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Abstract

Many devices are now using wireless communication, either by using base stations or by forming ad-

hoc networks, but this style of mobile platform increases the probability of disconnection because of

loss of network access. Replication of shared data is one way to increase data availability in a mobile

environment, but leads to the problem of inconsistent copies of data after periods of disconnection, and

so requires some means of data synchronisation. Therefore, there is a need for an approach that can

provide synchronisation support for various types of wireless application.

This thesis investigates how policy can be used to resolve problems of data conflict in a way that

can be tailored to meet the needs of different types of application in different situations. A middleware

has been created to investigate the problem. This middleware supports the sharing of data in a wireless

environment using a tuple-space paradigm. It provides data caching which will enable individual devices

sharing data to work with a single virtual space. This method does not guarantee that data in a local

device will always be up-to-date but it does provide some level of information for applications that need

the data for decision making while disconnected from other devices.

A set of policies is maintained within the middleware, and these policies are used to express a wide

range of synchronisation options to restore the consistency of the data after periods of disconnected oper-

ation. This thesis tests several policies in a number of scenarios based on different wireless applications.

These involve a range of context information to support the policies in decision making. The thesis also

includes an investigation into how policy can be defined independently for each device and the imple-

menting of a synchronisation process that can support the process. Such environments require a more

complex synchronisation process that can detect and resolve any policy conflict. The performance of the

system has been measured and analysed in term of costs and benefits offered to applications. It shows

that it is possible for such a system to have performance sufficient for applications that are not espe-

cially time sensitive in environments where the periods of connection are long enough for the system to

progress its synchronisation.
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Chapter 1

Introduction

1.1 Setting the Scene

Improvements in wireless networks and small device processing power have increased mobile computing

usage recently. New wireless network and telecommunication standards allow devices to communicate

using higher speeds with longer range and more reliability. Devices such as mobile phones, PDAs, or

laptops are getting smaller with higher processing power. A number of them now support several types

of connection. This situation makes extensive use of mobile computing more attractive.

This new technology gives more flexibility. Mobile computing allows the creation of applications that

are hard or impossible to implement while relying on wired connectivity. Examples are advanced forms

of mobile computing such as ad-hoc sensor networks where a number of small sensor nodes periodically

collect information and communicating with each other using wireless, personal area networks where a

user’s small personal devices can communicate with each other, and ubiquitous computing where small

computing devices are embedded within appliances.

1.1.1 Connectivity Problems

There are a number of obstacles to the widespread use of mobile computing. One problem is that writing

a mobile application is generally more complex than writing a static application. For example, compared

to general applications that are self-contained, network access is an essential features that characterised a

mobile application. This leads to a range of difficult problems such as how to make a connection secure,

for example.

Compared to applications operating on an office network, a mobile application has to deal with

situations where a network connection does not exist. Moving a device from an office network to a home

network causes a disconnection and a re-connection. The application has to be able to operate both in

the situations where there is a network connection and in those where there is no network connection.
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This could happen when a user uses the device while he is moving.

Furthermore, a mobile application that is designed to operate on a wireless ad-hoc network (see

section 2.3.1) has to take into account the unreliable nature of the connection. In this case, there is no

control over when a network access ceases to exist. This problem is different from moving the device

from one network to another network. In the previous case, a user expects the disconnection before it

happens but an ad-hoc network connection could be disconnected at any time.

Moreover, an ad-hoc network introduces a transient disconnection problem. A disconnection from

the network does not mean that the network connection is not going to exist for a long period of time. A

transient disconnection can occur in the network as a result of movement of the other devices forming

the network. This means there is a higher chance that communication in an ad-hoc network will be

interrupted than for other communication types.

1.1.2 Data Access Problems

Accessing resources or data over both wired and wireless networks requires a way to find resources.

Generally, a resource discovery service is required. Such a service receives registration information

including a service description and a service location from other services that wish to announce their

existence. An application queries the discovery service to obtain this information which then allows the

application to access the resources directly.

Wireless ad-hoc networks add more complexity to resource discovery. In a structured network, the

discovery service can be operated on a permanent server. General services such as file stores or print

servers are usually located on static devices which register information on the discovery server and then

provide services. However, in an ad-hoc network, there is no server that can guarantee to stay connected

to the network all the time due to the changing nature of the network. Therefore, service discovery using

a single server is not possible.

Apart from dealing with the physical connection itself, a mobile application has to deal with discon-

nection in terms of resources that are not going to be available while a device is disconnected from the

network. During disconnection, data that is not stored in the device cannot be accessed; any services

provided by servers on a network cannot be used. In this case, one solution is to store some or all of the

information that is going to be needed locally.

Storing or caching information locally can be done in many ways. A number of research projects

have looked at how to provide the best data replication technique or caching algorithm, and some of

these projects are mentioned in section 2.4.1. However, there is no way to ensure that there is not going

to be a cache miss where information is not available offline, unless a user pre-defines all the possible

information that is going to be used before a disconnection.
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1.1.3 Data Synchronisation Problems

Data caching is normally used to reduce problems arising from being unable to access data during a

network disconnection situation. However, there are problems in using a cache. One of the problems is

how to synchronise the caches belonging to each user when they are reconnected. During disconnection,

if a user is allowed to modify any information in his/her device, there is a chance that more than one user

is going to modify the same information in different ways. Data conflict is then going to happen when

the two devices are re-connected.

One way to prevent the problem is not to allow a user to modify information that is not pre-defined

as modifiable. The simplest way is to give one user an owner token for a particular piece of data so that

only he or she has the right to modify the data during a disconnection period. However, this severely

limits the system flexibility, since other users cannot modify the data even if they have a good reason to

do so.

Another way to resolve the data conflict problem is to do data synchronisation when devices recon-

nect. In this way, every device is allowed to modify any data in their caches and there is no need for

the owner token and its limitation. When devices reconnect, caches on them are analysed for any data

conflict, which is generally called a conflict detection process. Then, any conflict in the data will be

reconciled, which is normally called a conflict resolution process.

A B
Data Conflict

?

Conflict Resolution ProcessConflict Resolution Process

Figure 1.1: Data Conflict and Conflict Resolution 1

These two processes can potentially resolve the differences between caches but introduce their own

problems. First, as in figure 1.1, what entity will tell the device resolution processes which data to

preserve? Next, if a conflict does happen between the two devices, what is going to be done with data

that is rejected during the resolution process?

In the simplest case, it is easy to create a basic conflict resolution engine that contains a fixed al-

gorithm for the resolution process. However, this limits the number of situations where the system can

be used. A detection and resolution process that is designed to be used in one application may not be

able to be used in another application. Therefore, the engine needs to be flexible enough to understand

requirements set by different applications and to tailor its resolution process to meet these requirements.

Ideally, the algorithm for deciding the process should be able to receive external input that can control

how the process should be done in a particular situation.

3



Next, similar to the problem of the discovery service discussed above, the resolution engine cannot be

located on a specific server, as shown in figure 1.1, because, in an ad-hoc network, devices may require

the resolution process from the engine when a route to it does not exist. Therefore, the resolution engine

needs to be installed on each device that may require the process, as illustrated in figure 1.2.

A B
Data Conflict

Resolution Engine Resolution Engine

Figure 1.2: Data Conflict and Conflict Resolution 2

Installing the engine on each device and allowing the resolution process algorithm to be affected

by external inputs leads to another problem. In a situation where different engines try to resolve the

same data conflict in different ways, who is to choose the process to be executed? Moreover, higher level

resolution processes to resolve the conflict caused by having two resolution engines may also be different

between the two services which can then cause a higher level conflict.

1.2 Purpose and Aim of the Project

1.2.1 Purposes and Aims

This project tries to create a simple environment for developing mobile applications that can be used in

an ad-hoc network by providing data communication and synchronisation processes based on a tuple-

space paradigm (see 2.2). This is to reduce the complexity in writing the applications, because the project

provides a single virtual space view to an application.

To some degree, this masks out complexity from accessing remote information and from any data

synchronisation when writing a general mobile application. However, another aim of this project is to

expose its conflict detection and resolution processes to the user so that he or she can alter the process to

suit a particular application.

Communication complexity is reduced by creating a middleware layer that is responsible for data

communication and synchronisation. The middleware should be able to provide a number of tuple-space

like interfaces to an application so that it can support an application that is built for the tuple-space

paradigm with as small a number of changes as possible.

The middleware needs to be able to operate on a mobile ad-hoc network where each device is con-

nected at a peer level and there is no central server responsible for providing any specific service. Con-

nections between devices in such a network are unstable and can be disrupted at any time.
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In order to provide a unique virtual space point of view, the middleware is responsible for caching

information from each connected device and storing it in a local space. In this way, a user can access and

modify the stored information at any time without immediately being interrupted by any disconnection.

To maintain data consistency, the middleware is responsible for detecting and resolving conflicts

between different copies of the same tuple. During connection between any two devices, the middle-

ware conflict detection and resolution processes are triggered, and these will analyse tuple information

between the two devices and resolve any conflict that exists.

Next, the conflict detection and resolution processes have to be flexible enough to support different

types of application operating on the middleware. Its synchronisation engines should allow its tuple

synchronisation process to be based on control information provided by any user.

Moreover, the middleware needs to keep track of information both internal and external to a device

which can be used to support its tuple synchronisation process. For example, tuple historical information

such as the number of times the tuple has been accessed or the time when a tuple was created should be

collected by the middleware.

Also, since different applications may require different types of information to support their syn-

chronisation decisions and the middleware may not know in advance what the information is, it should

provide an interface that allows the information to be collected and stored in a local space. The informa-

tion can then be used in helping the synchronisation engine in making its synchronisation decisions.

Next, since a synchronisation engine is attached to each device, there is always a chance that the

control files written by different users will be different from each other. The middleware has to provide

a way to resolve conflicts between these control files.

Lastly, the middleware needs to provide a way to propagate synchronisation information to other

interested devices in an area. Information such as the policy that is used during the synchronisation and

the information that is used in making the synchronisation decision should also be propagated. This is

to make tuple information on the devices in the area converge and allow the middleware to be able to

maintain the unique virtual space view for applications.

1.2.2 Contributions

This project demonstrates that it is possible to use a policy to control a synchronisation process in a tuple

space environment by building a middleware prototype that supports tuple space based interactions in a

wireless environment. The system is built so that it can support different types of application without a

need to modify the system mechanism.

Next, the project investigates a number of aspects required for a policy to make the right decision

during a synchronisation process. For example, it investigates the case where different policies are

applied in different devices, which will cause a policy conflict during a synchronisation process, and

proposes a simple process to resolve the conflict.
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This project also looks into how context information can help to make the synchronisation process

better, and the cost of using the information, including a situation where improper usage of the context

information leads to an incorrect synchronisation decision. Lastly, the project shows the cost of providing

the synchronisation service for a tuple space environment. Even though the system helps in extending a

virtual space view to a disconnected sub-network, there are costs for providing the service.

1.2.3 Topics not Covered

This project does not claim to resolve every problem discussed above and the middleware built in this

project has not been tested to show it operates flawlessly for every application. It will be used primarily

to investigate the control of data synchronisation processes using a policy (control file) in a shared tuple

space paradigm that can operate over a mobile ad-hoc network.

Due to the time limit on the project, the middleware could not be implemented to include all the

features normally present in commercial software. The middleware will contain the functions that are

the most important for supporting the tuple communication and synchronisation processes.

The efficiency of the middleware may also not be as good as a commercial product might require

(its performance can be seen in chapter 7). It is intended for use in a small cooperative application

environment such as sharing a calendar or making room bookings and does not have some of the features

available in larger systems. The middleware does not provide any security control such as per tuple

access permission control. However, some measures of security are provided by using the Java security

policy file [Sun02], which allows a user to define access controls for any entity that is to access a space.

The middleware still has to rely on a single set of higher level policies that can resolve conflict

between low level policies. This means a user still does not have total control over how a synchronisation

process on his/her device should be done. It will take more resource in order to find a way to provide this

total control to a user.

Finally, the middleware needs a device with enough processing power to operate. It has been tested

on a laptop computer which has enough processing power to run the Sun’s Jini services and JavaSpace.

Devices that can support the two services should be able to run the middleware. It is not designed to

be used in a low processing power devices such as in a sensor network, or a mobile phone with limited

resource.

1.3 Why Policy?

There are several ways for a user to control the middleware’s synchronisation behaviour. On one hand,

the middleware could provide a number of different synchronisation algorithms, one of which could be

selected by the user. These could be provided so that a user was able to select his or her synchronisation

algorithm from an interface such as a drop down menu, set of tick boxes, or radio buttons.
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On the other hand, a user could be allowed to write his or her own control files using a natural

language. In this case, the middleware needs to contain a very complex compiler that can translate from

the user’s language to a language that the middleware understands.

The first method is too inflexible. A user’s choices are limited to a number of synchronisation algo-

rithms pre-defined by the middleware and these algorithms are unlikely to be able to cover every type

of application needed by different users. A user cannot introduce a new synchronisation and conflict

resolution algorithm that is different from those that are already provided.

Even though the second method gives a user freedom to express an algorithm without any pre-defined

limit, it is too flexible and too complicated. It is very hard to create a compiler that can translate from a

natural language to a machine understandable language. Even if such a compiler can be created, it is still

very hard to control the expressive power available to the user.

These two methods presented above are the two extreme ends of the flexibility scale. In between the

two, there are policy languages. These languages allow a user to create a policy file tailored to suit a par-

ticular application which provides more flexibility than the pre-defined algorithm approach. Meanwhile,

they have a simple enough syntax that a compiler can be created without too much work. Some of the

languages even have an existing compiler that can compile from a policy file to a programming language

file making it easier to integrate them with the middleware.

A policy language allows a user to control the middleware behaviour at a high level. Comparing this

to changing the behaviour by using a programming language, a user does not need to understand every

detailed mechanism relating to how the middleware works in order to change it. Moreover, controlling

the middleware using a policy separates the user from any change that could happen in the middleware

mechanism. As long as it still provides the same set of interfaces to the policy engine, there is no need

for a user to edit his or her policy when the middleware is modified.

More importantly, a policy allows the middleware behaviour to be changed on the fly. Changing a

system by editing its code requires the system or part of it to be shut down in order to apply the changes.

Changing it via altering the system policy does not interrupt the system. A new set of policies can

be compiled separately. The system needs only to load the new policies and replace the old set. This

project benefits greatly from this feature which allows the middleware synchronisation behaviour to be

changed depending on the current situation. For example, the behaviour can be changed depending on

the different types of tuple participating in the synchronisation process.

1.4 Thesis Outline

This thesis consists of nine chapters. Chapter 2 provides background knowledge relating to this project.

It gives information about the tuple space paradigm which is the basis for the middleware, including
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examples of application areas that benefit from the paradigm. It also contains information about wire-

less networks; especially some basic knowledge concerning mobile ad-hoc networks which offer the

environment in which the middleware is intended to be used.

Then, it explains the basic concept of data synchronisation taken from works in the database area

and shows a number of previous attemps to provide a data synchronisation service in both a structured

and ad-hoc wireless network. It also gives some information about middleware and policy containing

examples of existing tuple space paradigm middleware, and a brief introduction to a number of policy

models, standards, and languages. There is also a comparison between policy languages in this section.

Chapter 3 gives an idea of types of applications the middleware aims to support. The chapter also

shows the process of building and testing the middleware. It gives an explanation of the test framework

that is used to test the middleware synchronisation process and a brief introduction to the performance

testing process of the middleware.

Chapter 4 explains the JavaSpace For Mobile environment (JSFM) middleware architecture proposed

in this dissertation. It gives an overview of the JSFM by describing a number of components used in the

middleware. Then, it explains each middleware component in detail starting with the components that are

responsible for the middleware supporting processes (e.g. starting up, IP address monitoring and chang-

ing). Next, it describes the components that make up the middleware policy engine, and are responsible

for making decisions during each synchronisation process. The last section describes the Synchroni-

sation Event Propagation layer which is the layer that is responsible for creating and maintaining the

synchronisation event distribution tree providing messaging services between devices in the same area.

Chapter 5 contains information about the policies that are used in the middleware. It starts by de-

scribing the main policy components, how are they related to each other, and how they are used in the

middleware. Then, it discusses the implementation of the components in the middleware. Next, the

chapter describes how the decision making process and the policy enforcement process are done. Lastly,

the chapter contains information concerning how the middleware allows user-defined information to be

gathered using the context gathering agent interface.

Chapter 6 discusses how the synchronisation process in the middleware is done. The chapter is

divided into two main sections. The first section illustrates how a synchronisation process is done where

every device uses the same set of policies and the second section discusses policy conflicts occurring

during the synchronisation process when different devices use different local policies. Next, the chapter

introduces a number of methods that can be used to resolve these conflicts. The section also discusses

how to make data on different devices converge using direct and indirect methods.

Chapter 7 shows the result of testing the middleware. It compares access times for three general tuple

space operations between an application accessing a space directly and accessing it via the middleware.

Next, it shows results from the tree building test process. The chapter also contains a synchronisation

time test determining the amount of time the middleware takes for synchronisation between two related
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tuples.

The test also discusses a situation where policies on two devices are in conflict with each other and

makes a comparison between the two cases. Lastly, the section gives an estimate of the time needed for

a tuple propagation process where a new tuple introduced into an area is propagated over the area’s event

distribution tree based on the results from the previous tests.

Chapter 8 contains discussions regarding to the middleware and the policy used by it. The discus-

sion ranges from the middleware design and implementation process,with discussions of its supported

applications, to a policy usage in the middleware including costs and benefits of more complex synchro-

nisation processes that can support multiple policy sets in the same environment. Chapter 9 contains the

project conclusion and possible improvement that might be made in future work.

Early results from this work were published in [JL06].
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Chapter 2

Background Knowledge

2.1 Introduction

This project employs several technologies to be able to support wireless tuple synchronisation, from the

physical layer such as the IEEE 802.11 wireless LAN to the technologies in the higher layer such as the

tuple space paradigm and policy language.

This chapter gives some background to the technologies that are used in the project. The first section

gives an explanation of the tuple space paradigm which is the data structure and data storage model used

in this project. The section explains a tuple space as used in Linda and some systems that have since

adapted the tuple space idea.

The next section gives a brief explanation of mobile communication and wireless networks. These

technologies allow communication between devices without using any physical wiring between them.

Next, the data synchronisation section gives an idea of the current technology of data synchronisation.

Several synchronisation methods for both wired and wireless communication are presented.

The middleware section shows examples of existing middleware using both wired and wireless com-

munication. Different middlewares aim to support different features. The examples raised in the section

place stress on the middlewares that address synchronisation and communication problems.

The last section contains some background information about policy languages. There are several

minor languages that have been created with a specific application in mind. This section give examples

of some of the work that uses the specific policy languages but places more emphasis on more popular

languages, especially the Ponder language which is the language used in this project.
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2.2 Tuple Spaces

2.2.1 Linda

The tuple space paradigm was first used in a concurrent programming language called Linda [Gel85].

Communication between programs using a space is done by a sender writing a tuple into the space which

will be withdrawn by the receiver. The tuple is an ordered list of typed parameters including the actual

information to be communicated. The parameters in the tuple are used in a matching process that allows

an application to access the tuple.

This type of communication allows time and space de-coupling in that there is no need for the sender

to send its data at a specific time when the receiver is available to receive the data. The sender has no

need to stay in the same area where the receiver is after the data has been sent. The information will stay

in the space until some receiver removes it.

A B
P

A writes a tuple P in the space which is withdrawn by B

Figure 2.1: Tuple Space

Figure 2.1 shows the basic relation between an application, a tuple, and a space. There are three

commands used in the language to interact with a tuple - in(), out(), and read(). Each tuple has tags

attached which are used to identify it when it is in the tuple space. The out() and read() commands

withdraw a tuple from the space by matching their tag queries with any tuple in the space with similar

tags.

An example of how the tuple space of the Linda language can be used is shown in [CGL86]. The

article discusses how a replicated-worker program can benefit from using the Linda language. A worker

program is executed by several replicated processes. The processes work together using tuples in the

space as their communication medium. The tuple space allows the system to be scaled by allowing more

workers to be added easily.

More experiments in using the Linda language to solve problems can be seen in [CG88]. Linda was

used, for example, in a system for finding resemblances between DNA sequences by distributing tasks,

each returning results from searchers to a master process via the tuple space.
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Implementations of Linda in parallel systems have been discussed in [BCGL86] and [CG86]. The

usage of Linda and its tuple space paradigm has extended into many areas as can be seen from the number

of middlewares that are discussed in 2.5

New ideas are being used to improve the tuple space such as the multi-agent system in [MT03]

that uses a swarm bio-computing inspired technology to increase the efficiency of the Linda tuple space

paradigm in a large scale multiple space system

2.2.2 JavaSpace

JavaSpace[Sun98] was created by Sun Microsystems. It is implemented using a number of Jini [Sun99]

services and is distributed with them. JavaSpace adopts Linda’s tuple space paradigm in an object-

oriented world, and is implemented using the Java language. Instead of using the tuple space to imple-

ment a concurrent system as was the original aim in Linda, JavaSpace aims to be a way to provide data

communication over a network.

To provide the JavaSpace service to an application several components are used; one or more servers

run Jini’s “outrigger”[Sun03] as a space service. Clients can interact with them by querying the Jini’s

“reggie”[Sun03] which is a registry service, obtaining references to the spaces. The client can then use a

reference to access the space directly. Figure 2.2 shows an interaction between the components.

Registry Service

JavaSpace Service
Client

1. JavaSpace registers with the Registry
2. Client requests the JavaSpace's
reference from the Registry

3. Client accesses the space using
the reference obtained from Registry

Figure 2.2: Client-Registry-JavaSpace Setup

The interface is provided by JavaSpace attempts to match the Linda language space interaction com-

mands (in(), out(), read()). The JavaSpace calls these take(), write(), and read() instead. Moreover, it

provides two more commands - takeIfExists() and readIfExists(). The basic commands block a querying

process until a tuple can be acquired or a time out is reached, while the two extra commands return null

if the tuple does not exist.

JavaSpace also provides an interface for an application to register an interest in a particular type of

tuple. A notification is then returned to the registered listener when the requested tuple is written into the

space.
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JavaSpace uses a class implementing the “net.jini.core.Entry” marker interface to represent a tuple.

There are two simple restrictions for this class. First, the tuple class needs to have a no argument con-

structor to allow a serialisation process by which the tuple is transferred into and out of a space. Next,

all the fields in the tuple class should be declared as public fields and the values in the fields should each

be a reference to an object. This is to allow proper lookup/query processing for the tuple in a space.

A tuple’s life time can be specified by using a lease which is a part of the Jini package. Examples of

more background information about how to use a JavaSpace can be found in [BW02], [FAH99], [Hal01],

[FH99].

JavaSpace is the system selected for use in this project. However, there are a number of other systems

that provide a tuple space service such as the IBM’s TSpace [WMLF98] or JSpace [Led98]. There is not

much information regarding to JSpace apart from the paper. It is built on RMI instead of Jini and supports

the same basic commands used in JavaSpace. Like JavaSpace, TSpace is also implemented using Java

and provides functions similar to JavaSpace. The same functions permitted in JavaSpace can be done in

TSpace, but by using different commands [IBM]. The main different between the two implementations

is that TSpace does not rely on the Jini services. Therefore, it is easier to use TSpace in a system that

does not currently use Jini. On the other hand, a system already implementing services using Jini can

add JavaSpace as just another service provided from the same service discovery process.

2.2.2.1 Applications using the JavaSpace

A number of projects use JavaSpace to provide coordination between their subsystems. For example,

[HJ01] reports using JavaSpace in cluster management. A node writes a tuple into a space when it

decides to join or depart from the cluster. A work scheduler receives a notification from the space when

a new node joins or an existing node leaves the cluster. Information from it is written as a tuple and

its lease time shows how long it intends to stay in the cluster, allowing the scheduler to assigns jobs

properly.

[Bla01] uses a JavaSpace to allow communication between its rule-driven coordination agents. The

agents contain specific rules for the components they represent and use JavaSpace as an event server

to form part of a workflow automation system. [TNO02] changed the inter-processor communication

system of their simulation system from using RMI to JavaSpace and report a better system performance

from the change.

RDBSpace [AKR02] proposes to improve performance of a JavaSpace by utilising a relational-

database system as the space back-end. The system also provides a simple backup and data replication

mechanism from its mySQL database system which is not provided in the basic JavaSpace. GigaSpace

[Gig06] is a commercial implementation of JavaSpace supporting more functions such as APIs for other

languages, replication, and load balancing.

In term of the JavaSpace performance, [NZ01] uses JavaSpace in several applications that rely on
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different algorithms to measure the efficiency of JavaSpace in various situations. The results in this

article show that JavaSpace still has the communication latency problem that generally exists in Java and

so may be more suitable for an application that is not communication intensive.

2.2.2.2 Reason for using the tuple space paradigm and JavaSpace

This project is based on the tuple space paradigm as a communication model because of its potential to

support mobile applications. It provides both space and time decoupling which is essential in a wireless

environment where devices are allowed to move and connections between them are unstable.

Moreover, the tuple space paradigm provides simplicity of tuple synchronisation at a basic level

which comes from a limit on the operations available for interacting with a space when compared to

those of file structures or databases.

Next, the tuple as an object provided by a JavaSpace can be a powerful storage mechanism. Instead

of just storing data, because it stores objects, these can also contain methods. Therefore, a tuple can

contain processes that can be used for interacting with data contained in the tuple. In this case, a tuple

acts like an agent that can be passed to gather and process data on a remote host. However, this is out of

the scope of this project.

2.3 Mobile and Wireless Network Background

A wireless network enables devices to communicate without relying on a physical connection between

them. There are several existing technologies for wireless networks using a radio frequency carrier as

their medium, such as HomeRF [NSL00], IEEE 802.11 [Kap02a], HiperLan/2 [VKP03] and Bluetooth

[Bis01]. Each has different characteristics in several respects such as bandwidth and coverage area and

they are suitable in different situations.

For example, Bluetooth uses less power than IEEE 802.11 and operates on a shorter range, which

may be more suitable for a network between personal devices. IEEE 802.11, apart from IEEE802.11e,

does not support QoS while HiperLan2 and HomeRF2 do [VZV03].

This project is based on IEEE 802.11 since it is widely available. Therefore, this section only contains

information regarding this technology and its ad-hoc mode. However, the system built in this project

should be able to operate on any network, including a wired network, as long as the Java Virtual Machine

is usable, since the project uses only Jini services and sockets for its data communication.

IEEE 802.11 is a family of standards that provides an Ethernet-like facility as a wireless system

over radio frequency channels. Each device communicates using a network infrastructure which may

include a base station. A number of the standards are currently in use in different wireless devices such

as IEEE 802.11b, 802.11a, and 802.11g. Each of the standards supports a different maximum theoretical

bandwidths but the actual bandwidth available depends on several factors such as the distance between
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the device and its base station.

More background knowledge on wireless networks can be obtained from the literature. [VZV03] re-

views the various types of network. The paper contains information about the attributes of the networks

and a comparison between them. [DVLLX02] gives background knowledge regarding mobile telecom-

munication standards (GSM, UMTS) and an overview of IEEE 802.11. [Kap02b] and [Kap02a] give an

overview of the IEEE 802.11a and 802.11b standards.

2.3.1 Mobile Ad-Hoc networks

Ad-hoc networking is one of the communication modes that exists in the IEEE 802.11 standards. The

widely used structured wireless network system requires each device to connect to a particular base

station in order to connect to the network. An ad-hoc network increases the freedom with which the

network can be set up by allowing devices to communicate directly without using any infrastructure.

Figure 2.3, shows the different between the two network structures.

Base Station

Structure Network Ad-Hoc Network

Figure 2.3: Structured and Ad-hoc Wireless Network Topology

There are a number of advantages of ad-hoc networks over structured networks. Without any need

for fixed infrastructure, it is faster and probably easier to set up an ad-hoc network. For example, it is

costly to establish a structured wireless network on a highway while an ad-hoc network can be created

between cars travelling along it without any need for base stations.

However, ad-hoc networks also have several disadvantages. For example, the more freedom each

device has, the more likely the network is to be unstable. Since the network relies on each node to act as

a communication medium, there is more chance that a network will be broken into sub-networks which

may cause interruptions in communication. More background knowledge about ad-hoc networks can be

found in [RR02] [CCL03] [CMC99] [FJL00], for example.
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There are several projects that are based on ad-hoc networks. Wireless sensor networks [CES04]

is one of the application areas that benefits greatly from ad-hoc data communication. These systems

employ a number of small inexpensive devices to monitor events. The ad-hoc network allows the system

to be deployed in an environment where a structured network is not established.

Personal Area Networks and Personal Networks [NHdG02] [NHdG03] are other application areas

that benefits from the ad-hoc communication mode. For example, ad-hoc communication allows de-

vices attached to a user’s body such as their PDA or mobile phone, to interact without using any base

station. The ad-hoc mode allows the system to be more flexible by freeing it from any fixed network

infrastructure.

2.4 Data Synchronisation and Conflict Resolution Process

One of the most important concepts in distributed systems is data replication. It increases data availability

in that it allows access to the data even if a device cannot access the original data source. Data replication

also increases the system fault tolerance by increasing data availability. Replicating data across several

sites allows one or more sites to be shut down while a user can still access data from the other sites.

Another benefit from data replication is performance improvement. Access time will be improved if a

device copies data into its local storage rather than accessing the data across a network.

Nevertheless, data replication has its problems. One of the most important problems comes from

changes that are made to data; these may make the data inconsistent. Without any control of the changes,

data on different sites will diverge. A replication control technique or data synchronisation process is

required to control the changes and reconcile any differences. Figure 2.4, shows an overview of different

types of the technique.

Replication Technique

Pessimistic Optimistic

Static Dynamic

Figure 2.4: Replication Control Technique

There is much research in replication control and data synchronisation in the database area. One

of the earlier techniques in replication control is pessimistic replication control [AD76] [TN89] [JM90]

in which any operation that may create data inconsistency has to be done on the “primary” replica or
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replicas which are then also responsible for propagating the update. As a result, the serialisation of such

updates will prevent any inconsistency between replicas.

Selecting the primary groups is vital in a pessimistic scheme in that it affects the overall data avail-

ability of the system. If the groups cannot be established when there is a network failure, no one can

update data in the system. There are two ways for selecting the primary group - static and dynamic

selection.

Static selection is a process where the structure of partitions caused by network failures determines

the primary group. Simple voting is an example of this method. The number of replicas in a group

determines if the partition can be established as a primary group. [Gif79] is an example of using voting

where the number of votes in a partition has to be more than a pre-defined threshold in order for the

partition to be a primary group.

Dynamic selection not only uses a partition structure but also uses more information from each replica

to help in determining the primary group. [JM87] [JM90] uses the number of up-to-date copies of a file

contained in a partition to determine the primary group. This method gives a replica that is not up-to-date

no vote. A partition that has more than half of the up-to-date files is a primary group. [MW82] uses a

token to determine the primary group. Each file is given a token when it is written. A partition that has a

replica that contains the token for a file that is going to be updated is a primary group.

