4.14), and a sec-

ond one which is the maximum and leads to a boundary occupancy esti-, 

mate, -$ = 1, and X = dT/(SL). 

(iv) if log e-;d) ~ - {~: + Wo ( - ~: e -~ )} there are two solutions for 

(4.13), the trivial solution A = 0, which is a minimum of (4.14), and a sec-

ond one given by (4.15), which is the maximum and leads to an occupancy 

estimate which lies within the probability boundaries, determined as in 

(4.12). 
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For the Poisson process occupancy model, the first derivative of the log-likelihood 

function, the scores vector, is 

G = [aL aL] 
at/J aA 

[ 
Sd - St/JA* dr - SdAL _ (S - Sd)t/JL(l - .1*) ]. 

- t/J(l-t/JA*) A I-t/JA* 

The elements of the observed information matrix 0 are 

a2 L Sd (S - Sd)A*2 
0[1,1] = - a1fJ2 = t/J2 + (1 - t/JA*)2 

a2 L (S - Sd)L(l - .1*) 
0[1,2] = - at/JaA = (1- t/JA*)2 

a2 L dr (S - Sd)t/JL2(1 - A*)(t/J - 1) 
0[2,2] = - aA2 = .12 + (1 - t/JA*)2 . 

Since the expectations for the data are 

lE[Sd] = St/JA* 

lE[dr] = St/JAL, 

the expected information matrix 1 = lE[O] has elements 

SA" 
1[1,1] = t/J(1 - t/JA*) 

SL(l - .1*) 
1[1,2] = (1 - t/JA*) 

{1 L(l - A*)(t/J - 1)} 
1[2,2] = St/JL I + (1 - t/JA*) , 

(4.20) 

(4.21) 

(4.22) 
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which in this case, given (4.12) and (4.13), are the same as those of the observed in-

formation matrix evaluated at the MLEs. From (4.22) the asymptotic variance-

covariance matrix can be derived as I = 1-\ which leads to 

1jJ{ 1 .1* 
I[l,l] = var(~) = - (1 -1jJ ) + - } 

S .1* - (1 - A*)AL 

~ A -A{ 1- .1* } 
I 12 = COY A =-[,] (1jJ,) S A*-(1-A*)AL (4.23) 

A A A' 
I[2 2] = var(A) = -{ } , ljJSL .1* - (1- A*)AL . 

Looking at (4.23) it can be seen that, as .1* approaches unity, that is, as the probability 

of missing the species at occupied sites approaches zero, 

(i) the variance of the occupancy estimator ~ tends to the variance dictated by 

the binomial proportion ljJ(l-ljJ)jS and decreases as the number of sites 

increases; 

(ii) the variance of the intensity parameter estimator X tends to Aj(ljJSL) and 

decreases as the total effort (S L) increases regardless of whether it is spent 

on surveying more sites or longer transects within each site; 

(iii) the covariance approaches zero. 

4.2.4 Design recommendations 

For the purpose of deriving general survey design recommendations, let us continue 

assuming a survey design in which the same transect length L is surveyed in all S sites. 

Suppose now that a study can employ a fixed amount of surveying effort (E = SL) and 
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that we wish to maximise the precision of the estimator of occupancy, $. Survey de-

sign recommendations for this scenario can be derived looking at the expression ofthe 

asymptotic variance of$ in (4.23). Table 4-1 shows the optimal survey design, assum-

ing that survey costs per unit length surveyed are constant and consequently assessing 

optimality with respect to total survey effort E. As discussed in previous chapter, in 

some scenarios other survey designs or cost functions might be more appropriate and 

the same exploration could be reproduced incorporating these. 

Table 4-1 Mean number of detections at occupied sites (itL) to minimize the variance 
of the occupancy estimator in the Poisson process occupancy model for different 
levels of occupancy (t/J). The corresponding probability of detecting the species at 

occupied sites (it *) is also shown. 

~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

}'L 1.44 1.52 1.62 1.74 1.88 2.08 2.34 2.75 3.53 

}.* 0.76 0.78 0.80 0.82 0.85 0.87 0.90 0.94 0.97 

The optimal length to survey per site is determined by the parameter values (~ and }.), 

irrespective of the total effort allocated to the survey. The probability of occupancy 

(~) determines the mean number of detections at occupied sites (}'L) that maximises 

the precision of$, from which the optimal length can be derived. The number of sites 

immediately follows by considering the total effort E. For instance, if ~ = 0.4, }. = 3 

and E = 40, then the optimal design would be to survey L = 1.74/3 = 0.58 units of 

length in S = E / L = 40 /0.58 ~ 69 sampling sites. Table 4-1 suggests that for rare 

species (i.e. low ~) it is best to sample more sites (at the expense of increasing the 

probability of false absence), while for commoner species (i.e. higher ~) it is best to 

allocate the effort so that fewer sites are surveyed more intensively. This general pat-
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tern is in line with that observed for the Bernoulli process occupancy model in section 

3.1. Note that the optimal length is the same if the study is designed to minimize the 

total surveying effort for a given precision of the occupancy estimator. 

Note also that, when AL is small, the zero-inflated Poisson distribution with zero infla­

tion 1 -l/J and rate AL is approximately a Bernoulli distribution with probability pa­

rameter l/JAL. In such circumstances l/J and A become non-identifiable. This is equiva­

lent to not having replication in the basic Bernoulli process occupancy model. 

4.2.5 Performance simulations 

We conducted a simulation study to evaluate the performance of the Poisson process 

occupancy model compared to the Bernoulli process occupancy model for detection 

data collected under a continuous sampling protocol. For each sampling site the occu­

pancy status was determined as the outcome of a Bernoulli trial with probability l/J. 

Detection data for occupied sites were generated following a homogenous Poisson 

process. We ran 10,000 simulations of a study design where the total survey effort 

available was 600 km of transect. We first set the length surveyed per site to 6 km, 

therefore resulting in 100 sampled sites. Occupancy was set to l/J = 0.25, 0.5 or 0.75. 

The detection rate was A = 0.1, 0.2 or 0.3 detectionslkm, which give probabilities A* 

of detecting the species at an occupied site of 0.45,0.70 and 0.83, respectively. For the 

Bernoulli process occupancy model the detection data were discretized based on three 

segment lengths (1, 2 and 3 km), assigning a success ('1 ') to those segments in which 

there was at least one detection. We then reran the simulations with the optimal per­

site survey length for each scenario (i.e. AL = 1.57, 1.88 and 2.54, respectively). 



4 OCCUPANCY MODELS BASED ON CONTINUOUS SAMPLING 167 

The simulation results (Table 4-2a) show that, at this sample size (600 km), the occu­

pancy estimator has in general little bias. However, for rare and elusive species (low 

occupancy and low detection rate), the occupancy estimator is biased and its MSE is 

larger than that predicted by the asymptotic approximation. For instance, for ljJ = 0.25, 

iI. = 0.1 and L = 6, the asymptotic MSE, which corresponds to the asymptotic variance 

in (4.23) given that the estimator is asymptotically unbiased, is 0.013 while the actual 

MSE is 0.055. 

The results also show that, as expected, when the detection process is a continuous 

process, the discretization of the data produces an occupancy estimator with larger bias 

and variance, especially when transects are divided into a few large segments. The es­

timator is more prone to estimates at the boundary of the parameter space (e.g. the 

proportion of estimates -$ = 1 obtained was 0.052 in the Poisson process model, and 

0.078, 0.118 and 0.188 in the Bernoulli process model with 1, 2 and 3 km segment 

lengths, when ljJ = 0.25, iI. = 0.1 and L = 6). This confirms that it is important to 

avoid discretizing continuous data if it is not really necessary. 

The simulations corresponding to a study design based on the optimal per-site survey 

length (Table 4-2b) illustrate how the estimator properties improve in this case. With 

the same total survey effort, the occupancy estimator is less biased and more precise 

(e.g. for ljJ = 0.25, iI. = 0.1 the MSE of -$ decreased from 0.055 to 0.016). The im­

provement is especially noticeable for scenarios with low detection rate, as there was 

more discrepancy between the optimal survey length (15.7, 18.8 and 25.1 km respec­

tively) and the 6 km initially used in the simulations. The loss in performance due to 

the discretization was less evident when working with an optimal survey length. 
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Table 4-2 Performance of the occupancy estimator in the Poisson process (PP) and 
Bernoulli process (BP) occupancy models when data are generated according to a 
Poisson process with detection rate A., occupancy is t/J, the total survey effort avail-
able is 600 km and the survey design is based on either (a) L = 6 km or (b) the op-
timal L. Three segment lengths (1, 2 and 3 km) are tested for the BP model. Mean 

and mean square error (in square brackets) of the occupancy estimator tP based on 
10,000 simulations are shown. In (b) ,----, is used to indicate that one case could not 
be evaluated as the total length was too short for the discretized data to contain 
more than one replicate. 

$ 

1/J A. L PP BP 1 km BP2km BP3 km 

(a) 0.25 0.1 6.0 0.34 [0.055] 0.35 [0.069] 0.38 [0.090] 0.41 [0.123] 

0.2 6.0 0.26 [0.006] 0.27 [0.007] 0.27 [0.010] 0.28 [0.015] 

0.3 6.0 0.25 [0.003] 0.26 [0.003] 0.26 [0.003] 0.26 [0.004] 

0.50 0.1 6.0 0.55 [0.038] 0.56 [0.044] 0.57 [0.051] 0.58 [0.061] 

0.2 6.0 0.51 [0.008] 0.52 [0.009] 0.52 [0.011] 0.53 [0.015] 

0.3 6.0 0.50 [0.004] 0.51 [0.004] 0.51 [0.005] 0.51 [0.005] 

0.75 0.1 6.0 0.77 [0.026] 0.77 [0.029] 0.77 [0.031] 0.78 [0.035] 

0.2 6.0 0.76 [0.009] 0.76 [0.010] 0.77 [0.012] 0.77 [0.014] 

0.3 6.0 0.75 [0.004] 0.76 [0.005] 0.76 [0.005] 0.76 [0.006] 

(b) 0.25 0.1 15.7 0.28 [0.016] 0.28 [0.018] 0.29 [0.022] 0.29 [0.024] 

0.2 7.9 0.26 [0.004] 0.26 [0.005] 0.27 [0.007] 0.27 [0.010] 

0.3 5.2 0.26 [0.003] 0.26 [0.003] 0.26 [0.005] 

0.50 0.1 18.8 0.51 [0.014] 0.52 [0.014] 0.52 [0.015] 0.52 [0.015] 

0.2 9.4 0.51 [0.006] 0.51 [0.006] 0.51 [0.007] 0.51 [0.007] 

0.3 6.3 0.50 [0.004] 0.51 [0.004] 0.51 [0.005] 0.51 [0.005] 

0.75 0.1 25.1 0.76 [0.012] 0.76 [0.013] 0.76 [0.013] 0.76 [0.013] 

0.2 12.5 0.75 [0.006] 0.75 [0.006] 0.75 [0.006] 0.76 [0.006] 

0.3 8.4 0.75 [0.004] 0.75 [0.004] 0.75 [0.004] 0.76 [0.004] 
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4.2.6 Introducing co variates 

The model structure in (4.9) may readily be expanded to allow the probability of occu-

pancy (t/J) and/or the detection rate (A) to depend upon site characteristics, such as 

habitat type or level of human disturbance, using a generalized linear model frame-

work with a logit link function for the vector of site occupancies, 1/J, and a log link 

function for the vector of detection rates, A, so that 

1 
1/J = 1 + exp( -CP) , 

(4.24) 

A = exp(Da), 

where C and D are matrices with site covariate information and p and a are the vec-

tors of model parameters. 

The model can also be extended to accommodate within-site variation in the detection 

rate, by describing the detection process as a non-homogenous Poisson process. This 

results in the following construction for the likelihood function 

(4.25) 

where xij are the locations of the detections and hi is the interval of length Li sur-

veyed. Obviously, since the locations of the detections are needed, the data can no 

longer be summarized by the number of detections at each site, db as in (4.9). 
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The detection rate can now be expressed as a function of covariates that vary along the 

transect via a log link function 

Most commonly in practice there will not be an explicit function describing the varia­

tion of the covariates along the transect, but rather discrete covariate values corre­

sponding to transect sections, so the integration in (4.25) reduces to a finite summation 

as follows 

where Ni is the number of transect sections at site i corresponding to distinct detection 

rate values, Aik refers to the detection rate parameter at transect section k and Lik re­

fers to the length of transect section k. Note that the model assumes that sites are 

closed in terms of occupancy, so its structure does not allow for changes of occupancy 

within sites. 
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4.3 2-MMPP occupancy model 

4.3.1 Modelformulation and assumptions 

Considering the same sampling protocol as described in section 4.2.1, let us now sup-

pose that the detections of the species along the transects exhibit some degree of clus-

tering and thus cannot be considered independent. Here we propose to model the de-

tections as a two-state Markov-modulated Poisson process (2-MMPP) with parameters 

A = [Ai' A.zl and 11 = [.u12, 1121]. The likelihood for such an occupancy model can be 

written as 

s { R· } 
L(.p.J..,,) = 0 .p 0 Mil + (1- .p)I(d, = 0) • (4.27) 

where Mij is the expression for the contribution to the likelihood of the data from the 

j-th transect in site i, described as a 2-MMPP. Once again the model has a zero-

inflation term, to reflect the fact that the species is absent from sites with probability 

1 - t/J. Note that the assumption here is that when more than one transect is surveyed 

in a site, these can be considered independent and so their contributions to the likeli-

hood can be simply multiplied. 

From (4.7) we have that if the detection data along the transect is described as a n-

MMPP, then Mij can be written as 
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where C = Q - A and iiil . ..liid l]+1 are the inter-detection distances with iiil defined as 

the distance to the first detection from the beginning of the transect and i·· defined 
IJdij+1 

as the distance from the last detection until the end of the transect (Figure 4-3). In the 

case of a 2-MMPP eT = [1,1]' the generator matrix Q of the underlying Markov 

process is 

and the rate matrix A is 

Recall that re is the initial probability vector of the MMPP, that is, the probability of 

being in each of the two detection rate states (..11 or ..12) at the beginning of the transect. 

If the start of the transect is chosen randomly, an appropriate specification for re is the 

equilibrium distribution of the underlying Markov process which fulfils (4.4) and 

which for a 2-MMPP is given by 

'] [ 1121 re' = [1f~ 1f -
2 - 1112 + 1121 

1112 ] 
1112 + 1121 . 

(4.29) 

If instead the transect would be started at a point of detection, an appropriate specifica-

tion for re is given by (4.5), which for a 2-MMPP is 
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(4.30) 

where rr~ and rr~ are given by (4.29). Although in our application transects are not 

started at a point of detection, (4.30) is relevant for the assessment of model fit, as we 

will see in section 4.4.3. 

