
Schweigler, Mario (2006) A unified model for inter- and intra-processor
concurrency. Doctor of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/86341/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.86341

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 09 February 2021 in order to hold its content and record within University of Kent systems. It is available

Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If y...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/86341/
https://doi.org/10.22024/UniKent/01.02.86341
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A UNIFIED MODEL FOR INTER- AND

INTRA-PROCESSOR CONCURRENCY

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy.

By

Mario Schweigler

August 2006

Abstract

Although concurrency is generally perceived to be a ‘hard’ subject, it can in fact be

very simple — provided that the underlying model is simple. The occam-π parallel

processing language provides such a simple yet powerful concurrency model that is

based on CSP and the π-calculus. This thesis presents pony, the occam-π Network

Environment. occam-π and pony provide a new, unified, concurrency model that

bridges inter- and intra-processor concurrency. This enables the development of dis-

tributed applications in a transparent, dynamic and highly scalable way. The author

specified the layout of the pony system as presented in this thesis, and carried out

about 90% of the implementation.

This thesis is structured into three main parts, as well as an introduction and an

appendix. In the introduction, the need for a unified concurrency model is examined

in detail. Thereupon, the pony environment is presented as a solution that provides

such a unified model. The first part of this thesis is concerned with the usage of the

pony environment for the development of distributed applications. It presents the

interface between pony and the user-level code, as well as pony’s configuration and a

sample application. The second part presents the design and implementation of the

pony environment. It explains the internal structure of pony, the implementation of

pony’s components and public processes, and the integration of pony in the KRoC

compiler. The third part evaluates pony’s performance and contains the final conclu-

sions. It presents a number of performance tests and concludes with a discussion of

the work presented in this thesis, along with an outline of possible future research.

