
AUTOMATICALLY EVOLVING RULE INDUCTION 

ALGORITHMS WITH GRAMMAR-BASED 

GENETIC PROGRAMMING 

A THESIS SUBMITTED TO 

THE UNIVERSITY OF KENT AT CANTERBURY 

IN THE SUBJECT OF COMPUTER SCIENCE 

FOR THE DEGREE 

OF DOCTOR OF PHILOSOPHY. 

By 

Gisele Lobo Pappa 

August 2007 



To my granddad Lobo 

(in memoriam) 



. Contents 

List of Tables 

List of Figures 

List of Algorithms 

Abstract 

Acknowledgements 

1 Introduction 

1.1 Motivation...... 

1.2 Aims and Objectives 

1.3 Contributions .... 

1.4 Thesis Organization . 

2 Rule Induction Algorithms 

2.1 Introduction........ 

2.2 The Sequential Covering Strategy ...... . 

2.2.1 Representation of the Candidate Rules 

2.2.2 Search Mechanism 

2.2.3 Rule Evaluation .. 

2.2.4 Pruning Methods . 

2.3 Evolving Rules with Evolutionary Algorithms 

2.3.1 Introduction to Evolutionary Algorithms 

2.3.2 GAs and GPs for Rule Induction .... 

2.4 Extracting Rules from other Knowledge Representations 

2.5 Summary ... . . . . . . . . . . . . . . . . . . . . . . . 

III 

. 
VI 

xi 

XIV 

. 
XVI 

... 
XVlll 

1 

3 

5 

6 

7 

9 

9 

10 

13 

15 

18 
21 

23 

24 

25 

30 

34 



3 Genetic Programming 

3.1 Introduction..... 

3.2 Standard Genetic Programming 

3.2.1 Fitness Function .... 

3.2.2 Selection Methods and Evolutionary Operators 

3.3 Grammar-based Genetic Programming .... . 

3.3.1 Grammars ................ . 

35 

35 

37 

39 

42 

43 

45 

3.3.2 GGP with Solution-Encoding Individual 48 

3.3.3 GGP with Production-Rule-Sequence-Encoding Individual 52 

3.4 Summary ....................... . 55 

4 Automatically Evolving Rule Induction Algorithms 56 

4.1 Introduction.............................. 56 

4.2 The Grammar: Specifying the Building Blocks of Sequential Cov-

ering Rule Induction Algorithms . . . . . . . . . . . . . . . . . .. 58 

4.2.1 The New Rule Induction Algorithmic Components in the 

Grammar . . . . . 65 

4.3 Individual Representation 

4.4 Population Initialization . 

4.5 Individual Evaluation ... 

4.5.1 

4.5.2 

4.5.3 

From a Derivation Tree to Java Code 

Single-Objective Fitness .. . 

Multi-Objective Fitness .. . 

4.6 Crossover and Mutation Operations. 

4.7 Related Work 

4.8 Summary .............. . 

67 

67 

72 

73 

76 

85 

87 

89 

92 

5 Evaluating the Proposed System for Evolving Robust Algorithms 93 

5.1 Introduction.............................. 93 

5.2 Investigating the GGP Sensitivity to Parameters. . . . . . . . .. 94 

5.3 Comparing GGP-derived Rule Induction Algorithms with Conven-

tional Rule Induction Algorithms . . . . . . . . . . . . . . . . .. 101 

5.4 To What Extent are GGP-RIs Different from Manually-Designed 

Rule Induction Algorithms? . 108 

5.5 Meta-Training Set Variations ................. 117 

5.6 GGP's Grammar Variations . . . . . . . . . . . . . . . . . . 127 

5.7 GGP versus a Grammar-based Hill Climbing Search Method 131 

IV 



5.8 MOGGP: A Multi-Objective Version of the Proposed GGP . 138 

5.8.1 An Insight About the MOGGP-RIs . . 147 

5.9 A Note on the GGP System's Execution Time 151 

5.10 Summary ...... . . . . . . . . . . . . . . 153 

6 Evaluating the Proposed System 

lored to One Data Set 

for Evolving Algorithms Tai-

6.1 Introduction............ 

6.2 Experiments with DCI Data Sets 

6.2.1 GGP-RIs versus GHC-RIs 

6.3 Experiments with Bioinformatics Data Sets. 

6.4 A Note on the GGP System's Execution Time 

6.5 Summary .......... . 

7 Conclusions and Future Work 

7.1 Conclusions ......... . 

7.2 Future Work. . . . . . . . . . 

.... 

.... 
7.2.1 Solution-Encoding Individual Representation versus Pro-

154 

154 

155 

160 

164 

174 

174 

176 

176 

177 

duction Rule-Sequence-Encoding Individual Representation 178 

7.2.2 Modifying the GGP Fitness Function. . . . . . . 178 

7.2.3 Improvements of the Grammar ............... 178 

7.2.4 Ensembles of Evolved Rule Induction Algorithms . . . .. 179 

7.2.5 Constructing Rule Induction Algorithms Targeted to a Group 

of Data Sets with Similar Characteristics: a New Approach 180 

References 181 

Appendix A Computing the Size of the GGP Search Space 197 

v 



List of Tables 

4.1 The grammar used by the GGP . . . . . . . . . . . . . . . . . .. 60 

5.1 Data sets used by the GGP ..................... 95 

5.2 Accuracy rates obtained by the rule induction algorithms evolved 

by the GGP using nominal data sets in the meta-training set. .. 97 

5.3 Accuracy rates obtained by the rule induction algorithms evolved 

by the GG P using nominal data sets in the meta-test set . . . .. 97 

5.4 Accuracy rates obtained by the rule induction algorithms evolved 

by the GG P using numerical data sets in the met a-training set .. 99 

5.5 Accuracy rates obtained by the rule induction algorithms evolved 

by the GG P using numerical data sets in the met a-test set . . .. 99 

5.6 Accuracy rates obtained by the rule induction algorithms evolved 

by the GGP using both nominal and numerical data sets in the 

meta-training set . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 

5.7 Accuracy rates obtained by the rule induction algorithms evolved 

by the GGP using both nominal and numerical data sets in the 

meta-test set ............................. 101 

5.8 Comparing the GGP-RIs trained with different parameters (using 

nominal data sets) to the baseline algorithms. . . . . . . . . . .. 103 

5.9 Comparing predictive accuracy rates for the nominal data sets in 

the meta-test set - results obtained with crossover rate = 0.5 and 

mutation rate = 0.45 . . . . . . . . . . . . . . . . . . . . . . . .. 103 

5.10 Comparing the GGP-RIs trained with different parameters (using 

numerical data sets) to the baseline algorithms. . . . . . . . . .. 104 

5.11 Comparing predictive accuracy rates for the numerical data sets in 

the meta-test set - results obtained with crossover rate = 0.7 and 

mutation rate = 0.25 . . . . . . . . . . . . . . . . . . . . . . . .. 105 

5.12 Comparing the GGP-RIs trained with different parameters (using 

nominal and numerical data sets) to the baseline algorithms 106 

VI 



5.13 Comparing predictive accuracy rates for the nominal/numerical 

data sets in the meta-test set - results obtained with crossover rate 

= 0.7 and mutation rate = 0.25 . . . . . . . . . . . 107 

5.14 Predictive accuracy rates produced by Alg. 5.3 . . . 112 

5.15 Predictive accuracy rates (%) produced by Alg. 5.4 113 

5.16 Total number of rules produced and pruned by the GGP-RI de-

scribed in Alg. 5.4 ......................... " 114 

5.17 Predictive accuracy rates produced by Alg. 5.5 ......... " 116 

5.18 Comparing predictive accuracy rates for the nominal data sets in 

the meta-test set when training the GGP with 3 data sets .... 118 

5.19 Comparing predictive accuracy rates for the nominal data sets in 

the meta-test set when training the GGP with 4 data sets .... 118 

5.20 Comparing predictive accuracy rates for the nominal data sets in 

the meta-test set when training the GGP with 6 data sets .... 119 

5.21 Comparing predictive accuracy rates for the nominal data sets in 

the meta-test set when training the GGP with 7 data sets .... 119 

5.22 Comparing predictive accuracy rates for the numerical data sets in 

the meta-test set when training the GGP with 3 data sets .... 121 

5.23 Comparing predictive accuracy rates for the numerical data sets in 

the meta-test set when training the GGP with 4 data sets .... 121 

5.24 Comparing predictive accuracy rates for the numerical data sets in 

the meta-test set when training the GGP with 6 data sets .... 121 

5.25 Comparing predictive accuracy rates for the numerical data sets in 

the meta-test set when training the GGP with 7 data sets .... 121 

5.26 Comparisons of the number of rules and predictive accuracies per 

class generated by both versions of CN2 in the data set segment. 123 

5.27 Comparing predictive accuracy rates for the nominal and numerical 

data sets in the meta-test set when training the GGP with 6 data 

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 124 

5.28 Comparing predictive accuracy rates for the nominal and numerical 

data sets in the meta-test set when training the GGP with 8 data 

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 125 

5.29 Comparing predictive accuracy rates for the nominal and numerical 

data sets in the meta-test set when training the GGP with 12 data 

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 126 

Vll 



5.30 Comparing predictive accuracy rates for the nominal and numerical 

data sets in the meta-test set when training the GGP with 14 data 

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 127 

5.31 Comparing predictive accuracy rates for a GGP run with nomi­

nal/numerical data sets in the meta-test set with different versions 

of the grammar . . . . . . . . . . . . . . . . . . . . . . . . . . .. 129 

5.32 Accuracy rates obtained by the GGP in the meta-test set while 

using a modified version of the grammar which excludes its new 

components . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 130 

5.33 Accuracy rates obtained by the GGP in the meta-test set while 

using a modified version of the grammar which does not include 

pruning elements ......................... " 131 

5.34 Accuracy rates obtained by the GGP in the meta-test set while 

using a modified version of the grammar which produces exclusively 

bottom-up rule induction algorithms ................ 132 

5.35 Comparing the predictive accuracies of the GGP-RIs and the GHC-

RIs in the meta-test set for experiments with nominal data sets . 133 

5.36 Comparing the predictive accuracies of the GGP-RIs and the GHC-

RIs in the meta-test set for experiments with numerical data sets 134 

5.37 Comparing the predictive accuracies of the GGP-RIs and the GHC-

RIs in the meta-test set for experiments with both nominal and 

numerical data sets . . . . . . . . . . . . . . . . . . . . . . . . .. 134 

5.38 Comparing the GGP-RIs with a GHC-RIs using a Student's t-test 135 

5.39 Comparing accuracy rates and rule sizes of the MOGGP-RIs and 

the SGGP-RIs for the nominal data sets in the meta-test set . .. 139 

5.40 Comparing accuracy rates of the MOGGP-RIs and the baseline 

algorithms for the nominal data sets in the meta-test set . . . .. 140 

5.41 Comparing the number of conditions in the rule sets of the MOGGP-

RIs and the baseline algorithms for the nominal data sets in the 

meta-test set 

5.42 Comparing the MOGGP-RIs trained with nominal data sets to the 

baseline algorithms, taking into account both accuracy and number 

of conditions in the produced rule model, according to the concept 

140 

of Pareto dominance . . . . . . . . . . . . . . . . . . . . . . . .. 141 

5.43 Comparing accuracy rates and rule sizes of the MOGGP-RIs and 

the SGGP-RIs for the numerical data sets in the meta-test set .. 142 

Vlll 



5.44 Comparing predictive accuracy rates of the MOGGP-Rls and the 

baseline algorithms for the numerical data sets in the meta-test set 143 

5.45 Comparing the number of conditions in the rule sets of the MOGGP-

Rls and the baseline algorithms for the numerical data sets in the 

meta-test set ............................. 143 

5.46 Comparing the MOGGP-Rls trained with numerical data sets to 

the baseline algorithms, taking into account both accuracy and 

number of the conditions in the produced rule model, according to 

the concept of Pareto dominance .................. 144 

5.47 Comparing accuracy rates and rule sizes of the MOGGP-Rls and 

the SGGP-Rls for both nominal and numerical data sets in the 

meta-test set ............................. 145 

5.48 Comparing predictive accuracy rates of the MOGGP-RI and the 

baseline algorithms for both nominal and numerical data sets in 

the meta-test set .. . . . . . . . . . . . . . . . . . . . . . . . .. 146 

5.49 Comparing the number of the conditions presented in the rule sets 

of the MOGGP-RI and the baseline algorithms for both nominal 

and numerical data sets in the meta-test set . . . . . . . . . . .. 146 

5.50 Comparing the MOGGP-Rls trained with both nominal and nu­

merical data sets to the baseline algorithms, taking into account 

both accuracy and number of the conditions in the produced rule 

model according to the concept of Pareto dominance ....... 147 

5.51 GGP runtime for different experiments' configurations when train-

ing the GGP with many data sets in the meta-training set . . .. 152 

6.1 Predictive accuracy rates for GGP-Rls tailored to a specific data set 

in experiments using data sub-sets of the same application domain 

the meta-training and meta-test sets ................ 157 

6.2 Comparing the predictive accuracies of the GGP-Rls and the GHC-

Rls tailored to a specific data set for experiments using a data 

sub-sets of the same application domain in the meta-training and 

meta-test sets . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 161 

6.3 Bioinformatics data sets used by the GGP . . . . . . . . . . . .. 165 

6.4 Comparing the predictive accuracies obtained by the GGP-Rls in 

the bioinformatics data sets with selected attributes against the 

predictive accuracies obtained by the baseline methods when using 

the complete data set . . . . . . . . . . . . . . . . . . . . . . . .. 167 

IX 



6.5 Comparing the predictive accuracies obtained by the GGP-Rls and 

the baseline methods when using the bioinformatics data sets with 

selected attributes. . . . . . . . . . . . . . . . . . . . 168 

6.6 Sensitivity x Specificity for the data set postsynaptic 169 

6.7 GGP runtime for experiments targeting one data set 175 

A.l The grammar used by the GGP . . . . . . . . . . . . 199 

A.2 Derivations generated by the non-terminals of the grammar. 201 

x 



List of Figures 

2.1 GP tree using (a) booleanized attributes and (b) non-booleanized 

attributes .. .... ...... . . . . . .. 27 

3.1 GP individual using (a) tree representation and (b) linear repre-

sentation. " .. .. . . . . . . . . .. .... 38 

3.2 Pareto front obtained when optimizing both the error rate and 

the total number of rule conditions produced by a rule induction 

algorithm .. " . . . . . . . . . . . . 41 

3.3 GGP scheme with solution-encoding individual representation 44 

3.4 GGP scheme with production-rule-sequence-encoding solution rep-

resentation. . . ..... . ... . . . " 44 

3.5 Context-free grammar to create a simple expression, showing an 

example of a derivation tree and the list of derivation steps followed 

to generate the expression x+ 2 ..... . . . . 46 

3.6 GGP tree representing the expression x -2 (x+2-4J 48 

4.1 Scheme of the Grammar-based GP for Rule Induction. 57 

4.2 Example of a GGP Individual ...... . . . 66 

4.3 Example of an individual representing a rule induction algorithm 

which will lead to an infinite loop . . ... . . .. .. 69 

4.4 Frequencies of terminals responsible for the rule induction algo-

rithm rule initialization process during the GGP evolution . . .. 71 

4.5 Frequencies of terminals responsible for the rule induction algo-

rithm rule refinement process during the GGP evolution 

4.6 Frequencies of terminals responsible for the rule induction algo­

rithm rule evaluation process during the GGP evolution .. 

4.7 Frequencies of terminals responsible for the rule induction algo-

71 

71 

rithm rule stopping criterion process during the GGP evolution 71 

4.8 Fitness evaluation process of a GGP Individual . . 73 

Xl 



4.9 Example of the method used to extracted Java code from the GGP 

individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74 

4.10 Comparing the average fitness values given by fit and sens x specif 

in a GGP run with 100 individuals and 30 generations .... 78 

4.11 Classification accuracies for data set monks-2 in Generation 1 79 

4.12 Classification accuracies for data set monks-3 Generation 1 . 79 

4.13 Classification accuracies for data set lymph in Generation 1 . 79 

4.14 Classification accuracies for data set balance-scale in Generation 1 79 

4.15 Classification accuracies for data set zoo in Generation 1 . . 79 

4.16 Fitness values of the GGP individuals in the first generation 79 

4.17 Classification accuracies for data set monks-2 in Generation 10 . 79 

4.18 Classification accuracies for data set monks-3 in Generation 10 . 79 

4.19 Classification accuracies for data set lymph in Generation 10 . . 81 

4.20 Classification accuracies for data set balance-scale in Generation 10 81 

4.21 Classification accuracies for data set zoo in Generation 10 . 81 

4.22 Fitness values of the GGP individuals after 10 generations 81 

4.23 Classification accuracies for data set monks-2 in Generation 20 . 81 

4.24 Classification accuracies for data set monks-3 in Generation 20 . 81 

4.25 Classification accuracies for data set lymph in Generation 20 . . 81 

4.26 Classification accuracies for data set balance-scale in Generation 20 81 

4.27 Classification accuracies for data set zoo in Generation 20. . . .. 82 

4.28 Fitness values of the individuals evolved by the GGP after 20 gen-

erations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82 

4.29 Classification accuracies for data set monks-2 in Generation 30 . 82 

4.30 Classification accuracies for data set monks-3 in Generation 30 . 82 

4.31 Classification accuracies for data set lymph in Generation 30 . . 82 

4.32 Classification accuracies for data set balance-scale in Generation 30 82 

4.33 Classification accuracies for data set zoo in Generation 30 . 82 

4.34 Fitness values of the GGP individuals after 30 generations 82 

4.35 Example of Crossover in the proposed GGP . . . . . . . . 88 

5.1 Evolution of the GGP versus GHC when using nominal data sets 

in the meta-data sets . . . . . . . . . . . . . . . . . . . . . . . .. 137 

5.2 Evolution of the GGP versus GHC when using numerical data sets 

in the meta-data sets . . . . . . . . . . . . . . . . . . . . . . . .. 137 

5.3 Evolution of the GGP versus GHC when using nominal and nu­

merical data sets in the meta-data sets . . . . . . . . . . . . . .. 137 

xu 



5.4 Objective values for the last population of individuals evolved by 

the MOGGP using nominal data sets in the meta-training set .. 141 

5.5 Objective values for the last population of individuals evolved by 

the MOGGP using numerical data sets in the meta-training set . 144 

5.6 Objective values for the last population of individuals evolved by 

the MOGGP using both nominal and numerical data sets in the 

meta-trammg set . . . . . . . . . . . . . . . . . . . . . . . . . .. 148 

Xlll 



List of Algorithms 

2.1 CreateRuleSet 

2.2 LearnOneRule(R) 

2.3 CreateDecisionList 

4.1 Pseudo-code of the rule induction algorithm represented by the deriva-

11 

12 

15 

tion tree in Figure 4.2 .. .... .. .. 68 

4.2 AddCond(Rule R) .. ................ . 75 

4.3 Pseudo-code of the Multi-objective version of the GGP . . . . 86 

5.1 Main part of the pseudo-code of the Ordered-CN2 algorithm. 109 

5.2 Main part of the pseudo-code of the Ripper algorithm . . . . 110 

5.3 Example of a Decision List Algorithm created by the GGP using 

Nominal Data Sets. . .. ..... ... ........... 111 

5.4 Example of a Rule list Algorithm created by the GGP using Numer-

ical Data Sets.. .. .. ................ 113 

5.5 Example of a Decision List Algorithm created by the GGP using 

both Nominal and Numerical Data Sets . . . . . .. .. 115 

5.6 Example of a rule list algorithm created by the MOGGP using nom-

inal data sets .. .. " ....... ......... 149 

5.7 Example of a rule list algorithm created by the MOGGP using 

mostly numerical data sets .. .. .. ... ....... 150 

6.1 Example of a decision list algorithm created by the GGP specifically 

for the data set erx .. .. ... . . 159 

6.2 Example of a rule set algorithm created by the GGP specially for 

the data set ionosphere .. ....... ........ 160 

6.3 Example of a decision list algorithm created by the GHC specially 

for the data set erx . . . " .... 162 

6.4 Example of a decision list algorithm created by the GHC specially 

for the data set ionosphere . . . . .. 164 

XIV 



6.5 Example of a decision list algorithm created by the GGP - with a 

normalized fitness function - tailored to the data set postsynaptic. 172 

6.6 Example of a rule set algorithm created by the GGP - with a sensi­

tivity x specificity fitness function - tailored to the data set postsy-

naptic . . . . . . 173 

A.l Derivations(NT) . . . . . . . . . . . . . . . . . . . . . . . . . . .. 198 

xv 



Abstract 

In the last 30 years, research in the field of rule induction algorithms produced 

a large number of algorithms. However, these algorithms are usually obtained 

from the combination of a basic rule induction algorithm (typically following the 

sequential covering approach) with new evaluation functions, pruning methods 

and stopping criteria for refining or producing rules, generating many "new" and 

more sophisticated sequential covering algorithms. 

We cannot deny that these attempts to improve the basic sequential covering 

~approach have succeeded. Hence, if manually changing these major components 

of rule induction algorithms can result in new, significantly better ones, why not 

to automate this process to make it more cost-effective? This is the core idea 

of this work: to automate the process of designing rule induction algorithms by 

means of grammar-based genetic programming. 

Grammar-based Genetic Programming (GGP) is a special type of evolutionary 

algorithm used to automatically evolve computer programs. The most interesting 

feature of this type of algorithm is that it incorporates a grammar into its search 

mechanism, which expresses prior knowledge about the problem being solved. 

Since we have a lot of previous knowledge about how humans design rule induction 

algorithms, this type of algorithm is intuitively a suitable tool to automatically 

evolve rule induction algorithms. 

The grammar given to the proposed GGP system includes knowledge about 

how humans- design rule induction algorithms, and also presents some new el­

ements which could work in rule induction algorithms, but to the best of our 

knowledge were not previously tested. The GG P system aims to evolve rule in­

duction algorithms under two different frameworks, as follows. In the first frame­

work, the GGP is used to evolve robust rule induction algorithms, i.e., algorithms 

which were designed to be applied to virtually any classification data set, like a 

manually-designed rule induction algorithm. In the second framework, the GGP 

is applied to evolve rule induction algorithms tailored to a specific application 

XVI 



domain, i.e., rule induction algorithms tailored to a single data set. Note that 

the latter framework is hardly feasible on a hard scale in the case of conventional, 

manually-designed algorithms, since the number of classification data sets greatly 

outnumbers the number of rule induction algorithms designers. However, it is 

clearly feasible on a large scale when using the proposed system, which automates 

the process of rule induction algorithm design and implementation. 

Overall, extensive computational experiments with 20 VCI data sets and 5 

bioinformatics data sets showed that effective rule induction algorithms can be 

automatically generated using the GGP in both frameworks. Moreover, the au­

tomatically evolved rule induction algorithms were shown to be competitive with 

(and overall slightly better than) four well-known manually designed rule induc­

tion algorithms when comparing their predictive accuracies. 

The proposed GGP system was also compared to a grammar-based hill­

climbing system, and experimental results showed that the GGP system is a more 

effective method to evolve rule induction algorithms than the grammar-based hill­

climbing method. 

At last, a multi-objective version of the GGP (based on the concept of Pareto 

dominance) was also proposed, and experiments were performed to evolve ro­

bust rule induction algorithms which generate both accurate and simple mod­

els. The results showed that in most of the cases the GGP system can produce 

rule induction algorithms which are competitive in predictive accuracy to well­

known human-designed rule induction algorithms, but generate simpler classifi­

cation modes - i.e., smaller rule sets, intuitively easier to be interpreted by the 

user. 
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Chapter 1 

Introd uction 

Data mining is the process of automatically extracting accurate, comprehensible 

and interesting knowledge from data. It can be used to perform a variety of tasks, 

including data association, data regression and data classification [49, 52]. 

The classification task, in particular, intends to automatically separate objects 

belonging to different classes. When performing classification, a data mining 

algorithm generates a classification model from a data set, and this model can be 

later applied to classify objects whose class is unknown. 

The classification models generated by data mining algorithms can be repre­

sented using a variety of knowledge representations [13, 145]. Broadly speaking, 

classification models can be divided into two categories, depending mainly on the 

type of knowledge representation being used: human-comprehensible and black­

box models. Examples of human-comprehensible models include classification 

rules, decision trees, and bayesian networks, whereas instance-based representa­

tions, artificial neural networks and support vector machines represent black-box 

models. 

In some application domains, where an understanding of the classification 

model is unnecessary, black-box representations are very successful, and can gener­

ate very accurate models. However, in domains where the discovered knowledge is 

only useful if it can be interpreted, like in medical domains, human-comprehensible 

models are essential [117, 49]. For instance, in principle a medical doctor should 

not recommend a patient for surgery based only on the prediction made by a clas­

sification algorithm; it is important that the doctor interprets the model in the 

context of his/her own knowledge background. As another example, most users 

would hesitate in investing a large amount of money in a financial application 

based on the prediction of a black-box model [39]. 
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CHAPTER 1. INTRODUCTION 2 

In this thesis, we are interested in classification models which are both accu­

rate and comprehensible. More precisely, we focus on knowledge represented as 

classification rules. A classification rule has the format "IF condl AND cond2 ... 

THEN conseq", where the conditions in the antecedent are described byassocia­

tions between attributes and their values (e.g. salary> £30,000), or two different 

attributes (e.g. salary > mortgage). The consequent represents the predicted 

value for the class attribute. 

There are several different types of algorithms available to produce classifica­

tion rules (see Chapter 2). In this thesis we are interested on one of them: rule 

induction algorithms, which in general lend themselves naturally to the discovery 

of comprehensible classification rules. For the past 30 years, a great variety of 

rule induction algorithms were manually designed. However, to the best of our 

knowledge, rule induction algorithms, like CN2 [26] or Ripper [32], were never 

automatically generated. 

The automation of any task can be achieved by programming a machine to 

follow, step by step, the process a trained human would follow to execute it, ob­

taining, at the end, the same or similar results. There has been significant progress 

in the automation of data analysis tasks. A relevant example consists of meth­

ods to automatically select the most suitable classification algorithm for a data 

set being mined, out of several candidate algorithms [119]. Another interesting 

example is the "scientist robot" described in King et al. [83]. This system au­

tomatically generates hypotheses to explain observations in biological data, plans 

and physically executes experiments to test the hypotheses - using a laboratory 

robot, and interprets the results to falsify hypotheses inconsistent with the data. 

The human desire to automatically create computer programs for machine 

learning tasks dates back to the pioneering work of Samuel in the sixties, when 

the term machine learning was first coined meaning "computers programming 

themselves". As years went by, machine learning gained a new definition, related 

to the system's capability of learning from experience [97]. However, the idea of 

automatically generating computer programs persisted. In the early nineties, a 

whole new area dedicated to the study of this idea started to be widely dissemi­

nated: genetic programming [84]. 

The main idea behind genetic programming (GP) is to automatically evolve 

computer programs capable of producing good solutions (hopefully better than 

manually-produced solutions) for the target problem. 

Regarding the classification task, GP has been used to evolve classification 
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rules for a specific data set [52], to combine classifiers [87], to evolve neural net­

works [150], and even to evolve other evolutionary algorithms [108] (which can 

then be used as classification algorithms), but not, to the best of our knowledge, 

to evolve a complete rule induction algorithm. This is the main goal of this work: 

to create a new GP system to automatically evolve complete rule induction algo­

rithms. 

Automatically evolving a rule induction algorithm "from scratch" would cer­

tainly be an extremely hard task for a GP system. However, if we provide it 

with some background knowledge about the basic structure of rule induction al­

gorithms, the task becomes more feasible. This is exactly the basic principle of 

Grammar-based GP, and this is the approach followed in this thesis. 

Grammar-based GP (GGP) [143] is a special type of GP that incorporates 

in its search mechanism prior knowledge (expressed in the form of a grammar) 

about the problem being solved. Intuitively, GGP is an appropriate method for 

automatically evolving rule induction algorithms for two main reasons. First, it 

makes use of what we already know about the design of rule induction algorithms 

(background knowledge accumulated through several decades of research). Sec­

ond, it provides an automatic way of performing a global search that evaluates, in 

parallel, many combinations of elements of rule induction algorithms, which can 

find new, potentially more effective rule induction algorithms. 

1.1 Motivation 

There are three motivations for automatically evolving rule induction algorithms. 

First, it represents a further step towards the automation of the data analysis 

task. Instead of automatically evolve rule sets for specific data sets, as many sys­

tems already do, it would automatically evolve complete rule induction algorithms. 

These automatically evolved rule induction algorithms could then be applied to 

generate rule sets for virtually any classification data set. 

Second, all current rule induction algorithms were manually developed by a 

human being, and so they inevitably incorporate some human preconceptions 

and biases. In particular, the vast majority of rule induction algorithms select 

one attribute-value-at-a-time, in a greedy fashion, ignoring attribute interactions. 

A machine-developed algorithm could completely change this kind of algorithm 

preconceptions, since "its bias" would be different from the kind of algorithm bias 

imposed by a human designer. 
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A good example of a "free of preconceptions" solution created by an Evolution­

ary Algorithm (EA) is the design of a satellite dish holder boom, which connects 

the satellite's body with the dish needed for communication [46]. The human­

designed structure has a symmetric ladder-like shape. The structure found by 

the EA looks like a random drawing, and it is not intuitive at all. However, it is 

approximately 20,000% better than the traditional human-designed structure. 

The third motivation to automatically design rule induction algorithms is as 

follows. It has already been shown that no classification algorithm is the best to 

solve all kinds of classification problems [90]. The impact the choice of a suitable 

algorithm has in the classification model generated from the data is so big that 

meta-learning [139] emerged as a whole new research area dedicated to study this 

problem. 

In particular, the STATLOG [98] and METAL [118] projects put together 

the efforts of many researchers to learn how to characterize data sets via "meta­

attributes", i.e., attributes describing an entire data set, rather than describing 

an individual example (data instance, or record). Then they used these meta­

attributes to create a classification "meta-model" capable of selecting the most 

suitable classification algorithm for each data set. 

Despite the progress obtained with these efforts, the choice of which classifica­

tion algorithm to apply to a specific data set is still an open problem in general. 

This is because there are two major limitations in almost all of the meta-learning 

techniques. First, they have to identify the best meta-attributes which charac­

terize the data. Choosing the right set of meta-attributes can be an extremely 

difficult task, given the huge diversity of classification data sets. Second, they per­

form "algorithm selection". They try to select the best algorithm out of a small 

pre-defined set of algorithms, but there is no guarantee that the set of candidate 

algorithms will include a very good classification algorithm for a specific data set. 

In order to bypass these two limitations associated with meta-learning ap­

proaches, this work focuses on automated "algorithm construction". This ap­

proach avoids the limitations of conventional meta-learning, and presents two 

main advantages over the latter: (a) it can produce rule induction algorithms 

potentially better than the available ones, and, as a related point, the system 

can always be updated to produce more new rule induction algorithms by sim­

ply modifying the grammar the GGP works with; (b) it presents a much cheaper 

alternative to the manual design of rule induction algorithms, specially because 

it can produce a rule induction algorithm tailored to a specific data set. Note 
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that the manual design of a rule induction algorithm tailored to a specific data 

set would be much more time consuming and is not feasible on a large scale. 

The previously presented motivations are in general valid regardless of the type 

of classification algorithms being evolved. Nevertheless, we had two additional . 
motivations to evolve rule induction algorithms instead of any others. The first 

one, as explained before, concerns the type of human-comprehensible classification 

models they generate. 

Besides, research in the rule induction field has being carried out for more than 

30 years and certainly produced a large number of algorithms. However, these 

algorithms are usually obtained from the combination of a basic rule induction 

algorithm (typically following the sequential covering approach) with new evalu­

ation functions, pruning methods and stopping criteria for refining or producing 

rules, generating many "new" and more sophisticated sequential covering algo­

rithms. Hence, in some sense, we can say there was a "human-driven evolution" 

of rule induction algorithms in the past decades. We propose to take advantage 

of this "human-driven evolution" and extend it to a new type of evolution, by au­

tomating the design of new rule induction algorithms by means of an evolutionary 

algorithm - more precisely, a grammar-based genetic programming system. 

1.2 Aims and Objectives 

The overall aim of this work is to create a new Grammar-based Genetic Program­

ming (GGP) system able to automatically evolve rule induction algorithms. In 

order to achieve this aim, our first objective is to design a grammar which reflects 

not only the main structure of human-designed rule induction algorithms, but also 

includes some other ideas that we think might work in rule induction algorithms, 

even though they were not previously tested - to the best of our knowledge. This 

grammar can then be used by the GGP to generate not only well-known rule 

induction algorithms but also new, potentially better rule induction algorithms. 

Once the grammar is defined, the next objective is to design a GGP system 

which uses the grammar to produce rule induction algorithms according to one of 

the following two goals: 

1. To evolve a robust rule induction algorithm from multiple data sets, so that 

the evolved rule induction algorithm should obtain a high predictive accu­

racy across a range of very different data sets (from very different application 

domains); or 
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2. To evolve a rule induction algorithm tailored to one specific application 

domain (a specific data set). 

In order to evaluate the proposed GGP system, another objective of this thesis 

is to compare the rule induction algorithms produced by the GGP system with 

well-known human-designed rule induction algorithms. This comparison will be 

based mainly on the predictive accuracy of the rule induction algorithms produced, 

but it will also take into account the degree of "innovation" (or "originality") of the 

automatically evolved rule induction algorithms, by comparison with well-known 

manually-designed algorithms. 

Furthermore, the proposed GGP system will also be compared to a much sim­

pler grammar-based hill climbing approach. The motivation for this comparison 

is to justify the use of a more sophisticated system, such as the GGP, to automati­

cally evolve rule induction algorithms, instead of a simple greedy search algorithm 

as the hill climbing. 

Finally, in order to consider not only the predictive accuracy but also the 

complexity of the rule models generated when evolving rule induction algorithms, 

a multi-objective fitness function will be introduced to the initial proposed system. 

1.3 Contributions 

This thesis shows that genetic programming can be used together with previous 

knowledge about human-designed rule induction algorithms (incorporated into a 

grammar) to automatically evolve new rule induction algorithms. More precisely, 

based on the objectives of this thesis, its main contributions are: 

• A grammar, which represents the basic structure and the major components 

(or "building blocks") of many human-designed rule induction algorithms. 

• A new grammar-based genetic programming system, which automatically 

evolves rule induction algorithms. This system can be applied to generate 

either robust or data set-tailored rule induction algorithms. This new GP 

system is the major contribution of this thesis, and it can be considered 

a pioneering contribution, since - to the best of our knowledge - it is the 

first GP system for automatically creating a fully-fledged rule induction 

algorithm. 
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• New automatically evolved rule induction algorithms - in particular, new 

algorithms that are quite innovative and competitive with respect to well­

known manually-designed algorithms. 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 discusses the three 

main methods used to extract classification rules from data: sequential cover­

ing algorithms, evolutionary algorithms, and methods for extracting classification 

rules from other types of knowledge representation. It specially describes in de­

tail the main components of sequential covering algorithms, which will be used 

to create the grammar which will guide the proposed Grammar-based Genetic 

Programming (GGP) system. 

Chapter 3 describes the main ideas behind a GP system, and shows how one 

of its drawbacks, i.e. the closure problem, led to the development of one of its 

variations: GGP. In order to give a clear view of GGP systems, we first introduce 

the basic concepts of grammars, and then describe two types of GGPs: solution­

encoding individual and production-rule-sequence-encoding individual. In the first 

of them, an individual directly encodes a candidate solution (rule induction al­

gorithm), whilst in the other one an individual encodes a sequence of production 

rules from the grammar, whose applications generate a rule induction algorithm. 

Chapter 4 introduces the proposed GGP system to automatically evolve rule 

induction algorithms. It starts by giving a detailed description of the grammar, 

followed by a discussion of design and implementation issues concerning the main 

components of the system. These main components include the individual repre­

sentation, the population initialization procedure, the individual evaluation pro­

cess and the crossover and mutation operators. Finally, it describes related work 

and discusses the differences among related systems and the proposed system. 

Chapters 5 and 6 report the extensive results of a large set of computational ex­

periments using the GGP system into two different frameworks. In Chapter 5, the 

evolution of robust rule induction algorithms, which were evolved to be effectively 

applied to any classification data set, is studied. It also presents a multi-objective 

version of the GGP system proposed. In Chapter 6, the evolution of rule induc­

tion algorithms tailored to a specific application domain (a specific data set) is 

described. In general, these chapters show how the GGP parameters were set, 

how the rule induction algorithms produced by the GGP compare to well-known 
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human-designed rule induction algorithms and what is different in their design 

elements. They also compare the rule induction algorithms evolved by the GGP 

with the rule induction algorithms generated by a grammar-based hill climbing 

search method. 

Chapter 7 presents the conclusions and describes future research directions. 



Chapter 2 

Rule Induction Algorithms 

2.1 Introduction 

For a long time researchers have been dreaming about machines able to learn and 

program themselves. The field of machine learning first emerged with the ambi­

tious goal of creating these dreamed machines. However, as the area developed, 

researchers realized we barely understand how the human learning process works, 

so simulating it on a machine was not a simple task. At this point, machine 

learning was redefined as the "machines' ability to improve through experience" 

[99]. 

Using this new definition of machine learning, one of the first tasks researchers 

programmed machines to learn was classification. The classification task aims 

to separate objects belonging to different classes, where a class is defined as a 

group of objects sharing common features. A classification system learns how to 

distinguish examples from classes C1 and C2 (or more classes) by "studying" a set 

of examples containing objects from both classes, named the training set. Each 

training example is represented by a set of predictor attributes and a goal (or 

class) attribute. The aim of the classification system is to produce a classification 

model by exploring relationships between the predictor and the goal attributes. 

In order to evaluate the quality of the classification model created by the 

classification system, the model is tested in a new set of examples (records) from 

the same application domain of the training set, named the test set. The examples 

presented in the test set are different from the ones in the training set, and are 

used to evaluate the generalization ability of the classification model. 

The model generated by a classification system can be described using a vari­

ety of knowledge representations, such as decision trees, decision rules, artificial 

9 
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neural networks, instance-based representations, Bayesian networks, support vec­

tor machines, etc [13, 145]. In this thesis we focus on rule induction algorithms, 

i.e., methods which produce classification models represented by rules. The mo­

tivation for focusing on rules is that this kind of knowledge representation tends 

to be intuitively comprehensible to the user, as discussed in Chapter 1. 

A classification rule has the format "IF condl AND cond2 . .. THEN conseq" , 

where the conditions in the antecedent are described by associations between 

attributes and their values (e.g. salary> £10,000), or two different attributes 

(e.g. salary> mortgage). The consequent represents the predicted value for the 

goal attribute. An example of a classification rule is "IF ((sex = female) AND 

(salary> £30,000) AND (age> 45)) THEN marital-status = divorced". This 

rule states that women older than 45 and who earn more than £30,000 belong to 

the class of divorced people. 

Classification models represented by rule sets can be generated using many 

different methods. Here we explore three commonly used strategies to generate 

rule sets [99], namely: 

1. The sequential covering (or separate and conquer) strategy [145]. 

2. The use of evolutionary algorithms, like genetic algorithms and genetic pro­

gramming, to extract rules from data [80, 52, 148]. 

3. The generation of a classification model based on a knowledge representation 

different from rule sets (like a neural network or a decision tree) followed by 

a rule extraction method [124, 77]. 

The next sections describe these three strategies used to generate rule sets 

from data, and show examples of how rule induction algorithms implement them. 

2.2 The Sequential Covering Strategy 

The sequential covering strategy (also known as separate and conquer) is certainly 

the most explored and most used strategy to induce rules from data. It was first 

employed by the algorithms of the AQ family [96] in the late sixties, and over 

the years was applied again and again as the basic algorithm in rule induction 

systems. 
The separate and conquer strategy works as follows. It learns a rule from a 

training set, removes from it the examples covered by the rule, and recursively 
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learns another rule which covers the remaining examples. A rule is said to cover 

an example e when all the conditions in the antecedent of the rule are satisfied by 

the example e. For instance, the rule "IF (salary> £ 100,000) THEN rich" covers 

all the examples in the training set in which the value of salary is greater than 

£100,000, regardless of the current value of the class attribute of an example. 

The learning process goes on until a pre-defined criterion is satisfied. This 

criterion usually requires that all or almost all examples in the training set are 

covered by a rule. Alg. 2.1 shows the basic pseudo-code for sequential covering 

algorithms producing rule sets (a somewhat different algorithm for generating 

ordered lists of rules is presented in Section 2.2.1), and Alg. 2.2 describes the 

procedure LearnOneRule used by Alg. 2.1. 

Algorithm 2.1: CreateRuleSet 

RuleSet = 0 
for each class Ci do 

Set training set T as the entire set of training examples 
while Rules Stopping Criterion not satisfied do 

Create an Initial Rule R 
Set class predicted by new rule R as Ci 

R' = LearnOneRule(R) 
RuleSet = RuleSet U R' (i.e, Add R'to RuleSet) 
Remove from T all class Ci examples covered by R' 

Post-process RuleSet 
return RuleSet 

In Alg. 2.1 and Alg. 2.2, elements in italic represent a set of building blocks 

which can be instantiated to create different types of sequential covering algo­

rithms. The block "Create an Initial Rule R" in Alg. 2.1, for example, can be 

replaced by "Create an empty Rule R" or "Create a Rule R using a random exam­

ple from the training set". The block "Evaluate CR" in Alg. 2.2 could be replaced 

by "Evaluate CR using accuracy" or "Evaluate CR using information gain". 

Replacing building blocks in this basic algorithm by a specific method can 

create almost any of the existing sequential covering rule induction algorithms. 

This is possible because algorithms following the sequential covering approach 

usually differ from each other in four main elements: the representation of the 

candidate rules, the search mechanisms used to explore the space of candidate 

rules, the way the candidate rules are evaluated and the pruning method, although 

the last one can be absent [57, 145]. 

Before going into detail about these four elements, let us describe a couple of 
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Algorithm 2.2: LearnOneRule(R) 
bestRule = R 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules =1= 0 do 

newCandidateRules = 0 
for each candidateRule CR do 

Refine CR 
Evaluate CR 
if Refine Rule Stopping Criterion not satisfied then 

newCandidateRules = newCandidateRules U CR 
if CR is better than bestRule then 
L bestRule = CR 

candidateRules = Select b best rules in newCandidateRules 

return bestRule 

12 

sequential covering algorithms that do not adopt exactly the pseudo-code defined 

in Alg. 2.1. This is appropriate since it shows that attempts to improve this basic 

algorithm were made. Note that even though these new algorithms proved to be 

competitive with the traditional algorithms, currently the most used and accurate 

algorithms stick to the simple and basic approach described by the pseudo-code 

in Alg. 2.1. 

PN-Rules [3] and LERILS [24] are rule induction algorithms that slightly 

changed the dynamics of the basic algorithm showed in Alg. 2.1. PN-Rules, for 

instance, is based on the concept that over-fitting can be avoided by adjusting the 

trade-off between support (number of examples covered by a rule) and accuracy 

during the process of building a rule. The main difference between PN-Rules and 

the traditional algorithms is that the former finds two sets of rules: a set of P­

rules and a set of N-rules. P-rules are learned first, favor high coverage, and are 

expected to cover most of the positive examples (i.e. examples belonging to the 

class predicted by the rule) in the training set. In a second step, a set of N-rules 

is created using only the set of examples covered by the P-rules. The idea is 

that the N-rules can exclude the false positives (examples covered by a P-rule but 

which belong to a different class from the predicted one) of the covered examples. 

This 2-phase process is repeated for all the classes. During the classification of 

examples in the test set, a scoring method assesses the decisions of each binary 

classifier, and chooses the final classification. 

In the case of LERILS, maybe it is not appropriated to call it a sequential 
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covering algorithm, since it does not remove examples from the training set after 

learning a rule. All the rules are learned using the whole set of training examples. 

However, apart from not removing examples from the training set after creating a 

rule, all its other elements are based on conventional instances of the components 

found in the basic algorithm representing the sequential covering approach. LER­

IL8 works in 2 phases. First it uses a bottom-up search combined with a random 

walk to produce a pool of k rules, where k is a parameter defined by the user 

(since the examples are not removed from the training set after creating a rule, 

a fixed number of rules is defined as the stopping criterion). In a second phase, 

it uses again a random procedure together with the minimum description length 

heuristic to combine the rules into a final rule set. 

The literature in rule induction and specially sequential covering algorithms 

is very rich. There are several surveys - e.g. [57, 122] - and papers comparing a 

variety of algorithms [56,6,98,90]. The next sections summarize the main points 

to be considered when creating a sequential covering algorithm, and in particular 

the specific methods that can replace the building blocks presented in Algs. 2.1 

and 2.2. For a more detailed description the reader is referred to the original 

papers describing the methods. 

2.2.1 Representation of the Candidate Rules 

The rule representation has a significant influence in the learning process, since 

some concepts can be easily expressed in one representation but hardly expressed 

in others. In particular, rules can be represented using propositional or first order 

logic. 

Propositional rules are composed by selectors, which are associations between 

pairs of attribute-values, like age > 10, salary < 2000 or sex = male. Besides 

the operators ">", "<" and "=", "<", ">" and "=/=" are also available in some 

methods. "=" and "=/=" are used for nominal attributes, whilst the others are 

used with continuous attributes. The majority of the algorithms build a rule as a 

conjunction of selectors, although some algorithms of the AQ family, for example, 

also allow internal disjunctions and intervals. CN2 [27], C4.5 rules [124], and 

Ripper [33] are examples of propositional rule induction algorithms. 

First-order rules are more sophisticated, and can express relations between two 

attributes, generating rules with conditions such as x > y. When using a first­

order representation, the concepts are usually represented as Prolog relations, like 
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father{x,y). Methods that use this Prolog representation are classified as Inductive 

Logic Programming (ILP) systems [88, 89]. 

ILP uses the same principles of rule induction algorithms, essentially replacing 

the concepts of conditions and rules by literals and clauses. In addition, ILP 

techniques allow the user to incorporate into the algorithm background knowledge 

about the problem, which helps to focus the search in promising areas of the search 

space. FOIL [123] and REP [17] use this representation. 

Apart from these two main representations, a few algorithms use some different 

representations. BEXA [135], for example, uses the multiple-valued extension to 

propositional logic to represent rules, while systems like FuzzConRI [152]' which 

use fuzzy logic, are becoming more common. 

Besides different rule representations, there are also different types of classifi­

cation models which can be created when combining single rules into a collection 

of rules. The rule models generated by a rule induction algorithm can be ordered 

(also known as rule lists or decision lists) or unordered (rule sets). 

In rule lists the order in which the rules are learned is important because 

rules will be applied in order when classifying new examples in the test set. In 

other words, the first rule in the ordered list that covers the new example will 

classify it, whereas subsequent rules will be ignored. In contrast, in rule sets the 

order in which the rules are produced is not important, since all the rules in the 

model are considered when classifying a new example. In the latter case, when 

more than one rule covers a new example, and the class predicted by them is 

not the same, a tie-break criterion can be applied to decide which rule gives the 

best classification. Examples of these criteria are selecting the rule with higher 

coverage or heuristics like the Laplace estimation [41]. Alg. 2.1, introduced in the 

beginning of Section 2.2, represents the algorithm employed to generate a set of 

unordered rules. A few changes have been introduced to it in order to generate 

an ordered decision list. Alg. 2.3 describes the new pseudo-code to generate a 

decision list following the sequential covering approach. 

Comparing Algs. 2.1 and 2.3, the outer for loop from Alg. 2.1 is absent in 

Alg. 2.3 because decision list algorithms do not learn rules for each class in turn. 

Instead they learn rules for all classes at the same time. The set of examples 

removed from the training set after a rule is learned also changes. While in Alg. 2.1 

only the covered examples belonging to the current class Ci are removed, in rule 

list algorithms all the covered examples (no matter their class) are removed. This 

happens because as rule lists apply rules in order, if one rule covers an example, 
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Algorithm 2.3: CreateDecisionList 
RuleList = 0 
repeat 

Create an Initial Rule R 
R' = LearnOneRule(R) 
Set consequent of learned rule R' as the most frequent class found in 
the set of examples covered by R' 
Add R' to RuleList 
Remove from T all the examples covered by R' 

until Rules Stopping Criterion not satisfied 
return RuleList 

no other rules will have the chance to classify it. 
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Rule lists are considered more difficult to understand than rule sets. This 

is because in order to comprehend the last rule of a list all the previous rules 

must also be taken in consideration [26]. Since the knowledge generated by rule 

induction algorithms is supposed to be analyzed and validated by an expert, rules 

at the end of the list become very difficult to understand, particularly in very long 

lists. Hence, unordered rules are often favored over ordered ones. 

2.2.2 Search Mechanism 

A rule induction algorithm acts like a search algorithm exploring a space of can­

didate rules. Its search mechanism has two components: a search strategy and 

a search method. The search strategy determines the region of the search space 

where the search starts and its direction, while the search method specifies which 

specializations/ generalizations should be considered. The building blocks "Cre­

ate an Initial Rule R" (in Alg. 2.1) and "Refine CR" (in Alg. 2.2) determine 

the search strategy of a sequential covering algorithm. "Select b best rules in 

newCandidateRules" , in Alg. 2.2, implements its search method. 

Broadly speaking, there are three kinds of search strategies: bottom-up, top­

down and bi-directional. A bottom-up strategy starts the search with a very 

specific rule, and iteratively generalizes it. This specific rule is usually an exam­

ple from the training set, chosen at random (like in LERILS [24]) or using some 

heuristic. RISE [41], for example, starts considering all the examples in the train­

ing set as rules. Then, for each rule in turn, it searches for its nearest example of 

the same class according to a distance metric, and attempts to generalize the rule 

(example) to cover that nearest example. 
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A top-down strategy, in contrast, starts the search with the most general rule 

and iteratively specializes it. The most general rule is the one that covers all 

examples in the training set (because it has an empty antecedent, which is always 

satisfied for any example). The top-down strategy is more frequently used by 

sequential covering algorithms but its main drawback is that as induction goes 

on, the amount of data available to evaluate a candidate rule decreases drastically, 

reducing the statistical reliability of the rules discovered. This usually leads to 

data over-fitting and the small disjunct problem [19]. 

However, there are ways to prevent over-fitting in top-down searches. One 

of them is to stop the rules' production after the data set size falls bellow some 

threshold (although this approach can miss some rare but important concepts). 

Pruning methods, discussed in Section 2.2.4, are also an attempt to avoid this 

problem. 

At last, a bi-directional search is allowed to generalize or specialize the candi­

date rules. It is not a common approach but it can be found in the SWAP-l [142] 

and Reconsider and Conquer [15] algorithms. When looking for rules, SWAP-l 

first tries to delete or replace the current rules' conditions before adding a new 

one. Reconsider and Conquer, in turn, starts the search with an empty rule, but 

after inserting the first best rule to the rule set, it backs up and carries on the 

search process using the candidate rules previously created. 

After selecting the search strategy, a search method has to be implemented. 

The search method is a very important part of a rule induction algorithm since it 

determines which specializations/generalizations will be considered at each spe­

cialization/ generalizations step. Too many specializations/generalizations are not 

allowed due to computational time, but too few may disregard good conditions and 

reduce the chances of finding a good rule. Among the available search methods 

are the greedy search and the beam search. 

The greedy and the beam searches are the most popular methods. Greedy 

algorithms create an initial rule, generalize/specialize it, evaluate the extended 

rules created by the generalization/specialization operation, and keep just the 

best extended rule. This process is repeated until a stopping criterion is satisfied. 

PRISM [22] is just one among many algorithms that use greedy search. 

Although they are fast and easy to implement, greedy algorithms have the 

well-known myopia problem: at each rule extension step, they make the best local 

choice, and cannot backtrack if later in the search the chosen path is not good 

enough to discriminate examples belonging to different classes. As a result, they 
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do not cope well with attribute interaction [39, 52]. 

Beam search methods try to eliminate the drawbacks of greedy algorithms se­

lecting, instead of 1, the b best extended rules at each iteration, where b is the 

width of the beam. Hence, they explore a larger portion of the search space than 

greedy methods, coping better with attribute interaction. Nevertheless, learning 

problems involving very complex attribute interactions are still a very difficult 

problem for beam search algorithms, and for rule induction/decision tree algo­

rithms in general [131]. CN2, AQ and BEXA algorithms implement a beam 

search. 