For the 2-MMPP, the matrix exponential exp(Cl) can be written in closed form 

(Ryden 1994) as 

where 

81 = (51 + 52 + D)/2, 

82 = (51 + 52 - D)/2 , 

(4.31 ) 

These calculations can be computationally faster than using a general implementation 

of the matrix exponential. In a performance comparison with the function expm in 

MATLAB (version 7.12.0) we found around a six-fold difference in computing times. 



4 OCCUPANCY MODELS BASED ON CONTINUOUS SAMPLING 174 

For instance, the matrix exponential computation for /1 = [O.l, 0.02], A = [2,0.5] and 

l = 20 took an average of 0.0168 ms when using (4.31) compared to 0.l020 ms when 

using expm. This is especially relevant when fitting the model as the optimization 

process involves many evaluations of the likelihood function and, therefore, of matrix 

exponentials. 

4.3.2 Relationship to the 2-MMBP occupancy model 

The counterpart to the 2-MMPP occupancy model for discretized data would be a two­

state Markov-modulated Bernoulli process (2-MMBP) occupancy model (Figure 4-6). 

In such a model, detections at occupied sites are described as coming from Bernoulli 

trials with two possible probabilities of success (detection probabilities Pi and pz)· 

Which of the two probabilities of success is effective at each survey replicate is gov­

erned by a Markov chain (i.e. a discrete-time Markov process), with transition prob­

abilities q12 (from the state with detection probability Pi to the state with detection 

probability P2) and q2i (from the state with detection probability pz to the state with 

detection probability Pi)' We can expect the discrete 2-MMBP occupancy model to be 

a good approximation to the continuous 2-MMPP occupancy model if the continuous 

detection data are discretized using sufficiently small intervals, with Pi ~ 1 -

exp( - AiL/ K) and qij ::::: 1- exp( -/1ijLjK), where LjK is the length of transect 

segments. 
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qZ1 

Figure 4-6 Detection process at occupied sites modelled as a 2-MMBP 

In fact, the two models discussed in section 2.2.2, proposed by Hines et al. (2010) to 

generalize the Bernoulli process occupancy model and account for dependence be­

tween consecutive spatial replicates, are particular cases of a 2-MMBP occupancy 

model where pz is set to zero. Detections are therefore modelled as an interrupted Ber­

noulli process (fiP). In their 'trap response model', P1 is also fixed, set to 1. The de­

tection process at occupied sites in the 'Markov process for segment occupancy 

model', described by the Hidden Markov model shown in Figure 2-8, corresponds to a 

2-MMBP with parameters Q1Z = 1- (J', QZ1 = (J,P1 = P, pz = O. The detection 

process at occupied sites in the 'trap response model', described by the Markov chain 

shown in Figure 2-9, corresponds to a 2-MMBP with parameters Q1Z = 1 - p', QZ1 = 

P, P1 = 1, P2 = O. 

4.3.3 Maximum-likelihood estimation 

In our study we estimated the parameters of the 2-MMPP occupancy model via maxi­

mization of the likelihood in (4.27). When this approach is followed one problem may 

arise. Since (4.28) involves matrix multiplications it is not possible to take logarithms 



4 OCCUPANCY MODELS BASED ON CONTINUOUS SAMPLING 176 

within the likelihood calculations corresponding to each transect, as is customary. The 

consequence is that, during the computation, the likelihood is more prone to take ex-

treme values which are outside the range of the computer's floating point implementa-

tion, thus leading to optimization problems, as pointed out by various authors (Meier-

Hellstem 1987; Ryden 1994; Skaug 2006). To prevent this, customized floating-point 

code needs to be written. The impossibility of taking logarithms becomes an issue 

when dealing with realizations of the MMPP consisting of many occurrences, that is, 

in our type of application if long transects were surveyed for a species producing many 

detections per unit length (Figure 4-7). 
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Figure 4-7 Percentage of simulations of a 2-MMPP transect that caused an arithmetic 
overflow when the likelihood was evaluated at the true parameter values. Scenano 
simulated: J1. == [1/2,1/15] and A == [..11> 0], with (a) ..11 == 10, (b) ..11 == 15 and (c) 

..11 == 25; 100 simulations. 
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Operations in MATLAB (version 7), the programming environment used in this thesis, 

are carried out in double-precision arithmetic conforming to the IEEE standard 754, so 

the largest finite floating-point number that can be represented is 1.7977e+308 and the 

smallest positive floating point number represented is 2.2251e-308. Although this rep­

resentation was largely sufficient for the analysis of the Sumatran tiger data set in sec­

tion 4.4, a simplified version of a customized floating-point code (in fact an adaptive 

scaling of the inbuilt floating point representation) was implemented for the simulation 

study to ensure that no numerical problems would be encountered. In the likelihood 

computation, for each inter-detection distance processed, we used two numbers to rep­

resent each of the elements in the 2x2 matrices obtained from calculating exp(Cla A. 

A floating-point number (a) was used to represent the significant digits of the quantity, 

which was scaled as necessary to be kept within a reasonable range. The second num­

ber (b) was a counter representing the amount of scaling applied. Each element was 

represented by a . Sb, with s = 1050 and b chosen to ensure that a E [l/s, s]. The 

product of the 2x2 matrices was carried out using this numerical representation. Once 

all the inter-detection distances in the transect were processed, the final quantity was 

transformed to a single floating point number on the logarithmic scale, log(a) + 

SOb log(10), and this way the computation of the log-likelihood contribution for the 

transect was completed. 

Provided that the numerical issues are satisfactory resolved, maximum-likelihood 

based model fitting via the Nelder-Mead simplex method has been shown to perform 

well compared to other approaches for MMPPs (Ryden 1994). Within the maximum­

likelihood framework, another way to avoid the problem of numerical under/overflow 

would be to use an expectation-maximization (EM) algorithm. This kind of algorithm 
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works on the complete likelihood, which is a scalar, and therefore does not pose prob­

lems in terms of taking logarithms. For the case of standard MMPP models (without 

zero-inflation) at least two types of EM algorithm have been evaluated (Ryden 1994; 

Ryden 1996). In comparison to the optimization of the marginal likelihood via the 

Nelder-Mead simplex method, Ryden (1996) shows that the EM algorithm converges 

in a smaller number of iterations. However, he also points out that, since each of the 

EM algorithm iterations is more complicated than a likelihood evaluation, the actual 

implementation of the methods needs to be considered on a case by case basis to as­

sess how they compare in terms of real-time performance. 

4.3.4 Simulation study: PP and 2-MMPP model performance under clustering 

We used simulations to investigate the performance of the two occupancy models pre­

sented when the detections along the transect are clustered. We generated data based 

on a 2-MMPP with one state without detections and another state, in which less time is 

spent, with detections. The probability of occupancy was set to ljJ = 0.25, 0.5 or 0.75 

and the sampling design had 100 sites with one transect of length L = 20 km surveyed 

per site. The 2-MMPP parameters used were detection rates A = [0 5] and state switch­

ing rates JL = [1115 1110], JL = [1115 112], JL = [1115 1], JL = [1115 110.5] and JL = 

[1115 1/0.2]. With these parameter values and sampling design the probabilities of de­

tecting the species at an occupied site, 1 - IT exp(CL)e, were 0.83, 0.73, 0.68, 0.62 

and 0.49 respectively. 



4 OCCUPANCY MODELS BASED ON CONTINUOUS SAMPLING 179 

The simulation results (Table 4-3) show that the occupancy estimator in the Poisson 

process occupancy model is negatively biased in the presence of clustering in the de­

tection data. An informal interpretation for this negative bias is straightforward: given 

the average observed detection rate, the Poisson process model 'expects' that the sites 

without detections are less likely to be occupied than they really are; the model does 

not consider that the detections come in clusters so that, at occupied sites, relatively 

long stretches without detections leading to the species being missed are possible. As 

expected, the occupancy estimates obtained with the 2-MMPP model are much better, 

with only a very slight positive bias in the simulated scenarios. 
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Table 4-3 Performance of the occupancy estimator in the Poisson process (PP) and 
2-state Markov-modulated Poisson process (2-MMPP) occupancy models when data 
are generated according to a 2-MMPP with detection rates A = [0 5] and switching 
rates (a) II = [1/15 1/10], (b) II = [1/15 1/2], (c) II = [1/15 1/1], (d) II = [1/15 
1/0.5] and (e) II = [1/15 1/0.2]. The simulated sampling design consists of survey-
ing 100 sites, with one 20 km transect surveyed per site. Mean and mean square error 
(in square brackets) of the occupancy estimator -,ji based on 500 simulations are 
shown. The probability of detecting the species at occupied sites is also indicated. 

$ 

t/J A,P. p(detect) PP 2-MMPP 

0.25 (a) 0.83 0.21 [0.004] 0.26 [0.004] 

(b) 0.73 0.18 [0.006] 0.26 [0.005] 

(c) 0.68 0.l7 [0.007] 0.27 [0.007] 

(d) 0.62 0.l5 [0.010] 0.27 [0.007] 

(e) 0.49 0.13 [0.017] 0.27 [0.013] 

0.50 (a) 0.83 0.41 [0.010] 0.51 [0.005] 

(b) 0.73 0.37 [0.020] 0.51 [0.007] 

(c) 0.68 0.34 [0.027] 0.51 [0.009] 

(d) 0.62 0.31 [0.038] 0.51 [0.011] 

(e) 0.49 0.26 [0.061] 0.51 [0.017] 

0.75 (a) 0.83 0.62 [0.018] 0.76 [0.007] 

(b) 0.73 0.55 [0.042] 0.77 [0.010] 

(c) 0.68 0.51 [0.059] 0.75 [0.011] 

(d) 0.62 0.46 [0.084] 0.76 [0.014] 

(e) 0.49 0.38 [0.142] 0.77 [0.023] 

4.3.5 Limiting case: PP mixture model 

In a limiting situation with 1112 ~ 0 and 1121 ~ 0, the 2-MMPP tends to a mixture of 

two Poisson processes. Therefore, a model based on such a mixture will be appropriate 

. .. h'ch the surveyed transects are short with respect to the switching be­m scenarIOS m w I 



4 OCCUPANCY MODELS BASED ON CONTINUOUS SAMPLING 181 

tween detection rate states. Under this model the detections occur at two different rates 

A1 and A2 and detections along each transect take place at one of these two rates, with 

transitions between detection rates not allowed within individual transects. The detec-

tion process within each transect can therefore be described as a homogenous Poisson 

process of rate either A1 or A2, and there is a probability of the transect being in each of 

the two detection rates states (probability 1f1 for state A1)' The likelihood for this 

model is thus 

(4.32) 

where Lij is the total length surveyed in the j-th transect in site i and d ij is the total 

number of detections in that transect. 

4.3.6 Identifiability 

In a 2-MMPP, clustering arises as the two intensity parameters A1 and A2 differ from 

each other. When the two intensities are the same, the 2-MMPP reduces to a homoge-

neous Poisson process and the parameters 1112 and 1121 become unidentifiable. In the 2-

MMPP occupancy model, for any given value of ljJ, 1jJ say, the likelihood function 

takes exactly the same value for all combinations of parameters satisfying: 

(i) A1 = A2 = i regardless of the values of 1112 and 1121; 



4 OCCUPANCY MODELS BASED ON CONTINUOUS SAMPLING 182 

(ii) Ai = X when J.l12 « J.l2b regardless of A2, as in effect this represents a case 

with only one state; 

(iii) 1jJ = ljJ(l + f1iz1f12i)' Ai = X, A2 = 0, J.l12 ~ 0, J.l2i ~ 0, if only one 

transect is surveyed per site. The model has two alternative explanations 

for sites without detections (unoccupied or occupied in state 2), so 1jJ and 

the ratio of switching parameters J.l121 J.l2i are not separately identifiable. 

The same identifiability issue arises for species that occupy sampling sites partially 

(i.e. Ai = X, A2 = 0), if transects are short and without replication within sites. 

4.3. 7 Introducing covariates 

As in the Poisson process occupancy model, information on site covariates can be in­

corporated easily in the 2-MMPP model using a logit link function for occupancy 

probability 1jJ and a log link function for the detection rates A (4.24). Within-site detec­

tion covariates can also be incorporated in a similar way as in (4.26). Let us consider a 

case in which transect ij consists of two sections (A and B) with different detection 

rate parameter vectors, AA and AB, and suppose that there were two detections in sec­

tion A and none in section B. The expression for Mij can then be written as 

where 1fA' C
A 

and AA are calculated with the detection rate parameters for section A 

and lijAk are the inter-detection distances in section A, with lijAi the distance to the 

first detection and lijA3 the distance from the last detection to the end of the section; 

the same argument applies to section B. 
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4.4 Analysis of the Kerinci tiger data set 

We illustrate the application of the models proposed in this chapter with an analysis of 

the Sumatran tiger data set from Kerinci Seblat National Park described in section 

1.3.3, which consists of the location of footprint detections along transects and details 

on the transect routes followed in the survey. 

4.4.1 Methods 

We fitted the Poisson process model and the 2-MMPP model, as well as two variations 

of the latter: a particular case with one of the detection rates set to zero and the limiting 

Poisson process mixture model. Data were processed for the analysis by measuring the 

distances between detection points along the transect, as well as the distance from the 

start of the transect to the first detection and from the last detection until the end. In 

some of the sites more than one transect were surveyed. For the analysis, these tran­

sects were assumed to be statistically independent, so that their contributions to the 

likelihood could be multiplied, as in (4.27). In the surveys, transects were not started at 

a point of detection. We considered that the starting point was a random location in the 

landscape and consequently used (4.29) as an initial probability vector in the likeli-

hood function. 

4.4.2 Model selection and parameter estimates 

The results from fitting the homogenous Poisson process occupancy model and the 2-

MMPP occupancy model (Table 4-4) indicate that the latter model fits the Kerinci ti­

ger data substantially better. Its Ale value was almost 60 units lower despite the pen­

alty due to having three additional parameters. Fitting an interrupted Poisson process 

for the detection process (i.e. 2-MMPP with Az fixed to zero) was also better than the 
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homogenous Poisson process but considerably worse than the general 2-MMPP. This 

suggests that, although rare, some detections take place outside areas of high detection 

rate. 

Table 4-4 Parameter estimates with standard errors and AIC values for the occu­
pancy models with a continuous detection process fitted to the Kerinci tiger data. 
Note - PP: homogenous Poisson process, 2-MMPP: 2-state Markov-modulated Pois­
son process, IPP: Interrupted Poisson process and PP Mixture: mixture of two ho-

mogenous Poisson process. The unit of Xi is km- t and the unit of Pij = l/flij is km. 