Another replication technique is the optimistic replication scheme [Dav84] [Her90] [SS05]. This

scheme allows data from any replica to be updated and uses a background data synchronisation process

to reconcile any conflict resulting from several updates. How data synchronisation and conflict recon-

ciliation are done varies from one system to another. Some of the systems using this replication control

scheme are reviewed in 2.4.1.

The two replication schemes each have their advantages and disadvantages. One major advantage

of the optimistic scheme is that it allows each replica to be updated during network partition. This is

required in an application that is operating in a mobile environment in which each replica has a high

chance of being separated. In an ad-hoc network, an individual device may often become separated, as

when a user with a PDA is travelling back home. In this case, a network with twenty devices has a high

chance of being divided into twenty partitions in which a simple voting algorithm cannot determine a

primary group.

However, compared to a pessimistic scheme using voting, the system with optimistic replication

control is more complex. The system has to rely on synchronisation and conflict reconciliation processes.

The complexity of the two processes varies from a simple synchronisation for a new data entry to more

complex conflict reconciliation in which information for making a decision comes from several sources.

The system also requires a transaction rollback process to undo changes resulting from conflicting data.

This project follows the optimistic replica control scheme. The most important reason is that the

project is built so that it can be used in a small mobile ad-hoc environment. In this environment, the
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chance of a network partition happening is high, especially in the case where each replica is isolated

as explained above. Therefore, a simple voting scheme is impossible. Moreover, an application in this

environment requires each device to be able to update and modify its data while it is not connected to

other devices, as users need to access and modify their data when they are at home. This condition rules

out the pessimistic replication control which would allow only data on one partition to be updated.

2.4.1 System with Data Synchronisation

2.4.1.1 AdhocFS

AdhocFS [BI03a] is a file system for use in a mobile ad-hoc environment. This system uses data replica-

tion to ensure data availability within a group of peer devices and file servers. Files sharing in AdhocFS

is done by extending the hierarchy of a local file system to identify available files and copying those files

to be accessed into local storage if the files do not exist there.

File consistency in an ad-hoc group is maintained by an exclusive writer scheme. A write operation is

locked for one writer at a particular time while a read operation can be used by any device. This process

is done by giving each device in an ad-hoc group a state with respect to a particular file. For example, a

device that can update the file has to be in a read/write state allowing the device to both read and write

while the other devices must be in a read state.

A concurrency control list(CCL) is attached to each file for conflict detection and resolution processes

caused by file updating while a device is disconnected from its peers. The CCL uses a timestamp for

each file, indicating when it is taken from its reference copy, together with information about devices

that have the current copy and any updates to that copy.

To enhance its performance, [BI03b] uses a device’s profile in order to find a suitable device on which

to store a replica in an ad-hoc group. The profiles are based on the devices’ energy reserves, the duration

for which each device has been in the group and the availability of local storage. For example, when the

profile of a device storing the reference copy of the data becomes weak (e.g. low battery), the data will

be propagated to another device with a stronger profile to preserve the data in the group.

2.4.1.2 Bayou

Bayou [DPS+94] is a client-server based system built to support data sharing between mobile devices.

Data in Bayou servers is fully replicated and clients can access and modify data on any server which is

then responsible for propagation of the update. A server in Bayou does not have to be a traditional fixed

database server system. A mobile device with sufficient power can act as a lightweight server providing

data for the other devices.

For data replication, Bayou uses a write-any/read-any replication scheme in which any device can

read and write data. There is no locking used in the system which will provide more data availability for
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each user. A client can access any available replicated server. Inconsistency from using different servers

is managed by using session guarantees [TDP+94] such as making a read reflect any update done by the

client or enforcing serialisation of the writing order.

The guarantee is provided on a per-session basis because an application loses a certain amount of

data availability from using the guarantee. The loss of data availability comes from the limited number

of servers that can provide the guarantee. Since the process is based on lazy data propagation, servers

that can participate in a session guarantee for a particular client’s session must be sufficiently up-to-date.

Therefore, some servers may not be able to participate in the process. If any session guarantee cannot be

provided by the system, the application requesting the session will be informed.

Conflict detection in Bayou is done by using a dependency set which is an application-specific query.

A conflict is detected when results from the query are not equal to the expected results. The dependency

set allows Bayou to do conflict detection which is tailored to each application. The check is done at a

server before a write operation from a client is processed. The write operation is not performed if the

check failed until the conflict resolution process has been performed.

The conflict resolution is done by attaching a “merge procedure” [TTP+95], which is a fragment of

mobile code generated by the client updating the data and which will be run at the server in which conflict

happens. This code can invoke the server database read or write command and can be customised so that

each merge procedure satisfies the need of a specific application.

More background information about Bayou and its example applications can be found in [EMP+97],

[TPST98].

2.4.1.3 Coda

For a system with files synchronisation, the Coda [SKS87] file caching system can provide information

to a user while the user’s device is disconnected. Coda is a distributed file system based on a client-

server architecture. The trusted Unix servers contains files which will be cached at clients when they are

requested using the client cache manager called Venus [KS92].

A client requests data from only one server. The server can be selected randomly or by using in-

formation from the server such as its performance or the distance between the client and the server.

Before transferring requested data to the client, the server checks with the other servers to ensure that

its information is up-to-date. Coda uses a read-once, write-all approach [SKK+90] for its replication

mechanism where modified data are propagated. The propagation process is done using clients to reduce

the workload on the servers.

While connecting to the servers, Venus carries out a caching process using information such as the

file reference history and a customisable file list from the user. It changes to emulation mode when a

client is disconnected from the servers. Normal file operations can still be done to the previously cached

files in this mode. However, there is a chance that a cache miss can happen when an application accesses
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information that has not previously been stored. In this case, an error code is returned to the application.

Venus contains a logging system for keeping track of file updates during disconnection. The infor-

mation is used when the client reconnects to the servers. The re-integrating process contains conflict

detection and resolution processes to reconcile conflicts occurring during the disconnection period. Con-

flict detection relies on information attached to an object when it is modified. Conflict resolution is based

on using an Application-Specific-Resolver(ASR) [KS93] which is a rule file using system commands to

resolve a conflict. A user intervention is required if no ASR file is found for the object.

More background information about Coda can be found in [Bra98] [LLS99] [Sat96]. [Sat90] contains

background information about Coda and the Andrew File System(AFS) from which Coda inherits many

aspects. Some information about Coda performance is described in [SKK+90] [NS94].

Together with Odyssey [NS99], Coda has also been used to create another project called Aura [Aur]

[Sat01] [SG02], which tries to provide a ubiquitous service that reduces user interaction. It proposes that

the most important resource in a system is now “user attention” as it tries to provide a distraction-free

service to a user. One of the most important functions of Aura is to try to adapt to its environment such

as where a user is going, to make it suitable for a user’s application.

There are some example applications provided in [GSSS02]. First of these is People Helpdesk, which

is a location and information finding service. It can be used to find the location of someone and their

information such as their meeting schedule. The system supports a speech-based command interaction,

which is easier to use on a mobile device, and a legacy user interface for a stationary user. Second, Ideal

Link is a distributed shared whiteboard for collaborative work between mobile users. This application is

also integrated with the People Helpdesk to determine which users can participate in a meeting.

2.4.1.4 Concurrent Version Control System

There are a number of projects that implement data synchronisation and conflict reconciliation. Con-

current Version Control System (CVS) [Fog99] allows developers to access and modify source files and

employs synchronisation and reconciliation processes for merging source files from different developers.

CVS employs a copy-modify-merge methodology for its synchronisation and conflict resolution

[Ber90]. A developer copies a source file, modifies it, and merges it back with its original. There is

no locking or serialisation of the source file. The CVS can detect conflict between different versions of

the same source file but the developers are responsible for conflict resolution.

2.4.1.5 Ficus

Ficus [PPGH90] [PGPH90] [GHM+90]is another distributed file system providing a data replication

service. It is implemented as a value-added layer to be inserted between a system kernel and its file

system. In this way, the project provides higher flexibility in that it can still be used when a new and
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better file system is created. The stackable layers in Ficus allow other value-added layers such as an

encryption layer to be inserted into the system.

The implementation of each layer in Ficus can be separated from the others. For example, the Ficus

replication layer does not have to be in the same location as the actual file system. A transport layer can

be inserted between any other two layers to provide interface matching transparently between the layers.

The current Ficus implementation is done using the Unix File System [PPGH90]. File replication is

done by linking between a Ficus logical file layer which presents the file to an application and a number

of replicated physical files which could be stored on remote locations. In other words, replicated files

from different physical sites are presented to an application via the Ficus logical file layer as a single file.

Each logical file contains a set of inodes, one for every physical file replica and additional informa-

tion to identify the physical files. The inode is information attached to each file in a Unix file system

containing data such as a page pointer to the file and its ownership.

File updating is done by the logical replication layer which notifies each physical replica of any new

update. Then, the replicas cache the new update and wait for an updating daemon to update the file. The

daemon is used so that the update frequency can be controlled to suit the current situation.

A Version Vector is attached to each file to help determine conflict. Conflict reconciliation in Ficus

is done by its reconciliation protocol and a list of predefined and user-defined resolver files [RHR+94].

When Ficus detects a conflict between two replicas, it does a system-wide search for a resolver that

matches the conflicting files’ type (using file name, and content). If the conflict cannot be resolved,

Ficus calls a generic resolver to notify the user via electronic mail.

2.4.1.6 Differences Between Systems

The systems reviewed in the section above differ in a number of ways.

• One of the differences is in the architecture of the systems. Coda uses a client-server based archi-

tecture where a server is only responsible for storing information while an application is run on

a client which caches files from the server. AdhocFS extends the notions to support more flexi-

ble networks in an ad-hoc environment by allowing caching between devices in a ad-hoc group

together with a client-server approach similar to Coda.

Bayou blurs the line between client and server by allowing a device to act as both client and server.

A device can act as a server by fully replicating files from the other servers while serving as a proxy

for other devices with lower performance.

• For data replication, all the systems use an optimistic replication scheme which avoids data locking

to provide higher data availability. Instead of simply replicating data, Ficus attempts to add more

value into the process. Its stackable approach provides a place where extra processes such as

encryption-decryption can be inserted. AdhocFS stresses replication efficiency by using predefined
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rules based on device parameters such as battery power to direct the replication process. This is

to prevent devices with a weaker profile, which have a higher chance of disconnecting from the

system, from storing a huge amount of data.

A client device in the Coda system determines which data is to be stored locally by using Venus.

While the client is connected to a server, Venus in hoarding mode selectively caches data that a

user may then use during disconnection. Data is selected using various parameters such as the

user’s usage information and preferences.

• In conflict detection and resolution, AdhocFS, Coda, and Ficus all rely on attaching information

relating to any operation done to different replicas in order to detect conflict. Bayou, on the

other hand, provides conflict detection based on a set of queries. A Bayou server checks a set of

application specific queries before an update can be applied in order to detect any conflict.

Conflict resolution in the systems is based on each user setting up a set of rules controlling the

process. Each system uses the process with a different scope. Coda ASR and Ficus resolver files

are attaches to a file or directory object which enforces the rules every time a conflict is detected.

Conflict detection and resolution in Bayou are done on a per-session basis, which allows users to

relinquish a certain amount of data consistency to achieve higher data availability.

Apart from the systems reviewed in this section, there are a number of other projects that use data

synchronisation and conflict resolution processes. Examples of the projects are the Andrew File System

(AFS) [HKM+88] from which Coda inherits a number of its properties, and Locus [PWC+81] which

is one of the earliest of distributed operating systems supporting some measure of synchronisation and

conflict resolution. To get more information about the other systems, see [BNK89] which provides a

survey of several distributed file systems or distributed operating systems including a number of systems

that have not been discussed here.

2.5 Middleware Background

Middleware is a popular solution to link different programs, generally with a structure like that shown

in figure 2.5. The general aim is to solve problems regarding to system heterogeneity and information

distribution, and to provide an application writer with a unified programming model [BCRP98] [Ber96].

An example of a middleware that fits the above description is the Common Object Request Broker

Architecture {CORBA} by the Object Management Group (OMG) [Gro06] [SFM+96] [Sie99]. The

middleware allows applications from different vendors implemented using different programming lan-

guages to work together over a network.

In term of service distribution, CORBA helps to make application writing simpler by making the

location of a service transparent as a result of using its naming or trading service. An application does
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Figure 2.5: Basic Middleware layer

not have to know the location of the service to use it. The middleware is responsible for locating the

service and then transferring information between an application and the service.

A service in CORBA is represented as an object. Interfaces offering the service are specified by the

OMG IDL which is independent of any programming language but maps to the current popular languages

such as C, C++, or Java. The IDL enables service encapsulation in that a client application only needs to

know the service interfaces but not the mechanism that provides the service.

Client

Stub

Object Request Broker

Service

Skeleton

Figure 2.6: Basic CORBA Architecture

To provide these features, CORBA employs a number of components between a client application

and an application providing service as shown in figure 2.6. IDL files are compiled into client stubs and

service skeletons which act as proxies. A request from a client is passed through the client stub to the

service skeleton via the Object Request Broker (ORB). The ORB helps the client find the service by using

an object reference provided by the client; it may also provide additional services such as load balancing

and fault tolerance. The client can get the service reference via a number of well-known services such as

the Naming Service or the Trading Service.

Apart from CORBA, a number of middlewares currently exist. Java RMI [Sun06b] and DCOM

[Mic06] are two more object-oriented middlewares in a similar style to CORBA in allowing an applica-

tion to access remote objects as if they were local objects.

IBM MQseries [GS96] and Java Message Queue [Sun06a] are middlewares providing asynchronous

message passing between senders and receivers. The sending process uncouples the client from the

server, which allows different types of system to interact as long as they agree on the message format.
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Next, transactional middleware provides a transaction service to components over a distributed sys-

tem using a two-phase commit protocol. This type of middleware provides more system reliability.

Tuxedo [BEA06] is one of the examples of middleware in this category.

Currently, as a result of growing usage in wireless networks, more new middlewares have been

proposed to try to provide support for communication in a mobile environment in both the structured

mode and the ad-hoc mode. These middlewares support mobile applications that run on lightweight

devices such as notebooks, PDAs, or mobile phones, which typically have low processing power, battery

capacity, and communication bandwidth.

The difference between these mobile middlewares and the conventional middleware is that a middle-

ware designed for a wired environment usually makes a number of assumptions. First, a system node

is generally powerful. Second, information transfer between terminals is done by a high bandwidth and

stable communication sub-system. None of these can be assumed in a mobile middleware which has

low power devices and unstable network connection, particularly because a terminal can itself physically

move away causing disconnection.

Apart from the limitations above, the mobile middleware has important features such as context-

awareness [SAW94] which is a property of software that can react or change its behaviour depending on

its external and internal environment. Context-awareness includes, but is not limited to, visibility of lo-

cation information, devices information, and user information. It is generally associated with ubiquitous

systems [Wei91] [Wei99] but a number of middlewares also provide these features.

A technique called “reflection” can be used to provide system level context-awareness for mobile

middleware. The technique was first used in programming languages to develop a language that is more

extensible [KRB91]. The technique is used in middlewares such as CARISMA [CEM03], FlexiNet

[HHB99], and Gaia [RC00] to allow the middleware to tune itself and change its behaviour according to

stored context information.

There are a number of existing mobile middleware solutions. However, since this project stresses

the tuple space paradigm, the next section contains a review of some of the mobile middlewares that are

based on a tuple space. [GK03] provides more information for general mobile middleware. [Emm00]

gives more background knowledge and information regarding several traditional middlewares.

2.5.1 Examples of Tuple Space Related Middleware

2.5.2 Limbo

Limbo [DWFB97] [BDFW97] is an example of a middleware based on the Linda tuple space concept

and providing the tuple space operations it defines. Instead of using only Linda’s single tuple space,

Limbo allows an application to create a number of tuple spaces. Each space can be customised to suit

the application needs, such as user authentication and space persistence.
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The tuple space lifecycle can be controlled by a client. A new space can be created by the client

sending a request to a common space in a server, stating any characteristics that the new space is to have.

In the same way, a space can be destroyed by a request sent from a client but this request is put into the

space to be destroyed instead of the common space. Limbo allows a tuple to have a type. The tuple type

can be used during the tuple matching process in Limbo. The process will find tuples with either the

same type, or a sub-type, of the specified tuple.

Another extra function that Limbo provides is Quality of Service (QoS). QoS attributes in Limbo are

associated with tuples and space operations. For example, the QoS attributes on operations that request

tuples allow a space to reorder the requests to provide a better service and utilise network connections

efficiently.

Limbo also provides several system agents responsible for various tasks. For example, Limbo has a

Bridging agent that is responsible for tuple propagation between spaces. The agent can be programmed

to do the propagation based on factors such as the tuples’ QoS attributes. It can also act as a gateway to

translate tuples during the propagation.

Limbo has a QoS monitoring agent that constantly keeps track of several QoS attributes in a space.

Each agent is associated with one space keeping track of information such as bandwidth available for

communication from the space or the remaining power of a host. More agents monitoring other attributes

can also be added. The information from the agents is made available as a tuple in the space allowing

other hosts to make use of it.

Each tuple space in a host is implemented using a daemon process. The processes on different hosts

collaborate to replicate tuple information between them. The replication allows an application to access

a tuple even in a situation where there is no network connection. Tuple consistency and replication

control are maintained by the Distributed Tuple Space Control Protocol [DFWB98] which is based on IP

multicasting. The protocol enforces rules such as allowing only the device that has ownership of a tuple

to delete it.

The Limbo name was later changed to L2imbo to prevent any confusion with another product from

Lucent Technologies [Wad99].

2.5.2.1 LIME

Linda In a Mobile Environment (LIME) [PMR99] [PMR00] [MPR06]is one of a number of middlewares

that apply the tuple-space paradigm from Linda to a mobile environment. In LIME, each mobile agent

owns a tuple-space, which will be transiently merged (called “engagement”) with the others when there

is a connection between hosts. An agent can move between hosts and has control over its space in term

of sharing permissions but an application that does not require a moving mobile agent can use the agent

as if it was a fixed agent.

A host-level tuple space is created by merging the tuple spaces from all the mobile agents in a single
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device. Control of data to be shared is done by allowing only those tuple spaces that have the same name

on different mobile agents to be merged. When a mobile host is engaged with others, a federated space

composed of the spaces from the mobile agents of different hosts is created. This will generate the sense

of a local shared space for an application.

Access to data in LIME is done in the same way regardless of connectivity using the primitive com-

mands which are provided in Linda. LIME also uses special commands which are an extension of the

three basic space interaction commands provided in Linda to move a tuple between different spaces on

different mobile agents or mobile hosts. The same is done for operations that read or take a tuple which

allows an application to specify the scope of the commands. This will also create a location-aware image

for an application, in that it allows fine-grained control over tuples.

Moreover, LIME introduces reactive programming by using a special command “reactsTo(s,p)”. A

code fragment is executed by a mobile agent whenever a matching tuple is added into its space. The

semantics of the reaction command in LIME is based on the Mobile UNITY reactive statement described

in [MR98]. The command can be attached to a specific tuple space which allows a finer grain of control.

The number of times the reaction command is going to be activated can be controlled using “mode”

parameters. For example, the command can be set to activate only once or once per tuple; a command

can also be specified with location parameters similar to the other normal commands.

There are a number of extensions and applications using LIME. [HR02] builds an application upon

LIME to act as a jini-like service provisioning system in an ad-hoc environment. A tuple represents

a service advertisement which allows an application to search for a specific service available in the

area. TinyLIME [CGG+05] and coreLIME [CdOVV01] [CVV04] are two more extensions for LIME.

TinyLIME was developed for wireless sensor networks where multiple mobile base stations each collect

data from nearby sensor nodes and share it with other base stations. CoreLIME extends LIME to support

security between untrusted agents using access control. It also claims to remove some of the inefficiency

in LIME by removing some of LIME’s features such as the once per tuple reaction mode which requires

LIME to store an unlimited number of tuple IDs.

2.5.2.2 TOTA

Tuple On The Air (TOTA) [MZL02] [MZL03b] [MZL03a] uses a tuple space paradigm for supporting

a mobile environment as LIME does. However, the way TOTA uses a space is different from the shared

space model in LIME. Instead of a tuple being owned by a space, a tuple in TOTA will be propagated

through a network containing a number of spaces.

A tuple is injected into the network with a specific pattern that controls its propagation as well as its

content. Therefore, instead of a tuple containing only data, a tuple in TOTA will be defined using both

data and a propagation pattern. The pattern can provide information such as how many hops the tuple

should be propagated or how propagation should be affected by other tuples.
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TOTA does not maintains tuple replica consistency between nodes. The information in a tuple may

be changed when it passes each node. In brief, TOTA floods the network with information from different

sources using the tuple as a carrier. A client, which has its own local space, queries this space to match

any tuple that it receives. There is no notion of a remote query in TOTA. A client can query only its local

tuple space but it can propagate a tuple which can then be interpreted as a query at the application level.

A good example scenario for TOTA is the museum example in [MZL02]. Each exhibit is a source

for the TOTA middleware, and sends a tuple containing its information and location to the network. A

traveler comes into a museum with a TOTA client device and receives information about an art object and

its location. Since each tuple is propagated in the network with a propagation pattern, this information

can be used to generate a set of directions to get the client to the art object.

2.5.2.3 TuCSoN

TuCSoN [OZ98] [OZ99] is another middleware using the tuple space paradigm. In TuCSon, a tuple

space (called a tuple centre) attached to a host can be accessed by mobile agents using Linda-liked

commands. Similar to LIME, TuCSoN employs environment parameters attached to each command to

specify a tuple centre that a mobile agent should interact with, which can be a remote tuple centre or a

local one.

Moreover, TuCSoN extends the simple tuple space model used in Linda in that its tuple centre is

programmable using the ReSpecT language [DNO98]. TuCSoN’s tuple centre can be designed to react

to an operation from a mobile agent. The reaction command is defined by an association between a

communication event and a stateful transition of the tuple centre in “reaction(Op, Body)” form. Op

represents an action that will cause a transformation in Body. A reaction can access and modify tuple

information in a tuple centre and can have access to information about reaction related entities such as

the mobile agent that caused the reaction.

TuCSoN is used in the HiMAT project [COZ99] which aims to develop a framework for mobile

agent applications with support for access control and security. The framework supports the movement

of mobile agents between nodes, mobile agent authentication/authorisation, and interaction between

agents.

TuCSoN is used as a mobile agent coordination system, primarily as an organisational abstraction in

[OR03]. A tuple centre represents an organisational node defining roles and relationships. A resource in

the centre can be accessed by agents that join the organisation. The access is controlled by statements in

theReSpecT coordination language which allows an agent to be controled in term of rules, constraints,

or permissions defined for the agent role.

More information about agent coordination in TuCSoN can be found in [RVO04] [ORVR04].
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2.5.3 Differences Between the Middlewares

Even though the middlewares reviewed above are all based on the tuple space paradigm, their aims are

different and this is reflected in how the middlewares are implemented.

• The first difference is in the entity that a space is attached to. Apart from LIME, all the other mid-

dlewares associate a space with a fixed host in the network. LIME, on the other hand, associates a

space with a mobile agent and allows the two to be able to move together from one mobile host to

any other. A host-level space in LIME is created by transiently merging local agent-level spaces.

• Next, Limbo explicitly makes replicas of tuples on different spaces via its system agents. It main-

tains tuple consistency by using the Distributed Tuple Space Control Protocol which limits the

chance that a tuple conflict can happen by using tuple ownership. The other middlewares do not

explicitly replicate tuples but allow them to be moved using special parameters, as in LIME and

TuCSoN, while TOTA does tuple replication but does not enforce tuple consistency between repli-

cas.

• LIME and TuCSoN have an explicit reaction command that triggers operations when a tuple is

written into a space. However, there are some differences between the two middlewares’ reaction

commands. LIME based its command on a matching tuple in a space. Its reaction operation will

be activated when an agent finds a tuple that matches a specified template. On the other hand,

TuCSoN associates its reaction operation with an interaction between an agent and a space. A

specific reaction operation will be triggered when a corresponding interaction occurs.

• Apart from the differences shown above, the middlewares each have their own specific features.

Limbo stresses the control of a tuple space’s life cycle by a client. It also aims to provide a tuple

space that suits the client by allowing the space’s parameters to be changed. LIME aims to provide

a transiently shared space where a mobile host can see information that resides on nearby mobile

hosts.

• TOTA does not provide a shared virtual space view but aims to provide a system in which tuple

information can be changed depending on its propagation pattern, which can be used to reflect the

physical location of each mobile host. Instead of using the tuple space paradigm as a means for

data communication, TuCSoN extends it to form an agent coordination system.

2.6 Policy Background

There are various definitions for policy languages provided by different projects. [LBN99] defines a

policy language as a language that describes strategies for a plan of action to achieve a goal while in
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[Wie94] policies are derivable from higher level goals to define behaviour within distributed heteroge-

neous systems and networks.

The difference between the various definitions of policies is to be expected since policies are used

in several different areas. Policies designed for managing system behaviour will be defined in terms of

a language that is responsible for controlling the system while policies that are designed for security

control will be defined based on its concept such as permission and access control. In general, a policy

language is a language that is designed for organising situations where a number of decisions need to be

managed in a consistent way [Lin06a]

2.6.1 Policy Model Overview

2.6.1.1 Policy Core Information Model

There are a number of policy standards and models from governmental and non-government organisa-

tions including groups formed by different companies [And06]. One of the most well-known standards

for a policy model is the IETF RFC3060-Policy Core Information Model (PCIM) [MESW01]. A policy

in PCIM is a set of rules and consisting of a set of conditions and actions. The actions which can change

the state of an object will be activated when the conditions are evaluated to true. A hierarchy of policies

can be created from nested policy groups where each group is formed by a number of policy rules. The

components such as “PolicyAction” and “PolicyCondition” are represented as main policy classes in the

model shown in fig 2.7.

Policy groups in PCIM can be classified into seven different categories, such as Motivational Policies,

Security Policies, and Service Policies. This grouping allows easier usage of policies in term of querying

or finding a policy since policies that fall in different groups are different in term of when or how they

can be used, for example.

There is an extension to this standard in RFC3460-Policy Core Information Model (PCIM) extensions

[Moo03]. The new standard makes several changes. For example, PCIMe defines two type of policy

variables - explicit variables which will be evaluated outside the model and implicit variables that are

defined in the model. An explicit policy variable has an exact formulation in the model while an implicit

policy variable does not. The model also defines the way to bind the policy variables to values.

2.6.1.2 Policy Based Admission Control

Another example of a model for policy is given in RFC 2753-A Framework for Policy-based Admission

Control [YPG00], which specifies policy control over admission control decisions. The model describes

two important elements for decision making using policies - a policy decision point (PDP) and a policy

enforcement point (PEP). The PDP may reside in a policy server responsible for making decisions while

the PEP is in a node that actually does the controlling. The PEP request a decision from the PDP
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Figure 2.7: Overview of PCIM main policy classes and their relations

regarding any request to access resources. A policy decision is made in the PDP and its result is sent to

the PEP for enforcement. The document also defines basic interactions between the two elements.

The protocol for interaction between the PDP and the PEP is defined in RFC 2748-Common Open

Policy Service (COPS) protocol, as shown in figure 2.8. It employs TCP for reliable message passing

between the two elements. In normal circumstances, the PEP is responsible for establishing a connection

to the PDP, initiating a stateful communication in the form of requests/decisions. Definition of the service

discovery mechanism is outside the scope of the protocol.

Policy Decision Point 
            (PDP)

Policy Enforcement Point 
               (PEP)

Common Open Policy 
Service Protocol

Figure 2.8: COPS model
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2.6.1.3 Other IETF Standards

In large scale organisations, a policy for managing a large number of network devices is defined at a high

level so that a single policy can control a number for devices. This automated control process, called

Policy Based Management, uses a group of Management Information Bases (MIB) [MR91] defining

properties of objects to be managed. RFC 4011-Policy Based Management MIB [WSH05] defines the

MIB objects that are used to model policy control using roles, capabilities, and time.

A role defines the administrative characteristics of an object, and is used to identify a set of policies

to control the managed object. One role can be used to define a group of managed objects and one

object can be in several roles. The RFC offers a number of examples of roles, such as a role related to

organisational rule (a class of user) or a financial role (paid customer).

A capability indicates what a device is capable of. A management station queries a list of capabilities

to help the station in choosing suitable policies for the device. Moreover, the station can register for any

new capability which will cause the system to notify the station when a new capability exists. Including

time in a policy allows the management station to specify when policies should be active. The MIB

provides a schedule table that allows a policy to be inactive at some defined time, to become active

during a specified period, and then to become inactive again.

The RFC 2622 [AVG+99] shows another area where policy can be used. Its defines a Routing Policy

Specification Language (RPSL) which allows a network manager to specify high level routing policies

that are used to generate a router configuration. The RPSL is an object-oriented language that is device-

independent. The RFC defines a number of objects used in the RPSL. For example, a maintainer class

(mntner) defines the authorisation that is needed for an entity to add, delete, and modify objects. An

autonomous system (aut-num) class represents the routing policy for an autonomous system. A route

class specifies a route between autonomous systems.

aut-num:         AS1
import:            from AS2 
                       accept {128.9.0.1, 128.8.0.1}

Figure 2.9: An example of RPSL

Figure 2.9 shows an example of a routing policy. In this policy, devices that belong to AS1 accept

route steps 128.9.0.1 and 128.8.0.1 from AS2. A router configuration can be generated from an RPSL

policy together with a router identity such as the router ID and an autonomous system number for the

router.

Apart from standards from the IETF, there are other organisations defining models regarding policies.
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For example, ITU-T X.812 Access Control Framework [Uni95] defines a model that separates a decision

making point from an enforcement point in a similar way to the PDP and the PEP concepts.

2.6.1.4 Web Service Related Model

The Web Service Policy Framework (WS-Policy) [BBC+06a] defines a policy model that can be used in

web services. The policy is used to ensure a correct interaction between two web-service end-points. It

can be used, for example, when a service provider allows a requester to check the service policies before

deciding whether or not to use the service.

A policy in WS-Policy is written using XML to allow interoperability between systems. A single

policy is composed of a number of policy alternatives which represent choices in the policy. A requester

of a web service can look up the different policy alternatives and select one of them. Each policy alter-

native contains a number of policy assertions, each of which is about one requirement or capability of

the policy.

WS-Policy does not define any particular expression of policy assertions, or how a policy can be

attached to a web service. A policy assertion is domain specific and examples of it can be seen in a

number of standards. For example, the Web Services Security Policy Language (WS-SecurityPolicy)

[DLGHB+05] defines assertions concerning security constraints or requirements. Web Services Re-

liable Messaging Policy Assertion (WS-RM) [BBB+05] defines policy assertions concerning reliable

communication between web services such as a re-transmission rate or an acknowledgement interval.

The Web Services Policy Attachment (WS-PolicyAttachment) [BBC+06b] specification defines how

to associate a policy with an object. This can be done by specifying a policy as part of an object’s

definition or having a special tag separately specifying policies that are attached to resources.

2.6.2 Policy Language and Usage Overview

Apart from the various policy models described in the previous section, there are a number of widely

used policy languages which will be reviewed in this section.