Apart from these two conventional search methods, some algorithms try to in­

novate in the search method in order to better explore the space of rules. ITRULE 

[133], for instance, uses a depth-first search, while LERILS [24] applies a ran­

domized local search. Furthermore, stochastic search methods use evolutionary 

approaches, such as genetic algorithms and genetic programming, to explore the 

search space. Examples of systems using this approach will be discussed in Section 

2.3. 

In conclusion, the main problem with the search mechanism of sequential 

covering algorithms nowadays is that, regardless of performing a top-down or 

a bottom-up search, most of them use a greedy, hill-climbing procedure to look 

for rules. 

A way to make these algorithms less greedy is to use a n-step look-ahead 

hill-climbing procedure. Hence, instead of adding/removing one attribute-at-a­

time from a rule, the algorithm would add/remove n conditions-at-a-time. This 

approach was attempted by some decision-tree algorithms in the past, but there is 

no strong evidence of whether look-ahead improves or harms the performance of 

the algorithm. While Dong and Kothari [42] concluded that look-ahead produces 

better trees (using a nonparametric look-ahead method), Murthy and Salzberg 

[102] argued it can produce larger and less accurate trees (using a one-step look­

ahead method). A more recent study by Esmeir and Markovich [47] used look­

ahead for anytime induction decision trees, and found that look-ahead produces 

better trees and higher accuracies, as long as a large amount of time is available. 

Look-ahead methods for rule induction were tested by [58] in a bottom-up 

algorithm. One and two step look-ahead were used, and they sightly improved 

the accuracy of the algorithm in the data sets used in the experiments, but at an 

algorithm quadratic cost. Nevertheless, further studies analyzing the impact of 

deeper look-ahead in the bottom-up and top-down approach are needed to reach 
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stronger conclusions about their effectiveness. It is believed that computational 

time is one of the reasons which prevents the use of look-ahead in rule induc­

tion. However, in domains in which time can be sacrificed for better classification 

models, it is an idea worth trying. 

2.2.3 Rule Evaluation 

The regions of the search space being explored by a rule induction algorithm can 

drastically change according to the evaluation heuristic used to assess a rule while 

it is being built. This section describes some of the heuristics used to estimate rule 

quality. In all the formulas presented, P represents the total number of positive 

examples in the training set, N represents the total number of negative examples 

in the training set, p represents the number of positive examples covered by a 

rule Rand n the number of negative examples covered by a rule R. In Alg. 2.2, 

the building block "Evaluate CR" is responsible for implementing rule evaluation 

heuristics. 

When searching for rules, the first aim of most of the sequential covering 

algorithms is to find rules that maximize the number of positive covered examples 

and, at the same time, minimize the number of negative covered examples. It is 

important to note that these two objectives are conflicting because as the number 

of covered examples increases, the tendency is that the number of negative covered 

examples will also increase. Examples of heuristics used by these algorithms are 

confidence, Laplace estimation, m-estimate and is-content. 

Confidence (also known as precision or purity) is the simplest rule evaluation 

function and is described as in Eq. (2.1). 

confidence(R) = p 
p+n 

(2.1) 

It is used by SWAP-I, and its main drawback is that, in the case of, say, a rule Rl 

covering 95 positive examples and 5 negative examples (confidence = 0.95), and 

a rule R2 covering 3 positive examples and no negative examples (confidence = 
1), it will prefer R2. This is undesirable, because R2 is not a statistically reliable 

rule, being based on such a small number of covered examples. 

In order to overcome this problem with the confidence measure, the Laplace 

estimation (or "correction") measure was introduced, and it is defined in Eq. (2.2). 

In Eq. (2.2), nClasses is the number of classes available in the training set. 

Using this heuristic, rules with apparent high confidence but very small statistical 
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support are penalized. Consider the previously mentioned rules Rl and R2 in a 

2-class problem. Now the Laplace estimation values are 0.94 for Rl and 0.8 for 

R2. Now Rl would be preferred over R2, as it should be. Laplace estimation is 

used by the CN2 [26] and BEXA [135] algorithms. 

laplaceEstim(R) = p + 1 
p + n + nClasses 

(2.2) 

m-estimate [44] is a generalization of the Laplace estimation, where a rule with 

a-coverage is evaluated considering the classes' a priori probabilities, instead of 

l/nClasses. More precisely, m-estimate is computed by Eq. (2.3), where m is a 

parameter. Eq. (2.3) corresponds to adding m virtual examples to the current 

training set, distributed according to the prior probabilities of the classes. Hence, 

higher values of m give more importance to the prior probabilities of classes, and 

their use is appropriate in data sets with high level of noise. 

p+m~ 
m-estimate(R) = P+N 

p+n+m 
(2.3) 

The Is-content measure, shown in Eq. (2.4), divides the proportion of positive 

examples covered by the proportion of negative examples covered by the rule, 

both estimated using the Laplace estimation. P+nClasses and N+nClasses can 

be omitted because they are constant during the rule refinement process. The 

ls-content is used by the HYDRA [5] algorithm. 

Is-content(R) = P+nClasses f"V P + 1 
n+l + 1 

N +nClasses n 

p+l 

(2.4) 

From these four described heuristics, the Laplace estimation and the m­

estimate are the most successfully used, mainly because of their small sensitivity 

to noise. 

A second desired feature in rules is simplicity. Rule size is the most straightfor­

ward measure of simplicity, but more complicated heuristics such as the minimum 

description length [123] can also be applied. Nevertheless, heuristics to measure 

simplicity are most of the time combined with other rule evaluation criteria. 

The minimum description length provides a trade-off between size and accu­

racy using concepts of information theory. It first estimates the size of a "theory" 

(a rule set, in the context of rule induction algorithms) in number of bits, and 

then add to it the number of bits necessary to encode the exceptions relative to 
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the theory, using an informational loss function [145]. The aim is to minimize the 

description length of the theory, so the trick is to find the best way to code the 

theory using a minimal number of bits. 

Within the group of heuristics that measure coverage/size are the ones based 

on gain, which compute the difference in the value of some heuristic function mea­

sured between the current rule and its predecessor. Information gain is the most 

popular of these heuristics, and it is defined as in Eq. (2.5), where R' represents a 

specialization/generalization of the rule R. In Eq. (2.5), the logarithm of the rule 

confidence is also known as the information content of the rule, and it can also 

be used as a heuristic function by itself. The information gain measure is used by 

the PRISM [22] and Ripper [33] algorithms. 

infoGain(R) = -log(confidence(R)) -log(confidence(R')) (2.5) 

In [60, 59], Furnkranz and Flach analyzed the effect of commonly used heuristic 

functions in the PN-space, and found that many of them are equivalent. They 

concluded that there are two basic prototypes of heuristics, namely precision and 

the cost-weighted difference between positive and negative examples. Precision is 

equivalent to the confidence measure described in Eq. (2.1), and the cost-weighted 

difference is defined in Eq. (2.6), where d is an arbitrary cost. 

costVVeigth =p- dn (2.6) 

They also interpreted the Laplace estimation and the m-estimate as a trade-off 

between these two basic heuristics, and again recognized their success due to their 

smaller sensitivity to noise. 

There is a last property desired in discovered rules but not often considered: 

interestingness, in the sense that a rule should also be novel and surprising to 

the user. This is very difficult to measure, but as shown in Tsumoto [138], it 

is very desirable in practice when the rules will be analyzed by the user. He 

demonstrated that from 29,050 rules found by a rule induction algorithm only 

220 were considered interesting by a user. When measuring rule interestingness, 

two approaches can be followed: a user-driven approach or a data-driven approach. 

The user-driven approach uses the user's background knowledge about the 

problem to evaluate rules. In work done by [127], for example, the authors used 

the general impressions of the users about the problem in the form of if-then rules. 
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The impressions were matched with the discovered rules in order to find, for ex­

ample, rules with the same antecedent and different consequents from the general 

impressions, and therefore surprising rules (in the sense that they contradict some 

general impressions of the user). 

In contrast, data-driven approaches measure interestingness based on statis­

tical properties of the rules, in principle without using the user's background 

knowledge. A review of data-driven approaches can be found in [69]. Measuring 

the interestingness of rules to the user in an effective way without the need for 

the user background knowledge sounds appealing at first glance. Nonetheless, it 

is important to note that a couple of studies tried to calculate the correlation 

between the value of these data-driven rule interestingness measures and the real 

subjective user interest on the rules, and they suggest this correlation is relatively 

low [20, 107]. In any case, the topic of rule interestingness is an active research 

area by itself, and it is out of the scope of this thesis. 

At last, it is interesting to point out that, intuitively, complete and incomplete 

rules should be evaluated using different heuristics. The reason is that, while in 

incomplete rules there is a strong need to cover as many positive examples as 

possible, a major goal of complete rules is also to cover as few negative examples 

as possible. Most algorithms use the same heuristic to evaluate both complete 

and incomplete rules. Maybe it is time to evaluate the effects of using different 

measures to evaluate rules in different stages of the generalization/specialization 

processes. 

2.2.4 Pruning Methods 

The first algorithms developed using the sequential covering approach searched 

the data for complete and consistent rule sets. It means they were looking for rules 

that covered all the examples in the training set (complete) and that covered no 

negative examples (consistent). However, real-world data sets are rarely complete 

and usually noisy. 

Pruning methods were introduced to sequential covering algorithms to avoid 

over-fitting and to handle noisy data, and are divided in two categories: pre­

and post-pruning. Pre-pruning methods stop the refinement of the rules before 

they become too specific or over-fit the data, while post-pruning methods find a 

complete and consistent rule or rule set, and later try to simplify it. Pre-pruning 

methods are implemented through the building blocks "Rules Stopping Criterion" 
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in Alg. 2.1 and "Refine Rule Stopping Criterion" in Alg. 2.2. Post-pruning uses 

the building block "Post-process RuleSet" in Alg. 2.1. 

Pre-pruning methods include stopping a rule's refinement process when some 

pre-defined condition is satisfied, allowing it to cover a few negative examples. 

They also apply the same sort of pre-defined criterion to stop adding rules to the 

classification model, leaving some examples in the training set uncovered. 

Along with the most common criteria applied for pre-pruning are the use of 

a statistical significance test (used by CN2); requiring a rule to have a minimum 

accuracy (or confidence, such as in IREP, where rule accuracy has to be at least 

equal to the accuracy of the empty rule) or associating a cutoff stopping criterion 

to some other heuristics. 

The statistical significance test used by CN2 compares the observed class dis­

tribution among examples satisfying the rule with the expected distribution that 

would result if the rule had selected examples randomly. It provides a measure 

of distance between these two distributions. The smaller the distance, the more 

likely that the distribution created by the rule is due to chance. 

Post-pruning methods aim to improve the learned model (rule or rule set) after 

it has been built. They work by removing rules or rules' conditions from the model, 

while preserving or improving the predictive accuracy in the training set. Among 

the most well-known post-pruning techniques are reduced pruning error (REP) 

[17] and GROW [32]. These two techniques follow the same principles. They 

divide the training data in two parts (grow and prune sets), learn a model using 

the grow set and then prune it using the prune set. Nonetheless, REP prune rules 

using a bottom-up approach whilst GROW uses a top-down approach. Hence, 

instead of removing the worst condition from the rules while the accuracy of the 

model remains unchanged (like REP does), GROW adds to a new empty model 

the best generalization of the current rules. 

When comparing pre- and post-pruning techniques, each of them has its ad­

vantages and pitfalls. Though pre-pruning techniques are faster, post-pruning 

techniques usually produce simpler and more accurate models (with the cost of in­

efficiency, since some rules are learned and then simply discarded from the model). 

Intuitively, this is due to the fact that post-pruning has more information (the 

complete learned model) available to make decisions, and so it tends to be less 

"shortsighted" than pre-pruning. However, methods which learn very specific 

rules and later prune them in a different set of data often have a problem related 

to the size of the data. If the amount of training data is limited, dividing it in 
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two subsets can have a negative effect since the rule induction algorithm may not 

get statistical support from the data when finding or pruning rules. 

In any case, pruning complete rule sets is not as straightforward as pruning 

decision trees. Considering that most of the rule pruning literature was borrowed 

from the tree pruning literature [124], it is necessary to keep in mind that pruning 

a subtree always keeps full coverage of the data set, while pruning rules can leave 

currently covered examples uncovered, and the algorithm may have no resources 

to reverse this situation. 

In an attempt to solve the problems caused by pre- and post-pruning tech­

niques, some methods combine or integrate them to get the best of both worlds. 

Cohen [32], for example, combined the minimum description length criterion (to 

produce an initial simpler model) with the GROW algorithm. 

I-REP [61] and its improved version, Ripper [33], are good examples of inte­

grated approaches. Their rule pruning techniques follow the same principles of 

REP [17], but they prune each rule right after it is created, instead of waiting 

for the complete model to be generated. After one rule is produced, the covered 

examples are excluded from both the grow and prune sets, and the remaining 

examples are re-divided in two new grow and prune sets. 

The main differences between I-REP and Ripper lie on Ripper's optimization 

process -which is absent in I-REP, and on the heuristics used for pruning rules 

and stopping adding rules to the rule set. The optimization process considers each 

rule in the current rule set in turn, and creates two alternative rules from them: 

a replacement rule and a revision rule [33]. After that, a decision is made on 

whether the model should keep the original rule, the replacement or the revision 

rule based on the minimum description length criterion. 

If at the end of the optimization process there are still positive examples in 

the training set which are not covered by any of the rules, the algorithm can be 

applied again to find new rules which will cover the remaining positive uncovered 

examples. 

2.3 Evolving Rules with Evolutionary Algo­

rithms 

The global search and problem independency of evolution techniques made their 

application successful in many diverse domains, including rule induction [39, 52, 
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148]. In this section a brief introduction to evolutionary algorithms (particularly 

genetic algorithms (GA) and genetic programming (GP)) is given, followed by the 

description of some GAs and GPs developed for rule induction. 

2.3.1 Introduction to Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are stochastic search methods inspired by the 

Darwinian concepts of evolution and survival of the fittest. They became very 

popular in many kinds of problems, like function optimization and several machine 

learning tasks, due to their domain-independent nature and their robust global 

search mechanism - with its associated implicit parallelism and noise tolerance 

[10, 63]. 

In essence, an EA evolves a population of individuals, where each individual is 

a candidate solution for the target problem. At each generation, the individuals 

are evaluated according to a fitness function. The best individuals are selected to 

reproduce, and undergo crossover and mutation procedures in order to produce 

new offspring (new candidate solutions) that inherit some features from their par­

ents. The evolutionary process is iteratively performed until a stopping criterion 

is satisfied, such as a maximum number of generations is reached or an optimal 

solution is found. 

According to the representation of their individuals and the evolutionary op­

erators they use, EAs can be generally classified as genetic algorithms, genetic 

programming, evolutionary strategies and evolutionary programming [10]. In this 

work we are particularly interested in genetic algorithms (GA) and genetic pro­

gramming (GP), which are the kinds of EA most used for rule induction. Ex­

plaining the difference between these two approaches is not an easy task. 

When the GP era started, GPs were said to be a variation of GAs where 

individuals represented computer programs. Hence, while GAs find a solution for 

a specific instance of a problem (e.g., finding a (near) optimal tour for an instance 

of the Traveling Salesman Problem - TSP), GPs are supposed to find a general 

solution for the problem (e.g, finding a good algorithm for solving any instance of 

the TSP). In addition, while GAs used a fixed-length string to encode individuals, 

GPs' individuals were represented by a variable sized tree. This definition was 

accepted by some years, but as research developed the terms GA and GP became 

almost indistinguishable. This happened because most GPs did not really evolve 

programs (for instance, to the best of our knowledge there is no GP that can 
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evolve a generic algorithm for solving any instance of the TSP problem), and they 

can also use a fixed-length string to encode their individuals. 

In [149], Woodward argued that indeed the representation used by GAs and 

GPs cannot be pointed out as the main difference between them. Instead he 

concluded that the difference lies in the interpretation of the representation. In a 

GA the mapping between the description and the object being described is one 

to one or many to one. In contrast, in a GP the mapping is always a many to one 

(e.g., in a regression the same function can be expressed in many ways depending 

on the function and terminals sets) and non uniform. 

The next section presents some examples of systems that used GAs and GPs 

for rule induction. Discerning GA from GP in the context of rule induction is even 

more complicated then in the context of conventional optimization tasks. Both 

GAs and GPs have been used to evolve sets of rules for specific data sets (current 

GPs do not generate a generic rule induction algorithm), and an analysis of the 

interpretation of the representation, as suggested by Woodward [149], is also not 

valid. This is because in the rule induction problem both GAs and GPs use a 

many-to-one mapping, since a concept (class) C can be described by different 

predictor attributes, combined in different ways and associated to distinct rule 

sets. Hence, they will be contrasted using their actual individual representation. 

2.3.2 GAs and GPs for Rule Induction 

There is a huge literature dedicated to GAs and GPs designed to solve the rule 

induction task. Here we will concentrate on how GAs and GPs implement the 

same four basic components present in sequential covering algorithms, previously 

pointed out as: (1) the representation of the candidate rules, (2) the search mech­

anisms used to explore the space of candidate rules, (3) the way the candidate 

rules are evaluated and (4) rule pruning. 

However, before studying these basic components, we will explore the dif­

ferences between the individual representations used by GAs and GPs for rule 

induction, and show how they indirectly determine the representation used by the 

candidate rules. Next, we will present how the EA's operators and the fitness 

function control the search and evaluation of rules, and how pruning methods can 

be introduced. 
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G A versus G P representation 

GA methods for rule induction can be broadly classified in two approaches, accord­

ing to the way the individuals encode the rules: the Pittsburgh and the Michigan 

approaches [52]. In the Pittsburgh approach, a single GA individual represents an 

entire set of rules. In the Michigan approach, each individual represents a single 

rule. In the latter case, in general either the GA has to be run many times in order 

to generate a rule set, or many rules in the population have to be combined to 

create a rule set. Regardless of the appr~ach followed, the individuals are repre­

sented using a fixed or variable length string, which in turn can be encoded using 

a low (binary) or high level representation, as explained later. 

GPs' individuals are typically represented by a tree (although other represen­

tations such as a linear representation can also be used). In the majority of the 

methods, each tree (individual) represents a set of rules for a target class C, and 

the GP is run as many times as the number of classes present in the data [35] -

since each run discovers a rule set for a distinct class. Some methods also pro­

pose a multi-tree representation of individuals [101] - where each tree encodes the 

rule set for a distinct class, so that rules for all classes are discovered in just one 

algorithm run. 

In th~ GA representation, an individual usually represents only the antecedent 

of the rule, while the consequent is set to the class of the majority of the covered 

examples. Hence, the class predicted by a rule is (re)-set every time a rule is 

created or modified. Including the class in the individuals' genotype is not rec­

ommended because the fitness of the rule is totally dependent on the consequent 

value, and a rule with a good antecedent but the wrong consequent would lead to 

a low fitness and consequently a low chance of surviving the selection process. 

In GAs, the rule antecedent encoding strongly depends on the type of data we 

are producing rules for. Nominal (symbolic) and numerical (continuous) attributes 

can be better encoded in different ways. When using a low level encoding, for 

instance, symbolic attributes are assigned a bit for each of the values they can 

take on, as used in [80]. Thus an attribute nationality which can take on the 

values "American, European, Asian, African" is represented by four bits, and the 

string 1001 represents the antecedent "nationality = American or African". Using 

this same representation, numerical attributes could have their current values 

translated into binary code. However, for data sets with many attributes this 

representation can lead to very long strings, making the GA less efficient. In 

contrast, when using a high level encoding, attributes have their values directly 
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a. IAndl b . IAndl 

I age >~ male I ~ 
I a~o I I se~ale I 

Figure 2.1: GP tree using (a) booleanized attributes and (b) non-booleanized 
attributes 

encoded in the genome, such as in [10]. 

Besides using low or high level encoding, a rule can be represented by a fixed 

or a variable number of conditions. Fixed length representations usually have size 

a (where a is the number of attributes in the data set), and an active bit setting a 

particular rule condition as active (used by the rule) or not. It facilitates the use of 

crossover and mutation operators since the conditions in a given position mutated 

or swapped during crossover are guaranteed to represent the same attributes in 

both the parents and the offspring. Variable-length representations have sizes 

varying from 1 to a, and parent individuals using this kind of representation often 

need to be aligned before evolutionary operators are applied. 

Regarding GPs, rules are created using a set of functions (like AND, OR, >, 

<, =) and terminals (represented by the data set attributes and values). Non­

terminals represent the root and internal nodes in the tree, while terminals repre­

sent the leaf nodes. GPs' major problem when looking for rules is related to what 

is called the closure property [12]. The closure property states that the output of 

a node in the tree has to be valid as an input for the next node in the tree. How­

ever, nominal and continuous attributes use different operators (a rule condition 

like "IF nationality> American" is not valid), and the algorithm has to address 

this problem. 

There are two conventional ways of dealing with the closure property in the 

context of rule induction. The first one is to "booleanize" the attributes [52], in 

other words to transform all the attributes into boolean ones, which allows the 

use of logical connectives (e.g. AND, OR) as functions. In this case all the GP's 

terminals are represented by complete conditions such as "age> 10", in contrast 

with having the symbols "age" and "10" in the terminal set and the symbol ">" 

in the function set. Figure 2.1 illustrates these differences. 

The second way of addressing the closure property problem is to use a strongly­

typed GP (STGP) [84] or a Grammar-based GP (GGP) [148]. Strongly-typed 
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GP and Grammar-based GP are special kinds of algorithms in which the closure 

problem is tackled by imposing constraints when creating and/or modifying the 

individuals. In the basic STGP [100], a modified version of the original STGP, the 

user associates a type with each terminal, and then specifies a data type for each 

of the arguments and the output of the functions. For example, we associate the 

type nominal to the attribute sex and its values, an the type real to the attribute 

age and its values. We then define that the function "=" accepts nominal values 

as its two inputs and outputs a boolean value, while ">" accepts two real inputs 

and also outputs a boolean value. This solves the problem of creating invalid rule 

conditions like "nationality> American", because the function ">" would not 

accept nominal values as inputs. 

In grammar-based GP, the individuals are created following a grammar, which 

describes the valid operations. A more detailed description of methods for rule 

induction following this approach can be found in Section 3.3. 

According to the individual representations given above, we can conclude that 

in the case of GAs the rules use a traditional representation. The user specifies 

which kinds of relational operators are accepted, internal disjunctions can be easily 

represented by the lower level encoding and the class predicted by the rule can 

change dynamically according to the number of positive examples covered. In the 

case of GP, the rules' representation is determined by the function and terminal 

sets, which can include a large variety of symbols and operators. Thus GP can 

generate rules using very expressive representations, associating attributes using 

relational and arithmetic operators, such as "IF ((wage - monthlySpents < 2 * 
acountBalance) AND (age> 45)) THEN giveLoan". Although most of the EAs 

developed for rule induction uses propositional-logic [19], there are examples of 

EAs creating first-order rules (such as in [67]) and fuzzy rules (like in [43]). 

EA Operators and Fitness Function 

The previous section described how GAs and GPs represent a set of rules. In 

this section we explain how EA operators search for and prune rules, and how the 

fitness function evaluates them. 

EAs' search is guided by evolutionary operators. Crossover and mutation 

are the most common ones, and can be used to generalize or specialize a rule. 

Crossover selects two individuals and exchanges parts of them, while mutation 

replaces part of an individual by a randomly generated part. When crossover and 
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mutation generalize or specialize a rule, the generalization operation is equiva­

lent to an OR logical operator, and the specialization to an AND operator. For 

instance, consider two individuals Ind1 and Ind2 , represented by the conditions 

"age > 25" and "age < 50". Applying a specialization crossover to these condi­

tions would restrict the age to a range varying, say, from 30 to 50, creating the 

condition "30 < age < 50". A generalization crossover, in turn, could set age to 

any value, it means, the age would not matter anymore in the new rule. 

There are also other operators specially designed for generalizing/specializing 

rules, such as the drop condition operator. It randomly selects a condition to be 

excluded from the rule and removes it, as shown in [80]. It is important to notice 

that, when choosing which operator to apply to a rule, we have to consider how 

general or specific the rule is. It is not worth, for example, to specialize even 

more a rule that covers just one example. EAs usually adjust the probabilities of 

applying generalization or specialization operators according to the total number 

of positive and negative examples covered by a rule. 

In EAs, the population initialization methods establish the regions of the space 

where the search starts. The majority of EAs for rule induction do not initialize 

their population entirely at random because this can create rules that do not cover 

any examples in the training set. Initialization methods include seeding (choosing 

an example from the training set to represent a rule) followed by specialization 

steps, such as in [93], or creating the first population just with very general rules, 

composed by one or two conditions. 

During EAs' search, a fitness function assesses the quality of the individuals 

in the population, and it is used to select the individuals which will form the new 

population. When an individual represents a complete rule set (as when using the 

Pittsburgh approach), the entire rule set is evaluated, so heuristics which take into 

account the performance of the entire set, like accuracy or sensitivity/specificity, 

are used. When an individual represents a single rule, we can use pretty much the 

same evaluation heuristics used by sequential covering rule induction algorithms. 

They are based on a combination of the information obtained from the number 

of covered (positive and negative) examples in relation to the total number of 

examples in the data set [141], and some of them also incorporate a measure 

of rule complexity (usually obtained from the size or depth of the tree which 

represents an individual), like in [35]. 

Pruning, the last element of sequential covering algorithms, is performed in 
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EAs using special operators, like the previously introduced drop condition. Al­

though we can consider that drop condition performs a kind of pruning, its main 

drawback is to choose at random the condition to be excluded from the rule. 

Some more sophisticated operators which try to remove from the rule irrelevant 

conditions were implemented and are used in [93, 19]. 

2.4 Extracting Rules from other Knowledge 

Representations 

Rules are in general considered an appealing knowledge representation because 

of their simplicity and interpretability. However, in certain domains the accuracy 

obtained by methods using a less comprehensible knowledge representation out­

performs the accuracy obtained by models based on rules. But just producing 

models with high accuracy and no interpretability is not enough from a data 

mining point of view [49], so methods to extract rules from neural networks [77], 

support vector machines [106] and decision trees [124] have been proposed. 

Artificial Neural networks (ANN) are models inspired by the biological neural 

system and its capabilities of processing information and learning. They are com­

posed by a number of highly interconnected processing elements (neurons) which 

work in parallel and learn from experience. Their success is explained by their 

robust nature - which makes them noise tolerant, and their distributed processing 

approach - which makes them fault tolerant. Nevertheless, their main disadvan­

tage lies in the black-box model they produce. In general an ANN is not able to 

explain the decision process used to classify an example as belonging to class C1 

or C2 . This problem prevents their application in safety-critical tasks and other 

kinds of task (e.g. medical diagnosis) where an understanding of the decision 

making process is crucial. 

In order to overcome this main drawback of ANN, in the early nineties a va­

riety of methods to extract rules from ANN were proposed. It is very difficult 

to categorize and/or generalize these methods because for different ANN archi­

tectures different rule extracting algorithms might be applied. Since there are so 

many different algorithms, and since ANNs are not the focus of this thesis, we 

are not going into detail about them. Instead, we are going to concentrate on the 

broad differences among them. 
In one of the first survey papers about rule extraction algorithms (focusing only 
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on feed-forward multilayered ANN), a taxonomy of such algorithms was proposed 

[7]. It is based on five criteria: 

1. Expressiveness power of the extracted rules: This criterion is related to the 

rule representation element present in sequential covering algorithms and 

EAs. It classifies a rule as being represented by propositional, first-order, 

fuzzy or nonconventional logic. 

2. Translucency: This one refers to how the rule extraction algorithm "sees" 

the ANN when extracting rules from it, and is classified in three approaches. 

The first approach is called decompositional, and it produces rules at the 

level of single ANN units (neurons) and then combines them in a rule set. 

The second approach is called pedagogical. In this case, the ANN is consid­

ered a black-box, and the algorithm extracts rules by mapping the inputs 

to the outputs using a symbolic learning algorithm. The last approach is 

the eclectic, and combines the two previously described ones. In a later pa­

per [136], a fourth approach was introduced to incorporate algorithms that 

extract rules from recurrent neural nets, and it is called compositional. It 

addresses algorithms which analyze the ANN units all together. 

3. Portability: It describes how well the rule extraction algorithm can be mi­

grated from one ANN architecture to another. 

4. Quality of the extracted rules: It is evaluated using the following criteria: (a) 

rule accuracy; (b) rule fidelity - how well the rules mimic the behavior of the 

ANN; (c) rule consistency, which means, how similar rules extracted from 

different networks trained to perform the same task are; (d) rule compre­

hensibility. Criteria (a) and (d) can be used to evaluate rules generated by 

any rule induction algorithm, and were previously discussed in the sections 

about sequential covering and EAs algorithms. 

5. Algorithm complexity. 

Although these criteria were proposed more than 10 years ago, and current 

methods keep using them, they are not suitable for all ANNs architectures. A re­

cent survey done by Jacobson [77], considering this time recurrent ANNs, revised 

these criteria for that specific architecture. The revised criteria exclude translu­

cency, for example, which is the same for all recurrent ANNs, and introduced 

some architecture-related ones, such as how the recurrent ANNs continuous state 

space is mapped into a finite set of discrete states. 
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Research in the last 15 years proved to be possible to extract accurate and 

comprehensible rules from ANNs, although this is a hard task and it is not suc­

cessful in all application domains. It also showed how difficult it is to categorize 

these algorithms, once they usually include some architecture-driven properties. 

The main new challenge now is not extracting rules from ANNs, but rather ex­

tracting them from a relatively new type of classification models: support vector 

machines. 

Support Vector Machines (SVMs) [132] are methods that build classifiers by 

constructing hyper-planes in a n-dimensional space, it means, by drawing "lines" 

in the n-dimensional space which are able to separate examples from different 

classes. Drawing these lines is not complicated when we are faced with linear 

problems. However, most of the real world problems deals with non-linear class 

boundaries. 

In the case of non-linear problems, SVMs create a mapping between a set of 

input values (examples) and a feature space, where these initially non-linear class 

boundaries are made linearly separable via a transformation (or mapping) of the 

feature space. This mapping is done by a set of mathematical functions called 

kernels. After performing this mapping, SVMs use a iterative training algorithm 

to minimize an error function. 

Methods to extract rules from SVMs are far from being as developed as the 

ones for ANNs. Some examples of recently proposed approaches are the works of 

Nunez et ai. [106] and Fung et ai.[55]. Nunez et ai. use a clustering algorithm to 

create a prototype vector for each of the possible classes of a problem, and combine 

them with the support vectors using geometric methods. These geometric methods 

create ellipsoids in the input space, which are converted in IF-THEN rules. Fung 

et ai., in turn, use a method that generates hyperplane classifiers and later defines 

rules as hypercubes in a n-dimensional space. 

Rule extraction from SVM is anew, promising and under-explored research 

area. It is very likely that, in the near future, attempts to improve these pioneering 

works and come up with better and more efficient methods will be made. 

Until now we described the efforts of the ANN and SVM communities to 

extract rules from black-box approaches. The motivation for creating these algo­

rithms was to have access to more comprehensible and simpler knowledge. The 

last approach we will present in this section shows a method to extract rules from 

decision trees. But what is the motivation to do so, if trees are also considered 

comprehensible models? 
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When comparing rules with trees, rules are in general said to have the following 

advantages: 

• Trees may have a lot of irrelevant information because of the replication 

problem [61]. This problem arises because decision tree learning algorithms 

cannot represent overlapping rules. Consequently, in some cases, the same 

subtree has to be learnt many times in different points of the tree. This 

problem also tends to make decision trees less comprehensible and more 

complex than sets of rules. 

• There are certain rules that cannot be easily represented in a tree structure 

• Systems based on rules are easier to update 

Taking these points in consideration, after creating a decision tree following 

the divide and conquer strategy, the tree can be transformed into a set of rules. 

The divide and conquer strategy [124] constructs a decision tree using a top-down, 

typically greedy search. It evaluates all the predictor attributes to verify how well 

each of them, individually, classifies the examples in the training set. The best 

attribute is selected as the root of the tree. For each possible value of the chosen 

attribute a sub-tree is generated. For each sub-tree, the next attribute is chosen 

considering only the examples of the training set whose attributes values satisfy 

the condition associated with the corresponding branch of the tree. The process is 

recursively repeated until a stopping criterion is satisfied, e.g., until all examples 

in a leaf node belong to the same class or until the number of examples in a leaf 

node is smaller than a user-defined threshold. The class predicted by each leaf is 

determined by the most common class value found among the examples at that 

leaf. 

After the tree is generated, it is mapped into a set of rules, creating a new 

rule for each of the tree paths from the root to a leaf. But this mapping does 

not make the set of rules simpler than the complete tree. In order to simplify the 

set of rules, each rule is typically pruned using a greedy process. We summarize 

here the rule pruning process used by C4.5 [124], which is probably the most used 

method for extracting rules from a decision tree. 

F~llowing the individual rules' simplification process, a subset of rules is chosen 

to represent a specific class C. The minimum description length principle is used 

to guide the construction of these subsets. During this process, if the number 

of simplified rules is not too big, all the possible subset combinations are tried. 



CHAPTER 2. RULE INDUCTION ALGORITHMS 34 

Otherwise a simulated annealing algorithm is used to find a good rule subset for 

each class C. 

These rules subsets are then ordered because in the case of rule conflict (more 

than one rule classifying the same example in different classes) the rule that ap­

pears first in the rule set is chosen to classify it. Classes with many false positives 

are left to the end of the rule set, to give other rules the opportunity to correctly 

classify them. A default rule is also inserted to the set, and its class is set to the 

class which has more examples not covered by any rule. A last step then optimizes 

the rule set as a whole. It tries to delete rules from the rule set, and those rules 

whose omission reduces the number of classification errors are excluded from the 

set. 

2.5 Summary 

Rule induction is a large research area. This chapter presented some concepts 

which are relevant to this thesis, including the three most used approaches to 

induce rules from data, namely sequential covering algorithms, evolutionary algo­

rithms and algorithms to extract rules from other knowledge representations. 

In this thesis, we are particularly interested in sequential covering algorithms, 

and we showed how most of the algorithms proposed in the literature following 

this approach use the same basic algorithm to produce rule sets or rule lists. We 

presented an overview of the methods which can be used for searching, evaluat­

ing and pruning rules during the induction process. This will be helpful when 

introducing our approach to automatically evolve rule induction algorithms. 

We also showed how GAs and GPs are being used to extract rules from specific 

data sets, and later we will contrast these approaches with the proposed one, where 

a GP produces complete rule induction algorithms which can be applied to any 

classification data set. 
An overview of rule extraction methods to generate rule models from neural 

networks and support vector machines was also presented, and emphasized the 

importance of having classification models which can explain their decision making 

process and be understandable by humans. 



Chapter 3 

Genetic Programming 

3.1 Introduction 

Section 2.3 introduced the basic concepts of evolutionary algorithms and showed 

how genetic algorithms and genetic programming were previously used to auto­

matically evolve rule sets for a particular data set. This chapter explains in more 

details the concepts of genetic programming, and presents one of its variations: 

grammar-based genetic programming [143, 147, 110]. 

Genetic Programming (GP) [84] is an area of evolutionary computation which 

aims to automatically evolve computer programs. It first became popular for 

evolving a population of trees representing Lisp S-expressions, where each in­

dividual of the population was a candidate solution for problems varying from 

symbolic regression to the invention and reinvention of circuits and controllers 

[85]. As research in the area of GP developed, many other representations for 

GP individuals were also developed, including GPs with GA-like genomes (linear 

genomes), individuals represented by graphs or based on grammars. Programs in 

a variety of languages other than Lisp were also created (including Prolog, C and 

Java programs), but there is still a great deal of research to be done in this area. 

GPs can be easily adapted to solve different problems just by redefining its 

sets of terminals and functions, and by finding an appropriated fitness function. 

Its success is backed up by a list of 36 human-competitive solutions (see [85] 

for the definition of the eight criteria which make a GP-evolved solution human­

competitive), where two created patentable new inventions [62]. 

A standard GP system has some elementary components which include the 

individual representation, the population initialization procedure, the calculation 

of the fitness function, a selection mechanism and evolutionary operators. These 

35 
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elements will be discussed in Section 3.2. 

Despite its success in finding good solutions for a variety of problems, one of 

the main drawbacks of the standard GP form is the need to satisfy a property 

called closure. The closure property requires that all the G P terminals and G P 

functions produce a value which can be used as a valid input by another GP 

function. Because of this constraint, many conventional GP systems can work 

with only one kind of data type. In Section 2.3.2 we showed how GPs dealt with 

the closure problem when creating rule induction models for specific data sets: 

booleanizing attributes, using a strongly typed genetic programming (STGP) [100] 

or a grammar-based genetic programming (GGP) [144]. Booleanizing attributes 

is a problem-dependent solution to avoid closure, but both STGP and GGP can 

be used in any other problem domain. 

As explained before, the STGP created by Montana associates a data type to 

each GP terminal and GP function, and the population initialization process and 

crossover operation are restricted (a node has to return the data type expected 

by its parent node). This mechanism overcomes the problem of dealing with only 

one data type, but at the same time, as pointed out in [82], makes some zones 

in the search space inaccessible, due to crossover restrictions. Nonetheless, one of 

the most interesting observations showed in Montana's work is the fact that only 

20 out of 50,000 individuals generated in the standard GP (i.e., not STGP) initial 

population of a multidimensional least squares problem were type consistent. This 

observation emphasizes the importance of a strongly-typed system. 

Following the STGP, grammar-based GPs (GGPs) were also created in order 

to effectively cope with the constraints imposed by the closure property. As its 

name indicates, the main difference between a standard GP and a grammar­

based GP lies in the use of a grammar. In GGPs, the sets of terminals and 

functions are replaced by a grammar. The grammar enforces the generation of 

syntactically correct individuals and, although it also restricts the explorable zones 

of the search space, it most importantly allows the inclusion of prior knowledge 

about the problem to guide the search. Section 3.3 introduces the concept of 

grammars and discusses the two main approaches used when combining G P and 

grammars: GGP with Solution-Encoding Individual and GGP with Production­

Rule-Sequence-Encoding Individual. It also describes some examples of GGP 

systems used to create rule sets for specific data sets, and contrasts them with the 

systems using standard GP techniques. 
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3.2 Standard Genetic Programming 

This section discusses the six essential components considered in the design of a 

standard G P system: 

1. A set of functions and a set of terminals, used to create the GP first popu­

lation. 

2. A representation for the individuals. 

3. A population initialization method. 

4. A fitness function, used to measure the quality of the individuals (candidate 

solutions). 

5. A selection method. 

6. Crossover and mutation operators, which use the selected individuals to 

generate new offspring. 

The function set and the terminal set define the primitives with which a pro­

gram (an individual) in GP is built. Terminals provide a value to the system, while 

functions process a value already in the system [12]. The terminal set is usually 

composed by constants, variables and/or zero-argument functions. In turn, the 

function set may include boolean and arithmetical functions, conditional and/or 

loop statements and subroutines, among many others. 

While choosing the elements that will compose the terminal and function sets, 

the designer has to keep in mind that they are responsible for determining the size 

of the GP search space. Hence, too many terminals and functions might create 

an unnecessarily large search space of solutions, making it difficult to find a good 

solution in that space. At the same time, the terminal and function sets should 

have enough elements to generate a good candidate solution for the problem [84]. 

As pointed out before, although the designer can freely choose the terminal 

and function sets used by the GP, these terminals and functions have to respect 

the closure property. Recall that the closure property states that every function in 

the function set has to be able to handle the values it receives as input (which can 

be a terminal or the output of another function). For instance, a division operator 

has to be modified to cope with division by zero (this is often implemented by 

making the operator return a given value, rather than an error, in case of division 

by zero). 
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a. b. 

Figure 3.1: GP individual using (a) tree representation and (b) linear representa­
tion 

The constraints imposed by the closure property allowed the first GP systems 

to deal with only one data type. Nevertheless, new GP systems were developed 

in order to overcome this problem, as will be explained in Section 3.3. 

Once the set of functions and terminals are defined, they can be used to gen­

erate the first GP population. This population is formed by a set of individuals, 

where each individual represents a solution to the target problem. Hence, if we 

are developing a GP for discovering classification rules in a specific data set, for 

instance, each GP individual will represent a set of candidate rules for that data 

set, as explained in Section 2.3 (see Figure 2.1). 

There are two main types of individual representations used in the GP liter­

ature: the first one represents an individual as a tree, and the second as a linear 

structure (other types of representations, such as graphs are also possible [12]). 

Figure 3.1 shows an example of a tree-represented and a linear-represented GP 

individual. Both of them encode the function x 2 + 1. In this example, * and + 
are functions, and x and 1 are terminals. 

As observed in Figure 3.1, in the tree representation the execution of the tree 

is usually made in postfix order (reading the leftmost node of the tree first), while 

a linear representation is simply a sequence of commands that are executed from 

left to right. Nonetheless, these conventions can be changed depending on the 

functions included in the function set. 

After choosing the set of terminals and functions, and an individual represen­

tation, the next step into the implementation of a GP system is to create the first 

population. In the context of the very popular tree representation, there are two 

methods commonly used [84], named grow and full. The grow method creates 

individuals (with a pre-defined maximum depth) by selecting elements belonging 

to both the function and the terminal sets (except by the root node, which is se­

lected from the function set). This selection scheme end up producing trees with 

very diverse shapes and depths. 
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The full method, in turn, generates trees by selecting only elements from the 

function set, until the maximum depth of the tree is reached. At this point, it 

selects elements only from the terminal set to finalize the tree generation process. 

As a result of this initialization process, the trees produced have all the same 

depth. 

Nevertheless, in order to maintain diversity in the population of individuals 

generated, a method combining the two just described methods was invented. It is 

called ramped-half-and-half, and works as follows. Given the maximum depth M 

of a tree, the population is divided into equally distributed groups of individuals 

which will be initialized with a maximum depth varying from 2 to M. Within each 

of the created groups, half of the individuals is generated using the grow and half 

using the full initialization technique. 

At the end of the population initialization process, the individuals are evalu­

ated according to a fitness function, and the ones representing the best candidate 

solutions for the problem are more likely to be selected to undergo reproduction, 

crossover and mutation operations. Each of these operations is applied to the 

selected individuals according to a user-defined rate. Section 3.2.1 describes pos­

sible fitness evaluation scenarios, while Section 3.2.2 reviews selection methods 

and GG P operators. 

After the design of the main components of the GP is completed, we still 

have to choose values for standard parameters like population size, number of 

generations, crossover and mutation rates, maximum individual size, etc. In gen­

eral these parameters are very problem related, and are usually selected during 

preliminary experiments. 

3.2.1 Fitness Function 

In a GP, the fitness function is used to evaluate how well an individual solves the 

target problem. It is responsible for determining which individuals will reproduce 

and have parts of their genetic material (Le., parts of their candidate solution) 

passed onto the next generation. The better the fitness of an individual, the higher 

the probability of that individual being selected for reproduction, crossover and 

mutation operations. 
Together with the sets of terminals and functions, the fitness function is one 

of the problem-dependent components of a GP. It is well known that, in most of 

the real-world problems addressed by GP or other search method, the quality of 
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a candidate solution cannot (or at least should not) effectively be evaluated using 

a single measure (0 b j ective ) . Consider the case of evolving a set of classification 

rules for a given data set, for instance. 

In Section 2.3.2 we mentioned that the GP fitness function usually involves 

a measure related to the classification accuracy of an individual (rule set) when 

evaluated in a given set of training examples, but this is not the only important 

characteristic of a good rule set. As the set of rules should be comprehensible 

for a human reader, comprehensibility should also be taking into account and, in 

an ideal world, a measure of rule interestingness should also be considered (see 

Section 2.2.3). 

Unfortunately, many projects that should involve the simultaneous optimiza­

tion of multiple objectives avoid the complexities of such optimization, and adopt 

the simpler approach of just weighing and combining the objectives into a single 

function. However, this simpler approach is not very effective in many cases due to 

two main reasons. First, the objectives being optimized are often conflicting with 

each other. Second, the objectives often represent different and non-commensurate 

aspects of a candidate solution's quality, so that mixing them into a single formula 

is not semantically meaningful. 

The use of multi-objective fitness based on the Pareto optimality is becoming 

more and more common in evolutionary algorithms [38,31,30]. At the same time, 

the use of multi-objective optimization based on Pareto optimality is becoming 

more popular in machine learning in general too [53, 79]. The next section de­

scribes the concepts of multi-objective optimization and Pareto optimality, and 

show how they can be applied in order to calculate the fitness function of GP 

individuals. 

The Pareto Optimality Concept 

According to the Pareto's multi-objective optimization concept, when many ob­

jectives are simultaneously optimized, there is no single optimal solution. Rather, 

there is a set of optimal solutions, each one considering a certain trade-off among 

the objectives [31]. In this way, a system developed to solve this kind of problem 

returns a set of optimal solutions, and can be left to the user to choose the one that 

best solves his/her specific problem. This means that the user has the opportunity 

of choosing the solution that represents the best trade-off among the conflicting 

objectives after examining several high-quality solutions. Intuitively, this is better 

than forcing the user to define a single trade-off before the search is performed. 
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Figure 3.2: Pareto front obtained when optimizing both the error rate and the 
total number of rule conditions produced by a rule induction algorithm 

This is what happens when the multi-objective problem is transformed in a single­

objective one by assigning weights to each objective and combining all objectives 

into a single weighted formula. The Pareto's multi-objective optimization concept 

is used to find this set of optimal solutions. According to this concept, a solution 

8 1 dominates a solution 8 2 if and only if [38]: 

• Solution 8 1 is not worse than solution 82 in any of the objectives; 

• Solution 8 1 is strictly better than solution 8 2 in at least one of the objectives. 

Figure 3.2 shows an example of possible solutions found by an evolutionary 

algorithm when solving a rule induction problem where there are two objectives: 

to minimize both the error rate and the number of total conditions present in 

a rule set. The solutions that are not dominated by any other solutions are 

considered Pareto-optimal solutions, and they are represented by the dotted line 

in Figure 3.2. 

Note that Solution A has a small error rate but a large number of rule con­

ditions. Solution B has a large error but a small number of rule conditions. 

Assuming that minimizing both objectives is important, one cannot say that so­

lution A is better than B, nor vice-versa. On the other hand, solution C is clearly 

not a good . solution , since it is dominated, for instance, by B. 

In GPs, the use of a multi-objective fitness function allows the system to return 

to the user the Pareto front found in the last generation of the G P or stored in an 

archive separated from the population. The user then chooses the best solution 

based on a desired trade-off between the objectives. In cases where the system 

does not have a direct user, an automated decision making process can choose 

one solution over the others. For instance, in [114], we suggested the use of a 

decision making criteria based on the number of individuals in the population 
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which are dominated by a solution in the Pareto Front. The more solutions in 

the population a solution in the Pareto Front dominates, the larger of the chance 

of it being selected as the final solution. A review of other methods for decision 

making in multi-objective problems can be found in [31]. 

3.2.2 Selection Methods and Evolutionary Operators 

Following the evaluation of the GP individuals, a subset of them is selected to un­

dergo reproduction, crossover and mutation operations. There are many selection 

methods used in a GP, including fitness-proportional selection, ranking selection 

and tournament selection [10]. Here we describe the tournament selection scheme, 

which will be used by the proposed GP described in Chapter 4. 

The tournament selection method works by randomly obtaining k individuals 

from the population. These k individuals will compete against each other in a 

tournament. The individual with the best fitness value defeats the other individ­

uals. The bigger the value of k, the higher the selective pressure, i.e., the faster 

the stronger individuals will dominate the population. 

The individuals selected during the GP selection phase go through crossover, 

mutation or reproduction operations, according to user-defined rates. The repro­

duction operator simply copies the selected individual to next generation, without 

any alteration. Crossover swaps genetic material (parts of candidate solutions) 

between two individuals, whereas mutation replaces some part of the genetic ma­

terial of an individual with new randomly-generated genetic material. The basic 

idea of crossover and mutation is as follows. 

Crossover re-combines the genetic material of two parent individuals in order to 

produce two new children. If the individuals are represented by trees, randomly 

selected subtrees are swapped between the two parents. In the case of linear 

genomes, randomly selected linear segments of code are swapped. 

Unlike crossover, mutation acts on a single parent individual of the population. 

It randomly selects a subtree of the tree-based genome or a gene in a linear genome 

and replaces it by a new randomly-generated subtree or gene. 

Both crossover and mutation operations can be implemented in many ways 

[63]. Regardless of how they are implemented, they always have to respect the 

closure property, guaranteing that all the new generated individuals are valid. 

In the GP community, a wide discussion about the effects of crossover opera­

tor has taken phtCe in the literature [8, 12]. While in Genetic Algorithms (GAs) 
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crossover was considered a powerful tool to preserve building blocks (good seg­

ments of code), in GP its effectiveness has not been proved yet. Many researchers 

defend the idea that the crossover operator in GP systems is nothing more than a 

macro-mutation operator. According to empirical studies, crossover really reduces 

the fitness of the offspring relative to their parents in almost every GP system. 

One of the reasons for the bad results obtained with crossover operators is 

related to the fact that they are context insensitive. While in GAs crossover re­

spects homology - because each gene has a specific function - in G P crossover 

does not take into account the context when choosing crossover points. Consider 

a tree-representation GP individual, for example. A crossover point is randomly 

selected for each of the two individuals, and their genetic material swapped. How­

ever, a subtree that is good in the context in which it appears in individual 1 can 

be bad in the context in which it will appear in individual 2. This fact is not 

taken into account when GP crossover is performed. 

In addition, researchers believe that the destructive effect of crossover is one 

of the factors responsible for the phenomenon of bloating [8]. Bloating is the 

exponential growth of introns in the individuals. An intron is defined in biology 

as a base sequence, found in a gene, which is not used to create proteins. With 

respect to artificial systems, an intron is a sequence of code that does not directly 

affect the survivability of the individual [12], like x = x + 0 or y = y * 1. In the 

first generations of the evolutionary process, introns can help building blocks to 

protect themselves from the destructive power of crossover. But after the first 

generations, they start growing exponentially (bloating), sometimes making the 

evolutionary process finish prematurely. 

Nevertheless, current crossover operators can be improved by adding to them 

some "intelligence", as summarized by Banzhaf et al [12]. Intelligent crossover 

operators tend to improve the constructive power of traditional crossover over the 

generations. Even though the improvements obtained from intelligent crossover 

operators are visible, their development is still a challenge for researchers. 

3.3 Grammar-based Genetic Programming 

This section introduces Grammar-based GP (GGP), a variation of the standard 

GP described in the previous section. As the name suggests, the main difference 

between the standard GP approach and a grammar-based one is the presence of 

a grammar. In GGP systems, the set of terminals and functions is replaced by a 
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Figure 3.4: GGP scheme with production-rule-sequence-encoding solution repre­
sentation 

grammar. The grammar guarantees that all the individuals are syntactically cor­

rect. Note that in GGP we do not use the terms GP functions and GP terminals, 

but rather terminals and non-terminals, where terminals and non-terminals refer 

to the symbols of the grammar. 

The motivation for combining grammars and GP is two-fold [110]. First, it 

allows the user to incorporate prior knowledge about the problem domain to help 

guiding the GP search. Second, it guarantees the closure property through the 

definition of grammar production rules. 

Grammar-based genetic programming has been used in a variety of application 

domains. One of its first domains of application was to develop the topology of 

neural networks [65, 76]. It was also used in symbolic function regression [82, 110, 

95], to take into account the dimension of variables when evolving physical laws 

[125], to perform the clustering task [36], and to evolve rule sets [147, 109, 137]. 

GGPs can be divided into different classes according to two different criteria: 

1. The representation used by the GGP individuals. 

2. The type of grammar the GGP is based on. 

Considering the representation of the GGP individuals, grammar-based 

systems follow two different approaches: solution-encoding individual and 

production-rule-sequence-encoding individual, represented in Figures 3.3 and 3.4, 

respectively. In the first approach (Figure 3.3), there is no difference between 

the individuals' genotype and phenotype. An individual is represented by a tree, 
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which corresponds to a derivation tree produced when following the production 

rules of the grammar. The main characteristics of this approach and some GGP 

systems based on it will be presented in Section 3.3.2. 

The second GGP approach (Figure 3.4) differs from the first because it uses a 

mapping between the individual genotype and phenotype (the search and solution 

space). In this approach, the individuals are represented by a linear genome (usu­

ally a binary string or an array of integers), which is generated independent from 

the grammar. When evaluating the individuals, a genotype/phenotype mapping 

is made, and the genetic material is used to select appropriate production rules 

from the grammar, as detailed in Section 3.3.3. 