PP 2-MMPP IPP PP Mixture 

$ 0.82 (0.049) 0.96 (0.065) 0.97 (0.067) 0.96 (0.065) 

Xl 0.11 (0.007) 0.23 (0.030) 0.19 (0.023) 0.22 (0.025) 

X2 0.03 (0.009) Fixed to 0 0.03 (0.008) 

P12 121 (216) 28 (18) 

P21 243 (413) 28 (15) 

ftl 0.35 (0.064) 

AIC 1722.1 1662.5 1674.4 1660.8 

LlAIC 61.3 1.7 13.6 0 

The estimate of occupancy under the 2-MMPP model is higher ($ = 0.96) than under 

the homogenous Poisson process model ($ = 0.82), which concurs with the fact that 

disregarding the dependence between detections causes a negative bias in the occu-

pancy estimator. For this parameter the symmetric 95% confidence interval derived 

from the point estimate extended beyond unity (0.835-1.090). We also derived an in-

terval based on the profile log-likelihood, that is, the log-likelihood maximised over all 

parameters other than l/J, with respect to l/J. The 95% confidence interval based on the 

profile log-likelihood contains all the values of l/J for which the profile log-likelihood 
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lies within xf:o.os/2 = 1.92 of the maximum (Figure 4-8). In our case we obtained 

(0.831-1.000). 
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Figure 4-8 Profile log-likelihood for the occupancy parameter in the 2-MMPP tiger 
occupancy model. A 95%-confidence interval for the estimate of occupancy is de­
rived as all occupancy values corresponding to profile log-likelihood values less than 
1. 92 units below the maximum. This threshold is shown as a dashed horizontal line. 

The estimates associated with the detection process in occupied cells suggest that the 

rate of encounter of tiger footprints is ten times higher in some areas compared to oth-

ers and that the average distance travelled in areas with high encounter rate (P12 = 

1/f1.12) is half the average distance travelled in areas with low encounter rates (P21 = 

1/f1.21)' We chose to use a parameterization for the embedded Markov process in 

tenns of expected holding times (p) instead of switching rates (f1.) as this provides a 

more straightforward interpretation of our results. The point estimates of the P parame-

ters are larger than we expected initially; however, their standard errors indicate poor 

precision. It is known that, in general, the switching rate parameters are more difficult 
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to estimate than the event (detection) intensities (Ryden 1996), which is in fact not 

surprising as the states themselves are not directly observable. 

A reparameterisation of the model using the ratio and sum of the P parameters 

(R = P12/P21 and A = P12 + P21) gave estimates and standard errors R = 0.5 (0.15) 

and A = 365 (628) showing that the estimate of the ratio is relatively precise and that 

most of the uncertainty lies in the magnitude of the parameters. This is interesting, as it 

suggests that the tiger data are informative in terms of the probability of being in each 

of the two states but carry little information on the actual rate at which transitions be­

tween states take place. The transects walked in this survey were short compared to the 

rate at which state transitions seem to take place, which prevents the accurate estima­

tion of these parameters. 

Our results suggest that, due to transect length, transitions are unlikely to occur within 

transects so we could expect that the model based on a mixture of two Poisson proc­

esses in section 4.3.5 would describe our detection data well. Indeed, fitting this model 

provided a very similar likelihood value (826.4 vs. 826.2) and practically the same es­

timates of occupancy and detection rates as under the 2-MMPP model. The estimate of 

the probability of being in the state with high detection rate ITl = 0.35 (0.064) also 

matches the corresponding estimate based on the 2-MMPP model ITl = R / (R + 1) = 

0.33 (0.067). 
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4.4.3 Model diagnostics 

We explored two aspects of goodness-of-fit for the models fitted by assessing how 

well they describe 

(i) the inter-detection distances and 

(ii) the distances from the beginning of each transect until the first detection. 

We did this by comparing the survivor function of these two random variables accord­

ing to the fitted models with the empirical survivor function obtained directly from the 

recorded data. The survivor function, also known as survival function or reliability 

function depending on the application, reflects the probability that a characteristic of a 

system will 'survive' beyond a specified time. For a continuous random variable X, 

with f(x) its probability density function and F(x) its cumulative distribution func­

tion, the survivor function is 

Sex) = P(X > x) = LOO 

feu) du = 1 - F(x). (4.34) 

Obviously, the survivor function is monotone decreasing and unity at time zero (unless 

there is a non-negligible probability that the system will 'fail' immediately, which is 

not our case here as the inter-detection distances are strictly larger than zero). 

The survivor function for the inter-detection distances in the Poisson process model is 

given by 

(4.35) 
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and in the 2-MMPP model is 

S2-MMPP(l) = re* exp(Cl) e. (4.36) 

Since we are assessing the distance between detections it implies that the interval starts 

at a point of detection, therefore in (4.36) we use re*, given in (4.30), for the initial 

probability vector. 

The survivor function for the distance until first detection in the Poisson process model 

is given by 

Spp(l) = t/Je-A1 + (1- t/J), (4.37) 

and for the 2-MMPP model is 

S2-MMPP(l) = t/J re' exp(Cl) e + (1 - t/J). (4.38) 

These expressions account for the fact that we are dealing with zero-inflated models. 

The survivor function is a mixture of two functions. With probability t/J, the function is 

that given by a Poisson process or a 2-MMPP. With probability 1 - t/J, the site will not 

be occupied by the species and therefore the probability that the distance to first detec­

tion in these sites is larger than a given quantity is always one. Note that in (4.38) we 

now use re' for the initial probability vector, as we are considering that the transects 

start at a random point. 

As an empirical survivor function we used the Kaplan-Meier curve (Kaplan & Meier 

1958), which takes account of the right-censoring in the data, due to transects that 
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ended before detecting the next (or any) tiger footprint. The Kaplan-Meier estimator 

sCl) is calculated as the product 

(4.39) 

where {li} are the observed distances to detection (first or next), ni represents the 

number of intervals longer than li (including those that ended without detection) and 

di is the number of detections made at a distance li. 

The comparison of the two fitted survivor functions with the corresponding empirical 

survivor functions confirms that the 2-MMPP occupancy model has a better fit than 

the Poisson process occupancy model (Figure 4-9). 

As an additional assessment of fit we fitted a three-state MMPP occupancy model. The 

maximum-likelihood estimates obtained were: $ = 0.96, i1 = 0.99, i2 = 0.23, i3 = 

0.03, /512 = 2681, /513 ;:::: 0, /521 = 125, /523 = 4667, /531 = 3093 and /532 = 243. 

Looking at these estimates it is evident that this 3-MMPP model in effect collapses to 

the 2-MMPP model in Table 4-4, therefore indicating that a model structure with two 

states provides good fit for these data in this regard. 
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Figure 4-9. Empirical and fitted survivor functions for 'distance to first detection' 
(top) and 'inter-detection distances' (bottom) for the Kerinci Sumatran tiger data. 
The empirical survivor function (solid line) is the Kaplan-Meier plot. The survivor 
functions for the fitted 2-MMPP occupancy model (dashed line) and the Poisson 
process occupancy model (dotted line) are derived using parameter estimates in Ta­
ble 4-4. 
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4.5 Discussion 

In this chapter we describe the detection process as a continuous process when model­

ling occupancy from detection data collected in transect surveys. In particular we de­

velop occupancy models that use a Poisson process to describe detections that can be 

assumed independent and alternatively a 2-MMPP for cases with clustered detections. 

We found that the 2-MMPP occupancy model was more appropriate than a model 

based on a homogeneous Poisson process for the Kerinci-Seblat tiger detection data. 

We also propose an occupancy model that describes species detections as a mixture of 

two Poisson processes, which can be seen as a limiting case of the 2-MMPP occu­

pancy model when Ji12 + Ji21 approaches zero (i.e. when switching between detec­

tion states is extremely unlikely within a transect). This model is simpler to fit and 

provided an adequate description of our tiger data. However, in general, the 2-MMPP 

model will be more appropriate for modelling data of this type as it accounts for poten­

tial state transitions within transects, which is relevant if transects are long compared 

to the scale of clustering in detections of the species. 

When discussing the use of the discrete occupancy model to analyze data collected 

along transects, Hines et al. (2010) raise the question of whether there is an optimal 

transect segment length with respect to estimator properties (in terms of precision or 

MSE). Here we argue that in general it is more appropriate to model the detection 

process along transects as a continuous point process, as this provides a more natural 

description for this kind of data. In practice this is equivalent to dividing the transects 

into infinitesimal segments. Pooling detections from larger transect segments may re­

sult in a poorer occupancy estimator, less precise and more prone to boundary esti-
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mates, which is not surprising as data are lost in the discretization process. The use of 

relatively long transect segments can however help mitigate the potential lack of inde­

pendence between adjacent segments, when not explicitly accounted for in the model. 

An approximation to the continuous model can of course also be implemented by us­

ing a short segment length in the discrete models. 

The use of point processes for the description of the detection process in occupancy 

modelling opens the door to a number of different model developments, including the 

extension of the models described to account for abundance-induced heterogeneity, 

which we investigate next in chapter 5. It is also interesting to note the parallelism of 

the occupancy models described here with models used in other applications. In sur­

vival analysis for instance the target is to model the time to an event, such as the onset 

of a medical condition or the failure of an electrical system (Cox & Oakes 1984). Sur­

vival data tend to be right-censored as experiments often end before all susceptible in­

dividuals develop the condition, in the same way as surveys may end before detecting 

the species of interest at occupied sites, causing the so-called 'false absences'. Fur­

thermore, there are models that account for individuals that are 'immune' to the condi­

tion of interest. These individuals, referred to as 'long-term survivors', introduce zero­

inflation in the same way that non-occupied sites do in species occupancy data. Sur­

vival analysis, counting processes and, in general, point process theory therefore pro­

vide an opportunity for bringing new ideas into species occupancy modelling, and vice 

versa. 



5 EXTENSIONS FOR ABUNDANCE-INDUCED 

HETEROGENEITY 

In the context of occupancy models based on discrete sampling protocols, it has been 

shown that heterogeneity in detection probability can induce bias in the occupancy es­

timator (MacKenzie et al. 2006; Royle 2006), as discussed in section 2.2.2. In particu­

lar, differences in abundance between sites can sometimes be a significant source of 

heterogeneity and therefore of bias in occupancy (Dorazio 2007). To deal with this 

situation, Royle & Nichols (2003) propose a mixture model that directly links the la­

tent local abundance with the species detectability at the site (section 2.2.4). Provided 

that the model assumptions are satisfied, this model yields better occupancy estimates 

in the presence of abundance-induced heterogeneity in detectability than the model 

that assumes constant detection probability, as well as providing an estimate of local 

abundance. 

In this chapter we extend the models introduced in chapter 4 to account for abundance­

induced heterogeneity in the detection process. Once again we consider a sampling 

scenario in which species detection surveys are carried out along one or more transects 

at a number of sampling sites, recording the location of each detection. The new mod­

els assume that the species detection process at each site can be well described as the 
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result of the superposition of ni identical point processes, where ni is the number of 

individuals present at site i. Each point process describes the detections corresponding 

to one individual and the assumption is that all individuals present at the site are 

equally detectable from the transect. As ni is unknown, it is modelled as a random 

variable with some probability distribution and inference is made on the marginal like­

lihood, which is a discrete mixture over all the possible abundance values, as in the 

model of Royle & Nichols (2003). 

We start the chapter by describing in section 5.1 the extension of the Poisson process 

model presented in section 4.2 to account for abundance-induced heterogeneity. This 

model assumes independence within the detections of each individual. However, as we 

showed in chapter 3, clustering in species detections along transects can induce bias in 

the estimator of site occupancy. Therefore we can also expect bias to be induced in the 

abundance distribution estimation if there is clustering within the detections of indi­

viduals and this is not accounted for. To deal with this scenario, in section 5.2 we pro­

pose a model for the detection data which accounts simultaneously for both abun­

dance-induced heterogeneity and clustering in individuals' detections. The perform­

ance of the models proposed in this chapter is explored via simulations in section 5.3, 

including the impact that unmodelled detection clustering can have in the estimator of 

abundance. Finally, in section 5.4 we illustrate the application of these new models by 

fitting them to the Kerinci Seblat tiger data set, comparing the results with those that 

were obtained from fitting the occupancy models in the previous chapter. 

To deal with the problem of accounting for both spatial clustering and abundance­

induced heterogeneity in detection data collected along transects (i.e. continuous pro-
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tocols), Hines et al. (2010) suggest a 2-step ad hoc approach: to use their discrete clus­

tering model to explore how the dependence among adjacent replicates decreases as 

data are collapsed using larger segments and then, using the data resulting from a seg­

ment length chosen so that clustering can be considered unimportant, to carry out the 

actual analysis with the standard Royle-Nichols model. The work in this chapter pro­

vides an alternative solution to this problem based on a description of the detection 

process that allows us to account for both aspects simultaneously. This model is, as far 

as we are aware, the first that allows species-detection data from continuous sampling 

protocols to be analysed by explicitly accounting for both clustering and abundance­

induced heterogeneity in the detection process. By providing a description of the de­

tection process that explicitly incorporates both aspects, the model allows not only the 

estimation of abundance but also of the parameters associated with the clustering pat­

tern. The work in this chapter has been published in Guillera-Arroita et al. (2012). 
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5.1 Model for abundance-induced heterogeneity 

5.1.1 Model formulation and assumptions 

Let us first consider a case where the successive detections of each individual can be 

considered independent of one another and so can be modelled as a homogenous Pois­

son process with intensity y, where y is the average number of detections per individ­

ual over a unit length. The detection process for the species at site i, modelled as the 

superposition of ni independent identical Poisson processes, results in a Poisson proc­

ess with rate yni. Under this model the detection data can be summarized by the total 

number of detections at each site, db and the likelihood is 

L(O. y) = 0 [~o{(Yntldiexp(-YniLi)pr(ndo)}l (5.1) 

where Li is the total length surveyed in site i, S is the total number of sampling sites 

and Pr(nd 8) denotes the probability mass function for the distribution of abundances 

described by the parameter vector 8. Species occupancy t/J would therefore be derived 

here as 1- Pr(ni = 018). 

As in the likelihood for the Poisson process occupancy model in (4.9), the likelihood 

in (5.1) lacks the factors L~i/di! that would result from considering the detection data 

as a Poisson count rather than as a series of independent exponentially distributed in­

ter-detection distances. As a consequence, the magnitude of the likelihood is compara­

ble to that from the clustering models which is necessary for the purpose of model se-

lection. 
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As discussed in connection with the Royle-Nichols model in section 2.2.4, site abun­

dance can be described by parametric or non-parametric distributions. In the non­

parametric approach the number of parameters required increases with the number of 

support points in the abundance mixture and so it may become impracticable when 

working with certain species; however this method provides flexibility and can be use­

ful for instance when working with species for which abundance is low at the spatial 

scale of the survey. Within the parametric approach a first candidate is the Poisson dis­

tribution, which assumes that individuals occur completely at random. In section 5.1.3 

we study this model in further detail, and derive some study design guidelines based 

on asymptotic approximations. 

