University of

"1l Kent Academic Repository

Pediaditakis, Michael (2006) Presenting multi-language XML documents:
an adaptive transformation and validation approach. Doctor of Philosophy
(PhD) thesis, University of Kent.

Downloaded from
https://kar.kent.ac.uk/86459/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.86459

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 09 February 2021 in order to hold its content and record within University of Kent systems. It is available

Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)
licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%200pen%20Access%20policy.pdf). If y...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/86459/
https://doi.org/10.22024/UniKent/01.02.86459
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

PRESENTING MULTI-LANGUAGE XML DOCUMENTS:
AN ADAPTIVE TRANSFORMATION AND VALIDATION
APPROACH.

A THESIS SUBMITTED TO
THE UNIVERSITY OF KENT AT CANTERBURY
IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY.

By
Michael Pediaditakis
September 2006

Abstract

XML addresses several HTML shortcomings, but its underdefined processing impedes
the development of adequate generic presentation models for the Web. Such models
must define the parsing, validation, transformation and rendering of multi-language
XML documents, according to a variety of adaptation requirements. However, most
existing approaches only define subsets of this functionality and do not follow the Web
design principles.

We hypothesise that generic document presentation can be achieved by utilising
the presentation domain constraints and addressing the document processing problem
as a whole.

This thesis focuses on the document preprocessing domain and supports our hypoth-
esis by proposing a preprocessing framework and the XMLPipe preprocessing model.
Document preprocessing is the document presentation subset that only addresses pars-
ing, validation and transformation. The preprocessing framework establishes the nec-
essary preprocessing functionality and enables the evaluation of XMLPipe. XMLPipe
utilises the presentation domain constraints to provide generic XML preprocessing.

XMLPipe consists of an integration model, an adaptation model, a transformation
model, a validation model and a binding model. The integration model utilises the
presentation domain constraints to infer a multi-language document’s interpretation
from the interpretation of its constructs. The adaptation model proposes an extensible
representation of the adaptation requirements and a method to choose the optimal
processing alternative among a set of independently developed specifications. The vali-
dation and transformation models use the integration model to validate and transform
multi-language documents, according to a set of adaptation requirements and a dis-
tributed set of processing specifications. The binding model establishes a distribution
of the processing specifications, which is adequate for processing an open set of inde-
pendently developed XML languages.

The XMLPipe document processing is demonstrated to be significantly more pow-
erful than existing approaches and its evaluation illustrates its adequacy for the Web
and the soundness of our hypothesis within the preprocessing domain. The prepro-
cessing observations are extrapolated to confirm our hypothesis within the complete
document processing domain.

ii

iii

...Kar otnv paud, kair ovov pnaund,
otny adepyn) otnr Maipn,
Bpe xwpis eods

v elya Papuévn ano xépu...

...to my family

Acknowledgements

I would like to thank:

My supervisor, David Shrimpton, for his support and guidance, his insight into all
Web related areas and the whole process of undertaking a PhD, and his tolerance to
my constant delays and miserably failing plans.

Professors Peter Linington and Simon Thompson for their brilliant ideas, their
support in many aspects of this work and their continuous encouragement.

My family and friends for their invaluable support and infinite patience to my
impressively antisocial behaviour during the last years.

Katerina, Damian, Christian, Matt and all people in Darwin H4 for their amazing
research methodology insight.

v

Contents

Abstract

Acknowledgements

1

2

Introduction

1.1 XML document presentation

1.2 Addressing the XML presentation issues

1.3 World Wide Web fundamentals

1.4 Extensible Markup Language (XML) fundamentals
141 XML core e
1.4.2 XML languages
1.43 XML and the Web L.
1.4.4 The Document Object Model

1.5 Concluding remarks L L Lo

XML presentation processing

2.1 A top level presentation processing model
2.1.1 Presentation processing requirements
2.1.2 Presentation processing components

2.2 Validation L L
2.2.1 Validation approaches
2.2.2 Mixed namespace validation
2.2.3 Schema binding oo
2.2.4 Validation summaryo

2.3 Transformation L L L
2.3.1 Transformation approaches
2.3.2 Transformation pipelines. oL
2.3.3 Transformations for content adaptation
2.3.4 Binding and mixed namespace transformations
2.3.5 Interoperation with validation
2.3.6 Transformation summary

2.4 Presentation L L
2.4.1 Native presentation languages set £,
2.4.2 Extensibility of the native presentation languages set
2.4.3 Presentation of mixed namespace documents
2.4.4 Presentation adaptation
2.4.5 Scripting
24.6 Constraints
2.4.7 Presentation summary

o
=

=

= © 00 Ut whho =

_ =
=

2.5 XML Browsers e e e
2.6 Discussion e e e e e e e
2.6.1 Current issues and resolution directions
2.6.2 Concluding remarks oo

Definitions and the hypothesis

3.1 XML presentation processing definitions L.
3.1.1 XML documents and languages
3.1.2 XML semanticso
3.1.3 Presentation languages and documents
3.1.4 Document processing

3.2 Thescopeofthisthesis

3.3 The hypothesis L

3.4 Concluding remarks L Lo

A preprocessing framework
4.1 Towards a generic preprocessing framework
4.2 Top level entities
4.2.1 Document author Lo oL
4.2.2 Document USEr i it
4.2.3 Target device and browser
4.3 Additional entities
4.4 Framework architecture and requirements
4.4.1 Validation Lo
4.4.2 Transformation
443 Bindingo
4.4.4 Integration model and overall processing
4.4.5 The complete preprocessing framework
4.5 Discussion
4.5.1 Evaluation
4.5.2 Evaluation of existing approaches
4.6 SUMMATY e e

XMLPipe integration model

5.1 Integration model considerations

5.2 Handled construct observations L.
5.2.1 Handled constructs
5.2.2 Handled construct rooted subtrees
5.2.3 Handled constructs classification
5.2.4 Valid nesting of subtrees

5.3 Handled constructs based integration
5.3.1 Valid mixed namespace documents
5.3.2 Mixed namespace document authoring
5.3.3 Mixed namespace document processing

5.4 Discussion e e e e

5.5 Summary oL e

XMLPipe adaptation model
6.1 Adaptation considerations

vi

50
51
51
54
o4
95
56
o7
58

59
60
61
61
62
63
63
65
66
67
68
70
71
71
73
74
75

77
7
79
79
80
81
83
84
84
85
86
89
90

92

7

8

6.2 Adaptation profiles and expressions
6.3 Profile composition L L oL
6.3.1 Profile composition observations
6.3.2 XMLPipe composite profiles.
6.3.3 XMLPipe profile composition
6.3.4 Profile composition example 0oL
6.4 Binding adaptation specification L.
6.4.1 The adequacy measureo
6.4.2 The applicability measure
6.4.3 The adaptation measure
6.5 The complete adaptation modelo
6.6 Discussion e e e e e
6.7 Summary e e

XMLPipe transformation model
7.1 Transformation model considerations
7.2 Adrivingexample
7.3 Transformation fundamentals
7.3.1 Mixed namespace transformation notation
7.3.2 Assumptions
7.4 Transforming valid documents
7.4.1 Valid documents processing
7.4.2 Transformation of valid documents
7.4.3 The transformation algorithm
7.5 Transformation semantics
7.6 Addressing the assumption constraints
7.6.1 Subtree copying
7.6.2 Transformation of semantically correct invalid documents
7.6.3 Circular transformation dependencies
7.6.4 Processing natively supported constructs
7.6.5 Integration models equivalence
7.6.6 Alternative assumptions and transformation algorithm
7.7 Built-in transformation pipelines
7.7.1 Atomic transformations
7.7.2 Transformation wrappers
7.7.3 Transformation pipelines composition
7.8 The complete transformation model
7.9 Discussion e e e
710 Summary e e e e e

XMLPipe validation model

8.1 Validation driver
8.1.1 Adequacy of subtree validation
8.1.2 COC placeholders identification
8.1.3 Subtree separation and processing order
8.1.4 Atomic validations
8.1.5 Validation semantics
8.1.6 The validation algorithm

8.2 Validation model interface

vii

113
114
115
118
118
119
123
123
124
126
129
131
131

. 132

133
134
135
135
138
139
140
141
145
146
150

8.2.1 Processing validation interface 162

8.2.2 Authoring validation oL 162

8.3 The complete validation model 166
8.4 Discussion Lo 166
8.5 SUmMMmMAry 169
9 XMLPipe binding model 171
9.1 Binding considerationso 171
9.2 Semantics organisation L Lo 172
9.3 Semantics distributiono Lo 173
9.3.1 Principal location mechanism 173
9.3.2 Secondary location mechanisms 174
9.3.3 The semantics cache oL 175
9.3.4 Orchestrating the location mechanisms 176

9.4 Evaluation 177
0.5 SUmMmMAary e 180
10 The complete XMLPipe model 182
10.1 Composing the XMLPipe model 182
10.1.1 Interface to the semantics and language author 183
10.1.2 Interface to the document user and author. 183
10.1.3 The complete XMLPipe model 185

10.2 XMLPipe implementation issues 187
10.2.1 Presentation integration model 187
10.2.2 Semantics representation 190
10.2.3 Node context information issues 191
10.2.4 Summary 192

10.3 The pilot implementation Lo oL 192
10.3.1 Sufficient functionality subset 193
10.3.2 Implementation outline 193
10.3.3 The invocation 195

104 Acasestudy e 196
10.4.1 The input document Lo 196
10.4.2 The adaptation profiles 198
10.4.3 Validation semantics oo 199
10.4.4 Transformation semantics: L.y language 201
10.4.5 Transformation semantics: Ly, language 202
10.4.6 Transformation semantics: L, language 203
10.4.7 Transformation semantics: Lg,. language 205
10.4.8 Semantics binding oL oo 209
10.4.9 Document processing oo 210
10.4.10 The transformed document 214
10.4.11 Reusing the semantics of existing languages 217

10.5 Case study discussion L L oL o 219
10.5.1 Processing scenario discussion 219
10.5.2 Processing semantics discussion 0oL 221
10.5.3 Processing discussiono 222

10.6 XMLPipe model discussion Lo 223
10.6.1 Framework based evaluation. 224

viii

10.6.2 Hypothesis supporto

10.7 Summary

11 Future research and concluding remarks
11.1 Expressing and supporting the hypothesis
11.2 Contributionso

11.2.1 XMLPipe and the hypothesis
11.2.2 The preprocessing framework and the individual sub-models . . .

11.3 Future research

11.3.1 XMLPipe extensions and optimisations
11.3.2 Transformation model extensions
11.3.3 Adaptation model extensions
11.3.4 Validation model extensions L.,
11.3.5 Integration model extensions
11.3.6 Binding model extensions
11.3.7 Towards a complete processing model
11.3.8 Beyond presentation documents

11.4 Concluding remarks

Bibliography

A Abbreviations

B Terminology

C Formalisms

C.1

C.2

C.3
C4

C.5

C.6

C.7

Core notation e
C.1.1 Symbol conventions 0oL
C.1.2 Setsnotation
C.1.3 Functions notation,
Core XML notation
C.2.1 Documents
C.2.2 XML languages« . oo
C.23 Languagesets
Processing models
Semantics e e
C.4.1 Coredefinitions
C.4.2 XMLPipe processing semantics
C.4.3 XMLPipe semantics location functions
C.4.4 XMLPipe semantics binding
Integration model
C.5.1 XMLPipe valid documents
C.5.2 Further valid document definitions
Validation e
C.6.1 Validation of XMLPipe documents
C.6.2 Processing validation 0oL
C.6.3 Authoring validation 0.
Transformations
C.7.1 XMLPipe document transformation
C.7.2 Authoring validation specific transformation

X

231
231
233
233
234
235
235
237
238
238
239
240
241
242
243

245

256

258

C.7.3 Transformation specification selection
C.7.4 Transformation pipelines.
C.8 XMLPipe adaptation model
C.81 Coreconcepts v o v i v i v it
C.8.2 Adaptation profiles
C.8.3 Adaptation expressions
C.8.4 Profile composition oL
C.8.5 Transformation selection
C.9 Document parsing

RDF integration example
D.1 The mixed namespace XML document
D.2 The RDF document

XMLPipe processing semantics representation
E.1 The top level structure oL
E.2 Data types and expressions
E.2.1 The predefined XMLPipe data types
E.2.2 Adaptation expressions e
E.2.3 Applicability expressions L.
E.2.4 Adequacy expression sets
E.2.5 Conflict resolution expressions
E.3 Adaptation processing semantics
E.3.1 Adaptation term semantics
E.3.2 Composite profiles L
E.3.3 Predefined adaptation terms L 0L
E.4 Handled construct declarations
E.5 Validation processing semantics oo
E.6 Transformation processing semantics
E.6.1 Transformer declarations
E.6.2 Pipeline declarationso,
E.6.3 Top level handlers declaration

Case study sources

F.1 Input document

F.2 XMLPipe specific semantics
F.2.1 Toplevel binding
F.2.2 Adaptation terms.
F.2.3 Atomic transformations

F.3 The composite adaptation profiles

F.4 Ly language
F.4.1 Toplevel binding L o
F.4.2 Handled constructs L.
F.4.3 Validation semantics
F.4.4 Transformation semantics

F.5 L, language language o Lo
F.5.1 Toplevel binding L oL
F.5.2 Handled constructs
F.5.3 Validation semantics

299
300
300

302
302
303
303
304
305
306
306
308
308
309
310
311
311
312
312
313
315

F.5.4 Transformation semantics 327

Lgoc language 330
F.6.1 Top level binding o 331
F.6.2 Handled constructs 331
F.6.3 Validation semantics 331
F.6.4 Langage specificterm 333
F.6.5 Transformation semantics 334
Ly language L 347
F.7.1 Toplevel binding L o 347
F.7.2 Handled constructs 347
F.7.3 Validation semantics 348
F.7.4 Transformation semantics 348
Leglanguage . . . o . oL oo 352
F.81 Toplevel binding 352
F.8.2 Handled constructs 352
F.8.3 Validation semantics, 353
F.8.4 Transformation semantics 354

x1

List of Tables

1.1
1.2
2.1
2.2
2.3
24
2.5
2.6

3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
7.1
7.2
7.3
7.4
8.1
8.2
8.3
10.1
C.1
E1
E.2
E.3
EA4

World Wide Web design principles[BLO2b]
XML languages examples
Generic XML presentation processing requirements
Example of implicit device capabilities information within URIs
Proposed Web content presentation building blocks
Imperative approaches requirements for XML presentation
Properties of current browser implementations
Summary of the identified XML processing issues and their correspond-

ing resolution directions
Context dependent interpretations of the term semantics
Document author requirements and assumptions
Document user requirements and assumptions
Device and browser adaptation requirements
Language and semantics authors requirements
Requirements of an adaptation requirements representation
Assumptions and external entities requirements
Preprocessing framework requirements
Driving example handled constructs
Transformation assumptions
Alternative transformation assumptions and design principles
XSL-T transformation design guidelines
Validation assumptions L L Lo
Subtree separation design principles L.
Design guidelines and their XML Schema mapping
XMLPipe implementation issues
Symbol conventions L Lo
Adaptation terms data types L.
Unary operators L e
Binary operators Lo L
Predefined adaptation terms

xii

List of Figures

1.1
1.2
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
6.1
6.2
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
8.1
8.2

The proposed models and XMLPipe
DOM example
Presentation processing components and external entities
Validation during document authoring
Validation during document presentation
A generic schema integrator,
Transformation symbol oL o oL
Multiple transformation applications during document presentation . .
Transformation pipeline example
The presentation component
L, extension using plug-ins and applets
Extension with presentation model integration
X-Smiles mixed namespace document presentation
Adaptation responsibility/capability according to £, granularity . . .
XVM relationship between DOM nodes and Java objects
Alternate presentation attributes representations
Local propagation problem and its solution
Browser usage statistics L L Lo
A preprocessing approach L
Preprocessing framework: top level entities
Preprocessing framework: all external entities
Preprocessing framework: Validation module
Preprocessing framework: Transformation module
Preprocessing framework: Binding module
Processing associations between language constructs
XMLPipe integration model subtree separation example
Adaptation term semantics
Adaptation requirements processing
Tree separation illustration
Post order tree traversal oL
The XMLPipe transformation algorithm
Handled construct transformation semantics
Revised transformation algorithm
Integration model transformation driver
XMLPipe transformation pipelines: sequence pipeline
XMLPipe transformation pipelines: transformation selection
XMLPipe transformation pipelines: dynamic transformation
XMLPipe transformation model
Language validation semantics
XMLPipe validation algorithm

8.3
8.4
8.5
8.6
8.7
9.1
9.2
9.3
9.4
9.5
10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8

10.9

10.10
10.11
10.12
10.13
10.14

Integration model specific validation: top level 161

XMLPipe processing validation interface 162
Authoring validation transformation algorithm 165
XMLPipe authoring validation 166
The XMLPipe validation model 167
XMLPipe semantics organisation 173
Location mechanisms information organisation 173
Semantics cache physical representation 175
XMLPipe binding model oL 176
Cache import algorithm L. 178
Semantics definition process Lo 183
Document transformation and authoring validation 184
The XMLPipe preprocessing model 186
XMLPipe processing semantics 188
Pilot implementation class hierarchy 194
Proposed processing semantics distribution 209
Transformation processing: document traversal and subtree transfor-

mationo 212
Validation processing: document traversal and subtree separation . . . 214
Document transformation result: Desktop profile 215
Document transformation result: XSL-FO printer profile 216
Document transformation result: Mobile profile 217
Semantics reuse example: document rendering for all case study profiles220
Transformation duration in relation to the document nodes 226
Transformation duration ratio between XMLPipe and XSL-T 227

Xiv

Listings

1.1 An XML document 8
1.2 Mixed namespace XML documents with and without namespaces 9
2.1 Erroneous NRL and NVDL validation example 19
3.1 XML document with namespaces 51
4.1 Documents that can benefit from recursive transformations 69
5.1 Handled constructs example L. 79
5.2 Handled constructs classification example 82
6.1 Adaptation profile for a desktop device 97
6.2 Adaptation profile for a mobile device 97
6.6 Profile composition example L. 102
6.7 Adaptation binding information example L. 108
7.1 The driving presentation document example 116
10.1 The case study input document L. 197
10.2 Handled constructs information 198
10.3 Printer adaptation profile L oo 199
10.4 L, schema specification 200
10.5 L g, validation semantics declaration 201
10.6 L, transformation semantics declarations 202
10.7 Ljpmp dynamic transformation pipeline 203
10.8 Dynamically generated stylesheet 203
10.9 Dynamic transformation result 203
10.10XSL templates for the interactive interpretation of L,y 204
10.11XSL templates for the non-interactive interpretation of Ly 204
10.12L,; XHTML handler adequacy expressions 204
10.13L,; non-interactive handler adequacy expressions 204
10.14 L 4, interpretation for a desktop browser 206
10.15L 3o XHTML desktop binding adaptation specification 206
10.16 L 4, interpretation for a WML mobile 207
10.17L 3o WML mobile partial binding adaptation specification 207
10.18Semantics reuse example: driving document 218
10.19Semantics reuse example: imported document 218
D.1 Integration Example: XML o .. 300
D.2 Integration Example: RDF-XML 300
E.1 RDDL processing semantics links, 303
E.2 Adaptation expression example L. 305
E.3 Applicability expression example 306
E.4 Adequacy expressions example 307
E.5 Conflict resolution expressions example 307
E.6 Term semantics example oL oo 308
E.7 Composite adaptation profile example 309

XV

E.8 Handled construct information example 311

E.9 Validation semantics example oo 312
E.10 Transformer declarations example 312
E.11 Sequence transformation pipeline example 314
E.12 Dynamic transformation pipeline example 314
E.13 Selection pipeline example oo 314
E.14 Handler declaration example 315
F.1 document.xml. 317
F2 dmp.xml e 318
F.3 authors.xml 318
F.4 RDDL link to XML specific semantics 319
F.5 XMULPipe specific adaptation terms 319
F.6 XMLPipe specific atomic transformations 320
F.7 All case study composite profiles 320
F.8 mobileDefault.xml 321
F.9 mobileUpdate.xml 321
F.10 RDDL links to the Ly, processing semantics 322
F.11 Ljy,, handled construct information: ImpHCInfo.xml 322
F.12 L;y, validation semantics: ImpValSem.xml 323
F.13 Ljy, validation semantics: schema specification 323
F.14 L;,,, transformation semantics: ImpTransSem.xml 324
F.15 Ly, transformation semantics: XSL-T stylesheet specification import.xs1324
F.16 RDDL links to the Ly, processing semantics 325
F.17 L., handled construct information: A1tHCInfo.xml 325
F.18 L,; validation semantics: AltValSem.xml 326
F.19 L, validation semantics: schema specification 326
F.20 L,; transformation semantics: AltTransSem.xml 327
F.21 L., transformation semantics: Java atomic transformation implementa-
tion e e 327
F.22 RDDL links to the Ly, processing semantics 331
F.23 L4, handled construct information: DocHCInfo.xml 331
F.24 L4, validation semantics: DocValSem.xml 332
F.25 L4, validation semantics: schema specification 332
F.26 doNotRecurse adaptation term semantics: DocTermSem.xml 333
F.27 L4, transformation semantics: DocTransSem.xml. 334
F.28 L4, transformation semantics: Desktop XSL-T stylesheet specification
doc.xSL e e e 338
F.29 L4, transformation semantics: Mobile XSL-T stylesheet specification
mobile.xsl e e 339
F.30 Lo transformation semantics: WBMP image converter 341
F.31 L g, transformation semantics: XSL-FO printer XSL-T stylesheet spec-
ification XSLFOPrinter.xsd o o v i i i 345
F.32 L g, transformation semantics: Namespace declaration removal stylesheet
removeNamespaces.xXslo 346
F.33 L, handled construct information: XLHCInfo.xml 347
F.34 L, validation semantics: XLValSem.xml 348
F.35 L, validation semantics: schema specification 348
F.36 L, transformation semantics: XLTransSem.xml 349

Xvi

F.37 L, transformation semantics: XHTML XSL-T stylesheet specification

x1inkXHTML.xs1 o o o e e e e e
F.38 L, transformation semantics: Mobile XSL-T stylesheet specification

x1inkWML.xs1l oL e e e e
F.39 L,; transformation semantics: Non interactive XSL-T stylesheet specifi-

cation xhtmlNonInteractive.xsl
F.40 RDDL links to the L.; processing semantics
F.41 L.; handled construct information: CDHCInfo.xml
F.42 L.; validation semantics: CDValSem.xml
F.43 L., validation semantics: schema specification
F.44 L.; transformation semantics: CDTransSem.xml
F.45 L .4 transformation semantics: XSL-T stylesheet specification cd.xsl . .

xXvii

Chapter 1

Introduction

The World Wide Web (WWW / the Web) has been widely used as a major information
medium for an unrestricted variety of information. The Web is based on the Hyper-
Text Transfer Protocol (HTTP)[FIG199], the initially minimalistic HyperText Markup
Language[RHJ99] and a set of core design principles, which have been fundamental to
its development and wide deployment: simplicity, modularity, tolerance, decentralisa-
tion and no fixed set of specifications. Since the inception of the Web, a multitude
of HTML extensions and new languages have been introduced, which reflect its wide
deployment and increased information representation requirements. Web browser de-
velopers are constantly trying to cope with the increasing set of representations, and
current Web browsers resemble more generic middleware applications than purpose
specific applications that follow the Web design principles.

The eXtensible Markup Language (XML)[BPSMMOO0] simplifies the earlier Stan-
dard Generalised Markup Language (SGML)[ISO86], in order to establish a common
markup language framework. XML documents can represent any information as a hier-
archical nesting of XML constructs, which are defined by one or more XML languages.
There are several ways to process XML documents, because they can cover any infor-
mation domain, but four cross-domain processing steps are widely applicable: parsing,
validation, transformation and presentation.

XML parsing is a necessary XML processing step, because it maps the human
oriented textual XML representation to a more machine processible representation.
XML walidation ensures that the syntax of a document is correct, according to its
corresponding XML languages. The core XML recommendation provides a document
validation method, but there are more powerful alternative schema languages. An
XML transformation maps a document to an alternative representation. The core
XML recommendation does not define how to transform XML documents, but W3C
and other organisations have developed several powerful transformation languages. The
presentation of an XML document allows its browsing by a user. An application can
present XML documents by either natively supporting their constructs or transforming
them to a natively supported representation.

Most user initiated Web information processing results in information presentation.
Therefore, a well defined XML presentation process is essential to the wide adoption
of XML within the Web.

This thesis focuses on the generic presentation of XML documents for the Web. This
chapter summarises the existing XML processing issues (Section 1.1) and proceeds to
an overview of our hypothesis and its support (Section 1.2). Finally, sections 1.3 and

CHAPTER 1. INTRODUCTION 2

1.4 provide the core Web and XML background.

1.1 XML document presentation

Despite the significance of a well defined XML presentation process, only document
parsing is currently well defined. There is no well defined generic method to present,
transform and validate XML documents, notwithstanding the multitude of relevant
XML technologies.

An adequate presentation processing model for XML must enable the processing of
multiple XML languages for a variety of adaptation requirements. XML is a common
foundation for defining new languages that can cover a wide variety of information do-
mains. XML documents that span multiple information domains can use the constructs
of multiple languages. Therefore, an XML processing model must include an adequate
binding mechanism that allows the location and retrieval of all necessary processing
information for each language. Additionally, a processing model that enables extensive
information availability must cater for a wide spectrum of Web devices, applications
and users. Consequently, a generic adaptation mechanism that adapts a document
according to a set of adaptation requirements is necessary.

Moreover, document validation, transformation and presentation are necessary for
a generic presentation processing model. Validation does not directly relate to the
presentation, but it assists the authoring and processing of a document by ensuring its
validity. Well defined validation also forms the foundation of XML processing models,
because it identifies the documents that a processing model must be capable of pro-
cessing. Document transformation is essential, because it can map a document to an
alternative natively supported interpretation. A transformation process can also adapt
a document to its optimal representation, according to a set of adaptation require-
ments. Finally, document presentation is essential for producing the final rendering of
the document.

A generic presentation processing model must address all the aforementioned issues,
but existing approaches only address them individually and they are not adequate for
a generic XML processing model. Specifically, there is no well defined method to
derive the processing of a document from the processing of its individual constructs.
Because of this limitation, document authors cannot freely mix language constructs
within XML documents. Therefore, they rely on language integration profiles, which
become exponentially complex to enumerate for an increasing number of languages.
Alternatively, they use languages that assimilate the constructs of other languages,
which result in redundant, inconsistent and complex language specifications.

There are several existing document adaptation approaches, but the most prominent
ones are restricted to predefined languages and application domains, and they are
not adequate for generic adaptation of XML documents. More generic approaches,
which allow an open set of languages, are not sufficiently versatile and powerful to
cover the variety of Web adaptation requirements. In a similar manner, there are
several prominent binding approaches, but most XML processing approaches use inline
document bindings. Such document specific associations are problematic, because the
processing of a document can depend on document author independent factors, such as
the capabilities of the target application. Moreover, the document author is typically
more interested in the document information and not in its processing.

CHAPTER 1. INTRODUCTION 3

There are several powerful transformation and validation technologies, and exist-
ing Web browsers support a versatile set of presentation functionality. However, the
aforementioned processing issues impede the application of the versatile existing func-
tionality within a generic XML presentation processing model. Specifically, the lack of
generic multi-language processing has led to a multitude of languages that span over-
lapping domains and to predefined language integration profiles. Both languages and
profiles attempt to include all necessary presentation functionality, and they result in
overly complex specifications, which are not adequate for all the devices that access
the Web. The development of restricted language and integration profile versions has
addressed a subset of the complexity issues, but it resulted in introducing even more
language specifications.

Web browsers can natively support a finite set of languages and existing browsers
only support a small subset of the existing XML languages and integration profiles.
Therefore, document authors avoid using new XML languages, because their native
support is not guaranteed and they must use inline document processing instructions
to address several binding and adaptation issues.

XML has addressed several HTML issues but failed to facilitate the wider availabil-
ity of Web information, as it led to underdefined processing models and a multitude of
overlapping standards.

1.2 Addressing the XML presentation issues

Addressing multidimensional problems requires the identification of their common un-
derlying cause. In the case of XML document presentation, the aforementioned XML
presentation issues result from the lack of well defined domain constraints. XML docu-
ments can combine any set of languages to represent any information, and a document’s
presentation can be influenced by an unrestricted variety of adaptation requirements.
The lack of well defined constraints impedes establishing the necessary assumptions for
creating a generic processing model.

Our hypothesis is that the presentation processing domain is sufficiently constrained
to enable the development of a generic XML presentation processing model. The aim
of this thesis is to support the aforementioned hypothesis by investigating the existing
approaches, identifying the relevant problems, proposing an XML processing model
and illustrating its adequacy for presenting XML documents within the Web.

It should be noted that this thesis focuses on document presentation preprocessing,
which includes the validation and transformation processing steps, but not document
rendering. Even though this thesis does not address information rendering, it extrap-
olates the preprocessing observations to the whole spectrum of our hypothesis.

The literature review in Chapter 2 covers the validation, transformation and pre-
sentation aspects of existing technologies, focusing both on the individual processes
and on the corresponding binding, adaptation and language combination mechanisms.
Chapter 2 reviews all XML presentation processing literature, including XML docu-
ment rendering and existing Web browser implementations, in order to cover the whole
spectrum of XML presentation processing that is addressed by our hypothesis.

Chapter 3, the first step towards supporting our hypothesis, defines all the neces-
sary terms for expressing the XML processing concepts unambiguously and defining
the presentation domain constraints. This is necessary because many Web and XML
concepts are either underdefined or ambiguous.

CHAPTER 1. INTRODUCTION 4

! |

! |

\

[; ; P } Legend

[Adaptation . Transformation Validation | _

} Model Model Model } Integration

I A T y y | model specific
} I\ [1] components

| Integration Model l'| | Integration Model

| A |

! |

} / A 4 A } Models

| Binding Model | interoperation
| |

! \

Figure 1.1: The proposed models and XMLPipe

The expressed presentation domain constraints do not provide a sufficient mea-
sure of the adequacy of an XML presentation processing model. The preprocessing
framework introduced in Chapter 4 provides such an adequacy measure by using the
presentation domain constraints and the Web design principles to define the necessary
preprocessing functionality. The proposed framework specifies the necessary prepro-
cessing components, their interoperation and the corresponding functionality require-
ments. As all framework specifications result from iteratively refining the Web and the
XML design principles, the proposed framework provides a measure of how adequate
is a preprocessing approach for the Web.

The preprocessing framework requires the five processing models illustrated in Fig-
ure 1.1: an integration model, an adaptation model, a transformation model, a vali-
dation model and a binding model. This thesis includes a separate proposal for each
processing model and combines them into the XMLPipe processing model.

An integration model establishes a multi-language document’s interpretation, ac-
cording to the interpretation of its individual constructs. Chapter 5 proposes an in-
tegration model that utilises the constraints of the presentation domain and defines a
classification of the XML constructs. This model enables the definition and interpre-
tation of the valid inter-language nesting of XML constructs.

Chapter 6 proposes an adaptation model that defines an extensible and composite
adaptation requirements representation and a mechanism for choosing the optimal
processing specification, among a set of independently developed alternatives.

Chapters 8 and 7 introduce the transformation and validation models, responsible
for transforming and validating an input document, respectively. Both models reside
within the integration model, as illustrated in Figure 1.1, because they are integration
model specific. They process multi-language documents by separately processing their
individual single language subtrees. The transformation model interoperates with the
adaptation model, in order to select the optimal transformation specification for each
document portion, according to a set of adaptation requirements.

Chapter 9 introduces a binding model that combines a well defined principal mecha-
nism and an open set of secondary mechanisms to locate the necessary XML processing
information. Such a distributed binding model is essential for processing documents
that combine an open set of languages.

Chapter 10 combines the above models into the XMLPipe preprocessing model,

CHAPTER 1. INTRODUCTION)

which enables the validation and transformation of multi-language documents accord-
ing to a variety of adaptation requirements. XMLPipe validation focuses on testing
the semantic correctness of a document, a device-independent property of documents
that have well defined interpretation. XMLPipe transformation maps a document to
its optimal representation according to a set of adaptation requirements. Because the
XMLPipe binding model locates and retrieves all the necessary processing information,
neither the validation nor the transformation models require explicit processing infor-
mation by the document author, the document user or a central processing information
repository.

Chapter 10 provides support for our hypothesis by demonstrating the adequacy of
XMLPipe for the Web, using the preprocessing framework. Subsequently, the feasibility
of the proposed model is illustrated by a case study, which uses XMLPipe to validate
and transform a document that combines multiple independently developed XML lan-
guages, according to separate sets of adaptation requirements. Since XMLPipe utilises
the presentation domain constraints, its adequacy illustrates that the presentation do-
main is sufficiently constrained to support generic XML processing models.

Finally, Chapter 11 discusses this thesis as a whole. It discusses the support of
our hypothesis, summarises the contributions of this thesis and suggests a set of future
research proposals.

Throughout this thesis, we attempt to avoid ambiguous descriptions by defining all
terms before their usage and by summarising all used abbreviations, terms and formal
notations in appendices A, B and C, respectively.

Appendices D to F introduce reference material that is not required in the main
body of this thesis: a comparison between the XML and RDF representations, a rep-
resentation of all the necessary XMLPipe processing information and the case study
source documents and processing information.

A subset of the work presented within this thesis has been described in three
preliminary publications, which provide an overview of the XMLPipe preprocessing
model[PS03a, PS03b] and our views towards a generic processing model for the pre-
sentation of XML documents[PS04]. Future publications will provide more detailed
descriptions of this thesis proposals.

1.3 World Wide Web fundamentals

The World Wide Web (WWW / the Web) started as a means of interconnecting in-
formation to enhance group collaboration[BL98a]. The original requirement and vision
for the Web was the wide availability of information:

“Once someone somewhere made available a document, database, graphic,

.., it should be accessible (subject to authorisation) by anyone with any
computer in any country. And it should be possible to make a reference —a
link— to that thing, so that others could find it” [BLO0O]

In order to satisfy the above requirement, the World Wide Web Consortium (W3C)
established a set of Web design principles|BL02b], which are described in Table 1.1.
The adherence of the Web technologies and its fundamental concepts to the above
principles has been important for its success as a communication medium[JW02]. This
section describes the fundamental Web background: the communication protocols, the
markup languages, the resource identifiers and the browsers.

CHAPTER 1. INTRODUCTION 6

‘ Principle ‘ Explanation
Simplicity Reducing new concepts while increasing the scope
of applications.
Modular Design Break features to loosely coupled groups.
Tolerance Strict specifications but error tolerant implementa-
tions.
Decentralisation No central point of control, in order to limit the

possibility of failure.

Test of independent invention | No restrictions on any of the processes. Individual
protocols, representations and architectures must be
equally applicable.

Principle of least power Representations of minimum functionality enable
reusing the same representation in multiple do-
mains.

Table 1.1: World Wide Web design principles[BL02b]

Most Web communication uses the Hypertext Transfer Protocol (HTTP)[FIGT99],
which allows simple and efficient communication of Web documents[BL00]. A Web
resource, which can be a document, is identified by a Uniform Resource Identifier
(URI)[BLFIM98]. The use of URIs enforces the Web design principles, because they
decouple the Web from specific protocols and data representations|BLO0]. A Uniform
Resource Locator (URL) is a URI that identifies a resource via its primary access
mechanism[BLFIM98], such as its network location and the corresponding communi-
cation protocol.

The Web design does not restrict resource description representations. The Hy-
pertext Markup Language (HTML)[RHJ99] was created to form a common ground for
all Web communications. The initial HTML version defined a minimal markup for
the hypertext documents structure and not their presentation details|BL00]. However,
since its inception, HTML! has incorporated numerous presentation specific features,
in order to fulfill the increased document presentation requirements. The inclusion of
such presentation features is against the fundamental design principles of HTML: min-
imal, common base and processible by any device. Consequently, additional languages,
which range from styling enhancements to high end multimedia representations, have
been developed for describing Web resources.

A document user uses a Web browser to interact with the Web information. There
is no well defined set of representations that a browser must support, because of the
lack of data representation constraints. Therefore, browsers have adopted extensible
designs, and even the earliest browser implementations, such as WWWInda|GNSP94|
and Viola[Wei94], focused on component based designs that enabled the presentation of
a multitude of data representations. Current browser implementations have evolved to
generic middleware platforms, instead of purpose specific applications, because of the
increased presentation functionality requirements. Typical current browser function-
ality includes multiple media type presentation and support for generic programming
languages, such as Java. Moreover, there is widespread use of extension technologies,

1Up to HTML 4.01. The more recent XHTML has removed all unnecessary presentational aspects.

CHAPTER 1. INTRODUCTION 7

such as plug-ins and Java applets, for incorporating additional presentation functional-
ity. Notwithstanding the variety of supported functionality and extension mechanisms,
the browser developers are constantly racing to meet the ongoing development of new
languages and technologies.

1.4 Extensible Markup Language (XML) fundamentals

The eXtensible Markup Language recommendation (XML)[BPSMMO00] aims to estab-
lish a common Web document representation. XML is extensible, because, as a meta-
language, it can be the basis of application specific languages that can describe any
information. A common representation is necessary, because it provides the founda-
tion for a common document processing layer that enables extensible browser designs,
which support a multitude of languages.

Sections 1.4.1 to 1.4.3 will describe the fundamental concepts of the XML repre-
sentation, the XML languages and its adequacy for the Web, respectively. Section
1.4.4 will describe the Document Object Model (DOM), which is a standard interface
for XML information manipulation and a key component for a common document
processing layer.

1.4.1 XML core

A Web language must follow the Web design principles, and it must therefore be generic,
device independent and simple. Additionally, it must specify the minimum required
concepts and only contain the necessary functionality. Finally, it must be both strict, in
terms of the specification, and tolerant, in terms of the processing. HI'ML is not suffi-
ciently generic, since it cannot be extended to represent every information domain.
HTML was based on the Standard Generalised Markup Language (SGML)[ISOS86],
which is sufficiently generic, since it allows the definition of application specific lan-
guages, but its complexity is not appropriate for the Web.

XML is a simplification of SGML, and it is designed according to the Web design
principles. The XML recommendation[BPSMMO00] defines the core XML concepts: its
syntax, a set of processing guidelines and how to define purpose specific XML languages.
This section overviews the core XML concepts, but its detailed description is outside
the scope of this thesis, and it can be found in the XML recommendation BPSMMO00].

The XML syntax is a device independent textual representation of trees. An XML
document is a tree, and its individual nodes contain the document information. For
instance, the document illustrated in Listing 1.1 contains three elements (lines 2, 3 and
6), an attribute (line 3) and a text node (line 4). The line 2 element is the document
element, because it contains all other document nodes. Each XML document has one
and only one document element. Each element can contain attributes, other elements
and text. The tree structure of XML documents is based on the containment of the
elements in a document.

An XML document must be well formed and may be valid. A well formed document
does not violate the core syntactic principles of XML, such as the proper element
nesting and the single document element. A valid XML document is both well formed
and consistent with a syntax specification, which is expressed using a schema language.
The XML recommendation defines the Document Type Definition (DTD), which is a
minimal schema language. A DTD defines the structure of a document by specifying

CHAPTER 1. INTRODUCTION 8

<?7xml version="1.0"7>
<elementl>
<element2 attrl="value”>
Text content
</element2>
<element2/>
</elementl>

Listing 1.1: An XML document

N O U R W N =

its elements, their attributes and their valid nesting. There is a variety of alternative
schema languages, which are described in Section 2.2.1.

An XML language is defined by the set of all XML documents that are valid for
a corresponding syntax specification. A language author is the creator of an XML
language, and a document author is the creator of an XML document. The author
of a document and of its corresponding languages can be the same entity, but they
generally are separate entities.

XML languages that conform to the modular design principle must only cover a
well defined data domain. A document can combine multiple language constructs,
in order to describe information that spans multiple data domains. The core XML
syntax does not identify the separate language constructs, but the XML Namespaces
recommendation[BHL99] introduces a syntax for assigning XML names to unique URI-
based namespaces. XML Namespaces are the foundation for a distributed Web-based
repository of unique names, and they allow the unambiguous combination of language
constructs, because their origin remains explicit. A mized namespace document is a
document that combines constructs from more than one namespace.

The documents in Listing 1.2, illustrate the benefits of namespaces. Both docu-
ments combine a language that describes the presentation layout of a document and
another language that describes furniture. Each language contains the element table,
and the example documents describe a tabular layout of information on furniture ta-
bles. The separation between the individual table elements (lines 2, 6 and 11) is not
well defined in the first document, because there are no namespaces. On the contrary,
their separation is explicit in the second document, because they belong to separate
namespaces.

1.4.2 XML languages

Organisations and individual language authors have used XML to create a multitude
of XML languages. Table 1.2 is an illustrative subset of standard XML languages,
which range from document layout to rich multimedia and interaction languages. Each
language covers an application domain, using a well defined data representation and an
optional processing and presentation model. Contrary to the modular design principle,
the initial versions of the languages in Table 1.2 were designed as single monolithic
specifications. A subset of the current specifications, such as the XHTML, SVG and
SMIL, have been partitioned into a number of loosely coupled modules. Such modular
specifications can apply to a wider set of devices, because a browser must only support a
subset of the specified modules. Moreover, modular languages simplify the specification
of language integration to mixed namespace documents. For instance, SVG animation

© 0 Nk W N

e e e e e
D U W N = O

CHAPTER 1. INTRODUCTION 9

<?xml version="1.0"7> 1 |<?xml version="1.0"7>
<table> 2 |<l:table xmlns:1="http://layout.org/”
3 xmlns:f="http://furniture.org/”>
<row> 4 <l:trow >
<column> 5 <l:column >
<table material="iron”> 6 <f:table material="iron”>
An office table 7 An office table
</table> 8 </f:table >
</column> 9 </l:column >
<column> 10 <l:column >
<table material="wood”> 11 <f:table material="wood”>
A kitchen table 12 A kitchen table
</table> 13 </f:table >
</column> 14 </l:column >
</row> 15 | </litow>
</table> 16 |</l:table>

Listing 1.2: Mixed namespace XML documents with and without namespaces

uses the SMIL timing module. There is currently an ongoing effort to apply the same
modular principles to the majority of existing specifications.

Most Web browser implementations natively support a subset of the languages in
Table 1.2. Modular language design allows a browser to only support the functionality
subset that can be supported by a device. However, browsers only support a finite set
of languages, and an XML document might use a language that is not supported by
a browser. A document transformation can transform such a document to a natively
supported representation. The subsequent chapters will thoroughly investigate XML
document transformations.

1.4.3 XML and the Web

XML is adequate for the Web, because it is consistent with its design principles. XML
is generic, because it allows the creation of custom languages for any data domain. Its
textual and concise syntax is easy to author and process, in relation to other generic
languages, such as SGML. XML is device independent, because its encoding is explic-
itly defined, and relevant external information, such as schema specifications, is also
expressed in a device independent manner. The XML recommendation specifies only
the necessary core concepts, and it avoids introducing limiting device specific process-
ing and presentation concepts. Finally, the separation of well-formedness and validity
results in a syntax specification that is both strict and tolerant: schema specifications
can precisely constrain the syntax of documents, but their validation is optional.

The XML adequacy for the Web does not ensure that it will successfully address
the Web data representation problems. The Web is a freely evolving, ever-changing
collection of data sources [Via0l], and the way that the Web community uses XML
cannot be controlled. A major danger with XML is that everyone can create documents,
using several custom syntaxes, leading to a multitude of incompatible languages or
incompatible language extensions. Nevertheless, XML namespaces can be used as
a regulatory technology that averts such an outcome, because it separates language
constructs and discourages uncontrolled language extensions.