Regarding the types of grammar used to guide the GP, the most popular 

are the context-free grammars [4]. However, after the popularization of systems 

combining grammars and GP, works have been done using logic grammars [147], 

attribute grammars [64], tree-adjunct and tree-adjoining [81] grammars. While 

context-free grammars are used to restrict the syntax of the programs generated, 

logic grammars, attribute grammars and tree-adjoining/tree-adjunct grammars 

also consider context-information while generating trees (programs), and can ex­

press more complex representations. The next section briefly introduces gram­

mars. 

3.3.1 Grammars 

Grammars [4] are simple mechanisms capable of representing very complex struc­

tures. Their formal definition was first given by Chomsky in 1950. According to 

Chomsky, a grammar can be represented by a four-tuple {N, T, P, S}, where N is 

a set of non-terminals, T is a set of terminals, P is a set of production rules, and 

S (a member of N) is the start symbol. The production rules define the language 

which the grammar represents by combining the grammar symbols. 

Chomsky classified the grammars in four main categories, named regular (or 

type 3) grammars, context-free (or type-2) grammars, context-sensitive (or type 

1) grammars and phrase-structure (or type 0) grammars [29]. Regular grammars 

are the most restrictive and also the simpler grammars, while phrase-structure 

grammars are the most general grammars, and also very complex. The differences 

between these classes of grammars is determined by the structure of the production 

rules they might have. For example, in regular grammars, the production rules 

can be presented in only two forms: a single non-terminal symbol produces a single 
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CFG Grammar 

<expr> ::= <expr> <op> <expr> I 
<numb> I 
<var> 

<op> ::= + I 

<var> ::= x I 
y 

<numb> ::= 2 I 
4 

(1 ) 
(2) 
(3) 
(4) 
(5) 
(6) 
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(8) 
(9) 

Derivation Tree for 
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~ 
<expr> <op> <expr> 

I I I 
<var> + <numb> 

I I 
x 2 

Derivation Steps followed to produce x+2 

<expr> b<expr> <op> <expr> :!<var> <op> <expr> ~ x <op> <expr> ~ 
x + <expr> bx + <numb> ~ x + 2 
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Figure 3.5: Context-free grammar to create a simple expression, showing an ex­
ample of a derivation tree and the list of derivation steps followed to generate the 
expression x+ 2 

terminal symbol; or a single non-terminal symbol produces a single non-terminal 

symbol followed by a terminal symbol. In contrast, in context-free grammars, 

a production rule is defined by a non-terminal followed by a string of terminals 

and/or non-terminals. Grammars belonging to the types 0 and 1 are rarely used 

in real applications, mainly because their implementation and parse processes are 

very complicated. 

In this section we are specially interested in context-free grammars (CFG), 

which are the focus of this work. CFGs are the most commonly class of grammars 

used with genetic programming. Figure 3.5 shows an example of a CFG which 

produces simple expressions by combining the operators + and -, the variables x 

and y and the numbers 2 and 4· 
The grammar in Figure 3.5 is described using the Backus Naur Form (BNF) 

[103]. When using the BNF notation, production rules have the form <expr> ::= 

<expr><op><expr>, and symbols wrapped in "<>" represent the non-terminals 

of the grammar. Three special symbols might be used for writing the production 

rules in BNF: "I", "[ ]" and "( )". "I" represents a choice, like in <var> ::=xly, 

where <var> generates the symbol x or y. "[]" wraps an optional symbol which 

mayor may not be generated when applying the rule. "( )"is used to group a set 

of choices together, like in x ::= k(ylz), where x generates k followed by y or z. 

The application of a production rule from pEP to some non-terminal n E 
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N is called a derivation step, and it is represented by the symbol =>. Figure 3.5 

shows the derivation steps necessary to produce the expression x+2. These deriva­

tion steps can be graphically represented by the derivation tree also presented in 

Figure 3.5. 

Most of the GP systems described in the next sections are based on a CFG. 

This is because CFGs are very good methods to enforce the production of syntac­

tically correct solutions. However, in some problems, information about context 

is essential, and this kind of information cannot be provided by a CFG. Consider, 

for example, a grammar which describes a language of strings having the same 

numbers of characters "a", "b" and "c", i.e, L = anbncn. This language is con­

text sensitive, because we need to have information about how many characters 

"a" have been produced in order to produce the same number of "b" and "c" 

characters. 

The language L = anbncn cannot be generated by a CFG, but it can be pro­

duced by a context-sensitive grammar. As pointed out before, a context-sensitive 

grammar is complex to implement and difficult to parse. Thus, in cases like this, 

instead of opting for a context-sensitive grammar, we can adopt extensions for 

CFGs which can deal with context. In the case of GGPs, these extensions include 

the use of logic grammars (based on definite clause grammars) [147] and attribute 

grammars [76]. 

Logic grammars are generalizations of a CFG, where the symbols of the gram­

mar (terminals or non-terminals) can include arguments. Arguments can be any 

term in the grammar, where terms can be a logical variable, a function or a con­

stant, and are used to enforce context-dependency [148]. 

Attribute grammars are an extension of CFG where each symbol of the CFG 

can be associated with one or more attributes. Hence, when generating a deriva­

tion tree each node in the tree is associated with a set of attributes. The values , 
of the attributes in the derivation tree are determined through two kinds of evalu­

ations. In the first case, the value of an attribute is inherited from its parent node 

(inherited attribute). In the second case, the value of an attribute is determined 

by the values of the attributes of its child node's attribute values (synthesized 

attributes). Examples of GP systems using attribute grammars can be found in 

[76, 28]. 
Finally, some GP systems were developed using tree-adjoining grammar (TAG) 

[81] and tree-adjunct grammars (TAGs implemented with only the adjoining oper­

ator). A TAG is similar to a CFG. However, each symbol (terminal/non-terminal) 
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<expr> 

<expr> 
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<expr> <op> <expr> 
I I I 

<var> + <numb> 
I I 

<op> 
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<expr> 

I 
<numb> 

I 
4 

x 2 

Figure 3.6: GGP tree representing the expression x -2 (x+2-4J 

of the grammar is a tree. TAGs are classified as mildly context-sensitive gram­

mars. According to [70], the main advantage of using TAGs and tree-adjunct 

grammars over CFGs is that the former implements a natural way of preserving 

building blocks, as each symbol in the grammar is actually a sub-tree. A TAG is 

represented by the quintuple {T, NT, I, A, S}, where T, NT and S stand for the 

terminals, non-terminals and start-symbol, as in CFGs. I and A represent the set 

of initial and auxiliary trees. Note that TAGs do not have production rules, and 

the derivation trees are created by two other trees (belonging to I and A) put 

together using adjoining and substitution operators. A more detailed explanation 

of TAGs can be found in [81], and examples of GPs using them can be found in 

[71, 70]. 

3.3.2 GGP with Solution-Encoding Individual 

This section presents GGP systems following the approach described in Figure 3.3, 

named solution-encoding individual. All the GGP systems described in this sec­

tion use a GGP individual which directly encodes the solution for the target 

problem, and do not require any mapping from the search (genotype) to the solu­

tion space (phenotype). This type of individual representation requires a special 

procedure to initialize the first population of individuals, and to control crossover 

and mutation operations. 
Figure 3.6 shows an example of a solution~encoding individual using the 

context-free grammar described in Figure 3.5. The individual is built through 

a set of derivation steps, and production rules are applied to the tree until all the 

leaf nodes are represented by terminals. The solution represented by the GGP 

individual shown in Figure 3.6 is obtained by reading the leaf nodes of the tree, 

from left to right (x+2-4). This same procedure is used to generate all the indi­

viduals in the population. In order to guarantee a variety of individuals in the 
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initial population, the initial population of individuals can be initialized using the 

traditional ramped-half-and-half procedure, explained in Section 3.2, where trees 

of different shapes and sizes are produced. 

Note that, when choosing a production rule from the grammar to form the 

individual's derivation tree, the initialization algorithm needs to check whether 

that particular production rule will be able to reach a terminal symbol in a number 

of derivation steps smaller than the maximum tree depth permitted. 

Crossover and mutation operations are restricted to non-terminals, and dif­

ferent non-terminals might be assigned different crossover/mutation rates. In the 

case of crossover, a non-terminal Nx is randomly selected from the tree of the first 

individual II' After that, the system searches for the same non-terminal N x in the 

tree of individual 12 , If N x is present in 12 , the subtrees rooted at N x in individuals 

II and 12 are swapped (respecting the maximum individual size parameter). If N x 

is not present in 12 , the operation is not performed. 

Regarding the mutation operator, a random non-terminal Nx is selected from 

the derivation tree of the individual, the subtree rooted at N x is deleted, and a 

new subtree is created by following the productions of the grammar (starting from 

N x ). 

The population initialization, individual representation and crossover and mu­

tation operations just described were introduced by Whigham [143]. In his work, 

he describes grammars to solve the 6-multiplexer problem, and a classification 

problem named "greater glider density" [144]. For the latter problem, Whigham 

defines a set of grammars which supports if-then-else statements, and builds pro­

grams that can be read as a set of rules. 

Furthermore, one of the most interesting features of the system created by 

Whigham is that the grammar is adaptable. At each generation, an analysis of the 

fittest individuals in the population is performed, and the grammar's production 

rules are modified according to the results of this evaluation. 

Following Whigham, many other researchers applied GGPs with the solution­

encoding individual representation. Horner [74] implemented a C++ GP library 

able to deal with solution-encoding individuals, which he named GPK (Genetic 

Programming Kernel). GPK's implementation presents similar features to the 

system proposed in [143]. However, its initialization process is much more com­

plex. It requires the calculation of the search-space size, and the definition of 

probabilities of individuals of a specific size s (s varying from 0 to the maximum 

tree depth) to appear in an equally distributed population. These probabilities 
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are later used to set the number of individuals in the initial population which 

should have size s. 

Indeed the population initialization process used in [74] was too complicated, 

as pointed out by [116], but the technique used by Whigham [143] is simple and 

elegant, and successfully maintain diversity in the population. 

Wong and Leung [147, 148] combined GGP with ILP (Inductive Logic Pro­

gramming) to produce a data mining classification system called LOGENPRO 

(The Logical grammar based Genetic Programming system). However, instead of 

a CFG, they worked with a logic grammar to create individuals. LOGENPRO 

can produce both decision trees and rule sets. Here we are going to describe how 

it was used to evolve classification rule sets. 

When evolving rule sets, LOGENPRO individuals (derivation trees extracted 

from a logic grammar) represent classification rules (LOGENPRO follows the 

Michigan approach, where each individual represents a single candidate rule - see 

Section 2.3.2). The first population of the GGP implemented by LOGENPRO is 

formed by randomly generated individuals, or by individuals extracted from other 

learning systems. The first population can also contain individuals created by the 

user and given to the system. 

LOGENPRO uses crossover and mutation operators in order to produce new 

valid individuals. The trees representing individuals might present some "frozen" 

nodes, which cannot be swapped during crossover operations. Crossover swaps 

subtrees rooted at two non-terminals to produce a single individual, and muta­

tion recreates a subtree rooted at a random non-terminal according to the gram­

mar. Reproduction is not used, but a third operator called drop condition (which 

generalizes rules) was implemented. The fitness function is based on the support­

confidence framework, where each rule is associated with a confidence factor sim­

ilar to the significance test used by CN2 (see Section 2.2.4). 

LOGENPRO also has a mechanism called token competition, which aims to 

maintain population diversity. It considers each instance in the training set as 

a token, and the individuals compete for them. The strongest individuals in 

the population get to collect tokens first. After token competition, the fitness 

of the individuals is modified according to the number of tokens it collected. 

Individuals which do not collect any tokens are considered '''redundant'', and 

are replaced by new individuals. The individuals (rules) with the best fitness 

are passed to the next generation without any modification, by elitism. The 

evaluation of LOGENPRO in UCI [104] data sets and in medical domains showed 
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results competitive with other rule induction algorithms. 

With the same purposes of Wong, Tsakonas et al. [137] proposed to evolve rule 

sets for two medical domains using steady-state GPs and CFGs. They proposed 

two systems: one to evolve crisp rules and another to evolve fuzzy rules. Again, 

the population initialization and evolution operations are the conventional ones 

in GGPs with solution-encoding individual, as proposed by Whigham. In this 

system, each GGP individual is a rule list for a specific class. Hence, in a system 

with C classes, the GGP is executed C times, in each of them trying to find a 

rule list which separates the i-th class (i = 1, ... ,C) from the other C-1 classes. 

The fitness of the system to evolve crisp rules is a weighted function, which 

takes into account a correlation measure based on the statistics gathered in the 

confusion matrix and the size of the GGP trees (the size of the rule sets). In the 

case of the system with fuzzy rules, the simplicity of the rule sets was ignored, as 

the authors concluded that in the way the grammar was defined, large individuals 

could still be easily interpreted. 

The system was compared with C4.5 [124], with a boosting algorithm, and with 

a standard G P for symbolic regression in two medical domains. The results showed 

that the proposed methods found very comprehensible rules (according to the 

opinion of some experts in the areas), with a classification accuracy competitive 

with the other methods. 

Falco et al.[36] also implemented a GGP system to comply with a data mining 

task, but instead of classification they worked with clustering. They defined a new 

way of representing clusters via logical formulas, and used a GGP to search for 

these formulas. Comparisons with well-know clustering algorithms showed that 

GGP is a successful method to create clusters. 

In a more recent work, McConaghy and Gielen [95] proposed CAFFEINE 

(CAnonical Form Function Expressions IN Evolution). CAFFEINE makes use 

of canonical form functions to evolve human-interpretable expressions for sym­

bolic regression problems. These functions are implemented via a CFG. In [95], 

CAFFEINE was tested using both a GGP using a solution-encoding individual 

and a production-rule-sequence-encoding individual. Both implementations were 

evaluated in an application of knowledge extraction in analog design, and in this 

particular problem the GGP using the solution-encoding performed better than 

the GGP using the production-rule-sequence-encoding individual. 

From all the systems described so far, Wong and Leung [148] is the only one 

which does not use CFGs. However, other attempts to work with grammars 
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different from the context-free ones were made. Hussain and Browse [76], for 

instance, proposed the use of an attribute grammar to evolve the topology of 

neural networks. They used attribute grammars to represent the topology of 

neural networks in many different levels, in a system they called NGAGE (Network 

Generating Attribute Grammar Encoding). In NGAGE, the GGP individuals are 

represented by derivation trees, where each of the leaf nodes represents a neuron 

in the neural net. The attributes associated with a leaf node define which of the 

other leaf nodes will be used to form its inputs and outputs. The internal nodes 

of the derivation tree define the structure of the neural net. 

3.3.3 GGP with Production-Rule-Sequence-Encoding In­

dividual 

This section describes GGP systems following the production-rule-sequence­

encoding individual approach illustrated in Figure 3.4. Note that, as the evolu­

tionary algorithms described in this section use a linear genome, some authors 

named them as genetic algorithms, despite the fact that they are being used to 

evolve programs. Regardless of the name these systems receive, here we focus 

on the role of the grammar in them, and how the genotype-phenotype mapping 

process is implemented. 

All the GGPs based on this approach present two common elements which 

distinguish them from the algorithms described in Section 3.3.2: 

1. Their individuals are represented by a linear chromosome, which can be 

fixed or variable in length, and represented by a string of bits or integers. 

2. The search space is distinct from the solution space, and each gene in a 

chromosome usually points to a production rule in the grammar. Hence, a 

mapping process is needed to generate solutions by reading the individuals' 

chromosomes. 

As this approach works with linear genomes, no restrictions are needed in the 

way the initial population is created, or crossover and mutation operators are 

applied. 
Banzhaf and Keller [11, 82] described one of the first systems using linear 

genomes and grammars. In their system, the fixed-length binary genotype was 

divided in codons, composed by a predetermined number of bits. Each codon was 

mapped to a symbol of the output language, and different codons could lead to 
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the same symbol (redundant genetic code). They argued that redundant genetic 

code leads to more diverse populations, as in natural systems. However, the role 

of the grammar in this system was to act as a correction mechanism, in the case 

of invalid outputs being generated when combining the output symbols. 

Following the same principles of [11], Paterson and Livesey [115] proposed 

GADS (Genetic Algorithm for Deriving Software). GADS uses a fixed-length 

integer array to represent an individual, where each gene in the individual chro­

mosome (an integer number) points to a production rule in the grammar. The 

main difference between the works presented in [11] and [115] is the role of the 

grammar in the system. While in the former the grammar is just a correction 

mechanism, in the latter the grammar is actually responsible for the generation 

of solutions. 

In [115], after the population of linear individuals is initialized, a mapping 

process between the genotype and the phenotype of an individual starts by au­

tomatically inserting the start symbol in the root of the individual's tree, and 

reading the genes in the chromosome from left to right. The production rule in­

dicated by a gene might be used or not. It is used if the non-terminal in the 

left-handed side of the production rule is present in the individual tree. Other­

wise, it is ignored, and the next gene in the chromosome is read. The mapping 

process finishes when all the genes in the chromosome are read. At this point, 

if there are still non-terminals in the derivation tree, they are replaced by their 

default values. Note that each non-terminal of the grammar is associated with a 

default production rule. 

After the works of Keller and Banzhaf [11, 82] and Paterson and Livesey 

[115], some other authors proposed small modifications to mitigate the drawbacks 

of the previous approaches (for instance, Freeman [51] improved the control of 

the proliferation of introns in [115] by introducing simple modifications into the 

mapping process). However, in 1998, Ryan et al [130] introduced what they called 

grammatical evolution (GE) [110]. In contrast with the previous approaches, GE 

uses a variable-length binary string genome divided in codons of 8 bits. The 

co dons are used to select appropriate rules from the grammar, and the system has 

mechanisms to prevent the selection of invalid rules, avoiding the appearance of 

introns. 
The mapping process works by translating a codon into an integer value, and 

then dividing this value by the number of available production rules for the non­

terminal being extended. The remainder of this division is then used to select a 
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rule from the set of available rules. For each non-terminal, its production rules are 

numbered from 0 to n. Consider for example the grammar presented in Figure 3.5. 

The non-terminal <op> produces the terminals + or -. Assume the algorithm 

is reading the coding 00010101. This codon is translated into the integer 21, 

which is divided by 2 (number of production rules available having <op> in their 

antecedent). The remainder of this division is 1, and so the production rule which 

generates the "-" terminal is chosen. In the case that the individual runs out of 

co dons and there are still non-terminals to be expanded, an operation called wrap 

starts reading the genotype of the individual again and reuse its codons. 

In terms of evolution, GE uses a steady-state approach, rather than a gener­

ational approach, and the offspring replace individuals in the same population. 

The genetic operators are the simple ones used in a standard genetic algorithm, 

including one-point crossover and point mutation. A third operator, named codon 

duplication operator, is also introduced. In [109] we can find an example of aGE 

system used to evolve market index trading rules. The system evolved a set of 

fuzzy if-then rules which outperformed the baseline buy and hold strategy. 

The GE approach has been applied to a variety of problems in the past years, 

and new variations of this system have emerged. CHORUS [9], for instance, 

implements a new version of the system with a position independent representation 

of individuals. The main difference between CHORUS and GE lies on the mapping 

process. In CHORUS, instead of numbering the production rules of each non­

terminal independently, all the productions of the grammar are numbered together 

(similar to the system used in [115]). As a result, during the mapping process, 

the integer extracted from the chromosome is divided by the total number of rules 

in the grammar. In this way, one gene will always represent the same rule in the 

grammar, regardless of its position in the chromosome. 

CHORUS also works with a concentration table, which helps selecting rules 

during the mapping process. The concentration table has a column for each rule 

in the grammar, and is used to keep track of the count (or concentration) of the 

rules. Every time a gene is read, it increases the concentration of the rule it 

represents. The algorithm stops reading the genes when the concentration of one 

of the applicable rules is greater than the others, and marks the position of the 

gene to be read later. 
Apart from CHORUS, another work extends the standard GE approach to 

work with attribute grammars [28]. Attribute grammars, as explained before, 

take into account context-sensitive information, and are much more powerful than 
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CFGs. This particular work implements a GE system with attribute grammars 

to solve the knapsack problem. For more details the reader is referred to [28]. 

3.4 Summary 

This chapter introduced the concepts of standard genetic programmmg and 

grammar-based genetic programming (GGP). GGP offers two advantages over 

the standard GP approach: (1) it overcomes the problems of the closure property, 

and (2) it allows the user to insert into the GP previous knowledge about the 

target problem to guide the search. 

This chapter also described the two main approaches followed when using GGP 

systems: solution-encoding individual and production-rule-sequence-encoding in­

dividual. We presented the main differences between these two approaches, which 

lie mainly in the fact that while in the former there is no difference between the 

genotype and phenotype of the individuals, in the latter a mapping process is 

required to transform an individual's genotype into its phenotype. 

An overview of the types of grammars commonly used in GG P systems was 

presented, and some examples of GGP systems which were created to evolve 

rules were described. In contrast with the standard GP systems described in 

Section 2.3.2, which usually use attributes with a single data type to deal with 

the problems of closure, the GGPs in this chapter use a grammar to define the 

types of valid rules. 



Chapter 4 

Automatically Evolving Rule 

Induction Algorithms 

4.1 Introduction 

Chapters 2 and 3 introduced the main concepts of rule induction algorithms and 

grammar-based genetic programming (GGP), describing examples of how conven­

tional GPs and GGPs evolve rule sets for specific data sets. This chapter proposes 

the use of GGPs to automatically evolve rule induction algorithms instead of rule 

sets. As it will be shown later, the proposed GGP can be used to generate very 

robust rule induction algorithms or algorithms with performance tailored to a spe­

cific application domain (data set). The "nature" of the rule induction algorithms 

generated depends only on the data the GGP is trained with [112, 113]. 

The proposed GG P is based on the solution-encoding individual approach 

(see Section 3.3.2), where the grammar is used to create the individuals in the 

GGP initial population, instead of taking part in a genotype/phenotype mapping 

process (production-rule-sequence-encoding individual approach). To the best of 

our knowledge, there is no significant research which indicates that either the 

solution-encoding individual approach or the production-rule-sequence-encoding 

individual approach is superior to the other. Hence, in the absence of significant 

evidence in favor of any of these two approaches with respect to their effectiveness, 

we chose to use the solution-encoding-individual approach. This choice was based 

on the fact that, as this approach lacks a genotype-phenotype mapping process, 

there is no need to worry about how effective the mapping is or how large is the 

degree of epistasis (interaction among genes) at the genotype level. 

56 
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p, Reproduction 

Mutation 

Figure 4.1: Scheme of the Grammar-based GP for Rule Induction 

However, we make no claim that the solution-encoding individual approach is 

superior for our problem domain. Running computational experiments compar­

ing the relative effectiveness of this approach and the production-rule-sequence­

encoding approach is a topic left for further research. 

Figure 4.1 shows an scheme of the proposed GGP method. The grammar con­

tains background knowledge about the basic structure of rule induction algorithms 

following the sequential covering approach, and is described in Section 4.2. 

Each individual in the GGP population represents a new rule induction al­

gorithm, potentially as complex as well-known algorithms, such as CN2 [26] or 

PRISM [22], as explained in Section 4.3. These individuals are built by following 

a set of derivation steps of the grammar, as detailed in Section 4.4. The indi­

viduals (rule induction algorithms) are evaluated using a set of data sets , named 

meta-training set. The classification accuracies obtained from the runs of the rule 

induction algorithms in the meta-training set are used to generate the values of 

the fitness function for the individuals, as described in Section 4.5. 

Following evaluation, an elitist strategy [63] selects the individual with the best 

fitness value, and passes it onto the new population without any modifications. 

Next, a tournament selection scheme with k = 2 (for details, see Section 3.2.2) is 

used to select the individuals which will produce the new population. After selec­

tion, the winners of the tournaments undergo either reproduction, mutation , or 

crossover operations, depending on user-defined rates, as described in Section 4.6. 

The evolution process is conducted until a maximum number of generations 

is reached. At the end of the evolutionary process , the best individual (highest 

fitness produced along the run of the algorithm) is returned as the solution for the 

problem. The chosen rule induction algorithm is then evaluated in a new set of 
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data sets, named meta-test set, which contains data sets different from the data 

sets in the meta-training set. 

4.2 The Grammar • • Specifying the Building 

Blocks of Sequential Covering Rule Induc­

tion Algorithms 

The main role of the grammar inside the GGP solution-encoding individual 

framework is to guarantee that all the individuals in the GGP population are valid. 

In order to guarantee that, the grammar is used to generate the initial population 

of individuals, and also controls crossover and mutation operations. In this work, 

we aim to automatically evolve a sequential covering rule induction algorithm. 

Therefore, our grammar presents all the elements which we find appropriated to 

use while building rule induction algorithms. 

The proposed grammar is presented in Table 4.1. It uses the BNF termi­

nology introduced in Section 3.3.1, and its Start symbol is represented by the 

non-terminal with the same name. Recall that non-terminals are wrapped into 

"<>" symbols, and each of them originates one or more production rules. Gram­

mar symbols not presented between "< >" are terminals. In the context of rule 

induction algorithms, the set of non-terminals and terminals are divided into two 

subsets. The first subset includes general programming elements, like if state­

ments and for/while loops, while the second subset includes components directly 

related to rule induction algorithms, such as RefineRule or PruneRule. 

The non-terminals in the grammar represent high-level operations, like a while 

loop (whileLoop) or the procedure performed to refine a rule (RefineRule). The 

terminals, in turn, represent a very specific operation, like Addl, which adds 

one condition-at-a-time to a candidate rule during the rule refinement process 

(RefineRule). Terminals are always associated with a building block. A building 

block represents an "atomic operation" (from the grammar's viewpoint) which 

does not need any more refinements. Building blocks will be very useful during 

the phase of rule induction code generation, and are explained in Section 4.5.1. 

As observed in Table 4.1, the grammar contains 26 non-terminals (NT), which 

originate 83 production rules. The grammar was carefully created by doing a com­

prehensive study of the main elements of the pseudo-codes of basic rule induction 

algorithms (Algorithms 2.1, 2.2 and 2.3 introduced in Chapter 2). 
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The first NT, Start, generates one of the two rule models described by Algs. 2.1 

and 2.3: a rule set (CreateRuleSet) or a rule list (CreateRuleList). It also deter­

mines if the rule models generated will be post-processed or not. 

NT 2 and NT 3 describe the non-terminals CreateRuleSet and CreateRuleList. 

They represent the outer loops described in Algs. 2.1 and 2.3. The forEachClass 

terminal allows rules to be built for each class in turn. The whileLoop (NT 4) 

keeps adding rules to the rule set/list until condWhile is satisfied. 

condWhile (NT 5) is satisfied under one out of the two conditions: 1) When all 

the examples in the training set are covered by the current set of rules; or 2) When 

a percentage of examples in the training set or a fixed number of them is covered 

by the current set of rules. We used 90%, 95%, 97% and 99% when working with 

percentages, and 10 or 20 examples when working with the absolute numbers. 

While the first condition requires that rules are produced for all the examples in 

the training set, the second condition gives the algorithm some flexibility, and 

helps avoiding over-fitting. 

The non-terminals RuleSetTest (NT 6) and RuleListTest (NT 7) define how the 

rules will be applied when classifying new instances. As explained in Section 2.2.1, 

the rules in a decision list can be only applied in order. However, during the 

creation of the list, the rules can be appended or prep ended to it. The standard 

approach is to append rules to the list, but Webb and Brkic [140] suggested that 

pre-pending rules to lists generates simpler models. They argue that there are 

usually simple rules that cover many of the positive examples, but also a few 

negative examples. Leaving these simpler rules at the end of the model would 

allow more specific/complicated rules to handle these exceptions before the more 

general rules are applied. 

In the case of rule sets, NT 6 defines which tie-breaking criterion will be applied 

in cases where two or more rules classify a test example (unseen during training) 

in two different classes. Among the options are the use of the ls-content of a 

rule (see Eq. (2.4)) or the Laplace estimation (see Eq. (2.2)). Note that both 

these measures can also be used to evaluate rules when creating them, although 

ls-content is not used for this purpose in the current version of the grammar. 

The body of the while loop described by NT 4 implements the non-terminal 

CreateOneRule (NT 8), which represents the pseudo-code of Alg. 2.2 discussed in 

Chapter 2. Rules are built following three basic steps: initialization, refinement 

and selection - the last two steps being iterative. 

The first step generates an initial rule. As shown in NT 9, a rule can be 
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Table 4.1: The grammar used by the GGP 

1- <Start> ::= «CreateRuleSet>I<CreateRuleList» [<PostProcess>]. 
2- <CreateRuleSet> ::= forEachClass <whileLoop> endFor 

<RuleSetTest>. 
3- <CreateRuleList> ::= <whileLoop> <RuleListTest>. 
4- <whileLoop>::= while <condWhile> <CreateOneRule> endWhile. 
S- <condWhile>::= uncoveredNotEmpty luncoveredGreater 

(101 201 90%1 9S%1 97%1 99%) trainEx. 
6- <RuleSetTest> ::= lsContent IconfidenceLaplace. 
7- <RuleListTest>::= appendRule I prependRule. 
8- <CreateOneRule>::= <InitializeRule> <innerWhile> [<PrePruneRule>] 

[<RuleStoppingCriterion>] . 
9- <InitializeRule> ::= emptyRulel randomExamplel typicalExample 

<MakeFirstRule>. 
10- <MakeFirstRule> ::= NumCondll NumCond21 NumCond31 NumCond4. 
11- <innerWhile> ::= while (candNotEmptyl negNotCovered) 

<FindRule> endWhile. 
12- <FindRule> ::= «RefineRule>l<innerIf» <EvaluateRule> 

[<StoppingCriterion>] <SelectCandidateRules>. 
13- <innerIf> ::= if <condIf> then <RefineRule> else <RefineRule>. 
14- <condIf> ::= <condIfExamples> I <condIfRule>. 
lS- <condIfRule> ::= ruleSizeSmaller (21 31 sl 7). 
16- <condIfExamples> ::= numCovExp ( >1 <)(90%1 9S%1 99%). 
17- <RefineRule> ::= <AddCond>I <RemoveCond>. 
18- <AddCond> ::= Addll Add2. 
19- <RemoveCond>::= Remove 1 I Remove2. 
20- <EvaluateRule>::= confidence I Laplace I infoContentl infoGain. 
21- <StoppingCriterion> ::= MinAccuracy (0.610.710.8)1 

SignificanceTest (0.11 o.OSI 0.02SI 0.01). 
22- <SelectCandidateRules> ::= lCRI 2CRI 3CRI 4CRI SCRI 8CRI 10CR. 
23- <PrePruneRule> ::= (lCondl LastCondl FinalSeqCond) <EvaluateRule>. 
24- <RuleStoppingCriterion> ::= accuracyStop (O.SI 0.61 0.7). 
2S- <PostProcess> ::= RemoveRule EvaluateModell <RemoveCondRule>. 
26- <RemoveCondRule> ::= (lCondl 2Condl FinalSeq) <EvaluateRule>. 

60 
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initialized in four different ways: (1) with an empty antecedent (represented by the 

terminal emptyRule), (2) from a seed example (picked randomly from the training 

set, and represented by the terminal randomExample) , (3) from a typical [151] 

training example (represented by the terminal typicalExample) or (4) according 

to the frequency of the attribute-value pairs in the data set. 

The concept of typical examples is borrowed from the instance-learning based 

literature [151]. An example is said to be typical if it is very similar to the 

other examples belonging to the same class it belongs to, and not similar to the 

other examples belonging to other classes. In other words, a typical example has 

high intra-class similarity and low inter-class similarity. Eq. (4.1) shows how the 

typicality of an example is calculated. It is the ratio of the intra-class and inter­

class similarities, where the similarity between the examples el and e2 is calculated 

as the complement of the distance between the examples el and e2, and P and 

N represent the number of positive and negative examples in the training set, 

respectively. The distance between the examples el and e2 is calculated as a 

simple Euclidean distance, as shown in Eq. (4.2). In Eq. (4.2), m represents 

the number of attributes in the data set, and maxi and mini correspond to the 

maximum and minimum values assumed by the attribute i. In the case of nominal 

(or categorical) attributes, the distance with respect to a single attribute can only 

be 0 (if attribute values have the same value) or 1 (if attribute values have different 

values). If one of the attribute values is a missing value, the difference between it 

and any other attribute value is set to 0.5. 

. . () (L:~l 1 - distance( e, i)) / P 
tYP'lcai'tty e = ~::'N;';~ ~----~-..:...:....:..-

(L:j=l 1 - distance( e, j)) / N 
( 4.1) 

where 

(4.2) 

In the case of initializing a rule according to the frequency of the attribute­

value pairs, the non-terminal MakeFirstRule (NT 10) creates a rule with 1, 2, 3 

or 4 conditions in the rule antecedent. The pairs of attribute-values (conditions) 

inserted in the rule antecedent are selected using a probabilistic selection scheme, 

in which the probability of selecting a given attribute-value pair is proportional 

to the frequency of that attribute-value pair in the training set. 

After the initial rule is created using one of the methods described above, it 

is set as the current best rule, and then the rule refinement process starts. It 
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is an iterative process that occurs inside the inner While loop (NT 11), which 

follows the non-terminal InitializeRule in NT 8. As described in the conditions 

of the inner While loop, rules can be refined until they do not cover any negative 

examples, as stated by the terminal negNotCovered, or until a set of candidate 

rules is not empty (candN otEmpty). This set of candidate rules refers to the 

rules which are undergoing the refinement process. At the first iteration, the only 

candidate rule is the one created in the initialization process. In the remaining 

iterations, they are the rules selected by the non-terminal SelectCandidateRules 

(NT 22), as will be explained later. 

At each iteration of the inner While, the non-terminal FindRule (NT 12) creates 

a rule by: (a) finding all the possible refinements of the initial rule (RefineRule); 

(b) evaluating the rules generated through the refinements (EvaluateRule) and (c) 

selecting a fixed number of created rules to keep performing the refinement process. 

Moreover, FindRule also defines alternative ways to refine the rules (innerlf) and 

allows the definition of an alternative criterion to stop the rule refinement process 

(Stopping Criterion) . 

RefineRule (NT 17) changes the current candidate rules by adding (AddCond 

- NT 18) or removing (RemoveCond - NT 19) conditions (attribute-value pairs) 

to/from them. According to the production rules generated by the NT 18 and 

NT 19, either one or two conditions-at-a-time can be inserted in/removed from a 

rule. 
Most of the current rule induction algorithms, as described in Section 2.2.2, use 

a top-down or a bottom-up search while looking for rules. Only a few of them, 

like SWAP-l [142], implement a bi-directional search strategy. However, a bi­

directional search might allow us to fix up rules by removing or adding conditions 

from/to it (specially in the case of greedy searches, where only one candidate rule 

goes through the refinement process). In the grammar presented in Table 4.1, 

the non-terminal innerlf (NT 13) changes the way the rules are refined according 

to their size (condlfRule .- NT 15) or the number of examples covered by the 

current rule set/list (condlfExamples - NT 16). In the former case, rules having 

size (number of conditions) smaller than 2,3, 5 or 7 might be refined in a different 

way than rules having size greater than or equal to 2, 3, 5 or 7. In the latter case, 

a decision is made based on the percentage of examples of the training set covered 

by the current rule set/list. It considers if the number of covered training examples 

is smaller or greater than 90%, 95% or 99% of the total number of examples in 

the training set. 
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The motivation to include this inner!! statement in the grammar is that the 

algorithm can choose, for example, to add two conditions-at-a-time to the rule 

while its size is small (i.e. the number of examples covered by the rule is hopefully 

big enough to detect attribute interaction). However, as the rule size grows, and 

the number of examples covered by the rule shrinks, it might be easier to improve 

its predictive power just by adding one condition-at-a-time instead of two. The 

same argument is valid for the number of examples in the training set covered 

by the rule set/list. The fewer the examples left uncovered, intuitively the more 

difficult it is to find a combination of conditions which would improve the current 

rule. However, even though our intuition says this might be the most appropriated 

way to use the inner!! included into the grammar, the GGP might come up with 

other counter-intuitive but more effective way of using it. 

The rules created through the refinement process are evaluated using one of the 

measures defined in NT 20, namely confidence, Laplace estimation, information 

content or information gain. These measures take into account the number of 

positive and negative examples the rule covers, and they will be used, in the last 

phase of the rule generation process, to select a subset of rules to go through 

further refinements. A more detailed description of these measures can be found 

in Section 2.2.3. 

During the rule selection phase, the rule evaluation function can be combined 

with some other criterion in order to select the best rules found so far. Hence, 

in some cases, a rule has also to fulfill a refinement stop criterion imposed by the 

optional non-terminal StoppingCriterion (NT 21). StoppingCriterion requires a 

rule to have a minimum accuracy or to be significant according to a statistical 

significance test during the rule selection process. 

The minimum accuracy criterion calculates the accuracy (or confidence, as 

described in Eq. (2.1)) of the rule and compares it with a threshold. The statistical 

significance test - a X2 (chi squared) test - calculates the distance between the 

distribution of the classes of the examples covered by the rule and the expected 

distribution (given by the frequencies of examples in each class for the entire 

training set). The lower the value of the distance, the higher the probability that 

the concept represented by the rule is due to chance [27]. The numbers 0.6,0.7 and 

0.8 following the terminal MinAccuracy represent the thresholds used for accuracy, 

and the figures 0.1, 0.05, 0.025 and 0.01 after the terminal Significance Test are 

confidence levels for the significance test. 

The rule selection process, based on the values of the evaluation function and 
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stopping criterion, selects a number of candidate rules to enter the next iteration 

of the rule refinement process. As specified in NT 22, the number of selected rules 

can vary from 1 to 5, or it can be 8 or 10. Regardless of the number of selected 

rules, the current best rule is replaced only if its evaluation function value is worse 

than the value of the best selected rule. 

When this single rule building process terminates, a new rule is added to the 

rule set/list being produced. But before this happens, a last operation can be 

performed as a result of applying NT 8: rule pre-pruning. PrePruneRule (NT 23) 

implements a pre-pruning method that tries to simplify a rule by removing one 

condition or a set of conditions from its antecedent. Rules can be simplified in 

three ways: (1) Removing one condition-at-a-time (1Cond) from its antecedent, 

as long as the new rule is better than the original rule according to an evaluation 

criterion; (2) Removing the last added condition (LastCond) from its antecedent; 

or (3) Removing a sequence of conditions from the end of the rule antecedent 

(FinalSeqCond), as long as the new rule is better than the original rule according 

to an evaluation criterion. During the pre-pruning phase, rules are evaluated in a 

set of data different from the one used to build them. 

Recall that rules are created until all or a large part of the examples in the 

training set are covered by the generated rules. However, the process of rule cre­

ation can also be halted when a condition defined by the non-terminal RuleStop­

pingCriterion (NT 24) is not satisfied. This condition is usually based on some 

property of the last rule found, and includes verifying if the accuracy (confidence) 

of the just-produced rule is greater than a threshold. We use threshold values of 

0.5, 0.6 and 0.71
. 

Once the rule set/list is completed, the rule induction algorithm can still per­

form a last operation: post-process the rule model. The presence of a post-process 

step in the algorithm is determined by the application of NT 1. Post-processing 

methods (NT 25) can apply the same techniques used to pre-prune a single rule 

to all the rules in the rule model. Hence, RemoveCondRule (NT 26) describes 

similar methods to the ones described in NT 23. After the model is completed, it 

can be simplified by removing one (1 Cond) or two (2Cond) conditions-at-a-time 

from the rule antecedents. In the case of rule sets, the model is simplified as long 

as the new rule is better than the original one according to an evaluation criterion. 

In the case of rule lists, this process goes on while the accuracy of the entire model 

IThe accuracy is normalized to return a number in [0 ... 1]. 
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is not reduced. The option of removing a final sequence of conditions is also avail­

able while post-processing rules. Besides, more compact models can be tried out 

by removing one by one entire rules from the current model, as implemented by 

the RemoveRule terminal in the right-hand side of the production rule generated 

by the NT 25. After each rule is removed from the rule set the whole model has 

to be re-evaluated, as indicated by the terminal EvaluateModel. Again, as in the 

pre-pruning phase, the rules/rule sets being post-processed are evaluated in a set 

of data different from the one used to build them. 

By applying the production rules defined by the grammar, we can generate up 

to approximately 5 billion different rule induction algorithms (see Appendix A for 

a detailed calculation of the size of the search space). Each of these rule induction 

algorithms can be represented by an individual in the GGP population. 

4.2.1 The New Rule Induction Algorithmic Components 

in the Grammar 

As explained before, the grammar presented m Table 4.1 contains knowledge 

about how humans design rule induction algorithms, but it also presents some new 

components which, to the best of our knowledge, were not used in rule induction 

algorithms before. 

The major new components inserted to the grammar are: 

• The terminal typicalExample, which creates a new rule using the concept of 

typicality, borrowed from the instance-based learning literature. 

• The non-terminal MakeFirstRule, which allows the first rule to be initialized 

with one, two, three or four attribute-value pairs, selected probabilistically 

from the training data in proportion to their frequency. Attribute-value pairs 

are selected subject to the restriction that they involve different attributes 

(to prevent inconsistent rules such as "sex = male AND sex = female"). 

• The non-terminal inner!f, which allows rules to be refined in different ways 

(e.g. adding or removing one or two conditions-at-a-time to/from the rule) 

according to the number of conditions they have, or the number of examples 

the rule list/set covers. 

• Although some methods do use rule look-ahead, i.e., they do insert more 

than one condition-at-a-time to a set of candidate rules, we did not find in 
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the literature any rule induction algorithm which removes two conditions­

at-a-time from a rule. This is implemented by the terminal Remove2. See 

[58] for a more detailed discussion on bottom-up look-ahead algorithms. 

Note that the list above shows a set of single components which are new "build­

ing blocks" of rule induction algorithms. These components increase the diversity 

of the candidate rule induction algorithms considerably, but it is the combina­

tion of the "standard" and new components which will potentially contribute to 

the creation of a new rule induction algorithm different from the conventional 

algorithms. 
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4.3 Individual Representation 

As pointed out before, the GGP system described in this chapter follows the 

solution-encoding individual approach, where each individual is represented by a 

derivation tree created by applying a set of production rules from the grammar. 

Figure 4.2 shows an example of an GGP individual. The root of the tree is 

the non-terminal Start. The tree is then derived by the application of production 

rules for each non-terminal. For example, Start (NT 1) generates the non-terminal 

CreateRuleList (NT 3), which in turn produces the non-terminals whileLoop and 

RuleListTest. This process is repeated until all the leaf nodes of the tree are 

terminals. 

Every time the application of a production rule involves an option between two 

or more symbols in the right-hand side of a production rule, each of the candidate 

symbols has the same probability of being chosen. Hence, the generation of the 

derivation tree representing an individual is a non-deterministic process, as usual 

in GP. 

Recall that an individual represents a complete rule induction algorithm. Thus, 

in order to extract from the tree the pseudo-code of the corresponding rule in­

duction algorithm, we read all the terminals (leaf-nodes) in the tree from left to 

right. The tree in Figure 4.2, for example, represents the pseudo-code described 

in Alg. 4.1, expressed in a high level of abstraction. This algorithm actually rep­

resents an instance of the well-known CN2 algorithm [26] producing an ordered 

list of rules, with the beam-width (or star, using the CN2 terminology) parameter 

set to 5 and the statistical significant test threshold set to 0.01. 

4.4 Population Initialization 

The GGP system proposed in this work generates the initial population using 

a method similar to the one suggested by Whigham [143]. It starts the popu­

lation generation procedure by calculating the minimum tree depths for all the 

production rules of the grammar. 
The minimum tree depth is used to guide the selection of production rules 

in the grammar in a way that programs with different depths are generated. 

Production rules which generate only terminals have minimum tree depth of 1. 

The minimum depth of other production rules is calculated in a bottom-up fashion. 

Consider the production rule <A> ::= <B> <C>. If the minimum depth of <B> 
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Algorithm 4.1: Pseudo-code of the rule induction algorithm represented 
by the derivation tree in Figure 4.2 

RuleList - 0 
repeat 

bestRule = an empty rule 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules =1= 0 do 

newCandidateRules = 0 
for each candidateRule CR do 

Add 1 condition-at-a-time to CR 
Evaluate CR using the Laplace estimation 
if CR is significant at the 0.01 significance level then 

l newCandidateRules = newCandidateRules U CR 
if CR is better than bestRule then 
L bestRule = CR 

candidateRules = 5 best rules selected from newCandidateRules 
RuleList = RuleList U bestRule 

until all examples in the training set are covered 
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and <C> are known, the minimum depth of <A> is set as the maximum of the 

values of the minimum depths of <B> and <C> + 1. If the values of <B> and/or 

<C> are unknown, their minimum tree depths are calculated first, in a recursive 

manner. 

In the current grammar presented in Table 4.1 the depth of the GGP trees 

does not vary a lot. The minimum depth of a tree is 9, and the maximum depth is 

10. This is because the current grammar does not have any recursive production 

rules (i.e., productions like <A> ::= <B> <A> I c). Very different individuals 

will greatly vary in the number of tree nodes, but not in tree depth. In the 

current version of the system, half of the individuals in the first population are 

created with depth 9, and the other half with a tree depth of 10. However, the 

system does support recursive production rules, and in this case an equal number 

of individuals for each depth - with depths varying from the minimum depth of 

the Start symbol to the maximum depth parameter set by the user - would be 

generated. The system guarantees that all the individuals in the first population 

are different from each other. 
An issue which has to be given attention during the population initialization 

process is that some combinations of non-terminals/terminals in the grammar 

may generate individuals which are semantically invalid. By semantically invalid 
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Figure 4.3: Example of an individual representing a rule induction algorithm 
which will lead to an infinite loop 

individuals we mean that the rule induction algorithms generated by these indi­

viduals will, most of the time, execute infinite loops. Figure 4.3 shows an example 

of part of a simple rule induction algorithm defined by a GGP individual which 

would lead to an infinite loop. 

The individual represented in Figure 4.3 starts producing a rule with an empty 

condition, and removes one condition-at-a-time from it as long as the size (number 

of conditions) of the produced rule is 5. As the first rule is empty, the if part of 

the if statement does not do anything, and the else part is unreachable. Because 

the set of candidate rules will never change, i.e., it will always have the empty 

rule, the condition to finish the inner While loop will never be satisfied. 

Some infinite loop situations, like the one presented in Figure 4.3, can be 

predicted by a careful evaluation of the possible combinations of non-terminals 

and terminals in the grammar, and are set up as constraints during the population 

initialization process and breeding operations. The current version of the GG P 

system imposes the following constraints when creating individuals: 

1. The non-terminal AddCond cannot be combined with the terminals ran­

domExample and typicalExample, which may be generated by the non­

terminal InitializeRule. This is because it does not make sense to add 

more conditions to a rule represented by a complete example taken from 
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the training set. 

2. Using the same rationale, the non-terminal RemoveCond cannot be used 

in association with the terminal emptyRule generated by the non-terminal 

AddCond, or the terminals numCondl and numCond2 generated by the 

non-terminal MakeFirstRule. 

3. The non-terminal innerlf has to incorporate the constraints imposed by 

item 1, so that situations like the one presented in Figure 4.3 are avoided. 

The following combinations are not legal in an individual using an innerif: 

• When the non-terminals condlfRule and RemoveCond (in the if part 

of the if statement) are used together, they cannot be combined with 

the terminals emptyRule, numCondl or numCond2. 

• When the non-terminals condlfRule and AddCond (in the else part of 

the if statement) are used together, they cannot be combined with the 

terminals randomExample or typicalExample. 

• When the terminal > «), generated by the non-terminal condlfEx­

amples, is combined with RemoveRule (in the else (if) part of the if 

statement), they cannot be combined with the terminals emptyRule, 

numCondl or numCond2. 

• When the terminal> «), generated by the non-terminal condlfExam­

ples, is combined with AddRule (in the else (if) part of the if state­

ment), they cannot be combined with the terminals randomExample 

or typicalExample. 

Note that these constraints avoid the most general cases of infinite loops, but 

we cannot guarantee it avoids all of them. In any case, individuals generating 

infinite loops are penalized during the fitness evaluation process, as explained in 

Section 4.5, and are unlikely to survive for many generations. 

Moreover, evaluations of the method used to generate the initial population 

showed that the constraints do decrease a lot the number of individuals executing 

infinite loops. 
The efficiency of the population initialization process - in terms of preserving 

diversity in the population - can be observed in the graphs shown in Figures 4.4 

through 4.7. These pictures show the distribution of some terminals during the 



CHAPTER 4. EVOLVING RULE INDUCTION ALGORITHMS 71 

30 

20 

10 

25 30 

Figure 4.4: Frequencies of terminals re­
sponsible for the rule induction algo­
rithm rule initialization process during 
the GGP evolution 

70 

'" 

30 

20 

10 

,... ... , ' , ' 
) ~" , ~ 

~- . , , . , \ , , 

10 

a, ,II" ," 
\ I \ I \ 

\/ 'oj \ 

~ \ 
" , ~ . " , , , 

\' '-
ill " ... .. - Ir 

15 20 
Generation 

Figure 4.6: Frequencies of terminals 
responsible for the rule induction al­
gorithm rule evaluation process during 
the GGP evolution 

60 

30 

20 

10 

Figure 4.5: Frequencies of terminals re­
sponsible for the rule induction algo­
rithm rule refinement process during 
the GGP evolution 
"'~~~ - Signilio;'anccTesl95 

...... Sig.nificllnceTUf97 
_Sig.njfi('flnc.:T~ 

50 ....... SigoificanccTcs290 
.- ... MinAcaJrllcy60 

20 

10 

... Mi nACClllocy70 
·- -MinAC('\lf 80 

10 

IV" '=-- '-
, \ ._\ 

'" -
15 20 
Generation 

Figure 4.7: Frequencies of terminals re­
sponsible for the rule induction algo­
rithm rule stopping criterion process 
during the GGP evolution 

evolution of the GGP. In Figure 4.4 , for instance, we can observe how the termi­

nals generated by InitializeRule were distributed. Note that InitializeRule gener­

ates the terminals emptyRule, randomExample and typicalExample, and the non­

terminal < MakeFirstRule> , which in turn generates the terminals NumCondl , 

NumCond2, NumCond3 and NumCond4. For this particular run of the GGP, 

the terminal emptyRule can be found in 50% of the populations in generation 5. 

However , note that individuals containing the other terminals do not disappear. 

In terms of the distribution of terminals in the first generation, there is always 

a balanced distribution of them in the graphs presented in Figures 4.5 through 

4.7. Figure 4.5 shows a good example of how a symbol which starts dominating 

a population can be replaced by another during the evolution. This is what 

happens with Addl and Add2. However , in the case of this particular graph , 
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individuals containing if statements can present both terminals Addl and Add2. 

In Figure 4.6 we can also observe how the accuracy measure initially is more 

used than the Laplace estimation measure, but at a certain stage in evolution this 

situation is reversed. In Figure 4.7 we observe a more balanced distribution of 

terminals which determine the Stopping Criterion, but suddenly at generation 27 

the use of a minimum accuracy of 70% appears in 60% of the population. 

4.5 Individual Evaluation 

An evolutionary algorithm works by selecting the fittest individuals of a popula­

tion to reproduce and generate new offspring. Individuals are selected based on 

how good their corresponding candidate solutions are to solve the problem being 

tackled. In our case, we need to evaluate how good a rule induction algorithm is. 

In the rule induction algorithm literature, comparing different classification 

algorithms is not a straightforward process. There is a variety of metrics which 

can be used to estimate how good a classifier is, including classification accuracy, 

sensitivity/specificity and ROC analysis [48] . There are studies comparing these 

different metrics, and showing advantages and disadvantages in using each of 

them [50, 18]. Nevertheless, as pointed out by Caruana and Niculescu-Mizil [18], 

in supervised learning there is one ideal model, and "we do not have performance 

metrics that will reliably assign best performance to the probabilistic true model 

given finite validation data" . 

Classification accuracy is still the most common metric used to compare clas­

sifiers, although some authors tried to show the pitfalls of using classification 

accuracy when evaluating induction algorithms [121] - specially because it as­

sumes equal misclassification costs and known class distributions - and others 

tried to introduce ROC analysis as a more robust standard measure. Based on 

these facts and on the idea of using a simpler measure when first evaluating the 

individuals produced by the GGP, we chose to use a measure based on accuracy 

to compose the fitness of the GGP system. 