While in (5.1) we have assumed constant parameters, the model can be expanded to 

incorporate covariates following a generalized linear model approach. Under the pa­

rametric approach, the abundance distribution can be readily allowed to depend upon 

site characteristics, for instance via a log link function on the density parameter when a 

Poisson distribution is used. Covariates can be incorporated in the same manner to al­

low the detection rate to vary with respect to site characteristics, while within-site 

variation in the detection rates can also be accommodated as explained in section 

4.2.6. 

5.1.2 Relationship to other models 

The model proposed here can be interpreted as the continuous counterpart of the 

Royle-Nichols model described in section 2.2.4, which relies on a discrete sampling 

protocol that records the detection/non-detection of the species in each replicate (re­

cords consist of Os and Is), and models the detections at each site as a series of inde-
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pendent Bernoulli trials. However, in effect, our model is closer to the N-mixture 

abundance model for repeated counts (Royle 2004b) described in section 2.2.5 but 

with an important difference. The model for repeated counts, based on discrete repli-

cates, describes the number of detections in each replicate (i.e. the counts) as bino-

mially distributed. This implies that an already-detected individual cannot be detected 

again in the same replicate. Our Poisson process based model arises if the repeated 

counts are instead described using a Poisson distribution, i.e. one can detect in the 

same replicate an individual that has already been detected. This difference has impor-

tant implications as, if the binomial model is used when the absence of repeated detec-

tions of individuals cannot be guaranteed within a replicate, then the estimation of 

abundance can be significantly inflated. This may be relevant for some surveys based 

on direct observations (e.g. camera-trap surveys without individual identifications, bird 

point counts) and is often crucial when modelling indirect observation data (e.g. pug-

marks), as each individual can leave more than one sign. Therefore, apart from its util-

ity to model detection data collected along a transect or period of time, the model de-

scribed here can also be useful when modelling repeated counts obtained from (dis-

crete) sampling protocols based on separate survey visits. 

Note also that, if the mixing distribution in (5.1) is a non-parametric distribution with 

mass only at ni = 0 and ni = m, the model reduces to the Poisson process occupancy 

model (section 4.2) with likelihood 

s 
L(ljJ, Jt) = n {ljJJtdie-ALi + (1 -ljJ)I(di = O)}, 

i=l 
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where ym = A and the abundance probability distribution IS Pr(O) = 1 - t/J and 

Pr(m) = t/J. 

5.1.3 Poisson mixture model: design recommendations and performance 

Under the parametric approach a natural first candidate for the distribution describing 

site abundance is the Poisson distribution, which provides an appropriate description 

when the individuals are distributed completely at random. In this case the likelihood 

for the model in (5.1) becomes 

-08n ' 
S [00 1 L(8, y) = 0 ~o {(yn,jdi eXP( -yniL,) e nil '}, (5.2) 

where 8 is the average site abundance for the species. 

In this model the resulting distribution describing the number of detections of the spe-

cies in site i, db is a Poisson mixture of Poisson distributions, 

which gives rise to a Neyman type A distribution with parameters (yL i .8) (Neyman 

1939; Douglas 1980, pp. 153-258; Johnson, Kemp & Kotz 2005, pp. 403-410). There 

are two standard expressions for the probability mass function in a Neyman type A 

distribution. The first, which follows directly from considering the above mixture, is 
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(5.3) 

It can be shown that (5.3) can also be written as 

(5.4) 

where S(di , k) are Stirling numbers of the second kind, an expression first given by 

Cemuschi & Castagnetto (1946). The Stirling numbers of the second kind (Douglas 

1980, p. 471) compute the number of ways of partitioning a set of d i elements into k 

nonempty sets and are calculated as 

k 

S(d- k) = 2-~(_l)k-j (k) -di 
II k! L j ] . 

(5.5) 

j=O 

The expression for the probability mass function in (5.4) involves a finite summation, 

limited to d i , while (5.3) involves an infinite summation in ni' Although in practice in 

the computation of probabilities the infinite summation would be truncated to the sup-

port points with non-negligible probability, we can expect (5.4) to be better computa-

tionally for low values of di and high o. In a comparison of the time it takes to com-

pute a probability with the two expressions we found that, in our implementation, (5.4) 

was considerably better than (5.3) for d i < 5, with a saving factor for the cases we 

evaluated of up to 66 times when di = ° (Table 5-1). 



5 EXTENSIONS FOR j\BUNDANCE-INDUCED HETEROGENEI1Y 201 

Table 5-1 Comparison of probability computation times between the two forms of 
the probability mass function in a Neyman type A distribution with parameters 
CyL,8). Numbers represent the ratio between the computation time of expression 
(5.3) and expression (5.4) and were obtained based on average times from 100,000 
calculations. In the computation of (5.3) the summation on ni was truncated to 
those values outside the 0.001 probability tails in the Poisson with parameter o. 

d i 

0 1 2 5 10 20 

0.5 0.031 0.154 0.260 0.728 1.671 4.981 

1.0 0.026 0.141 0.247 0.615 1.478 4.737 

8 2.0 0.022 0.123 0.204 0.582 1.354 4.385 

5.0 0.018 0.087 0.176 0.458 1.067 3.293 

10.0 0.015 0.074 0.143 0.304 0.808 2.167 

This reduction in computing times can be valuable when obtaining maximum-

likelihood estimates, as this process involves many probability evaluations. An altema-

tive form for the likelihood function in (5.2) based on the probability mass function 

expression in (5.4), and removing as before the factors Lfi / d i !, is 

(5.6) 

Note that this expression is based on the assumption that the Poisson processes de-

scribing individuals' detections are homogenous. If detection rate changes within the 

site, the data can no longer be summarized by the number of detections in each site, di , 

and cannot be described as coming from a Neyman type A distribution. 
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In order to explore study design trade-offs and model performance, let us assume that 

the parameters 8 and yare constant and that we have a design in which the same 

length L is surveyed in each site. These assumptions are equivalent to those made in 

previous chapters when deriving general study design guidelines for other models. 

Under these conditions, the data for the Neyman type A model can be summarized by 

{Fx}, with Fx denoting the number of sites in which x detections were recorded. It can 

be shown than the MLEs of the parameters satisfy (Douglas 1980, p. 187) 

where 

and 

00 

00 

Si = L xiFx , i = 0,1, 
x=o 

PX+1 
[Ix = ex + 1) -p-' 

x 

(5.7) 

(5.8) 

(5.9) 

with P
x 

the probability of drawing a count of x from a Neyman type A distribution 

with parameters 8 and yL, given by (5.3) and (5.4); in (5.8) fIx represents [Ix evalu­

ated at the MLE's 8 and y. Note that (5.7) allows one of the parameters to be ex­

pressed as a function of the other, thereby reducing the problem of finding the MLEs 

to solving a single equation, (5.8). 
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The total effort available for the survey can be allocated in different ways: more sites 

with shorter transects or fewer sites with longer transects. In section 4.2.4 we identi-

fied the design that minimizes the variance of the occupancy estimator in the Poisson 

process occupancy model for different occupancy scenarios. Similarly here we can 

expect an optimum design in terms of the precision of the estimator of average site 

abundance 8, as increasing the number of sites S involves a trade-off: it provides more 

samples for estimating the abundance process but, at the same time, the detection data 

from shorter transects provide less information about the number of individuals at each 

site. 

In order to explore study design trade-offs here we assume that the effort involved in 

surveying a unit length is constant, with no significant overheads when adding new 

sites, so that the cost of the survey can be evaluated in terms of the total survey effort 

E = SL. To evaluate study design performance we can look at the first-order asymp-

totic expressions for the variance-covariance matrix of the MLEs, which for a Neyman 

type A distribution with parameters 0 and yL is given by (Shenton 1949; Douglas 

1980, pp. 190-191) 

_ 1 1 

~(o, yL) = S (1 + yL)<!> - 0(yL)2(0 + oyL + yL) 

(5.10) 

. yL 2' 

(

OYL{<!> + oyL - 0(yL)2(1 + o)} -yL{0(yL)2(1 + 0) - <!>}) 

-yL{0(yL)2(1 + 0) - <!>} T{<!> - (oyL) } 

where 
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()() 

rp = JE[n;J = 2)(X + 1)2 P1+dPx }' (5.11) 
x=o 

The variance-covariance matrix for 8 and y is 

( 

(~) 1 (~ ) ) ~ 0 ~L ~ 0 ~L 
(~ ~) _ ' y 1,1 L ' Y 1,2 

~ 0, Y - 1 ~ 1 ~ . 
L ~(o, yL )1,2 L2 ~(o, yL )2,2 

(5.12) 

Let f, hand 9 be functions of 8 and yL, then (5.12) can be written as 

~ ~ _ (y~ f(8, yL) ~ h(8, YL)) 
~(O,Y)- 1 y , 

E h(8, yL) E g(8, yL) 

(5.13) 

where E = SL is the total survey effort. As indicated by (5.13), for a particular sce-

nario of 8 and y the optimal design is determined by 8 and yL, as y and E are only 

scaling the variance-covariance functions. The process of identifying an appropriate 

design requires an initial assumption for the values of the parameters y and 8. Given 

the assumed value for 8, an optimum yL can be identified. The optimal survey length 

can then be derived from this based on the assumed y. The number of sites to survey 

follows immediately from considering the total effort available, E = SL. Finally the 

precision of the estimators for the identified design can be assessed using (5.13). 

In practice, to compare the performance of designs under different scenarios of 8 and 

y, it is useful to consider the coefficient of variation (CV) of the estimators rather than 

their variances, as the CV takes into account the magnitude of 8 and y. Note that the 
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CV of both 8 and y can be written as a function of 0 and yL, f and 9 say, scaled by a 

factor (yE)-1/2: 

.Jvar(o) 1_ 
eves = 0 = ..jYEf(o, yL), 

.Jvar(y) 1_ 
evV = = -9(0, yL). 

y ..jYE 

Therefore the plots in Figure 5-1, which compare the CV for different combinations of 

o and yL, are essentially independent ofy and E except for a scaling factor. 

Regardless of whether the coefficient of variation or the variance is considered, the 

optimal design for a given scenario (Figure 5-2) is the same. When the average abun-

dance 0 is very small, the optimum design in terms of minimizing the variance of 8 is 

to use a transect length so that yL is about 1.5. As 0 increases, the optimum yL in-

creases to reach 1.8 when 0 is approximately 1.4 and from this point on it decreases 

approaching unity (i.e. one detection on average per individual at each site). In terms 

of minimizing the variance of the individual detection intensity estimator, y, when 0 is 

low the best strategy is to have long transects. However, as 0 increases the optimum 

yL decreases, once again approaching unity. 
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Figure 5-1 Asymptotic coefficient of variation for the estimator of (a) mean abun-

dance 8 and (b) mean individual detection rate y, as a function of 0 and yL. The 
black line shows the value of yL that minimizes the coefficient of variation for each 
value of 8 . Plots were produced based on y = 1 and E = 1000. For other values of 
y and E the resulting surfaces will be a scaled version of the ones shown here . 
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Figure 5-2 Average number of individual detections per site yL to minimize the as­

ymptotic variance of the abundance estimator 8 (solid line), the asymptotic variance 
of the individual detection rate estimator y (dotted line) and the sum of the asymp­

totic variances of 8 and y (dashed line), as a function of average abundance o. 

For small 0 the probability mass function for a Neyman type A distribution can be ap-

proximated by 

e-yL(yL)X 
Px ~ 0 , ' x = 1,2, ... , 

x. 

(5.14) 

which corresponds to a zero-inflated Poisson distribution with zero-inflation parameter 

1 - 0 and rate y L (Martin & Katti 1962; Douglas 1980, p. 166; Johnson, Kemp & Kotz 

2005, p. 406). We derived design recommendations for such a model in section 4.2.4, 

where the optimal survey length was identified using the asymptotic variance of the 
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occupancy estimator 1[J (Le. I - zero-inflation) as a design criterion. As expected, the 

optimal transect length values identified here to minimize the variance of 8 for small 8 

match those derived for the zero-inflated Poisson model for smallljJ (Figure 5-3). 

A second limiting form worth mentioning here is that, ifyL is small, the Neyman type 

A distribution is approximately a Poisson distribution with expected value 8yL. In 

such circumstances 8 and y become non-identifiable, that is, transects are not long 

enough to estimate the system process (Le. abundance) and the detection process sepa-

rately, as also happens with the lack of replication in the standard Bernoulli process 

occupancy model or with short transects in the Poisson process occupancy model. 
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Figure 5-3 Comparison of the optimal design (average number of individual d.etec­
tions per site yL) for the Neyman type A model (solid) and the zero-mflated POisson 

model (dashed), as a function of occupancy t/J. In the Neyman type A model the d:­
sign is that which minimizes the asymptotic va~ance of ~e abunda~ce esttmator 8, 
and in the zero-inflated Poisson model that which 1l1Ul11IllZes the vanance of the oc­
cupancy estimator $. In the top axis the corresponding value of average abundance 

8 in the Neyman type A model is shown. 
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While the recommendations based on asymptotic properties of the estimators provide a 

useful design guideline, it is important once again to bear in mind that these approxi­

mations may not be appropriate when working with a small sample size and that it is 

always advisable to verify the performance of the chosen design via simulations. Shen­

ton and Bowman (1967) explore the asymptotics for the Neyman type A distribution 

and observe that, even for samples of size 100 (Le. 100 sites in our case), the true dis­

tribution of the estimators can have bias and higher variance than that predicted by the 

first-order asymptotic approximation. They note that this departure is more relevant for 

8 than for y, and that it is greater when 0 is large in comparison to yL, particularly 

when yL is small. 

Figure 5-4 provides an illustration of how the actual distribution of the estimators 

compares with the bivariate normal distribution predicted by first-order asymptotics 

for two levels of total effort (E = 100 and 1000), two levels of mean abundance (0 = 

0.5 and 5), y = 0.5 and an optimal design based on minimizing the variance of the 

abundance estimator (yL = 1.6 and 1.1, respectively). While the departure is quite no­

ticeable for the lower effort level (which resulted in 31 and 45 sites), the asymptotic 

approximation is good in the higher-effort case (which resulted in 312 and 454 sites). 

The departure is more noticeable in the scenarios with 0 = 5, which is larger than yL, 

therefore in agreement with the observation made by Shenton and Bowman (1967). 