2.6.2.1 Ponder

The Ponder language [DDLS00] [DDLS01a] [Dam02] is a declarative object-oriented language that

originally focused on access control and management policies. Policies apply to actions by subjects on

targets, and are triggered by events, conditional on constraints expressed in OCL expressions. Ponder

also supports management structure by defining roles, groups, and relations between them, to reflect the

organisational structure being used.

Policies in the language can be roughly divided into four different types - authorisation, delegation,

refrain, and obligation. An authorisation policy is an access control policy specifying actions that a
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subject, which represents a user, can or cannot do to a target,which represents a service or a resource that

the user wants to access. A subject or a target in the Ponder language is defined using a domain scope

expression (DSE) representing a group of entities grouped together for management purposes. The DSE

supports simple set operators (such as + , -) allowing more flexibility in defining the subject and target.

A delegation policy is used to allow a subject to be able to grant access rights temporarily to a certain

target. The subject must also possess the right that is to be granted before it can do so. A grantor exercises

a fined-grain control over the right to be granted. For example, it does not have to grant the right as a

whole. It can specify part of a target that a grantee can access or grant a right for a grantee to do only

some of the actions the grantor has a right to do. Moreover, the right can be limited by specifying a

period or duration for which the right is to remain valid.

A refrain policy prevents a subject from doing a set of actions to a particular target. This policy is

similar to a negative authorisation policy in that it prevents an action from happening. The difference

between the two policies is that the negative authorisation is enforced at a target while the refrain policy

is enforced at the subject. It is used in the case where a target cannot be trusted to enforce an access

control.

Lastly, an obligation policy defines an action that a subject has to do when a certain event happens.

When a specified event occurs, which could be a simple timer event or an event that is monitored by an

external process, the defined subject must act as specified in the policy action part within the specified

constraint. An exception clause is also specified in the policy in case the specified action cannot be done.

The obligation policy is going to be used in this dissertation to control the synchronisation process that

happens between nodes. An example is shown in figure 2.10.

inst oblig pol1
{
     on                             NormalSync_SingleSide()
     subject  <space>      s = /space;
     target    <tuple>        t = /tuple;
     do                             s.retrieve();
     when                        /tuple -> exists(t1, t2 | t1.localtuple = true and
                                                    t2.remotetuple = true and
                                                    t1.writtenBefore(t2));
}

Figure 2.10: An example of an Obligation policy

Most of these policy types can be controlled using constraints specified in the OCL language [Obj97],

which is a formal language to express side effect free constraints. The constraint expression is evaluated

giving a boolean value which can then be used to decide if the policy is applicable in the current situation

or not.
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Ponder also provides ways to group policies together using groups, roles, relations, and management

structures which make it easier for a manager to organise policies. For example, a role structure allows

policies with the same subject type to be grouped together, defining, for example, policies for a manager

or policies for a technician. A relation specifies policies that are used when a defined subject role interacts

with a defined target role such as policies that are to be enforced when a manager interacts with a

technician.

During deployment, a policy is compiled into a policy object which contains information and states

of the policy. The Ponder deployment model relies on a number of services. The Policy Service stores

policy classes and creates policy objects. The Domain Service supports a subject and target evalua-

tion process. The Event Service composes events and forwards them to registered agents to trigger an

obligation policy. Detailed information of the deployment model can be found in [DDLS01b].

Ponder provides a toolkit which allows a policy writer to compile a policy file and create a policy

object [Pol06]. The compiler is roughly divided into three parts: a syntax analyser, a semantic analyser,

and a code generator. The toolkit has a JavaCodeGenerator that can create a policy Java object [Dam01]

from an intermediate code generated by the analysers. The compiler framework also supports other code

generators that are compatible with the model provided by the framework.

Apart from the compiler, [DDL+02] lists a number of additional components provided in the toolkit.

For example, the Domain Browser obtains data from the Domain Service providing a user with interfaces

to group and manage objects into domains. The Management Console Tool allows a user to manage the

policies’ life cycle such as loading and unloading policy objects. The Conflict Analyser can detect static

conflicts [LS99] between policies such as the conflict between a negative and a positive authorisation

policy. A significantly different product called “Ponder2” which is a re-designed of Ponder product is

available at [Pon07]

2.6.2.2 Rei

Similar to Ponder, Rei [Kag02] [KFJ03a] is also an authorisation policy language using the concept of

condition-action. It stresses decentralised control and aims to make the language simple. Rei is based on

the logic language called “Prolog” [Swe06]. The Rei language defines three policy constructs - policy ob-

jects describing policies which represent rights, prohibitions, obligations, and dispensations, speech-acts

defining policy management interactions such as delegation and revocation, and meta-policies defining

constructs to resolve policy conflicts,

A policy object in Rei can be roughly divided into two parts. The first part defines a policy body

composed from a condition-action (PolicyObject(Action, Condition)) which represents the four policy

types listed in the previous paragraph. The action part encompasses several elements describing the

action such as an action name, a target of the action, a pre-condition that has to be met before the action

can occur, and any effect of the action.
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The second part links the policy body defined in the first part with a subject (has(Subject, PolicyOb-

ject)). This allows a policy body to be reusable by linking it with different subjects. The subject can be

an individual entity specified using a URI or a number of entities in the same group or role.

There are four speech-acts in Rei representing the abilities granted to a subject to do certain actions

on a policy. A delegation speech-act allows a subject to give a right to a target which creates a new right

at the target. The subject can also cancel the given right. A request speech-act can be used to ask for an

action or a right from a target. Asking for an action creates an obligation on the target and asking for a

right causes the target to delegate the right to the subject, if the receiver decides to accept it. A revocation

speech-act is used to remove a right for performing an action and a cancel speech-act is used to cancel a

request speech-act.

Rei provides meta-policies that can be used to resolve conflicts during run time by using priorities and

precedence which follow the conflict model described in [LS99]. The priorities are constructs that can be

used to set priorities between policies or groups of policies. They allows one policy to override another

policy during conflicts. The priorities can also be used to set an evaluation order between policies. In

Rei, precedence is used to define priorities between different policy modalities (negative/positive). For

example, if a negative modality takes precedence over a positive modality, prohibition will have higher

priority than right and dispensation will have higher priority than obligation.

An example of a Rei implementation in a mobile network can be found in [PKKJ04]. A mobile

device hosts a policy enforcer, a context manager, and a policy manager. It connects to a policy engine in

a server via an access point. The server contains policies to be used in its domain. The context manager

monitors the device status and any communication from the server. It acquires a new set of policies from

the server to replace default policies in use when the device boots up. The default policies only allow

minimal capabilities sufficient for the device to connect to the server to ask for working policies.

A Rei policy that resides on a mobile device is valid for a certain period. This is to contain the

policy effect in a domain. Each policy validation depends on a time kept track of by the context manager.

While the device stays in the area where it can connect to the policy server, the context manager receives

a keep-alive message (heartbeat) from the server and renews timers for each policy. Once the device

leaves the area, the timer will not be reset and policies will soon become invalid.

More information about Rei and related works can be found in [KFJ03b] [KF06] and in several

papers contained in the project website [UMB06].

2.6.2.3 A Policy Description Language (PDL)

The PDL [LBN99] [VLK00] [BLK00] is another policy language based on the event-condition-action

paradigm where an action is taken if an event occurs and a condition is evaluated to true. The PDL aims

to be a simple but expressive language which is influenced be previous works such as a state language

used for planning in [GB98] and an action description language in [GL93].
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event causes action if condition

Figure 2.11: A structure of the Policy Description Language

A policy in the PDL is divided into three parts - event, action, and condition - as shown in figure

2.11. An event defines a situation that will trigger the policy. It can be a simple single event or a group

of events. The PDL provides constructs that allow a group of events to be ordered in a number of ways.

For example, a group of events composed of events that happens after each other (e1 & e2 & e3) or a

group where any event occurring (e1 | e2 | e3 ) can trigger the policy.

The condition part in the PDL is a set of predicates with operands which are primitive attributes

from an event in the event part, a constant, or a result of an operation applied to the event. The PDL

also defines an aggregator that can be used to aggregate primitive event values. For example, a count

aggregator can be used to count the number of times a specific event type occurs over the course of some

working period. Lastly, the action part defines actions that will be done if the condition predicates are

evaluated to true.

[VLK00] gives an implementation example of a system that uses the PDL. The language is used in

the management layer of a SARAS softswitch, which is an IP network software switch. The switch is a

pure java based software element that can be operated on a general platform. It can switch traffic from

different sources using different protocols.

A Policy Enabling Point (PEP) is set up at each network component that will be controlled by the

PDL. It is composed of an event filter mapping real world events into policy events, an action evaluator

enforcing a policy, and an SNMP sub-agent reporting state of the component to the Aggregator.

The Aggregator aggregates information from each PEP and provides an overall viewpoint to a policy

writer. It is also responsible for rerouting policy actions to a PEP when a policy is triggered. The

Policy Engine runs each policy as a process inside it and the Directory Coordinator keeps persistence

information which is used for establishing communication and recovery.

A number of policies defined in the PDL are deployed in the switch management layer. For example,

a policy can be used to send an SNMP messages to a management station monitoring failures that occur

in the system. A burst of events can be collected and sent as one single event. At the same time, another

policy counts the number of events that occurs in each burst and reports the number to the management

node. Moreover, policy can be used to force each switch component to reload during the nighttime or

can be used to specify that a component is going to be the back up for some other component.
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2.6.2.4 Language Comparison

The previous sections give an overview of three policy languages. Some features of the languages are

similar, such as their abstract structures that are based on an event-condition-action model. However,

there are a number of differences between them which will be discussed in this section.

• First, even though the three languages are based on the event-condition-action structure, the limits

on what can be expressed using the languages are different. Ponder and Rei can be used to define

authorisation, obligation, and refrain policies while the PDL is limited to expressing an obligation

policy.

• Second, how a policy can be linked to a subject is different in the three languages. Rei explicitly

distinguishes between a policy object and a subject that the policy object is related to. The two

parts are linked using a “has{}” structure. This allows the two parts to be separated and linked

back easily. The Ponder language defines a subject as a part of a policy instance but allows a user

to separate between the two parts using “type”. The more complex separation method in Ponder

has higher flexibility since it allows any policy element to be passed as a formal parameter. The

PDL, on the other hand, does not explicitly define a subject as a part of its policy structure.

• Third, Both Ponder and Rei have a structure for policy delegation using a delegation policy struc-

ture in Ponder and the speech act in Rei. The two support several similar features, such as a

condition for delegation, a target of delegation, and validity period. However, Rei’s speech act

goes further than just policy delegation. The speech act allows more powerful control over a target

such as revocation of a right, or a request speech act which allows the requesting of a right or

action.

• Fourth, Ponder supports policy groups and relations, which allows policies with similar parameters

to be grouped together which makes them easier to manage. Rei and the PDL do not have any

construct to define grouping.

• Fifth, concerning policy conflict, Rei explicitly defined a construct that can be used to resolve a

conflict happening between policies. For example, Rei has the “overrides()” structure that can be

used to define priority between policies. Moreover, Rei provides constructs that can be used to

define precedence between policy modalities. These rules can be associated with a specific action

or subject.

Ponder and the PDL do not explicitly define any structure that is used to resolve a policy conflict.

However, the language structure of Ponder can be used by itself to build a higher level policy that

can be used to resolve a policy conflict. This concept is used for conflict resolution in this project.

• Lastly, the structures of how a policy can be written using the three languages are different. Ponder

separates each policy part on different lines using standard keywords which makes the language
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easier to read than Rei which does not have any explicit segmentation into parts. For a reader or

writer that is not used to Prolog or any other logic programming language, it will take longer to

understand the same policy when written using Rei than it will in Ponder.

2.6.3 Meta-Policy

Apart from a policy, there is also a concept of meta-policy that has been explored by a number of re-

searchers. Generally, it is used in order to specify how a policy should be defined[BM02b]. A meta-

policy can be used to define the goal of policies such as specifying a set of privileges that a group of

users must be assigned or must not be given by policies.

Moreover, a meta-policy can be used to allow inter-domain communication with confidence. A set

of meta-policies is agreed between two domains which is used to establish communication and access

policies that will be used between them. Communication policies are tested against meta-policies before

an actual communication can happen to verify that the two sides follow the rules (meta-policies) that are

set beforehand.

One example of work that applies the meta-policy concept is OASIS [BM02a], which is a role based

access control architecture that allows interoperation between domains that are managed independently.

The access control rules in OASIS are defined using policies and meta-policies are used to define access

control rules between domains. OASIS presents an example of meta-policies that can be used in the

National Health Service (NHS) system such as a high level regulations that allow a doctor to access

patient information that resides in a different domain.

By specifying meta-policies and enforcing compliance among policies in user devices, a policy con-

flict during a synchronisation process can be prevented. However, there is an issue of how much freedom

should be given to a user. If a user has to comply to a set of meta-policies, they may not have enough

flexibility to define their own policies. This project decided to allow a conflict to occur and then to use

user defined higher level policies to solve the policy conflict after it has happened.

2.7 Conclusion

This chapter has given a review of background knowledge and projects that are related to this work. First,

the tuple space paradigm which is the communication paradigm employed in this project, was explained.

This concept has been used in several areas since it was first used in the Linda parallel language. It

provides a space and time decoupling between a sender and a receiver which makes it suitable for a

mobile environment. Then, JavaSpace which is a part of the Jini services was discussed together with

other pieces of work which provide tuple space services.

Next, wireless communication was briefly discussed. Different standards for wireless communication

were introduced and mobile ad-hoc communication was briefly explained. Then, data synchronisation
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which is an important part of this work was discussed, starting with several replication techniques taken

from work in the database area. A number of examples of work in synchronisation and conflict resolution

were also discussed in this section.

A brief explanation of the idea of middleware was also given in this chapter. The section used

CORBA as an example to explain how a middleware can provide several services that make creating

an application easier. Then, a number of middlewares providing a tuple space service were introduced

together with a comparison between them.

Lastly, the concept of a policy language was introduced. The section showed a number of policy

model standards from different standardisation bodies and research groups. Different standards are used

to model policies that will be used in different types of system. Afterwards, examples of policy languages

were briefly explained. These languages are not specific to any particular area of work and can be applied

in a number of different systems such as access control, or system management. A brief discussion of

the differences between them was also given in the section.
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Chapter 3

Application Examples and

Methodology

3.1 Introduction

In order to investigate the control of a tuple synchronisation using policy, a middleware that supports

a controllable synchronisation process is needed. Building one will allow an examination of how the

process can be done. The middleware must provide interfaces that allow different applications to control

and benefit from its synchronisation process.

Moreover, since this project is interested in providing the service in a mobile ad-hoc network, the

system built here must provide communication support so that applications do not have to worry about

remote communication. This implies that the middleware cannot rely on several things that are generally

available in centralised systems, such as persistent servers for services, reliable network connections, and

constant data availability.

This chapter explains the purpose of building the middleware and outlines the methodology used in

doing so. It gives examples of a number of application areas that can benefit from this kind of mid-

dleware. It lists a number of requirements for the middleware and the policies that are responsible for

making decisions during the synchronisation process. It then explains how the system was tested to

ensure that it can support the requirements.

3.2 Application Scenarios

The basic idea in building the middleware is that different applications operating on either a wired or

wireless network may need different types of data synchronisation process and use different types of

information in doing their synchronisation. This section provides examples of a number of applications
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that illustrate the idea.

These applications are mostly applications that benefit from an ad-hoc communication environment

but some are based on legacy networks. Some of them do not yet exist but still provide good exam-

ples of requirements for future ad-hoc network application. The examples provide one variant of each

application but the same application could be implemented differently with different types of policy.

At the end of each example application, there is a table giving examples of policies that can be used

with it. There is also a list of the context information required for use with these policies.

Most of the applications shown in this section require specific methods and information to carry out

their synchronisation processes. There is no regular pattern for the types of information required which

confirms the need for middleware flexibility and the ability to change the synchronisation behaviour to

better suit different applications.

3.2.1 Meeting Management

The meeting management application allows users in a group to synchronise their meeting schedules.

Each user can create a meeting by writing information such as the time of the meeting, the room number,

and the number of persons in the meeting into their data storage. The information will be synchronised

whenever users move into range of the group’s ad-hoc network. The goal is to maintain a unique virtual

space view that allows each user to see the meeting schedule of the other users. Even though the infor-

mation on each device may not be up-to-date, this is a best effort situation where having some of the data

may be better than not having it at all.

- AcquireNonExistingTuple
Example Policies - ReplaceTupleConflictOnHigherClass

- ReplaceTupleConflictOnEarlierTime
Context Information Class of User Information

Tuple Creation Time Information

Table 3.1: Meeting Management Policy Components and Required Context Information

Each user can modify, add, or delete his or her meeting information at any time. This situation

introduces a conflict between users when they create a meeting using the same room at the same time

and a policy that can be used to resolve a tuple conflict is required in this situation.

An example of conflict resolution in this case might be to use a class of user to decide the priority

between the users. For example, a user higher-up in an organisation (manager, CEO) is given a higher

class and higher priority in choosing and creating a meeting. This can be interpreted using a bronze,

silver, and gold class provided to each user device.

However, there is always a chance of a conflict occurring between users with the same class in which

just using the class of user information will not be able to resolve the conflict. Extra information such as

the time of day when the conflicting meeting tuples were created must be used as a second level conflict
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resolution policy.

3.2.2 Parking Network [BL02]

A parking network is a good example of an application that is operated over a wireless ad-hoc network.

Cars and parking meters in the network are equipped to use the middleware and act as nodes in the

application. Each parking meter writes a tuple to a space which will represent an individual parking

space for which it is responsible; this will be propagated through each car and parking meter in the

network.

In this way, the unique virtual space view in this system provides information about available parking

spaces and their specific information. When a car decides to park in a specific parking space, it edits the

tuple representing the parking space, establishing a state such that it is reserved for the car.

Conflict in this scenario can occur where more than one car tries to reserve the same parking space

while they are not connected to each other. Several policies can be used to resolve the conflict depending

on the intention of the application designer. The simplest policy could be a policy that gives the higher

priority to the car that reserved that parking space earlier.

However, with the help of some context information, usage of more complex policy rules allows

reservation of the space to be more flexible. For example, a set of parking spaces situated in a university

may allow a lecturer to have higher priority than a student, while this policy is not used for parking

spaces in the town centre.

Similarly, a rule concerning time of day can be used to make the system more flexible, for instance,

by applying the above lecturer-student rule only between 6am to 6pm, while everyone has equal priority

outside of this period.

Example Policies - ReplaceTupleConflictOnHigherClass
IfWithinTimeConstraint

- ReplaceTupleConflictOnEarlierTime
IfOutofTimeConstraint

Class of User Information
Context Information Time of Day Information

Tuple Creation Time Information

Table 3.2: Parking Network Policy Components and Required Context Information

3.2.3 Taxi Dispatching Service

The Taxi Dispatching System is aimed to allow each taxi driver to be able to communicate their intention

of picking up a customer. The information made available by the system allows a taxi driver to select a

customer who has requested a pick up and at the same time notify the other taxi drivers that he is going

to pick up the customer. This example will be used to introduce more complex rules than in the earlier
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applications. However, this example is not necessarily a good way to implement the service in this kind

of environment; a centralised server might be more reliable. However, it is intended as an example to

show in simple terms how situations in an ad-hoc network can make a policy more complex and how an

incorrect usage of policy can cause an application error.

The basic equipment in each taxi is able to communicate with the other taxis in a wireless ad-hoc

mode. A taxi in the system has a device supporting the JSFM middleware and a taxi dispatching applica-

tion which will show on a screen the list of users requesting a taxi. The list may include the requester’s

origin and destination. The driver has an interface to interact with the application, such as a touch screen

or pointing device.

To call a taxi, a customer uses a client device that can inject information into the virtual space of the

system to request a taxi. This might be specialised equipment situated at each taxi stand or it could be a

web service that the customer can interact with over the Internet.

The request from each customer is propagated via a synchronisation process from one taxi to the

others in the form of a tuple containing customer information. When a new customer information tuple

reaches a taxi, the taxi dispatching system in the car reads the tuple and displays it on the driver’s screen.

To accept a customer request, a driver picks a request and marks the tuple as accepted (by using a

tuple editing process). The system will write information about the taxi that has accepted the customer

tuple, such as the driver identification, taxi number, taxi location, and time the tuple was edited. The

modified information is propagated to other taxis via the wireless interface. In the same way, if a cus-

tomer has a device that can access the information, the customer can be notified of the taxi that is going

to pick him up.

After the driver accepts the request, there is a chance that another driver who has also received the

customer request tuple may decide to accept the request. In this case, modified information from both

taxis will cause a conflict during the synchronisation process.

The simplest policy to use in this application is to allow the driver that committed to the request tuple

earlier to pick the customer up. The use of this policy is ineffective, for example, in the case where a

remote taxi commits to the tuple earlier than a local taxi, as shown in figure 3.1.

Customer

Road A

Road B

Local Taxi

Remote Taxi

Figure 3.1: A Taxi Dispatching Situation

If there is enough taxi traffic between the two taxis to allow some communication between them, the
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local taxi will get a tuple that is modified by the remote taxi which will generate a conflict. The simple

policy will give a higher priority to the remote taxi since it committed to the request earlier. At the time

the conflict is resolved, the remote taxi may be several miles from the customer while the local taxi may

be less than a mile from the customer.

On the other hand, each taxi can also use a policy that gives a higher priority to a taxi that is nearer

to the customer (assuming that each taxi is equipped with a GPS (Global Positioning System) so that

positioning information will be written when the system on the taxi modifies the customer request tuple)

In this way, a customer will be picked up by a taxi that is the closest to him. However, there is still a

chance that the policy may be ineffective. Consider a situation where a local taxi is moving away from

the customer and there is no easy way to turn back, while a remote taxi is moving in the right direction.

In this case, the remote taxi may be able to arrive before the local taxi does.

Another example is a situation where a local taxi and a remote taxi are on different roads. If the local

taxi is nearer to a customer than the remote taxi, but the road that the local taxi is on has a traffic jam, the

remote taxi may be able to get to the customer faster than the local taxi.

A solution to a situation where a policy is composed from several pieces of information may be to use

a Utility Function [KW04] in which a decision is made by comparing values obtained from a function of

several factors that affect the situation. For example, the taxi dispatching situation may require a utility

function combining the creation time by the taxi driver, the current speed of the taxi, and the distance

from the taxi to the customer. The function created using the information could help in making a better

decision. However, the problem with the function, as in any system using a Utility Function, is how to

create the best function from the available information.

The examples above show that there are many situations where the data synchronisation process,

if not done properly, makes the system less effective. However, there are cases where improper data

synchronisation not only leads to an ineffective system but also causes an error in the system. An example

is the situation where data communication is not reliable enough. This can occur where there is too low

a traffic level to communicate modified tuple information. For example, consider a case where there

is only traffic from a remote taxi to a local taxi, and where the two of them use a policy that gives a

higher priority to a taxi that is nearer to a customer. When both taxis accept a request from the customer,

modified information from the remote taxi can reach the local taxi but information from the local taxi

cannot reach the remote taxi.

Therefore, in the extreme case, the local taxi gets the remote taxi information but rejects it because

it is itself being to the customer. However, since the remote taxi does not get information from the local

taxi it will not know that the local taxi is still going to pick up the customer. By the time the remote taxi

reaches the location where the customer was, the local taxi may already have picked the customer up.

The remote taxi will not be able to find the customer, and there is no information whether someone has

already picked the customer up or not.
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Example Policies - ReplaceTupleConflictOnNearerLocation
- ReplaceTupleConflictOnNearerLocationAndLowerTraffic

Device Location Information
Context Information Geographic Information

Traffic Information
Tuple Creation Time Information

Table 3.3: Taxi Dispatching Service Policy Components and Required Context Information

3.3 Methodology

3.3.1 Middleware Creation and its Purpose

Apart from the applications shown in the previous section, a number of other applications and synchro-

nisation scenarios have been investigated in order to get an idea of what is required from a flexible

synchronisation process. Some of the examples are taken from the ad-hoc network applications listed in

[CCL03]. Table 3.4 summarises different policies and context information from the applications shown

above and shows that each application needs different types of synchronisation and uses various types of

context information.

Application Example Policies Example Context Information
Meeting Management - AcquireNonExistedTuple Class of User Information

Parking Network - ReplaceTupleConflictOnHigherClass Time of Day
IfWithinTimeConstraint Information

Taxi Dispatching Service - ReplaceTupleConflictOnNearerLocation Geographic
Information

Table 3.4: Different Policies for Different Applications

The diversity of synchronisation processes in different applications leads to a need to create a system

that can support the modification of its synchronisation operation and allow different kinds of information

to be used in making synchronisation decisions.

The JSFM middleware has been built to investigate the support for tuple space based applications

operating in an ad-hoc network environment by allowing the synchronisation process to be altered to suit

different application requirements. The middleware design is based on widely available components that

provide a basic tuple space service. The Jini services and JavaSpace as discussed in section 2.2.2.2 are

used for the task. Then, the other components of the middleware have been built around them to provide

wireless communication support not available in the basic JavaSpace. The detailed discussion of the

JSFM components is in chapter 4.

Next, the components that are responsible for making a decision during a synchronisation process

(the policy engine) were built into the JSFM middleware. The Ponder policy language was adopted,

providing users with a way to control the middleware synchronisation process. A number of components

in the PonderToolkit such as its policy compiler and Java object generator are used to transform a policy
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file into a policy object that can be used in the middleware. More information about the policy and the

middleware synchronisation process can be found in chapters 5 and 6.

After the middleware was built, a number of tests were carried out to ensure that the middleware

operated properly. The main processes can be divided into two parts - a synchronisation engine testing

process and a performance testing process.

3.3.2 Synchronisation Testing

The synchronisation tests are intended to make sure that the middleware policy engine can be controlled

by users’ policies and that it makes the right decision according to their policies. To do this, a test

framework and a set of testing scenarios were created.

3.3.2.1 Test Framework

The test framework was built in order to reduce the complexity of testing the middleware synchronisation

engine. Since the tests were aimed at showing only the correctness of the engine, there was no need

to involve the other middleware components, since they would increase the process complexity. In this

way, the policy engine can be assessed using a wide range of policies in different situations quite quickly,

without having to manipulate a real mobile environment to generate disconnections.

DummySpace 

Policy Engine SpaceOperator 

SpaceReader 

Parser 

Sync Manager 

Create tuples in 

the DummySpace 

Asking for a 

decision 

Control tuple information 

during a synchronisation 

process 

JSFM Middleware TestFrameWork 

Figure 3.2: A Test Framework Architecture

Figure 3.2 shows the architectural view of the framework. Only the middleware policy engine con-

trolling the synchronisation process and the synchronisation manager, responsible for interacting with

JavaSpace, were being tested.
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The framework for carrying out the test consists of a parser which obtains a scenario file from the

user and creates the test environment by loading existing tuples and context information to establish the

assumed state into a DummySpace. The DummySpace is a simplified object that is built to represent

the JavaSpace. It does not support many of the services defined by JavaSpace, such as Transaction and

Event Notification. However, it does provide basic space interactions such as read, write, and take which

is enough to test the Policy Engine. Tuple information is simply stored in a linkedlist and accessed by

JavaSpace-like interfaces provided by the DummySpace.

The SpaceOperator and SpaceReader are responsible for carrying out the test. They obtain infor-

mation from the DummySpace and contact the Policy Engine in the middleware for a synchronisation

decision. When the engine determines a suitable action from a policy, it sends the action to the Dum-

mySpace via the Sync Manager which translates the action from its policy language form to the form

that can be understood by the space.

3.3.2.2 Test Scenario

A library of test scenarios has been created to be used with the test framework, each of which defines a

starting state and an assumed sequence of user actions, network status changes and subsequent synchro-

nisation events. Each scenario also states one or more self-consistent states of the shared data that would

be a suitable outcome of the scenario.

The scenarios cover a wide range of situations, from the simple cases of synchronising after an extra

tuple has been added to only one space, to more complex scenarios where multiple spaces have copies

of an application tuple containing different information as a result of independent updates. Some of

the scenarios used for testing the policy are obtained from the example applications such as the Taxi

Dispatching Service explained earlier.

The policy engine and a selected set of policies can then be assessed by applying them to each

scenario in turn, determining the state changes expected form applying the policies to each of the syn-

chronisation events defined. The resulting state is compared to the set of reasonable outcomes in the

scenario to determine if the policy engine worked properly and the policy can be considered successful.

Although the scenarios reduce the complexity of the application by omitting the example cases where

there are errors in the application, they still represent a wide set of applications, where each has different

goals and require different types of synchronisation policy.

An example of the representation of a simple scenario is given in figure 3.3. In this example, V

denotes a virtual space created when devices A, B and C connect together, V.consistOf () defines by

enumeration the member spaces that constitute the virtual space, and X.contains() defines the tuples in

the space X.

This scenario illustrates a potential conflict between space A’s point of view and remaining spaces’

shared point of view since both sides edited the tuple P during the period while A was disconnected
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Scenario
Initial

V.consistsOf( {A, B, C} );
V.contains( {P} );

Scenario
SC = A.disconnected();

( V.del(P); V.add(Pv) ||| A.del(P); A.add(Pa);)
synchronisation; exit;

------------------------------------------------------------------
Model Answer

V.consistOf( {A, B, C} ); /* majority view */
V.contains( {Pv} );

/* V.consistOf( {A, B, C} ); A’s point of view rejected */
/* V.contains( {Pa} ); */

Figure 3.3: A sample synchronisation scenario

from the virtual space (by deleting and adding a new tuple P during the disconnection). Without further

information, the most acceptable result would be to satisfy the greatest number as shown in the earlier

part of the model answer section, although participant A would not be happy with this.

Instead of testing a single scenario and a single policy set at one time, the test process uses a number

of files, as shown in figure 3.4, to enable a number of scenarios to be tested with a particular set of

policies.
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Figure 3.4: Test File Architecture

The MainTestFile makes reference to a number of the ScenarioFiles which each contain a single test

scenario and a policy file to be used with the particular scenario. The scenario file contains information

such as the initial state of the test environment, the testing process, and a reference to the ModelAnswer

file for the test. The ModelAnswer file is a pre-defined answer for the test that will be used to check the

test result.
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After the test is done, The framework creates a main ResultFile that contains a brief overview of

the results of the test such as the number of scenarios that passed and failed the test. Moreover, the file

contains references to the ResultElement files storing detailed information for each test such as the trace

of commands that were applied to the space, information about tuples in the space, and information about

tuples that did not match the model answer for the test.

This framework makes the testing of the policy engine a lot easier. A large number of scenarios can

be used without having to manually set up a real test environment. This reduces both the time and the

cost of testing the system since it does not require a number of workstations to be used in each test, which

would be required if the tests were done in a real environment. A number of scenarios have been tested

with the Policy Engine to ensure that the engine works properly. The result in this test are summarised in

the discussion about the effect of increasing context information to the tuple synchronisation in section

8.3.4

3.3.3 Performance Testing

Another kind of test is needed to determine the performance of the middleware. The aim of these tests

is to estimate how much time the middleware takes to perform each kind of operation. For a developer,

this information can be used to decide if the middleware is suitable for a particular application.