In this framework, a rule induction algorithm RIA is said to outperform a 

rule induction algorithm RIB if RIA has better classification accuracy in a set of 

classification problems. Thus, in order to evaluate the rule induction algorithms 

being evolved, we selected a set of classification problems, and created a meta­

training set. The meta-training set consists of a set of data sets, each of them 

divided as usual into training and validation sets. 
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Figure 4.8: Fitness evaluation process of a GGP Individual 

As illustrated in Figure 4.8, each individual in the GGP population is decoded 

into a rule induction algorithm using a GGP / Java interface, as will be detailed in 

Section 4.5.1. The Java code is then compiled, and the resulting rule induction 

algorithm run in all the data sets belonging to the meta-training set. It is a 

conventional run where, for each data set, a set or list of rules is built using the 

set of training examples and evaluated using the set of validation examples. After 

the rule induction algorithm is run in all the data sets in the meta-training set , 

the accuracy in the validation set and the rule lists/sets produced for all data 

sets are returned. These two measures can be used to calculate a fitness function. 

In this work, we investigated two approaches to calculate the fitness. The first 

one uses only the accuracy to generate the fitness value, and will be described in 

Section 4.5.2. The second one uses the concept of Pareto dominance discussed 

in Section 3.2.1 to simultaneously optimize both the accuracy and the size of the 

rule lists/sets, and will be described in Section 4.5.3. 

4.5.1 From a Derivation Tree to Java Code 

In the process of evaluating a rule induction algorithm, the derivation tree initially 

created by using the production rules of the grammar has to be converted into 

real machine code, which can be executed in a set of classification problems and 

generate rule models for the corresponding data sets. This process of conversion 

of GGP trees into code is the focus of this section , and is illustrated in Figure 4. 9. 

The first thing to point out in Figure 4.9 is that each terminal in the grammar 

is associated with a Java code, which is an implementation of the building block 

represented by the associated terminal. Recall that each terminal in the grammar 

represents a building block, that is , an "atomic" operation (at a high level of 

abstraction, from the point of view of the grammar) performed by a rule induction 

algorithm. For instance, the terminal Addl is associated with the building-block 
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Figure 4.9: Example of the method used to extracted Java code from the GGP 
individuals 

described in Alg. 4.2. This building block is implemented as the Java method 

public List addl Condition(Rule r), which takes the current rule as a parameter 

and returns a list of possible rule refinements. The system was implemented in 

Java because, instead of implementing the whole system from scratch, we used 

WEKA [145] - an open source data mining tool written in Java - to speed up the 

implementation process. 

The building blocks (Java codes) associated with the terminals of the grammar 

were implemented in two phases, with the purpose of quickly obtaining a first set 

of results to validate the proposed idea. In the first phase, the grammar terminals 

dealt only with nominal attributes. In the second phase, their implementation was 

extended to also handle numerical attributes. The terminals whose implementa­

tion went through major extensions in this second phase were the ones responsible 

for refining rules by adding/removing conditions to/from it . After the completion 

of this second phase, the grammar became flexible enough to produce algorithms 

that represent rule conditions of the form "<attribute, operator , value>", where 

operator is "=" in the case of nominal attributes, and operator is "> " or "< " in 

the case of numerical attributes. 

The approach followed to generate numerical conditions is similar to the one 

implemented by the Ripper and C4.5 algorithms, where the values of a numerical 

attribute are sorted, and all threshold values considered. The best threshold value 

is chosen according to the information gain associated with that attribute-value 

PaIr. 
As observed in Fig. 4.9, in the center of the GGP-tree/ Java code conversion 

process there is a parser. The parser reads the symbols in t he t ree, and inserts 

the code associated with them to a Java class named IndClassifier. When reading 
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Algorithm 4.2: AddCond(Rule R) 
refinements - 0 
for i = 0 to i < number of attributes A in the training set do 

l for j = 0 to j < number of values V Ai can assume do 

L newRule = R U (Ai,Vj) 
refinements = refinements U newRule 

ret urn refinements 

a non-terminal in the tree, the parser might add to the method build Classifier 

of the class IndClassifier either (1) some standard code, (2) a call for a method 

defined by a terminal or (3) take no action. We call standard code the code which 

is usually found in all rule induction algorithms which contain that non-terminal, 

despite of the terminals it generates. When reading a terminal, the parser adds 

to the class IndClassifier the method(s) associated with that terminal. 

During the creation of the rule induction algorithm, there is another point 

which has to be taken into account: infinite loops. As explained in Section 4.4, 

although all the methods associated with a terminal perform the task they are 

supposed to, combinations of some symbols of the grammar may lead to infinite 

loops. 

The population initialization process handles some of these invalid combina­

tions (again, see Section 4.4), but there might be unexpected situations. As the 

number of non-terminals/ terminals combinations is very high, conditions to halt 

the run of a GGP were added to its two main loops. In the case of the whileLoop 

non-terminal, the rule production process will be stopped if the number of loop 

iterations reaches the same number of instances in the training set plus one (it is 

not worth to have a rule model with more rules than examples). For the inner­

While loop, the maximum number of iterations allowed is equal to the number of 

attributes in the data set times two (as a numerical attribute might appear more 

than once in a rule, we set up this upper bound as number of attributes times 

two). 
At the end of the parse process, we have a complete Java class IndClassifier. 

This class is then associated with other basic Java classes (like Rule, Antecedent, 

RuleList, RuleSet, etc) and some of the WEKA packages, allowing us to run the 

generated rule induction algorithm in a set of classification problems. Note that 

although the original idea was to use as much of the WEKA code as possible, 

during the development of the system we realized that the implementation of the 

classifiers in WEKA was not modular enough to make the automatic generation 
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of the rule induction algorithms' code simple. Hence, the system does not use the 

methods implemented for specific classifiers in WEKA, but only its core package 

(which deals with the basic operations of any classifier, like reading the examples 

and generating data statistics) and some of the classes in the package classifier. 

4.5.2 Single-Objective Fitness 

As showed in Fig. 4.8, once we convert the GGP trees into rule induction algorithm 

Java codes, we run them in a set of classification problems. For each classification 

problem (i.e., each data set in the meta-training set), we obtain a rule model 

from the training set and an accuracy in the validation set, and then we need to 

summarize this information into a straightforward fitness value. 

The most intuitive way of performing this summarization, and which was first 

used to evaluate the proposed GGP, was to use the average of the accuracies of 

the GGP-RI (the Rule Induction algorithm evolved by the GGP) over all clas­

sification problems as the fitness value. However, analyzing the results obtained 

in the first runs of the GGP with this fitness function, we realized it was not a 

good one. There is a simple explanation for that. The GGP is calculating an 

average over different data sets, with very different baseline accuracies (i.e., accu­

racies obtained when using the class of the majority of the training examples to 

classify new examples). For instance, let us assume we have a data set DSl with 

baseline accuracy 90% and a data set DS2 with baseline accuracy 60%. The GGP 

creates two rule induction algorithms GGP-RI l and GGP-Rh· GGP-RI l obtains 

accuracies of 92% and 70% for DSl and DS2 , while GGP-RI2 obtains accuracies 

of 100% and 62% for DBl and DS2 . The average of the accuracies of GGP-RI l 

is the same as the average of the accuracies of GGP-RI2' which is 81%. However, 

improving the accuracy from 90% to 100% is much more difficult than increasing 

it from 60% to 70%. 
It was clear that the accuracy itself was not a good measure of how much 

better GGP-RI l was when compared to GGP-RI2. Hence, we tried two other 

fitness functions. The first was based on the average over the values of the function 

senSi X speciJi (described in Eq. (4.3)) for each data set i in the meta training set. 

Eq. (4.3) describes the nclasses-root of the product of the sensitivity (true positive 

rate) x the specificity (true negative rate) of a data set. The TP, FP, TN and FN 

terms stand for the number of true positives (positive examples correctly classified 

as positive), false positives (negative examples wrongly classified as positive), true 
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negatives (negative examples correctly classified as negative) and false negatives 

(positive examples wrongly classified as negative). In the case of data sets with 

more than two classes, when calculating the values of TP FP TN and FN each 
" , 

class is turn is considered as the positive class, and the remaining classes as the 

negative class. 

sensi x speci fi = nClasses II T~ TN· -------- x ~ 
T~+FNi TNi+FPi 

(4.3) 
nClasses 

i=l 

The second fitness function was implemented as the average of the values of 

function fiti (defined in Eq. (4.4)) for each data set i in the meta training set. 

In the definition of fiti given in Eq. (4.4), ACCi represents the accuracy (on the 

validation set) obtained by the rules discovered by the rule induction algorithm in 

data set i. DefAcCi represents the default accuracy (the accuracy obtained when 

using the class of the majority of the training examples to classify new examples 

in the validation set) in data set i. 

{ 

ACCi-DefAcci 
fit. = I-DefAcCi' 

~ ACCi-DefAcci 
DefAcCi ' 

if Acci > DefAcci 

otherwise 
(4.4) 

According to the definition of fiti' if the accuracy obtained by the classifier 

is better than the default accuracy, the improvement over the default accuracy is 

normalized, by dividing the absolute value of the improvement by the maximum 

possible improvement. In the case of a drop in the accuracy with respect to the 

default accuracy, this difference is normalized by dividing the negative value of 

the difference by the maximum possible drop (the value of DefAcCi). 

Hence, fiti returns a value between -1 (when ACCi = 0) and 1 (when ACCi = 

1). As explained before, the degree of difficulty of the classification task depends 

strongly on the value of DefAcci. The above fitness function recognizes this and 

returns a positive value of fiti when ACCi > Def ACCi. For instance, if DefAcCi= 

0.95, then ACCi=0.90 would lead to a negative value of fiti' as it should. 

A set of experiments was performed using both the fitness functions defined 

in Equations (4.3) and (4.4). The graph in Figure 4.10 shows the average values 

for both the fitness functions defined in Equations (4.3) and (4.4) over all the 100 

individuals of the GGP evolved for 30 generations. The graph was produced in 

experiments where the meta-training set contained the data sets monks-2, monks-

3, balance-scale, lymph and zoo, obtained from [104]. As we can observe, the curve 
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Figure 4.10: Comparing the average fitness values given by fit and sen s x speci f 
in a GGP run with 100 individuals and 30 generations 

generated by the average value of sensi x specifi (Sens x Specif) over all data 

sets i is smoother than the average fiti curve (fit) , but in general the behavior 

of both measures is similar. While the improvements of fit along the generations 

grows faster than the sens x speci f , the same is true for the declines. 

Although the graph shows that in general the behavior of the two measures is 

consistent, the rule induction algorithms evolved by GGPs using fit were more 

robust when evaluated in a meta-test set containing data sets different from the 

ones used in the meta-training set. Hence, based on these empirical results , the 

average value of fiti over all the data sets (fit i being defined in Eq. (4 .4)) was 

chosen as the current GGP fitness function. More precisely, the fitness is computed 

as L:~ataSets fitdnDataSets, where nDataSets is the number of data sets in the 

meta-training set . 

Recall that some of the rule induction algorithms generated by the GGP can 

generate algorithms whose runs will enter into infinite loops. As mentioned earlier , 

during the development of the GGP system, we tried to predict most of the 

situations in which infinite loops might occur. However, there are still some 

programs which will be halted when an infinite loop is detected. These programs 

have to be penalized in their fitness function , so that they have a very small chance 

of breeding. 
We choose to penalize programs which enter into infinite loops in a particular 

data set by setting their fitness in that data set to minus the number of data sets 

in the meta-training set. In this way, the fitness value in that data set has a big 

impact in the value of the average fitness over all the data sets in the meta-t raining 

set . 
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When analyzing the results of these preliminary experiments run to choose 

the more appropriated fitness function to guide the GGP, we noticed three things: 

(1) the values of the fitness obtained by the individuals when evaluating them in 

the meta-training set were much superior than the ones obtained when running 

the evolved rule induction algorithms in the meta-test set (a set of data sets 

different from the ones used in the meta-training set); (2) The population was 

converging too fast and, on average, after 20 generations, approximately 70% of 

the individuals in the population were the same; (3) The algorithm was using 

an elitist strategy, and the elitist individual would be found in the very early 
generations. 

Taking into account these three observations, we realized all of them were 

related to the same thing: over-fitting. At first this was not very obvious, since 

the value of the fitness in the meta-training set is expected to be greater than 

the values of the fitness in the meta-test set (since the GGP "saw" the data in 

the meta-training set many times during evolution). The population could be 

converging because the fitness and/or the selection procedure were not working 

properly, and in consequence the long-term survival of an elitist individual found 

in an early generation would reflect the badly guided search. 

We solved the over-fitting problem with a simple and effective solution bor­

rowed from the literature on GP for data mining [14, 21]: at each generation, the 

data used in the training and validation sets of the data sets in the meta-training 

set are merged and randomly redistributed. This means that, at each generation, 

the GGP individuals are evaluated in a different set of validation data, helping 

to avoid over-fitting. In order to illustrate the advantages of using this approach, 

Figures 4.11 to 4.15 show, for all the 100 individuals of the population in genera­

tion 1, the values of the predictive accuracy found in the training and validation 

sets of the 5 data sets used in the meta-training set, namely monks-2, monks-3, 

balance-scale, lymph and zoo. The accuracies are ordered from the smallest to the 

biggest values, so the values of the second points in the graphs for monks-2 and 

monks-3, for instance, might not be obtained by the same individual. Accuracy 

values of 1 in the training set followed by much lower accuracies in the validation 

set usually indicate that the rule induction algorithm is over-fitting the model to 

the training data. 

All the graphs presented in Figure 4.11 to 4.15 have some similar features. 

First, all of them present individuals which obtain accuracies of O. The value 0 in 

accuracy indicates that this particular individual entered into an infinite loop when 
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generating a classification model for that particular data set. Secondly, the graphs 

for all data sets contain a flat region, which represents a number of individuals 

which obtain the same predictive accuracy for that data set. These flat regions 

actually represent individuals obtaining the data set's default accuracy (using the 

class of the majority of examples in the training set to classify new examples in the 

validation set). Thirdly, we can observe that not all the individuals with the same 

classification accuracy in the training set obtain the same predictive accuracy in 

the validation set. These are usually individuals with small variations, like their 

criteria to stop pruning rules or the size of the beam in the beam search. At last, 

all of the graphs show individuals obtaining accuracy values of 1 in the training 

set. 

Figure 4.16 shows the fitness values obtained by all the individuals, which is 

the average of the values of Jiti in all the data sets. As the graph illustrates, the 

first 17 individuals have fitness values smaller than -1, that is, they entered into 

an infinite loop in at least one data set in the meta training set. As it can also be 

observed, the maximum fitness value obtained by a GGP individual was smaller 

than 0.3. 

The graphs presented in Figure 4.11 to 4.15 illustrate the accuracies of the in­

dividuals when evaluated in the first generation. In turn, Figures 4.17 to 4.21 show 

the classification accuracies in the training and validation sets for all the data sets 

in the meta-training set in generation 10, using the same training and validation 

sets to evaluate the individuals during the evolution, and also varying them at each 

generation. Figures 4.23 to 4.27 and Figures 4.29 to 4.33 show the same informa­

tion for generations 20 and 30, and Figures 4.22, 4.28 and 4.34 show the evolution 

of the fitness values for all the individuals in generations 10, 20 and 30, respec­

tively. In all graphs, legends referring to data-set-name Train/Valid indicate that 

the graph was built using fixed training/validation sets, while legends referring 

to data-set-name Train Var/Valid Var indicate that the graph was built using 

training/validation set variations. Note that the accuracies shown in the data-set­

name Train/Valid graphs were not obtained in the same training/validation sets 

than the accuracies in data-set-name Train Var/Valid Var graphs, because in the 

latter the training and validation sets change at each generation. Nonetheless, 

these comparisons are still interesting, as they reflect the behavior of the GGP 

during the evolution using these two different strategies. 

As we can observe in Figures 4.17 (monks-2), 4.18 (monks-3) and 4.21 (zoo), 

in these data sets the gap between the values of classification accuracy in the 
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training and validation sets is smaller in the GGP runs using data sets variation 

than in the GGP runs using fixed data. Considering particularly the cases where 

the values of the accuracy in the training set is 1, in the data set monks-2, for 

example, there are cases in which the accuracy obtained by the GGP with variable 

validation set is 0.7 (probably due to over-fitting) and others where the accuracy 

in the validation set is 0.95. Nonetheless, for GGP using fixed data, the accuracy 

in the validation set varied from 0.77 to 0.83. In Figure 4.19 (data set lymph) we 

observe the opposite situation, where the gap in the variations of fitness in the 

training and validation sets is smaller when using the GGP with no variation in 

data. In Figure 4.20 (data set balance-scale), both runs of the GGP with fixed and 

varied validation data obtained similar results. So, in generation 10, the benefits 

of varying the training/validation sets at each generation are not clear yet. 

However, in generation 20, the data over-fitting with GGP using fixed data 

becomes more clear. In the data set monks-2 (Figure 4.17), for example, 84 

out of 100 individuals in the version of the GGP with no data variation obtain 

accuracy 1 in the training set. The same is true for 52 out of 100 individuals 

in the GG P run with data variation. However, the classification accuracy of the 

former 84 individuals is the same in the validation set, while the same is not true 

for the latter. This means that most of these 84 individuals are the same, and are 

over-fitted to the data. In the data set lymph (Figure 4.19), the scenario changed 

dramatically since generation 10, and now the GGP with data variation has better 

classification accuracies on the validation set and more diverse individuals. For 

balance-scale, the values of accuracy of the GGP with fixed data are much higher. 

Zoo is the only data set where most of the individuals which obtain accuracy 1 

in the training set of the GGP using fixed data also classified examples in the 

validation set with 100% accuracy. 

In conclusion, in generation 20, roughly 70% of the population was dominated 

by one individual, which over-fitted all the data sets but zoo when using a fixed 

set of data. This is not true when the GGP uses variable data sets at each 

generation. In this case, in generation 20, the population is more diverse and the 

cases of over-fitting account for less than 5% of the individuals in the population. 

The analysis of this same experiment in generation 30 confirms the over-fitting 

of the GGP individuals trained with fixed data. Now more than 80% of the 

population is composed by one individual which obtains 100% accuracy in most 

of the training sets. Regarding the fitness of the individuals at generation 30, in 

general, the fitness of the GGP working with fixed data is better than the fitness 
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of the variable data GGP, but it has the same values it had 10 generation earlier. 

In contrast, the fitness of the individuals of the GGP working with variable data 
is more diverse. 

4.5.3 Multi-Objective Fitness 

As emphasized before, one of the main motivations to use rule induction algo­

rithms to learn knowledge from data is to take advantage of the simplicity and 

human-readable format of the induced rules. Nevertheless, the fitness function 

presented in the previous section did not take into account the simplicity of the 

model being built by the evolved rule induction algorithm. 

In a second phase of this research, we added to the GGP a fitness function 

based on the concept of Pareto optimization, which simultenously optimizes two 

objectives: 

l. It maximizes the value of the single-objective fitness function, based on 

classification accuracy (see Eq. (4.4)). 

2. It minimizes the number of rule conditions in the produced rule model. 

This fitness function based on the Pareto optimization concept has to treat 

one special case: individuals whose rule induction algorithms produce models 

consisting of only one empty rule, i.e., individuals predicting the class of the most 

common examples in the training set for new examples in the validation set. For 

these individuals, the number of conditions in the produced model will always be 

O. As we are dealing with a minimization problem, 0 represents the best possible 

value, and this individuals would always appear in the Pareto front. To avoid 

this situation, the number of rule conditions of a model with 0 conditions is set 

to 100,000. 

Apart from the individuals' evaluation process, some other modifications were 

added to the single-objective version of the GGP to deal with the multi-objective 

approach, as illustrated in the pseudo-code of the multi-objective GGP (MOGGP), 

described in Alg. 4.3. First, in the MOGGP selection process, the individuals have 

to be selected according to a relationship of dominance instead of a simple fitness 

value. In a tournament selection of size 2, for instance, which is the method used 

in this system, the winner of the tournament is the individual that dominates the 

other (recall that an individual Ind1 dominates an individual Ind2 if Ind1 is not 

worse than I nd2 in any of the objectives being optimized, and I nd1 is strictly 
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Algorithm 4.3: Pseudo-code of the Multi-objective version of the GGP 
Let the meta-training set be a set of data sets 
pop = N individuals ramdomly generated from the grammar 
for i = 1 to maximum number of generations do 

non-dominated = 0 
for every individual Ind in pop do 

Run the rule induction algorithm represented by Ind in the 
meta-training set 

objl = avg of the normalized accuracy in the meta-training set 
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obj2 = avg of the number of rule conditions in the meta-training set 
non-dominated = Individuals in pop non-dominated according to the 

Pareto criterion using objl and obh 
newPop = 0 
if non-dominated> N /2 then 

l 
Calculate value of h for individuals in non-dominated 
Sort non-dominated according to h 
newPop = N /2 individulas with highest value of h 

else newPop = newPop U non-dominated 
while newPop < N do 

Use tournament selection to select Indl and Ind2 from pop 
Apply crossover and mutation operators to Indl and Ind2 according 

to user-defined probabilities 
newPop = Indl U Ind2 

pop = newPop 
non-dominated = Individuals in pop non-dominated according to the 

Pareto criterion using objl and obj2 
Calculate value of h for individuals in non-dominated 
Sort non-dominated according to h 
Return the individual with the highest value of h 

better than Ind2 in at least one of the objectives being optimized). In the case 

that none of the individuals dominate the other, a tie-break criterion decides the 

wIllner. 
This tie-break criterion considers the difference of the number of individuals 

in the entire population which are dominated by an individual, and the number of 

individuals in the population which dominate that individual [114]. This function 

is named h, as it acts like a third objective being optimized by the GGP. If neither 

Ind
l 

dominates Ind2 nor vice-versa with respect to accuracy and rule set size, the 

winner of the tournament is the individual with the largest value of h· 
The second modification introduced in the MOGGP concerns both the elitist 

strategy and the final solution returned to the user. The single-objective version 
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of the GGP works with elitism, so it preserves the best individual found by the 

GGP during the evolution process. This individual is the one returned to the 
user. 

In the case of the MOGGP, at each generation, all the solutions in the Pareto 

front (individuals not dominated by any other individual in the population) are 

preserved, as long as their number does not exceed half of the size of the popula­

tion. If they do, then the individuals with the highest value of h are preserved. If 

after applying f3 the number of individuals is still higher than half of the popula­

tion size, the individuals with better fit (fitness function defined in the previous 

section) are given priority. At the last generation, this same logic is applied when 

selecting the best individual to be returned to the user and tested in the meta-test 

set. 

4.6 Crossover and Mutation Operations 

In a GGP system, the new individuals produced by the crossover and mutation 

operators have to be consistent with the grammar. For instance, when perform­

ing crossover the system cannot select a subtree with root EvaluateRule to be 

exchanged with a subtree with root SelectCandidateRules, because this would 

create an invalid individual according to the grammar. 

Therefore, crossover operations have to exchange subtrees whose roots contain 

the same non-terminal, apart from Start. Crossing over two individuals swapping 

the subtree rooted at Start (actually, the entire tree) would generate exactly the 

same two individuals, and so it would be useless. 

Mutation can be applied to a subtree rooted at a non-terminal or applied to 

a terminal. In the former case, the subtree undergoing mutation is replaced by a 

new subtree, produced by keeping the same label in the root of the subtree and 

then generating the rest of the subtree by a new sequence of applications of pro­

duction rules, so producing a new derivation subtree. When mutating terminals, 

the terminal undergoing mutation is replaced by another "compatible" symbol, 

i.e., a terminal or non-terminal which represents a valid application of the produc­

tion rule whose antecedent is that terminal's parent in the derivation tree. The 

probability of mutating a non-terminal is 90%, while the probability of mutating 

a terminal is 10%. 
However, not all of the terminals can be mutated. Terminals like if, then, else 

and while, which would not introduce any modifications to the new individual, are 
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Figure 4.35: Example of Crossover in the proposed GGP 

unconsidered during mutation operations. Crossover is not performed in terminal 

nodes, but it is equivalent to crossing over a non-terminal which generated only a 

terminal node. 

From the 26 non-terminals present in the grammar, eight out of them are more 

likely to introduce significant changes into the rule induction algorithms repre­

sented by the GGP individuals. They are, namely, CreateOneRule, InitializeRule, 

inner While, innerI/, FindRule, EvaluateRule, RefineRule and PrePruneRule. 

These non-terminals have a greater chance of being selected to be swapped during 

crossover operations, or replaced during mutation operations. After some prelimi­

nary experiments, the probability of crossover/mutate these non-terminal was set 

to 70%, being the probability of selecting the remaining ones 30%. 

Figure 4.35 shows an example of a crossover operation. Note that just part 

of the individuals are shown, for the sake of simplicity. The process works as fol­

lows. Parent 1 has a node probabilistically selected for crossover. In the example 

illustrated , the chosen node is Refin eRule. The node RefineRule is then searched 

in the derivation tree of Parent 2. As Parent 2 has a node named RefineRule, 

their subtrees are swapped, generating Child 1 and Child 2. If RefineRule is not 

present in the tree of Parent 2, a new non-terminal is selected from the tree of 



CHAPTER 4. EVOLVING RULE INDUCTION ALGORITHMS 89 

Parent 1. The GGP performs at most 10 attempts to select a node which can be 

found in both parents. If after 10 attempts it does not happen, both individuals 

undergo mutation operations. 

Recall that there is a set of combinations of terminals and non-terminals of 

the grammar which are not allowed because they generate invalid individuals 

(see Section 4.4). These combinations are avoided through a set of constraints 

considered in the population initialization process. These same constraints are 

also considered during the crossover and mutation operations. 

4.7 Related Work 

For many years, Evolutionary Algorithms (EAs) have been used to automate the 

difficult and time-consuming task of optimizing parameters of learning algorithms. 

Some examples include the use of EAs for searching the training weights of an 

artificial neural network [120] or optimizing the kernel parameters of a support 

vector machine [54]. Since there is a very large numnber of EAs for evolving 

parameters of a learning system, and there are already comprehensible surveys 

about this kind of work, we do not further review these EAs here. The interested 

reader is referred to [52]. 

After their success or: optimizing the parameters of learning systems, EAs 

started to be applied to optimize the components of these same learning systems. 

Let us consider, for instance, their use in instance-based learning (IBL) systems. 

Recall that an IBL algorithm is composed of three main components: (a) a sim­

ilarity function; (b) a "typical" instance selection function; (c) a classification 

function. EAs were used to select the instances and the attributes which are 

stored by the algorithm, i.e., as the "typical" instance selection function [128], 

and also to evolve instances' prototypes [94]. Another example of EAs applied to 

optimize components of learning systems is the GP proposed in [75], which evolves 

the kernel of a Support Vector Machine (SVM) system (note that SVMs are based 

on two key elements: a general purpose learning algorithm and a problem specific 

kernel). 
In the context of automatically evolving components of learning systems, we 

are aware of one attempt to evolve the evaluation function of a rule induction al­

gorithm. Wong [147] used an individual-encoding-solution GGP to automatically 

evolve the evaluation function (or scoring function) of the FOIL algorithm (an 

inductive logic programming algorithm). The GGP proposed by Wong creates 
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a population of evaluation functions by following the production rules of a logic 

grammar, which uses terminals like the current information gain of the rule being 

evaluated, the number of positive and negative examples covered by the rule being 

evaluated, and random numbers. Individuals in the first population can also be 

provided by the user or induced by other learning systems. 

The individuals (evaluation functions) generated by the GGP are then incor­

porated into a generic version of a top-down first-order logic learning algorithm 

based on FOIL, and the learning algorithm as a whole is evaluated. The fitness 

of an individual is calculated as the sum of the number of examples misclassified 

in the validation set of 4 learning tasks, which are randomly created from a single 

member data set at the beginning of each generation. 

If EAs are capable of evolving specific learning systems' components, it would 

be natural that, as some point, EAs would be able to evolve all the necessary 

components and, consequently, a complete learning system, without any human 

intervention. The system proposed in this thesis falls in this category, as it uses 

a GGP to automatically evolve complete rule induction algorithms. Although, 

to the best of our knowledge, EAs were not used to evolve complete rule induc­

tion algorithms before, EAs have been successful when evolving another type of 

learning system: artificial neural networks [150]. 

In the research area of ANN, after the first works dedicated to automatically 

evolve the training weights of ANNs, many others devoted to evolve the ANN's 

architecture (i.e. number of hidden layers, number of hidden neurons and the in­

terconnections between neurons), node transfer functions and the ANN's learning 

rules were developed, creating evolutionary artificial neural networks (EANNs) 

[150, 126]. 
The main characteristic of EANNs is their capability of adapting to an envi-

ronment as well as to changes in the environment. They can evolve just the ANN 

architecture [25] or integrate the evolution of training weights, architecture and 

learning rules [2], leading to an entirely automated process of ANN design. 

In the case of EANNs, researchers already went one step further, and are 

using EAs to create ensembles of EANNs [23]. In this same context of ensembles 

of classifiers, [86] also used a GP to combine ANN and the C4.5 decision tree 

algorithm. However, in this latter work, ANNs and decision trees were not evolved 

by the GP, but inserted into its function set. The GP was only used as a tool 

to create an ensemble with the available classifiers. Although the evolution of 

ensembles of classifiers is out of the scope of this work, this is a possible future 
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research direction (see Section 7.2). 

Apart from EANNs, there is another system which proposed the evolution of 

learning systems. This system is described here because, at the end of the evo­

lutionary process, it can produce a decision tree or a neural network algorithm. 

However, it manipulates more the data which the learning system will work with 

than the system itself. Suyama et al. [134] used a hybrid of a GP and a local 

search method to evolve a classification algorithm. Their system, named CAM­

LET, differs from a conventional GP in the sense that it does not use traditional 

GP operators, but rather three strategies which use heuristics based on empirical 

analysis to generate new individuals. These strategies were named greedy alter­

ation, random generation and heuristic alteration. The first two are adaptations 

of the crossover and mutation operations, while the last is a kind of local search. 

However, CAM LET uses an ontology rather than a grammar to guide its 

search. The ontology used in [134] has 15 coarse-grained building blocks, where 

a leaf node of the ontology is a full classification algorithm, like a decision tree, a 

genetic algorithm or a neural network. By contrast, our grammar is much more 

fine-grained; its building blocks are programming constructs ("while", "if', etc), 

search strategies and evaluation procedures not used in [134]. 

The fitness of CAMLET is the accuracy of the individual in the target data set, 

and the search for solutions stops when the best fitness(accuracy) so far reaches 

a satisfactory value pre-defined by the user. 

In a more recent work, Abe and Yamaguchi [1] compared a parallelized version 

of CAMLET to three stacking methods, but replaced its hybrid search mechanism 

by a simple genetic algorithm, using tournament selection, crossover and mutation 

during the evolution. 

The work proposed in this thesis cannot be compared to the ones which evolve 

neural networks, as they generate complete different learning systems. However, 

it can be contrasted with the systems proposed by Wong [147] and Suyama et al. 

[134]. When compared to the former, the search space for our algorithm is the 

space of sequential covering rule induction algorithms, whilst the search space for 

Wong's GGP is just the space of evaluation functions for FOIL. As a result, our 

grammar is much more elaborated than the grammar used by Wong. 

Furthermore, in both [147] and [134], the GP was trained with a single data 

set, like in any other use of GP for discovering classification rules. By contrast, 

this thesis proposed the very novel idea that the GGP is trained with several 

data sets (from different application domains) in the "meta-training set" in the 
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same run of the GGP, in order to evolve a truly generic and robust rule induction 

algorithm, and not just a rule induction algorithm tailored to one particular data 

set. In any case, in addition to this idea, we also performed experiments where 

the GGP was used to create a new rule induction algorithm tailored to a specific 

data set, as discussed in much more detail in Chapter 6. 

4.8 Summary 

This chapter introduced a grammar-based genetic programming (GGP) system 

to automatically evolve rule induction algorithms. It described in detail the main 

components of the system, including the grammar, the individual representation, 

the population initilization process, the individual evaluation procedure and the 

crossover and mutation operators. 

The grammar includes components already implemented in many well-known 

rule induction algorithms, and also elements we thought would work well in the 

context of rule induction algorithms, but that were not tried before. 

An individual encodes a rule induction algorithm, and is represented by a 

derivation tree created by applying a set of production rules from the grammar. An 

individual is evaluated using a meta-training set (a set of data sets). For each data 

set in the meta-training set, a predictive accuracy and a rule list/set is obtained. 

The GGP system can then use a single-objective approach or a multi-objective 

approach (based on the concept of Pareto optimality) to select the individuals 

which will be passed to the next generation. The single objective approach aims 

at maximizing classification accuracy only, while the multi-objective approach 

aims at both maximizing classification accuracy and minimizing the size of the 

classification model. 
We also showed how the crossover and mutation operations were adapted to 

generate only individuals which are valid according to the grammar, and compared 

the proposed system to two other works which used GG P or a similar type of 

system to automatically evolve some aspects of a rule induction algorithm - but 

not a full rule induction algorithm as shown in this thesis. 

The next chapters present the results of experiments performed to evaluate 

the efectiveness of the proposed GGP system in automatically evolving rule in­

duction algorithms, its sensitivity to parameters, and how the effectiveness of GP 

as a search method can be compared to the effectiveness of a more conventional, 

simpler search method (hill-climbing search). 



Chapter 5 

Evaluating the Proposed System 

for Evolving Robust Algorithms 

5.1 Introduction 

The basic idea of automatically evolving rule induction algorithms, as proposed in 

this thesis, is a framework which can be used in at least two different approaches: 

1. To evolve a robust rule induction algorithm from multiple data sets (from 

different application domains) 

2. To evolve a rule induction algorithm tailored to one specific data set (from 

a single application domain) 

The GGP can produce rule induction algorithms following any of these two 

approaches simply by modifying accordingly the data sets used during the GGP 

training phase. For instance, when creating robust rule induction algorithms, a 

diverse set of data sets is used in the meta-training set required by the algorithm. 

In theory, the more diverse the data sets are, the more robust the produced rule 

induction algorithm will be. In contrast, when creating rule induction algorithms 

for a specific data set, only the target data set is used in the meta-training set. 

This chapter reports computational results obtained for the proposed GGP 

using the first described framework, while results using the second framework will 

be reported in Chapter 6. 

In the context of evolving robust rule induction algorithms, the proposed GGP 

was evaluated in five phases. In the first phase, as described in Section 5.2, we 

study the impact of different GGP parameter values (specially for the crossover 
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and mutation rates) in the results obtained by the method in order to select a 

good parameter setting for further experiments. 

In the second phase, as described in Section 5.3, we evaluate the rule induc­

tion algorithms generated by the GGP by comparing them with four well-known 

manually designed rule induction algorithms: the ordered [27] and unordered [26] 

versions of CN2, Ripper [33] and C4.5Rules [124]. 

In the third phase, described in Section 5.4, we analyze the rule induction 

algorithms automatically evolved by the GGP (GGP-RIs), and compare their 

structure (in terms of their algorithmic components) with the human-designed 

rule induction algorithms. 

In the fourth phase, we examine the influence of the number of data sets used 

in the meta-training set of the GGP in the rule induction algorithms produced. 

Is a GGP trained with 3 data sets able to produce algorithms competitive with 

the ones produced by the GGP trained with 5 or 7 data sets? This question is 

the subject of Section 5.5. 

In the fifth phase, we moved from changing GGP parameters to changing 

GGP components. We performed experiments with three variations of the original 

grammar proposed in Section 4.2, and analyzed how the GGP-RIs produced by 

these variations compare to the GGP-RIs evolved by the system with the original 

version of the grammar. 

Furthermore, in order to evaluate the effectiveness of the GGP in producing 

good rule induction algorithms, Section 5.7 reports the results of using a hill­

climbing search method to automatically evolve rule induction algorithms, and 

compares its results with the rule induction algorithms evolved by the GGP. 

At last, Section 5.8 presents results when using a variation of the GGP evalu­

ated in the previous sections, where a multi-objective fitness function is considered. 

5.2 Investigating the GGP Sensitivity to Param­

eters 

All the experiments performed using the proposed GGP need two sets of param­

eters to be defined: (1) the parameters for the GGP algorithm and (2) the data 

sets used during the training phase of the algorithm. In this section we analyze 

how the GGP parameters - specially the crossover and mutation rates - influence 

the results obtained by the GGP. 



CHAPTER 5. EVOLVING ROBUST ALGORITHMS 
95 

Table 5.1: Data sets used by the GGP 

Data set Examples Attributes 
Classes Def. Acc. 

Nomin. Numer. (%) monks-2 169/432 6 2 67 
monks-3 122/432 6 2 52 
bal-scale-discr 416/209 4 3 46 
lymph 98/50 18 4 54 
zoo 71/28 16 7 43 
monks-l 124/432 6 2 50 
mushroom 5416/2708 23 2 52 
promoters 70/36 58 2 50 . . 

456/227 WISCOnSIn 9 2 65 
splice 2553/637 63 3 52 
pIma 513/255 8 2 65 
heart-c 202/101 7 6 2 54.5 
ionosphere 234/117 34 2 64 
hepatitis 104/51 14 6 2 78 
sonar 139/69 60 2 53 
vehicle 566/280 18 4 26 
vowel 660/330 3 10 11 9 
crx 461/229 9 6 2 67.7 
glass 145/69 9 7 35.2 
segment 1540/770 19 7 14.3 

In order to investigate the influence the GGP parameters have in the quality 

of the rule induction algorithms produced, we first define the data sets which will 

be used in the GGP meta-training and meta-test sets. However, it is not clear 

how many data sets should be used in each of these meta-sets of data, or what 

would be the best criteria to distribute them into these two meta-sets. Intuitively, 

the larger the number of data sets in the meta-training set, the more robust the 

evolved rule induction algorithm should be. On the other hand, the smaller the 

number of data sets in the meta-test set, the less information we have about the 

ability of the evolved rule induction algorithm to obtain a high predictive accuracy 

for data sets unseen during the evolution of the algorithm. 

Table 5.1 shows the 20 data sets used in the experiments. The figures in the 

column Examples indicate the number of examples present in the training and 

validation data sets - numbers before and after the "/", respectively, followed 

by the number of nominal attributes, numerical attributes and classes. The last 

column shows the default accuracy (the accuracy obtained when using the most 
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frequent class in the training set to classify new examples in the validation - or 

test - set). It is important to note that during the evolution of the rule induction 

algorithm by the GGP, for each data set in the meta-training set, each candidate 

rule induction algorithm (i.e., each GGP individual) is trained with 70% of the 

examples, and then validated in the remaining 30% - with the exception of the 

data sets which had pre-defined training and validation sets, such as monks. In 

this case the original sets were kept. Recall that the set of examples used to train 

a rule induction algorithm is called training set, whilst the set of examples used 

to validate the classification model built by a rule induction algorithm is called 

the validation set. These 2 sets of data vary from generation to generation to 

avoid over-searching of the rule induction algorithm being evolved to the data 

(see Section 4.5.2). In contrast, in the meta-test set, the evolved rule induction 

algorithms are evaluated using a well-known 5-fold cross validation procedure 

[145]. 

Considering the set of data sets listed in Table 5.1, experiments were organized 

in two phases. In the first phase, we worked only with the top 10 listed data sets, 

which do not contain any numerical attributes. This is because the first version 

of the GG P system did not support numerical attributes. 

In a second phase, the feature to support numerical attributes was imple­

mented, and experiments were performed using the bottom 10 data sets in Ta­

ble 5.1. Besides the fact that this experiment included data sets with numerical 

attributes, they were also very interesting to study the GGP ability to produce 

rule induction algorithms when working with a completely different set of data in 

the meta-training and meta-test sets. In a third phase, experiments were executed 

using all the 20 data sets in Table 5.1. 

In the first phase, we divided the 10 nominal data sets in two groups, placing 5 

of them in the meta-training set and the other 5 in the meta-test set. We selected 

the data sets which compose the meta-training set based on the execution time 

of rule induction algorithms, so that we included in the meta-training set the 

data sets leading to faster runs of the rule induction algorithms. The data sets 

selected to be part of the training set were monks-2, monks-3, balance-scale-discr, 

lymph and zoo. The meta-test set is composed by monks-i, mushroom, wisconsin, 

promoters and splice. 

Following this same approach, the experiments reported using numerical data 

sets (i.e., the bottom 10 data sets listed in Table 5.1) use pima, hepatitis, vowel, 

vehicle and glass in the meta-training set. erx, ionosphere, segment, sonar and 
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Table 5.2: Acc~racy ra~es (%) obtained by the rule induction algorithms evolved 
by the GGP usmg nom mal data sets in the meta-training set 

Data set 

monks-2 
monks-3 
balance-scale 
lymph 
zoo 

Cross. 0.5 Cross. 0.6 Cross. 0.7 
Mut. 0.45 Mut. 0.35 Mut. 0.25 

78.08±1.67 79.38±1.41 78.12±1.26 
90.94±0.4 91.14±0.56 91.1±0.45 

85.34±2.04 82.78±1.07 84.12±1.43 
78.8±1.74 76.4±1.94 81.6±1.6 
97.36±0.66 97.36±0.66 97.36±0.66 

Cross. 0.8 Cross. 0.9 
Mut. 0.15 Mut. 0.05 

76.72±1.47 73.34±0.73 
90.9±0.5 91.74±0.29 

81.22±1.83 83.54±1.66 
82±1.55 78.4±1.47 

96.68±1.06 98.02±0.81 

Table 5.3: Accuracy rates (%) obtained by the rule induction algorithms evolved 
by the GGP using nominal data sets in the meta-test set 

Data set 

monks-1 
mushroom . . 
wlsconsm 
promoters 
splice 

Cross. 0.5 Cross. 0.6 
Mut. 0.45 Mut. 0.35 

100±0 100±0 
99.98±0.01 99.88±0.03 
95.17±0.76 94.82±1.08 
77.42±2.54 75.83±3.48 
88.59±0.33 87.72±0.53 

Cross. 0.7 Cross. 0.8 Cross. 0.9 
Mut. 0.25 Mut. 0.15 Mut. 0.05 

100±0 100±0 100±0 
99.98±0.01 99.84±0.04 99.96±0.02 
95.08±0.97 94.17±0.56 95.17±0.52 

77.1±3 74.54±2.91 77.86±1.84 
88.2±0.44 87.93±0.49 88.43±0.6 

hean-c were used in the meta-test set. In the third phase of experimentation, we 

merged the meta-training and meta-test sets used in the first and second phases 

to generate a third meta-training and meta-test sets, respectively. 

After creating the meta-training and meta-test sets, we turned to the GGP pa­

rameters: population size, number of generations, tournament size and crossover, 

mutation and reproduction rates. In all the experiments reported in this sec­

tion, the population size is set to 100, the number of generations to 30 and the 

tournament size to 2. These three figures were chosen when evaluating the GGP 

evolution in preliminary experiments, but are not optimized. Regarding crossover, 

mutation and reproduction rates, GPs usually use a high rate of crossover and low 

rates of mutation and reproduction. However, the balance between these three 

numbers is an open question, and may be very problem dependent [12]. 

The experiments showed in this section aimed to find a good trade-off between 

the crossover and mutation rates. In order to do so, the reproduction rate was set 

to 0.05, and the balance between the crossover and mutation rates varied. 

We report the results of the accuracy of the evolved rule induction algorithms 

in the data sets of both the meta-training and meta-test sets of the GGP. It 
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should be stressed that the accuracies in the validation sets of the data sets in 

the meta-training set cannot be used to evaluate the predictive accuracy of the 

GGP-derived rule induction algorithms, because each validation set in the meta­

training set was seen many times during the GGP evolution. Nonetheless, the 

accuracy on the validation sets of the meta-training set is useful to evaluate the 

success of the training of the GGP, and so it is reported here. 

It is also important to state that the evolved rule induction algorithms may not 

perform well in future data sets (meta-test set), specially if their characteristics are 

completely different from the ones present in the data sets in the meta-training set. 

However, this emphasizes the importance of keeping different data sets form dif­

ferent application domains in both the meta-training and meta-test sets, in order 

to measure the generalization capability of the evolved rule induction algorithms. 

Tables 5.2 and 5.3 show the average classification accuracy - in the meta­

training and meta-test sets, respectively - of the rule induction algorithms evolved 

by the GGP with different values for crossover and mutation rates. For each cell 

of Tables 5.2 and 5.3, the reported accuracy is the average over 5 runs of the GGP, 

using a different random seed to initialize the population at each run. The numbers 

after the symbol ± are standard deviations. The header of each column shows the 

crossover and mutation rates used by the GGP. Recall that in the meta-training 

set each rule induction algorithm (i.e., each GGP individual) is evaluated using 

a validation set, whilst in the meta-test set a 5-fold cross-validation procedure is 

performed to evaluate the rule induction algorithms produced by the GGP. 

All the results in this section are compared using a statistical two-tailed Stu­

dent's t-test with significance levels 0.05 and 0.01 [145]. In the analysis of the 

results, for the sake of simplicity, we will refer to the GGP using a crossover rate 

of 0.5 as GGP-0.5, to the GGP using a crossover rate of 0.6 as GGP-0.6 and so 

on. The correspondent mutation rate is given by the subtracting the crossover 

rate from 0.95 - recall that the reproduction rate is 0.05. 

The results in Table 5.3 refer to the meta-test set. An analysis of these re­

sults using a statistical t-test with a significance level of 0.05 reveals significant 

differences in the predictive accuracies obtained by the evolved rule induction al­

gorithms using different parameter configurations in only one data set: mushroom. 

In the mushroom data set, GGP-0.5 and GGP-0.7 obtained results statistically 

better than the ones obtained by GGP-0.6 and GGP-0.8. For the other 4 data 

sets, no parameter configuration showed better results than the others. However, 
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Table 5.4: Accuracy rates (%) obtained by the rule induction algorithms evolved 
by the GGP using numerical data sets in the meta-training set 

Data set 
Cross. 0.5 Cross. 0.6 Cross. 0.7 Cross. 0.8 Cross. 0.9 
Mut. 0.45 Mut. 0.35 Mut. 0.25 Mut. 0.15 Mut. 0.05 

pIma 73.82±1.77 71.12±1.32 72.4±1.92 72.78±1.98 70.84±2.54 
hepatitis 72.7±0.48 72.68±1.47 71.62±0.87 72.92±1.58 70.8±1.52 
vowel 61.32±4.19 67.52±2.46 64.68±2.52 62.62±2.63 66.74±1.96 
vehicle 65.26±0.63 67.28±1.03 66.36±1.85 65.44±0.46 68.18±0.59 
glass 62.32±4.78 64.94±2.58 68.72±1.27 68.42±1.92 65.8±1.34 

Table 5.5: Accuracy rates (%) obtained by the rule induction algorithms evolved 
by the GGP using numerical data sets in the meta-test set 

Data set 
Cross. 0.5 Cross. 0.6 Cross. 0.7 Cross. 0.8 Cross. 0.9 
Mut. 0.45 Mut. 0.35 Mut. 0.25 Mut. 0.15 Mut. 0.05 

crx 82.55±0.94 81.74±1.05 82.14±0.43 82.35±0.96 81.68±0.85 
ionosphere 85.89±2.26 85.03±2.51 86.98±2.54 85.84±2.35 85.6±2.02 
segment 91.39±0.63 94.95±0.19 94.75±0.41 91.68±0.89 95.18±0.39 
sonar 70.05±1.67 72.89±1.46 72.72±1.95 71.06±1.73 71.74±1.21 
heart-c 78.44±2.14 76.43±1.34 75.13±1.52 77.5±0.93 75.14±1.44 

if the significance level of the t-test is strengthened to 0.01, all the pairwise com­

parisons among the parameter configurations in Table 5.3 produce statistically 

insignificant differences. 

Based on these results, we cannot say that any of the GGP parameter con­

figurations evaluated is better than the others. For some data sets one of them 

can be slightly better than the others, but overall the results obtained were very 

similar. From these observations we can conclude that the proposed GGP is very 

robust to the setting of crossover and mutation parameters when trained with the 

previously mentioned nominal data sets in the meta-training set. 

After this first conclusion was drawn, the GGP system was extended with 

features to manipulate numerical attributes, and then we started a second exper­

imental phase. During this phase, we used data sets with at least one numerical 

attribute (the bottom 10 data sets listed in Table 5.1) to train and test the GGP. 

This was a good way to study the behavior of the system when trained with 

completely different data sets, and check if the results obtained with different 

parameter configurations would also be consistent with the ones obtained during 

the first experimental phase. 
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Table 5.6: Accuracy rates (%) obtained by the rule induction algorithms evolved 
by the GGP using both nominal and numerical data sets in the meta-training set 

Data set 

monks-2 
monks-3 
balance-scale 
lymph 
zoo 
pima 
hepatitis 
vowel 
vehicle 
glass 

Cross. 0.5 Cross. 0.6 Cross. 0.7 Cross. 0.8 Cross. 0.9 
Mut. 0.45 Mut. 0.35 Mut. 0.25 Mut. 0.15 Mut. 0.05 

73.76±0.85 72.02±0.33 75.22±1.77 71.98±1.27 74.8±1.84 
90.92±0.37 91.14±0.23 91.26±0.22 92.04±0.6 91.24±0.37 
84.76±1.55 84.88±1.14 84.5±1.52 82.56±1.38 84.78±2.28 

80±1.1 78.4±1.17 80±1.67 79.6±0.98 77.6±1.94 
96.7±0 96.7±0 96.7±0 96.7±0 92.7±4 

69.64±1.17 70.64±1.3 70.18±0.93 69.56±0.1 72.06±1.42 
70.58±0.66 71.2±0.22 70.28±0.93 71.52±0.29 72±1.67 
68.62±1.1 70.3±0.47 71.26±0.72 71.98±0.86 68.6±3.11 

66.28±1.07 67.14±0.27 68.08±1.5 68.28±1.12 68.22±2.1 
71.02±2.2 70.14±2.73 66.66±2.25 67.82±3.67 66.38±2.66 

Tables 5.4 and 5.5 report the classification accuracies obtained by the evolved 

rule induction algorithms in the meta-training and meta-test sets, respectively, 

when using data sets with at least one numerical attribute. As in the previous 

experiments, according to a statistical t-test with a significance level 0.05, there 

was only one data set in which some of the GG P parameter configurations were 

better than the others: segment. For this data set, in Table 5.5 both GGP-0.5 

and GGP-0.8 obtained classification accuracies statistically worse than GGPs-0.6, 

0.7 and 0.9. The differences in predictive accuracy among GGP-0.5, GGP-0.6 and 

GGP-0.9 are also statistically significant with a 0.01 significance level. Once more 

these results do not allow us to consider one of the parameter configurations better 

than the others in general, and so these results reinforce the previous conclusion 

about the robustness of the GGP to changes in the crossover and mutation rates. 

The third and last experimentation phase executed in order to set the GGP 

crossover and mutation rates was based on a greater number of data sets in the 

meta-training and meta-test sets. In total, 10 data sets were used to train and 

10 data sets were used to test the GGP. In both cases, the data sets chosen to 

compose each of the meta data sets were the same used in phases 1 and 2 to train 

and test the GGP. Tables 5.6 and 5.7 show the results obtained. 

Applying the t-test with significance level 0.05 to the results in Table 5.7, 

we find significant differences in predictive accuracies in 3 data sets: mushroom, 

segment and splice. Interestingly, mushroom and segment are the two data sets 

in which, in previous experiments, there was also a significant difference among 
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Table 5.7: Accuracy rates (%) obtained by the rule induction algorithms evolved 
by the GGP using both nominal and numerical data sets in the meta-test set 

Data set 
Cross. 0.5 Cross. 0.6 Cross. 0.7 Cross. 0.8 Cross. 0.9 
Mut. 0.45 Mut. 0.35 Mut. 0.25 Mut. 0.15 Mut. 0.05 

crx 77.75±3.81 80.95±0.82 77.46±3.8 79.54±1.62 81.85±0.97 
segment 93.98±0.57 95.04±0.48 95.06±0.26 95.34±0.31 93.95±0.37 
sonar 72.83±1.91 72.52±1.87 72.34±1.91 71.48±2.3 69.24±1.14 
ionosphere 87.2±2.13 86.59±1.97 87.04±2.2 85.88±1.64 87.61±2.24 
heart-c 74.67±1.7 75.47±1.77 76.72±1.5 75.44±0.66 77.37±1.19 
monks-1 99.82±0.18 99.82±0.18 99.93±0.07 99.64±0.36 100±0 
mushroom 99.23±0.05 99.96±0.01 99.99±0 100±0 99.75±0.05 

. . 95.11±0.47 95.97±0.38 95.58±0.74 95.02±0.5 95.23±0.7 Wlsconsm 
promoters 80.5±2.29 83.59±2.7 78.98±2.93 78.4±1.9 75.97±1.82 
splice 89.16±0.47 89.82±0.42 88.68±0.31 89.82±0.44 82.19±0.47 

the results of different parameter configurations. In mushroom, the accuracies of 

all the other 4 parameter configurations are significantly better than the accu­

racy of GGP-0.5, and the accuracies of GGP-0.6, GGP-0.7 and GGP-0.8 are also 

significantly better than the one of GGP-0.9. In segment, GGP-0.8's accuracy 

is significantly better than GGP-0.5's accuracy, while in splice the accuracies in 

all parameters configurations are significantly better than the one obtained by 

GGP-0.9. In these cases, when the significance level is strengthened to 0.01, the 

statistical significance of results in the splice data set and the comparisons among 

GGP-0.5 and the other configurations in mushroom do not change. 