Figure 5-5 shows how the properties of the estimators worsen for the case of 0 = 5 

when the design departs from the optimal and longer transects are used (yL = 5.5 in-

stead of 1.1 ). 
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Apart from having larger variance, smaller data sets are also more prone to extreme 

estimates. Although not shown in Figure S-4, in our simulations the case of low effort 

(E = 100) produced some extreme estimates (e.g. 8> 107 in 16 out of 10,000 simu­

lated data sets when {) = O.S). In fact, as we demonstrate now, if the data set is such 

that there is at most one detection per site, i.e. max(da = 1, then y = 0 and 8 = 00. In 

this case Fx = 0 for x> 2 and therefore equation (S.8) becomes 

(S.IS) 

which, given that now So = Fo + Fl and Sl = Fl , is equivalent to 

(S.16) 

Considering in (S .16) that 

flo = yL8e-YL , 

fll = ~YL(1 + 8e-YL), 

(S.17) 

and that, according to (S.7), Sl = S08yL, we arrive at the following expression for yin 

this scenario 

(S.18) 

which leads to y = 0 and consequently to 8 ~ 00. Similarly we can expect that, if the 

frequency of d
i 
> 1 is very low, the model will produce extreme estimates, as observed 

in our simulations. 
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Figure 5-4 True and asymptotic distribution for the MLEs of the Neyman type A 
model for a case with total effort E = 100 and parameter values y = 0.5 and (a) 15 = 
0.5 , (b) 15 = 5.0. Study design is chosen to minimize the asymptotic variance of 8, i.e. 
(a) y L = 1.6 and (b) y L = 1.1. The true distribution is based on the analysis of 10,000 
simulated data sets and represented as a kernel density estimate contour plOL The as­
ymptotic distribution is shown as two ellipses defined by the part of the bivariate 
normal distribution contained within one (dashed line) and two (solid line) standard 
deviations In (c) and (d) the total effort was illcreased to E = 1000 (note the differ­

ence in the scale of the ;Lxes). 
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Figure 5-5 True and asymptotic distribution for the MLEs of the Neyman type A 
model for a case with total effort E = 100 and parameter values y = 0.5 and /5 = 5.0, 

for a design (a) optimal to minimize the asymptotic variance of 8, i.e. yL = 1.1 , and 
(b) a non optimal deSIgn yL = 5.5. The true distribution is based on the analysis of 
10,000 simulated data sets and represented as a kernel density estimate contour plot. 
The asymptotic distribution is shown as two ellipses defined by the part of the 
bivariate normal distribution contained within one (dashed line) and two (solid line) 
standard deviations. In (c) and (d) the total effort was Increased to E = 1000 (note 
the difference in the scale of the :Lxes). 
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5.2 Model for abundance-induced heterogeneity and clustering 

5.2.1 Modelformulation and assumptions 

We consider now a scenario in which the detections of individuals exhibit some degree 

of clustering and therefore cannot be considered independent. One possible way to ac­

count for this is to model the detection process for each individual as a two-state 

Markov-modulated Poisson process (2-MMPP) with detection intensity parameters 

y = [Yl Y2] and state switching rate parameters 11 = [Jl12 Jl21]. Assuming that 

detections among individuals are independent and the detection process has the same 

characteristics for all individuals, the resulting detection process for the species at site 

i can be modelled as the superposition of ni identical 2-MMPPs. 

The likelihood for this model is given by 

(5.19) 

where Ri is the number of independent transects surveyed in site i and Mijlni is the 

likelihood contribution of transect j in site i, given that detections along it are de­

scribed by the superposition of ni identical 2-MMPPs. For this model, the detection 

data can no longer be summarized by the number of detections at each site as in (5.1), 

and the distances between consecutive detections are required. 

To construct Mijlni we make use of a key result: the superposition of MMPPs is a 

MMPP. The generator matrix and the rate matrix for the composite MMPP resulting 
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from the superposition of n MMPPs are calculated from the individual generator ma-

trices Qi and rate matrices fi as follows (Fischer & Meier-Hellstern 1993) 

where E9 represents the Kronecker sum, defined as in Appendix A.5. The dimension 

of Qc and fc is k x k, where k = Dr=l k i and k i x k i is the dimension of Qi and fi' 

For a composite MMPP resulting from the superposition of n identical 2-MMPPs, 

such as in our case, the calculations simplify significantly and lead to a (n + 1)-

MMPP. Given n 2-MMPPs with infinitesimal generator matrix Q 

and rate matrix f, 

_ [Yl 0] f - , 
o Y2 

the (n + 1) x (n + 1) generator matrix Qc for the composite MMPP is 

Qdi, i] = -iJ1.21 - (n - OJ1.12' for 0 ~ i ~ n 

Qdi, i - 1] = iJ1.2V for 1 :::; i :::; n 

Qdi, i + 1] = (n - OJ1.12' forO ~ i ~ n-1 

Qdi,j] = 0, otherwise, 



5 EXTENSIONS FOR ABUNDANCE-INDUCED HETEROGENEITY 215 

and the (n + 1) X (n + 1) rate matrix f c is 

fc = diag{iY2 + (n - OY1}, 0:::; i:::; n, 

The equilibrium distribution ofthe underlying Markov process 1f~ is 

n-i i , ['] - (n) J1.21 J1.12 for 0 :::; i :::; n, 
1fc L - i (J1.12 + J1.21)n ' 

For instance, the superposition of three 2-MMPPs would lead to 

-3J1.12 3J1.12 0 0 

J1.21 -J1.21 - 2J1.12 2J1.12 0 

Qc = 
0 2J1.21 -2J1.21 - J1.12 J1.12 

0 0 3J1.21 -3J1.21 

o o 

o Y2 + 2Yl o o 
fc = 

o o 

o o o 3Y2 

and 

Once Qc, fc and the initial probability vector of the MMPP (1f~ or 1f'(:) are computed, 

Mijlni is constructed as in (4.28). 
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5.2.2 'Synchronized' clustering in individuals detections 

In section 5.2.1 we have assumed that the processes describing the detections of indi-

viduals are independent (Figure 5-6a). Let us consider here a second case in which the 

2-MMPPs describing individuals' detections are 'synchronized', such that at a given 

point all the individuals are in the same detection rate state (high or low) but, within 

this, detections are still independent (Figure 5-6b). This can be a useful model for sce-

narios in which the clustering in individuals' detections arises due to the difference in 

substrate conditions (e.g. when some patches are better than others for capturing foot-

prints), or if the individuals in the site move closely together as a group. The likelihood 

for this model is the one given in (5.19), now constructing Mijlni considering that the 

superposition of ni aligned 2-MMPPs with generator matrix Q and rate matrix f is a 

2-MMPP with Qc = Q and fc = nif. 

(a) 

(b) 

. -----....... .. ... . - • •• 

~=~===============~======~==========~=;::::::::::::::::~= L-
.------------------------------------~ 

• ..... .......... ............. --< • .., ... .-----... ~------

Figure 5-6 Hypothetical clustered detections of three individuals along a transect and 
corresponding realizations of the underlymg Markov process. In (a) the clust:rmg 
pattern is independent among individuals while m (b) the clustermg pattern 1S syn­
chronised'. Detections from each individual are represented W1th different symbols 
here only for explanatory purposes. Actual data would not contain information on 

individual identities. 
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5.2.3 Relationship to other models 

If the mixing distribution in (5.19) is a non-parametric distribution with mass at ni = 0 

and ni = 1, the model reduces to the 2-MMPP occupancy model (section 4.3) with 

likelihood 

s { R/ } 
L(l/J,A,Il) = [1 l/J Q Mij + (l-l/J)I(di = 0) 

where Pr(O) = 1 -l/J, Pr(l) = l/J and Mij = Mijl1 . 

To our knowledge, no discrete counterpart of the model in (5.19) has been proposed 

for the analysis of species detection data. However such a model could be devised by 

considering that the detections of each individual are produced by a two-state Markov-

modulated Bernoulli process (2-MMBP) and that, at the species level, detections are 

described as the superposition of such processes. 

As mentioned in the introduction, to deal with clustering and abundance-induced het-

erogeneity in the detection process, Hines et al. (2010) propose a two-step ad hoc ap-

proach based on discrete models. This method tries to avoid the effect of clustering 

rather than modelling it explicitly as in our model. 
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5.3 Performance simulation study 

We used simulations to explore the performance of the models, looking at the three 

following aspects: 

(i) first we explored how unmodelled abundance-induced heterogeneity in the de-

tection process can induce bias in the occupancy estimator (section 5.3.1), 

(ii) second we explored the impact that unmodelled clustering can have in the 

abundance estimators (section 5.3.2), and 

(iii) third, we explored the performance of the MMPP abundance model for differ-

ent sample sizes (section 5.3.3). 

For the simulations we generated scenarios in which the true site abundance was such 

that the probabilities of having 0 to 3 individuals at a sampling site were 0.05, 0.5, 0.3 

and 0.15 respectively, a distribution that is plausible ecologically for our motivating 

tiger example. To ensure in the analysis that the estimated probabilities of the non-

parametric abundance distribution summed to one, we used for the unconstrained op-

timization a multinomiallogit transformation 

ecf>j 
8j = S for j = 0 ... N - 1, 

where S = 1 + ecf>o + ecf>t + .. , + ecf>N-t, N is the number of support points in the 

non-parametric distribution, (J are the corresponding probabilities and cp are the N - 1 

unconstrained parameters used in the optimization process. 
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5.3.1 Impact of abundance-induced heterogeneity in occupancy estimation 

To assess the impact that abundance-induced heterogeneity in the detection process 

has on the estimation of occupancy, we simulated scenarios with the abundance distri-

bution specified above, which implies a probability of site occupancy of 0.95, assum-

ing independence within the detections of each individual, that is, modelling the indi-

vidual detection process as a Poisson process with rate y. The scenarios consisted of 

s = 100 sites surveyed for L = 30 unit length, and increasing individual detection 

rates y, from 0.01 to 0.20. Data were analyzed with the Poisson process occupancy 

model and with the Poisson process abundance model assuming the correct abundance 

structure (i.e. a non-parametric distribution with 4 support points in 0-3). 

The simulation results illustrate how abundance-induced heterogeneity in the detection 

process can induce bias in the estimator of occupancy (Table 5-2). If the abundance 

structure was disregarded the occupancy estimator was more negatively biased than 

when modelled. As expected, as the probability of detecting an individual at a site in-

creased, the estimator bias tended to zero in all methods. 

Table 5-2 Impact of unmodelled abundance-induced heterogeneity in the occupancy 
estimator. The table displays the mean of the occupancy estimator obtained from 
1000 simulations through three methods: naive estimate, Poisson process occupan~ 
model (PP) and Poisson process abundance model (pPab). The true abundance dis­
tribution was such that the probability of occupancy was t/J = 0.95. The probability 

of detecting an individual at a site, y' = 1 - e yL , is also shown. 

Y 

0.01 0.02 0.05 0.10 0.15 0.20 

y' 0.26 0.45 0.77 0.95 0.99 1.00 

Na'ive-,fj 0.097 0.237 0.595 0.846 0.919 0.943 

pp-,fj 0.780 0.865 0.892 0.933 0.945 0.951 

PPab-,fj 0.814 0.920 0.943 0.952 0.949 0.951 
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5.3.2 Impact of un modelled detection clustering in the abundance estimators 

To assess the impact that unmodelled detection clustering can have on the estimation 

of abundance we simulated scenarios with the abundance distribution specified above, 

and generated individual detection data according to a 2-MMPP, with the processes 

being independent among individuals. We explored four detection scenarios with 

equal average individual detection rates and increasing levels of clustering: 

(i) Case nc: y = 1/4 (Le. no clustering), 

(ii) Case c1: y = [0.5,0.125], P = [6,12], 

(iii) Case c2: y = [1,0.0625], P = [3,12], 

(iv) Case c3: y = [5,0.0125], P = [0.6,12], 

where p = 1/11 represent the average length spent in each state before switching to the 

other state. 

We simulated a study design in which 100 sites were surveyed for 30 length units, and 

ran 100 simulations per scenario. Data were analyzed with the Poisson process abun­

dance model, that is, assuming no clustering within the detections of individuals. We 

fitted the data assuming first a non-parametric abundance distribution with mass in 

categories 0-3, as used for data generation, and then assuming a distribution with mass 

in 0-5 to explore the impact of allowing for this extra flexibility. We used AIC to 

compare the fit of the models based on each of these two abundance distributions. 

The simulation results show that the abundance distribution can be estimated relatively 

well with the given sampling effort when, as the model assumes, there is no clustering 
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in the detections (Table 5-3). However, as clustering increases, the estimators became 

biased. For instance the means for the abundance distribution estimators were [0.10, 

0.51, 0.14, 0.25] in scenario (c3). The number of empty sites was overestimated, influ­

enced by the long stretches without detections. The highest abundance category was 

also overestimated, which suggests that detection clusters may be interpreted by the 

model as the result of many individuals being present at the site. In fact, a model based 

on an abundance distribution with mass in 0-5 tended to provide a better fit for the 

clustered data. For instance, in all 100 simulations for scenario (c3), this model was 

selected as a better explanation for the data based on its Ale. However the model did 

not provide a satisfactory estimate of abundance. The distribution probabilities were 

biased, and the overall abundance was overestimated. Here as well the probability 

mass for the highest abundance category increased with the level of clustering. 
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Table 5-3 Impact of unmodelled detection clustering on the estimators of abun­
dance. Mean and RMSE (in square brackets) of the estimators are shown. Results 
were obtained from 100 simulations of a design with 100 sites surveyed for 30 units 
of length, assuming a true site abundance distribution with probabilities (J = [0.05, 
0.5,0.3,0.15] for 0-3 individuals (average abundance N = 1.55). Four detection sce­
narios with equal average individual detection rate and increasing levels of clustering 
were tested: (nc) y = 0.25 (no clustering), (c1) y = [0.5,0.125], P = [6, 12], (c2) y = 
[1,0.0625], P = [3, 12], and (c3) y = [5,0.0125], P = [0.6, 12]. The upper part of the 
table shows the results of fitting a model based on a non-parametric abundance dis­
tribution with four abundance categories. nAIC indicates the number of simulations 
in which this model produced an AIC smaller than that from a model with six abun­
dance categories. The lower part of the table shows the results of the six-category 
model for the simulations in which it was selected as best model. 

80 81 82 83 84 8s N nAIC 

(ne) 
0.05 0.50 0.29 0.16 1.56 

93 
[0.021] [0.082] [0.078] [0.084] [0.154] 

0.05 0.48 0.25 0.22 1.63 25 (el) 
[0.022] [0.082] [0.091] [0.092] [0.148] 

0.06 0.51 0.18 0.24 1.60 
(e2) 

[0.026] [0.069] [0.135] [0.113] [0.134] 

0.10 0.51 0.14 0.25 1.54 
0 (e3) 

[0.059] [0.059] [0.172] [0.120] [0.106] 

0.06 0.31 0.40 0.12 0.08 0.03 1.95 
(ne) 

[0.023] [0.269] [0.150] [0.111] [0.128] [0.059] [0.546] 

0.05 0.28 0.29 0.22 0.05 0.11 2.26 
(el) 

[0.022] [0.238] [0.104] [0.142] [0.099] [0.130] [0.774] 

0.06 0.36 0.21 0.22 0.02 0.13 2.17 
(e2) 

[0.026] [0.161] [0.133] [0.117] [0.047] [0.143] [0.669] 

0.10 0.38 0.15 0.20 0.000 0.16 2.11 
(e3) 

[0.058] [0.139] [0.173] [0.101] [0.028] [0.168] [0.598] 
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5.3.3 Performance of the abundance model with clustering (MMPP) 

To assess the performance of the MMPP abundance model we simulated data with the 

same abundance distribution and clustering scenarios as in the previous section. Data 

were fitted assuming a non-parametric abundance distribution with mass in categories 

0-3, using different starting values (10 sets) to reduce the chances of hitting a local 

maximum. We considered first a design with S = 100, L = 30, and then increased the 

sampling effort by either adding more sites, increasing survey length or both. Since 

fitting this model is more demanding in terms of computational time, we only ran 20 

simulations for each scenario. In our implementation, the duration of each simulation 

varied from less than an hour to several hours. For comparison, data were also ana­

lysed assuming independence in the detections (i.e. Poisson process). 