ii

Contents

Abstract ii

List of Figures x

List of Tables xii

List of Algorithms xiii

Acknowledgements xv

Dedication xvii

1 Introduction 1

1.1 Problem and Motivation . 1

1.2 The Need for a Unified Concurrency Model 3

1.3 Aspects of Transparency . 4

1.3.1 Semantic Transparency . 4

1.3.2 Pragmatic Transparency . 6

1.4 History . 7

1.5 New occam-π Features Relevant for pony 8

1.5.1 Mobile Data . 8

1.5.2 Extended Rendezvous . 9

1.5.3 Mobile Channel-types . 10

1.5.4 Forking . 13

iii

1.5.5 Shared Plain Channels . 14

1.5.6 Variables of Any Channel-type and Type-descriptors 15

1.5.7 The occam-π C interface . 15

1.6 Related Developments . 16

1.6.1 Static Approaches . 16

1.6.2 Other CSP-based Platforms 17

1.6.3 Channel Mobility in Icarus . 18

1.6.4 Other Languages Based on the π-calculus 18

1.7 Other Approaches for Distributed Application Development 19

1.7.1 The Grid . 19

1.7.2 CORBA . 19

1.7.3 DSM/ Tuple Spaces . 20

1.7.4 PVM/MPI . 20

1.7.5 Java Isolates . 21

1.7.6 Singularity . 21

1.8 Thesis Structure . 22

I Using pony 24

2 Getting Started 25

2.1 Architecture and Terminology . 25

2.1.1 Applications and Nodes . 25

2.1.2 Network-channel-types . 25

2.1.3 The Application Name Server 26

2.1.4 Network-types . 27

2.1.5 Variants of Channel-types and Their Graphical Representation 27

2.2 Running pony on a Node . 28

2.2.1 pony-enabled occam-π Programs 28

2.2.2 The pony Library . 29

iv

2.2.3 Public pony Processes and Handles 30

2.3 The Startup Mechanism . 31

2.3.1 Different Versions of the Startup Process 31

2.3.2 Parameters of the Startup Processes 32

2.3.3 Design Rules . 35

2.4 Starting the ANS . 36

3 Operation of pony Nodes 37

3.1 Allocating NCT-ends . 37

3.1.1 Explicit Allocation . 37

3.1.2 Usage of NCTs and Implicit Allocation 40

3.2 Shutting Down Nodes . 41

3.3 Configuration . 43

3.3.1 The Node-file . 44

3.3.2 The ANS-file . 45

3.3.3 The ANS-configuration-file . 46

4 Error-handling and Message-handling 48

4.1 Error-handling . 48

4.1.1 Non-transparent Error-handling 48

4.1.2 pony’s Error-handling Mechanism 49

4.1.3 Getting Information About NCTs and Remote Nodes 51

4.1.4 Getting and Deleting Error-points 54

4.1.5 Getting Errors That Happened After a Given Error-point . . . 55

4.1.6 Shutting Down the Error-handler 56

4.2 Message-handling . 56

5 A Sample Application 59

v

II Design and Implementation of pony 66

6 Structure of pony 67

6.1 NCTs and CTBs . 67

6.2 Internal Components of pony . 68

6.2.1 The Individual Components 70

6.2.2 Modular Design of pony . 73

6.3 CTBs in pony-enabled Programs . 74

6.3.1 The Pointer to the Type-descriptor 75

6.3.2 The Claim/Release Mechanism 77

6.3.3 Shutting Down pony-enabled CTBs 81

6.4 The Main pony Kernel . 84

6.4.1 Layout and Startup . 84

6.4.2 Explicit Allocation of NCT-ends 84

7 Protocol-conversion 90

7.1 The Protocol-converters . 90

7.2 Levels of Communication . 91

7.3 Implementation of the Protocol-converters 93

7.4 Cancelling Started ULCs . 94

7.5 The Protocol-decoder . 95

7.6 The Protocol-encoder . 99

7.7 Decoding and Encoding the Various occam-π Protocols 102

7.7.1 Data-item NLCs . 104

7.7.2 Channel-type-end NLCs . 112

7.8 Decode-handler and Encode-handler 120

7.8.1 Differences Compared With the Protocol-converters 120

7.8.2 CLC-Packets . 122

vi

8 Handlers and Managers for CTBs and NCTs 125

8.1 The CTB-handler . 125

8.1.1 The Instant-handler . 126

8.1.2 Client-listener and Server-listener 127

8.1.3 Sessions for NCTs . 127

8.1.4 Starting a Session . 129

8.1.5 Handling Sessions . 133

8.1.6 Sending an NCT-end Over Itself 138

8.2 The CTB-manager . 141

8.3 The NCT-handler . 142

8.4 The NCT-manager . 143

9 The Network Drivers 145

9.1 The TCP/IP Link-handler . 145

9.2 The TCP/IP Link-manager . 147

9.3 Optimising TCP/IP Network Performance 150

10 Other Implementation Issues 153

10.1 Implementation of Error-handling . 153

10.2 Implementation of Message-handling 156

10.3 The Application Name Server . 158

10.4 The Startup Mechanism . 160

10.5 The Shutdown Mechanism . 162

III Performance of pony, Evaluation and Conclusions 168

11 Performance Evaluation 169

11.1 Basic Considerations . 169

11.2 Communication Time . 170

11.3 Throughput . 172

vii

11.4 Network Overhead . 174

11.5 CPU Overhead . 175

11.6 Application Scalability . 179

11.7 Distributed Robust Annealing Case Study 181

12 Conclusions and Future Work 188

12.1 Evaluation of What Has Been Achieved 188

12.2 Adding Support for New/Future occam-π Features 191

12.2.1 Supporting Mobile Processes 191

12.2.2 Supporting Mobile Barriers 192

12.2.3 Supporting RMoX . 192

12.2.4 Supporting Buffered Channels 193