CHAPTER 1. INTRODUCTION

10

| Scope | Language | Description |

XHTML[PAAT00] | The extensible HTML (XHTML) is an XML based
representation of HTML.

MathML[CIMPO3] | The Mathematical Markup Language (MathML)
is a representation of both the structure and the
content, of mathematical notation.

Document XSL-FO[ABCT01a] | XSL Formating Objects (XSL-FO) is a vocabu-

layout / styling

lary for document formating semantics, which is
mainly focused towards printed media.

CSS[BCHLO]]

The Cascading Style Sheets (CSS) is a language
that allows attaching style to structured docu-
ments. CSS is not an XML language, but doc-
ument authors typically use it to customise the
presentation of XML documents.

Graphics / mul-
timedia

SVG[FJJ03]

Scalable Vector Graphics (SVG) is an XML rep-
resentation of vector graphics, which covers their
presentation, interaction and animation.

SMIL[ABCT01b]

The Synchronised Multimedia Integration Lan-
guage (SMIL) is a representation for interactive
multimedia applications. It consists of separate
modules that can be reused in other languages.
For instance, the SVG animation is based on the
SMIL timing component.

Interaction

XUL[GHHWO1]

The XML User Interface Language (XUL) is a
model and a language for building graphical user
interfaces. For instance, the user interface of the
Mozilla browser is an XUL application.

XForms[DKMRO3]

XForms evolved from HTML Forms, which is a
core component of interactive Web applications.
XForms provides a device neutral language for the
“online interaction of a person and another, usu-
ally remote, agent” [DKMRO3]

Scripting

XBL[Hya01]

The XML Binding Language (XBL) is a represen-
tation for attaching behaviour to XML elements,
in a similar manner to CSS attaching style to XML
elements. XBL uses device neutral scripting lan-
guages, such as ECMAScript[ECM99], to define
element behaviour.

Transformation

XSL-T[Cla99b)]

The XSL Transformations (XSL-T) is a language
that describes transformations of XML documents
to other, XML or non-XML, documents. The
principal application of XSL-T is to transform
XML documents that use arbitrary XML lan-
guages to documents that only use languages that
are natively supported by a browser.

Generic scope

RDFXML[BMO04]

The XML representation of the Resource Descrip-
tion Framework[KCMO04], which is the foundation
of the Semantic Web. It can represent any infor-
mation in terms of labelled graphs that use URIs
as vertices.

Table 1.2: XML languages examples

CHAPTER 1. INTRODUCTION 11

org.w3c.dom.Attr

org.w3c.dom.Element
attrl="val"

org.w3c.dom.Document org.w3c.dom.Element

element?2 org.w3c.dom.Text

rg.w3c.dom.Element

elementl
"Text content"

element?2

Figure 1.2: DOM example

1.4.4 The Document Object Model

The Document Object Model (DOM)? is a generic and device independent programming
interface for manipulating XML data. DOM provides a well defined way for XML based
applications to interoperate, and it is necessary for designing modular applications. The
current DOM recommendation is DOM level 2, and there is work in progress for the
DOM level 3, which focuses on better namespace and validation support. DOM level 1
specified the necessary interfaces for manipulating XML and HTML data, and it was
typically used in the browser-scripting and browser-parser boundaries.

All the DOM levels are based on a “DOM core” recommendation, such as the
DOM level 3 Core[HHW04], which defines the document content access and update
interfaces. The DOM interfaces expose a document as a tree structure of nodes. Each
node is an instance of a subclass of the Node class. For instance, a node that corresponds
to an XML element is an instance of an Element class, which is a subclass of the Node
class. Figure 1.2 illustrates the DOM tree that corresponds to the XML example in
Listing 1.1. The additional recommendations enhance or specialise the DOM core
functionality. DOM level 2 (DOM-2) recommendations define a DOM based event
model, a document traversal utility interface and XML presentation interfaces. The
DOM-3 recommendations are not currently complete, but they appear to extend DOM-
2 recommendations towards better namespace and validation support.

1.5 Concluding remarks

This chapter introduced this thesis and established the fundamental Web and XML
background. XML was introduced to address the HTML shortcomings, but its under-
defined processing introduced a separate set of issues. The validation, transformation
and presentation of mixed namespace documents and the necessary binding and adapta-
tion mechanisms are undefined. This thesis attempts to utilise the presentation domain
constraints towards a generic preprocessing framework and a preprocessing model. The
latter allows the validation and transformation of mixed namespace documents, which
combine an open set of languages, using a distributed set of processing information.

2All DOM technical recommendations are available through the W3C Web site:
http://www.w3.org/DOM/DOMTR.

CHAPTER 1. INTRODUCTION

The next chapter reviews the existing XML presentation processing literature.

12

Chapter 2

XML presentation processing

There are several ways to process an XML document and, within the Web, user initiated
document presentation is the dominant form of XML processing. The previous chapter
established the fundamental Web and XML background. This chapter reviews the XML
document presentation literature, according to a top level processing model, which is
described in Section 2.1. The structure of the subsequent literature review follows
the proposed processing component separation. Specifically, Sections 2.2, 2.3 and 2.4
investigate the current validation, transformation and XML presentation approaches,
respectively. Section 2.5 examines the extent to which current browsers implement the
necessary processing functionality.

2.1 A top level presentation processing model

Successful communication of a piece of information requires a shared understanding
of that information. Schema languages, which are described in Section 2.2, pro-
vide well defined and machine processible language syntax specifications. However,
beyond the syntax level, XML languages do not have explicit machine processible
semantics[BL02a]. As Cover states in [Cov98], the interpretation of XML documents
relies on the human understanding of language specifications, and they are generally
meaningless to a machine.

The foundation of a generic presentation processing model consists of both well
defined machine processible semantics and their well defined association with document
constructs. There is currently no generic XML presentation processing model, because
of the lack of such a foundation. Section 2.1.1 will examine the core generic presentation
processing requirements and Section 2.1.2 will establish the corresponding high level
component separation.

2.1.1 Presentation processing requirements

The W3C organised a workshop that focused on addressing the lack of a generic XML
processing model[web04]. There was no clear conclusion, but it was agreed that pre-
defined processing step sequences, such as validation followed by transformation, are
not adequate[HMO01, WMFO01, Heg01] for the Web, because they are only sufficient for
a functionality subset of a fixed set of XML languages. Consequently, a well defined
representation of the processing iterations is necessary.

An application can natively support only a finite set of languages. Therefore, the
unrestricted multitude of XML languages necessitates a well defined binding between

13

CHAPTER 2. XML PRESENTATION PROCESSING 14

No predefined processing sequences

Distributed binding between languages and their processing

Generic integration model for mixed namespace documents

Provision for a variety of device capabilities and user preferences
Conformance to the Web design principles

Table 2.1: Generic XML presentation processing requirements

the individual languages and their corresponding processing information. Distributed
binding methods, where the owner of a resource assigns its interpretation, are more
adequate for the Web than centralised ones[JT03].

An XML presentation processing model that enables XML language reuse and
multi-domain information representation must support mixed namespace documents.
However, in addition to the lack of well defined processing of individual languages, there
is no generic language integration model, and mixed namespace document process-
ing remains undefined![BL02a]. Predefined language integration profiles, such as the
XHTML+SVG+MathML profile[Mas02], only provide short term solutions, because
each set of XML languages requires a separate profile. Language authors continuously
define new XML languages, and their interdependence becomes exponentially harder to
enumerate in such profilesfDub04]. Inline document processing semantics associations,
such as the xm1-stylesheet processing instruction[Cla99a], neither provide distributed
binding nor adequately address the integration of languages, because they are as com-
plex as the integration profiles and document-instance specific. Consequently, a generic
presentation processing model requires a sufficiently generic integration model that de-
fines the processing of mixed namespace documents, according to the processing of
their individual language constructs.

Finally, an XML presentation processing model must fulfill the Web design prin-
ciples, introduced in the previous chapter, and accommodate the associated variety
of devices and user preferences. Table 2.1 summarises the above XML presentation
processing requirements.

2.1.2 Presentation processing components

There is currently no well defined XML presentation processing model, but, as Fig-
ure 2.1 illustrates, the set of core components and external entities can be specified.
Specifically, the document author wishes to convey some information and encodes it in
an XML document, using one or more XML languages. Each XML language is created
by a language author. The document user has a set of user preferences and uses some
device, in order to interact with an XML document presentation, in the optimal way
for the corresponding user preferences and device capabilities.

The presentation of an XML document consists of the creation of a data set and
of its rendering to a specific device[Heg01]. A presentation component is a necessary
XML browser component and is responsible for the XML data set rendering. The initial
data set creation steps are the document parsing and the optional document validation,

"W3C TAG Issue: mixedNamespaceMeaning-13: October 2003.

CHAPTER 2. XML PRESENTATION PROCESSING 15

Presentation Transformation

Document
Author

Document - ‘ Validation Parsing ‘ |
User i

Language
Author(s)

Figure 2.1: Presentation processing components and external entities

which are respectively performed by the parsing component and the wvalidation com-
ponent. A document can contain languages that are not natively supported, because
presentation component can natively render a finite set of XML languages. Therefore
a transformation component is necessary for mapping unsupported constructs to the
corresponding natively supported constructs.

The subsequent chapters of this thesis will use a formal notation that assists the
concise communication of the proposed concepts. This chapter will gradually introduce
the necessary notation, which will be precisely defined in subsequent chapters. £, will
denote the set of a presentation component’s natively supported languages. An XML
document d contains constructs from the languages in £4. When L4 — £, # 0 the
transformation component is responsible for mapping the constructs of every language
L € Lq— L, to their corresponding constructs of languages in L,,.

A presentation processing model must define how the above components interop-
erate to create the optimal presentation of a document, according to a combination
of a document, a user and a device. Currently, only document parsing is well defined
for all XML documents. The rest of the components and their interoperation are un-
defined, and the only existing presentation processing model agreement is that there
must not be any predefined processing order. Consequently, the individual processing
components, illustrated in Figure 2.1, appear to loosely interoperate, and there is no
concepts of predefined ordering, such as processing layers or iterations.

The lack of generic processing models did not inhibit the introduction of a multitude
of approaches for the individual processing components. The remainder of this chapter
will discuss the existing literature for each processing component.

2.2 Validation

The XML recommendation requires that a document is well formed, but document
validity is optional. The distinction between well formedness and validity assists the
development of XML parsers, efficient XML processing, and liberal evolution of schema
languages. However, validation is an important component of an XML presentation
processing model. Specifically, XML processing components that use the foundation of
a validation component are easier and less error-prone to develop: they do not require
ad hoc conditional validation logic, which is necessary, because the decentralised nature
of the Web does not allow a priori document validity assumptions. Additionally, if

CHAPTER 2. XML PRESENTATION PROCESSING 16

< 7777777777777777
Authoring
Document Author Validation

Authoring Process

Figure 2.2: Validation during document authoring: The V-circle represents the valida-
tion process and the dashed arrow represents the validation feedback.

Local

V2 :
Interaction
Presentation/ .)
Document 7 Orchestration s

Remote
Interaction

Server

Presentation Process

Figure 2.3: Validation during document presentation

validation is a common practice, language authors are more likely to provide language
schemas, as opposed to ambiguous descriptive syntax specifications.

Validation processing applies to both document authoring and presentation. The
document author can perform authoring validation to ensure the validity of a docu-
ment. The presentation process can validate a document before its presentation (pre-
presentation validation), and it can also validate the results of a process or user in-
teraction during the presentation (presentation validation). Figure 2.2 illustrates the
authoring validation, where the document author receives the validation process feed-
back. Figure 2.3 illustrates a processing validation example, where V; validates the
input document, V5 validates the result of a user interaction and V3 validates a docu-
ment prior to its submission. The XForms[DKMRO3] processing model is an example
of V5 and V3.

Autonomous validation processes use schema specifications to independently test
the validity of documents. In contrast, integrated validation approaches use schemas to
perform compile time analysis that ensures the validity of document operations. For in-
stance, the XML transformers typechecking approach|MSV00] ensures the validity of a
transformer’s output. Integrated validation is efficient, but it requires strict component
design that limits its application. For instance, in the above validation examples, only
V3 can use integrated validation, because of the well defined communication between
components of the same application.

Section 2.2.1 reviews the existing integrated and autonomous validation approaches,
and Sections 2.2.2 and 2.2.3 focus on the mixed namespace document validation and

CHAPTER 2. XML PRESENTATION PROCESSING 17

the validation information binding, respectively.

2.2.1 Validation approaches

Autonomous validation approaches use either grammar-based or rule—based schema
languages to describe the corresponding validation rules. The former define validity
using a document grammar, and the latter use structure assertions.

The Document Type Definition (DTD) is a part of the XML recommendation, and
it was the first XML validation approach. DTD is a minimal grammar—based language
that can express element containment, attribute containment and unique identifiers.
However, it does not cover current XML applications[Via01], because it does not sup-
port namespaces, data types and expressive element and attribute restrictions. Conse-
quently, a multitude of alternative schema languages have been developed, such as the
W3C XML Schema recommendation[TBMMO01, BM01, Fal01]. XML Schema addresses
most of the DTD shortcomings, and it includes extensible element and attribute data
types, namespaces support and a modular syntax. Nevertheless, XML Schema cannot
express attribute interrelation constraints, and the use of subset of its concepts, such
as any and all, is overly restrictive. XML Schema does not conform to the XML
minimalistic nature, because of its lengthy specification and its mutually redundant
concepts, such as inheritance and substitution groups.

The most prominent current schema language is Relax NG[CMO01], which is based
on an XML formal model and defines grammars using element, attribute and text
patterns. It provides more control over attributes than XML Schema and, even if it
does not contain a data model, it can reuse existing data models, such as the XML
Schema data model[BMO01]. Other grammar—based approaches include the Unified
Constraint Model for XML (UCM)[FKS01], which uses a minimal core of recursive
regular expressions, and examplotron|[V1i03], which uses document examples to infer
the syntax of a language.

Rule-based schema languages offer several attractive features, but they tend to lack
important features of the grammar—based approaches. For instance, Schematron[Jel03]
uses XPath[CD99] structure assertions to provide very expressive element and attribute
interrelations, and as an XSL-T meta-stylesheet, it has a device independent implemen-
tation. However, it lacks important string data types, type defaults and inheritance
features. Similarly, the Document Structure Description (DSD) [KMS00, Mol03] uses a
generic model of contextual regular expressions tests, but it lacks powerful restrictions
between sibling nodes. Rule and grammar—based approaches complement each other,
and combined approaches, such as SchemaPath[MCV04], which introduces rule-based
constraints to XML Schema, result in a powerful combination of both models.

Integrated validation approaches validate the document modification processes, in-
stead of the documents. XDuce[HP03] is an XML processing platform that treats ele-
ment types as object oriented types, and the associated modification methods enforce
document validity. Instead of controlling the document processing, other approaches
control the document modification rules. For instance, [KSR02] describes the modi-
fication of existing transformation specifications, in order to ensure that they always
produce valid documents.

Two studies[LC00, MLMO1] compare the existing validation approaches either by
their set of supported features or by comparing them to a generic formal model. DTD
is the least expressive approach and Relax NG, and XDuce cover most of the necessary
validation functionality spectrum. However, no existing approach is more expressive

CHAPTER 2. XML PRESENTATION PROCESSING 18

Feedback
é77777777777777777777777771
i
Document 7 Pe " Validator —>
Combined
Schema Integrator Schema
Mixed Namespace Validator
Language:1 } Schema 1 ,7[Independent
Language 2 } Schema 2 ,7‘ Schemas
Language n Schema n

Figure 2.4: A generic schema integrator

than the others, and generic XML validation cannot rely on a single specification. On
the contrary, it must either allow a multitude of validation technologies or use a more
generic abstract model, such as the formal model described in [MLMO1].

2.2.2 Mixed namespace validation

Apart from the DTD, all introduced validation approaches are namespace aware: they
allow the association of namespaces with schemas and the use of namespace qualified
elements and attributes. However, such namespace awareness is not sufficient for mixed
namespace validation. Language authors develop XML languages independently, and
there is a multitude of independently developed schemas. The relationship between
the language L of a mixed namespace document, which combines constructs from lan-
guages L1, Lo, ..., Ly, and the individual language specifications is not well defined.
This is a consequence of the lack of a generic method to interpret mixed namespace
documents[BL02c]. Well defined mixed namespace document interpretation is neces-
sary for combining the schema specifications of any languages L1, Lo, ..., L, to a mixed
namespace language L for a document d where L4 = {L1, Lo, ..., L,} (Figure 2.4).

Current mixed namespace processing applications either introduce purpose specific
integration profiles or abandon validation altogether, because of the lack of a generic
integration model. X-Smiles|PHV02] is an XML browser that supports mixed names-
pace documents, but it does not perform any validation prior to the presentation.
W3C defines a custom integration profile[Mas02] for combining the XHTML, SVG and
MathML languages, but such custom integration profiles are limited and not adequate
for the Web, as described in Section 2.1.1. Moreover, the W3C XHTML modularisation
recommendation|AAB*01] focuses on design principles for the creation of integration
profiles, as opposed to the development of a generic integration model.

The Namespace Routing Language(NRL)[Cla03] and the namespace-based valida-
tion dispatching language (NVDL), which is a part of the Document Schema Defini-
tion Languages (DSDL)[ISO04] multi-part validation standard, attempt generic mixed
namespace validation. NRL defines a syntax for associating namespace URIs with

© 0 Nk W N

e el e e
N O gk W NN = O

CHAPTER 2. XML PRESENTATION PROCESSING 19

<?xml version="1.0"7> 1 |<?xml version="1.077> 1 |<?xml version="1.0"7>
<l:table xmlns:1="..7 2 |[<l:table xmlns:1="..7 2 |<xhtml:table
xmlns: f=" ...7> 3 xmlns:f="...7"> 3 xmlns:f="...7”
4 4 xmlns:xhtml="...7">
<l:row> 5 <l:tow > 5 <xhtml:tr>
<l:column > 6 <f:table > 6 <xhtml:td>
<f:table > 7 An office table 7 <f:table >
An office table 8 </f:table > 8 An office table
</f:table > 9 <l:column > 9 </f:table >
</l:column > 10 </l:column > 10 </xhtml:td>
<l:column > 11 <l:column > 11 <xhtml:td>
<f:table > 12 <f:table > 12 <f:table >
A kitchen table 13 A kitchen table 13 A kitchen table
</f:table > 14 </f:table > 14 </f:table >
</l:column > 15 </l:column > 15 </xhtml:td>
</l:irow> 16 | </lirow> 16 | </xhtml:tr>
</l:table> 17 [</l:table> 17 |</xhtml:table >

(a) (b) ()
Listing 2.1: Erroneous NRL and NVDL validation example

schema specifications and the corresponding mixed namespace validation process. The
latter allows the combination of a multitude of schema languages by separating doc-
uments into single namespace subtrees and validating them independently. Moreover,
a namespace can be associated with a sequence of schema specifications, in order to
allow the combination of multiple schema languages for defining the syntax of an XML
language. Finally, NRL introduces user defined execution modes that allow context
dependent subtree validation, which accommodates for multi-namespace schema spec-
ifications, such as the proposed integration profiles. NVDL is similar to NRL, and it
validates individual document subtrees using namespace to schema associations. Both
NRL and NVDL store the necessary associations in a single file.

Both NRL and NVDL use a minimal integration model: if the individual subtrees
of a document are valid, then the document is also valid. Such a model does not cover
several integration cases. For instance, consider the integration example in Listing
2.1(a). The subtrees of the individual languages are valid and therefore the document
is also valid. However, in Listing 2.1(b), the information in lines 6-8 appears in the
table, but it is outside of any column. Such a structure is not valid, according to the
semantics of a table layout construct. Nevertheless, since all subtrees are valid, both
NRL and NVDL will consider Listing 2.1(b) as a valid document. Listing 2.1(c) is
an alternative where the document author uses XHTML tables. The XHTML syntax
only allows tables within the context of a body element; therefore, NRL and NVDL
will produce validation errors. Nevertheless, the document is semantically equivalent
to the first valid example.

Unlike the above approaches, there are generic languages that allow well defined
information integration. RDF is the foundation of the semantic Web, and it can rep-
resent any type of information, in a similar manner to XML. However, the processing
of RDF documents that combine multiple RDF syntaxes is well defined. Therefore, a
possible solution to the XML integration problems might be based on RDF.

A comparison between the XML and RDF versions of a structured document, which

CHAPTER 2. XML PRESENTATION PROCESSING 20

is included in Appendix D (page 299), illustrates the benefits and drawbacks of such an
approach. An initial observation is that the RDF version is more than twice the size of
the XML version, more difficult to author and more difficult to comprehend. These are
consequences of the principal information focus of RDF, as opposed to the structure
focus of XML. Specifically, the RDF document contains more information than the
XML document, it is more precise and it clearly defines the associations between the
individual information items. In contrast, XML is more focused on the information
structure and, as Berners-Lee states in [BL98b], it provides order, which makes more
sense and is easier to comprehend than the RDF unordered sets of statements.

Information integration depends on the association between different pieces of infor-
mation, and RDF integration is straightforward, because such associations are explicit.
However, neither substituting XML with RDF nor using RDF-style information asso-
ciations within XML are adequate solutions to the XML integration problems. XML
and RDF belong to separate information representation domains, which fulfill different
sets of requirements. RDF is primarily machine oriented, and it is not easy to author
and comprehend. XML focuses on the order of information, instead of the information
associations, which results in a more human oriented syntax that is a major factor in
its success. Both of the above solutions would result in a representation that does not
fit within the human oriented scope of XML. Consequently, this thesis will not cover
presentation approaches that are specific to either the RDF or the semantic Web and
cannot be adapted to the XML information representation model.

2.2.3 Schema binding

Schema binding concerns the explicit or implicit association of the necessary schema
specifications for validating a document. The validation approaches introduced in Sec-
tion 2.2.1 either do not specify such associations or propose inline document associa-
tions. For instance, a document can either have an inline DTD specification or refer
to an external DTD resource, using a declaration at the beginning of the document.
XML Schema defines attributes, within the “document instance” namespace, that can
provide schema location hints to the validator. NRL and DSDL approaches introduce
namespace to schema associations, but their schema binding is absent, because the
associations reside in a separate file, and there is no well defined way to locate it.

Explicit document associations ensure the availability of validation information,
but they delegate the validation information specification responsibility to the docu-
ment author. However, the document author typically focuses in the document con-
tent and not in its processing. Moreover, “the design choice for the Web is that the
owner of a resource assigns the authoritative interpretation of representations of the
resource” [JT03]. Consequently, the language author, who is the “owner” of a language,
should be responsible for specifying its processing information, which includes the val-
idation information.

Namespaces can enable the wide availability of processing specifications that are
developed by language authors. Namespaces provide unique XML construct identi-
fication, which is the basis of any form of association. Language authors typically
control their chosen namespace URIs and any URI-associated Web resources, such as
Web documents, and they can use them to associate a language to its human and
machine processible information. Such an approach enables the distributed specifica-
tion of language processing information and makes the Web a “distributed registry of
languages” [BLO03].

CHAPTER 2. XML PRESENTATION PROCESSING 21

There is currently no consensus on the association between namespace URIs and
the corresponding human and machine processible language information. If the names-
pace URIs are also URLs, they enable well defined resource retrieval by a browser.
Schema specifications were initially considered as the adequate resource to associate
with a namespace URI. However, schemas only provide syntax information, and they
are not adequate for human consumption. [BL02d| proposes embedding RDF-based
language processing information within XHTML human readable language descrip-
tions, but there is currently no corresponding well defined RDF vocabulary.

The Resource Directory Description Language (RDDL)[BB02] is an XML syntax
that specifically addresses the representation of namespace related resources. RDDL
extends XHTML to allow the incorporation of links to machine processible resources
within human readable XHTML descriptions. Each link has a “nature” and a “pur-
pose”. The nature specifies the type of the linked resource, such as an XML Schema
specification type, and the purpose further refines the usage of the resource. There is a
predefined collection of the most commonly used natures and purposes, but language
authors can add their own. RDDL is not currently widely used, but it provides an
easy transition from the existing plain XHTML descriptions and allows the use of sev-
eral resource types. Therefore, it is a prominent approach for the association between
namespace URIs and language processing information.

2.2.4 Validation summary

Document validation is an important processing step during both document author-
ing and presentation. The existing set of validation approaches and schema languages
covers a wide range of functionality, but no individual approach covers all existing
functionality. Therefore, a generic XML presentation processing model must enable
the incorporation of the existing multitude of validation approaches. Mixed namespace
document validation is currently based on several short term solutions, such as inte-
gration profiles. NRL and DSDL proposed a minimal language integration model, but
it is not sufficiently generic for many integration cases. Finally, most approaches either
provide document based or no validation information binding, instead of using names-
pace URI based associations. RDF and RDDL have been proposed as alternatives for
encoding such associations.

2.3 Transformation

Early adoption of XML in Web browsers was impeded by the lack of a well defined XML
presentation processing model. The CSS recommendation[BCHLO04| was initially used
to attach style information to XML constructs, but CSS is restricted by the initial doc-
ument structure, because it cannot transform a document. The XSL Transformations
(XSL-T)[Cla99b] address the CSS restrictions by separating the document presentation
from its structure and transforming XML documents to other XML or textual repre-
sentations. Transforming an XML document to a natively supported representation
enables its presentation.

A transformation maps the constructs of a language Lq to the constructs of a
language Lo, according to an optional external input. The external input can be any
relevant information, such as an XML document or a set of transformation parameters.
7, LL12 will denote the set of all transformations that map documents of L1 to documents

CHAPTER 2. XML PRESENTATION PROCESSING 22

of Ly. dy %)dz, or di i)dz for insignificant external transformation input, denotes

the mapping of dy to do according to a transformation 7" and an external input I. If
T e TLLIQ and d; is a valid document of L, then ds is a valid document of L.

Figure 2.5: Transformation symbol

Figure 2.5 represents the mapping d; %dz of dy to ds, according to the transfor-

mation 77 € 7, Llf. A transformation can have multiple inputs and produce multiple
outputs, which are not necessarily restricted to XML. However, XML can represent
any information, and multiple inputs and multiple outputs can be incorporated into a
single XML document. Moreover, any non-XML information can be represented by an
equivalent XML document. Therefore, without reducing the generality, this thesis will
only consider single XML input and output transformations.

XML transformations can apply in multiple points of several applications, such as
generic data manipulation, content styling, Web publishing, and device specific content
adaptation. For instance, consider an XML document that lists a set of computer sci-
ence literature authors and the example transformation steps, illustrated in Figure 2.6.
T1 can select a subset of the authors, and 75 can transform the resulting author data to
a language, such as XHTML, which is natively supported by the client browser. T3 can
perform pre-presentation processing, such as converting XML Links to their equivalent
XHTML representation. During the presentation, T; can modify the presented data,
in order to generate presentation effects, such as animation. Finally, if the document
user can edit the presented information, 7% can transform the user input to an XML
representation adequate for transmission to a server. The above transformation steps
can be freely distributed, since the inter-transformation communication uses XML,
which is device independent. The illustrated transformation steps illustrate an exam-
ple distribution over a server, a client, and an adaptation proxy. However, different
configurations can be used; for instance, all the processing can take place in the client.

The remainder of this Section (2.3) investigates the existing XML transformation
literature. Section 2.3.1 summarises existing transformation approaches that can be
enhanced by the transformation pipeline approaches in Section 2.3.2. Sections 2.3.3,
2.3.4 and 2.3.5 focus on content adaptation using transformations, binding of transfor-
mation information for mixed namespace documents and the interoperation between
transformation and validation, respectively.

2.3.1 Transformation approaches

XSL-T[Cla99b] was the first XML transformation language and it enables mapping
XML documents to other, XML or non-XML, documents. XSL-T uses an XML syntax
for its transformation rules, which consist of a set of output templates that are executed
recursively, according to either the structure of the input document or to explicit tem-
plate invocations. XPath[CD99] is an integral part of XSL-T, because it provides the

CHAPTER 2. XML PRESENTATION PROCESSING 23

I
v, T

Server Proxy Client

Figure 2.6: Multiple transformation applications during document presentation

necessary syntax for referring to source document constructs and defining functional
data computations. XSL-T has been widely adopted, but it introduced multiple prac-
tical problems, such as the lack of data types, the lack of multiple inputs and outputs
and the restricted error handling and namespace support. The recently standardised
XSL-T 2.0 addresses these problems.

The main criticism of XSL-T is the disproportional complexity of its syntax to the
complexity of the defined transformations, which is particularly apparent for minimal
transformations, such as removal and copying of elements[ET01]. SXSLT[KKO03] is
an alternative approach that claims to have a more concise syntax and better formal
properties. SXSLT syntax is based on Scheme[KCR98]|, and it is more concise than
XSL-T. However, using non-XML syntaxes for transformations is against the concept
of a common data representation, and it can complicate several transformation appli-
cations, such as meta-stylesheets. Meta-stylesheets are transformation specifications
that produce other transformation specifications.

Additional transformation approaches include the XDuce[HP03] transformations
and the Streaming Transformations for XML(STX)[CBNT03]. The former defines
transformations as operations on XML types, as introduced in Section 2.2.1, and pat-
tern based production rules. XDuce allows both declarative and imperative transfor-
mation specifications and their validation at compilation time. STX focuses on efficient
transformation application, and it minimises the memory and processing requirements
by manipulating sequences of XML structure events, as opposed to DOM trees. The
streaming nature of STX reduces its expressiveness, but the use of look-ahead and
history techniques permits the support of a substantial subset of XSL-T functionality.

Finally, in addition to generic transformation approaches, the processing of other
XML languages can also result in document transformation. A typical example is the
XML Inclusions language[MOO03], which defines a syntax for including external content
to an XML document. The external content inclusion results in document modifi-
cations. Most such languages can be implemented by the above generic approaches;
therefore they only provide a functionality subset of the generic approaches.

2.3.2 Transformation pipelines

The interoperation between multiple transformation steps is not well defined, because
each of the aforementioned approaches uses separate transformation rule syntaxes and
processing models. For instance, consider the example illustrated in Figure 2.6, where

CHAPTER 2. XML PRESENTATION PROCESSING 24

\HL}\T,L/LZ 12127 L3T3L4]—’

LI 14

Figure 2.7: Transformation pipeline example

T3 is responsible for mapping the XML Links constructs to their XHTML equivalents.
Processing additional languages would either require a combination of separate trans-
formations, or a single transformation that combines their functionality. The former
modular approach is preferable, because it allows complex transformation specifica-
tions through division into simpler ones, and it combines the capabilities of multiple
approaches. Transformation pipelines enable the interoperation of separate transfor-
mation technologies, and they provide a declarative approach for connecting multiple
transformation steps, which is less error-prone than the alternative of using generic
scripting.

Existing transformation pipeline approaches fit into the single framework of de-
scribing the document flow between four component types: sources, transformations,
mergers and sinks. The sources and the sinks are responsible for the initial input and
the final output of the document, and they provide the input/output interface of a
pipeline. The transformations are the core processing components, since they mod-
ify the XML document. Mergers exist in a subset of the existing pipeline proposals,
and they are purpose specific transformations that use multiple document inputs. A
pipeline is also a transformation. Figure 2.7 illustrates a composite transformation
that corresponds to the sequential pipeline composition of the first three transforma-
tion steps illustrated in Figure 2.6. Specifically, T} € TLLIQ, T € ’TLIf and T € TLZ“.
The resulting pipeline T is a transformation: T € ’TLL14 eT

XPipe[McGO1] is an early pipeline approach, which aims to reduce complexity by
composing transformations out of small and reusable components. XPipe architecture
is based on four layers. The first layer contains an extensible set of reusable components
that perform simple transformations. The second layer combines these components
into reusable pipelines, which provide enhanced transformation functionality. XRigs,
which is the third layer, uses the pipelines to build more complex structures, such
as transformation loops and duplexers. Finally, XGrid, the topmost layer, focuses on
transformation clustering for efficient execution using parallel processing. XPipe was
an ambitious project, and it had the potential to allow efficient execution and modular
design of arbitrary complex transformations. However, there has been only a partial
implementation of the first two layers. XPipe was subsequently subsumed within a
commercial solution, and details of further developments are not publicly available.

Cocoon[Maz02] is a widely deployed approach that uses pipelines for Web publish-
ing. Cocoon offers an extensive library of predefined reusable transformations, which
are the basis for pipelines that perform the most common Web publishing tasks. Co-
coon and other similar approaches, such as the Lazy XML processing proposal NSL02],

CHAPTER 2. XML PRESENTATION PROCESSING 25

| Device type | Examples | Description |
generic http://www.example.org/document.html The original URI
. http://www.example.org/document .wml Use of file extension
mobile or
http://www.example.org/mobile/document.html | path component
. http://wuw.example.org/document.pdf Use of file extension
printer or
http://www.example.org/print/document.html | path component

Table 2.2: Example of implicit device capabilities information within URIs

target server side transformations, and they use a data-pull model: the last step of
the pipeline controls the data flow. On the other hand, push-based approaches, such
as the W3C XML Pipeline[WMO02], use models similar to tools like make (part of
POSIX[Por04]). Such models organise the individual transformation steps according
to separate processing targets, and the document data are pushed through them.

In addition to integrating existing approaches, Transmorfer[ET01] proposes a trans-
formation pipeline model within a complete transformation language. Transmorfer al-
lows using regular expressions for more concise transformation definitions and provides
recursive application of transformations. The latter simplifies the processing of natu-
rally recursive transformations. For instance, an XML Inclusions processing transfor-
mation can introduce new content that also contains inclusion constructs. Transmorfer
will recursively invoke the same transformation, until all of the constructs have been
processed.

2.3.3 Transformations for content adaptation

Transformations can adapt XML documents to the characteristics of a variety of de-
vices. Cocoon offers some primitive adaptation support by associating the transfor-
mation pipelines with URIs, because the current use of URIs has device capabilities
implications that assist the identification of the basic characteristics of a client device.
For instance, consider the URI examples in Table 2.2. The first URI does not have
any device capabilities implications. The second and third imply that the associated
resource targets are mobiles, because of either the “wml” extension or the “mobile”
part in the URI. In a similar manner, the last two URIs imply an associated resource
that is optimised for printing. The Cocoon associations between URIs and pipelines
enable a Web server to process the same source document using separate pipelines,
which correspond to separate URI implied device capabilities.

The benefits of such adaptation approaches are limited, because the URI implicit
adaptation information is not well defined and restricted. Additionally, such device
dependent URIs are against the authoring principles for the Web[GFMS03], because a
URI identifies an information resource and not a device dependent information repre-
sentation. Nevertheless, they enable simple adaptation that does not require additional
client-server cooperation, and there are currently no other generic multi-language trans-
formation approaches that offer more powerful content adaptation.

In contrast, the device independent authoring domain includes several proposals for
adapting a document according to a set of device capabilities and user preferences.
However, they do not allow generic document transformation, because they either re-
strict the document languages set or rely on a static presentation component that

CHAPTER 2. XML PRESENTATION PROCESSING 26

closely interoperates with the transformation process. The investigation of device in-
dependent authoring approaches is included in a subsequent section (2.4), because the
restricted set of languages and the presentation component specific adaptation are more
relevant to the presentation component.

The application of transformations for content adaptation extends further than
the introduced XML transformations. Specifically, Web content may also use binary
data, such as images and videos, which also require adaptation to a variety of devices.
[PZB02] proposes a binary pipeline, which combines binary data transformations that
adapt binary content to a variety of devices. The adaptation of XML document as-
sociated binary data is necessary, but it is outside the scope of this thesis, which is
primarily concerned with XML processing.

2.3.4 Binding and mixed namespace transformations

The stylesheet processing instruction[Cla99a] is the dominant way of associating a
transformation definition with a document. Such document based approaches share
most of the document based validation binding problems described in Section 2.2.3,
notwithstanding the weaker relationship between transformations and XML languages.
Specifically, the document author should not be required to specify the document pro-
cessing. Language processing information should be associated with the individual
languages, instead of the documents, and transformation specifications are a partial
language processing definition. Cocoon provides the only alternative transformation
binding mechanism, which associates transformation specifications with URIs and URI
patterns. The Cocoon binding separates the document from its processing, but the
associations remain document specific, and document modifications can require exten-
sive reconfiguration of the associated transformation pipelines. Consequently, there
is still an implicit relationship between the document author and the final document
processing.

The majority of transformation approaches allow namespace aware transformations
that use namespace qualified constructs. However, there is currently no proposal for
associating individual namespaces to reusable transformations that can be combined for
processing a mixed namespace document. The lack of such proposals is a consequence
of the current principal perception of transformations as an independent step of XML
document processing and not as a way to define the processing of XML languages.

2.3.5 Interoperation with validation

As described in Section 2.1.2, an XML presentation model must define the interoper-
ation between its individual processing components. The output of a transformation
process T € T, LL12 is well defined, if its input document d; is a valid document of L;.
The output do of T is guaranteed to be a valid document of Lo, if the transformation
process behaves correctly and has no errors. The interoperation of the transformation
and the validation processes is necessary, in order to ensure well defined processing
behaviour and to assist the identification of implementation errors.

In addition to transformation processing steps, the W3C XML Pipeline approach
also allows validation steps within the pipelines. Additionally, validation approaches
that are implemented as transformations, such as the previously introduced Schema-
tron, can be incorporated in all transformation pipeline approaches. More fine grained

CHAPTER 2. XML PRESENTATION PROCESSING 27

transformation and validation interoperation occurs within integrated validation pro-
cessing models. For instance, the result of any transformation in XDuce is a priori
known to produce valid results, and there is no need for additional runtime validation.
Similarly, the type checking approach described in [MSV00], ensures that the result of
a transformation 7, LLf will be a valid document of L, if the input is a valid document
L.

2.3.6 Transformation summary

Transformations are important for an XML presentation processing model, and they
have several applications in document styling, Web publishing and content adapta-
tion. There are several generic transformation languages, where XSL-T is the most
widely used, notwithstanding that it is relatively more complex than the alternatives.
Transformation pipelines enable the combination of transformation steps to form more
expressive, easier to develop and more reusable processing components.

Current approaches that bind transformation information to XML constructs are
problematic, because they delegate the document processing responsibility to the doc-
ument author. The lack of language based associations results in the lack of generic
mixed namespace transformation models.

Content adaptation is a prominent application for transformations, but apart from
implicit and ambiguous URI based associations, there are no generic approaches that
adapt XML content to the variety of devices and user preferences that will inevitably
be required for the Web.

Finally, the interoperation between the validation and transformation processes
can be expressed by incorporating validation steps within transformation pipelines.
Additionally, integrated validation approaches allow the validity to be a priori known,
without requiring a separate runtime validation.

2.4 Presentation

A document user uses a Web browser, which runs on a target device, to interact with
the presentation of an XML document. The presentation component is the interface
between the XML data, the document user and the target device, and it is responsi-
ble for adequately presenting the XML document according to the document author
intentions, the target device capabilities and the document user preferences.

The presentation component can natively support a finite set of XML languages,
the native presentation languages set L,. As Figure 2.8 illustrates, the other process-
ing model components interoperate for mapping the source document to its natively
supported interpretation. In a similar manner to the transformation and validation
components, the presentation component benefits from mixed namespace documents
and an extensible native presentation language set. The former allows better £, utilisa-
tion, and the latter is necessary to accommodate the ever increasing Web presentation
requirements. Additionally, the presentation component must simultaneously fulfill
the, possibly conflicting, document author requirements, document user requirements
and target device capabilities.

Sections 2.4.1, 2.4.2 and 2.4.3 focus on the £, set: its members, its extensibility and
the corresponding mixed namespace support. Section 2.4.4 investigates both presenta-
tion and transformation approaches for adapting the document presentation, according

CHAPTER 2. XML PRESENTATION PROCESSING 28

. LP » Other Presentation
< » Presentation # -
Model Components
Document ‘ ‘
User Device User
Capabilities Preferences
Browser
Target Device

Figure 2.8: The presentation component as an interface between the target device, the
document user and the document author.

to the user preferences and device capabilities. Finally, Sections 2.4.5 and 2.4.6 intro-
duce several imperative scripting and declarative constraint approaches, which can
enhance the functionality of the presentation component.

2.4.1 Native presentation languages set £,

The members of £, significantly influence a presentation model’s capabilities, because
L, represents its interface, and all presentation information must be encoded using the
languages in £,. Before the advent of XML, the presentation model capabilities were
restricted by a limited set of Web languages, and an £, that covered the functionality of
HTML and CSS was sufficient. However, XML content can require arbitrary complex
presentation, and the members of £, must cover a wide presentation functionality
spectrum that is difficult to enumerate.

Existing W3C recommendations include a multitude of presentation oriented XML
languages that are candidate members of an adequate £,, because they cover a wide
range of presentation functionality. For instance, HTML and CSS have covered the
majority of the document layout and hyper-linking uses, over the last decade. Extensive
use does not in itself prove sufficient coverage of a presentation area, but it does give
an indication of sufficient coverage for the most common requirements. However, the
illustrated sufficiency has been maintained by continuous extensions that have resulted
in complex and feature saturated languages, which, as mentioned in Section 1.3, are
against the minimalistic nature of the Web.

XML allows the creation of purpose specific languages, and it can address the prob-
lem of overly complex languages, but XML languages are evolving in a similar way to
HTML. For instance, SMIL 1.0 contained the core multimedia integration function-
ality in a thirty pages recommendation. The SMIL 2.0 recommendation[ABC*01b]
attempted to cover most necessary Web multimedia functionality, and it resulted in
a twenty fold recommendation size increase. Similarly, SVG started as simple vector
graphics syntax, but evolved to a very broad language, which includes animation, text
layout, streaming media and presentation of arbitrary XML content. Such languages
are versatile, but they do not conform to the minimalistic nature of the Web and most
include features that not all devices can support. As Allen states in [All04], the Web
needs simple building blocks that can be combined to provide extended functionality.

CHAPTER 2. XML PRESENTATION PROCESSING

Functionality Hardy[Har04] Allen[Al104] Birbeck[Bir04]
categories
Layout document layout generic layout | styling, generic rendering
Multimedia integration, animation medl'a support generic rendering
animation
dynamic document model,
Interaction Interface components Input events | system module, communi-
cations.
) L binding o
Behaviour code/data binding . Events, validation
constraints
Extensibility extensible architecture | building blocks generic presentation
model
Adaptation resolution independence views object broker

29

Table 2.3: Proposed Web content presentation building blocks

Consequently, there is an ongoing effort to partition existing languages into a set of
loosely coupled modules.

Hardy[Har04], Allen[All04] and Birbeck[Bir04] propose three separate sets of the
necessary presentational building blocks for the Web. As Table 2.3 illustrates, all
proposals cover the same functionality categories: document layout, multimedia, in-
teraction, behaviour specification, extensibility and adaptation for a variety of devices.
The core difference between the three proposals is the granularity level of the proposed
building blocks. For instance, [All04] describes individual presentation components,
but [Bir04] describes a higher level generic presentation model. All proposals contain
language examples, but they define the necessary functionality using sets of features,
instead of specific XML languages. Such descriptions enable well defined functionality
categories, which do not depend on language specific features.

None of the above proposals proves the sufficiency of either the functionality cat-
egories or their corresponding building blocks in Table 2.3. Sufficiency investigations
for the freely evolving Web are difficult, but sets of use cases can assist the require-
ments identification, within sufficiently narrow categories. In the multimedia domain,
[OGHRO3] uses a set of use cases to define the requirements for a multimedia vocab-
ulary for the Web. [Sch02] establishes the SMIL 2.0 time model sufficiently for the
majority of the Web multimedia requirements. Use cases do not provide indisputable
proofs of sufficiency, but they are a valid alternative for the Web, where sufficiency is
impractical or impossible to prove.

2.4.2 Extensibility of the native presentation languages set

The transformation component enables the presentation of non native presentation
XML languages (not in L), if the £, functionality is sufficient. The presentation
component must be extensible, in order to allow £, to evolve in parallel with the
continuously increasing Web presentation requirements.