A number of middleware operations need to be tested, as shown in figure 3.5.

Space Access Time

Devices Connection TimeSynchronisation Time

Information Propagation Time

Figure 3.5: Performance Testing for the Middleware

The space access time test estimates the time the middleware takes for a single space interaction such

as reading, or deleting a tuple. The device connection time test is to obtain the average time to establish

a connection between devices using the middleware. The synchronisation test aims to obtains the time

the middleware needs for synchronising one tuple in different situations.

The information propagation test is done to approximate the time information takes to converge. This

is the time for a single tuple introduced into an area to be propagated to every connected device in that

area. However, time and resource limitations prevent the actual testing of large scale configurations.

Therefore, an approximation is calculated. The approximated propagation time can be obtained from
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the measured information about individual operations such as the devices connection time and the single

tuple synchronisation time.

More information about the performance tests and their results can be seen in chapter 7.

3.4 Conclusion

This chapter has discussed the aim in building the JSFM middleware and policy language. It gave a

number of example applications that require different types of synchronisation processes controlled by

different policies using different context information.

From analysis of policies that are used in different applications, there are a number of basic policies

that can be used in many different applications such as a policy that makes a decision depending on only

a tuple’s creation time. These policies do not usually need context information that is specific to the

applications and so are simple to implement. However, to make the synchronisation process efficient, a

more application-specific solution will eventually need to be used.

For example, a simple application such as the meeting management system may not require a com-

plicated policy for its synchronisation process. On the other hand, a more complex application such as

the taxi dispatching service requires a more complex policy to make it efficient.

The chapter has also illustrated the methodology that is used in this project. It explained the process

by which the middleware was built. It also concentrates on explaining how the system has been tested

which is one of the most important processes. The test process is divided into the synchronisation testing

process and the performance testing process.

The chapter gave the idea of the test framework which was used to test the middleware synchronisa-

tion engine without having to manipulate a real synchronisation environment. A number of test scenarios

obtained from a number of real applications and scenarios were used in order to test that the engine built

for the middleware can control the synchronisation processes correctly.

Lastly, the chapter gave a brief introduction to the performance testing process used to obtain infor-

mation concerning the middleware’s actual efficiency in various situations. The tests cover the informa-

tion access time, the devices connection time, the synchronisation time, and the information propagation

time.
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Chapter 4

Middleware Architecture

4.1 Introduction

The JSFM is a mobile middleware built at the University of Kent as a system that can be used to exam-

ine the behaviour of a set of policies in synchronisation processes in an ad-hoc wireless environment.

The middleware is built from several components working together. It is responsible for providing the

appearance of a virtual space to an application, and so it has to provide several services such as device

finding, tuple transfer over the wireless network, and the synchronisation service itself.

This chapter explains in detail the architecture of the middleware and describes each of its compo-

nents. The first section of this chapter gives an overview of the middleware. This section explains the

basic ideas that the middleware is built upon. The next sections gives detailed information about each

major component, saying what their responsibilities are and how they work together to create a system

that can provide a virtual space image to the application when using an intermittently connected wireless

ad-hoc network.

4.2 Middleware Architecture Overview

To explain the middleware architecture, this first section gives an overview of the middleware. It starts

with the set of existing components that the middleware relies on. Then it gives a short explanation for

each of the middleware’s main components. Lastly, it explains the different types of tuple used in the

system.

4.2.1 External Components

The JSFM is built to satisfy the various requirements defined in chapter 3. Since the JSFM is built

to provide a virtual space service, the first step is to identify a set of basic pre-built systems that are
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going to be its basic infrastructure. The first component needed is an implementation of the space

service. There are several pre-built space services available, such as Sun’s JavaSpace [Sun98] and IBM’s

TSpace [WMLF98]. The JavaSpace is part of Sun’s Jini technology which provides several network

communication services. A list of the Jini services that are used by the JSFM is given here:

1. Lookup service (Reggie) - the Lookup service is a central service that allows other services to

register a reference to themselves and to acquire a reference to other services.

2. JavaSpace service (Outrigger) - the JavaSpace service provides tuple space storage to the mid-

dleware. It also provides the JavaSpaceAdmin interface that allows the middleware to access its

administrative interfaces. The main administrator interface used by the middleware returns the

AdminIterator that can iterate over a set of tuple in the space.

Another service that is needed by the JSFM is a policy parsing and compiling system. The JSFM uses

the Ponder language [DDLS01a] to express policies to control the system. The language has a supporting

toolkit that can be used to compile and build a Java object for each policy. This toolkit is applied in the

JSFM to parse policy files and create objects. In the JSFM, this is accessed by the Sync Object, which

acts as an enforcement point for policies, as will be explained later.

4.2.2 Architecture Overview

The JSFM can be divided into three different parts. The first part is responsible for initiating the JSFM

and providing the set of interfaces used by an application to interact with the middleware. The main

component in this section is called Port to Space (PTS). This component provides central control of the

middleware and starts each of the middleware components during the middleware initialisation process.

After this process is finished, the component provides a set of space interfaces to an application by

allowing the application to call a set of methods providing space operations. Additionally, the JSFM is

responsible for controlling the tuple factory components. These components receive an application level

tuple from the Port to Space object and encapsulate it together with middleware level information.

The second part in the JSFM is the Policy Engine (PE) which is the part that is responsible for the

synchronisation process. The components in this part can be further divided into two groups - the compo-

nents that are responsible for processing policies, making decisions and controlling the synchronisation

process, and the components that do the actual low level synchronisation. For the components that are

responsible for low level tuple synchronisation, the main components in this part are the Sync Manager

and the Sync Object. The Sync Object is responsible for transferring tuples between a local space and a

remote space. Each Sync Object is only responsible for the tuples created by a single writer.

The Sync Manager has control over all the Sync Objects. Its main task is to make all the Sync Objects

work together properly. The Sync Manager also provides a set of interfaces to the Policy Engine to let
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Figure 4.1: The JSFM Architecture

the engine send a set of primitive commands to control the synchronisation behaviour. These commands

will be processed by the Sync Manager and sent to the Sync Object.

The third part of the JSFM is the Synchronisation Event Distribution Layer (SL) which is respon-

sible for building and maintaining a synchronisation event distribution tree. The MCLayer is the main

component in this part, and it coordinates with the MCLayer components from other nodes to form the

tree. After the MCLayer is initialised by the Port to Space, it repeatedly broadcasts to locate an available

event distribution tree so that the node can participate in the tree.

4.2.3 Middleware Level Tuples

The middleware relies on a set of tuples to store its information. The tuples are not only used as per-

sistence information storage for the middleware but also for communicating information between the

devices which are connecting together for synchronisation. This section explains the function for each

middleware level tuple used in the JSFM.

1. SeqMessage tuple - the SeqMessage tuple is an abstract tuple used as a superclass for the InMes-

sage, CommandMessage, and TombStone tuples. The tuple contains two fields that are used in the

middleware to query for a specific tuple; these are the tuple sequence number and the tuple writer.

Tuples written by the same writer will have different sequence number. A writer name is derived
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from the name taken from the user during the middleware start up process concatenated with the

device’s IP address to make the name unique.

2. InMessage tuple - the InMessage tuple encapsulates an individual application level tuple. The

information in the InMessage tuple is used by the middleware in order to find a specific tuple

without knowledge about the tuple’s application context. With some modification to the query

process in JavaSpace, the tuple encapsulation process allows the middleware to be able to search

for a specific tuple using either the middleware information or the original information in the

application level tuple.

3. CommandMessage tuple - the CommandMessage tuple is used to communicate a command be-

tween spaces during the synchronisation process. At the current stage, the deletion command is

the only command that is sent in this way. In order to notify other spaces of tuple deletion, a

CommandMessage tuple carrying a deletion command is written into the space after the tuple is

deleted. The CommandMessage tuple contains the deleted tuple’s sequence number and its writer

name, so that a space that receives the command can locate the tuple to be deleted.

4. TombStone tuple - the TombStone tuple is used to represent a tuple that is deleted. Once an

InMessage tuple has been taken from a space and a CommandMessage tuple issued, a TombStone

tuple containing the same sequence number and message writer as the deleted tuple is written to

the space. The TombStone is important in the synchronisation process because it helps distinguish

a tuple that has been deleted from a tuple that has not yet been written. It can also be used to store

a deleted tuple’s information in case the deletion process needs to be rolled back.

5. Connect Service List(CSL) tuple - the CSL tuple is used to store remote writer information. In

the middleware, tuples are divided into sets based on their writer name, which is a field in the

SeqMessage. Each tuple set has a separate sequence number. This implies that a tuple with

sequence number equal to “1” may exist in several sets with different writer names. They represent

tuples from different devices. For each space there is one CSL tuple keeping track of tuples

from different writers in the form of a pairing between the maximum tuple sequence number that

currently exists in the space and the space’s name. After every process that involves writing a tuple

to a space, either locally or remotely, information stored in the CSL tuple needs to be updated.

When a new tuple is added into a space, the maximum sequence number for the writer that writes

the tuple is increased. The information is used during the synchronisation process when a space

checks its CSL tuple against a remote space’s CSL tuple so that it can selectively acquire only

those tuples that are not in its copy of the space.

6. Context tuple - the Context tuple stores context information which is used by the PolicyManager

in order to make decisions during a synchronisation process. Every Context tuple must inherit
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from Context t class which is an abstract context tuple that defines essential common information.

Adding a new type of context information can be done by creating a new sub-class of Context

tuple. More than one context tuple can be associated with one InMessage tuple. Each context

tuple contains different types of context information. Examples are:

(a) The Access Context tuple that stores access information such as the last access time and the

number of times the tuple has been accessed.

(b) The Space Context tuple that stores context information relating to the space as a whole,

such as a class of service for the space.

(c) The TombStone Context that stores context information about a deleted tuple such as a time

the tuple was deleted. The information in this tuple also helps the Policy Engine in determin-

ing whether two tuples are derived from the same equivalent tuple.

Figure 4.2 shows the life cycle of an application level tuple.

None

InMessage

CommandMessage
TombStone

App Tuple

App Tuple

Write Command

Take Command

Context

Context

Figure 4.2: The tuple life cycle in a space

First, an application level tuple is sent from an application to the middleware. The middleware

encapsulates the tuple in an InMessage tuple and writes the tuple to its local space together with a

Context tuple relating to the InMessage tuple. The tuple stays in the InMessage form until either the

local space or any remote space deletes the tuple in response to a take command from an application.

An application can issue a “read” command in which the application tuple will be decapsulated and sent

back to the application. When the tuple is taken, a CommandMessage tuple and a TombStone tuple are

written to the local space together with a Context tuple relating to the deletion. More information about

the context information gathering and garbage collection can be seen in 5.6
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4.3 Middleware Architecture

In 4.2.2, an overview of the middleware architecture was presented. This section follows up by explaining

each component in detail. The section is divided into three main sub-sections following the structure in

4.2.2.

4.3.1 The JSFM Central Components

4.3.1.1 Port to Space Mapper

The Port to Space is the central component of the middleware. It communicates directly with an appli-

cation via a set of tuple space-like interfaces and with a group of JSFM components listed here. When it

is initialised, it starts by creating a UnicastRegister component in order to search for a JavaSpace service

operating on the local device. Next, it creates a number of message factories responsible for creating the

middleware level tuples presented in 4.2.3. It then starts up the MCLayer component controlling a syn-

chronisation event distribution tree, the Monitoring Management component responsible for gathering

and storing context information that needs constant monitoring, and the Policy Manager controlling the

policy and synchronisation-related processes.
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Figure 4.3: The Port to Space and its related components

After the Port to Space initialisation process is finished, the component still has two main tasks -

providing tuple space-like interfaces to applications and notifying the Lookup service and the JavaSpace

service to change their attached address when it detects a network disconnection and reconnection.

The operations for interacting with a tuple space are “write”, “read”, and “take”. There are also
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“readIfExists” and “takeIfExists” operations which are similar to “read” and “write” except that they do

not wait (unless a matched tuple is in a transaction and it is necessary to wait until the transaction state is

settled) while the first three commands wait until the matched tuple exists or a specified timeout expires.

The “read” command is the simplest. The Port to Space encapsulates a tuple representing a query

from an application into an InMessage tuple with every middleware level field set to null so that the

middleware level fields are not used in the query, and sends this tuple to the local space using a JavaSpace

“read” command. If the command returns a tuple, the tuple will be removed from its encapsulation and

sent to the application. Furthermore, an Access Context tuple for the read tuple will be written to the

local space to update the number of times the tuple has been read.

The “write” command is more complex. First of all, a tuple received from an application is sent to the

InMessageFactory which will be discussed in 4.3.1.2. The factory returns an InMessage tuple that con-

tains middleware level information and encapsulates the application level tuple. Next, the Port to Space

takes a CSL tuple from the local space and edits its information to reflect the new tuple that is going to be

written into the space. The CSL is then written back to the local space following by the InMessage tuple.

Lastly, the MCLayer write notification process is activated to propagate a notification to other nodes in

the event distribution tree.

The “take” command is similar to a “read” command followed by a “write” command to write a

CommandMessage tuple. The Port to Space first tries to read from the local space using a query from

the application. The process is similar to that in the “read” command except that there is no context

information written to the local space at this point. Next, it uses the acquired tuple to create a Com-

mandMessage tuple by sending the tuple to the CommandFactory which will be discussed in 4.3.1.3.

The new command tuple obtained from the CommandFactory is written to the local space and the CSL

tuple is updated as in a “write” process. Then, the target tuple is replaced by a TombStone tuple repre-

senting the tuple in a deleted state.

The current prototype does not have a tombstone and command tuple garbage collection process.

The two tuple types are used to tell other devices about a deleted tuple. As a result, the longer the tuples

remain, the more chance that the command will be propagated. A good indicator for the tuples to be

deleted may be when a space has already propagated the tuples to every space it registered in its CSL

tuple. This is because it signifies the moment when the command should have at least reached every

device the space has met before the deletion. When the condition is met, a timer that starts the garbage

collection process to delete the two tuples should be triggered. This will allow some more time for the

tuples to be propagated before they are deleted.

Another space-related command provided by the JSFM is the “readAll” command. This command

does not exist in the JavaSpace interface as provided in Jini 2 0 001. The command acquires every

tuple in a space that matches a query tuple and returns the tuples, stored in a vector, to the caller. The

command is implemented by obtaining an AdminIterator object which is an iterator object from the
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JavaSpaceAdmin interface that can iterate over a set of tuples that matches the query tuple.

The “readAll” command passes a null tuple to the JavaSpaceAdmin so that the interface returns the

AdminIterator that can iterate over every tuples in the local space. While the iterator iterates through

each tuple, any application level tuple encapsulated in an InMessage tuple is put into a vector, which will

be returned to an application.

Start 

Find a local space 

Initialise other components 

Ready for receiving 
command 

Read Process Write Process Take Process 

Rebinding space 

Read Command
 

Write Command 

Take Command

Space Reference error 

Space Reference Error

 

Figure 4.4: The Port to Space states

Apart from the space-related command explained above, the Port to Space component is also respon-

sible for notifying the Jini Lookup service and JavaSpace service when there is a network disconnection.

The notification is done by the Port to Space creating a socket for each component so that a notification

can be sent. The Port to Space periodically queries each component for their status until their address

changing process has been completed. Then, it activates the UnicastRegister again to obtain a new refer-

ence to the JavaSpace.

This process is required because the Lookup service and the JavaSpace service are attached to the

IP address of the device when the middleware is initialised and the address is used in the reference used

by the middleware to access the services. When a device enters a new network or is in an area that has

no network connection, its IP address will be changed to either a new one or a loopback address which

renders the old reference to the services unusable. Therefore, the services need to be attached to a new
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address and the references need to be refreshed.

Another way to resolve the problem is to use Mobile IP [Per96], which allows a device to keep its

address while it is moving. However, the technology is still not widely used and it requires an infrastruc-

ture to provide a routing which is not suitable for an ad-hoc environment in which the middleware will

be used.

4.3.1.2 InMessage Factory

The InMessage Factory is responsible for encapsulating an application level tuple within an InMessage

tuple containing middleware level information. The factory needs to keep track of information such as

the next sequence number for the tuple to be written into a local space since this needs to be stored in

the InMessage tuple when it is created. The counter used for the sequence number is shared with the

Command Factory since the InMessage and the CommandMessage tuples of the same writer use the

same sequence number set.

The factory can also receive an application level tuple from the Port to Space to create the query tuple

used in a “read” or “take” command. The application level tuple is encapsulated within an InMessage

tuple with every middleware level field set to null.

4.3.1.3 Command Factory

The Command Factory is responsible for constructing a CommandMessage tuple from information ob-

tained from the Port to Space. In order to create a CommandMessage tuple, the Port to Space passes

information about a tuple that is going to be deleted such as the tuple’s sequence number and the tuple’s

writer name to the factory. The factory then uses the information to create a new CommandMessage

tuple. Note that the factory obtains a sequence number for the next tuple to be written from the same

counter that issues the numbers for the InMessage Factory.

4.3.1.4 UnicastRegister

The UnicastRegister is responsible for obtaining references to the various Jini services introduced in

4.2.1. After the UnicastRegister is created by the Port to Space, it tries to acquire a reference to the

local Lookup service (reggie) using a unicast query to the local device address. Once the reference to

the Lookup service is obtained, the UnicastRegister can query the reggie to obtains a reference to a

JavaSpace service; the middleware needs an access to the JavaSpace interface and the JavaSpaceAdmin

interface. The UnicastRegister will be activated again if the references to the services change.
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4.3.2 Policy and Synchronisation Related Components

4.3.2.1 Policy Engine and Matching Engine

The Policy Engine is the main component of the JSFM concerned with synchronisation. It is responsible

for processing a synchronisation unit containing information about the current synchronisation environ-

ment and making a decision about the event. The synchronisation unit will be discussed in 6.2.1. When

the Policy Engine is initialised, it loads policy objects pre-compiled by the Ponder Toolkit. Whenever

it receives a synchronisation unit from the Sync Manager, it performs a decision making process by

sending the synchronisation unit and a list of available policies to the Matching Engine responsible for

selecting the right policy for the synchronisation unit. The Matching Engine checks if there is any policy

that matches the synchronisation unit by comparing information in a policy’s constraint with the infor-

mation from the synchronisation unit. Once a matching policy is found, it will be returned to the Policy

Engine. More information about how the Matching Engine finds the policy and how a policy object is

implemented can be found in 5.5.1 and 5.4.2.

Each policy used in the system has an action part containing a command the system will follow if the

policy matches the situation described in a synchronisation unit. The Policy Engine extracts the action

part from the policy returned from the Matching Engine. Then, the action is translated into a set of

primitive action commands. The commands are simple actions that the Sync Manager and Sync Object

can understand. The commands are sent to the Sync Manager for further processing. The Policy Engine

can then process other synchronisation units. Examples of the primitive commands are shown in table

4.1. Currently, the Policy Engine does not support editing or adding a new action or primitive command

dynamically. The engine source code needs to be edited to enable the middleware to support the new

commands.

Command Meaning
fetch local tuple Obtains a tuple from a local space using specified sequence number

fetch tuple Obtains the next tuple from a remote space
local write tuple Writes a tuple into a local space

local delete Deletes a tuple from a local space

Table 4.1: Primitive Command Examples

4.3.2.2 Sync Manager

The Sync Manager has two main tasks. The first task is to search the Event Tree for a synchronisation

event type. The synchronisation event will be used as part of the information in a synchronisation unit.

More information about the synchronisation event and the Event Tree can be found in 5.3.1. This process

is done before the synchronisation unit is sent to the Policy Engine for the decision making process.

The Sync Manager is also responsible for managing a number of Sync Objects. The Sync Objects

are created and monitored by the Sync Manager. Once the Sync Manager receives a set of primitive
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Figure 4.5: Synchronisation Related Components

action commands from the Policy Engine, it sends the commands to a Sync Object that is responsible

for the set of tuples that are targets of the commands. A new Sync Object will be created if there is no

Sync Object currently responsible for the space.

4.3.2.3 Sync Object

The Sync Object can be seen as an enforcement point for the Policy Engine. The Sync Object provides

a set of interfaces to the Sync Manager. Each of the interfaces provided by the Sync Object corresponds

to an action command used in the Policy Engine and the Sync Manager.

The Sync Object interacts with the local space and the remote space being synchronised using a set

of JavaSpace commands. For every remote writer in the CSL tuple, there is one Sync Object responsible

for that writer. It is created when a local space interacts with a remote space and finds out about a tuple

written by that writer for the first time. With each synchronisation, more than one Sync Object might be

created because a remote space being synchronised may contain tuples that it received from other remote

spaces. In this situation, the remote space contains tuples written by more than one writer and requires

more than one Sync Object to take part in the synchronisation.

The Sync Object keeps track of sequence information relating to tuples belonging to one writer.

The information will be used when it receives a command from the Sync Manager through provided

interfaces. Dividing responsibility between several Sync Objects makes the object implementation less

complex and allows more of the decision making process to be moved to a higher level component such

as the Sync Manager.
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4.3.3 Synchronisation Event Distribution Layer

4.3.3.1 MCLayer

The tree building and tree maintaining process is implemented using the AMRoute protocol [XTML02]

which is a protocol for creating and maintaining a multicast tree in a mobile ad-hoc network. The

protocol divides nodes into two main groups - core nodes and normal nodes. Basically, a core node will

always try to merge with other multicast trees in the area while a normal node will not. While connecting

to other nodes, the core node periodically sends a keep-alive message to other normal nodes to notify

them that the core node is still alive.

Any normal node that does not receive a keep-alive message for a set period of time will transform

into a new core node and try to form a new tree. An extra node is a normal node with an extra interface

that is of a different type from the interface connecting to the multicast tree. This is to allow devices with

different types of interface to be able to connect to the multicast tree where there is some nodes that can

act as a bridge.

When more than one tree with separate core nodes is in the same area, the core nodes will try to

connect to others, and this will form connections between the trees. Any connection allows keep-alive

messages from the core nodes to reach each other, which will start a core-reconciliation process. Core

nodes other than the one that wins the process will be transformed into normal nodes and the multicast

trees will be merged into one multicast tree. The core-reconciliation process is currently done using the

IP address to determine which node is going to be the core node. However, this could be changed to use

other device properties such as the type of device, battery power, or the average time the device stays in

one place to make the multicast tree formed more stable.
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Figure 4.7: Node type in the Multicast Tree

The MCLayer is the main component responsible in building and maintaining the middleware syn-

chronisation event distribution tree, using the process explained above. Most of the algorithms for build-

ing and maintaining the multicast tree are also implemented in this component.

4.3.3.2 Keep-Alive Related Components

The KeepAlive class defines a keep-alive message to be sent between nodes. The keep-alive message

contains two kinds of information - core node and intermediate parent node information. The information

about the core node of the tree contains the address and the name of the core node. The intermediate

parent part is changed every time the message is passed from one node to another node. The immediate

parent node information contains information such as the node’s IP address and its level in the tree. The

information is used when a node selects and forms a link with an existing tree.

A core node in an event distribution tree sends a keep-alive message to neighbouring nodes in the

tree. Each node receiving the message from its parent stores a copy in its MCLayer. Then, it passes the

message on to its children.

The KeepAliveSchedule class is responsible for ensuring a node is still connected to an event distri-

bution tree and a core node exists somewhere in that tree. The task is done by the object periodically

reading and deleting a keep-alive message sent from the core node via the tree. After each read, the

class deletes the copy of the message stored in the node. During a period when no keep-alive message

is received, the KeepAliveSchedule class will not be able to read the message. This situation causes the

object to suspect that either the local node is disconnected from the tree or there is no core node in the

tree.

In this situation, the KeepAliveSchedule object triggers the CoreSchedule timer responsible in chang-

ing a local node’s status to a core node. A time is randomly chosen and when the time is reached, the

CoreSchedule changes the local node’s status to a core node. If the process causes more than one core

node to exist in one tree, the core-reconciliation process in the MCLayer will detect this and resolve the

63



 Initiate various components 

Reading keep-alive 

Tree conversion & Ready 

State 
Core resolution process Core conversion process 

Not found keep-alive && not core node Found keep-alive && not core node 
Found keep-alive 

&& core node 

After specific time, try to read a keep-alive 

again 

Start discovering other nodes 

Win the process 

Stop discovery unless the node is 

going to be an extra  node 

Lose the process 

Figure 4.8: Synchronisation Event Distribution Layer Process

core conflict.

4.3.3.3 Synchronisation Notification Sending

Since one of the reasons for using an event distribution tree is to control when and where to send a

notification, another important aspect of implementing the event distribution layer is to allow messages

to be sent using the tree layer. When an application writes a tuple into its local space through the

middleware, the Port to Space notifies the MCLayer about the updated information. The MCLayer then

tries to obtain a CSL tuple from the local space, which will contain the most up-to-date information about

tuples in that space. Next, the MCLayer creates a Notification object, which contains the CSL tuple and

the IP address of the device. The object will be sent through every tree link from the node to other nodes

in the tree.

Each node receiving the Notification object checks that it carries up-to-date information, by compar-

ing the CSL tuple it obtained with its local CSL tuple. If the CSL obtained contains more up-to-date data,

the node uses the IP address obtained to connect to the remote space using the discovery service on that

machine. Once it obtains a reference to the remote space, it can pass the information to the Policy Engine

to start a synchronisation process. Once a node has received a notification message, it has to finish the
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synchronisation before it can process another notification message. This is to protect data consistency

during the process.

After the process is completed, the node propagates the Notification object together with its CSL

tuple and its IP address via every other tree layer link except the one it received the notification from.

4.4 Policy Engine and Other Components Relation

Since the engine is a part of the middleware and needs to communication with the other components, the

section describes the relation between the engine and components such as the features in the Port to Space

mapper and the MCLayer that the engine relies on. This information will be useful if other components

are to be modified or the engine is moved to be used on other systems.

The engine relies on the Port to Space mapper only on the address changed notification function.

This is used when the engine cannot directly access the JavaSpace service because the device network

address has been changed. However, the engine heavily relies on information that is generated from

several message factories which are part of the mapper. For example, the information that is attached

in middleware-level tuples such as the sequence number and the message writer are used to control a

synchronisation process. Moreover, the engine heavily relies on the CSL tuple in order to fetch the

correct tuple for the synchronisation process.

The engine can directly access the JavaSpace service without relying on the mapper. Therefore, as

long as the mapper still provides proper synchronisation information within the middleware-level tuples

and the address changed notification function, its other features can be changed without affecting the

Policy Engine.

The Policy Engine relies more on the components in the MCLayer than it does with the Port to Space

mapper. An activation of a synchronisation process in the engine relies on a notification message it

receives from the MCLayer components of another node. The Policy Engine needs information sent

with the notification message such as an address of the remote node sending the message and its CSL

tuple in order to do a synchronisation. Also, when the engine finishes a synchronisation, it has to notify

other nodes in the tree. The engine relies on the MCLayer to carry out the notification sending process.

Therefore, the tree building and maintaining function in the MCLayer can be changed without af-

fecting the Policy Engine. However, its notification sending process and the information that is sent in

the process has to remain the same to not affect the engine.
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4.5 Conclusion

This chapter described the detailed architecture of the JSFM. It listed the external components the mid-

dleware operates on. The chapter introduced all the types of middleware level tuple containing infor-

mation the middleware needs for synchronisation. Then, it gave an explanation of each of the main

components of the middleware from components responsible for linking between the middleware and an

application to components responsible for building and maintaining a synchronisation event distribution

tree.

This chapter only explained the parts of the middleware but did not discuss any other aspect of it.

More information about policy and detailed implementation of policy-related components can be found

in chapter 5.

More information about a synchronisation process provided by the middleware and a discussion

relating to the process is in chapter 6. An information obtained from the testing done on the middleware

is in chapter 7 and further discussion of the middleware can be found in chapter 8.
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Chapter 5

Policy in the Middleware

5.1 Introduction

The middleware is divided into three main parts - the middleware interface, the middleware networking

layer, and the middleware decision engine. The first two parts were described in detail in the chapter 4.

This chapter discusses the middleware decision engine, especially the components that are involved in

the decision making process when using a policy.

The middleware adopts the Ponder language to control its behaviour during its synchronisation pro-

cess. However, only part of this language is used since this project is only concerned with controlling the

synchronisation mechanism; only obligation policies are used. Other Ponder policy types such as access

control, delegation, and refrain policies are not used.

This chapter discusses policies and their implementation in the JSFM. The chapter starts with a

discussion of application level identity, which is used for identifying a tuple identity clash. Then, it gives

a description of the policy structure in the middleware. The next section describes an implementation

of the two parts of a policy. The last section discusses how context information can be used and how

context information-related components are implemented.

5.2 Application Level Tuple Identity

In the original work on tuple spaces, a space was an associative store, and there was no independent

concept of tuple identity. If a tuple is removed with a take operation, then updated and a written back to

the store, the result is a distinct tuple. To be able to base synchronisation behaviour on the history of a

tuple through a series of changes, a stronger concept of its identity is needed.

Tracing the thread of evolution can be based on the content itself, but this may progressively be

replaced, changing the identity. Indeed, changes may result in the convergence of the history of two
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tuples into one, and this is a particularly difficult case for synchronisation to handle. It needs to be

possible for an application to identify its view of a particular tuple over a longer period.

The identity is constructed from a group of fields in the application-level tuple, which together have a

unique set of values in each tuple. For example, a tuple representing an appointment object in a calendar

might use the date and time slots as its identity, since these values, when combined together, represent a

slot in a calendar and each combination is unique.

The concept of tuple identity is thus extended from the query processing performed when searching

for a tuple. Each tuple needs to have an identity to allow an application to retrieve it, based on matching

selected fields. The equivalence class established by this matching process can be reused to define the

necessary concept of identity, so that the middleware can track each tuple, even though it may have been

deleted and written back into the space.

The middleware can then use this concept to identify clashes that occur when two tuples have a

similar identity in different spaces. More detail about the conflict detection process is given in 8.3.2.

Since the middleware cannot understand what fields are used for defining an application level identity

for each type of tuple, it has to provide an interface so that the identity can be defined.

Using the identity in this way makes the system simple but is not a perfect solution. This method

of conflict detection cannot detect a conflict in an application which has a tuple identity that is not a

precise value. The calendar is a good example for this situation. If one user creates a meeting between

9.00 to 10.00 and another user creates a meeting between 9.30 to 10.30, the system will not detect the

two tuples as being in conflict. Also, there is an issue of manually changing the tuple identity before the

synchronisation process, which will be discussed in 8.3.2.

The application level identity is defined in the same file that is used to define the event type definition,

which will be discussed in the next section. An entry is added to the file for each type of application

tuple. Figure 5.1 shows an example defining the identity for the calendar tuple discussed earlier.

