
TEST DATA GENERATION: TWO EVOLUTIONARY

APPROACHES TO MUTATION TESTING

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy.

By

Peter Stephen May

May 2007

c© Copyright 2007

by

Peter Stephen May

ii

Contents

List of Tables xvi

List of Figures xxvii

Abstract xxviii

Acknowledgements xxix

1 Introduction 1

1.1 Motivation . 1

1.1.1 Software Testing Concerns 1

1.1.2 Inspiration from Nature 5

1.2 Contributions . 7

1.3 Thesis Structure . 8

1.4 Publications . 9

2 Mutation Testing 10

2.1 Introduction . 10

2.2 Methodology . 12

2.2.1 Mutation Operators . 14

2.3 Problems with Mutation Testing 16

2.4 Reducing Computational Expense 17

2.4.1 Do Fewer . 17

2.4.2 Do Faster . 23

iii

2.4.3 Do Smarter . 26

2.5 Increasing Automation . 29

2.5.1 Automatically Generating Test Data 30

2.5.2 Automatically Detecting Equivalent Mutants 40

2.5.3 Oracle Problem . 43

2.6 Summary . 44

2.6.1 Reducing Computational Expense 44

2.6.2 Increasing Automation . 46

3 Evolutionary Computation 50

3.1 Introduction . 50

3.2 Species Evolution . 51

3.2.1 Biological Species . 53

3.2.2 Evolution of Species . 54

3.2.3 Genetic Algorithms . 55

3.3 Immune Systems . 58

3.3.1 Biological Immune Systems 59

3.3.2 Evolution in the Immune System 64

3.3.3 Artificial Immune Systems 65

3.4 Summary . 70

4 Evolving Test Data 71

4.1 Introduction . 71

4.2 Approach Outline . 73

4.3 The Mutation Testing System . 75

4.3.1 Initialisation . 76

4.3.2 Operation . 78

4.4 Engineering Framework . 83

4.5 Genetic Algorithm . 85

4.5.1 Variables . 89

4.6 Immune Inspired Algorithm . 89

iv

4.6.1 Variables . 93

4.7 Differences in the Algorithms . 93

4.8 Programs Under Test . 94

4.8.1 CalDay . 95

4.8.2 DateRange . 95

4.8.3 Select . 97

4.8.4 TriangleSort . 97

4.9 Summary . 98

5 Algorithm Comparison 99

5.1 Introduction . 99

5.2 Hypotheses . 99

5.3 Qualifiers . 102

5.3.1 Statistics . 104

5.4 H1 - Primary Hypothesis . 104

5.4.1 Conclusion . 107

5.5 H2 - Usefulness of Immune Inspired Algorithms 108

5.5.1 Conclusion . 111

5.6 H3 - Number of Program Executions 111

5.6.1 Conclusion . 118

5.7 H4 - Number of Hard-To-Kill Mutants Found 119

5.7.1 Conclusion . 123

5.8 H5 - Test Set Size . 123

5.8.1 Conclusion . 126

5.9 H6 - Mutation Score per Iteration 126

5.9.1 Conclusion . 130

5.10 H7 - Number of Cloned and Random Tests 131

5.10.1 Conclusion . 132

5.11 Summary . 132

v

6 Parameter Analysis 135

6.1 Introduction . 135

6.2 Methodology . 135

6.2.1 Statistics . 136

6.3 Genetic Algorithm for Mutation Testing 137

6.3.1 indSize . 138

6.3.2 crossRate . 153

6.3.3 mutRate . 157

6.4 Immune Inspired Algorithm for Mutation Testing 167

6.4.1 nFittest . 167

6.4.2 nWorst . 183

6.4.3 cloneRate . 192

6.5 Summary . 199

6.5.1 Genetic Algorithm for Mutation Testing 200

6.5.2 Immune Inspired Algorithm for Mutation Testing 202

7 Conclusion 207

7.1 Introduction . 207

7.2 Revisiting the Problem Domain 207

7.3 Evolutionary Approaches . 210

7.3.1 Parameter Values . 213

7.4 Further Work . 215

Appendices 220

A Complementary Functions 220

B Test Programs 223

B.1 CalDay . 223

B.1.1 Example Mutation Adequate Test Set 223

B.1.2 Initial Test Values . 224

B.1.3 Code . 224

vi

B.2 DateRange . 226

B.2.1 Example Mutation Adequate Test Set 226

B.2.2 Initial Test Values . 226

B.2.3 Code . 226

B.3 Select . 229

B.3.1 Example Mutation Adequate Test Set 229

B.3.2 Initial Test Values . 232

B.3.3 Code . 232

B.4 TriangleSort . 238

B.4.1 Example Mutation Adequate Test Set 238

B.4.2 Initial Test Values . 238

B.4.3 Code . 239

C Parameter Analysis Results 241

C.1 Genetic Algorithm for Mutation Testing 241

C.1.1 indSize: Effect on Number of Mutant Executions 241

C.1.2 indSize: Effect on Mutation Score per Iteration 243

C.1.3 indSize: Effect on Number of HTK identified 245

C.1.4 indSize: Effect on Number of Tests 246

C.1.5 crossRate: Effect on Number of Mutant Executions 249

C.1.6 crossRate: Effect on Mutation Score per Iteration 252

C.1.7 crossRate: Effect on Number of HTK identified 255

C.1.8 crossRate: Effect on Number of Tests 256

C.1.9 mutRate: Effect on Number of Mutant Executions 259

C.1.10 mutRate: Effect on Mutation Score per Iteration 262

C.1.11 mutRate: Effect on Number of HTK identified 265

C.1.12 mutRate: Effect on the Number of Tests 266

C.2 Immune Inspired Algorithm for Mutation Testing 268

C.2.1 nFittest: Effect on Number of Mutant Executions 268

C.2.2 nFittest: Effect on Mutation Score per Iteration 272

vii

C.2.3 nFittest: Effect on Number of HTK identified 274

C.2.4 nFittest: Effect on Number of Tests 275

C.2.5 nWorst: Effect on Number of Mutant Executions 277

C.2.6 nWorst: Effect on Mutation Score per Iteration 279

C.2.7 nWorst: Effect on Number of HTK identified 281

C.2.8 nWorst: Effect on Number of Tests 282

C.2.9 cloneRate: Effect on Number of Mutant Executions 284

C.2.10 cloneRate: Effect on Mutation Score per Iteration 288

C.2.11 cloneRate: Effect on Number of HTK identified 290

C.2.12 cloneRate: Effect on Number of Tests 291

Bibliography 293

viii

List of Tables

2.1 The standard 22 mutagens used in Mothra 15

3.2 Example Roulette Wheel Selection for a 5 individual population. n

is a random number generated for selecting individuals. Antibodies

are trying to match the binary string 01111110. 56

3.3 Antibody clones generated for the top 3 individuals in a population

during clonal expansion. Antibodies are trying to match the binary

string 01111110. 68

3.4 Mutated clones generated for the top 3 individuals in a population

during clonal expansion. 69

4.5 Mean and σ values for the inputs to the four tested programs, along

with an approximate range of input values that will most likely be

generated. 83

5.6 Parameter values used for each algorithm. 103

5.7 Average mutation scores and standard deviations achieved for each

program after 1, 50 and 500 iterations using an Immune Inspired

Algorithm. All results are to 2 decimal places. 105

5.8 Mean number of mutants executed for each algorithm achieving its

highest mutation score. The number executed (and any standard

deviation) has been rounded up to the nearest whole number. . . 106

5.9 The mean average number of hard-to-kill (HTK) mutants killed

by each algorithm, and percentage of the total number of HTK

mutants, after 500 iterations. All results are to 2 decimal places. . 107

ix

5.10 Average mutation scores and standard deviations achieved for each

program after 1, 50 and 500 iterations using an Immune Inspired

Algorithm. All results are to 2 decimal places. 110

5.11 T-test (0.05 level) results for the significance between the mean

number of mutants executed for each algorithm, at the highest

mutation score obtained by both algorithms in at least 25 runs. The

mean number of mutants executed (and the standard deviation) is

rounded up to the nearest integer to reflect that a mutant is either

executed completely or not at all. T-test results are to 2 decimal

places. 117

5.12 Mean number of mutants executed for each algorithm achieving

its highest mutation score (i.e. results after 500 iterations). The

number executed (and any standard deviation) has been rounded

up to the nearest whole number. 118

5.13 The mean average number of hard-to-kill (HTK) mutants killed

by each algorithm, and percentage of the total number of HTK

mutants, after 500 iterations. All results are to 2 decimal places. . 121

5.14 T-test results (0.05 level) for the difference in the mean average

percentage of HTK mutants killed by each algorithm after 500 it-

erations. All results are to 2 decimal places. 122

5.15 T-test results (0.05 level) for the significance between the average

test set sizes generated by each algorithm, at the highest mutation

score achieved by both algorithms in at least 25 runs. All results

are to 2 decimal places. 124

5.16 Final test set sizes generated for the highest mutation score achieved

by each program for each algorithm. All results are to 2 decimal

places. 126

5.17 T-test results for the significance between the average mutation

scores for each algorithm after 500 iterations. Plus/minus figures

are 1 standard deviation. All results are to 2 decimal places. . . . 130

x

5.18 The mean average number of tests produced by cloning (and mu-

tating) existing tests or by random generation after 500 iterations 132

6.19 Possible parameter values for the Genetic Algorithm. Default val-

ues are shown in bold font. 138

6.20 The mean number of mutants executed (and standard deviation) at

the highest mutation score obtained by at least 25 runs for each of

the four individual sizes: 5, 10, 20, 30. ANOVA and Scheffé calcula-

tions (at the 0.05 level) show which pairs of individual sizes result in

significantly different mean numbers of executions (in bold). The

number executed (and any standard deviation) has been rounded

up to the nearest whole number to reflect that a mutant is either

executed completely or not at all. Values replaced with ‘-’ are

not important as the ANOVA results are not significant. Mutation

scores and ANOVA/Scheffé results are to 2 decimal places. 142

6.21 The mean number of mutants executed (and standard deviation)

at the highest mutation score obtained by at least 25 runs for each

of the three individual sizes: 10, 20, 30 (individual size of 5 ig-

nored). ANOVA and Scheffé calculations (at the 0.05 level) show

which pairs of individual sizes result in significantly different mean

numbers of executions (in bold). The number executed (and any

standard deviation) has been rounded up to the nearest whole num-

ber to reflect that a mutant is either executed completely or not

at all. Values replaced with ‘-’ are not important as either the

ANOVA results are not significant or Scheffé results are not cal-

culated because the individual size=5 experiment only achieved a

lower mutation score. Mutation scores and ANOVA/Scheffé results

are to 2 decimal places. 144

xi

6.22 The mean mutation scores (and standard deviation) achieved af-

ter 500 iterations for each of the four individual sizes: 5, 10, 20,

30. ANOVA and Scheffé calculations (at the 0.05 level) show which

pairs of individual sizes result in significantly different mean muta-

tion scores (in bold). Values replaced with ‘-’ are not important as

the ANOVA results are not significant. All results are to 2 decimal

places. 149

6.23 Possible parameter values for the Immune Inspired Algorithm. De-

fault values are shown in bold font. 167

6.24 The mean number of mutants executed (and standard deviation as

a percentage of the mean) at the highest mutation score obtained

by at least 25 runs for each of the five nFittest values: 1, 3, 5,

7, 9. ANOVA and Scheffé calculations show the which pairs of

nFittest values result in significantly different (at the 0.05 level)

mutant execution numbers (in bold). The number executed (and

any standard deviation) has been rounded up to the nearest whole

number to reflect that a mutant is either executed completely or not

at all. All other results are to 2 decimal places. 171

6.25 The mean mutation scores (and standard deviation) achieved af-

ter 500 iterations for each of the five nFittest values: 1, 3, 5,

7, 9. ANOVA and Scheffé calculations show the which pairs of

nFittest values (in bold) result in significantly different mean

mutation scores. All results are to 2 decimal places. 180

6.26 The mean mutation scores (and standard deviation) achieved af-

ter 500 iterations for each of the six nWorst values: 0, 1, 3, 5,

7, 9. ANOVA and Scheffé calculations show the which pairs of

nWorst values (in bold) result in significantly different mean mu-

tation scores. All results are to 2 decimal places. 189

1.27 Functions used by both the Immune Inspired Algorithm and the

Genetic Algorithm. 220

xii

1.28 Complementary functions used by the Immune Inspired Algorithm

only. 221

1.29 Complementary functions used by the Genetic Algorithm only. . . 222

2.30 The number of mutant programs created by each mutation operator

for each program. 223

2.31 A Mutation adequate test set for the CalDay program based on the

manually determined equivalent mutants. 224

2.32 A Mutation adequate test set for the DateRange program based on

the manually determined equivalent mutants. 226

2.33 A Mutation adequate test set for the Select program based on the

manually determined equivalent mutants. 231

2.34 A Mutation adequate test set for the DateRange program based on

the manually determined equivalent mutants. 238

3.35 The mean average percentage of hard-to-kill mutants identified af-

ter 500 iterations, for each of the four individual sizes: 5, 10, 20,

30. ANOVA and Scheffé calculations (at the 0.05 level) show which

pairs of individual sizes result in significantly different mean per-

centages (in bold). Values replaced with ‘-’ are not important as

the ANOVA results are not significant. All results are to 2 decimal

places. 245

3.36 The mean number of distinct tests needed (and standard deviation)

at the highest mutation score obtained by at least 25 runs for each

of the four individual sizes: 5, 10, 20, and 30. ANOVA fobt and fcrit

values (at the 0.05 level) are given to indicate whether there is any

significant difference between the mean number of tests produced

by each individual size. Bold values indicate a significant result

(obt ≥ crit) - i.e. the null hypothesis should be rejected. All

results are to 2 decimal places. 248

xiii

3.37 The mean number of mutants executed (and standard deviation) at

the highest mutation score, obtained by at least 25 runs for each of

the six crossover rates: 0, 0.2, 0.4, 0.6, 0.8, 1. The number executed

(and any standard deviation) has been rounded up to the nearest

whole number to reflect that a mutant is either executed completely

or not at all. ANOVA fobt and fcrit values (at the 0.05 level) are

given to indicate whether there is any significant difference between

the mean values of each rate. Mutation scores and ANOVA values

are to 2 decimal places. 251

3.38 Mean mutation scores (and standard deviation) achieved by each

crossover rate after 500 iterations. ANOVA fobt and fcrit values (at

the 0.05 level) are given to indicate whether there is any signifi-

cant difference between the mean mutation scores achieved by each

crossover rate. Bold values indicate a significant result (obt ≥ crit)

- i.e. the null hypothesis should be rejected. Values replaced with

‘-’ are not important as the ANOVA results are not significant. All

results are to 2 decimal places. 254

3.39 The mean average percentage of hard-to-kill mutants identified af-

ter 500 iterations, for each of the six crossover rates: 0, 0.2, 0.4,

0.6, 0.8, 1. ANOVA and Scheffé calculations (at the 0.05 level)

show which pairs of crossover rates result in significantly different

mean percentages (in bold). Values replaced with ‘-’ are not im-

portant as the ANOVA results are not significant. All results are

to 2 decimal places. 255

xiv

3.40 Mean test set sizes (and standard deviations) at the highest muta-

tion score, obtained by at least 25 runs for each of the six crossover

rates: 0, 0.2, 0.4, 0.6, 0.8, and 1. ANOVA fobt and fcrit values (at

the 0.05 level) are given to indicate whether there is any significant

difference between the mean values of each rate; a fobt value on “-”

indicates that the value could not be calculated as all six crossover

rates exhibited the same test set size (with no variation). All results

are to 2 decimal places. 258

3.41 The mean number of mutants executed (and standard deviation)

at the highest mutation score obtained by at least 25 runs for each

of the five mutation rates: 0.01, 0.02, 0.04, 0.06, 0.08. ANOVA

and Scheffé values (at the 0.05 level) indicating whether differences

between the means obtained using different pairs of mutation rates

are significant. Bold values indicate a significant result (obt ≥ crit)

- i.e. the null hypothesis should be rejected. The number executed

(and any standard deviation) has been rounded up to the nearest

whole number to reflect that a mutant is either executed completely

or not at all. All other results are to 2 decimal places. 261

3.42 The mean mutation score (and standard deviation) achieved after

500 iterations for each of the five mutation rates (0.01, 0.02, 0.04,

0.06, 0.08). ANOVA and Scheffé values (at the 0.05 level) indicat-

ing whether differences between the means obtained using different

pairs of mutation rates are significant. Bold values indicate a sig-

nificant result (obt ≥ crit) - i.e. the null hypothesis should be

rejected. All results are to 2 decimal places. 264

xv

3.43 The mean average percentage of hard-to-kill mutants identified af-

ter 500 iterations, for each of the five mutation rates: 0.01, 0.02,

0.04, 0.06, 0.08. ANOVA and Scheffé calculations (at the 0.05 level)

show which pairs of mutation rates result in significantly different

mean percentages (in bold). Values replaced with ‘-’ are not im-

portant as the ANOVA results are not significant. All results are

to 2 decimal places. 265

3.44 The mean average percentage of hard-to-kill mutants identified af-

ter 500 iterations, for each of the five nFittest values: 1, 3, 5, 7,

9. ANOVA and Scheffé calculations (at the 0.05 level) show which

pairs of nFittest values result in significantly different mean per-

centages (in bold). All results are to 2 decimal places. 274

3.45 The mean average percentage of hard-to-kill mutants identified af-

ter 500 iterations, for each of the six nWorst values: 0, 1, 3, 5, 7,

9. ANOVA and Scheffé calculations (at the 0.05 level) show which

pairs of nWorst values result in significantly different mean per-

centages (in bold). Values replaced with ‘-’ are not important as

the ANOVA results are not significant. All results are to 2 decimal

places. 281

3.46 The mean average percentage of hard-to-kill mutants identified af-

ter 500 iterations, for each of the six cloneRate values: 0, 1, 3, 5, 7,

9. ANOVA and Scheffé calculations (at the 0.05 level) show which

pairs of cloneRate values result in significantly different mean per-

centages (in bold). Values replaced with ‘-’ are not important as

the ANOVA results are not significant. All results are to 2 decimal

places. 290

xvi

List of Figures

2.1 The Mutation Testing process. Diagram reproduced from [91] . . . 13

2.2 Three possible scenarios for the relationship between the sets of

tests that kill a weak and strong mutant. 19

2.3 Mutant Distribution by Mutation Operator. Diagram reproduced

from [92] . 22

2.4 Example of original Java PUT method. 25

2.5 Mutated version of the Java PUT in figure 2.4. 25

3.6 A basic Genetic Algorithm. Diagram adapted from [25] 55

3.7 Single-point crossover applied to two binary-string chromosomes.

Diagram adapted from [25] . 57

3.8 Single-point mutation applied to a binary-string chromosome. Di-

agram adapted from [25] . 58

3.9 Abstract visualisation of shape-space. Within shape-space S , an-

tibodies are dots with a spherical recognition region (Vε), antigens

are crosses. V is the volume containing all antibody and antigen-

complement shapes Diagram reproduced from [25] 62

3.10 The clonal selection principle in response to foreign antigens. Anti-

bodies matching antigens ((i) Selection) undergo cloning ((ii) pro-

liferation) and differentiate into memory and antibody secreting

plasma cells ((iii) Differentiation). Diagram adapted from [25] . . 65

3.11 A basic Clonal Selection Algorithm. 67

4.12 Test data evolution using mutation testing. 74

xvii

4.13 Outline of the MTAIS process engineered for this research. The

process operates in two stages indicated by the different arrows. . 75

4.14 Example of how a mutant array is used to access a symbol lookup

table. 78

4.15 Abstract class diagram for the mutation testing system implemented

for this research. “Classes” shown may refer to groups of classes.

For example, the Harness “class” actually refers to multiple classes

necessary to perform all the harness activities. 79

4.16 The sigmoidal graph and the effect of varying the spread (σ). . . . 81

4.17 Engineering Framework for Evolutionary Algorithms. Diagram adapted

from [25] . 84

4.18 Single iteration of the Genetic Algorithm process. 86

4.19 Genetic Algorithm for Mutation Testing 87

4.20 Single iteration of the ‘Immune Inspired Algorithm for Mutation

Testing’ process. 90

4.21 Immune Inspired Algorithm for Mutation Testing 91

5.22 Mean mutation scores achieved at each iteration for all four pro-

grams using the Immune Inspired Algorithm for Mutation Testing.

Error bars are ± 1 s.d. 109

5.23 Zoom in of figure 5.26. Mean number of mutants executed (up to

50,000) to achieve at least a specific mutation score for the CalDay

program. Error bars are ± 1 s.d. 113

5.24 Mean number of mutants executed to achieve at least a specific

mutation score for the DateRange program. Error bars are ± 1 s.d. 115

5.25 Mean number of mutants executed to achieve at least a specific

mutation score for the TriangleSort program. Error bars are ± 1 s.d.115

5.26 Mean number of mutants executed to achieve at least a specific

mutation score for the CalDay program. Error bars are ± 1 s.d. . 116

5.27 Mean number of mutants executed to achieve at least a specific

mutation score for the Select program. Error bars are ± 1 s.d. . . 116

xviii

5.28 Mean mutation score per iteration for the DateRange program. Er-

ror bars are ± 1 s.d. 128

5.29 Mean mutation score per iteration for the TriangleSort program.

Error bars are ± 1 s.d. 128

5.30 Mean mutation score per iteration for the CalDay program. Error

bars are ± 1 s.d. 129

5.31 Mean mutation score per iteration for Select program. Error bars

are ± 1 s.d. 129

6.32 Effect of varying the individual size on the mean number of execu-

tions to achieve specific mutation scores for the DateRange program.140

6.33 Effect of varying the individual size on the mean number of ex-

ecutions to achieve specific mutation scores for the TriangleSort

program. 140

6.34 Effect of varying the individual size on the mean number of execu-

tions to achieve specific mutation scores for the CalDay program. 141

6.35 Effect of varying the individual size on the mean number of execu-

tions to achieve specific mutation scores for the DateRange program.147

6.36 Effect of varying the individual size on the mean number of ex-

ecutions to achieve specific mutation scores for the TriangleSort

program. 147

6.37 Effect of varying the individual size on the mean number of execu-

tions to achieve specific mutation scores for the CalDay program. 148

6.38 Effect of varying the individual size on the mean number of HTK

mutants identified for all three programs. 150

6.39 Effect of varying the individual size on the mean number of distinct

tests created to achieve specific mutation scores for the DateRange

program. 152

6.40 Effect of varying the crossover rate on the mean number of HTK

mutants identified for all three programs. 156

xix

6.41 Effect of varying the mutation rate on the mean number of execu-

tions to achieve specific mutation scores for the DateRange program.158

6.42 Effect of varying the mutation rate on the mean number of ex-

ecutions to achieve specific mutation scores for the TriangleSort

program. 159

6.43 Effect of varying the mutation rate on the mean number of execu-

tions to achieve specific mutation scores for the CalDay program. 159

6.44 Effect of varying the mutation rate on the mean mutation score

achieved per iteration for the DateRange program. 161

6.45 Effect of varying the mutation rate on the mean mutation score

achieved per iteration for the TriangleSort program. 162

6.46 Effect of varying the mutation rate on the mean mutation score

achieved per iteration for the CalDay program. 162

6.47 Effect of varying the mutation rate on the mean number of HTK

mutants identified for all three programs. 164

6.48 Effect of varying the mutation rate on the mean number of tests

needed to achieve a specific mutation score for the CalDay program. 166

6.49 Effect of varying nFittest on the mean number of mutant execu-

tions to achieve a specific mutation score for the DateRange program.169

6.50 Effect of varying nFittest on the mean number of mutant exe-

cutions to achieve a specific mutation score for the TriangleSort

program. 170

6.51 Effect of varying nFittest on the mean number of mutant execu-

tions to achieve a specific mutation score for the CalDay program. 170

6.52 Effect of varying nFittest on the average memory set size and

memory test affinity for each mutation operator, for the DateRange

program. 173

6.53 Effect of varying nFittest on the average memory set size and

memory test affinity for each mutation operator, for the Triangle-

Sort program. 173

xx

6.54 Effect of varying nFittest on the average memory set size and

memory test affinity for each mutation operator, for the CalDay

program. 174

6.55 Effect of varying nFittest on the average memory set size and

memory test affinity for each mutation operator, for the Select pro-

gram. 174

6.56 Effect of varying nFittest on the mean mutation score achieved

per iteration for the TriangleSort program. 178

6.57 Effect of varying nFittest on the mean number of HTK mutants

identified for all three programs after 500 iterations. 181

6.58 Effect of varying nFittest on the mean number of tests needed to

achieve a specific mutation score for the TriangleSort program. . . 183

6.59 Effect of varying nWorst on the mean number of executions to

achieve specific mutation scores for the TriangleSort program. . . 184

6.60 Effect of varying nWorst on the mean number of executions to

achieve specific mutation scores for the DateRange program. . . . 186

6.61 Effect of varying nWorst on the mean number of executions to

achieve specific mutation scores for the CalDay program. 186

6.62 Effect of varying nWorst on the mean mutation score per iteration

for the DateRange program. 190

6.63 Effect of varying nWorst on the mean mutation score per iteration

for the TriangleSort program. 191

6.64 Effect of varying nWorst on the mean number of HTK mutants

identified for all three programs after 500 iterations. 192

6.65 Effect of varying cloneRate on the average memory set size and

memory test affinity for each mutation operator, for the DateRange

program. 194

6.66 Effect of varying cloneRate on the average memory set size and

memory test affinity for each mutation operator, for the Triangle-

Sort program. 194

xxi

6.67 Effect of varying cloneRate on the average memory set size and

memory test affinity for each mutation operator, for the CalDay

program. 195

6.68 Effect of varying the cloneRate on the mean number of executions

to achieve specific mutation scores for the DateRange program. . . 196

6.69 Effect of varying the cloneRate on the mean mutation scores per

iteration for the DateRange program. 198

6.70 Effect of varying cloneRate on the mean number of HTK mutants

identified for all three programs. 199

3.71 Effect of varying indSize on the mean number of executions to

achieve specific mutation scores for the DateRange program. . . . 241

3.72 Effect of varying indSize on the mean number of executions to

achieve specific mutation scores for the TriangleSort program. . . 242

3.73 Effect of varying indSize on the mean number of executions to

achieve specific mutation scores for the CalDay program. 242

3.74 Effect of varying indSize on the mean mutation score per iteration

for the DateRange program. 243

3.75 Effect of varying indSize on the mean mutation score per iteration

for the TriangleSort program. 244

3.76 Effect of varying indSize on the mean mutation score per iteration

for the CalDay program. 244

3.77 Effect of varying the individual size on the mean number of distinct

tests created to achieve specific mutation scores for the DateRange

program. 246

3.78 Effect of varying the individual size on the mean number of distinct

tests created to achieve specific mutation scores for the TriangleSort

program. 247

3.79 Effect of varying the individual size on the mean number of distinct

tests created to achieve specific mutation scores for the CalDay

program. 247

xxii

3.80 Effect of varying the crossover rate on the mean number of execu-

tions to achieve specific mutation scores for the DateRange program.249

3.81 Effect of varying the individual size on the mean number of ex-

ecutions to achieve specific mutation scores for the TriangleSort

program. 250

3.82 Effect of varying the individual size on the mean number of execu-

tions to achieve specific mutation scores for the CalDay program. 250

3.83 Effect of varying the crossover rate on the mean mutation score per

iteration for the DateRange program. 252

3.84 Effect of varying the individual size on the mean mutation score

per iteration for the TriangleSort program. 253

3.85 Effect of varying the individual size on the mean mutation score

per iteration for the CalDay program. 253

3.86 Effect of varying the crossover rate on the mean number of Tests

generated to achieve specific mutation scores for the DateRange

program. 256

3.87 Effect of varying the individual size on the mean number of Tests

generated to achieve specific mutation scores for the TriangleSort

program. 257

3.88 Effect of varying the individual size on the mean number of Tests

generated to achieve specific mutation scores for the CalDay program.257

3.89 Effect of varying mutRate on the mean number of executions to

achieve specific mutation scores for the DateRange program. . . . 259

3.90 Effect of varying mutRate on the mean number of executions to

achieve specific mutation scores for the TriangleSort program. . . 260

3.91 Effect of varying mutRate on the mean number of executions to

achieve specific mutation scores for the CalDay program. 260

3.92 Effect of varying mutRate on the mean mutation score per iteration

for the DateRange program. 262

xxiii

3.93 Effect of varying mutRate on the mean mutation score per iteration

for the TriangleSort program. 263

3.94 Effect of varying mutRate on the mean mutation score per iteration

for the CalDay program. 263

3.95 Effect of varying the mutation rate on the mean number of tests

needed to achieve a specific mutation score for the DateRange pro-

gram. 266

3.96 Effect of varying the mutation rate on the mean number of tests

needed to achieve a specific mutation score for the TriangleSort

program. 267

3.97 Effect of varying the mutation rate on the mean number of tests

needed to achieve a specific mutation score for the CalDay program. 267

3.98 Effect of varying nFittest on the mean number of executions to

achieve specific mutation scores for the DateRange program. . . . 268

3.99 Effect of varying nFittest on the mean number of executions to

achieve specific mutation scores for the TriangleSort program. . . 269

3.100Effect of varying nFittest on the mean number of executions to

achieve specific mutation scores for the CalDay program. 269

3.101Effect of varying nFittest on the average memory set size and

memory test affinity for each mutation operator, for the DateRange

program. 270

3.102Effect of varying nFittest on the average memory set size and

memory test affinity for each mutation operator, for the Triangle-

Sort program. 270

3.103Effect of varying nFittest on the average memory set size and

memory test affinity for each mutation operator, for the CalDay

program. 271

3.104Effect of varying nFittest on the average memory set size and

memory test affinity for each mutation operator, for the Select pro-

gram. 271

xxiv

3.105Effect of varying nFittest on the mean mutation score per itera-

tion for the DateRange program. 272

3.106Effect of varying nFittest on the mean mutation score per itera-

tion for the TriangleSort program. 273

3.107Effect of varying nFittest on the mean mutation score per itera-

tion for the CalDay program. 273

3.108Effect of varying nFittest on the mean number of distinct tests

created to achieve specific mutation scores for the DateRange pro-

gram. 275

3.109Effect of varying nFittest on the mean number of distinct tests

created to achieve specific mutation scores for the TriangleSort pro-

gram. 276

3.110Effect of varying nFittest on the mean number of distinct tests

created to achieve specific mutation scores for the CalDay program. 276

3.111Effect of varying nWorst on the mean number of executions to

achieve specific mutation scores for the DateRange program. . . . 277

3.112Effect of varying nWorst on the mean number of executions to

achieve specific mutation scores for the TriangleSort program. . . 278

3.113Effect of varying nWorst on the mean number of executions to

achieve specific mutation scores for the CalDay program. 278

3.114Effect of varying nWorst on the mean mutation score per iteration

for the DateRange program. 279

3.115Effect of varying nWorst on the mean mutation score per iteration

for the TriangleSort program. 280

3.116Effect of varying nWorst on the mean mutation score per iteration

for the CalDay program. 280

3.117Effect of varying nWorst on the mean number of distinct tests cre-

ated to achieve specific mutation scores for the DateRange program. 282

3.118Effect of varying nWorst on the mean number of distinct tests cre-

ated to achieve specific mutation scores for the TriangleSort program.283

xxv

3.119Effect of varying nWorst on the mean number of distinct tests cre-

ated to achieve specific mutation scores for the CalDay program. . 283

3.120Effect of varying cloneRate on the mean number of executions to

achieve specific mutation scores for the DateRange program. . . . 284

3.121Effect of varying cloneRate on the mean number of executions to

achieve specific mutation scores for the TriangleSort program. . . 285

3.122Effect of varying cloneRate on the mean number of executions to

achieve specific mutation scores for the CalDay program. 285

3.123Effect of varying cloneRate on the average memory set size and

memory test affinity for each mutation operator, for the DateRange

program. 286

3.124Effect of varying cloneRate on the average memory set size and

memory test affinity for each mutation operator, for the Triangle-

Sort program. 286

3.125Effect of varying cloneRate on the average memory set size and

memory test affinity for each mutation operator, for the CalDay

program. 287

3.126Effect of varying cloneRate on the mean mutation score per itera-

tion for the DateRange program. 288

3.127Effect of varying cloneRate on the mean mutation score per itera-

tion for the TriangleSort program. 289

3.128Effect of varying cloneRate on the mean mutation score per itera-

tion for the CalDay program. 289

3.129Effect of varying cloneRate on the mean number of distinct tests

created to achieve specific mutation scores for the DateRange pro-

gram. 291

3.130Effect of varying cloneRate on the mean number of distinct tests

created to achieve specific mutation scores for the TriangleSort pro-

gram. 292

xxvi

3.131Effect of varying cloneRate on the mean number of distinct tests

created to achieve specific mutation scores for the CalDay program. 292

xxvii

Abstract

Despite nearly 30 years of research and being widely held as a powerful unit test-

ing technique, mutation testing still suffers from a number of problems. For the

most part, its hindrance lies with the large number of mutated program executions

that must occur, although there are also a number of other challenges such as au-

tomation, test case generation, and identifying semantically equivalent programs.

Over the years many techniques have tried to help overcome these problems; this

thesis provides another, tailored specifically to the area of automatic test case

generation using a biological metaphor.

Nature has been regarded as a plentiful supply of ideas and metaphors for

our own engineering needs. In computing terms, this practice has spawned many

new algorithms primarily designed at optimisation and adaptation, with one of

the most infamous being Genetic Algorithms (GA). Recently however, a new

paradigm has emerged that offers promising results compared to GAs - Artificial

Immune Systems (AIS). As their name suggests, these algorithms look towards the

immune system to provide inspiration for solving complex and adaptive problems,

often with favourable results.

Genetic Algorithms have previously been applied to mutation testing in the

area of test data generation, with reasonable success. This thesis compares such

an approach to an immune system inspired algorithm, indicating that the latter is

capable of generating higher mutation scores in lower execution times. In addition,

an analysis of each algorithm’s parameter space is performed, highlighting to

practitioners useful settings for each parameter in respect to the program being

tested, as well as possible algorithm refinements.

xxviii

Acknowledgements

There are a number of people whose support, kindness and insight throughout

this work has not gone unnoticed. To these people especially, I offer my sincerest

gratitude.

To my friends and supervisors, Jon Timmis and Keith Mander. Thank you

so much for your endless support, your encouragement and your wise words of

wisdom, both inside and outside of work.

To Hannah. We have been through many tough months together, sailing

through the highs and suffering the lows. I thank you for your patience, your

understanding and your love.

To my good friend Claire. You have been there for me throughout everything

- thank you. You truly are a dear friend.

To Bob Barnes (Philips Electronics UK Ltd.). Thank you for your support

and understanding.

And finally, to my parents and sister. Thank you. I could not have achieved

this without your continual support through these difficult and stressful times.

xxix

“There is nothing magical about testing and test design

that immunizes testers against bugs.”

- Boris Beizer [8]

xxx

Chapter 1

Introduction

1.1 Motivation

1.1.1 Software Testing Concerns

Software engineering is different from most other engineering disciplines in that it

generates a product that cannot be physically touched. Furthermore, unlike most

other engineering forms, each piece of software is unique; programs are specifically

designed to fulfil some (hopefully) well-defined purpose1. Software engineering

is not entirely independent of the other engineering streams however: all need

testing to ensure correct functionality and safety of a product. Without testing,

products could be released that are unsatisfactory, or unsafe, for their operational

environment.

Software testing can be considered to have two aims [8]. The primary aim

is to prevent bugs from being introduced into code - prevention being the best

medicine. The second is to discover those un-prevented bugs, i.e. to indicate

their symptoms and allow the infection to be cured. This naturally prompts four

questions2: What is a bug? What are its symptoms? What is an infection? And,

how is it cured?

1Albeit possibly mass produced.
2To answer these questions, the author made reference to the terms ‘error’, ‘fault’ and ‘failure’

as defined in [97].

1

CHAPTER 1. INTRODUCTION 2

What is a bug? When developing software, people often make errors. They

maybe misunderstand a specification, underestimate the complexity of the soft-

ware, or inadvertently press the wrong key. Whatever the reason, these errors

manifest themselves as faults - physical mistakes in the design or implementation

of the code. These are commonly referred to as ‘bugs’, especially in the context

of code development.

What are the symptoms of a bug? Any bugs present in the software may cause

it to fail when executed. Software failure is an observable event where the soft-

ware’s execution differs from its specification. Therefore, the failure observed is a

symptom of the bug. These symptoms can be just as wide ranging as the symp-

toms of the flu in humans. For example, a programmer may erroneously interpret

a specification and insert a fault which incorrectly rounds a value. However, the

failure resulting from this could range from a trivial annoyance such as incorrect

change at a till, to something as drastic as the loss of human life, such as a death

caused by an incorrect drug prescription.

What is an infection? In biology, an infection is due to the presence of a bug

in the body that may or may not cause symptoms to be expressed. Similarly, an

infection in code refers to software that has at least one fault that may or may

not express symptoms when executed. Simply, the code is infected with a bug.

How is an infection cured? Curing an infection can be viewed as a two stage

process forming the basis of testing: Every bug has to first be identified, and then

corrected. Identification is primarily achieved by executing tests on a program in

an attempt to reveal symptoms of a bug. If symptoms are expressed, then the test

has caused the program to execute differently from its specification, and so has

provided information useful in identifying a fault. Once identified, this fault can be

corrected, which in many instances is a trivial matter requiring a simple change to

the source code. For example, the wrong variable name, or an incorrect relational

operator was used, the correct versions of which should be fairly obvious to the

programmer. Other instances however, may need more fundamental changes that

require the rewriting of numerous lines of code. In either case though, the faulty

CHAPTER 1. INTRODUCTION 3

code has been identified and fixed.

This process of identifying and correcting faults continues until all bugs in

the code have been found, at which point a set of tests will have been generated

that have reduced the failure rate of the program - a cure. So far however, the

assumption has been made that a programmer knows a priori whether faults

are present in the software. This is a contradiction. If the faults were known

beforehand, then testing (in a fault-detection capacity) would be unnecessary.

Not knowing beforehand however, poses an interesting dilemma: how does a tester

distinguish between a “poor” test that is incapable of displaying a fault’s symptoms,

and a “good” test when there are simply no faults to find? Neither situation

provides a useful metric. A heuristic to help aid this problem uses the notion of test

set adequacy as a means of measuring how “good” a test set is at testing a program

[108]. The key to this is that “goodness” is measured in relation to a predefined

adequacy criteria, which is usually some indication of program coverage. For

example, the statement coverage criteria requires that a test set executes every

statement in a program at least once. If a test set is found inadequate relative to

the criteria (e.g. not all statements are executed at least once), then further tests

are required. The aim therefore, is to generate a set of tests that fully exercise

the adequacy criteria.

Typical adequacy criteria such as statement coverage and decision testing (ex-

ercising all true and false paths through a program) rely on exercising a program

with an increasing number of tests in order to improve the reliability of that pro-

gram. They do not, however, focus on the cause of a program’s failure, namely

the faults. One criteria does. Known as mutation testing, this criteria generates

versions of the program containing simple faults and then finds tests to indicate

their symptoms. If an adequate test set can be found that reveals the symptoms in

all the faulty versions, then one’s confidence that the program is correct increases.

This criterion forms an adequacy measure for the cure.

The term “cure”, however, tends to suggest some medicine that can be repeat-

edly applied to “fix” some ailment in a body every time it occurs. Perhaps a more

CHAPTER 1. INTRODUCTION 4

pertinent view would be to consider the generated test set as a vaccine. This could

be seen as a simple change of terminology, but it does emphasise the preventative

measure of the test set and so enhance the primary aim of testing. A vaccine, for

example, does not stop a bug infecting a body, but instead, endeavours to prevent

the bug causing symptoms by identifying it every time it is seen, thus enabling

its swift removal. In software terms, the test set does not stop faults occurring in

the code, but instead, endeavours to prevent them from causing software failures

by identifying the faults for subsequent removal. The overall effect is to reduce

the failure rate, or improve the reliability, of a program.

Unfortunately, a vaccine rarely remains sufficient. Software is under a constant

pressure to change, for two reasons. First, incorrect code needs correcting. It is

rare that code is correct from the start and this prompts a cycle of testing and

correcting faults. As Beizer [8] noted in his first law of software testing, The

Pesticide Paradox, “every method you use to prevent or find bugs leaves a residue

of subtler bugs against which those methods are ineffectual”. Subsequently, the

tests that were once employed and worked well for a previous software version

may no longer be enough. Test sets wear out! To compensate for this, new tests

are required, but the fact remains that these new tests are likely to expire too.

The second reason for software’s constant pressure to change is due to humanity’s

thirst for technological advancement. Again, Beizer sums this up well with his

second law, The Complexity Barrier, “software complexity (and therefore that of

‘bugs’) grows to the limits of our ability to manage that complexity” [8]. If a piece

of software works well, then it becomes less complex as a user’s understanding of

it grows, allowing new features to be demanded and added until software again

reaches the complexity barrier. And so it is with bugs. As a programmer’s

understanding of them increases, their complexity drops, but as new features

increase the software complexity again, the bugs faced become subtler. So once

again, the tests that worked well at one level of complexity, may no longer be

effective.

This problem is exacerbated further by human nature; we want to learn and

CHAPTER 1. INTRODUCTION 5

not repeat the same mistakes time and time again. It is likely, therefore, that a

programmer who takes note of the faults they so often have to correct, will try

not to make them. They will try to adapt their habits, evolve their programming

style, and in the process possibly make new faults. So we see again, the tests that

once worked need to adapt in order to continue to be effective. The vaccine needs

to evolve.

1.1.2 Inspiration from Nature

In biology, vaccines are designed to help improve a body’s natural defence mech-

anism against infection from a wide variety of invading organisms and viruses,

known as pathogens. They do this by providing an artificial exposure to a virus,

prompting the body’s immune system to pre-develop receptor cells capable of

recognising the virus. Subsequent invasions by that pathogen are identified and

removed quicker because of presence of these pre-developed receptors, thereby

limiting the virus’ overall impact on the body. Had the body not received a vac-

cination (and had not been infected by the pathogen before), then the necessary

receptors would also have been evolved as part of the immune response to the in-

fection - indeed it is this immune response that allows vaccines to work. Evolving

receptors takes a relatively long time however, giving the virus a greater opportu-

nity to overwhelm the body. Overall then, vaccines are advantageous in quickly

identifying viruses and limiting their impact, just as a software vaccines should

help quickly identify faults and limit the failures they induce.

Unfortunately, the general process of evolution that helps the immune system

recognise new viruses, also aids pathogens in evading the immune system. New

virus strains can evolve which an immune system has no receptors for. As a

consequence, new vaccines are needed to prevent infections by these new strains.

A good example is the influenza (flu) virus which often undergoes genetic changes,

forcing vaccines (and therefore the immune system) to be reworked annually [93].

The development of updated vaccines however, provokes the need for the pathogen

to mutate again in order to survive. And so the cycle continues. Pathogenic

CHAPTER 1. INTRODUCTION 6

evolution forces vaccine evolution, which in turn encourages pathogenic evolution.

So it is with software testing, as tests (vaccines) evolve to detect new failures, the

associated faults are changed, and the software evolves, possibly introducing new

faults. Continuously evolving tests helps to limit the failures produced by the

evolving code.

Evolution occurs constantly in nature, and on many scales, and is often driven

by the need for survival - for example the body wishes to survive against viruses

and so the immune system must adapt to defend it. More generally this can be

thought of as a change in an organism’s environment prompts a need for it to adapt

in order to survive. This is seen elsewhere in nature, not just the immune system.

Changes in the environment (whether man-made or natural) cause humans (and

other animals) to evolve over many generations. Those individuals who develop

stronger solutions to the environmental changes are more likely to survive, repro-

duce and pass on their solution (genetic material) to their children. Individuals

who fail to adapt quickly enough are usually overwhelmed by the changes to their

environment and fail to reproduce - their weaker solution dies out. This process is

often referred to as Darwinian evolution and encompasses a survival of the fittest

metaphor.

Evolution can be seen to provide the key to survival in an ever changing world.

It is no surprise then, that engineers should turn to evolution as inspiration to

complex problems. If the problem space of a computational task is forever chang-

ing, it is likely that the optimal solution will change too. This has led computer

engineers to use evolutionary strategies as inspiration to a wide diversity of com-

plex problems, creating techniques known as Evolutionary Algorithms (EAs), the

most infamous being Genetic Algorithms (GAs) [40, 76]. Commonly, these algo-

rithms evolve a population of solutions (to some “environmental” problem) over

a number of iterations, favouring the stronger solutions at any one stage. As

this process continues, an optimal solution emerges. Over the recent years how-

ever, EAs have seen an additional technique develop based on the workings of the

CHAPTER 1. INTRODUCTION 7

vertebrate immune system. Known as Artificial Immune Systems [25], these algo-

rithms evolve a population of artificial immune cells (solutions) through cloning

and mutation, in order to survive against dynamic viruses (the problem space).

Having this metaphor in place between natural and artificial immune systems,

raises the question: if the immune system can develop a set of receptors to detect

unseen viruses, can Artificial Immune Systems be used to evolve an effective set

of tests to detect software faults?

1.2 Contributions

The principal goal of this thesis is to compare the use of an Artificial Immune

System metaphor for generating mutation adequate test data with a Genetic Al-

gorithm approach. As will be seen later, research has previously been conducted

in the area of automatic test data generation for mutation testing, but not us-

ing an immune system metaphor. Typically, research has focused on a Genetic

Algorithm methodology [5, 6, 7, 13, 46], and so this will form the basis for a

comparison system. The evaluation criteria itself will predominantly centre on

the time the algorithm takes to perform, as this is a fundamental drawback of

mutation testing. Other measures will also be used (such as test set size).

The contributions of this thesis include:

1. A thorough review of literature surrounding mutation testing and its current

state-of-the-art, with particular emphasis placed on the various problems

with the technique and their current work-arounds (Chapter 2);

2. A review of the biological metaphors inspiring both of the major evolution-

ary algorithms used in this thesis (Genetic Algorithms and Artificial Immune

Systems), along with details of typical implementations of each algorithm’s

component processes (Chapter 3);

3. Mutation testing is revisited and the measures used to fairly compare algo-

rithm effectiveness are described. A new AIS algorithm is then presented

CHAPTER 1. INTRODUCTION 8

(based on CLONALG [24]), along with a GA, both aimed at improving a

set of test data for a given program (Chapter 4);

4. A statistical comparison between the AIS and GA algorithms is performed

using non-optimised parameter settings, indicating that the AIS algorithm

is at least, and often more, effective than the GA approach (Chapter 5);

5. A detailed statistical analysis of each algorithm’s parameters is undertaken

providing useful insights into the appropriate parameter values needed when

testing a program. Explanations are presented for each parameter’s effect,

although further evidence is required to ascertain the validity of the expla-

nations (Chapter 6).

1.3 Thesis Structure

This thesis is organised into the following chapters.

Chapter 2 details the principal components of mutation testing, describing the

basic methodology and the fundamental assumptions necessary to undertake this

approach. Discussion then turns to mutation testing’s two broad categories of

problems: computational expense and automation. Both areas are explored, with

an emphasis on examining past research that attempts to overcome (or at least

improve upon) these problems.

Chapter 3 discusses the use of evolution in nature as inspiration for solving

computational problems. In particular, focus is placed on inspiration drawn from

the Darwinian evolution of species, and evolution within the immune system.

Details are given about the current understanding of the biological workings of

such systems. Finally each approach is concluded with an explanation of the

artificial system derived from its natural counterpart. Every effort is made to

keep these discussions relevant to the overall thesis.

Chapter 4 describes the approach taken within this research to applying a

Genetic Algorithm and an Artificial Immune System to the field of mutation

CHAPTER 1. INTRODUCTION 9

testing. Both algorithms are outlined in detail, with the chapter concluded by a

discussion on the fundamental differences between the two.

Chapter 5 starts by identifying the main hypothesis of this research, which is

broken down into constituent hypotheses. Variable settings are selected for each

algorithm, and comparisons made on all sub-hypotheses. Results indicate definite

gains from using an Artificial Immune System approach to evolving test data.

Chapter 6 details the effect each algorithm’s parameters have on overall perfor-

mance, in order to provide guidance for practitioners wishing to use this technique.

Results are presented for each algorithm, divided into sections for each parameter.

Some of the results graphs are presented in this chapter, although all graphs can

be found in Appendix C.

Finally, chapter 7 summarises the work undertaken and the overall major

conclusions - an Artificial Immune System approach is consistently more effective

at generating test data than a Genetic Algorithm. This chapter also provides

possible directions for future research.

1.4 Publications

The following two papers were written when researching this thesis:

• P. May, K. Mander, and J. Timmis, “Mutation Testing: An Artificial Im-

mune System Approach”, in UK-Softest, UK Software Testing Workshop,

University of York, Uk. September 2003, pp.

• P. May, K. Mander, and J. Timmis, “Software Vaccination: An Artificial

Immune System Approach”, in Proceedings of the 2nd International Con-

ference on Artificial Immune Systems (ICARIS2003), ser. Lecture Notes

in Computer Science, J. Timmis, P. Bentley, and E. Hart, Eds. no. 2787,

Springer-Verlag, September 2003, pp. 81-92.

Chapter 2

Mutation Testing

2.1 Introduction

The effectiveness of tests at indicating program faults is crucial to software testing;

some tests are better than others, but it is often difficult to identify which these

are. A test may be ‘good’ in the sense that it is capable of detecting a particular

fault that no other test can, but difficult to identify because the exposing fault

is not present in the code. Conversely, a test may be ‘poor’ in the sense that

it is incapable of detecting any faults, but again difficult to identify because we

do not know if any faults are present in the code. In both cases, there is no

way to measure the test’s effectiveness. The key is to know whether faults exist

prior to testing, but knowing this makes testing redundant. To aid with this

paradox, criteria are used to provide a requirement for test data adequacy, and

so give a measure for improving a test set. For example, tests are iteratively

improved until they execute all statements in the code (statement testing), or

execute all true and false branch decisions (branch testing). Compliance with

a criterion deems the test data as adequate (with respect to that criterion) and

therefore more likely to indicate faults if they exist. However, typical criteria do

not focus on the cause of a program’s failures - the faults; the mutation adequacy

criterion does. This provides a measure for test data effectiveness by showing

10

CHAPTER 2. MUTATION TESTING 11

that the tests can expose all possible simple1 faults of a program in much the

same way as statement testing displays effectiveness by ensuring that every line

of code has been executed. Most likely, however, a test set will not be able to

identify all faults, in which case the mutation adequacy criterion gives a measure

to determine improvement in selecting a new test set; for example, a test set that

detected 80% of faults would allow test generation to focus on the remaining 20%.

This measure allows a controlled, iterative improvement of test data, forming the

basis of mutation testing.

DeMillo et. al. [27] introduced mutation testing to provide a means of iter-

atively improving test data adequacy with respect to some Program Under Test

(PUT). Based on the mutation adequacy criterion, fault induced variants of the

PUT are executed with a test set to ascertain how many variants fail2. The more

that fail, the greater the adequacy of that test set. The tester’s aim is to generate

new test data that improves upon the adequacy of the existing tests. A rather

useful consequence of this approach is that improving the adequacy of the test

data improves the tester’s confidence in the correctness of the PUT. Arguably

it can be reasoned that a tester’s confidence in a program is going to be greater

where more discriminating tests are used. However, it is the method for improving

the test adequacy that offers more substantial support. If a fault induced variant

of the PUT fails when executed with some test, and the PUT succeeds, then the

PUT itself cannot contain that fault (i.e. the PUT is the correct version of the

program with respect to that fault). Testing every possible variant helps test that

none of those faults are present in the PUT. Evolving test data in this manner

conjointly enables the tester to evolve their confidence in the PUT’s correctness,

but this is not without restrictions.

Mutation testing makes three fundamental assumptions. The first is the com-

petent programmer hypothesis, which states that a competent programmer creates

1A simple fault would be produced by a single lexeme difference or variable name replacement,
for example.

2Produce an incorrect output for that test input.

CHAPTER 2. MUTATION TESTING 12

programs that, if not correct, are close to being correct [27, 37]. Such program-

mers have an idea of what the desired program should look like and strive to

achieve that. The second is the coupling effect that states that test data capable

of identifying simple errors (single lexeme differences, for example) are implicitly

able to identify more complex errors [27]. This effect is supported by empirical

evidence [81] and allows mutation testing to operate on a restricted set of simple

PUT variations, whilst generating tests effective at identifying complex faults.

The third assumption is the presence of an oracle for classifying the output of a

test execution as correct or not. How this oracle is implemented is in itself a com-

plex problem and beyond the scope of this research. These assumptions underpin

the foundations of mutation testing and provide restrictions to its usage.

2.2 Methodology

Mutation testing is an iterative procedure to improve test data with respect to

a program, as indicated in Figure 2.1. The initial parameters to the process are

the PUT (Program Under Test) and a test set population, T. Initially, by using

an oracle, the PUT must be shown to produce the desired outputs when executed

with the tests in T. If any of the outputs are erroneous, then T has demonstrated

that the PUT contains a fault. This should be corrected before resuming the

process.

Having identified all tests in T produce correct outputs, the next stage is to

generate a set, M, of fault induced variants of the PUT that correct for simple

faults that could have occurred. Each variant, or mutant, differs from the PUT by

a small amount, such as a single lexeme, and is generated by a mutation operator.

Mutagens, as they are otherwise known, alter the semantics of the PUT depending

on the faults they classify. For example, the relational operator mutagen will

generate a number of mutants where each one has an instance of a relational

operator replaced by another. These mutants are then executed with T and their

outputs compared against the outputs from the PUT. If a mutant can be shown

CHAPTER 2. MUTATION TESTING 13

Mutagens

Input test
prog, P

FalseTrue
Quit

TrueFalse

Prog

Tests

Create
mutants

Input test
cases, T

Run T on P

Fix P

All
mutants
dead?