Plug-ins and applets are the currently prevalent method of extending the func-
tionality of the presentation component. A plug-in is a device and browser specific
component that fully controls the presentation of a new language or media type. An
applet is a device independent component that controls a rectangular screen area and

CHAPTER 2. XML PRESENTATION PROCESSING 30

LP
Ly davadPt | Ly Plugein | L, |
Presentation | Presentation
Java VM Plug-in Model | Component
,,,,,,,,,,,,,,,,,,,,,,,,,,, DeviceAPI
Device

Figure 2.9: £, extension using plug-ins and applets

runs on a Java virtual machine. Both approaches can provide arbitrary complex pre-
sentations, since, as Figure 2.9 illustrates, they are not restricted by the underlying
presentation model. Plug-ins directly access the device API and add their “plug-in
L,2” to the combined E;. The applet approach exposes the generic Java API as a part
of the [,’p. Both applets and plug-ins implement their own presentation model that does
not depend on other components or presentation models, and they can impede the in-
teroperation between separate plug-ins, applets and the existing presentation model.
Therefore, the presentation of documents that combine the languages in ,C;, becomes
problematic, because it requires a well orchestrated component interoperation.

Alternative extension approaches that integrate into the existing native presenta-
tion model can overcome the above interoperation issues, but they require generic and
extensible presentation models. For instance, using CSS to define the style of new
languages enables language interoperation on the foundation of the common CSS pre-
sentation model. However, as described in Section 2.3, CSS is not sufficiently generic,
because it closely couples the structure and the presentation of documents, and it only
covers a presentation functionality subset.

Scripting approaches, such as the ECMAScript[ECM99] and the light—weight Web—
based applications[Bos04], do not directly extend the £, set, but they allow presen-
tation and processing model customisations. ECMAScript, which is the standardised
version of JavaScript, is a scripting language that can manipulate XML data, using the
DOM interfaces, and access runtime presentation information, through the browser
API. The light—-weight Web—based applications approach is a scripting alternative to
applets, which is closely integrated to a hosting document. Both approaches extend
the presentation component functionality by manipulating and combining its existing
functionality. However, they do not have an explicit binding with XML constructs
and, therefore, they cannot directly extend the £,. Moreover, the lack of a well defined
browser API restricts their presentation processing model access. The light—weight
Web—-based applications approach proposes a custom processing model, which exposes
a well defined interface, but it leads to the same problems with applets and plug-ins.

The XML Binding Language (XBL)[HyaOl] and the Rendering Custom Content
(RCC), which is a component of the current SVG 1.2 working draft, combine imper-
ative scripting and declarative associations to enhance the presentation component
functionality. XBL uses an object oriented model for associating behaviour with XML
structures, in a similar way to the CSS styling information association. Specifically,

CHAPTER 2. XML PRESENTATION PROCESSING 31

| Lp 777777777777777
I N L
Extension }
L | , .
77777777777 b ! Presentation | Presentation
Model | Component
e DeviceAPr |
Device

Figure 2.10: Extension with presentation model integration

XBL associates the name of an element and its position in a document to a set of
properties, event handlers and “hidden content”. The “hidden content” uses other
XML languages to specify the presentational behaviour of an element. RCC uses a
similar approach to XBL, but it is specific to the SVG presentation model. The SVG
“hidden content”, or “shadow tree” in the SVG terminology, solely consists of SVG
elements that define the presentation of an element. RCC binding uses the qualified
element names, instead of the positional XBL bindings. RCC does not explicitly sup-
port the XBL concept of object oriented scripting, and it is less generic than XBL,
but it conforms to the SVG processing and presentation model. Both XBL and RCC
are restricted by the existing presentation model, but their combination of binding,
scripting and language reuse is the most promising current approach for an extensible
L.

Figure 2.10 illustrates how presentation model integration approaches, such as XBL
and RCC, add new languages to a presentation model. The definition of the presen-
tation of a new language uses the existing £,. The resulting E; seamlessly integrates
both the original £, and the introduced extension £,;. Further extensions can use the
combined £}, and allow recursive reuse of existing functionality.

2.4.3 Presentation of mixed namespace documents

A presentation component benefits from mixed namespace document processing, be-
cause it enables the combination of the individual £, presentation building blocks into
a coherent whole, and it also enables the seamless integration of £, extensions. More-
over, there are existing £, candidates that require mixed namespace processing, such
as the XML Linking language (XLink)[DMOO1]. XLink defines a syntax and a model
for generic XML links that provide bidirectional, multiple source and multiple target
linking. The “simple” XLink links are similar to the HTML links, and their syntax
consists of the single href attribute of the XLink namespace. The href attribute can
be attached to an element of any XML language, in order to specify the URL that the
element is linked to. A document that uses XLink is a mixed namespace document, be-
cause it must use constructs from both the XLink and the content description language
namespace.

In a similar manner to the other processing components, the lack of a generic

CHAPTER 2. XML PRESENTATION PROCESSING 32

integration model impedes the presentation of mixed namespace documents. How-
ever, an L, integration model can achieve generic integration by utilising the, yet
undefined, presentation domain constraints in a more straightforward manner than
a generic transformation and validation integration model. Specifically, the £, lan-
guages are the interface of the presentation component, which has the well defined
purpose of document presentation. As described in Section 2.4.2, prominent £, ex-
tension approaches must integrate all extensions to a common underlying presentation
model. Consequently, each presentation component implementation explicitly bounds
the functionality of the £, languages and of their extensions. The RCC proposal and
the X-Smiles browser[PHV02], which are discussed below, utilise the presentation do-
main constraints for mixed namespace document presentation.

In contrast, namespace assimilation and integration profiles do not utilise the
presentation domain constraints. Namespace assimilation approaches assimilate in a
namespace the necessary constructs of other languages. For instance, SVG declares the
SMIL animation constructs, within its own namespace. Namespace assimilation allows
customized integration, according to the host language presentation model, but it does
not comply with the modularity requirement and results in monolithic specifications
and redundant constructs. Moreover, continuous updates are necessary to keep such
specifications up to date. Integration profiles define how to integrate a fixed set of lan-
guages, and they do not necessarily introduce redundant constructs or require updates
when one of their individual languages is updated. However, existing profiles, such as
the XHTML + SVG + MathML profile [Mas02], do not define sets of integration rules,
but combine the individual specifications into a profile specification. Therefore, they
bear redundancy and must be updated, when the languages are updated. Additionally,
current approaches focus more on the syntax, and not the presentation integration.

Namespace assimilation and integration profile approaches are problematic, because
they do not utilise the presentation domain constraints, in order to propose a generic
presentation integration model. Integration proposals that use the presentation domain
constraints face a trade off between versatility and integration capabilities. [MMMO04]
proposes mixed namespace documents presentation on top of a common presentation
framework. For instance, RCC enables the presentation of mixed namespace documents
by mapping their constructs to the SVG presentation model. The common presentation
model allows powerful integration, because it enables well defined interoperation be-
tween the individual languages. Such approaches require a well defined and sufficiently
generic presentation model, which is difficult to establish, as discussed in Section 2.4.1.

The X-Smiles browser[PHV02] proposes more loose interoperation, in order to pro-
vide more generic integration. Each language namespace is associated with a language
specific presentation module. A document subtree is presented by the instance of the
presentation module that corresponds to its root node namespace. Each instance al-
locates a rectangular rendering area and can interoperate with other modules, if the
subtree contains multiple namespaces constructs.

Figure 2.11 illustrates the DOM tree and the presentation layout of a mixed names-
pace document that contains XHTML, XForms and SVG constructs. The root of the
tree is an XHTML node, and X-Smiles uses an XHTML presentation module instance
to cover the browser rendering area. The XHTML presentation module interoperates
with the XForms and SVG modules, for the presentation of the XForms and SVG sub-
areas, using a box layout model and a set of predefined interfaces. The X-Smiles model
successfully integrates nine W3C recommendations, but the box layout cannot cover
all integration cases, and the interface based interoperation is problematic, because

CHAPTER 2. XML PRESENTATION PROCESSING 33

Browser Window X|

| xHTML

XHTML

Legend

Q Document Node
<] Document Fragment

Figure 2.11: X-Smiles mixed namespace document presentation. The various colours
represent the nodes and the presentation of different languages

interface extensions require component modifications. A viable alternative, illustrated
in [Zil04], is property based component interoperation, where the introduction of new
properties does not require existing component modifications, because they can ignore
any unknown properties.

2.4.4 Presentation adaptation

The presentation of an XML document must fulfill the possibly conflicting require-
ments of the adaptation factors: the document author, the document user and the
target device. The granularity of the £,, presentation information distributes the adap-
tation responsibility between the transformation and the presentation components. As
illustrated in Figure 2.12, the more abstract the input of a component in relation to
its output, the more adaptation freedom and responsibility it has. In 2.12 (a) the £,
interface between the transformation and presentation components lies in the middle
of the overall adaptation range, and the adaptation capability /responsibility is divided
equally between them. On the contrary, the £, presentation information is more ab-
stract in (b) and more precise in (c), and the adaptation capabilities/responsibilities
are separated in a corresponding uneven manner. This section will describe both trans-
formation and presentation adaptation approaches.

A component that performs content adaptation must be able to access the adap-
tation factor requirements. The document author requirements are directly available
to all processing components, because they are either explicitly or implicitly contained
within the XML documents. For instance, a style attribute can explicitly specify the
font-size of a paragraph, and an <h1> XHTML element implies a larger and bolder
font than the main body of a document. On the contrary, an alternative source must
provide the document user and target device requirements. URIs can contain implicit
device type information, such as “desktop”, “printer” and “mobile”, as illustrated in
Section 2.3.3. CSS permits the use of separate presentation styles for separate device
types. However, such approaches are not sufficiently generic, since the type of a device
is only one of the several relevant adaptation factors.

CHAPTER 2. XML PRESENTATION PROCESSING 34

Presentation
Adaptation Range

Transformation
Adaptation Range

'l
-

(a) Balanced _ Presentation
(b) Abstract L, - Presentation

' 4

Y

- ; 7
! . : Precise
Abstract Document L, interface between Document tati
; . resentation
presentation Source Transformation and Presentation v i
. . . information
information Presentation

Figure 2.12: Adaptation responsibility /capability according to £, granularity

The Composite Capabilities/Preferences Profile W3C recommendation RHDS99]
(CC/PP) is an RDF syntax that enables more precise requirements specification. A
CC/PP profile is a collection of statements about user preferences, hardware and soft-
ware capabilities. CC/PP profiles are “composite”, because they can be composed out
of a default profile and multiple temporary and/or permanent modification sub-profiles.
A presentation model can use CC/PP to access the adaptation factor requirements, for
a given target device, document and presentation session. For instance, a CC/PP de-
fault profile, which is associated with a target device, can contain the corresponding
software and hardware capabilities. The target device can also be associated with a
permanent sub-profile that describes software upgrades and session independent user
preferences. Finally, the presentation session can be associated with a temporary sub-
profile that contains temporary requirements, such as the user preferences for a specific
document. The extensible CC/PP profiles can express any adaptation requirement, and
their composite nature minimises the profile communication requirements, because it
allows caching the most static sets of requirements. However, it does not provide a
well defined resolution mechanism for conflicting statements, which is necessary for
composing independently developed profiles.

As mentioned above, the adaptation capabilities of a component improve, if its in-
put is sufficiently more abstract than its output. However, especially when documents
are not authored with adaptation in mind, the adaptation range might not allow suffi-
ciently powerful adaptation. The proposals described in [YW03] and [CMZ03] focus on
adapting existing HT'ML content to limited resource devices, such as mobile phones.
HTML describes the presentation of a document, but it does not convey higher level
concepts, such as the relative content importance and semantic document partition-
ing, which are necessary for the proposed adaptation. The above proposals attempt to
guess the original author intentions by a heuristic analysis of the HI'ML source, which
takes into account the source indentation and the proposed screen positioning of the
individual elements. The resulting documents are more adequate than the originals for

CHAPTER 2. XML PRESENTATION PROCESSING 35

limited resource devices. However, such approaches are limited, because when the orig-
inal author intentions are lost, heuristics can only estimate a limited subset of them,
with questionable accuracy.

Device independent authoring aims to provide more powerful content adaptation
by preserving the high level author intentions in the document. Existing approaches
allow either the adaptation of generic XML content or of application domain specific
content. For instance, CSS supports alternative presentations of generic XML content
for various devices, because it allows the association of separate stylesheets with sep-
arate devices. As mentioned above, such a selection mechanism does not cover the
variety of adaptation requirements; moreover, such stylesheets are document specific,
do not allow functionality reuse and associate the presentation semantics with the doc-
ument, instead of the XML languages. The proposal in [OH02] enables significantly
more powerful adaptation, because it extends the adaptation requirements spectrum
by associating CSS stylesheets and XSL-T transformation specifications with CC/PP
profile queries.

Application domain specific adaptation approaches can only adapt a subset of XML
documents, but they can exploit the properties of an application domain to offer power-
ful adaptation. For instance, the adaptive grid[JLST03] provides high quality document
layout, for a variety of page sizes. The document author provides information streams
and sub-streams, which define the information sequence and grouping that the docu-
ment user must perceive. The document author can also define a set of adaptive page
layout templates, using numerical constraints on the page size and the visual compo-
nent position. The layout engine solves the resulting constraints system and uses the
most appropriate template for each page, which is also adapted to the corresponding
information streams.

The adaptive grid approach is limited to adapting page layout specifications, ac-
cording to a single group of adaptation requirements: the page dimensions. The highly
constrained application domain enables more autonomous and powerful adaptation
than the above generic approaches. Specifically, the layout engine is able to automati-
cally evaluate the best template for each page, without the intervention of the document
author or the document user. Moreover, the domain specific constraint definitions al-
low precise template adaptation, according to presentation time variables that cannot
influence the adaptation processes in the above CSS and XSL-T based approaches.
Finally, as opposed to the CSS stylesheets, the page templates are reusable and not
document specific.

However, the adaptive grid is highly constrained and not adequate for adapting
other information domain content, such as multimedia. As described in [OGHRO03],
multimedia content requires different adaptation approaches than text based media,
because it uses different adaptation abstractions and processing models. For instance,
typical text layout does not include temporal orchestration or media type and media
transmission negotiation, which are central to a multimedia presentation. The above
work|[OGHRO03] summarises the core requirements of a high level multimedia repre-
sentation that preserves the necessary high level author intentions, for adapting the
content to a variety of devices. The Cuypers presentation engine[OGCT01] precisely
defines a high level multimedia content representation and a corresponding adaptation
mechanism. It combines a generic prolog-based solver with multiple domain specific
linear constraint solvers, and it iteratively transforms the original representation to
increasingly more device specific representations, according to a set of predefined rules.

Both the adaptive grid and the Cuypers presentation engine use constraint systems

CHAPTER 2. XML PRESENTATION PROCESSING 36

Requirements

XML compatible syntax
Point of execution specification
Predefined interfaces
Predefined but extensible processing model
Interoperation between independently developed code
Distributed, instead of centralised processing model
Interoperation with declarative approaches

Table 2.4: Imperative approaches requirements for XML presentation

to express the presentation interrelationships within a document. Constraints are a high
level, declarative, tolerant and both device and processing model independent way to
express presentation information. However, generic constraint solvers are complex and
computation intensive processes that cannot be used for all devices that can access
the Web. However, as Section 2.4.6 describes, restricted special purpose solvers can
efficiently address the most common requirements for Web presentations. Constraints
are high level constructs that can express the author presentation intentions, in a device
independent manner, and provide a sufficient adaptation range for powerful adaptation.
Section 2.4.6 will overview the field of constraint based document presentation for the
Web.

2.4.5 Scripting

Scripting and other imperative presentation descriptions can reduce a presentation com-
ponent’s adaptation range, because they are more precise than declarative alternatives.
However, as described in [Fou04|, declarative techniques should be used when possible,
but “scripting is here to stay”, because it enables the £, functionality to catch up with
the evolving Web presentation requirements. Ultimately, any arbitrary presentation
can be implemented in a generic imperative language, and there are proposals, such as
[LFCHO2], where an imperative-only approach controls the content presentation.

Many presentation approaches use imperative techniques, and all the £, proposals,
illustrated in Section 2.4.1, include code binding and event handling that require imper-
ative descriptions. The introduced £, extension approaches, such as applets, plug-ins
and XBL, also use imperative specifications to define the behaviour of new constructs.
Finally, the most prominent mixed namespace presentation approaches, illustrated in
Section 2.4.3, are the interfaces of X-Smiles and the RCC/XBL proposals. The former
use imperative Java interface implementations, while the latter use scripting for events
processing. This section describes the existing imperative approaches and how they
relate to the presentation of XML documents.

Table 2.4 summarises the requirements of imperative approaches that are adequate
for generic XML document presentation. Specifically, they must conform to the Web
design principles and fit within an XML processing model. Since XML parsing is part
of an XML processing model, imperative specifications that can be embedded within
XML documents must either use an XML or an XML compatible syntax. Both trans-
formation and presentation components can use imperative specifications to modify

CHAPTER 2. XML PRESENTATION PROCESSING 37

the document tree and to control the presentation, respectively. Therefore, an imper-
ative specification must also explicitly or implicitly specify its point of execution and
its corresponding interoperation with the XML processing components. A well defined
processing model can assist the definition of the necessary interfaces and of the alterna-
tive points of execution, but it must be sufficiently extensible to cope with the evolving
Web.

Additionally, mixed namespace document presentation requires interoperation be-
tween independently developed imperative specifications. Distributed processing tech-
niques are more adequate for the Web than centralised ones, as described in [CLNLO3].
For instance, a dependency resolution process, such as linking, must be able to locate
the required code libraries using URIs, instead of local identifiers that are only valid
within a single device. Finally, an imperative approach must be able to coexist and
interoperate with declarative ones, so that the latter can be used whenever possible.

The JavaScript and ECMAScript approaches, which were introduced in Section
2.4.2, provide generic purpose scripting, and they are extensively used to customise
and control the presentation of Web content. However, they do not fulfill the above
requirements. Specifically, they do not have an XML compatible syntax, and they are
often hidden within XML comments, to avoid harming the well formedness of doc-
uments. Since they are not XML specific, they do not define an XML processing
model, a point of execution and the corresponding well defined interfaces, apart from
the independently defined DOM interfaces. Additionally, they do not offer a binding
mechanism that allows their interoperation with declarative approaches. Finally, they
do not have a distributed processing model that enables the interoperation of inde-
pendently developed code, and they require that all the code is included in or linked
from a single document. Additional specifications, such as the DOM ECMAScript in-
terfaces and the XHTML event handlers, provide mechanisms for using JavaScript and
ECMAScript within XML processing, but they are not sufficient to fulfill all the above
requirements.

XML-specific imperative approaches can fulfill the above requirements, but most
current approaches focus on document validity and Web services, instead of document
presentation. For instance, the XML Objects approach[KLO02] associates Java classes
to XML elements. However, the class association does not influence the presentation of
the corresponding elements, because it solely provides the necessary interfaces for DOM
tree manipulations that result in valid documents. Web services oriented approaches
[FGKO02, CLNLO03] focus on Web services imperative definitions that associate appli-
cation logic with URIs. Such associations allow their distributed interoperation, but
they do not enable presentation behaviour binding to XML constructs.

The above approaches are not designed for XML presentation and only fulfill a
subset of Table 2.4 requirements. Binding techniques, such as XBL, which was intro-
duced in Section 2.4.2, can bridge such imperative approaches with an XML processing
model. XBL explicitly separates the scripts that are executed before the presentation
from the event handlers that are executed during the presentation. XBL decouples the
scripting from the XML syntax, because the imperative specifications do not neces-
sarily reside within the binding specifications. Moreover, XBL enables interoperation
between declarative and imperative approaches, because the bindings are a combina-
tion of existing XML elements and scripting. As Figure 2.10 (page 31) illustrated,
each binding results in an element that wraps the binding definition by extending the
L,. New bindings can easily reuse existing ones by declaratively using their respective
XML elements.

CHAPTER 2. XML PRESENTATION PROCESSING 38

Legend
O DOM Node
-com Object of
L] "Comp"
Class "Comp"

Figure 2.13: XVM relationship between DOM nodes and Java objects

XBL enables the use of existing scripting approaches for XML presentation by in-
troducing a minimal processing model and a binding mechanism. It decouples the
scripts from the XML syntax, explicitly defines the point of execution and allows inter-
operation between declarative and imperative approaches and between independently
developed code. However, XBL does not define the necessary presentation model in-
terfaces. Moreover there is no well defined document independent way to retrieve the
necessary binding information.

The XML Virtual Machine (XVM)[LKSW04] is a generic purpose XML processing
approach that explicitly defines a binding location mechanism. Specifically, XVM asso-
ciates Java classes to XML elements, according to their qualified name, using a registry
service that locates the appropriate class within a set of distributed class repositories.
After the creation of the DOM tree, XVM attaches objects of the associated classes
to the DOM element nodes. Each element’s attached object is responsible for the pro-
cessing of the respective element. The parent of an element, or a bootstrap process for
the root node, is responsible for interoperating with the registry service to retrieve and
instantiate the attached object.

Figure 2.13 illustrates the relationship between the DOM nodes and the Java ob-
jects. Each element is responsible for locating the necessary classes and attaching the
respective objects to its children. For instance, the XVM bootstrap process attaches
the :compl object to the root node 1. Subsequently, :compl interoperates with the
registry to locate the implementations of the Comp2 and Comp3 classes, which are re-
spectively associated with Node 2 and Node 3. :compl fetches the implementations
from the component repositories, instantiates the objects and attaches them to the
child nodes. The process continues recursively, until all the necessary objects have
been attached.

XVM is designed as a generic XML processing layer that can support more specific
XML applications. XVM fulfils the distribution and point of execution requirements
by its distributed processing model that separates between the object instantiation
and subsequent processing. It does not explicitly cover the other requirements, but
it provides the means to build applications that do. An example XVM application,

CHAPTER 2. XML PRESENTATION PROCESSING 39

illustrated in [LKSWO04], introduces a simplistic presentation model, where all the pre-
sentable objects implement a common interface. The root element interoperates with
its descendants, using the common interface, to perform the layout and the presenta-
tion in a rectangular canvas. The example application fulfils the predefined presentation
model interfaces and interoperation requirements.

2.4.6 Constraints

Several Web presentation proposals use numerical constraints, because they can express
and resolve the possibly conflicting requirements of the adaptation factors. This sec-
tion describes the fundamentals of numerical constraints, summarises requirements of
constraint solvers for Web content presentations and overviews the existing proposals.

G. Badros provides an early but comprehensive literature review[Bad98| of the uses
of constraints in interactive applications. Efficient constraint resolution has been an
active research field for the last 50 years, and its applications span a wide variety of sub-
jects. Constraint resolution is processor intensive, because there are no efficient generic
purpose constraint solvers. However, there are several purpose specific approaches,
which fulfill restrictive time complexity requirements.

Cx, X,,....x, and the more concise C,, will denote the set of all constraints over the
variables X1, Xo,...,X,. Every constraint C € C,, is an expression of the form:

f(X1, Xo,...,X,) op ¢

where f is a function over the variables X7, Xo,..., X}, ¢ is a constant and op is an
operator where op € {<,>,=,<,>}. There are several subsets of C,,, according to the
values that X7, Xo,...,X,, and c can take. C}f is the set of all constraints C' where
X1,Xs,...,X, and ¢ are real numbers. Similarly, CZ is the set of constraints over
integers.

A tuple X = (z1,x9,...,x,) satisfies a constraint C' : (X1, Xo,..., X)) op ciff
the expression f(z1,%2,...,2,) op cis true. A constraint problem is a conjunction of
constraints:

P=CiNC2N---NCy,

Pec, is the set of all problems that consist of constraints C; € C,. A tuple X =
(x1,x9,...,2y) is a solution to the problem P iff X satisfies C;,Vi € [1,m]. Finally, a
constraint solver is a function that maps a problem to a set of solutions. For instance,
a constraint solver for constraints in CX is a function S : Pe, — ©(R™) that maps
each problem in P¢, to a set of n-tuple solutions.

Adequate constraint resolution systems for interactive applications must be efficient
and allow over and under constrained systems, as described in [BB98, Bad98]. Effi-
ciency is important for presenting Web documents, because of the variety of the target
device capabilities and the document users expectation for nearly instant document
rendering. Since there are no efficient generic purpose solvers, it is necessary to restrict
the types of constraints used for document presentation and to choose the optimal
presentation attributes representation. The latter can influence the complexity of the
required solver. For example, consider the two lines in Figure 2.14a, and a constraint
C that requires that they have equal lengths. If the lines are defined using pairs of
coordinates, then C will be the a polynomial equation:

(x5 —21)* + (y3 — 11)° = (24 — 22)* + (Y4 — y2)°

CHAPTER 2. XML PRESENTATION PROCESSING 40

(x3,y3) e 4
4 5
(x1,yD) (x1,y1)
g2
(x2,y2) (X2, y2) 2>
(x4, y4) a
(a) (b)

Figure 2.14: Alternate presentation attributes representations: line representation us-
ing a pair of coordinates (a) or starting coordinates, angle and length (b)

Alternatively, if the lines are defined using their starting coordinate, their angle and
their length, as illustrated in 2.14b, C' will be the simpler linear equation [y = ls.
Efficient problem solution reevaluation is necessary for supporting user interaction
and time dependent content, such as animations. Solution reevaluation must follow the
principle of the “least astonishment” [Bad98] and only introduce the minimum possible
modifications. For instance, dragging the 2.14a (z3,ys) point, within an interactive
presentation, must result in modifying only x3 and y3 and no other variable, except if
there is a constraint that requires so. Finally, a constraint resolution system for the
Web must allow under and over constrained systems, in order to accommodate the
possibly conflicting or incomplete requirements of the presentation adaptation factors.
The core differences between existing constraint solvers relate to their efficiency
and generality tradeoff, because most solvers allow both under and over constrained
systems. The most efficient solvers are the local propagation solvers (LPS), which
consider a single constraint at a time. Local propagation problems are the problems
that can be solved by an LPS. For instance, consider a local propagation problem:

Clt X1:2
P=¢ Cy: X?+X,=3
C3: X1+Xo+X3=7

Figure 2.15a is a graph representation of the variable relationships expressed by the
constraints in P. An LPS can solve P by identifying the value of the most restricted
variable, which indicated by a greater number of edges, and propagating the solution
to the less restricted ones. As Figure 2.15b illustrates, C; explicitly defines the value
of Xi. Given that X; = 2 and using the constraint Cs, X5 = —1. In a similar manner,
X, =2,X,=1-2 X, —6.

One way problems are the subclass of the local propagation problems, where each
constraint is an assignment that only constrains the value of a single variable. One
way problem solvers are faster than general LPS, because the corresponding graph is
directed, which reduces the amount of possible constraint order permutations. For
instance, if C3 was X3 := 7 - X7 - X, it is explicit that C3 must be used after the
evaluation of X7 and Xs.

Local propagation problems are only a subset of the general constraint problems,
but LPS are efficient and do not introduce restrictive assumptions, such as constraint

CHAPTER 2. XML PRESENTATION PROCESSING 41

Figure 2.15: Graph representation of a local propagation constraint problem (a) and
of its solution (b)

linearity. One way solvers impose even less restrictions, and constraints can use ar-
bitrary complex expressions, without increasing the complexity of the solver. Con-
sequently, several constraint based approaches for the Web are based on LPS. For
example, the Constraint CSS (CCSS)[BBMS99] extends CSS with constraints that ex-
press relationships between style attributes, where font size constraints are resolved
with a one way LPS. The constraint resolution processing overhead is negligible, and
the resulting syntax is significantly more expressive than the original CSS syntax.

The adaptive grid[JLST03] also uses one way constraints, to enable desktop publish-
ing quality layout to Web documents for a variety of page sizes. It uses a set of layout
templates, which include a set of constraints that enable page size specific template
adaptation. Finally, the functional extensions for XML proposal[KST03] considerably
extends the SMIL animation and SVG presentation model functionality by introducing
one way constraints over the presentation attributes. The one way constraints, within
the above work, are expressed as functional specifications of presentation attributes,
which are reevaluated in real time.

The introduction of local propagation constraints can extend the functionality of a
presentation model, but they can only express a limited set of problems. For example,
consider the Figure 2.14b and a problem that requires both equal line lengths (I = l9)
and a total length of 4 (I3 +ls = 4). An LPS cannot produce the solution I} = ly =
2, because it is a simultaneous constraint problem, which requires the simultaneous
consideration of multiple constraints. There are no computationally efficient generic
solvers of simultaneous constraint problems.

However, linear constraints over real values can express the most common layout
requirements. CL,, will denote the set of linear constraints, which is the subset of C,,
where C' € CL,, iff C € C,, and C' is of a linear form:

a1 X1 +axXo+---+a, X, 0p c

where aq,...,a, are constants. The set of linear constraints over real numbers is
denoted by CLE and CLE c CE.
The Simplex algorithm provides an efficient solver for P,z problems, and it can

CHAPTER 2. XML PRESENTATION PROCESSING 42

solve under-constrained problems by minimising a linear expression, the objective func-
tion. The Cassowary[BB98] and the QOCA[BMSX97] algorithms are incremental ver-
sions of the Simplex algorithm, which apply the “least astonishment” principle and
also allow over constrained systems. Both Cassowary and QOCA fulfill the above re-
quirements for Web document presentation, within the domain of linear constraints,
and they form the basis of several presentation approaches. The previously introduced
CCSS approach uses the Cassowary algorithm for solving linear problems to position
presentable objects. The work in [BLMO0] uses linear constraints within multiple layout
templates, in a similar manner to the use of one way constraints in the introduced adap-
tive grid. Finally, the constraints extensions to SVG[BTM™*01] uses linear constraints
for positioning SVG graphics. All the above approaches conclude that the resulting
presentation models are efficient and that the use of constraints provides higher level
presentation descriptions, which allow powerful adaptation to a variety of devices.

No efficient generic solver exists for nonlinear simultaneous problems, but there
are several proposals that efficiently address the most relevant problem subsets for
presenting Web documents. For instance, font size constraints require finite domain
constraints in CZ, because most platforms only display integer font sizes. Moreover, the
selection of multiple layout templates requires disjunction of constraints, as opposed
to the above definition of constraint problems as a conjunction of constraints. The
backtracking techniques that are used in the field of logic programming, such as in
Prolog, are specifically designed to handle finite domain problems and disjunctions.
However, as [Bad98, LMS99| describe, even optimised backtracking algorithms are
exponentially complex and not adequate for interactive applications.

However, both the finite domain constraints and constraint disjunctions that are
commonly required for document presentation can be solved efficiently. A font size
constraints observation[LMS99] is that they contain at most two variables and can be
addressed by a polynomial complexity solver. Constraint conjunction problems can be
also solved efficiently by an algorithm proposal MMSBO01] that eliminates the disjunc-
tions by activating only one constraint of each disjunction at any time. Reevaluations
that invalidate the active constraint trigger a mechanism that selects a new active
constraint. A similar approachHMMO02] can address multiple cases of nonlinear si-
multaneous constraints by reducing nonlinear problems to linear ones, within a small
range of values. Reevaluations that result in values out the specified range trigger the
generation of a new approximation generation, which corresponds to the new value
range.

2.4.7 Presentation summary

The presentation component is responsible for conveying an XML document according
to the possibly conflicting requirements of the adaptation factors: the document user,
the document author and the target device. A presentation component that is adequate
for generic XML processing must be extensible, because it can only natively support
a limited set of languages £,. Moreover, it must provide a presentation integration
model, content adaptation and both imperative and declarative mechanisms, such as
scripting and constraints, for customising the document presentation

The lack of well defined Web content presentation functionality boundaries impedes
establishing the sufficiency of an £, set. Moreover, combining the existing standardised
XML languages does not result to an adequate L,, because they contain redundant

CHAPTER 2. XML PRESENTATION PROCESSING 43

features and their sufficiency has not been established. A set of presentation func-
tionality studies[Har04, All04, Bir04] derive £, sets from abstract sets of features, but
they neither investigate their sufficiency nor illustrate the derivation of the individual
languages.

Both XBL and RCC are prominent binding approaches, which can form the foun-
dation of an extensible £, that supports mixed namespace documents and combines
imperative and declarative processing descriptions. They both can reuse an existing
presentation model, to seamlessly integrate language extensions within an existing £,,
and they allow inter-language interoperation by mapping everything to a single presen-
tation model. The X-Smiles interface-based interoperation alternative is generic, but
it does not provide powerful integration, and the inevitable updates to its interfaces
would require updating all their corresponding components.

ECMAScript and JavaScript imperative approaches are not designed for XML, but
they fulfill a substantial subset of the XML imperative definition requirements, if they
are used within the XML tailored bindings of XBL. The XML Virtual Machine (XVM)
is a processing model specifically designed for XML. It does not directly provide a
presentation solution but provides the foundation for applications that can fulfill all
imperative definition requirements. In order to utilise the full potential of XBL/RCC
and XVM, well defined and sufficient £, and presentation model interfaces are neces-
sary, but there currently are no such specifications.

The adaptation range of both the transformation and presentation components in-
creases when their input is significantly more abstract than their output. Heuristic
approaches can extend the adaptation range of a component, but they can only derive
a very restricted set of the original document author intentions. Predefined stylesheet
selection according to queries on generic requirement specifications, such as CC/PP
profiles, can offer powerful adaptation. However, stylesheet selection is a one way pro-
cess, which is not adequate for resolving conflicting requirements, and its interoperation
with the presentation process is limited. Numerical constraints can convey the orig-
inal author’s intentions in several abstraction levels, resolve conflicting requirements
and enhance the presentation component adaptation capabilities. Generic constraint
solvers are complex, but there are efficient solvers for the majority of the required con-
straint systems for Web content presentation. However, there are no well defined ways
for integrating constraint definitions to a £, and for generically integrating the several
individual solvers.

2.5 XML Browsers

This chapter has separated the XML document presentation process into four interop-
erating components, but most existing approaches are independent proposals and they
are not combined within a Web browser. This section will summarise the support of
the individual processing components within existing Web browsers, in order to assess
the presentation functionality that is accessible by document authors and users.
There is a multitude of available Web browsers, but Internet Explorer (IE), the
Mozilla family browsers, and Opera are currently the most widely used implementa-
tions, as illustrated in Figure 2.16. All three browsers support XML, but only IE
and Mozilla focus on generic XML presentation. Opera natively supports XHTML
and XML styling with CSS, but it does not support document transformations. Both
Mozilla and IE support generic DOM manipulation, using JavaScript and XSL-T based

CHAPTER 2. XML PRESENTATION PROCESSING 44

Opera Other
2% 6%

Mozilla
28%

IE
64%

Figure 2.16: Browser user statistics, according to the approximate 2006 averages in
http://www.w3schools.com

document transformations. IE supports additional imperative approaches that allow
access to rich component libraries. Mozilla focuses on supporting multiple Web rec-
ommendations, such as SVG and XBL. None of the above browsers explicitly demon-
strate a generic and customisable presentation model. However, IE and Mozilla define
browser specific interfaces that enable imperative access to their internal presenta-
tion components, for dynamically initiating document manipulation processes, such as
transformation and validation.

The Amaya, X-Smiles and XEBRA[THHHO1] browsers are not as widely deployed,
but they possess several distinctive characteristics. Amaya has been specifically devel-
oped by W3C for testing several of the Web recommendations. In a similar manner
to Opera, Amaya neither supports XSL-T nor includes a generic mechanism for XML
presentation. However, it supports XHTML, MathML, SVG and their combination
based on integration profiles. It thus can provide insights into the profile based pro-
cessing of mixed namespace documents. X-Smiles supports a variety of XML languages
and mixed namespace documents, according to the simplistic integration model intro-
duced in Section 2.4.3. XEBRA stands out because of its simplicity, and it is based on
interpreted LISP programs that process XML documents, using a set of loosely cou-
pled components. A XEBRA processing example[THHHO1] illustrates that a fourteen
line long specification is sufficient for defining an HTML browser, which combines an
existing HTML parser, an XSL-T transformer and an XSL-FO renderer.

Table 2.5 summarises the processing properties of the above browsers. The Web
design principles require simple and modular Web browsers. Only X-Smiles and XE-
BRA can be considered as simple, because their architectures are straightforward, their
components interoperation is well defined, and they are relatively straightforward to
extend. The extent to which modularity enhances a browser’s functionality depends
on its underlying presentation model and the interoperation between its modules. All
introduced browsers are modular, but only X-Smiles and XEBRA are modular in a
way that directly benefits the document users and authors.

As Section 2.4.1 described, the sufficiency of an £, is not well defined. However,
the variety of languages and the extensibility mechanisms that a browser supports can
indicate its potential for supporting a sufficient £,. IE, Mozilla and X-Smiles support
a wide range of XML languages and also support plug-ins and other platform specific
extension approaches. Additionally, Mozilla and X-Smiles extensions can respectively

CHAPTER 2. XML PRESENTATION PROCESSING 45

IE | Mozilla | Opera | Amaya | X-Smiles | XEBRA
Simple oo oo
Modular ° ° ° ° ' '
Rich L, oo oo oo P
FEztensible L, ° oo oo P
Non DTD validation
Transformation oo oo ° oo
Dynamic pres. model
Scripting [() ° ° ()
Pres. component interfaces | ee oo ° oo
Constraints
GMNS presentation ° oo
GMNS validation
GMNS transformation
Generic content adaptation

Table 2.5: Properties of current browser implementations. GMNS stands for “Generic
Mixed Namespace”. e signifies possession of a property. ee identifies a property that
is central to and enhances the functionality of an implementation. P identifies the
potential to acquire a property.

use the XBL and the X-Smiles interfaces, which allow their integration with the un-
derlying presentation model. XEBRA includes only a minimum set of components and
does not provide a presentation model that can incorporate additional components.
However, a combination of additional components and a generic integration layer can
potentially lead to a sufficient and extensible £,. On the contrary, Amaya and Opera
do not offer similar generic extension mechanisms, and their current £, is significantly
restricted.

A generic presentation model must not dictate a predefined processing sequence (as
described in Section 2.1.1), but none of the approaches above provides such a generic
processing model. However, IE, Mozilla and XEBRA allow dynamic imperative access
to their processing components, which can allow to create transformation pipelines,
customise the presentation model and potentially orchestrate the interoperation be-
tween the validation and transformation processes. Apart from Amaya, all introduced
browsers offer several forms of scripting, and the IE, Mozilla and XEBRA internal com-
ponent interfaces allow the introduction of custom presentation models. In contrast,
X-Smiles, which both supports JavaScript and has well defined component interfaces,
does not allow such presentation model customisations. Finally, none of the above
browsers have a presentation model that supports constraint based presentation.

There is minimal support for generic mixed namespace processing that is not based
on profiles. Mozilla supports XBL, which allows generic presentation of mixed names-
pace documents, but they ultimately have to be mapped, through the XBL bindings, to
either a single namespace document or to a profile-based mixed namespace document.
The simplistic integration model of X-Smiles is the only generic mixed namespace pro-
cessing candidate. The lack of generic mixed namespace transformation or validation
models can be attributed to the lack of namespace based bindings to validation and
transformation processing information.

CHAPTER 2. XML PRESENTATION PROCESSING 46

Finally, most Web browsers include minimal adaptation capabilities, such as choos-
ing alternative fonts, page sizes and stylesheets, according to the type of the target
device. However, there is no explicit generic content adaptation model for either their
presentation or their transformation components.

The above browser discussion should not be taken as an evaluation of their relative
usefulness and applicability, but, as an indication of their adequacy for generic XML
presentation. For instance, XEBRA illustrates some prominent design concepts, but it
is not a complete browser and does not appear in any browser usage statistics. On the
other hand, Opera is not a prominent generic XML content presentation approach, but
it is very efficient, renowned for its CSS implementation and used by a considerable
minority of Web users.

Summarising, current browsers offer rich and extensible sets of functionality, but
not within a generic XML presentation framework. The lack of such a framework
leads to problematic interoperation between L, extensions and to platform specific
imperative presentation model customisations. Moreover, generic mixed namespace
processing support, explicit content adaptation and declarative presentation specifica-
tion constructs, such as constraints, are missing.

2.6 Discussion

The lack of generic XML presentation processing models impedes a thorough review
of the XML presentation literature, because the set of related research areas is not
well defined. This chapter identified the relevant research areas by outlining the top
level XML presentation processing components: parsing, validation, transformation
and presentation. Subsequently, it investigated the relevant existing approaches and the
core issues that they must address: mixed namespace document processing, processing
information binding and adaptation. Document parsing is well defined, but there is
a multitude of incompatible alternative validation, transformation and presentation
approaches. Their corresponding mixed namespace processing, processing information
binding and adaptation are neither well defined nor adequate for the Web.

Most XML document processing approaches use inline processing instructions,
which delegate the document processing specification responsibility to the document
author. Namespace URI based associations, such as the RDDL and XBL proposals, are
more adequate for the Web, but the current lack of a generic integration models impedes
their wide deployment. A generic integration model is necessary for their deployment,
because it allows the inference of a document’s processing from the processing of its
individual constructs. Language integration profiles and namespace assimilation are
only short term solutions, because they do not fulfill the Web design requirements, and
their enumeration becomes exponentially complex, under the continuous introduction
of new languages. Existing integration models do not cover document transforma-
tion, and they are not sufficiently generic and powerful. NRL enables the independent
validation of a mixed namespace document’s subtrees, but it does not define the nec-
essary construct relationships to avoid erroneous validation cases. The X-Smiles and
XBL/RCC models do not provide sufficient inter-language interoperation and a suffi-
ciently generic underlying processing model, respectively.

The transformation and presentation processing components share the responsibil-
ity to adapt a document, according to a variety of user preferences and device capabili-
ties. CC/PP provides a generic and extensible adaptation requirements representation,

CHAPTER 2. XML PRESENTATION PROCESSING

47

Processing issues

Resolution directions

Component interoperation.

Dynamic interoperation, within a generic processing model.

No generic integration mod-
els.

Extend prominent approaches, such as NRL, to incorporate
the necessary construct associations.

No adequate distributed

binding.

Combine URI associations with a distributed location mech-
anism, such as RDDL.

No generic processing adap-
tation.

Fine grained adaptive processing information associations.
Definition of presentation domain constraints.
Sufficiently generic constraint solvers.

No well defined presentation
functionality set.

Use case based functionality investigation.
Set of minimalistic languages that cover the identified func-
tionality.

L, extensibility.

No adequate imperative
approaches.

No integrated constraint

Well defined presentation model and interfaces.

Scripting and constraints binding, using adequate technolo-
gies, such as XBL or XVM.

Well defined £,, integration model.

mechanisms.

Table 2.6: Summary of the identified XML processing issues and their corresponding
resolution directions

but most adaptation approaches use imprecise sources of adaptation requirements, such
as URL address implications or limited sets of device types. The proposed CC/PP
based stylesheet selection is more powerful, but it focuses on the document as a whole,
instead of allowing the separate adaptation of its individual constructs. The most
powerful adaptation approaches focus on constrained areas, and they are not adequate
for the Web. However, declarative presentation specification techniques, such as con-
straints, can enhance the adaptation capabilities of a generic presentation component.
Generic constraint support is complex and inefficient, but there are efficient solvers for
the most common Web layout problems.

Modern Web browsers implement a rich set of functionality and natively support
a variety of XML languages. However, the lack of a well defined set of the necessary
presentation functionality for a generic processing model impedes its development. A
generic processing model is essential for reusing the rich existing functionality, towards
generic XML content presentation, and for developing a generic functionality extension
mechanism.

2.6.1 Current issues and resolution directions

The literature review in this chapter identified the core processing problems for pre-
senting XML documents and the core directions towards addressing them, which are
summarised in Table 2.6.