From the three experiments previously run using 5 different parameter config­

urations each, we can conclude that the proposed GGP is robust to the variations 

in the crossover and mutation rates. However, can the automatically generated 

rule induction algorithms obtain better classification accuracies than well-known 

manually designed rule induction algorithms? That is the subject of Section 5.3. 

5.3 Comparing GGP-derived Rule Induction 

Algorithms with Conventional Rule Induc-

tion Algorithms 

In Section 5.2 we compared the results obtained by the rule induction al­

gorithms evolved by the GGP with different parameter configurations. These 

~EN?, 
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comparisons were useful to show the robust nature of the method concerning vari­

ations in the crossover and mutation parameters, but it does not give any insights 

about how competitive the automatically designed algorithms are when compared 

to some well-known human-designed rule induction algorithms. In this section, 

we compare the results obtained by the GGP-derived rule induction algorithms 

(GGP-RIs) with 4 well-known rule induction algorithms: the ordered [27] and 

unordered [26] versions of CN2, Ripper [33] and C4.5Rules [124]. 

From these four algorithms, C4.5Rules is the only one which does not follow 

the sequential covering approach, which is the approach followed by the GGP-RIs. 

However, as C4.5Rules has been used as a benchmark algorithm for classification 

problems for many years, we also included it in our set of baseline comparison 

algorithms. 

It is also important to observe that the current version of the grammar does not 

include all the components present in Ripper, but does include all the components 

present in both versions of CN2. In other words, the space of candidate rule 

induction algorithms searched by the GGP includes CN2, but it does not include 

C4.5Rules nor the complete version of Ripper. 

As in the previous section, we first report the comparisons between the GGP­

RIs and baseline algorithms for the experiments using only nominal data sets, 

followed by the comparisons for experiments using data sets with at least one 

numerical attribute. Finally, we show the results of comparisons for experiments 

where both nominal and numerical data sets were used together. 

Table 5.8 shows a summary of the comparisons among the GGP-RIs with 

specific GGP parameter configurations and the baseline algorithms. In Table 5.8, 

the first column shows the crossover/mutation rates used by the GGPs, while 

the second and third columns show the number of times the GGP-RIs obtain 

predictive accuracies significantly better( worse) than the baseline algorithms using 

both a significance level of 0.05 and 0.01, respectively. Theses figures represent 

the number of significant "wins/losses" out of 20 comparisons (5 data sets x 4 

manually-designed classification algorithms). 

As expected, the numbers of significantly better( worse) results do not vary a lot 

from one parameter configuration to another (as GGPs with different parameter 

configurations produce similar results). The number of cases where GGP-RIs 

obtain significantly better results than the baseline algorithms is always 2 with 

a significance level 0.05, and apart from GGP-0.5, that number is reduced to 1 

with a 0.01 significance level. Not surprisingly, all these comparisons refer to the 
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!able 5.8: Comparing the GGP-RIs trained with different parameters (using nom­
mal data sets) to the baseline algorithms using a statistical t-test 

GGP-RIs Signif. level 
Cross/Mut 0.05 0.01 

0.5/0.45 2(2) 2(1) 
0.6/0.35 2(4) 1(1) 
0.7/0.25 2(2) 1(1) 
0.8/0.15 2(3) 1(1) 
0.9/0.05 2(2) 1(1) 

Table 5.9: Comparing predictive accuracy rates (%) for the nominal data sets in 
the meta-test set - results obtained with crossover rate = 0.5 and mutation rate 
= 0.45 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules 
monks-1 100±0 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
mushroom 99.98±0.01 100 ± 0 100 ± 0 99.96 ± 0.04 
wisconsin 95.17±0.76 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 77.42±2.54 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 88.59±0.33 90.32 ± 0.74 __ 9:3:88:± "O::U 89.66 ± 0.78 

same algorithms in the same data sets, as will be discussed later. Considering the 

number of times the baseline algorithms obtain better results than the GGP-RIs, 

this number varies from 2 to 4 with a 0.05 significance level, but is always 1 with 

a 0.01 significance level. 

Instead of showing a more detailed comparison of the GGP-RIs with the base­

line algorithms for all the parameter configurations, here we choose to present the 

detailed results of GGP-0.5 only, since the results produced by the other parameter 

configurations are similar. This parameter configuration, which uses a crossover 

rate of 0.5 and a mutation rate of 0.45, will also be used in further experiments 

involving nominal data sets, described in Section 5.5. This choice is based on a 

slightly better performance of GGP-0.5 when compared to the other classifica­

tion algorithms using the 0.01 significance level , as shown in the last column of 

Table 5.8 
Table 5.9 shows the average predictive accuracy obtained by the rule induc-

tion algorithms produced by the GGP-0.5 using nominal data sets in 5 different 

runs of the GGP varying the random seed, followed by the results of runs of 

Ordered-CN2, Unordered-CN2 , Ripper and C4.5Rules (all of them using default 
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Table .5.10: Comparing the GGP-RIs trained with different parameters (using 
numencal data sets) to the baseline algorithms using a statistical t-test 

GGP-RIs Signif. level 
Cross/Mut 0.05 0.01 

0.5/0.45 1(2) 1(2) 
0.6/0.35 1(0) 1(0) 
0.7/0.25 1(0) 1(0) 
0.8/0.15 1(2) 1(0) 
0.9/0.05 1(0) 1(0) 

parameter values). All the results were obtained using a 5-fold cross-validation 

procedure. The numbers after the symbol "±" are standard deviations. Results 

were again compared using a statistical t-test with significance level 0.01. Cells 

in dark gray represent significant wins of the GGP-RIs against the corresponding 

baseline algorithm, while light gray cells represent GGP-RIs losses. 

In total, Table 5.9 contains 20 comparative results between GGP-RIs and 

baseline algorithms - 5 data sets x 4 baseline classification algorithms. Out of 

theses 20 cases, the accuracy of GGP-RIs was statistically better than the accuracy 

of the baseline algorithms in 2 cases, whilst the opposite was true in one case. In 

the other 17 cases there was no significant difference. 

The GGP-RIs' predictive accuracies are statistically better than the C4.5Rules' 

accuracy in mushroom and Unordered-CN2's accuracy in splice. Naturally, these 

2 cases involve algorithms with the worst accuracy for the respective data set. 

It is also in a comparison among Ripper and the GGP-RIs in splice where the 

GGP-RIs obtain a significantly worse accuracy than Ripper. However, we can 

claim that the accuracies obtained by Ripper in splice are much superior to the 

ones found by all the other baseline algorithms, and as the GGP-RIs did not have 

all the algorithmic components present in Ripper in its search space, it was not 

possible to produce an GGP-RI with such a high accuracy in splice. 

The same type of comparison and analysis done with the experiments involving 

only nominal data sets in the meta-training and meta-test sets was performed for 

the set of experiments using data sets with at least one numerical attribute (5 

data sets in the meta-training and 5 data sets in the meta-test sets) and the 

experiments using all the 20 data sets previously utilized. We first show the 

results involving only data sets having at least one numerical attribute - hereafter 
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Table 5.11: Comparing predictive accuracy rates (%) for the numerical data sets 
in the meta-test set - results obtained with crossover rate = 0.7 and mutation rate 
= 0.25 

Data Set GGP-Rls OrdCN2 UnordCN2 Ripper C45Rules 
crx 82.14±0.43 80.16 ± 1.27 80.6 ± 0.93 84.37 ± 1.21 84.82 ± 1.53 
ionosphere 86.98±2.54 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1.7589.06 ± 2.71 
segment 94.75±0.41 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
sonar 72.72±1.95 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 75.13±1.52 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 

denoted numerical data sets for short. 

Table 5.10 shows the results of the comparisons among the GGP-Rls with pa­

rameter variations and the baseline algorithms. It uses the same notation used 

in Table 5.8, showing the number of results significantly better(worse) than the 

baseline algorithms using both a significance level of 0.05 and 0.01. Observe that, 

with both significance levels 0.01 and 0.05, the GGP-Rls always obtain signifi­

cantly better accuracies than 1 baseline algorithm in every data set. Significantly 

worse accuracies than the baseline algorithms are obtained in just 2 cases by 

GGP-0.5 and GGP-0.8. Once more the fact that no GGP configuration is con­

siderably better than the others is clear in Table 5.10. Taking into account the 

losses of GGP-0.5 and GGP-0.8, the results obtained by the GGP configurations 

using crossover rates 0.6, 0.7 and 0.9 were pretty much the same. We chose to 

report the results obtained by GGP-0.7, once its crossover rate is in between the 

values 0.5 and 0.9. We now report in detail the comparisons among the GGP-0.7 

and the baseline algorithms. 
Table 5.11 shows the average predictive accuracy obtained by the rule induc-

tion algorithms produced by the GGP-0.7 using numerical data sets in 5 different 

runs of the GGP varying the random seed (recall that each discovered GGP-RI 

was in turn run for each data set using a 5-fold cross-validation procedure) , fol-, , 
lowed by the cross-validation results of runs of Ordered-CN2 and Unordered-CN2 , 

Ripper and C4.5Rules (using default parameter values in all these algorithms). As 

we can observe, all the comparisons but one revealed accuracies that were statis­

tically insignificant at the 0.01 significance level from the ones obtained by the 

baseline algorithms. The exception is the Unordered-CN2 algorithm in the data 

set segment. This algorithm presents a very low predictive accuracy when com­

pared to the other algorithms, and its accuracy is indeed much lower than the one 

obtained by the GGP-0.7. 
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Tabl~ 5.12: Compa~ing the GGP-RIs trained with different parameters (using 
nommal and numencal data sets) to the baseline algorithms using a statistical 
t-test 

GGP-RIs Signif. level 
Cross/Mut 0.05 0.01 

0.5/0.45 3(4) 3(4) 
0.6/0.35 3(3) 3(3) 
0.7/0.25 3(1) 3(1) 
0.S/0.15 3(1) 3(1) 
0.9/0.05 ·2(S) 2(5) 

At last, we report the results of comparisons involving the GGPs trained with 

both nominal and numerical data sets. Table 5.12 reports the number of times 

the GGP-RIs produced with a specific crossover/mutation rate are significantly 

better(worse) than the baseline algorithms using the two-tailed t-test with signif­

icance levels 0.05 and 0.01. In this case, the better(worse) results are obtained 

out of 40 comparisons - 10 data sets x 4 baseline classification algorithms. In 

this particular set of experiments, we can observe that all the GGP-Rls but one 

obtained classification accuracies statistically better than the baseline algorithms 

in 3 cases when analyzing the results using both levels of significance. The ex­

ceptions are the rule induction algorithms produced by GGP-0.9, which obtained 

better results in 2 cases instead of 3. However, in these experiments, there was a 

large variation among the number of results obtained by the GGP-Rls that were 

significantly worse than the baseline algorithms. They varied from 1 to 8 using a 

0.05 significance level and from 1 to 5 when using 0.01. According to their num­

ber of losses, GGPs using 0.7 and O.S crossover rates produced GGP-Rls slightly 

better than the others, with 3 results statistically better and 1 result statisti­

cally worse than the ones obtained by the baseline algorithms. To be consistent 

with the choice of parameters made for the experiments using numerical data 

sets, Table 5.13 presents and compares the results obtained by the rule induction 

algorithms evolve by GGP-0.7 with the baseline algorithms. 

Table 5.13 shows the average accuracy obtained by the rule induction algo­

rithms produced by the GGP-0.7 using both nominal and numerical data sets in 

5 different runs, followed by the results of runs of Ordered-CN2, Unordered-CN2, 

Ripper and C4.5Rules (using default parameter values in all these algorithms). 

Comparing the results in Table 5.13 with the results in Tables 5.9 and 5.11, we 

discover the former looks like a summary of these previous two tables reporting 
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Table 5.13.: Comparing predictive accuracy rates (%) for the nominal / numerical 
data sets III the meta-test set - results obtained with crossover rate = 0.7 and 
mutation rate = 0.25 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Ruies 
crx 77.46±3.8 80.16 ± 1.27 80.6 ± 0.93 84.37 ± 1.21 84.82 ± 1.53 
segment 95.06±0.26 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
sonar 72.34±1.91 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 76.72±1.5 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
ionosphere 87.04±2.2 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1.7589.06 ± 2.71 
monks-1 99.93±0.07 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
mushroom 99.98±0.02 100 ± 0 100 ± 0 99.96 ± 0.04 
wisconsin 95.58±0.74 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 78.98±2.93 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 88.68±0.31 90.32 ± 0.74 93.88:'± 0.4189.66 ± 0.78 

results of experiments using only nominal or numerical data sets: the GGP-RIs 

also obtain significantly better accuracies (at the 0.01 significance level) than 

Unordered-CN2 in segment and splice and C4.5Rules in mushroom. The single 

result significantly worse than the results obtained by other classifiers is , again, 

obtained by the GGP-RIs in splice, which is significantly worse than the Ripper 

result for that data set. 
These three sets of experiments performed with different data sets in the meta-

training and meta-test sets lead us to conclude that the GGP-RIs can easily out­

perform classifiers which are not competitive with the other baseline algorithms. 

For example, in splice the predictive accuracy of Unordered-CN2 is 74.82 ± 2.94, 

while the other algorithms obtain accuracies close to 90%. In this case, the GGP­

RIs can easily find a better accuracy than the one found by Unordered-CN2. 

On the other hand, we can say that the GGP was not able to find a rule in­

duction algorithm good enough to outperform the predictive accuracies of Ripper 

in splice because it did not have all the components necessary to do that in its 

grammar. However, note that the accuracy obtained by Ripper in splice is also 

statistically better than the ones obtained by C4.5Rules and CN2- Ordered when 

applying a t-test with 0.01 significance level. 
Finally, recall that the search space of the GGP includes both Unordered and 

Ordered CN2. Hence, it seems fair to expect that the GGP-RIs would never obtain 

a predictive accuracy significantly worse than either version of CN2. Indeed , this 

was the case in the experiments reported in this section. Considering the results 
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of Tables 5.9, 5.11 and 5.13 as a whole, the GGP-Rls significantly outperformed 

Unordered-CN2 in 4 cases (dark gray cells in those tables), and there was no case 

where either version of CN2 significantly outperformed the GGP-RIs. 

So far we have shown that the evolved GGP-RIs are competitive to traditional 

human-designed rule induction algorithms. But how similar the former are to the 

latter? The next section presents some rule induction algorithms generated by 

the GGPs and compares them to well-known human-designed ones. 

5.4 To What Extent are GGP-RIs Different 

from Manually-Designed Rule Induction Al­

gorithms? 

The main goal of this work was to automatically evolve rule induction algo­

rithms robust enough to obtain a competitive predictive accuracy in new data 

sets when compared to manually-designed rule induction algorithms. Section 5.3 

showed that it is possible to automatically generate competitive rule induction 

algorithms. However, how similar are they to well-known manually-designed 

algorithms? Are the GGP-RIs innovations in any aspect of manually-designed 

algorithms? This section describes the way the CN2 and Ripper algorithms in­

duce rules, and then compares these algorithms with the discovered GGP-RIs. 

C4.5Rules will not be part of this comparison, as it is does not follow the sequen­

tial covering approach. As previously explained in Section 2.4, C4.5Rules extracts 

a rule set from a decision tree built from the data. 

Alg. 5.1 shows the pseudo-code for the Ordered-CN2 algorithm [26]. Note 

that this algorithm, as all the others described in this section, are instantiations 

of Alg. 2.2 and Alg. 2.3 (in the case of a rule list) or Alg. 2.1 (in the case of a rule 

set), described in Section 2.2. For the sake of simplicity, statements presented in 

these algorithms that do not vary from one rule induction algorithm to another, 

such as Remove from T all the examples covered by R' or ff(CR is better than 

bestRule) then bestRule = CR, are omitted. 
Alg. 5.1 starts to produce rules with an empty condition, adds one condition-

at-a-time to it, evaluates the rule with the new condition using the Laplace esti­

mation and selects the best 5 produced rules to go on into the refinement process. , 
Notice that a rule is considered a candidate to be the best rule only if it is signif-

icant according to a statistical significance test. However, the default setting of 

CN2 completely ignores this test. The size of the beam shown in the pseudo-code 
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~s 5 because this value is used as the CN2 default one. The algorithm keeps insert­

mg new rules to the rule list while there are uncovered examples in the training 
set. 

Algorithm 5.1: Main part of the pseudo-code of the Ordered-CN2 algo­
rithm 

RuleList - 0 
repeat 

bestRule = an empty rule 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules i- 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
Add 1 condition-at-a-time to CR 
Evaluate CR using the Laplace estimation 
if CR is significant then 
L newCandidateRules = newCandidateRules U CR 

candidateRules = 5 best rules selected from newCandidateRules 
RuleList = RuleList U bestRule 

until all examples in the training set are covered 

The unordered version of CN2 presents just one major modification when 

compared to Alg. 5.1. An outer loop for is inserted to repeat the algorithm 

described in Alg. 5.1 as many times as the number of classes presented in the 

data. It is important to point out that, when applying the model generated by 

Unordered-CN2 to unseen examples in the test set, in cases where more than one 

rule predicting different classes cover the same example, the class of the example 

is decided using the following probabilistic method. For all the rules which cover 

the example, the number of covered examples in each class is counted. Then, for 

each class in turn, the number of examples covered by each of the fired rules is 

summed up. The class which presents the largest number of examples covered by 

those rules is chosen as the new example's class. 

As showed in Alg. 5.1, CN2 is a fairly simple algorithm. Alg. 5.2 shows the 

main part of the pseudo-code of Ripper [33]. As observed, this is a much more 

sophisticated algorithm. It actually builds a rule list of ordered classes, that is, 

for each class in turn it builds a rule list which separate the current class from 

the other classes in the data set. It works in three phases: it first grows a rule 

which covers no negative examples by adding one condition-at-a-time to it, and 

evaluates the possible candidate rules using the information gain criterion. Once 
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a rule which covers no negative examples is found, it is pre-pruned by removing 

from it a set of final conditions. During the pruning phase, new rules are evaluated 

using the formula (p - n) / (p + n), where p is the number of positive examples 

covered by the pruned rule and n the number of negative examples covered by the 

pruned rule. Rules are inserted into the rule set until the minimum description 

length (MDL) of the rule set (described in Section 2.2.3) is larger than a parameter 

d (representing a number of bits) plus the size of the smallest MDL found so far, 

or they are no positive examples uncovered. Once the rule set for one class is 

complete, it goes through an optimization phase. During this phase, each rule 

is analyzed in turn, and can be replaced by another rule or revised [33]. This 

decision depends again on the MDL heuristic, which can also lead to a rule being 

removed from the model. 

Algorithm 5.2: Main part of the pseudo-code of the Ripper algorithm 
Let n be the number of classes 
Sort classes in ascendent order, C1, ... ,Cn , according to their number of 
examples 
RuleSet = 0 
for i = 1 to n-l do 

Positive = examples from Ci 

Negative = examples from remaining classes 
RuleSet' = 0 
repeat 

Divide the training data in Grow and Prune 
R = an empty rule 
while R covers negative examples do 

l 
newCandidateRules = 0 
newCandidateRules = Add 1 condition-at-a-time to R 
Evaluate newCandidateRules using information gain in Grow 
R = best rule in newCandidateRules 

R' = Rule produced when removing last condition from R 
while (p-n)/(p+n)(R') > (p-n)/(p+n)(R) in Prune do 

l R=R' 
R'= Rule produced when removing last condition from R 

RuleSet' = RuleSet' U R 
Remove examples covered by R from training set 

until Positive =1= 0 OR MDL of RuleSet' is d bits> the smallest MDL 

found so far 
RuleSet = RuleSet U Optimized RuleSet' . . 
Remove all examples covered by RuleSet' from the trammg set 

Make class Cn the default class 
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It is important to emphasize that the current version of the grammar does not 

use the MDL criterion to stop producing rules, and also does not implement all 

of the steps required by Ripper's optimization process. Implementing the MDL 

heuristic and the complete Ripper optimization process is not straightforward, and 

integrating it to the current version of the system is even more time consuming, 

so these extensions were left for future research. 

Now we describe three different GGP-RIs, each of them produced by an ex­

periment using different data sets in the meta-training set. The GGP-RIs were 

chosen according to the largest value of the difference in the number of times they 

obtained significantly better and significantly worse accuracies than CN2 and Rip­

per. In many cases, there were more than one algorithm with the same number 

of wins/losses against the CN2 and Ripper baseline algorithms. In this case, we 

randomly chose one of them to be shown here. 

Algorithm 5.3: Example of a Decision List Algorithm created by the GGP 
using Nominal Data Sets 

RuleList = 0 
repeat 

bestRule = an empty rule 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules -=I 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
if RuleList covers more than 90% of the training examples then 
L Add 1 condition-at-a-time to CR 

else 
L Add 2 conditions-at-a-time to CR 

Evaluate CR using the Laplace Estimation 
if accuracy(CR) > 0.7 then 
L newCandidateRules = newCandidateRules U CR 

candidateRules = best rule selected from newCandidateRules 
RuleList = RuleList U bestRule 

until all examples in the training set are covered 

Alg. 5.3 shows an example of an algorithm found when training the GGP with 

nominal data sets. It creates an empty rule, refines it according to the number 

of examples currently covered by the rule list, and evaluates it using the Laplace 

estimation. It selects just the best rule to undergo refinements, and requires that 

the accuracy of the selected rule is greater than 70%. Rules are generated until all 

the examples in the training set are covered. The main difference among Alg. 5.3 
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and our baseline comparison algorithms is on the way the rules are refined. In 

Alg. 5.3, an if condition determines whether to add one or two conditions-at-a­

time to a candidate rule according to the number of examples covered by the rule 

list. 

Table 5.14: Predictive accuracy rates (%) produced by Alg. 5.3 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Ruies 
monks-1 100±0 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
mushroom 100±0 100 ± 0 100 ± 0 99.96 ± 0.04 
wisconsin 94.88±1.02 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 71.82±5.06 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283 .74 ± 3.46 
splice 88.36±0.6790.32 ± 0.74 '93.88·± '0.4189.66 ± 0.78 

.". ' 

When the rule list starts to be built , there is a lot of examples available in the 

training set, and the algorithm tries to find the best combination of two conditions 

to be added to the rule antecedent at once. As the number of examples covered by 

the rules in the list is increased and reaches 90% of the total number of examples, 

the algorithm starts adding just one condition-at-a-time to the new candidate 

rules. The algorithm pre-prune rules just by ignoring the ones with accuracy 

smaller than 70%, and performs a greedy search. 

It should be noted that the strategy of switching the number of conditions 

added (in a single step) to the current rule depending on the number of examples 

covered by the rule list is innovative. In general, manually-designed rule induction 

algorithms do not have this flexibility, they' simply use a fixed number of conditions 

to be added to the current rule throughout the run of the algorithm, regardless of 

how many examples are covered by the rule list . Furthermore , the flexible strategy 

discovered by the GGP seems to have a rationale: adding two conditions-at-a-time 

is less greedy (and potentially more effective) than adding one condition-at-a-time. 

However , as the number of examples not covered by the rule list decreases, it is 

intuitively easier to find one attribute-value pair with good statistical support to 

be added to the current rule than a combination of two attribute-values. 

Table 5.14 shows the predictive accuracies obtained by Alg. 5.3 in the data sets 

of the meta-test set using a 5-fold cross-validation procedure, and its comparison 

to the baseline algorithms. 
The results are very similar to the ones reported in Table 5.9, and comparisons 

among the algorithms show exactly the same pattern of results: the GGP-RIs 

obtained accuracy rates st atistically bet ter (at the 0.01 significance level) than 
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C4.5Rules in mushroom and splice, whilst GGP-RI obtained accuracy rates sta­

tistically worse than Ripper in the splice data set. 

Algorithm 5.4: Example of a Rule list Algorithm created by the GGP 
using Numerical Data Sets 

RuleList - 0 
repeat 

Divide the training data in Grow and Prune 
bestRule = an empty rule 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules =I- 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
Add 1 condition-at-a-time to CR 
Evaluate CR using the Laplace estimation in Grow 
newCandidateRules = newCandidateRules U CR 
candidateRules = 8 best rules selected from newCandidateRules 

bestRule' = Pre-prune bestRule by removing its last added condition 
Evaluate bestRule' using Laplace estimation in Prune 
if bestRule' better than bestRule then 
L bestRule = bestRule' 

RuleList = RuleList U bestRule 
until 99% of the examples in Grow are covered 

Table 5.15: Predictive accuracy rates (%) produced by Alg. 5.4 

Data Set GGP-Rls OrdCN2 UnordCN2 Ripper C45Rules 
crx 84.78±O.95 84.37 ± 1.2184.82 ± 1.53 
ionosphere 86.34±3.37 87.6 ± 2.76 90.52 ± 2.0389 .61 ± 1.7589.06 ± 2.71 
segment 94.24±0.58 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
sonar 70.2±4.69 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 73.94±3.08 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 

Alg. 5.4 shows the pseudo-code of one rule induction algorithm produced by the 

GGP when trained with numerical data sets , and Table 5.15 reports its predictive 

accuracies. Alg. 5.4 works as follows. It first divides the available training data 

into two sets: a grow set and a prune set , as Ripper does. The grow set is used 

to create a rule, and the prune set is used to pre-prune a rule before inserting it 

into the final rule set. At each iteration , the examples covered in both grow and 

prune sets are removed from them, and these two sets are merged and redivided. 
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Table 5.16: Total number of rules produced and pruned by the GGP-RI d 'b d 
. Al 54 escn e 
III g .. 

Data Set Produced Pruned 
pIma 24 15 
hepatitis 6 3 
vowel 37 15 
vehicle 27 16 
glass 14 5 
crx 15.2 9 
ionosphere 7.6 2.8 
segment 19.4 7.8 
sonar 7.4 3.8 
heart-c 8.2 2.8 

The algorithm starts the rule induction process with an empty rule, adds one 

condition-at-a-time to it and evaluates the new rule using the Laplace estimation. 

At each iteration, the 8 best rules are kept into the refinement process. After one 

rule is produced, the algorithm tries to prune it by removing the last condition 

added to it, and evaluates the rule using again the Laplace estimation, but in the 

prune set. The induction process terminates when 99% of the examples in the 

grow set are covered, in order to avoid over-fitting of the rule set to the training 

data. 

Analyzing the accuracies showed in Table 5.15, the GGP-RI described in 

Alg. 5.4 obtained significantly better accuracies than Unordered-CN2 in two data 

sets: crx and segment. The Unordered-CN2 classifier, as explained earlier, has a 

really bad accuracy when compared to other algorithms in the data set segment, 

and so it was easy for all the GGP-Rls produced by the GGP to obtain better 

accuracies than it. The same is not true when analyzing the performance of both 

versions of CN2 in crx, and the GGP-RI was significantly superior to both versions 

of CN2 in this data set. 
To conclude, we can say that Alg. 5.4 applies the same growing and pruning 

phases used by algorithms like IREP [61] and Ripper, with a difference: while 

other algorithms build a rule which covers no negative examples and select just 

the best rule to undergo further refinements, Alg. 5.4 selects 8 rules and add 

conditions to it until a rule better than the current best one can be found. After 

that it removes just the last condition from the produced rule. At first glance, one 

could argue that maybe Alg. 5.4 rarely improves the rule by trying to pre-prune 
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A~gorithm 5.5:. Example of a Decision List Algorithm created by the GGP 
usmg both Nommal and Numerical Data Sets 

RuleList - 0 
repeat 

bestRule = an empty rule 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candid&teRules =J 0 do 

for each candidateRule CR do 

l 
newCandidateRules = 0 
Add 2 conditions-at-a-time to CR 
Evaluate CR using the Laplace estimation 
newCandidateRules = newCandidateRules U CR 

candidateRules = 5 best rules selected from newCandidateRules 
if accuracy(bestRule) < 0.7 then break 
else RuleList = RuleList U bestRule 

until all examples in the training set are covered 
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it, and it is simply a version of CN2 with the beam size (or star, as named by 

the authors in [26]) set to 8. However, that is not the case. Table 5.16 shows 

the number of rules produced for each data set followed by the number of rules 

which were improved by the pruning process. The top part of the table shows the 

number of rules produced and pruned by a single execution of the algorithm in 

each of the 5 data sets belonging to the meta-training set. The bottom part of 

the table shows the average number of rules produced and pruned in each of the 

5 data sets in the meta-test set, using a 5-fold cross-validation process. 

We have run a new experiment comparing the results of the algorithm de­

scribed in Alg. 5.4 with the same algorithm, but excluding the pruning process. 

Both algorithms obtained similar accuracy rates in all data sets, according to a 

t-test with 0.05. Hence, we can say that Alg. 5.4 has a limited degree of innova­

tion because, although it does not improve the accuracy of the models produced 

by CN2, the rule models generated might be more compact due to the pruning 

process. 
We finally present one algorithm produced by the GGP when trained and 

tested with a total of 20 data sets containing both nominal and numerical at­

tributes. 3 out of 5 algorithms produced by the GGP-O.7 in this case shared one 

characteristic: they added two conditions instead of one condition at-a-time to 

an empty rule, as shown in Alg. 5.5. Alg. 5.5 is a version of CN2 where two 

conditions are added to a rule at-a-time. The only other difference with respect 
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Table 5.17: Predictive accuracy rates (%) produced by Alg. 5.5 

Data Set 
crx 
segment 
sonar 
heart-c 
ionosphere 
monks-1 
mushroom 

. . 
WISCOnSIn 

promoters 
splice 

GGP-RI OrdCN2 UnordCN2 Ripper C45Rules 
66.26±16.58 80.16 ± 1.27 80.6 ± 0.93 84.37 ± 1.21 84.82 ± 1.53 
95.12±0.42 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
74.5±0.96 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 

71.34±3.09 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
87.5±2.48 87.6 ± 2.76 90.52 ± 2.03 89.61 ± 1.7589.06 ± 2.71 

100±0 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
100±0 100 ± 0 100 ± 0 99.96 ± 0.04 

95.3±1.5 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
76.56±4.88 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
87.74±0.77 90.32 ± 0.74 Q3.'88 ,:± 0.4189.66 ± 0.78 

to CN2 lies on the condition used to stop inserting rules to the model. Once the 

rule induction algorithm cannot find a rule with predictive accuracy superior to 

70%, it stops and returns the current rule list. 

Table 5.17 shows the predictive accuracies obtained by Alg. 5.5 in the data sets 

of the meta-test set using a 5-fold cross-validation procedure. Again, in terms of 

comparison with the baseline algorithms, this algorithm produced results similar 

to the results presented in Table 5.13. It has significantly better accuracies than 

the weakest algorithms, obtaining a significant better result in three cases, and 

worse accuracy than Ripper in splice. 

In summary, looking at the three algorithms presented in this section, we can 

say that Alg. 5.3 is the most innovative one, in the sense that it changes the 

way rules are refined according to the amount of training data that is covered 

by the current rule list. This flexibility is an innovation over manually-designed 

algorithms, which in general do not exhibit such a flexible, data-driven behavior. 

But why most of the algorithms produced are so similar to CN2, for example? 

The UCI data sets [104] are very popular in the machine learning community, 

and they have been used to benchmark classification algorithms for a long time. 

To a certain extent, most of the rule induction algorithms were first designed or 

later modified targeting these data sets. The fact that the evolved rule induction 

algorithms are so similar to CN2, for instance, is evidence that CN2 is actually 

one of the best algorithms in terms of average predictive accuracy in a set of data 

sets available in the UCI repository. At the same time, as the rule induction al­

gorithms produced by the GGP showed , there are many other variations of the 

basic sequential covering pseudo-code which obtain accuracies competitive to the 
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ones produced by CN2, Ripper or C4.5Rules. In general, the evolved algorithms 

did not obtain significantly better accuracies than the baseline classification al­

gorithms, but the former obtained slightly better results than the latter, overall. 

This can be observed in Tables 5.9, 5.11 and 5.13, which overall contain more 

significant wins (dark gray cells) than significant losses (light gray cells) for the 

evolved algorithms. 

5.5 Meta-Training Set Variations 

In Section 5.2 we explained that the GGP needed two sets of elements in order 

to automatically evolve rule induction algorithms: the GP evolution parameters 

- such as population size, number of generations and crossover and mutation 

rates, and the number of data sets (and the data sets themselves) used in the 

meta-training set of the GGP algorithm. 

As the data sets in the meta-training set are used to calculate the fitness of a 

GGP individual (candidate rule induction algorithm), they are a key point in the 

GGP evolution process. Changing the data sets in the meta-training set can sig­

nificantly change the value of the fitness of the GGP individuals and, consequently, 

the final rule induction algorithm produced by the GGP. 

Hence, in this section we study the impact of changing the number of data 

sets in the meta-training set. As in the previous sections, we run the experiments 

in three phases: the first one involving only data sets with nominal attributes, 

the second one using data sets with at least one numerical attribute (again, called 

numerical data sets for short), and finally we merged the data sets used in the 

previous experiments to create a third set of experiments. In the first two sets 

of experiments, we vary the number of data sets in the meta-training (meta-test) 

sets from the original numbers 5(5) to 3(7), 4(6),6(4) and 7(3), respectively. In 

the third experiment, which originally used 10 data sets in the meta-training set 

and 10 data sets in the meta-test set, we vary the size of the meta-training set to 

6, 8, 12 and 14 (making the size of the meta-test set 14, 12, 8 and 6, respectively). 

The choice of which data sets would be removed or added to the original meta­

training set was, as before, based on execution time. Note that all the GGP 

parameter values were fixed in all the experiments reported in this section, and 

the crossover/mutation rates used here are the same ones chosen when presenting 

the comparisons among the GGP-RIs and other baseline algorithms in Section 5.3: 

crossover/mutation rates of 0.5/0.45 for experiments with nominal data sets, and 
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Table 5.18: Comparing predictive accuracy rates (%) for the nominal data sets in 
the meta-test set when training the GGP with 3 data sets 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules 
monks-1 100±0 100 ± 0 100 ± 0 93 .84 ± 2.93 100 ± 0 
mushroom 99.99±0 100 ± 0 100 ± 0 99.96 ± 0.04 
wisconsin 94.76±1.03 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 77.83±4.47 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 88.32±0.43 90.32 ± 0.74 '93 ;88~±~0.4189 . 66 ± 0.78 

~ :.a. .1, • " J 

zoo 92.52±0.96 92.64 ± 1.3392.52 ± 2.21 89.47 ± 1.6692.56 ± 1.45 
monks-3 97.07±0.54 97.46 ± 0.74 f~~~?~t7\;S~:.i:~ 98.54 ± 0.46 94 ± 4.89 

Table 5.19: Comparing predictive accuracy rates (%) for the nominal data sets in 
the meta-test set when training the GGP with 4 data sets 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules 
monks-1 100±0 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
mushroom 99.98±0.01 100 ± 0 100 ± 0 99.96 ± 0.04 
wisconsin 94.64±0.78 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 77.44±3.49 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 88.79±0.46 90.32 ± 0.74 93~88':± O.4l 89.66 ± 0.78 , , . ~ .' '~.. : ~ , ,;...' 

zoo 90.76±1.05 92.64 ± 1.3392.52 ± 2.2189.47 ± 1.6692.56 ± 1.45 

0.7/0.25 for experiments using both numerical and nominal and numerical data 

sets. 

First we present the results for the four variations introduced in the meta­

training set in the set of experiments using only nominal data sets. In relation to 

the data sets used in the experiments with 5 data sets in each of the meta-data 

sets, we observe that monks-3 and zoo were moved from the meta-training to the 

meta-test set for the experiments with 3 data sets in the meta-training set. In the 

case were 4 data sets remained in the meta-training set , just zoo was moved to the 

meta-test set. For experiments with 6 and 7 data sets in the meta-training set, 

monks-l was included in the meta-training set of both experiments, and wisconsin 

completed the 7 data sets needed in the meta-training set for the last experiment. 

Tables 5.18, 5.19, 5.20 and 5.21 show the results for nominal data sets using 

3(7), 4(6), 6(4) and 7(3) data sets in the meta-training (meta-test) set , respec­

tively. The tables have the same structure as the ones shown in the previous 

section, where the first column (after the column with data set names) shows 
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Table 5.20: Comparing predictive accuracy rates (%) for the nominal data sets in 
the meta-test set when training the GGP with 6 data sets 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules 
mushroom 99.96±0.01 ~1~!;oO~, ~1lO ~" ~,,\,~f~OP;;B:' 0 ,:'~ 99.96 ± 0.04 
wisconsin 95.56±0.56 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 81.17±1.48 81.9 ± 4.65 74.72 ± 4.86 78.18 ± 3.6283.74 ± 3.46 
splice 89.19±0.41 90.32 ± 0.74 9.3:88 ;:±,OA] 89.66 ± 0.78 

Table 5.21: Comparing predictive accuracy rates (%) for the nominal data sets in 
the meta-test set when training the GGP with 7 data sets 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules 
mushroom 99.98±0.0001 ITtl;19Qt:g*2)~;!~l Ft1Q9f:l:.;.q:\~~f 99.96 ± 0.0411 
promoters 80.57±3.55 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 89.1±0.46 90.32 ± 0.74 -Ei_. 93.~8 ~± ' 0.4189.66 ± 0.78 

the average accuracy obtained by the GGP-RIs in 5 different runs (with differ­

ent random seeds), and it is followed by the results of runs of Ordered-CN2, 

Unordered-CN2, Ripper and C4.5Rules (using default parameter values in all 

these algorithms). All the results were obtained using a 5-fold cross-validation 

procedure, and the numbers after the symbol "±" are standard deviations. Re­

sults were compared using a two-tailed statistical t-test with significance levels 

0.05 and 0.01, but the comparisons shown in the tables consider the significance 

level 0.05. Cells in dark gray represent significant wins of the GGP-RIs against 

the corresponding baseline algorithm, while light gray cells represent GGP-RIs' 

significant losses. 
Looking at these 4 tables, and also considering the results obtained when train­

ing the GGP with 5 data sets in the meta-training set , presented in Table 5.14, 

we observe an interesting fact: the GGPs trained with 3 and 4 data sets produced 

results slightly better than the ones trained with a larger number of data sets. In 

Table 5.18, the GGP-RIs obtained two results significantly better and two results 

significantly worse than the baseline algorithms out of 28 results (7 data sets x 4 

baseline algorithms), while in Tables 5.19 they also obtained two results signifi­

cantly better and only one result significantly worse than the baseline algorithms 

out of 24 results. In turn, in Tables 5.20 and 5.21, the GGP-RIs also obtained two 

significantly better results but three significantly worse results than the baseline 

algorithms. However, Tables 5.20 and 5.21 show 16 and 9 results , respectively. 
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Observing the results in the aforementioned tables, we notice that, as in pre­

vious experiments, the significantly better accuracies of GGP-RIs (according to a 

0.05 significance level) always occur in the same data sets when compared with the 

same baseline classifiers. As explained in Section 5.4, these are classifiers which 

obtain accuracy rates much worse than the ones obtained by any of the other 

baseline algorithms. Now let us consider the cases where the GGP-RIs obtained 

significantly worse accuracies than the baseline algorithms. Tables 5.20 and 5.21 

present exactly the same qualitative results when comparing the GGP-RIs with 

the baseline algorithms: accuracy significantly smaller than Ripper in splice and 

both versions of CN2 in mushroom. Tables 5.18 and 5.19 also share the case 

of Ripper in splice with the previous tables, which was explained before (Ripper 

obtains a much higher accuracy in this data set than the other baseline classifiers). 

Now let us analyze the significantly smaller accuracies obtained by the GGP­

RIs when compared with both versions of CN2 in mushroom. This case can be 

considered a special one. For mushroom, the accuracies of both versions of CN2 

are 100%. We can observe that the results of the GGP-RIs varied from 99.96 

to 99.98. This reflects the fact that from the 5 different algorithms found in 5 

different runs of the GGP, only 1 could not obtain an accuracy of 100% in a 5-fold 

cross-validation for mushroom. However, as the value of these accuracies is close 

to 100%, one significant loss out of 5 runs reflects in the value of the average over 

all runs. 
In Table 5.18, besides the case of splice in Ripper, a second significantly 

worse accuracy is observed in the comparison of the GGP-RIs with the result 

of Unordered-CN2 in monks-3. This is the first experiment where monks-3 is 

used in the meta-test set, and in this case the GGP-RIs could not obtain a signif­

icantly better accuracy than Unordered-CN2, although the former is comparable 

with all the other baseline algorithms. 

Moreover, the results of the experiments using 6(4) and 7(3) data sets in the 

meta-training (meta-test) set are also valid with a significance level of 0.01. In 

the case of the results with 3 data sets in the meta-training set, just the win in 

mushroom and the loss in splice are now significant. At last, the results where 

the GGP-RIs significantly win over the baseline algorithms for experiments with 

4 data sets in the meta-training set do not change, but the significant losses are 

reduced from 3 to 1 (both results of CN2 in mushroom are not significantly better 

than the GGP-RIs results anymore). 
In conclusion, experiments using nominal data sets showed that varying the 
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Table 5.22: Comparing predictive accuracy rates (%) for the numerical data sets 
in the meta-test set when training the GGP with 3 data sets 

Data Set GGP-Rls OrdCN2 UnordCN2 Ripper C45Ruies 
crx 81.89±0.5 80.16 ± 1.27 80.6 ± 0.93 84.37 ± 1.21 84.82 ± 1.53 
ionosphere 86.81±2.13 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1.7589.06 ± 2.71 
segment 95.3±0.38 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
sonar 7l.28±1.89 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 75.6±l.37 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
hepatitis 82.74±1.16 8l.94 ± 5.0283.34 ± 1.8386.03 ± 1.14 83.36 ± 0.9 
pIma 68.46±l.01 69.34 ± 2.13 7JtY.'6'~3:~,'b~38 , ?3.91":±: 1'.6571.04 ± 1.67 

" / ' "L f' ,i. " 

Table 5.23: Comparing predictive accuracy rates (%) for the numerical data sets 
in the meta-test set when training the GGP with 4 data sets 

Data Set GGP-Rls OrdCN2 UnordCN2 Ripper C45Ruies 
crx 8l.35±0.69 80.16 ± 1.27 80.6 ± 0.93 84:3,1 .± · 1:-21. 84.82 ± 1.53 

" ionosphere 86.4±1.69 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1.7589.06 ± 2.71 
segment 95.17±0.42 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
sonar 70.56±l.26 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 75.99±l.22 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
pIma 69.65±0.78 69.34 ± 2.13 '~7~;9,,±uQ'.3S' a'3.91·. ± 1.65 71.04 ± 1.67 

Table 5.24: Comparing predictive accuracy rates (%) for the numerical data sets 
in the meta-test set when training the GGP with 6 data sets 

Data Set GGP-Rls OrdCN2 UnordCN2 Ripper C45Rules 
crx 82.5±0.61 80.16 ± l.27 80.6 ± 0.93 84.37 ± 1.2184.82 ± 1.53 
segment 89.44±0.94 9p.38~ ?$ O"~28 95:44 :± 0:3288.16 ± 7.72 
sonar 72.39±l.5 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 74.88±2.86 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 

Table 5.25: Comparing predictive accuracy rates (%) for the numerical data sets 
in the meta-test set when training the GGP with 7 data sets 

Data Set GGP-Rls UnordCN2 Ripper C45Rules 
crx 84.18±1.05 84.37 ± 1.21 84.82 ± 1. 53 
segment 91.54±0.49 .38 ,± 0.28 95.44 ± 0.32 88.16 ± 7.72 
sonar 70.47±2.21 70'. 42 ± 2.66 72 .42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
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number of data sets in the meta-training set from 3 to 7 do not have a great 

impact in the results obtained. In general, the GGP-RIs usually obtain predictive 

accuracies competitive with well-known human-designed algorithms. Neverthe­

less, before speculating about why changing the number of data sets in the meta­

training set of the experiments with nominal data sets did not affect the results 

obtained by the evolved rule induction algorithms, we need to check if the same 

occurs when using different kinds of data sets in the meta-training set. 

Regarding experiments with numerical data sets, Tables 5.22, 5.23, 5.24 and 

5.25 show the results obtained when using 3(7),4(6),6(4) and 7(3) data sets in the 

meta-training (meta-test) set, respectively. In the experiments with 3 data sets 

in the meta-training set, pima and hepatitis were moved from the meta-training 

to the meta-test set. In the case where 4 data sets remained in the meta-training 

set, just pima was moved to the meta-test set. For experiments with 6 and 7 

data sets in the meta-training set, ionosphere was included in the meta-training 

set of both experiments, and hean-e completed the 7 data sets needed for the 

last experiment. Let us first compare the results of these experiments with the 

ones obtained when using 5 data sets in the meta-training set, whose results were 

presented in Table 5.11. 

From the results shown in Table 5.11, recall that there was just one comparison 

in which the GGP-RIs obtained a significantly better accuracy than the baseline 

algorithms: Unordered-CN2 in segment (in all the other cases the GGP-RIs' ac­

curacies were statistically as good as the ones found by the baseline algorithms). 

This same result is presented in Tables 5.22, 5.23, 5.24 and 5.25. Besides, in 

Table 5.25, the GGP-RIs are also significantly better than both versions of CN2 

when considering the data set erx. However, all these tables also present com­

parisons in which the GGP-RIs obtained significantly worse accuracies than other 

algorithms. In Table 5.22 this is the case in pima, while in Table 5.23 the GGP­

RIs significantly lose in both pima and erx. In Tables 5.24 and 5.25 this is the 

case of segment. 
Let us start with the pima data set. Table 5.22 represents the first time 

this data set appeared in the meta-test set, and in both Tables 5.22 and 5.23 

the GGP-RIs obtained, in this data set, an accuracy significantly worse than the 

accuracies of Unordered-CN2 and Ripper. In Table 5.23 the GGP-RIs obtained a 

significantly worse accuracy than Ripper for the data set erx. 

Now let us look at the segment data set. We can say that increasing the number 

of data sets in the meta-training set reduced dramatically the performance of the 
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Table 5.26: Comparisons of the number of rules and predictive accuracies per 
class generated by both versions of CN2 in the data set segment 

Ordered-CN2 U nordered-CN2 
Class # Rules Accuracy (%) # Rules Accuracy (%) 

C1 3 96.4 3 98.2 
C2 1 100 1 100 
C3 6 94.5 9 90.9 
C4 5 95.5 6 61.8 
C5 8 90 13 65.5 
C6 2 98.2 2 97.3 
C7 1 98.2 1 98.2 

Overall 26 96.1 35 87.4 

GGP-Rls in segment. When training the algorithm with 5 data sets, the GGP-Rls 

obtained an average accuracy of 94.75% (± 0.41), decreasing the number of data 

sets to 3 and 4 changed the GGP-Rls' average accuracies in segment to 95.3% (± 
0.38) and 95.17% (± 0.42), respectively. However, increasing the number of data 

sets in the meta-training set to 6 and 7 changed the GGP-Rls' average accuracies 

to 89.44% (± 0.94) and 9l.54% (± 0.49). Why did that happen? 

An analysis of the actual GGP-Rls produced might give an explanation for 

that. In the case of the algorithms which generated the results presented in 

Table 5.24, 4 out of 5 produced unordered rule sets, rather than ordered rule lists 

in the segment data set. For the rule induction algorithms which generated the 

results in Table 5.25, 3 out of 5 also produced unordered rule sets. As we observe 

in both tables, the results produced by Unordered-CN2 (Le. CN2 producing 

unordered rule sets) are much inferior than the ones produced by rule induction 

algorithms which generate ordered rule lists. But why unordered rule sets perform 

much worse than ordered rule lists particularly in segment? 

Segment (originally called segmentation in the UCI data set repository [104]) 

is a data set about classifying an image into one of the following seven classes: 

brick-face, sky, foliage, cement, window, path or grass. However, the class labels 

associated with each instance were produced by first running a segmentation algo­

rithm and then manually labeling each region (a 3x3 pixel) in a computer screen. 

As already pointed out by other researchers, this data set presents a high degree 

of class noise [16]. This class noise can be explained by two factors. First, one 

region in the image might have elements from two classes (grass and sky, for ex­

ample), where one element predominates. Secondly, as the images were labeled by 
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Table 5.27: Comparing predictive accuracy rates (%) for the nominal and numer­
ical data sets in the meta-test set when training the GGP with 6 data sets 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Ruies 
crx 81.07±0.9 80.16 ± 1.27 80.6 ± 0.93 84:37 ,± ·1.21 84.82 ± 1.53 
segment 95.14±0.39 95.38 ± 0.28 9'5.44 ± 0.3288.16 ± 7.72 
sonar 73.12±1.44 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 77.18±0.9 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
ionosphere 87.33±2.17 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1.7589.06 ± 2.71 
pima 63.86±3.16 69.34 ± 2.13 :.7~'Ji .. £ ; O.38 7'3,.91 ±: 1.6571.04 ± 1.67 
hepatitis 82.51±1.89 81.94 ± 5.0283.34 ± 1.8386.03 ± 1.'14 83.36 ± 0.9 
monks-I 100±0 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
mushroom 100±0 100 ± 0 100 ± 0 99.96 ± 0.04 
wisconsin 95.53±0.74 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 81.61±3.08 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 88.76±0.38 90.32 ± 0.74 93.88' ± 0.4 89.66 ± 0.78 
zoo 92.89±0.87 92.64 ± 1.3392.52 ± 2.21 89.47 ± 1.6692.56 ± 1.45 
monks-3 96.89±0.78 97.46 ± 0.74 ~9it± .QA o, 98.54 ± 0.46 94 ± 4.89 

humans, there is always some subjectivity introduced into the process. Defining 

the boundaries of a region, for instance, might be tricky in some cases. 

Table 5.26 shows the number of rules found per class by both versions of CN2, 

and also lists the predictive accuracy obtained by each classifier by class and 

overall. As indicated by the figures in bold, the accuracies obtained by Unordered­

CN2 for classes 4 (cement) and 5 (window) are much lower than the ones obtained 

by Ordered-CN2. In these cases, many examples which actually belonged to 

classes 4 (cement) and 5 (window) were classified as belonging to class 1 (brick­

face). 

One explanation of why rule lists are much better predictors than rule sets for 

segment is that, as negative examples covered by one rule are not excluded from 

the training set during the creation of the rule set model, the noise examples are 

all represented by rules with very low coverage. The set of unordered rules has 7 

rules with coverage lower than 5 examples, while the ordered rule list has just 2 

such rules. 
In summary, when varying the number of data sets in the meta-training sets 

for the experiments with numerical data sets, it was observed that the number of 

cases in which the GGP-RIs obtained significantly better results than the baseline 

algorithms remained the same for all experiments but the one where the GGP 

was trained with 7 data sets. There was also a small increase in the number of 
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Table 5.28: Comparing predictive accuracy rates (%) for the nominal and numer­
ical data sets in the meta-test set when training the GGP with 8 data sets 

Data Set GGP-Rls OrdCN2 UnordCN2 Ripper C45Rules 
crx 80.57±0.9 80.16 ± 1.27 80.6 ± 0.93 84.3,7 ± 1.2184.82 ± 1.53 
ionosphere 86.75±2.12 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1.7589.06 ± 2.71 
segment 94.99±0.41 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
sonar 72.73±1.74 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 76.38±0.82 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
pIma 68.6±0.94 69.34 ± 2.13 ~~~~6,iH~ ,\p.~8 173:91 '± 1.6571.04 ± 1.67 
monks-1 99.82±0.18 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
mushroom 100±0 100 ± 0 100 ± 0 99.96 ± 0.04 
wisconsin 95.76±0.75 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
zoo 92.65±1.12 92.64 ± 1.3392.52 ± 2.2189.47 ± 1.6692.56 ± 1.45 
promoters 80.23±3.29 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 89.04±0.48 90.32 ± 0.74 93;88 ± ' 0.4189.66 ± 0.78 

cases in which the GGP-Rls obtained significantly worse results than the baseline 

algorithms. 
Generally speaking, as can be observed from Tables 5.22 through 5.25, in all 

the experiments the GGP-Rls obtained one significantly better result and two 

significantly worse results than the baseline algorithms (with the exceptions of 

the GGP-Rls trained with 7 and 4 data sets, which obtained two significantly 

better and three significantly worse results, respectively) . 