<ID type=Calendar.CalEntry id=date;timeslot>

Figure 5.1: An Entry for an Application Level Identity

Once there is this concept of identity, the middleware can maintain a trace for each tuple, giving a

history of all the actions performed on that tuple. A policy can then be used to decide the behaviour of

the middleware during the synchronisation process on the basis of this information.
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5.3 Policy Components

In the JSFM synchronisation process, the Policy Engine relies on segmenting the policy into two parts

when making a decision - an event and a policy constraint. In this way, the two parts tend to be complex

and should be separated to make the policy easier to read.

inst oblig pol1
{
     on                             sync_time >= 0 and
                                      local_tuple <> null and remote_tuple <> null
                                      and local_tuple.type == remote_tuple.type
                                      and local_tuple.ident == remote_tuple.ident
     subject  <space>      s = /space;
     target    <tuple>        t = /tuple;
     do                             s.retrieve();
     when                        /tuple -> exists(t1, t2 | t1.localtuple = true and
                                                    t2.remotetuple = true and
                                                    t1.writtenBefore(t2));
}

Figure 5.2: A simple policy with no division

Figure 5.2 shows a simple policy to resolve a conflict between two tuples. Even in this policy, the

event part and the constraint part are both quite complex. Therefore, the policy in the JSFM is divided

into two parts - a synchronisation event definition and a policy body - which will make the policy easier

to read. This section discusses how the synchronisation event part can be separated from the policy body,

how an event tree can be built, and what remains in the policy body.

5.3.1 Synchronisation Event and Event Tree

In a synchronisation process, different synchronisation requirements can be seen as different event types.

For example, a synchronisation where one space has an extra tuple can be seen as one type of event and a

synchronisation where two spaces each have a conflicting tuple can be seen as another event type. These

event types require different actions to achieve synchronisation.

Even though they are different in detail, most of the events depend on the same set of condi-

tions related to the basic synchronisation information which can be detected by the Sync Object. The

Sync Object uses the basic synchronisation information in order to find the right synchronisation event

name from the Event Tree. Table 5.1 shows an example of basic synchronisation conditions used in the

middleware.

Defining a synchronisation event in the Event Tree can be done by combining the synchronisation

conditions with logical “and” operations. For example, using the three example conditions in table 5.1

during a synchronisation between two devices, the first condition is true when no local tuple exists with
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Name Condition Description
local tuple local tuple == null a local tuple participates in the synchronisation

remote tuple remote tuple == AnyType a remote tuple participates in the synchronisation
FirstSync FirstSync == false the first time there is a synchronisation between the two spaces

Table 5.1: Example primitive event in the middleware

the same tuple identity as a remote tuple. The second condition is true when there is an extra tuple in the

remote device. The tuple can be of any type. The last condition is true if the synchronisation between

the two devices is not the first synchronisation to take place between them. An example of an event

composed from the three conditions is a synchronisation event triggered when there is an extra tuple on

the remote device (of any tuple type) and the two devices have synchronised at least once.

The Event Tree is defined before the system is initialised. Each node in the tree contains a definition

of a synchronisation event. Currently, the tree is defined using XML. A definition of a node is divided

into two main parts - a node definition in terms of synchronisation condition and the definition of its

children. This structure is used recursively to define nodes in deeper levels of the tree.

An event in the tree is always a super-type of events in its child nodes. This restriction is made so

that searching for an event can return the nearest super-type event when there is no specific match for a

particular event. In this way, if an event cannot be matched, the policy for the closest possible event to it

is used.

Synchronisation

Normal 
Synchronisation

First
Synchronistion

Remote Only Both Sides Remote Only Both Sides

Figure 5.3: An example of an Event Tree

Figure 5.3 shows an example of a basic Event Tree. During any synchronisation, after the Sync Object

finishes gathering basic synchronisation information, it compares the information with the conditions

defining nodes in the local Event Tree until it finds an event type that is compatible with the information.

A breadth-first search for the closest match will return an event name, which is then used to search for

the right policy.
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The root node represents a super-type for every synchronisation event. Basically, every synchro-

nisation type that does not match any other child node will match the root node. In figure 5.3, the

node labelled “Synchronisation” represents a general synchronisation. It has two child nodes. The

First Synchronisation node represents an event where synchronisation happens between two devices for

the first time, while The Normal Synchronisation node is a synchronisation event where two devices

have met before.

5.3.2 Policy Body

The policy body encompasses the other policy elements - subject, target, action, and constraint. Each

component apart from action allows a policy writer to use a feature call written using the Object Con-

straint Language(OCL) to help the Policy Engine decide whether the policy should be used to control the

middleware behaviour during a particular synchronisation process. However, this project only supports

a limit set of policies that relate to tuple synchronisation using the JSFM.

local_tuple == null and
remote_tuple == AnyType and
FirstSync == false

Synchronisation

Normal 
Synchronisation

First
Synchronistion

Single Side Both Side Single Side Both Side

inst oblig pol1
{
     on                             NormalSync_SingleSide()
     subject  <space>      s = /space;
     target    <tuple>        t = /tuple;
     do                             s.retrieve();
     when                        /tuple -> exists(t1, t2 | t1.localtuple = true and
                                                    t2.remotetuple = true and
                                                    t1.writtenBefore(t2));
}

Search for synchronisation 
event type

Search for a policy that matches the event type

Figure 5.4: Relation between a policy body and an event tree

The subject component always represents a device participating in the synchronisation. It can be
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used to filter a subset of the devices to be controlled by a policy using context information such as the

type, identity or class of device.

The target component in a synchronisation policy is always the tuple that is being synchronised.

Like the subject part, the target component can be used to filter whether a tuple is to be controlled by

the policy using tuple-related context information. The last, and probably the most important part is the

constraint. Both space-related, tuple-related and environment-related context information can be used in

a constraint to control a policy usage.

To start the synchronisation process, the Sync Object searches the Event Tree on the local device and

obtains an event name; a synchronisation unit is then created from the information available. The Policy

Engine then receives the synchronisation unit from the Sync Manager and starts the decision making

process.

During the process, the Policy Engine compares the information in the synchronisation unit with

each existing policy stored in a local policy repository. Policies with an event part that matches the event

in the synchronisation unit are interpreted. Each component in the policy body in each loaded policy

is evaluated using information from the synchronisation unit, until the Policy Engine finds a policy that

it is satisfied. Finally, the action part is extracted from the policy selected by the Policy Engine, which

will then be used to control the middleware via a command that is passed through the Sync Manager and

Sync Object. More information on how policy matching is done can be found in 5.5.1.

5.4 Policy Components Implementation

The implementation of the policy components is divided into two parts - the Event Tree implementation

and the policy object implementation. 5.4.1 describes the structure of the Event Tree, how it is imple-

mented, and how it is searched to get hold of an event name. In 5.4.2, the policy object implementation

explains how a policy is transformed into a policy object, how the objects are kept, and a way they are

used during a decision making process.

5.4.1 Event Tree Implementation

The Event Tree is a simple tree structure built from a collection of objects of the TreeNode class. The

TreeNode class contains information used for event name searching, such as the conditions associated

with an event and the event name. It also contains references to the other TreeNodes that are its children.

The Event Tree class contains a reference to the root node of the tree. It contains a method that allows

other objects to search the tree providing they already have information used in the conditions which is

normally gathered by the Sync Object during the initial stages of a synchronisation process.

The Event Tree has to be defined before the middleware initialisation in an XML file which will be

loaded when the Sync Manager is created. Therefore, it is currently not possible to edit the tree or any
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event information in it when the middleware is operating. A discussion about the customisation of event

definition in different devices can be found in 8.3.5.1

5.4.2 Policy Body Implementation

Policies to control the Policy Engine are written using the Ponder language. They are compiled by the

Ponder compiler provided with the Ponder Toolkit to create Java class files. One class file represents each

policy. A policy object is created when the policy class files are loaded into the JSFM Policy Engine.

A Java policy object created by the Ponder Toolkit is divided into five different parts, one for each

of the five policy components (event, subject, target, action, constraint). The subject and target parts are

each represented using a domain scope expression stored in terms of its parse tree. A constraint is also

represented by a tree-like structure. Apart from simple expressions, the subject, target, and constraint can

also contain feature call expressions. More information about the policy object can be found in [Dam01].

More information about the evaluation process in the JSFM can be found in 5.5.1 belows.

5.5 Decision Making Process

The JSFM synchronisation decision making process can be divided into two parts - a policy matching

process and the action processing. The policy matching process takes each policy object stored in the

Policy Engine and uses the Matching Engine to check whether the policy matches the current synchro-

nisation situation.

The action processing is started when the Matching Engine returns a matched policy. The action part

of the policy is extracted and translated into a set of primitive action commands by the Policy Engine.

These commands will be sent to the Synchronisation Manager for further processing.

5.5.1 Matching Engine

The Matching Engine is the main component responsible for the policy matching process. It receives the

current synchronisation requirements and a list of policies, finds the first policy that matches the situation

and return this policy to the Policy Engine.

To match a policy, there is a need to have a link between conditions in the policy and an object, such

as a space or a tuple, so that the component responsible for doing the task can get hold of information

about a real world object while not being able to access or modify the real object itself. A proxy object is

needed to satisfy this condition. It has to provide an interface that allows the Matching Engine to access

context information but at the same time prevents the engine from accessing other information that is not

intended to be used.

The JSFM has an “Ident” object to represent an object identifier (space, and tuple) in a policy during

the policy matching process. The Matching Engine creates and stores an Ident object for each identifier.
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The Ident contains two important parts - a Pol Obj object and real world objects the Ident represents.

The first component is a Pol Obj object acting as an interface or proxy to a particular type of real world

object. For example, a space can be represented by a space Pol Obj object while a tuple is represented

by a tuple Pol Obj.

The Pol Obj allows the Matching Engine to access libraries for each real object by presenting a set of

interfaces representing the library. For example, the Matching Engine can obtains the creation time for a

particular tuple in a synchronisation process by querying the Pol Obj in the Ident object that represents

the tuple. The Pol Obj can then accessing a context tuple attached to the queried tuple and return the

result to the Matching Engine. In this way, the Matching Engine is separated from a real world object

and provided only with a number of libraries for obtaining information from the object. Table 5.2 shows

an example of libraries associated with each Pol Obj type.

To match a policy, the Matching Engine divides each policy into different parts, based on the policy

components. The first matching process matches the event part. The Matching Engine only supports

simple event matching. There is no support for temporal event matching, such as a detecting when

events occur in parallel or are one after another.

During subject or target matching, the engine creates an Ident object for any object identifier found

in the policy. The Ident object can be used during constraint matching so that the constraint can query

information from the subject and target.

Another important part of the policy matching is a quantification. The Matching Engine currently

supports two quantification types - there exist and for all. The first type looks for at least one match while

the second type only matches when every instance is true. The Matching Engine iterates through each

instance until it can satisfy the quantification condition or it finds that the condition cannot be satisfied.

The Matching Engine currently supports combination of terms using logic operations “and”, “or”.

Object Type Example Libraries
Sync Tuple isRemote()

isLocal()
after(anothertuple)

compareAccessNum(anothertuple)
Sync Space isRemote()

localname()
Timer before(time)

between(time1, time2)

Table 5.2: Example Pol Obj Libraries

5.5.2 Action Processing

A policy matched by the Matching Engine is sent back to the Policy Engine, which extracts the action

part from the policy. The action command written in a policy is a high level command such as retrieve, or
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replace, so that it is easier for a user to understand than the primitive commands used in the middleware

level. The Policy Engine has to translate the command into a set of primitive action commands so that

the Sync Object can process the action.

Matching Engine

Policy Engine

Policy Lists, Sync. Situation

Matched Policy

Primitive Action Commands

Synchronisation Manager

Synchronisation Object

Local Space

Remote Space

Primitive Action Command action

action

Figure 5.5: Components Participating in Action Processing

For each primitive action command sent from the Policy Engine, the Sync Manager chooses a

Sync Object that is responsible for the tuple writer or creates a new Sync Object if none exists. The

Sync Object processes the action; it can access both the local space and the remote space that participate

in the current synchronisation. However, it can only alter information in the local space. This is to force

the design decision that information transfer between devices uses a “pull” methodology.

5.5.2.1 Push or Pull Style Action Commands Discussion

During the process of synchronising two devices, moving a tuple from one device to device can be done

in two ways - a tuple owner can push a tuple into another device’s space or that device can request the

tuple from its owner.

There are not many differences between the two ways; however, they should not both be used at the

same time, because, if each individual user is allowed to choose between the two ways, a synchronisation

process could occur between users that have made different decisions. This situation could cause a

data inconsistency problem after the synchronisation process. During a tuple synchronisation where
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one device uses the push style and another device uses the pull style, the result will be either a tuple

duplication because one side pulls the tuple while it is being pushed by the other side, or no resolution

process because the side that needs to get the tuple cannot pull the tuple and the other side cannot push

it.

Because of this, the actions allowed in the middleware operate in a pull style based on retrieving

tuples from the remote space; the middleware does not allow one space to directly affect another by

using an action command in a push style.

Note that, even though system security is out of the scope of this project, using the pull style actions

makes it easier to add security features into the system. This is because it would be easier for a user using

push style actions to create a malicious policy that distributes tuples that are not wanted by other users.

This could be done, for example, by using policies that give the local tuple the highest priority without

looking at any context information.

With pull style actions, a tuple will only be distributed if the receiver side allows it to be propagated.

This action style also makes the user feel that he or she has a control over his or her device and it is easier

to introduce security if there is a need for it.

5.6 Context Information Gathering Process

The Policy Engine contains a number of types of context information that can be used in a policy. How-

ever, different applications may need different types of context information for making decisions during

a tuple identity clash. The basic context information mechanisms for collecting the tuple, space, or time

information that are provided with the middleware may not be suitable for all applications.

Therefore, the middleware needs to provide a way for a user to extend the set of context information

used in the synchronisation process, and this information has to be collected while the middleware is

operating. The information collected needs to be stored in persistent storage and to be available during

the synchronisation process.

The JSFM contains a set of agents responsible for gathering information and an interface is provided

for the agents to interact with the local space regarding the context information they are responsible

for. To do this, the JSFM provides an abstract agent that a user can extend to create his/her custom

agent. The abstract agent provides a method to start, stop, and store the agent. The local space stores

information about which agents are activated. This information is persistent and will be used for re-

activating the agents when the middleware is restarted. A user only needs to extend the abstract interface

with a method for gathering information and storing it in the local space via an interface provided by the

middleware.

For example, to build an agent that gathers battery power information, a user creates the battery agent

class extending the abstract agent class. The only functions the user needs to define are to access the API
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Figure 5.6: Context Gathering Components

from the operating system to obtain the information about the battery and to control the time between

information gathering events.

The Agent to Storage interface connects each agent with the local space. Context information is

identified by using an agent name and an information name. The interface allows an agent to store its

gathered context information and retrieve the stored information if historical information is needed for

a calculation. The storage interface is implemented so that no agent can affect user and middleware

information in the local space, since each agent interaction is limited to the information it is responsible

for.

There is currently no pre-defined garbage collection process. It is left to the user to define when

and how the context information can be deleted, which can be done using the take command provided

by the storage interface. The taken decision will affect how long the information can be used in a

synchronisation process by the Policy Engine. The same mechanism used for setting an interval for the

agent to gather information can also be used to make the agent do the garbage collection process.

5.7 Conclusion

This chapter explained how a policy is implemented and used in the middleware. The policy is divided

into two main parts - the event definition tree and the policy body. Different events in the event tree are

distinguished by a set of basic conditions. Each condition is based on the current tuple synchronisation

process information.

The event and the policy body are used in a policy matching process which is performed by the Policy

Engine and the Matching Engine. The process iterates through each part of the policy and checks whether

the policy condition matches the current synchronisation situation. The action part of the matched policy

is extracted by the Policy Engine and translated into a set of primitive action commands that can be

processed by the Sync Object.

77



Apart from basic context information provided by the middleware, a user can also create an agent that

gathers extra context information from the environment. The middleware provides a basic framework for

the agent by having each agent extend an abstract agent class containing the basic methods for storing

data or starting, stopping, or restoring the agent.
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Chapter 6

Synchronisation Process Discussion

6.1 Introduction

Synchronisation is the main reason why the JSFM was built. The JSFM offers a data synchronisation

service between devices in order to provide an application with a unique virtual space view even if it is

operating in a wireless environment, in which constant update of data between devices is not possible.

There is a need for a data synchronisation process which includes data conflict detection and data conflict

resolution sub processes to establish data convergence when devices are connected together.

This chapter gives an explanation of how synchronisation is done in the JSFM. The chapter is di-

vided into two main sections. The first section discusses a synchronisation process where the same set

of policies is used on every device. The second section discusses the situation where each device is

allowed to have its own policy set. Each section explains the corresponding requirements for the syn-

chronisation process, shows how the process can be done, and discusses the problems with this style of

synchronisation.

6.2 Uniform Policy Synchronisation

The simplest situation for data synchronisation in the JSFM is an environment where synchronisation is

done using a uniform policy set. The synchronisation process assumes that:

• Every device participating in every synchronisation in the same environment contains exactly the

same set of policies.

• A device cannot add, edit, or delete its policies unless there is a system-wide policy update affect-

ing every device in the environment.

• Every device collects and processes the same kind of context information and understands it in the

same way.
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The assumptions above allow the synchronisation process to be simple. There is no need for the

Policy Engine to reconcile different policies or context information. However, this kind of environment

limits an application to only one set of policies and prohibits any modification to the policies by an

individual device. The process sacrifices synchronisation flexibility in order to reduce the problems that

happen in a multiple policy environment, which will be discussed in 6.3.

6.2.1 Tuple Synchronisation

A synchronisation process happens after a device receives a synchronisation notification message from

another device via the MCLayer. The message sending process is initiated either by the MCLayer after it

finishes building a tree connection to another device or by the Port to Space after it finishes its interaction

with a local space. The notification message contains information that allows a remote device to be able

to connect back to the local device using services provided by Jini. Moreover, the notification messages

also contain a CSL tuple which is used by the remote device to determine if it requires any update from

the local device.

After a device received a CSL tuple in a notification message, it compares the tuple with its local

CSL tuple to find if there are any more up-to-date tuples in the remote device. If so, it obtains each new

tuple from the remote space via a command provided by the JavaSpace. For each tuple obtained, the

local device builds a synchronisation unit containing:

• Event Type - The event type is obtained by comparing the current synchronisation situation to the

Event Tree as explained in 5.4.1 It will be used to notify the Policy Engine of the type of policy

that is to be used for this synchronisation process.

• Participating Tuples - Both tuples that are participating in the synchronisation will be sent to the

Policy Engine with the synchronisation unit. This is to allow the Policy Engine to make decisions

that require information from the tuples such as the tuple types or information in the tuple.

• Space References - The references to the two spaces participating in the synchronisation are sent

with a synchronisation unit. These references will be used by the Sync Manager for manipulating

tuples in the two spaces.

The synchronisation unit is sent to the Policy Engine on the local device. The Policy Engine con-

taining policy objects loaded when it was initialised and uses these to make a decision using information

from the synchronisation unit and context information from the local device and the remote device. The

context information is not put into the synchronisation unit like other information because of its size and

some of the information may not be useful in every synchronisation. The decision making process was

discussed in 5.5
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A decision from the Policy Engine is interpreted in term of a set of primitive commands which we

sent to the Sync Manager. The primitive commands are a set of commands that the Sync Manager

understands. The Sync Manager provides an interface that receives the primitive commands and their

parameters. Examples of the commands are shown in table 4.1. Every command has parameters spec-

ifying a specific space and tuple that will be the target of the command. The Sync Manager passes the

command to the Sync Object that is responsible for the remote space. After a set of commands for a

tuple is undertaken by the Sync Object and the remote tuple is synchronised, the Sync Object has to

update the local CSL tuple so that it will reflect the current local tuple status.

After each tuple is synchronised by the Sync Object, the Sync Manager activates a separate Context

Synchronisation process to copy the context information relating to the synchronised tuple from the

remote space. This process of information propagation will be discussed in 6.2.2.

After all modified tuples are synchronised, the local space creates and sends a notification message

to notify another node on the synchronisation event distribution tree and starts a synchronisation process

with it. This notification propagation will allow information about an updated tuple from one node in an

event distribution tree eventually to reach all other devices on the tree.

Figure 6.1 depicts basic communication between devices during a synchronisation and notification

propagation process. After Device B receives a notification message and A’s CSL tuple, it sends a

request to A for the new tuples it knows about from checking the CSL tuple. If the new tuple is accepted

by B, it will request context information to accompany the tuple. After B finishes its synchronisation

process, it composes and sends a new synchronisation notification message to another device on the event

distribution tree.

6.2.2 Context Transfer

The context transfer process is important for synchronising information between devices. Since each

policy relies on context information to be able to decide the action to take on a tuple, context information

for the tuple needs to be present wherever the tuple exists.

Context transfer can be divided into two sub processes. The first process is to transfer context in-

formation along with a tuple during the synchronisation process. Context information is kept within a

context tuple, as discussed in 5.6, and this will be transferred with any tuple being propagated. The

context tuple life time is equal to the life time of the tuple it is attached to.

Apart from transferring the context tuple during a synchronisation process, context information on

a remote device needs to be updated whenever the information on a local device is updated. The local

device propagates update information through the event distribution tree, whenever new context infor-

mation is written to the local space. A remote device that receives the information updates the relevant

context tuples.

To make the context information updating process as fast as possible, each context tuple is tagged
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Figure 6.1: Tuple Synchronisation Process

with its version number. Basically, updating of the context information is done by simply writing the

new context tuple into the space. An advantage of updating context information in this way is that it

reduces the time taken for the process, which may reduce the chance of interrupting any other process

that may be more important. However, the approach has a disadvantage, in that context information that

is not useful anymore still takes up storage space in each space. A context information garbage collection

process can be done using the context agents described in 5.6

6.2.3 Conflict Marker

One of the aims of the middleware is to provide a unique virtual space view to an application. Any data

conflict that remains after a synchronisation process is going to violate the aim. The conflict marker is

introduced to ensure that no data will be left unsynchronised.

A situation needing special measure occurs when a tuple being synchronised is not newly added,

but results from a bouncing effect that has occurred during the tuple propagation (the detail explanation

of the effect is in 6.3.3.1). For example, this situation is often caused if a device “A” that originally

writes a tuple has lower priority than a device “B” at the other side of the event distribution tree. The
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problem occurs if, while the tuple is being propagated to the other side, the device “A” updates its context

information so as to increase the tuple priority to be higher than the device “B”.

In this situation, the tuple will be turned back from B together with the conflicting tuple written by

B which has higher priority. The tuple from B will be propagated through the tree back to A. At some

point in the tree, there will be a synchronisation between a space containing the tuple from B and a space

containing the tuple from A with its updated context information, which makes the tuple win the process.

At this point, the space that supposes to replace the tuple from B with the tuple from A will not be able

to see the tuple because the tuple is not a new tuple according to the information in the two devices’ CSL

tuples.

There are a number of ways to resolve the problem. The current implementation chooses the conflict

marker because it is simple and cheap to implement; it indicates to another space that the conflict tuple

has been found in a conflict. This is done by adding an extra field indicating a tuple’s conflict status to

the middleware level tuple (InMessage). Each tuple is created with the status set to no-conflict. During

a synchronisation process, if there is an identity clash synchronisation event and the result from a policy

engine is to do nothing, the conflict marker on a remote tuple will be set to indicate a possible conflict.

At the end of the synchronisation process, each device participating in the synchronisation searches its

space to find any tuples that are marked as possibly causing a conflict and starts a post-synchronisation

process if any are found.

Synchronisation Process

Obtain Possible Conflict Tuples

Post-Synchronisation

End

No Conflict Tuple
Conflict Tuple

Figure 6.2: Synchronisation Process With Conflict Marker

Finding a tuple that has possibly caused a conflict can be done easily by using a space command

83



searching for a tuple with its conflict marker set to possible conflict status. The post-synchronisation

process can be seen as redoing the normal synchronisation process with only the tuple obtained above.

The post-synchronisation process checks and ensures that there is no tuple left unsynchronised.

Since this is a special situation, more attention is required to make sure that the data in every device

is consistent, and a sequence number and writer name for the tuple with the marker is sent together with

the notification event instead of just using a simple notification message to ensure that the other devices

check that there is no data inconsistency concerning the tuple.

An alternative approach would be simply to use the detailed event notification every time context

information is changed. This can also solve the problem and is easier to implement. The notification

is sent every time context information attached to a particular tuple is updated, which will re-trigger

the synchronisation process for the tuples that are associated with the context information. However,

this process costs more than using the notification with the conflict marker because, in this case, every

update, even one that does not require any attention, will trigger a synchronisation process throughout

the event distribution tree.

6.3 Multiple Policy Synchronisation

In 6.2, the synchronisation process assumes that every device in an environment uses the same set of

policies. However, in reality, a user or a programmer can create, edit, or delete a policy from his or

her device either while it is connected or disconnected from other devices. In this environment, a user

has more control over the conditions under which he or she wants to receive information from others,

because they can design their policies to suit their needs.

However, allowing a user to have more flexibility in controlling their policies increases synchronisa-

tion complexity. More problems occur in an environment where several devices in an event distribution

tree each try to synchronise their information using different sets of policies. This section discusses the

situation by explaining what the extra problems are, what the extra requirements for the middleware to

support such a situation are, and how the synchronisation can be done.

6.3.1 Multiple Policies Synchronisation Problem

Allowing each device the freedom to change its policy makes the synchronisation more complex. There

are several extra requirements the middleware needs to support concerning the synchronisation process

and the policies used by the process.

1. Policy Conflict - allowing users to edit their policies creates a situation where a synchronisation

process occurs between devices with different sets of policy. The difference between policies

implies a high chance that two devices will take different actions for the same event which will

lead to them not being able to make data converge. Since the goal of the JSFM is to create an
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image of a unique virtual space for an application, the conflict between policies has to be resolved

before any synchronisation process can happen.

2. Failure of data convergence in the synchronisation event distribution tree - even though synchroni-

sation between pairs of nodes with different policies can be resolved, differences between policies

on different nodes can also cause data convergence problems afterwards, in the event distribution

level. A basic example is where there are three devices connecting together and the middle device

has policies and context information that allows a tuple from either of the other two devices to

overwrite its local tuple, as shown in figure 6.3. The three devices all have tuples with the same

tuple identity, but containing different information. The Synchronisation process used in 6.2 will

not be able to make the information in the tuple converge. The information on the middle device

will oscillate between the information it received from the leftmost and the rightmost device. More

details of the problem are explained in 6.3.3.

A  

B C 

Information from CInformation from B

Figure 6.3: Bouncing Effect

3. Tuple Synchronisation Control Information Transfer - in a uniform policy environment, the tuple

propagation process is always controlled by the same policy. However, since a tuple is always

controlled by a set of policy on its host device, when the tuple is transferred between devices in the

multiple policy environment, control of the tuple is changed from one device’s policy to another

device’s policy. In this situation, no device can reliably create a tuple where content is meant to

have higher priority than the others because when the tuple is transferred to a device that has a

weaker policy and context information it will be overwritten by a tuple from another device that

has a stronger policy than the intermediate device, even though it is not stronger than the original

writer device. To solve the problem, there is a need to find a way to transfer information regarding

the priority of a tuple with the tuple. This information will then be used when the tuple is on

a remote device. It represents the correct synchronisation control information the updated tuple

should have.
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6.3.2 Policy Conflict

Policy conflict during a synchronisation process can happen when different devices are using different

policies. As a result, a synchronisation process will not result in spaces that have the same set of tuple.

For example, the policies shown in figure 6.4 are always in conflict with each other.

inst oblig pol1
{
     on                             IdentConflict();
     subject  <space>      s = /space;
     target    <tuple>        t = /tuple;
     do                             s.retrieve();
     when                        /tuple -> exists(t1, t2 | t1.localtuple = true and
                                                    t2.remotetuple = true and
                                                    t1.writtenBefore(t2));
}

inst oblig pol2
{
     on                             IdentConflict();
     subject  <space>      s = /space;
     target    <tuple>        t = /tuple;
     do                             s.retrieve();
     when                        /tuple - > exists(t1, t2 | t1.localtuple = true and 
                                                     t2.remotetuple = true and
                                                     t1.writtenAfter(t2));
}

Figure 6.4: Policies in Conflict

The first policy gives a precedence to the tuple that was written most recently while the second policy

favours the tuple that was written earlier. If two devices try to synchronise while one of them uses the

first policy and the other one uses the second policy, the information from the two devices will both never

converge. Both of them will either do nothing or they will try to replace their tuples at the same time.

In order for the problem to be resolved, it should be divided into two smaller problems - policy conflict

detection and conflict resolution.

6.3.2.1 Policy Conflict Detection

When solving the problem caused by conflict between policies, the first step is to understand how the

conflict can be detected. Since the JSFM does not involve an access control policy, policy conflict for

the JSFM can only happens during a synchronisation process and most of the policies that cause conflict

are policies concerning identity clash. A conflict detection process used in the JSFM will operate in the

synchronisation layer and be activated during each synchronisation process.

There are several ways for a conflict to be detected; each has its advantages and disadvantages. They
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are shown in figure 6.5.

Result-Exchanged 

 

Policy-Exchanged 

 

Check Result
 

Check Policy
 

Conflict Detection
Process

All Policies 
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Partial Set Check 

String Check Schematic 
Check

String Check
Schematic 
Check

Figure 6.5: Conflict Detection Methods

In order for devices to check if there is a conflict between their policies, information has to be

exchanged between them prior to the synchronisation process. Two sets of information can be used

in this case - decision results from applying the policies or the set of policies themselves. In the first

case, each device carries out a synchronisation process and they exchange their results. In the second

case, policies are exchanged so that each device can use the information for detecting if there is a policy

conflict.

When performing result-exchange conflict detection, most of the synchronisation process is similar

to the synchronisation process in 6.2. A device checks the CSL tuple from the other device to determine if

there is any tuple it needs to acquire. Once a new tuple is acquired, the device creates a synchronisation

unit containing information needed for the policy engines on both sides to make a decision. This is

similar to the synchronisation unit sent from the Synchronisation Manager to the Policy Engine during

the synchronisation process in 6.2. A copy of the synchronisation unit is then sent to a policy engine on

the two devices. On the remote device, the synchronisation unit is used the same way a locally created

synchronisation unit will be used. The only difference is that the references to context information in the

synchronisation unit will point to the information where the unit is created instead. This is to provide the
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remote policy engine with the same environment the local policy engine has, which will allow an easy

conflict detection between the results from the two engines.

Policy engines from both devices then process the synchronisation units and produce independent

decisions. The decision is sent back from the remote device to the device generating the synchronisation

unit. The two decisions are compared to detect any synchronisation conflict between the policies on the

two nodes. The decisions can be compared since a decision created by the Policy Engine is composed

of an action that is going to be taken and a tuple object that is going to be the target for that action. The

simplest process is just to compare the actions and the tuple sequences. If they are not exactly matched,

there is an indication that policies governing the synchronisation event on the two devices are in conflict.

The policy-exchange based conflict detection can be divided into sub cases depending on how the

policy is used in conflict detection. Once a tree link is created between two devices, one of the devices

requests the set of policies used in the synchronisation process from the other device. Once the policies

are obtained, a conflict detection and a data synchronisation process can begin.

The simplest approach is then to detect a conflict between results obtained by processing a synchro-

nisation unit using the two different sets of policies. After the device obtains policies from the remote

device, it does a synchronisation process using both its policy and the remote policies. The results ob-

tained are compared to detect any conflict.