The core processing issues are the lack of well defined component interoperation and
of generic integration models. The former is essential for document processing that does
not use inadequate static processing sequences. Moreover, the processing components
require an integration model, because it provides the foundation for well defined pro-
cessing of mixed namespace documents that use an open set of independently developed
languages. The current adaptation profile and namespace assimilation approaches are

CHAPTER 2. XML PRESENTATION PROCESSING 48

not adequate for the Web. An adequate proposal can reuse the prominent integration
approaches, such as the NRL, and also incorporate the RDF’s concept of well defined
associations to the XML authoring model.

The remaining processing issues relate to the binding, adaptation and presentation
of XML documents. An adequate binding mechanism, which allows the processing
an open set of languages, must be distributed and follow the Web design principles.
The widely used document based binding is neither distributed nor compliant with the
Web design principles. URI based binding, such as in RDDL, is more extensible and
distributed, and it can form the basis of an adequate binding mechanism.

The most powerful adaptation approaches are not adequate for an open set of
languages, but their principles can be applied for generic document processing. The
most prominent generic adaptation approach is the CC/PP based stylesheet selection,
but its document wide stylesheets are not sufficiently fine grained. A well defined set
of presentation processing domain constraints can enable more precise adaptation and
the application of powerful adaptation approaches, such as constraint systems.

Generic scripting and constraint approaches require a well defined presentation
model that must rely on a well defined and extensible £,. The sufficiency of the indi-
vidual application domain functionality proposals is not well established, but use case
based investigations are an adequate alternative method for defining the sufficient pre-
sentation functionality, within an application domain. An £, definition can be based
on a set of such use case based investigations, which cover all the necessary application
domains, and a derivation of the corresponding set of minimal languages. An exten-
sible £, set is necessary for a dynamic information medium, such as the Web, but
commonly used extension technologies, such as plug-ins and applets, are problematic.
A well defined presentation model can be the foundation of an adequate £, exten-
sion mechanism that can provide the necessary interfaces for taking full advantage of
prominent extension technologies, such as XBL and RCC.

2.6.2 Concluding remarks

There are several approaches for the individual areas of XML document presentation
processing; however, most existing approaches do not follow the Web design principles,
and there is no generic XML presentation processing model that is adequate for the
Web. An adequate model must define the parsing, validation, transformation and pre-
sentation of mixed namespace documents, using a distributed binding model, according
to a variety of preferences and capabilities. Most binding approaches are document
based, because of the lack of a generic integration model. Profiles and namespace
assimilation are only short term integration solutions, and the more generic NRL and
NVDL approaches do not define the necessary construct relationships. CC/PP provides
an adequate adaptation requirements representation, but most existing adaptation ap-
proaches use imprecise adaptation requirements sources. The proposed CC/PP based
stylesheet selection is powerful, but more fine grained stylesheet applications are nec-
essary. Finally, there is currently a wide spectrum of presentation functionality, but
the lack of a well defined £, set results to the absence of a generic presentation model.

This chapter reviewed the existing XML presentation processing literature, identi-
fied the core XML presentation processing problems and established the core directions
toward addressing them. The literature review followed the introduced top level pro-
cessing model, which allowed the identification of the necessary processing components
and their necessary functionality and interoperation for generic document processing.

CHAPTER 2. XML PRESENTATION PROCESSING 49

Specifically, it introduced an original way of addressing XML processing: the vari-
ous forms of processing, such as validation and transformation, are not independent,
but they represent the individual parts of a common processing model. Each intro-
duced processing component is important in itself, but its interoperation with all other
components is also important. The next chapter proceeds to providing the necessary
definitions for investigating the restrictions of the presentation domain and for unam-
biguously expressing our hypothesis.

Chapter 3

Definitions and the hypothesis

The vision behind the Web is that anyone can make available any form of information
and link to everything available in the Web, as described in Section 1.3. A processing
entity must be able to both locate the necessary information and derive its adequate
interpretation, within its specific context. For instance consider the example document
illustrated in Listing 3.1, which is duplicated from Section 1.4.1. An XML browser
requires machine processible presentation descriptions of each document construct and
of the relationships between the individual constructs. A human might be able to
interpret a document, according to the corresponding language specifications and the
descriptive construct names. However, the typical interaction with Web information
occurs through the interface of a browser. Consequently, machine processible descrip-
tions of Web information are necessary and the main future direction for the Web is
to make its information more machine processible, as Berners-Lee has described in
[BL98a].

Generic processing descriptions of an information domain are feasible, if there is
a core set of information constructs, which have well defined processing and can be
combined to describe every possible processing of all information domain data. Specif-
ically, a grounded document[BL02a] is a document that exclusively contains constructs
of such a core set. The processing of a non-grounded document, which may contain
additional constructs, can be described as a combination of the core constructs.

For instance consider the XML presentation domain and a corresponding core set
of XML languages, which include all necessary presentation functionality for present-
ing XML documents. A document that only uses the above languages is a grounded
document, and a document that contains at least an element or an attribute of another
language is not grounded. The presentation of a non grounded document can be de-
scribed using a grounded document, since the core set of languages can describe any
conceivable presentation. XML transformations can map any XML document to its
presentation by transforming its constructs to their corresponding core set presentation
interpretation.

The SMIL, CSS, XSL-FO, SVG, XForms, XBL and XML Events languages can be
considered as the core set of languages for Web browser functionality, because they
cover the key Web functionality of existing Web browsers[Har04]. A document that
uses SVG and SMIL constructs to describe an animated vector graphic is a grounded
document. In contrast, a document that describes a tabular layout of animated vector
graphics, using the http://layout.org language illustrated in Listing 3.1, is not a
grounded document. However, the presentation of such a non grounded document

50

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS o1

1 |<?xml version="1.0"7>

2 |<l:table xmlns:1="http://layout.org/”
3 xmlns:f="http://furniture.org/”>
4 | <litrow>

5 <l:column >

6 <f:table material="iron”>

7 An office table

8 </f:table >

9 </l:column >

10 <l:column >

11 <f:table material="wood”>

12 A kitchen table

13 </f:table >

14 </l:column >

15 | </litow>

16 |</l:table>

Listing 3.1: XML document with namespaces

can be described using the languages in the core set. For instance, a CSS stylesheet
can describe the tabular layout of the http://layout.org, using the CSS box layout
functionality.

The unrestricted nature of both the Web information and of its processing impedes
the development of a complete core set of processing constructs. The document presen-
tation domain does not constrain the processed information, but, as a specific type of
processing, it constrains the corresponding processing domain. Such constraints are not
well defined, and existing presentation technologies do not utilise them for generic Web
content presentation. If the set of XML presentation processing domain constraints
can be well defined, they can form the foundation for establishing the corresponding
core functionality set and developing a generic presentation processing model.

The previous chapters introduced the necessary XML, Web, and XML presentation
processing background. This chapter establishes the foundation for the remainder of
this thesis by defining the necessary presentation processing terminology, defining the
scope of this thesis and stating our hypothesis, in sections 3.1, 3.2 and 3.3, respectively.

3.1 XML presentation processing definitions

The study of document presentation processing requires unambiguous definitions of
the necessary terms, in order to investigate the constraints of the presentation domain
and to communicate the ideas of this thesis. However, most of the accustomed Web
terminology is not well defined and has context dependent interpretations. For instance,
Table 3.1 illustrates four separate interpretations of the term semantics, according to
the context of its use. This section defines the necessary unambiguous presentation
processing terminology.

3.1.1 XML documents and languages

Within the context of the Web, the term document refers to any Web resource descrip-
tion, which can use any existing or future data representation. This thesis only focuses

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 52

| Context || Example | Interpretation |
The inherent rich se- | Structured information and use of meaningful
Core XML)
mantics of XML. names.
Schemas define the Syntactical constraints with optional data type
XML Schemas || semantics of XML information.
languages.
General purpose machine processible informa-
RDF The semantic Web. . -4l Purp P
tion, in the form of graphs.
. Semantically rich Ontological extension of RDF that allows in-
Ontologies . .
representation. ferences and clever data queries.

Table 3.1: Context dependent interpretations of the term semantics

on XML documents, because, as described in Section 1.4.3, XML is sufficiently generic
to represent any information, it is adequate for the Web and its standard representation
provides the foundation for a generic document processing model.

‘XML documents (D): D represents the set of all well-formed XML documents. ‘

‘XML languages (£): L represents the set of all XML languages ‘

An XML document encodes information using several components, such as ele-
ments, attributes, text, comments, processing instructions and document type decla-
rations. The elements and attributes of an XML document define the tree structure
of the represented information and express the relationship between a document and
its corresponding XML languages. The term XML constructs will refer to the set of
all XML elements and attributes, which can be defined as optionally qualified XML
names.

XML constructs (X): The set of all XML constructs ¥ includes all qualified or
unqualified names of XML elements and attributes:

S = (URIUe€) x S

where URI is the set of URIs, S is the set of all non-qualified XML names and € is
an null URI

The relationship between documents and languages with their constructs can be
expressed by a set of functions. Functions docConstructs() and langConstructs() will
map a document and a language, respectively, to their corresponding set of XML
constructs. Whether a construct ¢ € ¥ is an element or an attribute depends on ei-
ther its usage within a document or its definition within a language, because XML
elements and attributes share the same alphabet . Consequently, the element and at-
tribute specific functions docConstructs,(), langConstructs,(), docConstructse() and
langConstructs,() are necessary for separating between attribute and element con-
structs.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 93

Document constructs functions (docConstructs):

docConstructs : D — p(3) is a function where, Vd € D, docConstructs(d) is the set
of all the XML constructs in d.

docConstructs, : D — () is a function where, Vd € D, docConstructs.(d) is the
set of all the XML constructs that appear as elements in d.

docConstructs, : D — p(X) is a function where, Vd € D, docConstructs,(d) is the
set of all the XML constructs that appear as attributes in d.

Language constructs functions (langConstructs):

langConstructs : L — p(X) is a function where, VL € L, langConstructs(L) is the
set of all the XML constructs that are defined by L.

langConstructs, : D — p(X) is a function where, VL € L, langConstructs,(L) is the
set of all the XML constructs that are defined as elements by L.

langConstructs, : D — p(X) is a function where, VL € L, langConstructs,(L) is the
set of all the XML constructs that are defined as attributes language L.

XML namespaces are the standard mechanism for the unique identification of doc-
ument constructs, which, as described in Section 2.2.3, is the necessary foundation
for information associations in an open environment, such as the Web. Therefore,
namespaces are necessary for associating XML documents to their corresponding XML
languages and for any other document construct based association. This thesis fo-
cuses on the sets of namespace qualified documents Dg C D and namespace bound
languages Lo C L, where all element constructs have an associated namespace URI.
Attribute constructs do not require qualification, because unqualified attributes are
uniquely identifiable within the context of their parent element: “The combination of
the attribute name with the element’s type and namespace name uniquely identifies
each unqualified attribute”[BHL99].

Namespace qualified XML documents (Dg): The set of all namespace qualified
XML documents Dg C D is the subset of XML documents where Vd € Dg, Vo =
(uri,s) € docConstructse(d), uri # €

Namespace bound XML languages (Lg): The set of all namespace bound XML
languages Lg C L is the subset of XML languages where VL € Lg Vo = (uri,s) €
langConstructs,(L), uri # €

As described in Section 2.1.1, a presentation processing model must allow the pro-
cessing of mixed namespace XML documents, which can contain constructs of multiple
XML languages. The relationship between an XML document d and its correspond-
ing XML languages L, is only well defined for the uniquely identifiable constructs of
namespace qualified documents and namespace bound languages.

Document’s languages (£;): For a namespace qualified document d € Dg, the
set of its languages is the subset of the XML bound languages £; C Lg, where

Vo € docConstructse(d), AL € L4 where o € langConstructs,(L)

and

Vo = (uri,s) € docConstructsq(d), uri # €, AL € L4 where o € langConstructs,(L).

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS o4

3.1.2 XML semantics

A language author designs an XML language, in order to define the necessary syntax
for conveying the data of an information domain. Within this thesis, the term XML
semantics will refer to a language author’s intended usage and interpretation of an XML
language. An unambiguous XML language must have a single precisely defined usage
and interpretation; consequently, it must have a single precisely defined semantics.

XML semantics (Z): For each XML language L € L, there is a single pre-
cisely defined semantics I € Z, which represents the language intended usage and
interpretation by its author. The set Z is the set of all XML language semantics.

The presentation semantics are the subset of XML semantics that are a presenta-
tion, as opposed to XML semantics that can be associated with a presentation. For
instance, the tabular layout language, illustrated in Listing 3.1, can be associated with
presentation semantics, because the primary interpretation of its constructs is their
corresponding tabular presentation layout. On the contrary, the furniture description
language must be associated with non presentation semantics, because its primary in-
terpretation relates to generic information about furniture. Nevertheless, its constructs
can also be associated with a furniture information presentation. The subsequent sec-
tion will further clarify the above separation, using the concept of presentation lan-
guages and presentation documents.

Presentation semantics (Z7): The set of all presentation semantics is the subset
of XML semantics ZF C Z, that define a language’s interpretation according to the
presentation of its constructs to the document user.

3.1.3 Presentation languages and documents

The presentation semantics definition enables the definition of presentation languages
and presentation documents, as the sets of languages that are associated with pre-
sentation semantics and of namespace qualified documents that only use presentation
language constructs, respectively. The presentation documents must be namespace
qualified, in order to ensure their well defined association with the corresponding lan-
guages.

Presentation languages (L£): The set of all presentation languages is the subset
of XML languages £ C £, where each L € £ is associated with presentation
semantics I € ZF.

Presentation documents (D): The presentation documents subset of names-
pace qualified XML documents is the set D D¢, where Vd € DY the set of
document languages £, contains only presentation languages: L4 C £F.

For example, consider the document illustrated in Listing 3.1, which uses the two
XML languages L1 and Lo that are associated to the namespaces http://layout.org
and http://furniture.org, respectively. Li’s language author should associate L;
to a semantics definition I, which defines its interpretation as a tabular information
presentation. On the contrary, the semantics I, which are associated to language Lo,
should define its interpretation based on the various furniture characteristics.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 95

Therefore, I1 € 7P and I, ¢ P , because I defines the L interpretation, according
to its tabular layout presentation to the document user. Is defines the Lo interpreta-
tion, according to the corresponding abstract furniture information. Therefore, L is
a presentation language (L1 € £F) and Lo is not a presentation language (Lo ¢ £F).
The document in Listing 3.1 is not a presentation document, because it contains the
f:table element construct of Lo, which is not a presentation language. If the f:table
elements where removed, the document would become a presentation document, be-
cause it would only contain constructs of the presentation language L.

The above example is based on the semantics that the language authors “should”
provide, because the interpretation of a language only depends on its associated seman-
tics and not on its construct names or the common understanding of their interpreta-
tion. For instance, the language author of Lo could interpret the f:table element as
the presentation of a letter “T”, which is either brown, if the material is wood, or grey,
if the material is iron. Such an interpretation converts Lo to a presentation language.
Nevertheless, while such an interpretation is not invalid, it does not follow the common
human understanding of the semantics of Ly constructs.

The presentation documents definition does not relate to the feasibility of present-
ing an XML document. Specifically, there are multiple methods to present all XML
documents, such as presenting their source, their DOM tree, or their mapping to a set
of natively supported constructs. However, only the presentation documents have a
primary interpretation that s their presentation, as opposed to an interpretation that
can be associated with a presentation.

3.1.4 Document processing

The defined XML semantics represent the abstract notion of a language author’s inten-
tions and not a physical representation of processing information. The term processing
model semantics will refer to the interpretation of a semantics definition, within the
context of a processing model. Zp is the set of all processing model specific imple-
mentations of all XML language semantics that can be implemented for the processing
model P. An XML processing model P defines how to process an XML document,
according to the corresponding processing model specific semantics of its languages.

Processing model semantics (Zp): VI € Z, iff there is a semantics implemen-
tation Ip of the semantics I for the processing model P, then Ip € Ip

Processing models (P): Vd € Dg, where for all the languages in £L; =
{L1,...,L,} there are the respective processing model’s P semantics {Ip1,...,Ip,},
P defines how to locate, combine and apply these semantics to interpret d, according
to the processing model specific interpretation of the languages in L£4. P denotes
the set of all processing models.

For instance, the processing semantics of an XML language can consist of a schema
and a transformation specification. The latter can be the presentation interpretation
of the language, for an application with a set of natively supported languages £,
by mapping all its constructs to their equivalent £, constructs. The corresponding
processing model would be responsible for locating and using the above semantics, for
both validating a document and for transforming it into its presentation interpretation.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 56

XML document processing can be defined, in respect to a processing model, as
the location, combination and application of the processing model semantics that cor-
respond to a document’s languages. A Web browser can be informally defined as a
combination of one or more processing model implementations that process presenta-
tion documents, a set of arbitrary mechanisms for the presentation of non-presentation
documents and a set of additional mechanisms for the presentation of non-XML doc-
uments. As described in the next section, non-presentation and non-XML documents
processing is outside the scope of this thesis. Therefore, a formal definition of the term
Web browser is not necessary, because this thesis only focuses on the defined processing
models and document processing.

Document processing: The processing of a document d € Dg by a processing
model P € P, when there are P specific semantics for all languages in Ly, is the
location, combination and application of the above semantics by an implementation
of the processing model P.

3.2 The scope of this thesis

The presentation of namespace qualified XML documents (Dg) is separated into the
presentation of the presentation documents (D) and the non-presentation documents
(Dg — D). There is a document d € D¥ for every conceivable information presenta-
tion, because D¥ includes all possible uses of all presentation languages. Documents
in Dg — DY include constructs of non-presentation languages, and their presentation
can be context dependent. The presentation of any non presentation document can
be defined as a presentation document, since D¥ includes all possible presentations.
Consequently, studying the presentation of XML documents requires to firstly study
the presentation of documents in DF.

This thesis will primarily focus on presentation documents, because their processing
provides the foundation for presenting all XML documents, covers all possible presenta-
tions and allows the utilisation of the presentation domain constraints. Specifically, the
presentation domain constraints cannot be used for the generic presentation of XML
documents, because their presentation can be context dependent. XML documents
can describe any information that can be used in the context of any application, and it
is difficult, or even impossible, to define the corresponding constraints. Nevertheless,
several of the proposals in this thesis also apply to the processing of non-presentation
XML documents.

This thesis focuses on XML processing models and the processing model
semantics that are necessary and sufficient for processing presentation doc-
uments, according to the Web design principles.

Presentation documents are namespace qualified documents; unqualified documents
are outside the scope of this thesis. As stated in Section 3.1.1, such a restriction is
necessary for developing a generic processing model for the Web.

The remainder of this thesis focuses on the domain specified by the above defini-
tion. In order to avoid cluttering this thesis with excessive term qualifications, unless
stated otherwise, the terms XML document, XML language and semantics will refer to
the terms presentation XML document, presentation XML language and presentation
semantic, respectively.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS o7

3.3 The hypothesis

Most user initiated processing of Web information results in information presentation
by either directly presenting the information or presenting the result of another form of
information processing, such as a query. XML presentation languages are the successors
of HTML, which focuses on human consumable hypertext, and they should provide the
means for information presentation, through the interface of a browser. The wide
applicability of information presentation, within the Web, and the relationship of XML
to HTML necessitate an XML processing model for presentation XML documents.

Presentation document processing is an important problem, but, as Chapter 2 con-
cluded, current approaches are neither sufficient for the variety of XML documents
nor adequate for the Web. The lack of well defined presentation domain constraints,
impedes the creation of generic XML processing models, even if existing approaches
and browsers provide a wealth of functionality. Specifically, there are several prominent
approaches and ways to combine them for individual aspects of document processing.
However, there is no generic processing architecture that utilises the constraints of the
presentation domain, in order to allow the combination of the individual approaches,
towards a generic processing model for presentation documents.

Hypothesis: The presentation document processing domain is sufficiently restrictive
to allow the development of generic processing models, which are adequate for the Web
and can process a significant subset of current and future presentation documents. The
combination and extension of existing technologies, in a way that utilises the presen-
tation document domain constraints, can form the basis of such generic processing
models.

The remainder of this thesis focuses on proving the above hypothesis, using a pre-
processing framework and a preprocessing architecture proposal. Specifically, the next
chapter proposes a presentation document preprocessing framework, which identifies
the necessary presentation document validation and transformation functionality for
the Web. The preprocessing framework development is solely based on applying the
Web design principles to the scope of this thesis; consequently, it acts as both a founda-
tion for building and as a measure for evaluating preprocessing architectures. Chapters
5 to 9 introduce individual proposals for each preprocessing sub-model, and Chap-
ter 10 combines all the proposals to the XMLPipe preprocessing model. XMLPipe is
a generic processing model that combines and extends existing validation and trans-
formation approaches, in order to allow XML language integration and presentation
adaptation, according to the adaptation requirements: the target device capabilities
and the document author and user requirements.

XMLPipe utilises the presentation domain constraints to propose a generic inte-
gration model that covers a significant subset of the presentation documents. The
proposed integration model allows the combination of independently developed pro-
cessing semantics for validating and transforming presentation documents.

XMLPipe solely focuses on presentation document validation and transformation
and does not include the presentation component that is responsible for rendering a
document’s presentation. However, as stated in the Chapter 1, the enhanced processing
functionality, achieved by exploiting the presentation domain restrictions, allows the
extrapolation of our observations to cover the whole spectrum of the hypothesis.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS o8

3.4 Concluding remarks

Well defined terminology and concepts are fundamental for a sound discussion of XML
processing models and for an investigation of the presentation domain constraints.
However, most of the commonly used Web and XML terminology is either underdefined
or ambiguous. This chapter defined the necessary XML processing terminology for the
rest of this thesis and used it to define the scope of this thesis and our hypothesis.

The introduced terminology focuses on namespace bound documents and languages,
because namespace qualified constructs are necessary for a well defined relationship be-
tween a document and its corresponding languages. Such a relationship is essential for
deriving the interpretation of a document from the semantics of its individual con-
structs.

The introduced definitions establish the separation and relationship between sev-
eral ambiguous concepts. Specifically, the abstract notion of semantics describes the
intended interpretation of a language’s constructs by its language author. In contrast,
the processing model semantics are processing model specific instances of a language’s
semantics. The subsets of presentation semantics and presentation documents also
allow the unambiguous separation between the processing of presentation language
constructs and the generic presentation of any language construct. Additionally, the
definition of presentation constructs according to their associated semantics, as op-
posed to the implicit language semantics, clarifies the separation between a language
and its semantics.

Document presentation is an essential form of information processing for the Web,
and the processing of presentation documents is the foundation of presenting any XML
document. Section 3.2 restricted the scope of this thesis to the processing of presenta-
tion documents. Section 3.3 expressed our hypothesis, which focuses on the feasibility
of generic presentation models for the Web, when they utilise the constraints of the
presentation domain.

The following chapters proceed to the support of our hypothesis, using the founda-
tion set by the previous chapters’ literature review and this chapter’s definitions. The
hypothesis support will focus on the validation and transformation processing steps.
Specifically, this thesis will firstly introduce a preprocessing framework that defines the
core preprocessing components and their corresponding requirements. Subsequently, it
will proceed to individual proposals for all preprocessing components and their com-
bination into the XMLPipe preprocessing model, which provides the foundation for
supporting our hypothesis.

Chapter 4

A preprocessing framework

Existing XML processing approaches offer a wealth of functionality, but the lack of a
generic processing model impedes their combination towards generic processing of pre-
sentation documents. Additionally, current Web browsers expose a rich set of natively
supported languages L,, but the browsers are neither adequate for generic content
adaptation nor provide mixed namespace validation, transformation and presentation.

Mixed namespace Legend
document Lp1 } T = *D* *k; - } Document .
eskto;
L O+ P |
d | Browser | Process
\ I ""Desktop
. . - - - = = 1
Adaptive mixed namespace Lp2 } Printer | } ******** |
transformation and Vo BN S } I Device eJ
validation process | - |
A L o Bnmer |\ 7 il)
: R dy ocument flow using
>5 ,,,,,,,,,,,,,,, 1‘» Mobile } languages in L,
Languages } Erovsel - } L, Processinterface
semantics ______ Mobile | |o" waccepting documents
using languages in Lp3

Figure 4.1: A preprocessing approach

Preprocessing approaches do not cover all presentation document processing func-
tionality, because they only provide document validation and transformation. However,
they allow the reuse of existing browsers, within a generic processing model for XML.
As Figure 4.1 illustrates, an XML preprocessor can offer the necessary validation and
transformation functionality to provide generic adaptation, validation and transfor-
mation of mixed namespace documents. For instance, the adaptive mized namespace
transformation and validation process can process a mixed namespace document d, ac-
cording to the semantics of its languages, and transform it to its optimal interpretation,
for several device and browser combinations.

Preprocessing approaches are beneficial for introducing a new document processing
paradigm: they do not require the time consuming development of a complete presenta-
tion architecture; they do not require the document users to migrate to alternative Web
browsers, and they can reside on both the server and the client side. The remainder of
this thesis focuses on supporting our hypothesis, using a preprocessing architecture.

99

CHAPTER 4. A PREPROCESSING FRAMEWORK 60

Our hypothesis refers to the development of generic processing models that are ade-
quate for the Web. The last chapter’s term and scope definitions defined the boundaries
of the presentation document processing domain, but they did not provide an adequacy
benchmark for generic XML processing models. A preprocessing framework that de-
fines all necessary preprocessing functionality can provide the foundation for evaluating
preprocessing approaches. Such a framework must identify the individual subproblems
that a preprocessing approach must solve, their corresponding requirements and their
composition towards a generic preprocessing model.

This chapter identifies the top level requirements of a generic preprocessing model
for XML and refines them into a framework that consists of the core processing com-
ponents and their associated requirements. Section 4.1 summarises the core problems
addressed during the definition of the framework requirements. Section 4.2 proceeds
to the identification of the top level framework entities, and Section 4.3 proceeds to
include the necessary additional entities. Finally, Section 4.4 refines the expressed en-
tities requirements into the top level framework architecture and into the requirements
of its individual components. The resulting separation of the preprocessing issues sets
the context for the subsequent discussion and evaluation of our proposed preprocessing
model: the XMLPipe preprocessing model.

4.1 Towards a generic preprocessing framework

Underdefined and unrestricted areas, such as the processing of XML documents, impede
the expression of an indisputable set of requirements, which is necessary for a sound
preprocessing framework. The proposed framework avoids unnecessary assumptions
by only using the widely accepted Web design principles and the requirements of the
preprocessing external entities, within the context of the constraints and definitions of
Section 3.2.

The requirements of the external entities, such as the document author and docu-
ment user, are essential for formulating a generic preprocessing framework. However,
the lack of existing generic XML processing models, which conform to the Web de-
sign principles, impedes the objective expression of such requirements and the proof of
their correctness. Current human requirements are adapted to the existing processing
models; threfore, traditional requirements identification methods, such as statistical
analysis of actual human requirements, can lead to deficient processing models. For
instance, the Web applications position paper[Fou04] of the Mozilla foundation and
the Opera organisation, which serve a significant Web user subset, condemns extensive
namespace usage, because it confuses document authors. Additionally, it suggests that
XML languages should include all necessary foreign language XML constructs that can
be used in conjunction with them. However, as Section 2.4.3 described, such namespace
assimilation approaches result in monolithic specifications and redundant constructs,
and they are not adequate for the Web. Consequently, they are not adequate for generic
XML processing.

The proposed framework eliminates such obsolete requirements, because it does not
use actual human entities requirements. In contrast, it uses well established Web, XML
and software design principles to support the set of external entities requirements it
uses. Such an approach may lead to an incomplete or subjective set of requirements,
but it ensures that the resulting framework will be sufficiently generic for the Web.

CHAPTER 4. A PREPROCESSING FRAMEWORK 61

|
| Device
Document user = bm————do o

| L, L,
interaction »“ Browser »4 O« | Preprocessor }4—{ Document;
A

Document
author

Preprocessing
initiation

Figure 4.2: Preprocessing framework: top level entities

| Document author requirements and assumptions

Single presentation XML document input
Document associated with a URL
Open set of languages
Well defined integration model
Human oriented language semantics descriptions
Authoring validation
Inline presentation control capability

Table 4.1: Document author requirements and assumptions

4.2 Top level entities

This section initiates the investigation of the external entities requirements. In order to
avoid introducing unnecessary assumptions, it only addresses the top level entities that
are explicitly related to a preprocessing model. Their investigation will indicate the
necessary additional entities. The subsequent collective study of all identified require-
ments and the Web design principles will conclude with a concise set of preprocessing
model requirements.

As illustrated in Figure 4.2, the top level entities are the document author, the
document user and the documents user’s browser and device. The document author
produces a document d that uses the languages in £;. The document user interacts
with the document presentation, using a browser that exposes an interface, which
consists of the languages in £,. Either the browser or the document user can initiate
the document preprocessing.

4.2.1 Document author

Table 4.1 summarises the assumptions and requirements of the document author. Ac-
cording to the scope of this thesis, the document d is a presentation XML document.
An XML document can be the aggregation of multiple documents, since XML doc-
uments can represent any information. As described in Section 2.3, assuming that
a preprocessing model only processes a single document at a time does not harm its
generality. Additionally, a document author must associate that single document with
a URL, because URLs are necessary for Web information identification and location.

CHAPTER 4. A PREPROCESSING FRAMEWORK 62

Document user requirements and assumptions

Only provides the document URL
and an optional set of preferences
Expects an adequate presentation for the user
preferences and the capabilities of the browser and the device
Efficient processing
Presentation consistency

Table 4.2: Document user requirements and assumptions

As described in Section 1.4.1, according to the least power Web design princi-
ple, each XML language must cover a single data representation domain. A fixed set
of languages can cover all necessary presentation functionality, but, according to the
modularity and the test of independent invention principles, the document author must
be free to choose any set of existing or future presentation XML languages. Therefore,
a preprocessing model must support an open set of languages. As described in Section
2.4.3, namespace assimilation and integration profiles are not adequate for the Web
and for an open set of languages. In contrast, generic authoring and processing of
mixed namespace documents requires a generic integration model, which defines how
to combine the individual language constructs and processing semantics.

In a similar manner to a browser, a document author cannot a priori know the
semantics of all XML languages. A well defined mechanism for locating human ori-
ented descriptions of language semantics is necessary, to allow the wide deployment of
the multitude of existing and future languages. Additionally, exhaustive testing and
debugging are not applicable for documents that combine an open set of languages and
that can be processed according to a multitude of adaptation requirements. Therefore,
a preprocessing model must offer a document validation mechanism that is indepen-
dent of the adaptation requirements. Such a mechanism is essential for performing the
authoring validation, which was introduced in Section 2.2.

Document authors span the spectrum between the two extremes of designers and
structuralists, as described in [BBMS99]. Structuralists focus primarily on the con-
veyed information and its high level structure. Designers focus more on the aesthetics
of the information presentation and require precise control over the document presen-
tation. Consequently, a processing model that is adequate for the variety of document
authors must allow, but not require, fine grained inline specification of both document
processing and adaptation.

4.2.2 Document user

Table 4.2 summarises the assumptions and requirements of the document user. The
document user uses a browser, which runs on a device, to interact with the document
presentation. A preprocessing model must require the minimum user input, because
Web content should be available to everyone, and the document user assumptions must
be the minimum necessary. Specifically, the document user must provide the docu-
ment URL, in order to identify a document, and an optional set of user preferences, for
personalising the document presentation. The preprocessing model is responsible for

CHAPTER 4. A PREPROCESSING FRAMEWORK 63

| Device/Browser adaptation requirements |

Adaptation for a variety of devices
Adaptation for a variety of £, sets
Adaptation for a variety of browser integration models

Table 4.3: Device and browser adaptation requirements

retrieving all the necessary information for generating an optimal document represen-
tation, according to the browser capabilities, device capabilities and user preferences.

The processing of a document may vary according to its intended usage, such as
for browsing or for printing. However, such variations are subproblems of document
processing for a diverse set of capabilities and requirements. For instance, document
processing for printing is interchangeable to document processing for a printer target
device, as illustrated in Figure 4.1.

Finally, timely and consistent information processing are necessary qualities for
most information media. The interactive nature of Web information presentation and
the nearly instant presentation of the widespread HTML and XHTML documents ne-
cessitate efficient document processing. Consistency is necessary for ensuring that a
document’s presentation remains the same when the presentation parameters, such as
the user preferences and the browser capabilities, remain the same.

4.2.3 Target device and browser

Table 4.3 summarises the necessary adaptation requirements for supporting the mul-
titude of Web devices and browsers. Specifically, an adaptation mechanism must ac-
commodate the wide range of devices that can access the Web. In a similar manner,
there is a multitude of browsers, which can natively support a wide range of languages
and integration models. Generic document preprocessing must take into account the
L, set and the integration models that a browser supports.

4.3 Additional entities

Both the browser and the document preprocessor can natively support only a limited
set of XML languages. However, according to the aforementioned document user and
author requirements, a document can use an open set of languages, and neither the
document user nor the document author have to provide the necessary processing
and adaptation information. This section introduces the language author and the
semantics author external entities, in order to study the language creation process and
to investigate the location of all necessary processing semantics. Figure 4.3 incorporates
the language author and the semantics author, within a more fine grained illustration
of the interactions between the external entities and a preprocessor.

The language author creates a language and, as Section 2.2.3 described, must pro-
vide its authoritative interpretation. Specifically, the language author must provide a
language’s semantics, which, within the scope of this thesis, is identical to its inter-
pretation. In contrast, as Figure 4.3 illustrates, the semantics author is responsible
for providing the processing model specific implementations of a language’s semantics.

CHAPTER 4. A PREPROCESSING FRAMEWORK 64

]
i Device

Other preprocessing i "
information _ 7

|
|
N intemction\[}LP L,
| ‘ - 4
Document] I i
Document
user
Browser e ———————— 1 Initiation author

Document user ~ ihitiation | URL 7 R R _
preprocessing [[} S !
initiation } \ } } [o "'Lé.ﬁguage/ }
| | [Preferencesy | | } Binding . Language - Binding [
\ : - \
. BIE I - w
| Capabilities | | G !
i I N ’

External | } Capabilitiesyy | | } Processing model Human oriented

renrocessing || rei B b | specific semantics language
preprocessing | | Adaptation | | description
initiation ; j

| L . Requirements;” | | Language |

initiator Processing Parameters; 7777777777777777777

Document /
Information group

" Abstract , ;
. entity -
) Legend

>3S0+

Semantics Language
author author

Figure 4.3: Preprocessing framework: all external entities

Language authors may also provide processing model semantics, but separate seman-
tics authors are necessary for a processing model that conforms to the Web design
principles. Specifically, a language author that is solely responsible for a language’s
processing information becomes a central point of control/failure, which is against
the Web decentralisation principle. Additionally, according to the test of independent
invention, the language author would have to provide the processing model specific
semantics for all existing and future processing models. Such an assumption is not
realistic for a freely evolving information system, such as the Web.

Each language corresponds to exactly one language author, who is responsible for
all the processing model independent resources that are central to a language: its
namespace URI, the administration of the corresponding Web space if the URI is a
URL, and the human oriented language description. In contrast, there can be multiple
semantics authors for each language, and they are responsible for both providing the
necessary processing model semantics and associating them with the language.

Table 4.4 summarises the requirements of the language and semantics authors. Any
dependencies between separate languages or semantics implementations share the draw-
backs of integration profiles, and they are against the principle of independent invention,
because they can restrict the languages that can be combined in a document. Conse-
quently, language authors require a method to independently define XML languages
and, in a similar manner, the semantics authors require a method to independently
define processing model semantics. The independent languages and semantics defini-
tions necessitate a well defined method to associate high level language descriptions and
processing model semantics to the corresponding languages. Such associations must
enable the location of all necessary information, by both the document authors and the

CHAPTER 4. A PREPROCESSING FRAMEWORK 65

| Entity | Requirements |
Language Independent definition of languages
author Well defined human oriented description binding
Independent semantics development
Semantics Well defined processing semantics binding
author Multiple processing semantics binding
Multiple processing models binding

Table 4.4: Language and semantics authors requirements

| Adaptation requirements representation requirements

Composite representation
Conflicting requirements resolution
Extensible representation

Table 4.5: Requirements of an adaptation requirements representation

processing models. According to the test of independent invention, the semantics im-
plementation associations must allow several implementations for multiple processing
models, as well as multiple implementations for the same processing model.

A preprocessing model must generate an optimal document interpretation, accord-
ing to the preprocessing adaptation factors: the user preferences and the browser and
device capabilities. As Figure 4.3 illustrates, document preprocessing can be initiated
by the document user, the browser (as a response to a document user interaction with
the browser) or another external entity, such as a Web server that preprocesess a docu-
ment. A well defined preprocessing initiation method requires a well defined adaptation
requirements representation, because the preprocessing initiation entity must provide
all necessary adaptation information.

Table 4.5 summarises the adaptation information representation requirements. As
described in Section 2.4.4, requirement sets composition is necessary for efficiently
communicating the requirements and for combining the requirements of several inde-
pendent sources: the browser, the device and the document user. Since the requirement
sources are independent, adaptation requirement conflict resolution is necessary. Fi-
nally, extensibility is necessary, because the unrestricted nature of the Web devices and
browsers impedes the development of a fixed set of adaptation parameters.

4.4 Framework architecture and requirements

The previous sections described the requirements of a preprocessing model’s external
entities. Each identified requirement relates to the design of either the processing model
as a whole or its individual components. Table 4.6 groups all external entities require-
ments, according to their corresponding subset of preprocessing functionality. This
section describes the development of a preprocessing framework that has a well defined
set of components and requirements, based on the above external entities requirements.

CHAPTER 4. A PREPROCESSING FRAMEWORK 66

| Functionality Entity | Requirement
. Single input XML document
Assumptions URL identifiable/retrievable document
Web design principles
Global Efficient processing

Document user - -
Presentation consistency

Open set of languages

Document author | Generic integration model

Int. model Low and high level presentation specification
Language author | Independent definition of languages
Semantics author | Independent development of semantics
Document author | Human oriented semantics descriptions

Document No necessary inline presentation information
author /user No necessary inline adaptation information
Document user | Well defined way to provide adaptation requirements
Binding Language author | Well defined human oriented description binding

Well defined processing semantics binding

Well defined way to specify semantics

Multiple semantics specifications

Multiple processing models

Validation Document author | Authoring validation

Adaptation according to browser capabilities, device
capabilities and user preferences

Adaptation for a variety of devices

Device/Browser | Adaptation for a variety of L, sets

Semantics author

Document user

Adaptation Adaptation for a variety of integration models
Well defined representation
Preferences Composite representation
representation Extensible representation

Conflicting requirements resolution

Table 4.6: Assumptions and external entities requirements, grouped according to their
corresponding functionality subsets

4.4.1 Validation

As described in Section 2.2, a well defined validation process enables authoring val-
idation and assists the development of document processing components, because it
suppresses the requirement for custom validation logic. Figure 4.4 illustrates the pre-
processing framework validation. A generic validation model must incorporate several
schema languages, because of the test of independent invention and because no ex-
isting validation approach is more expressive than the others, as described in Section
2.2.1. Therefore, the validation model must allow the instantiation of several schema
validators that correspond to the individual validation approaches.

The wvalidation driver component is responsible for driving the validation process,
and it delegates all validation requests to the integration model validation driver, be-
cause the validity of a mixed namespace document depends on its integration model.
The integration model validation driver drives all relevant schema validators, according
to the corresponding integration model.

All validation components must be able to process document portions, in addition

CHAPTER 4. A PREPROCESSING FRAMEWORK 67

-4 Validation feedback Validation feedback
‘ LAAS Sch
Document/ | d | L Validation |L,|_ | Integration model W
partial document driver validation driver validator(s)
Portions
e, of d.

" Integration Lzllqngua(gc;
, ; schema(s

: modfal Integration model implementation

A

Implementation of

Figure 4.4: Preprocessing framework: Validation module

Transformation result (d')

-—
| Adaptation | Req
requirements d,..d, d,
Req v
P Transformation | Req[o — Re YYY Reg d,
> driver Integration i Transformation Transf)
L model . . . d . ransformer(s)
d L, . > pipeline driver
Document / | d ¢ transformation d..d, d
n partial document driver

Transformation
specification(s)

. N

. Integration ; . . _
model g ntegration model implementation

Pipeline
specification(s)

<4 Implementation of

Figure 4.5: Preprocessing framework: Transformation module

to complete documents. The individual portions of a mixed namespace document can
correspond to separate languages; therefore, they can require separate schema valida-
tor instances. Both the validation driver and the integration model validation driver
must be able to process individual document portions, because d can be a partial doc-
ument, during the interoperation between the transformation and validation models.
Specifically, a transformation process must be able to validate its input, and transfor-
mation processing can also apply to individual document portions, as the subsequent
transformation model investigation will illustrate.

4.4.2 Transformation

Figure 4.5 illustrates the top level preprocessing framework transformation model,
which transforms a document d to its optimal representation d’, according to a set
of adaptation requirements Req. Well defined methods for independently developing
transformation specifications, integrating a multitude of transformation technologies
and processing document portions are necessary, because of the requirement for inde-
pendent processing semantics and the test of independent invention principle.

CHAPTER 4. A PREPROCESSING FRAMEWORK 68

In a similar manner to the validation model, the transformation driver drives the
transformation of d by delegating the transformation request to the integration model
transformation driver, which is specific to the integration model of d. The requirement
for multiple transformation technologies also covers transformation pipelines support,
since a pipeline is a transformation. However, built-in transformation pipelines are
beneficial, because they provide the foundation for combining multiple transformation
technologies. Consequently, the integration model transformation driver delegates all
transformation requests, for the separate document portions d; ...d,, to the transfor-
mation pipeline driver, instead of directly calling the individual transformers. Subse-
quently, the transformation pipeline driver calls the necessary transformers, according
to the corresponding pipeline specification.

A transformation model, which fulfils the document user’s adaptation requirements,
must have access to the set of adaptation requirements Req. Moreover, it must provide
well defined methods to use the adaptation requirements, within the transformation
pipelines and the transformation specifications, in order to enable transformations,
which are sensitive to the adaptation requirements.

There is no reason to assume that a document transformation is a one step process,
where its output requires no further processing. A recursive transformation mechanism
is necessary for multiple-step transformations. Moreover, it is beneficial for processing
naturally recursive languages and for reusing the functionality of existing XML lan-
guages. For instance, consider the documents illustrated in Listing 4.1. The semantics
of the nl:p construct, in authorsOut.xml, is to present its content as a paragraph.
Moreover, the semantics of the n2:description construct, illustrated in authors.xml,
is to present the contents of all its n2:dItem constructs as a list of paragraphs that fol-
low the content of the n2:name construct. Recursive transformations allow reusing the
nl constructs for defining the n2:description semantics. For instance, a transformer
that corresponds to the n2 namespace can map authors.xml to authorsQOut.xml.
Subsequently, the transformer that corresponds to the nl namespace can transform
authorsOut.xml to its most appropriate representation, according to set of adaptation
requirements.

Additionally, consider the transformation of the n3:imp construct, illustrated in
import.xml, which must insert the referenced document (d.xml)! in its place. The
processing model must recursively apply the n3:imp transformation for processing all
n3:imp occurrences, in both import.xml and the imported d.xml.

4.4.3 Binding

A preprocessing model must automatically locate the necessary validation and trans-
formation semantics, because it cannot natively support an open set of XML languages
and no external entity is required to provide document processing information. There-
fore, a preprocessing model must include a binding model that specifies how to organise,
distribute and locate the necessary processing model semantics. Figure 4.6 illustrates
the top level organisation of the processing semantics and the interoperation between
the binding process and the other preprocessing components.

The processing semantics must be associated with XML languages and not with

'd.xml is not a well formed XML document, because it contains two root elements. However,
within this example, it is used as a text file, which results in a well formed document by substituting
the n3:imp construct.