At last, we present the results varying the number of data sets in the meta­

data sets using both the nominal and numerical data sets employed in the previous 

experiments. Tables 5.27,5.28,5.29 and 5.30 present the results using 6(14),8(12), 

12(8) and 14(6) data sets in the meta-training (meta-test) set , respectively. 

Comparing these results with the ones presented in Table 5.13 (results of the 

GGP trained with 10 data sets), all the results are consistent: the cases in which 

the GGP-Rls obtained significantly better/worse accuracies than the baseline al­

gorithms in particular data sets remain the same. However , as in the experiments 

performed with numerical data sets, when pima is inserted in the meta-test set 

(in experiments using 6 and 8 data sets in the meta-training set) , the GGP-RIs 

obtained significantly worse accuracies than Unordered-CN2 and Ripper. This 

can be observed in Tables 5.27 and 5.28. Interestingly, as in Table 5.24 (results 

obtained by the GGP when trained with 6 numerical data sets), in Tables 5.27 , 

5.28 and 5.30, the GGP-Rls obtained accuracies significantly worse than the ones 

obtained by Ripper in erx. The same is true for the accuracies of the GGP-RIs 
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Table 5.29: Comparing predictive accuracy rates (%) for the nominal and numer­
ical data sets in the meta-test set when training the GGP with 12 data sets 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Ruies 
crx 78.12±3.37 80.16 ± 1.27 80.6 ± 0.93 84.37 ± 1.21 84.82 ± 1.53 
segment 95.11±0.43 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
sonar 73.69±2.4 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 75.08±2.44 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
mushroom 100±0 100 ± 0 100 ± 0 99.96 ± 0.04 
wisconsin 95.9±0.6 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 81.05±2.94 81.9 ± 4.65 74.72 ± 4.86 78.18 ± 3.6283.74 ± 3.46 
splice 89.3±0.39 90.32 ± 0.74 89.66 ± 0.78 

presented in Table 5.28 when running C4.5Rules in erx. 

Moreover, in Section 5.4 we observed that the results of experiments using 

both nominal and numerical data sets presented exactly the same results as the 

individual experiments when using only nominal or numerical data sets. This 

scenario is partially repeated in here. The exceptions are the significant losses 

for the data sets mushroom and segment. In the experiments performed with 6 

and 7 data sets in the meta-training set using nominal data sets (Tables 5.20 and 

5.21) and numerical data sets (Tables 5.24 and 5.25) , respectively, the accuracies 

obtained in mushroom and segment by the GGP-RIs were significantly worse than 

the ones obtained by two of the baseline methods. This is not the case for the 

accuracies reported for these data sets in experiments using 12 and 14 data sets 

in the meta-training set (Tables 5.29 and 5.30). 
Concerning mushroom, as already explained, the significantly worse accuracies 

obtained by the GGP-RIs in Tables 5.20 and 5.21 , when compared to both versions 

of CN2 in experiments with the GGP trained with 6 and 7 nominal data sets, were 

caused by a single GGP-RI out of 5 which did not obtain 100% accuracy when 

classifying new examples. 
In the case of the data set segment, rule sets clearly have a much poorer perfor-

mance than rule list models (as reflected in the results found by Unordered-CN2 

when compared with Ordered-CN2 in Tables 5.24 and 5.25). This is confirmed 

again in the results of the experiments shown in Tables 5.29 and 5.30. In these 

experiments, all the rule induction algorithms produced by the GG P were rule 

lists , and consequently competitive with Ordered-CN2 and Ripper. 

After these three sets of experiments varying the number of data sets used 

in the meta-training and meta-test sets , we concluded that , overall , the results 
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Table 5.30: Comparing predictive accuracy rates (%) for the nominal and numer­
ical data sets in the meta-test set when training the GGP with 14 data sets 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Ruies 
crx 80.81±1.14 80.16 ± 1.27 80.6 ± 0.93 '84.37. :±: 1.2184.82 ± l.53 
segment 95.21±0.43 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
sonar 71.94±1.46 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
mushroom 100±0 100 ± 0 100 ± 0 99.96 ± 0.04 
promoters 81.72±3.3 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 89.33±0.38 90.32 ± 0.74 • 9?:~8:t:r 0.4189.66 ± 0.78 

produced are not significantly different from the ones produced when using 5 data 

sets in the meta-training and 5 data sets in the meta-test set. Our intuition was 

that decreasing the number of data sets in the meta-training set might lead the 

GGP to create algorithms with a poorer performance in the meta-test set, but 

that was not the case. The results obtained in experiments with fewer data sets 

in the meta-training set are in general as good as the ones obtained with more 

data sets in the meta-training set. 

A possible explanation for this fact is that the rule induction algorithms pro­

duced with fewer data sets in the meta-training set are simpler than the ones built 

with a bigger number of data sets in the meta-training set. Simpler algorithms are 

more likely to be more robust and to have a better performance in very different 

kinds of data. 

5.6 GGP's Grammar Variations 

Sections 5.2 and 5.5 showed how sensitive the proposed GGP system is to the set of 

parameters it requires. In this section we show how the GGP system responds to 

a change in one of its main components: the grammar. The grammar determines 

the GGP's search space. Hence, changing the grammar might completely change 

the rule induction algorithms produced by the system. 
It is not easy to judge whether a particular version of the grammar is better or 

worse than another. There are two main reasons for that. First , the GGP system 

can adapt according to the functionalities present in the grammar. As will be 

shown later, turning off the GGP's ability to produce rule induction algorithms 

following the top-down approach, for instance, led the GGP to produce completely 
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different but still overall competitive rule induction algorithms. Second, the gram­

mar has a set of core components that form the bases for the construction of any 

rule induction algorithms. By making use of these components, the system will 

be able to, most of the time, produce a simple but reasonable rule induction algo­

rithm. For these reasons, we will compare the GGP-RIs generated by the system 

when using different versions of the grammar by considering the predictive accu­

racy they obtained in the data sets in the meta-test set. We will first compare 

them with each other, and later with the four rule induction algorithms used as 

baseline results so far in this chapter. 

Three sets of experiments were executed to evaluate the impact of 

adding/removing certain production rules to/from the grammar. In the first 

experiment, we removed from the grammar all its "new components", earlier 

described in Section 4.2.1. These "new components" correspond to functionali­

ties which were added to the grammar but not used before (to the best of our 

knowledge) by the manual designed rule induction algorithms. They include the 

symbols inner!f, MakeFirstRule, typicalExample and Remove2. 

In a second experiment, we removed from the grammar the symbols respon­

sible for sophisticated pruning techniques: PostProcess and PrePruneRule. As 

explained in Chapter 2, pruning is one of the elements which is optional in rule 

induction algorithms. Although it is present in virtually all the newer rule in­

duction algorithms, we wanted to evaluate how the lack of pruning would impact 

on the rule induction algorithms generated. Note that simpler ways of pruning 

rules, such as the ones provided by the non-terminal Stopping Criterion, remained 

in this version of the grammar. 

At last, we modified the grammar to force the system to produce only bottom­

up rule induction algorithms, by removing the symbols emptyRule and Make­

FirstRule from the grammar. The great majority of rule induction algorithms 

uses a top-down approach. So the main objective of this experiment was to find 

out how exclusively bottom-up algorithms would perform in the data sets in the 

meta-test set. 
All the experiments reported in this section were run with the same 20 data sets 

used in the experiments with both nominal and numerical data sets in the meta­

training and meta-test sets, reported in Section 5.2. The GGP parameters are 

also the same ones defined in that section: population of 100 individuals, evolved 

for 30 generations, tournament size of 2, crossover rate of 0.7, mutation rate of 

0.25 and reproduction rate of 0.05. Table 5.31 shows the predictive accuracies 
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Table 5.31: Comparing predictive accuracy rates (%) for a GGP run with nomi­
nal/numerical data sets in the meta-test set with different versions of the grammar 

Data Set 

crx 
segment 
sonar 
heart-c 
ionosphere 
monks-l 
mushroom 

. . 
Wlsconsm 
promoters 
splice 

Original 
77.46±3.8 

95.06±0.26 
72.34±1.91 
76.72±1.5 
87.04±2.2 
99.93±0.07 
99.98±0.02 
95.58±0.74 
78.98±2.93 
88.68±0.31 

Grammar 
Basic N oPrune 

80.19±1.1l 80.14±0.73 
![9§~~~£.Q1~J· , 94.32±0.24 

76.38±3.04 74.45±2.64 
76.44±1.53 77.37±1.39 
85.72±1.81 86.06±2.18 

100±0 100±0 
100±0 

94.61±0.51 
80.16±1.22 

BottomUp 
81.33±1.14 
l~~:~ !~; ~~ I' ~!.-! 

'lie) ::~~~J! :~ 

75.3±0.96 
84.85±1.6 

100±0 
99.79±0.1 

obtained by the GGP-RIs in the meta-test set when using the original version 

of the grammar (from now on referred as GGP-RIs-Original), followed by the 

results of the three grammar variations described above named GGP-RIs-Basic , , 
GGP-RIs-NoPrune and GGP-RIs-BottomUp, respectively. As in the other tables 

of this chapter, cells in dark gray represent results in which the GGP-RIs-Original 

obtained better results than the other variations according to a Student t-test 

with 0.05 significance level. In turn, cells in light gray represent a better result of 

a grammar variation over the GGP-RIs-Originai. 

As can be observed in Table 5.31 , the GGP-RIs-Basic find significantly bet­

ter accuracies than the GGP-RIs-Original in two data sets, namely segment and 

splice. As this basic version of the grammar is simpler than the original one, we 

might say that it produced simpler rule induction algorithms. As observed in 

previous experiments in this chapter, segment and splice are very special data 

sets (see Section 5.5). For this reason, it is more likely that simpler rule induction 

algorithms will perform well in these data sets. In contrast, when looking at the 

accuracies obtained by the GGP-RIs-NoPrune, we notice that they obtained worse 

results than the GGP-RIs-Original in the data sets mushroom and splice. Finally, 

the GGP-RIs-BottomUp obtained significantly worse results than the GGP-Rls­

Original in half of the data sets, and competitive results in the other half. Note 

that all the 5 rule induction algorithms produced by the GGP-Original followed 

the top-down approach. According to these results , the data sets crx, heart-c, 

ionosphere, monks-l and mushroom obtained the same kind of performance with 
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Table 5.32: Accuracy rates (%) obtained by the GGP in the meta-test set while 
using a modified version of the grammar which excludes its new components 

Data Set GGP-Rls Cn20rd Cn2Unord Ripper C45Rules 
crx 80.19±1.11 80.16 ± 1.27 80.6 ± 0.93 84.37 ± 1.21 
segment 95.95±0.19 95.38 ± 0.28 95.44 ± 0.3288 .16 ± 7.72 
sonar 76.38±3.04 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 76.44±1.53 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
ionosphere 85.72±1.81 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1. 7589.06 ± 2.71 
monks-1 100±0 100 ± 0 100 ± 0 93 .84 ± 2.93 100 ± 0 
mushroom 100±0 100 ± 0 100 ± 0 99.96 ± 0.04 98.8 ± 0.06 
wisconsin 94.61±0.51 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 80.16±1.22 81.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
splice 90.08±0.44 90.32 ± 0.74 93,:88 ± 0 .. 4'1! 89.66 ± 0.78 

both top-down and bottom-up algorithms. The top-down approach, however , is 

more suitable for the other data sets. 

The analysis of the results reported in Table 5.31 showed how the GGP system 

with the modified versions of the grammar performed compared to its original ver­

sion. Next, Tables 5.32, 5.33 and 5.34 compare the predictive accuracies obtained 

by the GGP-Rls-Basic, GGP-Rls-NoPrune and GGP-RIs-BottomUp with the four 

baseline rule induction algorithms used so far in our comparisons: Ordered-CN2, 

Unordered-CN2, Ripper and C45Rules. In these tables, cells in dark gray repre­

sent a significantly better result of the GGP-RIs produced with a modified version 

of the grammar over the corresponding baseline method (when using a Students' 

t-test with 0.05 significance level). Cells in light gray represent a significantly 

better result of the baseline methods over the GGP-RIs. 

Recall that, in experiments with the original version of the grammar, the GGP­

Rls-Original obtained significantly better results than the Unordered-CN2 in the 

data sets segment and splice, and C45Rules in mushroom. At the same time, they 

obtained one significantly worse result than Ripper in the data set splice. These 

results are reproduced in Table 5.32, where the GGP-Basic was used. These 

results show that a simpler version of the grammar can produce results which are 

competitive to the ones produced by a more sophisticated version of the grammar. 

These same results appear again in Table 5.33. However , Table 5.33 also presents 5 

other cases where the GGP-RIs-NoPrune obtained significantly worse results than 

the baseline methods. These results reflect the importance of more sophisticated 

pruning methods in the current version of the grammar. 
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Table 5.33: Accuracy rates (%) obtained by the GGP in the meta-test set while 
using a modified version of the grammar which does not include pruning elements 

Data Set GGP-RIs Cn20rd Cn2Unord Ripper C45Rules 
crx 80.14±0. 73 '8Q:16~',±;~ 1~ 2~ ' 80~6 ± ·0.93 84.37 ± 1.21 

IJ (Iw .. A' '..~ . ", . • 

segment 94.32±0.24 95.38 ± 0.28 .. 95.44 ± 0.3288.16 ± 7.72 
sonar 74.45±2.64 70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
heart-c 77.37±1.39 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
ionosphere 86.06±2.18 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1. 7589.06 ± 2.71 
monks-1 100±0 100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
mushroom 99.9±0.02 100 ± 0 100 ± 0 99.96 ± 0.04 98.8 ± 0.06 
wisconsin 94.14±0.44 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
promoters 74.71±0.76 81.9 ± 4.65 74.72 ± 4.86 78.18 ± 3.6283.74 ± 3.46 
splice 82.85±0.44 89.66·~'± . 0.78 

Finally, in Table 5.34, in 16 out of 40 comparisons, the GGP-BottonUp ob­

tained significantly worse results than the baseline methods, and only one signifi­

cantly better result. These figures reinforce the analysis performed in Table 5.31, 

which showed that some data sets are more suitable to work with the bottom-up 

approach than others. Interestingly, these results were later confirmed when run­

ning experiments aiming to produce rule induction algorithms customized for a 

single data set. In these experiments, reported in Section 6.2, all the rule induction 

algorithms customized to the data sets crx and heart-c followed the bottom-up 

approach, while the same was true for 20, 15 and 5 algorithms out of 25 tailored 

to the data sets monks-l, mushroom and ionosphere. 

In summary, this section showed that it is not simple to compare different ver­

sions of the grammar used for the GGP to guide its search, as the method adapts 

to the grammar and produces different types of rule induction algorithms accord­

ing to the functionalities available. It also presented results which demonstrated 

that a simpler version of the grammar can be as effective as a more sophisticated 

one, and explained how the grammar can be manipulated to produce a particular 

kind of rule induction algorithm. 

5.7 GGP versus a Grammar-based Hill Climb­

ing Search Method 

This work proposed a GGP system to search for accurate and innovative rule 

induction algorithms. The GGP was first chosen as the search method for this 
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Table 5.34: Accuracy rates (%) obtained by the GGP in the meta-test set while 
using a modified version of the grammar which produces exclusively bottom-up 
rule induction algorithms 

~D=-a::-ta_S_et_-;:;-:;--;:;-;:;~--:;--;--;;-;::;~:-=-;~=-...;;::;::..::::..:::~_~~~_~ C45 Rules 
crx 
segment 
sonar 
heart-c 
ionosphere 
monks-1 

task because of its global search nature, its intrinsic population-based parallelism 

and its definition of being a promising "automated invention machine". Besides, 

the use of a grammar as a way to provide previous available knowledge about the 

target problem and guide the search seemed appropriated in the case of automat­

ically evolving a rule induction algorithm. 

As explained before, in GGPs the grammar is responsible for determining the 

size of the search space. In the problem of automatically evolving rule induc­

tion algorithms, the grammar presented in Table 4.1 represents a search space 

of approximately 5 billion candidate rule induction algorithms (for details, see 

Appendix A). As shown in the results of the previous sections, the GGP met 

our expectations in finding rule induction algorithms competitive with human­

designed ones. But is GGP a good way to automatically search for rule induction 

algorithms? Or could a simpler search method obtain the same kinds of results? 

In order to find answers for these questions we implemented a hill climbing 

(He) search method. The central idea of this hill climbing search is the following 

[129]. It randomly generates one solution to a specific problem (which we call 

current solution), evaluates it and then modifies it (a modification is equivalent to 

a mutation operation in the GGP). If the new modified solution is better than the 

current solution, it replaces it. In contrast, if the new solution is worse than the 

current one, it is discarded and the current solution (which remains unchanged) is 

modified again. This process is carried out until a maximum number of solutions 

are evaluated. 
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Table 5.35: Comparing the predictive accuracies (%) of the GGP-RIs and the 
GRC-RIs in the meta-test set for experiments with nominal data sets 

Data Set GGP-RIs GRC-RIs 
monks-l 100±0 99.93±0.07 
mushroom 98.76±0.07 
wisconsin 95.l7±0.76 93.88±0.57 
promoters 63.04±0.8 
splice 70.64±0.3 

In order to use this RC method to automatically evolve rule induction algo­

rithms (which is comparable with the proposed GGP), we randomly generate a 

rule induction algorithm by following the production rules of the grammar, just 

like in the GGP. The rule induction algorithm is evaluated using the meta-training 

set (see Section 5.2) and the same fitness used by the GGP. It is then mutated 

and, if the new rule induction algorithm is better than the current one, it replaces 

it. Otherwise the unchanged solution (the rule induction algorithm before the mu­

tation) undergoes a new mutation operation. This process is repeated 3000 times 

(which is equivalent to running the GGP with 100 individuals for 30 generations -

parameter values used in all GGP experiments reported in the previous sections). 

We call this method GRC (Grammar-based Rill Climber). 

Therefore, both the GGP and the GRC methods use the same grammar, the 

same individual representation, the same fitness function and evaluate the same 

number of candidate rule induction algorithms, making the comparison between 

the two methods as fair as possible. The two methods differ in that: (a) GGP 

works with a population of candidate solutions, whereas GRC works with just one 

candidate solution at a time; (b) As the GGP works with a population, individuals 

undergo a selection procedure before being modified, while in the GRC an "elitist" 

strategy is used, and only the best candidate solution is preserved (in other words , 

the GRC performs a local search, while the GGP performs a global search); and 

(c) GGP creates new solutions via crossover and mutation whereas GRC uses only 

"mutation", which is implemented by exactly the same mutation operator used 

by GGP. 
Tables 5.35, 5.36 and 5.37 show the results obtained by the described GHC 

method when using nominal, numerical and both types of data sets in the meta­

training and meta-test sets. The tables show the name of the data sets followed by 
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Table 5.3~: Comparing the predictive accuracies (%) of the GGP-RIs and the 
GHC-RIs III the meta-test set for experiments with numerical data sets 

Data Set GGP-RIs GHC-RIs 
crx 82.14±0.4380.29±0.77 
ionosphere 86.98±2.54 84.58±2.58 
segment 87.93±0.38 
sonar 63.29±1.13 
heart-c 75.13±1.52 75.7±1.13 

Table 5.37: Comparing the predictive accuracies (%) of the GGP-RIs and the 
GHC-RIs in the meta-test set for experiments with both nominal and numerical 
data sets 

Data Set GGP-RIs GHC-RIs 
crx 77.46±3.8 82.66±1.14 
segment 88.53±1.03 
sonar 64.92±1.12 
heart-c 76.72±1.5 78.75±1.03 
ionosphere 87.04±2.2 84.64±1.97 
monks-1 99.93±0.0799.82±0.18 
mushroom 99.03±0.07 
wisconsin 95.58±0.7493.56±0.56 
promoters 60.26±1.96 
splice 65.2±0.27 

the predictive accuracies obtained by the GGP-RIs and the rule induction algo­

rithms produced by the GHC method (denoted GHC-RIs) in 5 different runs (with 

different random seeds) of each method, respectively. As in the other tables pre­

sented in this chapter, all the results were obtained using a 5-fold cross-validation 

procedure, and the numbers after the symbol "± " are standard deviations. 

Results were compared using a two-tailed statistical t-test with significance 

level 0.01, and cells in dark gray represent significant wins of the GGP-RIs against 

the GHC-RIs. Across Tables 5.35, 5.36 and 5.37, the GGP-RIs obtained signifi­

cantly better results than the GHC-RIs in 10 out of 20 cases. There was no case 

in which the GHC-RIs obtained significantly better results than the GGP-RIs. 

Hence, in general , we can say that the GGP was much more effective in finding 

rule induction algorithms than the GHC method. 
Analyzing the results obtained in the nominal data sets , we observe that the 
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Table 5.38: Comparing the GGP-RIs with a GHC-RIs using a Student's t-test 

GGP-RIs GHC-RIs 
Significance level 0.05 0.01 0.05 0.01 
Nominal (GGP-0.5) 2(2) 2(1) 0(9) 0(7) 
Numerical (GGP-0.7) 1(0) 1(0) 1(5) 0(3) 
Both (GGP-0.7) 3(1) 3(1) 0(14) 0(9) 
Total 6(3) 6(2) 1(28) 0(19) 

accuracies found by the GHC-RIs were surprisingly low in the data sets promot­

ers and splice: while the GGP-RIs obtained accuracies of 77.42±2.54 for pro­

moters and 88.59±0.33 for splice, the GHC-RIs obtained accuracies of 63.04±0.8 

and 70.64±0.3 for promoters and splice, respectively. In any case, the GHC-RIs' 

accuracies are still comparable with the Unordered-CN2's ones. Studying the 

actual rule induction algorithms evolved, we notice that 2 out of 5 algorithms 

produced (in 5 different runs varying the random seed) by the GHC were respon­

sible for the very low accuracy. These two algorithms produced unordered rule sets 

(rather than ordered rule lists), and post-processed them by removing one or two 

conditions-at-a-time from the final rule set. Moreover, during the post-processing 

phase, these algorithms evaluated the new pruned rule sets using accuracy and 

information-gain in a prune set, respectively. But these strategies were not very 

successful. 

Regarding the experiments involving numerical data sets (Table 5.36), the 

predictive accuracies in segment and sonar also decreased significantly, from 

94.75±0.41 to 87.93±0.38 and from 72.72±1.95 to 63.29±1.13, respectively. 

Looking at the results reported in Table 5.37, once more the accuracies ob­

tained by the GHC-RIs for the data sets promoters, splice, segment and sonar are 

as low as they were in the experiments involving only nominal or numerical data 

sets in the GHC meta-training set. 

In addition to these direct comparisons among the GGP and GHC methods, 

Table 5.38 shows a comparison of the number of times the GGP generates a rule 

induction algorithm significantly better (worse) than the baseline rule induction 

algorithms (both versions of CN2, C4.5Rules and Ripper) against the number 

of times the GHC search does. The comparisons were made using a Student's 

t-test considering both significance levels 0.01 and 0.05. Comparing the second 

and fourth columns, we observe that while the total number of significantly losses 

of the GGP-RIs to the baseline algorithms is just three, the corresponding total 
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number for the GHC-RIs is 28 with a 0.05 significance level. The number of 

significant wins is six for the GGP-RIs and just one for the GHC-RIs. 

The results comparing the rule induction algorithms produced by the GGP 

and GHC methods showed that the GGP-RIs are, overall, clearly superior to 

the GHC-RIs. In order to try to understand why, Figures 5.1,5.2 and 5.3 show a 

comparison of the evolution of candidate rule induction algorithms along the GGP 

and GHC searches in experiments using nominal, numerical and both nominal 

and numerical data sets. The plots show fitness values against the number of 

evaluations produced in one run of each method, where in both runs the same 

random seed was used to initialize the candidate solution(s) of the corresponding 

method. Note that while for the GHC we have results for all the evaluations 

(since the GHC works with one candidate solution at a time), for the GGP we 

show the fitness of the best individual at the end of each generation (a multiple 

of 100 evaluations), since GGP is a population-based method. 

Observe that in both searches the values of the fitness do not monotonically 

increase as the number of evaluations increase (as would be expected in a "static" 

fitness function scenario). This is because, as explained before, in order to avoid 

over-searching, at each generation of the GGP (which is equivalent to 100 evalua­

tions in the GHC search), for each data set in the meta-training set, the training 

and validation subsets were changed, which effectively means the fitness landscape 

changes at every 100 individual evaluations. It is very interesting to notice the 

effect this design issue has on both algorithms. 

In all the 3 graphs, there are always a number of points in which the GHC 

search has a better solution than the GGP does. Two of these points are illustrated 

in Figures 5.1 and 5.2 by a dashed vertical line. Notice that the dashed vertical 

line is in the evaluation number 2100 for the first graph and 2500 for the second 

graph. Both 2100 and 2500 represent one evaluation before the data sets in the 

meta-training sets were randomly re-divided into training and validation subsets. 

In other words, as the GHC improves a solution over the same set of data 100 

times, it probably over-fits the rule induction algorithm to the data, which explains 

the better and better results from evaluations 2001 to 2100 in Figure 5.1, and a 

sudden and significant drop in evaluation 2101. 

It is also worth noting that from the 3000 mutation operations performed by 

each run of the GHC search, on average only 97.2, 89.6 and 93 were successful 

in producing better rule induction algorithms than the previous one (i.e. the 

"parent" algorithm) in 5 runs with the experiments using nominal, numerical and 
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Figure 5.3: Evolution of the GGP versus GHC when using nominal and numerical 

data sets in the meta-data sets 
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both kinds of data sets, respectively. These numbers tell us that only ~ 3% of 

the mutation operations improved the current candidate solution. Unfortunately, 

we cannot do this same kind of analysis with the GGP. The best way to compare 

the improvement of the GGP individuals would be to check if the individuals 

produced after crossover and mutation operations were better than their parents. 

However, as the data changes at each generation, parents and their offspring are 

evaluated in different sets of data, and are not directly comparable. 

In conclusion, while the GGP has the feature of searching in parallel (evalu­

ating 100 individuals in each generation and breeding them), with the associated 

advantages of performing a global search, the GHC has the feature of perform­

ing a sequential step-wise search, which is simpler but constitutes a form of local 

search, intuitively with considerably less exploratory power than the GGP. When 

it comes to search for rule induction algorithms, the GGP clearly produces better 

results than the GHC method. 

5.8 MOGGP: A Multi-Objective Version of the 

Proposed GGP 

One of the motivations to automatically evolve rule induction algorithms is the 

simplicity of the classification models they generate. This is in contrast with 

more mathematically sophisticated algorithms such as support vector machines 

(see Section 2.4), which usually produce a "black-box" model, hardly interpretable 

by the user. However, in the first experiments performed in this work, the sim­

plicity of the models generated by the evolved rule induction algorithms was not 

considered when evaluating those rule induction algorithms. 

As explained in Section 4.5.3, we developed a more sophisticated version of the 

GGP that takes into account, in its fitness function, both the predictive accuracy 

of a rule induction algorithm and the total number of conditions belonging to 

all rules in the classification model built by that algorithm. These two fitness 

criteria are simultaneously taken into account using the concepts of multi-objective 

optimization and Pareto dominance, and so this new version of the GGP is denoted 

MOGGP. 
This section presents the GGP-RIs evolved by the MOGGP, denoted MOGGP-

RIs. As in the previous sections, results for experiments mining only nominal, 

numerical and then both nominal and numerical data sets are presented. 

In contrast with the experiments run with the single-objective version of the 
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Table 5.39: Comparing accuracy rates (%) and rule sizes of the MOGGP-RIs and 
the SGGP-Rls for the nominal data sets in the meta-test set 

Data Set 

monks-1 
mushroom 
wisconsin 
promoters 
splice 

Pred. Accuracy 
M GP-RIs 
97.68±1.94 
99.94±0.04 
91.84±1.05 
68.31±1.59 
80.32±0.96 

Rule Model 

10.76±0.37 
16.4±0.44 
8.04±0.45 
3.12±0.12 
38.32±1.09 

GGP, for the MOGGP experiments the crossover and mutation rates were not 

optimized, and the MOGGP was run with the same sets of parameter values 

found in the experiments reported in Section 5.2. The justifications for using 

the same parameter values optimized for the single-objective GGP are two-fold. 

First, as concluded in Section 5.2, the single-objective GGP was not sensitive 

to crossover and mutation rate variations. Secondly, in order to compare the 

results of the single-objective and multi-objective versions of the GGP and draw 

conclusions concerning the advantages of a multi-objective approach, it is fair to 

compare their results when they are run with exactly the same parameter values. 

Therefore, we kept all the parameter values for the MOGGP exactly the same 

ones used for the single-objective GGP: population size of 100, 30 generations and 

tournament size of 2. For the experiments with nominal data sets, the crossover 

rate is 0.5 and the mutation rate 0.45. For the other two experiments (with 

numerical data sets and both nominal and numerical data sets), the crossover 

rate is 0.7 and the mutation rate 0.25. In all experiments the reproduction rate 

is 0.05. 
Table 5.39 presents the results of the predictive accuracy and number of con-

ditions obtained by the rule models generated by the MOGGP-RIs (rule induc­

tion algorithms generated by the MOGGP), and compare them with the results 

obtained by the SGGP-RIs (rule iriduction algorithms generated by the single­

objective version of the GGP). For further analysis, Tables 5.40 and 5.41 present 

the results of the predictive accuracy and number of conditions present in the rule 

sets for the MOGGP-RIs compared to the accuracies and number of conditions of 

the baseline algorithms: Ordered-CN2, Unordered-CN2 , Ripper and C4.5Rules. 

All the results were obtained using a 5-fold cross-validation procedure, and the 

numbers after the symbol "± " are standard deviations. Results were, as before, 

compared using a two-tailed statistical t-test with significance level 0.05. Cells 
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Table 5.40: Comparing accuracy rates (%) of the MOGGP-RIs and the baseline 
algorithms for the nominal data sets in the meta-test set 

Data Set MOGGP-RIs 
monks-1 97.68±1.94 
mushroom 99.94±0.04 
wisconsin 91.84±1.05 
promoters 68.31±1.59 
splice 80.32±0.96 

OrdCN2 UnordCN2 Ripper C45Ruies 
100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
100 ± 0 100 ± 0 99.96 ± 0.04 