The simulation results show that the model can estimate all the parameters and that the 

estimators are unbiased given large, yet realistic, data sets (Table 5-4). The precision 

of the abundance estimators was poor for the initial survey design considered. As ex­

pected, increasing the amount of sampling effort improved the quality of the estima­

tors. In the scenario with strong clustering, (c3), it was more effective to increase the 

length of the survey rather than the number of sampling sites: doubling the survey 

length gave better results than a 5-fold increase in sampling sites. The initial survey 

length used was relatively short considering the average interval spent in the low­

detection state, in which the rate of detections was very low (0.0125). Individuals were 

therefore likely to remain undetected at surveyed sites. Increasing the survey length 

provided data that reflected better the number of individuals present at each surveyed 

site. In this case this was more critical than increasing the number of surveyed sites to 

obtain a better estimation of the abundance distribution. 
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Table 5-4 Estimator mean and RMSE (in square brackets) for the MMPP abundance 
model under three clustering scenarios: (el) y = [0.5,0.125], P = [6, 12], (c2) y = 
[1,0.0625], P = [3, 12], and (c3) y = [5,0.0125], P = [0.6, 12]. Based on a true site 
abundance distribution with probabilities 8 = [0.05,0.5,0.3,0.15] for 0-3 individuals 
(average abundance N = 1.55). Results were obtained from 20 simulations for four 
study designs in which S sites are surveyed for L units of length. 

S = 100 S = 100 S = 200 S = 500 S = 500 
L = 30 L = 60 L = 30 L = 30 L = 60 

(el) {jo 0.05 [0.017] 0.05 [0.021] 0.05 [0.013] 0.05 [0.010] 0.05 [0.009] 

{j1 0.44 [0.169] 0.51 [0.063] 0.54 [0.089] 0.52 [0.045] 0.50 [0.038] 

{j2 0.30 [0.155] 0.29 [0.097] 0.25 [0.081] 0.30 [0.051] 0.30 [0.037] 

{j3 0.21 [0.162] 0.15 [0.092] 0.16 [0.080] 0.13 [0.061] 0.15 [0.031] 

91 0.56 [0.152] 0.51 [0.077] 0.52 [0.127] 0.52 [0.049] 0.50 [0.023] 

92 0.11 [0.052] 0.12 [0.027] 0.13 [0.033] 0.13 [0.015] 0.12 [0.010] 

lit 5.50 [2.533] 7.85 [5.539] 6.03 [1.983] 6.88 [1.529] 6.28 [0.988] 

P2 15.3 [11.08] 14.6 [5.906] 12.5 [5.980] 14.5 [3.701] 12.2 [1.741] 

Fl 1.67 [0.290] 1.54 [0.152] 1.52 [0.152] 1.51 [0.095] 1.55 [0.064] 

(e2) {jo 0.05 [0.027] 0.05 [0.024] 0.06 [0.019] 0.05 [0.011] 0.05 [0.011] 

{j1 0.50 [0.201] 0.53 [0.091] 0.51 [0.104] 0.46 [0.083] 0.50 [0.042] 

{j2 0.29 [0.147] 0.26 [0.103] 0.26 [0.078] 0.27 [0.069] 0.30 [0.038] 

{j3 0.15 [0.162] 0.15 [0.087] 0.16 [0.132] 0.21 [0.102] 0.15 [0.032] 

91 1.00 [0.081] 1.00 [0.066] 0.99 [0.043] 0.97 [0.040] 1.00 [0.024] 

92 0.06 [0.018] 0.06 [0.010] 0.06 [0.009] 0.06 [0.009] 0.06 [0.005] 

P1 3.15 [0.648] 2.97 [0.280] 3.08 [0.343] 2.94 [0.178] 3.00 [0.130] 

P2 12.2 [3.239] 11.5 [1.517] 12.2 [2.460] 12.2 [1.475] 12.0 [0.764] 

Fl 1.55 [0.329] 1.50 [0.141] 1.54 [0.220] 1.65 [0.179] 1.54 [0.066] 

(e3) {jo 0.05 [0.034] 0.05 [0.024] 0.05 [0.036] 0.05 [0.021] 0.05 [0.009] 

{j1 0.55 [0.215] 0.54 [0.118] 0.53 [0.167] 0.52 [0.122] 0.52 [0.047] 

{j2 0.17 [0.220] 0.25 [0.117] 0.23 [0.174] 0.22 [0.128] 0.27 [0.055] 

{j3 0.23 [0.186] 0.16 [0.114] 0.19 [0.137] 0.21 [0.136] 0.16 [0.051] 

91 4.98 [0.277] 5.02 [0.146] 4.97 [0.172] 5.02 [0.114] 5.00 [0.073] 

92 0.013 [0.005] 0.013 [0.003] 0.012 [0.003] 0.012 [0.002] 0.013 [0.001] 

P1 0.59 [0.046] 0.61 [0.043] 0.61 [0.034] 0.60 [0.022] 0.61 [0.014] 

P2 12.2 [2.979] 11.8 [1.282] 11.9 [1.673] 12.6 [2.041] 12.1 [0.605] 

Fl 1.58 [0.354] 1.53 [0.215] 1.56 [0.274] 1.60 [0.251] 1.55 [0.081] 
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Analyzing the data assuming independence in the detections provided a much poorer 

model fit, with large differences in terms of AIC for all simulations. Although biased, 

the abundance estimators obtained from this model were more precise (Figure 5-7). A 

similar phenomenon was observed by Morgan & Ridout (2008) on closed population 

capture-recapture models for estimating population size while accounting for hetero-

geneity in capture probability. Their simulations showed that, when the true model 

was a beta-binomial, fitting a binomial model produced a very precise but biased esti-

mator of abundance. The beta-binomial model performed well in terms of bias but 

provided much poorer precision. 

Despite being more precise, the coverage properties of the estimator from the model 

that assumes independence were in general poorer driven by the bias (Table 5-5). In 

fact, as illustrated in the previous section, an analysis based on the assumption of inde-

pendence would actually favour models based on abundance distributions with more 

support points, which provide estimators that are both biased and imprecise. 

Table 5-5 Comparison of the Poisson process and 2-MMPP abundance models in 
terms of coverage of 95% confidence intervals based on 20 simulations for the 
abundance distribution estimators under clustering scenario y = [1,0.0625], P = [3, 
12], and true site abundance distribution (J = [0.05,0.5,0.3,0.15]. 

No clustering model Clustering model 

S,L 80 81 82 83 N 80 81 82 83 N 

100,30 0.80 0.85 0.65 0.65 0.75 0.85 0.80 0.95 0.70 0.80 

100,60 0.90 0.90 0.80 0.90 0.90 0.90 0.95 1.00 0.90 0.95 

200,30 0.90 1.00 0.40 0.55 0.95 0.95 0.95 1.00 0.90 0.95 

500,30 0.85 1.00 0.05 0.00 0.65 0.95 0.90 1.00 1.00 0.95 

500,60 0.95 0.55 0.90 0.20 0.50 0.95 0.95 0.95 0.95 0.95 
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Figure 5-7 Oandscape) Box-plot of the abundance estimates eo - e3 (denoted as thO 
_ th3) for the simulated scenarios obtained from the Poisson process abundance 
model Oeft of each pair, in blue) and from the 2-MMPP abundance model (right of 
each pair, in black). Red horizontal lines indicate the true value of the parameters. 
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5.4 Analysis of the Kerinci tiger data set 

Here we illustrate the application of the new models proposed in this chapter with the 

analysis of the Sumatran tiger data set from Kerinci Seblat National Park. These data 

were analyzed in chapter 3 assuming no abundance-induced heterogeneity in the de­

tection process. In this section we present the results of an analysis relaxing this as­

sumption. 

5.4.1 Methods 

First we used the abundance model that assumes independence and describes the de­

tection process of individuals as a Poisson process (section 5.1). Second, we analyzed 

the data with the model structure that incorporates independent clustering in the detec­

tion process of individuals (section 5.2.1). Finally, we fit the data to the model that al­

lows for clustering in individuals' detections but assumes that this clustering is 'syn­

chronized' (section 5.2.2). 

To describe the abundance process we considered non-parametric distributions with 

support points from 0 to a maximum of 5 individuals. Since tigers are territorial, one 

might expect underdispersion in the abundance distribution with respect to a Poisson 

distribution. Using a non-parametric distribution provides the flexibility to account for 

this. The scale ofthe survey (i.e. sampling site size) was chosen based on the size of an 

adult male tiger territory, so it is reasonable to expect a low number of individuals per 

site and therefore a density of more than five individuals per site to be highly unlikely. 
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5.4.2 Results 

Looking in isolation at the results from models that assume no clustering in detections 

would suggest that abundance-induced heterogeneity in the detection process is very 

relevant for this data set (Table 5-6). The model that assumes no abundance-induced 

heterogeneity (labelled 'NPla' in the table) was over 30 Ale units worse than the best 

model in this subset (NP3a). By allowing more abundance categories, the abundance 

estimates tended to give considerable weight to the highest abundance category (e.g. 

84 = 0.26 in NP4a or 85 = 0.23 in NP5a). 

Table 5-6 Parameter estimates and dAIC for the analysis of Kerinci tiger data with 
abundance models that describe the detection process of individuals as a Poisson 
process with intensity y, i.e. independence among detections. Model labels 'NPXa' 
indicate that the abundance distribution is non-parametric with support points 0 to 
X and corresponding probabilities (J. dAIC is calculated both with respect to the 
models in the table set and to all the models fitted in this section (i.e. Table 5-7 and 
Table 5-8). Model NPl in this set is the Poisson process occupancy model (PP) fit­
ted in Table 4-4. 

Model b.Ale Abundance Detection 

set all 8 9 0 1 2 3 4 5 

NPla 30.9 62.3 .18 .82 0.11 

NP2a 9.2 40.6 .16 .55 .29 0.08 

NP3a 0.0 31.4 .13 .59 .00 .28 0.06 

NP4a 0.2 31.6 .10 .51 .12 .00 .26 0.05 

NP5a 1.7 33.1 .08 .43 .18 .08 .00 .23 0.04 

However models that allow for clustering in individuals' detections had substantially , 

higher support that those that assume independent detections (Table 5-7 and Table 

5-8). Modelling clustering provided an improvement of about 30 Ale units in model 

fit, which indicates is a relevant feature in this data set. In all of the fitted models with 
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clustering, estimates imply that tiger detections were about ten times more frequent in 

some areas compared to others. As observed when fitting the 2-MMPP model in sec­

tion 4.4, the switching rate estimates were very small and imprecise. The data were 

however informative about the probability of being in each of the two detection states. 

In the tables we report the estimated probability ft~ of an individual being in the high 

detection rate state. 

Unlike when fitting models that assume independent detections, allowing for abun­

dance-induced heterogeneity in the detection process provided modest improvement in 

model fit when detection clustering was modelled. This suggests that the structure for 

modelling abundance-induced heterogeneity in the models that assumed independent 

detections in Table 5-6 was, at least partially, capturing the clustering in the detection 

process rather than actual variations in site abundance. Under the assumption of inde­

pendence, the best fitting models (NP3a and NP4a) produced relatively large estimates 

for the highest support point in the abundance distribution. This effect was also ob­

served in our simulation study, when exploring the effect of unmodelled clustering in 

the estimation of abundance. 

If the clustering pattern among individuals' detections was assumed 'non­

synchronized' (Table 5-7) the best model in the subset was the one with three support 

points in the abundance distribution (NP2b). In this case the difference in AIC units 

between the best model (NP2b) and the model with two support points (NPlb) was 

just 2.7. Adding one extra abundance category resulted in a model with similar fit. 

Note that models NP4b and NP5b are in effect the same as NP3b. In the computation 

of the AIC we used the actual number of parameters in each model to draw attention to 
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the simpler model. Another approach for models that can be collapsed would be to use 

the number of parameters in the reduced model, as recommended by Burnham & 

Anderson (2002, pp. 342-343) when discussing the use of AIC in finite mixture mod-

els. 

Table 5-7 Parameter estimates and bAIC for the analysis of Kerinci tiger data with 
abundance models that describe the detection process of individuals as a 2-MMPP 
with parameters f.l and y, i.e. clustering in detections, and the detection processes of 
individuals are independent. The estimate ft~ = {i2d (fl12 + (i21) represents the 
probability of being in the high detection rate state for each individual. Model labels 
'NPXb' indicate that the abundance distribution is non-parametric with support 
points 0 to X and corresponding probabilities O. bAIC is calculated both with re­
spect to the models in the table set and to all the models fitted in this section (i.e. 
Table 5-6 and Table 5-8). Model NPlb in this set is the 2-MMPP occupancy model 
fitted in Table 4-4. 

Model f1AIC Abundance Detection 

set all iJ ~, 

Y 
0 2 3 4 5 

1[1 

NPlb 2.7 2.7 .04 .96 0.33 0.23,0.03 

NP2b 0.0 0.0 .00 .59 .41 0.27 0.19,0.02 

NP3b 0.5 0.5 .00 .63 .03 .35 0.24 0.17,0.02 

NP4b 2.5 2.5 .00 .63 .03 .35 .00 0.24 0.17,0.02 

NP5b 4.5 4.5 .00 .63 .03 .35 .00 .00 0.24 0.17,0.02 

Analyzing the data under the assumption that clustering in detections was 'synchro-

nized' among individuals did not provide an improvement in terms of model support 

(Table 5-8). The best model in this set (NP2c) was 2.7 AIC units better than the model 

that assumes no abundance-induced heterogeneity (NPlc), and had very similar fit to 

the model that assumes independent clustering (0.4 AIC units compared to model 

NP2b in Table 5-7). 
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Table 5-8 Parameter estimates and MIC for the analysis of Kerinci tiger data with 
abundance models that describe the detection process of individuals as a 2-MMPP 
with parameters J.L and y, i.e. clustering in detections, and the detection processes of 
individuals are 'synchronized'. The estimate rrf = {l2t!Cfi12 + (l21) represents the 
probability of being in the high detection rate state for each individual. Model labels 
'NPXc' indicate that the abundance distribution is non-parametric with support 
points 0 to X and corresponding probabilities 8. MIC is calculated both with re­
spect to the models in the table set and to all the models fitted in this section (i.e. 
Table 5-6 and Table 5-7). Model NPlc in this set is the 2-MMPP occupancy model 
fitted in Table 4-4 (and the same as NPlb in Table 5-7). 