CHAPTER 4. A PREPROCESSING FRAMEWORK

69

© 0w N O Ok W N

e e
O N S)

n

[un

9]

<nl:doc>
<nl:section

name="D._author”>

<nl:p>
The entity that
creates an XML
document .
</nl:p>
<nl:p>
The document author
has a set of
requirements .
</nl:p>
</nl:section>
</nl:doc>

1 |<n2:description >
2 <n2:name>

3 |D. author

4 </n2:name>

5 <n2:dItem>

6 | The entity that

7 | creates an XML

8 | document .

9 </n2:dItem>

10 <n2:dItem>

11 | The document author
12 | has a set of

13 | requirements.

14 </n2:dItem>

15 |</n2:description>

S Ut R W N =

<n2:description>
<n2:name>
D. author
</n2:name>
<n3:imp ref="d.xml” />
</n2:description>

import.xml

authorsQOut.xml

authors.xml

S Gl W N =

<n2:dItem>
<n3:imp ref="d1.xml” />
</n2:dItem>
<n2:dItem>
<n3:imp ref="d2.xml” />
</n2:dItem>

d.xml

Listing 4.1: Documents that can benefit from recursive transformations

URI

-

Document user

Integration model
transformation driver

Integration model
validation driver

) Syntax semantics

Human oriented description

URI, integration model ID, processing
model ID, adaptation requirements)

(-t Transformation semantics o«

(URI, integration model ID)

Human oriented
semantics description

Namespace

Processing
model ID
Processing
0..*%| semantics

77777777777777777777777 URI-based
location

Binding
process

Integration
model ID
Requirements
expressions

0.x| Processing model
processing semantics

Integration model
syntax semantics

7

Integration
model ID

Transformation
semantics

Inter-model input interface

o« Inter-model output interface <>¥

<—

By reference containment

By reference containment, associated with
additional data

Figure 4.6: Preprocessing framework: Binding module

CHAPTER 4. A PREPROCESSING FRAMEWORK 70

documents, because the document author is not required to provide processing in-
formation and document based processing association is problematic, as described in
Section 2.2.3. Therefore, the semantics organisation must be based on the namespace
URIs, since they uniquely identify namespace bound XML languages. Namespace URIs
must also be the foundation of the principal semantics location mechanism, because
they ensure the wide availability of independently developed processing semantics for
both document authors and processing models.

A preprocessing model, in addition to its principal semantics location mechanism,
must support alternative location mechanisms, in order to avoid central points of
failure. For instance, consider that the principal semantics location mechanism for
XHTML used its namespace URL, for locating all necessary XHTML processing se-
mantics. If a processing model did not support an alternative location mechanism, the
failure of either a Web server or a client’s connectivity could prohibit the presentation
of XHTML documents, for the duration of the failure. Consequently, the proposed
semantics organisation, illustrated in Figure 4.6, accommodates alternative location
mechanisms by associating each namespace URI to multiple semantics specifications.

The document user and both the integration model validation and transformation
drivers must provide a language’s URI to the binding process, because it is the basis of
the principal semantics location mechanism. Specifically, the document user uses the
binding process to retrieve the human oriented language descriptions. The integration
model validation driver requires a set of syntax semantics. In addition to the corre-
sponding namespace URI, it must specify the document’s integration model, because
separate integration models can require different validation processing semantics.

Finally, the integration model transformation driver, in addition to a language’s
URI, must provide the integration model, the processing model and the adaptation
requirements, in order to retrieve the optimal transformation semantics. In a similar
manner to the validation semantics, the transformation semantics can be integration
model specific. Additionally, they are also processing model specific, because the trans-
formation outcome depends on the way that a model processes a document. Moreover,
a preprocessing model must enable the use of separate transformation specifications
for separate sets of adaptation requirements, because document transformation can be
adaptation requirements dependent.

4.4.4 Integration model and overall processing

An integration model, which is adequate for a preprocessing approach, must define how
to validly nest language constructs, within a mixed namespace document. Additionally,
it must define how to combine the processing semantics of the individual languages, in
order to process a mixed namespace document. Consequently, the document authoring
process, the validation process driver and the transformation process driver must be
integration model specific.

A generic integration model cannot use predefined inter-language relationships, be-
tween either language constructs or processing semantics. Such relationships do not
allow the independent definition of an open set of languages, because they share the
problems of integration profiles. As described in Section 2.1.1, integration profiles are
against the test of independent invention and exponentially difficult to enumerate for
the continuously expanding set of languages. Well defined processing APIs and well
defined sets of languages can form the integration basis for a restricted set of lan-
guages, such as the £, of a presentation component that covers a well defined range

CHAPTER 4. A PREPROCESSING FRAMEWORK 71

of functionality. However, they are not adequate for the integration of an open set
of languages, because they are against the minimalistic nature of XML[BL02a] and
they require the enumeration of all possible integration scenarios, for a multitude of
abstraction levels. Consequently, a generic integration model must define the necessary
construct relationships, without using predefined integration profiles, APIs or sets of
languages.

Finally, a preprocessing model must define the necessary orchestration of its indi-
vidual components, for performing its two principal applications: authoring validation
and document transformation, according to a set of adaptation requirements. Specifi-
cally, a preprocessing model must define the necessary algorithms for both processing
applications and the necessary components interoperation for implementing those al-
gorithms. The latter must also ensure the validity of each transformed document or
document portion, in order to assist the development of the individual transformers.

4.4.5 The complete preprocessing framework

Table 4.7 summarises all the requirements that a preprocessing model for presentation
XML documents should fulfill. Specifically, it combines the requirements of the external
entities, initially summarised in Table 4.6, and the additional requirements introduced
in Section 4.4. The proposed XML preprocessing framework consists of the Table 4.7
requirements and the three modules, illustrated in Figures 4.4, 4.5 and 4.6.

The proposed preprocessing framework can be applied for both developing and eval-
uating generic XML preprocessing models. The preprocessing framework development
did not use arbitrary assumptions, but it was solely based on the Web design principles
and the external entities requirements, within the boundaries set by the scope of this
thesis. Consequently, either the absence of any component illustrated in Figures 4.6,
4.5 and 4.4, or the lack of compliance to any of the Table 4.7 requirements indicates
that a processing model is not sufficiently generic for the Web, within the scope of
this thesis. Moreover, the proposed component separation assists the development of
preprocessing models, because it divides the problem of generic XML processing to
smaller and more manageable subproblems with well defined requirements.

4.5 Discussion

The remainder of this thesis will use a preprocessing model to prove our hypothesis.
Specifically, it will illustrate that the development of generic processing models that
are adequate for the Web is feasible, when utilising the constraints of the presentation
domain. However, the definitions of Section 3.2, which describes the domain of presen-
tation document processing, are not sufficient for identifying whether a preprocessing
approach is adequate for the Web.

This chapter proposed a preprocessing framework, which established the function-
ality subsets of a preprocessing model and their corresponding requirements. Such a
framework is essential for proving our hypothesis, because it provides the means to
identify the adequacy of a preprocessing approach for the Web. Additionally, the iden-
tified functionality subsets assist both the development of new preprocessing models
and the independent investigation of their components.

CHAPTER 4. A PREPROCESSING FRAMEWORK

72

| Functionality | Requirements
. Single presentation XML document
Assumptions URL identifiable/retrievable document
Web design principles
Global Efficient processing
Presentation consistency
Authoring validation
Validation Multiple validation technologies

Validation of documents and document portions

Int. model

Independent definition of schemas

Well defined combination of independent schemas

validation Orchestration of the individual validators
Multiple transformation technologies
Transformation of documents and document portions
Transformation Built-in transformation pipelines

Adaptation requirements sensitive transformation components

Well defined way to use adaptation requirements in both the pipelines
and the transformation specifications

Int. model
transformation

Independent transformation definitions

Well defined combination of independent transformations

Orchestration of the individual transformers

Recursive transformation processing

Int. model

Open set of languages

Low and high level presentation information in the document

Independent definition of languages

WEell defined combination of separate languages’ constructs

No predefined construct relationships

No use of predefined exhaustive APIs or sets of languages

Int. model
processing

No language specific interoperation between processing components

Well defined authoring validation and adaptation algorithms

Well defined component orchestration to implement those algorithms

Ensure valid transformation input

Binding

No necessary presentation information in the document

No necessary adaptation information in the document

Well defined organisation, distribution and location of human oriented
descriptions and processing model semantics

URI-based semantics association and principal location mechanism

URI based human oriented semantics location

Validation semantics location and organisation based on the language
URI and the integration model

Transformation semantics location and organisation based on the lan-
guage URI, the integration model, the processing model and the adap-
tation requirements

Alternative location mechanisms

Adaptation

Well defined adaptation requirements representation

Adaptation for a variety of £, sets

Adaptation for a variety of browser integration models

Composite representation

Extensible representation

Conflicting requirements resolution

Table 4.7: Preprocessing framework requirements

CHAPTER 4. A PREPROCESSING FRAMEWORK 73

4.5.1 Evaluation

A sound preprocessing framework must use indisputable requirements and assump-
tions, in order to provide the foundation for evaluating the adequacy of preprocessing
approaches for the Web. The proposed framework is based on the Web design princi-
ples and the requirements of the external entities. The soundness of the Web design
principles is well established, because they have been fundamental to the success of the
Web. There is no reliable source for the requirements of the external entities, because
human requirements are adapted to the accustomed processing practices, and they can
lead to deficient processing models. Therefore, the identified requirements are derived
from assumptions that are based on the Web design principles. The correctness and
sufficiency of the requirements cannot be proven. However, since they are based on the
Web design principles, they should reflect the adequacy of a preprocessing model for
the Web.

The derivation of the proposed framework, from the identified requirements and
assumptions, is also sound. Specifically, the framework consists of the identified func-
tionality areas, their corresponding requirements and Figures 4.4, 4.5 and 4.6. These
three figures define the necessary interoperation between the individual components of
each functionality area. The proposed functionality areas and their requirements are
derived by grouping the initial set of requirements and assumptions. Additionally, the
proposed set of components and their interoperation, illustrated in the three figures, are
a direct consequence of the grouped requirements and the observations of the existing
processing approaches, described in the literature review (Chapter 2). Consequently,
the processing framework is as sound as its initial requirements.

The defined component interoperation and requirement grouping enable the in-
dependent evaluation and proposal of the individual preprocessing components. For
instance, the adequacy of a validation model can be evaluated by the extent to which it
fulfils the validation requirements of Table 4.7 and it fits within Figure 4.4. In a similar
manner, the same requirements and figure can be used as a guideline for developing a
new validation model.

A framework that is adequate for evaluating preprocessing approaches must provide
a sufficient set of requirements. The proposed framework attempts to cover all the spec-
trum of XML preprocessing, within the scope of this thesis, but sufficiency is neither
adequate nor provable. Specifically, there are neither existing and indisputable sets of
preprocessing requirements nor existing generic processing models. Consequently, there
is no benchmark for comparing the identified requirements and processing components.
Additionally, a preprocessing model contains a multitude of processing components, and
it can combine several existing technologies. Exhaustive coverage of all the necessary
functionality, at a sufficiently fine grained level to ensure the sufficiency of a prepro-
cessing model, would result to a prohibitive multitude of requirements. Consequently,
the proposed framework provides an indication of, and does not prove, the adequacy
of a preprocessing model.

In a similar manner, a framework that can be used for evaluating the adequacy
of preprocessing approaches, must only require the necessary preprocessing function-
ality. If this is the case, each unfulfilled requirement would indicate a deficiency of a
preprocessing model. However, the necessity of the introduced requirements cannot be
proven, because, as stated above, the framework requirements are sound, but their cor-
rectness cannot be proven. Nevertheless, all framework requirements and components
are inferred from the Web design principles. Consequently, the lack of adherence of a

CHAPTER 4. A PREPROCESSING FRAMEWORK 74

preprocessing model to the proposed framework is a good indication, but not a proof,
of its inadequacy for the Web.

As a consequence of the above evaluation, the proposed preprocessing framework is
derived from a sound set of requirements, but its requirements cannot be proven to be
either necessary or sufficient. Nevertheless, it is based on the Web design principles and
provides an indication of the adequacy of preprocessing approaches, which is essential to
proving our hypothesis. Moreover, it assists the development of original preprocessing
proposals.

4.5.2 Evaluation of existing approaches

The literature review of Chapter 2 indicated the core strengths and weaknesses of ex-
isting XML processing approaches. However, their evaluation according to the prepro-
cessing framework is beneficial, because its provides a straightforward way to evaluate
the adequacy of processing approaches for the Web.

Integration profiles and namespace assimilation approaches are widely used. How-
ever, they only address a document’s syntax, instead of its processing. Moreover, they
do not comply with most framework requirements, because they do not fulfill the sim-
plicity, modularity and least power Web design principles, they are not adequate for
an open set of languages and they require predefined language associations. X-Smiles
proposes a more loose integration model that allows an open set of languages and does
not require their close interoperation. However, the looser integration necessitates the
introduction of predefined interfaces, for the interoperation of the individual language
processors, and prohibits the development of a well defined validation process. NRL
and NVDL are the most prominent integration approaches, and they fulfill the frame-
work requirements, if their context features are not used (because their use is based on
predefined language combinations). Therefore, the NRL and NVDL concepts of sub-
tree partitioning and namespace based association of processing semantics can provide
the foundation for a generic integration model.

Adaptive document processing requires a well defined representation of the adapta-
tion requirements and a well defined document adaptation mechanism. CSS stylesheets
allow the application of a different style, according to the device type. Moreover, the
adaptive Cocoon processing uses URI device implications to infer the type of a de-
vice. However, neither approach fulfils the framework requirements. CC/PP provides
a composite extensible representation of adaptation requirements, and it fulfils all the
framework requirements, apart from the requirement for a conflict resolution mecha-
nism. Consequently, CC/PP can form the the basis of a generic adaptation mechanism.

The proposal in [OH02] uses CC/PP profile queries to control a document’s pro-
cessing, and it is the most powerful generic adaptation mechanism. Device independent
authoring approaches can offer more powerful adaptation, but they can only be used in
highly constrained domains and they are not adequate for an open set of languages and
a variety of integration models. In contrast, the above CC/PP based adaptation com-
bines both an adequate representation of adaptation requirements and the potential to
support a multitude of languages and integration models.

No existing transformation approaches fulfill the framework requirements of mixed
namespace and adaptive transformations. Specifically, there is no existing generic way
to transform mixed namespace documents, according to the semantics of their indi-
vidual constructs. The above CC/PP based adaptation approach enables the adaptive

CHAPTER 4. A PREPROCESSING FRAMEWORK ()

transformation of a document, but it cannot individually address the document sub-
trees.

There is a multitude of existing schema languages and validation models, but they
can only fulfill the framework requirements within the context of NRL or NVDL. As
described above, NRL and NVDL provide the only prominent methods to validate
mixed namespace documents, according to independently defined schemas.

The preprocessing framework requires URI based association and primary location
of semantics. Most schema bindings, such as in the XML Schema and NRL, use URI
based associations. However, their location mechanisms are either document specific
or not well defined. RDDL is the only generic binding method that uses URIs for
both semantics association and location. The preprocessing framework also requires
secondary location mechanisms. XVM provides a distributed location mechanism that
can use several repositories to store URI associations. However, it is not based on the
URIs of the individual resources.

Most of the aforementioned approaches do not cover their corresponding framework
requirements. However, there is also no existing generic method to combine them
into a more powerful document processing approach. Consequently, the existing XML
processing approaches do not provide an adequate model for the generic processing of
presentation XML documents.

4.6 Summary

This thesis will use a preprocessing model to prove our hypothesis, because preprocess-
ing approaches can provide generic validation and transformation, without the transi-
tion and implementation difficulties of complete processing approaches. The proof of
our hypothesis requires a well defined method to evaluate the adequacy of the proposed
preprocessing model. This chapter proposed a preprocessing framework that enables
the evaluation of preprocessing approaches.

The proposed framework defines the components of a preprocessing model, their in-
teroperation and their corresponding requirements. Specifically, a preprocessing model
consists of a validation model, a transformation model, an integration model and a
binding model. The validation and transformation models are responsible for vali-
dating and transforming a presentation document. Both models are specific to an
integration model, because it defines how to combine the processing semantics of the
individual languages, in order to process a mixed namespace document. The binding
model is responsible for locating and retrieving all necessary processing semantics.

The proposed framework can neither be proven correct nor complete. However it
provides an adequate method to evaluate preprocessing approaches, in order to prove
our hypothesis. Specifically, there is no well defined benchmark for comparing the
framework requirements, because there are currently no generic processing models for
presentation documents. Traditional requirement identification methods, such as sta-
tistical analysis, are not reliable, because Web users are accustomed to the existing
practices. Nevertheless, all identified requirements and components are based on the
well established Web design principles. Consequently, they can provide a good indica-
tion of the adequacy of a preprocessing model for the Web.

The investigation of existing processing approaches, according to the proposed
framework, illustrated that there are no adequate approaches for the generic process-
ing of presentation documents. The subsequent chapters will introduce the necessary

CHAPTER 4. A PREPROCESSING FRAMEWORK

processing models to cover all aspects of a preprocessing model.

76

Chapter 5

XMULPipe integration model

This chapter initiates the XMLPipe preprocessing model investigation by describing
the XMLPipe integration model, because an integration model provides the foundation
of a preprocessing model. Specifically, it defines the interpretation of a mixed names-
pace document, according to the interpretation of its constructs. Such a well defined
interpretation is necessary for authoring and processing a document, according to the
semantics of its individual languages.

The XMLPipe integration is based on three observations, which apply to a signifi-
cant subset of presentation languages. Firstly, each language has a subset of constructs,
the processing of which is independent of their context. The term handled constructs
will refer to such constructs. Secondly, the processing of document subtrees that are
rooted at handled constructs is also independent of their context. Thirdly, the handled
constructs can be classified into distinct categories. For each handled construct rooted
subtree, the category of its handled construct defines its relationship with its context.

There are currently no generic integration models. Section 5.1 investigates the
underlying reasons for the lack of such integration models. It also identifies the most
prominent current approaches, which can provide the foundation for the XMLPipe
integration model. Section 5.2 investigates the three handled construct observations,
and Section 5.3 describes how they can enable the processing of presentation documents.
Section 5.3 does not provide the details of document transformation and validation,
because they depend on the transformation and validation model, respectively. The
corresponding Chapters 7 and 8 will apply the XMLPipe integration model to precisely
define the XMLPipe document processing.

5.1 Integration model considerations

Well defined information interpretation requires well defined interpretation of the in-
dividual information pieces and of their relationships, as described in Section 2.2.2.
Consequently, well defined document processing requires that the processing of the
document constructs is well defined and that their processing relationships are also
well defined.

Language specifications provide all the necessary information for processing single
namespace presentation documents. For instance, consider the presentation document
in Figure 5.1. The XHTML specification defines the presentation of all XHTML con-
structs and their dependencies with their context and their contents. The illustrated
DOM tree summarises the presentation dependencies of the first xhtml:p construct.

7

© 0 N O ks W N

e e
w N = O

CHAPTER 5. XMLPIPE INTEGRATION MODEL 78

within the th;ll{lr:l 10
- presentation of the Present as a paragraph —!€xt children
<xhtml:html> xhtml:body element ‘ assocation
<xhtml:body > xhtml:p to A that contains |-
<xhtml:p>Parl Xhtml:body o ansics association |the text of its
</xhtml:p> assoctation text node
hild
<xhtml:p>Par2 o O
</xhtml:p> xhtml:p "parl"
<svg:rect
X:” 077 O
y:” 0” xhtml:html xhtml:body xhtml:p "par2"
width="100"
height="100" /> ? svgirect
</xhtml:body > e
</xhtml:html> ? semantics ;ssoczanon

No well defined

S Present as a rectangle
association

Figure 5.1: Processing associations between language constructs

Specifically, xhtml:p must be presented as a paragraph, within the boundaries of its
xhtml :body parent element. The presentation of xhtml:p also depends on its descen-
dants, because it must contain the contents of all its text node children.

However, the language specifications are not sufficient for processing mixed names-
pace documents. Specifically, the ancestors and the descendants of a mixed namespace
document construct o do not necessarily belong to the same language as o. Conse-
quently, the presentation dependencies between o and its context/contents are not well
defined. For instance, consider the svg:rect element, which is illustrated in line 7 of
Figure 5.1. The SVG recommendation specifies that it must presented as a rectangle.
However, neither the XHTML nor the SVG specifications define how to orchestrate its
presentation with the presentation of its ancestor xhtml:body element.

Integration profiles and predefined integration constructs are inadequate methods to
provide the missing processing associations between languages. Specifically, integration
profiles, such as the XHTML+SVG+MathML profile, are not adequate for an open set
of languages, as described in Section 4.4. Predefined integration constructs are XML
constructs with well defined processing associations between their context and their
contents. They can enable the processing of mixed namespace documents, but such
fixed sets of constructs are against the principle of independent invention. Moreover,
they do not comply with the XML authoring model, which is not compatible with such
well defined associations between its constructs, as described in Section 2.2.2.

NRL and NVDL are the most prominent integration approaches for validation,
but they do not define the necessary processing relationships for presentation docu-
ments. Specifically, they attempt to provide generic integration, which also covers
non-presentation documents. Therefore, they cannot utilise the constraints of the pre-
sentation domain, in order to define the presentation associations between language
constructs. Consequently, they can result to erroneous validation of presentation doc-
uments, as illustrated in Listing 2.1 (page 19).

Therefore, a generic integration model for presentation documents can adopt the
subtree separation concept of NRL and NVDL, but it must also define the presentation
relationships between language constructs. Such relationships cannot be based on

© 0w N O s W N

e T e e e T
U W N = O

CHAPTER 5. XMLPIPE INTEGRATION MODEL 79

<xhtml:html>
<xhtml:head><xhtml:title>
Document title
</xhtml:title></xhtml:head>
<xhtml:body >
<xhtml:h1>Document title</xhtml:h1>
<xhtml:h2>1. Secl</xhtml:h2>
<xhtml:p>Parl</xhtml:p>
<xhtml:p>Par2</xhtml:p>
<xhtml:table
border="1"><xhtml:tr >xhtml:td>
<xhtml:p>Par3</xhtml:p>
<xhtml:p>Pard</xhtml:p>
</xhtml:td></xhtml:tr></xhtml:table >

<nl:doc>
<nl:title>
Document title
</nl:title>
<nl:section>
<nl:title>
Secl
</nl:title>
<nl:p>Parl</nl:p>
<nl:p>Par2</nl:p>
<n4:box>
<nl:p>Par3</nl:p>
<nl:p>Pard</nl:p>

© 0 N 3 U R W N =

e
w N = O

</n4:box> 14
</nl:section> 15 </xhtml:body >
</n1:doc> 16 </Xhtm1:html>

(a) (b)

Listing 5.1: Handled constructs example

predefined integration profiles or integration constructs. In contrast, the integration
model must utilise the constraints of the presentation domain, in order to define generic
relationships that cover all presentation languages.

5.2 Handled construct observations

The XMLPipe integration model is based on three observations, which apply to a signif-
icant subset of the presentation languages. This section will describe these observations
and provide the foundation for the subsequent XMLPipe integration model proposal.

5.2.1 Handled constructs

The first observation is that each presentation language contains a subset of constructs,
where their processing can be defined independently of their context, within a docu-
ment. The term handled constructs will refer to such constructs. For instance, consider
Listing 5.1(a), which represents a mixed namespace document that contains a title, a
section, two top level paragraphs and two additional paragraphs, which are enclosed in
a box. Listing 5.1(b) represents an adequate interpretation of 5.1(a) for an XHTML
browser. The placement of the source ni:p constructs (Listing 5.1(a), lines 9, 10,
12, 13) depends on their ancestors. However, their processing is context independent.
Specifically, the transformation of both the first two n1:p elements (lines 9, 10), which
are enclosed in an nl:section element, and the last two nl:p elements (lines 12,
13), which are enclosed in an n4:box element, always results in an xhtml:p construct
(Listing 5.1(b) lines 8, 9, 11, 12). Consequently, nl:p is a handled construct.

Not all presentation language constructs are handled constructs. For instance, the
processing of the two nl:title elements differs according to their context. The first
occurrence (line 2) defines the document title, but the second occurrence (line 6) defines

CHAPTER 5. XMLPIPE INTEGRATION MODEL 80

a section title. Consequently, their XHTML interpretations (Figure 5.1(b), lines 2-6
and 7) are substantially different. Additionally, the processing of an nl:title element
that occurs within a n4:box is not well defined, because its association with its context
is undefined. Consequently, nl1:title is not a handled construct, because its processing
definition depends on its context.

Language authors must explicitly specify the handled constructs of a language, be-
cause they are central to the XMLPipe integration model. Functions langConstructs™©
langConstructsf ¢ and langConstructsf ¢ will map a language to its set of handled con-
structs, and they are a subset of the binding model interface, which will be described
in Chapter 9. Specifically, langConstructs™C returns all the handled constructs of a
language. langConstructst and langConstructst return only the element and at-
tribute handled constructs, respectively. They are necessary, because the XMLPipe
integration model treats elements and attributes differently.

Handled constructs function (langConstructs¢):
langConstructs® : L — (X)) is a function where,
VL € L, o € langConstructsC (L) iff o € langConstructs(L) and o is a handled

construct.

Element handled constructs function (langConstructs?¢):

langConstructs ¢ : £ — o(X) is a function where, VL € L,
langConstructs ¢ (L) = langConstructs™C (L) — langConstructs,(L).

Attribute handled constructs function (langConstructs©):
langConstructsC : £ — o(X) is a function where, VL € L,
langConstructs ¢ (L) = langConstructs™C (L) — langConstructs,(L).

5.2.2 Handled construct rooted subtrees

A consequence of the existence of handled constructs is that the processing of a single
namespace subtree that is rooted at a handled construct is also independent of its
context.

Corollary 1 Consider a valid d € Dg, where Lq = {L}, and that the syntaz of L
enforces the processing relationships between its constructs. If d' is a subtree of d
that is rooted at a handled construct o € langConstructs™C (L), the processing of d’
can be defined independently of its context in d.

Proof:
In order to prove the above corollary, it is sufficient to prove that the processing of all
constructs of d’ can be defined independently of the context of d’. Consider that X,
and X represent the handled and non-handled constructs of L, respectively:

¥, = langConstructsC (L)
¥ = langConstructs(L) — X,

Each node of d can correspond to either a handled construct or a non-handled
construct. By definition, the processing of all nodes that correspond to a handled

CHAPTER 5. XMLPIPE INTEGRATION MODEL 81

construct o € Y can be defined independently of their context. In contrast, the
processing definition of nodes that correspond to a non handled construct o € ¥} may
depend on their ancestor nodes.

Consider that the processing definition of a node n, which corresponds to construct
o, depends on an ancestor n/, which corresponds to a construct ¢’. Since the syntax of
L enforces the processing relationships between its constructs, it must require that o
can only occur as a descendant of o’. If n/ is an ancestor of the subtree d’, the syntax
of L must also constrain the root of d’ to be a descendant of ¢/, when it contains o at
the place that corresponds to n. Consequently, if the processing definition of a node in
d' depends on a ancestor node of d’, the syntax of the root of d’ depends on its context.
The d root is a handled construct, and, by definition, its processing cannot depend on
its context. Therefore, the processing definition of every non handled construct of d’
does not depend on the context of d’.

Consequently, the above proves Corollary 1, because the processing of all d’ con-
structs and of d’ as a whole can be defined independently of its context.

Most handled constructs are elements, because attributes are closely related to the
context of their parent elements. The processing of an attribute must relate to its
context, because it cannot exist without a well defined parent element. Nevertheless,
its processing might be defined independently of its context. Therefore, all above
observations apply interchangeably to both elements and attributes.

For instance, consider the document illustrated in Listing 5.2(a). According to the
semantics of the XLink language, any element that contains an x1link:href attribute
(lines 9 and 12) must be interpreted as a link to the specified attribute URL. Addition-
ally, consider a preprocessing application that adapts Listing 5.2(a) for an XHTML
browser that does not support XLink links. It must enclose all elements that con-
tain xlink:href attributes into an XHTML anchor element xhtml:a, as illustrated
in Listing 5.2(b) (lines 8 and 12). The adaptation of the xlink:href attributes in-
volves their parent element, because it must be enclosed within the xhtml:a element.
However, their processing can be defined independently of their context, because it is
interchangeable for both nl:p and n3:box elements. Consequently, the xlink:href
attribute can be considered as a handled construct.

5.2.3 Handled constructs classification

The final observation is that the valid occurrence of handled construct rooted subtrees
depends on the type of their root construct. For a significant subset of the presentation
languages, their handled constructs can be classified into three types: content oriented
constructs (COC), functionality oriented constructs (FOC) and structure modification
constructs (SMC').

Most presentation language handled constructs are content oriented constructs, and
they introduce presentable content. Specifically, the semantics of a COC describe the
introduction of a well defined and presentable piece of information, at a place that
corresponds to its position in a document. For instance, consider the nl:doc, nl:p
and n4:box elements, illustrated in Listing 5.2(a). If their corresponding semantics are
that they introduce a document, a paragraph and a box, at the place that they occur in
a document, they are all COC handled constructs. Additional COC examples, within
widely used languages, are the html, p and em XHTML elements and the svg and rect
SVG elements.

© 0 Nk W N

O S e i T T e
S © N o ks W N RO

CHAPTER 5. XMLPIPE INTEGRATION MODEL 82

<nl:doc> 1 |[<xhtml:html>
<nl:title> 2 | <xhtml:head><xhtml:title>
Document title 3 Document title
</nl:title> 4| </xhtml:title></xhtml:head>
<nl:section> 5 | <xhtml:body>
<nl:title> 6 <xhtml:h1>Document title</xhtml:h1>
Secl 7 <xhtml:h2>1. Secl</xhtml:h2>
</nl:title> 8 <xhtml:a href="uril”>
<nl:p xlink:href="uril”>Parl 9 <xhtml:p>Parl</xhtml:p>
</nl:p> 10 </xhtml:a>
<nl:p>Par2</nl:p> 11 <xhtml:p>Par2</xhtml:p>
<n4:box xlink:href="uri2”> 12 <xhtml:a href="uri2”>
13 <xhtml:table
14 border="1"><xhtml:tr><xhtml:td>
<n3:imp ref="pars.xml”/> 15 <xhtml:p>Par3</xhtml:p>
16 <xhtml:p>Pard</xhtml:p>
17 </xhtml:td></xhtml:tr></xhtml:table>
</n4:box> 18 </xhtml:a>
</nl:section> 19 | </xhtml:body>
</nl:doc> 20 |</xhtml:html>

(a) (b)

Listing 5.2: Handled constructs classification example

The functionality oriented constructs do not introduce a separate piece of pre-
sentable information, but they amend the presentation of their context, in a context
independent way. As described in the previous section, an element that contains an
xlink:href attribute (Listing 5.2(a), lines 9 and 12) must be interpreted as a link
to the specified attribute URL. Consequently, the x1ink:href attribute amends the
presentation of its parent element, in a context independent way, because it converts
it to a link, independently of which element its parent is. Therefore, the xlink:href
attribute is a FOC.

The classification of a construct as a COC or as a FOC depends on both its seman-
tics and its syntax. For instance, the XHTML anchor element xhtml:a introduces the
same presentation functionality with the xlink:href attribute. The former converts
its content to a link, and the latter converts its parent element to a link. However,
xhtml:a is a COC, because it introduces a well defined piece of information, since it
contains the linked content.

The final commonly observed category of handled constructs are the structure mod-
ification constructs. SMC' are constructs that the primary purpose of their associated
semantics is to modify the document tree. For instance, the semantics of the n3:imp
element, illustrated in Listing 5.2(a) (line 15), is to import the referenced document.
Consequently, it is an SMC', because its semantics describe a modification of the doc-
ument tree. Most SMC' constructs can also be classified as COC or FOC, according
to their exact semantics. However, the SMC category is necessary, because document
validation must process such constructs separately, since the introduced modifications
can alter the validity of a document.

The classification of a language’s handled constructs is essential for the processing

CHAPTER 5. XMLPIPE INTEGRATION MODEL 83

of presentation documents. The symbols COC, FOC and SMC will represent the
functions that map a language to its corresponding subsets of handled constructs.
COC, FOC and SMC are a part of the binding model interface.

Handled construct classification functions (COC, FOC, SMC):

The functions

COC : L — p(X), FOC : L — p(X) and SMC : L — p(X) are defined as follows:
Vo € langConstructs™C (L) :

o€ COC(L),if oisa COC

o€ FOC(L), if o is a FOC, and

o€ SMC(L), if o is an SMC.

5.2.4 Valid nesting of subtrees

For the majority of presentation languages, the valid nesting of handled construct
rooted subtrees depends on the classification of their root handled constructs.

Specifically, SMC rooted subtrees can usually occur at any place in a document,
because tree modification functionality can apply to any context. For instance, con-
sider any document d. Any subtree d’ of d can be retrieved by an external source.
Consequently, d’ can be substituted by an SMC' construct that imports d’, such as the
n3:imp construct in 5.2(a). Therefore, such an SMC' construct can validly occur at
any place in a document.

FOC rooted subtrees can also occur at any place, because presentation amendments
are always applicable in a presentation document. Specifically, since a FOC amends
the presentation of its context, it should occur as a descendant of a COC, which
are the only constructs that introduce well defined pieces of presentable information.
However, a FOC' might also validly occur under another FOC, so that they both amend
the presentation of their context. Additionally, a FOC can also occur as a descendant
of an SMC, because, after the SMC processing, the new context of the FOC' construct
will either be a COC' or another FOC'. Consequently, FOC rooted subtrees can validly
occur at any place in a document. For instance, the xlink:href attribute, illustrated
in Listing 5.2(a), is a FOC. xlink:href can be added to any element of Listing 5.2(a),
because all information can be presented as a link.

The nesting of COC rooted subtrees is more restrictive. Specifically, only constructs
that allow the introduction of presentable content can be parents of COC constructs,
because they introduce a presentable piece of information. For instance, consider that
the semantics specification of the n1:doc construct, illustrated in Listing 5.2(a), states
that is must contain exactly one title and a sequence of sections. nl:p and n4:p are
COC constructs, and they can occur as children of the nl:section element, because
a document section can be the host of arbitrary content. In contrast, they cannot
validly occur under the nl:doc element, because they will not belong to a document
section, and they will contradict the n1:doc semantics: it must only contain a title and
a sequence of sections. In a similar manner, an XHTML paragraph cannot be validly
placed between lines 4 and 5 of Listing 5.2(b), because it would introduce presentable
content outside the body of the document.

CHAPTER 5. XMLPIPE INTEGRATION MODEL 84

5.3 Handled constructs based integration

The aforementioned observations enable the partitioning a single namespace presenta-
tion document into a collection of autonomous information entities with well defined
associations. The autonomous information entities are the handled construct rooted
subtrees, because their processing can be defined independently of their context. The
associations between the handled construct rooted subtrees are well defined, because
the classification of their root handled constructs defines their relationship and valid
integration with their context.

All observations are solely based on the existence of handled constructs and their
classification, and they do not depend on language specific features. Consequently, they
can be extended to mixed namespace documents. This section derives the XMLPipe
integration model by extending the aforementioned observations to mixed namespace
presentation documents.

5.3.1 Valid mixed namespace documents

A document tree can be processed autonomously, if it is rooted at an element handled
construct that is not a FOC. Specifically, consider a single namespace document tree
d, which is rooted at a handled construct o of a language L. According to Corollary
1, the processing of d can be defined independently of its context. If o is an attribute,
d cannot occur outside the context of a parent element. If o is a FOC, the processing
of d may require to access its context. In contrast, the processing of most subtrees
that are rooted at an element COC or SMC' does not require access to their context.
Consequently, d can be processed autonomously, if o is a non FOC element handled
construct and d is valid, according to the syntax of L.

If the nesting observations in Section 5.2.4 are followed, the insertion of a handled
construct rooted subtree into a document that can be processed autonomously, results
in a document that can also be processed autonomously. Specifically, consider that
d can be processed autonomously and d' is rooted at a handled construct o', of a
language L'. d” will denote the result of inserting d’ at either a place in d where
content is expected, if o’ is a COC, or at any place in d, otherwise. d” can be processed
autonomously, because d can be processed autonomously, the processing of d’' is well
defined, and the processing relationship between d’ and its context is also well defined.
Specifically, if ¢’ is a FOC, the processing of d’ will amend the presentation of its
context, within d”’, in a well defined way. If ¢’/ is an SMC, its processing will modify
the document tree in a well defined way, independently of its context in d”. Finally,
if 0/ is a COC, the relationship to its parent is well defined, because it introduces
presentable content at a place where presentable content is expected. Consequently, d”’
can be processed autonomously.

The XMLPipe integration model uses the above tree composition to ensure that
the processing of valid mixed namespace documents is well defined. Specifically, a
valid mixed namespace document, according to the XMLPipe integration model, is
composed out of a collection of handled construct rooted trees. Its root construct must
be a non- FOC' element handled construct and all COC rooted subtrees must only occur
at places where content is expected.

The symbol VZZX will denote the set that contains all valid documents, according
to the XMLPipe integration model, which combine the constructs of an open set of

CHAPTER 5. XMLPIPE INTEGRATION MODEL 85

presentation languages £1. The definition of V™X uses the IL operator, which de-

fines the set of valid tree compositions, according to an integrgtion model Im. Imx
will represent the XMLPipe integration model. The definition of V™X formulates
the XMLPipe integration model, but it does not indicate how to author and process
valid mixed namespace documents. The following two sections will addresses these
applications of the proposed integration model.

Valid tree composition (<Ii) For all dy,dy € Dg, dylidg is the set of all
m m

documents that can be produced by placing do at a valid place within dy, according
to the integration model Im.

Valid XMLPipe integration model composition (}L) For all d,d’ € Dg,
mx

where d’ is rooted at a construct o’,

0 , ifo’ ¢ U langConstructs™© (L)
VLEEd/
dy,...,d, result from placing d’' at any place in d
gt g = {d.da} , ando’ € |J (FOC(L)uSMC(L))
Imx VLEL y
dq,...,d, result from placing d’ at a place in d where
{di,...,dn} , content is expected and o’ € U CcocC(L)
VLEL y

XMLPipe valid documents (V/™x): For a set of languages L1, the set of the
XMLPipe integration model valid documents VZ"X is defined as follows:

(L; = {L}, d is rooted at ¢ € (COC(L) U SMC(L)) N
langConstructs¢ (L) and d is a valid tree of L
OR

de ngx iff 3d1,ds, where di € VZ”X, Lq, = {L2}, do is rooted at oy €
langConstructs™¢ (L) and dy is a valid tree of Lo, so that d €

dy<tdy
Imx

5.3.2 Mixed namespace document authoring

According to the XMLPipe integration model, a document author must be aware of
the V™x definition, the syntax of an open set of languages, their handled constructs
and the places where content is expected. This information allows the combination of
a set of independently developed presentation languages into a valid mixed namespace
document. Specifically, the syntax and the handled constructs of a language are the
necessary information for creating valid single namespace trees that are rooted handled
constructs. The classification of the handled constructs and the identification of places

CHAPTER 5. XMLPIPE INTEGRATION MODEL 86

where content is expected enable the valid integration of the individual subtrees into a
mixed namespace document. Consequently, document authors can use the XMLPipe
integration model to create valid presentation documents, which use an open set of
languages, without relying on predefined integration profiles.

For instance, consider the example document illustrated in Listing 5.2(a). The sym-
bols L1, L3, L4 and Ly, will denote the languages that correspond to the namespace
prefixes n1, n3, n4 and x1link. Additionally, consider that all four languages have a
well defined set of handled constructs:

COC(Ly) = {doc,p}, FOC (L) = SMC(Ly) =0
SMC/(Ly) = {imp}, COC(L3) = FOC(L3) = 0
COC(L4) = {bOX}, FOC(L4) = SMC(L4) =0

FOC(Lxlmk) = {href}, COC(Lxlmk) = SMC(Lxlmk) = @

The n1:doc and nl:p constructs of L; are COC, because they introduce a document
and a paragraph, respectively. Both are well defined pieces of presentable information
and their presentation is independent of their context. In a similar manner, the n4:box
construct of Ly is also a COC. The xlink:href construct of L, is a FOC, because
its processing influences its parent element in an element independent way (it converts
it to a link). The n3:imp construct of L3 is an SMC, because it modifies the document
tree by importing external content at its place. Finally, the nl:section, nl:p and
n4 :box elements denote the places where content is expected.

A document author can create 5.2(a) by combining its individual subtrees, accord-
ing to the V/™x definition. The document authoring process can begin by creating
the n1:doc handled construct, the title and the first section, according to the L; syn-
tax. Subsequently, the n4:box element can be introduced as a child of the n1:section
element, because nd:box is a COC and nl:section denotes a place where content
is expected. Finally, the document author can validly introduce the x1ink:href and
n3:imp constructs at any document position, because they are FOC and SMC, respec-
tively.

5.3.3 Mixed namespace document processing

A document author can obtain the necessary information to author a document by the
corresponding language specifications. However, an integration model specific process,
such as validation or transformation, must be able to access machine processible rep-
resentations of all necessary information: the handled construct information and the
places where presentable content is expected.

As described in Section 5.2, the functions COC, FOC, SMC, langConstructs¢
langConstructst and langConstructst are a part of the XMLPipe binding model
interface, and they map a language to its handled constructs information. The symbol
ISemantics will represent the set of all XML Pipe integration model semantics, which
contains the necessary information for implementing the above functions. Specifically,
an ISemantics member contains 5-tuples of qualified construct name sets, which cor-
respond to the COC, SMC, FOC, element and attribute handled constructs. The
XMLPipe binding model, which is described in Chapter 9, will define how the integra-
tion model semantics are retrieved for each language.

None of the aforementioned functions map a language to its corresponding informa-
tion of places where content is expected. Such information is very closely related to the

CHAPTER 5. XMLPIPE INTEGRATION MODEL 87

XMLPipe integration model semantics (ISemantics): ISemantics represents
the set of all XMLPipe integration model semantics. Each member of ISemantics
is a 5-tuple of sets of qualified names that correspond to the COC, SMC, FOC,
element and attribute handled constructs of a language, respectively:

ISemantics = p(X)°

If is € ISemantics and is = (X1, X9, X3, X4, X5), then

o is a COC construct Jifi=1
o is a SMC' construct Jif =2
Vo € Yi: < oisa FOC construct ,if ¢ =3
o is an element construct ,if i =4

o is an attribute construct ,if i =25

syntax of a language, and it requires more complex structures than a simple enumera-
tion. We will propose two alternative methods to identify the places where presentable
content is expected: a heuristic method and an explicit identification method.

Consider a construct ¢ of a language L. The heuristic method is to assume that o
denotes a place where content is expected, if the syntax of L allows the occurrence of
a o’ € COC(L) as a child of o. The rationale behind this method is that if a construct
can be the parent of COC constructs of the same language, it should also be a valid
parent of COC' constructs of other languages. Nevertheless, a heuristic approach can
produce incorrect results. For instance L might require a specific ¢/ € COC(L) as a
child of o, instead of any arbitrary COC construct. Additionally, if a language does
not contain COC constructs, the proposed heuristic method cannot infer the places
where content is expected.

The explicit identification method requires that the schema of a language includes
a predefined construct at all places where arbitrary COC constructs can occur. The
introduction of such a predefined construct is not against the principle of independent
invention, because it must only occur within schemas that are specific to the proposed
integration model. Such an approach is more precise than the heuristic method, but
it requires that all document languages are associated with integration model specific
schemas. A processing model can combine both approaches by using the explicit iden-
tification method, when such schemas are available, and the heuristic approach, as a
fallback mechanism.