Analyse and
mark

equivalent
mutants

correct?
P(T)

Update T

Run test cases
on each live

mutant

Figure 2.1: The Mutation Testing process. Diagram reproduced from [91]

to produce an undesirable result (i.e. its result differ from the PUT’s), then the

fault that that mutant corrects is proven not to occur in the PUT. Subsequently,

the tester’s confidence that the PUT is correct, increases. Any such undesirable

mutants become superfluous, as a test exists to distinguish them, and so they are

killed (removed) from the mutant set M.

Once all the tests in T have been executed on all mutants in M, those mutants

that remain alive (that still exist in M) are so far indistinguishable from the

original. In other words, there does not exist a test in T that will cause these

living mutants to compute a different output from P. These mutants become the

target for the next iteration, where new test data will be generated in the attempt

to detect them.

This process continues until all mutants in M are killed. Killing mutants,

however, is not a trivial task as some mutants may be semantically the same as

the PUT. These mutants are known as equivalent mutants, and will always produce

the same output as the PUT regardless of the test applied. As a consequence,

CHAPTER 2. MUTATION TESTING 14

M can never be completely emptied when equivalent mutants exist. This has an

adverse effect on mutation testing as the tester does not know whether the tests

that remain in M are equivalent or not. If they are equivalent then no test will

kill them; if not, then a test that will distinguish them has so far not been found.

Worse still, determining whether a mutant is equivalent is undecidable [17], and

so typically the decision is left for the tester to establish manually.

Reducing the set M to the empty set offers a useful metric for assessing the

quality of T with respect to the PUT. If T manages to kill all non-equivalent

mutants then the tests are capable of identifying that none of the faults the mu-

tants try to repair are present in the PUT. Before T reaches this adequate state

however, it will only discriminate a proportion of the mutants, indicated by the

number of non-equivalent mutants killed from M. This proportion is the mutation

score (MS) and is more formally defined as:

MS =
| mutantskilled |

| mutants | − | equivalents | (2.1)

That is, the proportion of mutants killed (identified) out of all non-equivalent

mutants. As this proportion increases (i.e. more non-equivalent mutants are

killed), so does the adequacy of the test data and the tester’s confidence in the

correctness of the PUT. Subsequent iterations therefore involve generating new

tests to improve the adequacy of T.

2.2.1 Mutation Operators

The majority of research into mutation testing is based around Fortran programs

primarily because of the easy availability of the Mothra mutation system [79].

Mothra uses 22 mutagens to generate mutants for Fortran-77 programs [48], as

shown in table 2.1. These operators were developed and refined over 20 years ago,

with many still used in some form today - for example, [7] uses a logical operator

replacement operator and a statement suppression operator similar to Mothra’s

LCR and SDL mutagens; muJava still uses the ABS, AOR, LCR, ROR and UOI

CHAPTER 2. MUTATION TESTING 15

Mutation Operator Description
AAR Array reference for array reference replacement
ABS Absolute value insertion
ACR Array reference for constant replacement
AOR Arithmetic operator replacement
ASR Array reference for scalar variable replacement
CAR Constant for array reference replacement
CNR Comparable array name replacement
CRP Constant replacement
CSR Constant for scalar variable replacement
DER DO statement end replacement
DSA DATA statement alterations
GLR GOTO label replacement
LCR Logical connector replacement
ROR Relational operator replacement
RSR RETURN statement replacement
SAN Statement analysis
SAR Scalar variable for array reference replacement
SCR Scalar for constant replacement
SDL Statement deletion
SRC Source constant replacement
SVR Scalar variable replacement
UOI Unary operator insertion

Table 2.1: The standard 22 mutagens used in Mothra

operators [59].

Mutation operators are designed to reveal faults in the PUT when executed.

A good example is the relational operator replacement mutagen, ROR. A mutant

generated from this operator will be identical to the PUT except that a single

relational operator will be replaced with another nonidentical relational operator,

for example, a statement such as x < y will be replaced by x ≤ y . The idea behind

this is to detect whether, in this case <, is the correct relational operator to use. If

the PUT is indeed correct, then it is possible to find tests that generate incorrect

outputs for all the non-equivalent relational operator variants, thereby eliminating

those mutants from being the correct version of the program. However, it is not

known, a priori to testing, whether the PUT is correct. Instead, the PUT has to

be assumed correct, unless a test can prove otherwise. Under these circumstances

then, the proportion of non-equivalent mutants the test set kills, is a measure of

CHAPTER 2. MUTATION TESTING 16

how adequate the test set is and a measure of confidence in the correctness of the

PUT.

Recently, research into mutation testing has focussed on developing new mu-

tagens specifically for Object-Oriented environments, with particular emphasis on

Java [10, 47, 58, 60, 88]. Object-Oriented (OO) languages differ from traditional

programs in many ways, in particular in structure and in paradigms such as in-

heritance and polymorphism. These differences cause possibilities for new faults

to be introduced that need to be represented in OO mutation testing systems for

them to be effective. This research, however, focusses on the testing of simple

programs, where it is reasonably safe to assume that most traditional mutation

operators still suffice [58].

2.3 Problems with Mutation Testing

Although widely believed to be a powerful unit testing technique [48, 82, 91, 103],

mutation testing suffers from a number of problems that restrain its adoption

into mainstream industry. These can be categorised broadly into two groups:

computational expense - how much time and effort is required to perform mutation

testing; and automation - how much effort is required on the tester’s part.

Mutation testing is expensive because of the large number of mutant programs

that need to be created and executed [91]. Researchers conducting empirical stud-

ies with mutation testing are therefore usually restricted to using small programs

in order to restrain the number of mutants produced [81, 85, 103]. Whilst this

constraint is acceptable from an academic stance, it is not for industry which often

wishes to test larger, more complex programs. As the complexity increases, so

does the execution time for a program and its mutant variants, therefore increas-

ing the overall runtime for mutation testing. Matters are aggravated further due

to the difficulties in automating the entire mutation testing process. Despite a

large proportion of the process capable of being easily automated, certain tasks

such as detecting equivalent mutants and checking output correctness are typically

CHAPTER 2. MUTATION TESTING 17

done by hand. Although these labours do allow the code itself to be scrutinised,

it is still a tedious and error prone task that increases the duration of testing at

a point in the software life cycle when time is often critical.

2.4 Reducing Computational Expense

Traditional mutation testing systems generate large numbers of mutant programs.

For example, 385 mutants are generated for an 18 line Newton square root For-

tran procedure [103]. Analysis shows that the number of mutants generated is

approximately defined as the product of the number of data references and data

objects [18, 20, 85]. Therefore in general, as a program’s complexity increases so

does the number of mutants. In turn, this increases the execution costs, as every

mutant has to execute against at least one test case. Such expense is accepted

for academic research where time constraints are flexible, but industry does not

generally have that luxury. High runtime is exacerbated further because tradi-

tional systems interpret mutant programs. Whilst this is convenient, it does make

such systems slow to execute, hard to construct, and difficult to emulate the op-

erational environment [85]. To overcome the costs associated with mutants, most

research has concentrated on one of three areas: do fewer, do faster, or do smarter

[91].

2.4.1 Do Fewer

An obvious way to reduce the expense of standard mutation testing is to reduce

the number of mutant programs that are executed. In particular, three mutation

testing techniques exist that attempt to do just this without lessening their fault

finding capabilities: Mutant Sampling; Constrained Mutation; and, N-Selective

Mutation.

Mutant sampling reduces the computational costs by selecting a small percent-

age of mutants from each mutagen and ignoring the remainder. Investigations by

CHAPTER 2. MUTATION TESTING 18

Acree [1] and Budd [18] suggested that a 10% sampling rate resulted in the iden-

tification of over 99% of all non-equivalent mutants whilst providing considerable

cost savings. Wong [108] continued research into the cost benefits of mutant sam-

pling by varying the sampling rate between 10% and 40%. Even at the lowest rate,

Wong’s results suggest mutant sampling to be an effective cost-cutting strategy

producing test sets capable of identifying at least 96.14% of all mutants but only

examining 9.8%‡ of them. Whilst, as Wong suggests, these results are similar to

the scores reported by [1, 18], only 5 runs per sample rate were performed im-

plying that the average scores quoted may not be accurate for the 4 programs

tested, let alone other programs. Assuming these results are indicative of every

program however, the remaining percentage of unidentified mutants could still be

significantly large. For example consider Wong’s results: the 80 line STRMAT2

C program [108] generated 510 mutants - the smallest for the 4 programs - of

which 3.86% (percentage of remaining mutants from the 10% sampling rate test

set) represents approximately 20 mutants. As the tested program’s complexity

increases, so will the overall number of mutants, meaning that the proportion of

remaining mutants will be even larger. Therefore despite achieving a high (96%+)

mutation score, the number of remaining mutants is likely to be just as significant.

A further point highlighted in [108] is that for sample-adequate test sets, a

higher sampling rate does not necessarily generate a higher mutation score than

a lower sampling rate. Initially this seems implausible. One would expect tests

generated from a larger sample to be more adequate at identifying the remain-

ing mutants than tests from a smaller sample. Wong’s results however, suggest

otherwise; for the TEXTFMT function, a 25% sampling rate averages a 98.92%

mutation score compared with 99.01% for a 10% sampling rate. These results

suggest that the number of mutants examined is not a clear indicator of the mu-

tation score (bar examining all mutants), but instead an indication that some

‡Although not specified by Wong, the observable differences in the percentage of mutants
is presumably caused by approximation errors in calculating the number of mutants for each
mutagen. For example, 10% of an ROR operator generating 101 mutants is 10.1 mutants, which
is either rounder up to 11, or down to 10 whole mutants.

CHAPTER 2. MUTATION TESTING 19

tests are capable of identifying more mutants than others. In which case, does the

choice of the mutants selected for testing affect the tests generated and therefore

the mutation score?

Mutants could be categorised based on the set of tests that kill them. A strong

mutant is hard to distinguish, requiring a specific test to kill it. At the other

extreme, a weak mutant is easily distinguished by any test. In general however,

mutants vary in strength between these extremes, with differing sets of tests that

kill them. These sets are generally unknown before (and often after!) testing,

however it is from a mutant’s test set that a test must be generated in order to

kill that mutant. Consider the situation where a reasonably weak mutant, W, and

a reasonably strong mutant, S, are chosen. W will have a large set of tests that

kill it - TW ; S will not - TS . There are three possible situations that could arise,

shown graphically in figure 2.2:

swT

(c)

T T

(a) (b)

wwT T s
T s

Figure 2.2: Three possible scenarios for the relationship between the sets of tests
that kill a weak and strong mutant.

1. TS ⊆ TW . The test set that kills the stronger mutant is a subset of the test

set that kills the weaker mutants - figure 2.2(a).

2. (TS 6⊆ TW) ∧ (TS ∩ TW 6= ®). TS is not a subset of TW but the two sets

intersect - figure 2.2(b).

3. TS ∩ TW = ®. The two test sets are mutually exclusive - figure 2.2(c).

If situation 1 occurs, then selecting the stronger mutant during sampling will

ensure a test is generated to kill the weaker mutant - i.e. the generated test is in

CHAPTER 2. MUTATION TESTING 20

both TS and TW . If the weaker mutant is selected however, there is a reduced

chance that the generated test will kill the stronger mutant - i.e. the test will

be in TW but may or may not be in TS . If situation 3 arises, then selecting

either mutant during sampling will only generate test data capable of killing that

particular mutant. Situation 2 is a combination of the other two. Selecting the

stronger mutant will generate a test that may or may not kill the weaker mutant,

and vice versa. In general, as the size of TW is likely to be greater than the

size of TS , the probability of a test from TW intersecting with TS is likely to be

smaller than a test from TS intersecting with TW . For example, consider only a

single test, x , that intersects the two sets; | TW |= 20 and | TS |= 5. If a test is

generated to kill the weaker mutant (i.e. the test is in TW), then the probability of

it being x is 1/20. If a test is generated to kill the stronger mutant (i.e. the test is

in TS), then the probability of it being x is 1/5§. These three situations indicate

that the mutant chosen during sampling will indeed affect the tests generated.

Furthermore, they suggest that selecting stronger mutants improves the chances

of killing weaker mutants, and so it is not the size of the mutant sample that

is important, but the choice of mutant. Sampling a lower percentage of stronger

mutants could generate a higher mutation score than sampling a higher percentage

of weaker mutants.

Constrained mutation was proposed by Mathur [64] as a variant of mutant

sampling. It works by generating all mutants from a subset of mutation opera-

tors rather than generating a sample from all possible mutants. Empirical tests

have generated compelling results in favour of constrained mutation [65, 66, 108].

Wong’s results in particular found that average mutation scores from constrained-

adequate (using only the ABS and ROR operators) test sets exceeded 95% for the

four programs tested, and reduced the number of mutants to between 14.39% and

19.94% of the total number [108]. Whilst the cost savings are not as great as a 10%

§These statistics ignore the probabilities of generating test data belonging to a set. Obviously,
if test generation is random, there is a slightly larger chance of generating a test in TW than
TS . The probability of generating a test in TW is 20/n (where n is the total number of possible
tests); for TS the probability is 5/n.

CHAPTER 2. MUTATION TESTING 21

sampling rate (which executed between 9.8% and 10.98% of the total mutants),

the average mutation scores are approximately equal - 97.56% for 10% sampling

rate and 97.18% for ABS/ROR constrained mutation. Mathur et. al.’s findings

offer a similar indication, reporting that in 7 of 10 experiments, ABS/ROR con-

strained mutation is at least as effective as a 10% sampling rate at fault detection.

Furthermore, the remaining 3 experiments all involved the same program, which

was not used in the other 7 experiments [65]. They conclude that “when combined

with the cost of various criteria and the number of mutants to be examined, the

abs/ror variant of mutation appears to be the most promising criterion to use in

practice”.

Offutt et. al. [92, 85] subtly altered Mathur’s work by using all mutagens bar

the two that generate the most mutants (for their 2-selective mutation approach)

- different from Mathur’s approach of constraining the operators to a select few.

They then hypothesised an N-selective approach where the N highest-yielding

mutagens are removed, opting to compare 2-,4- and 6-selective approaches on 10

test programs. Initially 28 programs were examined to determine the percentage

of mutants produced by each mutagen, as shown in figure 2.3. These suggest

omitting SVR and ASR mutagens for 2-selective mutation, plus SCR and CSR

for 4-selective, combined with ACR and SRC for 6-selective. For each selective

approach, the Godzilla automatic test data generator [28] was used to create

selective-mutation adequate test data. These test sets were then compared against

all mutants to ascertain their effectiveness against all mutants - i.e. their true

mutation score. The results were promising. The 2-selective approach resulted

in a true mutation score of 99.99% and a saving of 23.98% in the number of

mutants examined. For 4-selective, these figures were 99.84% and 41.36%, and

for 6-selective they were 99.71% and 60.56% respectively. Such high mutation

scores from selective-adequate test sets suggest that tests designed to kill mutants

from low-yielding mutagens are also capable of killing mutants from high-yielding

mutagens, offering credence towards the theory suggested by mutant sampling

that the choice of mutants used influences the quality of the tests generated.

CHAPTER 2. MUTATION TESTING 22

20

aor sarlcr der sanrsr sdl cnr rordsa glr crp car aar uoi abs src aor csr scr asr svr

12

16

4

0

8

Mutation Operators

Pe
rc

en
ta

ge

Figure 2.3: Mutant Distribution by Mutation Operator. Diagram reproduced from
[92]

Offutt et. al. continued researching whether removing further mutants pro-

duces increased savings without severely harming the effectiveness of the generated

test sets [85]. The 22 Fortran mutagens were divided into three groups: Replace-

ment of operand mutagens - replacing each program operand with another legal

operand; Expression modification mutagens - replacing program operators and in-

serting new operators; and, Statement modification mutagens - modifying entire

statements. They performed three experiments to generate adequate test data,

excluding a single group of mutagens in each study. When compared against all

mutants, the results suggested that the 5 expression operators (ABS, AOR, LCR,

ROR, UOI) were the most useful. These 5 operators alter the program’s control

structure, and so they are also useful in providing branch coverage tests. Unsur-

prisingly then, they also correspond with Beizer’s statistics that 12.8% of faults

are due to control flow and sequencing errors - the largest cause of errors [8]. Ad-

ditional experiments demonstrated that adequate test sets generated from these

five produced an average mutation score of 99.51% with a saving of 77.56% on the

number of mutants examined. These results are similar to the average mutation

scores obtained using mutant sampling with a 25% sampling rate (75% saving):

between 98.27% and 99.01%. However, unlike mutant sampling, this approach

has emphasised the class of mutants examined, providing evidence that certain

operators help generate stronger tests (i.e. they are able to kill more mutants)

CHAPTER 2. MUTATION TESTING 23

than others. This led to the notion of a sufficient mutagen set to reduce compu-

tational expense whilst maintaining test set effectiveness: given a sufficient set of

mutagens, M, and a test set, T, adequate with respect to M, then T will generate

a reasonably high mutation score when compared against all mutants [85]. Offutt

et. al. extended this work by attempting to reduce the 5 sufficient operators [85].

They performed five more experiments, excluding one of the five operators from

each study, but could not produce conclusive evidence to warrant excluding a fur-

ther mutagen primarily because of the small number and low complexity of their

test programs. When testing the LCR operator, for example, eight out of the 10

programs had no LCR mutants making it difficult to draw conclusions from the 2

remaining programs. Offutt et. al. concluded “in the absence of further evidence,

... all five E-selective mutant operators should be used” [85].

2.4.2 Do Faster

Do faster techniques aim to generate and run mutant programs quicker than

standard systems. Most traditional mutation systems interpret their mutants,

and whilst this is convenient, it is also slower than executing compiled code. The

Proteum system [26] generates and compiles each mutant before execution, in a

separate-compilation technique. This can result in a runtime speed increase of 15-

20 times compared to a traditional system [91]. However, if the compile time is

significantly greater than the run time, a compilation bottleneck occurs, resulting

in a build up of programs to be compiled whilst little execution is happening [20].

Krauser avoids bottlenecks using a compiler-integrated mutation mechanism

[52]. This uses a novel compiler to simultaneously compile the PUT and de-

velop code patches representing mutations. Prior to execution, the necessary

code patches are applied to the compiled PUT to deliver a mutant program that

executes at compiled speeds. Consequently, the PUT only needs to be compiled

once. Krauser’s results demonstrate that the compiler-integrated approach gives

an appreciable speedup (calculated as a ratio between techniques of the aver-

age execution time, per mutant, to generate and execute all mutants against one

CHAPTER 2. MUTATION TESTING 24

test case) against separate-compilation when the execution time of the PUT is

low. For example, for the TRANSPOSE program the compiler-integrated ap-

proach was 7.58 times faster than by using the separate-compilation technique,

and 27.33 times faster for the TRITYP program. As Krauser states, “this speedup

arises from the compile time overhead experienced by the separate compilation

approach and results when individual mutant program execution times are small”

[52]. Put simply, program execution time affects the speedup gain for the compiler-

integrated approach. With low execution times (i.e. where execution time <

compile time), a separate-compilation approach executes mutants faster than it

can compile them. The delay in compilation causes the overall time to execute

all mutants to increase and so increases the average mutant execution time. With

higher execution times however (i.e. where execution time > compile time), the

compilation time becomes a less significant factor. Mutants can easily be com-

piled before execution meaning that the average time to execute each mutant for

the separate-compilation approach is only dependent on the execution time - the

same as the compiler-integrated technique, meaning the speedup ratio approaches

1/1.

A variation on these approaches which also helps alleviate the bottleneck prob-

lem is mutant schema generation (MSG) [103]. All possible mutations of a pro-

gram are encoded in a single source level, metamutant program. Mutation points

in the PUT (for example, an arithmetic operation) are replaced by syntactically

valid function calls, called metaprocedures. Each metaprocedure encodes a muta-

gen and varies its output depending on its arguments. For example, depending

on its arguments, an arithmetic metaprocedure will perform addition, subtrac-

tion, multiplication, division, or modulus. Mutants are then represented as a set

of metaprocedure arguments to be applied at runtime to the metamutant. By

varying only a single metaprocedure argument from the original (PUT’s) set of

metaprocedure arguments, the appropriate mutant can be executed. This means

mutants are not separately compiled or interpreted, and are executed in the target

environment at compiled-program speeds.

CHAPTER 2. MUTATION TESTING 25

'

&

$

%

// Original PUT method

public boolean sumIsPositive(int n, int m){
z ← 0;
sum ← n + m;
return (sum > z);

}

Figure 2.4: Example of original Java PUT method.

A simple metamutant of the code fragment in figure 2.4 is demonstrated in

figure 2.5. This metamutant is created using only the relational operator mutagen,

which replaces every instance of a relational operator by an appropriate relation

operator metaprocedure, in this case ROR.op(), as shown in figure 2.5 - line 2.

ROR.op() has the signature: ROR.op(int lhs , int rhs , int mutantNumber)

The metaprocedure itself, is defined elsewhere as indicated in figure 2.5 - line

1. During execution of this metamutant, the appropriate arguments are supplied

to the ROR metaprocedure allowing any relational operator to be applied to the

two values.

'

&

$

%

// PUT method mutated by ROR mutagen

import MTAIS.Mutagens.ROR;1

...
public boolean sumIsPositive(int n, int m){

z ← 0;
sum ← n + m;
return (ROR.op(sum, z , 0));2

}

Figure 2.5: Mutated version of the Java PUT in figure 2.4.

Each mutant is represented by an array of values indicating the operation

for each metaprocedure. The mutantNumber refers to the metaprocedure index

within a mutant array. For example, the mutantNumber in code 2.5 is 0, indicat-

ing that the value in the zeroth index in the mutant array sets the operator used

in ROR.op(). All relational operators are numbered, for example, < is 0, ≤ is

CHAPTER 2. MUTATION TESTING 26

1, == is 2, > is 3 and so on. The value at the mutantNumber index determines

which relational operator to apply, in this example, the original sum > z state-

ment would be executed by a mutant array with the zeroth index containing 3

(the number for the > relational operator). To execute sum == z , the value in

the zeroth index would be modified to 2 (the number for the == relational oper-

ator). It should be clear that by using this approach all mutants are effectively

present within the metamutant, each one being individually selected at runtime

by applying the appropriate values from a mutant array to the metaprocedures.

In essence, this technique is similar to the compiler-integrated approach except

that patches aren’t applied at run-time, they are instead encoded into the PUT

before compilation. Furthermore, the metamutant only needs compiling once,

but unlike the compiler-integrated approach, this can be done using the standard

developmental compiler making the system less complex and more portable [91].

Untch et. al. report that executing the NEWTON square root procedure

using mutant schema generation is 4.1 times faster than using an interpretative

approach [103]. They argue that this “is a strong indication that MSG can sig-

nificantly increase the performance of mutation testing”, although this appears

to be supported only by the single experiment. To this author’s knowledge little

else has been published detailing the effects of MSG. Despite this lack of research,

Untch’s evidence for MSG coupled with that given by [52] for compiler-integrated

mutation, strongly suggests mutation testing using a single pre-compiled program

to be faster than interpretation.

2.4.3 Do Smarter

Do smarter approaches aspire to use “smart” methods to improve execution per-

formance. For example, parallel computation architectures such as SIMD (Single-

Instruction, Multiple-Data) [53] and MIMD (Multiple-Instruction, Multiple-Data)

[20, 90]) allow mutants to be executed simultaneously. However these techniques

require specialist equipment, which for industry, particularly those companies on

limited budgets, is not cost effective. A more practical technique, not requiring

CHAPTER 2. MUTATION TESTING 27

parallel computers, is weak mutation, proposed by Howden [41].

In order to increase the mutation score, mutation testing kills mutants that

express a differing output from the PUT given the same input. Strong mutation

testing therefore, continues mutant execution until completion and compares the

subsequent outputs, or program states. But this is wasteful. Consider a mutant

compared to the PUT. Each program statement is identical except the single

statement containing the mutation, implying that to cause varying outputs, this

“faulty” code must cause some differing state immediately after its execution. If

no varying state is found then the mutant will continue along the same program

path and generate the same output as the PUT. However, if a varying state

is found at this point, then this may indicate a possible difference in program

outputs, and save executing the remainder of the mutant. This is the premise

behind weak mutation testing. It does have a subtle drawback however: a state

difference immediately after execution of a mutated statement does not necessarily

imply the final outputs will be different. For example, a program may incorporate

error checking functionality that corrects for the state difference caused by the

mutation, resulting in the correct output. Incorrectly killing a mutant under these

circumstances would result in a higher mutation score giving stronger credibility

to the test set adequacy than is true. This is an unavoidable drawback of weak

mutation, however the enticing advantage is that execution times are reduced as

only part of each mutant requires execution. It is with these pros and cons in

mind that additional research has been done into where programs states should

be compared.

Weak mutation differs from strong mutation in when the states of the mutant

and PUT are compared. Both approaches can be classed as comparing at oppo-

site extremes: weak mutation compares immediately after the mutated statement;

strong mutation compares upon program termination. To cover the various ap-

proaches between these extremes, Woodward and Halewood [109] introduced the

idea of firm mutation. This compares the states of the programs at some point af-

ter the mutated code is executed, but before the end of the program. By deciding

CHAPTER 2. MUTATION TESTING 28

whether to kill a mutant closer to the natural termination of the program, it is

hoped to improve the test set adequacy whilst retaining some of the performance

advantages from weak mutation.

These variations of weak mutation have been studied empirically [34, 62, 87],

in particular using a modified version of Mothra, called Leonardo (Looking at

Expected Output Not After Return but During Operation) [86, 87], which in-

corporates a working weak mutation system. Offutt and Lee [87] used Leonardo

to perform studies on firm mutation using four different comparison points: (i)

after the first execution of the innermost expression surrounding the mutation;

(ii) after the first execution of the mutated statement - traditional weak muta-

tion; (iii) after the first execution of the basic block (sequence of instructions with

single entry and exit points) surrounding the mutation; and (iv) after N execu-

tions of the mutation containing basic block where N is greater than 1 and less

than equal to the number of times the basic block was executed in the PUT -

a mutant is killed upon the first instance of an incorrect state. They performed

two comparative studies against these four versions and strong mutation. The

first generated 100% firm-mutation scoring test sets for each firm approach and

executed them using strong mutation to generate overall mutation scores. The

second study generated test sets with less than 90% mutation scores and executed

these on the four firm approaches to ascertain their firm-mutation scores. The re-

sults were interesting. Intuitively, approach (iv) would test program states closer

to the natural program end, and so closer to a strong mutation system, suggest-

ing that this method should provide stronger, more adequate test data. This was

not the case. The first study indicated that the most effective point to perform

state comparisons was after executing the mutated statement (approach ii) or the

first execution of the basic block (approach iii). To explain this Offutt and Lee

suggested that performing comparisons after the first execution of the basic block

is a more rigorous requirement than causing an incorrect state on any execution

of the block, and this therefore requires a stronger test set [86]. A slight variation

on this reasoning however, could be that killing mutants whose execution exceeds

CHAPTER 2. MUTATION TESTING 29

the PUT’s number of iterations of the basic block is an easily achievable target

using low quality tests, and yet does not necessarily imply a differing final output.

If this is true, the test sets generated from approach (iv) would be weaker than

those from approach (iii) and produce a lower mutation score.

The second study was designed to indicate differences amongst the various

firm approaches. It would seem natural to expect that as the comparison point

approached the natural end of the program, that the firm-mutation scores would

approach the strong-mutation score in some fashion; Offutt and Lee suggest that

the mutation scores should decrease [86]. This is based on the idea that a firm

mutation system will kill more mutants than perhaps it should, the further the

comparison point is from the program’s natural end (i.e. the firm-mutation score

will be at least as high as the strong-mutation score). However, Offutt and Lee’s

results indicate otherwise. They found that comparing states after N basic block

executions for programs containing loops (i.e. closest to the program’s end) often

resulted in higher mutation scores than the other approaches, however they offered

no explanation for this. However, one possible explanation is again that tests

cause mutant executions to exceed the PUT’s number of basic block executions,

resulting in a larger number being killed than otherwise should. This would not

occur with approach (iii) as mutants are only killed if a state difference is identified

after the first execution of the basic block only.

The results from Leonardo indicate that weak mutation is able to consider-

ably reduce computational expense too, with savings often in excess of 50% of

execution times [86, 91]. Offutt and Lee concluded that based on their studies,

“weak mutation [should] be used as a cost-effective alternative to strong mutation

for unit testing of non-critical applications.” [91].

2.5 Increasing Automation

Despairingly, mutation testing suffers from further problems besides the compu-

tational expense, that also restrict its adoption into mainstream industry. These

CHAPTER 2. MUTATION TESTING 30

additional burdens can be classed as automation difficulties that, with the current

state of the art, require considerable effort from the tester. First and foremost,

test data must be generated to kill mutants. Whilst, for the majority of mu-

tants, any random test will suffice (providing a use for random test generators),

a small percentage of difficult-to-kill mutants require scrutinising the source code

and hand-generating tests in order to identify the faults they contain. This is both

time consuming and challenging. Furthermore, the mutation score calculated as a

measure of test adequacy has to discount equivalent mutants. Given that recognis-

ing these is undecidable [17], detecting equivalent mutants has traditionally been

done by hand. Again, this is an expensive task that prevents further uptake by

industry. Equivalent mutants aside, all other mutants have to be shown to gen-

erate incorrect outputs compared to the original’s correct output. The original

program must therefore produce correct results to start with, as determined by

an oracle (a manual or automated procedure that determines output correctness

for any given test). However, deciding whether the executed output is correct for

an input is often very difficult, and is known as the oracle problem [33].

2.5.1 Automatically Generating Test Data

Both traditional and evolutionary techniques have been applied to help automat-

ically generate test data. Traditional algorithm design often relies on a divide

and conquer approach to solving problems. An algorithm divides the task into

smaller units, and repeats itself on each until a solution is derived. Whilst such

algorithms are efficient at providing solutions to certain problems, they usually

struggle to solve problems with dynamic solution spaces, such as optimisation

problems. These problems generally require more dynamic approaches, typically

relying on heuristics rather than hard coded rules. In this respect, evolution-

ary methods attempt to capture emergent qualities that evolve in other (usually

non-computer related) areas, such as learning in the brain or the problem-solving

abilities of ants, by using metaphors to help create new approaches to algorithms.

Often these make use of population dynamics, whereby the interactions between

CHAPTER 2. MUTATION TESTING 31

many small entities, each incapable of solving the problem on its own, combine

and present an emergent solution.

Traditional Techniques Offutt developed constraint-based testing (CBT) to

produce mutation-adequate test sets [80]. This technique is based on the notion

that to kill a mutant a test must satisfy three conditions:

1. Reachability: Mutant programs differ from the PUT by a small amount

usually contained in a single statement. As all other statements are the

same, this mutated statement must be responsible for a difference in program

outputs. Therefore, for a test to distinguish the mutant from the PUT, this

mutated statement must be reached.

2. Necessity: Having reached the mutated statement, it is necessary that it

causes an incorrect internal program state immediately after its execution.

If it does not, then the mutant cannot fail as, with all other statements being

identical, no successive statement can cause the internal state to differ.

3. Sufficiency: Finally, the test is sufficient if the incorrect state propagates

through the mutant resulting in a failure upon termination. If any statement

corrects the internal state, then either the mutant is equivalent or the test

is not adequate enough in causing a differing program output.

These conditions are used by the Godzilla test data generator to automatically

create test sets for Mothra [28]. Godzilla represents conditions as input domain

based algebraic expressions, known as constraints, that assert whether each condi-

tion is met. Reachability constraints are expressed as path expressions describing

all paths to the mutated statement. Likewise, necessity constraints assert whether

execution of the mutated statement results in an incorrect internal state. Suffi-

ciency constraints cannot be generated however, as they require prior knowledge

of the complete path the program will take. This is undecidable [80]. Instead,

Godzilla combines the reachability and necessity constraints and solves this to

provide a test that executes the mutated statement and generates an inconsistent

CHAPTER 2. MUTATION TESTING 32

internal state. Effectively, this is similar to generating test data via weak muta-

tion, and as such suffers from the same pitfalls. Notably, a test may generate an

inconsistent internal state in a mutant that is subsequently corrected to produce

the desired output; a mutant will be killed when it should remain living. CBT

approaches also suffer from problems handling arrays, loops and nested expres-

sions, mainly due to their symbolic execution nature, resulting in an inability to

find test cases [91]. Despite these problems, empirical results from [28] suggest

that CBT approaches generate high mutation score test data, killing over 90% of

mutants. Indeed, [28] claim they repeated their experiments “for dozens of unit

and module-level FORTRAN subprograms of up to a few hundred lines. The test

data that Godzilla generated for these programs had an average mutation score of

.97 [97%], with very little deviation.”

Offutt et. al [84] developed an alternative test generator, called dynamic do-

main reduction (DDR) that works when CBT does, and in many cases when it

does not [91]. DDR uses parts of CBT approach in addition to the dynamic

test data generation technique developed in [49]. Initially, each input variable is

given a large range of values, known as its domain. The DDR procedure then

executes a path through the control flow graph to a specific node - the goal node;

for example, in mutation testing this would be the mutated statement. When it

reaches a branch point in the path, the variables used within that branch predi-

cate have their domains reduced in accordance with the execution of the desired

branch path. If there is a choice of how to reduce the domain, a search is made

of the subsequent path so as not to make an inappropriate selection and restrict

subsequent branch outputs. Upon reaching the goal node, the remaining values

in each variable’s domain represent the values that will cause execution of the

desired path, i.e. for mutation testing where the mutated statement is the goal

node, the remaining domains represent test values that satisfy the reachability

constraint. In some cases though, a domain will be empty indicating that the

procedure failed either because the path is infeasible or it was too difficult to find

CHAPTER 2. MUTATION TESTING 33

values to execute it [84]. DDR’s success however, lies with its combination of mul-

tiple test generation techniques which give it an improved performance over those

techniques used independently. Indeed Offutt et. al. conclude that DDR “is less

likely to fail to find a test case when a test case exists, and that implementations

can be more efficient”. Compared to a CBT approach, this procedure would seem

more favourable.

Evolutionary Techniques A wealth of work exists that use various search

optimisation techniques to generate test data: Genetic Algorithms [46, 74, 75, 94];

Simulated Annealing [101]; Tabu Search [29]. Whilst similar to the focus of this

research, these techniques use differing methods to assess the quality of the test

data generated: Decision (or Branch) coverage [46]; Condition/Decision coverage

[74, 75]; Path Coverage [57]; Control-Dependence Path coverage [94]. In general

however, it is the limited work on evolutionary techniques using mutation testing

as their test adequacy measure that are most pertinent to this research, and these

will therefore be the focus. Despite this, there is a common problem surrounding

evolutionary testing in general, which practitioners should be aware of, namely

how best to direct the generation of test data.

Typically, evolutionary testing (ET) techniques direct test generation through

some form of fitness function. As suggested recently by McMinn and Holcombe

[72] however, some of these functions can cause problems for ET due to their lack

of guidance. In particular, flag variables present problems for the cost metrics used

by fitness functions to direct evolution for structural testing. In these situations,

a cost metric is usually defined to measure how well a test satisfies a specific

predicate. For example, given the predicate if(a==b){, the cost metric would

evaluate to the absolute difference between a and b as a means to determine how

close the test came to executing the true path (where the true path gives access

to code of interest). A number of other rules have also been defined [49, 100].

If instead, the predicate only contains a flag variable (which has previously been

assigned the result of the original predicate), e.g. flag=(a==b);...; if(flag){,

CHAPTER 2. MUTATION TESTING 34

then the cost metric only provides a binary fitness landscape (true or false). This

offers no guidance for finding satisfying tests (i.e. tests that result in the predicate

evaluating to true), and so means ET is no better than a random search in this

situation [38].

A solution to this flag problem is to associate the cost metric information with

the flag variable upon its assignment, and use this information, as necessary, to

direct test evolution (i.e. to help direct test evolution for the if statement flag

variable) [14]. An alternative approach, indicated by Harman et. al. [38], is to

transform a flag-containing program into a flag-free program and perform evolu-

tionary testing on this. Their results are favourable, indicating improved execution

times and code coverage. They do not, however, indicate whether their method

is capable of dealing with the more complex situation described by Bottaci [14].

Bottaci highlights the problem of when a boolean condition that determines the

flag value is not directly assigned to the flag, but instead controls the assignment of

a “summary” value to that flag, e.g. flag=false; if(a==b){flag=true;};...;
if(flag){. In this case, the cost of the first if statement can be calculated as

before (| a − b |), but it is only associated with this statement, and not with the

setting of flag to true. Bottaci suggests that Data Dependency Analysis (DDA)

[2] could be used to associate the second assignment of flag (and therefore its

relation with the first if statement) with flag’s use in the second if statement.

Ferguson and Korel [30] use DDA to search for statements that may affect

the execution of a desired statement, linking these statements into the execution

‘chain’ needed before the desired statement can be executed. McMinn and Hol-

combe [72] combine this chaining approach with evolutionary testing, with their

results (achieved from seven test programs) arguing that this hybridisation can

improve ET. They also utilise the chaining approach on another problematic do-

main for ET, namely states in test objects [71, 73]. States typically imply a test

goal may be dependent on previous tests, and not just the current PUT input. To

achieve a test goal, the test object needs to be placed into a goal-feasible state;

this is achieved by the execution of the correct sequence of statements (possibly

CHAPTER 2. MUTATION TESTING 35

through execution of multiple test inputs) that manipulate the underlying state

machine of the test object. DDA can identify these statements, and so the authors

suggest its use to help direct ET. Their initial work using ant colony algorithms

([12], cited in [71]) to search and evaluate the sequences gives promising results

with regards test generation [71], as does their more recent work on sequence gen-

eration hybridised with the chaining approach, which achieved higher coverage

levels and success rates than the non-hybridised approach [73].

Focussing on mutation testing based approaches now, one popular technique

is the use Genetic Algorithms [76]. These algorithms evolve a population of indi-

viduals, searching to find the best one in relation to the environmental problem

space (i.e. the ideal solution). Individuals are iteratively reproduced based on

how ideal they are (their fitness), combined randomly with other individuals, and

then mutated slightly. The key point is that the single best individual is sought.

For mutation testing it is unlikely that one test will kill all mutants, requiring

that, for a GA, each individual must incorporate a sufficient number of tests to

allow that individual to achieve a full mutation score - to kill all mutants. This in

itself is a hindrance as the number of tests required to kill all mutants is generally

unknown a priori.

Jones et. al. [46] initially perform a variety of experiments using a Genetic

Algorithm (GA)5 to develop test data that fulfils branch coverage (e.g. all condi-

tional branches within the PUT must evaluate to true and false). They compare

their results from the GA to those from randomly generated test data over several

test programs (Quadratic Solver, Triangle Classification, Integer Remainder Cal-

culation, Linear Search, and Binary Search), recording the percentage of test runs

achieving full branch coverage and the average number of generations required

to do so. Their results argue in favour of using GA’s. The triangle classification

program, for example, achieves full branch coverage on all runs, taking on average

185 generations to do so, compared with only 69.5% of randomly generated runs

attaining full coverage in an average of 1187 generations. The authors then briefly

5See Section 3.2.3 for a discussion on Genetic Algorithms.

CHAPTER 2. MUTATION TESTING 36

investigate the use of GA generated branch coverage tests on the mutation score of

the program, although few details are given; 70 mutations of the quadratic solver

were made, incorporating only predicate mutations (for example, > is replaced

by ≥). Test data is then generated for each mutant using a GA that achieves

full branch coverage, as per their initial experiments, except the additional re-

quirement is made that the tests are close to the input boundary that causes the

to-be-mutated predicate to oscillate between true and false. These are then ex-

ecuted on the original program with outputs compared to the mutant outputs.

The mutation score obtained was 0.97, similar to the result achieved by the CBT

method in [28].

Bottaci [13] described a possible GA fitness function for mutation testing based

on the three CBT conditions: reachability; necessity; and sufficiency. The overall

fitness of a test is based on a combination of costs for each of the three conditions,

equating to zero if the test kills a mutant, or a positive score otherwise.

• The reachability cost (cost of a test reaching the mutated statement) is based

on the control flow graph and is calculated, for the case when only one goal

path exists (i.e. only one path to the mutated statement), as the number of

nodes in the goal path minus the number of nodes in the longest common

prefix with the path a test executes. Therefore, the later a test causes

divergence from the goal path, the smaller its cost is. In the case where two

inputs result in the same non-zero costs, a further cost metric is introduced,

indicating the amount that the failing branch predicate (that caused path

divergence from the goal path) differs from the goal-required predicate value.

For example, if the predicate tests for equality, say a = b, then the cost is

0 when a equals b, otherwise its the absolute difference between a and

b, bounded by an upper limit6. Obviously as both arguments approach

equality, the cost minimises. Usually however, it is the case that more than

one goal path exists to the mutated statement. Under such conditions, the

6Other rules exist, see [13] for details.

CHAPTER 2. MUTATION TESTING 37

reachability constraint is the disjunct of all the goal paths, with the costs

defined as above.

• The necessity cost is the difference by which the necessity condition fails.

The necessity condition must be true in order to kill the mutant and is

therefore dependent on the mutation applied. For example, if a = b is

mutated to a ≤ b then the necessity condition required to kill the mutant is

a less than, but not equal to, b (or: a < b). In this way, the necessity cost

can be calculated in a similar manner to the reachability cost.

• The sufficiency cost defines a cost based on the number of equal data states

encountered after the mutated statement is executed. A mutant will only be

killed if a differing data state (from the original) is propagated through to

the output, resulting in a different output from the original. If a mutant’s

output does not vary, then at least one data state since the mutated state-

ment’s execution is equal to the original’s. Counting the number of equal

states gives a cost value to minimise, however, how states are counted is an

interesting problem, that can widely affect the cost (for details, see [13]).

Bottaci highlights one further concern of using a GA: two parent tests combine

to create offspring, but these could be worse than the parents. Consider the case

where each parent test follows a different path through the program. At least

one branch predicate will produce contradictory outputs between the two inputs

(i.e. cause path divergence). If two high-fitness parents with very different paths

crossover, there is a possibility that the offspring will be a test with a worse path

than either parent. To help alleviate this problem, Bottaci suggests the idea of

species. Only tests from the same (or possibly similar) species are allowed to

combine, with species being determined by execution paths; tests that fail to

reach the mutated statement are classified into a single species (those failing the

reachability condition); tests that reach the mutated statement are classified based

on their path from the mutated statement to the exit (partitioning according to

sufficiency).

CHAPTER 2. MUTATION TESTING 38

Whilst the ideas presented by Bottaci are intriguing, no empirical evidence

is given to support them. Indeed, to this author’s knowledge, no evidence has

been given since this work. The approach does however, combine a CBT tech-

nique (similar to that used by the Godzilla test data generator [28]) with the

search optimisation of a GA. It is therefore feasible that this combination has

the ability to generate test data at least as adequate as tests generated by other

CBT approaches. If Godzilla is reported to average a 97% mutation score on the

“dozens of unit and module-level FORTRAN subprograms” [28], then this could

be a positive evolutionary approach.

Baudry et. al. [5, 6, 7] initially demonstrate the use of a GA for automatically

generating mutation adequate test data. They then compare this work with the

use of another biological analogy, termed Bacteriological Algorithms (BAs), and

show that this evolutionary strategy outperforms the GA for their mutation test-

ing system. Their work uses only two mutagens (the equivalent of Mothra’s LCR

and SDL operators) and focusses on a PUT (program under test) that translates

input data from one form to another, for example, a parser or compiler. In partic-

ular, they focus on optimising test data for a C# parser in the .NET framework,

meaning that their test data is in fact a program. Despite this (unusual) difference

from traditional mutation testing approaches, their methodology could be applied

to any PUT.

Baudry et. al. [6] used a population of 12 individuals consisting of 4 tests

each. Using a 2% mutation rate over 200 iterations, the mutation score reaches

a peak of 80%, with an average of 65-70%. Increasing the mutation rate to 10%

achieves a reasonably constant score of between 85-90%. These later values are

just below those attained by Godzilla.

Bacteriological algorithms are similar in nature to elitist GAs (see section 3.2.3

for details about elitist GAs), with two main exceptions: (i) a BA individual is

an atomic unit - it cannot be divided; (ii) BAs maintain a memory set consisting

of the best individual(s) from each generation. As an atomic unit, individuals

cannot be mated (due to the divisions occurring in the crossover mating process),

CHAPTER 2. MUTATION TESTING 39

and so variation stems purely from the reproduction and mutation process. A

memory set is also maintained, where new individuals are added if their fitness

exceeds some threshold. Individual fitness is based on a narrowing search space,

with calculations based on what is left to optimise. For example, applied to

mutation testing, fitness is calculated based on how many mutants a test kills

that the memory set does not. If this fitness exceeds a threshold, that individual

is reproduced and placed into memory. Applying a threshold however, does seem

a negative thing to do. Although it helps to minimise the memory size, it does

restrict the tests that can enter it. A test that kills a single mutant for example,

may not kill a large enough percentage of the remaining mutants, and not be

incorporated. This is still a valuable test though, and should be kept, especially

if the mutant it kills is hard-to-kill. Main population individuals (for mutation

testing, each individual is a test) are randomly chosen for mutation (i.e. the

selected individuals are mutated to form a new individuals), and those whose

fitness is zero (e.g. for mutation testing, they do not kill any new mutants), or

who are redundant (e.g. kill the same mutants as another test) are removed.

Results from [7] report that using a BA generates a memory set with a mu-

tation score of 96% in just 30 generations. The initial population consisted of 30

tests and a memory threshold of 20% (i.e. a test had to kill over 20% of remaining

mutants to be added to the memory set). Comparisons were also made with a GA

approach in [6], however it is difficult to ascertain the fairness of the experiments.

For example, the GA consisted of 12 members of 4 tests each, equating to 48

tests, where as (in the comparative trial) the BA used between 3 and 10 tests for

its initial main population. There is also a potential discrepancy with the size of

each test. The BA approach claims “the size of a bacterium [ed - individual] is

an important parameter. The bigger a bacterium (test case) the longer it takes to

run”. It is then stated “we finally chose 15 as a good size for a bacteria”, referring

to the number of nodes in a test case’s syntax tree (a test is a program to be

parsed by the C# parser). No mention is made to this variable within the GA,

but presumably its effects are the same, implying that the BA and GA should be

CHAPTER 2. MUTATION TESTING 40

compared on similar sized tests. Assuming a comparative study is made however,

the results are favourable for the BA, which attains an average mutation score

of 96% by executing only 46,375 mutants, compared with the GA attaining an

average mutation score of 85% in 480,000 mutant executions.

2.5.2 Automatically Detecting Equivalent Mutants

An additional burden in mutation testing is determining whether a living mutant

is equivalent to the original program or not. Equivalent mutants display the same

output as the original for all possible inputs and must be removed before calculat-

ing the mutation score. If they are not removed, the percentage of killed mutants

can never reach 100% (in cases where equivalent mutants exist), thereby unneces-

sarily reducing the tester’s confidence in the correctness of the PUT and the test

data. A test set killing less than 100% of generated mutants is either insufficient

to kill the remaining mutants, or the remaining mutants are equivalent, or both;

ultimately, a tester will be unsure about which situation has arisen unless they

can detect equivalents. Equivalent mutants must be removed however, and so tra-

ditional mutation systems burden testers with the error prone task of manually

detecting them. Worse still, there is potential for a large number of equivalents

to exist, each one having to be detected individually. Offutt and Pan report that

9.1% of mutants they studied were equivalent [89]. Furthermore, they reported

that 47% of them came from the ABS operator alone7. If accurate, these figures

would suggest, for example, that on the modest 18 line Newton Square Root For-

tran procedure [103], approximately 35 of the 385 mutants would be equivalent.

This figure would increase as the number of mutants increased. Detecting even

35 equivalents, however, is prone to error. Acree [1] found that in a test on 50

mutants, half of which were equivalent, testers only correctly identified equiva-

lence 80% of the time; 12% of the time equivalents were marked non-equivalent

7This figure is understandable given the nature of the ABS operator. For example, if a
statement x is mutated to ABS (x), then this is equivalent if x is restricted to positive numbers
only; likewise for −ABS (x) when x is restricted to negative numbers.

CHAPTER 2. MUTATION TESTING 41

(type II errors), and 8% of the time non-equivalents were marked equivalent (type

I errors). This analysis prompts the conservative approach of reducing type I

errors, as incorrectly marking equivalents as non-equivalent can be corrected in

later iterations (as opposed to incorrectly marking non-equivalents as equivalent

which is more difficult to correct later) [89]. Therefore, to help alleviate human

error, efforts have been made to automate equivalence detection using a variety of

approaches, such as compiler optimisation techniques [83], constraint based test-

ing approaches [89] and program slicing [39]. These solutions however, are only

based on heuristics.

Offutt and Craft [83] implemented algorithms based on data flow and compiler

optimisation techniques to automatically detect equivalent programs. Compiler

optimisation techniques use the fact that code optimisation transformations gen-

erate equivalent programs that are either an optimisation or de-optimisation of

the original program, therefore if a mutant satisfies a code optimisation rule, it

can be shown to be equivalent [89]. This compiler optimisation idea was originally

suggested by Baldwin and Sayward in [4]. Offutt and Craft use six techniques to

detect equivalent mutants, which are described in more detail in [83] (examples

in the text below are repeated from this publication):

• Dead Code Detection - most obvious form: inexecutable code that contains

the mutated statement will be equivalent to the PUT. Detected via a control

flow graph.

• Constant Propagation - a variable whose value can be defined as constant

at runtime may produce equivalent mutants in some circumstances. For

example, consider the ABS operator. A mutated statement executing the

absolute value of a constant (≥ 0) will always produce an equivalent mutant.

• Invariant Propagation - an invariant is a true relation between two variables

or a variable and a constant which is known at a particular point in the

program. For example, to kill a mutant that replaces one variable with

CHAPTER 2. MUTATION TESTING 42

another, the two variables must have different values. If it is known that

they are equal at this point, then the mutant is likely to be equivalent.

• Common Subexpression Detection - Used in conjunction with the invariant

propagation technique, it determines equivalence of variables based on com-

mon subexpressions. For example, if A = B+C-D and X = B+C-D then A==X

after X’s assignment. This information is used by the invariant propagation

technique to detect equivalents.

• Loop Invariant Detection - code optimisation often moves invariant code

outside of a loop. If a mutation alters this positioning (i.e. moves code

inside or outside of a loop), then it is equivalent.

• Hoisting and Sinking - code optimisation attempts to move code that is

executed multiple times to a position where it is executed once. Mutants

that affect this position are equivalent.

Offutt and Craft tested their implementation (which was developed as a plug-

in to Mothra) on 15 test programs. Their results detected between 0 and 100%

of equivalent mutants, although the median value was around 10% (but with a

high standard deviation of 25%). They observed that the detection ability of their

implementations depended heavily upon the program being tested. For example,

the FIND program contained arrays and backwards GOTO statements, both of

which are problematic for Offutt and Craft’s implementation [83]. Considering

equivalents usually have to be detected by hand however, this approach does go

some way to reducing the burden on testers.

Constraint-Based Testing (CBT) was also used by Offutt and Pan [89] to im-

plement a system to detect equivalent mutants. CBT was initially developed to

help automatically generate test data, where algebraic constraints are used to

specify which tests will kill a mutant [28]. If however, a constraint cannot be

satisfied, then no test will kill that mutant and so it is equivalent. However,

recognising infeasible constraints is undecidable, meaning that potential solutions

CHAPTER 2. MUTATION TESTING 43

using CBT are again based on heuristics [89, 91]. The tool implemented by Offutt

and Craft had an average detection ability of 47.63%, with detection in 7 out of

the 11 programs being greater than 60% [89]. Again, although not all equiva-

lent mutants are detected, this approach does present a rewarding alternative to

detection by hand.

2.5.3 Oracle Problem

A key aspect for mutation testing, and testing in general, is determining whether

the output from executing the PUT with a specific test is correct or not. Often

this task is attempted manually, requiring a great deal of effort on the tester’s

part. This situation only worsens when automatic test generators are involved,

which can create obscure tests whose output is difficult to determine. Ideally the

tester requires an automated procedure that can decide the correctness of a test

based on the program’s specifications. These are called oracles. Unfortunately, it

is not always possible to define such procedures; this is the oracle problem [33, 61].

For example, it may be the case that outputs are not defined for the entire input

domain. Alternatively the process of deciding correctness may be undecidable,

for example determining equivalence on programs when testing a compiler [33].

Furthermore however, where it is possible to create an automated oracle, it can

often prove just as costly as implementing the original program, as well as being

prone to errors itself [42].

This research assumes that an appropriate oracle exists for the program be-

ing tested, thereby avoiding the oracle problem. Despite this also being true for

considerable amounts of testing literature, especially within the mutation testing

domain, some research has specifically focussed on the oracle problem. For exam-

ple, approaches based on using pseudo-oracles (independently written programs

that calculate the same function as the PUT) [23], specifications [61] and heuris-

tics/statistics [11, 69] have all been suggested. Interested readers should consult

these references for further details.

CHAPTER 2. MUTATION TESTING 44

2.6 Summary

Mutation testing was introduced to provide a means to iteratively improve test

data adequacy with respect to some program. A useful side effect of this technique

however, is that the program itself is tested against containing a set of faults.

Unfortunately though, mutation testing suffers from a number of problems which

prevent its adoption into industry. These problems can broadly be categorised

into two areas: computational expense and automation difficulties. It is expensive

because of the large number of variant programs that need to be executed by at

least one test; and, it is difficult to automate because strong tests need to be

generated, equivalent mutants need to be removed, and the PUT’s output needs

to be tested for correctness. Because of these problems, and the strength of

mutation testing, a lot of research has been undertaken into these areas.

2.6.1 Reducing Computational Expense

Research has typically focussed on three approaches to reducing computational

expense: do fewer (mutant executions); do faster (executions); and, do smarter

(executions).