Model boAIC Abundance Detection 

set all iJ ~I Y 0 2 3 4 5 
1f1 

NPlc 2.3 2.7 .04 .96 0.33 0.23,0.03 

NP2c 0.0 0.4 .02 .65 .33 0.39 0.15,0.02 

NP3c 1.5 1.9 .00 .52 .26 .22 0.44 0.11,0.01 

NP4c 3.1 3.5 .00 .26 .47 .00 .27 0.45 0.08,0.01 

NP5c 5.1 5.5 .00 .26 .47 .00 .27 .00 0.45 0.08,0.01 

The best fitting models in Table 5-7 and Table 5-8 both provided a similar estimated 

abundance distribution, suggesting that tigers are absent from very few sites, that in 

about two thirds of the sites there is one individual and that in the remaining third, 

there are two. It is however important to note that the estimates obtained were fairly 

imprecise, with estimated standard errors SE(iJ) = [0.00·, 0.27, 0.27] for NP2b and 

SE(iJ) = [0.06, 0.21, 0.20] for NP2c ("boundary estimate). This is actually not very 

surprising considering that the sample size was not particularly large (89 sampling 

sites) compared to the sample sizes required to obtain precise estimates according to 

our simulation study. The lack of precision was also reflected by the fact that the mod-

els suffered from local maxima and needed to be fitted several times from different 

starting values. When fitting some of the models (in particular the more complicated 
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ones) alternative solutions provided by these local maxima could receive very similar 

support. For instance in model NP4b in Table 5-7 the value of the log-likelihood func­

tion was only slightly lower than the maximum we found (- 0.2 units) at points that 

correspond to quite different abundance distributions such as () = [0.00, 0.50, 0.20, 

0.25, 0.04] and () = [0.00, 0.34, 0.39, 0.00, 0.28]. On the other hand, the estimates of 

the detection rate parameters and ft~ were considerably more precise. In particular for 

the best fitting models in Table 5-7 and Table 5-8 the corresponding standard errors 

were SE(ft~, 911 92) = [0.076, 0.033, 0.007] for NP2b and SE(ft~, 911 92) = [0.080, 

0.031,0.007] for NP2c. The abundance estimates obtained from the models without 

clustering were more precise that when clustering was accounted for (e.g. SE(O) = 

[0.05, 0.09, 0.00, 0.08] for NP3a in Table 5-6), which is in line with the results of our 

simulations. 
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5.5 Discussion 

In this chapter we have extended the models in chapter 4 to account for abundance­

induced heterogeneity in the detection process. We have shown how disregarding 

abundance-induced heterogeneity can induce bias in the occupancy estimator. We 

have also demonstrated that modelling clustering in the detection process can be rele­

vant when estimating site abundance. We have proposed a model to deal with the 

problem of accounting for both clustering and abundance-induced heterogeneity, con­

sidering two model variants that reflect different sources of clustering giving rise to 

either independent or 'synchronized' clustering patterns. To date this problem had 

been addressed by following a 2-step ad hoc method, rather than by explicitly model­

ling both aspects in the detection process. 

One limitation of the model proposed is that it is relatively demanding in terms of 

computing time, owing to the matrix operations involved in the likelihood. For exam­

ple, fitting the independent clustering model with five abundance support points to the 

Sumatran tiger data set took in our implementation around 10 minutes (on a 2.40 GHz 

computer) compared to the few seconds required by the Poisson process abundance 

model that assumes independent detections. As computing time increases with the 

number of support points in the abundance distribution, this becomes more relevant 

when dealing with abundant species. 

Another issue is that, in the presence of clustering and abundance-induced heterogene­

ity, sample size requirements increase as the detection process becomes more compli­

cated to describe. However our simulations indicated that precise estimates can be ob­

tained with sample sizes that, although large, can still be achievable in some ecological 
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studies. The simulation results also reveal that, while unmodelled clustering induces 

bias in the abundance estimators, these estimators are more precise than those from the 

clustering model. Depending on the sample size, disregarding clustering may result in 

better estimators in terms ofRMSE, but with poorer coverage properties. 

The complexity of the model implies that, unless enough data are available, the likeli­

hood can be rather flat with various local maxima, which can be of similar magnitude 

while providing different explanations for the data. This means that the outcome of the 

analysis can be sensitive to the point from which the optimization routine is initialized 

and that, therefore, it is a good approach to explore the likelihood function by trying 

out different starting values. In our tiger analysis we encountered this problem: the 

standard errors of the estimates were quite large and, as we allowed for more support 

points in the non-parametric abundance distribution, alternative explanations fitted the 

data equally well. This suggests that the model had too much flexibility for the amount 

of information in the data. 

Despite its limitations, our analysis of the tiger data set provides a nice illustration of 

how accounting for clustering can change the conclusions regarding the underlying 

abundance distribution. When we analyzed the data with the model structure that as­

sumes independent detections, there was strong support for models that allowed for 

higher abundance categories in the abundance mixture distribution; however, there 

was much less evidence for differences in site abundance when clustering was ac­

counted for. Our results reflect how other sources of heterogeneity in the detection 

process can creep into the estimated abundance distribution if not incorporated in the 

model. 
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Finally, when applying the models proposed in this chapter, it is important to remem­

ber that the appropriateness of interpreting the estimates obtained as abundance esti­

mates is contingent on how well the model assumptions are met. First of all, the mod­

els assume that differences in site abundance are reflected as heterogeneity in the de­

tection process and that this is the only source of such heterogeneity. Unmodelled het­

erogeneity coming from other sources would be interpreted by the model as abun­

dance-induced, which can cause bias in the estimators. For instance, we have seen how 

unmodelled clustering in the detection process can induce bias in the abundance esti­

mators. An appropriate description of the detection process is therefore critical for a 

reliable estimation of abundance. If some measurable factors are thought to affect de­

tection rates appreciably, these can and should be incorporated into the models as co­

variates. Second, the models assume that all the individuals present at the site are de­

tectable over the whole site, i.e. at any point in the site, the detection process is the su­

perposition of ni individual detection processes. Whether this assumption is satisfied 

depends on the characteristics of the species and the survey, including the choice of 

site size (we discuss the tiger case in chapter 6). Third, all individuals are assumed to 

exhibit similar movement patterns, so that their detections are wen described by iden­

tical detection processes. While for most species this may be a reasonable approxima­

tion, for some there may be marked differences among groups, such as males vs. fe­

males. In such cases, heterogeneity could potentially be addressed by modelling the 

detection process as a mixture of non-identical point processes, although we suspect 

that this increased flexibility may also imply more difficulties for model fitting. 



6 CONCLUSIONS 

In this thesis we have explored two aspects of occupancy modelling. We have first 

dealt with several issues related to the design of occupancy studies. Carefully address­

ing study design is essential to ensure that meaningful results are obtained in the most 

efficient way. This is important for any statistical study, but it is particularly crucial in 

ecology and conservation where resources are often fairly limited. Being a relatively 

recently developed modelling framework, the design of occupancy studies is currently 

an area of interest and development (e.g. Efford & Dawson 2012; Pacifici, Dorazio & 

Conroy 2012), and our work contributes in this direction. 

The rest of the thesis focussed on developing and assessing occupancy models for spe­

cies detection data collected along transects. The interest in such data was prompted by 

the analysis of the Sumatran tiger data set, which was collected following such a sur­

vey protocol. Transects had previously been used as the basis for collecting detection 

data in surveys targeted to study species occupancy but the analysis of such data had 

however been carried out by modelling the detection process as a discrete process after 

pooling detection from transect segments of a given length (e.g. Hines et at. 2010). 

The analysis of this kind of data had previously raised two questions 
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(i) How to discretize the detection data in the best way? 

(ii) How to model the data accounting both for potential clustering and abun­

dance-induced heterogeneity in the detection process? 

In this thesis we addressed these two issues. The key to our work is to model the detec­

tion process along the transect as a continuous point process on the real half-line. Point 

processes are attractive in this context as they provide a natural framework for the de­

scription of the arrival of events (the detections) along a line (the transect). Such de­

scription of the detection process avoids the need to pool data, an approach which may 

ultimately result in poorer estimators if large transect segments are used, as infonna­

tion is lost in the discretization process. Regarding the first question above, we believe 

there is no such a thing as an optimal segment length, neither in fact, an intrinsic bene­

fit of discretizing continuous data. However we do acknowledge that such an approach 

can be convenient from the implementation point of view (e.g. it allows the use of ex­

isting discrete models) and that it can for example help to mitigate the effects of pot en­

tial clustering in the detections when this aspect is not explicitly modelled. 

The point process models that we explored for species detection data are summarized 

by Figure 6-1. We started from a simple model that assumes independent detections 

taking place at a rate not influenced by differences in site abundance, and built up 

more complex models that take account of clustering and/or abundance-induced het­

erogeneity in the detection process. The model that accounts for both clustering and 

abundance-induced heterogeneity is the most general model among those studied, with 

the others being particular or limiting cases of this one. 
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Although in this thesis the models have been explored with the transect survey proto-

col as a motivating example, they are also potentially applicable to surveys that collect 

detection data by monitoring each sampling site over a continuous interval of time. 

Camera-trap surveys provide an obvious example of such a design. To date this kind 

of data has been used to estimate occupancy by collapsing trapping times in intervals 

of a given duration (e.g. 2 weeks, Linkie et al. 2007) and then using discrete models. 
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Another example is point count surveys, often targeted to avian species, which involve 

collecting detection data over an interval of time at a number of sampling stations. The 

interval of time is usually relatively short (e.g. 10 minutes) and independent repeated 

surveys are carried out at each sampling station. In the model structure presented in 

this paper, these replicated surveys would be analogous to the independent transects 

surveyed within each sampling site. 

We have shown that modelling clustering in the detection process can be relevant 

when estimating site occupancy and abundance, as the lack of independence can in­

duce bias in the estimators. In our models, the description of clustered detections, ei­

ther for species or for individuals, is based on 2-MMPPs. This kind of point process 

provides a simple description for clustered arrivals. Although other models are possi­

ble for describing varying detection rates (e.g. having more states in the underlying 

hidden process or even allowing detection rates to vary continuously), we believe that 

2-MMPPs will often provide a sufficiently flexible description for this kind of data. 

An advantage of using point processes to model detections along transects is in the 

interpretation of the parameters. It can often be easier and more natural to communi­

cate that 'the detection rate of a species is X detections per kilometre surveyed', rather 

than 'the probability of detecting the species at least once in a segment of a given 

length Y is Z'. Equally, the parameters related to the switching between states, which 

reflect the clustering pattern, are more readily interpreted in terms of average length in 

each state, rather than as switching probabilities which are dependent on an arbitrary 

segment-length definition. 
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A different matter is the ecological interpretation of the observed clustering patterns, 

regardless of whether a discrete or continuous model is used for the analysis. Various 

mechanisms can give rise to clustering in species detections and the models we have 

proposed in this thesis can be readily used to model different scenarios. For instance, 

in sign surveys along transects, clustering may be due to individuals intermittently fol­

lowing the paths used as transects or due to patches of different substrate conditions. In 

camera-trap surveys, clustering can be expected if the movement patterns of individu­

als are such that they remain for a while in the area around the camera before moving 

to other parts of their territory. In transect surveys, clustering can also be induced ifthe 

species only covers the sampling sites partially, as detections are only possible on the 

transect sections overlapping with the portion of the site that is occupied. For instance 

this can be the case for surveys based on observations of species that exhibit clumped 

distributions (e.g. due to patchy resources or limited dispersal ability of offspring) or 

for sign surveys of territorial species if the home-range size is smaller than the sam­

pling site. In these scenarios of partial occupation, modelling the clustering pattern 

provides an estimate of the actual area occupied by the species at sites where it is pre-

sent (nD. 

In the case of the tiger data set, our analysis revealed patent clustering in the footprint 

detections, however the ecological interpretation of the pattern observed is not clear 

cut. On the one hand tigers are territorial and the size of the sampling sites was chosen 

to be comparable to a male tiger large home range, so we could expect the clustering 

to be reflecting the fact that sampling sites overlap partially with tiger territories. On 

the other hand it could be argued that the clustering may rather be a consequence of 

individuals following the transects (often along ridges) intermittently, leaving clusters 
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of footprints within their territories. Of course, in practice the observed clustering may 

be due to a combination of these two processes. Looking at the estimates of the 2-

MMPP occupancy model in section 4.4 we see that the spatial scale of the clustering 

pattern picked up by the analysis is large: the rate of detections in the high detection 

state implies that on average one footprint is detected every 4.3 km; the estimates of 

the switching rate parameters suggest that whole transects are embedded in each detec­

tion-rate state. This would be compatible with a scenario in which the clustering pat­

tern is largely dominated by the overlap of territories and sampling sites. Tigers are 

wide-ranging animals and individuals move long distances across their territories 

every day. Tiger footprints usually remain detectable for a few days, depending on the 

substrate and weather conditions. We can therefore speculate that a large part of the 

home range of an individual tiger would contain footprints to be detected, at least 

along the features that the animals follow as routes to move across. However, unfortu­

nately we cannot tell from the data the extent to which the areas of high footprint de­

tection rate coincide with the territories as this depends on the tiger movement patterns 

and the persistence of the footprints in the landscape. 

In fact the tiger case becomes even more complicated if we consider that, while male 

tigers keep relatively exclusive territories, female tigers hold smaller territories that 

overlap with male territories and which can have some degree of overlapping among 

them (Karanth & Nichols 2002, p. 11). This complex territorial structure means that 

parameter estimates from the models, and particularly those from the abundance mod­

els, should be interpreted with care. While for the surveys of some species the model 

assumptions will more closely match the reality and thus a relatively direct interpreta­

tion of the estimates will be possible, we recommend caution with the literal reading of 
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the abundance estimates as individual numbers in the tiger scenario and would suggest 

limiting the interpretation to a coarse indication of site abundance. 

Regarding the models that account for abundance-induced heterogeneity, we started by 

presenting a basic model that assumes independent detections. As we discussed, apart 

from its utility as a model for species-detection data collected along transects, this 

model can also be useful as an alternative to the binomial N-mixture model of Royle 

(2004) for the analysis of spatially-replicated repeated count data, allowing for the 

possibility of detecting each individual more than once per replicate. This is relevant 

when individuals cannot be identified within survey visits, which can happen in sur­

veys based on direct observations (e.g. camera-trap surveys without individual identi­

fications or bird point counts) and it is crucial when modelling detection data from in­

direct observations, as individuals can leave more than one sign. In fact, the Poisson­

Poisson mixture model in particular had been previously mentioned as a potentially 

useful model development for encounter-rate data (Stanley & Royle 2005, in 

Discussion; Royle & Dorazio 2008, p. 413). 