An integration model specific component can use the above information to parti-
tion a valid mixed namespace document into a collection of handled construct rooted
subtrees, which enable its processing. Specifically, consider a d € Vg:x that is rooted
at a construct o of a language L. d consists of a top level single namespace tree d’ and
a collection of subtrees dj ... d,, which are rooted at handled constructs o7 ... o, that
belong to other languages: Vi,o; € L4 — L. According to the XMLPipe integration
model, a valid mixed namespace document is composed out of valid single namespace
trees, which are inserted at valid places within their context. Consequently, d’ is a
valid single namespace document, which is rooted at a handled construct, and d; ... d,
occur at valid places, according to the classification of their root constructs oy ...oy,.

CHAPTER 5. XMLPIPE INTEGRATION MODEL 88

nl:title "Document
Title"

—O—0

nl:title "Secl"

coc FocC Legend
coc @f (>
& nl:p |xlink:href="uril" O Non handled construct node

nl:doc 4@
407 wpEpln Q Handled construct node

nl:section/| COC
{)—Q Tree separation
nl:p "Par2"
coc Foc
OO
nd:box|xlink:href="uri2"
SMC
L E6—o0

n3:imp ref="pars.xml"

Figure 5.2: XMLPipe integration model subtree separation example

An integration model specific component can process d by combining the indepen-
dently developed semantics of each document language, if they are adequate for subtree
processing. Specifically, if the processing semantics specification for L defines the pro-
cessing of handled construct rooted trees, it enables the independent processing of d'.
The processing of d is well defined, if d;...d, also have well defined processing: all
of d and dj ...d, will have well defined processing, and their processing relationships
will be well defined by the classification of the oy ... 0o, handled constructs. In a sim-
ilar manner to d, dj ...d, are also valid XMLPipe documents. Therefore, a recursive
application of the same subtree partitioning as above can show that their processing is
well defined. Consequently, d can be processed according to the processing semantics
of its individual languages.

Each integration model specific process can use different methods to separate a
mixed namespace document into its individual subtrees and to combine the processing
semantics of each language. Such methods are closely related to the nature of each
process. Therefore, this section will not describe the details of the validation and
transformation of mixed namespace documents. The subsequent Chapters 7 and 8 will
propose the XMLPipe validation and transformation models, respectively, and they
will provide the corresponding document processing details. Nevertheless, the high
level concepts of the document processing are common. Specifically, an integration
model specific process must separate a mixed namespace document into its individual
subtrees, process them independently and combine the processing results.

The subtree separation consists of traversing a mixed namespace document and
creating a separate subtree, for each handled construct o. If o is a non-FOC' element,
it can be the root of the corresponding subtree. Otherwise, the subtree root must be
the parent of o, because attributes can only exist within their parent element and the

CHAPTER 5. XMLPIPE INTEGRATION MODEL 89

processing of FOC' rooted subtrees may require access to its context. For instance,
Figure 5.2 illustrates the resulting subtrees for the XML document in Listing 5.2(a).
The x1ink:href attribute is a FOC construct. Consequently, its corresponding sub-
trees also include its parent elements ni:p and n4:box. All other handled constructs,
such as the n3:imp, n4:box and n1l:p, are non- FOC element handled constructs. Con-
sequently, they become the root constructs of their corresponding subtrees.

After the subtree separation, an integration model specific process processes each
subtree separately, according to the semantics of the corresponding language. Finally,
it combines the results of each subtree processing into an output document.

5.4 Discussion

The proposed integration model enables the generic processing of mixed namespace
documents by utilising the constraints of the presentation domain. Specifically, it is
based on three handled construct observations that are specific to presentation docu-
ments. The observations have been made to single namespace documents, and their
extrapolation allowed the definition of valid mixed namespace documents, as a compo-
sition of valid single namespace subtrees. The proposed definition of valid documents
enables the generic authoring and processing of mixed namespace documents, because
it only requires the independently specified semantics of each language, instead of fixed
integration profiles.

The preprocessing framework specifies several requirements that relate to the in-
tegration model, but this section will only address a subset of them. Most relevant
requirements are specific to the integration model specific validation and transforma-
tion processes. Consequently, these requirements will be discussed in the subsequent
chapters, after describing the XMLPipe validation and transformation models. This
section will focus on evaluating the top level integration model concepts, which are
independent of the individual processes.

Firstly, the XMLPipe integration model allows the integration of an open set of
languages, which can contain both high and low level presentation information, because
it imposes minimal restrictions on the processed languages. Specifically, it only requires
that each language has a set of handled constructs. All presentation languages have
at least a handled construct, because the processing definition of their designated root
construct must always be independent of its context. Consequently, the XMLPipe
integration allows the integration of all presentation XML languages.

Moreover, the preprocessing framework requires a well defined way to author and
process mixed namespace documents, which does not require predefined relationships
between the document languages. The introduced concept of handled constructs en-
ables the authoring and processing of mixed namespace documents by individually
addressing their single namespace subtrees, because it enables the separation of a doc-
ument into autonomous information entities. No predefined relationships are necessary,
because each subtree is processed independently. The handled constructs classification
establishes the construct relationships that are not covered by the individual language
specifications. These relationships solely depend on the classification of the handled
constructs, and not on predefined associations. Therefore, the use of handled constructs
enables the processing and authoring of documents that combine a set of independently
developed languages, because it eliminates the requirement for predefined relationships.

CHAPTER 5. XMLPIPE INTEGRATION MODEL 90

The classification of the handled constructs into a predefined set of three cate-
gories should not be considered as a restriction of the XMLPipe integration model. In
contrast it represents a balanced trade-off between integration generality and power.
More fine grained construct relationships could enable more precise integration, but
they would cover a narrower integration spectrum. In contrast, more abstract or no
classification, such as in NRL, could allow a wider integration spectrum. However, it
would not provide the necessary foundation for the well defined processing of presenta-
tion documents. The proposed three categories, do not significantly constrain the used
languages, but they establish the necessary construct relationships for validating and
transforming presentation documents, as the subsequent chapters will illustrate.

Finally, the XMLPipe integration model is significantly more powerful than exist-
ing approaches. It adopts the two most prominent generic integration approaches and
enhances them by incorporating the presentation domain specific observations of han-
dled constructs. Specifically, the proposed document processing and authoring address
the individual document subtrees separately, in a similar manner to NRL and NVDL.
Moreover, the classification of the handled constructs provides well defined associations
between the individual constructs, in a similar manner to the explicit associations of
RDF. The XMLPipe integration model is the only approach that allows authoring and
processing of mixed namespace documents, in a way that is adequate for the Web,
because it is the only integration approach that fulfils the preprocessing framework
requirements.

5.5 Summary

This chapter introduced the XMLPipe integration model, which establishes the foun-
dation of XMLPipe. Specifically, it utilises the common characteristics of the majority
of presentation languages, in order to extend the NRL and NVDL concept of subtree
separation. The resulting integration enables the processing and authoring of mixed
namespace documents, according to the independently developed semantics of their
individual languages. The use of independently developed semantics is essential for
a generic preprocessing model, such as XMLPipe, that processes mixed namespace
documents that combine an open set of languages.

An integration model is necessary for processing mixed namespace documents, be-
cause it defines the necessary construct relationships, which are not covered by the
language specifications. Specifically, presentation language specifications define the
presentation processing of their individual constructs and of the construct relationships,
which is necessary for presenting a document. However, the processing relationships
in mixed namespace documents are not always well defined. Integration profiles can
define them, but they are not adequate for an open set of languages. NRL and NVDL
are prominent integration approaches that are adequate for an open set of languages,
but they provide generic integration and do not specify the necessary relationships for
presentation document processing.

The XMLPipe integration model introduces the necessary associations, by extrap-
olating three observations of the structure of single namespace presentation documents
to mixed namespace documents. Firstly, each presentation language has a set of han-
dled constructs. The processing of all handled constructs can be defined independently
of their context. Secondly, the processing of a handled construct rooted subtrees can
also be defined independently of their context. Thirdly, the handled constructs can

CHAPTER 5. XMLPIPE INTEGRATION MODEL 91

be classified into three categories. The classification of the root construct of a sub-
tree specifies the presentation relationship between the subtree and its context. The
proposed integration model extends these observations to define the set of valid mixed
namespace documents.

According to the definition of valid mixed namespace documents, document authors
can create mixed namespace documents, knowing only the syntax of the individual lan-
guages and the corresponding handled constructs information. The integration model
specific processing of mixed namespace documents depends on the nature of the pro-
cessing, and it differs between document validation and transformation. However, the
high level process remains the same, and it consists of separating the document into
its individual subtrees, processing them, according to their corresponding language
semantics, and combining the processing results.

The XMLPipe integration model fulfils the relevant preprocessing framework inte-
gration requirements. Consequently, it sets an adequate foundation for the validation
and transformation of presentation documents, in a way that is adequate for the Web.
However, the individual proposals of integration model specific processes will be post-
poned until Chapter 7. The following chapter will describe the XMLPipe adaptation
model, because it sets the necessary foundation for proposing the XMLPipe transfor-
mation model.

Chapter 6

XMLPipe adaptation model

An adaptation model defines the representation and processing of the adaptation re-
quirements. A well defined adaptation model is essential for investigating the process-
ing of presentation documents, because all transformation processing components and
their corresponding transformation semantics depend on the adaptation requirements,
as described in Section 4.4.

This chapter describes the XMLPipe adaptation model. The adaptation model dis-
cussion begins with the definition of the XMLPipe adaptation profiles, which define a
representation of adaptation requirements, in a similar manner to the CC/PP profiles.
Adaptation profile composition is necessary, because it enables the efficient transmis-
sion of the adaptation requirements, from separate adaptation requirement sources (e.g.
the browser, device and document user), as described in Section 4.3. Consequently, the
XMLPipe adaptation model provides a well defined method to compose independently
specified adaptation profiles. It also defines a method to choose the optimal transfor-
mation specification for a document subtree, over a set of alternatives. This method
provides the core adaptation model functionality, because it allows the well defined
adaptive transformation of document subtrees. The composition of adaptation profiles
and the optimal transformation selection require a well defined mechanism for querying
the adaptation requirements. The XMLPipe adaptation model introduces the concept
of the adaptation expressions, which are a declarative method to express the necessary
adaptation profile queries.

The next section describes the main advantages and disadvantages of CC/PP, which
is the most prominent existing representation of adaptation requirements. Subse-
quently, Section 6.2 will define the XMLPipe adaptation profiles and expressions, which
adopt the core CC/PP concepts. Finally, Sections 6.3 and 6.4 will describe the profile
composition process and optimal transformation selection processs, respectively.

6.1 Adaptation considerations

Section 2.4.4 introduced the Composite Capabilities/Preference Profiles (CC/PP) rec-
ommendation, which is the most prominent existing method for representing adapta-
tion requirements. The CC/PP representation is a two level hierarchy of RDF-based
attribute and value pairs. Each CC/PP attribute is uniquely identified by a corre-
sponding URI. The CC/PP recommendation does not include a typing mechanism,
but the CC/PP attribute data types can be defined by RDF Schemas, which, in turn,
use the XML Schema data types.

92

CHAPTER 6. XMLPIPE ADAPTATION MODEL 93

CC/PP provides an extensible representation of adaptation requirements. Specif-
ically, the URI qualified attributes allow an extensible representation, because they
ensure unique and context independent identification of all CC/PP attributes. These
two properties are essential for the unambiguous introduction of new attributes, be-
cause they eliminate the conflicts between independently defined CC/PP attributes.

Composite representations are beneficial and adaptation requirement queries are
necessary, as described in this chapter’s introduction. However, CC/PP complicates
the support of the necessary adaptation functionality. CC/PP allows profile compo-
sition, but it does not provide a well defined mechanism to resolve conflicting values.
Such a mechanism is essential for the composition of independently defined profiles.
Moreover, any RDF query language can be used for expressing queries to the RDF-
based CC/PP representation. An adaptation model that uses CC/PP queries must
incorporate support for a multitude of relevant technologies: RDF, RDF Schema, XML
Schema data types and one or more RDF query languages. The support of these tech-
nologies is not prohibitive, but it could be considered as unnecessarily complex for an
adaptation model.

6.2 Adaptation profiles and expressions

This section will define the XMLPipe representation of adaptation requirements and
adaptation requirement queries. The introduction of their individual concepts will
follow a rather non-intuitive sequence, in order to avoid forward references, within
their definitions.

The XMLPipe adaptation model uses a simpler representation and data typing
method than CC/PP, in order to avoid the inherent complexity of supporting all the
relevant RDF technologies, which are necessary for enabling CC/PP profile queries.
However, it will adopt the CC/PP concept of URI identified adaptation attributes,
because they allow an extensible representation. The remainder of this thesis will
use the term adaptation terms, as opposed to the CC/PP term attributes, in order to
disambiguate between references to XML attributes and adaptation attributes.

Specifically, an XMLPipe adaptation term is a combination of a URI and a local
name. Terms will represent the set of all adaptation terms. A pair of an adapta-
tion term and a data value expresses an adaptation requirement, as a user/browser
capability or a user preference. For instance, consider that the uril:supported and
uri2:noImages adaptation terms, where the former corresponds to the set of technolo-
gies that a browser supports and the latter corresponds to the preferred use of images
within a presentation. The pair

(uril:supported, {http://www.w3.0rg/1999/xhtml})
expresses the capability of a browser to render XHTML documents. The pair
(uri2:noImages, true)

expresses the preference for a presentation that does not contain images.

Adaptation terms set (Terms): The set of all adaptation terms Terms is the
set of all pairs of a URI and an XML local name:

Terms = URI x S

where URI is the set of all URIs and S is the set of all XML local names.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 94

Typed adaptation terms, where each term is associated to its corresponding set of
acceptable values, are beneficial, because they enable the validation of term—value pairs
and assist the evaluation of adaptation requirement queries. The XMLPipe adaptation
model associates each adaptation term with a member of a predefined collection of
data types. Each data type specifies a term’s acceptable set of values, a set of valid
operations (such as multiplication of numerals) and a set of conversion functions (such
as converting a numeral to a string). TermTypes will represent the set of all XMLPipe
adaptation term types. Each type Type € TermTypes will represent a set that contains
all valid data values. Moreover, the Numeric and Boolean symbols will correspond to
the numeric and boolean data types. The separate definitions of Numeric and Boolean
are necessary, because they will be used in the subsequent proposal of the optimal
transformation selection process.

Adaption term types (TermTypes): The set of all adaptation term types
TermTypes contains all adaptation term data types

Numeric data type (Numeric): The numeric type Numeric € TermTypes is the
XMLPipe numeric data type, and its acceptable values are real numbers:
if v € Numeric then v € R

Boolean data type (Boolean): The boolean type Boolean € TermTypes is the
XMLPipe boolean data type, and it contains the values true and false:
Boolean = {true,false}

Adaptation requirement queries are necessary for the profile composition and op-
timal transformation selection, as Sections 6.3 and 6.4 will illustrate. The term adap-
tation expression will refer to the XMLPipe declarative mechanism for querying the

values of adaptation terms. Specifically, an adaptation expression is a function that
Type'

. . 7 Typey,-- Type, }

of all adaptation expressions that map an n-tuple of values, which belong to an n-tuple

of term types Typey, ... Type,,, to a value of type Type’. The convenience set]—'(Typ ©2

maps a tuple of values to a result value. The set will represent the set

Type;)™
will represent the subset of expressions that map n values of a type Type; to a value

of type Types, and it will be extensively used in the following sections. Finally, the set
F will represent all XMLPipe adaptation expressions.
For instance, if f(z1,72) = x1 + 29 and f'(z1) = (x1 == 2), then f ¢ FNumeric

(Numeric)?
l Boolean l
and f' € F(Numm'c)l’ Both both f and f’ belong to F.
Adaptation expressions from a value tuple to a value (F, {ij,gj;l o Type }): The
set F e’ contains all XMLPipe expressions of the form
{Type,... Type, }

[Typey X Typey X -+ - x Type,, — Type'

Adaptation expressions from a single type value tuple to a value
(j:TyPeQ): ity gl
(Type,)™ 7" 7 (Typeq)™ {Typeq, ..., Type,}

g
n

CHAPTER 6. XMLPIPE ADAPTATION MODEL 95

Default value

i

Term locateTermSem () Term semantics

Conlflict resolution
expression

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TermSemantics)

-

Figure 6.1: Adaptation term semantics

All adaptation expressions (F): The set F includes all XMLPipe expressions:

Type'
F= U F,
{Typey,..., Type,, }

vneN, Type’ NV Type, ... Type,,

where N is the set of natural numbers {1, 2, ...}

An extensible representation of adaptation requirements, which does not rely on
a fixed set of adaptation terms, necessitates well defined processing semantics, for
each adaptation term. The above term type, term value and adaptation expres-
sion definitions allow the definition of the adaptation term semantics. Specifically,
TermSemantics will represent the set of all adaptation term semantics. Each member
of TermSemantics is a triplet of a term data type, a valid default value and conflict
resolution expression. As described above, a data type is necessary for the validation
of term—value pairs and the evaluation of adaptation requirement queries. Addition-
ally, a default value is beneficial for an extensible representation, because it ensures
the well defined evaluation of adaptation expressions, when the value of a referenced
term is not specified. Finally, the conflict resolution expression is a binary adaptation
expression (which uses two input values) that assists the resolution of conflicting value
specifications, as Section 6.3 will illustrate.

Term semantics (TermSemantics): The set of all term semantics TermSemantics
contains all valid triplets of a term type, a default value and a conflict resolution
expression:

. Type
TermSemantics = U ({ Type} x Type x ({e} U J”:(Type)2>)
V Type€ Term Types

A well defined method to locate a term’s semantics, is also essential for an ex-
tensible representation, because it ensures that a preprocessing model can retrieve all
necessary adaptation term information. Figure 6.1 illustrates the relationship between
a term and its semantics. Function locateTermSem is a part of the binding model
interface (described in Chapter 9), and it maps a term to its corresponding seman-
tics. For instance, consider that 7 corresponds to the uril:supported term, and that

CHAPTER 6. XMLPIPE ADAPTATION MODEL 96

locateTermSem (1) = ts, where ts = (SetOfStrings,{},x1 U x2). The semantics of 7
specify that its data type is a set of strings, its default value is an empty set of strings
and its default conflict resolution mechanism is to combine the conflicting sets of strings.

The convenience functions termType(), termDefault() and termResolve() map an
adaptation term to its data type, default value and resolution expression, respectively.
These functions are necessary for a more concise method to refer to the individual
components of a term’s semantics.

Term semantics location function (locateTermSem): The term semantics loca-
tion function locateTermSem : Terms — TermSemantics maps an adaptation term
to its corresponding semantics:

V1 € Terms, locate TermSem(7) returns the semantics associated with 7, according
to the XMLPipe binding model.

Term semantics convenience functions (termType,termDefault,termResolve):
For every term 7 € Terms, where locateTermSem(r) = (Type,v, f), the utility
functions are defined as follows

termType : Terms — TermTypes, termType (1) = Type

termDefault : Terms — U (Type), termDefault(T) =v
V Type€ Term Types

termResolve : Terms — F, termResolve(T) = f

The association between a term and its semantics, enables the definition of an
adaptation statement, which expresses an adaptation requirement. Specifically, an
adaptation statement is a pair of an adaptation term and a valid data value, according to
its semantics. Statements will represent the set of all XMLPipe adaptation statements.
Moreover, an adaptation profile is a set of adaptation statements, and it can express
the set of adaptation requirements that influence the processing of an XML document.
Profiles will represent the set of all adaptation profiles.

Adaptation statements (Statements): The set of all adaptation statements
Statements includes all pairs of a term and a value of its corresponding type.

Statements = U ({r} x termType(T))
V7€ Terms

Adaptation profiles (Profiles): The set of all adaptation profiles Profiles includes
all sets of adaptation statements: Profiles = p(Statements)

For example, consider the two example profiles in Listings 6.1 and 6.2, which de-
scribe an XHTML browser running on a desktop computer and a WML mobile, respec-
tively. Each profile (profile) consists of a set of statements (statm) that express the
relevant adaptation factor requirements. Each statement specifies the namespace URI
and local name of an adaptation term (ns, name), and it includes its corresponding
value. For instance, line 2 of Listing 6.1 specifies that the target device is a “desktop”.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 97

<profile name="desktopl”>
<statm ns="xmlPipeUri” name="deviceType”>desktop</statm>
<statm ns="xmlPipeUri” name="supported”>
<item>http://www.w3.o0rg/1999/xhtml</item>
<item>http://www.w3.org /2001 /XMLSchema—instance</item>
<item>xmlPipeUri/Profile /Mime/image/jpeg</item>
<item>xmlPipeUri/Profile /Mime/video/mpeg</item>
</statm>
</profile >

© 0 N DUk W N

Listing 6.1: Adaptation profile for a desktop device

<profile name="mobilel”>
<statm ns="xmlPipeUri” name="deviceType”>mobile</statm>
<statm ns="xmlPipeUri” name="supported”>
<item>http://www.wapforum.org/DID/wml_1.1.xml</item>
<item>xmlPipeUri/Profile /Mime/image /whmp</item>
</statm>
<statm ns="xmlPipeUri” name="maxImageX”>96</statm>
<statm ns="xmlPipeUri” name="maxImageY”>100</statm>
</profile >

© w0 N O Ok W N

Listing 6.2: Adaptation profile for a mobile device

In a similar manner, line 2 of Listing 6.2 specifies that the corresponding device is a
“mobile”. Lines 3-8 of Listing 6.1 specify that the target browser can render XHTML,
JPEG and MPEG content. The aforementioned semantics location functions allow
the location of all necessary term semantics, without additional external input. For
instance it is sufficient to use the namespace and local name of the maxImageX and
supported terms, in order to retrieve their semantics:

termType(xm1PipeURI, maxImageX) = Numeric
term Type (xm1PipeURI, supported) = SetOfStrings

6.3 Profile composition

The efficient transmission of the user preferences and browser/device capabilities ne-
cessitates a well defined mechanism to combine independently developed adaptation
profiles, as described in Section 4.3. The concepts of adaptation terms and adaptation
expressions, which have been established in the previous section, can form the basis
of such a mechanism. This section will describe the XML Pipe profile composer that is
responsible for combining multiple adaptation profiles and resolving their conflicts.

6.3.1 Profile composition observations

The mobile adaptation profile (Listing 6.2) can be partitioned into the profiles illus-
trated in Listings 6.3, 6.4 and 6.5. The profile in Listing 6.3 can be provided by the
mobile manufacturer, and it represents the static capabilities of the described mobile
device: the device type, Wireless Markup Language (WML) support and the maximum
rendered image size. The vendor of a Wireless Bitmap (WBMP) rendering upgrade,

CHAPTER 6. XMLPIPE ADAPTATION MODEL 98

<profile name="mobileDefault”>
<statm ns="xmlPipeUri” name="deviceType”’>mobile</statm>
<statm ns="xmlPipeUri” name="supported”>
<item>http://www.wapforum.org/DID/wml_1.1.xml</item>
</statm>
<statm ns="xmlPipeUri” name="maxImageX”>150</statm>
<statm ns="xmlPipeUri” name="maxImageY”>150</statm>
</profile >

o N 3 Ok W N

Listing 6.3: Default mobile profile

<profile name=" mobileCustom”>
<statm ns="xmlPipeUri” name="supported”>
<item>xmlPipeUri/Profile /Mime/image /whmp</item>
</statm>
</profile >

Gl W N =

Listing 6.4: Software upgrade profile

<profile name="mobileUser”>
<statm ns="xmlPipeUri” name="maxImageX”>96</statm>
<statm ns="xmlPipeUri” name="maxImageY”>100</statm>
</profile >

L R R

Listing 6.5: User preferences profile

which adds WBMP rendering capability to a mobile browser, can provide the profile
illustrated in Listing 6.4. Finally, a user that wishes to override the default image size
capabilities can provide the profile illustrated in Listing 6.5.1

The composition of the three adaptation profiles must result to the initial mobile
profile (Listing 6.2). Specifically, the composition process must resolve the conflict be-
tween the supported statements, in the first two listings, and between the maxImageX
and maxImageY statements, in the first and third listings. The WBMP support state-
ment in Listing 6.4 introduces a software upgrade, and the resulting profile must specify
support for both WML and WBMP. Consequently, the conflict resolution mechanism
must combine the values of the two supported statements. In contrast, the user defined
image dimensions are meant to override the default device statements. Consequently,
the conflict resolution mechanism must favour the statements of Listing 6.5.

The resolution of conflicting adaptation statements can depend on several factors.
Specifically, the resolution of conflicting image dimension specifications is entity depen-
dent, because the document user statements override the device defaults. The conflict
resolution of the supported statements is term dependent, because the term supported
expresses a cumulative property: the introduction of new technologies extends the ex-
isting set of supported technologies. Statement dependent conflict resolution can be
beneficial for overriding existing entity dependent or term dependent resolution mech-
anisms. For instance, a document user who wishes to retrieve an image-free document
must be able to introduce a supported statement that overrides the supported term

!The document user can explicitly provide such adaptation statements, but no exposure to the adap-
tation profile syntax is necessary. For instance, a graphical user interface to document processing, such
as a browser, can automatically derive the user preferences profile from the its internal configuration.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 99

conflict resolution, in order to remove the WBMP support statement. Consequently,
the illustrated profile partitioning demonstrated that the resolution of conflicting adap-
tation statements can be entity dependent, term dependent or statement dependent.

A generic conflict resolution mechanism must not depend on predefined sets of ei-
ther adaptation requirement partitions or requirement specifying entities. Specifically,
the optimal partitioning of a profile is a design decision that can be specific to each case
of adaptation requirements specification. For instance, the partitioning of a particular
set of adaptation requirements might depend how they are distributed, if it aims to
optimise their transmission efficiency. Additionally, the preprocessing of a document
can be influenced by a fixed set of external entities: the document user, the browser
and the device. However, the specification of their adaptation requirements may in-
volve additional entities. For instance, the browser capabilities might be specified by a
combination of a default profile and several software upgrade profiles.

A generic conflict resolution mechanism can avoid such predefined sets and methods
by using binary adaptation expressions and a predefined ordering guideline. Specifi-
cally, within the context of a well defined ordering guideline, binary adaptation expres-
sions, between a preceding and a conflicting value, can resolve the majority of statement
conflicts. For instance, if default statements occur before custom statements, a binary
expression that always returns the conflicting value can resolve the maxIntegerX con-
flicts. Additionally, an order independent union, between the preceding and conflicting
values, can resolve the conflicts between the supported statements. The sufficiency of
such binary expressions cannot be proven, because of the unlimited variety of methods
to partition adaptation requirements and resolve conflicting statements. Nevertheless,
they cover several conflict resolution scenarios and they are adequate for a generic con-
flict resolution mechanism, because they do not rely on fixed requirement partitioning
methods.

6.3.2 XMULPipe composite profiles

A profile composition mechanism that is based on an ordering guideline requires an
ordered set of adaptation statements. However, the introduced adaptation profiles
alone are not adequate, because they are sets of adaptation statements. The XMLPipe
conflict resolution will use the concept of composite profiles. A composite profile is a
sequence of composite statements and of external references to other composite profiles.
A composite statement is similar to an adaptation statement, but it can also include
a conflict resolution expression. CProfiles will represent the set of composite profiles,
and CStatements will represent the set of composite adaptation statements.

A composite profile provides the necessary foundation for profile composition, be-
cause it allows arbitrary partitioning of the adaptation requirements, provides ordered
adaptation requirements and includes statement-specific expressions for conflict reso-
lution. Specifically, the preprocessing initiation entity can use the composite profile
external references to arbitrarily partition a composite profile, into a sequence of sub-
profiles. Subsequently, the preprocessing initiation entity must only transmit a subset
of the sub-profiles. The preprocessing implementation can choose the most efficient
method to retrieve the remainder of the referenced sub-profiles. Moreover, both inline
and referenced composite statements are ordered, because a composite profile is a se-
quence of statements and external references. Finally, each composite statement can
contain an optional statement specific expression for conflict resolution.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 100

Composite statements (CStatements): CStatements is the set of all composite
statements and it contains all pairs of an adaptation statement and an optional
binary adaptation expression, which maps two values of the corresponding term
type to a value of the same type.

CStatements = U (({T} x termType (1)) X (.7-";:;:3;?;;@(2))2 U {e}))

V1€ Terms

Composite profiles (CProfiles): The set of all composite profiles CProfiles con-
tains all composite statement sequences.

CProfiles = U (CStatements)"™
vneN

6.3.3 XMLPipe profile composition

The XMLPipe profile composer component is based on a predefined ordering guide-
line and three prioritised levels for the specification of conflict resolution expressions:
a default resolution expression, adaptation term specific expressions and statement
specific expressions, in ascending priority order. The profile composer maps the com-
posite profile, which is provided by the preprocessing initiation entity, to a conflict-free
adaptation profile, that can be used by other XMLPipe components.

An ordering guideline, which is adequate for an extensible adaptation model, must
not depend on predefined categories of adaptation terms. The XMLPipe ordering
guideline avoids such dependencies by using the abstract concept of document pro-
cessing relevance. Specifically, the composite statements must be ordered in ascending
relevance to the document processing. For instance, consider a set of adaptation re-
quirements, where both browser and device capabilities consist of their default and
custom portions. The browser can be considered as more relevant to the document
processing than the device, and custom adaptation requirements are more relevant
than default ones:

default device statements — custom device statements — default browser
statements — custom browser statements — user preferences

The combination of such an ordering guideline with three prioritised levels of con-
flict resolution enable the resolution of most conflicting statements. Specifically, the
default XMLPipe conflict resolution always favours a newly introduced value, because
it must be more relevant to the document processing, according to the above ordering
guideline. A term conflict resolution expression, which is specified in a term’s seman-
tics, overrides the default conflict resolution, in order to allow term-specific conflict
resolution. Statement specific resolution expressions have the highest priority, in or-
der to allow the preprocessing initiation entity to override both the default and the
term-specific resolution mechanisms.

The XMLPipe profile composer implements the function ccompose, which uses the
three conflict resolution levels to convert a composite profile into an adaptation profile.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 101

ccompose iterates through the sequence of ordered composite statements and adds them
to the output adaptation profile. If a source composite statement does not conflict with
a previous output adaptation statement, ccompose adds it to the resulting profile. If
it conflicts with a previous statement and it includes a conflict resolution expression,
ccompose evaluates the expression over the two conflicting values, and uses its result for
the output profile. Otherwise, ccompose uses the term specific resolution expression, if
it exists. If there is no term specific resolution expression, ccompose applies the default
conflict resolution and substitutes the old statement, in the output adaptation profile,
with the conflicting composite statement, in the source composite profile.

Profile composition (ccompose): The profile composition function ccompose :
CProfiles — Profiles, maps a composite profile cpr € CProfiles to its corresponding
adaptation profile pr:

function ccompose(cpr) — pr
Let cpr = (((7—1, Ul)a fl) ’ ((7—2’ 02)’ f2) poeayg ((Tn’ Un), fn))
Let pr =10
for (i=1...n)
if A(r,v) € pr where 7 = 7; then
pr = pr U (7, v;)
else
if f; # e then
pr = (pr — (1,v)) U{(7, fi(v, v:))}
else if termResolve(T) # € then
f = termResolve(T)
pr = (pr — (1,v)) U{(7, f(v,vi))}
else
pr = (pr — (1,v)) U{(7, v:)}
end if
end if
end for
end function

6.3.4 Profile composition example

Listing 6.6(a) illustrates a composite profile example that uses two external references,
in order to allow more efficient transmission of the adaptation requirements. Specifi-
cally, it includes two user preference statements and two external references to a default
and a custom mobile profile, illustrated in Listings 6.3 and 6.4, respectively. A prepro-
cessing initiation entity, such as a mobile user over a low bandwidth mobile network,
must only transmit the document in Listing 6.6(a) to the preprocessing implementa-
tion. The preprocessing implementation, which may run on a mobile proxy within a
faster network, can subsequently import the external profiles.

The profile composition process must resolve all statement conflicts and produce the
initial mobile adaptation profile, which has been illustrated in 6.2 (page 97). Firstly,
the profile composition process combines all sub-profiles into a composite profile, which

© 0w N O Ok W N

=
[=}

© 00 N D O W N

=
= O

CHAPTER 6. XMLPIPE ADAPTATION MODEL 102

1 |[<profile name="mobileUser”>
2 | <statm ... name="deviceType”>
<profile name="mobileUser”> 3 mobile
<include 4 | </statm>
ref="mobileDefaultURI” /> 5 | <statm ... name="supported”>
<include 6 <item>WML URI</item>
ref="mobileCustomURI" /> 7 | </statm>
<statm ... (a) 8 <statm
name="maxImageX”>96</statm> 9 name="maxImageX”>150</statm>
<statm (b) 10 <statm
name="maxImageY”>100</statm> 11 name="maxImageY”>150</statm>
</profile > 12 | <statm ... name="supported”>
13 <item>WBMP URI</item>
<term ns="...”7 u | </statm>

<statm ns="xmlPipeUri”
name="maxImageX”>96</statm>

-
t

name="supported”
type="SetOfStrings”>

=
(=]

<default/> 17 | <statm ns="xmlPipeUri”
<resolution > 18 name="maxImageY”>100</statm>
<union> (c) 19 |</profile >
<prevTermVal/>
<termVal/> 1 |<statm ... name="supported”>
</union> 2 | <item>WML URI</item>
</resolve> 3 | <resolve><expr>
</term> (d) 4 <termVal/>
5 </expr></resolve>
6 |</statm>

Listing 6.6: Profile composition example

is illustrated in 6.6(b). Subsequently, ccompose resolves all statement conflicts. Specif-
ically, it initiates the profile composition by copying the statements in lines 1-11, of
Listing 6.6(b), because they do not introduce any conflicts. The supported statement
at line 12 conflicts with the adaptation statement at line 5. Listing 6.6(c) illustrates
a simplified representation of the supported term semantics. The semantics specify a
term’s type, default value (empty set) and default conflict resolution expression. The
latter returns the union of the two conflicting values: f(fvaluey, fvaluey) = vy U vs.
ccompose uses the term conflict resolution expression to resolve the introduced con-
flict. Specifically, it updates the resulting profile’s supported statement to specify
both WML and WBMP support. The image dimension statements in lines 15-18
conflict with the ones in lines 8-11. We assume that the corresponding terms do not
define an explicit conflict resolution expression. Therefore, ccompose applies the default
XMLPipe conflict resolution, and it favours the latest occurring values. The resulting
adaptation profile is equivalent to the profile in Listing 6.2.

Statement conflict resolution expressions can override the default behaviour. For
instance, if the statement of Listing 6.6(d) was appended to the initial composite profile,
the resulting profile would differ from Listing 6.2. The introduced statement includes
the conflict resolution expression f’(fvaluey, fvalues) = v, which is the same as the
default XMLPipe conflict resolution that always favours the most recent value. The
statement expression would override the supported term resolution expression, and
the resulting profile would only declare WML support, as opposed to both WML and

CHAPTER 6. XMLPIPE ADAPTATION MODEL 103

WBMP. Such statement specific expressions ensure that the preprocessing initiation
entity can override the default conflict resolution mechanism when necessary.

6.4 Binding adaptation specification

An adaptation model must define an adequate method for choosing the optimal alter-
native over a set of independently developed transformations. Specifically, the optimal
interpretation of a document can differ for separate sets of adaptation requirements.
Consequently, the transformation semantics binding can depend on the adaptation re-
quirements, as it has been illustrated in Section 4.4. For each language, its alternative
transformation specifications can be developed by several independent semantics au-
thors. Therefore, the adaptation model must define an adequate set of adaptation
requirement queries, which can be associated with each transformation specification,
and a corresponding evaluation method that allows the selection of the optimal trans-
formation specification, for an adaptation profile.

The XMLPipe transformation selection mechanism is based on two adaptation mea-
sures: the adequacy measure and the applicability measure. The adequacy measure
evaluation uses a set of adaptation expressions that are sufficiently constrained to pro-
vide a comparable adequacy measure, between independently developed transformation
specifications. In contrast, the applicability measure evaluation uses a single arbitrary
complex expression, which enables semantics authors to precisely specify whether a
transformation applies to an adaptation profile. Each transformation is associated
with an applicability expression and a set of adequacy expressions. Their evaluation
provides a comparable measure, which allows the selection of the optimal transforma-
tion specification, between a set of independently defined alternatives. The subsequent
sections 6.4.1, 6.4.2 and 6.4.3 will describe the details of the adequacy measure, the
applicability measure and the combined adaptation measure, respectively.

6.4.1 The adequacy measure

The adequacy measure evaluation uses a set of adequacy expressions, which are pur-
posely constrained, in order to correspond to a single adaptation requirement. Specifi-
cally, an adequacy expression is an adaptation expression that can only use the value of
a single adaptation term. Therefore, the evaluation of an adequacy expression can only
represent the fulfilment of a single adaptation requirement, because each adaptation
term corresponds to a distinct adaptation requirement. In order to ensure that ade-
quacy expressions provide comparable results, their return values are constrained to be
either numeric, within the [0, 1] range, or boolean. A result of 1 or true represents full
satisfaction of the corresponding adaptation requirement. In contrast a result of 0 or
false represents no requirement satisfaction. Intermediate numeric values represent
partial satisfaction. The set FAd will represent the set of all adequacy expressions.
Each member of FAd is a pair of a term and a unary expression that evaluates to
either a Numeric or a Boolean value.

Adequacy expressions (EAd): The set EAd of all adequacy expressions contains
all pairs of terms and unary expressions that evaluate to a Numeric or a Boolean

value.
pad =) (1) < Rl o) 0 (01 < i)

CHAPTER 6. XMLPIPE ADAPTATION MODEL 104

If each transformation specification is associated with a set of adequacy expres-
sions, a weighted sum of their evaluation could provide an absolute measure of the
transformation’s adequacy, for an adaptation profile. Specifically, the transformation’s
adequacy can relate to multiple adaptation requirements. The evaluation of each ad-
equacy expression provides a comparable measure of the transformation’s adequacy,
according to a distinct adaptation requirement. If the relative importance of the indi-
vidual adaptation terms was well defined, such a weighted sum would provide a measure
of a transformation’s adequacy for an adaptation profile.

However, the relative importance of the adaptation terms cannot be well defined,
within a generic and extensible processing model. Firstly, predefined importance re-
lationships are not adequate, because adaptation expressions can use an open set of
adaptation terms. Moreover, the relative importance of terms can vary according to
the individual adaptation scenarios. For instance, consider a transformation specifi-
cation 7', which is only adequate for WML mobile browsers that run on 100 or more
pixels wide displays. An adequacy expression that requires WML support can be con-
sidered as equally important to an expression that requires a sufficiently wide display,
because the presentation of T output requires both. In contrast, the WML support
expression is more important for an alternative transformation 7" that optimises its
output for displays that are wider than 100 pixels, but it is also adequate for smaller
displays. Therefore, a weighted sum of the two adequacy expressions is not sufficient
for choosing between T and T”, since the relative importance of the two adaptation
requirements is not well defined. Consequently, the measure evaluation cannot use a
weighted sum of the adequacy expression evaluations.

The XMLPipe adequacy measure evaluation avoids the ambiguous weighted sums,
and it favours extensibility and generality by considering all adequacy expressions as
equally important. Specifically, such an approach cannot cover all adequacy expression
cases, but, since their relative importance cannot be well defined, a generic approach
can only assume that they are equally important. Therefore, if a transformation is
associated with a set of adequacy expressions, its adequacy measure for an adaptation
profile can be obtained by the sum of their evaluation. BA will represent all sets of
adequacy expressions. The adequacy function will map a pair of a profile and a set of
adequacy expressions to the corresponding adequacy measure. In addition to summing
the evaluation results of all adequacy expressions, adequacy is also responsible for
normalising their results to the predefined adequacy expression range. Moreover, when
an adaptation expression refers the value of a term that is not specified in an adaptation
profile, adequacy uses its corresponding default value.

6.4.2 The applicability measure

The applicability measure and the applicability expressions are necessary, because ad-
equacy expressions are too constrained to sufficiently express the applicability of a
transformation specification, for an adaptation profile. Specifically, the adequacy ex-
pressions have been restricted to only access the value of a single term, in order to
provide comparable adequacy measures, which are essential for independently devel-
oped transformation specifications. However, more complex adaptation expressions
are necessary for specifying the applicability of transformation specification, because it
might depend on an arbitrary combination of multiple adaptation requirements.

For instance, consider two transformation specifications 7" and 7’. T produces

CHAPTER 6. XMLPIPE ADAPTATION MODEL 105

Set of adequacy expression sets (BA): BA is the set of all binding expression
sets: BA = p(FAd)

Adequacy measure function (adequacy): The adequacy measure function
adequacy : Profiles x BA — Numeric maps a profile and a set of adequacy ex-
pressions to the corresponding adequacy measure.

adequacy(pr,ba) = Z mt(pr, ead)
Vead€eba

where the function mt : Profiles x EAd — Numeric is defined as:
1 ,me (1,00) U {true}

mt(p’l“, (T’ f)) = m 50 <m< 1 5 where
0 ,meée (—00,0)U{false}
= { 100 3(r,0) € pr
f(termDefault(T)) , A(T,v) € pr

WML documents, and T produces a combination of WML mark-up and WBMP im-
ages. ba and ba’ will represent their corresponding sets of adequacy expressions.

ba = {(supported, WMLURI € v)}
ba' = {(supported, WILURI € v), (supported, WBMPURI € v)}

Their common adequacy expression evaluates to true for adaptation profiles that spec-
ify WML support. The second adequacy expression of ba’ evaluates to true only for
adaptation profiles that specifie WBMP support. Additionally, consider the adapta-
tion profiles pry, pry and prs that specify WML support, WML/WBMP support and
neither WML nor WBMP support, respectively.

Within the context of profiles pry and prs, ba and ba’ are sufficient for evalu-
ating the applicability of T and T’. Specifically, according to profile pr,y, both T’
and T are applicable, because it specifies support for both WML and WBMP. The
corresponding adequacy measures return positive values that reflect this observation:
adequacy(prs,ba’) = 2, adequacy(pry,ba) = 1. In a similar manner, neither 7" nor 7"
apply to prs, because it does not support the required WML rendering. The adequacy
measures also reflect this observation: adequacy(prs,ba’) = adequacy(prs,ba) = 0.

However, an adequacy measure does not always provide an applicability measure.
Specifically, 7" is not adequate for pry, because pr, does not state support for WBMP.
However, the adequacy measures for both T" and 7" are positive: adequacy(pry,ba’) =
adequacy(pry,ba) = 1. No combination of adequacy expressions can express the appli-
cability of T”, because it requires WML AND WBMP support. However, the adequacy
function sums the results of the individual expressions, and it corresponds to a binary
OR of the individual expressions. Therefore, separate applicability expressions are
necessary.

The XMLPipe applicability expressions can be arbitrarily complex and refer to
multiple terms, in order to precisely express the applicability of a transformation. Ap-
plicability expressions do not have to be as constrained as the adequacy expressions,
because their evaluation does not have to produce a comparable measure. Nevertheless,

CHAPTER 6. XMLPIPE ADAPTATION MODEL 106

the range of their evaluation result is constrained, because it must provide an unam-
biguous applicability measure. EAp will represent the set of all XMLPipe applicability
expressions. Each FAp member is an adaptation expression over a tuple of term values,
which can result to either a Numeric or a Boolean value. For instance, the applicability
expression of 7" must require WML and WBMP support:
eap = {(supported, supported), WMLURI € v; AND WBMPURI € vy}

The applicability function maps a pair of an applicability expression and an adaptation
profile to their corresponding applicability measure.

Applicability expressions (EAp): The set EAp contains all applicability ex-
pressions. Each EAp member is a pair of an n-tuple of terms and of an adaptation
expression, which has a corresponding n-tuple of arguments. The expression must
evaluate to either a Numeric or a Boolean value.