Do fewer approaches reduce expense by reducing the number of mutant pro-

grams executed. Three techniques in particular are strongly supported by em-

pirical evidence: Mutant Sampling; Constrained Mutation; and, N-Selective Mu-

tation. Wong’s results [108] indicate mutant sampling is capable of producing

test sets with mutation scores on average in excess of 96% whilst reducing the

number of mutants examined by approximately 60-90%. A higher sampling rate

however, does not necessarily imply a higher mutation score (against all mutants)

suggesting that the choice of mutants sampled has an impact on the quality of

the tests generated. Constrained mutation addresses this need for selecting ap-

propriate mutagens, and is again supported by Wong’s experiments, which found

restricting the mutagens to ABS and ROR resulted in an average mutation score

of 97.18% with a reduction in the number of mutants examined by at least 80%

CHAPTER 2. MUTATION TESTING 45

[108]. Offutt et. al. provided a subtle alternative to constrained mutation called

N-selective mutation [92, 85]. This reduces the number of mutagens used by re-

moving the N operators that generate the most mutants. The authors report

a 60.56% saving in mutants examined for a mutation score of 99.71% using 6-

selective mutation. Further research suggested this saving could be increased to

77.56% with an average mutation score of 99.51% using just 5 operators: ABS;

AOR; LCR; ROR; and UOI (see table 2.1). These results again support the notion

that the choice of mutants used impact on the quality of the tests produced; a

result further compounded by Budd’s experiments which found mutants obtained

from the ABS operator are more likely to detect faults than those from other

operators [18]. However, one concern that is often ignored is that despite some

novel approach achieving close to a 100% mutation score, there still remains a

small percentage of living mutants which are often hard to kill. Although this

percentage may be small, when compared against the large numbers of mutants

often produced, the number remaining alive could be dramatic. As Offutt et. al.

mention, “the software testing literature offers no clear evidence that 100% cover-

age provides better testing than coverage at a lower level”. After all, the mutants

produced from the 22 Fortran mutagens are just a subset of a much larger group

of possible mutants.

Research is also in favour of do-faster approaches. Traditional mutation sys-

tems interpret the programs they test, often applying patches to mutate a state-

ment. In most instances, compiled code executes quicker than interpreting it, so

research in this category has focussed on appropriate methods to execute com-

piled code. Separate compilation techniques improve runtime speeds as much as

20 times [91], however they can lead to bottlenecks when compilation time exceeds

runtime [20]. Krauser avoids this bottleneck and shows an appreciable speed in-

crease over separate compilation techniques using a compiler-integration approach

[52]. Mutant Schema Generation also avoids the bottleneck problem with the sin-

gle compilation of a metamutant program containing all mutations in one program

using metaprocedures. A mutant is generated by setting appropriate arguments

CHAPTER 2. MUTATION TESTING 46

to the metaprocedures. Untch et. al. report that this technique executed on the

NEWTON square root procedure is 4.1 times faster than using an interpretative

approach [103].

Do smarter approaches use “smart” methods that cannot be classified under

do fewer or do faster. Traditional strong mutation systems execute mutants to

completion and compare the final output state with that of the original, however

this is wasteful. A mutant differs from the PUT by a single statement. For

this mutant’s output to differ, this mutated statement must cause a difference in

the internal state of the program. Comparing states immediately after executing

this statement should indicate whether a mutant will be killed - this is weak

mutation. Unfortunately, state differences do not guarantee a mutant will be

killed. For example, a program may have error checking code in place to correct

for erroneous states. Firm mutation is similar to weak mutation, except that

the state comparison point is made after the mutated statement, but before the

end of the program. Offutt and Lee [87] compared weak mutation and several

firm mutation points against strong mutation. They found that comparing after

executing the mutated statement (e.g. weak mutation) performed better than

comparing closer to the program’s end, and demonstrated considerable savings,

with execution times reduced by over 50%.

2.6.2 Increasing Automation

Increasing automation within mutation testing suffers three main hurdles: gener-

ating test data; detecting equivalent mutants and determining the correctness of

a program’s output. These need to be overcome, to a certain degree, for industry

to adopt mutation testing as a viable tool.

Both traditional approaches and evolutionary techniques have been applied

to automatically generating test data. Offutt, in particular, has been a keen ad-

vocator of traditional techniques, developing a constraint based testing (CBT)

approach [80] and an alternative dynamic domain reduction (DDR) technique

[84]. CBT uses the fact that mutants differ from the PUT by a single statement,

CHAPTER 2. MUTATION TESTING 47

and that for a test to kill a mutant, it must satisfy three conditions: Reachabil-

ity; Necessity; and, Sufficiency. Expressing the first two conditions as algebraic

constraints (the third is undecidable [80]) and solving them, generates test data

equivalent to weak mutation testing. Empirical results are promising, with a CBT

killing on average, 97% of mutants [28]. CBT approaches do suffer from problems

handling arrays and loops however. To help overcome this, Offutt developed the

DDR technique which improves on the CBT approach, working when CBT does,

and in many cases when it does not [91]. DDR generates test data by follow-

ing paths in the control flow graph to the mutated statement and reducing each

variables’ domain at branch points. Upon reaching the mutated statement, if

the domain still contains elements then these are suitable tests that satisfy the

reachability constraint. For mutation testing, these can be reduced further by

constraining them to those that satisfy the necessity constraint.

Evolutionary techniques have also been applied to automatically evolve test

data. In particular Genetic Algorithms (GA) have been applied in a variety of

approaches to mutation testing. Jones et. al. [46] use branch testing as a fitness

measure for each test, developing tests that have full branch coverage. These are

then used with mutation testing to generate a mutation score. Their experiments

generated a mutation score of 97% using this approach, equivalent to the CBT

average score. Bottaci [13] describe a possible GA fitness function based on the

CBT conditions, however no empirical evidence is given. The fitness function

calculates a positive cost for each constraint, which the GA has to reduce to zero.

Bottaci also highlights the problem that two fit parents could combine and pro-

duce a test with a worse control flow path than either of them. To help stop this

from happening, Bottaci suggests dividing tests in species based on their execu-

tion paths. Baudry et. al. [5, 6, 7] provide another variation on using a GA for

mutation testing, using the mutation score itself as a fitness value. With a popu-

lation of 12 individuals, each consisting of 4 tests, and a 10% mutation score, their

experiments evolved tests to a mutation score of between 85 and 90%. However,

a problem with a standard GA is that it searches for the best individual, meaning

CHAPTER 2. MUTATION TESTING 48

that each individual must contain enough tests to allow all non-equivalent mutants

to be killed. To help overcome this, Baudry et. al. developed a Bacteriological

Algorithm (BA) based on a GA. This has two main differences: each individual is

an atomic unit; and, a memory set is maintained of the best individual in any it-

eration, on condition that the individual provides new information to the memory

set. Results from this approach were promising, with it achieving a 96% muta-

tion score in only 30 iterations. Furthermore, in comparisons with a GA, the BA

achieved its 96% score in 46,375 mutant executions as opposed to the GA which

achieved an average 85% in 480,000 mutant executions. However, in detriment

to the BAs achievement, it is unclear from [5, 6, 7] whether a fair comparison

was made in terms of the initial number of tests used in each technique and the

difficulty of the PUT.

Equivalent mutants need to be removed otherwise they unnecessarily reduce

the tester’s confidence in the correctness of the PUT. Unfortunately, detecting

equivalents is undecidable [17], although a variety of heuristics exist to help detect

a proportion of them. Compiler Optimisation based techniques have been applied

to detecting equivalent mutants with limited success [83]. These approaches re-

volve around the fact that compiler optimisations are either an optimisation or

de-optimisation of the PUT, and so if a mutant satisfies an optimisation rule, it

can be shown to be equivalent. Results in [83], tested on 15 programs, suggest

these approaches detect a median average of 10% of equivalent mutants. CBT

approaches offer a more rewarding approach, with empirical evidence suggesting

they can detect an average of 47.63% of equivalent mutants [89]. Under this tech-

nique, a mutant is considered equivalent if the constraints cannot be solved - i.e.

no test can be found to kill the mutant. However, detecting infeasible constraints

is undecidable.

Finally, software testing requires the correctness of a test executed on the PUT

to be determined. Often this is completed as a labour-intensive manual task by

the tester. Automating this task would help improve the reliability and efficiency

of testing, however this is difficult to accomplish, and is known as the oracle

CHAPTER 2. MUTATION TESTING 49

problem. This research circumvents this problem by assuming that appropriate

oracles exist for each PUT.

Of the problems described, this thesis focuses on improving the automation

of test data generation. To do this, it looks at the immune system as inspiration

for the evolution of a set of tests and compares this with the more traditional

evolutionary approach - genetic algorithms. The following chapter provides an

overview of the inspiration and mechanics of both algorithms.

Chapter 3

Evolutionary Computation

3.1 Introduction

Computational problems present many difficult challenges. Some problems, for

example, require searching through large domains of possible solutions, such as

for computational protein engineering (searching for an amino acid sequences with

particular properties) [21, 102], or the travelling salesman problem (minimising

the distance travelled between N nodes, visiting each node exactly once) [35, 56].

The challenge in these situations is how to search the solution set to quickly find

a “good” answer1. Other problems are caused by an ever changing environment;

as the environment changes, so does the solution required. Often, however, it

is not possible to predict the change in the environment, and so hard-coding

a solution to work in every situation is not always possible. This is common

in robotics, where a robot has to adapt to a varying environment in order to

perform a task. The challenge is how to create a solution capable of working in

any environment. Finally, another challenge is that some problems are simply

too complex to be described by a set of hard-coded rules. This is typified in the

artificial intelligence (AI) world, where a top-down architecture defining rules to

govern intelligence is too difficult. An alternative is a bottom-up approach where

1A “good” answer can be defined as a solution meeting some user-defined acceptance level.

50

CHAPTER 3. EVOLUTIONARY COMPUTATION 51

simple rules controlling simple behaviours are defined. The desired complexity of

the system as a whole is an emergent property of the many interactions between

these simple rules [76].

So, how are these challenges solved? In most cases it is too complex, or even

impossible, to hard-code a single strategy that works in every instance. To do

so would require knowledge of every possible environmental or problem combi-

nation, which could be infinite. Instead the solution must develop through time;

it must evolve. This notion of evolution draws obvious similarities with biologi-

cal evolution, providing good analogies for creating new computational solutions.

Evolution in the biological setting is driven by survival. It encourages useful char-

acteristics that result in organisms best adapted for their environment [76]. In

this manner, the solution to an environmental problem is developed through evo-

lution. In the real world however, evolution occurs at many levels and in many

timescales, with each providing a subtly different metaphor for evolutionary com-

puting solutions. For example, the connectionist adaptation of synapses between

brain neurons occurs throughout our life times, providing the basis for artificial

neural networks (ANNs) [36], used in particular to learn and classify information;

or the evolution of advantageous traits between generations of organisms happens

on a larger timescale and provides inspiration for genetic algorithms (GAs) used

for search and optimisation problems [76]. Most recently however, the ability of

the vertebrate immune system to learn to ward off previously unseen viruses has

sparked interest in the artificial immune system (AIS) paradigm [25]. Of these

three approaches, GAs and AIS are the most similar and the most pertinent to this

research due to their abilities to evolve near-optimal solutions from a population;

this research will focus on these two areas.

3.2 Species Evolution

In the early 19th Century, Jean-Baptiste Lamarck outlined his initial explanation

for the theory of evolution [54] (English translation [45]). This was based on the

CHAPTER 3. EVOLUTIONARY COMPUTATION 52

idea that individuals adapt during their lifetimes and pass these learnt traits onto

their offspring. The offspring continue this same process, adapting from where

their parents finished, and enable the species to evolve [106].

Although his theory was subsequently disproved by the discovery of the partic-

ulate nature of genetic inheritance (traits determined by discrete units of inheri-

tance passed from one generation to the next) by Gregor Mendel [107], Lamarck is

considered by many as a fundamental influence in early ideas about evolution. In

particular, such acclaim comes from Charles Darwin whose ideas about evolution

shape scientific views today. Darwin identified two primary factors in evolution:

natural selection and genetic variation. He used these ideas, in his works on the

origin of species [22], to formulate four hypothesis. These are summarised con-

cisely in [25] and repeated below:

1. The number of offspring tends to be larger than the number of parents;

2. The number of individuals in a species remains approximately constant;

3. From (1) and (2) one can conclude that there will be competition to survive;

4. There are genetic variations within the same species of individuals.

Survival within a population favours those individuals best adapted to their

environment - survival of the fittest. These individuals will in turn, because of their

increased rate of survival, be more likely to reproduce and continue their strong

traits. Therefore, because of this natural competition and the favouritism of strong

individuals, the overall population strength should increase as the population

evolves, until an optimal strength is reached. To complement this process, genetic

variations, such as recombination and mutation, occur during reproduction to alter

(to some degree) the genetic structure of the offspring. They introduce variability,

or randomness, into the solution set. Ultimately, these changes may impose a

significant impact on an offspring’s survivability, either increasing or decreasing

it. Any resultant change will affect the likelihood of that offspring reproducing

and the chance of that variation impacting on the rest of the population.

CHAPTER 3. EVOLUTIONARY COMPUTATION 53

Overall, evolution of useful solutions in species is driven through a constant

pressure to survive and variations introduced during reproduction. Genetic Al-

gorithms (GAs) try to model these pressures on a population through various

processes, in order to optimise a set of solutions to a given problem domain. GAs

will be discussed in section 3.2.3. First, a brief biological background will be given.

3.2.1 Biological Species

Humans, amongst all other living organisms, are made up of cells. For any in-

dividual, each cell contains the same set, known as a genome, of one or more

chromosomes - a chromosome being a strand of DNA. The genome of any indi-

vidual forms a ’blueprint’ that defines its physical and mental makeup.

Each chromosome consists of a number of genes. These are fragments of DNA,

each occurring at a particular locus (position) in the chromosome, that are usually

responsible for a particular protein. Very simply, a gene can be considered as

encoding a specific trait, such as eye or hair colour, although it is not limited

to these viewable characteristics; for example, other genes are responsible for

enzymes. The alternative forms that a particular gene can take (e.g. red, brown,

or blonde hair) are called alleles. The selection of these alleles for every gene

in a genome, or genotype, defines an organism’s expressed physical and mental

characteristics - its phenotype.

Chromosomes can either be paired with another chromosome or unpaired.

Most sexually reproducing species (between two parent individuals) have paired

chromosomes and are known as diploids. Asexual reproducing species have un-

paired chromosomes, and are called haploids. During sexual reproduction, two

events occur, recombination and mutation, both of which cause offspring to ex-

press a varied phenotype from either parent (and indeed other siblings). Recom-

bination varies slightly depending on whether the organism is diploid or haploid.

For diploids, each parent produces a single chromosome (called a gamete), created

by taking genes from each pair of chromosomes. Each gamete from both parents

then combines to form new chromosome pairs. For haploids however, who have

CHAPTER 3. EVOLUTIONARY COMPUTATION 54

unpaired chromosomes, genes are taken from chromosomes of each parent directly

- gametes cannot be formed. The second process to occur happens regardless

of whether the organism is diploid or haploid. Offspring chromosomes undergo

mutation, where bits of DNA, called nucleotides, are changed between parent and

child. Both processes result in a child that is a combination of both parents with

possible mutations.

3.2.2 Evolution of Species

The evolution of species is believed to be heavily influenced by two primary factors,

as identified by Darwin: natural selection and genetic variation. As described

previously, the former works to guide a species’ evolution in a favourable direction,

whereas the later is responsible for variations in phenotype.

Individuals who are well suited to their environment are more likely to survive

and reproduce, passing on their genes to their offspring. The probability that an

individual will live to reproduce is usually a measure of fitness. Competition to

survive (indicated by Darwin’s second hypothesis) means that weaker individuals

in any generation are likely to die out, leaving individuals with stronger traits

that are useful for survival. As long as these traits continue to be useful, they

will become more commonplace in the population, therefore improving the popu-

lations’ fitness as a whole. None of this can happen though, without a method to

incorporate genetic material from parents to their offspring. This is achieved with

recombination. Genes from both parents are used to produce a new chromosome

(or chromosome pair for diploids), allowing for the possibility that strong genes

from each parent could be combined to produce an even stronger child individual.

Or course, the reverse is also possible. In addition to recombination, mutation of

genes also occurs, introducing randomness into chromosomes, and opening other

avenues to evolution that were previously hidden. Both factors work in conjunc-

tion to evolve solutions to the environment.

CHAPTER 3. EVOLUTIONARY COMPUTATION 55

3.2.3 Genetic Algorithms

Genetic Algorithms (GA) try to model the processes of natural selection and ge-

netic variation to stochastically search for solutions. Typically they constitute

a fixed-size population of haploid individuals (in particular, single-chromosome

individuals with fixed lengths, as used in this work), which represent potential so-

lutions to some computational problem. Searching for potentially better solutions

occurs by evolving new (offspring) populations through the processes of selection,

recombination and mutation, before assessing each offspring individual’s ability.

For example, GAs have, amongst many other applications, been successfully used

for optimising solutions to the Travelling Salesman Problem [55], evolving pro-

grams [50], and of course, generating tests for mutation testing [7].

A basic GA, as employed by this research, can easily be described by the flow

diagram in figure 3.6. An initial population of individuals are evaluated to measure

their competencies at solving the problem. A number of these are selected, based

on their ability, and used to generate the next population.

Generate a random initial
population of chromosomes

Evaluate the fitness
of each individual

Select the individuals
to reproduce

using crossover and mutation
Generate the next population

Figure 3.6: A basic Genetic Algorithm. Diagram adapted from [25]

Selection There are a number of different methods that can be used to select

individuals for reproduction, such as Roulette Wheel Selection, Rank Selection,

Boltzmann Selection or Elitism. Interested readers should consult [76] for details

CHAPTER 3. EVOLUTIONARY COMPUTATION 56

on these and others - only methods relevant to this research will be discussed.

A typical means of selecting individuals is known as Roulette Wheel selection,

and is employed in this research as a simple and effective way of selecting individ-

uals based on their fitness. Essentially, an individual’s probability of selection is

directly proportional to its fitness. Table 3.2 demonstrates how Roulette Wheel

is applied to a population of 5 individuals.

Ind. Chromosome Fitness Proportion Range
1 01011111 6 (6/20) = 0.3 0.0 < n ≤ 0.3
2 11100111 4 (4/20) = 0.2 0.3 < n ≤ 0.5
3 00110101 4 (4/20) = 0.2 0.5 < n ≤ 0.7
4 10110010 4 (4/20) = 0.2 0.7 < n ≤ 0.9
5 00001001 2 (2/20) = 0.1 0.9 < n ≤ 1.0

Total 20

Table 3.2: Example Roulette Wheel Selection for a 5 individual population. n
is a random number generated for selecting individuals. Antibodies are trying to
match the binary string 01111110.

Each individual has its fitness evaluated. These are summed and the total used

to calculate each individual’s “proportion of the wheel”. For example, individual 1

forms 30% of the total fitness values, and so occupies 30% of the wheel. Normalised

ranges are then calculated for each individual, representing a range of values which

will select that individual. To select an individual, a random number, n, with

uniform distribution in the range [0,1] is generated and matched to a range. The

individual associated with that range is selected. For example, if the random

number 0.31 was generated, individual 2 would be selected.

A problem with selecting individuals in this manner is that there is a high

probability of losing the highest fitness individual - it may not be selected at all,

or it will be selected but crossover and mutation will reduce its fitness. To stop

this from happening, an additional selection operator, referred to as elitism, can

be applied. Elitism simply copies the highest fitness individual from the parent

population to the child population. The remainder of the child population is then

generated by a selection method, such as roulette wheel. Elitism is also used in

CHAPTER 3. EVOLUTIONARY COMPUTATION 57

this research in conjunction with roulette wheel selection.

Recombination Similarly to selection, recombination has many varieties of

methods, each attempting to emulate recombination in biology. Again, consult

[76] for details of other techniques. The approach used in this research however,

is known as single-point crossover, as shown in figure 3.7.

crossover

01 1 1 1 1 10

1 1 0 0 1 00 1

01 1 1 0 1 00

1 1 0 1 10 1 1

Parent 1

Parent 2

crossover point

Child 1

Child 2

Single−point

Figure 3.7: Single-point crossover applied to two binary-string chromosomes. Di-
agram adapted from [25]

Having selected two parent individuals (single-chromosome haploid), a random

number in the range [0,1] is generated. If this falls below a user-defined threshold

probability (the crossover probability), a random locus is chosen on a chromosome.

All genes subsequent of this point are swapped between parents. Typically, a high

crossover probability (≈ 0.8) is used [76].

Mutation Mutation of an individual is strongly dependent on the choice of

representation for an individual. As such, the algorithm used and the rate of

mutation vary per implementation. Often, binary-strings are used to represent a

chromosome; a different encoding is used for this research however, and will be

discussed in chapter 4.

Figure 3.8 demonstrates mutating a single bit of a binary-string individual.

Every locus has equal chance of being mutated, based on the mutation rate; if,

for a given locus, a random number (in the range [0,1]) falls below the mutation

probability, that locus will be mutated (i.e. bit changed from 0 to 1, or vice versa).

Usually, a very low mutation rate is used (< 0.05) is used [76].

CHAPTER 3. EVOLUTIONARY COMPUTATION 58

chromosome

01 1 1 1 1 10

1 0 1 1 1 100

Single−point mutation

Original
chromosome

Mutated

Figure 3.8: Single-point mutation applied to a binary-string chromosome. Dia-
gram adapted from [25]

3.3 Immune Systems

Edward Jenner, a pioneer in vaccination, noticed that milkmaids who contracted

cowpox did not suffer from its more deadly relative, smallpox. In his famous

experiment [77, 98], Jenner inoculated an 8-year old boy, James Phipps, with fluid

from a milkmaid’s cowpox pustule, before exposing him to smallpox. Thankfully,

for Jenner, James survived. Jenner soon realised the enormity of this result,

and its implications for vaccination. In less than 4 years from this experiment,

around 100,000 people had been vaccinated worldwide [16]. Since this experiment,

numerous vaccines have been made against many diseases, such as polio, tetanus,

measles and others [77].

The process by which the immune system evolves is key to the success of

immunisation. When a person becomes infected with a virus, immune system cells

multiply and modify themselves in an effort to detect the particular pathogenic

cells (disease causing microorganisms) that have entered the body. Many immune

cells are generated to fight off this virus, whilst at the same time a memory

of the pathogen is developed, enabling for quicker recognition of the same, or

a very similar, virus in the future. Should the worst happen and the person

becomes re-infected, this memory helps speed up the identification and response

to the virus. In this way, the immune system learns from its past pathogenic

encounters, enabling a faster response to kill a repeating virus before it has a

chance to significantly infect its host.

Artificial Immune Systems (AIS) use the vertebrate immune system as a

CHAPTER 3. EVOLUTIONARY COMPUTATION 59

metaphor for developing, in general, optimized receptor patterns capable of solv-

ing a particular problem. AIS will be discussed more in section 3.3.3. First, to

help understand the artificial metaphor, an overview of biological immune systems

will be presented.

3.3.1 Biological Immune Systems

The human immune system is a multi-layered defence mechanism designed to

protect our bodies from infectious organisms, or pathogens, such as viruses and

bacteria. It is composed of physical barriers, such as skin; biochemical barriers,

such as saliva and other destructive enzyme containing fluids; and two systems

offering complementary forms of immunity: innate and adaptive.

The innate immune system is often regarded as a static mechanism, providing

an initial response to a wide range of invading pathogens. It is also additionally

responsible for initiating and controlling the adaptive immune response. However,

because of its fairly static pattern recognition abilities, the innate immune system

is often not considered as inspiration for machine learning, although some work

does draw inspiration from it [9]. For this reason, and in particular because this

research focusses on evolution and learning, this background will centre on the

adaptive immune system.

The adaptive (or acquired) immune system, as the name suggests, has the abil-

ity to evolve, allowing it to direct its attack to previously unseen pathogens that

the innate system is incapable of removing. This system consists of two main cell

components that deliver a response to an invading pathogen. These components

are lymphocyte cells (white blood cells), named T-cells and B-cells. Cells of these

type originate in the bone marrow, but vary in where they mature - B-cells matu-

rate in the bone marrow, whereas T-cells migrate to the thymus first. Maturation

is a process whereby self-harming or ineffective lymphocytes are killed off before

they enter the body. In this way the lymphocytes comprising the working immune

system are the most effective at recognising pathogens and do not react to their

CHAPTER 3. EVOLUTIONARY COMPUTATION 60

host’s cells. Recognition occurs when a receptor on a lymphocyte binds compli-

mentarily to an antigen exhibited on the surface of a pathogen. Reciprocally, an

antigen is any molecule recognised by the immune system. B and T-cells that

have matured go on to provide defences against invading pathogens in distinct,

but interrelated ways.

T-cells display single specificity receptors (i.e. all receptors on one T-cell ex-

hibit the same structure) on their surface which recognise and bind to antigens

that have been processed and bound to a major histocompatibility complex (MHC)

molecule. Two classes of MHC molecules exist: MHC class I molecules exist in

all cells, whereas MHC class II molecules exist in special antigen presenting cells

(APCs) such as macrophages, and B-cells. A cell that has been infected, or an

APC that has ingested an antigen, digests and fragments the antigen into peptides

[43, 78, 96]. These fragments then bind to the appropriate MHC molecule, form-

ing a complex which is displayed on the surface of the cell. T-cells that recognise

this complex can then directly attack and kill the infected cell. In addition to

this however, T-cells also help regulate other cells, for example, they provide a

co-stimulatory signal to B-cells; without this signal, B-cells cannot be provoked

into an immune response.

Similarly to T-cells, B-cells also display single specificity receptors, known as

antibodies, on their surface. These receptors however, bind to antigenic patterns

on a pathogen’s surface rather than peptides presented by MHC molecules. The

magnitude of the subsequent immune response is affected by the degree of match-

ing between the antibody and the antigen. How the adaptive immune system

functions however, has always been the subject of much speculation. One theory

developed to explain it is the Clonal Selection theory [19]. Antibodies that match

(recognise) an antigen to some degree, undergo cloning dependent on the strength

of that match, referred to as the affinity of that B-cell. Stronger affinity B-cells

have greater ability in identifying the antigen and so produce more offspring than

lower affinity B-cells. Furthermore, to cause diversity among B-cells, offspring are

also mutated at a rate inversely proportional to their affinity - the stronger the

CHAPTER 3. EVOLUTIONARY COMPUTATION 61

affinity, the stronger the antigenic match, and therefore the less mutation that

is required. Memorisation of good antibodies also occurs, in preparation for a

re-infection. Should the same, or similar, antigen invade the body again, this

memorisation allows for a quicker response - instead of relatively weak affinity an-

tibodies having to reproduce and mutate in order to increase the match strength,

strong affinity antibodies have already been memorised and are able to produce

a plethora of strong antibodies. This feature of the adaptive system provides the

notion of learning in the immune system, and will be discussed more in section

3.3.2.

Shape and Shape-Space

Central to the antibody/antigen matching process is the idea of shape and shape-

space. Each antibody and antigen has a specific shape - a structure, based on

properties such as electrostatic charges or hydrogen bindings - that determines

what it will match with [96]. To recognise an antigen, an antibody’s shape must

bind complementarily with a significant proportion of the antigen’s shape. The

degree of complementariness defines the strength of the binding and therefore the

strength of the immune response.

Given the finite range of the structures involved (i.e. a finite range of possible

charges, bindings, etc.), an antibody’s shape exists within a range of possibilities,

referred to as the immune system’s shape-space [95]. This shape-space can be rep-

resented abstractly as the volume V in figure 3.9. An antibody can be considered

as a point within this volume whose location is defined by its shape. Similarly, as

antigens are also based on the same finite structures, they too can be considered

as points existing within this volume.

As previously mentioned, the strength of the immune response to an antigen

depends on the degree of complementariness between it and the binding anti-

body. Binding must occur over a sizable region of the antibody’s and antigen’s

surfaces, in order for the antigen to be recognised [25]. If the degree is below some

threshold (i.e. a small binding region), ε, then an immune response is unlikely

CHAPTER 3. EVOLUTIONARY COMPUTATION 62

S

εV ε εV ε

εV εV

Figure 3.9: Abstract visualisation of shape-space. Within shape-space S , anti-
bodies are dots with a spherical recognition region (Vε), antigens are crosses. V
is the volume containing all antibody and antigen-complement shapes Diagram
reproduced from [25]

to occur. Therefore, this threshold can be thought of as providing a recognition

region located around each antibody in the shape-space, depicted as Vε in figure

3.9. An antibody will bind to and cause an immune response to any antigen whose

complement lies within its recognition region (the response is proportional to

the binding strength - i.e. the distance within the recognition region that the

antigen is from the antibody). In this way, a body’s finite number of antibodies

can detect all possible antigens allowable in the shape-space. Considered another

way, the immune system does not require a specific antibody to target each indi-

vidual antigen; instead any antibody is capable of detecting a variety of antigens,

meaning fewer antibodies are needed to detect a large number of antigens. The

immune system generalises the shapes it is capable of detecting to provide maxi-

mum coverage through minimal numbers of antibodies.

The Immune Response

The outcome of an infection is strongly influenced, as in typical predator-prey

relationships, by the sizes of the two populations involved - the larger population

usually has the better chance of survival [96]. To increase the immune system’s

chance of defeating an infection, an immune response must increase the number

CHAPTER 3. EVOLUTIONARY COMPUTATION 63

of antibodies that are effective against the infecting pathogen.

An antibody recognising an antigen initiates an immune response directed to-

wards that antigen. The strength of this response is dictated by the degree of

complementariness between the antibody and the antigen; a measure known as

the antibody’s affinity to that antigen. As previously mentioned, the most promi-

nent explanation for the immune response is the Clonal Selection Theory [19].

Consider the shape-space model in figure 3.9. If two antigens (technically their

complements) lie within an antibody’s recognition region (e.g. the antibody on

the right-hand side in the figure), then the antigen whose complement is closest

to the antibody (in the shape-space) causes the strongest immune response. The

clonal selection theory suggests that because these antibodies are helpful in fight-

ing the invading pathogen then there should be more of them. The antibodies’

respective B-cells produce clones of themselves to strengthen the antibody army

against the invading pathogen. These clones mature into non-dividing antibody

secreting cells, called plasma cells, which account for a large proportion of antibod-

ies produced in an immune response. In the case where more than one antibody

recognises a particular antigen, those B-cells with a higher affinity produce more

offspring than the lower affinity B-cells, capitalising on the fact that high affinity

antibodies are more adept at killing antigens than low affinity ones. Furthermore,

in addition to this proliferation, diversity is also added to the army via muta-

tion. The clones’ receptors can mutate, inversely proportional to their affinity, in

an effort to improve their recognition of the antigen. Those receptors that bind

strongly to the antigen require only a slight modification to help them improve,

and so mutate a little; receptors whose recognition ability is weaker however, need

to mutate more. This process is known as somatic hypermutation due to the high

mutation rates used within the immune system.

According to clonal selection then, an invading pathogen causes the expan-

sion and diversification of the antibody army. Many new and slightly different

antibodies are produced in order to achieve an efficient and effective immune re-

sponse. With this search for stronger antibodies however, comes the possibility

CHAPTER 3. EVOLUTIONARY COMPUTATION 64

that some antibodies may not be useful to the immune system; some might have

low affinities or worse still, may be harmful to the very body they are trying to

protect. Thankfully the immune system contains strategies useful for eliminating

these useless or harmful antibodies, such as negative selection [63, 105]. Addi-

tionally, with the high proliferation rates involved, the large number of new cells

produced could overwhelm the body. This does not happen though. Instead, the

number of immune cells remains roughly constant throughout a body’s lifespan,

indicating that there must also be a high degree of cell death; low affinity and

self-reactive B-cells suffer a process of programmed cell death, known as apoptosis,

thereby helping to keep population numbers reasonably constant [105].

3.3.2 Evolution in the Immune System

There are two distinct theories about how the adaptive immune system learns and

remembers antigens: memory cells and immune network theory. This research

focusses on the more traditional, and more accepted, idea that long-lived memory

cells are created2.

Memory Cells - Clonal Selection

This is the more accepted idea of how the immune system learns. Because of this,

memory cells are often the implied learning mechanism when referring to clonal

selection.

When an antibody recognises an antigen and initiates an immune response,

it causes the proliferation of its associated B-cell. During this mass-production

of immune cells, many mature into plasma cells. Others however, differentiate

into long-lived memory cells. These circulate the body, and upon recognition

of the same or similar antigen, produce plasma cells. Plasma cells can produce

antibodies quicker than standard B-cells, and so immune responses to subsequent

exposures of an antigen, or similar antigen, are quicker. This is important for

2Immune network theory is based on the interactions amongst immune cells and amongst
immune cells and antigens. Interested readers should consult [44].

CHAPTER 3. EVOLUTIONARY COMPUTATION 65

(ii) Proliferation

Antibody

M

M

Antigens

(i) Selection (iii) Differentiation

Plasma cells

Memory cells

Figure 3.10: The clonal selection principle in response to foreign antigens. Anti-
bodies matching antigens ((i) Selection) undergo cloning ((ii) proliferation) and
differentiate into memory and antibody secreting plasma cells ((iii) Differentia-
tion). Diagram adapted from [25]

quickly defeating any antigen before it has a chance to multiply significantly.

Being long-lived also means that the immune system can maintain this memory

of a particular antigen, without the need for constant exposure to it. In many

cases, just one exposure is enough to produce life-long resistance.

3.3.3 Artificial Immune Systems

Similarly to GAs, Artificial Immune Systems use their natural biological coun-

terparts as inspiration for creating adaptive, problem solving solutions. To be

classified as an AIS therefore, a solution must embody three central principles: a

basic model of an immune component; be designed by encompassing ideas from

theoretical and/or experimental immunology; and, be aimed at problem solving

CHAPTER 3. EVOLUTIONARY COMPUTATION 66

[25]. These three constraints are typically satisfied through an arbitrary mod-

elling of antibody and antigenic populations, coupled with some biologically in-

spired process to modify the population members. Such modelling lends itself

to being abstracted into three key areas: representation; evaluation; and, adap-

tation. Antibodies and antigens are represented in some format, often a binary

string can be used. A method to evaluate how well an antibody performs against

an antigen is needed, and this is used in some process to adapt the population

and improve its solution(s). The choice for these three layers is usually made

in consideration for the problem at hand. For example, for computer security, a

representation based on network traffic rules (e.g. IP addresses, port numbers,

etc.) or system calls, coupled with a negative selection algorithm to generate a

set of disallowed connections may be more beneficial [31, 32]; alternatively, for

pattern recognition, an encoding applicable to the data being searched (e.g. real

values, or binary-strings) may be more relevant, combined with clonal selection

to evolve the solutions3. This later case is most relevant to this research, where

each solution encodes a test (see section 4.6) and a memory set is evolved using

clonal selection.

The problem domain affects both the representation of antibodies and antigen,

the evaluation mechanism, and the algorithm used. In general, the encoding of

antibodies (and antigens) should reflect the information pertinent to the solution.

Subsequently, the ‘evaluation’ mechanism used will be determined by the chosen

representation, with the choice of algorithm being dependent on what is to be

achieved. There are four classes of algorithm, based on effects and processes

seen in the immune system, each presenting different attributes and/or results.

They are: bone marrow models - used to generate repertoires of cells; thymus

models - used to generate repertoires of cells capable of performing self/nonself

discrimination; clonal selection algorithms - used to control how immune cells

interact with antigens; and, immune network models - used to simulate the immune

3Note: neither of these examples specifies an ‘evaluation’ mechanism, although one is needed
to allow the ‘adaptation’ process to function.

CHAPTER 3. EVOLUTIONARY COMPUTATION 67

network theory [25]. Of these four, clonal selection algorithms are the most useful

to this research as they evolve a set of memory cells, and will be described in the

rest of this section.

Searching for better solutions to some (antigenic) problem using a clonal se-

lection based AIS tries to follow the same principles used in nature. Solutions

(antibodies) from the current solution set (antibody population) that solve a prob-

lem (recognise an antigen) are encouraged by clonal expansion, with affinity

maturation serving to improve their effectiveness. Solutions that are good and

should not be lost are stored in a memory (memory cells). These memory so-

lutions, as well as the proliferated solutions, are then conjoined with the current

solution set to evolve the next-generation solution set. Additionally, and to reflect

the constant birth and death of new cells in the body, solutions in the popula-

tion die over time and are replaced with random new ones - a process termed

metadynamics. This algorithm is outlined by the flow diagram in figure 3.11.

Generate a random initial
population

of each individual
Evaluate the affinity

Clone nFittest highest

proportional their affinity
affinity individuals

affinity
proportional to their

Mutate clones inversely

Add useful clones to
memory

Replace nWorst low affinity
individuals with randomly

generated new ones

Figure 3.11: A basic Clonal Selection Algorithm.

CHAPTER 3. EVOLUTIONARY COMPUTATION 68

Clonal Expansion In the biological immune system, all antibodies that bind

with (match) an antigen undergo proliferation proportional to their affinity (i.e.

proportional to how well they match with the antigen). Therefore cells which

would match, but for whatever reason have not, will not multiply. In terms of

artificial immune systems, this can be achieved by selecting a number of high

affinity solutions (antibodies) to proliferate - the higher the affinity, the more

clones produced for that solution. This is the approach taken with the CLONALG

algorithm, adapted for this research [24].

As an example, consider the individuals (each individual is an antibody) in

table 3.3. If the top 3 individuals are selected for cloning, with the highest affinity

individual generating 3 clones, the second highest generating 2, and the third

generating 1, then then following clones would be produced (picking individuals

in order if they have the same affinity):

Parent Clones
Ind. Antibody Affinity Ind. Antibody Affinity

1 01011111 6 →
6 01011111 6
7 01011111 6
8 01011111 6

2 11100111 4 →
9 11100111 4
10 11100111 4

3 00110101 4 → 11 00110101 4
4 10110010 4 → No clones
5 00001001 2

Table 3.3: Antibody clones generated for the top 3 individuals in a population dur-
ing clonal expansion. Antibodies are trying to match the binary string 01111110.

Affinity Maturation The clones produced by clonal expansion also mutate at

a rate inversely proportional to their affinity. The selective pressure caused by

this “inverse” rate attempts to direct the mutation and improve the affinity of the

individuals - a local search of the shape-space. Like the GA, how mutation occurs

is dependent on the encoding used for the antibodies.

CHAPTER 3. EVOLUTIONARY COMPUTATION 69

For example, continuing with the binary-string example in table 3.3, all 6

clones suffer mutation. The maximum affinity value achievable is 8 (i.e. the

antibody encodes the binary-string 01111110 exactly), therefore the number of

bits to be mutated for a clone can be calculated by 8 − affinity . In this case,

clones 6-8 incur 2 mutations (8 − 6 = 2), and clones 9, 10 and 11 each incur 4

mutations (8− 4 = 4):

Clones Mutated Clones
Ind. Antibody Affinity Ind. Antibody Affinity

6 01011111 6 → 12 01111110 8
7 01011111 6 → 13 00011101 4
8 01011111 6 → 14 00111111 6
9 11100111 4 → 15 11001001 2
10 11100111 4 → 16 00100010 4
11 00110101 4 → 17 01111110 8

Table 3.4: Mutated clones generated for the top 3 individuals in a population
during clonal expansion.

Memory Clones go on to differentiate into memory cells and antibody secret-

ing plasma cells. Whilst plasma cells are not typically modeled in AIS, with

algorithms satisfied by producing clones, memory cells (or some form of memory)

can be helpful in storing good solutions that should not be lost. There is however,

no predefined way of modeling memory as this depends largely on the desired

outcome of the algorithm. CLONALG, for example, stores the best solution for

each antigenic pattern it encounters. It does this by only replacing the memory

solution if a higher-affinity individual exists in the current population. This re-

search however, only stores a solution if it adds value (i.e. kills a mutant) not

already contained in the current memory set - i.e. it increases the affinity of the

whole memory set.

Metadynamics Finally, to reflect the birth and death of cells in the immune

system, a number of low affinity individuals are removed from the population and

CHAPTER 3. EVOLUTIONARY COMPUTATION 70

replaced by randomly generated individuals. This allows the AIS to perform a

global search of the shape-space, thereby avoiding getting stuck in a local maxima.

3.4 Summary

Solutions to difficult computational problems within the computing domain can

often be developed using novel algorithms inspired by nature. This chapter pre-

sented two such algorithms pertinent to this research: Genetic Algorithms and

Artificial Immune Systems.

Genetic Algorithms are inspired by the evolution of species as theorised by

Charles Darwin [22]. They use the theories of natural selection and genetic vari-

ation to evolve a population of solutions (individuals) to some computational

problem, in much the same way that a species evolves over time. Natural se-

lection means those individuals who are best adapted to their environment (i.e

the problem) are more likely to survive and reproduce - strong solutions survive,

whilst weaker ones die out. During reproduction, recombination and mutation

in the genetic makeup of individuals causes offspring to vary from their parents.

This variation serves to search out stronger individuals who, because of natural

selection, are more likely to propagate the species.

Artificial Immune Systems present a different evolutionary approach, inspired

by the vertebrate immune system. In particular, they focus on the adaptive im-

mune system, and how it evolves its finite number of antibodies to defend against

an infinite number of antigens. To do this, antibodies (representing solutions)

that identify antigens (problems) are cloned (proportional to their affinity with

the antigen) and mutated (inversely proportional to affinity) to try to improve

their matching capabilities. Additionally, new antibodies are constantly being

created to replenish dead cells and provide coverage to new areas of the shape-

space.

Chapter 4 details how these two approaches can be utilised to automatically

evolve test data.

Chapter 4

Evolving Test Data

4.1 Introduction

An initial test set for a program undergoing mutation testing can easily result

in 50-70% of non-equivalent mutants being killed [6]. Improving this figure is

the prime motivation for a tester to undertake mutation testing’s cumbersome

manual process. While Genetic Algorithms, amongst other techniques mentioned

in Chapter 2, offer a beneficial reduction to the amount of work a tester has to

perform, can Artificial Immune Systems be used to improve upon these results?

The primary hypothesis of this thesis is that an Immune Inspired Algorithm

for Mutation Testing (IIA/MT) is consistently at least as effective at evolving test

data as a Genetic Algorithm for Mutation Testing (GA/MT). This is, in itself,

a high level hypothesis that requires thorough explanations of “consistency” and

“effectiveness” in this context.

Consistency simply refers to the notion that whilst an algorithm could be at

least as effective for a given program on a given run, this may not be the case over

multiple runs. An algorithm must be at least as effective on average, in order to

be consistent.

Effectiveness is a loose term, given to indicate some measure of performance

an algorithm has in improving test data. But how should this performance be

71

CHAPTER 4. EVOLVING TEST DATA 72

measured? Traditionally, mutation testing is a manual process. Recent applica-

tions of various flavours of evolutionary algorithms to the domain (see Section

2.5.1) however, have reduced the need to manually develop new tests. Whilst this

decreases the tester’s work, these approaches do incur their own costs. Predomi-

nantly, any newly conceived test has to be executed against the remaining living

mutants in order to judge its strength (in identifying mutants as incorrect), just

as in traditional mutation testing. Unlike the classical approach however, evolu-

tionary techniques are usually based on optimising a population of tests. In this

case, each test within the population requires testing against all remaining living

mutants through a series of iterations. As every mutant executed needs a finite

amount of time to execute1, the more mutants an algorithm executes, the longer

it will take to run. The number of mutant executions needed depends largely on

the algorithm employed and its representation of the problem space. This has

direct implications for the effectiveness of an algorithm for mutation testing.

As an example, consider the situation where a genetic algorithm requires 5

million mutant executions to achieve a 95% mutation score for a given program,

P . For an immune inspired algorithm to be at least as effective for the same

program P , requires that a 95% mutation score is achieved in 5 million mutant

executions or fewer. Alternately, at least as effective can be viewed as an immune

inspired algorithm achieving a mutation score greater than or equal to 95% after

5 million executions. Either way, emphasis is placed on obtaining higher mutation

scores in fewer mutant executions, or, considering the number of executions relates

directly to algorithm run times, as achieving a higher mutation score in less time.

As a minimum, consistently speeding up the evolution of test data whilst

maintaining high mutation scores increases mutation testing’s chances of adoption

by industry - and practical usage outside of research is an important goal for

any new mutation testing technique. But are there other criteria on which to

judge effectiveness? Considering the difficulties in finding test data to identify

1Mutants that enter infinite loops can have their execution times limited by a multiplication
of the original program’s execution time.

CHAPTER 4. EVOLVING TEST DATA 73

hard-to-kill mutants, an algorithm which consistently evolves such tests could be

considered more effective than an algorithm that does not. In this case, does an

IIA/MT consistently find tests that a GA/MT does not? Also, although perhaps

of less importance, is the size of the generated test set. In comparison with another

algorithm, an algorithm which generates a smaller test set attaining at least the

same mutation score could be considered more effective. Is this true of an IIA/MT

compared with a GA/MT?

This thesis makes a comparison between two evolutionary algorithms used

to automatically evolve software test data: an Immune Inspired Algorithm and a

Genetic Algorithm. This chapter outlines the process by which test data is evolved

using mutation testing, and describes the two evolutionary algorithms employed

to achieve this.

4.2 Approach Outline

Like all evolutionary algorithms, both the GA and the AIS algorithms iteratively

optimise a population of individuals in an attempt to find a good solution - in

this case, a set of tests which kill all mutant programs. The overall process by

which an individual is evolved is common to both algorithms, and presented in

figure 4.12. This is based on the mutation testing process outlined in figure 2.1.

The process starts by creating an initial population of tests, T . It is this

population that will evolve. Next, numerous mutated versions of the program

under test (PUT) are created based on the set of mutagens in use. Each test in T

is then first executed on the PUT and then each mutant in turn. For each test, the

result obtained from executing the PUT can be compared to the result obtained

from executing each mutant; different outputs indicate erroneous mutants, which

are killed. At this point, in traditional mutation testing the tester would then

generate new tests to kill the remaining living mutants. For an evolutionary

approach however, the population of tests T are evolved (by some mechanism),

based on the mutants each test kills, with the aim of evolving a population that

CHAPTER 4. EVOLVING TEST DATA 74

T n

FitnesskEvolve Test
SetT n+1

T Fitness

T

Repeat

M
utants

Test Set T 1 =4/9

2T =2/9

Mutagens

T Fitness = 2/9 2/9+ =5/91/9+

Fitness

PUT

RPUT

2T

= Killed Mutant

= Living Mutant
SAR

Rm

3

AOR

Rm

ABS

Rm1

T

T

T

Figure 4.12: Test data evolution using mutation testing.

kills all the mutants.

Both algorithms have subtly different ways of evolving the population of tests.

Understanding these differences will be useful in explaining any observed differ-

ences in the results. To this end, the algorithms used are described below in

sections 4.5 and 4.6. These are explained using an evolutionary algorithm en-

gineering framework (see section 4.4), adapted from [25], although other similar

frameworks also exist, such as MAD as used by Watkins [104].

Before describing details of how each algorithm operates however, it is worth

discussing in greater depth how the developed mutation system operates. Given

some of the technical solutions to certain aspects of the system can impact the

mutation scores achieved, particularly how tests are created and modified, knowl-

edge of how the system works is important to fully understanding the experimental

CHAPTER 4. EVOLVING TEST DATA 75

results obtained in Chapters 5 and 6.

4.3 The Mutation Testing System

The mutation testing system developed for this research, shown in figure 4.13,

operates in two conceptual stages: initialisation and operation. During initialisa-

tion, a PUT and a set of mutagens are used to generate the mutant programs.

These are then used during the operation phase to automatically evolve tests.

Eight operators have been defined: AAR; ABS; AOR; ASR; CNR; ROR; SAR;

SVR (see table 2.1 for details). The system has been written using Java J2SE 5.0

[99].

Prog, B
Back−up

Parser

PUT

MetaMutant,
MM

Harness

Operation StageInitialisation Stage

Stats
Results

EA

IIA

GA
M

Mutants

Mutagens,

Tests

Figure 4.13: Outline of the MTAIS process engineered for this research. The
process operates in two stages indicated by the different arrows.

CHAPTER 4. EVOLVING TEST DATA 76

4.3.1 Initialisation

Inputs: Program-under-test Outputs: Mutants

Mutagens MetaMutant Program

(Backup Program)

Initialisation of the system happens via two sequential processes: Parsing -

produces a MetaMutant program; Mutant generation - produces all mutants from

the MetaMutant. A backup of the PUT is also made.

Parsing

Parsing of the PUT occurs using ANTLR (version 2.7.2) which is a tool for gener-

ating compilers and translators from grammatical descriptions of a programming

language [3]. In essence, an AST (Abstract Syntax Tree) is generated for the PUT,

which is then modified by traversing it using a series of rule-based grammars (one

for each mutagen). Each grammar replaces an operator, function or variable use

(mutagen dependent) with an appropriate metaprocedure. The result is a syn-

tactically correct metamutant AST which can be converted back to a compilable

metamutant program that is able to be executed as any mutant.

MetaProcedures A metaprocedure is a mutagen specific function call that can

represent one or more mutants. When executed, a supplied argument determines

which mutant the metaprocedure should represent, and the appropriate action is

taken. For example, the arithmetic mutagen for the code x=y+z will generate 6

mutants: x=y-z; x=y*z; x=y/z; x=y%z; x=y; x=z. These can all be replaced by a

single metaprocedure, with the appropriate mutant selected at runtime by way of

the last argument:

x=AOR.op(y, z, 0)

The last argument to any metaprocedure is always an integer, and represents

an index into a “mutant array” (see the Mutant Generation section, following).

CHAPTER 4. EVOLVING TEST DATA 77

For every new metaprocedure used, this argument is incremented. The number

of preceding arguments is dependent on the mutagen.

Mutant Generation

A mutant is represented by an integer array. Each index of this array refers to the

same numbered metaprocedure. For example, index 0 refers to the metaprocedure

whose last argument is 0; index 1 refers to metaprocedure 1, and so on.

The value of the integer at any index means different things depending on the

mutagen. As a rule, if a mutagen replaces non-user-defined symbols (e.g. rela-

tional operators, arithmetic operators), the value in the mutant array represents

one of these symbols. For example, for the arithmetic operator, the following

values relate to the following operations:

+ → 126 − → 127 ∗ → 60 / → 128

% → 129 L → 200 R → 201

During execution, the metaprocedure looks up the value in the mutant array

for the associated index (i.e. its metaprocedure number). Based on this value,

the appropriate action is executed. For example, if the mutant array value for

(an AOR) metaprocedure 0 was 128, the metaprocedure would divide the first

two arguments together; if it were 201, it would return the second of the two

arguments (the right-hand side of the syntax tree).

If a mutagen replaces user-defined symbols (e.g. variables), then the mutant

array index and its associated value are both used to return a symbol from a

symbol lookup table. During parsing, each relevant metaprocedure maintains a

lookup table of user-defined symbols, representing possible mutations for that

variable, indexed by metaprocedure number. The first symbol (for any index in

the lookup table) is always the original symbol in the PUT. During execution,

the mutant array index (for this metaprocedure) selects the appropriate list of

user-defined symbol mutations, and uses the value in the mutant array to make

the selection. For example, consider figure 4.14. If metaprocedure 4 was an

CHAPTER 4. EVOLVING TEST DATA 78

3

program

Mutant
array 126 0 118 1 127 00

y
y
y
x

x
x
b
b

b
a

a
b

y

0

4
2

6 a
x a

+ ba < x − y

+ ba < − ya
Mutant
program

Symbol
lookup
table

3 50 1 2 4 6

index 4

value 1

0 1 2

Original

Figure 4.14: Example of how a mutant array is used to access a symbol lookup
table.

SVR operator, the metaprocedure would look up the list of possible user-defined

variable mutations under index 4, and return the variable indexed by the mutant

array value stored at index 4 - i.e. value 1, which returns ‘a’.

Having created the metamutant, an integer array for the PUT is created. This

contains values for each metaprocedure in order to execute the original program

(via the metamutant). A mutant is generated by modifying only a single value in

the PUT array. All mutants for a PUT can be generated by creating a number of

arrays representing every modification for every index.

4.3.2 Operation

Inputs: PUT Outputs: Evolved Test Set

MetaMutant Program Statistical Output

Mutants

Initial Test Set

Operation of the system is a fairly straightforward implementation of the mu-

tation testing process. An abstracted class diagram is shown in figure 4.152.

2To achieve a high level of abstraction, “classes” shown may refer to groups of classes. For

CHAPTER 4. EVOLVING TEST DATA 79

1

HarnessMetaMutant

PUT

Mutants

Algorithm

Population

Test

Executer
Mutant

Logger
Results

IIA

GA

Statistic
Logger

Individual

1

1..n

1..n

1

1

1

1

1

1

1

1..n

1

1
1

inherits

1

1

1..n

1 1

Figure 4.15: Abstract class diagram for the mutation testing system implemented
for this research. “Classes” shown may refer to groups of classes. For example,
the Harness “class” actually refers to multiple classes necessary to perform all the
harness activities.

A test harness is the initialisation and control point of the test evolution. It

provides support for the execution of metamutant programs, and as such requires

the metamutant and mutants generated from the parsing phase, as well as the

PUT. The harness has reference to an evolutionary algorithm (EA) used to evolve

the tests. To enable easier code reuse between different EAs, the EA evolves a

set of individuals, where each individual may contain one or more tests depending

on the specific algorithm employed. Evolution of the tests is described later, in

section 4.5 and 4.6, with the resultant evolved test set returned to the tester along

with statistics on each iteration from the statistics logger.

example, the harness “class” actually refers to multiple classes necessary to control the mutation
testing process.