We then explored the more general model that accounts for both abundance-induced 

heterogeneity and clustering in the detection process. Our approach represents an at­

tractive alternative to the previously proposed two-step ad hoc solution (Hines et al. 

2010), as it provides a description that explicitly incorporates both aspects, and there­

fore allows the estimation of not only abundance but also of the parameters associated 

with the clustering pattern. This is, as far as we know, the first model that accounts for 

both clustering within the detections of individuals and abundance-induced heteroge­

neity in the species-detection process. Martin et al. (2011) studied the effect of corre-
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lated behaviour in the binomial N-mixture model used to estimate abundance from re­

peated counts. Although dealing with an essentially different problem (i.e. dependence 

among individuals instead of within detections from each individual), they also found 

that lack of independence in the detections can lead to a poor estimation of abundance. 

Our model tackles the problem posed by question (ii), however it is important to real­

ize the limitations that we face when dealing with such a scenario. We have illustrated 

how the lack of identifiability between alternative explanations and the poor precision 

of the estimators can indeed be problematic, unless a relatively large data set is avail­

able. It is not surprising that disentangling the clustering and abundance processes 

from detection data of unmarked individuals is in fact challenging. We have also dis­

cussed how other unmodelled sources of heterogeneity can be 'captured' within the 

estimation of abundance. 

It is unfortunately not only within a given model structure that inferential problems 

arise. In connection with this, it is worth noting that other models might be devised to 

account for heterogeneity in the species detection rate. For instance, a negative­

binomial model could be used, which would arise if the rate in the Poisson detection 

process is allowed to vary among sites according to a gamma distribution. Finite mix­

tures could be used to characterize a system in which sites can belong to a finite num­

ber of classes with distinct species-detection rates, as is done in capture-recapture to 

model heterogeneous recapture probabilities (pledger 2000). A crucial problem is that 

verifying whether abundance is the source of heterogeneity in the detection process 

may be difficult, or even impossible. As discussed in the context of occupancy models 

for discrete sampling protocols, different descriptions for heterogeneity in detection 
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probability may fit the detection/non-detection data equally well and yet produce dif­

ferent estimates of occupancy (Royle 2006). This kind of identifiability problem can 

also be expected when modelling data collected along transects and adds to our previ­

ous discussion on the need to address other sources of heterogeneity in detection rate 

to obtain reliable estimates of abundance. This should not only be relegated to the de­

velopment of advanced models with sophisticated descriptions of the detection process 

but should be dealt with at the early stages of the survey by carefully addressing sam­

pling design to minimize unwanted sources of heterogeneity. 

We have seen that there are some limitations on the robustness and precision of the 

abundance estimates when abundance is estimated solely from detections of unmarked 

individuals. In this connection, we would like to highlight that, if the real focus of the 

study is to obtain a precise estimation of population abundance, then other survey 

techniques specifically developed to estimate abundance may be more suitable. How­

ever these methods tend to be more resource-intensive which can limit their applica­

tion to large geographical scales. An interesting strategy for such scenarios relies on 

the development of approaches that integrate large-scale low cost surveys with more 

targeted resource-intensive sampling methods (e.g. Conroy et al. 2008). 

Apart from the issues discussed above, there are a couple of directions in which our 

work could be further refined. First of all, our analysis disregards the fact that the ac­

tual transects in the surveys were not straight lines but somewhat wiggly. This simpli­

fication is necessary to apply the theory of one-dimensional point processes. However, 

in reality detections take place on a surface, rather than along a true one-dimensional 

line. Ignoring the spatial nature of the data may result in detections that are spatially 
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close appearing distant along the transect, which might affect the conclusions of this 

type of study. Moving to a more spatially-explicit model is an avenue for further re­

search. A possible associated difficulty is the fact that we are dealing with detections 

on the transect, given that the window of observation is virtually of zero width, which 

might complicate the fitting of spatial point process models. 

Secondly, our clustering models are based on MMPPs, which assume that the time 

spent in each of the detection states is exponentially distributed. Depending on the type 

of clustering that is to be captured, the state holding times might be more suitably de­

scribed by a different distribution. For instance, if clustering is induced by the survey 

routes cutting through individual territories, perhaps less dispersed holding times 

would be more appropriate. In this case, rather than describing the detections as a 

Markov-modulated Poisson process, a Poisson process modulated by a semi-Markov 

process would be used. What conceptually seems a small modification in the model, in 

practice implies a considerable increase in complexity, as the relatively simple form of 

the MMPP likelihood relies on the assumption of exponential holding times. Using 

simulation-based inferential methods can therefore be a useful approach in this case. 

An alternative is to use MMPPs to construct a semi-MMPP using the 'method of 

stages' . In a preliminary literature search we found no examples of model fitting based 

on a semi-Markov-modulated Poisson process. The closest piece of work was an ap­

plication to modelling neural spike bursts (Tokdar et al. 2010), in which such a point 

process was used but imposing, as a simplification, some particular restrictions in 

terms of when states were allowed to switch. Further investigation of such processes 

would therefore be useful, not only from the point of view of modelling species detec­

tions, but also as a tool of interest in other applications. 
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A. I Software tool assistant for the design of occupancy studies (SODA) 

SODA (Single-season Occupancy study Design Assistant) is a MATLAB-based stand-

alone software tool that allows running an automated search for a suitable design given 

user-specified requirements for the basic single-season occupancy model , as well as 

testing the performance of specified designs. The tool and instructions on its use can 

be found at www.kent.ac.uklims/personal/msr. An R function for evaluating the per-

formance of a given design is available at the same site. 

SODA Single season Occ upa ncy s ludy DeSIgn ASSIStant va (be t d) I~ I 1'8:1 

0.8 

n ._~ 

0.8 
p 

REst.LTS 

."'Q'o.seed d.sign: 
K-6 replicat •• , .-58 sites (TS - 34S ) 
psi : bias=+O. 0076 var"O.0041 HSI>=O . 0 041 

p : bi ... ·-O . 0032 v_r - O. 0051 HSI - O. 0051 
ericA-C . 0092 crieD-!. SSSe-OOS 

.-pty histori ••• 0 . 0' 
(tor &learnatlv •• check auxiliary vi..ndow) 

( :\Documents and Settings\sODA_vO_fi les\sODA _vO.exe 1!!l1EE:! 

SOD A results displayed ill the main window and auxiliary window 
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A.2 Additional simulation results for section 3.2.6 
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Case 4 
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A.3 Mathematical equivalence of cases A2 and B J in section 3.4 

Case A2: Fixed proportion of occupied subunits at occupied sites (0) and sampling 

with replacement (i.e. binomial distribution) 

Case Bl: Fixed probability of a subunit being occupied at occupied sites (0) and sam-

piing without replacement (Le. hypergeometric distribution). 

Let X be the number of replicate surveys at an occupied site that sample occupied sub-

units, N the number of subunits per site, K the number of replicates per site and e the 

fixed proportion (Case A2) or the probability (Case B 1) of occupied subunits at occu-

pied sites. X is distributed as 

XA2 - BinCK, e) under case A2 

XB1 - HG(N, K, BinCN, 0)) under case Bl 

The binomial mixture of hypergeometric distributions in B 1 gives rise to the binomial 

distribution in A2 (Johnson et al. 2005, p. 377), as shown below 

N-K 

= (~) OX(1- O)K-X L (N ~ K) OiCl - O)CN-K)-i 

i=O 

x E {O .. , K}, K ~ N 
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A.4 MLEs for the two-season Markovian occupancy model 

In section 2.2.6 we describe an occupancy model for multiple-season data with Mark-

ovian dependence in the occupancy status of the sites across seasons. For the particular 

case of two seasons it is evident that, under the assumption of perfect detection, the 

estimator of seasonal occupancy is the same regardless of whether independence or 

Markovian dependence is assumed (for seasonj, $J' = Sd./S, where Sd- is the number 
J J 

of sites out of S in which the species was detected in the season). Here we show that 

this also applies for the model in section 2.2.6, which accounts for imperfect detection. 

For the two-season case, the contribution of site i to the likelihood function in (2.24) is 

or what is the same 

Li = {(1- E)1jJ1P~1(1- Pl)K-d1 + y(1-ljJl)I(d1 = 0)}p~2(1- pz)K-d2 

(AS. I ) 

+ {E1jJ1P~1(1- Pl)K-d1 + (1- y)(1-ljJl)I(d1 = O)}I(dz = 0), 

where K is the number of replicate visits per season, dj is the number of detections at 

the site in season j, j = 1,2, and 1(.) denotes the indicator function which takes value 

one when the expression in brackets is true and zero otherwise. We can distinguish 

four types of site in the detection history: 

• A: sites where the species is detected in both seasons (d1 > 0, d z > 0), 

• B: sites where the species is only detected in season I (d1 > 0, dz = 0), 



APPENDICES App-9 

• C: sites where the species is only detected in season 2 (d1 = 0, d2 > 0), 

• D: sites where the species is not detected in either season (d1 = 0, d2 = 0). 

We define the following quantities, which provide a full data summary for this model, 

• Sx: number of sites of type x, x E {A, B, C,D} 

• dTj : total number of detections of the species in season j, j = 1,2. 

For convenience, let us define as well 

• dA1 : total number of detections of the species in season 1 in sites of type A, 

• dB1 : total number of detections of the species in season 1 in sites oftype B, 

• dA2 : total number of detections of the species in season 2 in sites of type A, 

• dC2 : total number of detections of the species in season 2 in sites of type C, 

The expression (AS.l) for each of the site types is 

LA = (1- E}lhp~l(l- Pl)K-dlp~2(1- P2)K-d2
, 

LB = (1- E)l/J1P~1(1 - Pl)K-d1(1 - P2)K + El/J1P~1(1 - Pl)K-d1, 

Lc = {(1- E)l/Jl(l- Pl)K + y(1-l/Jl)}P~2(1- P2)K-d2
, 

LD = {(1 - E)l/Jl (1 - Pl)K + y(l -l/Jl)}(l - P2)K + El/Jl (1 - Pl)K 

+ (1 - y)(l -l/Jl), 
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and the likelihood for the full history is 

Since our interest is in the occupancy estimators, let us reparameterize the likelihood 

as a function of ljJ2' Considering that ljJ2 = ljJi (1 - E) + (1 -ljJi)Y and rearranging 

some terms we have 

x {(1 - E)ljJl (1 - p;) + EljJdsB 

X {ljJ2 -ljJi (1 - E)pi}SC 

where pi = 1 - (1 - paK is the probability of detecting the species at least once in 

season i at a site, given that it is occupied. Using a reparameterization (}l = ljJ1Pi, 

(}2 = ljJ2Pi and 8 = (1 - E)pi allows the likelihood to be written as the product of 

two functions of one parameter and one involving three parameters 

This simplifies finding the MLEs, as now the problem involves maximizing lower di-

mensional functions separately. The MLEs for each of the two detection probability 

parameters, obtained by maximizing the one-parameter functions Fl and F2 , satisfy 
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P1 dTl PZ dTZ -P; K(SA + S8)' pi K(SA + sc)" 

To obtain the MLEs for the three remaining parameters (81 ,821 8) we differentiate 

[3 = log(F3) with respect to each of the parameters and equate to zero which leads to 

the following system of equations 

SD 
-------=0 
1 - 81 - 8z + 818 

which can be easily solved to obtain the following expressions 

Back-transforming we arrive to 

~ SA + Sc 
l/Jz = (SA + S8 + Sc + SD)pi . 

Let us write Sd1 = SA + S8 and SdZ = SA + Sc for the number of sites in which the 

species was detected in the first season and second season respectively. Rewriting ac-

cordingly the MLE expressions for occupancy and detection probability we get 
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which are the same expressions as those obtained under the assumption of independ-

ence, that is, when data are analyzed using two separate single-season models (2.3). 

We show now that the asymptotic variance of the MLEs is also the same in both mod-

els. Under the (Ov 021 0) parameterization the hessian matrix of the log-likelihood is 

a2
fl 

0 0 
apf 

H= a2
f2 

0 
ap~ 

0 

0 0 Hfl 

where /j = log(Fj) and 

a2!3 a2
f3 a2

f3 

a0 2 
1 a01ae2 ae1 ao 

Bfl= 
a2

f3 a2
f3 a2

f3 

ae1 ae2 ae; ae2ao 
a2!3 a2

f3 a2
f3 

ae1 ao ae2ao a02 

The variance for the detection parameters Pl and P2 is obtained as 

j = 1,2, 

which, considering that IE[dTj] = StPjKpj, is 
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var(p ) =}} j P.(l- P')! p. 1 
j SK. K-l . 

Wj Pj - Kpj(l- Pj) 

The variance-covariance matrix for (011 Oz, 0) is obtained as 

81(0 - Oz) 

8z(1 - Oz) 

0(1- 0) 

From (A5.3) the variance ofWj can now be calculated as 

0(1 ~ 0) ). 

0(1- 0)/01 

(
OW )z (OW )2 

var(Wj) = 00; var(8j) + OP; var(pj) 

and the covariance of Wl and Wz as 

which can be rewritten using other parameterizations as 

App-13 

(A5.2) 

(A5.3) 

(A5.4) 

(A5.5) 

(,/. ,/.) = (Wz - y)(l-Wl) = Wl(l-Wl) (1 _ E _ y). (A5.6) 
COy 'f'1I 'f'Z S S 



APPENDICES App-14 

Note that both (AS.2) and (AS.4) are the same expressions as those obtained under the 

single-season model (2.13), and that therefore the occupancy estimators for the Mark­

ovian model for two seasons l/Jl (. )e(. )y(, )Pl (. )P2 C.) have the same expression and 

asymptotic variance as those obtained assuming independence with a model 

l/Jl C. )l/J2 C. )Pl (. )P2 C.). The covariance in (AS.5) and (A5.6) is zero under the assump­

tion of independence, as then 1- e = y = l/J2' 
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A.5 The Kronecker sum 

The Kronecker sum Ee of two matrices A and B is defined as 

where I A and I B are identity matrices of the same order as A and B, and ® represents 

the Kronecker product defined as 

[

CllD 

C®D= : 

Cni D 

For example, the Kronecker sum of two matrices Q and R, 

_ [-r12 r12] R- , 
rZi -r21 

which could represent the generator matrices of two different 2-MMPP processes, is 

-li12 0 li12 0 -r12 r12 0 0 

0 -li12 0 li12 rZi -rZi 0 0 

QEeR= + 
liz 1 0 -liZi 0 0 0 -r12 r12 

0 liZi 0 -li21 0 0 r21 -rZi 

-(li12 + riZ) r12 li12 0 

rZi -(li12 + rZi) 0 li12 
= 

-(liZi + r12) li21 0 r12 

0 liZi rZi -(li21 + r21) 