V Type€{ Numeric,Boolean }
T
EAp = U U <{(T1’ te ’Tn)} X f{tzéifnType(n),...,termType(Tn)}>

VneN YT1,...Tn € Terms

Applicability measure function expression (applicability): The applicability
measure function applicability : Profiles x EAp — Numeric maps a pair of a profile
and an applicability expression to the corresponding applicability measure:

1 ,y€[l,00)U{true}
applicability(pr, ((11,...7), f)) =q 7 ,0<v<1
0 ,vé€ (—o0,—1]U{false}

where v = f(v1,...v,) and Vi € [1, n]

Vi = v 73(7—1',0) S pr
LY, A, v) € pr, termDefault(r;) == '

6.4.3 The adaptation measure

The XMLPipe adaptation measure combines the aforementioned applicability and ad-
equacy expressions to allow the selection of the optimal transformation, over a set of
alternatives, for an adaptation profile. Specifically, B is the set of all binding adapta-
tion specifications. Each member of B consists of an optional applicability expression
and a set of adequacy expressions. If each transformation is associated with a binding
adaptation specification, the adaptation model can choose the optimal transformation
specification, over a set of independently defined alternatives.

The adaptation measure evaluator is the adaptation model component that en-
ables the selection of the optimal transformation specifications. It maps a pair of a
binding adaptation specification and an adaptation profile to the corresponding adap-
tation measure. The adaptation measure evaluator implements the measure function,
which combines the adequacy and applicability measures, returned by the adequacy and
applicability functions, respectively. Specifically, consider a binding adaptation spec-
ification B = (eap,ba). If B contains an applicability expression (eap # €), measure
returns the product of the applicability and adequacy measures: measure(pr, B) =

CHAPTER 6. XMLPIPE ADAPTATION MODEL 107

applicability (pr, eap) x adequacy(pr, BAdset). Such a product is an adequate measure,
because it equals the comparable adequacy measure, if a transformation is applicable,
and it equals zero, if a transformation is not applicable. Moreover, it results to a
reduced adequacy measure, when a transformation is partially applicable. If there is
no applicability expression, XMLPipe uses the most common applicability expression,
which is a logical AND of all adequacy expressions. In such a case, measure is equiva-
lent to adequacy, if all adequacy expressions evaluate to non-zero values, and it equals
zero, otherwise.

Binding adaptation specification (B): The set of all binding adaptation spec-
ifications B consists of pairs of an optional applicability expression and a set of

adequacy expressions.
B = ({e} U EAp) x BA

Adaptation measure function (measure): The adaptation measure function
measure : Profiles x B — Numeric provides the absolute adaptation measure that
corresponds to a binding specification, according to an adaptation profile.

0 ,if eap = €, dead € ba so that
mt(pr, ead) =0
measure(pr, (eap,ba)) = ¢ ad ,if eap = €, and

Vead € ba, mt(pr, ead) > 0
ap - ad , otherwise

where ad = adequacy(pr, ead), and ap = applicability (pr, eap), and mt is the func-
tion defined in the adequacy measure function definition, in page 105.

Listing 6.7 contains three adaptation specifications that enable the illustration of
the adaptation measure usage and the adaptation measure evaluator processing. Con-
sider three independently developed transformations T3, 75 and 73. 17 and T, output
XHTML and WML markup, respectively. T3 outputs WML markup that may ref-
erence WBMP images, which are optimised for 100 pixel wide displays. B, By and
Bjs will represent their corresponding binding adaptation specifications, and they are
illustrated in Listings (a), (b) and (c), respectively. Specifically, By contains a single
adequacy expression, which declares the adequacy of T for XHTML browsers. B; does
not require an applicability expression, because it can be inferred from the adequacy
expression: 77 is only applicable to XHTML supporting profiles. In a similar man-
ner, By also includes a single adequacy expression, which declares the adequacy and
applicability of To for WML browsers.

In contrast, T3 requires an an explicit applicability expression (lines 2-9) and a
set of three adequacy expressions (lines 10-25). The first two adequacy expressions
declare its adequacy for browsers that support WML and WBMP. The third adequacy
expression declares the adequacy of T3 for 100 pixel wide displays. Specifically, it

evaluates to 1 for a 100 pixels display, and it tends to 0 for narrower or wider displays:
maxImageX—100
1= 100
Consequently, Bs contains an explicit applicability expression that only requires WML
and WBMP support.
The proposed adaptation measure enables the straightforward selection of the op-

timal transformation, according to an adaptation profile, because all of T7, To and T3

‘. A display width of 100 pixels is beneficial, but not necessary.

© 0w N O Ok W N

— e
= o

© 00 g D s W N

=
= O

CHAPTER 6. XMLPIPE ADAPTATION MODEL 108

<adaptation > 1 |<adaptation>
<adequacy> 2 | <applicability ><expr>
<expr ns="...”7 3 <and>
name="supported”> 4 <contains><termVal name="supported”/>
<contains> 5 <val>WML URI</val></contains >
<termVal/> 6 <contains><termVal name="supported”/>
<val>XHIML URI</val> 7 <val>SWBMP URI</val><contains>
</contains> 8 </and>
</expr> 9 | </expr></applicability >
</adequacy> 10 | <adequacy>
</adaptation> 11 <expr name="supported”><contains>
12 <termVal/>
(a) 13 <val>WML URI</val></contains></expr>
14 <expr name="supported”><contains>
15 <termVal/>
<adaptation> 16 <val>WBMP URI</val></contains></expr>
<adequacy> 17 <expr name="maxImageX”>
<expr ns="..." 18 <sub>
name="supported”> | 19 <val>l</val>
<contains> 20 <abs><div>
<termVal/> 21 _{<termVal/><val>100</val>}
<val>WML URI</val> 22 <val>100</val>
</contains> 23 </div></abs>
</expr> 24 </sub></expr>
</adequacy> 25 | </adequacy>
</adaptation> 26 |</adaptation>

(b) ()

Listing 6.7: Adaptation binding information example

have an associated binding adaptation specification. Specifically, the optimal trans-
formation is the one that corresponds to the maximum non-zero measure result. For
instance, consider the adaption profiles pr; and pry, which have been illustrated in
Listings 6.1 and 6.2 (page 97), respectively. Only T} is adequate for pr;, because it
is the only XHTML producing transformation. The adaptation measures reflect this
observation: measure(pry, B1) == 1, measure(pr,, By) == measure(pry, Bs) == 0. In
contrast, 17 is not adequate for pry, which declares support for WML mark-up, WBMP
images and a 96 pixels wide display. T> and T3 are both applicable. T3 is the optimal
alternative, because it utilises the WBMP presentation capability and its output is op-
timised for 100 pixel wide displays. measure evaluation is consistent with these observa-
tions: measure(pry, B1) == 0, measure(pry, By) == 1 and measure(pry, Bs) == 2.96.
Therefore, when transformation specifications are associated with binding adaptation
specifications, the adaptation measure evaluator allows the identification of the optimal
alternative, for each adaptation profile.

6.5 The complete adaptation model

The complete XMLPipe adaptation model consists of the profile composer, the adap-
tation measure evaluator and the defined term semantics, as illustrated in Figure 6.2.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 109

Binding
adaptation Adaptation Adaptation Composite
Measure information prgile profile pr(gile
(o]

v v Y

Adaptation measure

| |
evaluator Profile composer } 1 i
y i } Data type |
| |
' } Term semantics Default value }
Term 5 Term } }
URI : semantics [; - ‘
| Conflict resolution I
v | expression J |
Binding I !
component ! e TermSemantics 7‘
A]

Figure 6.2: Adaptation requirements processing

The profile composer component implements the ccompose function, which maps the ex-
ternally provided composite profile to a conflict-free adaptation profile. ccompose uses
either the default XMLPipe conflict resolution mechanism or explicit conflict resolution
expressions, which can be specified in the term semantics or the composite statements.
Each XMLPipe transformation must be associated with a binding adaptation specifica-
tion, which expresses its dependency to the adaptation requirements. The adaptation
measure evaluator component implements the measure function, which maps pairs of
adaptation profiles and binding adaption specifications to comparable adequacy mea-
sures. These adequacy measures enable the straightforward identification of the optimal
transformation, for an adaptation profile, because it is the one that corresponds to the
maximum positive adequacy measure. Both the adaptation measure evaluator and the
profile composer interact with the binding component, in order to obtain all necessary
term semantics.

6.6 Discussion

The preprocessing of presentation documents requires a well defined representation of
adaptation requirements and a well defined way to process them, in order to choose the
optimal processing for each document subtree. The proposed XMLPipe binding model
covers all necessary concepts. Specifically, the introduced composite profiles cover the
external representation of adaptation requirements, because a preprocessing initiation
entity can use a composite profile to provide all necessary adaptation information. The
profile composer provides the necessary functionality to convert an input composite
profile into a conflict-free adaptation profile, which can be accessed by all adaptation
sensitive processing components. Finally, the well defined binding adaptation specifica-
tion and the adaptation measure evaluator allow any component to choose the optimal
transformation, over a set of alternatives, for an adaptation profile.

The preprocessing framework covers both the representation of the adaptation re-
quirements and their processing. Specifically, it requires that an adaptation model must

CHAPTER 6. XMLPIPE ADAPTATION MODEL 110

define a composite and extensible representation of adaptation requirements. Addition-
ally, it requires a well defined methodology for combining independently developed sets
of adaptation requirements and for choosing the optimal transformation over a set of
alternatives.

An extensible adaptation requirement representation that allows an open set of
adaptation terms is essential for covering the multitude of current and future adaptation
requirements. The proposed adaptation terms, adaptation statements and adaptation
profiles adopt the extensible CC/PP concept of URI qualified names, and they ensure
the extensibility of the proposed representation. Moreover, the proposed adaptation
term semantics provide all the necessary information for processing adaptation require-
ments that use an open set of adaptation terms. Furthermore, the default term values
enable the semantics authors to liberally use newly introduced adaptation terms. If a
profile does not specify a value for a newly introduced term, the measure evaluator can
use the corresponding default value to evaluate any expressions that reference the new
term. Consequently, the XMLPipe adaptation model allows both the representation
and the processing of an open set of adaptation requirements.

The introduced concept of composite profiles and the profile composer enable the
use of composite adaptation requirement specifications. Specifically, the composite
profile external references enable the arbitrary combination of distributed adaptation
requirement sources. The profile composer is based on an ordering guideline. The or-
dering guideline is adequate for the Web, because it allows the specification of conflict
resolution expressions, without requiring explicit relationships between the adaptation
requirement sources. Additionally, the three prioritised levels of conflict resolution ex-
pressions enable the fine grained specification of how to resolve any introduced conflicts,
during profile composition. The default XMLPipe conflict resolution always favours the
values that are more relevant to the document processing. The entities that define the
adaptation terms or the adaptation statements can override the default behaviour by
providing term and statement specific resolution expressions, respectively.

The CSS recommendation uses a similar ordering guideline, in order to resolve
conflicts between style attribute declarations. Specifically, it orders all declared style
attributes according to three factors: the entity that specifies each attribute, the speci-
ficity of each declaration and the order of the declaration. The entity dependent order-
ing is based on a set of three predefined entities: the user agent, the document author
and the document user. The specificity is a measure of how specific is a declaration
for a document element. A CSS implementation resolves conflicts by always using the
latest occurring declaration, according to the above ordering, because it is the most
specific declaration that is defined by the most relevant entity. Predefined sets of enti-
ties can allow fine grained resolution, but the XMLPipe adaptation model does not rely
on such sets, because they are not adequate for the resolution of conflicting adaptation
requirements, as described in Section 6.3.1. In contrast, it requires that the adaptation
statements are ordered, according to their document processing relevance. Such an
ordering allows the resolution of conflicting statements that can be specified by a mul-
titude of entities. Additionally, XMLPipe allows the specification of conflict resolution
expressions, which enable more fine grained resolution than simply choosing one of the
conflicting values. Consequently, the CSS conflict resolution model can be adequate
for the constrained domain of style attributes specification, but the XMLPipe conflict
resolution proposal is more applicable for the composition of extensible adaptation
profiles.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 111

The proposed adaptation requirements representation is more appropriate for a pre-
processing model than CC/PP, because of the introduced term semantics and profile
composer. CC/PP is the most prominent existing approach for representing adapta-
tion requirements. The XMLPipe adaptation model adopts the CC/PP concept of
URI qualified adaptation terms, which is essential for an extensible representation of
an open set of adaptation requirements. Furthermore, the XMLPipe adaptation model
also covers the processing of an open set of adaptation requirements, as opposed to
CC/PP, which only covers their representation. Specifically, the XMLPipe concepts of
adaptation expressions and term semantics are the basis for the well defined process-
ing, for an open set of requirements. Each term has a well defined default value, which
ensures that semantics authors can specify adequacy expressions that use newly in-
troduced adaptation terms, without requiring that all adaptation profiles specify their
values. The proposed profile composer allows fine grained conflict resolution, which en-
ables the integration of independently developed profiles. CC/PP does not enable such
integration, as it does not provide a conflict resolution mechanism. Moreover, it can-
not provide the foundation for supporting the proposed conflict resolution mechanism;
CC/PP is RDF-based, and it is not designed to preserve the order of the adaptation
statements, which is essential for the proposed ordering guideline.

The proposed adaptation measure evaluator enables the straightforward selection of
an optimal transformation, over a set of independently developed alternatives. Specif-
ically, each transformation must be associated with an applicability expression and
a set of adequacy expressions. The evaluation of each adequacy expression provides
a measure of the extent to which a transformation fulfils an adaptation requirement.
Under the assumption that all adaptation requirements are equally important, the
set of adequacy expressions can be used to calculate a comparable adequacy measure,
for each alternative transformation. The adaptation measure evaluator composes the
adaptation measure out of the comparable adequacy measure and of the applicability
measure, which ensures that the adaptation measure is positive only for applicable
transformations. The identification of the optimal transformation specification, for an
adaptation profile, is straightforward, because the optimal transformation is the one
that corresponds to the highest positive adaptation measure.

The XMLPipe adaptation model does not adapt documents in itself, but it provides
the necessary foundation for more powerful adaptation than existing generic adaptation
approaches. The CC/PP based stylesheet selection, proposed in [OH02], is the most
prominent existing approach for generic adaptation. Nevertheless, it uses simplistic
CC/PP queries and it does not allow the independent development of the individual
stylesheets. In contrast, the proposed combination of applicability and adequacy ex-
pressions enables significantly more powerful adaptation. The applicability expressions
provide a precise specification of when a transformation applies to an adaptation profile,
and the adequacy expressions allow the evaluation of the relative adequacy of multiple
independently developed specifications.

6.7 Summary

A well defined representation and processing of the adaptation requirements is nec-
essary, because both the binding of transformation specifications and the individual
transformation components depend on the adaptation requirements. The proposed

CHAPTER 6. XMLPIPE ADAPTATION MODEL 112

XMLPipe adaptation model covered their representation, by introducing the compos-
ite profiles and the adaptation profiles. Additionally, it defined the necessary processing
for composing independently defined profiles and for choosing the optimal transforma-
tion specifications, over a set of independently developed alternatives.

Specifically, the internal XMLPipe representation of adaptation requirements is an
adaptation profile, which consists of a set of adaptation statements. Each adaptation
statement is a pair of an adaptation term and of its corresponding value. Adaptation
terms are uniquely identified by URIs, which allow the unambiguous representation of
an open set of adaptation requirements. In contrast, the proposed external represen-
tation consists of composite profiles, which are sequences of statements. The profile
composer component maps the externally provided composite profiles into adaptation
profiles, and it is responsible for resolving any conflicting adaptation requirements.

The adaptation measure evaluator is responsible for supporting the selection of the
optimal transformation specification, according to an adaptation profile. The XMLPipe
adaptation model requires that each transformation specification is associated with an
adaptation binding specification, which consists of an applicability expression and a
set of adequacy expressions. The adaptation measure evaluator maps a pair of an
adaptation binding specification and an adaptation profile to an absolute comparable
adaptation measure. Within the context of an adaptation profile, the transformation
specification that corresponds to the higher adaptation measure is considered as the
optimal transformation for a document subtree.

The proposed processing and representation of adaptation requirements fulfill the
corresponding preprocessing framework requirements, and they compare favourably to
the most prominent existing approaches. Therefore, they provide an adequate founda-
tion for the adaptive transformation of presentation documents. The next chapter will
describe the XMLPipe transformation model, which interoperates with the introduced
adaptation model, in order to choose the optimal transformation for each document
subtree.

Chapter 7

XMLPipe transformation model

This chapter describes the XMLPipe transformation model, which is the core XMLPipe
sub-model, and it defines the necessary processing for adapting a presentation docu-
ment, according to a set of adaptation requirements. The XMLPipe transformation
model is based on the proposed integration and adaptation models. Specifically, it uses
the XMLPipe integration model, described in Chapter 5, to enable the combination of
independently developed transformation specifications for processing mixed namespace
documents. Moreover, it uses the adaptation model, described in the previous chapter,
which enables the selection of the optimal transformation specifications, according to
an adaptation profile.

The XMLPipe transformation model consists of the integration model transfor-
mation driver and the built-in transformation pipelines. The former drives the doc-
ument transformation process, and it is based on a subtree separation process and a
recursive postorder document traversal. The transformation driver interoperates with
the adaptation measure evaluator to choose the optimal transformation semantics for
each document subtree. The XMLPipe transformation semantics are specifications of
transformation pipelines, which are essential for enhancing the existing transformation
functionality. Each XMLPipe transformation pipeline consists of multiple atomic trans-
formations that encapsulate the existing transformation functionality under a common
interface, in order to enable the seamless integration of a multitude of existing trans-
formation technologies.

Section 7.1 overviews the existing transformation approaches, which were initially
described in Section 2.3, and it identifies the core issues that a transformation model
must address. Sections 7.2 and 7.3 establish the necessary foundation for describing
the XMLPipe transformation model. The former establishes a driving example of a
presentation document that assists the subsequent transformation model description.
The latter establishes the fundamental notation and the necessary assumptions, for
illustrating that mixed namespace document transformation is feasible, in Section 7.4.
Section 7.5 proceeds to the description of the binding and selection of the transfor-
mation semantics. Section 7.6 loosens the most restrictive assumptions, in order to
extend the applicability of the proposed transformation. Finally, Section 7.7 intro-
duces the XMLPipe pipelines and atomic transformations, and Section 7.8 combines
all the introduced components into the XMLPipe transformation model.

113

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 114

7.1 Transformation model considerations

The XMLPipe transformation model cannot be based on existing transformation tech-
nologies, because they do not allow generic transformation of mixed namespace docu-
ments. Specifically, modular transformation specifications, such as XSL-T, allow the
composition of separate single namespace specifications. However, such compositions
use predefined language relationships and have the same drawbacks as profile-based ap-
proaches. Sequential composition approaches, such as the XEBRA browser[THHHO1]
(described in Section 2.5), do not necessarily require predefined language combinations.
However, sequential composition is not sufficient for the generic processing of mixed
namespace documents, as described in Section 4.4.

A preprocessing model benefits from built-in support of transformation pipelines.
As described in Section 4.4, transformation pipelines allow simpler modular trans-
formation specifications, and they enable seamless integration and extension of the
existing transformation functionality. Consequently, the XMLPipe transformation se-
mantics can define the necessary subtree transformations using transformation pipeline
specifications, as opposed to plain transformation specifications.

Existing transformation pipeline approaches fit into a single framework: they com-
pose complex transformations out of transformers, sources, mergers and sinks, as de-
scribed in Section 2.3.2. The XMLPipe built-in transformation pipeline mechanism can
adopt the existing concepts by extending them to cover document subtree processing
and adaptive transformation composition. Subtree processing is necessary, because the
proposed integration model partitions the processing of a document into the processing
of its individual subtrees. Adaptive transformation composition is beneficial, because
it allows the composition of adaptive transformations out of existing transformation
specifications.

A preprocessing model must define the necessary interoperation, between its val-
idation and transformation models, in order to validate the input of transformation
processes prior to their execution. Such interoperation is necessary, because the re-
sult of a transformation is only well defined if its input is valid. Integrated validation
approaches, such as XDuce, are an efficient method to ensure the validity of docu-
ment subtrees, as described in Section 2.2. However, they are inadequate for generic
document processing, because they require constrained processing environments and
constrained development of transformation specifications. In contrast, transformation
pipeline based validation, such as in the XML Pipelines (described in Section 2.3.2),
is more adequate, because it enables the liberal introduction of validation processing
steps. XMLPipe can adopt the pipeline based validation by introducing validation
processing steps, within its built-in transformation pipelines.

The transformation model is responsible for adapting its input documents. Exist-
ing transformation approaches provide either restricted generic adaptation or powerful
domain-specific adaptation. Domain-specific adaptation approaches, such as device in-
dependent authoring proposals, offer powerful adaptation. However, they only support
a narrow set of XML languages, and they are not adequate for generic document pro-
cessing. CC/PP based stylesheet selection is the most prominent generic approach,
but, as described in the previous chapter, the XMLPipe adaptation measure evaluator
allows more fined grained transformation selection. Consequently, the XMLPipe trans-
formation model can utilise the proposed adaptation model to transform presentation
documents.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 115

| Language | cocC | FOC | SMC | COC placeholders |
doc:document,
Laoc doc:em, doc:img, doc:p, doc:em
doc:p
Lo alt:alt alt:case
Ly x1:href, x1:type
Limp imp:import

Table 7.1: Driving example integration model semantics: the handled constructs and
the places where content is expected

7.2 A driving example

This section introduces a presentation document driving example, illustrated in List-
ing 7.1, that will assist the subsequent transformation model discussion. Specifically,
document.xml is the core example document, and it contains external references to
authors.xml and imp.xml. document.xml combines the constructs of the four lan-
guages Lgoe, Lait, Limp and Ly, which are associated with the doc, alt, imp and x1
namespace prefixes, respectively. Table 7.1 summarises their corresponding integration
model semantics, which consist of each language’s handled constructs and the places
where context is expected.

The constructs of L 4,. describe a document’s layout. Specifically, the doc:document
element (line 1) introduces a document with multiple nested doc:section constructs
(such as in lines 11 and 15), which represent its sections and subsections. Each L gy
document must have a single title and a set of authors, which are represented by the
doc:title (such as in lines 4 and 12) and the doc:authors (authors.xml, line 2)
elements, respectively. Each section can contain zero or more paragraphs (doc:p — line
13) that can contain text, emphasised text (doc:em element — line 13) and inline images
(doc:img element — line 14). Lg,. contains four content oriented handled constructs
(COoC):

COC(Lgy.) = {doc:document, doc:em,doc:img,doc:p}

doc:document, doc:em, doc:img and doc:p are COC handled constructs, because
they introduce the well defined pieces of presentable information that correspond to a
document, emphasised content, an image and a paragraph, respectively. In contrast,
the remaining L4, constructs introduce context dependent information that cannot
be processed independently. For instance, the doc:title element introduces the title
of its parent element. Arbitrary COC subtrees can only occur within the doc:p and
doc:em constructs, because they are placeholders of arbitrary presentable information:
most presentable information can be part of a paragraph and can be emphasised.

The alt:alt element (line 2) of L,; introduces adaptive content, as a sequence
of alt:case elements. Each alt:case element has an optional test attribute, which
contains a boolean expression over an adaptation term. The semantics of the alt:alt
element is to substitute itself with the content of the first adequate alt:case element,
for an adaptation profile, which must contain either an expression that evaluates to true
or no expression. The alt:alt element is a structure modification construct (SMC),
because its primary semantics is to modify the document tree. The alt:case element
is a COC placeholder, because it is the parent of the arbitrary substitution alternatives.

© 0 N O Ok W N

e e
O S)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

0w N O O W N

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL

<doc:document>
<alt:alt >
<alt:case test="uri#deviceType=mobile”>
<doc:title >Mobile example</doc:title>
</alt:case >
<alt:case>
<doc:title >Desktop example</doc:title >
</alt:case >
</alt:alt >
<imp:import href="authors.xml” select="x*x/[@id="MPDHS’]” />
<doc:section>
<doc:title >The doc language</doc:title>
<doc:p>The root language allows <doci:em>emphasized</doc:em> text ,
images <doc:img href="xmlPipe. gif”/> and nested sections.</doc:p>
<doc:section>
<doc:title >Nested section</doc:title>
</doc:section>
</doc:section>
<doc:section>
<doc:title >Mixed namespace support</doc:title>
<doc:p>A foreign namespace SMC construct to import textual content:
<imp:import href="imp.xml” select="x%/text/text()”/>, an FOC XLink

attribute for <doc:em xl:type="simple” xl:href="...”>links</doc:em>
and an SMC subtree that allows adaptation sensitive content:
</doc:p>
<alt:alt >

<alt:case test="http://.../# deviceType=mobile”>
<doc:p>This is a mobile</doc:p>
</alt:case >
<alt:case >
<doc:p>This is NOT a mobile</doc:p>
</alt:case >
</alt:alt >
</doc:section>
< /doc:document>

document .xml

<c:collection >
<doc:authors id="MP_DHS">
<doc:author first="M’ last="Ped” 1 |[<root>
mail="mp49@Qkent . ac.uk” /> 2 <text>Text node 1</text>
<doc:author first="D" last="Shr” 3 <text>Text node 2</text>
mail="dhs@kent.ac.uk” /> 4 |</root>
</doc:authors>
</c:collection > imp.xml

authors.xml

Listing 7.1: The driving presentation document example

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 117

Language L, introduces the imp:import element (line 10), which is also an SMC.
Its semantics is to substitute itself with the external content that is referenced by its
attributes. The href attribute specifies the URL of a document, and the optional
select attribute specifies an XPath expression, which allows the selection of a docu-
ment portion.

Finally, L, represents the simple links of the XLink recommendation[DMOO1].
L, uses x1:href attribute (line 23), which specifies the link target, and the x1:type
attribute, which contains the fixed value “simple”, which denotes a simple XLink link.
Both attributes are functionality oriented constructs (FOC'), because they amend the
presentation of their parent in a well defined way: they convert it into a link.

The XMLPipe transformation model must successfully process document.xml, be-
cause document.xml combines the constructs of the four presentation languages in a
meaningful way, according to their semantics. Specifically, the processing of the SMC
constructs, in lines 2 and 10, provides the required title and author information. Ac-
cording to the L,; semantics, the processing of the alt:alt element, in line 2, will
result in a doc:title element. According to the semantics of Lj,,, the processing of
the imp:import element, in line 10, will result in the doc:authors rooted subtree, il-
lustrated in authors.xml. The processing of the remaining SMC occurrences will also
result in a valid document: imp:import in line 22 introduces textual content within a
paragraph, and alt:alt in line 26 introduces a paragraph within a section. Further-
more, the L., attributes, in line 23, convert their parent doc:em element into a link.
The presentation interpretation of document.xml is well defined: it is a document that
contains a title, a set of authors and a sequence of nested sections, which may contain
formated text, links and images. Therefore, the XMLPipe transformation model must
be able to adapt it to a variety of devices, if the corresponding processing semantics
are provided.

A document that has a well defined interpretation is not necessarily valid. For
instance, document .xml combines the constructs of the example languages in a mean-
ingful way. However, before the processing of the SMC' constructs, it is not a valid
XMLPipe document. Specifically, document .xml does not contain the mandatory au-
thor information and doc:document does not contain the required doc:title child,
which specifies the document’s title. Additionally, the doc:title elements, in lines 4
and 7, occur under foreign namespace elements, but they are not handled constructs.
Consequently, document . xml is not valid according to the XMLPipe integration model.

We will introduce the concept of semantic correctness, in order to describe doc-
uments that have a well defined interpretation, independently of their validity. For
instance, document.xml is semantically correct, but it is not valid. The XMLPipe
transformation model will focus on the processing of semantically correct documents,
because a document that has a well defined interpretation, must also have a well defined
processing.

The existence of semantically correct but invalid documents does not indicate a
deficiency of the XMLPipe integration model, which defines the validity of mixed
namespace documents. The processing of SMC' constructs can introduce arbitrary tree
modifications. An integration model’s definition of valid documents cannot account for
such modifications, because they can depend on processing semantics that are outside
the scope of an integration model. For instance, the document modifications intro-
duced by both the imp:import and alt:alt constructs depend on their corresponding
transformation semantics. An integration model cannot use the transformation seman-
tics of a construct, because they are specific to a possibly independent transformation

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 118

model. Nevertheless, the explicit identification of such constructs, by the introduc-
tion of the SMC' category, enables their adequate processing by a preprocessing model.
Specifically, as the next chapter will illustrate, the XMLPipe validation model tests the
semantic correctness of a document by separately processing its SMC rooted subtrees.
Consequently, the proposed integration model is not deficient, because it provides the
necessary foundation for processing documents that contain SMC' constructs.

7.3 Transformation fundamentals

Before proceeding to the transformation model proposal, this section introduces the
necessary notation and assumptions. Specifically, Section 7.3.1 introduces a precise
transformation notation.! Section 7.3.2 establishes the necessary assumptions for the
subsequent transformation processing proposal.

7.3.1 Mixed namespace transformation notation

The previously introduced transformation notation did not identify the individual lan-
guages of a document. Specifically, Chapter 2 introduced the set 7, LLIQ, which contains
all transformations that map the constructs of a language L; to the constructs of a
language Lo. If L and Lo contain constructs from multiple namespaces, the trans-
formation’s input and output are mixed namespace documents. However, there was
no explicit specification of the individual languages, because there was no well de-
fined relationship between the interpretation of a mixed namespace document and the
interpretation of its individual languages.

The introduced concept of integration models enables a fined grained expression
of mixed namespace transformations, which reflects the independent definition of the
XML languages. Specifically, a mixed namespace transformation 7' can process doc-
uments that combine a set of languages L1, according to an integration model Im;.
A transformation does not necessarily transform the constructs of all input languages,
but it may only transform the constructs of a language subset Lo C £;. For in-
stance, a transformation that corresponds to a language might be able to transform its
constructs, within a mixed namespace document that also contains constructs from ad-

ditional languages. The output of T' can also combine a set of languages L3, according

to an integration model Ims. The set of mized namespace transformations 7, églfn”?(L)
TL3:Im2

will represent all such transformations: T € LotTma(L2)"

L3:1 g
T imcy)): Consider that Lo C

L1 € p(L), L3 € p(L), and that Im; and Imy are two integration models. The set of
mixed namespace transformations Té 312712(£ C 7T includes all transformations that
process the constructs of languages in Lo for mapping an input document, which
combines the constructs of the languages in £ using the integration model Imq, to
an output document, which combines the constructs of the languages in L3, using

the integration model I'mo.

Set of mixed namespace transformations (

The above notation enables the expression of the required transformation model
functionality. Specifically, for each valid mixed namespace document d, the transfor-
mation model must combine the transformation semantics of all languages in Lo to

'Such notation could not be introduced in the literature review chapter, because it uses the concept
of integration models, which has been introduced by this thesis.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 119

define a transformation 7. 7" must transform d to its most adequate interpretation d’,
according to an adaptation profile pr. Therefore, T' € 7T, fd " I{;n; (L) where £, and Imp
correspond to the set of natively supported languages and the natively supported inte-
gration model, as specified by the adaptation profile pr. Imx represents the XMLPipe

integration model.

7.3.2 Assumptions

The feasibility of generic mixed namespace transformations can only be established un-
der the set of assumptions summarised in Table 7.2. They ensure that a transformation
model can transform valid XMLPipe documents, according to an adaptation profile.
Each assumption is associated with a unique identifier. The subsequent discussion will
use these identifiers to refer to the individual assumptions.

Assumption 1: each non natively supported language must be associated with at
least an adequate transformation specification, for each adaptation profile. Such an
assumption is necessary to ensure that there is sufficient information to process pre-
sentation documents. If there is no adequate transformation specification for a non
natively support language, according to an adaptation profile, a preprocessing model
cannot create an adequate document interpretation for that profile.

Assumption 2: a transformation specification, which is associated with a language
L, must allow the processing of all handled construct rooted subtrees that are valid
documents of L. Specifically, the processing of handled construct rooted subtrees is
well defined, independently of their context, according to Corollary 1. Therefore, the
transformation semantics of L must enable their processing as individual entities. For
instance, the doc:p rooted subtree, illustrated in lines 13-14 of the driving example, is
a valid XMLPipe document, because it is a valid document of L 4,. and doc:pisa COC
handled construct. The transformation specification that corresponds to language L 4.
must allow the independent transformation of doc:p rooted subtrees, and it must not
always require a doc:document ancestor. For example, an XSL-T specification can
define separate root level transformation templates for each handled construct.

Assumption 3: transformation specifications must copy all unknown content to its
corresponding place in the transformation output. Such an assumption ensures that
the individual transformations preserve the document’s interpretation. Specifically,
each document subtree can contain multiple handled construct rooted subtrees, that
use constructs of several languages. A transformation, which is associated with a lan-
guage, must copy the subtrees of other languages, in order to preserve the information
they convey. For instance consider the alt:alt rooted subtree, in lines 26-33 of the
driving example, which contains two doc:p constructs. Independent of the invocation
order of the individual transformers, the transformation that corresponds to alt:alt
must copy the contents of alt:case to their corresponding place, within its output.
Otherwise, the resulting document will lose the information that was enclosed in the
doc:p elements.

Assumption 4: the design of transformation specifications that correspond to FOC
or attribute handled constructs must allow their processing within the context of a
foreign namespace element. Specifically, the processing of all handled construct rooted
subtrees can be defined independently of their context. However, the processing of
FOC and attribute handled constructs might require access to the their context; con-
sequently, the XMLPipe transformation model must allow the corresponding transfor-
mations to also access the context of the handled constructs. For instance, consider a

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL

ID | Assumption Description

1 | Transformation There is an adequate transformation specification for each

existence language not in £,,.

2 | Valid subtree Transformation specifications can process all valid handled

transformation construct rooted trees of their corresponding language.

3 | Copy unknown Each transformation must copy any foreign namespace

content subtrees to their corresponding place, within the trans-
formation output.

4 | FOC and attribute The transformation specifications that correspond to ei-

context ther FOC or attribute handled constructs must be able to
process them within the context of a foreign namespace
element.

5 | No circular No circular dependencies between transformation specifi-

dependencies cations of separate languages.

6 | No L, dependencies Transformations must not produce £, constructs, the pro-
cessing of which can introduce non £,, constructs.

7 | Integration models de VZLX iff d € VZLP)

equivalence

8 | Valid output If T corresponds to a language L, then T € ’Tﬁﬁli':f(Ly

9 COC preservation A COC rooted subtree must be transformed to another
COC rooted subtree.

10 | SMC restriction The transformation of an SMC' rooted subtree cannot pro-
duce a COC subtree, unless it occurs at a place where
content is expected.

11 | FOC valid processing | The processing of FOC and attribute handled constructs

must preserve the semantic correctness of the document.
Specifically, they can add ancestors to their parent ele-
ment, only if

e the parent element is a handled construct

e it can occur at the corresponding place, within the
added ancestors

e the root of the new content is a handled construct,
which can be a COC only if the parent element is a
cocC.

Additionally, they can add content to their parent, only if
e the added content is valid

e it occurs at a place where content is expected, if it
is rooted at a COC' construct.

Table 7.2: Transformation assumptions

120

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 121

transformation 1" that adapts the L, constructs, for an XHTML browser presentation.
T must have access to the context of the L, attribute, in order to be able to enclose it
within an anchor element, which is the XHTML equivalent of the L, simple links.
For example, if T" processes the x1:href attribute, in line 23 of the driving example, it
must be able to enclose the doc:em element within an anchor XHTML element. There-
fore, the transformation model must allow T to process the L,; attributes, within the
context of their parent element.

Assumption 5: the transformation of language constructs is not necessarily a one
step process, and it can require the recursive application of multiple transformations.
In the majority of cases, a transformation maps a construct to an alternative represen-
tation that is closer to its natively supported interpretation. However, there are cases
where circular relationships may be introduced. A typical example is the transforma-
tion of an imp:import construct, which can introduce content that includes further
imp:import constructs. Such relationships must be avoided, in order to ensure the
termination of a document’s transformation. For instance, consider the XML con-
structs o1 and o9 and the transformations 77 and 75, which are associated with their
corresponding languages. If T; transforms oy to oo and Ts transforms o9 to o1, the
processing of a document that contains either oy or oo will never terminate.

Assumption 6: document preprocessing can only be sufficient, if no transformation
outputs natively supported constructs that can require further preprocessing. Specif-
ically, such constructs can introduce non natively supported constructs during the
presentation of a document, after the preprocessing has finished. Moreover, they might
delay the introduction of constructs that are necessary for document preprocessing. For
instance, consider that o is an £, construct that imports arbitrary external content.
Additionally, consider that transformation 1" corresponds to the import language Ly,
and that it maps the imp:import construct to the natively supported o construct. If
the imp:import element in line 10 of the driving example is processed by 7', the author
information will only be imported at presentation time. Consequently, it will not be
available for the subsequent preprocessing of the doc:document construct, which will
fail. Therefore, transformation specifications must not introduce £, constructs that
may require further preprocessing.

Assumption 7: the XMLPipe transformation model must provide the means to
adapt documents, which are valid according to the XMLPipe integration model, to
their interpretations, which must be valid according to a natively supported integration
model. However, the feasibility of generic mixed namespace transformation can only
be proven if the XMLPipe and the natively integration models are closely related.

Firstly, a valid output document must be a valid XMLPipe document. Specifically,
a transformation result must be valid, according to the natively supported integration
model. Since the transformation of a construct is not necessarily a one step process, a
transformation result can contain both natively and non-natively supported constructs.
Therefore, if there are non-natively supported constructs, the transformation result
must be also valid according to the XMLPipe integration model, because they require
further preprocessing. Consequently, the presentation integration model Imp must be
less or equally generic than the XMLPipe integration model Imx.

Secondly, the inverse integration model relationship must also hold, because a
generic transformation component cannot be aware of all presentation integration mod-
els. Specifically, there must be no interoperation between the individual transformation
specifications, since they can be independently developed. Therefore, the XMLPipe

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 122

transformation model, which is specific to the XMLPipe integration model, is respon-
sible for combining the output of the separate transformation results into the resulting
document. The transformation driver cannot be a priori aware of all presentation in-
tegration models. Therefore, it can only combine the transformation results according
to its corresponding integration model, which is the XMLPipe integration model.

The last two observations necessitate the equivalence of the XMLPipe integration
model with the presentation integration models, because they must both be equally or

less generic than the other. Therefore, a document d belongs to VZZX if and only if

de VZLP . Such an assumption is sufficiently restrictive to offset all XMLPipe practi-
cal applications. Specifically, if the integration models must be equivalent, XMLPipe
cannot preprocess documents for any existing browser, because no existing browser
supports the XMLPipe integration model. Nevertheless, the integration model equiva-
lence is only necessary for proving the feasibility of generic document transformation,
but it is not necessary in practice, as Section 7.6 will illustrate.

Assumption 8: the transformation specifications must preserve the document’s pre-
sentation structure and semantic validity. Specifically, each transformation specifica-
tion must produce a valid output subtree, when its input is valid. Consequently, since
the presentation and XMLPipe integration models must be equivalent, an XMLPipe
transformation 7', which corresponds to a language L, must belong to Tfllmm)f(h: The
set of all languages L is used for both the input and output of T', because the parent
element of attribute and FOC handled constructs can belong to any language.

Assumptions 9 and 10: COC constructs must be both preserved and not arbitrarily
introduced, in order to preserve the document’s interpretation and validity. Specifically,
since only COC rooted subtrees introduce well defined pieces of presentable informa-
tion, the transformation of a COC rooted subtree must always result to another COC
rooted subtree. Additionally, the transformation of an SMC' construct must not pro-
duce a COC subtree, unless it occurs at a place where content is expected. For instance
consider the SMC imp:import element, illustrated at line 10 of the driving example.
If it is transformed to a COC rooted subtree, the resulting document would be invalid,
because no content is expected under the doc:document element.

Assumption 11: finally, the processing of FOC or attribute rooted subtrees can
modify their context, but it must do so in a valid way. Specifically, their processing
can amend the presentation of their parent by either enclosing it within a subtree or by
adding attribute or element descendants. In the former case, the transformation result
will only be valid, if the parent is a handled construct, which can occur within the
generated subtree. In the latter case, the added descendants must be valid and only
occur at places where content is expected if they are COC. In both cases, all added
content must be rooted at a handled construct. For instance, consider the aforemen-
tioned transformation 7', which processes the L,; constructs by enclosing their parent
element within an XHTML anchor element. T" can enclose the doc:em element within
a xhtml:a element, because doc:em is a handled construct. The xhtml:a element can
be the root of the added context, because it is also a handled construct. If xhtml:a
was not a handled construct, the output of T" would be invalid, because xhtml : a would
be included under the foreign namespace doc:p element.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 123

7.4 Transforming valid documents

This section illustrates the feasibility of a generic mixed namespace transformation and
defines the corresponding transformation algorithm. Firstly, Section 7.4.1 establishes
the relationship between valid documents and their processing. Section 7.4.2 uses
this relationship and the assumptions of Table 7.2 to illustrate that there is a well
defined transformation T that maps each valid XMLPipe document to its optimal
interpretation. Finally, Section 7.4.3 describes an algorithmic definition of T'.

7.4.1 Valid documents processing

This section will assist the subsequent transformation investigation by mapping the
definition of valid documents (introduced in Section 5.3.1) to its document processing
equivalent and introducing an alternative definition of valid documents, which is based
on a sequence of compositions.

The set of XMLPipe valid documents can be expressed in a non-recursive man-
ner. Corollary 2 is an alternative valid document definition that uses a sequence of
single namespace tree compositions, as opposed to the recursive composition of mixed
namespace trees.

Corollary 2 d € Vg:x if and only if there is a sequence of n > 1 single namespace
valid documents dy, ..., dy, so that d € (dy - - - ——(dg——(dy——dy)) - - -), where Vi €
Imx Im Imx

[1,n], d; is a valid single namespace document of L; (d; € L;), it is rooted at a
handled construct o; € langConstructsHC(Li) and oy, can only be an element COC
or SMC' handled construct.

Proof: According to the valid documents definition, d in Vg:x if and only if there
is a sequence of n € [1,2] valid documents d,...,ds, so that d € dn; e ;d1,2

Imx Imx
where d, is rooted at an element COC or SMC handled construct, d, € Vg:x for
n > 1, and Vi € [1,min(n — 1,1)] d; is a valid single namespace document of L;. The
recursive application of the valid documents definition resolves recursive references to
valid mixed namespace documents. Specifically, d in Vg:x if and only if there is a

sequence of n € [1,00) valid documents dy, ... ,d,, so that d € Ayt - ;dl, where
Imx Imx

d, is rooted at an element COC or SMC handled construct, d,, € VZLX for n > 1, and
Vi € [1,min(n — 1,1)] d; is a valid single namespace document of L;. If n equals the
number of single namespace subtrees in d, then d,, is also a single namespace document.
Therefore, each valid document can be composed out of n single namespace subtrees.
Inversely, the composition of n single namespace subtrees results to a valid document.
Therefore, Corollary 2 is correct.

Proposition 1 maps the original definition of valid documents to a definition of
documents with well defined processing. It assists the subsequent transformation dis-
cussion, because proving the feasibility of document transformation is subproblem of
proving the feasibility of their well defined processing.

2The valid tree composition notation < has been introduced in the integration model chapter, in

page 85.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 124

Proposition 1 All valid XML Pipe documents have well defined processing if

e d has well defined processing Vd € Vg:x, where Lq = {L} and d is rooted at
o € langConstructs?° (L) N (COC(L) U SMC(L)).

o All documents in d1[<id2 have a well defined processing, if di € VZ?X, La, =
mx 1

{L2}, do is rooted at oy € langConstructch(Lg) and dy has well defined
processing.