12.2.5 Supporting Behaviour Patterns 193

12.2.6 Supporting the Proposed ‘GATE’/‘HOLE’ Mechanism 193

12.2.7 Supporting New Fault Tolerance Mechanisms 197

12.3 Other Things . 197

12.3.1 Adding Support for Networked Plain Channels 197

12.3.2 Adding Support for ‘LOCAL’ High Performance Channels . . . 198

12.3.3 Supporting Different Architectures 200

12.3.4 Security and Reliability . 201

12.3.5 Simplifying the Setup . 201

Bibliography 203

IV Appendices 214

A Abbreviations and Acronyms 215

B The Public pony Interface 216

B.1 Public pony Processes . 216

viii

B.1.1 Startup Processes . 217

B.1.2 Allocation Processes . 237

B.1.3 The Shutdown Process . 241

B.1.4 Error-handling Processes . 242

B.1.5 The Message-outputters . 251

B.2 Public pony Data-types and Constants 259

B.2.1 The Error Record . 259

B.2.2 Message-types . 260

B.2.3 Network-types . 260

B.2.4 Node-types . 260

B.2.5 Share-types . 260

B.2.6 Results for Startup Processes 261

B.2.7 Results for Allocation Processes 262

B.2.8 Results for Error-handling Processes 263

B.2.9 Error-codes for TCP/IP . 264

C Different ‘commstime’ Implementations 265

C.1 The Traditional ‘commstime’ Implementation 265

C.2 The Distributed ‘commstime’ Implementation 266

C.2.1 The Channel-type Declaration 266

C.2.2 The ‘prefix’ Node . 266

C.2.3 The ‘delta’ Node . 267

C.2.4 The ‘succ’ Node . 268

C.2.5 The ‘consume’ Node . 269

D Own Publications 270

ix

List of Figures

2.1 Channel-type variants . 28

5.1 Sample application: Possible dynamic layout 65

6.1 Layout of the pony environment . 69

7.1 pony components related to protocol-conversion 90

8.1 pony components related to CTBs and NCTs 126

9.1 pony’s network drivers . 145

10.1 The error-handler . 153

10.2 pony components related to message-handling 157

11.1 The ‘commstime’ benchmark . 171

11.2 Throughput: 100 KB messages, two workers per slave 173

11.3 Throughput: Varying message size, one slave with 50 workers 174

11.4 Throughput: 50 KB messages, one slave, varying number of workers . 175

11.5 CPU overhead: Single byte array of varying size 176

11.6 CPU overhead: Sequential protocol, 1 B arrays 177

11.7 CPU overhead: Sequential protocol, several array sizes 178

11.8 The ‘mandelbauer’ application: Shared mode 179

11.9 The ‘mandelbauer’ application: Multiplexing mode 180

11.10Scalability of a distributed application 181

11.11Annealing: occam-π versions . 184

x

11.12Annealing: Single machine versions 185

11.13Annealing: Distributed versions . 186

xi

List of Tables

6.1 Memory layout of CTBs in a pony-enabled KRoC build 75

7.1 Layout of the first byte of an NLC-descriptor 124

xii

List of Algorithms

3.1 Typical structure of a pony node . 42

4.1 An error-handling example . 50

5.1 Sample application: Declarations . 61

5.2 Sample application: The broker . 62

5.3 Sample application: The worker . 63

5.4 Sample application: The customer . 64

6.1 Claiming/releasing ends of a pony-enabled CTB 80

6.2 Making a CTB networked when necessary 81

6.3 Reference-count check for a pony-enabled CTB 81

6.4 Shutdown of a networked CTB . 83

7.1 Pseudo output guard mechanism used in the protocol-decoder 97

7.2 Counterpart to pseudo output guard in the decode-handler 98

7.3 Implementation of ‘cancel-encode’ operation in the decoder 100

7.4 Initiating ‘cancel-encode’ operation in the CTB-handler 101

7.5 Several examples of decoding counted arrays 109

7.6 Making a CTB networked — detailed description 113

8.1 Initiating the closing of a session . 135

8.2 Reacting to a ‘close-session’ message 136

8.3 Initiating the suspension of a session 139

xiii

8.4 Reacting to a ‘suspend-session’ message 140

10.1 Deleting an error-point . 156

xiv

Acknowledgements

The work on this PhD thesis was carried out on a full-time basis in the Computing

Laboratory at the University of Kent, largely funded by a Brian Spratt Bursary from

the Computing Laboratory.

I would particularly like to thank my supervisor Professor Peter Welch for his

guidance and support over the course of my PhD. His occam lectures during my

Masters degree inspired me for this great parallel processing language, and CSP-style

concurrency in general. This was why I decided to develop a network environment

for occam for my MSc dissertation, and why I continued the project for my PhD.

Many thanks also go to the members of my Supervisory Panel, David Wood and

Gerald Tripp, for their advice and help, and to the Computing Laboratory as a

whole for funding my research and providing office space and equipment. Thanks

also to EPSRC for funding the TUNA project, whose high performance cluster was

used to run the performance tests presented in this thesis.