Another way to detect a conflict between policies is to compare the policies themselves. There are

two different types of comparison process - policy string comparison and policy semantic comparison.

The first method is a basic string comparison process between the policies. Policies are compared with

each other word by word. The latter method compares the policies’ semantics. The two methods can be

divided further into two more sub methods as shown in figure 6.5.

There are different ways for choosing between policies to be compared. The most basic way is to

compare every policy that is defined in the engine. In this case, policies that would not be used in a

particular synchronisation may be compared. On the other hand, another method is to compare only

policies that are going to be used in the immediate synchronisation event.

The conflict detection methods shown here have their advantages and disadvantages.

• Comparing results is less strict than comparing policies. Different policies may return the same

result even if the intention of the policies is different. For example, a policy that gives precedence

to a tuple that is written afterwards may not be in conflict with a policy giving precedence to a

tuple from a space that has a higher class in certain situations. However, they would be in conflict

with each other if the comparison process was policy-based and either policy strings or policy

intentions were compared.

• In policy-exchange based conflict detection, comparison between policy strings is simpler and eas-

ier to implement. Semantic comparison requires the comparing object to understand the policy’s

88



meaning which is a lot harder to implement. However, comparing between strings directly can

be seen as a more error prone or more strict process. Either way, the process will report a lot

more results it considers as conflicts than a semantic comparison process since it will detect dif-

ferences that should not be counted as a policy conflict such as a naming difference or differences

in ordering of logical operands.

• Comparing between the entire sets of policies ensures that there is no chance a conflict will ever

happen between the two devices, now or in the future. Comparing only the policies that are used

in the immediate synchronisation event is faster.

Figure 6.6 shows the level of strictness for each type of conflict detection. There is not much differ-

ence between result-exchange and policy-exchange result based comparison. The size of a policy object

transferred may be a little larger. In a case where disconnections occur quite often, it may be better to

use a policy exchange since a disconnections will not terminate a synchronisation event which is being

processed on one device since there is no need to wait for a result from the other device.

Less Strict More Strict

Result-Based/
Policy Based - Check Result

Partial Set 
Semantic Policy Check

Partial Set 
String Policy Check

All Semantic
Policy Check

All String
Policy Check

Figure 6.6: Conflict Detection Strictness Level

6.3.2.2 Conflict Resolution Process

After a conflict has been detected by a conflict detection process, the policy engine processing the current

synchronisation has to find a way to resolve it. The Policy Engine in the JSFM chooses to allow a user

to employ a higher level policy that can make a decision about which set of policies is going to be used

during the synchronisation process. In order for the process to operate properly, the JSFM makes a

number of assumptions based on an environment it is to be used in.

• Since the JSFM is intended for use by groups where users try to cooperate with each other by

sharing their information, the JSFM assumes that at a higher level there is a set of policies that

everyone will agree upon.The policies are employed on every device to resolve a conflict occur-

ring from different lower level user-created policies. This assumption reflects an enterprise-wide

working environment where each employee has control over his or her own device but still needs

to follow higher level policies set up to prevent conflict in the group.
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• Since this project does not stress security in using policy, the JSFM assumes that there is no user

who intends to break the system by manipulating his/her device’s policy and context information.

For example, a system might give the highest precedence to a tuple from a specific server; if a

device masquerades as the server by manipulating the device’s ID in its context information, it can

propagate a possibly malicious tuple with the high priority of the server.

With the assumptions above, the JSFM uses a higher level policy to resolve any lower level policy

conflict. When a conflict is detected by the conflict detection process, a device doing synchronisation

initiates a conflict resolving process which can be seen as supplying the Policy Engine with a set of

higher level policies to obtain a result which is not an action on a tuple but a selection of which set of

policies to use to determine the action.

If each user could define a higher level policy for his or her device, there would always be a chance

that the different higher level policies from different devices would still be in conflict, which means

different devices would choose different sets of policy to use for the synchronisation process. However,

under the assumption that the same enterprise-level policies exist in every device, policy conflict will

certainly be resolved at the level where all devices agree upon one set of enterprise policies.

At a level where the higher level policies are not in conflict, their results will tell the policy engine

which lower level policy is to be used. This process is recursively repeated until it reaches the lowest

level policies and the policy engine obtains an action on a tuple.

The structure of the higher level policies is similar to those of the first level policy. The only differ-

ence is in the action the higher level policy will take. Conflict detection in the higher level policy is also

similar to the process for the first level policy. Thus, the processes that are used in the first level policy

can also be applied at the higher level.

6.3.3 Data Convergence

The data convergence problem is another issue arising from using multiple sets of policies. Since each

device has a different set of policies, they can take different decisions concerning the same tuple. The

situation leads to different spaces having different sets of tuples and so data convergence does not happen.

An important issue regarding the data convergence problem is the bouncing effect.

6.3.3.1 Bouncing Effect

The bouncing effect happens when a number of devices with weaker policies and context information

are situated between devices with stronger policies, as shown in figure 6.3. The information hold by the

devices in the figure is shown in table 6.1 below.

Consider a situation where the three devices (B, A, and C) are trying to synchronise; they have a

tuple P which has the same identity on the three spaces but contains different information. This tuple
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B A C
Life Time Oldest Younger Youngest

Device’s Class Silver Bronze Gold
1st Level Policy Oldest First Oldest First Youngest First
2nd Level Policy Highest Class First Highest Class First Highest Class First

Table 6.1: Bouncing Effect Scenario Information

will cause an identity clash during the synchronisation process, which will be resolved by the process

explained in 6.3.2. However, even though an individual conflict between intermediate devices can be

resolved, a bouncing effect still occurs, since devices that are not directly connected cannot resolve their

differences. The most basic scenario is one where no extra information (policy and context information)

is transferred with the tuple is shown below.
 

  P

P

Pb

b

c

B C

A

Figure 6.7: Bouncing Effect Scenario 1

The solid line shows the direction of tuple propagation in a synchronisation process and the dash

lines shows the direction in which a synchronisation notification message is sent. In figure 6.7, a syn-

chronisation process happens between B and A. Both B and A use a first level policy that gives higher

precedence to a tuple that was written earlier. Therefore, the tuple P in A is replaced by the tuple P from

B. At the end of this synchronisation, a notification message is sent from A to C.

After C receives the notification sent from A, it initiates a synchronisation process with A concerning

the tuple P which A has received from B. Since no policy and context information is transferred over

from B with the tuple, A uses its local information in the synchronisation process with C. Assuming a

policy-exchange result based conflict detection is used, a policy conflict is detected because results from

using the policies from A and C in the synchronisation are different. The policy from A gives precedence

to its space since its policy gives precedence to an older tuple and context information in A indicates that

it has an older tuple. However, the result from the policy in C contradicts the result from A because the

C’s policy gives precedence to a tuple that is younger and C has a younger tuple.

After the conflict is detected the second level policy is used. The two devices have the same second

level policy. The policy allows the lower level policy of the space that has a higher class to be used,

which is the policy from C. Therefore, the synchronisation result is to replace the tuple P in A which it

has received from B with the tuple P from C. As a result of this synchronisation process, a synchronisation

notification is sent from A to B as shown in figure 6.8
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Figure 6.8: Bouncing Effect Scenario 2

The notification message sent from A starts a synchronisation process between B and A. The result in

this synchronisation will be similar to the result shown in figure 6.7. Thus, it seems that a synchronisation

process bounces between B and C and the tuple in A is always changing as a result of the synchronisation.

6.3.3.2 Bouncing Effect Solution Example

The problem occurs because information that represents the tuple priority is not moved with the tuple

from the tuple origin. When the tuple is moved to another device because of a synchronisation process,

this happens as a result of information from the local device which may have a different level of priority.

To solve the problem, there is a need to find a way to identify and move the synchronisation control

information with the tuple.

Synchronisation control information is information that represents a tuple’s priority during the syn-

chronisation process. Each synchronisation where there is an identity clash to be resolved can be seen as

a comparison between the tuple’s synchronisation control information. A tuple that has a higher priority

in its control information is going to overwrite a tuple with lower priority. The information that is com-

monly used as a tuple’s synchronisation control information is context information and policies from a

space that writes the tuple. Only context information is not enough, since a different policy on a different

space can interpret or use the context information differently.

In the scenario shown above, if context and policy information can be transferred with a tuple, the

bouncing effect will not happen. After the first synchronisation between B and A, information in each

device concerning the tuple P will be as shown in table 6.2. The synchronisation control information

from B is transferred to A together with the tuple. In figure 6.8, even if the synchronisation control

information from B is transferred to A during the first synchronisation, the synchronisation between A

and C still has the same result. There will be a conflict in the first level policy and the second level policy

will give a precedence to the policy from C because of its space class (Gold) is higher than the context

information transferred from B (Silver). Therefore, the tuple P from C will overwrite the tuple P in A

and the synchronisation control information of the tuple P in C will be copied to A as shown in table 6.3.

The difference is in the next synchronisation. Since context information and policies are transferred
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B A C
Life Time Oldest Oldest Youngest

Device’s Class Silver Silver Gold
1st Level Policy Oldest First Oldest First Youngest First
2nd Level Policy Highest Class First Highest Class First Highest Class First

Table 6.2: Scenario Information for the tuple P after B-A synchronisation

B A C
Life Time Oldest Youngest Youngest

Device’s Class Silver Gold Gold
1st Level Policy Oldest First Youngest First Youngest First
2nd Level Policy Highest Class First Highest Class First Highest Class First

Table 6.3: Scenario Information for the tuple P after A-C synchronisation

with each tuple, the information from C is transferred with the tuple P. During the synchronisation be-

tween A and B regarding the tuple P from C, there is a conflict between the first level policies but the

second level policy will give precedence to a policy for P in A which is transferred from C. At the end

of the synchronisation process, every device has the tuple P originated from C and no bouncing effect

happens.

More complex situations have been tested by adding more devices into the set up in two different

ways as shown in figure 6.9. The moving of policy and context information still prevents any bouncing

effect. Transferring only the context information, as in 6.2.2, is not enough to prevent the effect.

A  

B C D  

 

B 

A 

C 

D 

Figure 6.9: More Complex Bouncing Effect Scenario

After the synchronisation control information is identified, the next issue is how the information

can be transferred or if there is any other way to prevent the bouncing effect without transferring the

information. The issue will be discussed in 6.3.4

6.3.4 Information Transfer

One of the solutions to the bouncing effect that caused the data convergence problem in 6.3.3.1 is to find

a way to move with a tuple its synchronisation control information. This section discusses further the

issues concerning the transfer of the information to solve the data convergence problem and any other
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methods that can be used instead of transferring the information.

The first sub-section lists how synchronisation control information can be transferred and discusses

possible problems. The second sub-section illustrates possible methods that can be used in place of the

direct synchronisation control information transfer discussed in the first section. Neither of the meth-

ods from the two sections are perfect solutions. Each has its advantages and disadvantages over other

methods.

6.3.4.1 Direct Synchronisation Control Information Transfer

The basic synchronisation control information transfer process is based on simply attaching to each tuple

its policies and context information before it is transferred to another device during a synchronisation

and propagating the updated information when it is changed. The process is an extension of context syn-

chronisation in the uniform policy environment discussed in 6.2.2. The difference is in the extra policy

information that has to be transferred with the context information. Since the policy and the middleware

policy enforcement is only concerned with the synchronisation process, the attached information will not

affect any access control for the tuple. Consequently, it will not affect any control the remote space has

over its tuples.

During the synchronisation process, after obtaining a tuple for a synchronisation event, the Policy

Engine checks whether the tuple was written by the local device or any remote device. If the writer of

the tuple is the local device, it uses the policies stored in the local device in the synchronisation process.

If the tuple is written by any remote device, the policies and other information used in the process are

obtained from the synchronisation control information attached to the tuple.

P(A), Q(A), R(A) Space A

Figure 6.10: Synchronisation Control Information Transfer 1

P(A), Q(A) Space A

R(B), S(B)

Figure 6.11: Synchronisation Control Information Transfer 2
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P(A), Q(A), S(A) Space A

R(B)

Figure 6.12: Synchronisation Control Information Transfer 3

Figures 6.10, 6.11, and 6.12 illustrate synchronisation control information that is attached to a tuple.

“P(A)” refers to a tuple with an identity P controlled by policies and context information from space A. In

figure 6.10, space A contains tuples that have been written by it. They are controlled by synchronisation

control information from space A. Assume that the tuples R and S are updated in space B which has

higher priority, after the synchronisation process with space B, the tuple R and S are propagated to space

A with their synchronisation control information as shown in figure 6.11. After the synchronisation, if

A tries to synchronise with other spaces, the tuple P and Q will be controlled by the control information

from A but R and S will be controlled by the information A has received from B.

Even though A does not have control over the two tuples it receives from B, the situation is not

permanent. Since the two tuples are in space A, A can delete or edit the tuples. If A changes informa-

tion in the tuple S, the middleware will delete and create a new tuple S with information from A. Any

synchronisation control for the tuple S will be provided by A instead of from B, as shown in figure 6.12

Even though transferring and dividing the control domain of a space can help prevent a bouncing

effect, there are a number of disadvantages that need to be explained.

• Transferring the policy information and dividing the control domain of one space may generate

unexpected behaviour from a user’s point of view. This is because the link between synchroni-

sation control information and a tuple is not visible at an application level and a user will not be

able to differentiate between a tuple that is tied to local control information and a tuple that is

tied to remote control information. Since synchronisation is sometimes controlled by synchroni-

sation control information that is tied to a remote tuple, the remote tuple’s behaviour during the

synchronisation is going to be unexpected by the user.

• Allowing a remote device to gain indirect control of elements in local device is not good in terms

of security. A malicious node can propagate dangerous information freely by setting up a policy

with the highest priority. However, since a synchronisation process between devices is done using

pull-mode, it is the receiving device that chooses whether to receive a tuple or not. It is harder for

a malicious device to forcefully propagate a tuple to other devices.
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6.3.4.2 Indirect Synchronisation Control Information Transfer

The direct synchronisation control information transfer introduced in 6.3.4.1 can prevent the bouncing

effect but still has a number of disadvantages. This section is going to introduce other possible solutions

that can prevent the effect without needing a direct transfer of the controlled information. Neverthe-

less, there is no perfect solution to the problem. Each solution may overcome the problems of direct

information transfer but it has its own problems that will be discussed in this section.

• The first method is to give the responsibility for detecting the bouncing effect to the synchronisa-

tion event distribution level. This is the opposite of the method used in 6.3.4.1 , in that this method

does not require any synchronisation control information transfer. The event distribution level is

used because it already sends a notification message to each device. Adding more information

into the message is simple and can be used to detect the loop that occurs when there is a bouncing

effect.

Information relating to the sender of the a notification message such as its name and its address

is attached to the message. When the message reaches a remote device, it initiates a new syn-

chronisation process. After the synchronisation process is finished the remote node creates a new

notification message to be sent to another remote node in the event distribution tree. It attaches

its address information together with the address information it has received from the previous

notification message to the new message.

The information attached to a notification message can be used to check if the bouncing effect is

occurring. Before the synchronisation process initiated from a notification message begins, the

device that receives the message checks the path that the message has taken during its propagation

through the event distribution tree. When a device detects that there is a loop in the path informa-

tion, it contacts the devices at the two ends of the loop to resolves the conflict between them. The

two end devices are used instead of any intermediary in the loop because the conflict is actually

happened because the two of them, any node between them is just a path for propagating the tuple

and should not affect the outcome of the conflict.

In figure 6.13, assuming that there is a conflict between policies in B and D that causes the bounc-

ing effect, a synchronisation process starts between B and A and propagates along the event dis-

tribution tree. Each notification message along the propagation path adds a new address to the

information in the message. In figure 6.14, a synchronisation initiated from B is bounced back

from D. When C receives a notification message back from D, it can detects that there is a loop

and the two ends of the loop are B and D. Since the message contains each device’s address infor-

mation, C can contact B and D to resolve the conflict.

Even though this method does not require any control information transfer, it still has its disadvan-

tages. The main disadvantage of this method is that the conflict resolution process in this method
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Figure 6.13: Using Notification Message to Solve Bouncing Effect 1
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Figure 6.14: Using Notification Message to Solve Bouncing Effect 2

requires the two end of the loop to be present when the loop is detected. If one of them has al-

ready disconnected, the conflict cannot be resolved correctly. On the other hand, since the direct

synchronisation control information process transfers information required for conflict resolution

from one device to another, there is no needs for the device that originates the conflict to remain

in the event distribution tree, which is probably more suitable for a wireless ad-hoc environment.

• Another method for preventing the bouncing effect while not directly transferring control informa-

tion is to use a synchronisation counter. The idea of this method is to allow less synchronisation

precision but to prevent issues occurring from direct information transfer as discussed in 6.3.4.1.

The synchronisation counter can be implemented in the middleware level tuple that encapsulates

an application level tuple. Each time a tuple wins an identity clash, the counter is increased by

one. Each time a synchronisation path is going to be reversed (detected by checking the immedi-

ate preceding path of a synchronisation notification message), the counter in the two tuples being

in conflict are compared. The tuple that has higher synchronisation count wins the conflict.

The synchronisation counter prevents any bouncing effect but does not need synchronisation con-

trol information to be transferred or connections to devices at the two ends of the bouncing loop.

However, since it simplifies the information it uses to prevent the effect, it cannot guarantee that

every synchronisation happens as it should have, using synchronisation control information. There
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will be cases where a tuple from a device with lower priority wins over a tuple from a device that

has higher priority, if the lower priority tuple is propagated through the event distribution tree us-

ing a path with a higher number of low priority devices while the tuple from a device with higher

priority is propagated through a path with a lower number of devices.

Nevertheless, the counter itself is a good representation of the tuple priority because the counter

can be increased only if the tuple wins a conflict, which shows that the tuple is from a device that

has higher priority. A tuple with a high count will be a tuple that comes from a path that has a

device with high priority.

6.4 Conclusion

This chapter contains a discussion of the synchronisation process in the JSFM. The JSFM supports both

uniform policy and multiple policies synchronisation processes. The uniform policy synchronisation

process is simpler, synchronising tuples from different devices but using the same set of policies. In this

case, the middleware can assume that the two devices agree on every synchronisation result and there is

no need for the middleware to detect any conflict from the policies.

However, allowing users to define their own policies for their devices gives more flexibility to an

application operating on the JSFM. Users using the same application may have different ideas about how

their information should be synchronised. A good example is an application in an organisation structured

into sub-divisions where each of them defines different synchronisation policies.

The JSFM suports multiple policy synchronisation by dividing the process into two main parts -

policy conflict detection and policy conflict resolution. Even with the two processes, the JSFM still

needs to rely on an assumption that at a some level there exists a uniform policy for any two devices. The

synchronisation process fails if the two devices cannot agree on a single action for a particular tuple.

Furthermore, using the multiple policy synchronisation process costs more than the simple synchro-

nisation process. The process needs the remote device to be involved in conflict detection and requires

time for the higher level policy to resolve policy conflict in the lower level. These extra costs need to be

considered when a decision on whether the JSFM is suitable for a particular application is made.

The cost of the two synchronisation processes is shown in chapter 7.
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Chapter 7

Performance

7.1 Introduction

The previous chapters have explained the architecture of the middleware and its policy engine. The next

step is to show the performance of the system by putting the system through a number of tests. This

chapter contains tests for several parts of the system.

Apart from the test results, each section in the chapter also contains a discussion concerning the test,

including an explanation of the nature of the results. The information in this chapter helps in determining

if an application can function properly with the middleware.

The chapter is divided into five sections. The first section contains tests relating to the access time

for each space interaction. The second section determines the average tree building time between two

devices. The third section contains tests of the synchronisation process between devices with a similar

set of policies, while the fourth section contains the same kind of test but between devices with different

sets of policies. The last section makes an estimation of a tuple propagation time in a number of situa-

tions. Calculated estimates and simulation are used because it is not practical to do these tests in a real

environment.

7.2 JSFM and JavaSpace Access Test

This section contains basic information from access time measurements of the JSFM and of a normal

JavaSpace. The access time is the amount of time for a space to act upon one access command from a

user. The test shows results for the three most commonly used space access commands - read, write, and

take.

The reason for the test is to show that even though using the JSFM increases the access time for each

space operation, it is still possible to use the JSFM in simple non real-time data sharing applications. The
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first sub-section explains how the test was done and the second sub-section shows the results of the test

and gives an explanation of the results.

7.2.1 Access Test Set Up

All of the tests are done on a simple 2.5 GHz desktop machine with 512 MB of memory. The space

service used is the Jini JavaSpace service version 2.0.001. The JavaSpace used is the persistence version

which stores its tuples on the machine’s harddisk instead of using the machine’s memory. This is to allow

tuple data to persist after the space is terminated.
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Figure 7.1: Write Test Result

The JavaSpace access test was done by building a simple program that repeatedly uses a specific

space command on a local space with a wait interval between each attempt. The test program first writes

one hundred tuples into the local space. Then, it reads a random tuple one hundred times. Lastly, it takes

each tuple out of the space.

Each access is timed using a clock package provided by Prof. Peter Linington [Lin06b]. This package

uses the processor clock to obtain a high resolution time in microseconds. The test system calls the clock

interface to obtain the time just before each space access and just after the access. The times are kept in

an array and are saved after the test is finished.
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The same kind of test was done using the JSFM. Another simple program was created to access a

space through the JSFM. This program is similar to the program used for testing the JavaSpace. It uses

the same test process with the same type of tuple and the same clock package. The only difference is that

the second test program accesses the JSFM instead of using the JavaSpace directly.

7.2.2 Access Test Result
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Figure 7.2: Read Test Result

Figure 7.1, 7.2, and 7.3 show the results of the testing process. The JSFM takes more time in order

to process the three space commands because:

• The JSFM has a larger tuple size to accommodate extra information which it needs to do the

synchronisation process. The JSFM encapsulates an application tuple into an InMessage tuple

containing the required information. Moreover, during each access, the JSFM has to write or

edit basic context information regarding the tuple that is accessed. This increases the amount of

information being transferred during each command.

• During a single JSFM space command, there are a number of interactions between the JSFM and

the local space. For example, a take command from the JSFM is done by taking the actual target
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Figure 7.3: Take Test Result

tuple, writing a command tuple, and writing a tombstone tuple. The two latter tuples are written

to allow the JSFM to do any synchronisation process properly.

JSFM Access Command Number of Write Number of Read Number of Take
Write 3 0 1
Read 1 1 0
Take 3 0 2

Table 7.1: Number of JavaSpace Commands Used In a JSFM Access Command

Table 7.1 shows the number of JavaSpace commands used in each JSFM access command. The extra

JavaSpace commands are used to alter information needed for the JSFM synchronisation process. For

example, in the JSFM “write” command, three JavaSpace “write” commands are used to write a tuple,

write its context information, and write an updated CSL tuple. The JavaSpace “take” command is used to

remove the old CSL tuple. The JSFM “read” command needs one JavaSpace “write” command to write

an extra context information showing that the tuple has been accessed and the JSFM “take” command

uses three JavaSpace “write” commands to write a command tuple, a tombstone tuple, and an updated

CSL tuple. Two JavaSpace “take” commands are used in the JSFM “take” command to take the targeted

tuple and the local CSL tuple. Table 7.2 shows an average access time using the JSFM compared to an
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Access Command JavaSpace STDEV JSFM STDEV Calculated
Access Time(ms) Access Time(ms) Access Time(ms)

Read 5.0 2.4 60.6 11.8 61.9
Write 56.9 14.2 218.6 37.1 222.1
Take 51.4 13.6 267.6 58.9 273.5

Table 7.2: Average JSFM Access Time

average JavaSpace access time and a predicted result taken from using the JavaSpace access time and the

number of accesses given in table 7.1.

The average CPU usage can be used to show that the process depends largely on disk access time

and does not saturate the CPU time. By removing the wait period between each access test, an average

CPU usage can be determined. Table 7.3 shows an average CPU usage during an access test without any

wait period. This means accesses are done consecutively one after the other. This test, therefore, shows

the maximum amount of CPU usage by the JSFM access commands.

JSFM Access Command CPU Usage (Percentage)
Write 45-50
Read 65-75
Take 35-45

Table 7.3: CPU Usage for each JSFM access command

Even though it takes more time to interact with a space through the JSFM than accessing the space

directly, the time taken by each command is small enough for a simple application to operate properly.

The difference between the access times are in the millisecond range. Depending on the characteristics

of an application, this difference may not affect a non time-critical application with limited data access

significantly.

7.3 Tree Building Test

The tree building process builds a tree link between devices when they connect to each other. The process

is initiated as soon as a new device moves into the area where there is a group of connected devices.

The reason for doing this test is to determine the minimum amount of time a device has to stay in

the same area before a synchronisation process can be started. This is because a network connection

with another device has to be established before a device can synchronise. Then, the Jini service registry

situated on each device, detecting references to the other Jini services, notifies the JSFM to start building

the tree link. After the process is finished, the synchronisation process can begin.
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7.3.1 Tree Building Test Setup

The test process measures the time between a core node receiving a notification from its registry service

that a new device is in the area and the link being established so that the event distribution layer signal

the policy engine to start a synchronisation process. More detail of the tree building process is in 4.3.3.

To make the test simpler, one device is selected to be responsible as a core node and the other device

acts as the normal node. The JSFM event distribution layer on the normal node is edited so that it will

never change into a core node; the measurement is done on the core node. The test uses the same clock

package as in the previous test. The machine used as the core node is the same machine described in

7.2.1. The normal node machine is a 2GHz laptop with 1 GB of memory connecting to the core machine

using the IEEE 802.11a wireless network via a base station.

7.3.2 Tree Building Result

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

Time (millisecond)

F
r
e
q

u
e
n

c
y

Figure 7.4: Tree Building Test Result

Figure 7.4 shows the result of the tree building test. The tree building process depends heavily on

the time between the keep-alive messages periodically sent from the core node. This makes the result

fluctuate. For example, to establish a proper tree link after a network connection is established, the

normal node has to wait for the next keep-alive message propagated from the core node so that it can
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determine where in the event distribution tree it should create a tree link.

The average time for a tree building process is eight seconds (8.38 seconds). However, this depends

on the interval between keep-alive transmissions. By varying the amount of time between keep-alive

transmissions from the core node, the amount of time needed to build the tree link can be changed.

The test was done for four different sending periods - 2500, 5000, 7500, and 10000 milliseconds.

The average result of each period is shown in table 7.4 and plotted in figure 7.5.
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Figure 7.5: Keep-Alive and Tree Building Time

Reducing the time between keep-alive transmissions can reduce the time needed for the tree build-

ing process. However, reducing the time also has its disadvantages. For example, reducing the time

means more keep-alive messages are sent during any particular period of time. This situation can lead to

flooding the network with these messages which defeats the propose of creating the distribution layer.

Moreover, more keep-alive sending means there are more interruptions to the JSFM, which can cause

other processes to slow down.

The tree building time can be reduced to six seconds using two and a half seconds between each

keep-alive transmission. Lower tree building times can be achieved by reducing the keep-alive period

further but the effect seems to become less. In figure 7.5, the line intercepts the Y axis at around 3

seconds. Therefore, the least amount of time the middleware needs to establish a tree link is about three

seconds.
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Keep-Alive Sending (MilliSeconds) Tree Building Time (Seconds)
10000 17.7
7500 12.5
5000 9.0
2500 6.1

Table 7.4: Keep-Alive Sending and Tree Building Time

7.4 Simple Synchronisation Time

This section contains the result of a simple synchronisation time test. The reason for this test is to es-

timate the minimum time needed for a synchronisation process to complete for a single tuple. With the

information from this section and the information from 7.3, an estimate of the time the whole synchro-

nisation process takes can be calculated.

7.4.1 Simple Synchronisation Test Setup

To get the lowest synchronisation time for a tuple, the simplest synchronisation process is required.

Therefore, this test uses a synchronisation where an extra tuple exists on one device but does not exist

on the other device. The policy used in this test is to transfer an extra tuple from one space to the other

space with no constraint.

The test is done by using a simple program that keeps writing a new tuple into the space. However,

after each write, the program sleeps for three seconds to make sure that the other device finishes its

synchronisation. This is to prevent tuple updates from interfering with one another during the synchro-

nisation process.

The time measurement starts from when the policy engine receives a request from a synchronisation

object for a decision about a tuple. The measurement ends after an action from the policy engine is pro-

cessed by the synchronisation object and the basic context information for the tuple has been transferred.

7.4.2 Simple Synchronisation Test Result

Figure 7.6 shows the time the Policy Engine takes for a simple synchronisation process. The average

time is 250.7 milliseconds or around 0.25 seconds. However, this is the least amount of time for a

synchronisation process for a single tuple. As a comparison, figure 7.6 also shows the result for a more

complex synchronisation process where there is identity clash, which take approximately 0.4 seconds

(391.7 milliseconds).

This second result is obtained by simply writing a tuple with the same identity to a space. During

the synchronisation, the policy engine finds out that there is a conflict and uses the appropriate policy to

solve the problem. In this case, the policy constraint uses context information about the time when the

tuples were written and gives precedence to a tuple that was written later. The conflict situation takes
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Figure 7.6: Simple Synchronisation Time

more time because the policy engine has to access the context information used in the constraint which

involves more data access from both the local and the remote space.

From the information obtained from these tests, an estimate of the minimum time that a device has

to stay connected can be obtained. For example, on average, if a device normally has a back log of 50

extra tuples each time it builds a connection, it will take approximately 20 seconds(8 + 50 x 0.25) to

finish its synchronisation process. This information can be used to determine if the JSFM is suitable for

a particular application or not.

For example, without any performance tuning such as keep-alive time adjustment, the configuration

would probably not be suitable for an ad-hoc mobile network between passing cars but it should be

feasible for the meeting sharing application where users are walking about in an office building.

7.5 Multiple Policies Synchronisation Test

The multiple policies synchronisation test is to show that it is possible for the middleware to support a

situation where different devices have different sets of policies. Furthermore, even though supporting the

feature increases the amount of time the process takes, it is still possible to use it in some applications.
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7.5.1 Multiple Policies Synchronisation Test Setup

The setup of this test requires the synchronisation process of the middleware to be changed. The changes

are in three parts - policy conflict detection, policy conflict resolving, and context and policy transfer.

The conflict detection process is done using a result comparison. The Policy Engine gathers information

regarding to a synchronisation for a tuple and sends it to an engine on another device participating in the

process. A policy conflict can be detected from the results obtained from the local and remote engines.

Conflict resolving is done by using a decision from a higher level policy. Results that lead to a policy

conflict are stored in stacks and will be chosen by the higher level policies. For example, if the higher

level policies choose to give precedence to local policies, the result from the local stack will be used. The

process is done recursively until it reaches the first level policy. However, in this test, the setup is done

so that the conflict from the first level policies can always be resolved by using the second level policy.

The last change is in a context transfer. Instead of only transferring context information regarding

the tuple, the policies from the tuple origin are also attached to the tuple. The policy files are kept in

a middleware level tuple with a list indicating policy names for each policy level. This information is

used for later synchronisation between more distant nodes in the tree. More information regarding the

multiple policies synchronisation process is in 6.3;

The actual synchronisation process and timing are done as in the single level synchronisation conflict

test discussed in the test result section for simple conflict synchronisation. The timing starts when a

device receives a notification for a new tuple from another device and ends when all the context and

policies are completely transferred.