Proof: In order to prove Proposition 1, it is sufficient to prove that, if both of its
conditions are true, the processing of a valid document is well defined. Consider that
de VZLX is a valid document and that both proposition conditions are true.

If d is a single namespace document, then £; = {L} and d is rooted at o €
langConstructs ¢ (L) N (COC(L) U SMC(L)), according to the valid documents def-
inition. Therefore, its processing is well defined, according to the first proposition
condition.

If d is not a single namespace document, then d € dy I;dg, where d; €
mx

dy € Ly where L4, = {La}. According to the second proposition condition, d has well
defined processing. Therefore, the above proposition is correct.

Vémx and
dy

7.4.2 Transformation of valid documents

In order to prove the feasibility of mixed namespace document transformation, it is
Imx

sufficient to prove that for all valid documents d € Vlld and adaptation profiles pr €

Profiles, there is a well defined transformation T € de” IZRXX(L)’ where d——d’ and d'
is the most adequate interpretation of d, according to the proﬁfe pr. The output of T
uses the XMLPipe integration model, as opposed to the presentation integration model,
because they are equivalent, according to Assumption 7. The remainder of this section
will use Proposition 1 to prove the existence of a finite 7', under the transformation

assumptions summarised in Table 7.2.

Proposition 2 Under the assumptions of Table 7.2, all valid XML Pipe documents
d can be transformed by a finite iterative transformation T &€ ’de " I{;n;(£J) to their
most adequate representation d', according to an adaptation profile pr.

Proof: Proposition 2 can be proven by separately considering whether d uses na-
tively or non-natively supported constructs and whether d is single or mixed namespace
document.

If d is a valid document that solely consists of natively supported constructs (d €
Vg:x), then it is a valid document of the presentation integration model and it does
not require further XMLPipe processing, according to assumptions 6 and 7. Therefore,

T is the identity transformation 7€, where d-d.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 125

The transformation of each single namespace valid document is well defined. Specif-
ically, consider the case where d is not natively presentable (d ¢ Vg:x) and d is a single
namespace document (L5 = {L}), which is rooted at an element COC or SMC handled
construct o € (COC(L)USMC(L))NlangConstructs?°(L). According to assumptions
1, 5 and 8, there is a non identity transformation 7" that is adequate for pr and can
transform d to a valid XMLPipe representation d;. 7" is not an identity transformation,
because if d; = d then T” would introduce a circular dependency with itself, which is
not allowed by Assumption 5. Consequently, a valid single namespace document either
is in its most adequate representation or there is a non-identity transformation that
maps it to another valid XMLPipe document.

For the mixed namespace document case, consider a valid document d; € Vg:lx and

a valid single namespace document do, where L4, = {L2} and ds is rooted at a handled
construct oy € langConstructs’C (Ly). Additionally, consider that d; is either natively
presentable or there is a corresponding non-identity transformation 77 that maps it to
its valid interpretation d.

If do can be natively presented, the transformation of all documents in d I;dg is
mx

well defined. Specifically, consider that dy can be natively presented. If dy can also be

natively presented (L4, C L,), all documents dz € d I;dg will be valid documents
mx

that only contain natively presentable constructs.
Otherwise, if d; is not in its presentable form, there is a transformation 7 that can

process all documents in ds € d I;dg. Specifically, according to Assumption 3, T
mx

must copy all foreign namespace content to its corresponding place, within its output.
Therefore, if dng’ , d5 is a valid XMLPipe document, which contains dy at a place
that corresponds to its initial placement in d3. Consequently, if do can be natively

presented and both d; and dy are valid documents, all documents in dl%dg either
mx

are natively presentable or have a well defined a non-identity transformation that maps
them to other valid XMLPipe documents.
If do cannot be natively presented and its processing does not relate to its context,

the transformation of all documents in d; I;dg is also well defined. Consider that ds
mx

contains non natively presented constructs and its root handled construct is an element
COC or SMC (o9 € (COC(Ly) U SMC(L3)) N langConstructs ¢ (Ly)). According to
the above single namespace document discussion, there must be a non-identity trans-

formation T5 that maps ds to a valid document db: dgidg. If d), replaces dy within

any ds € di I<mid2, the resulting document d will be valid, according to assumptions
X

9 and 10. Specifically, if oo is a COC, dy can only occur at at a place where content
is expected, because d3 is valid. Therefore, d, can also occur at the same place within
di1, because it is rooted at a handled construct. If dy is rooted at an SMC' construct,
dy will only be rooted at a COC construct, if dy occurs at a place where content is
expected. Therefore, d, can always occur at the same place as dy. Consequently, if
o9 € COC(Ly) U SMC(Ls), there is a non-identity transformation that can transform

all documents in d; I;dg to valid XMLPipe documents.
mx

Furthermore, if do cannot be natively presented and its processing relates to its

context, the transformation of all documents in dl}idz is well defined. Specifically,
mx

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 126

d
d,

Figure 7.1: Tree separation illustration

consider all documents ds € dl}idg, where dy is placed within an element o5 of
mx

di. Additionally, consider the documents ds and ds, where d4 is di; without the o5
rooted subtree and ds consists of o3, its descendants and dy. Figure 7.1 illustrates
the relationship between ds,d4 and ds. There must be a transformation 75 that can
process do, within the context of its parent element, according to assumptions 1, 2

and 4. Consequently, T5 can process ds, so that d5£>dg. According to assumption
11, replacing ds with df results in a valid document. Therefore, if 09 € FOC(Ly) or
oy € langConstructsi’®(Ly), there is a well defined non-identity transformation that
maps d3 to another valid document

The composition of all the above cases proves Proposition 2. Specifically, all sin-
gle namespace valid documents are either directly presentable or can be transformed
by a non-identity transformation. Moreover, if both dy and dy are valid, ds is a sin-
gle namespace document and d; is either directly presentable or can be transformed

by a non-identity transformation, then all documents in d1[<id2 are either directly
mx

presentable or can be transformed by a non-identity transformation. Consequently,
every valid XMLPipe document either is directly presentable or there is a non-identity
transformation that maps it to another valid document, according to Proposition 1.
According to Assumption 5, there are no circular dependencies, between the individual
transformation specifications. Therefore, a finite iterative transformation 71" can trans-
form a valid XMLPipe document to its most adequate representation, according to a
profile pr.

7.4.3 The transformation algorithm

Proposition 2 establishes the existence of an adequate transformation T for a mixed
namespace document d, but it does not define how to transform d. Nevertheless, the
above proof of Proposition 2 is a declarative construction of 1. This section will use
the above proof as its foundation, in order to establish the various document trans-
formation aspects: the separation of d into its individual subtrees, the independent
application of the language transformations to each subtree and the combination of the
transformation outputs into the output document d’. Subsequently, it will describe the
resulting XMLPipe transformation algorithm.

A subtree separation process that individually processes each handled construct
subtree is adequate for the XMLPipe transformation process. Specifically, the lan-
guage specific transformations, for a language L, can process document subtrees that
are rooted at either a handled construct o of L, if ¢ is a COC or an SMC' element
construct, or an ancestor of a handled construct, otherwise. The proof of Proposition 2
performed only the minimum necessary separations, at the inter-language boundaries

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 127

Figure 7.2: Post order tree traversal

of a document. However, a subtree separation process that individually processes each
handled construct subtree is beneficial. Such a process can impede the use of intra-
language relationships between handled constructs, because it separates all handled
construct subtrees (even if they belong to the same namespace as their context). Nev-
ertheless, the lack of such relationships ensures the uniform and language independent
processing of all handled constructs, independently of their corresponding language.
Consequently, the XMLPipe subtree separation process creates a separate subtree for
each document handled construct, in a similar manner to the process introduced in
Section 5.3.3 (page 88).

The individual subtrees of a document d must be processed in a postorder man-
ner, illustrated in Figure 7.2, because the proof of Proposition 2 transformed each
document subtree before its context. Such a transformation order is necessary for
preserving the context of handled constructs and for ensuring that all necessary con-
tent is available, prior to a transformation. Specifically, the transformation of FOC
rooted subtrees can relate to their context, within the source document. If a FOC
rooted subtree is transformed after its ancestors, its relationship with its context may
be harmed by the transformation of its ancestors. Additionally, the transformation of
SMC' rooted subtrees must precede the transformation of their context, because they
can introduce document modifications that are necessary for transforming their con-
text. For instance, consider the alt:alt and imp:imp rooted subtrees, in lines 2 and
10 of the driving example. Both subtrees must be processed before doc:document,
because they introduce the document title and author information, which is necessary
for transforming the doc:document rooted subtree. Consequently, XMLPipe processes
the individual subtrees in a postorder manner.

An iterative transformation that processes a document’s subtrees, in a postorder
manner, can produce its optimal interpretation in a finite number of iterations. Specif-
ically, consider an iterative postorder separation process that replaces all subtrees with
the output of their corresponding transformations, until all document constructs be-
long to languages in £,. As described in the proof of Proposition 2, replacing a subtree
with the output of its corresponding transformation results in a valid document, which
is an interpretation of the original presentation information. Consequently, each itera-
tion will result in a document interpretation that is closer to the document’s optimal
presentation, according to a profile pr. Since there are no circular transformation de-
pendencies, such an iterative process will result to a natively presentable document
interpretation, within a finite number of steps.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 128

XMLPipe mixed namespace transformation:
Tlﬁle Ifunction transform : D X Profiles — D represents the transformation 7' €
pImx

LoTmx (La)’ which maps a valid XMLPipe document d to its most appropriate
representation d’, according to a profile pr.

function transform(D doc, Profiles pr) — D
let d =d
let n be the first node of d’, according to a postorder tree traversal
while (true)
let o be the XML construct that corresponds to n
let L be the language that corresponds to o
let n’ be the the next postorder tree traversal node after n
if L & £, AND o € langConstructs™® (L)
if 7" is the optimal transformation for L, according to profile pr
if o € (COC(L)U SMC(L)) N langConstructsC (L)
Separate dq from d’, where d; is rooted at n.
else
Separate d; from d’, where d; is rooted at the parent of n.
end if

apply T’ to di: dq Ld’l
if d| is not an empty tree
replace d; with d, within d’
let n be the first node of d} according to a postorder traversal
else
let n = n’
end if
else //there is no appropriate transformation
the transformation fails; exit
end if
else //the n rooted subtree does not require separate processing
if n is the root of d’
if all d’ nodes belong to languages in £,
the transformation is successful; exit
else
the transformation fails; exit
end if
else
let n=n'
end if
end if
end while
end function

Figure 7.3: The XMLPipe transformation algorithm

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 129

Figure 7.3 illustrates the XMLPipe transformation algorithm (¢ransform function),
which is such an iterative process. Specifically, the main algorithm loop performs a pos-
torder search for non-natively supported handled constructs. For each such construct,
it uses the XMLPipe binding model to locate the optimal corresponding transforma-
tion. transform fails if there is no adequate transformation, because it cannot map
the subtree to a natively supported representation. Otherwise, transform separates
the appropriate subtree, applies the corresponding transformation and uses its output
to replace the initial subtree. If the generated subtree is not empty, the postorder
search proceeds into the newly introduced nodes, because they may require further
preprocessing.

transform terminates after traversing all document nodes. If all the resulting con-
structs are natively supported, transform considers d’ as the optimal interpretation of d,
and it terminates successfully. If there are remaining non-natively supported constructs,
transform fails, because either d is invalid or the used transformation specifications do
not comply with the assumptions of Table 7.2. In both cases, the algorithm terminates
in a finite number of steps, because there are no circular dependencies between the
transformation specifications.

7.5 Transformation semantics

A generic document transformation process must use an optimal transformation speci-
fication for each document subtree, but transform does not define the details of such a
process. This section introduces the necessary transformation semantics, for performing
such a selection. Moreover, it investigates their binding and the necessary interopera-
tion between the transformation model and the binding and adaptation models, which
allows the selection of the optimal subtree transformation.

The specification of subtree transformations by transformation pipelines is benefi-
cial, because pipelines integrate and enhance functionality of the existing transforma-
tion technologies. Consequently, XMLPipe semantics describe all transformations using
transformation pipeline specifications. PipeSpec will represent the set of all XMLPipe
transformation semantics specifications, and it will be described in the subsequent
transformation pipelines section (Section 7.7).

Set of all pipeline specifications (PipeSpec): The set PipeSpec contains all
XMLPipe pipeline specifications

The pipeline specifications can be associated with language URIs, but a more fine
grained association that is based on handled constructs is beneficial. Specifically, for
each language L, its corresponding transformations must define the processing of all
its valid documents, according to Assumption 2. Therefore, it is sufficient to asso-
ciate the namespace URI of L with its corresponding pipeline specifications. However,
their association with the individual language handled constructs assists the modu-
lar specification of transformation semantics, because the individual constructs of a
language can require significantly different processing. For instance, consider a trans-
formation that is adequate for XHTML browsers and is associated with language L 4.,
(introduced in the driving example). A declarative transformation technology, such as
XSL-T, can straightforwardly map the L4, constructs to their corresponding XHTML
representation. However, if the semantics author also wishes to adapt the doc:img
referenced images to an adequate representation for the target browser, an imperative

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 130

0..1 Binding adaptation
information

Handled

[

[

[

[

[

[

«l

1.% construct
Handled |
E locateHCTS() | | transformation

[

[

[

[

[

[

[

semantics

Transformation
1 | pipeline specification

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

; . I
Transformation semantics o

-

Figure 7.4: Handled construct transformation semantics

transformation specification is necessary, such as a Java based DOM manipulator. If
transformation specifications are associated with the individual handled constructs, the
transformation semantics of L4, can be composed out of an imperative and a declara-
tive specification, for the doc:img rooted subtrees and the remaining L4, constructs,
respectively. Therefore, the XMLPipe transformation specifications are associated with
each individual handled construct.

The XMLPipe adaptation model established the binding adaptation specification,
which provides the necessary information for choosing the optimal transformation spec-
ification, for an adaptation profile. The adaptation measure evaluator enables the selec-
tion of the optimal transformation alternative, because it maps each binding adaptation
specification to an absolute comparable measure. Therefore, the XML transforma-
tion semantics contain an optional binding adaptation specification, in addition to the
transformation pipeline specification. The binding adaptation specification is optional,
because not all transformation specifications depend on the adaptation requirements.
For instance, the processing of most SMC' constructs, such as the imp:import handled
construct, is adaptation requirements independent.

Figure 7.4 outlines the organisation of the XMLPipe transformation semantics.
Specifically, each handled construct is associated with one or more transformation
semantics alternatives. Each alternative consists of a transformation pipeline specifi-
cation and an optional binding adaptation specification. HCTSemantics will represent
the set of all XMLPipe transformation semantics.

Transformation semantics (HCTSemantics): The set HCTSemantics contains
all the transformation semantics, which consist of an optional binding adaptation
specification and a pipeline specification:

HCTSemantics = ((BU{e}) x PipeSpec)

The adaptation and binding models enables the optimal transformation location
and selection. Specifically, the XMLPipe binding model is responsible for retrieving all
alternative transformation semantics that correspond to a handled construct. Func-
tion locateHCTS () will map a handled construct to its corresponding transformation
specifications, and it is a part of the binding component interface. The process of
selecting the optimal specification can use the adaptation model measure function, in

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 131

order to retrieve a comparable adaptation measure for each alternative. The optimal
transformation alternative is the transformation that is associated to either the max-
imum adequacy measure or no binding adaptation specification, if there are no other
adequate pipeline specifications. The latter case accommodates adaptation require-
ment independent specifications, which do not require an associated binding adaptation
specification. Function bestHCTS uses locateHCTS and measure to return the optimal
pipeline specification for a pair of a handled construct and an adaptation profile.

Transformation semantics location function (locateHCTS): The handled
construct transformation semantics location function

locateHCTS : ¥ — p(HCTSemantics) maps a qualified term to its corresponding
semantics: VYo € X, locate HCTS (o) = {hctsy, hetsa, . . ., hetsy }, where Vi, hets; is an
alternative transformation semantics for o.

Optimal pipeline selection function (bestHCTS): The optimal pipeline se-
lection function bestHCTS : ¥ x Profiles — PipeSpec maps a pair of a handled
construct and an adaptation profile to their corresponding optimal pipeline specifi-
cation. If locateHCTS (o) = {(B1,ps1),---,(Bn, ps,)} then bestHCTS (o, pr) = psy,

where
measure(pr, By) = max (measure(pr, B;)) # 0
Vi,B;F#e€
OR

Ba—c if " Bi)) =0
=€ 1 v%r’r}gazp;ée(measure(pr i)

7.6 Addressing the assumption constraints

The transform and semantics definitions allow the transformation of presentation doc-
uments only when the Table 7.2 assumptions apply. However, a subset of these as-
sumptions are sufficiently restrictive to prohibit most XMLPipe practical applications.
For instance, they require that the presentation integration model is equivalent to the
XMLPipe integration model, but no existing browser supports such a model. More-
over, they do not allow the processing of semantically correct but invalid documents,
such as the driving example, because they require that the input and output of all
transformations is valid. Such assumptions were necessary for proving the feasibility of
a mixed namespace transformation process, but the proposed algorithm has a signifi-
cantly wider applicability. This section describes an investigation of the assumptions,
within the context of the proposed algorithm, and proposes a looser set of assumptions
and a corresponding set of algorithm modifications.

7.6.1 Subtree copying

The subtree transformations must copy all foreign namespace content to its correspond-
ing place within their output, according to Assumption 3. Existing transformation
technologies provide straightforward ways to copy XML subtrees that occur at well
defined places within a document. However, the development of most transformation
specifications that copy all foreign namespace subtrees, which can occur at any doc-
ument position, is either impossible or prohibitively complex. Nevertheless, for the
majority of XML languages, it is is sufficient to only copy foreign namespace subtrees
at well defined places.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 132

Copying foreign namespace subtrees only at places where content is expected is
sufficient, in the majority of cases. Specifically, the assumed subtree copying is neces-
sary for preserving the presentation information that is introduced by the individual
subtrees. If a document subtree introduces presentable information, it must be either
a COC rooted subtree or an SMC rooted subtree that its processing results in a COC
rooted subtree. Both can validly occur only at places where content is expected, ac-
cording to Assumption 10. FOC constructs amend the presentation of their context;
consequently, most FOC' rooted subtrees occur as children of COC, because COC ex-
plicitly introduce presentable content. Furthermore, most COC constructs, such as
the driving example’s doc:em and doc:p elements, expect arbitrary content as their
children. Consequently, copying foreign namespace subtrees at places where content
is expected is sufficient for preserving all presentable pieces of information and the
majority of presentation customisations introduced by FOC rooted subtrees.

If a FOC rooted subtree occurs at a place where content is not expected, such a
reduced subtree copying scheme will not result in presentable information loss, but it
may result in reduced presentation functionality. Specifically, if the transformation of
a FOC rooted subtree adds content to its parent element to amend its presentation
and it occurs at a place where content is not expected, the processing of its ancestors
will ignore the introduced content. The resulting presentation might not be optimal,
but it will not miss any presentable information, because FOC constructs only amend
existing presentable information. Alternatively, the transformation of a FOC rooted
subtree can introduce new context to its parent. The new context must be rooted at
a handled construct o, which can be a COC, a FOC or an SMC. The first case can
only happen, if o occurs at a place where content is expected, according to Assumption
11. Consequently, the transformation result will be preserved by the processing of its
context. If the introduced context is a FOC' subtree, the new subtree only enhances
the functionality its context; therefore, there will be no loss of presentable information,
if it is not copied. Thirdly, if the introduced context is an SMC' rooted subtree, its
iterative processing will result in one of the first two cases.

Consequently, transformation specifications that copy all foreign namespace sub-
trees are beneficial. However, for most integration cases it is sufficient to only copy
foreign namespace subtrees that occur at places where content is expected. When such
copying is not sufficient the transformed document may not be optimal, but it does
not miss any presentable information. Therefore, a looser version of Assumption 3
is beneficial, because it significantly simplifies the development of the transformation
specifications. The revised Assumption 3 is that each transformation must copy, at a
minimum, all foreign namespace subtrees that occur at places where content is expected
to their corresponding place within its output.

7.6.2 Transformation of semantically correct invalid documents

There are two cases of semantically correct but invalid documents. The first case is
when the processing of an SMC' construct introduces content that is required by its
ancestors. For instance, consider the alt:alt and imp:import constructs, in lines 2
and 10 of the driving example. Their transformation introduces the necessary docu-
ment title and author information. However, the document is invalid prior to their
processing, because the doc:document does not contain the required doc:title and
doc:author elements. The second case of semantically correct but invalid documents
is when either the ancestors or the descendants of an SMC' are invalid as independent

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 133

subtrees, but become valid after its transformation. For instance, the alt:alt rooted
subtree, it line 2 of the driving example, is an invalid document subtree, because the
doc:title element is not a handled construct and it cannot validly occur under a for-
eign namespace element. The transformation of the alt:alt rooted subtree substitutes
itself with one of the alternative doc:title elements, which can validly occur under
the doc:document.

The design of the proposed transformation algorithm relied on the assumption that
the input document is valid, according to the XMLPipe integration model. However,
it can process semantically correct but invalid documents, without any modifications.
Specifically, it successfully addresses the first case, because its postorder document
traversal ensures that each subtree is processed after all its descendant SMC rooted
subtrees. For instance, transform processes the doc:document rooted subtree after
processing the imp: import construct, which imports the necessary author information.
transform also addresses the second case of invalid semantically correct documents, be-
cause it requires no inter-language interoperation. Each language transformation must
only copy foreign namespace subtrees and not attempt to interpret them. Therefore,
the transformation of an SMC rooted subtree can copy the foreign namespace subtrees,
without checking their validity. Furthermore, the postorder transformation order en-
sures that the necessary modifications of any invalid ancestor subtrees, will have been
made prior to their processing. For instance, the alt:alt construct transformation can
copy the doc:title elements to its output, independently of their validity. After its
transformation, its previously invalid context (the doc:document rooted tree) becomes
valid, because it contains the necessary document title information. Therefore, the
defined transform function is adequate for semantically correct but invalid documents.

7.6.3 Circular transformation dependencies

Assumption 5 prohibits circular transformation relationships, but the processing of
several languages can benefit from such relationships. Specifically, the termination
of transform is guaranteed only when there are no circular dependencies, which can
lead to infinite transformation loops. For instance, consider the Ly, language. The
transformation of the imp:import construct can potentially introduce a circular depen-
dency with itself, if an imp:import element imports a document that contains further
import statements. If a document contains an imp:import element that imports the
same document, the transform function will iterate indefinitely. L;., semantics must
be constrained to only allow single level content inclusion, in order to comply with
Assumption 5. Such a restriction would guarantee the transformation termination, but
it would significantly reduce its functionality.

Circular transformation relationships can be allowed, if there is a well defined
method to identify and terminate any infinite transformation loops. A set of prede-
fined interfaces/protocols could allow sufficient interoperation, between the individual
transformations, to enable the identification of such loops. However predefined inter-
faces and/or protocols are not adequate for an open set of languages. An alternative
method, which does not require inter-language interoperation, is to allow the interop-
eration of separate transformation invocations that correspond to the same language.
Such interoperation is sufficient, because each infinite transformation loop must result
in a periodic application of the same transformation, since there can only be a finite
number of transformations. Therefore, the XMLPipe transformation model can allow

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 134

circular transformation relationships, if it enables the interoperation between transfor-
mations instances that correspond to the same language.

The XMLPipe transformation model utilises its internal adaptation profile repre-
sentation to achieve the necessary interoperation, because the adaptation requirements
information is available to all transformation components. Specifically, each language
L can have a set of language specific terms, which are adaptation terms that belong to
the same namespace as L. A transformation can introduce adaptation statements that
use language specific terms, which correspond to the same language as the transfor-
mation. For each transformation 7' that processes a document subtree, the XMLPipe
transformation model provides all relevant language specific statements: statements
that correspond to the same language and have been introduced by the ancestors of
its input subtree ancestors. This mechanism allows a transformer to pass informa-
tion to all transformers that process its output and correspond to the same language.
Each transformer can use the provided information to identify and terminate any in-
finite transformation loops. Additionally, this mechanism prohibits the interoperation
between unrelated transformer instances, such as transformers that correspond to sep-
arate languages or to unrelated document subtrees.

For instance, a transformation 7' that corresponds to the Ly, language can use
language specific terms to detect the recursive inclusion of the same document. Specif-
ically, each transformation instance can add the URI of the imported document to a
language specific statement. If an imp: import construct imports a document that has
already been imported by its ancestors, the language specific statement will already
include the corresponding document URI. The transformer can avoid the infinite inclu-
sion loop by either terminating the transformation or ignoring the import construct.

Consequently, Assumption 5 is not necessary, if the transformation algorithm con-
tains the necessary functionality for propagating the language specific term information.
In contrast, it can be substituted by an alternative assumption: if a transformation
can introduce a circular dependency, it must also detect and terminate any infinite
transformation loops.

7.6.4 Processing natively supported constructs

Assumption 6 prohibits the generation of £, constructs that require additional pre-
processing, in order to ensure the sufficiency of a preprocessing approach. However,
the preprocessing of natively supported constructs can be beneficial. For instance, the
preprocessing of a natively supported construct for document inclusion can allow the
preprocessing of any included content. Moreover, document preprocessing can adapt
the binary representation of XHTML referenced images that are not supported by a
target browser, in a similar manner to the doc:img processing, which was described in
Section 7.5.

transform can enable the preprocessing of natively supported constructs, after the
introduction of two minor modifications. The first “if” condition must no longer test
whether a construct is non natively supported, but whether it has an associated trans-
formation. Furthermore, it is beneficial that transform traverses the output of a trans-
formation, only when it differs from the transformation’s input. Specifically, the trans-
formation of a natively supported construct can either modify it or leave it unchanged,
since it can be natively presented. Such a transformation introduces a circular depen-
dency with itself, and must use the necessary intra-language interoperation to avoid

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 135

infinite loops. However, since identity transformations are common in such transforma-
tions, the additional subtree traversal check can significantly simplify the development
of the transformation specifications.

The introduced transform modifications allow the substitution of Assumption 6
with a looser alternative. Specifically, a transformation can introduce natively sup-
ported constructs that require further preprocessing, if there is an adequate transfor-
mation that can preprocess them.

7.6.5 Integration models equivalence

The final assumption that must be addressed is the equivalence of the XMLPipe and
the presentation integration models (Assumption 7). This assumption was necessary,
because the XMLPipe transformation model cannot be aware of all presentation inte-
gration models. However, such an assumption impedes all XMLPipe practical applica-
tions, because no existing browser supports the XMLPipe integration model.

However, adequate design of the transformation specifications can allow the docu-
ment preprocessing for presentation integration models that are less generic than the
XMLPipe integration model. Specifically, the postorder processing order ensures that
each transformation only processes constructs of its corresponding language and of
natively supported languages. Therefore, a transformation can integrate its output
constructs with the previously processed subtrees in a valid way, according to the tar-
get presentation integration model. For instance, if a presentation integration model
requires a connecting element between an element and its foreign namespace children,
the individual transformations can add such connecting constructs, before copying the
foreign namespace subtrees. Additionally, if the target browser does not support any
integration model, a transformation can either output the same language as its subtrees
or discard any foreign namespace subtrees. The latter can result in information loss,
but it allows a partial presentation of an otherwise non presentable document.

If all transformation specifications enforce the target integration model, Assumption
7 can be loosened to only require that the presentation integration model is less generic
than the XMLPipe integration model.

7.6.6 Alternative assumptions and transformation algorithm

Table 7.3 summarises the revised set of transformation assumptions, according to the
aforementioned discussion. A subset of these assumptions are the transformation spec-
ification design principles. Specifically, specifications that are adequate for subtree
transformations within a mixed namespace document must follow assumptions 2, 3
and 4. Furthermore, transformations that preserve the semantic validity of documents,
must follow assumptions 9, 10 and 11.

Figure 7.5 illustrates the revised transformation algorithm, which includes the nec-
essary modifications for the revised set of assumptions. Specifically, it no longer requires
that all processed handled constructs are not natively supported. Additionally, it only
traverses a transformation’s output when it differs from its input, in order to assist the
development of transformations that process natively supported constructs. Moreover,
it uses the bestHCTS function to precisely define the transformation selection process.

Most algorithm modifications are responsible for the proposed intra-language inter-
operation, which allows the identification of infinite transformation loops. Specifically,
consider a transformation 7" that is associated with a language L. If T” transforms a

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL

136

ID

Assumption

There is an adequate transformation specification for each language not in
Ly.

Transformation specifications can process all valid handled construct rooted
trees of their corresponding language.

Each transformation must copy at least the foreign namespace subtrees that
occur at places where content is expected to their corresponding place within
the transformation output, and it must enforce the presentation integration
model.

The transformation specifications that correspond to either FOC or at-
tribute handled constructs must be able to process them within the context
of a foreign namespace element.

Circular dependencies between transformation specifications can occur, if
they ensure that their recursive application does not result in an infinite
transformation loop.

The output of a transformation can introduce an L, construct o that re-
quires further preprocessing, if there are adequate transformation specifica-
tions for preprocessing o.

If d € V"7 then d € V)" |

If T corresponds to a non SMC' construct of language L, its input and its
output must be valid according to the XML Pipe integration model. In the
case of SMC' handled constructs the transformation input and output is not
necessarily valid, but it must be semantically correct.

A COC rooted subtree must be transformed to another COC rooted sub-
tree.

10

The transformation of an SMC rooted subtree cannot produce a COC
subtree, unless it occurs at a place where content is expected.

11

The processing of FOC' and attribute handled constructs must preserve the
semantic correctness of the document. Specifically, it must add ancestors
to their parent element, only if

e the parent element is a handled construct
e it can occur at the corresponding place, within the added ancestors

e the root of the new content is a handled construct, which can be a
COC only if the parent element is a COC.

Additionally, it can add content to their parent, only if
e the added content is valid

e it occurs at a place where content is expected, if it is rooted at a
COC construct.

Table 7.3: Alternative transformation assumptions and design principles. The
duced modifications have been emphasised

intro-

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 137

Revised XMLPipe mixed namespace transformation:

function transformRev(D d, Profiles pr) — D
let d =d
let n be the first node of d’, according to a postorder tree traversal
while (true)
let 0 be the XML construct that corresponds to n
let L be the language that corresponds to o
let n’ be the next postorder tree traversal node after n
if o € langConstructsC (L)
if bestHCTS (o, pr) # €
if ¢ € (COC(L) U SMC(L)) N langConstructs ¢ (L)
Separate d; from d’, where d; is rooted at n.
else
Separate d; from d’, where d; is rooted at the parent of n.
end if
let pr’ contain all adaptation statements associated with L

apply T” to dy: dq Ld’l, using both pr and pr’
let pr” contain all L specific statements introduced by T’
if d} # di AND d] is not an empty tree
associate pr” with L and with the parent of n
replace d; with df, within d’'
let n be the first node of d}, according to a postorder traversal
else
if there is a language specific pry associated to n’ parent
discard pry
end if
let n = n’
end if
else if L # L' //No appropriate transformation
the transformation fails; exit
end if
else //the n rooted subtree does not require separate processing
if n the root of d’
if all d’ nodes belong to languages in £,
the transformation is successful; exit
else the transformation fails; exit
end if
else
let n =n'
if there is a language specific pry associated with the parent of n’
discard pry
end if; end if; end if; end while
end function

Figure 7.5: Revised transformation algorithm

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 138

d pr d
g 2 o o
Int. Model ID \J \J d...d;
Proc. Model ID -4
Binding <O« 00 O Integration model pr = Transformation
component > p» transformation driver p...p, : pipeline driver
{(By1, Pa)r(By Py 2} A d..d,
Legend 0@ 0w Legend
d Input document 00 [k measurg gpf g B; | URI, URIof d; root construct
pr Adaptation profile v v D d. root construct j-alternative
i e g
d Transformed document Adaptation measure pipeline specification
d....d. Document subtrees evaluator B, j-alternative binding specification
e P oy e measurgj-alternative adequat.:y measure
Shas p; most adequate pipeline fdy

Figure 7.6: Integration model transformation driver

subtree that is rooted at a construct n and introduces adaptation statements that are
specific to L, transformRev associates them with the parent of n. The adaptation state-
ments are not associated with n, because the subsequent transformations can modify
the n rooted subtree and may harm such associations. The proposed intra-language
interoperation allows a transformation to only pass information to the transformations
of its descendants. Therefore, language specific adaptation statements only apply to
the descendants of n, and the postorder traversal removes all adaptation statement
associations when moving up the tree.

The integration model transformation driver implements transformRev, in order to
drive the transformation of a presentation document. Figure 7.6 illustrates the inte-
gration model transformation driver, its interface and its interoperation with the other
processing components. Specifically, it converts an input document d to an output
document d’, according to an adaptation profile pr. The postorder subtree separation
of d results in the dj ... d, subtrees. For each subtree d;, the integration model trans-
formation driver provides the corresponding handled construct o; and the integration
model identifier to the the binding component, in order to obtain the corresponding
transformation specifications. The binding component returns a set of multiple pairs of
transformation specifications and binding adaptation specifications. Subsequently, the
adaptation measure evaluator is used, in order to choose the optimal transformation
specification. Finally, the integration model transformation interacts with the transfor-
mation pipeline driver, which instantiates a pipeline transformation and applies it to
d;. After the substitution of d; with the transformation output, the integration model
transformation driver continues the postorder traversal, until it terminates.

7.7 Built-in transformation pipelines

The integration model transformation driver interoperates with the transformation
pipeline driver, because the XMLPipe transformation semantics use pipeline specifica-
tions to define the processing of the individual handled constructs. The pipeline driver
is responsible for instantiating the transformations that correspond to the pipeline

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 139

specifications and applying them to the document subtrees. This section describes the
XMLPipe transformation pipelines and transformation pipeline driver.

7.7.1 Atomic transformations

Each transformation pipeline may consist of multiple atomic transformations, which
allow the seamless integration of multiple transformation technologies. Specifically, the
concept of atomic transformations enables the encapsulation of the individual transfor-
mations under a common interface. The atomic transformation interface can be imple-
mented by both generic transformation technologies, such as XSL-T, or purpose built
transformers, such as imperative DOM manipulators. Consequently, the XMLPipe
transformation components can seamlessly use a variety of existing and future trans-
formation technologies, if they access them through the common atomic transformation
interface.

Atomic transformations must allow the transformation of document subtrees, in
addition to complete XML documents, as described in Section 7.1. Such a requirement
does not influence the common atomic transformation interface, since the structure of
a document subtree is interchangeable with the structure of a document, because of
the recursive nature of XML trees. However, document-specific operations must be
avoided. For instance, generic transformation approaches provide document specific
constructs, such as the XSL-T document root references. Such constructs are not well
defined within the context of subtree processing. Such a constraint does not reduce
the functionality of the individual transformations, because absolute constructs can be
substituted by alternative relative constructs, which are adequate for subtree process-
ing. Consequently, the semantics authors must not use document-specific constructs,
in order to ensure the adequacy of the atomic transformations for the XMLPipe trans-
formation model.

Atomic transformations do not produce an output subtree, as opposed to the ma-
jority of transformations. Specifically, an atomic transformation directly modifies its
input, because transformRev transforms documents by substituting each subtree with
the result of its corresponding transformation. Transformation implementations that
are specific to XMLPipe can directly support such behaviour. However, existing trans-
formation approaches produce an output document, instead of modifying their input.
Consequently, atomic transformation wrappers are necessary for adapting the existing
transformation functionality to the XMLPipe tree modifying behaviour.

Finally, atomic transformations must be able to both access the adaptation pro-
file and introduce language specific adaptation statements. Adaptation profile access
is essential for adaptive transformations, which customise their output according to
the adaptation requirements. A straightforward way to introduce language specific
adaptation statements is also essential, because it allows the necessary intra-language
communication for identifying and terminating infinite transformation loops. In a sim-
ilar manner to above, XMLPipe specific transformation implementations can straight-
forwardly access and modify the adaptation requirements. In contrast, the wrappers
of existing transformation technologies must provide technology specific methods to
access and introduce the adaptation statements.

The atomic transformation interface can consist of a single function. Each atomic
transformation processes a document subtree, according to an adaptation profile and
can optionally introduce a set of language specific statements. Therefore, a single
two-parameter function that accepts a pair of a document subtree and an adaptation

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 140

profile and returns a list of adaptation statements is sufficient. Such an interface does
not restrict the functionality of a transformation and does not require more transfor-
mation functionality than the transformation of document subtrees. Consequently, it
is adequate for encapsulating the multitude of current and future transformation tech-
nologies. The pilot XMLPipe implementation, which will be described in Chapter 10,
uses such a function for the atomic transformation interface.

However, we will define the atomic transformations as functions that map an adap-
tation profile to a transformation, in order to be consistent with the introduced trans-
formation notation. Specifically, A will represent the set of all XMLPipe atomic trans-
formations. Each atomic transformation A € A is a function that maps an adaptation
profile pr to a transformation, which transforms a document subtree to its correspond-

ing transformation output. For each atomic transformation A € A and adaptation

A
profile pr, d %)d’ represents the transformation of d to d’, according to the adapta-

tion profile pr and the external input 1.

Atomic transformations (A): The set of atomic transformations A contains all

functions A : Profiles — chlfgl;((L)

7.7.2 Transformation wrappers

Atomic transformation wrappers are necessary for using existing transformation tech-
nologies. The atomic transformation interface allows direct modification of document
subtrees, access to the adaptation requirements and introduction of language specific
adaptation statements. Semantics authors can define atomic transformations by either
directly implementing the atomic transformation interface or using an existing transfor-
mation technology, such as XSL-T. XMLPipe specific transformation implementations
can directly access the atomic transformation functionality. However, atomic trans-
formation wrappers are necessary for the integration of existing transformation tech-
nologies. Such wrappers are responsible for modifying the input subtree, according to
the output of the underlying transformation technology, and for providing technology
specific means to access the adaptation requirements and introduce language specific
adaptation statements. Additionally, it is beneficial if the transformation wrapper de-
velopers map the XMLPipe transformation design principles, summarised in Table 7.3,
to the corresponding technology specific design guidelines. Such design guidelines assist
the semantics authors to create transformation specifications that are adequate for the
XMLPipe, without being aware of the underlying XMLPipe transformation model.

For instance, consider an XSL-T atomic transformation wrapper, which uses an ex-
isting XSL-T implementation. The wrapper must pass its input subtree to the XSL-T
transformer and replace it with the transformation’s result. XSL-T stylesheet specifi-
cations do not include a mechanism for accessing sets of adaptation requirements. The
wrapper can insert an adaptation profile representation to the transformation’s input,
using XMLPipe specific elements. An XSL-T stylesheet will be able to use XPath ex-
pressions to access the adaptation requirements information. A similar method can be
used for the introduction of language specific adaptation statements. For instance, if
the transformation output contains such XMLPipe specific elements, the wrapper can
interpret them as language specific adaptation statements.

Table 7.4 describes the XSL-T design guidelines, which correspond to a subset of
the Table 7.3 assumptions (2, 3 and 4). Specifically, each stylesheet must include top

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL

141

Guideline Description Example
Multiple There must be a top-level XSL-T | For language Lg,., there must
top-level template for each handled con- | be a top level template for the
templates struct that the transformation | doc:document, doc:em, doc:img

(based on As-
sumption 2)

processes.

and doc:p constructs. For instance:
<xsl:template match=’’doc:p’’>

Relative XPath
expressions
(based on As-
sumption 2)

XPath expressions must use rel-
ative paths instead of absolute
document root references.

Use */doc:section instead of
//*/doc:section. Such changes
might require stylesheet restructur-
ing.

Copy unknown
content

Include identity transformations,
for all content, and null transfor-

Use
<xsl:apply-templates

select="7%"/>
instead of
<xsl:apply-templates
select=’’doc:p’’/>
Use
<xsl:apply-templates
select=’7%77/>
instead of
<xsl:apply-templates
select=’’./@x1:href’’/>
in combination with generic content
copying templates.

mations for content that must not
be copied to the output. Apply
them, at a minimum, to places
where content is expected.

For attribute or FOC handled
constructs, apply the copy tem-
plates at the root of the tree, in-
stead of directly using the lan-
guage constructs

(based on As-
sumption 3)

Copy unknown
context

(based on As-
sumption 4)

Table 7.4: XSL-T transformation design guidelines

level transformation templates for all the handled constructs that it processes, in or-
der to allow the processing of handled construct rooted subtrees. XSL-T uses XPath
expressions for the selection of document node sets. XSL-T stylesheets must solely
use relative XPath expressions, because absolute XPath expressions are not well de-
fined, within the context of subtree processing. Additionally, all stylesheets must copy
foreign namespace content that occurs at places where content is expected and at as
many other places as possible. Stylesheets that correspond to FOC or attribute han-
dled constructs must also copy their foreign namespace parent and its descendants,
because the subtree separation process for FOC' and attribute handled constructs in-
cludes their parent element. The semantics authors that use XSL-T must only be aware
of the identified design principles, and they are not required to know the details of the
XMLPipe transformation model.

7.7.3 Transformation pipelines composition

XMLPipe transformation pipelines are composed out of atomic transformations and
validation commands. Existing alternative pipeline approaches consist of transformers,
sources, mergers and sinks, as described in Section 7.1. However, only transformers
are relevant to XMLPipe. Specifically, sources and sinks are not necessary, because
the document input and output are a priori defined by the subtree separation process.
In a similar manner, mergers are not necessary, because there is a single document
input. The validation commands are necessary, because they allow the interoperation

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 142

Lsimy G, Lim~ o Liimy| 7 g
e —
Lim, N Seq(Tl,Tz) L, Lyiimg

Figure 7.7: XMLPipe transformation pipelines: sequence pipeline

Sequence pipeline (seq): The sequence seq pipeline is a function

. Lo:Imo L3:Ims L3:Ims

Sy ¢ U ,Clzfml(ﬁl/) Tﬁg:]mg(ﬁg/) - T,Clrfml(ﬁl/uﬁg/)
/

['1; ['1 ; [’25

v
£2/7 £37 Imla ImZ

where d" 0™ p i g o i and dy—od.

between the pipeline driver and the validation model. A pipeline based interoperation
approach between the transformation and validation models is adequate for XMLPipe,
as described in Section 7.1. Consequently, the XMLPipe transformation pipelines are
solely composed out of atomic transformations and validation commands.

The XMLPipe pipeline composition uses a recursive application of three composi-
tion methods: transformation sequence, transformation selection and dynamic trans-
formation. XMLPipe allows the recursive composition of transformation pipelines,
because a transformation pipeline is also a transformation, as described in Section
2.3.2. Furthermore, it is beneficial, because it allows the arbitrary complex nesting of
transformation pipelines.

The transformation sequence pipeline is a sequential composition of two transforma-
tions, where the second transformation is applied to the result of the first. Sequential
composition is essential for the modular design of transformation specifications, be-
cause it allows their partitioning into sequences of simpler steps. Figure 7.7 illustrates
the sequence pipeline. seq(T},T5) represents the sequential composition of 77 and Ts:
it firstly applies 77 to the document input and subsequently applies 75 to the output of
the first transformation. The sequence pipeline input and output document types are
identical to the input of 77 and the output of T5, respectively. A sequence pipeline only
combines two transformations, but nested sequence pipelines can create arbitrarily long
transformation chains. For instance, seq(seq(T1,T2),T3) is the sequential composition
of Tl, T2 and Tg.

The transformation selection pipeline enables the selection of alternative transfor-
mations, according to the adaptation requirements. A selection pipeline consists of a
set of transformations that are associated with optional adaptation expressions. For
each adaptation profile, the optimal transformation alternative can be chosen, in a sim-
ilar manner to the transformation semantics selection by bestHCTS function. Figure
7.8 illustrates a transformation selection pipeline that chooses between three transfor-
mations: Tp, Tb and T3. For an adaptation profile pr, sel((T1,B1),...,(Tn, By)