CHAPTER 4. EVOLVING TEST DATA 80

Results Efficiency

Execution of the PUT or a particular mutant with a specific test occurs in the

harness. Results from these executions are stored in two tables, indexed by test -

one for the PUT results, one for mutant results. Every execution, only mutants

that are living and do not have results in the table(s) for the specific test are

executed. On execution completion, these tables are consulted to calculate which

of the mutants are killed. Unfortunately, as the iterations progress, this table

could become rather large and time consuming to search, and so for efficiency

reasons unnecessary tests that are removed from the population also have their

associated results removed from the tables. This introduces an obvious drawback;

should a previously removed test reappear, it will be re-executed on all living

mutants. This flaw is negligible however, as the time saved in searching a smaller

table makes up for the additional time endured in re-executing tests. Indeed, a

test may not even reappear.

Mutant Execution - Infinite Loops

Occasionally, the mutation of the PUT results in a program that will enter an

infinite loop for some set of tests. To cater for this, a time limit is imposed (as a

multiple of the execution time of the PUT) on the execution time of each mutant,

as is standard in other research [7]. Furthermore, a mutant gets a number of

attempts at completing execution within this limit. Failing that, it is deemed to

have entered an infinite loop and is killed (assuming the PUT did not also enter

an infinite loop for that test). Given the danger that a mutant might simply take

longer to execute than the PUT however, the mutant is given the extra advantage

of an increased time limit each attempt. This caters for instances when the initial

time limit is too harsh, or when the processor is occupied with other activities

thereby increasing the execution time.

CHAPTER 4. EVOLVING TEST DATA 81

Test Creation and Modification

Generating and modifying tests is a complex process in itself which more than

likely affects the ability of the algorithms. This research does not look at the most

appropriate method to alter and create tests, although this should be considered

when designing such systems. Instead the method adopted for this research at-

tempts to encourage the generation of legal input values (for a program) where

this makes sense (e.g. a day value between 1 and 31), or failing that, encourage

human-readable values (e.g. 20 for a triangle side length, as opposed to 3.54E5).

Obviously, this is entirely program dependent (3.54E5 may be entirely appropri-

ate), and so each test program has to have such appropriate ranges defined for

it. It should be noted that this approach is for the creation of random tests

only; although mutating tests uses a similar approach (described below), the val-

ues achievable are dependent on their original value, and not some pre-described

range.

Effect of varying
�

 on the sigmoidal function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10 15 20 25 30 35 40

x - test input (µ=15)

f(
x
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.16: The sigmoidal graph and the effect of varying the spread (σ).

Whether randomly creating a test or mutating an existing one, the process is

CHAPTER 4. EVOLVING TEST DATA 82

similar. Each test input is calculated based on a sigmoidal function, as indicated

in figure 4.16. Such a function produces an ‘S’ shaped curve that asymptotically

approaches zero and one, making it ideal for adding nonlinearity to the input value

selection based on normalised probabilities. The sigmoidal function is calculated

(for this work by):

f (x) =
1

1 + exp(−(x−µ)∗σ))
(4.2)

where x is an input value; µ is the mean input value; and σ is a normalised

probability that alters the spread of the curve (figure 4.16) - smaller rates increase

the spread, larger rates decrease it. By controlling the mean value and the σ

probability it is possible to control the test values (by specifying a probable range

of values) that are likely to be randomly generated.

How are test values determined? Essentially a reverse sigmoidal function is

performed. A random probability is chosen, representing a f (x) value on the

sigmoidal function, and is used to derive an f −1(f (x)) value (the new test input).

The following equation is used to do this:

x = µ−

 ln((1

p
)− 1)

σ


 (4.3)

where p is a random probability, µ is the current or default test value, and σ is

the rate of mutation which affects the spread of the curve.

When generating a new test, a default mean (µ) and σ probability are used for

each program input to encourage legal or human-readable values - these are shown

in table 4.5. The same values are used regardless of the algorithm employed. For

example, when creating a new test for the CalDay program, the first input is

calculated using a mean of 15 and a σ of 0.2. These values encourage the first

input to be a value approximately within the range (but not limited to) of 0 to

30. The other inputs have there own mean and σ values.

When mutating a test however, the mean is the original test’s value, and σ is

the mutation rate. For example, if a test for the CalDay program had the first

CHAPTER 4. EVOLVING TEST DATA 83

µ σ
approximate
input values3

CD
day 15 0.2 0 < x < 30

month 6 0.5 0 < x < 12
year 0 0.002 -2000 < x < 2000

DR
day(1|2) 15 0.2 0 < x < 30

month(1|2) 6 0.5 0 < x < 12
year(1|2) 0 0.002 -2000 < x < 2000

SEL
index 4 0.5 -2 < x < 12

array size 8 0.5 0 < x < 16
array element 20 0.1 -10 < x < 50
TRI

x|y|z 15 0.1 -25 < x < 55

Table 4.5: Mean and σ values for the inputs to the four tested programs, along
with an approximate range of input values that will most likely be generated.

input of 25, then the mean for the reverse sigmoidal function would be 25 and the

σ value would be the mutation rate (the mutation rate differs depending on the

algorithm used and the ability of the test - see sections 4.5 and 4.6 for a discussion

on each algorithm’s approach). Ultimately, performing mutation in this manner

encourages a test to mutate about its original value, rather than simply picking

any value from the input domain.

4.4 Engineering Framework

The defined system requires an evolutionary algorithm to evolve the tests. Such

algorithms operate in subtly different ways, but are typically based on a common

approach. The engineering framework tries to capture this approach as three

abstract layers.

3Approximate input values are presented to give an approximate indication of the range of
input values most likely produced by the sigmoidal function for the µ and σ values. Actual
input values may be outside of these ranges.

CHAPTER 4. EVOLVING TEST DATA 84

Although originally promoted for the design of Artificial Immune Systems, the

three layered framework described in [25] can be applied to other biologically in-

spired techniques (albeit with slight modification to the terminology). Indeed, this

structure was conceived by examining how other biologically inspired algorithms

work, e.g. neural networks.

Figure 4.17: Engineering Framework for Evolutionary Algorithms. Diagram
adapted from [25]

The framework builds a bridge from the application domain to a solution, as

shown in figure 4.17. This requires at least the following three elements in order

to provide a structurally sound engineering solution:

• Representation: A representation for the system’s components;

• Evaluation: A means to measure the quality/ability of an individual within

the environment or compared to other individuals;

• Adaptation: Functions that detail the system’s dynamics, usually based on

the ‘evaluation’ results.

As an example, consider Artificial Neural Networks [36]. Such networks consist

of a set of artificial neurons linked together in a network - Representation. During

training, input neurons are supplied with a stimulatory signal which propagates

CHAPTER 4. EVOLVING TEST DATA 85

through the network to generate an output. The network can be evaluated by

comparing the generated output with the expected output - Evaluation. Weights

on the neuron links can then be updated based on this evaluation in order to

improve the network - Adaptation.

4.5 Genetic Algorithm

Genetic algorithms are inspired by Darwinian theories of species evolution, as

described in chapter 3. This algorithm iteratively evolves a population of individ-

uals - each individual being a set of tests - in an attempt to find a good solution.

A good solution is an individual (set of tests) that kills the most non-equivalent

mutants. At the end of the process, the best individual is returned to the tester.

Figure 4.18 illustrates a single iteration of the GA/MT algorithm, with the pseu-

docode shown in figure 4.19.

Representation

Darwinian evolution of a population is based on survival of the fittest and genetic

variation in response to environmental pressures. Each member of the population

is defined by a set of genes, called a chromosome. Therefore, using a genetic

algorithm, a good member for mutation testing is a set of tests that kill the most

mutants:

• A chromosome is a set of tests;

• The environmental pressure is the set of mutants generated by all

the mutagens.

As an example, for the TriangleSort program, a chromosome would be a set

of m tests, such as:

[<1,2,3>, <4,5,6>, <-1,5,7>, ..., <99,42,8>]

CHAPTER 4. EVOLVING TEST DATA 86

T 9 T 10T 3T 2mT 1

T 7 T 8T 6 T 4 T 5m

T 1 T 2 T 3 T 4 T 5

T 1 T 2 T 3 T 4 T 5

T 7 T 8 T 9 T 10T 6

T 11 T 12 T 13 T 14 T 15

Population n

T 7 T 8 T 9 T 10T 6

(4) Repeat until size(Population n) = size(Population n+1)

(1) Select two
chromosomes

(3) Add new chromosomes
to child population

(5) Population

(2) Crossover and mutate

n+1 becomes Population n
for next iteration

Population n+1

Figure 4.18: Single iteration of the Genetic Algorithm process.

Evaluation

Population members whose chromosome makeup is best adapted for their envi-

ronment have the greatest chance of survival. This fitness level also affects their

likelihood of reproduction. Therefore, to use a GA for mutation testing:

• Fitness is the overall mutation score of all tests in the chromosome.

The fitness of a single test is the mutation score, calculated as described in

section 2.2. However, a chromosome contains m tests, and so the fitness must be

calculated by the total number of non-equivalent mutants killed by all the tests

combined (note: this is not simply the sum of each test’s mutation score).

CHAPTER 4. EVOLVING TEST DATA 87

'

&

$

%

inputs:

n the number of iterations to perform
s size of main population
m the number of tests in each individual
crossRate the rate of crossover amongst individuals
mutRate the rate of mutation

begin1

i ← 02

Pi ← initPop(s)3

while i < n do4

Ch ← {}5

calculateAffinity(Pi)6

total ← sumAffinities(Pi)7

normaliseAffinities(Pi , total)8

B ← getBestTest(Pi) // get best Test9

Ch ← combine(Ch, B) // add best to child population10

while size(Ch)< s do11

I1 ← rouletteSelection(Pi)12

I2 ← rouletteSelection(Pi)13

Q1,2 ← singlePointCrossover(I1, I2, crossRate)14

Q1 ← mutateChild(Q1, mutRate)15

Q2 ← mutateChild(Q2, mutRate)16

Ch ← combine(Ch, Q1,2)17

end18

Pi+1 ← Ch19

end20

return getBestTest(Pi) // return the highest fitness21

// individual

end22

Figure 4.19: Genetic Algorithm for Mutation Testing

CHAPTER 4. EVOLVING TEST DATA 88

Adaptation

Reproduction in a population is based on the fitness of the members. Fitter

members are more likely to survive, and therefore more likely to reproduce than

less fit members. Reproduction is a recombination of two members’ chromosomes

along with mutation of random genes, as described in section 3.2.2. This process

is used for a GA approach to mutation testing:

• Let the population in the i -th iteration be called Pi . This is initialised to

contain s individuals, each containing m tests, that are either randomly

generated or specified by the tester. n iterations are performed. At the

beginning of an iteration, every individual in Pi has its affinity calculated.

An individual’s affinity is the combined mutation score of all the tests in that

individual - i.e. the normalised percentage of all the mutants killed by all

the tests in that individual (line 6). Each affinity is then normalised (line 8)

against the sum of all the affinities (line 7) in preparation for roulette wheel

selection. Next, to prevent the population mutation score from dropping

between iterations, the best individual is selected and added as the first

member of the child population (lines 9-10). This copied individual does

not undergo crossover and mutation, however the original also remains in the

main population for the remaining steps. Further members are added to the

child population through a three step process of: selecting two parents using

roulette wheel selection (higher affinity individuals have a higher probability

of being selected - lines 12-13); performing single point crossover (the tails of

each parent chromosome, from a randomly chosen point, are swapped - line

14); and finally, performing mutation on randomly chosen tests within each

crossed-over individual (lines 15-16). These children are added to the child

population (line 17), and the process repeats until it contains s individuals.

The child population then becomes the next iteration’s parent population,

Ti+1.

CHAPTER 4. EVOLVING TEST DATA 89

4.5.1 Variables

n The number of iterations to perform.

s The number of individuals in the population.

m The number of tests in each individual.

crossRate The probability of crossover occuring.

mutRate The probability of a test being mutated.

4.6 Immune Inspired Algorithm

The Immune Inspired Algorithm for mutation testing is based on the Clonal Se-

lection theory, described in chapter 3, primarily because of its ability to evolve

a set of useful receptors and its similarities with traditional Genetic Algorithms.

More specifically, the IIA/MT was loosely based on the CLONALG implemen-

tation [24], although changes were made to focus the algorithm on the mutation

testing problem domain, in particular removing the concept of a memory indi-

vidual per antigen4, and instead allowing many individuals to contribute to an

antigen’s recognition.

The algorithm iteratively evolves a population of individuals - an individual

being a test - searching for useful solutions. A useful solution is a test which

kills at least one mutant program not already killed by any other test found so

far. Those tests that are found to be useful are placed into a memory set to be

returned to the tester at the end of the process. A single iteration of this process

is illustrated in Figure 4.20.

Pseudocode for the IIA/MT is shown in figure 4.21; references to line numbers

in the following descriptions refer to this code. Details of the methods used in

this code are described in Appendix A.

4In CLONALG, the highest-affinity antibody is stored in the memory layer for each antigen
applied to the algorithm.

CHAPTER 4. EVOLVING TEST DATA 90

R2
R3 R4

R5

mem

T

T

R1

C

s1T

s2

(5) Overwrite m worst tests with random tests

(3) Add useful clones to memory

(4) Overwrite n worst tests with best clones

Clones

(2) Clone and(1) Select Tests
mutate

Random Test Pool

Memory

Population

5C

1C

2C

3C

4

Figure 4.20: Single iteration of the ‘Immune Inspired Algorithm for Mutation
Testing’ process.

Representation

The immune system develops a population of antibodies to ward off various

antigens that invade the body. Any algorithm inspired by the immune system

metaphorically needs a population of artificial antibodies to ward of artificial

antigens. Therefore in this Immune Inspired Algorithm:

• An antibody is a test - e.g. <1,2,3> (i,j,k) for the TriangleSort program;

• An antigen is the set of mutants generated by all the mutagens.

CHAPTER 4. EVOLVING TEST DATA 91

'

&

$

%

inputs:

n the number of iterations to perform
s size of main population
nFittest number of highest affinity Individuals to select
nWorst number of worst affinity Individuals to select
cloneRate affinity multiplier affecting the number of clones

begin1

i ← 02

Ti ← initPop(s)3

M ← {} // reset memory set, M4

while i < n do5

calculateAffinity(Ti)6

L ← addToMemory(Ti , M) // L = useful individuals7

B ← selectFittest(Ti , nFittest) // added to memory8

R ← randomSelection(M, nFittest)9

B ← combine(B, R)10

B1 ← randomSelection(B, nFittest)11

L ← combine(L, B1)12

C ← clonalSelection(L, cloneRate)13

addToMemory(C, M) // result not needed14

Ti+1 ← metadynamics(Ti , C , nFittest, nWorst)15

end16

return M // return memory set17

end18

Figure 4.21: Immune Inspired Algorithm for Mutation Testing

Evaluation

Recognition in the immune system occurs with a complimentary match between

an antibody and antigen’s shape5. The degree on complementariness defines the

strength of the binding, or affinity, and affects the amount of adaptation of the

antibody population. In this algorithm:

• Affinity is the mutation score.

The mutation score of an antibody is calculated as described in section 2.2, as

the number of non-equivalent mutants killed by that test.

5Shape is a term for the receptor’s structure which is defined by properties such as electro-
static charge. See section 3.3.1.

CHAPTER 4. EVOLVING TEST DATA 92

Adaptation

Antibodies within the immune system undergo clonal selection when they bind

with an antigen - this is affinity proportional cloning and mutation as described

in section 3.3.1. A similar process occurs in this Immune Inspired Algorithm:

• Let the population in the i -th iteration be called Ti . This is initialised to

contain s tests, either by randomly generating tests or by specifying each

one. The memory set is initially empty. At the beginning of an iteration,

every test in Ti has its affinity calculated (i.e. its mutation score) with a

record kept of which mutants each test kills (line 6). Useful tests (those that

kill at least one mutant not killed by any test in the memory set) are added

to the memory set, M (line 7). nFittest highest affinity tests are then

selected from Ti (line 8). These selected tests are combined with nFittest

random6 tests selected from the memory population (line 9). In neither case

are the selected tests removed from their respective populations. nFittest

tests are chosen from this combined set and together with the useful tests

selected earlier, undergo clonal selection - i.e. affinity proportional cloning

and mutation (lines 10-13). A minimum of 1 cloned test per parent test

is created, and all clones undergo mutation inversely proportional to their

affinity (mutation score). Useful cloned7 tests are added to the memory set

(line 14). nFittest cloned tests are added to Ti , and a number of worst

affinity tests in Ti are removed until Ti size equals s . Finally, nWorst tests

in Ti are replaced by new, randomly generated tests (line 15). This process

repeats for n iterations.

6Tests are selected at random from the memory population because a “useful” test does not
necessarily have a high mutation score (e.g. it may only kill a single mutant). Selecting only
high affinity memory tests would restrict local searches from occurring around these low scoring
tests.

7‘Cloned’ tests are clones that may have also been mutated.

CHAPTER 4. EVOLVING TEST DATA 93

4.6.1 Variables

n The number of iterations to perform.

s The initial number of individuals in the population.

nFittest Defines the number of test to be selected (from either the memory set

or the current population) to undergo clonal selection. Also used in the

metadynamics phase to replace the nFittest8 worst tests in the current

population by nFittest best clones.

nWorst Defines the number of worst (lowest affinity) tests to remove from the

current population and replace with randomly generated ones during meta-

dynamics.

cloneRate A multiplication factor of an individual’s affinity defining the num-

ber of clones to produce during clonal selection. A minimum of 1 clone is

produced during cloning.

4.7 Differences in the Algorithms

Both algorithms evolve a population of individuals in an attempt to find a good

solution to the problem they encode. However, a fundamental difference is that, in

general, a GA aims to find the best individual to encompass the problem domain

as opposed to an Immune Inspired Algorithm which evolves a set of specialist

individuals to encompass the problem. This has an impact on an individual’s

representation. In mutation testing, it is unlikely that a single test will kill all

mutants. As such, the best GA individual needs to possess enough tests to kill all

mutants. But how many is enough?9 An Immune Inspired Algorithm, on the other

hand, naturally evolves a dynamic number of specialist individuals, each killing

8It helps to think of nFittest purely as a number in this case, and not as ”n fittest”.
9This is discussed more in section 6.3.1

CHAPTER 4. EVOLVING TEST DATA 94

at least one mutant not killed by anything else. There is no need to predefine how

many tests will be needed.

The evaluation mechanism are the same between the algorithms - the number

of mutants an individual kills. Further differences however, occur in the adapta-

tion mechanisms of the algorithms themselves. Whilst there is an argument that

immune algorithms are effectively GAs without crossover, there is an important

difference between the purposes of their respective selection and mutation meth-

ods. GAs select high fitness individuals because they are good solutions to the

problem domain. Disregarding crossover, they randomly mutate child individu-

als to add diversity to the population - to search for new solutions or to escape

local maxima. Immune algorithms on the other hand, evolve a set of specialist

solutions. Their form of selection, as part of cloning, produces local populations

around potentially good solutions. These clones are mutated to search around

these, already good, solutions in an attempt to find better (higher affinity) solu-

tions - local searches. Diversity - breadth search - is added in a later stage called

metadynamics, by the death of individuals and the introduction of new, random

individuals. Consequently, for an Immune Inspired Algorithm, cloning and muta-

tion are proportional to affinity (high affinity individuals undergo higher cloning

rates and less mutation than low affinity ones), whereas for a GA, although se-

lection is proportional to fitness, mutation is usually at a fixed rate (typically

< 10%).

4.8 Programs Under Test

The following two chapters compare both algorithms and analyse the effects of

parameter variability on four test programs. The code for these programs is

shown in Appendix B. To help understand the results in the next two chapters, it

is useful to have knowledge of the programs-under-test themselves. This section

provides high-level specifications of the programs, indicating the functionality of

each program.

CHAPTER 4. EVOLVING TEST DATA 95

4.8.1 CalDay

This program converts the specified date (given as three arguments: day, month,

year) into a Julian date (not including the fractional time part). The first three

lines (of the specification) account for negative years and the rearrangement of

the year to begin in March (dates in January and February are moved to the end

of the previous year). The Julian date is then calculated as the number of days

from the 1st January, 4713 B.C. (1720995). If the date to be converted is after

15th October 1582, then the Julian date is adjusted to suit (this is the date of

the introduction of the Gregorian calendar, designed to correct inaccuracies in the

length of the year calculations). The Julian date is then returned.

toJulian
day? : Z
month? : Z
year? : Z
result ! : R
julian : R
julianMonth : R
julianYear : R
number days since base : R× R× R→ R
date : Z× Z× Z→ DATE
change to gregorian calendar : R× R→ R

(year? < 0) ⇒ (julianYear = year? + 1)
(month? > 2) ⇒ (julianMonth = month? + 1)
(month? ≤ 2) ⇒ ((julianMonth = month? + 13) ∧

(julianYear = julianYear − 1))
julian = number days since base(julianMonth, julianYear , 1720995.0)
(date(day?,month?, year?) ≥ date(15, 10, 1582)) ⇒

julian = change to gregorian calendar(julian, julianYear)
result ! = julian

4.8.2 DateRange

This program calculates the number of days between two dates. numberDays has

6 inputs, representing the day, month and year of the two dates. Initially the

dates are analysed for validity by the goodDate function. If valid, the number of

CHAPTER 4. EVOLVING TEST DATA 96

days between the two dates is returned (note, this is always a positive number).

If either of the dates are invalid, −1 is returned to indicate an error.

numberDays
day1? : Z
month1? : Z
year1? : Z
day2? : Z
month2? : Z
year2? : Z
result ! : Z
difference in days : Z× Z× Z× Z× Z× Z→ N

(goodDate(day1?,month1?, year1?) ∧
goodDate(day2?,month2?, year2?) ∧
result ! = difference in days(day1?,month1?, year1?,

day2?,month2?, year2?)) ∨
(¬ goodDate(day1?,month1?, year1?) ∨

¬ goodDate(day2?,month2?, year2?) ∧
result ! = −1)

The validity of a date is determined by the goodDate function. This checks

that the month argument is within the range 0 to 11 inclusively, and that the

day argument is between 1 and the number of days in the month. This function

returns a boolean.

BOOL ::= True | False

goodDate
day? : Z
month? : Z
year? : Z
result ! : BOOL
days in month : Z× Z→ N

((0 ≤ month? ≤ 11) ∧
(1 ≤ day? ≤ days in month(month?, year?)) ∧
result ! = True) ∨

(result ! = False)

CHAPTER 4. EVOLVING TEST DATA 97

4.8.3 Select

The Select program returns the k-th largest element from the un-ordered array

arr, without affecting the ordering of this array. k must be in the range of the

number of elements in arr, or else an exception is thrown.

selip
k? : Z
arr? : seqR
result ! : R | Exception
temp : seqR

((k? < 1) ∨ (k? > #arr?)) ⇒ (result ! = Exception)
temp = arr?
temp ′ = shell(#temp, temp)
result ! = temp?(k?)

The shell function sorts the first num elements of the a array. The ‘for :

(seqT) → Z’ and ‘after : (seqT) → Z’ functions are defined in [15] and return

the subsequence of elements (from the first sequence argument) from the start to

the second-argument element, or from the second-argument element to the end,

respectively. The remainder of the original sequence, a, is catenated on to the end

of the sorted section.

shell
num? : Z
a? : seqR
sort : seqR→ seqR

a?′ = (sort(a? for num?)) a (a? after num?)

4.8.4 TriangleSort

This program classifies triangles into either scalene, isosceles, equilateral or invalid

based on three side length arguments. Preconditions are that all side lengths must

be greater than 0 and that each side must be less than the sum of the other two

sides. If either of the preconditions are false, then the triangle is invalid. If the

CHAPTER 4. EVOLVING TEST DATA 98

preconditions are true, then if all sides are equal, the triangle is equilateral; if two

sides are equal, the triangle is an isosceles; and if all sides are different lengths,

then the triangle is a scalene triangle.

RESULT ::= Scalene | Isosceles | Equilateral | Invalid

triang
i? : Z
j ? : Z
k? : Z
result ! : RESULT

((((i? > 0) ∧ (j ? > 0) ∧ (k? > 0)) ∧
((i? + j ? > k?) ∧ (i? + k? > j ?) ∧ (j ? + k? > i?)) ∧

((i? == j ? ∧ j ? == k?) ⇒ (result ! = Equilateral)) ∨
((i? == j ? ∧ j ? 6= k?) ∨ (i? == k? ∧ k? 6= j ?)

∨ (j ? == k? ∧ k? 6= i?) ⇒ (result ! = Isosceles)) ∨
(result ! = Scalene))

∨ (result ! = Invalid))

4.9 Summary

The main aim of this thesis is to test whether an Immune Inspired Algorithm

approach consistently generates test data using mutation testing that is at least

as effective as tests generated using a Genetic Algorithm. To be consistent, the

tests generated must be at least as effective over multiple runs. Effectiveness

however, can be measured in three ways: primarily by the number of mutant

executions required to achieve a particular mutation score; also, by how many

hard-to-kill mutants the tests kill; and finally, by the size of the generated test

set.

This chapter described and compared the two algorithms, with reference to

the engineering framework outlined in section 4.4. Both these algorithms will be

used in the following chapter to test the main hypothesis.

Chapter 5

Algorithm Comparison

5.1 Introduction

Genetic Algorithms (GAs) have previously been used to automatically generate

test data using mutation testing [7, 13, 46], achieving good results. This chapter

compares a GA approach with the Immune Inspired Algorithm (IIA) approach

presented in chapter 4, asking whether this new technique is at least as effective

(see Chapter 4 for a definition of effectiveness). To answer this hypothesis (H1),

6 sub-hypotheses are first described (H2-7) and then fairly investigated within

the constraints imposed in section 5.3. Section 5.3.1 describes the statistics used

throughout this chapter.

5.2 Hypotheses

The primary hypothesis is simply:

H 1 An Immune Inspired Algorithm is consistently, at least as effective as a Ge-

netic Algorithm for evolving test data through mutation testing.

To verify this hypothesis, it needs to be split into component hypotheses defin-

ing effectiveness. As identified, effectiveness relates to: an improved mutation

99

CHAPTER 5. ALGORITHM COMPARISON 100

score in (possibly) less time; finding tests for hard-to-kill mutants; and, generat-

ing a smaller sized test set. In the first instance however, it may be pertinent to

determine whether an IIA/MT is capable of evolving tests:

H 2 An Immune Inspired Algorithm for Mutation Testing (IIA/MT) is capable

of improving the mutation score for a given program by automatically evolving the

test data.

Given other evolutionary algorithms have been applied to test evolution, and

the similarities between these and AIS’s, it may seem unnecessary to question

the use of Immune Inspired Algorithms in this context. For completeness, the

hypothesis still needs to be asked. There is little point continuing if it is found to

be false.

As previously stated, the most relevant measure, in terms of effectiveness, is

determined by the time taken to generate a test set and its associated mutation

score. Evolutionary algorithms evolve a population of individuals over a series of

discrete intervals, usually called iterations. Comparing algorithms by measuring

mutation scores on a per iteration basis would seem logical, but the amount of

work each algorithm does per iteration is unlikely to be the same. Instead, the

number of mutants executed forms a better basis on which to compare algorithms

as the work involved in executing a mutant can be considered constant irrespective

of the algorithm. This leads to:

H 3 Test data evolution using the IIA/MT requires fewer mutant program execu-

tions than the GA/MT to achieve at least the same mutation score.

A second important measure of algorithm effectiveness is directly related to

an improved mutation score. Algorithms can often be used to evolve test sets

achieving high (>90%) mutation scores; it is the last remaining few mutants that

often prove difficult to kill as they require very specific tests. An algorithm which

can consistently produce tests to kill such mutants is comparatively more effective

than one which cannot (see Section 5.7 for details about hard-to-kill mutants).

CHAPTER 5. ALGORITHM COMPARISON 101

H 4 The final test set generated by the IIA/MT consistently identifies more hard-

to-kill mutants than one created by the GA/MT.

Finally, and more an ideal feature than a necessity, effectiveness can be mea-

sured by the size of the generated test set. An algorithm that generates less tests

to produce an equal mutation score is more effective than one which creates more

tests. This reflects the idea that a smaller test set is functionally easier (i.e. it

requires less time to test with) than a larger equivalent one.

H 5 Test data evolution using the IIA/MT results in a smaller average test set

size than from using the GA/MT.

The four hypotheses (H2-H5) should present enough evidence to clarify hy-

pothesis H1. How these results should be combined is by no means straightfor-

ward however. In particular, what emphasis should be placed on each of the three

‘effectiveness’ components? The answer to this is likely to depend on the tester’s

requirements. For example, maybe a tester has killed a large percentage of mu-

tants and only has hard-to-kill (HTK) mutants left - his choice of algorithm will

probably favour ability to kill HTK mutants rather than speed of operation.

Besides these hypotheses though, there are other hypotheses that, whilst not

aiding clarification of H1, are useful to study in their own right. As previously

stated, the time taken to achieve a certain mutation score has highest impor-

tance in terms of effectiveness. Hypotheses H2 and H3 use the number of mutant

program executions as a more consistent measure of execution time. For com-

pleteness, a comparison based on the number of iterations may also be useful.

H 6 Test data evolution using the IIA/MT achieves a higher mutation score by

a specific number of iterations than by using the GA/MT.

Lastly, with regards the final test set, Immune Inspired Algorithms allow tests

to be introduced through two main behaviours: cloning and mutation of individual

tests; or, introduction of novel tests (tests introduced at random, not via cloning).

CHAPTER 5. ALGORITHM COMPARISON 102

Immune Algorithms use both techniques to search for good solutions to a problem

- cloning and mutation acts as a local search; introducing novel tests acts as a

global search. Both behaviours give indications as to how the algorithm performs.

If the final test set solely contains novel tests then a similar functionality could

be obtained through many iterations of random test generation. If, on the other

hand, the test set contains cloned and mutated tests, the local search behaviour

of the algorithm has an effect.

H 7 The resultant test set achieved with the IIA/MT comprises of a mixture of

cloned tests and randomly introduced tests.

5.3 Qualifiers

The experiments to test the hypotheses make numerous comparisons between two

algorithms, each of which contain a number of variable settings (see sections 4.5

and 4.6). To keep the comparisons fair, the settings applied to each algorithm

should remain constant across the various hypotheses, as well as representing fair

values (i.e. values not considered extreme so as to cause unnecessary bias in

the behaviour of one algorithm over another). For the purpose of comparing the

algorithms, the following variable settings and assumptions have been made.

Four programs have been tested (detailed in Appendix B): DateRange (DR);

TriangleSort (TRI); CalDay (CD); and, Select (SEL). Each program was exe-

cuted at least 30 times per algorithm (DateRange: IIA-30, GA-34; TriangleSort:

IIA-34, GA-30; CalDay: IIA-33, GA-31; and Select: IIA-32, GA-31). The initial

population of either algorithm contains 300 tests (300 1-test individuals for the

IIA/MT, 15 20-test individuals for the GA/MT), each initialised to the same value

(see Appendix B for the values used for each program). Test values were randomly

chosen that produced a low starting mutation score, and these same values (for

a given program) were used for each experiment. This method was chosen over

the random generation of each test as it allows the effects of each algorithm to

CHAPTER 5. ALGORITHM COMPARISON 103

be easily observed, with each algorithm starting from the same state - no bias is

given to either algorithm from starting with a different population of tests.

In total, 500 iterations of each algorithm were performed. This number was

chosen based on test run results (for 1000 iterations) which indicated that for both

algorithms on all four programs, relatively little change occurred in the mutation

score after this number of iterations. Based on these results it was deemed that

500 was a reasonable number of iterations to allow each algorithm to reach its

plateau, as well as giving each a good chance to improve the mutation score.

Obviously however, one more iteration may cause a test to be found to improve

the mutation score further, prompting the more general question for testing and

evolutionary algorithms alike: what is a good stopping criteria?

Each algorithm was executed with the following parameter settings. These

values are not optimised for either algorithm, if indeed that is possible (see chap-

ter 6 for an analysis of each parameter’s effect which indicates that the PUT is an

important factor in determining good parameter settings), but merely represent

typical values that may be chosen. No work was undertaken to optimise the pa-

rameter values for each PUT. Chapter 6 presents an analysis of other parameter

values, to show how each one affects the algorithm’s effectiveness. The values cho-

sen for that analysis however, are (rather ironically) limited to prevent excessive

execution times.

IIA/MT GA/MT
Parameter Value Parameter Value

s (initial size of population) 300 s (size of population) 15
nFittest 5 m (#tests per member) 20
nWorst 5 crossRate 0.8

cloneRate 10 mutRate 0.02

Table 5.6: Parameter values used for each algorithm.

CHAPTER 5. ALGORITHM COMPARISON 104

5.3.1 Statistics

Because of the small sample sizes, comparisons between the mean values obtained

for each algorithm are statistically compared using a T-test for non-independent

samples. This calculates two values, Tobt and Tcrit , which can be compared to

determine if the differences in means are statistically significant at a given level

(Tobt ≥ Tcrit implies significance). All comparisons were made at the 0.05 sig-

nificance level - i.e. there is a 5% chance that the difference between two means

happened by chance. Readers interested in the exact details of these methods,

and how the Tobt and Tcrit values are calculated, should consult [51] for an intro-

duction.

5.4 H1 - Primary Hypothesis

An Immune Inspired Algorithm is consistently, at least as effective as a Genetic

Algorithm for evolving test data through mutation testing.

Being the primary hypothesis of this research, it is unfortunate that it cannot

be resolved by a single experiment. To clarify this hypothesis however, this section

provides a summary of the results obtained in the subsequent hypotheses. In the

context of mutation testing, algorithm effectiveness can be broken into three main

areas: improved mutation score in (possibly) less time; finding more hard-to-kill

mutants; and, generating smaller test set sizes. Experiments covering these three

areas are examined in hypotheses H3-H5. However, not only does the IIA/MT

have to be at least as effective, but it also has to be consistent in its efforts too.

This must occur on two levels: it must achieve similar results for every mutation

testing run using the same program - i.e. the algorithm is capable of reproducing

the same level of results; and, it must present similar effectiveness abilities for a

variety of programs - i.e. the algorithm is at least as effective irrespective of which

program is undergoing testing.

CHAPTER 5. ALGORITHM COMPARISON 105

Hypothesis H2 suggests favourable results on both counts of consistency for

IIA/MTs. Firstly, the mean average final mutation score achieved after 500 it-

erations is in excess of 92% for all four programs (table 5.7). Compared with

the starting mutation scores, this presents increases of 25.26% to 67.67%, hinting

that IIAs are capable of improving mutation scores regardless of the program be-

ing tested. Furthermore, the low standard deviations (between 0.05% and 1.84%)

on the mean mutation scores achieved after 500 iterations suggest that IIA/MTs

present a consistent approach to generating a high mutation scoring test set.

MS after 1 MS after 50 MS after 500
tobt tcrit H0

iteration iterations iterations
DR 84.85%±2.24% 97.63%±0.91% 99.78%±0.45% 6.26 2.05 Reject
TRI 30.48%±10.30% 95.24%±2.13% 98.15%±0.05% 6.58 2.03 Reject
CD 70.92%±0.34% 91.59%±1.55% 96.18%±1.84% 13.06 2.04 Reject
SEL 42.34%±9.94% 90.23%±1.50% 92.99%±0.85% 5.06 2.04 Reject

Table 5.7: Average mutation scores and standard deviations achieved for each
program after 1, 50 and 500 iterations using an Immune Inspired Algorithm. All
results are to 2 decimal places.

Hypotheses H3-H5 complement this consistency value with an effectiveness

comparison between the IIA/MT and the GA/MT. H3 compares the two algo-

rithms using the number of mutant program executions as a realistic (and more

comparative) measure of algorithm execution time. For two of the four programs,

the IIA/MT generates higher mutation scoring test sets than the GA/MT in signif-

icantly fewer mutant executions. For the other two programs the IIA/MT gener-

ates higher mutation scoring test sets, however it requires more mutant executions

than the GA/MT. This inconclusive (with respect to H3) result is deceiving how-

ever. Consider the equally highest mutation score achieved by both algorithms in

at least 25 runs, for these latter two programs - CalDay achieves an 84.63% score

in an average of 27551 mutant executions for the IIA/MT compared to 2341483

for the GA/MT; Select achieves 88.97% in an average of 1733911 executions for

the IIA/MT compared to 8920678 for the GA/MT. In both cases, the IIA/MT

CHAPTER 5. ALGORITHM COMPARISON 106

is capable of achieving the same mutation score in significantly fewer executions

than the GA/MT. At this score therefore, the IIA/MT is consistently more effec-

tive. Both algorithms are capable of increasing the mutation score beyond this

point however, as indicated by table 5.8, only in detriment to their consistency.

The IIA/MT is able to achieve higher mutation scores than the GA/MT, and

with greater consistency. As fewer GA/MT experiments achieve the high muta-

tion scoring test sets (compared to the IIA/MT), it is likely that the GA/MT

will need to execute excessively more mutant programs in order to achieve the

same mutation score as the IIA/MT, with the same consistency. Therefore these

results can also be seen as favouring the IIA/MT approach, where the local and

global search facilities offered by the IIA/MT seem to outperform the adaption

techniques of the GA/MT. Furthermore, whilst it may be possible to generate a

test set within a specific size that kills all mutants, the IIA/MT’s ability to cope

with variable sized sets allows for easier generation of tests.

IIA/MT GA/MT
MS # executed MS # executed

DR 100% 1075779 ± 611909 96.67% 2181424 ± 1062018
TRI 98.16% 1120972 ± 782389 93.42% 3625432 ± 0∗

CD 98.17% 4413829 ± 731962 86.47% 3439576 ± 176370
SEL 93.94% 24088117 ± 0∗ 91.69% 12438537 ± 0∗

Table 5.8: Mean number of mutants executed for each algorithm achieving its
highest mutation score. The number executed (and any standard deviation) has
been rounded up to the nearest whole number.

H4 compares the two algorithms based on their abilities to identify hard-to-kill

(HTK) mutants. Test sets can be generated to kill large proportions of mutants,

but for the remaining few mutants it can be difficult to find tests capable of killing

them. The results from this hypothesis indicate that an IIA/MT is consistently

able to generate test sets that kill significantly more hard-to-kill mutants than

∗A standard deviation of 0 is recorded for these results because only 1 run (out of 30+)
achieved the respective mutation score.

CHAPTER 5. ALGORITHM COMPARISON 107

GA/MT produced sets. For example, for the four programs tested, the IIA/MT

kills between 75.00% and 97.33% of HTK mutants, whereas the GA/MT kills

27.22% to 71.54% (table 5.9). A likely explanation for this however, is due to the

restriction on the number of tests in the final test set that the GA/MT makes -

high mutation scoring tests are more likely to be incorporated than low scoring,

HTK killing tests. This claim is analysed further in Chapter 6.

Total IIA/MT GA/MT
HTK # HTK % HTK # HTK % HTK

DR 15 14.60 ± 0.81 97.33% ± 5.42% 10.65 ± 0.54 70.98% ± 3.63%
TRI 12 9.00 ± 0.00 75.00% ± 0.00% 3.27 ± 1.14 27.22% ± 9.52%
CD 32 26.12 ± 1.34 81.63% ± 4.19% 11.00 ± 0.00 34.38% ± 0.00%
SEL 365 314.50 ± 17.39 86.16% ± 4.77% 261.13 ± 15.87 71.54% ± 4.35%

Table 5.9: The mean average number of hard-to-kill (HTK) mutants killed by
each algorithm, and percentage of the total number of HTK mutants, after 500
iterations. All results are to 2 decimal places.

Finally, H5 makes a comparison based on the size of the generated test sets.

Fewer tests mean less testing needs to be done to achieve the same results as a

larger, equivalent set. Results suggest that whilst there are significant differences

in the sizes of the generated test sets (at equally highest mutation scores), it

cannot be concluded that an IIA/MT always generates a smaller set - for 2 of the 4

programs, a larger test set is recorded using an IIA/MT (on average, TriangleSort

requires 24.79 tests for the IIA/MT compared to 20 for the GA/MT, and Select

needs 39.13 tests compared to 19.96). By allowing an IIA/MT to generate a

larger test set when it requires however, does appear to allow it to reach a higher

mutation score than the GA/MT. Encouraging larger test sets may therefore be

advantageous.

5.4.1 Conclusion

Of the three measures of effectiveness, an IIA/MT is shown to be consistently more

effective than a GA/MT in 2 areas: it is capable of generating higher mutation

CHAPTER 5. ALGORITHM COMPARISON 108

scoring test sets in significantly fewer mutant executions (i.e. less time); and, it is

able to consistently identify more hard-to-kill mutants. The third area - generating

smaller test sets - is inconclusive. Whilst differences in test set sizes are significant,

it is not always the IIA/MT which returns the smaller set. Primarily however,

the flexibility in the IIA/MT’s test set size does appear to be a strength rather

than a weakness, allowing it to generate a wide variety of tests - some that only

kill a single mutant, others which kill a substantial set.

Combining these results then, if one considers the primary aim of an effective

algorithm as achieving at least the same mutation score in at least the same time,

then an IIA/MT exceeds a GA/MT approach. From these results it appears an

IIA/MT approach can generate test sets exceeding a GA/MT’s in fewer mutant

executions. Based on this viewpoint, these experiments present strong evidence

to reject the null hypothesis, and conclude that an IIA/MT is at least as effective

as a GA/MT.

5.5 H2 - Usefulness of Immune Inspired Algo-

rithms

An Immune Inspired Algorithm for Mutation Testing (IIA/MT) is capable of

improving the mutation score for a given program by automatically evolving the

test data.

Null Hypothesis The IIA/MT does not cause a significant difference between

the mean mutation scores achieved after 1 and 500 iterations, for any program.

It is initially worthwhile examining whether or not the IIA/MT can be used

to improve test data for mutation testing. If not, then further experiments are

worthless. Furthermore, the results from this experiment provide an indication

as to the consistency of the algorithm over both multiple runs, and over differing

programs.

CHAPTER 5. ALGORITHM COMPARISON 109

An improvement in test data will be classified by a statistically significant

difference between the mean average mutation scores at the start (after 1 itera-

tion2) and end (after 500 iterations). Significance will be calculated by a T-test

for non-independent samples at the 0.05 level. No other consideration - other

than observational - will be given to the size of the difference (if any), or the rate

of increase. Additionally, no comparison with a GA/MT will be made at this

stage; previous work has already indicated the usefulness of GA’s for generating

mutation-adequate test data [7, 13, 46].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iteration

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

r
e

DateRange

TriangleSort

CalDay

Select

Figure 5.22: Mean mutation scores achieved at each iteration for all four programs
using the Immune Inspired Algorithm for Mutation Testing. Error bars are ± 1
s.d.

2The starting mutation score is measured after 1 iteration (not after 0 iterations) to allow
the IIA/MT to be compared equally with the GA/MT. Before any iterations have occurred,
the IIA/MT would return an empty memory set, whereas the GA/MT would return its best
individual; after 1 iteration, both algorithms would have had the opportunity to evolve their
tests once (for better or worse) and the IIA/MT would have been able to add useful tests to its
memory, thereby providing a comparable test set with the GA/MT’s best individual.

CHAPTER 5. ALGORITHM COMPARISON 110

Figure 5.22 presents the mutation scores achieved at each iteration of the

immune algorithm for the four programs tested. All four programs demonstrate

a similar shaped curve. In the initial 50 iterations, the mutation score’s rate of

increase is steep before decreasing sharply. Subsequent increases in mutation score

per iteration are negligible compared to the start. For all four programs, the final

mutation scores exceed 92%. These results suggest that the IIA/MT is capable

of increasing the mutation score for any program, however they do not determine

if the increase is significant or not.

Table 5.10 indicates the mutation score at the start, after 50 iterations and

at the end, for each program, along with the non-independent T-test results to

qualify the significance of any differences between 1 and 500 iterations.

MS after 1 MS after 50 MS after 500
tobt tcrit H0

iteration iterations iterations
DR 84.85%±2.24% 97.63%±0.91% 99.78%±0.45% 6.26 2.05 Reject
TRI 30.48%±10.30% 95.24%±2.13% 98.15%±0.05% 6.58 2.03 Reject
CD 70.92%±0.34% 91.59%±1.55% 96.18%±1.84% 13.06 2.04 Reject
SEL 42.34%±9.94% 90.23%±1.50% 92.99%±0.85% 5.06 2.04 Reject

Table 5.10: Average mutation scores and standard deviations achieved for each
program after 1, 50 and 500 iterations using an Immune Inspired Algorithm. All
results are to 2 decimal places.

A T-test rejects the null hypothesis if the calculated tobt value is greater than

or equal to the critical value of t , tcrit . As can be seen from table 5.10, the tobt

value for each program is greater than its respective tcrit value, meaning the null

hypothesis (that there is no difference between start and end mean mutation scores

for a program) is rejected in all four cases. Additionally, the low standard devia-

tion (< 2%) seen after 500 iterations, and even after 50 (< 2.13%), suggest that

IIA/MTs are capable of consistently reproducing the same results over multiple

runs for the same program.

CHAPTER 5. ALGORITHM COMPARISON 111

5.5.1 Conclusion

The T-test results reject the null hypothesis for all four programs at the 0.05 level -

i.e. there is evidence to suggest a significant difference between the mean mutation

scores achieved after 1 and 500 iterations, for a program. Figure 5.22 highlights

that the mutation score increases over time (rather than decreases), and that this

result is reasonably consistent for any program. Coupled with the variance data,

this evidence suggests that the specified Immune Inspired Algorithm can reliably

be used as an automatic way to significantly increase the mutation score for any

programs test data. Further experiments are therefore worthwhile.

5.6 H3 - Number of Program Executions

Test data evolution using the IIA/MT requires fewer mutant program executions

than the GA/MT to achieve at least the same mutation score.

Null Hypothesis There is no significant difference between the mean number

of mutants executed to achieve at least the specified mutation score for each

algorithm.

The most relevant measure of algorithm effectiveness is determined by the time

taken to generate a test set and the mutation score achieved; a more effective

algorithm will achieve the same mutation score in less time. In this case however,

time is best measured by counting the number of mutant program executions.

A T-test comparison, at the 0.05 level, will be made for each of the four

programs based on the number of executed mutant programs. The comparison

point will be the equally highest mutation score achieved by both algorithms for

at least 25 runs3.

3Comparisons are made where at least 25 runs have achieved the result so that reliable mean
averages (and T-test results) can be calculated. Obviously a higher mutation score may be
possible using an algorithm, just fewer than 25 runs achieve it.

CHAPTER 5. ALGORITHM COMPARISON 112

Figures 5.24-5.27 show the mean number of mutants executed to achieve at

least a specific mutation score for each of the four programs (Some graphs dis-

play drops in mutation score; this is a result of a decrease in the number of runs

achieving that mutation score affecting the overall mean). The results are similar

for all four programs. During the initial stages the number of mutants executed

remains low for both algorithms. As the mutation score increases, the number

of mutants needing to be executed to improve the mutation score increases dra-

matically for the GA/MT before increasing for the IIA/MT. This suggests that

in early iterations for both algorithms, weak mutants are killed by the introduc-

tion of new, weak tests - i.e. any test is capable of killing a mutant, resulting

in a large increase in mutation score with few mutants executed. As the itera-

tions progress however, the weaker mutants are removed leaving only the stronger

ones. The tests needed to kill these are harder to generate meaning more mutants

are executed before a test is found to improve the mutation score. The graphs

show that an IIA/MT is able to generate more of these “harder” tests in fewer

executions, leading to higher mutation scores for the same number of executions.

Alternatively, an IIA/MT needs fewer executions to achieve the same mutation

score.

The GA/MT execution of CalDay (Figure 5.26) is distinctive from the other

programs. It initially follows the same pattern as the others - low mutation score

increasing rapidly, with the number of executions increasing significantly as the

mutation score does. However, at a mutation score of approximately 73%, the

mutation score suddenly increases rapidly to approximately 82% in relatively few

mutant executions. At this point, the mutation score increases at the “standard”

rate of mutant executions. This behaviour is different from that exhibited by the

other programs, and although the results coincide with a decrease in the number

of runs achieving these (and higher) mutation scores (1 run less), it is unlikely

this decrease caused the effect seen - if it was the reason, the effect would more

likely have been an increase in mutation score but with a noticeable decrease in

the number of mutants executed (the fewer the runs used to calculate the mean

CHAPTER 5. ALGORITHM COMPARISON 113

averages, the larger the variability in the results), followed by further increases

in mutation score and mutant executions, as seen in figures 5.25 and 5.27. A

reasonable explanation would be that specific tests are needed to kill 73% of

mutants. These tests may also kill further mutants, improving upon the mutation

score with no extra executions. Furthermore, when these tests are mutated, any

slight change may also be enough to kill additional mutants, and so the mutation

score increases dramatically, with very little increase in mutant executions. This

effect is not apparent for the IIA/MT in the graph shown in figure 5.26, however

given the number of executions remains (relatively) low up to approximately 86%,

this is unsurprising. A similar effect can be seen in the higher granularity graph

of figure 5.23, supporting the notion that this effect is a result of this program’s

test data development, and not some curiosity from the GA/MT algorithm itself.

CalDay

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

IIA/MT

GA/MT

Figure 5.23: Zoom in of figure 5.26. Mean number of mutants executed (up to
50,000) to achieve at least a specific mutation score for the CalDay program. Error
bars are ± 1 s.d.

Ultimately then, it would appear that the IIA/MT’s method of generating

tests outperforms (in terms of number of executions) the GA/MT’s. Foremost,

the GA/MT has a finite number of tests (in an individual) with which to generate

CHAPTER 5. ALGORITHM COMPARISON 114

a full mutation score. If every one of the 20 tests4 kills at least one distinct

mutant, then all 20 tests are required. If however, the individual’s mutation score

is less than 100% then a further test is required. Unfortunately there is no room

to add it into the individual, and so one of the existing tests must be improved

- something which may not be possible. Put another way, let each test in the

GA/MT’s best individual kill a set Ki of mutants, where i is the index of the

test in the individual. To improve the mutation score the GA/MT must mutate

(at least) one of these tests so that it now kills a superset of Ki . This could be

hard, especially if the mutants are hard to kill and so require very specific tests.

The IIA/MT on the other hand, has no set size restriction, and is free to add

additional tests that only kill a single mutant. This advantage is complemented

by the IIA/MT’s local and global search facilities. By cloning and mutating (see

section 3.3.3) tests proportional to their mutation scores, a local search effect is

produced, looking for similar tests that kill other living mutants - this could be

considered as similar to searching around input boundaries. On top of this, the

IIA/MT randomly introduces a number of tests each iteration to perform a global

search.

T-tests at the 0.05 level, to check the significance of the difference in mean

number of mutants executed, are shown in table 5.11. They reject the null hypoth-

esis for all four programs. These tests were performed at the highest mutation

score achieved by at least 25 runs of both algorithms. T-tests were also performed

at every mutation score achieved. The null hypothesis was rejected at every mu-

tation score for both the TriangleSort and DateRange. For the CalDay program,

the null hypothesis was accepted only at mutation scores of 67.66% and 68.12% (2

d.p.) - two scores achieved in the early iterations of the algorithm. Taking the ma-

jority result then, this program can also be considered to reject the null hypothesis

at every mutation score achieved. The Select program indicates less significant

results - the number of mutants executed was not significant (at the 0.05 level)

for mutation scores between 35.91%-36.74%, 89.36%-89.53%, and 89.96%-91.65%

4For these experiments a GA individual contains 20 tests.

CHAPTER 5. ALGORITHM COMPARISON 115

DateRange

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

IIA/MT

GA/MT

Figure 5.24: Mean number of mutants executed to achieve at least a specific
mutation score for the DateRange program. Error bars are ± 1 s.d.

TriangleSort

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

IIA/MT

GA/MT

Figure 5.25: Mean number of mutants executed to achieve at least a specific
mutation score for the TriangleSort program. Error bars are ± 1 s.d.

CHAPTER 5. ALGORITHM COMPARISON 116

CalDay

0

1000000

2000000

3000000

4000000

5000000

6000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

IIA/MT

GA/MT

Figure 5.26: Mean number of mutants executed to achieve at least a specific
mutation score for the CalDay program. Error bars are ± 1 s.d.

Select

0

5000000

10000000

15000000

20000000

25000000

30000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

IIA/MT

GA/MT

Figure 5.27: Mean number of mutants executed to achieve at least a specific
mutation score for the Select program. Error bars are ± 1 s.d.

CHAPTER 5. ALGORITHM COMPARISON 117

(2 d.p.). Despite this, the IIA/MT still achieved these mutation scores in fewer

mutant executions and, possibly more importantly, with consistency - 31 runs

out of 32 achieved the 91.65% mutation score for the IIA/MT, compared to only

2 runs out of 31 for the GA/MT. Assuming the GA is capable of generating a

full mutation score (given its individual size), this drop in consistency can be at-

tributed to the experiments being stopped after 500 iterations. Given additional

iterations, more GA/MT runs would be able to succeed at reaching those higher

mutation scores, but at a cost of executing more mutant programs. As a result,

the difference in mean numbers of mutant executions between the two algorithms

would probably be considered as significant, however the IIA/MT would require

fewer. On this basis, the results for the Select program could also be viewed as

supportive of the hypothesis.

MS IIA/MT mean GA/MT mean tobt tcrit
DR 94.44% 24372 ± 12991 1188082 ± 706193 9.02 2.00
TRI 88.95% 125802 ± 74347 2339044 ± 741550 17.34 2.00
CD 84.63% 27551 ± 4953 2341483 ± 709736 18.78 2.00
SEL 88.97% 1733911 ± 1664843 8920678 ± 2767622 12.16 2.00

Table 5.11: T-test (0.05 level) results for the significance between the mean num-
ber of mutants executed for each algorithm, at the highest mutation score obtained
by both algorithms in at least 25 runs. The mean number of mutants executed
(and the standard deviation) is rounded up to the nearest integer to reflect that a
mutant is either executed completely or not at all. T-test results are to 2 decimal
places.