7.5.2 Multiple Policies Synchronisation Test Result

Synchronisation Type Average Synchronisation Time (MilliSeconds) STDEV
Simple Sync 250.7 29.3

Conflict Sync with No Remote Check 391.7 58.5
Conflict Sync with Remote Check 887.9 110.9

Two Level Policy Conflict 1193.5 154.5

Table 7.5: Average Synchronisation Time Comparison

From the result shown in figure 7.7 and Table 7.5, merely adding a result check from a remote Policy

Engine increases considerably the amount of time the synchronisation process takes. This is because

with the remote checking process, the Policy Engine spends more time preparing for the synchronisation

and then it has to wait for the result from the remote device for comparison.

However, adding a policy conflict does not increase the synchronisation time as much as adding the

remote checking process. Each synchronisation conflict adds another synchronisation to the process in

order to solve the lower level policy conflict. The result shows that the fixed cost for the process is larger
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Figure 7.7: Two Levels Policy Conflict

than the cost for adding another synchronisation and it is possible to increase the level of the policy

conflict further without too large an increase in the synchronisation time.

The reason why adding another synchronisation is not as costly as the first one may come from the

fact that there are several objects that the Policy Engine can reuse from the first synchronisation. For

example, some context information required for the second synchronisation can be reused.

It is also possible to reduce the time for the second synchronisation further by not sending information

that has already been transferred during the first synchronisation. However, if this is done, the receiving

device needs to store remote information in its Policy Engine, which prevents the Policy Engine from

being stateless. Storing remote information makes the engine more complex and creates a possibility that

information from different devices might mistakenly be used during the remote decision making process.

For comparison, the simple synchronisation in 7.4.2 needs approximately 20 seconds to synchronise

fifty extra tuples. The engine needs 28 (8 + 50 x 0.4) seconds to synchronise conflicting tuples without

enabling a remote decision making process. It takes 53 (8 + 50 x 0.9) seconds to synchronise if the

remote checking process is enabled. In the case of a policy conflict, the engine takes 68 (8 + 50 x 1.2)

seconds to complete the two levels policy conflict synchronisation process.

Therefore, it is possible for the JSFM to support multiple policies synchronisation even though the

feature has its cost. On average, the cost of the process will double the middleware’s synchronisation
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time. It can still be used in a scenario where users stay in the same area for a certain amount of time.

7.6 Estimated Tuple Propagation Time Calculation

Another element that will affect performance of the middleware is the time it takes for a new tuple to

be propagated from one side of an event distribution tree to the other side. There are several factors that

can affect the tuple propagation time. For example, different types of synchronisation processes require

different amounts of time. If the new tuple is an extra tuple with no identity clash, the process will

take less time that a synchronisation process with conflicting tuples or a process where there is a policy

conflict.

Moreover, properties of the distribution tree such as the maximum number of child nodes that a

node can support alter the propagation time. Ideally, the more child nodes a single node can support the

smaller the number of links the tuple has to be propagated over for the same number of nodes.

The tests in this section could not be set up easily. Therefore, a calculated approximation will be used

to show the performance of the system. For this approximation, we assume there are one hundred nodes

already in an environment and a new node enters the area, and that the distribution tree configuration for

the devices is altered for each test case. The duration for each activity such as synchronisation times, are

obtained from the tests in the previous sections. The value obtained from these approximations can give

an idea of how long the update of a tuple takes to reach all the user in the environment, in typical and

extreme cases.

7.6.1 General Propagation Scenario

New Node

Figure 7.8: General Multicast Tree Setup

This section discusses the synchronisation time in a general situation assuming that a well-formed

distribution tree exists and the new node connects as a new leaf node to the tree. To find the time, two

main calculations are required. The first is to find how many synchronisation processes need to happen

to carry a tuple from a new node to every other node. However, simply finding the number of branches
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in a tree is not enough because after the new information reaches a node with more than one child node,

a number of synchronisation processes are overlapped with each other.

The simplest way is probably to start by finding the number of levels in the tree. Every node in the tree

will connect to the lowest level (as near to the root node as possible); this is managed by the middleware

event distribution Layer. The level of the tree can be calculated by doing a simple calculation.

Number of nodes ≤
L−1∑

i=0

ci (7.1)

“c” is the maximum child size for a node and L-1 (Level - 1) is the smallest number that makes the

right hand side of the equation higher than the number of nodes. The number of synchronisation steps

excluding synchronisations that are overlapped can be estimated using the equation 7.2. Note that this

number is not precise because it also depends on the direction in which the node chooses to send its first

notification message.

Number of Sync = (Level ∗ 2) (7.2)

The next step is to estimate the time for each synchronisation process based on different types of

synchronisation.

Average Sync T ime =
n∑

i=1

synctimei ∗ probi (7.3)

The average time is calculated from a synchronisation time for each synchronisation type multiplied

by the probability that the type of synchronisation is going to happen. The total synchronisation time can

be estimated by using the number of synchronisations and the average time.

Total T ime = Number of Sync ∗ Average Sync T ime (7.4)

For example, in the case above, there are one hundred node in the environment. Assume that each

node’s maximum child size is four, the tree will have four level (1 + 4 + 16 + 64 + 256). Assume that

there are two types of synchronisations as shown in table 7.6

Synchronisation Type Synchronisation Time (MilliSeconds) Probability
Conflict Sync with Remote Check 887.9 0.8

Two Level Policy Conflict 1193.5 0.2

Table 7.6: Synchronisation Probability

Replacing each “synctime” and “prob” in equation 7.3 with the information in table 7.6, the average

synchronisation time is 949.02 milliseconds. From equation 7.2, there are eight synchronisation pro-

cesses happen before the tuple is propagated over the tree. Therefore, The total from equation 7.4 is
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7592.16 milliseconds (8 seconds).

With the event distribution tree building period, it takes around twenty seconds for a device to start

building a tree link and to distribute a new tuple to all the other nodes.

However, this is only an estimate of the synchronisation time. The real synchronisation time is

probably different from the time shown here. For example, each synchronisations in different branches

may not be completely overlapped with each other because of the difference between the times they

receive notification messages. The synchronisation time may be reduced or increased if there is a conflict

that rejects the change, bouncing the tuple back.

Nevertheless, the result from the formula should be a good representation of the synchronisation time

which can be used in designing an application. Note that the node does not need to stay in the area until

the propagation process is finished because of the direct synchronisation control information transfer

discussed in 6.3.4.1

7.6.2 Worst Case Approximation Time

This second approximation gives an idea of the maximum propagation time to cover the one hundred

node in the area in the worst case scenario. The purpose of this estimate is to show the lower bound of

the system performance. Assume that the policy conflict level limit is two, and a new tuple causes an

identity clash and a first level policy conflict in every node. To calculate the worst propagation time, the

maximum child size for each node is set to one.

New Node100 Nodes

with 1 Child Size Limit

Figure 7.9: Worst Case Setup

In this case, propagation between pairs of nodes takes the longest synchronisation time. Moreover,

the tuple is propagated one hundred times to reach the farthest node since there is no overlapping between

each synchronisation because of the event distribution tree child size limit. The result will show the worst

possible time for propagating a tuple between one hundred nodes.

The result in 7.3.2 showed that a tree building process takes approximately eight seconds. This

process only happens once to connect the new device to the existing distribution tree. From the synchro-

nisation time test result in 7.5.2, it takes around 1.2 second to finish a synchronisation process where

there is a policy conflict. Therefore, an approximate time for the tuple to be propagated to every nodes
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in the area is 8 + (1.2 x 100) = 128 seconds.

New Node100 Nodes

with 1 Child Size Limit

Figure 7.10: Bounce Worst Case Setup

Finally, if the policies in the nodes were set up so that they bounce a tuple back and forth as shown

in figure 7.10, the time that is taken for the system to settle will be the worst tuple synchronisation time

which is

8 + (1.2 ∗ 100) + (1.2 ∗ 99) + (1.2 ∗ 98) + ...(1.2 ∗ 1) = 5948 seconds (7.5)

This is the worst case scenario which rarely happens unless it is intentionally set up. However, the

test shows that the performance distribution is long tailed and programmers that use the JSFM for their

projects have to think about the possibility that these cases can occur.

The two scenarios give an idea of the amount of time the middleware takes to stabilise the new tuple

in the event distribution tree and how long a node needs to stay connected to the tree. The estimation

does not cover all the cases that are possible. For example, in the best case, there can be no nodes

that can overrule the new tuple from the new node and thus no disconnection that prevents propagation

of the tuple. The node then only needs to stay connected to the tree for the time needed for the first

synchronisation step. This is because once the tuple is passed to a node in the tree, that node takes over

the responsibility to pass the tuple to the other nodes in the tree. The presence of the original node is not

required.

It is also harder to stabilise the tree where a node repeatedly disconnects and reconnects at different

places in the tree. In this case, there is a chance that the overlap between synchronisation processes will

not be as efficient as has been assumed earlier.

7.6.3 Tuple Propagation in an Unstructured Environment

The previous section estimated the system performance in an environment where a device is added into

an existing tree. All the devices in the environment are connected together to form a single tree. In this

case, the time for a tuple to reach every node depends heavily on the time to propagate a tuple between

tree nodes.
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However, there will be situations where devices cannot join the event tree because they do not stay in

the same area for long enough. In this situation, devices’ and the environment’s properties such as speed

or the area covered also affects the synchronisation time.

A B

Figure 7.11: MobiSim Screen Capture

This section shows results from a set of tests that illustrate how the middleware will behave in a

situation where devices are not completely connected but form many small trees. In this environment,

the characteristics of devices in an area and the way they move affect the performance of the tuple

propagation processes. The tests are done using a modified version of MobiSim - an ad-hoc mobile

network simulator built by Prof. Peter Linington [Lin07]. The test scenario contains a number of devices

in a toroidal area formed by linking each side of a square area to the opposite side. In each scenario,

a number of nodes representing mobile devices move at random in this area. One node is selected as a

device which creates an extra tuple that will be propagated to the other nodes. During each test, various

information such as the nodes’ average speed, the average connection and disconnection time, and the

time needed to propagate a tuple to other nodes are all collected.

Figure 7.11 shows screens captured from the simulator. It shows the ability to modify parameters of

devices and environment in the simulator. The circles show network coverage and each device in figure

7.11A has a wider range wireless coverage than the devices in figure 7.11B which leads to bigger trees

and so allows more synchronisation time and leads to higher chance of successful synchronisation.

Figure 7.12 shows the time for synchronisation to reach a different numbers of nodes. The graph

shows results from four tests on different sized areas and different number of nodes, specifically 100,

200, 300, and 400 nodes. Each node has a network diameter equal to fifty metres and moves at an

average of approximately 0.1 metre per second which is to represent an environment where devices are

moving at low speed. To be able to compare the results, each test area is made so that node density in
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Figure 7.12: Synchronisation time for different numbers of nodes

the four tests are equal. The test area size is shown in table 7.7.

Node Number Area (Square Metre)
100 1000 X 1000
200 1441 X 1441
300 1772 X 1772
400 2000 X 2000

Table 7.7: Node size and test area

The test shows that there is a certain period during which the tuple synchronisation characteristics

are not affected by the size of nodes in the area, as long as node density and other node characteristics

are equal. This is shown in the early section of the graph where the lines representing tests with different

node numbers and area sizes are nearly the same. This represents outward growth from the origin of the

change without effects from the closed nature of the space. Therefore, as long as a result is measured

before saturation can affect the test result, it can be used to compare a tuple synchronisation characteristic

of a mobile ad-hoc device in a way that is independent of node number and area size.
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Figure 7.13: The average connection time for different network ranges

7.6.3.1 Node Connection and Disconnection

This section shows the connection and disconnection characteristic of nodes in an ad-hoc network envi-

ronment. The first graph shows the average connection time for a node as a function of network range.

The average connection time could be compared to the amount of time the middleware takes to synchro-

nise a tuple in order to determine the success rate of the synchronisation process. Two types of average

connection time are measured - the first is by dividing the total connection time of a node by the number

of times the node is completely disconnected and the second is by measuring the average connection

time during which a node has a connection as peer to some other node. As shown in figure 7.13, The

average connection time measured by the first method is higher than the second method but both of them

are higher with devices which have larger network range.

The average connection time in the second method is generally lower than the first method because

it only measures a connection time between a pair of nodes while the first method measures the time

on a cluster basis. In a situation where a node is connected to two other nodes, and the connection

to one of the two nodes is broken, the first method still considers the node connected since it can still

connect to one of the two nodes whereas the second method measures the two connections separately.

The difference is larger with larger node sizes because there is a higher chance that nodes are connected

in a cluster compared to tests where node sizes are small.
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Figure 7.14: The average disconnection time for different network ranges

In a real scenario, the average connection time that should be used to predict the success rate of the

synchronisation process falls between the two measured types. The cluster method can be too optimistic

in the situation where a cluster is partitioned while a synchronisation is in progress between the two

resultant parts. This will cause the synchronisation process to fail. The pair method is pessimistic

because it only measures the time a node connects directly to the node containing the tuple, but aborts

the synchronisation even though an indirect path still exists. In this case, the synchronisation process

is not affected because the information can still be transferred via the link established through the other

nodes. The simulation checks the path for each pair of nodes at every step.

Figure 7.14 shows the average disconnection time for nodes with different network ranges. Increasing

the network coverage area significantly increases the chance that nodes will stay connected longer and

improve a success rate of a synchronisation.

7.6.3.2 Synchronisation Time and Node Speed

Apart from a network coverage area, the node’s speed is also one of the factors that affect the tuple

synchronisation. Figure 7.15 shows the time to propagate a tuple to one hundred nodes in an environment

where there are two hundreds nodes. The average speed of nodes in the tests is varied to demonstrate its

effect on the total propagation time. Each line in the graph gives the result for a different time needed to
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finish a single synchronisation step.
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Figure 7.15: The effect of speed on the synchronisation time

As shown in figure 7.15, in the case where the synchronisation is instantaneous, the faster each node

moves, the lower the time needed to propagate a tuple to one hundred nodes. This is because there is

more chance for each node to connect with the others, which leads to more chance of synchronisation.

However, this is not always the case in the other two lines. During the part with lower speed, the three

graphs are similar even though the times required for synchronisation are diverging. This is because

the average connection time between nodes is still greater than the time required for the synchronisa-

tion process. In the later part of the graph, the average connection time is lower when node speed is

higher, increasing the chance that the synchronisation process will fail, resulting in higher total required

synchronisation time. This situation causes the lines to separate because the tests with higher required

synchronisation time needs time to redo any failed synchronisation process.

The result from this section shows that node speed significantly affects the time used to propagate a

tuple in an ad-hoc environment. To be able to use the JSFM efficiently, the middleware synchronisation

time, especially the period between keep-alive sending, has to be adjusted to suit the users’ pattern of

movement. The aim is to reduce the chance that the synchronisation process will fail because there is not

enough time to finish the process during the connection window.
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7.6.3.3 Synchronisation of Tuples from Multiple Nodes

The previous sections showed results based on a situation where only one tuple is propagated to the other

nodes. This section, however, discusses the synchronisation characteristic when a number of tuples are

written by several different nodes. In this situation, a queue of tuples awaiting synchronisation is an extra

factor that will affect the time to propagate a tuple when more than one tuple is to be synchronised during

each connection between two nodes. A tuple queue will be generated when the rate at which tuples are

written is totally higher than the rate at which a synchronisation process is successful and the tuple can

be passed on.
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Figure 7.16: Multiple Tuples Synchronisation

During a particular synchronisation between a pair of nodes, the more tuples there are waiting for

synchronisation, the more time the nodes need to stay connected. If there is not enough time to finish the

synchronisation, some tuples will not be propagated. Figure 7.16 shows the effect of varying the duration

between generating of new tuples on the time needed to propagate a tuple to one hundred nodes in an

environment with two hundreds nodes. Contrary to the earlier test where only one tuple is propagated

in the environment, tuples are generated from different nodes which will generate queues during the

synchronisation. The size of the queue generated in this test depends on the rate at which tuples are

written and the rate at which the tuples are synchronised.

With a smaller period between new tuple generations, in the right hand part of the graphs, the total

119



time required for propagating a tuple rises steeply. This results from the effect of tuples queueing to be

synchronised. The graphs for different speeds have gradients that reflect the effect on propagating time.

Generally, when devices are moving at the higher average speed, they have less chance to finish their

synchronisations due to the lower connection time. This leads to the longer queues and a higher total

tuple propagation time. However, there is an exception which can be seen from the graph for the lowest

speed. The total tuple propagation time at that speed is generally higher than the results for higher speed.

This is because at the lower speed, tuple queues are minimal and do not affect the propagation time as

much as they do in the tests where nodes move at a higher speed, and the graph approaches a straight

horizontal line.

The left hand part of the graphs shows the total synchronisation time in a situation where tuple

generation rate is low and queues are minimal. It shows the behaviour of the system where the queues

are short, in which the total propagation time will be affected more by the node speed than the queue.

This is similar to the time to propagate one tuple as shown in figure 7.15. In figure 7.16, building a tree

link takes eight seconds and a tuple synchronisation takes three seconds which results in roughly eleven

seconds for a single tuple synchronisation. Therefore, the intercept for each line in the graph roughly

reflects the tuple propagation time in the line representing ten second required tuple synchronisation time

in figure 7.15. In this situation, the best performance can be gained by having nodes move at the optimal

average speed.

The result of this test shows that the tuple queue during the synchronisation process affects the time

needed to propagate a tuple to devices in a region and the effect is more relevant when devices are moving

at higher speeds. Because of this, the performance of the system depends more on the number of tuples

that are being changed in the region more than on the number of nodes in the region. The performance

of the system should be acceptable even in a situation where there is a large number of nodes, as long

as the number of nodes that generate the tuples or the rate at which the tuples are generated are small

enough for the average synchronisation queue length to be small. Additionally, to maintain the system

performance, the number of nodes and the rate have to be reduced when devices are moving at higher

speed.

7.7 Conclusion

This chapter shows the results of several tests to measure the performance of various parts of the mid-

dleware. The access time test gives an idea of how long an application or user has to wait for the data.

Different access commands take different amounts of time. In general, the JSFM takes more time to

process each of its access commands than a normal JavaSpace does. This is because there is more than

one JavaSpace Access command for a single JSFM Access Command in order to store the information

which allows the JSFM to support tuple synchronisation.
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The distribution tree building time gives the application designer an idea of how long a device has

to stay in an area for it to be able to start a synchronisation process. Together with the average synchro-

nisation time, this lets the designer determine if the JSFM can support an application. With the default

keep-alive time, a situation where the device does not stay in the same place for more than eight seconds

is not usable since the tree link will not be finished before the node leaves the area again.

The estimated tuple propagation time tests use the results of the initial tests to estimate the amount of

time needed for a tuple to be distributed over the whole distribution tree. This estimate gives an idea of

how adjusting the characteristic of the distribution tree significantly affects the overall synchronisation

time. Lastly, tuple synchronisation in an unstructured environment was simulated. The section shows

the characteristics of the synchronisation process in an environment where a number of small trees are

created. In this situation, other factors such as device’s speed and device’s network coverage can affect

the time needed to propagate a tuple.
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Chapter 8

Middleware and Policy Discussion

8.1 Introduction

The previous chapters introduced all the concepts and implementations that are used in the middleware

and its policy engine including the results of the middleware performance testing processes. From these

chapters, there are a number of issues that should be discussed in more detail. These discussions cover

points in the middleware building process - design, implementation, and testing - that required important

decisions to be made.

Each of the discussions gives an idea of the available choices in the processes, their advantages, and

their disadvantages. This chapter is divided into two main sections. The first section contains discussions

that are related to the middleware implementation and design process. The second section contains

discussion of issues concerning the policy and context information that is used in the middleware.

8.2 Middleware Design and Implementation Discussion

8.2.1 Application Requirement for a Virtual Space

There are a number of design decisions taken during the system building process, many of which affect

the types of application that can benefit from the system. This section discusses the unique virtual space

concept employed in this middleware, instead of looking at data in each space individually as is done

in a number of other middlewares, and how a data synchronisation process affects applications that can

profit from the system.

First of all, the concept provides an easy to use environment for writing general tuple space appli-

cations. It provides an environment that is similar to the environment that an application writer uses

when writing a tuple-space based application on a static network because the entire data communication

and most of the tuple synchronisation process is managed by the middleware. Therefore, an application
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that is currently used in a centralised static tuple space environment could be ported to the middleware

provided environment without many changes.

Together with information caching and tuple synchronisation, the unique virtual space view can be

extended over disconnected sub-networks. It is a simple idea for increasing data availability without

much involvement from a user. In this way, an application that requires remote information can be used

in the environment. However, the version of the cached information on a disconnected device is probably

not up-to-date. Thus, it is not suitable for an application that needs to make a decision based only on the

most up-to-date information.

Moreover, the virtual space concept means all information is shared among devices. Therefore, it

is suitable for an application in which the data access pattern is nondeterministic. However, the cost of

storing every piece of data means that it is not suitable for the application that store a huge amount of

data compared to the size of data storage on the device.

To provide the virtual space view, several underlying mechanisms have to be provided by the mid-

dleware, which increases the system complexity and reduces its performance. For example, the access

time for each space interaction via the middleware is roughly three times the space access time without

the middleware. Therefore, the system may not be suitable for a time-critical application.

Another main issue that affects the types of application is the time the middleware takes to synchro-

nise tuples, which affects the chance that the information from two devices will converge during a limited

connection period. From section 7.6, the middleware needs some time to complete its synchronisation

process, if there are a number of tuples to be synchronised.

However, synchronisation in the JSFM is divided into a number of synchronisation processes each

handling a single tuple. A disconnection will affect only the synchronisation process that is being done

during the interruption. The JSFM has to redo only the tuple synchronisation that was affected by the

disconnection. The processes that were finished before the disconnection are not affected.

The average connection time for an application that can use the middleware should at least be longer

than the average synchronisation time of the tuples the application uses. This will allow information

from two devices to converge as long as the rate at which new tuples are added to a space is lower than

the rate at which the devices can connect and finish their synchronisations.

8.2.2 Advantages and Disadvantages of Using Policy Control

Using a set of policies to control a synchronisation process makes the process more flexible. There are

two basic ways to do this. First, the system could allow a user to select from a pre-defined list of available

policies. Second, the system could provide an interface that receives policies written by the user. This

section discusses the costs and benefits from using the two ways.

For the first method, the middleware could provide a number of pre-defined policies that can be used

to control its synchronisation process. The selectable policies could be taken from the policies that are
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common and can be used in most applications, such as the policy that assigns tuple priority depending

on the time the tuple was written.

In the second method, the middleware allows a user to create his or her policies and specifies the

policies to be used. There is still a need, however, to limit what the user can express in term of the lan-

guage he or she can use, the context information that is available for making a synchronisation decision,

or the actions that are possible.

There are costs and benefits from using the two methods. For the first method, one of the obvious

benefits is that the system has a lower learning curve than the second method especially for users who

are not familiar with a policy language. Since this method allows the user to select the middleware

synchronisation mechanism from a list of available options, it is possible to present the choices in a way

that is easy to understand even to a user who has no programming knowledge.

Next, it is easier to create such a system because the method does not require a number of complex

components such as a policy compiler and part of the policy engine. Since there is no need to support the

policies that are created outside of the system, there is no need for the system to have a policy compiler.

Its policy engine can be less complex because it only has to deal with existing controlling mechanisms.

Moreover, the process makes it easier to resolve a policy conflict problem. Since the programmer

knows every possible policy that could be used in the system, he or she can define a mechanism that can

be used to solve the policy conflict problem for each type of conflict or each pair of control mechanisms.

Lastly, the system will be more efficient and its performance will be better. For example, policy

conflict detection will take less time since the possible conflicts and the mechanisms to resolve them

could be pre-defined.

On the other hand, the first method limits the user’s expressive power compared to the second method.

The system does not provide any way for a user to introduce a new control mechanism that may suit a

new application better than the existing ones. Even though a set of policies that can be used in most

applications may be offered, there is no way that they can cover every possible control mechanism. A

good example can be seen in 3.2.3 where data conflict in the taxi application could be resolved using a

number of different policies.

It is possible to increase the expressive power of the first method by increasing the number of choices

available to a user. However, this will increase the complexity and make it harder for a user to find and

choose the policy to be used, which defeats the intention of using predefined policies in the first place.

8.2.3 Synchronisation Event Propagation Layer and JavaSpace Communication

Service

After finishing a synchronisation process, the middleware needs to notify the other devices in the area

of the fact that a new tuple has been created. JavaSpace provides a number of communication services

that could be used for the notification process. However, this system does not employ these services.
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It creates its own synchronisation event propagation layer to do the task instead. This section explains

why the layer is required and why the middleware does not simply use the communication and event

notification services provided by the basic JavaSpace interface.

Without the propagation layer, the middleware could rely on the communication services provided by

JavaSpace. JavaSpace has a notification interface that allows a listener object to be registered which will

notify an application when a matched tuple is written into the space. Using this interface, each device

can register with the other devices in the area to receive a notification when a new tuple is written.

The most obvious advantage of using the interface is that the middleware does not have to spend time

building and maintaining the propagation tree. This greatly reduces the delay when a device enters an

area and establishes a tree link with the device in the area. As seen in the testing result in 7.3.2, the tree

building process takes a long time compared to the synchronisation process.

Next, the middleware does not have to constantly send and receive keep-alive messages used for

maintaining the tree. This frees up some network bandwidth and processing time. The size of this effect

depends on how often a keep-alive message is sent which can be adjusted in the middleware.

However, the system still chooses to have its propagation layer because it reduces the problems the

middleware could have if it simply used the interfaces provided by JavaSpace for its synchronisation

event propagation process. The main disadvantage of using the JavaSpace interface is that it is harder to

control and limit event propagation.

Originator

First Notification Set

Second Notification Set

Figure 8.1: A Multicast Storm Situation

An example of the control problem can be seen in a situation where devices in one group cannot

connect directly to devices in another group, but can connect to them using devices in a third group as a

bridge; this situation is shown in figure 8.1. The devices that act as a bridge are responsible for delivering
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an update message from one side to the other. However, since every device has to register with all other

devices, the notification messages from the bridge devices will also be sent back to all the devices on the

side that originates the message except the message origin. Moreover, the devices on the receiving side

of the bridge will receive redundant notification messages from every bridge devices they connect and

register with. The situation results in a number of wasted notification messages that have to be filtered

by the middleware.

Using the event propagation layer does not suffer from this problem because it creates a tree linking

between devices. The destination of the synchronisation propagation message can be controlled by the

propagation layer. Figure 8.2 shows a layout of the event tree that could be built in the same situation.

The number of notification messages is roughly equal to the number of tree links, which is less than the

number of messages sent in figure 8.1.

Even though the tree maintenance process uses network bandwidth for its keep-alive messages, the

bandwidth used in this way is small and constant. On the other hand, the broadcast storm in the first

situation could be more disruptive. The middleware still uses JavaSpace provided interfaces for the

actual tuple communication between devices because of their simplicity.

Originator

Synchronisation Event Propagation Tree

Figure 8.2: An Event Notification Sent via Event Tree
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8.3 Policy and Context Information Discussion

8.3.1 Event Types and Policy Body

The policy used in this middleware is divided into two parts - the event definition and the policy body.

The first part contains a definition of the type of synchronisation events such as a synchronisation where

the extra tuple exists in one space, or an event where there is a tuple identity clash. The policy body

contains the other elements of the policy such as the subject definition and the constraints. This section

discusses the benefits and some disadvantages of dividing the definition of policies in the middleware

into these two parts.

Dividing the policy this way makes it easier to read. A synchronisation event in the middleware is

usually composed of information regarding the tuple in the two spaces being synchronised and some

miscellaneous information. To write the whole information in the policy body makes the policy look

more complicated than it actually is. The dividing process allows us to use just an event name to represent

the event which makes the whole policy shorter and easier to read.

However, the benefit gained from the situation also depends on how well an event is named. The

benefit from the process will be lost if the event is not named properly. The name must convey the right

meaning from the event definition so that a policy writer does not have to look into its definition or risk

using the event incorrectly.

Next, the division of the policy allows the two parts to be reusable. Some time can be saved in

defining a number of policies, since an event needs to be defined only once to be used in several policies.

In the same way, this makes managing and modifying policies easier. If the definition of an event that

is used in a large number of policies needs to be changed, only one event definition has to be modified,

which will affect the entire set of policies that employ the event.

The entire definition of every event can also be changed by changing the file that is used as the event

definition. For example, in a situation where the system needs to be changed back and forth and there are

differences in the event definitions between the two versions, the user only needs to point the middleware

at the new event definition file each time the system is changed, assuming that the event names in the

two versions are similar.

Nevertheless, there are some disadvantages from the division, particularly if the system uses a small

number of policies and each is applied to a different event. The policy definition process will take a

little longer than defining the whole policy in one place. Next, as discussed earlier, the event name

becomes very important. There is a chance that a policy will be defined incorrectly because of the

misunderstanding of the event names, especially in the case where more than one person is responsible

for defining policies for a system.
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8.3.2 Conflict Detection Process and Tuple Identity Discussion

Conflict detection and resolution are the main processes that are performed by the middleware policy

engine. The middleware conflict detection relies on detecting tuples in different spaces that have the

same tuple identity. The conflict can then be resolved using a resolution process controlled by selected

policies. This section discusses issues concerning the middleware’s conflict detection and resolution

processes.

8.3.2.1 Conflict Detection Scope

To make the conflict detection process simple, the policy engine decides that there is a tuple identity clash

if, on the two spaces being synchronised, there are tuples with the same application level identity but with

different writer and sequence number fields, which is the middleware level information representing the

last device that modified the tuple.

There are two reasons why the process can detect the identity clash. First, from an application point

of view, a tuple is identified by its application level identity. An application accesses a tuple by using

its identity for the tuple space pattern matching process. If any two devices have tuples with similar

identities, they are either the same tuple or they are conflicting tuples.

Second, the difference in the middleware level information shows that there is a high chance that the

information carried in the two tuples is different, since the tuples are edited or created by two different

devices. This second fact shows that the two tuples, at least from the middleware point of view, are

different and their information was last modified by different devices.

In brief, the two notions show that the two tuples will be seen as the same tuple from the application

point of view but have been modified from different devices. This situation leads to a high chance of a

conflict between the two tuples.

However, the process does not take into account situations where the two tuples may still have similar

information which does not cause a tuple identity clash even though their middleware tags (the sequence

number and the writer) are different. This situation can occur if the two devices editing the tuples happen

to write the same information into the tuples and there will be no information conflict between them, at

least from the application point of view.

On the other hand, this situation will not occur if the process checks each field in the two tuples to

identify whether they are similar. In this way, an unnecessary synchronisation process between the two

similar tuples can be avoided.

However, the reason why the conflict detection process is implemented in this way is to reduce

its cost. Checking every application field in the tuples that have identity matches takes a lot of time.