94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95.9 ± 0.56 
~~~:C,"'~;~;~~~~~ 74.72 ± 4.86 r78.18 1: 3.6283.74 ± 3.46 
~O:i32 ,,~i,0,:7;4, 74.82 ± 2.9493.88 ± :0.4189.66 ± 0.78 

Table 5.41: Comparing the number of conditions in the rule sets of the MOGGP­
RIs and the baseline algorithms for the nominal data sets in the meta-test set 

Data Set MOGGP-RIs OrdCN2 UnordCN2 Ripper 
-m-o-n~ks--~1--~1~0.~7~6±~0.~3=7--~11~~±0-.7-1-- ~-14-~±7-. 5-1-

mushroom 16.4±0.44 15.6 ± 0.24 \ 12 ±' 0 
wisconsin 8.04±0.45 
promoters 3.12±0.12 
splice 38.32±1.09 

C45Ruies 

18.6 ± 2.73 
H!~.~, ~~ 'f,' '~{i 

i~Q': .:. ;' > q)T~~ 
H ; ~.~ .:~ .~; !J.! I ,oi: 

in dark gray represent statistically significant wins of the MOGGP-RIs against a 

baseline algorithm (or the SGGP-RIs), while light gray cells represent MOGGP­

RIs' statistically significant losses. 

As observed in Table 5.39, the MOGGP-RIs obtained significantly worse pre­

dictive accuracies than the SGGP-RIs in 3 cases, namely wisconsin, promoters 

and splice. However, at the same time, the MOGGP-RIs obtained rule models 

with a much smaller number of conditions than the SGGP-RIs in these same data 

sets. If we aim to optimize both the predictive accuracy and the simplicity of the 

rule models simultaneously, neither the MOGGP-RIs nor the SGGP-RIs can be 

considered better than the other when producing rule models for these data sets. 

In turn, in the data set mushroom, the MOGGP-RIs and SGGP-RIs obtained 

competitive accuracies, but the MOGGP-RIs produced simpler models. 

Considering now Table 5.40, in terms of accuracy the MOGGP-RIs obtained 

significantly worse results than the baseline rule induction algorithms in 7 cases, 

involving again the data sets wisconsin, promoters and splice. In just one case 

(mushroom with C4.5Rules) the MOGGP-RIs obtained an accuracy rate better 

than the baseline algorithms, while in the other 12 cases the MOGGP-RIs' results 

were as good as the ones obtained by the baseline algorithms. At first glance, 
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Figure 5.4: Objective values for the last population of individuals evolved by the 
MOGGP using nominal data sets in the meta-training set 

these results could be considered much worse than the ones obtained by the single­

objective GGP, which obtained 2 significantly better accuracies than the baseline 

algorithms and only one significantly worse. 

However, when we look at the number of rule conditions present in the clas­

sification models produced by the MOGGP-RIs and by the baseline algorithms, 

we have a very different situation. In 13 out of 20 cases the GGP-RIs found 

significantly smaller models than the baseline algorithms, and in only one case 

(mushroom) it found a significantly bigger model than Ripper. What is interest­

ing to notice is that, in 5 out of the 7 cases in which the MOGGP-RIs significantly 

lose to a baseline algorithm in predictive accuracy, they produce a significantly 

simpler model (by comparison with C4.5Rules in promoters, wisconsin and splice 

and Ordered-CN2 in promoters and splice). The same occurs in 8 out of 12 cases 

in which the MOGGP-RIs produce competitive accuracies with respect to the 

baseline algorithms: the former's models are much smaller. Therefore, taking 

into account both the predictive accuracy and the number of conditions in the 

rule model when evaluating the MOGGP-RIs against the baseline algorithms, the 

results are summarized in Table 5.42. 
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Table 5.43: Comparing accuracy rates (%) and rule sizes of the MOGGP-RIs and 
the SGGP-RIs for the numerical data sets in the meta-test set 

Data Set 

crx 
ionosphere 
segment 
sonar 
heart-c 

Pred. Accuracy 

82.51±1.41 
83.6±2.54 
91.52±0.47 
66.98±1.73 
75.38±1.4 

5.6±0.27 
29.44±1.27 
4.04±0.37 
4.72±0.53 

Table 5.42 uses a different terminology when compared to the tables showed so 

far. This is because when evaluating the MOGGP regarding accuracy and number 

of conditions in the rule model (two objectives), we based our analysis of results 

on the Pareto dominance concept - adapted to consider statistically significant 

differences. As described before, this adapted Pareto dominance concept states 

that a solution 81 dominates a solution S2 if two conditions are satisfied. First , 

if every objective value of 81 is not significantly worse than the corresponding 

objective value in 82 , Secondly, if at least one of the objective values of S1 is 

significantly better than the corresponding objective value of S2' 

Hence, Table 5.42 presents the number of classification models produced by the 

MOGGP-RIs which are neither significantly better nor significantly worse than 

the classification models produced by the baseline algorithms (Neutral column), 

the number of models produced by the baseline algorithms which the MOGGP 

dominates (Dominate column), and finally the number of models produced by 

the MOGGP which are dominated by a model produced by a baseline algorithm 

(Dominated column). This table was built by applying the significance-adapted 

Pareto dominance concept to the results presented in Tables 5.40 and 5.41. 

To illustrate the logic behind it, let us consider the cases of mushroom and 

wisconsin with Ripper in Tables 5.40 and 5.41. In both cases the accuracies of 

the MOGGP-RIs and Ripper are competitive. However, in mushroom the model 

generated by Ripper has a significantly smaller number of rule conditions than 

the model generated by the MOGGP-RIs, and so we say that Ripper dominates 

the MOGGP-RIs. The opposite situation occurs for wisconsin, where the models 

generated by MOGGP-RIs have a significantly smaller number of conditions than 

the models generated by Ripper , and we say that the MOGGP-RIs dominate 

Ripper. At last, if we have some cases in which the MOGGP-RIs are significantly 

better in one objective and a baseline algorithm is significantly better in the other 
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Table 5.44: Comparing predictive accuracy rates (%) of the MOGGP-Rls and the 
baseline algorithms for the numerical data sets in the meta-test set 

Data Set MOGGP-Rls OrdCN2 UnordCN2 Ripper C45Rules 
crx 82.51±1.41 80.16 ± 1.27 80.6 ± 0.93 84 .37 ± 1.21 84.82 ± 1.53 
ionosphere 83.6±2.54 87.6 ± 2.76 90.52 ± 2.0389.61 ± 1.7589.06 ± 2.71 
segment 91.52±0.47 ~~'38ift,J ,§ir; 95.L!4' .. ± 0.3288.16 ± 7.72 
sonar 66.98±1.73 70.42 ± 2.66 t7~:4~ :±~~)!' 72.88 ± 4.83 72.4 ± 2.68 
heart-c 75.38±1.4 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 

Table 5.45: Comparing the number of conditions in the rule sets of the MOGGP­
Rls and the baseline algorithms for the numerical data sets in the meta-test set 

Data Set MOGGP-Rls OrdCN2 
crx 8.96±0.55 
ionosphere 5.6±0.27 
segment 29.44±1.27 
sonar 4.04±0.37 
heart-c 4.72±0.53 

UnordCN2 C45Rules 

5.4 ± 0.81 
6 ± 0.55 

10.2 ± 4.34 
~tt. ';< ~~ 11~' :'j 

H~t (i' ~~ ~i :~ 

.1" J. ~ _J.' 
'!"Jr!.; ill 4\ fer. 

objective (such as when comparing the MOGGP-Rls with Ordered-CN2 in the 

splice data set), we say that two types of models have a neutral relationship. The 

two types of algorithms being compared are also considered to have a neutral 

relationship if there is no statistically significant difference in the values of each 

of the two objectives between the two types of algorithms. 

Figure 5.4 shows a graph representing the objective values for the last popula­

tion of individuals evolved by a run of the MOGGP. The x-axis shows the average 

number of rule conditions in the models built from data sets of the meta-training 

set, and the y-axis shows the value of fit as defined in Eq. (4.4) . Each point in 

the graph represents an individual (a rule induction algorithm). The greater the 

predictive accuracy (and consequently the value of fit) and the smaller the number 

of rule conditions, the better. The graph also shows the Pareto front found by the 

MOGGP, which is formed by the set of individuals which are not dominated by 

any other individual in the population of the last generation. The circle indicates 

the individual in the Pareto front which was returned as the best single solution 

for the problem (see Section 4.5 .3 for details about how it was chosen). The rule 

induction algorithm represented by this individual was the one evaluated in the 

meta-test set . 
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Tabl~ 5.46: C~mparing the MOGGP-RIs trained with numerical data sets to t he 
b.aseh?e algonthms, t aking into account both accuracy and number of the condi­
tIOns III the produced rule model, according to the concept of Pareto dominance 

MOGGP-RI vs Baseline Algorithms 
Neutral Dominates Dominated 
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Figure 5.5: Objective values for the last population of individuals evolved by the 
MOGGP using numerical data sets in the meta-training set 

Table 5.43 shows the predictive accuracy and the number of conditions ob­

t ained by the MOGGP-RIs and SGGP-RIs. Tables 5.44 and 5.45 show the results 

of the accuracy and number of conditions in the rule sets for the MOGGP-RIs 

(rule induction algorithms generated by the MOGGP) compared to the SGGP-RIs 

and the baseline algorithms when trained with numerical data sets. In Table 5.43, 

we observe that the MOGGP-RIs obtained significantly worse accuracies than the 

SGGP-RIs in two data sets, namely segment and sonar. In cont rast , the models 

generat ed by the MOGGP-RIs were simpler than the models generated by the 

SGGP-RIs in all five data sets. Hence, we can conclude that for the data sets 

erx, ionosphere and heart-e, the MOGGP-RIs obtained simples models than the 

SGGP-RIs with competitive accuracies. 

Regarding the comparisons of the MOGGP-RIs with the baseline algorithms, 

Table 5.44 has 3 cases in which t he MOGGP-RIs obtained significantly worse 

accuracies than the baseline algorithms: Ordered-CN2 and Ripper in segment 

and Unordered-CN2 in sonar. Compared to the results of the single-objective 

GGP, the MOGGP-RIs maintain a significant ly better accuracy over the segment 

classified by Unordered-CN2 , but these 3 cases where MOGGP-RIs loses are new 
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Table 5.47: Comparing accuracy rates (%) and rule sizes of the MOGGP-RIs and 
the SGGP-RIs for both nominal and numerical data sets in the meta-test set 

Data Set 
Pred. Accuracy 

MOG 
crx 83.33±1.26 
segment 92±0.67 
sonar 68.04±1.74 
heart-c 76.46±1.82 
ionosphere 85.48±1.63 87.04±2.2 
monks-1 99.78±0.22 99.93±0.07 
mushroom 99.66±0.22 99.99±0 

. . 
92.1±0.71 ~98~58'~0 ::74,~ Wlsconsm 

• _ ' . ' .. 1-... • - L"- ~ 

promoters 71.84±5.24 78.98±2.93 
splice 87.68±0.5 88.68±0.31 

13.52±0.72 
25.64±1.22 
4.6±0.75 
7.2±0.9 

7.88±0.62 
1l.64±0.39 
15.16±0.38 
9.68±0.57 
3.96±0.38 
42.52±2.3 

13±2.04 
15.2±0.58 
~t:~~~ i1~~: JI\~ . 

H ~~ ~ ~L '\, tl'-' 

J~~ jj ':~ j! I: ~1r~ 

when considering experiments with 5 data sets in the meta-training set. Recall 

that in experiments executed when training the GGP with 6 and 7 numerical data 

sets (see Tables 5.24 and 5.25), the accuracies of the GGP-RIs in segment were 

significantly worse than the accuracies of Ordered-CN2 and Ripper. As explained 

before, segment is a special data set, with plenty of class noise. 

Analyzing the number of conditions in the rule sets, though, the MOGGP­

RIs obtained significantly better results than the baseline algorithms in 15 out of 

the 20 cases, including segment with Ordered-CN2 and Ripper and sonar with 

Unordered-CN2, and only one significantly worse result in crx with Ripper. Sum­

marizing the results using the Pareto dominance concept, we now have that the 

MOGGP-Rls dominate 12 of the baseline algorithms, and are dominated by only 

one of them, as shown in Table 5.46. As before, Figure 5.5 shows the objective 

values for individuals of the last population of a run of the MOGGP trained with 

numerical attributes, the Pareto front found by the MOGGP and the individual 

returned as the best rule induction algorithm evolved (marked by a circle). 

At last, we present the results when evolving rule induction algorithms using 

MOGGP trained with both nominal and numerical data sets. Table 5.47 shows the 

predictive accuracy and the number of conditions obtained by the MOGGP-RIs 

and SGGP-Rls. As observed in Table 5.47, the MOGGP-RIs obtained accuracies 

statistically worse than the ones obtained by the SGGP-RIs in two data sets: 

segment and wisconsin. In the other 8 data sets , both the accuracies obtained by 

the MOGGP-RIs and the SGGP-RIs were statistically the same. In cont rast , t he 
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Table 5.48: Comparing predictive accuracy rates (%) of the MOGGP-RI and the 
baseline algorithms for both nominal and numerical data sets in the meta-test set 

Data Set MOGGP-RIs 
crx 83.33±1.26 
segment 92±0.67 
sonar 68.04±l.74 
heart-c 76.46±1.82 
ionosphere 85.48±1.63 
monks-1 99.78±0.22 
mushroom 99.66±0.22 

. . 
92.1±0.71 Wlsconsm 

promoters 71.84±5.24 
splice 87.68±0.5 

OrdCN2 UnordCN2 Ripper C45Rules 
80.16 ± 1.27 80.6 ± 0.93 84.37 ± l.21 84.82 ± l.53 
95;38f. .. (L~8; .9~.44 .± 0.3288 .16 ± 7.72 
70.42 ± 2.66 72.42 ± 1.4 72.88 ± 4.83 72.4 ± 2.68 
77.9 ± 1.96 77.54 ± 2.85 77.53 ± l.1 74.2 ± 5.43 
87.6 ± 2.76 90.52 ± 2.0389.61 ± l. 7589.06 ± 2.71 

100 ± 0 100 ± 0 93.84 ± 2.93 100 ± 0 
100 ± 0 100 ± 0 99.96 ± 0.04 

94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95:9 ± 0.56 
81.9 ± 4.65 74.72 ± 4.86 78.18 ± 3.6283.74 ± 3.46 

, :e· O.4~ ± O. 

Table 5.49: Comparing the number of the conditions presented in the rule sets 
of the MOGGP-RI and the baseline algorithms for both nominal and numerical 
data sets in the meta-test set 

Data Set 
crx 
segment 
sonar 
heart-c 
ionosphere 
monks-1 
mushroom 

. . 
Wlsconsm 
promoters 
splice 

MOGGP-RIs 
13.52±0.72 
25.64±1.22 
4.6±0.75 
7.2±0.9 

7.88±0.62 
1l.64±0.39 
15.16±0.38 
9.68±0.57 
3.96±0.38 
42.52±2.3 

OrdCN2 UnordCN2 C45Ruies 

>.:J~ " ± 0·, 18.6 ± 2.73 
-• \ ~ . ,.. ~~ft 

.-/ ~ .. '. ' ~\~' 

1 "! " " ~!i"': 

rule models produced by the MOGGP-RIs are significantly smaller than the ones 

produced by the SGGP-RIs in 8 out of 10 cases, while in the other two cases the 

results are statistically the same. 

Tables 5.48 and 5.49 present the predictive accuracies and number of conditions 

per rule model obtained by the MOGGP-RIs and the four baseline algorithms. 

Analyzing Table 5.48, we note that the MOGGP-RIs have significantly better ac­

curacies than the baseline algorithms in 3 cases and significantly worse accuracies 

in 6 cases. Compared to the result for the single-objective GGP-RIs (show in Ta­

ble 5.13), the 3 significant wins over the baseline algorithms remained the same, 

but the number of significant losses increased from 1 to 6, and occurred in the 
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!able 5.50: Comparing the MOGGP-RIs trained with both nominal and numer­
Ical data sets to the baseline algorithms, taking into account both accuracy and 
number of the conditions in the produced rule model according to the concept of 
Pareto dominance 

MOGGP-RI vs Baseline Algorithms 
Neutral Dominates Dominated 

13 24 3 

data sets segment, splice and wisconsin. 

Regarding the number of conditions in the generated rule models, as can be 

observed in Table 5.49, the MOGGP-RIs produced significantly smaller models 

in 28 out of the 40 cases. In 5 out of the 6 cases in which the MOGGP-Rls 

generated significantly smaller accuracies, they also created smaller models. As 

summarized in Table 5.50, an analysis of Pareto dominance taking into account 

both the accuracy and the size of the models produced shows that in 24 out of 

the 40 cases the MOGGP-Rls' models dominate the baseline algorithms' models, 

and the former are dominated by the latter in only 3 cases. 

In summary, as discussed in this section, a more comprehensive comparison 

of the rule induction algorithms produced by the MOGGP with the baseline rule 

induction algorithms should take into consideration not just the accuracies gener­

ated by them, but also the size of the rule models created. Comprehensibility of 

the classification model is a key point in rule induction algorithms, and an analysis 

of the models produced by the MOGGP-Rls against the models produced by the 

baseline algorithms showed that, for example, for all the data sets in the meta-test 

sets of the three sets of experiments performed, the MOGGP-Rls always produced 

rule models smaller than the Unordered-CN2 ones. Besides, in 80% of the cases, 

the MOGGP-RIs' models are also smaller than the Ordered-CN2's models. 

5.8.1 An Insight About the MOGGP-RIs 

In the previous section, we showed that an analysis of both the predictive accu­

racy and the size of the rule models produced by the MOGGP-Rls reveals that, 

in general, the MOGGP-Rls' models are much more compact than the models 

produced by the baseline algorithms. However, the most interesting fact to notice 

about the MOGGP-Rls is the impact that the inclusion of a measure of rule model 

size in the fitness function had in their design. 
For instance, 14 out of the 15 algorithms produced by the MOGGP (5 runs 
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Figure 5.6: Objective values for the last population of individuals evolved by the 
MOGGP using both nominal and numerical data sets in the meta-training set 

with different random seeds in 3 experiment settings considering different meta­

training sets) use both a pre- and a post-pruning method. In contrast, none 

of the algorithms produced by the single-objective GGP used post-pruning, and 

only one out of the 15 algorithms pre-pruned rules by changing the final produced 

rule. Of course other forms of pre-pruning were used by these algorithms, such as 

considering as candidate rules only statistically significant rules , or rules with an 

accuracy greater than a predefined threshold. 

Alg. 5.6 shows an example of a MOGGP-RI produced when the MOGGP was 

trained with only nominal data sets. The first feature to notice in this algorithm 

is that it works with three different sets of data. It first divides the training 

set into build and post-prune sets, and subsequently divides the build set into 

grow and pre-prune sets. We recognize that this data division might be problem­

atic if few examples are available from the training set . However, this algorithm 

obtained accuracies statistically competitive with the ones provided by the well­

known human-designed algorithms, together with much simpler rule models. 

Having three sets of data, Alg. 5.6 works in three phases. First , it greedily 

builds rules and evaluates them using the Laplace estimation criterion in the grow 

set. The two best candidate rules are selected to undergo further refinements, and 

once the best rule is found , it is pre-pruned. In this second phase, the algorithm 

removes, one at-a-time, all the conditions present in the best rule. The new 

generated rules are again evaluated using the Laplace estimation criterion in the 

pre-prune set . 

Rules are produced until 99% of the examples in the original grow set are not 

covered. Once the rule list is complete, the third phase starts . The rule Ii t i 
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A~gorith~ 5.6: Example of a rule list algorithm created by the MOGGP 
usmg nommal data sets 

Divide the training data in Build and PostPrune 
RuleList = 0 
repeat 

Divide the Build data in Grow and PrePrune 
bestRule = an empty rule 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules i= 0 do 

for each candidateRule CR do 

l 
newCandidateRules = 0 
Add 1 condition-at-a-time to CR 
Evaluate .CR using the Laplace estimation in Grow 
newCandldateRules = newCandidateRules U CR 

candidateRules = 2 best rules selected from newCandidateRules 

149 

for each condition c in bestRule do 
bestRule' = Rule produced by removing condition c from bestRule 
Evaluate bestRule' into PreP rune using Laplace estimation 
if bestRule' better than bestRule then 
L bestRule = bestRule' 

RuleList = RuleList U bestRule 
until at least 99% of the examples in Grow are covered 
notlmproving = false 
repeat 

RuleList' = Remove last rule from RuleList 
if accuracy (RuleList ') > accuracy (RuleList ) in PostPrune then 
L RuleList = RuleList' 

else notlmproving = true 
until notImproving 

post-pruned by removing, from the last to the first inserted rule, one rule at-a­

time. Rules are removed from the rule list while the accuracy of the system in the 

post-prune data set is not reduced. 
The dynamics of Alg. 5.6 can be compared to Ripper's. Both algorithms pro-

duce, prune and "optimize" the entire rule list, with the following differences. 

Ripper works with rules ordered per class, produces only rules which do not cover 

any negative examples and evaluates them using information gain, and uses the 

MDL (minimum description length) criterion when optimizing the set of discov­

ered rules. Alg. 5.6 produces rule lists, evaluates rules using the Laplace estimation 

and "optimizes" them by removing one condition-at-a-time. We do not know any 

algorithm in the literature which works in this way, so Alg. 5.6 is considered a 
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A~gorithm 5.7: Example of a rule list algorithm created by the MOGGP 
usmg mostly numerical data sets 

Divide the training data in Build and PostPrune 
RuleList = 0 
repeat 

Divide the Build data in Grow and PrePrune 
bestRule = an empty rule 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules =J 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
Add 1 condition-at-a-time to CR 
Evaluate CR using the Laplace estimation in Grow 
if CR is significant with 99% significance level then 
L newCandidateRules = newCandidateRules U CR 

candidateRules = best rule selected from newCandidateRules 
notImproving = false 
repeat 

bestRule' = Rule produced by removing the last condition from 
bestRule 

Evaluate bestRule' into PreP rune using Laplace estimation 
if bestRule' better than bestRule then 
L bestRule = bestRule' 

else notImproving = true 
until not Improving 
RuleList = RuleList U bestRule 

until there is a maximum of 20 examples in Grow not covered 

not Improving = false 
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repeat 
RuleList' = Remove 1 condition-at-a-time from the last rule in RuleList 
if accuracy(RuleList ') > accuracy(RuleList) in PostPrune then 
L RuleList = RuleList' 

else notImproving = true 
until notImproving 

novel algorithm. 
Algorithm 5.7 shows another example of a MOGGP-RI. It is similar to the 

algorithm presented in Algorithm 5.6, with the following differences. First, it 

tests the statistical significance of the rules before considering them as possible 

candidate rules, and only selects one candidate rule to undergo further refinements. 

Second, it pre-prunes a rule by removing only the last condition added to it, 

instead of removing each of the possible conditions-at-a-time, as Algorithm 5.6 
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does. At last, the criterion used to stop producing rules takes into account the 

number of examples left in the grow data subset; more precisely, it stops producing 

rules when the number of examples in the grow set is reduced to 20 or less. 

These two algorithms reflect how the addition of a measure of rule set com­

plexity to the fitness of the GGP changed the GGP-RIs evolved in order to find 

a good balance of the accuracy/complexity trade-off. They also show that the 

MOGGP is flexible enough to produce very different kinds of algorithms. 

5.9 A Note on the GGP System's Execution 

Time 

Formal analyses of the computational time and time complexity of evolutionary 

algorithms are not very often performed. Although theoretical studies [78] suggest 

the use of Markov chains models in order to perform these analyses, this is not a 

simple task. 

Performing this kind of theoretical analysis is out of the scope of this thesis. 

Instead, we discuss the factors which tend to define the best and worst case 

scenarios in a run of the proposed GGP system. 

The most time consuming operation in the GGP system is the evaluation of the 

individuals. As each individual represents a complete rule induction algorithm, the 

GGP overall runtime depends on the rule induction algorithms' overall runtime. 

More precisely, the runtime of the fitness function of the GGP (by far the most 

time consuming part of the GGP) depends on three main factors: 

• The number of data sets in the meta-training set. 

• The number of attributes (and attributes values, in the case of nominal 

attributes) and examples in each data set in the meta-training set. 

• The rule induction components (incorporated in the grammar) used by the 

GGP to produce a complete rule induction algorithm. 

This third factor, in special, considerably changes the rule induction algo­

rithms' runtimes. This is because, when analyzing the symbols of the grammar, 

we notice that a few of them perform operations with a time complexity higher 

than linear. Add2, for instance, considers all the combinations of attribute/value 

pairs two by two, so its time complexity is quadratic with respect to the number 
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Table 5.51: .GGP runtime for different experiments' configurations when training 
the GGP wIth many data sets in the meta-training set 

Meta-training set Time (hr:min) 
Att. Type # Data sets Best Worst 

3 2:04 3:47 
4 2:21 4:48 

Nominal 5 3:26 5:43 
6 5:03 6:49 
7 7:59 12:45 
3 10:36 34:11 
4 15:22 26:06 

Numerical 5 21:50 64:21 
6 15:16 28:09 
7 13:41 61:06 
6 33:21 48:29 

Nominal and 8 25:39 32:48 

Numerical 
10 18:29 34:02 
12 33:12 53:30 
14 40:31 64:21 

of attributes. As another example, RemoveCondRule post-prunes rule models by 

removing one/two conditions-at-a-time from each rule in the rule model. 

Since it is so difficult to estimate a best/worst runtime for the GGP, we report 

here the best/worst runtimes empirically obtained for each of the experiments 

with the GGP reported in this chapter. All the experiments were performed on 

pentium 4 duo processor machines with 1GB RAM and running Linux. 

Table 5.51 shows the results of the best and worst case scenarios when running 

the proposed GGP with different numbers of data sets in the meta-training set. 

The first column presents the type of data sets (according to the data type of the 

data set attributes) used during the experiments, followed by the number of data 

sets in the meta-training set and the best and worst run times, reported in the 

format hours: minutes. 

It is important to remark that the execution time of the rule induction al­

gorithms can still be improved, and their code is not optimized. As the GGP 

considers many combinations of non-terminals/terminals, it is not simple to write 

the code for all the grammar symbols in a way that all the combinations run in 

the best possible time. 
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5.10 Summary 

This chapter presented the results obtained by the GGP system proposed in Chap­

ter 4 when evolving robust rule induction algorithms. We reported the results of 

preliminary experiments executed to optimize the crossover and mutation param­

eters of the GGP, and then presented the results obtained by the GGP system in 

three phases. 

In the first phase, we considered GGP-RIs evolved when using only data sets 

with nominal attributes in the meta-training set. In the second phase, we consid­

ered data sets with at least one numerical attribute in the GGP's meta-training 

set. In the third phase, we merged the data sets used in the previous two phases, 

and executed experiments with a total of 20 data sets. At last, experiments ana­

lyzing the impact of the number of data sets used in the meta-training set on the 

predictive accuracy of the evolved GGP-RIs were also reported. 

For all the experiments reported in this chapter, the predictive accuracies ob­

tained by the GGP-RIs were compared to the predictive accuracies of 4 well-known 

human-designed rule induction algorithms, namely Ordered-CN2, Unordered­

CN2, Ripper and C4.5Rules. In general, the results showed that the GGP-RIs 

were competitive with these baseline methods. We also showed some of the evolved 

GGP-RIs, and highlighted their innovative procedures. 

In order to evaluate the effectiveness of the GGP system in evolving GGP­

RIs, we compared it with a grammar-based hill climber (GHC) system. The 

comparisons showed that, in many cases, the GGP-RIs obtained by the GGP are 

superior to the GHC-RIs obtained by the GHC, and the reverse situation is rarely 

observed. Hence, we can clearly conclude that the GGP is a considerably more 

effective method for evolving rule induction algorithms than the GHC. 

Experiments with a multi-objective version of the GGP (MOGGP) were also 

performed, and showed that besides being competitive with the human-designed 

rule induction algorithms, many of the MOGGP-RIs also produced a more com-

pact classification model. 
The next chapter presents the computational results obtained when using the 

GGP in the second framework described in Section 5.1: to automatically evolve 

rule induction algorithms tailored to one specific data set. 



Chapter 6 

Evaluating the Proposed System 

for Evolving Algorithms Tailored 
to One Data Set 

6.1 Introduction 

As explained before, the grammar-based genetic programming system proposed 

in this thesis can be used into two different frameworks: to evolve robust rule 

induction algorithms, as reported in Chapter 5, or to evolve data set tailored rule 

induction algorithms. This latter approach is the one studied in this chapter. 

There are two main differences in the set up of the experiments in this chapter 

when compared to the experiments in Chapter 5. First, while in Chapter 5 a 

set of data sets was used in the GGP's meta-training set, in this chapter only 

one data set is used in the GGP meta-training set. Secondly, while in Chapter 5 

the meta-test set was composed by data sets coming from different application 

domains than the data sets present in the meta-training set, in this chapter the 

meta-test set works with a data set coming from the same application domain 

than the data set in the meta-training set. For example, if we want to find a 

rule induction algorithm tailored to the data set promoters, both the data subsets 

in the meta-training and meta-test sets will use data subsets from the data set 

promoters. Note that, in this context, the use of the terms meta-training and 

meta-test sets is less justifiable, once we have only one data set in the meta­

training and one data set in the meta-test set. However, as we are performing 

some kind of meta-learning anyway, we keep this terminology. 

154 
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For all the experiments run in this chapter, each data set was divided in three 

subsets: a training, a validation and a test set. The training and validation sets 

were inserted into the GGP's meta-training set, and used to evaluate the candi­

date rule induction algorithms found by the GGP. The meta-test set was not used 

during the evolution of the GGP, being reserved only for evaluating the predictive 

accuracy of the evolved rule induction algorithm. In order to evaluate this pre­

dictive accuracy, after the GGP was run, the training and validation sets used in 

the meta-training set during evolution were merged to create a new training set. 

The evolved rule induction algorithm used this new training set to create a rule 

model, which was then evaluated on the unseen test set. 

For this set of experiments, optimizing all the GGP parameters for each specific 

data set was not a practical option, since it would take a very long time. Hence, 

we used the same parameters used in the experiments presented in Chapter 5: 

population size of 100, evolved in 30 generations and tournament size 2. Regarding 

the crossover and mutation probabilities, we used the value 0.7 for crossover and 

0.25 for mutation, being the reproduction probability 0.05. These values were 

chosen because they were considered the best ones in the sets of experiments 

involving numerical and both nominal and numerical data sets (see Section 5.2). 

For each data set, the GGP was run 25 times. As before, we had 5 different 

random seeds, but in order to obtain more statistical support for the results, for 

each random seed, we evolved 5 GGP-Rls. In each of these 5 runs, we varied 

the data in the meta-training and meta-test sets. In order to do that, the entire 

data set was divided in 5 partitions and, as in a conventional 5-fold cross vali­

dation procedure, each time three data partitions were used for training, one for 

validation and one for test. 
Regarding the data sets used in the experiments, they were divided in two 

groups. First, we run experiments for 20 data sets used in the experiments in 

Chapter 5, as reported in Section 6.2. Second, we run experiments for 5 bioinfor­

matics data sets, as reported in Section 6.3. 

6.2 Experiments with UCI Data Sets 

Initially, we run experiments using the GGP to evolve rule induction algorithms 

tailored to a specific VCI [104] data set. Table 6.1 shows the predictive accura­

cies obtained by the GGP-Rls followed by the values of the predictive accuracies 

of the baseline methods, namely Ordered-CN2 and Vnordered-CN2, Ripper and 
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C4.5Rules. Results were compared using a two-tailed Student's t-test with signif­

icance level 0.05. Cells in dark gray represent statistically significant wins of the 

GGP-RIs over the respective baseline method, while cells in light gray represent 

statistically significant wins of the respective baseline method against the GGP­

RIs. Note that, for the data set splice, an attribute selection method was applied 

before given the data set to the GGP. The reason for that was the computational 

time required to build rule induction algorithms for this data set. splice has 63 

attributes and 3190 examples, and training the GGP with it was extremely slow. 

The attribute selection method applied to splice is not optimal, as feature 

selection is out of the scope of this thesis. It followed the filter approach, and was 

based on the attributes' gain ratios [145]. In this approach, the attributes were 

ranked according to their gain ratio, and then removed, 10 by 10, from the worst 

to the best (according to their rank), from the original data set. Every time 10 

attributes were removed from the training set, the new data set was then mined by 

the four baseline methods in a 5-fold cross-validation procedure (i.e, both versions 

of CN2, Ripper and C4.5Rules). This process of removing 10 attributes from the 

training set was repeated until the predictive accuracy of at least one of baseline 

methods dropped. In this case, the last 10 removed attributes were added again 

to the training set and then removed, one by one, from the worst to the best, 

while the predictive accuracy of the classifiers did not decrease. As a result of the 

attribute selection method, 14 out of 63 attributes were used. 

Results in Table 6.1 show that the GGP-RIs obtain predictive accuracies sig­

nificantly better than the baseline methods in 10 out of 80 cases, and accuracies 

significantly worse than the baseline methods in 5 cases. In the remaining 65 

cases the GGP-RIs' accuracies are considered statistically competitive with the , 
ones generated by the baseline human-designed rule induction algorithms. 

Table 6.1 presents 6 data sets that have not appeared before in the set of 

meta-test sets, namely balance-scale, monks-2, vehicle, vowel, glass and lymphs. 

7 out of the 10 cases where the GGP-RIs obtain significantly better accuracies 

than a baseline method occur in these data sets. The other 3 cases reflect the 

results of previous experiments with a set of data sets in the meta-training set, 

and appear in mushroom, segment and splice. In these cases the accuracies of 

C4.5Rules and Unordered-CN2 are too low when compared to the other methods. 

The five significant losses of the GGP-RIs occur in the data sets hepatitis, lymph, 

vehicle, vowel and splice. 
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Tab.le 6.1: ~redictive.accuracy rates (%) for GGP-RIs tailored to a specific data 
set m expenments usmg data sub-sets of the same application domain the meta­
training and meta-test sets 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules 
balance-scale 79.77±l.1l 8l.62 ± l.53 77.1 ± l.18 76 ± 1.58 
crx 82.22±l.51 80.16 ± l.27 80.6 ± 0.93 84.37 ± 1.21 84.82 ± 1.53 
glass 65.36±1.89 68.44 ± 4.5869.42 ± 2.2766.13 ± 3.3267.72 ± 4.23 
heart-c 78.67±l.37 77.9 ± 1.96 77.54 ± 2.85 77.53 ± 1.1 74.2 ± 5.43 
hepatitis 80.02±l.07 8l.94 ± 5.0283.34 ± l.83 86.03 ± l.14 83.36 ± 0.9 
ionosphere 85.65±2.85 87.6 ± 2.76 90.52 ± 2.03 89:61 ± -1. 75 89.06± 2.71 
lymph 75.85±2.04 8f,:~4~~;~lYj,"t. 80.36 ± 4.0679.03 ± 4.6281.42 ± 4.05 
monks-1 100±0 100 ± 0 ' 100 ± 0 93.84 ± 2.93 100 ± 0 
monks-2 89.67±l.22 87.26 ± l.09 
monks-3 98.38±0.6 97.46 ± 0.74 99.1 ± 0.4 98.54 ± 0.46 94 ± 4.89 
mushroom 100±0 100 ± 0 100 ± 0 99.96 ± 0.04 
pIma 73.57±0.53 69.34 ± 2.13 74.6 ± 0.38 73.91 ± 1.6571.04 ± 1.67 
promoters 76.07±3.36 8l.9 ± 4.65 74.72 ± 4.8678.18 ± 3.6283.74 ± 3.46 
segment 95.55±0.25 95.38 ± 0.28 95.44 ± 0.3288.16 ± 7.72 
splice 89.53±0.65 90.32 ± 0.74 93-~8& :* 0.4] 89.66 ± 0.78 
sonar 70.9±2.27 70.42 ± 2.66 72.42 ± l.4 72.88 ± 4.83 72.4 ± 2.68 
vehicle 68.34±0.95 70.16 ± 1.68 66.46 ± 1.94 ifl,94 ± 1:29 
vowel 73.66±l.11 76.64 ± 0.93 68.93 ± 2.64 
wisconsin 94.27±l.1 94.58 ± 0.6894.16 ± 0.9393.99 ± 0.63 95 .9 ± 0.56 
zoo 9l.85±l.87 92 .64 ± l.33 92.52 ± 2.21 89.47 ± 1.6692.56 ± 1.45 

These results show that apparently the GGP was not able to find Ordered­

CN2 - the algorithm with best performance among the four manually-designed 

algorithms in Table 6.1 for the data set lymph, although Ordered-CN2 is included 

in the GGP search space. However, when analyzing the 25 GGP-RIs produced 

for lymph, we observe that six of them were actually instances of Ordered-CN2. 

As explained before, apart from measuring the predictive accuracy obtained 

by the GGP-RIs, it is also important to know if the GGP is capable of producing 

innovative rule induction algorithms, which are not simply a reproduction of the 

human-designed ones. The experiments showed in Table 6.1 generated nothing 

less than 500 algorithms (20 data sets x 25 algorithms). The first thing easily 

noticed is that the algorithms produced with single data sets in the meta-training 

set are much more original (different from manually-designed algorithms) than 

the ones produced when using a set of data sets in the meta-training set . We 

can say that approximately 25% of the algorithms produced were instances of 
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Ordered-CN2, or just changed one or two of its main components. Nevertheless, 

there were plenty of algorithms using a more creative way of finding rules. 

From that, we can conclude that when evolving rule induction algorithms 

for a set of data sets the GGP is more cautious, and gives preference to simpler 

algorithms, which are more likely to perform well in a set of very different data sets. 

However, when tailoring the algorithm to the data, more "specialized" algorithms 

were generated. Another point to be noticed is that, for the same random seed, 

the 5 evolved algorithms generated with different sets of data during a cross­

validation process usually follow the same broad strategy. For instance, in the 

data set balance-scale, 4 out of the 5 algorithms use a bottom-up approach instead 

of a top-down one. In addition, 3 out of these 4 create the first rule using the 

typicality measure, while the fourth one starts the search with a random example. 

As mentioned earlier, the experiments whose results are reported in Table 6.1 

generated 500 GGP-RIs. Here we are going to show two GGP-RIs, selected out or 

those 500 GGP-RIs. The selection procedure was based on both the originality of 

the algorithm (which is inevitably, to some extent, a subjective criterion) and its 

accuracy in the test set, although the second criteria does not have much statistical 

support, as it is based on only one run of the algorithm (corresponding to a single 

test set, i.e., a single fold of the cross-validation procedure). Alg. 6.1 was evolved 

for the data set crx. It produces the initial rule based on a typical example 

extracted from the training set (details on how to select the typical example 

can be found in Section 4.2), and remove two conditions-at-a-time from it. The 

generated candidate rules are evaluated using their information content, and rules 

are refined until the best rule found so far does not cover any negative examples. 

Rules can be pre-pruned before being inserted into the rule list by removing the 

last condition inserted to it. The rule production process is carried out until 99% 

of the examples in the training set are covered. A post-pruning phase also allows 

the algorithm to remove two conditions-at-a-time from each rule in the final rule 

list, as long as the value of the Laplace estimation in the post-pruned rule set is 

higher than the value of the Laplace estimation in the original rule list. As the 

MOGGP-RIs presented in Section 5.8, this algorithm also works with three sets 

of data, one to grow, one to pre-prune and a third one to post-prune the rules. 

This algorithm is innovative in the sense that it starts the search with a typical 

example (instead of a random one) and removes two conditions-at-a-time from it, 

accounting for some attribute interaction. Recall that the selection of a typical 

example, based on the principles used in instance-based learning algorithms, is 
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AIg?rithm 6.1: Example of a decision list algorithm created by the GGP 
specIfically for the data set crx 

Divide the training data in Build and PostPrune 
RuleList = 0 
repeat 

Divide the Build data in Grow and PrePrune 
bestRule = rule created from a typical example 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while negative examples covered by bestRule =J 0 do 

for each candidateRule CR do 

l 
newCandidateRules = 0 
Remove 2 conditions-at-a-time from CR 
Evaluate .CR using its information content in Grow 
newCandidateRules = newCandidateRules U CR 

candidateRules = best 10 rules selected from newCandidateRules 
bestRule' = Remove the last condition from bestRule 
Evaluate bestRule' into PrePrune using Laplace estimation 
if bestRule' better than bestRule then 
L bestRule = bestRule' 

RuleList = RuleList U bestRule 
until at least 99% of the examples in the training set are covered 
for each rule R in the RuleList do 

notImproving = false 
repeat 

Remove 2 conditions-at-a-time from R 
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Evaluate RuleList' in PostPrune 
if laplaceEstimation(RuleList') > laplaceEstimation(RuleList) then 
L RuleList = RuleList' 

else notImproving = true 
until notImproving 

as innovative feature of the grammar that is not found in any manually-designed 

rule induction algorithm, to the best of our knowledge. The fact that the rules are 

refined until no negative examples are covered could lead to over-fitting. However, 

the generalization capability of the classifier is secured by both pre- and post-prune 

phases. First the rules are pre-pruned by removing the last condition added to it, 

and evaluated using the Laplace estimation this time. Later, a post-process phase 

helps to ensure a compact rule list. 
Alg. 6.2 shows a GGP-RI produced for the data set ionosphere. The algorithm 

produces a rule set using a top-down strategy. The novelty of this algorithm lies 

in the way rules are refined, depending on how many conditions they have. Two 
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~lgorithm 6.2: Example of a rule set algorithm created by the GGP spe­
cIally for the data set ionosphere 

RuleSet - 0 
for each class C in the training set do 

repeat 
bestRule = an empty rule 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules =J 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
if number of conditions in CR < 5 then 
L Add 2 conditions-at-a-time to CR 

else 
L Add 1 condition-at-a-time to CR 

Evaluate CR using accuracy 
if accuracy ( CR) > 80% then 
L newCandidateRules = newCandidateRules U CR 
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candidateRules = 3 best rules selected from newCandidateRules 
RuleSet = RuleSet U bestRule 

until at least 97% of the examples of class C in the training set are 

covered 
Class clashes when classifying new examples are solved using the is-content 

criterion 

conditions-at-a-time are added to rules with less than 5 conditions, while only one 

condition-at-a-time is added to rules with more than 5 conditions. A beam search 

of size 3 is performed, and rules are evaluated using accuracy. The accuracy of the 

rules also excludes rules with less than 80% accuracy from the set of candidates. 

Rules are produced for a given class until 97% of the examples of the respective 

class are covered. 

6.2.1 GGP-RIs versus GHC-RIs 

As we did for the experiments in Section 5.7, we compared the predictive accu­

racies obtained by the GGP-Rls with the ones obtained by the rule induction 

algorithms evolved by a grammar-based hill climbing method, i.e. GHC-Rls. Ta­

ble 6.2 shows the results of these comparisons. Cells in dark gray represent cases 

where the GGP-Rls obtained predictive accuracies significantly better than the 

GHC-Rls according to a 2-tailed t-test with significance level 0.01. 
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Table 6.2: Comparing the predictive accuracies of the GGP-RIs and the GHC-RIs 
tailored to a specific data set for experiments using a data sub-sets of the same 
application domain in the meta-training and meta-test sets 

Data Set GGP-RIs GHC-RIs 
balance-scale 75.65±1.18 
crx 82.22±1.51 80.5±0.87 
glass 54.42±1.27 
heart-c 78.67±1.37 78. 72±0.88 
hepatitis 80.02±1.07 78.66±0.8 
ionosphere 85.65±2.8583.43±1.32 
lymph 75.85±2.0473.47±1.71 
monks-l 95.62±1.75 
monks-2 69.53±1.2 
monks-3 84.12±2.07 
mushroom 100±0 97.31±1.43 
pIma 73.57±0.5371.74±0.93 
promoters 76.07±3.3667.48±2.31 
segment 87.96±0.71 
splice 77.63±1.32 
sonar 63.19±2.61 
vehicle 56.65±4.25 
vowel 42.88±3.35 
wisconsin 94.27±1.1 92.32±0.78 
zoo 91.85±1.87 89.6±0.83 

As illustrated in Table 6.2, the GGP-RIs obtained significantly better accu­

racies than the GHC-RIs in 10 cases. In 3 out of these 10 cases, namely vowel, 

vehicle and glass, the accuracies found by the GHC-RIs were surprisingly low. In 

the case of glass, the type of algorithms generated explains the poor accuracy. It 

was caused by the GHC-RIs which used a pre-pruning method requiring a differ­

ent set of data, and also a post pruning method (also requiring a different set of 

data). As glass was trained with only 129 examples, the data sets reserved for pre­

and post-pruning were not big enough to give statistical support to the results. 

We recognized earlier on that this division of data might cause problems in small 

data sets. However, the GGP was able to overcome this problem , and only 4 out 

of the 25 GGP-RIs generated use a pre-pruning method which requires a different 

set of data, while none of those 25 algorithms use a post-pruning method. By 

contrast, the GHC was not able to detect the problem. 
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AIg~rithm 6.3: Example of a decision list algorithm created by the GHC 
speCIally for the data set crx 

Divide the training data in Build and PostPrune 
RuleList = 0 
repeat 

Divide the Build data in Grow and PrePrune 
bestRule = rule created from a typical example 
candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules =1= 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
Remove 2 conditions-at-a-time from CR 
Evaluate CR using its confidence in Grow 
if accuracy( CR) > 70% then 
L newCandidateRules = newCandidateRules U CR 

candidateRules = 2 best rules selected from newCandidateRules 
bestRule' = bestRule 
notImproving = false 
repeat 

bestRule' = Remove the last condition from bestRule 
Evaluate bestRule' in PrePrune using Laplace Correction 
if bestRule' better than bestRule then 
L bestRule = bestRule' 

else notImproving = true 
until notImproving 
RuleList = RuleList U bestRule 

until all the examples in the training set are covered 
notImproving = false 
repeat 

RuleList' = Remove last rule from RuleList 
if accuracy(RuleList') > accuracy(RuleList) in PostPrune then 
L RuleList = RuleList' 

else not Improving = true 
until not Improving 
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Here we show the pseudo-codes of two GHC-RIs, selected out of the 500 GHC­

RIs generated in the experiments whose results are reported in Table 6.2. To be 

consistent and allow comparisons among the GGP and GHC results, we present 

the GHC-RIs found when running the GHC with the same random seeds and data 

sets used by the GGP to produce Alg. 6.1 for crx and Alg. 6.2 for ionosphere. 

These GHC-RIs are described in Algs. 6.3 and 6.4. In general, the algorithms 

found by the GHC when using one data set in the meta-training set (in order to 
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evolve a rule induction algorithm tailored to a single application domain) were 

also more original than the ones found by the GHC when using a variety of data 

sets in the meta-training set (in order to evolve a more robust rule induction 
algori thm) . 

Alg. 6.3 presents a similar algorithm to the one presented in Alg. 6.1 (GGP­

RI for crx). The main differences between these two algorithms lie on the rule 

evaluation heuristic, the beam width in the beam search and the post-processing 

method. Besides, the GGP-RI requires 99% of the examples in the training set 

to be covered, while the GHC-RI requires all. Note that Alg. 6.3 also filters the 

candidate rules according to their accuracy, which has to be higher than 70%. 

In Alg. 6.3, the confidence of the rules is used both as the rules' evaluation 

heuristic and pre-pruning method, since the accuracy of the rules has to be greater 

than 70% (recall that in this context accuracy is a synonym for confidence). The 

beam width also changes from 10 to 2 from Alg. 6.1 to Alg. 6.3, as does the post­

processing method. While Alg. 6.1 post-prunes rules by removing two conditions­

at-a-time from them, Alg. 6.3 removes entire rules from the rule list. In conclusion, 

for this particular data set, the GHC was able to generate a solution similar to 

the one generated by GGP, with a competitive predictive accuracy. 

When comparing the rule induction algorithms generated for ionosphere by 

the GGP (Alg. 6.2) and the GHC (Alg. 6.4), they are not similar at all. Alg. 6.2 

creates a rule set, uses a top-down approach and refines rules according to their 

size, while Alg. 6.4 creates a rule list, works in a bottom-up fashion and removes 

two conditions-at-a-time from an initial rule, created from a random example. 

Alg. 6.4 also refines rules until they do not cover any negative examples, and uses 

the confidence to evaluate the candidate rules and the accuracy as a stopping 

criterion. Alg. 6.4 also post-processes rules by removing the last rule inserted into 

the rule model. 
In terms of predictive accuracy, considering 10 runs of Alg. 6.4 (as the algo-

rithm is not deterministic, due to the random selection of a seed example to form 

the first rule), it could never obtain predictive accuracies equal or higher than the 

ones obtained by Alg. 6.2. 
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AIg~rithm 6.4: Example of a decision list algorithm created by the GHC 
speCIally for the data set ionosphere 

RuleList 0 
Divide the training data in Build and PostPrune 
repeat 

bestRule = rule created from an example randomly chose from the 
training set 

candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules i= 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
Remove 2 conditions-at-a-time from CR 
Evaluate CR using the confidence in Build 
if accuracy ( CR) > 70% then 
L newCandidateRules = newCandidateRules U CR 

candidateRules = 10 best rules selected from newCandidateRules 
RuleList = RuleList U bestRule 

until all examples in the training set are covered 
not Improving = false 
repeat 

RuleList' = Remove last rule from RuleList 
if accuracy(RuleList ') > accuracy(RuleList) in PostPrune then 
L RuleList = RuleList' 

else notImproving = true 
until notImproving 
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6.3 Experiments with Bioinformatics Data Sets 

In Section 6.2 we showed the results obtained by the GGP when evolving rule in­

duction algorithms tailored to specific data sets from the well-known DCI reposi­

tory. In this section, we apply theGGP system to evolve rule induction algorithms 

tailored to each of the 5 bioinformatics data sets described in Table 6.3. In all 

of these data sets, each example represents a protein. Proteins are the main el­

ements of the cell, and perform almost all the functions related to cell activity. 

Their primary structure is formed from a sequence of amino acids, which are held 

together by covalent ("strong") bonds. 
Each of the proteins in these data sets is described mainly by a set of motifs. A 

motif is a pattern or a "signature" typically found in some proteins. It is basically 

a sequence/partial sequence of amino acids which can be used to identify the 

function and/or the family of a protein [68]. Each motif is represented by a binary 
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Table 6.3: Bioinformatics data sets used by the GGP 

Data set Examples Attributes 
Classes 

Def. Acc. 
Nomin. Numer. (%) 

Postsynaptic 4303 10( 444) 0(2) 2 93.96 
GPCR-Prosite 6261 30(128) 2(2) 9 75.16 
GPCR-Prosite-L2 6162 25(128) 2(2) 50 33.7 
G PCR-Prints 5422 24(282) 2(2) 8 77.8 
G PCR-Interpro 7461 30(449) 2(2) 12 64.4 

attribute, which indicates the presence of absence of the motif in the protein. 

Table 6.3 shows the number of examples, number of attributes and number 

of classes for each bioinformatics data set, followed by the default accuracy -

i.e., the percentage of examples (proteins) present in the class of the majority of 

examples. Observe that, in the column "Attributes", the numbers in parentheses 

show the original number of attributes the data sets had before an attribute 

selection method was applied during a pre-process step. 

The data sets showed in Table 6.3 were pre-processed by using an attribute 

selection method for two reasons. First, due to the large number of predictive 

attributes in the original data set, intuitively there are many attributes that are 

(to a large extent) irrelevant or redundant. The objective of attribute selection 

is to simplify a data set by reducing its dimensionality and identifying relevant 

attributes without sacrificing predictive accuracy [92]. Second, attribute selection 

usually significantly reduces the size of the data sets. This makes the application 

of the GGP algorithm much more efficient. 

For the data set postsynaptic, we used the 10 top attributes selected by a 

particle swarm optimization algorithm [34], since these selected attributes are 

already available in the literature. Note that in [34] a wrapper approach is used 

to select a set of optimal attributes for a naive-bayes classifier. We recognize that 

these attributes are likely to be not optimized for the algorithms considered in 

this work. Nevertheless, the issue of optimal attribute selection is out of the scope 

of this work and, as the GGP-RI is produced during the GGP run, is not possible 

to perform a customized attribute selection to it beforehand. For the other four 

data sets, an attribute selection method based on the attributes' gain ratios [145], 

as applied to splice in Section 6.2, was used. Recall that, in this approach, the 

attributes were ranked according to their gain ratio, and then removed, 10 by 10, 

from the worst to the best (according to their rank), from the original data set. 
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Every time 10 attributes were removed from the training set, the new data set 

was then mined by the three baseline methods following the sequential covering 

approach (i.e, both versions of CN2 and Ripper). Note that C4.5Rules was not 

considered during this process because, for most of the data sets, it was not able 

to extract a set of decision rules from the built decision tree. This process of 

removing 10 attributes from the training set was repeated until the predictive 

accuracy of at least one of baseline methods dropped. In this case, the last 10 

removed attributes were added again to the training set and then removed, one 

by one, from the worst to the best, while the predictive accuracy of the classifiers 

did not decrease. 

The 5 data sets listed in Table 6.3 are related to two different application 

domains (corresponding to two types of proteins): protein postsynaptic activity 

and G-Protein-Coupled-Receptors (GPCR) families. The creation of the postsy­

naptic data set is described in detail in [111] - previous work of the author of 

this thesis. Identifying proteins with postsynaptic activities is of great intrinsic 

interest because they are connected with functioning of the nervous system. In 

turn, identifying GPCR proteins and their families is particularly important for 

medical applications, since it is believed that 40%-50% of current drugs target 

GPCR activity. The creation of the GPCR data sets is described in [73]. 

While one data set targets the application domain of postsynaptic proteins, 

the other four were built to characterize GPCR proteins. Each GPCR data set 

uses a different type of motif, extracted from a different biological database (i.e, 

Prosite, Interpro and Prints), to describe the data [68]. 

An important point to notice in the GPCR data sets is that the classes of 

G PCR proteins are organized in a hierarchical manner. Actually, these data sets 

were used to evaluate a hierarchical classification algorithm in [73]. Since hi­

erarchical classification is out of the scope of this thesis, these data sets were 

"flattened". All the GPCR data sets, except GPCR-Prosite-L2, consider just the 

classes in the first top level of the class hierarchy, ignoring lower-level classes. 

GPCR-Prosite-L2, in turn, considers the classes in the second level of the class 

hierarchy. Note that GPCR-Prosite-L2 is composed essentially by the same pro­

teins and attributes found in GPCR-Prosite. However, GPCR-Prosite considers, 

as class values, only the 9 classes present in the first hierarchical class level (ignor­

ing lower-level classes), while GPCR-Prosite-L2 considers only the 50 classes in the 

second hierarchical class level (ignoring both first- and lower-level classes). The 

differences in the number of examples when comparing these 2 data sets are due 
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Table 6.4: Comparing the predictive accuracies (%) obtained by the GGP-RIs 
in the bioinformatics data sets with selected attributes against the predictive 
accuracies (%) obtained by the baseline methods when using the complete data 
set 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Rules 
Postsynaptic 98.32±0.24 98.7±0.22 98.42±0.12 98.3±0.22 97.82±0.32 
GPCR-Prosite 86.44±0.13 :8~'.3fi.:£O ~32 87;66:£:0;3982.64±2.44 

~1i' "'1/}'(' tIH.'."f/ftl.~jb/ ~' I ,.;...,.oo.....;;..FJ 

GPCR-Prosite-L2 63.81±0.96 68.&6~~O;29 62.56±0.75 
GPCR-Prints 90.71±0.69 91.04±6.2~5 91.06±0.2788.94±2.76 
GPCR-Interpro 89.34±0.29 90.88±0.45 90.56±0.41 90.26±0.32 80.36±6.35 

to proteins where only the first class in the hierarchy are known. Of course, these 

proteins are used as examples in GPCR-Prosite but not in GPCR-Prosite-L2. 

Experiments with the GGP were performed using the bioinformatics data sets 

with selected attributes only. Each data set was divided into three subsets , and 

inserted in the meta-training and meta-test sets of the GGP, as described in 

Section 6.1. For these experiments, the comparisons of the GGP-RIs and the 

baseline methods were executed in two phases. First, the GGP-RIs' predictive 

accuracies were compared to the accuracies obtained by the baseline methods 

when run with the complete data sets (before any attribute selection process was 

applied). The purpose of this analysis was to show that the attribute selection 

process did not have significantly reduce the predictive accuracies obtained by the 

baseline methods in the full data sets. These results are reported in Table 6.4. In 

a second phase, comparisons among the GGP-RIs and the baseline methods run 

in the data sets with selected attributes were carried out. The results obtained 

are shown in Table 6.5. 
Both Tables 6.4 and 6.5 show the names of the data sets where the experiments 

were executed, followed by the predictive accuracies obtained by the GGP-RIs in 

the data sets with selected attributes. The following columns show the predictive 

accuracies obtained by Ordered-CN2, Unordered-CN2, Ripper and C4.5Rules for 

the complete data sets in Table 6.4; and for the pre-processed data sets (with 

selected attributes) in Table 6.5. Note that, for the bioinformatics data sets , the 

C4.5Rules algorithm was not able to extract rules from the original C4.5 tree in 

most of the experiments performed. In these cases, for the sake of completeness, 

the accuracy reported is the one obtained by the C4 .5 tree model. 

In Tables 6.4 and 6.5, cells in dark gray represent statistically significant wins 

of the GGP-RIs over the respective baseline method , whereas cells in light gray 
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Table 6.5: C~mparing the predictive accuracies (%) obtained by the GGP-Rls 
and the baselme methods when using the bioinformatics data sets with selected 
attributes 

Data Set GGP-RIs OrdCN2 UnordCN2 Ripper C45Ruies 
Postsynaptic 98.32±0.24 98.4 ± 0.2 98.4 ± 0.2 98.21 ± 0.22 98.4 ± 0.2 
GPCR-Prosite 86.44±0.1386.86±0.28 86.64±0.31 84.04±2.04 
GPCR-Prosite-L2 63.81±0.96 68;·38±:0~68 62.36±0.42 NA 

\Oo,~., }til~_. ,,~ 

GPCR-Prints 90.71±0.69 90.78±0.32 90.64±0.37 91.05±0.14 86.76±2.58 
GPCR-Interpro 89.34±0.29 90.2±0.25 88.46±0.55 89.83±0.32 84.02±3.73 

represent statistically significant wins of the baseline method over the GGP-RIs 

according to a 2-tailed t-test with significance level 0.05. 

As showed in Table 6.4, the results obtained by the GGP-RIs with selected 

attributes are significantly better than the results obtained by baseline methods 

with the complete data set in four cases, and significantly worse in three cases. 

The GGP-RIs are significantly better than Unordered-CN2 in three out of four 

cases, and significantly better than C4.5Rules in the data set GPCR-Prosite­

L2. At the same time, the GGP-RIs are significantly worse than Ordered-CN2 

in GPCR-Prosite and GPCR-Prosite-L2, and significantly worse than Ripper in 

GPCR-Prosite. 

If we compare these results with the ones reported in Table 6.5, we notice 

that now the GGP-RIs are significantly better than the baseline methods in two 

occasions, and statistically worse in only one. This is because the attribute selec­

tion process improved the accuracy of Unordered-CN2 in GPCR-Prints, but also 

decreased the accuracy of Ordered-CN2 and Ripper in GPCR-Prosite, making 

the corresponding previous wins/loss of the GGP-RIs not statistically significant 

anymore. Note that the predictive accuracy for C4.5Rules in the data set GPCR­

Prosite-L2 with selected attributes is not available. This is because C4 .5 presented 

an error when it was being executed in this data set and was not able to generate 

any classification model. 
These results show us that the GGP is able to obtain statistically better results 

than Unordered-CN2 in two data sets, and competitive ones in the other three data 

sets. At the same time, for the data set GPCR-Prosite-L2 , the results show that 

apparently the GGP was not able to find Ordered-CN2 - the algorithm with best 

performance among the 4 manually-designed algorithms in Table 6.5 , although 

Ordered-CN2 is included in the GGP search space. However , when analyzing 

the 25 GGP-RIs produced for GPCR-Prosite-L2 , we observe that 6 of them were 
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Table 6.6: Sensitivity x Specificity for the data set postsynaptic 

Algorithm Sensitivity Specificity Sensit xspecif 
GGP-RIs 0.74±0.004 0.99±0.0001 0.736±0.004 
Ordered-Cn2 0.76±0.02 0.99±0.001 0.758±0.02 
U nordered-Cn2 0.76±0.02 0.99±0.001 0.758±0.02 
C45Ruies 0.75±0.03 0.99±0.001 0.748±0.03 
Ripper 0.7±0.04 0.99±0.001 0.702±0.04 

actually instances of Ordered-CN2. Results obtained by the GGP-RIs were always 

as good as the results obtained by Ripper and C4.5Rules for all the data sets. 

Again, based on these results, we can claim that the GGP is able to produce 

competitive rule induction algorithms tailored to a specific real world data set. 

Nonetheless, for one of these data sets, one could argue that the analysis of the 

GGP-RIs results based on accuracy is not a very effective one. 

Notice that, as shown in Table 6.3, the class distribution of the postsynaptic 

data set is very unbalanced: only 6.04% of the examples have the positive class. 

This means that, as a baseline solution for this classification problem, the "major­

ity classifier" - which predicts the majority (negative) class for all examples - would 

trivially obtain an accuracy rate of 93.96%. This value could be obtained without 

providing any insight about the relationship between the predictor attributes and 

the classes. 
For data sets in which the class distribution is very unbalanced, an analysis 

based on the true positive rate (sensitivity) and true negative rate (specificity) is 

more effective [66]. Another alternative would be to use a measure based on ROC 

curves such as the area under the ROC curve. We preferred a measure based , 
on sensitivity and specificity to be consistent with the results for this data set 

reported in [111]. The sensitivity x specificity measure, introduced in Section 4.5.2 

(Eq. 4.3), calculates the product of the true positive and true negative rates. We 

used this measure to reevaluate the results obtained by the GGP-RIs for the data 