The results in table 5.11 clearly highlight that to consistently (for more than

25 runs) achieve the same mutation score using both algorithms requires a sig-

nificantly larger number of mutant executions using the GA/MT than by using

the IIA/MT. As the number of executions is proportional to time, the choice of

algorithm is therefore crucial to the speed of test generation. Furthermore, if the

final mutation score after 500 iterations is considered, the IIA/MT consistently

achieves a higher score than the GA/MT, however only in fewer mutant execu-

tions for the DateRange and TriangleSort programs (see table 5.12). Specifically

CHAPTER 5. ALGORITHM COMPARISON 118

however, across any of the four programs, at least 30 of the IIA/MT’s runs achieve

a mutation score greater than the highest score achieved by the GA/MT, again

suggesting that the IIA/MT has preferable results based on consistency.

IIA/MT GA/MT
MS # executed MS # executed

DR 100% 1075779 ± 611909 96.67% 2181424 ± 1062018
TRI 98.16% 1120972 ± 782389 93.42% 3625432 ± 0§

CD 98.17% 4413829 ± 731962 86.47% 3439576 ± 176370
SEL 93.94% 24088117 ± 0§ 91.69% 12438537 ± 0§

Table 5.12: Mean number of mutants executed for each algorithm achieving its
highest mutation score (i.e. results after 500 iterations). The number executed
(and any standard deviation) has been rounded up to the nearest whole number.

Table 5.12 shows the mean number of mutants executed by each algorithm

achieving its highest mutation score. T-test comparisons have not been performed

on these results because in most cases few runs achieved the highest mutation

score, thereby reducing the statistical significance of any calculation.

5.6.1 Conclusion

The number of mutants executed is an important measure as it can accurately be

used to compare execution times across various algorithms. Given each algorithm

performs differing operations per iteration, counting the number of iterations to

achieve a mutation score is not a consistent measure across algorithms. Each

algorithm must execute mutants to calculate the mutation score. As long as this

done consistently by each algorithm (e.g. only living mutants are executed), then

the number of mutants executed reflects the time the algorithm takes.

The T-test results in table 5.11 reject the null hypothesis for the four pro-

grams tested, within 500 iterations - i.e. there is evidence to suggest a significant

difference in the mean number of mutants executed to achieve at least a specific

§A standard deviation of 0 is recorded for these results because only 1 run (out of 30+)
achieved the respective mutation score.

CHAPTER 5. ALGORITHM COMPARISON 119

mutation score. As can be seen in figures 5.24-5.27, the Immune Inspired Algo-

rithm approach requires fewer executions to achieve at least the same mutation

score - a result best highlighted in table 5.11. Combined, this evidence suggests

that using the IIA/MT is favourable to the GA/MT, particularly for higher mu-

tation scores, when the difference in execution numbers is even more significant,

and certainly in terms of consistency. For lower mutation scores however, the

difference is not always significant, as indicated by the Select program. Despite

this, the IIA/MT still executes fewer mutants, continuing the support towards

favouring this algorithm.

5.7 H4 - Number of Hard-To-Kill Mutants Found

The final test set generated by the IIA/MT consistently identifies more

hard-to-kill mutants than one created by the GA/MT.

Null Hypothesis There is no significant difference between the number of hard-

to-kill mutants identified by the final test sets generated by both algorithms.

Algorithms often generate high mutation scoring test sets (> 90%), but it is

the remaining few mutants that are usually difficult to kill. An algorithm which

is consistently able to kill a high percentage of these hard-to-kill (HTK) mutants

is more effective than an algorithm which cannot.

Hard-to-kill mutants have been manually identified at the same time as mu-

tants were checked for equivalence. As such, whether a mutant is HTK or not

is dependent on the tester’s definition of hard-to-kill and their enforcement of

this rule. For the purposes of this research, a mutant is, in general, defined as

hard-to-kill according to the following heuristics:

• a mutant is HTK if it places a restriction on the program’s input domain

that restrains one or more inputs to a particular value;

CHAPTER 5. ALGORITHM COMPARISON 120

• a mutant is HTK if it results in a complex relationship between the inputs

that restrict the tests that kill the mutant;

• a mutant is HTK if a test which kills it is difficult to ascertain from static

examination of the code, and is instead generated during the course of the

program execution5.

For example, consider the third ABS mutation of the TriangleSort program

which adjusts line 4:

from: if((i<=0) || (j<=0) || (k<=0)){
to: if(ZP(i)<=0) || (j<=0) || (k<=0)){

Tests that kill this mutant require the input i to be exactly 0, which according

to the first heuristic, implies the mutant is HTK.

An example of the second heuristic is another ABS mutation of the Triangle-

Sort program, which mutates line 22:

from: if((i+j<=k) || (j+k<=i) || (i+k<=j)){
to: if(ABS(i+j)<=k) || (j+k<=i) || (i+k<=j)){

For a test to kill this mutant, the original i+j must produce a negative number

smaller than k, with (for the mutant) the absolute value of this negative num-

ber being greater than k. According to the conditions in line 4 however, i, j,

and k must all be positive. To satisfy these conditions requires knowledge that

the addition of two large integers in Java will cause an integer overflow, resulting

in a negative number, i.e. i and j need to be large positive numbers, such as

1453635131 and 1722147072 respectively. To get a differing output between the

original and the mutant would then simply require setting the value of k appro-

priately, e.g. 414811834.

As a final example, the third heuristic is demonstrated by an ABS mutation

of line 138 of the Select program:

5This heuristic is employed for the Select program, where the complexity of the program
means statically identifying tests to kill mutants is difficult.

CHAPTER 5. ALGORITHM COMPARISON 121

from: a[l] = a[l-inc];

to: a[l] = ABS(a[l-inc]);

The test that identifies this mutation is k = 4 and arr = [−5.7110815,−14.880631,

41.726444,−37.05031, 23.39116,−22.205894]. The complex nature of the Select

program means statically identifying tests to kill mutants is not always trivial,

with, in some cases, tests being found during execution of the program instead.

This generates a concern with determining the equivalence of mutants, as iden-

tified by Acree [1] - non-equivalents are sometimes marked as equivalent, which

are difficult to correct. To combat this, mutants that cannot be determined to

be equivalent are left as non-equivalent (as these can be corrected in later itera-

tions). This may result in a reduced overall mutation score, but is favourable when

compared to indicating a higher mutation score than has actually been achieved.

Improving equivalence detection would help solve this problem (which, it should

be noted, is a concern for all mutation testing research).

Similar to equivalence, if there is any doubt to the nature of the mutant, it is

not marked as hard-to-kill. The results that follow are therefore minimal figures;

there could be further HTK mutants that have been ignored.

Table 5.13 shows the mean average results obtained after 500 iterations of each

algorithm executing each program. For each algorithm, the mean number of HTK

mutants killed is given, along with this figure as a proportion of the total number

of HTK mutants for that program.

Total IIA/MT GA/MT
HTK # HTK % HTK # HTK % HTK

DR 15 14.60 ± 0.81 97.33% ± 5.42% 10.65 ± 0.54 70.98% ± 3.63%
TRI 12 9.00 ± 0.00 75.00% ± 0.00% 3.27 ± 1.14 27.22% ± 9.52%
CD 32 26.12 ± 1.34 81.63% ± 4.19% 11.00 ± 0.00 34.38% ± 0.00%
SEL 365 314.50 ± 17.39 86.16% ± 4.77% 261.13 ± 15.87 71.54% ± 4.35%

Table 5.13: The mean average number of hard-to-kill (HTK) mutants killed by
each algorithm, and percentage of the total number of HTK mutants, after 500
iterations. All results are to 2 decimal places.

CHAPTER 5. ALGORITHM COMPARISON 122

Observationally, the IIA/MT generates test sets killing a large percentage of

HTK mutants on all four programs - between 75.00% and 97.33% - with reasonably

consistency - standard deviation is at most 5.42%. The results for the GA/MT

are similarly consistent - standard deviation at most 9.52% - although not as high

- the percentage of HTK mutants killed is between 27.22% and 71.54%.

A T-test for independent samples (0.05 level) on these results will highlight

the significance of any differences in the number of HTK mutants killed by each

algorithm (the null hypothesis - there is no significant difference - is rejected if

tobt exceeds tcrit). These results are shown in table 5.14.

tobt tcrit H0
DR 23.09 2.00 Reject
TRI 29.29 2.00 Reject
CD 62.77 2.00 Reject
SEL 12.71 2.00 Reject

Table 5.14: T-test results (0.05 level) for the difference in the mean average per-
centage of HTK mutants killed by each algorithm after 500 iterations. All results
are to 2 decimal places.

These results clearly imply that the IIA/MT is capable of killing significantly

more HTK mutants than the GA/MT; table 5.14 indicates that the difference in

number of HTK mutants killed is significant, with table 5.13 showing that it is

the IIA/MT that kills the most in all cases. A possible explanation for this lies

in the different representations of an individual used by each algorithm. For a

GA/MT, an individual represents a finite number of tests that will hopefully kill

all mutants (in this case, 20 tests). These individuals evolve over many iterations,

reaching a reasonably high mutation score by killing weaker mutants using the

majority of the tests in each individual; each test is therefore likely to kill a high

percentage of mutants. At this point, a number of HTK mutants remain living.

To kill these requires niche tests that are not only difficult to generate, but may

only kill a few mutants anyway. If a high-percentage killing test in an individual is

evolved to one of these specific tests, despite killing a HTK mutant, it is likely to

CHAPTER 5. ALGORITHM COMPARISON 123

reduce the overall mutation score for that individual. If this occurs, this individual

will probably die out when compared against its fitter siblings. In contrast, the

IIA/MT does not restrict the number of tests that can enter its memory set,

nor restrain them based on ability. A test only killing a single HTK mutant can

still form part of the solution memory set, thereby allowing it to make a valid

contribution without any detriment to the overall mutation score of the final test

set. The validity of this explanation can be tested by varying the number of tests

in a GA/MT individual - this is tested in section 6.3.1.

5.7.1 Conclusion

The results in tables 5.13 and 5.14 provide evidence to support rejecting the null

hypothesis - i.e. using the IIA/MT kills a statistically significant larger proportion

of hard-to-kill mutants than the GA/MT, after 500 iterations. A possible reason

for this is because the GA/MT restricts the number of tests forming the final

test set. The IIA/MT does not have this restriction, enabling it to kill more

HTK mutants and ultimately achieve a higher mutation score. This explanation

is explored in Chapter 6.

5.8 H5 - Test Set Size

Test data evolution using the IIA/MT results in a smaller average test set size

than from using the GA/MT.

Null Hypothesis There is no significant difference in the average test set sizes

generated by both algorithms achieving at least the same mutation score.

A smaller test set is functionally easier (i.e. requires less time to test with) than

a larger, equivalent set. On this basis, an algorithm that returns smaller sets can

be considered more effective than one which returns larger equivalent sets.

A T-test comparison, at the 0.05 level, will be used to determine whether the

CHAPTER 5. ALGORITHM COMPARISON 124

difference in average test set sizes is significant or not for the highest mutation

score equally achieved by at least 25 runs of both algorithms. The results of

this experiment are shown in table 5.15. As an aside, due to the structure of

the Genetic Algorithm’s individual, some tests in the returned individual (for the

GA/MT) may be duplicated because they have not evolved. Because of this, the

test set size for the GA/MT is the number of distinct tests returned to the tester.

MS
IIA/MT GA/MT

Tobt Tcrit H0
tests # tests

DR 94.44% 14.40 ± 1.33 20 ± 0.00 23.47 2.00 Reject
TRI 88.95% 24.79 ± 2.27 20 ± 0.00 10.55 2.00 Reject
CD 84.63% 9.21 ± 0.96 20 ± 0.00 56.04 2.00 Reject
SEL 88.97% 39.13 ± 4.31 19.96 ± 0.20 22.18 2.00 Reject

Table 5.15: T-test results (0.05 level) for the significance between the average test
set sizes generated by each algorithm, at the highest mutation score achieved by
both algorithms in at least 25 runs. All results are to 2 decimal places.

The results from this experiment are inconclusive. Whilst the difference in

average test set size for each program is significant at the 0.05 level for all four

programs, it was not always the IIA/MT that produces the fewest tests. For the

Select program in particular, the IIA/MT generates nearly double the number

of tests than the GA/MT; for the TriangleSort program the IIA/MT generates

approximately 5 more tests.

It is worth noting that the GA/MT imposes a restriction on how many tests

it can generate. Each individual within the GA/MT population is a fixed number

of tests (in this case, 20). The individual with the highest mutation score after

500 iterations is the final test set, and so at most then, this final test set can have

20 distinctive tests, with each one being useful (i.e. killing at least one distinct

mutant). Restricting the number of tests in this manner could be, at least in part,

responsible for the lower mutation scores achieved by the GA/MT, implying more

than 20 tests are required to kill all mutants. If this is true, the IIA/MT has an

advantage with its variable size memory set. DateRange and CalDay highlight

CHAPTER 5. ALGORITHM COMPARISON 125

the exception to this train of thought though - both programs show that it is

possible to achieve a higher mutation score using fewer than 20 tests. Restricting

the number of tests therefore, does not always restrict the achievable mutation

score.

As an alternative, the poor GA/MT performance for these two programs could

be explained by how the number of tests is calculated. Not all distinct tests in the

individual may kill mutants not killed by other tests. These are therefore surplus

to requirement and yet they are still counted because they are distinct. In other

words, the GA/MT’s test set size is greater than it should be. This however, may

also be true for the IIA/MT. Consider a memory set with only two tests in it.

For these to be in the memory set, each test must kill something the other test

does not. To add a third test to this memory set, it must also kill a mutant not

already killed; it could however, do this by killing a superset of mutants killed

by the current two tests, making the original two tests redundant - the true set

size is 1 and not 3. Given that both approaches possess a similar problem then,

making comparisons on the results in table 5.15 seems fair.

Table 5.16 shows the test set sizes returned for the highest mutation scores

achieved by each program for each algorithm. The results for all four programs

provide additional support to the notion that restricting the number of tests re-

stricts the achievable mutation score (albeit with the previously mentioned mea-

suring problems in mind). In three of the four cases, the IIA/MT generates a

higher final mutation score by generating a test set greater than or equal to the

GA/MT’s test set size. For the fourth, the DateRange program, the average test

set size is only just smaller than the GA/MT’s. To improve its mutation score

therefore, it is likely that the GA/MT will need to increase the size of its individ-

uals - something which is difficult to judge. A tester would need to know, a priori

to testing, the number of tests required to achieve a full mutation score in order

to set an appropriate size for the GA/MT’s individuals. In contrast, the IIA/MT

algorithm does not have this restriction, and is able to return test sets capable

of achieving higher mutation scores. Appropriate GA/MT individual sizes are

CHAPTER 5. ALGORITHM COMPARISON 126

investigated in chapter 6.

IIA/MT GA/MT
Mutation Score # Tests Mutation Score # Tests

DR 100% 19.38 ± 1.69 96.67% 20.00 ± 0.00
TRI 98.16% 35.33 ± 2.48 93.42% 20.00 ± 0.00¶

CD 98.17% 27.25 ± 1.50 86.47% 20.00 ± 0.00
SEL 93.94% 60.00 ± 0.00¶ 91.70% 20.00 ± 0.00¶

Table 5.16: Final test set sizes generated for the highest mutation score achieved
by each program for each algorithm. All results are to 2 decimal places.

5.8.1 Conclusion

The results presented in table 5.15 reject the null hypothesis for all 4 programs,

suggesting there is a significant difference in the average test set size generated

by each algorithm. However, it cannot be concluded that an IIA/MT algorithm

generates a smaller test set than a GA/MT; only that an IIA/MT does not have

its achievable mutation score restricted by the number of tests it can generate.

Furthermore, it is noted that it is possible for both algorithms to suffer from

returning larger test sets than necessary. Whilst this has implications from a

usability point of view, the detriment to the tester is outweighed by the higher

mutation scores achieved for the IIA/MT, and limited by the size of the individual

for the GA/MT.

5.9 H6 - Mutation Score per Iteration

Test data evolution using the IIA/MT achieves a higher mutation score by a

specific number of iterations than by using the GA/MT.

¶A standard deviation of 0 is recorded for these results because only 1 run (out of 30+)
achieved the respective mutation score.

CHAPTER 5. ALGORITHM COMPARISON 127

Null Hypothesis There is no significant difference in the average mutation

scores achieved by either algorithm after a specific number of iterations.

Whilst not an entirely accurate measure of time, it may be useful to consider

how the mutation score varies with each iteration. T-test comparisons, at the 0.05

level, will be made at every iteration to check the significance of any mutation

score differences. For simplicity however, only the results after 500 iterations will

be presented - see table 5.17. Graphical results of the mutation scores achieved

at every iteration for the four programs are presented in figures 5.28, 5.29, 5.30

and 5.31.

The four graphs show similar results for each of the programs. For both the

GA/MT and the IIA/MT, the rate of increase for the mutation score is initially

high, before decreasing towards zero. Within roughly the first 30 iterations, this

rate of increase is larger for the IIA/MT, indicated by the IIA/MT quickly reach-

ing higher mutation scores. However, the IIA/MT’s rate of increase also tends to

drop quicker than the GA/MT’s, prompting a sharper bend in the graph. After

this, both algorithms start to reach similar rates of increase, with the IIA/MT

having attained a higher mutation score.

What explanation can be given for the IIA/MT’s ability to quickly increase

the mutation score? From these results it appears that during the first few itera-

tions the IIA/MT generates tests which kill more mutants per iteration than the

GA/MT. Consider the two algorithms presented in figures 4.21 and 4.19 (Chapter

4). Every iteration the GA/MT modifies each individual with fixed probabilities,

therefore only a certain proportion of new tests will be created which only vary

by a fixed amount. The IIA/MT on the other hand, varies the number of new

child tests created and the amount they are modified based on each parent test’s

ability. In the early iterations, there are a likely to be a lot of easy-to-kill mu-

tants, giving some parents relatively high mutation scores. The higher the scores,

the more new tests created (through cloning and mutation), and the higher the

probability that these will be able to kill the remaining tests. Conjointly, parents

CHAPTER 5. ALGORITHM COMPARISON 128

DateRange

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iteration

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

IIA/MT

GA/MT

Figure 5.28: Mean mutation score per iteration for the DateRange program. Error
bars are ± 1 s.d.

TriangleSort

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iteration

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

IIA/MT

GA/MT

Figure 5.29: Mean mutation score per iteration for the TriangleSort program.
Error bars are ± 1 s.d.

CHAPTER 5. ALGORITHM COMPARISON 129

CalDay

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300 350 400 450 500

Iteration

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

IIA/MT

GA/MT

Figure 5.30: Mean mutation score per iteration for the CalDay program. Error
bars are ± 1 s.d.

Select

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iteration

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

r
e

IIA/MT

GA/MT

Figure 5.31: Mean mutation score per iteration for Select program. Error bars
are ± 1 s.d.

CHAPTER 5. ALGORITHM COMPARISON 130

with lower mutation scores will undergo a higher amount of mutation, effectively

producing a wider search of the shape-space. Furthermore, the IIA/MT also adds

extra diversity to its population by incorporating random tests. These too will

widen the shape-space search, increasing the probability of identifying new tests.

IIA/MT MS GA/MT MS Tobt Tcrit H0
DR 99.78% ± 0.45% 95.26% ± 0.80% 27.29 2.00 Reject
TRI 98.15% ± 0.05% 90.05% ± 1.40% 33.82 2.00 Reject
CD 96.18% ± 1.84% 84.70% ± 2.24% 22.41 2.00 Reject
SEL 92.99% ± 0.85% 89.76% ± 1.12% 12.91 2.00 Reject

Table 5.17: T-test results for the significance between the average mutation scores
for each algorithm after 500 iterations. Plus/minus figures are 1 standard devia-
tion. All results are to 2 decimal places.

The results after 500 iterations are shown in table 5.17. As can be seen, the

mutation score achieved for each program by the IIA/MT was greater than that

reached by the GA/MT. Despite this, the GA/MT did achieve good mutation

scores - greater than 84% for all programs, with DateRange achieving more than

95%. In addition, the low standard deviations of both algorithms suggest the test

sets they generate are consistent over many runs. The T-tests (table 5.17) between

these means show the differences to be significant at the 0.05 level. Furthermore,

the T-tests performed after every iteration show that the difference in mutation

scores achieved by each algorithm at any iteration is also significant. This evidence

suggests a rejection of the null hypothesis; there is a significant difference in the

mutation scores achieved by each algorithm after any number of iterations.

5.9.1 Conclusion

The results from the T-tests for every iteration reject the null hypothesis in ev-

ery case; ultimately there is a significant difference between the mutation scores

achieved by both algorithms for the first 500 iterations. Figures 5.28-5.31 also

provide additional graphical evidence to support this hypothesis, showing higher

CHAPTER 5. ALGORITHM COMPARISON 131

mutation score results for the IIA/MT in all four programs. A plausible expla-

nation for the higher results achieved by the IIA/MT is due to the higher rates

of new test adoption (either parent test modification or random test introduc-

tion) by the IIA/MT algorithm, and by its targeted localised search (mutating

tests inversely proportional to mutation score as opposed to the GA/MT’s static

probability). These two effects encourage the generation of new tests to kill living

mutants. In particular, the local search generates tests relative to existing useful

tests, insinuating both border conditions on inputs and the relation between input

values are important to test data.

5.10 H7 - Number of Cloned and Random Tests

The resultant test set achieved with the IIA/MT comprises of a mixture of cloned

tests and randomly introduced tests.

Null Hypothesis The resultant test set achieved with the IIA/MT comprises

solely of randomly introduced tests.

Immune Inspired Algorithms allow for new tests to be added to the population

through two methods: cloning (and mutation), and random generation. Cloning

and mutation perform a local search around good tests; random generation per-

forms a global search of the search-space. Both techniques are useful for evolving

a population, therefore if the resultant test set only contains randomly introduced

tests, the local search is not having an impact and a similar functionality could

be obtained through many iterations using a random test generator. If, on the

other hand, the resultant test set only contains cloned tests, the global search is

not having an impact, and the tests required to kill all mutants are confined to a

small partition of the input space. This latter case is more unlikely however.

Table 5.18 shows the mean average number of cloned and randomly generated

tests in the memory set after 500 iterations. As can be seen, all four programs are

comprised of a mixture of test types, implying that a local search adds value to

CHAPTER 5. ALGORITHM COMPARISON 132

Mean # Clones Mean # Random
DR 11.30 ± 1.76 7.90 ± 1.47
TRI 22.03 ± 3.33 13.21 ± 2.14
CD 16.36 ± 4.48 7.36 ± 1.17
SEL 42.94 ± 4.38 9.47 ± 2.11

Table 5.18: The mean average number of tests produced by cloning (and mutating)
existing tests or by random generation after 500 iterations

just pure random generation of tests. It is difficult to conclude from these results

what impact the program itself has (if any) on the numbers of each test type

generated.

5.10.1 Conclusion

Results in table 5.18 indicate that the local search function encapsulated by

cloning and mutating tests is advantageous to the evolution of test data in this

application. Furthermore, the global search produced by random generation com-

plements this local search by adding diversity to the solution set.

5.11 Summary

The primary aim of this thesis is to test whether the designed Immune Inspired

Algorithm is consistently at least as effective as the Genetic Algorithm for evolving

test data through mutation testing. Effectiveness was determined to relate to:

an improved mutation score in (possibly) less time; finding tests for hard-to-kill

mutants; and, generating a smaller sized test set. Consistency was measured

in two ways: repeatable results over multiple runs of the same experiment; and

similar results through using different programs.

Experiments were performed to compare the effectiveness and consistency of

using the new Immune Inspired Algorithm approach against an already tried Ge-

netic Algorithm technique. The evidence from these investigations suggest that

an IIA/MT approach is capable of generating higher mutation scoring test sets

CHAPTER 5. ALGORITHM COMPARISON 133

in significantly fewer mutant executions (i.e. less time). One problem with muta-

tion testing, which partly affects its uptake by industry, is its lengthy execution

time. The results from these experiments are therefore important, indicating an

improvement over existing automatic techniques (e.g. using a GA/MT). Further-

more, these results were consistent over multiple runs and for all four programs -

the IIA/MT took fewer executions to achieve at least the same highest mutation

score across (at least) 25 runs of both algorithms.

Algorithms can often generate test sets capable of killing a large proportion

of mutants (> 90%), especially considering the initial test set can easily kill be-

tween 50-70% of mutants ([6] and the first iteration’s results in table 5.10). It

is however, the last few remaining mutants that are often hardest to kill, usually

requiring very specific tests to do so. The percentage of these hard-to-kill mutants

consistently killed by an algorithm is a useful metric for determining effectiveness.

These experiments suggest that an IIA/MT is able to generate test sets that kill

more HTK mutants than a GA/MT (75.00-97.33% compared with 27.22-71.54%).

The most plausible explanation for the GA/MT’s inadequacy comes from the lim-

itation posed on the size of final test set (in this case 20), and highlights a further

advantage of using the more dynamic IIA/MT (this will be examined in the next

chapter). In terms of consistency, similar results were seen for all four programs

(larger number of HTK killed for the IIA/MT) and for all runs - a low standard

deviation from the mean for all runs (0.00-5.42% for IIA/MT, and 0.00-9.52% for

GA/MT).

Finally, algorithm effectiveness can be measured on the size of the final test

set. A small test set is more manageable than a larger, equivalent6 one. From

these experiments however, it cannot be concluded that an IIA/MT will always

generate a smaller test set - a larger final set size is generated for 3 out of the

4 programs (table 5.16). Despite this, there is evidence to suggest that the lack

of restrictions on the test set size, as also indicated by the HTK experiments, is

advantageous to the IIA/MT in allowing test sets with higher mutation scores.

6An equivalent test set generates the same mutation score as the comparison set.

CHAPTER 5. ALGORITHM COMPARISON 134

This will be researched in the next chapter.

If the three metrics for effectiveness are combined and a majority weighting

given to improving the mutation score in less time, then the IIA/MT approach

can be viewed as consistently more effective than the GA/MT. The outcomes

from these experiments however, whilst suggestive for a larger domain, are only

applicable to the four programs tested. Furthermore, they are currently only

applicable to the variable settings chosen in table 5.6. The following chapter

examines how a range of different variable settings affects the results for each

algorithm.

Chapter 6

Parameter Analysis

6.1 Introduction

The IIA/MT and GA/MT algorithms, detailed in figures 4.21 and 4.19 respec-

tively (Chapter 4), define a number of parameters which may affect each algo-

rithm’s performance. The previous chapter compared the two algorithms based

on specific, consistent values for each parameter, and concluded that the IIA/MT

approach is consistently more effective than the GA/MT. However, the values

chosen were part of a much larger input space; this needs exploring to allow prac-

titioners to choose optimal values for their experiments, as well as to validate the

previous chapter’s results for other parameter value combinations.

6.2 Methodology

A single experimental run is a single execution of the mutation testing system

against a specific program, with a particular algorithm and parameter settings.

Whilst a single experiment’s results are important however, they are not statisti-

cally significant. Instead, the average of multiple runs should be used. For this

research, at least 30 runs of each experiment were performed, where each exper-

iment lasted for 500 iterations and was initially populated with 300 same-valued

tests - this forced both algorithms to start with the same poor test set. However,

135

CHAPTER 6. PARAMETER ANALYSIS 136

because of the number of repeats and the long duration of the Select program (in

excess of 16 hours per experiment, depending on the parameter values), only three

programs were used to analyse the effect of each parameter: CalDay, DateRange

and TriangleSort.

Chapter 5 compared the algorithms based on their effectiveness. This was

measured in three ways: time taken to evolve a high mutation scoring test set

(measured by the number of mutants executed); the number of hard-to-kill mu-

tants identified; and, the size of the generated test set. This chapter will use

these same measures to determine the effect an algorithm’s parameter has on its

effectiveness. A fourth measure based on the mutation score achieved at each

iteration will also be analysed for completeness. Only one parameter’s value will

be changed (from the default values used in chapter 5) per experiment. All graph

results appear in Appendix C, with some repeated in this chapter for clarity.

6.2.1 Statistics

Comparisons between the mean values obtained using different parameter settings

are compared using the ANalysis Of VAriance (ANOVA) statistical technique.

This calculates two values, Fobt and Fcrit , which can be compared to determine

if at least one pair of parameter values results in significantly different means

(Fobt ≥ Fcrit). To determine exactly which pairs of parameter values have sig-

nificantly different means, the Scheffé method of post-hoc analysis is used. This

operates in a similar vain to the ANOVA calculations, creating Cobt values for each

pair of means, and a Ccrit value to compare them against (Cobt ≥ Ccrit implies sig-

nificance). All comparisons were made at the 0.05 significance level - i.e. there is

a 5% chance that the difference in means happened by chance. Readers interested

in the exact details of these methods should consult [51] for an introduction.

CHAPTER 6. PARAMETER ANALYSIS 137

6.3 Genetic Algorithm for Mutation Testing

The Genetic Algorithm, as defined in figure 4.19, has two parameters in com-

mon with the IIA/MT, namely the number of iterations and the population size

(number of individuals). Iterations remain constant (at 500) throughout all these

experiments, the population size however, is subtly different. To keep a fair com-

parison between algorithms, the number of tests within the population must

remain constant, not the number of individuals. For the IIA/MT, the number

of tests and number of individuals are the same (there is 1 test per individual)

- this prevents any changes in population size; at least without affecting the to-

tal number of tests. For the GA/MT however, each individual contains many

tests meaning that the number of individuals can be varied whilst retaining the

same total number of tests. For the purpose of these experiments, the population

size (number of individuals) shall be considered dependent on the individual size

(number of tests per individual), in order to maintain a total of 300 tests.

With this in mind, the GA/MT has 3 user-definable parameters: indSize;

crossRate; and mutRate. Table 6.19 shows the values assignable to each parame-

ter, with the default options highlighted in bold. Unfortunately there is a tradeoff

between exercising a full range of parameter values and the execution time. To al-

low statistically significant results, the values chosen were deliberately kept low to

maintain reasonably low execution times, allowing more runs of each experiment.

Given industrial use will generally also rate speed as important, the values chosen

will probably be typical of those chosen in practical use. As such, the trends these

parameter settings produce, within this range, are also important, but they do not

necessarily reflect the trends across the entire range of parameter values. In any

experiment only one parameter is modified, with the other parameters assuming

their default values. As such, there are 13 possible combinations: the default plus:

3 for indSize, 5 for crossRate and 4 for mutRate.

CHAPTER 6. PARAMETER ANALYSIS 138

Parameter Values
indSize 5, 10, 20, 30

crossRate 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
mutRate 0.01, 0.02, 0.04, 0.06, 0.08

Table 6.19: Possible parameter values for the Genetic Algorithm. Default values
are shown in bold font.

6.3.1 indSize

Chapter 5 suggested that the number of tests in a GA/MT individual may play an

important part in determining the highest mutation score achieved by the algo-

rithm. Essentially, each individual must contain enough tests to permit obtaining

a full mutation score without adding unnecessary expense - too few tests and the

achievable mutation score will be limited; too many and the algorithm may be

costly to run1. Unfortunately, knowing the ideal number of tests per individual

before testing is difficult, and forms a large part of the disadvantage of using a GA.

Results from this research however, suggests that an appropriate size is related to

the program’s complexity (calculated using the McCabe Complexity [70]).

This research keeps the total number of tests in the population constant (to

aid comparisons between algorithms), and instead opts to vary the population

size (number of individuals) in response to a change in individual size (number

of tests per individual). Doing this means any change in experiment outputs

(from Chapter 5) can be attributed to the change in individual size, and not in

response to a changed total number of tests. Unfortunately, this approach is not

perfect. To maintain the total number of mutants, both the individual size and the

population size must change, either of which could ultimately be responsible for

altering the experiment outputs - this cannot be avoided. The advantage of using

this approach however, lies in what it implies about the cause of the experiment

1For these experiments, the total number of tests (in the population) remains constant by ad-
justing the number of individuals to suit. If instead, the number of individuals in the population
were fixed, increasing the individual size would increase the number of tests in the population.
More tests increases execution time.

CHAPTER 6. PARAMETER ANALYSIS 139

outcomes: if the total number of tests varies then the number of executions would

also have to vary (each test needs to be executed on every mutant; more tests

means more executions), regardless of the change (if any) in each individual’s

size; by keeping the total number of tests constant however, varying the number

of tests can safely be ignored from causing any variation in execution numbers.

It is expected that this parameter will affect the execution time of the al-

gorithm, with execution times decreasing as the individual size increases. This

parameter is also expected to affect the mutation score per iteration and the num-

ber of HTK mutants identified, with both increasing as the individual size does.

Finally, and rather obviously, the individual size is expected to affect the number

of tests in the test set. Reasoning behind these expectations will be discussed in

the following subsections.

Effect on the Number of Mutant Executions

Figure 6.32 (DateRange program) clearly indicates that the number of mutant

executions is inversely proportional to the individual’s size. A similar effect is

also observed by the TriangleSort program (figure 6.33), although not for the

CalDay program (figure 6.34).

In theory, a constant total number of tests and a static mutation rate should

imply that the number of mutant executions per iteration will remain approxi-

mately constant, regardless of the individual size; or rather, that the number of

executions to achieve a mutation score will remain approximately equal, regardless

of the individual size. This is not necessarily the case however. Low individual

sizes mean there are few tests per individual with which to generate a high mu-

tation score. To improve an individual’s mutation score, one of its tests must

be improved via mutation - i.e. the mutated test must kill a greater number of

mutants than the un-mutated test; something that increases in difficulty as the

remaining living mutants become fewer (i.e. the remaining mutants are harder

to kill, often requiring specific tests that generate low mutation scores). In order

to find this “better” mutated test, it is likely the original test will have to be

CHAPTER 6. PARAMETER ANALYSIS 140

DateRange: Varying indSize

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
t

E
x
e
c
u

ti
o

n
s

5

10

20

30

Figure 6.32: Effect of varying the individual size on the mean number of executions
to achieve specific mutation scores for the DateRange program.

TriangleSort: Varying indSize

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

5

10

20

30

Figure 6.33: Effect of varying the individual size on the mean number of executions
to achieve specific mutation scores for the TriangleSort program.

CHAPTER 6. PARAMETER ANALYSIS 141

CalDay: Varying indSize

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

5

10

20

30

Figure 6.34: Effect of varying the individual size on the mean number of executions
to achieve specific mutation scores for the CalDay program.

mutated more than once. Therefore, as every new mutated test will need to be

executed on all mutants, reducing the individual’s size will increase the number

of mutant executions needed to achieve a particular mutation score. On the other

hand, by increasing the individual’s size allows the GA to be more relaxed about

improving tests. New tests can be incorporated into the test set that only kill

a few mutants, and yet help improve the overall mutation score - the number

of mutant executions will decrease as the individual size increases, approaching

a minimum value determined by the approximate number of mutated tests per

iteration2.

For each program, table 6.20 indicates the mean number of mutants executed

to achieve the equally highest mutation score obtained by at least 25 runs for each

of the four individual sizes. The results for the DateRange program clearly show

the mean number of mutant executions decreases as the individual size increases.

2The estimated number of mutated tests per iteration is normally distributed around:
constant mutation rate∗constant number of tests. Also, see the future work section in Chapter
7 for a brief discussion on alternative experiments.

CHAPTER 6. PARAMETER ANALYSIS 142

Similarly for the TriangleSort program, the mean number of executions decreases

dramatically when the individual size increases from 5 to 10; after this however,

the mean number of executions increases slightly instead. The CalDay program

offers no clarity in the matter, showing only an oscillation in the mean number

of executions as the individual size increases. ANOVA and Scheffé calculations

(also in table 6.20) show whether these observed differences in mean number

of executions, caused by the varying individual sizes, are statistically significant

(highlighted in bold).

DR TRI CD
indSize MS: 87.78% MS: 70.00% MS: 82.80%

5 1229827 ± 860997 1552438 ± 917277 1283966 ± 823223
10 182389 ± 99665 500556 ± 274995 1496200 ± 978277
20 101071 ± 43448 513033 ± 290777 1091833 ± 554958
30 82942 ± 36405 549471 ± 281399 1571294 ± 964933

ANOVA
fobt 53.26 28.43 1.88
fcrit 2.68 2.69 2.69

Scheffé
cobt

5-10 9.75 7.86 -
5-20 10.82 7.76 -
5-30 10.92 7.49 -

10-20 0.80 0.10 -
10-30 0.97 0.38 -
20-30 0.18 0.29 -
ccrit 2.84 2.84 -

Table 6.20: The mean number of mutants executed (and standard deviation)
at the highest mutation score obtained by at least 25 runs for each of the four
individual sizes: 5, 10, 20, 30. ANOVA and Scheffé calculations (at the 0.05 level)
show which pairs of individual sizes result in significantly different mean numbers
of executions (in bold). The number executed (and any standard deviation) has
been rounded up to the nearest whole number to reflect that a mutant is either
executed completely or not at all. Values replaced with ‘-’ are not important
as the ANOVA results are not significant. Mutation scores and ANOVA/Scheffé
results are to 2 decimal places.

As can be seen, the ANOVA tests indicate a significant difference between the

CHAPTER 6. PARAMETER ANALYSIS 143

mean values for each individual size for the DateRange and TriangleSort programs.

The Scheffé post-hoc analysis method indicates that for both of these programs,

the mean number of mutant executions differs significantly when using an indi-

vidual size of 5. In neither case is there a significant difference between using

an individual size of 10, 20 or 30 though. Figures 6.32 and 6.33 however, hint

that this significance should change with higher mutation scores. Scores greater

than approximately 90% for DateRange and 81% for TriangleSort suggest that an

individual size of 10 should also result in a significantly different mean number of

mutant executions. To clarify this, ANOVA and Scheffé calculations were made

based on mean execution numbers at the highest mutation score obtained by at

least 25 runs for individual sizes of 10, 20 and 30 (individual size of 5 was ignored

as this has already been identified as significantly different). Results are shown

in table 6.21. Again, the ANOVA results indicate a significant difference for both

DateRange and TriangleSort, with the Scheffé tests suggesting that using an indi-

vidual size of 10 results in significantly different means from using sizes of 20 or 30.

In no case does using an individual size of 20 or 30 result in a significantly different

number of mutant executions, suggesting that no more than 20 tests are required

per individual, at least for these three programs. None of the ANOVA results, for

the CalDay program, indicate a significant difference amongst the mean number

of executions from using any of the four individual sizes - a result also echoed in

figure 6.34.

Primarily, the individual’s size does appear to have an effect on the number

of mutant executions, with 2 out of the 3 programs requiring significantly more

executions to achieve the same mutation score when using a lower individual size.

Because the CalDay program does not exhibit the same results however, it is

difficult to ascertain whether there is an inversely proportional relationship with

the individual’s size, or not. The other two programs do hint at this though.

More importantly, the results support the notion of a threshold on the number

of tests required to achieve a high mutation score - individual sizes larger than this

threshold (i.e. 20 and 30) have little impact on the number of executions needed;

CHAPTER 6. PARAMETER ANALYSIS 144

DR TRI CD
indSize MS: 92.78% MS: 82.63% MS: 82.80%

5 - - 1283966 ± 823223
10 1306656 ± 676469 1891191 ± 1002279 1496200 ± 978277
20 498526 ± 302169 1136750 ± 589230 1091833 ± 554958
30 342144 ± 217220 1225014 ± 296488 1571294 ± 964933

ANOVA
fobt 43.28 8.31 1.88
fcrit 3.10 3.11 2.69

Scheffé
cobt

10-20 7.39 3.78 -
10-30 8.76 3.34 -
20-30 1.49 0.46 -
ccrit 3.05 3.05 -

Table 6.21: The mean number of mutants executed (and standard deviation) at
the highest mutation score obtained by at least 25 runs for each of the three
individual sizes: 10, 20, 30 (individual size of 5 ignored). ANOVA and Scheffé
calculations (at the 0.05 level) show which pairs of individual sizes result in sig-
nificantly different mean numbers of executions (in bold). The number executed
(and any standard deviation) has been rounded up to the nearest whole number to
reflect that a mutant is either executed completely or not at all. Values replaced
with ‘-’ are not important as either the ANOVA results are not significant or
Scheffé results are not calculated because the individual size=5 experiment only
achieved a lower mutation score. Mutation scores and ANOVA/Scheffé results are
to 2 decimal places.

sizes lower that this (i.e. 5 and 10) restrict the achievable mutation score. This

opens a number of questions: what is the threshold value for a program? Is the

threshold value different for different programs? And, is it possible to determine

this threshold a priori to testing. The last question is important as it means testing

can commence using appropriately sized individuals, without the need to first

determine the size by performing multiple tests using various sized individuals.

The McCabe complexity of a program indicates the number of paths through

that program, and is therefore often used as a useful measure of the number of

tests required to test each branch condition [70]. On this basis, could it also

provide an indication of the threshold value for a program? Assuming that it can

CHAPTER 6. PARAMETER ANALYSIS 145

implies that CalDay’s threshold is approximately 4 tests, DateRange’s threshold is

approximately 6 tests and TriangleSort’s threshold is 11. How do these threshold

values compare with the results already observed?

For CalDay, all four individual sizes tested are greater than its threshold, im-

plying that none of these four sizes should cause a significant difference in the

number of mutant executions; figure 6.34 shows this is indeed the case. A sim-

ilar effect is also seen for the DateRange program (figure 6.32) using individual

sizes of 10, 20 and 30 (i.e. sizes greater than its threshold). Using an individual

size lower than its threshold (i.e. 5) results in attaining a lower mutation score

in considerably more mutant executions. Interestingly, as the mutation score in-

creases, an individual size of 10 also starts to execute significantly more mutants

(than either 20 or 30). This is either a failing of using the McCabe complexity

as an approximate threshold measure, or indicates the difficulty of improving the

mutation score of a test set when its size is close to the minimum threshold. For

individual sizes close to the threshold, it is foreseeable that they will attain a

reasonable mutation score, after which point it will become increasingly difficult

to mutate a test so that it improves its mutation score - the individual size means

the GA does not have room to incorporate tests that only kill a few specific mu-

tants, and yet still improve an individual’s overall mutation score. This latter

explanation is in many ways what figure 6.32 suggests, as the results for an indi-

vidual size of 10 do not become significant until a reasonably high mutation score

is achieved. For TriangleSort (figure 6.33), the lowest two individual sizes are

less than the threshold, implying that these should achieve lower mutation scores

than the larger sized individuals - the results show this to be true. Furthermore,

the results also indicate that as the individual size decreases below the threshold,

the mutation score attained also drops, and the number of executions needed to

achieve a specific mutation score increases.

Whilst not presenting a conclusive outcome, the results observed do suggest

that the number of mutant executions varies inversely proportional to the individ-

ual’s size. Furthermore, the results are suggestive of a minimum threshold value

CHAPTER 6. PARAMETER ANALYSIS 146

surrounding the number of tests in an individual - sizes larger than this have no

impact on mutant executions; sizes lower than this require significantly more exe-

cutions. The McCabe complexity measure was suggested as an approximate value

for this threshold, and coincides with the results, making it possible to determine

an appropriate individual size a priori to testing.

Effect on the Mutation Score

Figures 6.35 (DateRange) and 6.36 (TriangleSort) suggest the mean average mu-

tation score after 500 iterations is proportional to the individual size. This result

is not demonstrated by the CalDay program however (figure 6.37), which actually

hints at the opposite (the final mutation score is inversely proportional to indi-

vidual size). Table 6.22 details the final mutation scores obtained and indicates

which combinations of individual sizes result in significantly different mean mu-

tation scores. In particular, they show that for DateRange and TriangleSort, the

differences in mutation scores achieved for each individual size are significant (at

the .05 level).

The previous subsection suggested that limiting the individual size increases

the difficulty in improving the overall mutation score. An improvement in mu-

tation score can only occur in a GA by modifying the tests in an individual.

With fewer tests, smaller sized individuals have to kill more mutants with each

test - something that becomes harder as the mutation score increases, leaving

only HTK mutants. As a consequence, more mutations will occur in order to

improve the mutation score, which ultimately requires more iterations. This is

evidenced by figures 6.35 and 6.36. CalDay however, seems to detract from this

theory, although its results can be explained if the previously mentioned notion

of a minimum threshold for an individual’s size is taken into account.

The effect the individual’s size has on the number of mutant executions en-

couraged the idea of a minimum threshold on the individual’s size in order to

achieve a high mutation score. This threshold was approximated using a pro-

gram’s McCabe complexity, with promising results. Individual sizes greater than

CHAPTER 6. PARAMETER ANALYSIS 147

DateRange: Varying indSize

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

5

10

20

30

Figure 6.35: Effect of varying the individual size on the mean number of executions
to achieve specific mutation scores for the DateRange program.

TriangleSort: Varying indSize

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

5

10

20

30

Figure 6.36: Effect of varying the individual size on the mean number of executions
to achieve specific mutation scores for the TriangleSort program.

CHAPTER 6. PARAMETER ANALYSIS 148

CalDay: Varying indSize

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

5

10

20

30

Figure 6.37: Effect of varying the individual size on the mean number of executions
to achieve specific mutation scores for the CalDay program.

this threshold should not significantly improve the mutation score; sizes smaller

than it should restrict the achievable mutation score. This theory also corresponds

with the results observed for the effect on the mutation score. The approximated

threshold for DateRange is 6 - comparisons between sizes above this (i.e. 10, 20

and 30) result in relatively insignificant3 differences amongst the final mutation

scores (the Scheffé cobt scores for comparisons between individual sizes of 10, 20

and 30 are only just larger than the ccrit value, especially in relation to the scores

for comparisons with an individual size of 5), suggesting that these sizes have little

effect. The threshold for TriangleSort is 11 - comparisons between sizes 20 and

30 also result in relatively insignificant differences amongst final mutation scores;

comparisons with sizes below this threshold (i.e. 5 and 10) exhibit relatively sig-

nificant differences. CalDay’s threshold is 4 - all comparisons between individual

sizes are not significant, as all individual sizes are larger than this threshold.

3Significance in this sense is measured relatively to how much larger cobt is to ccrit ; only just
larger can be described as “relatively insignificant”.

CHAPTER 6. PARAMETER ANALYSIS 149

indSize DR TRI CD
5 88.65% ± 0.87 70.79% ± 1.54 83.90% ± 3.64
10 94.07% ± 1.04 83.82% ± 1.27 85.02% ± 2.39
20 95.26% ± 0.80 90.05% ± 1.40 84.70% ± 2.24
30 95.89% ± 0.65 91.37% ± 1.48 83.01% ± 4.05

ANOVA
fobt 471.59 1253.42 2.42
fcrit 2.68 2.68 2.68

Scheffé
cobt

5-10 24.88 34.85 -
5-20 31.25 51.53 -
5-30 33.99 55.05 -

10-20 5.61 16.98 -
10-30 8.53 20.56 -
20-30 3.06 3.58 -
ccrit 2.83 2.84 -

Table 6.22: The mean mutation scores (and standard deviation) achieved after
500 iterations for each of the four individual sizes: 5, 10, 20, 30. ANOVA and
Scheffé calculations (at the 0.05 level) show which pairs of individual sizes result
in significantly different mean mutation scores (in bold). Values replaced with ‘-’
are not important as the ANOVA results are not significant. All results are to 2
decimal places.

Overall, the results observed are suggestive that the mutation score is propor-

tional to the individual’s size, with a minimum size existing in order to achieve

a high mutation score. Individuals smaller than this threshold achieve signifi-

cantly lower mutation scores, whilst those dramatically larger offer no significant

increase. Ultimately this is to be expected, as a certain number of tests will be

required to achieve a full mutation score. Less than this number will restrict the

mutation score; greater than it will not allow any more mutants to be killed. It

is interesting that this number can be approximated by the McCabe complexity

of the programs under test.

CHAPTER 6. PARAMETER ANALYSIS 150

Effect on the Number of HTK identified

Logically it follows that, if the mutation score is proportional to the individual’s

size, so must the number of hard-to-kill mutants identified - more HTK mutants

must have been killed in order to achieve a higher mutation score. Similarly to

the results obtained for the mutation score then (previous subsection), this ex-

pected result is demonstrated by both DateRange and TriangleSort, and not by

CalDay. Figure 6.38 shows the percentage of HTK mutants killed by each indi-

vidual size, for each program. Table 3.35 in Appendix C.1.3 (page 245) indicates

which differences between individual sizes are significant.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 20 30

Individual Size

%
H

T
K

 i
d

e
n

ti
fi

e
d

CD

DR

TRI

Figure 6.38: Effect of varying the individual size on the mean number of HTK
mutants identified for all three programs.

If the individual size threshold is taken into account (mentioned in the previous

subsection), then the differing results between the CalDay program and the others

can be explained. Improving a mutation score means killing more HTK mutants

(for higher scores at least) and so: individual sizes less the threshold kill fewer

HTK mutants, whereas larger sizes have little effect. This idea is demonstrated in

the results. CalDay has a McCabe complexity of 4, meaning all individual sizes

are larger than the threshold. As expected, the percentage of HTK killed differs

insignificantly between each indSize (at the 0.05 level). DateRange has a McCabe

complexity of 6 - only one individual size is smaller than the threshold (indSize 5),

and it is this size that kills significantly fewer HTK mutants; the other three sizes

CHAPTER 6. PARAMETER ANALYSIS 151

kill approximately the same percentage. TriangleSort has a McCabe complexity

of 11 - two individual sizes are smaller than the threshold (indSize 5 and 10),

and both of these kill significantly fewer HTK mutants (indSize 5 kills 0%); the

other two larger sizes kill approximately the same percentage.

The results suggest that the number of hard-to-kill mutants identified relates to

the individual’s size (albeit through reasoning about the mutation score attained),

and in particular to the minimum size threshold needed to achieve a high mutation

score. Individual sizes less than the threshold kill fewer HTK mutants; larger sizes

have no effect. For killing HTK mutants, an individual size slightly larger than

the threshold value would be preferential.

Effect on the Number of Tests

As the individual’s size imposes a limit on the number of tests, it will have an

obvious (limiting) effect on the number of tests created. This is shown for the

DateRange program in the figure 6.39 (the other two programs have similar graphs,

shown in Appendix C.1.4). Table 3.36 in Appendix C.1.4 (page 248) indicates

the mean number of distinct tests obtained by at least 25 runs for each of the

individual sizes, as well as the significance of any differences.

There are two possible causes as to why the individual’s size should affect

the number of tests in the way seen: counting the number of ‘distinct’ tests,

rather than the number of ‘useful’ tests; and, how mutation generates new tests.

The first possibility implies that by counting tests based on whether they are

different from any other test in the individual, and not whether they are the sole

killer of at least one mutant, means that the number of tests counted could be

greater than the number actually needed. Tests could be counted that add nothing

to the mutation score. Finding the minimum subset of tests needed to kill the

maximum number of mutants is a difficult task however, and beyond the scope

of this work. Additionally though, the number of distinct tests in an individual

is heavily influenced by the processes of crossover and mutation. Each iteration,

these mechanisms are responsible for generating new tests which ultimately result

CHAPTER 6. PARAMETER ANALYSIS 152

DateRange: Varying indSize

0

5

10

15

20

25

30

35

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

5

10

20

30

Figure 6.39: Effect of varying the individual size on the mean number of distinct
tests created to achieve specific mutation scores for the DateRange program.

in more distinct tests, regardless of whether they are useful or not.

The number of tests mutated per iteration can be approximated based on

the mutation rate probability. For simplicity assume the average number of tests

mutated is calculated by: mutRate∗indSize4. Assuming a constant mutation rate

(mutRate) of 0.02: roughly 0.1 tests will mutate per iteration for an indSize of

5; 0.2 tests will mutate for an indSize of 10; 0.4 tests for an indSize of 20; and,

0.6 tests will mutate for an indSize of 30. Despite the constant mutation rate,

the individual’s size has a definite impact on the number of mutated tests per

iteration, and consequently, the number of distinct tests created. Furthermore, as

the iterations progress, killing mutants becomes harder (specific tests are required)

and so more iterations are needed to increase the mutation score. The more

iterations per mutation score increase, the more tests that are mutated, and the

larger the test set size becomes. This effectively means that the differences in

4The actual mean number of tests is calculated slightly differently as the mutation rate refers
to the probability of mutating a value within a test, not the probability of mutating the test
itself. For this example however, the true values are unimportant.

CHAPTER 6. PARAMETER ANALYSIS 153

the number of tests mutated per iteration (between the various individual sizes)

is multiplied by the number of iterations needed, causing a divergence of test set

sizes as seen in the figures. The number of tests is only limited by the fixed size

of the individuals - a bound set by the individual’s size!

Finally, from these results it would appear that the minimum individual thresh-

old size has little impact on the test set size. Ultimately it is a combination of

the mutation rate and the individual size that indicates the test set size, with the

maximum being limited by the individual’s size. On the basis of set size, a smaller

individual size is better, although this will probably inhibit the overall mutation

score achieved.

6.3.2 crossRate

Pseudocode in figure 4.19 indicates that the crossRate parameter is used nu-

merous times each iteration to swap the tail portions of two randomly selected

individuals (single-point crossover). The purpose of this is to recombine tests

from both individuals in an attempt to generate a fitter (higher mutation scoring)

individual. No mutation occurs during this process however, meaning there are

no new tests created that need to be executed against all mutants (all tests in

the population have their results cached until they are removed from the pop-

ulation). For this reason, it is expected that crossRate will have no effect on

the number of mutant executions needed to achieve a certain mutation score, nor

on the number of HTK mutants identified or the number of iterations required

to achieve a specific mutation score. Finally, it is also expected that crossRate

will not affect the test set size. These expectations will be discussed more in the

following subsections.

Effect on the Number of Mutant Executions

Figures 3.80-3.82 in Appendix C.1.5 clearly demonstrate that the crossover rate

has little effect on the number of mutant executions. To confirm these results

CHAPTER 6. PARAMETER ANALYSIS 154

however, ANOVA calculations were performed on the mean number of mutants

executed at every mutation score achieved to determine if there is any significant

difference in the results for each crossover rate. For completeness, the results of

these calculations at the equally highest mutation score achieved by at least 25

runs for each of the six crossover rates, are shown in table 3.37 (Appendix C.1.5,

page 251).