Moreover, this process needs to be done every time there is a tuple identity clash. It is better to allow

an unnecessary synchronisation process if the two tuples are actually similar, which should not happen

frequently because the tuples are edited from two different sources, than to increase the time of every
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synchronisation process to check for a case that rarely happens.

Moreover, even in the case where the two tuples are similar from the application point of view and

there is no need for a synchronisation, there is still a problem of different context information that is

attached to the two tuples. The two tuples modified by different sources will always have different

context information such as the time they are modified, or the space that modified them, for instance.

The information may not be required for the current synchronisation process but it may affect the

result of the later synchronisation when there is an actual conflict. The conflict detection currently used

in the middleware does not have this problem because it always detects tuples as conflicting if they are

modified by different sources.

8.3.2.2 Tuple Identity Issue in Conflict Detection

As introduced in 5.2, there are a couple of problems that cannot be addressed in this type of detection

process. First, the process cannot detect some types of conflict. Since the process relies on precisely

matching identity fields, it cannot support a detection process between information identified by a range

of data that has a conflict in some of its parts.

Time is the first example of this. Consider a room booking application where users share their room

booking information using a room number and a booking period as the identity. There will be no problem

if users are only allowed to book a room at a specific period such as only at the start of each hour and the

booking period lasts for a predefined duration, such as shown in figure 8.3.

9.00 10.00 11.00 12.00 13.00

A

B

booked booked

booked

Detectable Conflict

Figure 8.3: Room Booking with Precise Booking Period

However, a problem occurs if there are no such rules in the room booking application because one

booking may cover a part of another booking. For example, if one user books a room between 9.30

to 12.00 and another books the same room between 10.00 to 11.00 as shown in figure 8.4, the current

conflict detection, which relies on matching the tuple identity, cannot detect the conflict.

A similar situation can occur in a number of applications that rely on more complex rules for detecting

conflict. The middleware does not provide an interface to resolve this kind of conflict because it is more

complex and will require a lot more user intervention than the current process. On the other hand, since
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B booked

non - Detectable Conflict

booked

Figure 8.4: Room Booking with Non Precise Booking Period

the detection process follows the tuple matching process, an application that requires more complex rules

for detecting conflict will find that the tuple matching process provided by the tuple space paradigm

cannot easily be used. For example, in the room booking application, if a user can book a room at any

particular time, the process of tuple matching in order to find the tuple will not be usable, since the

process also relies on the exact match of the query fields. To allow this kind of application to be usable

in the tuple space environment, the application needs to read the entire set of tuples (for example, using

“readAll()” command) and then use an application dependent search algorithm to find the queried tuples

after they are read from the tuple space.

To allows the conflict detection process, the middleware needs to provide an interface that allows a

user to tell the middleware how a conflict should be detected. This could be done using an extended

policy language that allows the user to specify the semantics of the process. This semantics would have

to be associated with each type of tuple just like the tuple identity.

The second issue concerning tuple identity in conflict detection is what happens if the identity of

a tuple is changed. Since the tuple identity is simply a set of fields in the tuple, there is no rule that

prevents an application from changing values in the fields. The conflict detection process implemented

in the middleware cannot support this kind of conflict.

An example of the situation can also be shown with the same room booking example. Instead of just

booking a room, there is a situation where a room number has to be changed. This could happens from

a change in organisational structure that changes how a room is labelled. In this case, the identity of a

tuple is changed while it is still meant to be the same tuple. However, the conflict detection process will

understand the tuple with the new identity as a new tuple and no conflict resolution process will happen.

Again, the middleware needs user intervention in order to solve the problem. The situation can be

resolved with the modifiable conflict detection policy discussed earlier. In this way, a user could modify

the middleware conflict detection for the room tuple to detect the situation as a conflict.

However, there are a number of issues that arise from using the process in this case. First, since the

new conflict detection process is introduced while the system is in operation, there is a need for a way to
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propagate the new detection process to the other devices to prevent a conflict between conflict detection

processes.

Second, there is a question of how this could affect the policies that are being used in the synchroni-

sation process. For example, should the changing of a tuple identity have a greater precedence over other

kinds of change and how could this be described in the policy. It would be unsatisfactory if the change

made to a room number is done by a low level officer with lower priority and so is always overwritten by

other users.

8.3.3 Context Information Usage in Synchronisation

To resolve a conflict between tuples, the middleware policy engine relies on context information attached

to the tuples to make its synchronisation decisions. However, since the process relies heavily on the

information, misuse of context information can create problems in the system. This section discusses

effects that can happen as a result of using the information incorrectly.

The usage of context information that in itself is not unique will eventually leads to the situation

where the middleware cannot resolve a conflict between tuples. Examples of these context information

are class of spaces and device type. It is better to ensure that the combination of types of context infor-

mation makes the information in an individual device unique. For example, two policies may be used in

a synchronisation process. The first policy may determine the process result using the class of device or

user information. This information is normally not unique. Therefore, a fail safe policy is used in the

case where the two devices being synchronised have the same class

It is possible to write such policy using a condition in the policy constraint. The second policy is to

be used only if the two devices belong to the same class, whereas the first policy is only used if they are

from different classes.

Figure 8.5 shows an example of the situation described above. A class of tuple is the main information

used for making a decision in “pol1”. “pol2” is a fail safe policy using the time when a tuple is written to

determine a synchronisation result. The combination of tuple class and written time information should

solve most of the cases.

Without using any context information at all, some simple policies can cause problems. For exam-

ple, a policy that always gives precedence to a remote device or to a local device will not make the

synchronisation process possible, especially in an environment where the policies on every device have

to be similar. The process will result in the two spaces either exchanging their conflicting tuples or doing

nothing.
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inst oblig pol1
{
     on                             Sync_BothSide
     subject  <space>     s = /space;
     target    <tuple>        t = /tuple;
     do                             s.replace();
     when                        /tuple -> exists(t1, t2 | t1.localtuple = true and
                                                    t2.remotetuple = true and 
                                                    t1.class < t2.class);
}

inst oblig pol2
{
     on                             Sync_BothSide
     subject  <space>     s = /space;
     target    <tuple>        t = /tuple;
     do                             s.replace();
     when                        /tuple -> exists(t1, t2 | t1.localtuple = true and
                                                    t2.remotetuple = true and 
                                                    t1.equalclass(t2.class) and
                                                    t1.writtenBefore(t2));
}

Figure 8.5: An Example of Proper Policy Usage

8.3.4 Effect of Increasing Context information in Synchronisation

The decisions made during a synchronisation process by the middleware policy engine depends on the

policies that control it. In order to make the right decision, each policy compares the context information

attached to a tuple to determine which tuple will be preserved and which tuple will be deleted. This

section discusses the effect of adding more context information for use during a synchronisation process.

New context information could be added to the middleware. The middleware provides interfaces that

help gathering information and keep it in a space. This extra information helps the middleware to support

more types of application or allows a user to be more flexible in designing his or her synchronisation

process to suit a particular application.

For example, the taxi service application does not require any more context information than simply

the time a tuple is created to make a basic decision. However, information about taxi location, speed,

and the average traffic flow in the area would help to make policies used in the taxi application more

adaptable and less prone to make the wrong decision.

However, increasing context information increases the amount of information that needs to be trans-

ferred during a synchronisation process. The context information for a particular tuple needs to be

attached to the tuple in the form of a linked context tuple. Every time a tuple is propagated from one

132



space to another, the context tuple must be propagated as well. This is to support the synchronisation

process when the tuple is in a space where it did not originate.

Moreover, more context information needs more storage. The context information is normally stored

in the form of a set of context tuples associated with the data tuple. Adding new context information

means adding another context tuple to be associated with each data tuple. Even though each context

tuple uses only a small amount of storage space, a large number of them may add up to a large amount

of space needed to store the context information.

Adding more context information may also cause a problem of consistency during the synchronisa-

tion process. Currently, this project assumes that every device has the same set of context information

available. Without this assumption, using extra context information may causes the policy engine to

make a wrong decision or cause an error if the policies being used are not written to cover the situation

where a participant may not have the required context information.

8.3.5 Policies Customisation Discussion

The aim of customisation of policies in individual devices is to allow a user to have control over his or

her own device. However, even though the idea increases the system flexibility, it also has a number of

costs which are discussed in this section.

The section discusses the advantages and disadvantages of implementing a synchronisation process

using multiple policies in the middleware. It is divided into two parts. The first parts discusses the costs

and benefits of allowing event types to be customised. The second part discusses the advantages and

disadvantages of using multiple sets of policies in different devices.

8.3.5.1 Event Type Customisation Discussion

The policies used in the middleware are divided into two parts. Ideally, the system should allow both

the two parts to be customised by each individual user. Event type customisation would allow a user to

create his or her own event definitions.

However, this project does not cover this point because it would add a lot more complexity to the

system. Since the policy to be used for tuple synchronisation is initially determined by the event type,

the process assumes that the meaning of the event is similar in every device.

With this assumption, the two devices being synchronised will select their policies using the same

synchronisation type. If a device is allowed to modify its event definition without notifying the other

devices, the decisions made by their policy engines may diverge.

This is because for multiple policies, the synchronisation process relies on one device sending syn-

chronisation information to another device, and using its decision to compare with the result of the local

decision to detect conflicts between the policies in the two devices. The event type is one of the pieces

of information that is sent during this process.
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There is also a problem if a device creates a new event definition without the other devices knowing

about it. In this case, the synchronisation process may not work properly because the space that receives

the event type does not have any information about the event and there is thus no policy associated with

it.

If event customisation is to be allowed, an event definition synchronisation process has to be created.

This process has to check the definition for each event used in a synchronisation process and make sure

that their definitions are synchronised before the tuple synchronisation process is started.

The event synchronisation process may, as a result, also require another set of policies to resolve any

event definition conflict. This may in turn lead to another set of policy conflicts, if the policies used to

resolve the event conflict are themselves different between devices.

Event Definition 
Conflict Detection

Event Definition
Conflict Resolution

Tuple Conflict Detection

Tuple Conflict Resolution

Current Synchronisation 
Process

Event Definition Synchronisation
Process

Event 
Policy

Policy

Figure 8.6: A Synchronisation Process with Event Customisation Enabled

As shown in figure 8.6, to enable event customisation in each individual space, the event definition

synchronisation process must be done before the current synchronisation process can operate. The cost

of the new process may be as high as the current process because it again requires both conflict detection

and resolution. This situation will double the cost of the middleware synchronisation process, which

may outweigh its benefits.

8.3.5.2 Effects of Multiple Policies

Even though the middleware does not support the individual customisation of event definitions, it still

supports a synchronisation process where each device has a different set of policies. With this process, a

user can create, modify, or delete a policy on his or her device without a need to notify any other users.

The synchronisation process is responsible for detecting any conflicts that happen between policies, and

for finding a resolution of them. More details about the process are given in section 6.3.

Allowing a user to define policies for his or her device gives a greater sense of control to the users
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than setting the same set of policies for every device even if the policies defined are changeable. This

also increases the system flexibility and allows interactions between users with different policies.

For example, users from different divisions in the same company may access the same application

but use different policies for data synchronisation. The multiple policy support allows the users in the

two divisions to create a virtual space even though the policies on their devices are different. Without this

support, one of the two divisions needs to change its policies to the set that the other division currently

uses before they can interact.

However, the multiple policies mechanism greatly increases the complexity of the middleware policy

engine. A number of processes have to be added to the engine such as policy conflict detection and

resolution. These added processes have a significant impact on the performance of the middleware.

The results from the synchronisation testing presented in 7.5.2 show that the process needs more

than double the time needed for the simple synchronisation process. This situation reduces the number

of applications that the middleware can support, especially disadvantaging applications where the devices

are moving at higher speed. Next, the multiple synchronisation process makes it more complex to define

policies for an application, since a higher level policy for resolving conflicts between the lower level

policies also needed to be defined. There is also a need, at some levels, to create a policy that can always

resolve a policy conflict.

Moreover, the more levels of policies exist in the system, the more chance there is that the system

will take a longer time to finish the synchronisation of a tuple. The system administrator needs to decide

how many levels of policies can be modified by users, weighting the users’ freedom against the cost of

the synchronisation process.

8.3.6 Synchronisation Policy Discussion

Even though the Ponder language is used to control the synchronisation process in this project, it is not

a tailor-made language for the process. The language is designed so that it can be used in different

areas which makes it impossible to satisfy every requirement from each area. This section discusses

example features that could be added in order to make a policy language that is more suitable for the

synchronisation process.

First of all, it is not easy to define what could and could not be expressed in a policy using the

language. For example, one action may be useable in a particular application but might not be understood

by others. An unwanted effect may occur if a policy contains an action that is not supported by an

application. It would be better to have a feature that allows a system administrator to limit available

actions that can be used in each application. The same could be done for the available subject, target,

and constraint sections. More discussion concerning this issue can be seen in the future work (9.2.4)

Next, tuple identity clash is one of the most important and complex issue in tuple synchronisation.

As discussed in 8.3.2.2, there are different type of conflict for different applications and another set of
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policies that is used to define how conflict is detected in each application is needed. Conflict detection

semantics should be written in a separate file which allows them to be reusable. The event type specifi-

cation file needs to contain the conflict detection process to be used for each type of tuple. This could be

specified in the same way the tuple identity is currently specified.

Another feature that might be useful in a synchronisation policy is to allow a writer to specify an

in-device policy priority. With this feature, the policy engine would always try to enforce the policy with

the highest priority first, so long as the current situation matches the policy constraint. If it does not, a

policy with lower priority will be used. The feature is not crucial but it makes specifying policy easier.

For example, it is possible to specify a set of policies that will check a tuples’ class and then a tuple’s last

written time if there is a policy conflict. However, it is harder to write these policies without knowledge

of which policy will be checked first. The addition of a priority section into each policy will make policy

ordering possible.

8.4 Conclusion

This chapter has discussed several issues in the design of middleware and policy systems. The first part

discussed application areas that could benefit from the system. The middleware tries to emulate the

unique virtual space environment that is generally used in a wire based tuple space environment. This

will allow a number of applications to be ported to the middleware without a lot of modifications.

The middleware synchronisation process determines if it is suitable for an application, especially

considering the time the middleware takes to finish the process. Therefore, the synchronisation process

is designed so that it can be broken up into several small steps so that a disconnection will interrupt just

the step that is being done.

The second section discussed options on how to use a policy to control the synchronisation process.

Two methods were raised as examples. Allowing a user to select a policy to be used from a list is easier

and more efficient. However, even though the option makes a synchronisation process simple, it severely

limits the flexibility of the process. This project chooses to provide an interface that receives policy files

from a user instead. The flexibility gained from it outweighs the cost of providing the service.

The next section discussed the benefit and cost of implementing the event distribution layer to replace

the notification service provided by JavaSpace. The new layer allows the middleware to control the

distribution of synchronisation events so as to reduce the broadcast storm problem that occurs if a simple

notification service is used. In most situations, this benefit outweighs its cost even though events will be

propagated from one device to another device which makes the propagation process slower.

Next, the chapter discussed the benefits and costs of dividing the policy into two parts - the event

type and the policy body. This makes the policy easier to read and easier to modify. The next section

discussed issues concerning tuple identity in a synchronisation process. It directly affects the system’s
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power in conflict detection because the process relies on values in the identity fields to determine conflict

between tuples. The conflict detection process was designed to be simple so that the synchronisation

process will not cost too much. The section discussed options that will make the process more powerful

and enables it to detect more types of identity clash.

The next section discussed how context information can be used to help the policy engine make syn-

chronisation decisions and the effects of increasing the amount of context information used in the system.

The more context information the middleware has, the more chance that its synchronisation process can

be tailored to match application requirements. A small amount of context information is enough to allow

it to do the basic synchronisation process in most cases but with more context synchronisation, it can

make decisions that are better suited to the situation.

The last section discussed issues concerning the synchronisation process in an environment where

there are several sets of policies in different devices. A more complex synchronisation process is required

to support such an environment. The section discussed the reason why the system supports only policy

body modification but not event type modification. The section also discussed the effects in term of

costs and benefits of providing a multiple policies synchronisation process which increases the system’s

flexibility but also raises the cost of synchronisation.
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Chapter 9

Conclusion and Future Work

The aims of this project have been to investigate how to provide an information synchronisation process

for a tuple space based application that is flexible enough to support a number of applications without a

user having to modify a system heavily to support each new application.

A policy language was chosen as the way to provide flexibility for the synchronisation process, since

it allows a user to modify the middleware behaviour without having to modify the system. A set of policy

files written by the user is stored in the system. When the synchronisation situation meets the condition

defined in one of the policies, that policy will be used to make a decision in the synchronisation process.

To make the right decision, a policy needs some information regarding the circumstance in which

the current synchronisation process takes place. Information relating to the tuples being synchronised,

such as the time they were written or their class, could be used. Likewise, information regarding the

surrounding environment can also be used. This context information, together with a policy, allows the

system to support a wider range of applications and allows its synchronisation process to be tailored to

suit a particular application.

Next, the project went further by trying to support an environment where different users are allowed

to apply different sets of policies to their systems. The environment gives users more freedom to choose

policies for their systems but creates a chance that there will be a conflict between policy decisions during

the synchronisation process.

The project chose to provide a multi-level synchronisation process that uses higher level policy sets

to resolve conflicts between lower level policies. Each user can define his or her high level policies but

this project still relies on the assumption that there is a single default higher level policy set that is agreed

upon between users.

To investigate the idea, the JavaSpace For Mobile Environment middleware has been created. It is

a tuple space based middleware that supports use of policy for its tuple synchronisation process. The

middleware provides a unique virtual space that extends the tuple space view to an ad-hoc sub network
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using information caching. The middleware synchronisation sub-system is controlled by a set of policies

that can make synchronisation decisions based on context information.

9.1 Conclusion

This project shows that it is possible to build a system that can support a wide range of synchronisation

options where the process is controlled by a set of policies written by users. Since different applications

have different ways to resolve conflicts in their information, it is hardly possible to provide a single

synchronisation algorithm that can support them all. Therefore, a system that is built to support such a

situation needs a way to adapt its synchronisation engine to different situations and new applications.

Using a policy is one solution to the problem. The policy language should at least allow a user to

define what action is to be applied to each synchronisation event and under what conditions. There are

other ways to achieve the same effect. A group of selectable choices and a controlling process using

a programming or natural language can do the same task. Each has its advantages and disadvantages.

Policy Languages seem to be the best way in terms of expressive power, the user’s learning curve, and

the implementation complexity.

The Ponder Language was the language chosen to be used in the middleware. It allows a user to write

policies by defining an action that will be undertaken when the condition in the policy is met, meeting the

requirements described above. However, since the language is designed to solve a range of problems in

various types of system, its expressive power is more than required for the middleware synchronisation

system. For this reason, one of the most important future work items is to prevent a user from defining a

policy that uses functions that are not supported by the middleware.

The middleware prototype built in this project has been used in a number of different synchronisation

situations by applying different sets of policies. With the middleware, it is easier to extend a tuple space

based application that is currently used in a static network so that it can be operated on a wireless net-

work. The system provides a communication and synchronisation sub-system, which reduces application

complexity.

One factor that affects the power of policies used by a synchronisation process is how much context

information is available during the process. Only a small amount of context information allows a policy

to support several types of synchronisation behaviour. However, increasing the context information

allows the policy to express decisions that may be more appropriate to the situation. Because of this, it is

better to create a system that allows a user to add or remove context information to support new policies

for new applications.

An environment where different users apply different sets of policies to their devices makes the

synchronisation process more complex. The synchronisation engine then requires extra functionality

that gives it the ability to detect any conflict between decisions made in different devices and allows it to
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reconcile such conflicts.

There are several ways that a policy engine can detect policy conflicts. This project chooses to

detect conflict by comparing decisions made by the engines on different devices. This makes the system

less complex than detecting conflict at a policy level by comparing policy files, even though it is less

powerful. A policy conflict reconciliation process is provided by using a set of higher level policies

to resolve conflicts that occur between lower level policies. This method is easy to implement but still

requires a certain level of cooperation between users to set up a high level default policy for use in cases

where a conflict cannot be resolved.

Furthermore, policies and context information associated with a tuple (synchronisation control infor-

mation) have to be sent along with the tuple, when it is transferred to another space. This is especially

important in an environment where different devices use different policies because it allows a tuple to

maintain the priority level given by its origin. However, the process of transferring the information can

be expensive. A less expensive but slightly less precise method has also been proposed in this thesis.

Even though the middleware can be beneficial for an application writer who wants to create a tuple

space based application in a mobile environment, there are costs in providing the synchronisation service.

First of all, there is still a learning curve for a user to learn how to write a proper policy. Next, the

application efficiency will be somewhat reduced compared to a basic tuple space service because of the

middleware overhead of providing its synchronisation sub-system information.

Moreover, the synchronisation cost increases when more flexibility in policy definition is given to the

user. For instance, the multiple policy environment allows each user to define policies on his or her local

device but the synchronisation process needed to synchronise tuples in the environment is more complex

and takes a longer time to finish than the simple synchronisation process.

The same trend will continue as more flexibility is added to the system. Customisable event def-

initions will allow a user to define a specialised event for his or her device but will increase the sys-

tem synchronisation process complexity to support the differences between devices’ events during the

synchronisation process. Therefore, this synchronisation cost has to be taken into account before new

features that make the system more flexible and convenient are added.

9.2 Future Work

9.2.1 Increasing the System Performance

Since the prototype is built as a proof of concept, its performance may not be as good as a general

commercial product. The system efficiency is mainly based on three sets of operations - a space access

operation, an event tree building process, and a synchronisation process. Increasing the efficiency of the

three operations will help in improving the system performance which will allow it to be used in a wider

set of applications.
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The space access time depends largely on the number of accesses needed for one command and the

storage access time. The only improvement that could be done in this area is to reduce the number of

times the middleware needs to access the JavaSpace. However, it is rather hard to reduce the number be-

cause a number of interaction is required to save the support information used during the synchronisation

process.

A better tree building and maintaining protocol could be used in the synchronisation event distribu-

tion layer, and this could reduce the time it takes to create a tree link. The improvement in the process

would allow the middleware to be used the applications which have a short connection window, such as

applications operating in a car. Since the prototype can be divided into a number of layers, it is possible

to replace the entire event distribution layer with a new layer implementing a new protocol without many

changes to the other layers.

The synchronisation process that supports multiple policies has to rely on decisions from the remote

space. There is not much that can be done to improve the algorithm as long as a remote decision is still

required, since the network information transfer and the time the local device has to wait for the remote

decision is longer than the time it takes for the local system to make a local decision.

Another improvement that could be made to the middleware is to create a new tuple space service to

replace JavaSpace and Jini. First of all, they are not designed to be used in a mobile environment and

using them this way is inefficient. Next, they are designed to be operated on a well provisioned static

system, but the same level of available resources may not be available in a mobile environment.

9.2.2 Make the System Easier to Use

Currently the system requires some modification in order to allow new types of context information to

be declared to its policy engine. It is currently not easy as to add new information without recompiling

the system.

The system modification should allow the definition of new context information without the need to

edit the middleware source code. A user should only need to create a new Pol Obj (see 5.5.1 ) which is

an interface to the new context information. This will contain information such as the library calls that

allows it to be queried from a policy file. The synchronisation engine should be able to read the new

object and then modify its behaviour to support the new information without any intervention from a

user.

A similar case also applies to policy actions. A user currently needs to modify the middleware

source code to define new actions to be used in the policy action part. Even though the middleware

provides a set of primitive actions that are supported by the system, the process of putting together the

primitive actions to form a new action command to be used in the policy still needs a modification to the

middleware source code. Additionally, different applications will require different types of action and

some are not available. For example, an application may require the JSFM to notify it when the tuples
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that it wrote or the subset of the tuples has been accessed or removed. This kind of action is not hard to

add but still requires editing of the middleware source code.

Apart from the system modifications to support dynamic editing given as examples above, another

way to make the system easier to use is to provide a tool that can help users in interacting with the

system. Currently, the middleware does not provide any tool that helps a user in creating new policies and

notifying the system about them. A graphic user interface tool that helps in creating a policy, checking if

the policy will be compatible with the system (see 9.2.4), compiling it to a Java object class, and letting

the user declare the level of the policy, would make the process of interacting with the system easier.

Lastly, a debugging tool that allows a user or a software developer to see how their applications

behave in the system would help in the process of creating or modifying applications to be used with the

middleware. An example is the tool that reads and shows information of every tuple in a particular space.

This would allow an application writer to inspect results for each space interaction including the result

of a synchronisation process. This kind of tool has actually been used heavily during the middleware

debugging process.

9.2.3 Other Ways of Conflict Resolution

Currently, the system allows a conflict to be signalled if there are differences between the policies used in

the synchronisation process. The policy conflict resolution process will then be responsible for reconcil-

ing the conflict using a set of user defined higher level policies. This method is based on the assumption

that there is always a single set of higher level policies that are used to control every space in a particular

working environment. These policies are used to resolve conflicts that cannot be resolved by user defined

lower level policies.

Apart from this method, there is another way to control policy conflict between devices. A set of

default policies or policy can be used to suggest how a lower level policy is defined, which could be

another style of conflict resolution to be explored. Instead of letting a user write every policy to be used

in a local space, an application designer could attach a set of default policies to an application. These

policies would be suggested policies to be used in the application but could be overwritten by a user.

This suggested policies method represents another choice between the single policy set and multiple

policy sets approach, giving more flexibility than a single policy set environment and more chance of

avoiding policy conflict than the multiple policy sets environment. Processing a synchronisation that

does not have a policy conflict costs a lot less than a synchronisation with a conflict.

A suggested default policy such as defining that every device requires a policy that selects a tuple

from a device that is of higher class can be attached to a data sharing application. Some of the application

users may not change the suggested policy and data synchronisations between them will not cause a

conflict. Moreover, this suggested policy can be used by a user who modifies it to prepare for a conflict

to happen between his or her modified policy and users of the suggested policy. For example, a user who
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overwrites the suggested policy should prepare a higher level policy that could resolve the conflict.

9.2.4 Policy and System Compatibility

Since the Ponder language can be used to express policies that cannot be supported by the middleware,

one of the most important future work items is how to limit the expressive power so the user will not

define a policy element that may cause an adverse effect to the system. Currently, there is no way of

checking if a policy is compatible with the system. The current policy compilation process relies on the

Ponder policy compiler and its Java code generator to transform from a policy file to a policy object file.

In a simple example, a policy action that has not yet been incorporated into the middleware will

cause an incorrect synchronisation process. Since an action is simply a name in the Ponder language

compiler’s view, it is perfectly correct to define it in a policy. However, if the action has not been defined

in the middleware, a synchronisation process controlled by policies using the action will not do anything

because the middleware cannot understand the action. The same will happen if a user tries to write

other policy types such as a refrain policy or an authorisation policy. The synchronisation system is only

written to support synchronisation policies expressed as obligations.

It is possible to modify the compiler and the code generator to add this checking process. However,

the process has to take into account the fact that different devices may have different sets of policy ele-

ments. Therefore, the checking process needs to contain some levels of interaction with the middleware

so that it can check with the system at compile time whether each element in a policy is supported by the

local system.

In this way, a user will be notified before his or her policy is used in a synchronisation process.

However, this limits the utility of a policy to the local system. A user writing a policy for one device may

find it does not work correctly on another device that supports difference sets of policy elements. With

this compile time checking, a policy that is manually transferred by a user to another device may not be

checked there before it is loaded into the middleware.

Another method is to let the system check every policy object just before the policy is loaded by the

policy engine. The process can then notify a user about any policy that is not supported by the system

when it is installed. However, this checking process may require the middleware to be in operation in

order to do run-time checking and may need the synchronisation engine to stop processing other tasks

during the checking process.

This problem is closely related to the problem in 9.2.6. A problem still occurs even if a local device

can completely support local policies when the policies are transferred with a tuple to remote devices. A

way to transfer extra definitions is required in order to process the synchronisation correctly on a remote

device.
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9.2.5 Exploring Other Kinds of Synchronisation Problems

Currently, the project concentrates on synchronisation processes where each tuple is seen as a separate

piece of information. For example, a tuple that represents a room in a room booking application does

not have any direct relationship with the tuple representing another room. Using information in this way

makes the synchronisation process simpler because an effect of one synchronisation process is contained

within that process. Any action done on a tuple will not have a direct effect on another tuple.

However, in real life situations, a number of applications have pieces of information that are associ-

ated with other information. For example, a tuple that contains a result calculated from information in

another tuple will be affected if a synchronisation process makes the information in that tuple change.

If there is a disconnection before the result tuple is synchronised there will be data inconsistency in the

system since the result tuple will not reflect information from its related tuples.

With this kind of association between tuples, a synchronisation process has to resolve or at least

notify a user of the inconsistency between the information in the two tuples. Another way is for the

system to make sure that any associated tuples are always synchronised in the same connection period.

A further development of the middleware synchronisation process is needed in order to support this

kind of application. This requires more user involvement in preparing information for the system such

as notifying the middleware how a tuple is related to other tuples and what the middleware should do if

it needs to perform an action to one of the tuples.

A new tuple inconsistency checking and resolution process has to be carried out after a synchroni-

sation process. The simplest way could be to put synchronisation processes of associated tuples into

a transaction. In this case, if there is a disruption before the whole synchronisation transaction can be

finished, the entire synchronisation process will be rolled back. This process prevent any inconsistencies

between associated data from occurring in the first place.

However, implementing the system this way reduces the chance that a synchronisation process can

be done in a connection window, especially in an environment where the connection duration is short. To

make the process efficient, this may also involve a change in the middleware synchronisation operation,

which currently relies on the sequence number of a tuple. It will take a long time to finish a transaction

if one associated tuple’s sequence number is a lot lower than another tuple since the middleware pro-

cesses the tuples in a sequential order which heightens the chance that it will be terminated because of a

disconnection.

9.2.6 Supporting Differences in Context Information

The modification of the system to allow easier addition of new context information will entail more

issues. Allowing adding of context information gives more flexibility for a user to create a new syn-

chronisation policy but it makes the synchronisation process more complex because of the presence or
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absence of context information on synchronising devices.

If an individual user can add new context information to the system, there will be a situation where

synchronisation occurs between systems with different policies and their policies rely on different types

of context information. Since a synchronisation process only requires comparison between decisions

made from two synchronising devices, there is no need for a device to understand policies and context

information written to be used in another device. Therefore, the problem of extra context information

definition will not happen between originators of a particular policy.

However, if a tuple has a higher priority and is propagated to another device, policies and context

information associated with the tuple have to be attached to it and be propagated together with the tuple

in order to maintain the tuple priority (see 6.3.4.1). In this case, a device that obtains the tuple and

accompanied information may not understand the policies that use the extra context information. Since

the policy engine in the device cannot interpret the new context information, the synchronisation process

of the tuple will not be done correctly.

Apart from using the extra information in synchronisation, a device receiving the extra context in-

formation from a remote device will have to forward the information to another remote device together

with the tuple with which the information is associated. To do this, the device has to register that the

tuple has the extra context information that is not normally used locally and must remember to forward

the information.

Even though there are a number of features that can be added into the middleware, the current system

shows that policy can be used to control a tuple synchronisation process and the middleware can be used

to provide the process with a reasonable performance.
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