set postsynaptic. 
Table 6.6 shows the sensitivity, specificity and the product sensitivity x speci-

ficity obtained by the GGP-RIs and the other baseline methods for the postsynap­

tic data set. All the results showed in Table 6.6 present no significant difference 

according to a 2-tailed t-test with 0.01 significance level. 
The analysis of the GGP-RIs results for the data set postsynaptic using a 
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sensitivity x specificity approach confirmed that the GGP-RIs produced are com­

petitive with the other baseline methods. Both the GGP-RIs and the baseline 

methods not only obtain a high accuracy, but also have a good ability to separate 

objects from the positive and negative classes - rather than simply predicting the 

majority class for all the test examples - as shown by the relatively high values 

of sensitivity. After this new analysis, a new question came up. For data sets like 

postsynaptic, where the class distribution is very unbalanced, would it be worth 

to actually evolve the GGP with a different fitness function? That is, would it be 

worth to consider the sensitivity x specificity measure, for instance, as the GGP 

evaluation function during the evolution? This would make sense, once we know 

that, in the context of very unbalanced class distributions, predictive accuracy 

is not a very effective measure to evaluate the predictive power of classification 

models. 

In Section 4.5.2 we reported that, based on the results of preliminary exper­

iments with the GGP when evolving robust rule induction algorithms, a fitness 

function based on the sensitivity x specificity measure was not as effective as a 

fitness function based on the normalized value of accuracy. But would a GGP us­

ing only the postsynaptic data set in the meta-training set, and a fitness function 

based on sensitivity x specificity, generate better results than the GGP with the 

normalized accuracy fitness? 

In order to find answers for this question, we run a set of experiments almost 

identical to the ones described so far in this section. However, we replaced the 

current fitness of the GGP by the sensitivity x specificity measure, and used the 

postsynaptic data set in the meta-training and meta-test sets. Surprisingly, the 

average predictive accuracy obtained over the 25 runs of the GGP was 92.85±O.03. 

This predictive accuracy value is slightly smaller than the default accuracy pro­

vided by the classification model using the class of the majority of the examples 

(93.96%), and it is significantly worse than the values of accuracy obtained by any 

of the baseline methods (and the GGP-RIs) presented in Tables 6.4 and 6.5. 

However, as explained before, in the case of the postsynaptic data set, an 

analysis based on the sensitivity x specificity measure is more appropriate than 

one based on predictive accuracy. The sensitivity x specificity value obtained (on 

the test set) for these experiments using sensitivity x specificity as the fitness 

function of the GGP was 0.789±0.04. This value is statistically the same as all 

the values in the last column of Table 6.6. On the other hand, a more detailed 

analysis of the sensitivity and specificity values (on the test set) separately showed 
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a specificity (the proportion of negative - majority class - examples that are 

correctly predicted as negative) of 0.93±0.026 and a sensitivity (the proportion 

of positive - minority class - examples that are correctly predicted as positive) 

of 0.84±0.008. If we compare these values to the ones presented at Table 6.6, we 

notice that the specificity dropped from 0.99 to 0.93 and the sensitivity increased 

from 0.75 to 0.84. According to a 2 tailed t-test with 0.05 significance level, the 

sensitivity of the GGP-RIs is significantly better than the sensitivity of all the 

baseline methods presented in Table 6.6, while the specificity of the GGP-RIs is 

significantly worse than the specificity of all the baseline methods. 

From this we conclude that the GGP-RIs found with the sensitivity x speci­

ficity fitness produced algorithms which are better when predicting the class of 

the minority of the examples, which is more difficult to predict and tends to be 

a prediction more useful to the user, by comparison with a prediction of the ma­

jority class [37, 105J. At the same time, these GGP-RIs are not able to preserve 

a high specificity - true negative rate for the majority class. 

This last experiment just confirmed that the fitness of the current GGP is ro­

bust enough to produce robust algorithms even for data sets with very unbalanced 

classes. But what was so different in the GGP-RIs produced by these two versions 

of the GGP using different fitness functions? 

An analysis of the rule induction algorithms produced by the GGP when using 

the normalized accuracy or the sensitivity x specificity measures as the fitness 

function revealed algorithms following two completely different approaches (we 

emphasize that this analysis refers only to the postsynaptic data set). 

On one hand, the majority of the GGP-RIs produced with the normalized 

accuracy fitness follows one of the following 2 main approaches: (1) they create 

an initial empty rule and add conditions to it, or (2) they build an initial rule using 

3 or 4 of the most frequent attribute/value pairs found in the training data, and 

remove conditions from it. Algorithms following any of these 2 approaches produce 

very compact and general rules, usually with a maximum of 3 or 4 conditions each. 

Alg. 6.5 shows an example of one of these algorithms produced by the GGP. It 

creates the first rule with the 3 most frequent attribute/values pairs in the data, 

and starts by removing one condition-at-a-time from it. As soon as the number 

of examples covered by the rule list is greater than 95%, it changes its refinement 

strategy by removing two conditions-at-a-time from the candidate rules. Rules 

are evaluated using the rule confidence measure, which is required to be at least 

equal to 60% to enable the candidate rule to undergo further refinements (recall 
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AI~orithm 6.5: Example of a decision list algorithm created by the GGP 
- wIth a normalIzed fitness function - tailored to the data set postsynaptic 

RuleList - 0 
repeat 

bestRule = rule created using the 3 most frequent attribute/values in 
the training data 

candidateRules = 0 
candidateRules = candidateRules U bestRule 
while candidateRules i= 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
if number of covered examples in RuleList > 95% then 
L Remove 2 conditions-at-a-time from CR 

else 
L Remove 1 condition-at-a-time from CR 

Evaluate CR using confidence 
if accuracy ( CR) > 60% then 
L newCandidateRules = newCandidateRules U CR 

candidateRules = best rule selected from newCandidateRules 
RuleList = RuleList U bestRule 

until all examples in the training set are covered 

that in this context rule confidence and rule accuracy are synonyms). Only the 

best rule is selected to be refined. Rules are produced until all the examples in 

the training set are covered. 

In contrast with the types of GGP-RIs produced when using the normalized 

accuracy measure as the fitness function, most of the GGP-Rls produced when 

using the sensitivity x specificity measure as fitness followed a bottom-up ap­

proach. Rules were initialized using a random example or a typical example, and 

most of the actual rule models had very specific rules (rules with many conditions). 

Looking at the predictive accuracies obtained by these algorithms we notice that 

most of them seemed to be over-fitting the training data. Regardless of that, as 

reflected by the sensitivity (true positive rate) obtained by these algorithms on 

the test set, they were able to generate significantly better rules to predict the 

minority class. Alg. 6.6 shows an example of a GGP-RI produced by the GGP 

using the sensitivity x specificity fitness function. 

Alg. 6.6 creates a set of rules for each class in turn. It chooses a typical example 

from the training set and removes one condition-at-a-time from it. When 95% of 

the examples belonging to the current class are covered, the algorithm .starts to 

remove 2 conditions-at-a-time from the candidate rules. The 4 best rules are 
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A.Igorithm. ~.~: Example of a rule set algorithm created by the GGP -
wIth a sensItivIty x specificity fitness function - tailored to the data set 
postsynaptic 

RuleSet 0 
for each class C in the training set do 

repeat 
Divide the training data in Grow and Prune 
bestRule = rule created from a typical example 
candidateRules = 0 
candidateRules = candidateRules U best Rule 
while negative examples covered by bestRule -I 0 do 

for each candidateRule CR do 
newCandidateRules = 0 
if number of covered examples in class C > 95% then 
L Remove 2 conditions-at-a-time from CR 

else 
L Remove 1 condition-at-a-time from CR 

Evaluate CR using information content in Grow 
if accuracy( CR) > 80% then 
L newCandidateRules = newCandidateRules U CR 
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candidateRules = 4 best rules selected from newCandidateRules 
notImproving = false 
repeat 

bestRule' = Rule obtained by removing the last condition from 
bestRule 

if laplace(bestRule') > laplace(bestRule) in Prune. then 
L bestRule = bestRule' 

else not Improving = true 
until not Improving 
RuleSet = RuleSet U bestRule 

until at least 97% of the examples of class C in the training set are 

covered 
Class clashes when classifying new examples are solved using the Is-content 

criterion 

selected to undergo further refinements, which are carried out until the best rule 

found so far covers no negative examples. Candidate rules are evaluated using the 

information content, and are also required to have an accuracy of at least 60% to 

be considered as candidate rules. 
Rules are pre-pruned before being inserted into the rule set by removing a final 

list of conditions from them. Conditions are removed from the best produced rule 

until the Laplace correction value of the new pruned rule is worse than the Laplace 

correction value of the best rule in the prune set. Rules are produced until at least 
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97% of the examples in the current class are covered. 

In summary, this section showed that the GGP can produce GGP-Rls tailored 

to a specific real world data set which are competitive with well-known human­

designed rule induction algorithms. It also showed that the system coped well 

with the problem of unbalanced classes in the postsynaptic data set, in particular 

when using the sensitivity x specificity fitness function, which leads to a better 

prediction of the minority class (whose prediction tends to be more important to 

the user than the prediction of the majority class). 

6.4 A Note on the GGP System's Execution 

Time 

In Section 5.9, we discussed the factors which influence the execution time of 

the GGP, and explained why is so difficult to estimate a best/worst runtime for the 

GGP. We then reported results for the best and worst case scenarios empirically 

obtained when running the proposed GGP with different numbers of data sets in 

the meta-training set. 

Similarly, in this section, Table 6.7 reports that same kind of information when 

running the GGP with a single data set in the meta-training set. The first column 

shows the name of the data set in the meta-training set, followed by the best and 

worst run times, reported in the format hours:minutes. 

Out of the 25 data sets used in those experiments (i.e. 20 DCI plus 5 bioin­

formatics data sets), where each data set was used in a separate experiment, we 

report the computational times for 5 data sets, as follows: balance-scale and post­

synaptic present the fastest run among the DCI and the bioinformatics data set, 

respectively, while promoters and GPCR-Interpro present the slowest. The times 

reported for lymphs represent an average time for middle size DCI data sets. 

6.5 S umrnary 

This chapter presented the results obtained by the GGP system proposed in Chap­

ter 4 when evolving rule induction algorithms tailored to one specific data set. 

Experiments were first performed in 20 DCI data sets, and later in a set of 5 

real-world bioinformatics data sets. 

For all the experiments reported in this chapter, the predictive accuracies 

obtained by the GGP-Rls were compared to the predictive accuracies of four 
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Table 6.7: GGP runtime for experiments targeting one data set 

Meta-training set 
Time (hr:min) 
Best Worst 

Balance-scale 0:21 0:45 
Postsynaptic 1:41 4:56 
Lymphs 1:20 3:05 
Promoters 15:37 43:18 
GPCR-Interpro 63:26 169:30 

well-known human-designed rule induction algorithms, namely Ordered-CN2, 

Unordered-CN2, Ripper and C4.5Rules. In general, the results showed that the 

GGP-RIs were competitive with these baseline methods. They have also showed 

some of the evolved GGP-RIs, and highlighted their innovative features. 

At last, a case study in the postsynaptic data set showed that the proposed 

GGP is also robust when evolving GGP-RIs for data sets with special character­

istics, like very unbalanced class distributions. 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

This thesis has presented a new Grammar-based Genetic Programming (GGP) 

system which automatically evolves rule induction algorithms. The GGP system 

works with a grammar, which contains previous knowledge about how human 

experts design rule induction algorithms, and some other interesting components 

that, to the best of our knowledge, were not used by human-designed rule induc­

tion algorithms so far. 

The results of extensive computational experiments showed that the present 

GGP system can effectively evolve rule induction algorithms under two different 

frameworks: 

• The evolution of robust rule induction algorithms, which perform well in a 

variety of data sets different from the data sets used during the GGP's run . 

• The evolution of rule induction algorithms tailored to a single specific appli­

cation domain, where the data subset used during the GGP's run belongs to 

the same application domain to which the evolved rule induction algorithm 

will be applied. 

The predictive accuracies obtained by the rule induction algorithms evolved by 

the GGP (GGP-RIs) were shown to be, overall, slightly better than the predictive 

accuracies obtained by well-known manually designed (and refined over decades 

of research) rule induction algorithms. 
The experimental results also showed that overall the GGP-RIs obtained sig-

nificantly higher predictive accuracies than the rule induction algorithms produced 

176 
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by a Grammar-based Hill Climbing (GHC) method. These results were produced 

in controlled experiments where both the GGP and the GHC used the same 

grammar, the same fitness function, the same individual representation and eval­

uated the same number of candidate rule induction algorithms during their search. 

Hence, one can conclude that the GGP system is considerably more effective than 
the GHC system. 

An analysis of the evolved GGP-RIs showed that, besides being competitive 

with human-designed algorithms, many of them present some innovative way of 

refining rules and/or integrating pre and post-pruning techniques. Experiments 

also revealed that, when evolving robust rule induction algorithms, the GGP takes 

a more conservative approach, and builds simpler algorithms. In contrast, when 

generating GGP-RIs tailored to a specific application domain, the GGP evolves 

more different and innovative algorithms. 

Moreover, the multi-objective version of the GGP (MOGGP), presented in Sec­

tion 5.8, seems to be a promising one. Besides generating MOGGP-RIs with over­

all predictive accuracies as good as the ones obtained by the human-designed rule 

induction algorithms, the evolved MOGGP-RIs also generate simpler (smaller) 

classification models. Generating more compact classification rule models is an 

important issue in application domains in which the model has to be interpreted 

by a human expert before any decision making process takes place. This is in 

general recognized as an important issue in data mining [49, 145]. 

In summary, this thesis has presented a new approach to automatically con­

struct rule induction algorithms. These algorithms are specially promising when 

tailored to a specific data set. In this context, the proposed method is a new 

and promising alternative to traditional meta-learning methods that are limited 

to algorithm selection, rather than algorithm construction. 

Although this thesis has presented an effective GGP system and reported 

extensive experimental results, it still leaves room for several improvements and 

future research directions. These new ideas are presented in Section 7.2. 

7.2 Future Work 

This section discusses five possible future directions for this research, namely: an 

implementation of the system using a GGP based on the production-rule-sequence­

encoding individual representation, a modified GGP fitness, improvements of the 
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grammar, the use of GGP-RI ensembles, and a new approach to build rule induc­

tion algorithms targeting a group of data sets with similar characteristics. 

7.2.1 Solution-Encoding Individual Representation ver­

sus Production-Rule-Sequence-Encoding Individual 

Representation 

When choosing which type of grammar-based GP to use in this research, we did 

not find any evidence which showed that one of the individual representations in 

the title of this subsection was superior to the other. Hence, we decided to use 

the solution encoding individual representation because we considered it simpler 

(see Section 4.1 for detailed explanation). 

However, it would be interesting to combine the grammar developed into 

this work with a grammatical evolution system, following the production-rule­

sequence-encoding individual representation, and compare both systems' behavior 

and results. 

7.2.2 Modifying the GGP Fitness Function 

After the grammar, the element which has more impact in the search mechanism 

of the GGP is its fitness function. During the development of the system, we 

compared the results obtained when using three types of fitness functions: accu­

racy, sensitivity x specificity (see Eq. 4.3) and the current fitness of the system, 

based on a variation of accuracy adjusted to take into account the frequency of 

the majority class (see Eq. 4.4). 
Nevertheless, in the last few years, another approach for evaluating the effec-

tiveness of a classifier has been widely disseminated: the area under the ROC 

curve (AUC) [48, 50]. A comparison of the results of the GGP with the current 

fitness function and the AUC would be interesting to study. 

7.2.3 Improvements of the Grammar 

The grammar is the element in the GGP system which determines the GGP's 

search space. We believe that there are some extensions that, if inserted into the 

current grammar, could lead the GGP to evolve even more original and innovative 

rule induction algorithms. There are particulary three extensions which could be 

introduced: 
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• Include in the non-terminal EvaluateRule the grammar production rules 

proposed in Wong [147], which generate the evaluation function of rule in­

duction algorithms. The new grammar would then be able to generate new 

evaluation heuristics apart from the current rule confidence, Laplace esti­

mation, information content and information gain. 

• Insert into the grammar more complex and/or innovative components of 

rule induction algorithms, such as the minimum description length [123] 

heuristic, used by Ripper, or measures of rule interestingness, as described 

in Section 2.2.3. 

• Extend the grammar to be adaptable, based on the performance of the best 

individuals at each generation, in a similar way to the work of [144]. 

7.2.4 Ensembles of Evolved Rule Induction Algorithms 

In the experiments presented in Chapter 5, at each generation 100 individuals 

are evaluated. After 30 generations, one single rule induction algorithm is chosen 

out of 100. We might then think: is not it a waste of computational resources to 

evolve 100 different algorithms and ignore 99 of them? 

Research in the area of ensembles of classifiers, i.e., a set of classifiers whose 

individual predictions are combined to classify new examples, has demonstrated 

that combining classifiers can really obtain better prediction accuracies than using 

a single classifier selected out of all classifiers in the ensemble [45]. We could 

combine the GGP-RIs produced in the GGP's last generation into a voting [40] 

or a stacking framework [146], and check if the results obtained would be superior 

to the ones obtained by single GGP-RIs. 

However, it should be noted that, although an ensemble of GGP-RIs has a good 

potential to improve the predictive accuracy with respect to a single GGP-RI, an 

ensemble has the disadvantage of producing a much more complex classification 

model, therefore hindering the interpretability of the model by the user. 
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7.2.5 Constructing Rule Induction Algorithms Targeted 

to a Group of Data Sets with Similar Characteristics: 

a New Approach 

Recall that this thesis presented two approaches in which the GGP was able to 

evolve rule induction algorithms. In the first one, we generated robust rule induc­

tion algorithms, which were designed to be effectively applied to any classification 

data set, regardless of the application domain. In the second one, rule induction 

algorithms tailored to a specific application domain were generated. 

A third approach which could be considered is to use the proposed GGP to 

produce rule induction algorithms for a group of data sets with similar charac­

teristics, though the data sets come from different application domains. In this 

approach, data sets would be grouped according to some common properties, and 

only data sets belonging to a given group allowed in the GGP's meta-training set. 

For instance, in the bioinformatics field, there are a lot of data sets which 

- although derived from different application domains - share several important 

characteristics from a data mining viewpoint. In particular, there are many bioin­

formatics data sets that contain a very large number of binary attributes, very 

sparse data and very unbalanced classes. The postsynaptic data set used in this 

thesis (see Section 6.3) is an example of such data sets. Other examples are found 

in [72, 73]. 
It is possible to target a group of data sets with similar characteristics when 

producing rule induction algorithms, although in practice this is a difficult prob­

lem. The main difficulty is how to measure the degree of similarity between 

different data sets from different application domains. Data set characterization 

[91,98] is in general an open problem in the meta-learning literature, but we think 

that this is an interesting research direction. 



References 

[1] H. Abe and T. Yamaguchi. Comparing the parallel automatic composition of 

inductive applications with stacking methods. In R. Camacho and A. Srini­

vasan, editors, Proc. of ECML/PKDD'03 - Workshop on Parallel and Dis­

tributed Computing for Machine Learning, pages 1-12, Cavtat-Dubrovnik, 
Croatia, September 2003. 

[2] A. Abraham. Meta learning evolutionary artificial neural networks. Neuro­

computing, 56:1-38, 2004. 

[3] R. Agarwal and M. V. Joshi. Pnrule: A new framework for learning classifier 

models in data mining. In Proc. of the 1st SIAM Int. Conf. in Data Mining, 

pages 1-17, 2001. 

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques 

and Tools. Addison-Wesley, 1st edition, 1986. 

[5] K. M. Ali and M. J. Pazzani. Hydra: A noise-tolerant relational concept 

learning algorithm. In R. Bajcsy, editor, Proc. of the 13th Int. Joint Conf. 

on Artificial Intelligence (IJCAI-93), pages 1064-1071, 1993. 

[6] A. An and N. Cercone. Rule quality measures for rule induction systems: De­

scription and evaluation. Computational Intelligence, 17(3):409-424, 2001. 

[7] R. Andrews, J. Diederich, and A. Tickle. A survey and critique of techniques 

for extracting rules from trained artificial neural networks. K now ledge-Based 

Systems, 8(6):373-389, 1995. 

[8] P. J. Angeline. Subtree crossover causes bloat. In J. R. Koza, W. Banzhaf, 

K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Gold­

berg, H. Iba, and R. Riolo, editors, Proc. of the 3rd Annual Conf. on Genetic 

Programming (GP-98), pages 745-752. Morgan Kaufmann, 22-25 July 1998. 

181 



REFERENCES 182 

[9] R. M. A. Azad. A Position Independent Representation for Evolutionary 

Automatic Programming Algorithms - The Chorus System. PhD thesis, Uni­

versity of Limerick, Ireland, December 2003. 

[10] T. Baeck, D. B. Fogel, and Z. Michalewicz. Evolutionary Computation 1 

Basic Algorithms and Operators. Institute of Physics Publishing, 2000. 

[11] W. Banzhaf. Genotype-phenotype-mapping and neutral variation - A case 

study in genetic programming. In Y. Davidor, H. Schwefel, and R. Manner, 

editors, Parallel Problem Solving from Nature III, volume 866 of LNCS, 

pages 322-332, Jerusalem, 9-14 October 1994. Springer-Verlag. 

[12] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Program­

ming - An Introduction; On the Automatic Evolution of Computer Programs 

and its Applications. Morgan Kaufmann, January 1998. 

[13] M. Berthold and D. J. Hand, editors. Intelligent Data Analysis: An Intro­

duction. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. 

[14] S. Bhattacharyya. Direct marketing response models using genetic algo­

rithms. In Proc. of 4th Int. Conf. on Knowledge Discovery and Data Mining 

(KDD-98), pages 144-148, 1998. 

[15] H. Bostrom and L. Asker. Combining divide-and-conquer and separate-and­

conquer for efficient and effective rule induction. In S. Dzeroski and P. Flach, 

editors, Proc. of the ffh Int. Workshop on Inductive Logic Programming 

(ILP-99), pages 33-43, 1999. 

[16] C. Brodley and M. Friedl. Identifying mislabeled training data. Journal of 

Artificial Intelligence Research, 11:131-167, 1999. 

[17] C. A. Brunk and M. J. Pazzani. An investigation of noise-tolerant relational 

concept learning algorithms. In L. Birnbaum and G. Collins, editors, Proc. 

of the 8th International Workshop on Machine Learning, pages 389-393. 

Morgan Kaufmann, 1991. 

[18] R. Caruana and A. Niculescu-Mizil. Data mining in metric space: an em­

pirical analysis of supervised learning performance criteria. In Proc. of the 

10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 

(KDD-04), pages 69-78. ACM Press, 2004. 



REFERENCES 183 

[19] D. R. Carvalho and A. A. Freitas. A hybrid decision tree/genetic algorithm 

for coping with the problem of small disjuncts in data mining. In D. Whitley, 

D. Goldberg, E. Cantu-Paz, 1. Spector, 1. Parmee, and H. Beyer, editors, 

Proc. of the Genetic and Evolutionary Computation Conference (GECCO-

00), pages 1061-1068, Las Vegas, Nevada, USA, 10-12 2000. Morgan Kauf­

mann. 

[20] D. R. Carvalho, A. A. Freitas, and N. Ebecken. Evaluating the correlation 

between objective rule interestingness measures and real human interest. In 

A. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, editors, Proc. of 

the ffh European Conf. on Principles and Practice of Knowledge Discovery 

in Databases (PKDD-05), pages 453-461. Springer Verlag, 2005. 

[21] M. J. Cavaretta and K. Chellapilla. Data mining using genetic programming: 

The implications of parsimony on generalization error. In P. J. Angeline, 

Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, editors, Proc. of the 

Congress on Evolutionary Computation (CEC-99) , volume 2, pages 1330-

1337. IEEE Press, 6-9 July 1999. 

[22] J. Cendrowska. Prism: An algorithm for inducing modular rules. Interna­

tional Journal of Man-Machine Studies, 27:349-370, 1987. 

[23] A Chandra and X. Yao. Ensemble learning using multi-objective evolu­

tionary algorithms. Journal of Mathematical Modeling and Algorithms, 

5(4):417-445,2006. 

[24] M. Chisholm and P. Tadepalli. Learning decision rules by randomized iter­

ative local search. In L. Birnbaum and G. Collins, editors, Proc. of the lffh 

Int. Conf. on Machine Learning (ICML-02), pages 75-82. Morgan Kauf-

mann, 2002. 

[25] S. B. Cho and K. Shimohara. Modular neural networks evolved by genetic 

programming. In Proc. of the IEEE Int. Conf. on Evolutionary Computa­

tion, pages 681-684. IEEE Press, 1996. 

[26] P. Clark and R. Boswell. Rule induction with CN2: some recent improve­

ments. In Y. Kodratoff, editor, EWSL-91: Proc. of the European Working 

Session on Learning on Machine Learning, pages 151-163, New York, NY, 

USA, 1991. Springer-Verlag. 



REFERENCES 184 

[27] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 

3:261-283, 1989. 

[28] R. Cleary. Extending grammar evolution with attribute grammars: An 

application to knapsack problems. Master's thesis, University of Limerick, 

Canberra, Australia, 2005. 

[29] J.C. Cleaveland and R. C. Uzgalis. Grammars for Programming Languages. 

Elsevier Computer Science Library, New York, USA, 1977. 

[30] C. A. Coello Coello and G.B. Lamont, editors. Multi-Objective Algorithms 

for Attribute Selection in Data Mining. World Scientific, 2004. 

[31] C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Algorithms for 

Solving Multi-Objective Problems. Kluwer Academic Publishers, New York, 

USA, 2002. 

[32] W. W. Cohen. Efficient pruning methods for separate-and-conquer rule 

learning systems. In Proc. of the 13th Int. Joint Conf. on Artificial Intelli­

gence (IJCAI-93), pages 988-994, France, 1993. 

[33] W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. Russell, 

editors, Proc. of the 12th Int. Conf. on Machine Learning (ICML-9S), pages 

115-123, Tahoe City, CA, ju11995. Morgan Kaufmann. 

[34] E. S. Correa, A. A. Freitas, and C. G. Johnson. A new discrete particle 

swarm algorithm applied to attribute selection in a bioinformatics data set. 

In M. Keijzer et al. (Eds.), editor, Proc. of the Genetic and Evolutionary 

Computation Conference (GECCO-06), pages 35-42. ACM Press, July 2006. 

[35] I. De Falco, A. Della Cioppa, and E. Tarantino. Discovering interesting 

classification rules with genetic programming. Applied Soft Computing, 

1(4):257-269, May 2002. 

[36] I. De Falco, E. Tarantino, A. Della Cioppa, and F. Fontanella. A novel 

grammar-based genetic programming approach to clustering. In Proc. of 

the 2005 ACM Symposium on Applied Computing (SAC-OS), pages 928-

932, New York, NY, USA, 2005. ACM Press. 

[37] B. de la Iglesia, Justin C. W. Debuse, and Victor J. Rayward-Smith. Discov­

ering knowledge in commercial databases using modern heuristic techniques. 



REFERENCES 185 

In Proc. of the 2nd ACM SIGKDD Int. Conf. on Knowledge Discovery and 

Data Mining (KDD-96) , pages 44-49, 1996. 

[38] K. Deb. Multi-objective Optimization using Evolutionary Algorithms. Wiley 

Interscience series in Systems and Optimization, Berlin, 2001. 

[39] V. Dhar, D. Chou, and F. J. Provost. Discovering interesting patterns for 

investment decision making with GLOWER - a genetic learner overlaid with 

entropy reduction. Data Mining and Knowledge Discovery, 4(4):251-280, 

2000. 

[40] T. G. Dietterich. Ensemble methods in machine learning. In Proc. of JSt 

Int. Workshop on Multiple Classifier Systems, volume 1857 of Lecture Notes 

in Computer Science, pages 1-15, 2000. 

[41] P. Domingos. Rule induction and instance-based learning: A unified ap­

proach. In Proc. of the 14th Int. Joint Conf. on Artificial Intelligence 

(IJCAI-95), pages 1226-1232, 1995. 

[42] M. Dong and R. Kothari. Look-ahead based fuzzy decision tree induction. 

IEEE Transactions on Fuzzy Systems, 9(3):461-468, June 2001. 

[43] G. Dounias, H. Axer, B. Bjerregaard, D. Graf von Keyserlingk, J. Jantzen, 

and A. Tsakonas. Genetic programming for the generation of crisp and 

fuzzy rule bases in classification and diagnosis of medical data. In Proc. 

of 1st Int. NAISO Congress on Neuro Fuzzy Technologies, Havana, Cuba, 

16-19 January 2002. 

[44] S. Dzeroski, B. Cestnik, and I. Petrovski. Using the m-estimate in rule 

induction. Journal of Computing and Information Technology, 1(1):37-46, 

1993. 

[45] S. Dzeroski and B. Zenko. Is combining classifiers better than selecting the 

best one. In Proc. of the 1f1h Int. Conf. on Machine Learning (ICML-02), 

pages 123-130, San Francisco, CA, USA, 2002. Morgan Kaufmann. 

[46] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computation. 

Springer-Verlag, 2003. 

[47] S. Esmeir and S. Markovitch. Lookahead-based algorithms for anytime in­

duction of decision trees. In Proc. of the 21th Int. Conf. on Machine Learning 

(ICML-04) , 2004. 



REFERENCES 186 

[48] T. Fawcett. Roc graphs: Notes and practical considerations for data mining 

researchers. Technical Report HPL-2003-4, HP Labs, 2003. 

[49] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to 

knowledge discovery: an overview. In U. M. Fayyad, G. Piatetsky-Shapiro, 

P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery 

and Data Mining. AAAI/MIT Press, 1996. 

[50] P.A. Flach. The geometry of ROC space: understanding machine learning 

metrics through roc isometrics. In Proc. 2r1h International Conference on 

Machine Learning (ICML-03), pages 194-201. AAAI Press, January 2003. 

[51] J. J. Freeman. A linear representation for G P using context free grammars. 

In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, 

M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, Proc. of the 

3rd Annual Conf. on Genetic Programming (GP-98) , pages 72-77. Morgan 

Kaufmann, 22-25 July 1998. 

[52] A. A. Freitas. Data Mining and Knowledge Discovery with Evolutionary 

Algorithms. Springer-Verlag, 2002. 

[53] A. A. Freitas. A critical review of multi-objective optimization in data 

mmmg: a position paper. SIGKDD Explorations Newsletter, 6(2):77-86, 

2004. 

[54] F. Friedrichs and C. Igel. Evolutionary tuning of multiple svm parameters. 

Neurocomputing, 64:107-117,2005. 

[55] G. Fung, S. Sandilya, and R. Bharat Rao. Rule extraction from linear 

support vector machines. In Proc. of the 11th ACM SIGKDD Int. Conf. on 

Knowledge Discovery and Data Mining (KDD-05), pages 32-40, New York, 

NY, USA, 2005. ACM Press. 

[56] J. Fiirnkranz. Pruning algorithms for rule learning. Machine Learning, 

27(2):139-171, 1997. 

[57] J. Fiirnkranz. Separate-and-conquer rule learning. Artificial Intelligence 

Review, 13(1):3-54, 1999. 

[58] 
J. Fiirnkranz. A pathology of bottom-up hill-climbing in inductive rule 

1 
. I P"'oc oj the 13th Int. Conf. on Algorithmic Learning Theory earmng. n , .. 

(ALT-02), pages 263-277, London, UK, 2002. Springer-Verlag. 



REFERENCES 
187 

[59] J. Fiirnkranz and P. A. Flach. ROC 'n' rule learning: towards a better 

understanding of covering algorithms. Machine Learning, 58(1):39-77, 2005. 

[60] J. Fiirnkranz and P.A. Flach. An analysis of rule evaluation metrics. In Proc. 

2(jh Int. Conf. on Machine Learning (ICML-03) , pages 202-209. AAAI 
Press, 2003. 

[61] J. Fiirnkranz and G. Widmer. Incremental reduced error pruning. In Proc. 

the 11th Int. Conf. on Machine Learning (ICML-94), pages 70-77, New 
Brunswick, NJ, 1994. 

[62] Genetic Programming. http://www.genetic-programming.org/, Visited in 

May, 2007. 

[63] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine 

Learning. Addison-Wesley, Reading, MA, 1989. 

[64] G. Goos and J. Hartmanis, editors. Attribute Grammar: Definition, Systems 

and Bibliography. Lecture Notes in Computer Science, 1988. 

[65] F. Gruau. On using syntactic constraints with genetic programming. In 

Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic 

Programming 2, chapter 19, pages 377-394. MIT Press, Cambridge, MA, 

USA, 1996. 

[66] D. J. Hand. Construction and Assessment of Classification Rules. Wiley, 

1997. 

[67] J. Hekanaho. Background knowledge in GA-based concept learning. In 

T. Fogarty and G. Venturini, editors, 13th Int. Conf. on Machine Learning 

(ICML-96) , pages 234-242, 1996. 

[68] P. G. Higgs and T. K. Attwood. Bioinformatics and Molecular Evolution. 

Blackwell, 2005. 

[69] R. J. Hilderman and H. J. Hamilton. Knowledge Discovery and Measures 

of Interest. Kluwer Academic Publishers, Norwell, MA, USA, 2001. 

[70] N. X. Hoai, R. 1. McKay, and H. A. Abbass. Tree adjoining grammars, 

language bias, and genetic programming. In C. Ryan, T. Soule, M. Keijzer, 

E T R Poli and E. Costa editors, Proc. of the ffh European Conf. . sang,., ' 



REFERENCES 188 

on Genetic Programming (EuroGP-03), volume 2610 of Lecure Notes in 

Computer Science, pages 335-344, Essex, 14-16 April 2003. Springer-Verlag. 

[71] N. X. Hoai, R. 1. McKay, and D. Essam. Some experimental results with tree 

adjunct grammar guided genetic programming. In J. A. Foster, E. Lutton, 

J. Miller, C. Ryan, and A. G. B. Tettamanzi, editors, Proc. of the sth Euro­

pean Conf. on Genetic Programming (EuroGP-02), volume 2278 of LNCS, 

pages 228-237, Kinsale, Ireland, 3-5 April 2002. Springer-Verlag. 

[72] N. Holden and A. A. Freitas. A hybrid particle swarm/ant colony algorithm 

for the classification of hierarchical biological data. In P. Arabshahi and 

A. Martinoli, editors, Proc. of the 2005 IEEE Swarm Intelligence Symposium 

(SIS-OS), pages 100-107. IEEE, June 2005. 

[73] N. Holden and A.A. Freitas. Hierarchical classification of G-protein-coupled 

receptors with a PSO / ACO algorithm. In Proc. of the IEEE Swarm Intel­

ligence Symposium (SIS-06) , pages 77-84. IEEE Press, June 2006. 

[74] H. Horner. A C++ class library for genetic programming: The Vi­

enna University of Economics genetic programming kernel. citeseer, cite­

seer.nj.nec.com/horner96class.html, 29 May 1996. 

[75] T. Howley and M. G. Madden. The genetic kernel support vector machine: 

Description and evaluation. Artificial Intelligence Review, 24(3-4):379-395, 

2005. 

[76] T. Hussain and R. Browse. Network generating attribute grammar encoding. 

In Proc. of IEEE Int. Joint Conf. on Neural Networks, pages 431-436, 1998. 

[77] H. Jacobsson. Rule extraction from recurrent neural networks: A taxonomy 

and review. Neural Computation, 17:1223-1263,2005. 

[78] J.He and X. Yao. Towards an analytic framework for analyzing the computa­

tion time of evolutionary algorithms. Artificial Intelligence, 145(1-2):59-97, 

2003. 

[79] Y. Jin, editor. Multi-Objective Machine Learning. Springer, Berlin, 2006. 

[80] K. A. De Jong, W. M. Spears, and D. F. Gordon. Using genetic algorithms 

for concept learning. Machine Learning, 13(2-3):161-188, 1993. 



REFERENCES 
189 

[81] A. K. Joshi and Y. Schabes. Tree-adjoining grammars. In G. Rozenberg 

and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 
69-124. Springer, Berlin, New York, 1997. 

[82] R. E. Keller and W. Banzhaf. Genetic programming using genotype­

phenotype mapping from linear genomes into linear phenotypes. In J. R. 

Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Proc. of the 1st 

Annual Conf. on Genetic Programming (GP-96) , pages 116-122, Stanford 

University, CA, USA, 28-31 July 1996. MIT Press. 

[83] R. D. King, K. E. Whelan, F. M. Jones, P. G. K. Reiser, C. H. Bryant, S. H. 

Muggleton, D. B. Kell, and S. G. Oliver. Functional genomic hypothesis 

generation and experimentation by a robot scientist. Nature, 427:247-252, 

2004. 

[84] J. R. Koza. Genetic Programming: On the Programming of Computers by 

the means of natural selection. The MIT Press, Massachusetts, 1992. 

[85] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and 

G. Lanza. Genetic Programming IV: Routine Human- Competitive Machine 

Intelligence. Kluwer Academic Publishers, 2003. 

[86] W. B. Langdon, S. J. Barrett, and B. F. Buxton. Combining decision trees 

and neural networks for drug discovery. In Proc. of the gh European Conf. 

on Genetic Programming (EuroGP-02), pages 60-70, London, UK, 2002. 

Springer-Verlag. 

[87] W. B. Langdon and B. F. Buxton. Genetic programming for combining clas­

sifiers. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.M. Voigt, 

M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, 

Proc. of the Genetic and Evolutionary Computation Conference (GECCO-

01), pages 66-73, San Francisco, California, USA, 7-11 July 2001. Morgan 

Kaufmann. 

[88] N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and 

Applications. Routledge, New York, NY, 10001, 1993. 

[89] N. Lavrac and S. Dzeroski, editors. Relational Data Mining. Springer-Verlag, 

Berlin, 2001. 



REFERENCES 
190 

[90] T. Lim, W. Loh, and Y. Shih. A comparison of prediction accuracy, complex­

ity, and training time of thirty-three old and new classification algorithms. 

Machine Learning, 40(3):203-228, 2000. 

[91] G. Lindner and R. Studer. Ast: Support for algorithm selection with a CBR 

approach. In Proc. of the 3"d European Conf. on Principles and Practice 

of Knowledge Discovery in Databases (PKDD-99), pages 418-423, London, 
UK, 1999. Springer-Verlag. 

[92] H. Liu and H. Motoda, editors. Feature Selection for Knowledge Discovery 

and Data Mining. Kluwer, 1998. 

[93] J. J. Liu and J. Tin-Yau Kwok. An extended genetic rule induction algo­

rithm. In Proc. of the Congress on Evolutionary Computation (CEC-OO), 

pages 458-463. IEEE Press, 6-9 2000. 

[94] X. Llora and J. M. Garrell. Prototype induction and attribute selection via 

evolutionary algorithms. Intelligent Data Analysis, 7(3):193-208, 2003. 

[95] T. McConaghy and G. Gielen. Canonical form functions as a simple 

means for genetic programming to evolve human-interpretable functions. 

In Proc. of the ffh annual Conf. on Genetic and Evolutionary Computation 

(GECCO-06) , pages 855-862, New York, NY, USA, 2006. ACM Press. 

[96] R. S. Michalski. On the quasi-minimal solution of the general covering 

problem. In Proc. of the 5th Int. Symposium on Information Processing, 

pages 125-128, Bled, Yugoslavia, 1969. 

[97] R. S. Michalski, T. J. Carbonell, and T. M. Mitchell, editors. Machine 

Learning: An Artificial Intelligence Approach. TIOGA Publishing Co., Palo 

Alto, USA, 1983. 

[98] D. Michie, D. J. Spiegelhalter, C. C. Taylor, and J. Campbell, editors. Ma­

chine learning, neural and statistical classification. Ellis Horwood, Upper 

Saddle River, NJ, USA, 1994. 

[99] T. Mitchell. Machine Learning. Mc Graw Hill, 1997. 

[100] D. J. Montana. Strongly typed genetic programming. Evolutionary Com­

putation, 3(2):199-230, 1995. 



REFERENCES 
191 

[101] D. P. Muni, N. R. Pal, and J. Das. A novel approach to design classifier using 

genetic programming. IEEE Transactions on Evolutionary Computation, 
8(2):183-196, April 2004. 

[102] S. K. Murthy and S. Salzberg. Lookahead and pathology in decision tree 

induction. In Proc. of the Int. Joint Conf. on Artificial Intelligence (IJCAI-
95), pages 1025-1033, 1995. 

[103] P. NauL Revised report on the algorithmic language algol-60. Communica­

tions ACM, 6(1):1-17,1963. 

[104] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repos­

itory of machine learning databases. University of California, Irvine, 

http://www.ics.uci.edu/rvmlearn/MLRepository.html, 1998. 

[105] C. Nguyen and T. B. Ho. An imbalanced data rule learner. In Proc. of the 

rfh European Conf. on Principles and Practice of Knowledge Discovery in 

Databases (PKDD-05), pages 617-624, 2005. 

[106] H. Nunez, C. Angulo, and A. Catala. Rule extraction from support vec­

tor machines. In Proc. of the European Symposium on Artificial Neural 

Networks (ESANN-02), pages 107-112, 2002. 

[107] M. Ohsaki, S. Kitaguchi, K. Okamoto, H. Yokoi, and T. Yamaguchi. Eval­

uation of rule interestingness measures with a clinical dataset on hepatitis. 

In Proc. of the g,h European Conf. on Principles and Practice of Knowledge 

Discovery in Databases (PKDD-04), pages 362-373. Springer-Verlag New 

York, Inc., 2004. 

[108] M. Oltean. Evolving evolutionary algorithms using linear genetic program­

ming. Evolutionary Computation, 13(3):387-410, 2005. 

[109] M. O'Neill, A. Brabazon, C. Ryan, and J. J. Collins. Evolving market index 

trading rules using grammatical evolution. In E. J. W. Boers, S. Cagnoni, 

J. Gottlieb, E. Hart, Pier L. Lanzi, G. R. Raidl, Robert E. Smith, and 

H. Tijink, editors, Applications of Evolutionary Computing, volume 2037 of 

LNCS, pages 343-352, Lake Como, Italy, 18-19 April 2001. Springer-Verlag. 

[110] M. O'Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic 

Programming in an Arbitrary Language. Morgan Kaufmann, 2003. 



REFERENCES 192 

[111] G. L. Pappa, A. J. Baines, and A. A. Freitas. Predicting post-synaptic 

activity in proteins with data mining. Bioinformatics, 21(Suppl. 2):ii19-

ii25, September 2005. 

[112] G. L. Pappa and A. A. Freitas. Towards a genetic programming algorithm 

for automatically evolving rule induction algorithms. In J. Fiirnkranz, ed­

itor, Proc. of the ECML/PKDD-04 Workshop on Advances in Inductive 

Learning, pages 93-108, Pisa, 2004. 

[113] G. L. Pappa and A. A. Freitas. Automatically evolving rule induction 

algorithms. In J. Fiirnkranz, T. Scheffer, and M. Spiliopoulou, editors, 

Proc. of the 11h European Conf. on Machine Learning (ECML-06), vol­

ume 4212 of Lecture Notes in Computer Science, pages 341-352. Springer 

Berlin/Heidelberg, September 2006. 

[114] G. L. Pappa, A. A. Freitas, and C. A. A. Kaestner. Multi-objective algo­

rithms for attribute selection in data mining. In C. A. Coello Coello and 

G.B. Lamont, editors, Applications of Multi-Objective Evolutionary Algo­

rithms, pages 603-626. World Scientific, 2004. 

[115] N. R. Paterson and M. Livesey. Distinguishing genotype and phenotype in 

genetic programming. In J. R. Koza, editor, Late Breaking Papers at the 

Genetic Programming 1996 Conference, pages 141-150, Stanford University, 

CA, USA, 28-31 1996. Stanford Bookstore. 

[116] N. R. Paterson and M. Livesey. Evolving caching algorithms in C by genetic 

programming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, 

H. Iba, and R. L. Riolo, editors, Proc. of the f!"d Annual Conference on 

Genetic Programming (GP-97), pages 262-267, Stanford University, CA, 

USA, 1997. Morgan Kaufmann. 

[117] M. J. Pazzani. Knowledge discovery from data? IEEE Intelligent Systems, 

15(2):10-13,2000. 

[118] Y. H. Peng, P. A. Flach, C. Soares, and P. Brazdil. Improved dataset char­

acterization for meta-learning. In Proc. of the gh Int. Conf. on Discovery 

Science, pages 141-152. Springer-Verlag, January 2002. 



REFERENCES 
193 

[119] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by land­

marking various learning algorithms. In Proc. of the 1 'fh Int. Conf. on Ma­

chine Learning, (ICML-OO), pages 743-750, San Francisco, California, 2000. 
Morgan Kaufmann. 

[120] V. W. Porto, D. B. Fogel, and L. J. Fogel. Alternative neural network 

training methods. IEEE Expert: Intelligent Systems and Their Applications, 
10(3):16-22, 1995. 

[121] F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation 

for comparing induction algorithms. In Proc. of the 15th Int. Conf. on 

Machine Learning (ICML-98), pages 445-453, San Francisco, CA, USA, 

1998. Morgan Kaufmann Publishers Inc. 

[122] F. Provost and V. Kolluri. A survey of methods for scaling up inductive 

algorithms. Data Mining Knowledge Discovery, 3(2):131-169, 1999. 

[123] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 

5:239-266, 1990. 

[124] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 

1993. 

[125] A. Ratle and M. Sebago Genetic programming and domain knowledge: Be­

yond the limitations of grammar-guided machine discovery. In M. Schoe­

nauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H. Schwefel, 

editors, Proc. of the ffh Int. Conf. on Parallel Problem Solving from Nature 

(PPSN) , pages 211-220, Paris, France, 16-20 2000. Springer Verlag. 

[126] D. Rivero, J. Dorado, J. R. Rabunal, A. Pazos, and J. Pereira. Artifi­

cial neural network development by means of genetic programming with 

graph codification. Transactions on Engineering, Computing and Technol­

ogy, 16:209-214, 2006. 

[127] W. Romao, A. A. Freitas, and 1. M. S. Gimenes. Discovering interesting 

knowledge from a science & technology database with a genetic algorithm. 

Applied Soft Computing, 4:121-137,2004. 

[128] A. Rozsypal and M. Kubat. Selecting representative examples and attributes 

by a genetic algorithm. Intelligent Data Analysis, 7(4):291-304, 2003. 



REFERENCES 194 

[129] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren­

tice Hall, 2002. 

[130] C. Ryan, J. J. Collins, and M. O'Neill. Grammatical evolution: Evolving 

programs for an arbitrary language. In W. Banzhaf, R. Poli, M. Schoenauer, 

and T. C. Fogarty, editors, Proc. of the pt European Workshop on Genetic 

Programming, volume 1391 of Lecture Notes in Computer Science, pages 

83-95, Paris, 14-15 1998. Springer-Verlag. 

[131] C. Schaffer. Overfitting avoidance as bias. Machine Learning, 10(2):153-178, 

1993. 

[132] B. Sch6lkopf and A. J. Smola. Learning with Kernels: Support Vector Ma­

chines, Regularization, Optimization, and Beyond. The MIT Press, 2002. 

[133] P. Smyth and R. M. Goodman. An information theoretic approach to rule 

induction from databases. IEEE Transactions on Knowledge and Data En­

gineering, 4(4):301-316,1992. 

[134] A. Suyama, N. Negishi, and T. Yamaguchi. CAMLET: A platform for 

automatic composition of inductive learning systems using ontologies. In 

Proc. of the Pacific Rim Int. Conf. on Artificial Intelligence, pages 205-

215, 1998. 

[135] H. Theron and I. Cloete. BEXA: A covering algorithm for learning propo­

sitional concept descriptions. Machine Learning, 24(1):5-40, 1996. 

[136] A. B. Tickle, R. Andrews, M. Golea, and J. Diederich. The truth will come 

to light: directions and challenges in extracting knowledge embedded within 

trained artificial neural networks. IEEE Transactions on Neural Networks, 

[137] 

[138] 

9(6):1057-1068, 1998. 

A. Tsakonas, G. Dounias, J. Jantzen, H. Axer, B. Bjerregaard, and D. G. 

von Keyserlingk. Evolving rule-based systems in two medical domains using 

genetic programming. Artificial Intelligence in Medicine, 32(3):195-216, 

2004. 

S. Tsumoto. Clinical knowledge discovery in hospital information systems: 

Two case studies. In Proc. of the 4th European Conf. on Principles of Data 

Mining and Knowledge Discovery (PKDD-OO) , pages 652-656, London, UK, 

2000. Springer-Verlag. 



REFERENCES 195 

[139] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. 

Artificial Intelligence Review, 18(2):77-95, 2002. 

[140] G. I. Webb and N. Brkic. Learning decision lists by prep ending inferred 

rules. In Proc. of the AI-93 Workshop on Machine Learning and Hybrid 

Systems, pages 6-10. World Scientific, 1993. 

[141] G. M. Weiss. Timeweaver: a genetic algorithm for identifying predictive 

patterns in sequences of events. In W. Banzhaf, J. Daida, A. E. Eiben, 

M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proc. of the 

Genetic and Evolutionary Computation Conference (GECCO-99), volume 1, 

pages 718-725, Orlando, Florida, USA, 13-17 1999. Morgan Kaufmann. 

[142] S. M. Weiss and N. Indurkhya. Optimized rule induction. IEEE Expert: 

Intelligent Systems and Their Applications, 8(6):61-69, 1993. 

[143] P. A. Whigham. Grammatically-based genetic programming. In J. P. Rosca, 

editor, Proc. of the Workshop on Genetic Programming: From Theory to 

Real- World Applications, pages 33-41, Tahoe City, California, USA, 9 July 

1995. 

[144] P. A. Whigham. Grammatical Bias for Evolutionary Learning. PhD thesis, 

School of Computer Science, University College, University of New South 

Wales, Australian Defence Force Academy, Canberra, Australia, 14 October 

1996. 

[145] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools 

and Techniques with Java Implementations. Morgan Kaufmann, 2
nd 

edition, 

2005. 

[146] D. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992. 

[147] M. L. Wong. An adaptive knowledge-acquisition system using generic ge­

netic programming. Expert Systems with Applications, 15(1):47-58, 1998. 

[148] M. L. Wong and K. S. Leung. Data Mining Using Grammar-Based Genetic 

Programming and Applications. Kluwer, Norwell, MA, USA, 2000. 

[149] J. Woodward. GA or GP? That is not the question. In R. Sarker, 

R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, 



REFERENCES 196 

editors, Proc. of the 2003 Congress on Evolutionary Computation (CEC-03), 

pages 1056-1063, Canberra, 2003. IEEE Press. 

[150] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 

87(9):1423-1447, 1999. 

[151] J. Zhang. Selecting typical instances in instance-based learning. In Proc. 

of the flh Int. Workshop on Machine learning (ML-92), pages 470-479, San 

Francisco, CA, USA, 1992. Morgan Kaufmann. 

[152] J. Van Zyl and I. Cloete. Fuzzconri - a fuzzy conjunctive rule inducer. In 

J. Fiirnkranz, editor, Proc. of the ECML/PKDD-2004 Workshop on Ad­

vances in Inductive Learning, pages 548-559, Pisa, 2004. 



Appendix A 

COlllputing the Size of the GG P 
Search Space 

The size of the search space available for the GGP to search for new rule induction 

algorithms is determined by the GGP grammar. The actual number of solutions 

the grammar can produce is given by all the possible derivation trees built by 

applying a set of derivation steps starting from the Start symbol. The grammar 

presented in Section 4.2, and showed again in Table A.l for convenience, does 

not have any recursive production rules, i.e. a non-terminal appearing in both 

the left-hand side and the right-hand side of a rule. Therefore, calculating the 

number of solutions the grammar can generate is not too complicated. 

Alg. A.I presents an algorithm which calculates how many derivations (dif­

ferent derivation trees/subtrees) a non-terminal can produce. Alg. A.l works as 

follows. For each non-terminal of the grammar, it considers all the production 

rule in which that specific non-terminal NT appears in the left-hand side of the 

rule. The total number of derivations produced by a non-terminal is equivalent 

to the sum of the number of derivations for all of its production rules. 

Note that, in Table A.l, the production rules generated by each non-terminal 

are written in a compact form, using the notation introduced in Section 3.3.1. 

Hence, 

<condWhile>::= uncoveredNotEmpty luncoveredGreater 

(101 201 90%1 95%1 97%1 99%) trainEx. 

is equivalent to the 7 production rules: 

<condWhile>::= uncoveredNotEmpty. 

<condWhile>::= uncoveredGreater 10 trainEx. 
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<condWhile>::= uncoveredGreater 20 trainEx. 

<condWhile>::= uncoveredGreater 90% trainEx. 

<condWhile>: := uncoveredGreater 95% trainEx. 

<condWhile>: := uncoveredGreater 97% trainEx. 

<condWhile>::= uncoveredGreater 99% trainEx. 
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For each production rule, the number of derivations is given by the the product 

of the number of derivations of each of the symbols in the right-hand side of the 

production rule. The number of derivations of a terminal symbol is equal to 1, as 

a terminal cannot be expanded. The number of derivations of a non-terminal is 

recursively calculated. When a non-terminal is marked as optional, as in the last 

two symbols (enclosed by "[", "]" ) in the following production rule: 

<CreateOneRule>::= <InitializeRule> <innerWhile> [<PrePruneRule>] 

[<RuleStoppingCriterion>] 

the algorithm can automatically calculate the number of derivations without ex­

panding the compact rule representation to its 4 equivalent production rules, just 

by adding one to the number of derivations which can be created by each optional 

symbol (i.e., we have to consider all the derivations produced by the optional 

symbol plus the absence of the symbol). 

Algorithm A.1: Derivations(NT) 

derivNT = 0 ; 
for each production rule P R generated by NT do 

derivPR = 1 ; 
for each symbol S in the right-hand side of PR do 

deriv = 0; 
if S is a terminal then 
I deriv = 1 ; 

else if S is a non-terminal NT' then 
I deriv = Derivations(NT'); 

if S is optional then 
L deriv = deriv + 1; 

derivPR = derivPR x deriv; 
derivNT = derivNT + derivPR; 

return derivNT ; 

Table A.2lists the number of derivations for all the non-terminals of the gram-

I f th O t ble the NT number between brackets refers to mar. In the first co umn 0 IS a 
the identification number of the corresponding NT symbol in t~e ~rammar of 

d b I I t 'ng the number of possible denvatlOns for the Table A.l. We starte y ca cu a 1 
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Table A.l: The grammar used by the GGP 

1- <Start>::= «CreateRuleSet>I<CreateRuleList» [<PostProcess>]. 
2- <CreateRuleSet> ::= forEachClass <whileLoop> endFor 

<RuleSetTest>. 
3- <CreateRuleList> ::= <whileLoop> <RuleListTest>. 
4- <whileLoop>::= while <condWhile> <CreateOneRule> endWhile. 
5- <condWhile>::= uncoveredNotEmpty luncoveredGreater 

(101 201 90%1 95%1 97%1 99%) trainEx. 
6- <RuleSetTest> ::= lsContent IconfidenceLaplace. 
7- <RuleListTest>::= appendRule I prependRule. 
8- <CreateOneRule>::= <InitializeRule> <innerWhile> [<PrePruneRule>] 

[<RuleStoppingCriterion>] . 
9- <InitializeRule>::= emptyRulel randomExamplel typicalExample 

<MakeFirstRule>. 
10- <MakeFirstRule> ::= NumCondll NumCond21 NumCond31 NumCond4. 
11- <innerWhile> ::= while (candNotEmptyl negNotCovered) 

<FindRule> endWhile. 
12- <FindRule> ::= <RefineRule> <EvaluateRule> 

[<StoppingCriterion>] <SelectCandidateRules> 
<innerIf> <EvaluateRule> 
[<StoppingCriterion>] <SelectCandidateRules>. 

13- <innerIf> ::= if <condIf> then <RefineRule> else <RefineRule>. 
14- <condIf> ::= <condIfExamples> I <condIfRule>. 
15- <condIfRule> ::= ruleSizeSmaller (2131517). 
16- <condIfExamples> ::= numCovExp ( >1 <)(90%1 95%1 99%). 
17- <RefineRule> ::= <AddCond>I <RemoveCond>. 
18- <AddCond> ::= Addll Add2. 

<RemoveCond>::= Removell Remove2. 
<EvaluateRule>::= confidence I Laplace I infoContentl infoGain. 
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19-
20-
21- <StoppingCriterion> ::= MinAccuracy (0.610.710.8)1 

SignificanceTest (0.11 0.051 0.0251 0.01). 

<SelectCandidateRules> ::= lCRI2CRI 3CRI 4CRI 5CRI 8CRI 10CR. 
<PrePruneRule> ::= (lCondl LastCondl FinalSeqCond) <EvaluateRule>. 

22-
23-
24-
25-
26-

<RuleStoppingCriterion> ::= accuracyStop (0.51 0.61 0.7). 
<postProcess> ::= RemoveRule EvaluateModell <RemoveCondRule>. 
<RemoveCondRule> ::= (lCondl 2Condl FinalSeq) <EvaluateRule>. 
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non-terminals which generate only terminal symbols. The non-terminal AddCond , 
for example, generates only the terminals Addl or Add2, and consequently its 

number of derivations is 2. 

We then calculated the number of derivations of the non-terminals which have 

production rules that generate the non-terminals for which the corresponding 

number of derivations is known. For instance, the non-terminal InitializeRule 

generates 4 production rules. The first three are terminals (so each of them has 

the number of derivations equals to 1), while the fourth is the non-terminal Make­

FirstRule. M akeFirstRule's number of derivations is known as 4, and therefore 

the number of derivations for InitializeRule is 7. 

The number of derivations for all non-terminals but two was calculated fol­

lowing Alg. A.I. The two exceptions were the non-terminals innerIf and Cre­

ateOneRule. This was because, as explained in Section 4.4, some constraints were 

imposed to the population initialization process. These constraints refer to the 

non-terminals innerIf and CreateOneRule, and reduce the number of derivations 

they can produce. 

In the case of the non-terminal innerIf, in order to avoid introns, situations 

where both the if and else part of the conditional statement performed the same 

operation were avoided. As observed in Table A.l, NTI3, innerIf combines two 

instances of the non-terminal RefineRule, whose number of derivations is 4. Fol­

lowing Alg. A.l, the number of derivations of innerIf would be 160 (the condition 

part of the if statement produces 10 derivations x 16 derivations generated by 

the body of the conditional statement, given by the combination of 2 instances 

of the non-terminal RefineRule). However, as combining Addl with Addl, Add2 

with Add2, Removel with Removel and Remove2 with Remove2 is not allowed, 

this number of combinations of 2 instances of RefineRule is reduced to 12, and 

the number of derivations of innerIf is reduced to 120. 
The calculation of the number of derivations of the non-terminal Cre-

ate OneRule (NT8 in Table A.l) also has to account for some constraints. As 

explained in Section 4.4, it does not make sense to use AddCond with the produc­

tion rules randomExample and typicalExample (generated by InitializeRule) nor 

RemoveCond with emptyRule (generated by InitializeRule), and NumCondl and 

NumCond2 (both generated by MakeFirstRule). From now on, for the sake of 

simplicity, we refer to the terminals randomExample and typicalExample as "spe­

cific initialization terminals", and to the terminals emptyRule, NumCondl and 

NumCond2 as "general initialization terminals" . 
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Table A.2: Number of derivations generated by the non-t . I f h ermma sot e grammar 

Non-terminal Number of Derivations 
<condWhile> (NT 5) 7 
<RuleSetTest> (NT 6) 2 
<RuleListTest> (NT 7) 2 
<MakeFirstRule> (NT 10) 4 
<condIfRule> (NT 15) 4 
<condIfExamples> (NT 16) 6 
<AddCond> (NT 18) 2 
<RemoveCond> (NT 19) 2 
<EvaluateRule> (NT 20) 4 
<StoppingCriterion> (NT 21) 7 
<SelectCandidateRules> (NT 22) 7 
<RuleStoppingCriterion> (NT 24) 3 
<InitializeRule> (NT 9) 3+4 = 7 
<condIf> (NT 14) 6+4 = 10 
<RefineRule> (NT 17) 2x2 = 4 
<PrePruneRule> (NT 23) 3x4 = 12 
<RemoveCondRule> (NT 26) 3x4 = 12 
<innerIf> (NT 13) lOx (16-4) = 120 
<PostProcess> (NT 25) 1+12 = 13 
<FindRule> (NT 12) (4+120)x4x(7+1)x7 = 27,776 
<innerWhile> (NT 11) 2x27,776 = 55,552 
<CreateOneRule> (NT 8) 12,999,168 
<whileLoop> (NT 4) 7x 12,999,168 = 90,994,176 
<CreateRuleList> (NT 3) 90,994,176x2 = 181,988,352 
<CreateRuleSet> (NT 2) 90,994,176x2 = 181,988,352 
<Start> (NT 1) 2xI81,988,352xI4 = 5,095,683,856 

If we had to calculate the number of derivations of CreateOneRule regardless 

of these exceptions, its value would be 7x55,552x13x4 = 20,220,928. However, 

out of the 7 ways of initializing a rule, only 2 are not subject to exceptions, 

namely the terminals NumCond3 and NumCond4 (generated by MakeFirstRule). 

For the other 5, we actually have to recalculate the number of derivations of 

CreateOneRule (see Eq. (A. 1)) and, consequently, the number of derivations of 

inner While, FindRule (see Eq. (A.3)), RefineRule and innerI! (see Eq. (A.2)). 

In Eq. (A.1) we show the calculation of the number of derivations of Cre­

ateOneRule), denoted d{CreateRule). The third line in Eq. (A.l) separates the 

number of derivations for the 2 terminals with no constraints from the other 5. For 

these 5 terminals, the number of derivations of FindRule has to be recalculated, 
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as shown in Eq. (A.3). In Eq. (A.3), the number of derivations of RefineRule 

(d(RefRule') is 2 instead of 4, because "specific initialization terminals" can only 

be used with AddCond and "general initialization terminals" can only be used 

with RemoveCond, each of them with number of derivations equals to 2. 

We then recalculate the number of derivations of inner!f in Eq. (A.2). In this 

case, RefineRule has also to be recalculated, and this has to take many constraints 

into account at once. Recall that there is a first constraint which states that 

from the 16 possible combinations of 2 instances of RefineRule in the if and 

else parts of a conditional statement, only 12 are valid (to avoid introns). For 

these 12 RefineRule instances, individuals presenting a condlfRule and a "specific 

initialization terminal" cannot use a RemoveCond non-terminal in the if part 

of the conditional statement. At the same time, individuals having a "general 

initialization terminal" cannot be used with the non-terminal AddCond in the 

else part of the conditional statement. In summary, only half of the possible 12 

combinations (the ones with Add in the if part or Remove in the else part of 

the conditional statement) are valid. Hence, the number of combination for both 

instances of RefineRule is equal to 6 for condlfRule. 

d(CreateRule) = d(InitRule) x d(inWhile) x d(PrePrunRule) x d(RuleStopCrit) 

d(CreateRule) = d(InitRule) x d(inWhile) x 13 x 4 

d(CreateRule) = 2 x (55,552 x 52) + 5 x (2 x d(FindRule)) x 52 

d(CreateRule) = 5,777,408 + 5 x (2 x d(FindRule)) x 52 

d(CreateRule) = 5,777,408 + 5 x (2 x 13,888) x 52 

d(CreateRule) = 7,221,760 

d(innerlf) = d(condlf) x d(ReJRule) x d(ReJRule) 

d(innerlf) = (d(condIJExamples) x d(ReJRule) x d(ReJRule)) 

+ (d(condI J Rule) x d(ReJ Rule) x d(ReJ Rule)) 

d(innerlf) = (6 x 6) + (4 x 6) = 60 

(A.l) 

(A.2) 
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d(FindRule) = d(RefRule) x d(EvalRule) x d(StopCrit) x d(SelectCand) 

+ d(inner I f) x d(EvalRule) x d(StopCrit) x d(SelectCand) 

d(FindRule) = (d(RefRule') + d(innerlf)) x 224 
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d(FindRule) = (2 + 60) x 224 = 13,888 (A.3) 

In the case of condlfExamples, individuals with a "specific initialization ter­

minal" cannot use a RemoveCond non-terminal in the if part of the conditional 

statement if they have a "<" operator in the condition. When using a ">" op­

erator, RemoveCond cannot be in the else part of the conditional statement. In 

contrast, individuals having a "general initialization terminal" cannot use the non­

terminal AddCond in the else part of the conditional statement if the condition 

used the operator ">". When using the operator "<", the same is true for the 

if part of the conditional statement. Once again, the number of combinations for 

both instances of RefineRule is equal to 6. 

As showed in the last line of Table A.2, the total size of the grammar search 

space given by the Start symbol - i.e., the total number of distinct rule induction 

algorithms that can be derived from the grammar - is 5,095,683,856. 
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