All three programs exhibit similar results - the null hypothesis (i.e. no sig-

nificant difference between any of the mean numbers of mutants executed) was

accepted at every mutation score achieved, except for a few high mutation score

values (at most, for all three programs, the null hypothesis was rejected at 5 mu-

tation score values). These rare exceptions are due to subtle differences in the

mean execution numbers, which most likely result from fewer experimental runs

achieving the higher mutation scores.

Overall, these results confirm that the crossover rate causes no significant dif-

ference in the mean number of mutants executed. As no test mutation occurs

during crossover (i.e. no new tests are created), this results is to be expected.

Based on this evidence, and in terms of the number of mutant executions, a

crossover rate of 0 may as well be employed as this would save the unnecessary

computational expense of creating crossed-over offspring individuals. This high-

lights the fact that it is the combination of tests in an individual which is most

important rather than particular tests - a test that is useful in one individual may

not be in another.

Effect on the Mutation Score

Figures 3.83-3.85 in Appendix C.1.6 (pages 252-253) show that the crossover rate

has no effect on the number of iterations either. To confirm this, ANOVA cal-

culations were performed on the mean average mutation score achieved at every

iteration. For the majority of iterations, the null hypothesis was accepted (at

the 0.05 level), suggesting no significant differences amongst the mean mutation

scores achieved at each iteration.

CHAPTER 6. PARAMETER ANALYSIS 155

To summarise the results, the mutation scores achieved after 500 iterations are

presented in table 3.38 (Appendix C, page 254). ANOVA calculations for these

figures are also indicated, and show the fobt value for the TriangleSort program to

be greater than the fcrit value, suggesting a significant difference between mutation

scores achieved for at least two crossover rates. Interestingly, the Scheffé values

do not indicate any such significance for any pair of results. As the fobt value (2.36

[2 d.p.]) is only just larger than the fcrit value (2.27 [2 d.p.]), it is safer to assume

these results are not significant.

In general, these results indicate that the crossover rate has no effect on the

mean mutation score achieved at each iteration. This is to be expected. Crossover

swaps the tail portions of two randomly selected individuals in an attempt to com-

bine the best parts of two parent individuals. Given many tests are likely to kill

the same mutants however and the fact that the whole population is generally be-

ing improved (in terms of each individual’s mutation score), swapping any number

of tests is unlikely to have much effect on the mutation scores of those individuals.

Furthermore, the results recorded represent the best individual in the population

in any given iteration, with this being kept (in its original form, i.e. no crossover

or mutation applied) in the population to the next iteration at least. Because

of this, the mutation score can never decrease, effectively implying the crossover

rate has no effect on improving the mutation score at any iteration, and that a

crossRate of 0 may as well be used.

Effect on the Number of HTK identified

Figure 6.40 indicates the results on the percentage of HTK identified from varying

the crossover rate. These show that the crossover rate has no significant effect,

which is to be expected as crossRate has previously been shown not to affect the

achievable mutation score. Table 3.39 in Appendix C.1.7 (page 255) shows the

insignificance of the results. A crossover value of 0 may as well be used.

CHAPTER 6. PARAMETER ANALYSIS 156

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

Crossover Rate

%
H

T
K

 I
d

e
n

ti
fi

e
d

CD

DR

TRI

Figure 6.40: Effect of varying the crossover rate on the mean number of HTK
mutants identified for all three programs.

Effect on the Number of Tests

Figures 3.86-3.88 in Appendix C.1.8 show that the crossover rate has no effect

on the mean number of distinct tests needed to achieve a specific mutation score.

To confirm this, ANOVA calculations were performed on the mean number of

distinct tests needed at each mutation score obtained. The majority of the results

accepted the null hypothesis - i.e. there is no evidence to suggest the crossover

rate significantly affects the test set size needed to achieve specific mutation scores.

Those results where the null hypothesis was rejected occurred mainly at low mu-

tation scores - between 20 and 30% for the TriangleSort program - with only a few

sporadic rejections at other mutation score values; all results for CalDay accepted

the null hypothesis.

To summarise the results, the mean test set sizes needed to achieve the highest

mutation score, obtained by at least 25 runs of each crossover rate, are shown in

table 3.40 (Appendix C.1.8, page 258). The table also presents the ANOVA

calculations of these results, indicating that none of the test set sizes (for a given

crossover rate) are significantly different from the others.

The results indicate that the crossover rate does not impact on the test set size

for a specific mutation score. Crossover does not mutate any tests, but merely

CHAPTER 6. PARAMETER ANALYSIS 157

swaps over the tail portions of two individuals. Each individual will undergo mu-

tation which is capable of creating distinct tests. However, because all individuals

undergo mutation at the same rate, the number of distinct tests in each individual

is likely to be roughly equal (see section 6.3.3). In this case, the number of distinct

tests in an individual will remain roughly constant irrespective of how many are

crossed over (i.e. irrespective of the crossover rate). To save expense, a crossover

rate of 0 could be used.

6.3.3 mutRate

Each iteration the mutRate parameter directs the amount of mutation each child

individual undergoes. The higher the mutation rate, the greater the chance that

one or more of an individual’s tests will be mutated. It is expected that the

number of mutant executions will be proportional to the mutation rate, as will

the mutation score for any given iteration. Increases in mutation score suggest

increases in the number of HTK mutants identified, so it is expected these will

also be proportional to mutRate. Finally, given the test set size is calculated

by the number of distinct tests in an individual, a parameter that can increase

this number (by mutating existing tests) should increase the set size. However, as

more tests in an individual are mutated, the number of distinct tests will approach

the number of tests within the individual. The expectation, therefore, is that

the test set size for relatively low mutation scores (i.e. the first few iterations)

is proportional to the mutation rate, after that, test set size is unaffected by

mutation rate and approaches the individual size as the iterations increase.

Effect on the Number of Mutant Executions

Figures 6.41 and 6.42 indicate the expected effect the mutation rate has on the

number of mutant executions - as the mutation rate increases, so does the number

of executed mutants. This expectation is also demonstrated in the results for the

CalDay program (figure 6.43), except that the mutation score achieved by the

CHAPTER 6. PARAMETER ANALYSIS 158

higher rates (0.06 and 0.08) has been severely limited within the 500 iterations (if

it were allowed more iterations, it would most likely execute more mutants than

the lower mutRates to achieve the higher mutation scores). A similar mutation

score limitation is also seen with the TriangleSort program, except the results are

not as noticeable.

DateRange: Varying MutRate

0

2000000

4000000

6000000

8000000

10000000

12000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0.01

0.02

0.04

0.06

0.08

Figure 6.41: Effect of varying the mutation rate on the mean number of executions
to achieve specific mutation scores for the DateRange program.

Table 3.41 (Appendix C.1.9, page 261) indicates the mean number of mutant

executions at the equally highest mutation score achieved by at least 25 runs

across each mutation rate. Unfortunately these results are not as conclusive as

the graphs suggest, primarily because the comparison point - the equally highest

mutation score achieved in at least 25 runs across all mutation rates - is just

before the divergence seen in the figures. For at least one mutation rate per

program, fewer than 25 runs achieve a higher mutation score than the comparison

point. These results however, should not necessarily be seen as indicative of a

lack in significance (between the mean number of executions) at higher mutation

scores. For example, the low comparison point for CalDay occurs because neither

CHAPTER 6. PARAMETER ANALYSIS 159

TriangleSort: Varying mutRate

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0.01

0.02

0.04

0.06

0.08

Figure 6.42: Effect of varying the mutation rate on the mean number of executions
to achieve specific mutation scores for the TriangleSort program.

CalDay: Varying MutRate

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0.01

0.02

0.04

0.06

0.08

Figure 6.43: Effect of varying the mutation rate on the mean number of executions
to achieve specific mutation scores for the CalDay program.

CHAPTER 6. PARAMETER ANALYSIS 160

a mutation rate of 0.06 or 0.08 achieve greater than 73.17%. This means that, if

given an infinite number of iterations, these mutation rates would require a much

larger number of mutant executions to achieve higher mutation scores, causing a

significant difference at higher mutation rates.

The proportionality of these results is to be expected. Every iteration each

offspring individual (besides the highest scoring individual that is kept from the

previous iteration) undergoes mutation at a constant rate. This mutation rate

is the probability of a test input being mutated, and the degree to which it is

mutated. Clearly, the higher the mutation rate is, the more likely a test is to be

mutated, and therefore the more new tests that will be generated per iteration;

each of these will need to be executed against the mutant programs (in order to

determine their mutation scores). Obviously then, a higher mutRate results in a

higher number of mutant executions. But why the mutation score limitation? This

limitation happens because higher mutation rates are also responsible for causing

greater degrees of mutation to each test input. Instead of subtly improving a

test through a slight mutation, much more variation is likely to occur, resulting in

drastic changes to the tests and their mutation scores. Essentially, as the mutation

rate increases, the local search tends towards a randomised search.

In terms of the number of mutant executions, these results suggest that the

lower the mutation rate the fewer mutant executions that are needed to achieve

a specific mutation score. If the mutation rate is too low however, the achievable

mutation score will be limited as not enough searching will be performed. The

results suggest that a mutRate of 0.02 is likely to achieve a higher overall mutation

score (albeit in slightly more executions) than the lowest rate (tested) of 0.01.

Using a mutation rate of 0.02 is therefore the preferential choice, despite the

slightly higher execution costs.

Effect on the Mutation Score

The effect mutRate has on the mutation score per iteration is not always the same

for the various programs tested. DateRange and TriangleSort (figures 6.44 and

CHAPTER 6. PARAMETER ANALYSIS 161

6.45 respectively) suggest that the higher mutation rates (0.04, 0.06, and 0.08)

initially achieve higher mutation scores in fewer iterations than the lower rates;

this is not indicated by CalDay (figure 6.46). All three figures do however, suggest

that these higher mutRates achieve a lower mutation score after 500 iterations,

than a rate of 0.02. Only in one case (for the CalDay program) does a mutRate

of 0.01 achieve the highest mutation score after 500 iterations. Furthermore, all

three programs indicate that the lower mutation rates present a more leisurely

gain in mutation score per iteration.

DateRange: Varying MutRate

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 0.01

0.02

0.04

0.06

0.08

Figure 6.44: Effect of varying the mutation rate on the mean mutation score
achieved per iteration for the DateRange program.

Table 3.42 (Appendix C.1.10, page 264) indicates the mean mutation scores

after 500 iterations and which pairs of mutation rates give significantly different

results. As can be seen, for all three programs a mutation rate of either 0.01

or 0.02 achieves the highest mutation score after 500 iterations. Despite this

evidence, and the overall results presented in the three figures, only the CalDay

program strongly indicates a significant difference between the mutation scores

achieved with rates of 0.01/0.02 and 0.04-0.08. This is the least complex program

CHAPTER 6. PARAMETER ANALYSIS 162

TriangleSort: Varying mutRate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 0.01

0.02

0.04

0.06

0.08

Figure 6.45: Effect of varying the mutation rate on the mean mutation score
achieved per iteration for the TriangleSort program.

CalDay: Varying MutRate

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 0.01

0.02

0.04

0.06

0.08

Figure 6.46: Effect of varying the mutation rate on the mean mutation score
achieved per iteration for the CalDay program.

CHAPTER 6. PARAMETER ANALYSIS 163

of the three (McCabe complexity of 4) possibly hinting at a relationship between

the mutation scores achievable with various mutation rates and the program’s

complexity. Unfortunately there is not enough evidence from these experiments

to formulate any claim.

It was expected that the mutation score achieved for any given iteration would

be proportional to the mutation rate. Higher mutation rates would cause more

tests to change per iteration, increasing the probability of killing living mutants

(i.e. improving the mutation score). This expectation has not been realised ac-

cording to the three programs tested, except maybe for the first 30-40 iterations

of the DateRange and TriangleSort programs. It is in these iterations that the

test set is improved from a weak set (each individual contains 20 of the same low

mutation scoring tests), and so mutation rates that cause the most variation are

more likely to improve these tests quickly. After the mutation score has increased

to a certain level however, large changes in the tests (caused by higher mutation

rates) will make it more difficult to improve the mutation score - at this point

each test’s search needs to be directed implying lower mutation rates; higher mu-

tation rates tend to make the search more random. This is the results seen in

DateRange, TriangleSort, and even CalDay to a degree. Lower mutation rates, on

the other hand, would cause less test mutation each iteration and so not increase

the mutation score as quickly. However, because they cause less variation in each

test, they present a more directed search for killing living mutants, and therefore

a better chance at generating a higher mutation score overall. Too low a mutation

score though, and not enough change will occur in order to find ‘stronger’ tests,

with the result being a lower mutation score again.

Overall then, lower mutation rates exhibit a more gradual increase in mutation

score, but keep increasing the mutation score over more iterations. The more

directed search (through lower test variation) offered by these lower rates also

improves the likelihood of achieving a higher mutation score. A mutation rate of

0.02 offers the best results for these three programs, killing the most mutants (out

of the rates tested) for all three programs.

CHAPTER 6. PARAMETER ANALYSIS 164

Effect on the Number of HTK identified

Figure 6.47 details the effect of varying the mutation rate on the percentage of

hard-to-kill mutants killed, for each of the three programs. As can be observed,

they do not present any clear, consistent correlation between two. CalDay’s results

are fairly constant across all mutation rates, as are DateRange’s results, bar a

significantly lower result for a mutRate of 0.01. TriangleSort’s results are also

fairly consistent except that a mutRate of 0.02 kills a significantly larger number

of HTK mutants than 0.04, 0.06 and 0.08.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.01 0.02 0.04 0.06 0.08

Mutation Rate

%
H

T
K

 i
d

e
n

ti
fi

e
d

CD

DR

TRI

Figure 6.47: Effect of varying the mutation rate on the mean number of HTK
mutants identified for all three programs.

Theoretically, the number of HTK mutants killed is related to the overall

mutation score achieved - a high mutation score is likely to kill more HTK mutants

than a low mutation score. It is interesting to see then, that this does not reflect

in CalDay’s results. CalDay achieves a significantly lower mutation score in the

higher (0.04, 0.06, 0.08) mutation rates than the lower rates, and yet the number

of HTK mutants killed remains constant (only differing slightly for mutRate 0.01).

It is probable that some HTK mutants are more easier to identify than others,

and these are being killed in earlier iterations by all mutation rates, with the

harder ones remaining alive. Furthermore, as mentioned in section 5.7, the hard-

to-kill mutants were manually identified and therefore, potentially only represent

a minimum number of HTK mutants. It is possible then, that the extra mutants

CHAPTER 6. PARAMETER ANALYSIS 165

killed by the lower mutation rates should be marked as HTK also. If this were

the case, then the percentage of HTK identified for mutRates 0.01 and 0.02 would

probably be greater than for the higher mutation rates, and reflect the original

relationship between mutation score and HTK identified.

A further interesting result is those for TriangleSort. A mutation rate of 0.01

achieves the lowest mutation score after 500 iterations, however it identifies the

second largest percentage of HTK mutants (0.02 killing the most). In general,

a high mutation score implies more HTK mutants must have been killed. A low

mutation score however, does not have to imply a low number of HTK were killed.

A test that kills a HTK mutant may only kill a few non-HTK mutants, emphasising

the speciality of test required to kill that HTK mutant. In general then, a test set

focussed towards killing HTK mutants will kill many HTK, but may only achieve

a low overall mutation score. It is likely then, that for TriangleSort at least, the

mutation rate of 0.01 is focussed more towards killing HTK mutants. This is not

to be unexpected, as a low mutation score will lessen the amount of test mutation

occurring each iteration, thereby directing the search for niche tests.

In general though, the results suggest a mutation rate of 0.02 is preferential,

coinciding with the preferred rate for achieving a higher mutation score.

Effect on the Number of Tests

All three figures (3.95-3.97 in Appendix C.1.12) exhibit interesting qualities for the

initial mutation score increases - they show increases in mutation score without

any increase in the number of tests (indicated by the horizontal lines). This is a

limitation in the way the results are calculated. Higher values of mutRate generate

more new tests per iteration than lower rates, and therefore are more likely to

achieve a higher initial mutation score increase - they effectively “skip” over the

lower mutation score increments achieved by lower valued mutRate experiments.

The number of tests in the memory set are plotted on the graphs at every mutation

score across all mutRate valued experiments, however it is the number of tests

needed to achieve at least that mutation score that are plotted. For the larger

CHAPTER 6. PARAMETER ANALYSIS 166

mutRate values, this usually means (for the first few points, at least) plotting the

number of tests to achieve some higher mutation score at a lower one - hence a

horizontal line.

CalDay: Varying MutRate

0

5

10

15

20

25

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

0.01

0.02

0.04

0.06

0.08

Figure 6.48: Effect of varying the mutation rate on the mean number of tests
needed to achieve a specific mutation score for the CalDay program.

After these initial discrepancies however, DateRange and TriangleSort gener-

ally show no significant difference in the number of distinct tests needed for a

specific mutation score. As the number of distinct tests in an individual increases,

modifying these tests is unlikely to change their distinctiveness. Higher mutation

rates, although more likely to mutate tests, no longer significantly increase the

number of distinct tests. On the other hand, CalDay’s results (figure 6.48) indi-

cate discrepancies in the number of tests produced for different rates - the biggest

difference occurring between the rate of 0.01 and the others. It would appear

that this low rate is capable of finding tests to increase the mutation score from

approximately 70 to 80%, without creating a large number of distinct tests to do

so. Or alternately, the higher mutation rates generate more distinct tests before

they are able to perform the same mutation score increase. This effect is, more

CHAPTER 6. PARAMETER ANALYSIS 167

than likely, peculiar to this particular program, highlighting the fact that this

automated technique is dependent on the program being tested, and the meth-

ods used to generate/mutate tests. A reasonable conclusion would be to assume

that the mutation rate has no effect on the number of tests needed, especially

considering the fact that the number of tests are limited by the individual’s size

anyway.

6.4 Immune Inspired Algorithm for Mutation

Testing

The Immune Inspired Algorithm for Mutation Testing, as defined in figure 4.21,

has 3 user-definable parameters (excluding population size and the number of

iterations to perform): nFittest; nWorst; and cloneRate. Table 6.23 shows the

values assignable to each parameter, with the default options highlighted in bold.

There are 15 possible combinations of parameters, and therefore 15 experiments:

the default plus: 4 for nFittest, 5 for nWorst, and 5 for cloneRate. As with the

GA/MT, these values are chosen with execution times in mind.

Parameter Values
nFittest 1, 3, 5, 7, 9
nWorst 0, 1, 3, 5, 7, 9

cloneRate 0, 1, 5, 10, 15, 20

Table 6.23: Possible parameter values for the Immune Inspired Algorithm. Default
values are shown in bold font.

6.4.1 nFittest

The code in figure 4.21 (Chapter 4) indicates that the nFittest parameter is

used for two reasons. Predominantly it is used to define the number of tests to

be selected (from either the memory set or the current population) to undergo

clonal selection. The other use is in the metadynamics method at the end of

CHAPTER 6. PARAMETER ANALYSIS 168

every iteration - the nFittest5 worst tests (i.e. nFittest tests that kill the

least mutants) are replaced by the nFittest best tests from the clones. Primarily

because of the first use, it is expected that this parameter will affect the execution

time of the algorithm, with execution times increasing as nFittest does. It is

also expected to affect the mutation score achieved after a specific number of

iterations and the number of hard-to-kill mutants identified, with both increasing

as nFittest does. No effect is expected in the test set size. Reasoning behind

these expectations will be discussed more in the following subsections.

Effect on the Number of Mutant Executions

The metadynamics phase replaces the nFittest worst tests with the nFittest

best tests from the cloned and mutated test set. As such, it does not cause the

creation (either through mutation or otherwise) of any new tests, and so will not

affect the number of mutant executions. Instead, the use of nFittest for defining

how many tests are selected for clonal selection is more important - the more

clones generated, the more mutated tests are likely to occur (assuming a specific

mutation rate). Theoretically then, as every mutated test will need to be executed

on all mutant programs in order to determine its affinity, the higher the value of

nFittest, the more executions that will be needed to achieve a certain mutation

score - the longer the execution time.

Figures 6.49-6.51 plot the mean number of mutants executed to achieve at

least the specified mutation score. The DateRange program, and to a lesser de-

gree the CalDay program, both demonstrate the proportional relationship between

nFittest and the number of mutant executions at high mutation scores. This

relationship is not seen in the TriangleSort program however, which instead hints

that the number of mutant executions is inversely proportional to nFittest. It

should be noted though, that the difference in mutant executions between the

highest and lowest nFittest values (at approximately the highest mutation score)

5It helps to think of nFittest purely as a number in this case and not as “n fittest”.

CHAPTER 6. PARAMETER ANALYSIS 169

is relatively small for TriangleSort (≈ 0.5-0.6 million) when compared with Dat-

eRange (≈ 1.5 million) or CalDay (≈ 4 million), reducing the significance that

should be placed on trends derived from TriangleSort’s results.

DateRange: Varying nFittest

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

1

3

5

7

9

Figure 6.49: Effect of varying nFittest on the mean number of mutant executions
to achieve a specific mutation score for the DateRange program.

Table 6.24 indicates, for each program, the mean number of mutant executions

(and standard deviation) needed to achieve (at least) the highest mutation score

obtained by at least 25 runs, for each of the five nFittest values. Analysis of

variable (ANOVA) tests were calculated on these values to indicate whether any

of the nFittest values result in significantly different means. Which specific

combinations of nFittest values have significantly different means is analysed by

way of Scheffé post-hoc analysis.

All three programs exhibit signs of significantly different mean numbers of

executions, although TriangleSort’s result is only based on a significant differ-

ence between an nFittest pair of 3-9. DateRange on the other hand, shows a

significance between nFittest pairs of 1-7, 1-9 and 3-7, whilst CalDay shows a

significance between pairs of 1-7, 1-9, 3-7, 3-9 and 5-7. Despite these results, there

CHAPTER 6. PARAMETER ANALYSIS 170

TriangleSort: Varying nFittest

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

1

3

5

7

9

Figure 6.50: Effect of varying nFittest on the mean number of mutant executions
to achieve a specific mutation score for the TriangleSort program.

CalDay: Varying nFittest

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

1

3

5

7

9

Figure 6.51: Effect of varying nFittest on the mean number of mutant executions
to achieve a specific mutation score for the CalDay program.

CHAPTER 6. PARAMETER ANALYSIS 171

DR TRI CD
nFittest MS: 98.89% MS: 97.63% MS: 93.58%

1 265388 ± 71.55% 744779 ± 44.02% 1104351 ± 43.33%
3 444814 ± 68.51% 829200 ± 55.26% 1102104 ± 50.60%
5 642955 ± 58.23% 624068 ± 51.53% 1493328 ± 70.65%
7 853806 ± 86.82% 673662 ± 71.74% 2658207 ± 67.37%
9 842544 ± 82.66% 482196 ± 63.11% 2261889 ± 66.10%

ANOVA
fobt 7.56 3.76 10.94
fcrit 2.43 2.43 2.43

Scheffé
cobt

1-3 1.37 0.82 0.01
1-5 2.86 1.18 1.32
1-7 4.46 0.69 5.15
1-9 4.41 2.59 3.83
3-5 1.51 2.15 1.34
3-7 3.13 1.61 5.19
3-9 3.06 3.67 3.87
5-7 1.60 0.52 3.92
5-9 1.53 1.52 2.58
7-9 0.09 2.02 1.30

ccrit 3.12 3.12 3.12

Table 6.24: The mean number of mutants executed (and standard deviation as a
percentage of the mean) at the highest mutation score obtained by at least 25 runs
for each of the five nFittest values: 1, 3, 5, 7, 9. ANOVA and Scheffé calculations
show the which pairs of nFittest values result in significantly different (at the
0.05 level) mutant execution numbers (in bold). The number executed (and any
standard deviation) has been rounded up to the nearest whole number to reflect
that a mutant is either executed completely or not at all. All other results are to
2 decimal places.

CHAPTER 6. PARAMETER ANALYSIS 172

are two points which should be considered when drawing conclusions. Firstly, the

Scheffé cobt values are not much larger than the ccrit values - this is particularly the

case for the TriangleSort’s results which could be just peculiar to this program.

Secondly, all three programs indicate a large standard deviation in the mean val-

ues, indicating a large spread in the number of mutant programs executed (and

therefore the execution time) to achieve the specified mutation score. Both points

place doubt as to the significance of the results.

Overall, and considering how the results presented in the graphs extend beyond

the mutation scores in table 6.24, DateRange and CalDay suggest a proportional

relationship between the number of mutant executions and nFittest. This is

particularly noticeable between larger differences in nFittest values, e.g. between

1 and 9. TriangleSort however, hints at an inversely proportional relationship

although the result is barely significant at the 0.05 level. If it is significant, then

why should this program present different results? Given the few programs tested

it is impossible to ascertain a definitive reason; one possible explanation however

relates to the average affinities of the tests added to the memory set. Figures 6.52-

6.54 indicate the average test affinities generated for each mutation operator and

the test set size, at each nFittest value, for each program. Figure 6.55 shows the

same for the Select program, but only for the single value of nFittest (=1) tested

(included for the discussion to follow). Considering only the main three programs

being examined, these graphs indicate that TriangleSort has a relatively larger

test set size than the other two programs, but that the average test affinities (per

mutation operator) are smaller. They also indicate that the set sizes and average

affinities are approximately constant across all nFittest values.

The number of clones generated per parent is proportional to the parent’s

affinity. Low affinity tests, such as those in TriangleSort will produce few clones,

however a high percentage of these will mutate to produce new tests (test mutation

is inversely proportional to affinity). As nFittest does not appear to affect the

average affinities, it will not affect the number of new tests generated per parent.

It will however, affect the number of parents generated (number proportional to

CHAPTER 6. PARAMETER ANALYSIS 173

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9

nFittest

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

45

50

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 6.52: Effect of varying nFittest on the average memory set size and
memory test affinity for each mutation operator, for the DateRange program.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9

nFittest

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

45

50

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 6.53: Effect of varying nFittest on the average memory set size and
memory test affinity for each mutation operator, for the TriangleSort program.

CHAPTER 6. PARAMETER ANALYSIS 174

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9

nFittest

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

45

50

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 6.54: Effect of varying nFittest on the average memory set size and
memory test affinity for each mutation operator, for the CalDay program.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5

nFittest

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

45

50

55

60

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 6.55: Effect of varying nFittest on the average memory set size and
memory test affinity for each mutation operator, for the Select program.

CHAPTER 6. PARAMETER ANALYSIS 175

nFittest), and thus affect the total number of new tests created per iteration.

For TriangleSort, an nFittest of 1 will generate very few new tests, implying

more iterations will be needed (and therefore more mutant executions) in order to

improve the mutation score. Increasing nFittest will increase the number of new

tests per iteration, decreasing the number of iterations (and therefore the number

of executions) needed to achieve a mutation score. In effect, increasing nFittest

means increasing the coverage of the localised shape-space per iteration.

If, on the other hand, TriangleSort’s results are not considered significant due

to the large variance (and this is entirely reasonable given how little the ANOVA

Fobt result is greater than the Fcrit value - table 6.24), then the above explanation

could still be true except that the parameter values tested do not cause a large

enough difference in execution numbers to warrant a significant result. Larger

nFittest values may cause a significant result, however it is envisaged that there

will be a turning point where values larger than this point will not offer any

improvement in mutation score and instead significantly increase the number of

mutant executions needed - the process will effectively become similar to what

happens with DateRange and CalDay. For these latter two programs, the higher

average affinities will cause a significant number of new tests to be generated with

an nFittest of 1, which are adequate enough for generating a high mutation

score. If nFittest is increased, the number of new tests generated also increases,

but these appear to have little effect on improving the high mutation scores, and

instead only increase the number of executions.

The question that this poses is why does TriangleSort have lower average affin-

ity tests than the other programs? With few programs tested, it cannot be deter-

mined if TriangleSort is just an exception to the rule. Assuming it is not, then one

hypothesis would be that programs with high complexities create a larger number

of mutants that require more subtle variations of tests to identify them. These

tests will probably only kill a few mutants and so more will be needed, resulting in

larger test sets with lower average affinities. Typically, high complexity programs

often posses a large number of branch conditions that serve to alter the program’s

CHAPTER 6. PARAMETER ANALYSIS 176

control flow. Mutant variations of these conditions often need slightly differing

inputs to detect each one, for example, consider the TriangleSort program (in

Appendix B.4). The first two relationship operator (ROR) mutations adjust line

(line number: 4) if((i<=0)||(j<=0)||(k<=0)){ to:

if((i<0)||(j<=0)||(k<=0)){
if((i==0)||(j<=0)||(k<=0)){

The first mutation can be identified by the inputs: i = 0; j = 1; and k =

1 (original returns 4, mutation returns 2). These values do not work for the

second mutation however, but a small variation of them does: i < 0; j = 1;

and k = 1 (original returns 4, mutation returns 2). In particular, this highlights

the importance of the relationships between the program’s inputs. Generating a

random test in this instance, is likely to lose the important equality between j and

k , meaning even if i is created as a negative number, the test will still not help.

In these cases then, there is little need for random mutation, with the localised

search being more beneficial.

By requiring specific, subtle tests for certain mutants, the final test set is likely

to be larger but consisting of similarly structured, lower mutation scoring tests.

Each test kills a small, subtly different set of mutants, meaning more tests are

needed to kill all the mutants generated for a program. A benefit of this hypothesis

is that a program’s complexity can be calculated using the McCabe cyclomatic

complexity measure [70], and used to indicate the appropriate nFittest value to

test the program with - specifically, higher McCabe complexities require larger

nFittest values.

Select’s results (figure 6.55) seemingly contradict this hypothesis though. Se-

lect has the highest McCabe complexity (19) of all the programs tested and so,

as hypothesised, has a high number of memory tests. However, it also has a high

average mutation score per test (for each mutation operator) implying that high

complexity programs do not always need a lot of low mutation scoring tests to

achieve a high overall mutation score. This evidence does not necessarily mean

CHAPTER 6. PARAMETER ANALYSIS 177

that the hypothesis is wrong however, only that the McCabe complexity may

not be a solely reliable indicator for an appropriate nFittest value. The results

show that, as expected by the theory, Select still requires a large number of tests

to achieve a high overall mutation score, the majority of which are generated

through cloning rather than random introduction (evidenced in table 5.18) - most

tests are therefore variations of other useful tests. If a larger number of “subtle

mutants”6 are still created for the Select program, then this suggests that each test

only kills a few subtle mutants, therefore requiring the larger test set to achieve

a high mutation score. Because the total number of mutants is greater for Select

however (see table 2.30 in Appendix B), the proportion of subtle mutants to “non-

subtle” mutants is lower. Each test, needed to kill particular subtle mutants, is

also capable of killing a large number of non-subtle mutants, giving each test a

high average mutation score. These results suggest that it is the proportion of

subtle mutants created that is important for determining the average test affinity,

and that this is evidenced by a program’s complexity and the number of mutants

it creates.

As an aside, only one Select experiment (repeated 39 times) was performed7,

with an nFittest of 1. If the above results hold true for this program, and

the average test mutation score remains at the same high level for all nFittest

values, then it would be expected that nFittest should affect the number of

mutant executions in a manner similar to DateRange or CalDay - the number of

executions should be proportional to nFittest.

It should be noted that this expectation on the Select program and the over-

all hypothesis cannot be verified given the number of programs tested. Further

results are needed, particularly from high complexity (McCabe complexity > 10)

programs. This unfortunately requires a significant amount of time to test. On the

basis of the observed results however, a smaller nFittest value seems preferential.

6Subtle mutants are mutants that can be identified though subtle changes to tests.
7Only one Select experiment was performed because of time constraints - each run of the

Select program takes approximately 4 days on a state-of-the-art PC (Intel P4 2.2GHz, 1Gb
RAM).

CHAPTER 6. PARAMETER ANALYSIS 178

Effect on the Mutation Score

Figures 3.105-3.107 in Appendix C.2.2 plot the mutation scores achieved at every

iteration. Figure 6.56 (repeated from the appendix) gives the clearest indication

of a trend between the mutation score per iteration and the nFittest value -

a large rate of increase in the mutation score, proportional to nFittest, during

the initial iterations, before tapering off to a small rate of increase in the later

iterations. Whilst the other two programs demonstrate the large mutation score

increase to start followed by a tapering off, neither conclusively indicate a clear

relationship with nFittest. Both hint at a proportional relationship, at least in

the first 50 iterations, with the mutation scores achieved with an nFittest of 9

being greater than those for an nFittest of 1, but these results do not have the

clarity of TriangleSort’s results.

TriangleSort: Varying nFittest

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 1

3

5

7

9

Figure 6.56: Effect of varying nFittest on the mean mutation score achieved per
iteration for the TriangleSort program.

Table 6.25 indicates, for each program, the final mutation score attained after

500 iterations using each of the five nFittest values. As can be seen, all values re-

sult in very high mutation scores, especially DateRange which achieves in excess of

CHAPTER 6. PARAMETER ANALYSIS 179

99.5% for all settings. Furthermore, the standard deviation is low (<≈ 2%) across

all programs indicating that the majority of the runs achieve these high scores af-

ter 500 iterations. The ANOVA results suggest that each program demonstrates

significant differences amongst at least one pair of mean results, with TriangleSort

providing the strongest significance. Scheffé calculations indicate that, for Trian-

gleSort and CalDay at least, an nFittest of 1 generates a mean mutation score

significantly different from an nFittest of 9. When the mean mutation scores

for these nFittest values are compared, a setting of 9 achieves a higher score

for all three programs, offering evidence that a proportional relationship (between

nFittest and mutation score) continues after 500 iterations. As the difference in

mutation scores between these two values is so low however, and if the variance is

taken into consideration, then the claim that this relationship continues for 500

iterations becomes weaker.

What explanation is there for these observations? As mentioned in the previous

subsection (effect on the number of mutant executions), the nFittest parameter

directly affects the number of tests selected for clonal selection - i.e. increasing it

will increase the number of tests and therefore the number of clones. A proportion

of these clones will undergo mutation at a rate inversely proportional to each

clone’s affinity, resulting in a number of new tests each iteration; the number of

new tests can be estimated by: (1 − clone affinity) ∗ #clones . If the average

clone’s affinity is assumed constant for any given program across varying values

of nFittest (as indicated by figures 6.52-6.54), then increasing the number of

clones (by increasing the number of selected parent tests - achieved by increasing

nFittest) will increase the number of new tests. As each new test per iteration

essentially increases the chance of killing further mutants, increasing nFittest

will therefore improve the chance of killing more mutants in any given iteration.

In early iterations there are a large number of easily killed mutants still living.

The larger number of new tests produced by larger nFittest values are likely to

kill more mutants than the smaller number from lower nFittest values, resulting

in a higher mutation score. This can easily be observed in the early iterations

CHAPTER 6. PARAMETER ANALYSIS 180

nFittest DR TRI CD
1 99.89% ± 0.34% 97.70% ± 0.78% 94.90% ± 1.67%
3 99.57% ± 0.55% 98.12% ± 0.17% 95.78% ± 1.75%
5 99.78% ± 0.45% 98.15% ± 0.00% 96.18% ± 1.84%
7 99.89% ± 0.34% 98.16% ± 0.00% 95.41% ± 2.02%
9 99.96% ± 0.20% 98.16% ± 0.00% 96.56% ± 1.87%

ANOVA
fobt 4.69 10.55 4.07
fcrit 2.43 2.43 2.43

Scheffé
cobt

1-3 3.16 4.53 1.97
1-5 1.09 5.28 2.86
1-7 0.00 5.30 1.13
1-9 0.75 5.41 3.65
3-5 2.06 0.69 0.88
3-7 3.16 0.77 0.81
3-9 3.94 0.78 1.70
5-7 1.09 0.09 1.67
5-9 1.85 0.09 0.84
7-9 0.75 0.00 2.47

ccrit 3.12 3.12 3.12

Table 6.25: The mean mutation scores (and standard deviation) achieved after
500 iterations for each of the five nFittest values: 1, 3, 5, 7, 9. ANOVA and
Scheffé calculations show the which pairs of nFittest values (in bold) result in
significantly different mean mutation scores. All results are to 2 decimal places.

of figure 6.56. As the easy tests are killed though, improving the mutation score

becomes harder. As before though, a larger number of new tests per iteration are

more likely to find a test to kill some living mutants than a smaller number - a

higher nFittest is preferential.

Effect on the Number of HTK identified

Figure 6.57 indicates the number of hard-to-kill mutants identified after 500 it-

erations using each nFittest value, for each of the 3 programs. These results

suggest that, unlike expected, the percentage of HTK mutants identified is not

proportional to nFittest.

CHAPTER 6. PARAMETER ANALYSIS 181

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

nFittest

%
H

T
K

 i
d

e
n

ti
fi

e
d

CD

DR

TRI

Figure 6.57: Effect of varying nFittest on the mean number of HTK mutants
identified for all three programs after 500 iterations.

It was expected that the mutation score would be proportional to nFittest,

and in the early iterations this was shown to be the case. High mutation scores

imply more HTK mutants must have been killed, and so this mutation score ex-

pectation suggested that the percentage of HTK identified should also be propor-

tional to nFittest. The previous subsection however, showed that the mutation

score after 500 iterations was not significantly proportional to nFittest, implying

that neither will the number of HTK identified - this is the observed outcome.

Furthermore, the previous section indicated that, although not significant for all

programs, the mutation score achieved for an nFittest of 9 was always larger

than for an nFittest of 1. This results is also reflected in the percentage of

HTK killed, with all three programs killing more HTK mutants for an nFittest

of 9 than for 1. Similar to the effect on the mutation score however, this result

is only (just!) statistically significant for the CalDay and TriangleSort program

(indicated by the bold results in table 3.44). On this basis, a higher nFittest

would be preferential, although possibly offering little in regards HTK mutant

identification.

CHAPTER 6. PARAMETER ANALYSIS 182

Effect on the Number of Tests

Tests are added to the IIA/MT’s memory set if they kill a mutant not already

killed by the current memory set; no tests are ever removed. To affect the number

of tests then, a parameter would have to alter the ‘quality’ (measured by mutation

score) of the tests being added, e.g. to increase the set size, all tests would have

to kill only a few mutants each, requiring more tests to kill the same total number

of mutants. As shown by the results in figures 6.52-6.54, the nFittest parameter

does not do this. Instead, it appears that the program itself is a deciding factor

in the average mutation score of each memory test, with the hypothesis being

that higher complexity programs have larger memory sets with the average test

mutation score depending (inversely) on the number of mutants.

The results in figure 6.58 summarise the results for the other two programs

(see figures 3.108-3.110 in Appendix C.2.4). All three programs clearly show that

the number of tests in the IIA/MT’s memory set is unaffected by the value of

nFittest, and it is instead the programs themselves that result in different sized

test sets.

As an aside, the graph for DateRange, and to a lesser extent the one for

CalDay too (see figures 3.108 and 3.110 in Appendix C.2.4), indicate the same

initial quality, discussed in the mutRate subsection - an increase in mutation score

without any increase in the number of tests (indicated by the horizontal lines).

This happens for two reasons. Firstly, a higher nFittest typically presents a

larger increase in mutation score for the first few tests added (to the memory set).

Secondly, it is the number of tests needed to achieve at least a particular mutation

score, for all mutation scores achieved by all nFittest values that are plotted - i.e.

results are still plotted for low mutation scores even though the higher nFittest

valued experiments “skip” over them.

CHAPTER 6. PARAMETER ANALYSIS 183

TriangleSort: Varying nFittest

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

#
T

e
s
ts

1

3

5

7

9

Figure 6.58: Effect of varying nFittest on the mean number of tests needed to
achieve a specific mutation score for the TriangleSort program.

6.4.2 nWorst

The nWorst parameter is used solely in the final metadynamics phase, to remove

the nWorst individuals (tests) who have the lowest mutation score and replace

them with randomly generated individuals. Larger values of nWorst therefore

replace a larger number of poor individuals with completely new ones than lower

nWorst values. It is this metadynamics process that acts as a global search of the

shape-space, and should be encouraged (to a degree) in order to find new tests to

kill living mutants. Too much encouragement however (i.e. by replacing a large

proportion of the population with random ones), would be detrimental to the local

search - the best clones from one generation are kept for the next; replacing a large

proportion of the population with random ones may overwrite these descendants

(especially if they have a low affinity), destroying a possibly valuable search path;

this should be avoided. Because of this parameter’s influence on the number of

random tests introduced, it is to be expected that nWorst will affect the number

of mutant executions. Further impact is also expected on the mutation score per

CHAPTER 6. PARAMETER ANALYSIS 184

iteration and the number of HTK mutants identified (both metrics increasing as

nWorst does). No effect is expected on the test set size. These expectations will

be discussed more in the following subsections.

Effect on the Number of Mutant Executions

Each iteration, the metadynamics phase replaces the nWorst tests in the popula-

tion with randomly generated ones. This serves two purposes. Firstly, it enables

the global search for new tests that kill living mutants, allowing a multimodal

shape-space to be searched. Secondly, it helps prevent the search becoming iso-

lated in a local maxima - randomly introducing tests will encourage new areas of

the shape-space to be searched which may outperform this current area.

TriangleSort: Varying nWorst

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

3

5

7

9

Figure 6.59: Effect of varying nWorst on the mean number of executions to achieve
specific mutation scores for the TriangleSort program.

Figure 6.59 plots the mean number of mutants executed to achieve at least

the specified mutation scores for TriangleSort, and suggests that the number of

executions is roughly proportional to the value of nWorst. Given nWorst directly

CHAPTER 6. PARAMETER ANALYSIS 185

affects the number of new, randomly created tests, it is unsurprising that this rela-

tionship should exist. As the value of nWorst is increased towards the population

size, the amount of local searching would be reduced. Each generation’s pop-

ulation would effectively consist of larger numbers of randomly generated tests,

and so the algorithm would be limited to performing only a random search of

the shape-space. For the sake of improving the mutation score, this is something

that should be avoided, although for the low values of nWorst chosen for these

experiments, this is not an issue.

If, going the other direction, the value of nWorst was reduced to 0, then no

random tests would be introduced each iteration. No global search would be con-

ducted, and instead improvements in mutation score would rely on finding new

tests solely through the local search mechanisms instigated by cloning and muta-

tion (see section 3.3.3). The likelihood is an nWorst of 0 will restrict the mutation

score achievable within 500 iterations; an effect that can clearly been seen in the

DateRange and CalDay results, shown in figures 6.60 and 6.61 respectively. At

best (i.e. in all experiment runs), DateRange achieves a mutation score of 95.56%

(2 d.p.) for an nWorst of 0, compared with a full mutation score for the other

nWorst values. CalDay achieves, at best, a mutation score of 72.94% (2 d.p.) for

an nWorst of 0, compared with at least 97.48% (2 d.p.) for the other values.

Interestingly, this effect is not observed in TriangleSort, with all nWorst values

achieving a mean mutation score of 98.16% (2 d.p.). This implies that the ran-

dom introduction of new tests serves no effect in improving the mutation score,

but instead only increases the execution time of the algorithm (via increased mu-

tant executions), as demonstrated clearly in figure 6.59. The observed effect also

agrees with the results from nFittest, which suggested that the localised search

is sufficient for improving TriangleSort’s mutation score. The same hypothesis as

presented for nFittest could therefore be used to explain these results. The pro-

portion of subtle mutants (influenced by the program’s complexity and number of

mutants) determines the appropriate balance of localised to global searching. Pro-

grams with a high proportion of subtle mutants (i.e. high complexity, low number

CHAPTER 6. PARAMETER ANALYSIS 186

DateRange: Varying nWorst

0

500000

1000000

1500000

2000000

2500000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

3

5

7

9

Figure 6.60: Effect of varying nWorst on the mean number of executions to achieve
specific mutation scores for the DateRange program.

CalDay: Varying nWorst

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

3

5

7

9

Figure 6.61: Effect of varying nWorst on the mean number of executions to achieve
specific mutation scores for the CalDay program.

CHAPTER 6. PARAMETER ANALYSIS 187

of mutants) rely primarily on local searching; programs with a lower proportion

(i.e. low complexity or high number of mutants) require more global searching.

As nWorst affects the amount of global searching that occurs, this parameter

will have most influence on the lower proportioned programs. For these programs,

an nWorst of 0 will cause no global searching and will limit the mutation score

achieved. Increasing the value of nWorst, at least within the range tested for

these experiments, hints that for these programs a higher mutation score will be

obtained in fewer executions. This is to be expected as such programs rely on

global searching for finding tests to kill mutants, meaning that the more global

searching that occurs, the more likely the mutation score is to improve. This result

is not statistically significant however, with both CalDay and DateRange showing

oscillations in the ordering of the results (e.g. for DateRange, an nWorst of 7

executes more mutants than a value of 5, to achieve mutation scores greater than

98.89% (2 d.p.)), as well as each value’s results only differing by a relatively small

amount (e.g. CalDay’s differ by approximately 1 million executions, compared

with the 6 million required to achieve the highest mutation score).

The results from the higher proportioned TriangleSort suggest however, that a

proportional relationship exists. As such programs place little emphasis on global

searches, this result is also to be expected. Increasing nWorst does not improve

the amount of local searching that occurs (only the shape-space [see Section 3.3.1]

areas that are locally searched), and so will not improve the overall mutation

score. Instead, by increasing the number of new tests added to each generation,

increasing nWorst will only increase the number of mutant executions.

Interestingly, all the results obtained show that the mutation score achieved

with an nWorst of 0 is proportional to the McCabe complexity of the program.

CalDay (McCabe complexity 4) achieves a mutation score of at best, 72.94% (2

d.p.), DateRange (McCabe complexity 6) achieves 95.56% (2 d.p.), and Triangle-

Sort (McCabe complexity 11) obtains 98.16% (2 d.p.). Extrapolating a conclusion

from these results would be dangerous however, where instead more research is

required with additional programs.

CHAPTER 6. PARAMETER ANALYSIS 188

On the basis of the hypothesis suggested in the nFittest section, the appro-

priate value of nWorst seemingly depends on the program being tested. Programs

with a low proportion of subtle mutants (low complexity or high number of mu-

tants) hint that a higher nWorst value is able to achieve higher mutation scores in

fewer executions. This result is not conclusive however, with more programs and

a larger range of nWorst values requiring testing. On the other hand, programs

with a high proportion of subtle mutants (high complexity and a low number of

mutants) hint that lower nWorst values can achieve the same mutation scores as

higher values, except that they execute fewer mutants. Given the uncertainty

involved in these results however, the suggested parameter value is one greater

than 0, with the default used in these experiments (5) seeming reasonable.

Effect on the Mutation Score

Increasing nWorst increases the number of new, random tests introduced each

iteration. For programs with no strong reliance on localised searching, the more of

these tests that are executed every iteration, the greater the chance of finding a test

to kill living mutants, therefore the mutation score achieved per iteration should be

proportional to nWorst. This effect can clearly be seen for the DateRange program

in figure 6.62, and the CalDay program in figure 3.116 (Appendix C.2.6). Table

6.26 presents the mean mutation scores achieved after 500 iterations for each of

the nWorst values, and an indication of which nWorst values result in significantly

different scores (by way of Scheffé tests; significant results are in bold).

This effect is only common for two out of the three programs tested however.

Figure 6.63 indicates the results for the TriangleSort program. This clearly shows

that an nWorst of 0 achieves a high mutation score quicker than the other nWorst

values, although overall the differences (between each value) are relatively small

when compared against those for the other two programs. Having previously

identified that the introduction of random tests has little effect on the number

of mutant executions for this program however, it is no surprise that nWorst has

little effect on the mutation score per iteration.

CHAPTER 6. PARAMETER ANALYSIS 189

nWorst DR TRI CD
0 93.17% ± 2.76% 98.16% ± 0.00% 72.94% ± 0.00%
1 98.70% ± 0.59% 98.14% ± 0.07% 93.00% ± 1.92%
3 99.50% ± 0.63% 98.16% ± 0.00% 95.47% ± 1.85%
5 99.78% ± 0.45% 98.15% ± 0.05% 96.18% ± 1.84%
7 99.85% ± 0.38% 98.15% ± 0.05% 96.91% ± 1.53%
9 99.93% ± 0.28% 98.15% ± 0.05% 96.78% ± 1.62%

ANOVA
fobt 144.42 0.70 1186.46
fcrit 2.27 2.26 2.26

Scheffé
cobt

0-1 17.69 - 52.09
0-3 20.40 - 58.06
0-5 21.12 - 59.88
0-7 21.36 - 61.28
0-9 21.60 - 60.44
1-3 2.54 - 6.32
1-5 3.41 - 8.13
1-7 3.64 - 9.93
1-9 3.88 - 9.53
3-5 0.89 - 1.80
3-7 1.13 - 3.63
3-9 1.37 - 3.28
5-7 0.23 - 1.85
5-9 0.47 - 1.51
7-9 0.23 - 0.32

ccrit 3.37 - 3.36

Table 6.26: The mean mutation scores (and standard deviation) achieved after
500 iterations for each of the six nWorst values: 0, 1, 3, 5, 7, 9. ANOVA and
Scheffé calculations show the which pairs of nWorst values (in bold) result in
significantly different mean mutation scores. All results are to 2 decimal places.

CHAPTER 6. PARAMETER ANALYSIS 190

DateRange: Varying nWorst

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

3

5

7

9

Figure 6.62: Effect of varying nWorst on the mean mutation score per iteration
for the DateRange program.

As suggested in the previous subsection, an appropriate value for nWorst would

be one greater than 0. In terms of the mutation score achieved per iteration, it

would seem that for programs focussed on global searches, the mutation score per

iteration is proportional to nWorst, and so a higher value should be favoured. For

programs focussed on local searches (such as TriangleSort), nWorst appears to

have little impact. Overall then, a higher nWorst value should be favoured. As

previously mentioned however, increasing nWorst towards the population size will

reduce the amount of local searching occurring. Excessively high nWorst values

should therefore be avoided.

Effect on the Number of HTK identified

The results in figure 6.64 indicate, for CalDay and DateRange, the expected rela-

tionship between nWorst and the number of HTK identified - the number of HTK

mutants killed is proportional to nWorst. Table 3.45 in Appendix C.2.7 (page

281) shows that the differences between nWorst values of 0, 1 and the others are

CHAPTER 6. PARAMETER ANALYSIS 191

TriangleSort: Varying nWorst

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

3

5

7

9

Figure 6.63: Effect of varying nWorst on the mean mutation score per iteration
for the TriangleSort program.

significant (at the 0.05 level), giving support to this expected relationship. Fig-

ure 6.64 however, shows that this relationship does not hold for the TriangleSort

program (with all values achieving the same result).

Given the relationship between mutation score and the number of HTK mu-

tants identified (more HTK have to be killed to obtain a higher mutation score),

it is not surprising that CalDay and DateRange have these results - in both cases

the mutation score per iteration is proportional to nWorst. Neither are the re-

sults from TriangleSort unexpected; TriangleSort achieves approximately the same

mutation score after 500 iterations, regardless of the nWorst value, and so, the

number of HTK identified is also equal, as indicated by the relationship between

mutation score and HTK identified.

Essentially then, according to the hypothesis from nFittest, programs requir-

ing more global searches will achieve higher mutation scores with higher nWorst

values, and so kill more HTK mutants. Programs focussed on local searches are

unaffected by nWorst (in terms of mutation score achieved) and so the number of

CHAPTER 6. PARAMETER ANALYSIS 192

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 3 5 7 9

nWorst

%
H

T
K

 I
d

e
n

ti
fi

e
d

CD

DR

TRI

Figure 6.64: Effect of varying nWorst on the mean number of HTK mutants
identified for all three programs after 500 iterations.

HTK is also unaffected. An nWorst greater than 0 is therefore generally preferred,

with the default used in these experiments (5) being adequate.

Effect on the Number of Tests

Figures 3.117-3.119 in Appendix C.2.8 clearly indicate no effect on the test set

size in relation to a varying nWorst parameter. As previously mentioned in the

nFittest subsection, the number of tests in the IIA/MT’s memory set will only be

affected if the ‘quality’ of the tests is reduced. The nWorst parameter only affects

the number of randomly generated individuals in the next iteration’s population.

It serves purely as a method to diversify the search results. Consequently, nWorst

has no effect on the IIA/MT’s memory set size.

6.4.3 cloneRate

The cloneRate parameter is used in the cloning phase to determine the number

of clones produced per parent (with a minimum of 1 clone). It also indicates the

maximum number of clones produced when the parent has an affinity of 1, e.g.

the default cloneRate of 10 will produce 10 clones for any parent test with a full

mutation score. Obviously then, the mutation score of the parent tests has an

important influence on the number of clones, however this is not a user-definable

CHAPTER 6. PARAMETER ANALYSIS 193

parameter8.

The purpose of the clones is to produce a local search of the shape-space to try

to improve upon the parent tests. More clones (i.e. tests) mean a greater chance

of improving the overall mutation score, however they will also increase the num-

ber of mutant executions that occur. The cloneRate parameter could therefore

be expected to increase the number of mutant executions to achieve a certain mu-

tation score as it increases, although as nFittest highlighted, the average affinity

(mutation score) of the tests seems to be an important factor in determining pa-

rameter effects. This is also true for cloneRate. Because of this, it is expected

that the specified variations to this parameter will not significantly impact on the

number of mutant executions for programs that generate low affinity tests, how-

ever they will cause a larger proportional difference for programs creating higher

affinity tests. For similar reasons, it is expected higher affinity tests will also cause

the mutation score per iteration to be proportional to cloneRate, as well as the

number of HTK mutants identified. Little effect is expected on the test set size.

Further reasoning will be given in the following sections.

Effect on the Number of Mutant Executions

The number of clones produced for any given test is calculated by: #clones per test =

test mutation score ∗ cloneRate. Assuming a constant mutation score then, the

number of clones generated will be proportional to the cloneRate. However, as

theorised for nFittest, the program being tested affects the average mutation

score of its tests. Programs with a low proportion of subtle mutants seem to gen-

erate tests with higher mutation scores, meaning the number of clones generated

per test will be larger (for any given cloneRate). Programs with higher propor-

tions of subtle mutants generate tests with lower mutation scores, resulting in a

smaller number of clones per test.

8The results of section 6.4.1 and in particular figures 6.52-6.54 suggest that the program does
influence the ability of tests generated. Some programs create low mutation scoring tests that
combine to produce a high overall mutation score; other programs create high scoring tests. As
this affects the number of clones generated, the program itself should be taken into consideration.

CHAPTER 6. PARAMETER ANALYSIS 194

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 5 10 15 20

cloneRate

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 6.65: Effect of varying cloneRate on the average memory set size and
memory test affinity for each mutation operator, for the DateRange program.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 5 10 15 20

cloneRate

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 6.66: Effect of varying cloneRate on the average memory set size and
memory test affinity for each mutation operator, for the TriangleSort program.

CHAPTER 6. PARAMETER ANALYSIS 195

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 5 10 15 20

cloneRate

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 6.67: Effect of varying cloneRate on the average memory set size and
memory test affinity for each mutation operator, for the CalDay program.

Figures 6.65-6.67 indicate the average memory set size after 500 iterations,

along with the average test affinity for each mutation operator, for the three pro-

grams tested. The results are similar to nFittest’s, with TriangleSort generating

a larger number of lower affinity tests compared to the other two programs.

The DateRange program (figure 6.68), and to a lesser extent the CalDay pro-

gram (figure 3.122 in Appendix C.2.9), indicate the expected results from varying

the cloneRate parameter, for programs with larger average test mutation scores.

Both programs imply that the number of mutant executions to achieve a high

mutation score is proportional to the cloneRate. Given they both generate tests

with larger average mutation scores, the number of clones produced per test will

also be larger, causing the difference in mutant executions to be bigger as the

cloneRate increases.

TriangleSort (figure 3.121, Appendix C.2.9) also hints at this relationship, with

the mean number of mutants increasing very slightly as cloneRate does. However

the differences are small and so its results are not significant (at the 0.05 level).

This is expected as this program generates tests with a lower average mutation

score than the others, meaning fewer clones are created per test, and so fewer

mutant executions occur. Increasing the cloneRate will increase the number of

clones, thereby retaining the proportional relationship.

CHAPTER 6. PARAMETER ANALYSIS 196

DateRange: Varying cloneRate

0

500000

1000000

1500000

2000000

2500000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

5

10

15

20

Figure 6.68: Effect of varying the cloneRate on the mean number of executions
to achieve specific mutation scores for the DateRange program.

The reasoning for why different programs generate tests with different average

affinities is hypothesised in the nFittest section. Ultimately though, all programs

do well with a low cloneRate. Observant readers will notice that a cloneRate of

0 still achieves a high mutation score, even for the TriangleSort program (which

is supposedly more reliant on local searching). A cloneRate of 0 would imply

no clones being created for any test; this is a little misleading however, as the

IIA/MT in fact generates a minimum of 1 clone per test (see section 4.6.1). These

results suggest that generating a single clone per test is enough, implying that the

cloneRate variable is of little use, at least in terms of the number of mutant exe-

cutions. Consider a single iteration; nFittest individuals are selected and cloned.

With a cloneRate of 0, there will be nFittest clones produced (i.e. 1 clone per

parent), with the most useful (i.e. tests which kill at least one mutant not already

killed by the memory set) added to the memory set. Higher cloneRate values

will generate more clones, causing more divergence in the localised searching and

CHAPTER 6. PARAMETER ANALYSIS 197

requiring more mutant executions. Lower cloneRate values however, whilst caus-

ing less divergence and fewer mutant executions, appear capable of achieving the

same mutation scores. A possible explanation may be that because the memory

set retains useful tests, the portion of the shape-space needing to be searched is

effectively reduced with each test added. Consequently, as the iterations progress,

less divergence of the localised search is needed. In contrast, in early iterations

weaker mutants are living which are killed by easier-to-find tests - again less di-

vergence in the localised search path is needed. Both stages can be achieved with

fewer clones, saving on mutant executions. The IIA/MT could therefore theoreti-

cally be simplified to only generating one clone per parent test, which would then

be independent of the proportion of subtle mutants the program generates.

Effect on the Mutation Score

Figure 6.69 shows that cloneRate has little effect on the mean mutation score

per iteration for the DateRange program. This result is common to the other two

programs except CalDay hints at a proportional relationship (see figure 3.128 in

Appendix C.2.10) with a slightly greater variation between the various cloneRate

values.

These results can be explained by considering the average test affinity gener-

ated by each program, shown in figure 6.65-6.67. TriangleSort creates low affinity

tests, each of which ultimately produce a low number of clones, regardless of the

cloneRate. DateRange and CalDay however, generate higher affinity tests caus-

ing a larger increase in the number of clones produced as the cloneRate value

increases. More clones per iteration would theoretically improve the chance of

killing new mutants, and so the mutation score achieved per iteration should be

proportional to the cloneRate value, with the results more obvious in higher

affinity tests (e.g. CalDay). The reason for the difference in average test affinity

is described in the nFittest section.

Two of the three programs present no obvious choice for a beneficial cloneRate

value, out of the range of values chosen. The CalDay program however hints that

CHAPTER 6. PARAMETER ANALYSIS 198

DateRange: Varying cloneRate

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

5

10

15

20

Figure 6.69: Effect of varying the cloneRate on the mean mutation scores per
iteration for the DateRange program.

a higher cloneRate generates a higher mutation score per iteration. Further

research using larger cloneRate values may confirm the proportional relationship

between this parameter and the mutation score per iteration. Given these results,

especially that a high cloneRate makes little difference for two programs whilst

improving the third, a high cloneRate parameter is preferential.

Effect on the Number of HTK identified

Figure 6.70 suggests that the cloneRate parameter has no significant effect on

the number of hard-to-kill mutants identified after 500 iterations. This result is

not unsurprising given the fact that cloneRate has little impact on the mutation

score achieved per iteration (at least within the range of values tested in this

research).

Table 3.46 in Appendix C.2.11 (page 290) indicate the results for each pa-

rameter value, along with the ANOVA calculations. Apart from the CalDay

program, which demonstrates a minor significant difference in the HTK count

CHAPTER 6. PARAMETER ANALYSIS 199

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 5 10 15 20

cloneRate

%
H

T
K

 I
d

e
n

ti
fi

e
d

CD

DR

TRI

Figure 6.70: Effect of varying cloneRate on the mean number of HTK mutants
identified for all three programs.

between cloneRates of 0 and 15, all other differences are not significant (i.e. they

probably occur by natural variation). As far as identifying hard-to-kill mutants is

concerned, the value of the cloneRate parameter is not important, at least within

the parameter value range tested.

Effect on the Number of Tests

Figures 3.129-3.131 in Appendix C.2.12 (pages 291-292) show that varying the

cloneRate has no effect on the number of tests in the IIA/MT’s memory set.

This is to be expected, as this parameter does not affect the ‘quality’ of the

tests, just the number of clones produced. Incidently, the graphs for CalDay and

DateRange also exhibit the same limitation as discussed in section 6.4.1 (increase

in mutation score without any increase in the number of tests).

6.5 Summary

This chapter is aimed at discerning useful parameter settings to improve the over-

all effectiveness of both the Genetic Algorithm and the Immune Inspired Algo-

rithm. Ultimately, such improvements are measured by increased mutation scores

and reduced number of mutant executions (i.e. reduced execution time). To

CHAPTER 6. PARAMETER ANALYSIS 200

determine the significance of these results, at least 30 runs of each variable set-

ting were performed. Only one variable was modified from the default values in

any single experiment. The following summaries first describe the user-definable

parameters, followed by the primary hypotheses relating to mutation score and

mutant executions for each, before summarising the results.

6.5.1 Genetic Algorithm for Mutation Testing

The GA/MT has three user-definable parameters:

indSize This parameter defines the number of tests within each GA/MT indi-

vidual. To maintain a fair comparison with the IIA/MT and other GA/MT

indSizes, the total number of tests within the population is kept constant.

Modifying the individual size means the number of individuals within the

main population must also change.

mutRate This parameter defines the probability that a test input will be mutated

(section 3.2.3), and is also used to control the amount of mutation that

occurs (Appendix 4.3.2).

crossRate This parameter defines the probability of recombination occuring (sec-

tion 3.2.3), and is used to identify the point at which crossover shall occur.

indSize

H 1 The achieved mutation score is proportional to indSize.

H 2 The number of mutant executions to achieve a specific mutation score is

inversely proportional to indSize.

Using a Genetic Algorithm for mutation testing has a drawback in that the num-

ber of tests needed to achieve a full, or at least a high, mutation score needs to

be known a priori to testing. Too many tests and there will be more executions

than needed, with no apparent improvement in mutation score. Too few, and

CHAPTER 6. PARAMETER ANALYSIS 201

a high mutation score will not be possible. Unfortunately the appropriate num-

ber is dependent on the program being tested and is difficult to ascertain before

testing. Results from the indSize analysis however, hint at a useful metric for

determining an individual’s size - the minimum size is approximately equal to the

McCabe complexity of the program. Given this complexity measure is indicative

of the number of paths through a program, this observation implies that there

is a relationship between these paths and the mutations applied to a program

- a result possibly having connotations with the constraint-based testing (CBT)

approach discussed in Section 2.5.1. In particular, CBT uses three conditions to

develop tests to identify a mutant: a test must cause the mutated statement to be

reached, generate an incorrect state immediately after execution, and propagate

this through to a failure upon termination. The first and last of these conditions

relates strongly to the path through a program.

The observed results suggest that the minimum individual size (threshold),

identified by the complexity, has an impact on the number of mutant executions.

For indSizes less than the threshold, the achievable mutation score appears re-

stricted. If it is possible to achieve higher mutation scores, a considerably larger

number of mutant executions would be needed. On the other hand, indSizes

larger than the threshold have little difference on the achieved mutation score or

the number of executions required to ascertain this affinity. From these results

however, it does not appear that the McCabe complexity is an exact threshold

boundary, and so it should be regarded as the minimum GA/MT individual size

needed to obtain reasonably high mutation scores.

mutRate

H 1 The achieved mutation score is inversely proportional to mutRate.

H 2 The number of mutant executions to achieve a specific mutation score is

proportional to mutRate.

CHAPTER 6. PARAMETER ANALYSIS 202

Mutating tests creates new tests which need to be executed against all mutants,

therefore the number of executions needed to achieve high mutation scores will

increase as the mutRate does. This is worsened as higher rates imply more change

to each individual which seems to restrict the mutation scores achieved. Lower

mutation rates are therefore favourable and present a more gradual growth in

mutation score (over the 500 iterations). If the mutRate is too small however,

not enough new tests are created to encourage a high mutation score within 500

iterations. A value of 0.02 is recommended based on the results observed.

crossRate

H 1 The achieved mutation score is not affected by crossRate.

H 2 The number of mutant executions to achieve a specific mutation score is not

affected by crossRate.

Finally, from the obtained results it appears that the crossover rate has little

effect on either the number of mutant executions or the mutation scores achieved.

This is to be expected. It is the combination of tests within a GA/MT individual

that is important - what may be useful in one individual, may not in another,

irrespective of whether it has a high mutation score or not. Furthermore, tests

are not ordered within an individual. For these two reasons, swapping larger tail

portions is unlikely to cause any benefit over smaller portions. Crossover may

have more of an impact if tests were ordered (possibly by mutation score) within

each individual; further experiments would be required to verify this though.

Ultimately, on the basis of these results, single-point crossover should be removed

from the algorithm.

6.5.2 Immune Inspired Algorithm for Mutation Testing

The IIA/MT has three user-definable parameters:

nFittest This parameter has two purposes: it defines the number of tests selected

to undergo the clonal selection process; and it defines the number of tests

CHAPTER 6. PARAMETER ANALYSIS 203

in the main population that are replaced by the highest mutation scoring

cloned tests.

cloneRate This parameter determines the number of clones produced from a

parent test using the following function:

#clones = maximum





parent affinity ∗ cloneRate
1

(6.4)

nWorst This parameter is used in the metadynamics phase to replace the nWorst

lowest mutation scoring tests with randomly generated ones.

nFittest

H 1 The achieved mutation score is proportional to nFittest.

H 2 The number of mutant executions to achieve a specific mutation score is

proportional to nFittest.

Foremost, the results from nFittest suggest that the appropriate value of nFittest

(for reducing the number of mutant executions) is inversely proportional to the

average affinity (mutation score) of the memory tests. Low affinity tests warrant

higher nFittest values; high affinity tests prompt for lower nFittest values.

The average memory test affinity is however, dependent on the program being

tested. More interestingly, the results suggest that the average memory test’s

affinity is dependent on the program’s complexity and the number of mutants it

generates. TriangleSort implies that programs with high complexities and low

numbers of generated mutants produce memory tests with relatively lower muta-

tion scores than either lower complexity programs (e.g. CalDay or DateRange)

or programs with high complexities and large numbers of generated mutants (e.g.

Select).

A possible explanation for this difference is theorised as the proportion of

“subtle” mutants generated, where a “subtle” mutant is one which can be identi-

fied by a small change to a test that identifies another mutant. Low complexity

CHAPTER 6. PARAMETER ANALYSIS 204

programs generate few “subtle” mutants to start with; high complexity programs

generate relatively more, except the proportion of these (to “non-subtle” mutants)

is dependent on the population size. These kind of mutants are likely to require

specialised tests to identify them, which are unlikely to kill a large number of

mutants. Therefore, the higher the proportion of “subtle” mutants, the lower the

average test affinity will probably be. Unfortunately (and rather ironically), due to

time constraints no results for nFittest’s effect on the Select program have been

obtained. If the hypothesised explanation is true however, it would be expected

that because of Selects low proportion of subtle mutants, nFittest would have a

similar effect on the number of mutant executions as for CalDay and DateRange

- i.e. the number of executions is proportional to nFittest. Considering only

the results obtained though (i.e. ignoring the hypothesis generated), a smaller

nFittest value is recommended - e.g. 1.

This result is slightly contradicted by the effect on the mutation score per

iteration however, which suggests that a higher parameter value offers an improved

mutation score per iteration. This effect is mainly relevant to approximately the

first 50 iterations; after 500 iterations, the improvement in mutation score from

using a higher nFittest is barely significant (at the 0.05 level). Ultimately then,

an nFittest of 1 would be acceptable.

cloneRate

H 1 The achieved mutation score is proportional to cloneRate.

H 2 The number of mutant executions to achieve a specific mutation score is

proportional to cloneRate.

The ‘memory test affinity’ explanation derived from nFittest can also be used

to explain the results from the cloneRate parameter. In general, the number

of mutant executions is proportional to cloneRate, however the difference in

numbers between the various parameter values is seemingly dependent on the

average test affinity. Lower affinity (mutation scoring) tests generate fewer clones

CHAPTER 6. PARAMETER ANALYSIS 205

(see equation 6.4, page 203) and so the small changes in the tested cloneRate

values will not produce such a large difference in the number of executions. Higher

affinity tests however, generate many more clones, causing a larger difference

between the various cloneRates. On the basis of these results, a low cloneRate

would be preferable, e.g. 0 or 1. Interestingly a value of 0 achieves as high a

mutation score as the other values, indicating that a single clone (per parent test)

is adequate for improving the mutation score, and that additional clones have no

effect. The cloneRate parameter could therefore be removed, and replaced with

a single clone generation each instance instead.

Removing cloneRate is not necessarily suggested when examining the muta-

tion score achieved per iteration however. Although the results for DateRange

and TriangleSort show very little difference between the various cloneRate val-

ues, CalDay hints at a proportional relationship. This would suggest that a high

cloneRate is best. The reason for the observed results can once again be explained

by considering the average test affinity - higher affinity tests produce more clones

which increase the chance of improving the mutation score. Despite these results

favouring a higher cloneRate however, simplifying the algorithm by removing

variable rate cloning is appealing, and therefore recommended.

nWorst

H 1 The achieved mutation score is proportional to nWorst.

H 2 The number of mutant executions to achieve a specific mutation score is

proportional to nWorst.

For two of the programs tested (CalDay and DateRange), an nWorst of zero re-

stricts the mutation score achieved (at least within the 500 iterations). Using

nWorst values greater than 0 allows these programs to achieve higher mutation

scores, although there does not appear to be a consistent relationship between

nWorst and the number of executions. Higher nWorst values do achieve higher

mutation scores per iteration however. TriangleSort is different from CalDay and

CHAPTER 6. PARAMETER ANALYSIS 206

DateRange in that it does not restrict the mutation score with an nWorst of zero,

and instead hints at a proportional relationship between nWorst and the number

of executions. Furthermore, nWorst does not seem to affect the mutation score

per iteration, suggesting that global searching (produced by the introduction of

new randomly generated tests) is not important to this program - something that

is also hinted at by the nFittest and cloneRate parameters.

Considering the proposed affinity explanation (see nFittest above), these re-

sults would suggest that the proportion of “subtle” mutants is an indicator of

the balance between localised and global searching. High proportioned programs

need more subtle changes to tests to identify the “subtle” mutants - more localised

searching. Lower proportioned programs need less subtle test changes - less lo-

calised searching. The most appropriate nWorst value will therefore depend on

the complexity and number of mutant programs generated, in accordance with

the theory explained in section 6.4.1. In order not to restrict the mutation score

however, an nWorst greater than 0 should be used, with the default of 5 seeming

appropriate.

Chapter 7

Conclusion

7.1 Introduction

Software needs testing. New bugs must be prevented from infecting code, and

current infections must be eradicated. To this end, this thesis turned towards

biology, in particular the human immune system, as inspiration for a novel ap-

proach to vaccinating software against faults. The vaccine itself consists of a

number of tests, improved over numerous iterations, with its ability measured by

the mutation testing adequacy criteria. This system has been compared against

a traditional evolutionary approach - an elitist Genetic Algorithm.

7.2 Revisiting the Problem Domain

Mutation testing suffers from a number of problems, as described in chapter 2, to

which a number of solutions have been developed. These problems can broadly

be classified into two groups: computational expense; and lack of automation.

Expense occurs primarily because of the need to execute vast numbers of mutated

programs in order to determine the adequacy of a test set. Automation difficul-

ties on the other hand, increase the input necessary by a tester. Both of these

difficulties ultimately prevent mutation testing being adopted into mainstream in-

dustry, regardless of it being widely accepted as a powerful unit testing technique

207

CHAPTER 7. CONCLUSION 208

[48, 82, 91, 103].

Current solutions to the expense problems focus on three areas: do fewer; do

faster; and do smarter. Do fewer techniques reduce the actual number of variant

program executions that occur (e.g. by selecting a random sample of variants). Do

faster techniques focus on quicker execution of variant programs (usually through

compilation rather than interpretation). And do smarter techniques typically

use knowledge about mutation testing (e.g. the difference between a variant and

the Program-Under-Test [PUT]) to improve performance. All these techniques

operate with good results, often achieving mutation scores in the high 90’s (per-

centage), combined with appreciable savings in the number of variant program

executions (often saving more than 50% of the variant executions). As a re-

minder, the mutation score quantifies the correctness of the PUT as a percentage

of the variant programs that are proven incorrect.

Despite these achievements however, mutation testing still suffers from diffi-

culties in automation, primarily in three areas: determining the correctness of an

output; detecting equivalent mutant programs; and, generating tests. The cor-

rectness of a program’s output in response to some input is determined by an

‘oracle’ (e.g. a human, or another piece of software), however defining automated

versions is not simple. This research does not concern itself with oracles though,

and instead assumes that appropriate ones already exist. Testing practitioners

should be aware of the limitation this imposes.

Equivalent mutant programs are also problematic as they exhibit the same

output as the original program for every input; they are equivalent in semantics

to the original program, and so serve only to unnecessarily reduce confidence in the

correctness of a program - are the remaining living mutants equivalent, or can they

be identified by some, yet-to-be-found, test? Unfortunately, determining equiva-

lence is undecidable [17], although a number of heuristics do exist [39, 89, 83].

This research manually identifies equivalent mutants before testing commences,

bypassing this issue.

Generating tests poses the final automation difficulty, and is the subject of this

CHAPTER 7. CONCLUSION 209

thesis. Whilst randomly generating tests may identify some mutant programs as

incorrect, it may not quickly and easily generate a high mutation score. Instead,

a more targeted search for tests is required. Current solutions can be split into

traditional and evolutionary approaches, with the former typically using knowl-

edge of mutation testing (i.e. that a variant program differs from the original by

only one line) to generate algebraic constraints which are solved to generate tests

(constraint based testing [CBT]) [80]. This technique offers promising results,

identifying around 97% of non-equivalent variants [28].

An alternative to a CBT approach are evolutionary techniques that draw inspi-

ration from nature. These have been applied to test generation, viewing the task

as an optimisation problem, although many approaches have used other adequacy

metrics besides mutation testing to determine a test’s ability. In particular how-

ever, Genetic Algorithms (GAs) have been used for mutation testing, generating

test sets with good results (> 90% mutation scores). More recently, Bacteriologi-

cal Algorithms (BAs), a subtle variation on GAs, have been applied to mutation

testing with apparently better results (see the Evolutionary Techniques subsection

in section 2.5.1) [7].

In terms of algorithm design, BAs form a bridge between GAs and the Immune

Inspired Algorithm (IIA) developed for this research. GAs evolve a population

of individuals (each consisting of multiple tests) using processes of crossover and

mutation (both at static rates), with the best individual in any generation being

the test set returned to the tester. BAs however, reduce each GA individual to

a single test, evolve these through mutation alone (again with a static rate), and

store the useful tests (as long as they exceed a threshold) in a memory set. The

IIA/MT approach works in a similar fashion to the BA, except that it does not

impose a threshold for introduction to the memory set, and it performs affinity (i.e.

mutation score) proportional cloning and mutation. The IIA/MT’s enhancements

should encourage a higher overall mutation score; tests are not being restricted

(and therefore lost) from the memory set, and the test generation is being focussed

depending on the ability of the previous generation (as opposed to receiving the

CHAPTER 7. CONCLUSION 210

same amount of mutation regardless). However, due to time constraints and the

commonality of GAs as an evolutionary approach, BAs have not been used as a

comparison algorithm for this research - only GAs.

7.3 Evolutionary Approaches

The overarching hypothesis of this research is:

“An Immune Inspired Algorithm is consistently, at least as effective as a Genetic

Algorithm for evolving test data through mutation testing.”

This led to a number of further hypotheses, described in chapter 5, based on

the notion of effectiveness. Effectiveness is determined to relate to three areas (in

order of importance): an improved mutation score in (possibly) less time; finding

tests for hard-to-kill mutants; and, generating a smaller sized test set. Consistency

is defined as: repeatable results over multiple runs of the same experiment; and

similar results through using different programs (see section 4 for a discussion on

these explanations).

The results in chapter 5 conclude that the IIA/MT consistently presents a more

effective approach to generating tests than the GA/MT approach. Importantly,

the IIA/MT demonstrates the ability to consistently generate a higher mutation

score in significantly fewer mutant program executions (at the 0.05 level). As the

number of mutant executions is a direct measure of the overall execution time, this

result is beneficial for encouraging mutation testing to be adopted by industry.

But why should the IIA/MT outperform the GA/MT? Foremost, and probably

the largest contributor to the improved mutation score is the memory set capa-

bility of the IIA/MT. This in itself provides two important features missing from

the GA/MT approach: the lack of a size restriction on the number of tests; and,

no modification of good, useful tests. The former allows (‘necessary’) tests which

may only kill a single mutant program to enter the memory set, thereby increasing

the overall memory set mutation score with a poor scoring test. Because of its

CHAPTER 7. CONCLUSION 211

size restriction however, the GA/MT has no room for such low scoring tests. Each

individual is being optimised to have the highest mutation score possible, and so

the GA/MT favours high scoring tests instead. If it is assumed that the indi-

vidual size is large enough to obtain a full mutation score however, the GA/MT

must then modify a worthless test (one that does not identify any unidentified

mutant program) into a necessary test, without modifying any of the other useful

tests. With no bias on the mutation and crossover mechanisms, and no memory

set capable of retaining useful tests in this manner, the GA/MT has no way to

ensure that this happens. Useful tests could, and indeed do, get modified. Even if

the necessary test is generated, if useful tests are modified so that the individual’s

overall mutation score is reduced below the best score (for that generation), then

the population as a whole may not capitalise on the extra knowledge gained from

the necessary test. In essence, the GA/MT is not designed to make use of low

mutation scoring tests, and instead places greater focus on generating a specific

sized mutation adequate test set.

Besides achieving a higher mutation score though, the IIA/MT typically ex-

ecutes significantly fewer mutants (in cases when it does not, it still achieves a

higher mutation score). This is, in part, encouraged by the memory set which

stops all useful tests from being lost (and having to be regenerated), allowing the

IIA/MT to execute fewer mutant programs to obtain the same mutation score

as a GA/MT. However, attention must not be drawn away from the processes

used by the IIA/MT to adapt its population; these are advantageous too. In

particular, the IIA/MT allows (to a degree), the selection of which tests are mu-

tated. A number (nFittest) of the highest scoring tests are taken from the main

population, and the same number are randomly taken from the memory set -

this new set represents useful tests, of which half undergo affinity (i.e. mutation

score) proportional cloning and mutation. By focussing cloning and mutation on

these useful tests, combined with the memory set, allows the IIA/MT to perform

a local search around key input domains (i.e. input values where subtle varia-

tions cause the identification of further mutant programs). In addition to this,

CHAPTER 7. CONCLUSION 212

the IIA/MT also introduces a number (nWorst) of new, randomly generated tests

each iteration. These serve to globally search out new areas on the input domain

for useful tests, performing a complementary search to that provided by cloning

and mutation.

In comparison, the GA/MT also performs both the global and localised search-

ing, except that these occur through a single process - mutation. This happens at

a predefined, fixed rate (mutRate), that defines how much mutation an individual

suffers, as well as how much each test changes. A problem with having a static

rate is that it offers no variation in searching depending on how the population

is doing. If the test population is poor (i.e. has a low mutation score), then it is

likely that more global searching is required to find areas of interest in the input

domain - i.e. a higher mutation rate is required. However, if the test population

is strong, then it is likely that more localised searching is required to improve the

mutation score further - a lower mutation rate is needed. Having only a single

process, there is a fine trade off between the searching trends (i.e. global or local).

Too much emphasis in either direction and the overall mutation score is reduced.

Returning to the IIA/MT’s increased effectiveness over the GA/MT, the re-

sults in chapter 5 also demonstrate that the IIA/MT is capable of identifying a

larger number of hard-to-kill mutants. Given that the IIA/MT generates a test

set with a higher mutation score than the GA/MT, and that in order to do this

requires identifying more HTK mutants, this result is unsurprising1.

On the basis of this comparative study, the evidence suggest that the IIA/MT

approach is more effective than the GA/MT. As suggested, this is more than likely

due to the introduction of the memory set, and the benefits this enables. That

said, the processes of cloning and mutation also play important roles, the extents

of which can be hinted at through studying how the parameter values affect the

algorithm’s capabilities.

1As an aside, it should be noted that hard-to-kill mutants were manually identified for this
research, and as such represent a minimum number of HTK mutants. There could be more, but
it is expected that a similar relationship would exist, with the IIA/MT identifying more.

CHAPTER 7. CONCLUSION 213

7.3.1 Parameter Values

Each algorithm has a number of different parameters which the user can adjust.

Comparisons between the two algorithms were made using particular parameter

values as mentioned in chapter 5. These were not optimised for either algorithm

however, and instead were set to values that were thought to reduce the number of

mutant executions whilst still achieving high mutation scores. To determine the

appropriateness of these values, chapter 6 performed a basic analysis on different

parameter settings for each algorithm, in order to determine their effect.

The results from the GA/MT experiments hint that appropriate parameter

values are dependent on the PUT. This is to be somewhat expected if one considers

that the program itself dictates what input domains will be useful for identifying

mutants. In particular this is important for the individual size, which seems to

bear a relation to the program’s complexity; it is hypothesised that the program’s

complexity is an approximate measure of the minimum number of tests needed

to achieve a high mutation score. Further experiments are required to test this

theory. Based on the results obtained, and primarily focussing on the number

of mutant program executions, the following suggestions are made for GA/MT

approaches:

indSize

• Use an individual size larger than the McCabe complexity of the program

being tested.

mutRate

• Use a mutation rate of 0.02.

crossRate

• Remove the crossover process altogether.

Results for the IIA/MT approach also suggest that the PUT plays a critical

CHAPTER 7. CONCLUSION 214

role in determining the appropriate parameter settings. Rather more interestingly

though, there is evidence to suggest a correlation between the average memory

test mutation scores and the parameter values. It is hypothesised that the average

memory test mutation scores are related both to the program’s complexity and the

number of mutants it generated. Further experimentation is needed to determine

if this hypothesis is indeed true, or just a peculiarity of the three programs tested.

From the results observed however, and again focussing on mutant executions,

the following suggestions are made for IIA/MT approaches:

nFittest

Programs with:-

• High McCabe complexities and a low numbers of mutants

should use higher nFittest values, e.g. 5+.

• Low McCabe complexities OR high complexities and a high number of mu-

tants

should use lower nFittest values, e.g. 1.

cloneRate

• Replace the cloneRate parameter, and instead generate a single clone for

each parent test.

nWorst

Programs with:-

• High complexities and a low numbers of mutants

should use a low nWorst value, e.g. 0 or 1.

• Low complexities OR high complexities and a high number of mutants

should use higher nWorst values, e.g. 5+.

CHAPTER 7. CONCLUSION 215

7.4 Further Work

Whilst this research presents an initial comparison between two evolutionary al-

gorithm approaches to test data generation, considerably more work is required to

verify these results. For a start, this work is limited to only a handful of programs

and parameter settings due to the long execution times - ironic as reducing exe-

cution costs is the main aim of this research. On this basis, a good starting point

for future work would be to test other programs, as well as to try a wider range

of parameter settings. It is expected that this will verify the results presented in

this work. A friendly warning however, execution times can be extremely lengthy

- 500 iterations of the IIA/MT (nFittest=5, nWorst=5, cloneRate=10) against

the Select program takes approximately 4 days on a state-of-the-art PC (Intel P4

2.2GHz, 1Gb RAM).

Alternative experiments could also be performed. For example, one comple-

mentary experiment would be to vary the population size, rather than the indi-

vidual size, of the GA/MT. The GA/MT’s individual size could be fixed at the

same number of tests needed for the IIA/MT to generate its best score. A single

GA/MT individual is now capable of generating the same high mutation score as

the IIA/MT. It could be expected that the probability of finding this high scoring

individual would be proportional to the population size - increasing the number

of individuals, increases the probability of generating a high scoring one, and vice

versa. However, the total number of tests (and therefore the number of mutant

executions) will also be proportional to the population size, meaning that increas-

ing the population size may result in a less effective algorithm (i.e. it requires

more mutant executions to achieve a high mutation score). These expectations

are theoretical and need investigating.

There are of course, other interesting areas to research. Building upon the work

presented in [67, 68], a co-evolutionary approach to mutation testing could be em-

ployed, that evolves a set of “useful” mutation operators as well as the test set.

A “useful” mutation operator is one that produces mutant programs that often

CHAPTER 7. CONCLUSION 216

find mistakes introduced in a particular programming environment (i.e. program-

ming team, programming language, problem); for example, a programmer may

constantly make the same relational operator mistake and so the ROR mutagen

will be more useful than the others. Obviously if the programmer learns to correct

this mistake, then this mutagen will no longer be as useful. Co-evolving the tests

and the set of mutagens to the most useful, reduces the total number of mutant

programs generated, and therefore the execution time of algorithm, whilst hope-

fully retaining a good strong-mutation adequate test set. Furthermore, should the

programming environment change, the system is also able to change, evolving the

useful mutagens and the test set together. In essence this co-evolutionary system

will provide a do-fewer, do-faster, do-smarter approach to mutation testing.

Evolving a set of “useful” mutation operators will occur on a larger timescale

than for evolving mutation-adequate tests. Whereas evolving tests occurs over

the lifetime of a single PUT, evolving mutagens happens across many programs.

The system should be developed with this in mind. One possible starting point

would be to develop, independent of test evolution, a GA or AIS based algorithm

that accomplishes mutagen evolution. Once completed, the two ‘halves’ could be

joined to develop a competitive co-evolutionary approach. Using the framework

described in chapter 4, the following solution could be employed for an AIS based

approach:

• Representation: each individual is a mutation operator;

• Evaluation: a ‘useful’ individual is one which identifies errors. Errors will be

indicated by un-equivalent mutant programs that remain living after testing,

and so an inverse mutation score should be used;

• Adaptation: In the first instance, a dynamic population adapted through

clonal selection principles should be employed.

There are however two points to consider when developing the mutagen evo-

lution half. Firstly, if an individual in the population is a mutagen, then there

CHAPTER 7. CONCLUSION 217

is little point in having more than one of the same mutagen in the population.

If this were to happen, the same mutant programs would be executed more than

once, resulting in an increased execution time. Instead a better approach would

be to assign each individual a ‘resources’ or ‘concentration’ level - good, useful

individuals have their concentration level increased in some manner (possibly re-

lated to their affinity); poor individuals have their’s decreased. The second point

to consider is how the affinity is calculated and its effect on a co-evolutionary

approach. With each population (test and mutagen) evolving, the sets used to

measure an individuals affinity will alter from one generation to the next (e.g.

mutagen population evolution will affect the mutagens used in the mutation score

calculation for each test, making it difficult to compare affinity values between

tests - i.e. is the mutation score calculated on the same set of mutagens?). To

compensate for this, each test should store results for all mutagens it has ever

been executed against, regardless of whether these exist in the mutagen popula-

tion. Each test’s mutation score can then be calculated, when needed, based on

the current set of mutagens, allowing for fairer comparisons. It is expected that

by continually evolving both sets, ‘good’ (high mutation scoring) test data can be

generated for each PUT, as well as an appropriate set of mutation operators that

reflect common mistakes in the development environment.

Continuing with the singular evolution of tests in this research, further en-

hancements could be made to the Immune Inspired Algorithm. Firstly, it could

be modified to only measure tests against the remaining living mutants, similar to

the method employed by the BA. This was not originally done in order to present

a fairer comparison with the GA/MT, as well as to allow easier preliminary devel-

opment of the above co-evolutionary approach (changing mutagen sets will affect

the mutation score affinity measure, and so it is simpler to have a consistent calcu-

lation for mutation score, rather than one which also varies dynamically with the

memory set). If this was employed, it is expected that the IIA/MT would produce

even greater savings on the number of mutants executed, whilst still attaining the

high mutation scores. A further enhancement would also be to create a more

CHAPTER 7. CONCLUSION 218

dynamic memory set. Every memory test could be given a time duration, which

when expired, returns that test to the main population (possibly for a minimum

number of iterations). If this test is still useful (i.e. it kills something not already

identified), then it will return to the memory set. If it is no longer useful, it will

remain in the memory set until it is naturally replaced. The advantage of this

is that the algorithm will attempt to reduce the memory set’s size, without los-

ing important tests. Furthermore, because of the caching of current tests results,

swapping a test between the main population and the memory set will not incur

any extra mutant executions (they have already happened). A foreseeable prob-

lem would be if the extra living mutants, caused by downgrading a test, are killed

by more tests in the main population than just the downgraded test. Which tests

should be added to kill the most living mutants without dramatically increasing the

memory set size? This problem could become worse if more tests are downgraded

each iteration.

Other interesting areas revolve around how best to generate and modify the

tests. Evolutionary algorithms are useful at optimising when there is a relationship

between an individual’s fitness measure and the structure of the individual itself.

For example, evolving the highest value for a 2-dimensional function, y = f (x),

can be achieved because there is a relationship between the ‘output’ y value, which

provides the fitness, and the ‘input’ x value (e.g. a y value close to a maxima

probably only requires a small change in x to find it). This relationship is not

apparent for mutation testing - given a good mutation scoring test, how should the

test mutate in order to improve the mutation score? The method employed in this

research used a cumulative Gaussian distribution (described in Appendix 4.3.2) to

affect the amount a test input was changed using the test’s value as the mean and

the “mutation” rate as the spread (this rate is inversely proportional to the test’s

affinity for the IIA/MT, and static for the GA/MT). The benefit of this approach

is that the “mutation” rate can be used to set the range of possible test mutations,

with the new value being chosen at random from this range (see Appendix 4.3.2

for a more detailed discussion). Whilst this offers some direction (and limitation)

CHAPTER 7. CONCLUSION 219

to the amount of mutation a test incurs, it is not the only possible approach to

achieving this. More sophisticated techniques may use knowledge of the program

to direct test mutation, possibly looking at the range of possible values an input

can take, or the relationship between input parameters.

One possible starting point would be to consider the relationships between

tests that kill similar mutant programs. For example, what commonality is there

between the tests that kill mutant variants of if(x>y)? Is it possible to infer a

relationship between these tests, that can be used to direct mutation? Are there

generic rules for common programming expressions, or are they specific to each

program? This also introduces the idea of partitioning the input domain. Tests

can be classified (in some program dependent fashion) into groups depending on

the output the program responds with. Each group could then be represented

as an algebraic constraint describing what test inputs belong to that set. Can

these constraints be determined through dynamic execution of many mutant vari-

ations of a program? What information does each variant provide to the domain

constraints?

Finally, there is the matter of detecting equivalent mutants and the oracle

problem to contend with. Neither problem has been tackled in this research, with

the assumption being that appropriate methods exist to solve these. In order to

facilitate mutation testing’s adoption by industry however, feasible solutions are

needed to these tasks. Detecting equivalent mutants may simply involve ignoring

them and using the reduced mutation score to evolve tests - if test evolution is

constantly occurring, the best set of tests to date can be taken. The disadvantage

of this is that it distracts the focus of evolving tests - e.g. should test evolution

focus on this living mutant, or is it equivalent? The oracle problem is also ex-

tremely important, however its solution will probably depend upon the program

being tested. For this reason, solutions to the oracle problem should probably

focus on deriving information from earlier stages of software development, e.g.

specifications, and use this to determine output correctness.

Appendix A

Complementary Functions

Function Description
A ← initPop(a) Returns the set A consisting of a initialised

(random or otherwise) individuals.
calculateAffinity(A) Calculates the affinity (normalised mutation

score) of every individual within the set A.
B ← combine(B ,R) Returns the set B combined with all individ-

uals in set R. Duplicates remain.

Table 1.27: Functions used by both the Immune Inspired Algorithm and the
Genetic Algorithm.

220

APPENDIX A. COMPLEMENTARY FUNCTIONS 221

Function Description
L ← addToMemory(A,M) Returns the subset L of individuals from the

set A which kill at least one mutant program
not killed by the memory set M . Individuals
in L are added to the memory set before this
function returns.

B ← selectFittest(A, b) Returns the set B of b highest affinity (nor-
malised mutation score) individuals from A.

R ← randomSelection(S , b) Returns the set R of b randomly selected in-
dividuals from the set S .

C ← clonalSelection(L, cR) Returns the set of cloned and mutated indi-
viduals C , derived from the set L, using a
clone rate of cR. The number of clones pro-
duced for each individual in L is calculated
by: individual affinity ∗cR, with a minimum
of 1 clone. Mutation occurs at a rate in-
versely proportional to the individual’s affin-
ity (normalise mutation score).

D ← metadynamics(A,C , b, c) Returns the set D of individuals based on the
following steps: The set A is reduced in size
(by removing the lowest affinity individuals)
so that /A/ + /M / = initialpopulationsize,
where M is the memory set; b lowest affin-
ity (normalised mutation score) individuals
from A are been replaced by b highest affin-
ity clones from set C ; c lowest affinity (nor-
malised mutation score) individuals from this
new set are replaced by c randomly created
new individuals.

Table 1.28: Complementary functions used by the Immune Inspired Algorithm
only.

APPENDIX A. COMPLEMENTARY FUNCTIONS 222

Function Description
t ← sumAffinities(A) Returns the sum of the affinities

(normalised mutation scores) of
each member of the set A.

normaliseAffinities(A, t) Calculates each individual’s (in
A) proportion of the total affin-
ity costs, t (obtained from
sumAffinities.

b ← getBestTest(A) Returns the highest affinity (nor-
malised mutation score) individ-
ual from the set A.

i ← rouletteSelection(A) Returns an individual from set
A selected using roulette wheel
selection, as described in section
3.2.3.

q1,2 ← singlePointCrossover(i1, i2, cR) Returns two individuals i1 and i2
which are individuals i1 and i2
with their tail portions swapped
over, as described in section 3.2.3.
cR is the probability of crossover
occuring.

qm ← mutateChild(q ,mR) Returns qm , the individual q mu-
tated using the mutation rate
mR, in accordance to section
3.2.3 and Appendix 4.3.2.

Table 1.29: Complementary functions used by the Genetic Algorithm only.

Appendix B

Test Programs

Program
Mutation Operators

Total
AAR ABS AOR ASR CNR ROR SAR SVR

CD - 155 132 - - 21 - 168 476
DR - 80 30 - - 28 - 86 224
SEL 269 540 222 510 22 168 130 925 2786
TRI - 158 54 - - 119 - 141 472

Table 2.30: The number of mutant programs created by each mutation operator
for each program.

B.1 CalDay

B.1.1 Example Mutation Adequate Test Set

day month year

1 0 0 0

2 0 -13 1

3 1 1 -1

4 1 1 -2004

5 1 1 -4713

6 1 1 -5000

223

APPENDIX B. TEST PROGRAMS 224

day month year

7 1 2 2004

8 1 -20 2004

9 14 20194 -100

10 -15 10 1582

11 15 -10 1582

12 15 138994 -10000

Table 2.31: A Mutation adequate test set for the CalDay program based on the

manually determined equivalent mutants.

B.1.2 Initial Test Values

day = 1 month = 1 year = 2004

B.1.3 Code
º ·

1public class CalDay{
2 public double t oJu l i an (int day , int month , int year) {
3 int JGREG = 15+31∗(10+12∗1582);

4 double HALFSECOND = 0 . 5 ;

6 int j u l i anYear = year ;

7 i f (year <0){
8 ju l i anYear = ju l i anYear +1;

9 }
10 int jul ianMonth = month ;

11 i f (month>2){
12 jul ianMonth = julianMonth+1;

13 } else {
14 ju l i anYear = ju l ianYear −1;

APPENDIX B. TEST PROGRAMS 225

15 jul ianMonth = julianMonth +13;

16 }

18 double t = Math . f l o o r (365 .25∗ j u l i anYear) ;

19 double s = Math . f l o o r (30 .6001∗ jul ianMonth) ;

20 double j u l i a n = t+s+day+1720995.0;

22 int temp = day+31∗(month+12∗year) ;

23 i f (temp>=JGREG){
24 // change over to Gregorian ca lendar

25 int j a = (int) (0 . 01∗ j u l i anYear) ;

26 j u l i a n = j u l i a n+2−j a +(0.25∗ j a) ;

27 }
28 return Math . f l o o r (j u l i a n) ;

29 }
30}

¹ ¸

APPENDIX B. TEST PROGRAMS 226

B.2 DateRange

B.2.1 Example Mutation Adequate Test Set

day1 month1 year1 day2 month2 year2

1 0 1 2004 1 1 2004
2 1 1 0 1 1 2004
3 1 1 2004 0 1 2004
4 1 1 2004 1 1 0
5 1 1 2004 1 1 2004
6 -1 1 2004 1 1 2004
7 1 -1 2004 1 1 2004
8 1 1 -2004 1 1 2004
9 1 1 2004 -1 1 2004
10 1 1 2004 1 -1 2004
11 1 1 2004 1 1 -2004
12 1 11 2004 1 1 2004
13 1 12 2004 1 1 2004
14 2 1 2004 31 0 2000
15 31 0 2004 2 1 2000
16 35 1 2004 1 1 2004

Table 2.32: A Mutation adequate test set for the DateRange program based on
the manually determined equivalent mutants.

B.2.2 Initial Test Values

day1 = 1 month1 = 1 year1 = 2004 day2 = 1 month2 = 1 year2 = 2004

B.2.3 Code
º ·

1 import java . u t i l . GregorianCalendar ;

2 import java . u t i l . Calendar ;

4public class DateRange{
5 public long numberDays (int day1 ,

APPENDIX B. TEST PROGRAMS 227

6 int month1 ,

7 int yr1 ,

8 int day2 ,

9 int month2 ,

10 int yr2){

12 date1 = new GregorianCalendar (yr1 , month1 , day1) ;

13 date2 = new GregorianCalendar (yr2 , month2 , day2) ;

15 // check both da te s are v a l i d

16 i f (goodDate (day1 , month1 , yr1 , date1)

17 &&goodDate (day2 , month2 , yr2 , date2)){

19 // ge t d i f f e r e n c e in m i l l i s e c ond s

20 long d i f f M i l l i s = date1 . ge tT imeInMi l l i s ()

21 −date2 . ge tT imeInMi l l i s () ;

23 // ge t d i f f e r e n c e in days

24 long d i f fDays = d i f f M i l l i s /(24∗60∗60∗1000) ;

26 // re turn a b s o l u t e d i f f e r e n c e in days

27 return Math . abs (d i f fDays) ;

28 } else {
29 // i n v a l i d date (s)

30 return −1;

31 }
32 }

34 public boolean goodDate (int day ,

35 int month ,

APPENDIX B. TEST PROGRAMS 228

36 int yr ,

37 GregorianCalendar date){
38 // check month i s in range

39 i f (month<0 | |month>11){
40 return fa l se ;

41 }

43 // check t ha t the day i s not nega t i v e or 0

44 i f (day<1){
45 return fa l se ;

46 }

48 // max number days in the s p e c i f i e d month

49 int days=Date . getActualMaximum(Calendar .DAY OF MONTH) ;

51 // check t ha t the day i s l e s s than max number

52 // o f days in the month

53 i f (day>days){
54 return fa l se ;

55 }

57 // date i s good

58 return true ;

59 }

61 private GregorianCalendar date1 , date2 ;

62}
¹ ¸

APPENDIX B. TEST PROGRAMS 229

B.3 Select

B.3.1 Example Mutation Adequate Test Set

k arr

1 -1 [1.0,2.0,3.0]

2 4 [1.0,2.0,3.0]

3 0 [3.0,2.0,1.0]

4 1 [3.0,2.0,1.0,0.0]

5 3 [3.4028235E38,2.0,1.0]

6 12 [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]

7 1 [10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0]

8 1 [12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,0.0]

9 1 [12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,-3.0,2.0,0.0]

10 1 [12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0]

11 11 [13.0,12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0]

12 24 [24.0,23.0,22.0,21.0,20.0,19.0,18.0,17.0,16.0,15.0,14.0,13.0,12.0,11.0,

10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0]

13 25 [25.0,24.0,23.0,22.0,21.0,20.0,19.0,18.0,17.0,16.0,15.0,14.0,13.0,12.0,

11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0]

14 1 [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0]

15 11 [-3.4028235E38,-3.4028235E38,-3.4028235E38,-3.4028235E38,

-3.4028235E38,-3.4028235E38,-3.4028235E38,-3.4028235E38,

-3.4028235E38,-3.4028235E38,4.0]

16 12 [-3.4028235E38,-3.4028235E38,-3.4028235E38,-3.4028235E38,

-3.4028235E38,-3.4028235E38,-3.4028235E38,-3.4028235E38,

-3.4028235E38,-3.4028235E38,-3.4028235E38,4.0]

APPENDIX B. TEST PROGRAMS 230

k arr

17 4 [-5.7110815,-14.880631,41.726444,-37.05031,23.39116,-22.205894]

18 15 [22.91872,24.014654,16.52458,4.6267824,19.871696,35.34549,

19.553448,22.565273,20.515776,17.790375,18.116589,24.03556,

17.774513,23.742893,12.443327,17.50667,3.757459,21.281898,

12.450602,22.943853,18.411558,10.76836,7.145749,4.577767,

35.56168,24.001644,-13.539833,13.960985,12.586792,21.717928,

7.761176,8.833367,14.195336,14.055513,21.987413,18.113111,

12.938291,13.2787075,15.46505,18.904062,20.587824,23.622593,

16.107018,20.29628,19.784386,21.078314,18.142649,25.601658]

19 16 [20.965218,11.247814,19.660957,17.865246,30.035995,30.31636,

34.6558,12.30845,17.90089,-0.24872124,17.934645,39.49695,

34.90146,26.921118,14.216193,27.267248,21.75644,12.971771,

23.01032,12.747556,11.393146,28.675354,-0.29288453,15.202724,

29.410002,14.395665,21.874817,13.654877,27.974867,28.11235,

19.745798,24.722267,23.58682,22.133926,-1.0012056,5.991516,

20.963291,16.190794,17.92023,15.606408]

20 16 [21.211082,13.3827505,28.704947,20.423193,18.478935,19.798641,

33.41666,16.89122,17.503212,27.283127,17.133081,28.681181,

20.566145,20.738182,19.500904,23.316935,8.847331,19.898027,

18.710484,21.299479,15.791643,19.590424,19.387543,23.456232,

25.559513,27.029621,19.739862,22.203028,27.522963,30.827885,

24.291775,26.60021,25.632788,26.708681,16.145826,18.9434,

10.237217,20.575977,26.921618,24.054678,23.123625,21.173822,

24.092585,16.622248,22.918564,24.800436,9.994295,9.547069,

20.953508,21.698324,16.136946,20.752983]

21 2 [36.67169,0.18202215,3.7204676,26.743032,50.007263,23.060598,

-7.3350587,-2.071009,27.593918,16.692753,15.6716585,51.59463,

4.1991477,24.188866,13.893451,34.6822]

22 3 [32.54497,20.653757,27.500864,1.4117161,16.599707,23.285288,

APPENDIX B. TEST PROGRAMS 231

k arr

13.773586,19.632303,23.628345,24.256357,29.246836,21.632448,

3.9006517,16.344898,18.12186,16.10166,21.70255,23.902906,

18.161541,15.266052,25.368382,23.896017,26.12119,16.776855,

11.766517,28.264322,18.368097,27.923717,28.025234,23.35657,

7.3589807,11.21263,18.385324,17.468771,26.152277,28.176958,

17.781507,22.106623,17.698368,20.381802,29.969366,24.65536,

9.973658,15.389518,15.873089,24.56311,18.611092]

23 4 [10.776883,4.957707,16.834284,20.962439,26.447643,22.036127,

18.3438,19.022291,21.708933,20.875889,16.250843,15.94117,

19.76901,26.397362,25.785505,11.486564,16.50855,20.222694,

18.04481,29.199928,18.741806,29.043098,25.806753,34.75311,

16.585566,17.433296,11.505542,19.649649,10.952237,19.102888,

19.009598,11.70182,25.604712,15.161908,23.278542,20.385696,

14.487988,24.755348,17.398462,32.123825,12.949027,17.183187,

23.180548,16.903484,25.1901,17.589226,19.308855,13.419565,

27.371662,20.203625,16.178308,15.879096,24.235569,22.925442]

24 4 [27.37919,27.933828,22.265245,0.43366367,21.55346,39.393154,

20.399475,11.402519,21.237303,21.879461,25.532736,49.89668,

13.343876,16.584328,25.221535,15.887644,22.10793,9.031165,

19.894829,8.398689,19.42205,21.705402,17.140053,12.158006,

7.6979003,27.403908,-15.802394,3.1856997,21.665276,28.869164,

21.105743,31.420324,15.180638,21.909044,21.999601,21.504887,

16.60092,17.469921,18.780449,22.932419,25.47064,18.119394,

12.737636,15.346484,27.745052,20.894445,17.531084,19.641977,

10.003345,17.325233]

Table 2.33: A Mutation adequate test set for the Select program based on the

manually determined equivalent mutants.

APPENDIX B. TEST PROGRAMS 232

B.3.2 Initial Test Values

k = 1 arr = [6, 3, 99, 31, 1]

B.3.3 Code
º ·

1public class Se l e c t {
2 public f loat s e l i p (int k , f loat [] a r r)

3 throws SystemExitException {
4 int M = 10 ;

5 f loat BIG = Float .MAX VALUE;

6 int i ;

7 int j ;

8 int n = arr . l ength ;

10 // k must be an index w i th in the array l en g t h

11 i f (k<1 | | k>n){
12 throw new SystemExitException (”Bad Input to S e l i p ”) ;

13 }

15 int [] i s e l = new int [M+2] ;

16 f loat [] s e l = new float [M+2] ;

17 int kk = k ;

18 f loat ahi = BIG ;

19 f loat a lo = −BIG ;

21 while (true){
22 // i t e r a t e main loop u n t i l d e s i r e d element i s found

23 int mm = 0 ;

24 int number lo=0;

25 f loat sum = 0 f ;

APPENDIX B. TEST PROGRAMS 233

26 int nxtmm = M+1;

28 for (i =0; i<n ; i=i +1){
29 // go through each element in the array

30 i f ((a r r [i]>=alo) && (ar r [i]<=ahi)){
31 // cons ider on ly e lements w i th in the curren t

32 // lo−h i range

33 mm=mm+1;

34 // i f the e lement e qua l s the l owe s t va lue

35 i f (a r r [i]==a lo){
36 // increment the number l o e lements counter

37 number lo = number lo+1;

38 }

40 // s e l e c t M elements wi th equa l p r o b a b i l i t y

41 i f (mm<=M){
42 // i f the number o f e lements cons idered

43 // so f a r i s <= M.

44 // mm−1 as our arrays s t a r t a t index=0

45 s e l [(mm−1)]= ar r [i] ;

46 } else i f (mm==nxtmm){
47 nxtmm = mm+mm/M;

48 int index= i+mm+kk ;

49 index = index % M;

50 s e l [index]= ar r [i] ;

51 }
52 sum = sum+arr [i] ;

53 }
54 }

APPENDIX B. TEST PROGRAMS 234

56 i f (kk<=number lo){
57 // then k th element must be equa l to a lo

58 return a lo ;

59 } else i f (mm<=M){
60 // i f the number o f e lements s t o r ed i s l e s s than M

61 // so r t and s e l e c t k th

62 s h e l l (mm, s e l) ;

63 return s e l [kk−1] ;

64 }

66 s e l [M] = sum/mm;

67 s h e l l (M+1, s e l) ;

68 s e l [M+1]=ahi ;

70 for (j =0; j<M+1; j=j +1){
71 // zero count i s e l array

72 i s e l [j]=0;

73 }

75 for (i =0; i<n ; i=i +1){
76 // go through array again

77 i f ((a r r [i]>=alo) && (ar r [i]<=ahi)){
78 // f o r each in range element . . .

79 int j l o =0;

80 int j up=M+1;

81 while (j up−j l o >1){
82 // . . . f i n d i t s p o s i t i o n amongst the

83 // s e l e c t i o n by b i s e c t i o n

85 // j mid = mid po in t

APPENDIX B. TEST PROGRAMS 235

86 int j mid=(j up+j l o) / 2 ;

87 i f (a r r [i] >= s e l [j mid]) {
88 // element i s >= t h i s midpoint and so j l o

89 // becomes the midpoint

90 j l o=j mid ;

91 } else {
92 // element i s < midpoint and so j up

93 // becomes midpoint

94 j up = j mid ;

95 }
96 }

98 // add in nega t i v e number catch check

99 // t ha t arr [i]> j l o

100 i f ((j l o ==0)&&(ar r [i]< s e l [j l o])) {
101 j up = j l o ;

102 }

104 i s e l [j up] = i s e l [j up]+1;

105 }
106 }

108 // narrow the bounds

109 j =0;

110 while (kk> i s e l [j]) {
111 a lo = s e l [j] ;

112 kk = kk− i s e l [j] ;

113 j = j +1;

114 }
115 ahi = s e l [j] ;

APPENDIX B. TEST PROGRAMS 236

116 }
117 }

119 // s o r t s the f i r s t n e lements o f arr

120 public stat ic void s h e l l (int num, f loat [] a){
121 int i n c = 1 ;

123 while (((3∗ i n c) + 1) < num) {
124 inc = (3∗ i n c) + 1 ;

125 }

127 while (inc > 0) {
128 // f o r each s e t o f e lements (t h e r e are inc s e t s)

129 for (int k = inc − 1 ; k < num; k=k+1) {
130 // p i ck the l a s t e lement in the s e t

131 f loat v = a [k] ;

132 int l = k ;

133 // compare the e lement at v to the one be f o r e i t

134 // in the s e t . I f they are out o f order cont inue

135 // t h i s loop , moving e lements ” back ” to make room

136 // f o r v to be i n s e r t e d .

137 for (l=k ; (l >= inc) && (a [l−i n c] > v) ; l=l−i n c){
138 a [l] = a [l−i n c] ;

139 }
140 // i n s e r t v in t o the co r r e c t p l a ce

141 a [l] = v ;

142 }
143 // a l l s e t s inc−sor ted , now decrease s e t s i z e

144 inc = inc /3 ;

145 }

APPENDIX B. TEST PROGRAMS 237

146 }
147}
¹ ¸

APPENDIX B. TEST PROGRAMS 238

B.4 TriangleSort

B.4.1 Example Mutation Adequate Test Set

i j k

1 0 2 2
2 2 0 2
3 2 2 0
4 2 2 2
5 -2 2 2
6 2 -2 2
7 2 2 -2
8 2 2 3
9 2 2 4
10 2 3 4
11 2 3 5
12 2 4 2
13 2 4 3
14 2 5 2
15 3 2 2
16 3 3 2
17 3 3 7
18 3 4 2
19 3 5 3
20 3 7 3
21 3 7 4
22 4 2 2
23 4 2 3
24 7 3 4
25 24 5 5
26 414811834 1453635131 1722147072
27 1453635131 414811834 1722147072
28 1453635131 1722147072 414811834

Table 2.34: A Mutation adequate test set for the DateRange program based on
the manually determined equivalent mutants.

B.4.2 Initial Test Values

i = 1 j = 2 k = 3

APPENDIX B. TEST PROGRAMS 239

B.4.3 Code
º ·

1public class Tr iang l eSor t {
2 public int t r i ang (int i , int j , int k){
3 // check t he r e are no nega t i v e l e n g t h s i d e s

4 i f ((i <=0) | | (j <=0) | | (k<=0)){
5 return 4 ;

6 }

8 // check f o r equa l l e n g t h s i d e s

9 int t r i = 0 ;

10 i f (i==j){
11 t r i = t r i +1;

12 }
13 i f (i==k){
14 t r i = t r i +2;

15 }
16 i f (j==k){
17 t r i = t r i +3;

18 }

20 i f (t r i ==0){
21 // i f t h e r e are no equa l s i d e s

22 i f ((i+j<=k) | | (j+k<=i) | | (i+k<=j)){
23 // t r i a n g l e i s i n v a l i d

24 t r i = 4 ;

25 } else {
26 // t r i a n g l e i s s ca l ene

27 t r i = 1 ;

28 }

APPENDIX B. TEST PROGRAMS 240

29 return t r i ;

30 }

32 i f (t r i >3){
33 // t r i a n g l e i s e q u i l a t e r a l

34 t r i = 3 ;

35 } else i f ((t r i ==1) && (i+j>k)){
36 // t r i a n g l e i s i s o s c e l e s (i==j)

37 t r i = 2 ;

38 } else i f ((t r i ==2) && (i+k>j)){
39 // t r i a n g l e i s i s o s c e l e s (i==k)

40 t r i = 2 ;

41 } else i f ((t r i ==3) && (j+k>i)){
42 // t r i a n g l e i s i s o s c e l e s (j==k)

43 t r i = 2 ;

44 } else {
45 // t r i a n g l e i s i n v a l i d

46 t r i = 4 ;

47 }

49 return t r i ;

50 }
51}

¹ ¸

Appendix C

Parameter Analysis Results

C.1 Genetic Algorithm for Mutation Testing

C.1.1 indSize: Effect on Number of Mutant Executions

DateRange: Varying indSize

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
t

E
x
e
c
u

ti
o

n
s

5

10

20

30

Figure 3.71: Effect of varying indSize on the mean number of executions to achieve
specific mutation scores for the DateRange program.

241

APPENDIX C. PARAMETER ANALYSIS RESULTS 242

TriangleSort: Varying indSize

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

5

10

20

30

Figure 3.72: Effect of varying indSize on the mean number of executions to achieve
specific mutation scores for the TriangleSort program.

CalDay: Varying indSize

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

5

10

20

30

Figure 3.73: Effect of varying indSize on the mean number of executions to achieve
specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 243

C.1.2 indSize: Effect on Mutation Score per Iteration

DateRange: Varying indSize

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

5

10

20

30

Figure 3.74: Effect of varying indSize on the mean mutation score per iteration
for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 244

TriangleSort: Varying indSize

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

5

10

20

30

Figure 3.75: Effect of varying indSize on the mean mutation score per iteration
for the TriangleSort program.

CalDay: Varying indSize

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
e
a
n

 M
u

ta
ti

o
n

 S
c
o

re

5

10

20

30

Figure 3.76: Effect of varying indSize on the mean mutation score per iteration
for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 245

C.1.3 indSize: Effect on Number of HTK identified

indSize DR TRI CD
5 59.11% ± 7.37% 0.00% ± 0.00% 34.48% ± 0.57%
10 71.11% ± 3.20% 5.56% ± 5.05% 34.69% ± 0.95%
20 70.98% ± 3.63% 27.22% ± 9.52% 34.38% ± 0.00%
30 71.91% ± 3.23% 30.83% ± 8.52% 34.38% ± 0.00%

ANOVA
fobt 53.47 150.66 2.14
fcrit 2.68 2.68 2.68

Scheffé
cobt

5-10 10.03 3.13 -
5-20 10.23 15.35 -
5-30 10.96 17.38 -

10-20 0.11 12.21 -
10-30 0.69 14.25 -
20-30 0.83 2.04 -
ccrit 2.83 2.84 -

Table 3.35: The mean average percentage of hard-to-kill mutants identified after
500 iterations, for each of the four individual sizes: 5, 10, 20, 30. ANOVA and
Scheffé calculations (at the 0.05 level) show which pairs of individual sizes result
in significantly different mean percentages (in bold). Values replaced with ‘-’
are not important as the ANOVA results are not significant. All results are to 2
decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 246

C.1.4 indSize: Effect on Number of Tests

DateRange: Varying indSize

0

5

10

15

20

25

30

35

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

5

10

20

30

Figure 3.77: Effect of varying the individual size on the mean number of distinct
tests created to achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 247

TriangleSort: Varying indSize

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

#
T

e
s
ts

5

10

20

30

Figure 3.78: Effect of varying the individual size on the mean number of distinct
tests created to achieve specific mutation scores for the TriangleSort program.

CalDay: Varying indSize

0

5

10

15

20

25

30

35

0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

5

10

20

30

Figure 3.79: Effect of varying the individual size on the mean number of distinct
tests created to achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 248

DR TRI CD
indSize MS: 87.78% MS: 70.00% MS: 82.80%

5 5 ± 0.00 5 ± 0.00 5 ± 0
10 9.87 ± 0.35 9.93 ± 0.25 10.00 ± 0.00
20 17.74 ± 2.09 19.43 ± 0.94 19.73 ± 0.58
30 22.52 ± 3.36 28.27 ± 2.50 28.27 ± 2.13

ANOVA
fobt 436.97 1591.69 2525.85
fcrit 2.68 2.69 2.69

Scheffé
cobt

5-10 8.91 13.27 17.52
5-20 24.00 38.83 52.05
5-30 32.79 62.60 79.36

10-20 15.26 26.81 35.03
10-30 24.36 51.73 63.39
20-30 9.50 24.93 29.85
ccrit 2.83 2.84 2.84

Table 3.36: The mean number of distinct tests needed (and standard deviation)
at the highest mutation score obtained by at least 25 runs for each of the four
individual sizes: 5, 10, 20, and 30. ANOVA fobt and fcrit values (at the 0.05
level) are given to indicate whether there is any significant difference between the
mean number of tests produced by each individual size. Bold values indicate a
significant result (obt ≥ crit) - i.e. the null hypothesis should be rejected. All
results are to 2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 249

C.1.5 crossRate: Effect on Number of Mutant Executions

DateRange: Varying crossRate

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
t

E
x
e
c
u

ti
o

n
s

0

0.2

0.4

0.6

0.8

1

Figure 3.80: Effect of varying the crossover rate on the mean number of executions
to achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 250

TriangleSort: Varying crossRate

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

0.2

0.4

0.6

0.8

1

Figure 3.81: Effect of varying the individual size on the mean number of executions
to achieve specific mutation scores for the TriangleSort program.

CalDay: Varying crossRate

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

0.2

0.4

0.6

0.8

1

Figure 3.82: Effect of varying the individual size on the mean number of executions
to achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 251

DR TRI CD
crossRate MS: 94.44% MS: 82.63% MS: 83.48%

0 1479683 ± 692353 1194916 ± 563506 1755577 ± 761952
0.2 1341053 ± 737400 1273229 ± 732111 1898955 ± 769834
0.4 1274224 ± 710960 1172388 ± 481370 1808078 ± 821265
0.6 1327316 ± 713296 1179859 ± 562372 1847668 ± 1001720
0.8 1188082 ± 706193 1136750 ± 589230 1700971 ± 761583
1.0 1053885 ± 426374 1269004 ± 642899 1722854 ± 927764

ANOVA
fobt 1.25 0.25 0.22
fcrit 2.27 2.27 2.27

Table 3.37: The mean number of mutants executed (and standard deviation)
at the highest mutation score, obtained by at least 25 runs for each of the six
crossover rates: 0, 0.2, 0.4, 0.6, 0.8, 1. The number executed (and any standard
deviation) has been rounded up to the nearest whole number to reflect that a
mutant is either executed completely or not at all. ANOVA fobt and fcrit values
(at the 0.05 level) are given to indicate whether there is any significant difference
between the mean values of each rate. Mutation scores and ANOVA values are to
2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 252

C.1.6 crossRate: Effect on Mutation Score per Iteration

DateRange: Varying crossRate

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

0.2

0.4

0.6

0.8

1

Figure 3.83: Effect of varying the crossover rate on the mean mutation score per
iteration for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 253

TriangleSort: Varying crossRate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

0.2

0.4

0.6

0.8

1

Figure 3.84: Effect of varying the individual size on the mean mutation score per
iteration for the TriangleSort program.

CalDay: Varying crossRate

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

0.2

0.4

0.6

0.8

1

Figure 3.85: Effect of varying the individual size on the mean mutation score per
iteration for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 254

crossRate DR TRI CD
0 95.16% ± 0.79 88.90% ± 1.79 84.40% ± 3.15

0.2 94.97% ± 0.87 89.21% ± 2.37 83.83% ± 3.71
0.4 95.22% ± 0.75 89.50% ± 1.92 84.24% ± 3.09
0.6 95.35% ± 0.68 89.94% ± 1.67 84.50% ± 0.88
0.8 95.26% ± 0.80 90.05% ± 1.40 84.70% ± 2.24
1.0 95.20% ± 0.91 90.23% ± 1.84 84.02% ± 3.81

ANOVA
fobt 0.82 2.36 0.35
fcrit 2.26 2.27 2.27

Scheffé
cobt

0-0.2
... - all < ccrit -

0.8-1
ccrit - 3.37 -

Table 3.38: Mean mutation scores (and standard deviation) achieved by each
crossover rate after 500 iterations. ANOVA fobt and fcrit values (at the 0.05 level)
are given to indicate whether there is any significant difference between the mean
mutation scores achieved by each crossover rate. Bold values indicate a significant
result (obt ≥ crit) - i.e. the null hypothesis should be rejected. Values replaced
with ‘-’ are not important as the ANOVA results are not significant. All results
are to 2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 255

C.1.7 crossRate: Effect on Number of HTK identified

crossRate DR TRI CD
0 71.88% ± 3.27% 22.78% ± 7.87% 34.38% ± 0.00%

0.2 71.46% ± 3.87% 22.50% ± 9.32% 34.38% ± 0.00%
0.4 72.00% ± 2.71% 24.19% ± 8.96% 34.38% ± 0.00%
0.6 71.78% ± 3.79% 24.72% ± 9.15% 34.38% ± 0.00%
0.8 70.98% ± 3.63% 27.22% ± 9.52% 34.38% ± 0.00%
1 70.67% ± 4.83% 27.50% ± 10.53% 34.48% ± 0.57%

ANOVA
fobt 0.63 1.60 1.01
fcrit 2.26 2.27 2.27

Table 3.39: The mean average percentage of hard-to-kill mutants identified after
500 iterations, for each of the six crossover rates: 0, 0.2, 0.4, 0.6, 0.8, 1. ANOVA
and Scheffé calculations (at the 0.05 level) show which pairs of crossover rates
result in significantly different mean percentages (in bold). Values replaced with
‘-’ are not important as the ANOVA results are not significant. All results are to
2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 256

C.1.8 crossRate: Effect on Number of Tests

DateRange: Varying crossRate

0

5

10

15

20

25

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

0

0.2

0.4

0.6

0.8

1

Figure 3.86: Effect of varying the crossover rate on the mean number of Tests
generated to achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 257

TriangleSort: Varying crossRate

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

#
T

e
s
ts

0

0.2

0.4

0.6

0.8

1

Figure 3.87: Effect of varying the individual size on the mean number of Tests
generated to achieve specific mutation scores for the TriangleSort program.

CalDay: Varying crossRate

0

5

10

15

20

25

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

0

0.2

0.4

0.6

0.8

1

Figure 3.88: Effect of varying the individual size on the mean number of Tests
generated to achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 258

DR TRI CD
crossRate MS: 94.44% MS: 82.63% MS: 83.48%

0 20.00 ± 0.00 20.00 ± 0.00 19.96 ± 0.19
0.2 20.00 ± 0.00 19.93 ± 0.26 19.84 ± 0.47
0.4 20.00 ± 0.00 19.94 ± 0.25 19.96 ± 0.19
0.6 20.00 ± 0.00 19.93 ± 0.25 19.88 ± 0.43
0.8 20.00 ± 0.00 20.00 ± 0.00 20.00 ± 0.00
1.0 20.00 ± 0.00 19.97 ± 0.18 19.88 ± 0.44

ANOVA
fobt - 0.86 0.97
fcrit 2.27 2.27 2.27

Table 3.40: Mean test set sizes (and standard deviations) at the highest mutation
score, obtained by at least 25 runs for each of the six crossover rates: 0, 0.2,
0.4, 0.6, 0.8, and 1. ANOVA fobt and fcrit values (at the 0.05 level) are given to
indicate whether there is any significant difference between the mean values of
each rate; a fobt value on “-” indicates that the value could not be calculated as all
six crossover rates exhibited the same test set size (with no variation). All results
are to 2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 259

C.1.9 mutRate: Effect on Number of Mutant Executions

DateRange: Varying MutRate

0

2000000

4000000

6000000

8000000

10000000

12000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0.01

0.02

0.04

0.06

0.08

Figure 3.89: Effect of varying mutRate on the mean number of executions to
achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 260

TriangleSort: Varying mutRate

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0.01

0.02

0.04

0.06

0.08

Figure 3.90: Effect of varying mutRate on the mean number of executions to
achieve specific mutation scores for the TriangleSort program.

CalDay: Varying MutRate

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0.01

0.02

0.04

0.06

0.08

Figure 3.91: Effect of varying mutRate on the mean number of executions to
achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 261

DR TRI CD
mutRate MS: 93.33% MS: 78.95% MS: 73.17%

0.01 854944 ± 365255 1183267 ± 439927 69865 ± 56654
0.02 747627 ± 417325 910284 ± 533408 542702 ± 290922
0.04 1521722 ± 1209835 762485 ± 385845 815527 ± 592762
0.06 1995207 ± 1850647 845636 ± 435658 1522942 ± 1352530
0.08 2344008 ± 2050275 1212915 ± 829261 3364980 ± 2586160

ANOVA
fobt 7.97 3.91 29.88
fcrit 2.43 2.44 2.42

Scheffé
cobt

0.01-0.02 0.31 1.83 1.28
0.01-0.04 1.88 2.81 2.03
0.01-0.06 3.20 2.26 4.31
0.01-0.08 4.14 0.20 9.60
0.02-0.04 2.29 1.04 0.74
0.02-0.06 3.66 0.45 2.91
0.02-0.08 4.64 2.12 8.22
0.04-0.06 1.35 0.58 2.10
0.04-0.08 2.32 3.16 7.43
0.06-0.08 0.98 2.58 5.96

ccrit 3.12 3.12 3.11

Table 3.41: The mean number of mutants executed (and standard deviation)
at the highest mutation score obtained by at least 25 runs for each of the five
mutation rates: 0.01, 0.02, 0.04, 0.06, 0.08. ANOVA and Scheffé values (at the 0.05
level) indicating whether differences between the means obtained using different
pairs of mutation rates are significant. Bold values indicate a significant result
(obt ≥ crit) - i.e. the null hypothesis should be rejected. The number executed
(and any standard deviation) has been rounded up to the nearest whole number to
reflect that a mutant is either executed completely or not at all. All other results
are to 2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 262

C.1.10 mutRate: Effect on Mutation Score per Iteration

DateRange: Varying MutRate

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 0.01

0.02

0.04

0.06

0.08

Figure 3.92: Effect of varying mutRate on the mean mutation score per iteration
for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 263

TriangleSort: Varying mutRate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 0.01

0.02

0.04

0.06

0.08

Figure 3.93: Effect of varying mutRate on the mean mutation score per iteration
for the TriangleSort program.

CalDay: Varying MutRate

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 0.01

0.02

0.04

0.06

0.08

Figure 3.94: Effect of varying mutRate on the mean mutation score per iteration
for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 264

mutRate DR TRI CD
0.01 94.32% ± 1.08% 84.15% ± 5.45% 85.75% ± 0.56%
0.02 95.26% ± 0.80% 90.05% ± 1.40% 84.70% ± 2.24%
0.04 94.63% ± 1.02% 90.04% ± 1.33% 74.29% ± 3.49%
0.06 94.89% ± 0.76% 88.70% ± 0.87% 73.17% ± 0.00%
0.08 94.44% ± 1.07% 87.56% ± 1.40% 73.15% ± 0.00%

ANOVA
fobt 5.03 24.77 484.28
fcrit 2.43 2.43 2.42

Scheffé
cobt

0.01-0.02 3.98 8.51 2.40
0.01-0.04 1.26 8.50 26.23
0.01-0.06 2.33 6.56 31.49
0.01-0.08 0.50 4.92 31.23
0.02-0.04 2.64 0.01 23.83
0.02-0.06 1.56 1.95 28.86
0.02-0.08 3.41 3.59 28.62
0.04-0.06 1.05 1.93 2.81
0.04-0.08 0.75 3.58 2.81
0.06-0.08 1.80 1.64 0.03

ccrit 3.12 3.12 3.11

Table 3.42: The mean mutation score (and standard deviation) achieved after 500
iterations for each of the five mutation rates (0.01, 0.02, 0.04, 0.06, 0.08). ANOVA
and Scheffé values (at the 0.05 level) indicating whether differences between the
means obtained using different pairs of mutation rates are significant. Bold values
indicate a significant result (obt ≥ crit) - i.e. the null hypothesis should be
rejected. All results are to 2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 265

C.1.11 mutRate: Effect on Number of HTK identified

mutRate DR TRI CD
0.01 66.04% ± 6.64 22.78% ± 6.90 34.07% ± 2.33
0.02 70.98% ± 3.63 27.22% ± 9.52 34.38% ± 0.00
0.04 71.11% ± 4.74 19.44% ± 7.37 34.38% ± 0.00
0.06 72.22% ± 3.07 17.78% ± 6.83 34.38% ± 0.00
0.08 71.11% ± 3.64 17.78% ± 6.47 34.38% ± 0.00

ANOVA
fobt 9.05 8.68 0.64
fcrit 2.43 2.43 2.42

Scheffé
cobt

0.01-0.02 4.42 2.30 -
0.01-0.04 4.40 1.72 -
0.01-0.06 5.36 2.58 -
0.01-0.08 4.40 2.58 -
0.02-0.04 0.11 4.02 -
0.02-0.06 1.09 4.88 -
0.02-0.08 0.11 4.88 -
0.04-0.06 0.95 0.86 -
0.04-0.08 0.00 0.86 -
0.06-0.08 0.95 0.00 -

ccrit 3.12 3.12 -

Table 3.43: The mean average percentage of hard-to-kill mutants identified after
500 iterations, for each of the five mutation rates: 0.01, 0.02, 0.04, 0.06, 0.08.
ANOVA and Scheffé calculations (at the 0.05 level) show which pairs of mutation
rates result in significantly different mean percentages (in bold). Values replaced
with ‘-’ are not important as the ANOVA results are not significant. All results
are to 2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 266

C.1.12 mutRate: Effect on the Number of Tests

DateRange: Varying MutRate

0

5

10

15

20

25

0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

#
T

e
s
ts

0.01

0.02

0.04

0.06

0.08

Figure 3.95: Effect of varying the mutation rate on the mean number of tests
needed to achieve a specific mutation score for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 267

TriangleSort: Varying MutRate

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

#
T

e
s
ts

0.01

0.02

0.04

0.06

0.08

Figure 3.96: Effect of varying the mutation rate on the mean number of tests
needed to achieve a specific mutation score for the TriangleSort program.

CalDay: Varying MutRate

0

5

10

15

20

25

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

0.01

0.02

0.04

0.06

0.08

Figure 3.97: Effect of varying the mutation rate on the mean number of tests
needed to achieve a specific mutation score for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 268

C.2 Immune Inspired Algorithm for Mutation

Testing

C.2.1 nFittest: Effect on Number of Mutant Executions

DateRange: Varying nFittest

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

1

3

5

7

9

Figure 3.98: Effect of varying nFittest on the mean number of executions to
achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 269

TriangleSort: Varying nFittest

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

1

3

5

7

9

Figure 3.99: Effect of varying nFittest on the mean number of executions to
achieve specific mutation scores for the TriangleSort program.

CalDay: Varying nFittest

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

1

3

5

7

9

Figure 3.100: Effect of varying nFittest on the mean number of executions to
achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 270

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9

nFittest

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

45

50

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 3.101: Effect of varying nFittest on the average memory set size and
memory test affinity for each mutation operator, for the DateRange program.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9

nFittest

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

45

50

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 3.102: Effect of varying nFittest on the average memory set size and
memory test affinity for each mutation operator, for the TriangleSort program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 271

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9

nFittest

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

45

50

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 3.103: Effect of varying nFittest on the average memory set size and
memory test affinity for each mutation operator, for the CalDay program.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5

nFittest

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

45

50

55

60

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 3.104: Effect of varying nFittest on the average memory set size and
memory test affinity for each mutation operator, for the Select program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 272

C.2.2 nFittest: Effect on Mutation Score per Iteration

DateRange: Varying nFittest

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 1

3

5

7

9

Figure 3.105: Effect of varying nFittest on the mean mutation score per iteration
for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 273

TriangleSort: Varying nFittest

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 1

3

5

7

9

Figure 3.106: Effect of varying nFittest on the mean mutation score per iteration
for the TriangleSort program.

CalDay: Varying nFittest

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re 1

3

5

7

9

Figure 3.107: Effect of varying nFittest on the mean mutation score per iteration
for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 274

C.2.3 nFittest: Effect on Number of HTK identified

crossRate DR TRI CD
1 98.67% ± 1.95% 72.31% ± 3.12% 76.10% ± 1.20%
3 94.84% ± 1.48% 75.00% ± 2.69% 81.53% ± 1.35%
5 97.33% ± 1.47% 75.00% ± 2.14% 81.63% ± 1.17%
7 98.67% ± 1.51% 75.00% ± 2.65% 79.64% ± 1.19%
9 99.57% ± 1.28% 75.00% ± 2.37% 81.96% ± 1.26%

ANOVA
fobt 4.69 8.20 4.83
fcrit 2.43 2.43 2.43

1-3 3.16 4.56 3.45
1-5 1.09 4.60 3.51
1-7 0.00 4.53 2.21
1-9 0.75 4.63 3.66
3-5 2.06 0.00 0.06
3-7 3.16 0.00 1.18
3-9 3.94 0.00 0.26
5-7 1.09 0.00 1.24
5-9 1.85 0.00 0.20
7-9 0.75 0.00 1.42

ccrit 3.12 3.12 3.12

Table 3.44: The mean average percentage of hard-to-kill mutants identified after
500 iterations, for each of the five nFittest values: 1, 3, 5, 7, 9. ANOVA and
Scheffé calculations (at the 0.05 level) show which pairs of nFittest values result
in significantly different mean percentages (in bold). All results are to 2 decimal
places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 275

C.2.4 nFittest: Effect on Number of Tests

DateRange: Varying nFittest

0

5

10

15

20

25

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

1

3

5

7

9

Figure 3.108: Effect of varying nFittest on the mean number of distinct tests
created to achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 276

TriangleSort: Varying nFittest

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

#
T

e
s
ts

1

3

5

7

9

Figure 3.109: Effect of varying nFittest on the mean number of distinct tests
created to achieve specific mutation scores for the TriangleSort program.

CalDay: Varying nFittest

0

5

10

15

20

25

30

35

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

1

3

5

7

9

Figure 3.110: Effect of varying nFittest on the mean number of distinct tests
created to achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 277

C.2.5 nWorst: Effect on Number of Mutant Executions

DateRange: Varying nWorst

0

500000

1000000

1500000

2000000

2500000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

3

5

7

9

Figure 3.111: Effect of varying nWorst on the mean number of executions to
achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 278

TriangleSort: Varying nWorst

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

3

5

7

9

Figure 3.112: Effect of varying nWorst on the mean number of executions to
achieve specific mutation scores for the TriangleSort program.

CalDay: Varying nWorst

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

3

5

7

9

Figure 3.113: Effect of varying nWorst on the mean number of executions to
achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 279

C.2.6 nWorst: Effect on Mutation Score per Iteration

DateRange: Varying nWorst

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

3

5

7

9

Figure 3.114: Effect of varying nWorst on the mean mutation score per iteration
for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 280

TriangleSort: Varying nWorst

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

3

5

7

9

Figure 3.115: Effect of varying nWorst on the mean mutation score per iteration
for the TriangleSort program.

CalDay: Varying nWorst

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

3

5

7

9

Figure 3.116: Effect of varying nWorst on the mean mutation score per iteration
for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 281

C.2.7 nWorst: Effect on Number of HTK identified

nWorst DR TRI CD
0 73.33% ± 0.00 75.00% ± 0.00 34.38% ± 0.00
1 85.33% ± 1.51 75.00% ± 0.00 58.92% ± 0.99
3 94.41% ± 1.05 75.00% ± 0.00 78.41% ± 1.15
5 97.33% ± 1.47 75.00% ± 0.00 81.63% ± 1.17
7 98.22% ± 1.46 75.00% ± 0.00 82.52% ± 1.11
9 99.11% ± 1.45 75.00% ± 0.00 82.16% ± 1.06

ANOVA
fobt 109.76 0 133.26
fcrit 2.27 2.26 2.26

0-1 8.75 - 10.33
0-3 15.50 - 18.40
0-5 17.50 - 19.75
0-7 18.15 - 19.96
0-9 18.80 - 19.64
1-3 6.62 - 8.09
1-5 8.68 - 9.42
1-7 9.32 - 9.72
1-9 9.97 - 9.49
3-5 2.13 - 1.33
3-7 2.78 - 1.68
3-9 3.43 - 1.52
5-7 0.64 - 0.36
5-9 1.29 - 0.21
7-9 0.64 - 0.15

ccrit 3.37 - 3.36

Table 3.45: The mean average percentage of hard-to-kill mutants identified after
500 iterations, for each of the six nWorst values: 0, 1, 3, 5, 7, 9. ANOVA and
Scheffé calculations (at the 0.05 level) show which pairs of nWorst values result in
significantly different mean percentages (in bold). Values replaced with ‘-’ are not
important as the ANOVA results are not significant. All results are to 2 decimal
places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 282

C.2.8 nWorst: Effect on Number of Tests

DateRange: Varying nWorst

0

5

10

15

20

25

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

#
T

e
s
ts

0

1

3

5

7

9

Figure 3.117: Effect of varying nWorst on the mean number of distinct tests
created to achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 283

TriangleSort: Varying nWorst

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

#
T

e
s
ts

0

1

3

5

7

9

Figure 3.118: Effect of varying nWorst on the mean number of distinct tests
created to achieve specific mutation scores for the TriangleSort program.

CalDay: Varying nWorst

0

5

10

15

20

25

30

35

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

0

1

3

5

7

9

Figure 3.119: Effect of varying nWorst on the mean number of distinct tests
created to achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 284

C.2.9 cloneRate: Effect on Number of Mutant Executions

DateRange: Varying cloneRate

0

500000

1000000

1500000

2000000

2500000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

5

10

15

20

Figure 3.120: Effect of varying cloneRate on the mean number of executions to
achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 285

TriangleSort: Varying cloneRate

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

5

10

15

20

Figure 3.121: Effect of varying cloneRate on the mean number of executions to
achieve specific mutation scores for the TriangleSort program.

CalDay: Varying CloneRate

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Mutation Score

M
e
a
n

 #
M

u
ta

n
ts

 E
x
e
c
u

te
d

0

1

5

10

15

20

Figure 3.122: Effect of varying cloneRate on the mean number of executions to
achieve specific mutation scores for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 286

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 5 10 15 20

cloneRate

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 3.123: Effect of varying cloneRate on the average memory set size and
memory test affinity for each mutation operator, for the DateRange program.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 5 10 15 20

cloneRate

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 3.124: Effect of varying cloneRate on the average memory set size and
memory test affinity for each mutation operator, for the TriangleSort program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 287

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 5 10 15 20

cloneRate

A
v
e
ra

g
e
 N

o
rm

a
li

s
e
d

 T
e
s
t

A
ff

in
it

y

10

15

20

25

30

35

40

#
T

e
s
ts

AOR

SVR

ABS

ASR

ROR

CNR

SAR

AAR

NumTests

Figure 3.125: Effect of varying cloneRate on the average memory set size and
memory test affinity for each mutation operator, for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 288

C.2.10 cloneRate: Effect on Mutation Score per Iteration

DateRange: Varying cloneRate

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

5

10

15

20

Figure 3.126: Effect of varying cloneRate on the mean mutation score per iteration
for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 289

TriangleSort: Varying cloneRate

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

5

10

15

20

Figure 3.127: Effect of varying cloneRate on the mean mutation score per iteration
for the TriangleSort program.

CalDay: Varying CloneRate

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Iterations

M
u

ta
ti

o
n

 S
c
o

re

0

1

5

10

15

20

Figure 3.128: Effect of varying cloneRate on the mean mutation score per iteration
for the CalDay program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 290

C.2.11 cloneRate: Effect on Number of HTK identified

cloneRate DR TRI CD
0 97.11% ± 6.47% 74.72% ± 1.52% 76.86% ± 8.38%
1 97.56% ± 5.10% 75.00% ± 0.00% 77.96% ± 8.56%
5 99.57% ± 2.39% 75.00% ± 0.00% 79.38% ± 5.26%
10 97.33% ± 5.42% 75.00% ± 0.00% 81.63% ± 4.19%
15 98.92% ± 3.48% 75.00% ± 0.00% 83.05% ± 3.99%
20 99.56% ± 2.43% 75.00% ± 0.00% 79.74% ± 8.30%

ANOVA
fobt 1.95 1.03 3.93
fcrit 2.27 2.26 2.60

0-1 - - 0.69
0-5 - - 1.57

0-10 - - 2.93
0-15 - - 3.80
0-20 - - 1.74
1-5 - - 0.89

1-10 - - 2.26
1-15 - - 3.13
1-20 - - 1.08
5-10 - - 1.37
5-15 - - 2.23
5-20 - - 0.22

10-15 - - 0.85
10-20 - - 1.11
15-20 - - 1.95

ccrit 3.37 3.37 3.36

Table 3.46: The mean average percentage of hard-to-kill mutants identified after
500 iterations, for each of the six cloneRate values: 0, 1, 3, 5, 7, 9. ANOVA
and Scheffé calculations (at the 0.05 level) show which pairs of cloneRate values
result in significantly different mean percentages (in bold). Values replaced with
‘-’ are not important as the ANOVA results are not significant. All results are to
2 decimal places.

APPENDIX C. PARAMETER ANALYSIS RESULTS 291

C.2.12 cloneRate: Effect on Number of Tests

DateRange: Varying cloneRate

0

5

10

15

20

25

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

0

1

5

10

15

20

Figure 3.129: Effect of varying cloneRate on the mean number of distinct tests
created to achieve specific mutation scores for the DateRange program.

APPENDIX C. PARAMETER ANALYSIS RESULTS 292

TriangleSort: Varying cloneRate

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Score

#
T

e
s
ts

0

1

5

10

15

20

Figure 3.130: Effect of varying cloneRate on the mean number of distinct tests
created to achieve specific mutation scores for the TriangleSort program.

CalDay: Varying CloneRate

0

5

10

15

20

25

30

35

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Mutation Score

#
T

e
s
ts

0

1

5

10

15

20

Figure 3.131: Effect of varying cloneRate on the mean number of distinct tests
created to achieve specific mutation scores for the CalDay program.

Bibliography

[1] A. T. Acree. On Mutation. PhD thesis, Georgia Institute of Technology,

Atlanta, GA, 1980.

[2] A. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986.

[3] ANTLR. ANTLR parser generator. Internet - http://www.antlr.org/. Ac-

cessed: September 2003.

[4] D. Baldwin and F. Sayward. Heuristics for determining equivalence of pro-

gram mutations. Technical Report Research Report 276, Dept. of Computer

Science, Yale University, 1979.

[5] Benoit Baudry, Franck Fleurey, Jean-Marc Jezequel, and Yves Le Traon.

Automatic test cases optimization using a bacteriological adaptation model:

Application to .net components. 17th IEEE International Conference on

Automated Software Engineering (ASE’02), page 253, 2002.

[6] Benoit Baudry, Franck Fleurey, Jean-Marc Jezequel, and Yves Le Traon.

Genes and bacteria for automatic test cases optimization in the .net environ-

ment. Proceedings of the International Symposium on Software Reliability

Engineering (ISSRE 02), pages 195–206, 2002.

[7] Benoit Baudry, Franck Fleurey, Jean-Marc Jezequel, and Yves Le Traon.

Automatic test case optimization: A bacteriologic algorithm. IEEE Soft-

ware, 22(2):76–82, 2005.

293

BIBLIOGRAPHY 294

[8] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, New

York, 2nd edition, 1990.

[9] P. J. Bentley, J. Greensmith, and S. Ujjin. Two ways to grow tissue for

artificial immune systems. In ICARIS, pages 139–152, 2005.

[10] James M. Bieman, Sudipto Ghosh, and Roger T. Alexander. A technique for

mutation of Java objects. Proceedings of Automated Software Engineering,

pages 337–340, 2001.

[11] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and

Tools. Addison-Wesley, 2000.

[12] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From

Natural to Artificial Systems. Oxford University Press Inc., USA, 1999.

[13] Leonardo Bottaci. A genetic algorithm fitness function for mutation

testing. Internet - http://www.dcs.kcl.ac.uk/projects/seminal/pastmeeting

/(007)(12,13)-5-2001/bottaci.ps, May 2001. Accessed: July 2005.

[14] Leonardo Bottaci. Instrumenting programs with flag variables for test data

search by genetic algorithm. In Genetic and Evolutionary Computation Con-

ference (GECCO 2002), pages 1337–1342. Morgan Kaufmann, New York,

USA, 2002.

[15] Jonathan Bowen. Formal specification and documentation using z: A case

study approach. Internet - http://www.jpbowen.com/pub/zbook.pdf, 2003.

Accessed: March 2007.

[16] Heather Brannon. The history of smallpox. Website -

http://dermatology.about.com/cs/smallpox/a/smallpoxhx.htm.

[17] T. A. Budd and D. Angluin. Two notions of correctness and their relation

to testing. Acta Informatica, 18:31–45, 1982.

BIBLIOGRAPHY 295

[18] T.A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale

University, New Haven, CT, 1980.

[19] F. M. Burnet. The Clonal Selection Theory of Acquired Immunity. Cam-

bridge University Press, 1959.

[20] B. Choi and A.P. Mathur. High-performance mutation testing. The Journal

of Systems and Software, 20:135–152, 1993.

[21] T. Dandekar and P. Argos. Folding the main chain of small proteins with the

genetic algorithm. Journal of Molecular Biology, 236(3):844–861, February

1994.

[22] Charles Darwin. On the origin of species by

means of natural selection. Online Book -

http://pages.britishlibrary.net/charles.darwin/texts/origin 6th/ori

gin6th fm.html, 1859. Accessed: October 2005.

[23] Martin D. Davis and Elaine J. Weyuker. Pseudo-oracles for non-testable

programs. Proceedings of the ACM ’81 conference, pages 254 – 257, 1981.

[24] L. N. de Castro and F. J. Von Zuben. The clonal selection algorithm with

engineering applications. Proceedings of the Genetic and Evolutionary Com-

putation Conference, pages 36–37, 2000.

[25] L.N. de Castro and J. Timmis. Artificial Immune Systems: A New Compu-

tational Intelligence Approach. Springer, 2002.

[26] M. E. Delamaro and J. C. Maldonado. Proteum - a tool for the assessment

of test adequacy for C programs: User’s guide. Technical report, March

1996.

[27] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: Help

for the practicing programmer. IEEE Computer, 11(4):34–41, 1978.

BIBLIOGRAPHY 296

[28] R. DeMillo and A. Offutt. Constraint-based automatic test data genera-

tion. IEEE Transactions on Software Engineering, 17(9):900–910, Septem-

ber 1991.

[29] E. Diaz, J. Tuya, and R. Blanco. An automated test data generation tool

using tabu search. In UK-Softest: UK Software Testing Workshop, pages

21–30, 2003.

[30] R. Ferguson and B. Korel. The chaining approach for software test data

generation. ACM Transactions on Software Engineering and Methodology,

5(1):63–86, 1996.

[31] S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer immunology. Com-

munications of the ACM, 40(10):88–96, 1997.

[32] S. Forrest, A.S. Perelson, L. Allen, and R.Cherukuri. Self-nonself discrim-

ination in a computer. In IEEE Symposium on Research in Security and

Privacy, pages 202–212, Los Alamos, CA, 1994. IEEE Computer Society

Press.

[33] Marie-Claude Gaudel. Testing can be formal, too. Proceedings of the 6th

International Joint CAAP/FASE Conference on Theory and Practice of

Software Development (TAPSOFT 95), 915:82–96, 1995.

[34] M.R. Girgis and M.R. Woodward. An integrated system for program test-

ing using weak mutation and data flow analysis. Proceedings of the Eighth

International Conference on Software Engineering, pages 313–319, August

1985.

[35] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addiscon-Wesley, 1989.

[36] K. Gurney. An Introduction to Neural Networks. UCL Press, 1999.

BIBLIOGRAPHY 297

[37] R.G. Hamlet. Testing programs with the aid of a compiler. IEEE Transac-

tions on Software Engineering, 3(4):279–290, 1977.

[38] M. Harman, L. Hierons, A. Baresel, and H. Sthamer. Improving evolu-

tionary testing by flag removal. In Genetic and Evolutionary Computation

Conference (GECCO 2002). Morgan Kaufmann Publishers, New York.

[39] R. Hierons, M. Harman, and S. Danicic. Using program slicing to assist

in the detection of equivalent mutants. Software Testing, Verification, and

Reliability, 9:233–262, 1999.

[40] John Holland. Adaptation in Natural and Artificial Systems. The MIT

Press, reprint edition, 1992.

[41] W.E. Howden. Weak mutation testing and completeness of test sets. IEEE

Transactions on Software Engineering, 8:371–379, July 1982.

[42] Chris Hunter and Paul Strooper. Systematically deriving partial oracles for

testing concurrent programs. Australasian Computer Science Conference

(ACSC ’01), pages 83–91, 2001.

[43] Charles A. Janeway. How the immune system recognizes invaders. Scientific

American, 269(3):72–79, September 1993.

[44] N.K. Jerne. Towards a network theory of the immune system. Annals of

Immunology, 125C:373–389, 1974.

[45] Ian Johnston. Translation of philosophie zoologique by J. B. Lamarck. Inter-

net - http://www.mala.bc.ca/ johnstoi/LAMARCK/tofc.htm, April 2000.

Accessed: October 2005.

[46] B. F. Jones, D. E. Eyres, and H.-H.Sthamer. A strategy for using genetic

algorithms to automate branch and fault-based testing. The Computer Jour-

nal, 41(2):98–107, 1998.

BIBLIOGRAPHY 298

[47] Sunwoo Kim, John A. Clark, and John A. McDermid. Class mutation:

Mutation testing for object-oriented programs. Internet - http://www-

users.cs.york.ac.uk/ jac/papers/ClassMutation.pdf, 2000. Accessed: April

2003.

[48] K. N. King and A. Jefferson Offutt. A Fortran language system for mutation-

based software testing. Software - Practice and Experience, 21(7):685–718,

1991.

[49] Bogdan Korel. Automated software test data generation. IEEE Transactions

on Software Engineering, 16(8):870–879, August 1990.

[50] John R. Koza. Genetic programming. In James G. Williams and Allen Kent,

editors, Encyclopedia of Computer Science and Technology, volume 39, pages

29–43. Marcel-Dekker, Taylor & Francis Group Ltd, Oxford, 1998.

[51] Gerald Kranzler and Janet Moursund. Statistics for the Terrified. Prentice-

Hall, Saddle River, New Jersey, US, second edition, 1999.

[52] Edward William Krauser. Compiler-Integrated Software Testing. PhD thesis,

Purdue University, December 1991.

[53] E.W. Krauser, A.P. Mathur, and V. Rego. High performance testing on

SIMD machines. Proceedings of the Second Workshop on Software Testing,

Verification, and Analysis, pages 171–177, July 1998.

[54] J. B. Lamarck. Philosophie zoologique, ou Exposition des considrations rel-

atives l’histoire naturelle des animaux. 1809.

[55] P. Larraaga, C.M.H. Kuijpers, R.H. Murga, I. Inza, and S. Dizdarevic. Ge-

netic algorithms for the travelling salesman problem: A review of represen-

tations and operators. Artificial Intelligence Review, 13(2):129–170, April

1999.

BIBLIOGRAPHY 299

[56] E. L. Lawler, J. K. Lenstra, and D. B. Shmoys. The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization. Wiley and Sons,

New York, 1985.

[57] J.-C. Lin and P.-L. Yeh. Automatic test data generation for path testing

using GAs. Information Sciences: an International Journal, 131:47–64,

2001.

[58] Yu-Seung Ma, Yong-Rae Kwon, and A. Jefferson Offutt. Inter-class muta-

tion operators for Java. Proceedings of the 13th International Symposium

on Software Reliability Engineering, pages 352–363, 2002.

[59] Yu Seung Ma, A. Jefferson Offutt, and Yong Rae Kwon. Mujava mutation

system for java programs. Internet - http://www.ise.gmu.edu/ ofut/mu-

java/. Accessed: January 2004.

[60] Yu-Seung Ma, A. Jefferson Offutt, and Yong-Rae Kwon. Mujava: An auto-

mated class mutation system. Journal of Software Testing, Verification and

Reliability, 15(2):97–133, June 2005.

[61] Patricia D. L. Machado. Testing from Structured Algebraic Specifications:

The Oracle Problem. PhD thesis, University of Edinburgh, 2000.

[62] B. Marick. The weak mutation hypothesis. Technical Report UIUCDCS-R-

90-1644, University of Illinois, November 1990.

[63] Philippa Marrack and John W. Kappler. How the immune system recognizes

the body. Scientific American, 269(3):80–83, 86–89, September 1993.

[64] A. P. Mathur. Performance, effectiveness, and reliability issues in software

testing. Proceedings of the Fifteenth Annual International Computer Soft-

ware and Applications Conference, pages 604–605, September 1991.

BIBLIOGRAPHY 300

[65] Aditya P. Mathur and W. Eric Wong. Comparing the fault detection ef-

fectiveness of mutation and data flow testing: An empirical study. Techni-

cal Report SERC-TR-146-P, Software Engineering Research Center, Purdue

University, West Lafayette, Indiana., December 1993.

[66] Aditya P. Mathur and W. Eric Wong. An empirical comparison of muta-

tion and data flow based test adequacy criteria. Technical Report SERC-

TR-135-P, Software Engineering Research Center, Purdue University, West

Lafayette, Indiana., December 1993.

[67] P. May, K. Mander, and J. Timmis. Mutation testing: An artificial immune

system approach. UK-Softest: UK Software Testing Workshop, pages 31–43,

September 2003. University of York.

[68] P. May, K. Mander, and J. Timmis. Software vaccination: An artificial

immune system approach. In J. Timmis, P. Bentley, and E. Hart, editors,

2nd International Conference on Artificial Immune Systems, number 2787

in Series Lecture Notes in Computer Science, pages 81–92. Springer-Verlag,

September 2003.

[69] Johannes Mayer and Ralph Guderlei. Test oracles using statistical meth-

ods. Proceedings of the First International Workshop on Software Quality,

Lecture Notes in Informatics P-58, pages 179–189, 2004.

[70] T. J. McCabe. A complexity measure. IEEE Transactions on Software

Engineering, 2(4):308–320, 1976.

[71] P. McMinn and M. Holcombe. The state problem for evolutionary testing.

In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2003), pages 2488–2497. Springer-Verlag, Chicago, USA, 2003.

[72] P. McMinn and M. Holcombe. Hybridizing evolutionary testing with the

chaining approach. In Proceedings of the Genetic and Evolutionary Compu-

tation Conference (GECCO 2004), pages 1363–1374, 2004.

BIBLIOGRAPHY 301

[73] P. McMinn and M. Holcombe. Evolutionary testing of state-based programs.

In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2005), pages 1013–1020, 2005.

[74] C. Michael and G. McGraw. Automated software test data generation for

complex programs. 13th IEEE International Conferance on Automated Soft-

ware Engineering, pages 136–146, 1998.

[75] C.C. Michael, G. McGraw, and M.A. Schatz. Generating software test data

by evolution. IEEE Transactions on Software Engineering, 27(12):1085–

1110, 2001.

[76] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 6th

edition, 1999.

[77] Edward Jenner Museum. The Jenner Museum. Website -

http://www.jennermuseum.com/. Accessed: October 2005.

[78] Gustav J. V. Nossal. Life, death and the immune system. Scientific Amer-

ican, 269(3):52–62, September 1993.

[79] A. Jefferson Offutt. Mothra mutation testing tool. Internet -

http://www.ise.gmu.edu/faculty/ofut/rsrch/mut.html. Accessed: January

2004.

[80] A. Jefferson Offutt. Automatic Test Data Generation. PhD thesis, Georgia

Institute of Technology, 1988. GIT-ICS 88/28.

[81] A. Jefferson Offutt. Investigations of the software testing coupling effect.

ACM Transactions on Software Engineering and Methodology, 1(1):5–20,

1992.

[82] A. Jefferson Offutt. A practical system for mutation testing: Help for the

common programmer. Proceedings of the International Test Conference,

pages 824–830, 1994.

BIBLIOGRAPHY 302

[83] A. Jefferson Offutt and W.M. Craft. Using compiler optimization techniques

to detect equivalent mutants. The Journal of Software Testing, Verification,

and Reliability, 4:131–154, September 1994.

[84] A. Jefferson Offutt, Zhenyi Jin, and Jie Pan. The dynamic domain reduc-

tion procedure for test data generation: Design and algorithms. Technical

Report ISSE-TR-94-110, Department of Information and Software Systems

Engineering, George Mason University, Fairfax VA, 1994.

[85] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and

Christian Zapf. An experimental determination of sufficient mutant opera-

tors. ACM Transactions on Software Engineering and Methodology, 5(2):99–

118, 1996.

[86] A. Jefferson Offutt and S.D. Lee. How strong is weak mutation? Proceedings

of the Fourth Symposium on Software Testing, Analysis and Verification,

pages 200–213, October 1991.

[87] A. Jefferson Offutt and S.D. Lee. An empirical evaluation of weak mutation.

IEEE Transactions on Software Engineering, 20:337–344, May 1994.

[88] A. Jefferson Offutt, Yu-Seung Ma, and Yong-Rae Kwon. An experimental

mutation system for Java. ACM SIGSOFT Software Engineering Notes,

29(5):1–4, 2004.

[89] A. Jefferson Offutt and J. Pan. Automatically detecting equivalent mutants

and infeasible paths. The Journal of Software Testing, Verification, and

Reliability, 7(3):165–192, September 1997.

[90] A. Jefferson Offutt, R. Pargas, S.V. Fichter, and P. Khambekar. Mutation

testing of software using a MIMD computer. 1992 International Conference

on Parallel Processing, II:257–266, August 1992.

[91] A. Jefferson Offutt and Roland H. Untch. Mutation 2000: Uniting the

Orthogonal. Kluwer Academic Publishers, Massachusetts, USA, 2000.

BIBLIOGRAPHY 303

[92] A. Jefferson Offutt, Christian Zapf, and Gregg Rothermel. An experimental

evaluation of selective mutation. Proceedings of the Fifteenth International

Conference on Software Engineering, pages 100–107, May 1993.

[93] World Health Organization. Influenza fact sheet. Internet, March 2003.

[94] R.P. Pargas, M.J. Harrold, and R.R. Peck. Test-data generation using ge-

netic algorithms. Journal of Software Testing, Verification and Reliability,

9(4):263–282, 1999.

[95] A. S. Perelson and G. F. Oster. Theoretical studies of clonal selection: Min-

imal antibody repertoire size and reliability of self-nonself discrimination.

Journal of Theoretical Biology, 81(4):645–670, December 1979.

[96] Alan S. Perelson and Gerard Weisbuch. Immunology for physicists. Review

of Modern Physics, 69(4):1219–1268, October 1997.

[97] Marc Roper. Software Testing. McGraw-Hill Book Company Europe, 1994.

[98] Alexandra Minna Stern and Howard Markel. The history of vaccines and

immunization: Familiar patterns, new challenges. Health Affairs, 24(3):611–

621, 2005.

[99] Sun. Java J2SE 5.0. Internet - http://java.sun.com/.

[100] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated framework

for structural test-data generation. In Automated Software Engineering,

pages 285–288, 1998.

[101] N. Tracey, J. Clark, K. Mander, and J. McDermid. Automated test-data

generation for exception conditions. Software - Practice and Experience,

30:61–79, 2000.

[102] R. Unger and J. Moult. Genetic algorithms for protein folding simulations.

J Molecular Biology, 231(1):75–81, May 1993.

BIBLIOGRAPHY 304

[103] Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. Mutation

analysis using mutant schemata. International Symposium on Software Test-

ing and Analysis, pages 139–148, 1993.

[104] Andrew Watkins. Exploiting Immunological Metaphors in the Development

of Serial, Parallel, and Distributed Learning Algorithms. PhD thesis, Uni-

versity of Kent, Canterbury, UK, March 2005.

[105] Irving L. Weissman and Max D. Cooper. How the immune system develops.

Scientific American, 269(3):64–71, September 1993.

[106] Wikipedia-Lamarck. Jean-Babtiste Lamarck. Internet -

http://en.wikipedia.org/wiki/Jean-Baptiste Lamarck. Accessed: Oc-

tober 2005.

[107] Wikipedia-Mendel. Mendelian inheritance. Internet -

http://en.wikipedia.org/wiki/Mendelian inheritance. Accessed: Octo-

ber 2005.

[108] Weichen E. Wong. On Mutation and Data Flow. PhD thesis, Purdue Uni-

versity, December 1993.

[109] M.R. Woodward and K. Halewood. From weak to strong, dead or alive? an

analysis of some mutation testing issues. Proceedings of the Second Work-

shop on Software Testing, Verification and Analysis, pages 152–158, July

1988.