I would also like to thank the Concurrency Research Group at the Computing

Laboratory for creating an excellent academic environment. Over the years, a lot

of research was done in the Concurrency Group, much of which provided valuable

stimuli for my work. In particular, many new features were incorporated in the

occam language, which has now grown into occam-π. This involved many discus-

sions in the research group that also positively influenced the pony project. I would

particularly like to acknowledge Fred Barnes for his advice on the KRoC compiler

and for implementing the compiler support and various auxiliary functions for pony,

xv

as well as Adam Sampson for implementing pony’s protocol-converters and various

benchmarks/demos.

Acknowledgements also go to the WoTUG community, whose annual CPA con-

ferences have been a great forum for exchanging ideas and discussing research results

and future plans. Many WoTUG members provided valuable feedback for my re-

search. Particularly, I would like to thank Dyke Stiles for porting his Distributed

Robust Annealing package to occam-π/pony and running a series of tests, the results

of which are presented in this thesis.

Finally, I would like to thank my family and friends for their support during my

PhD, especially my wife Karin for enduring the long separation while I was away in

England.

xvi

Dedication

To my wife Karin.

xvii

Chapter 1

Introduction

This thesis is concerned with a new, unified, concurrency model that bridges inter-

and intra-processor concurrency. The need for such a unified model is examined in

detail. Thereupon, pony1, the occam-π Network Environment, is presented as a solu-

tion that provides such a unified model. This thesis presents the pony environment,

both in usage and implementation, and evaluates the achievements to date. The

author specified the layout of the pony system as presented in this thesis, and carried

out about 90% of the implementation.

1.1 Problem and Motivation

Historically, computing has been sequential. This has several reasons, which may

probably be best summed up in a single word: tradition. For decades, the von

Neumann architecture [vN93] has moulded our view on what a computer is and how

a computer works. The basic paradigm has always been the sequential execution of

instructions, and, despite the fact that modern processors have evolved enormously

from the first von Neumann based designs, this notion remains virtually unchanged.

1The name ‘pony’ is an anagram of the first letters of [o]ccam, [p]i and [n]etwork; plus a [y] to
make it a word that is easy to remember.

1

CHAPTER 1. INTRODUCTION 2

The idea of step-by-step execution being the somehow ‘natural’ way of computing is

still ‘hard-wired’ in the collective mind of the computer science community.

Concurrency has traditionally been seen as an ‘advanced’ subject. It is taught

late (if at all) in computer science curricula, because it is seen as a non-trivial exten-

sion of the ‘basic’ sequential computing. In a way, this is surprising, since the real

world around us is highly concurrent. It consists of entities that are communicating

with each other; entities that have their own internal lives and that are exchanging

information between each other.

Process calculi such as CSP [Hoa85], with their notion of processes and channels,

are particularly suited to model the real world. Processes can be used to model real-

world entities, since they are self-contained and have their own internal behaviour

and clearly defined interface. Processes may be encapsulated into each other, just

like real-world entities. Channels are the means of exchanging information between

processes. They provide a clear interface between processes without ‘hidden’ routes.

The π-calculus [Mil99] additionally gives us the notion of mobility. It allows us

to communicate processes and channels over other channels, which enhances the

flexibility of the modelled systems.

There is a programming language available that is based on those formal calculi,

but is still easy to understand and to use. This language is occam-π, the new dynamic

version of the classical occam2 [Inm95]. Originally targeted at transputer [Inm88]

platforms, it was specifically designed for the efficient execution of fine-grained, highly

concurrent programs. Still, most people associate concurrency with the traditional

approach of threads, locks and semaphores rather than with the much more intuitive

one of a process algebra.

Networking is increasingly important in today’s world. Originally a merely aca-

demic topic, it has gained significant importance since the 1990s, especially due to

2
occam is a trademark of ST Microelectronics. The original occam language was based on CSP

only; dynamic features from the π-calculus, particularly the notion of channel and process mobility,
have been incorporated in occam-π recently.

CHAPTER 1. INTRODUCTION 3

the advent of the internet as an everyday ‘commodity’ on the consumer market.

The development of large distributed applications is one of the modern challenges

in computer science. Infrastructures such as the Grid [FKT02, FKT01, FKNT02]

are specifically designed for the distribution of large computational tasks onto decen-

tralised resources.

Distributed applications are typically designed to be distributed right from the

start — the mechanisms used for distribution must be specifically addressed by the

developer. The work within this thesis is targeted towards bringing concurrency and

networking together in a transparent and dynamic yet efficient way, using the occam-π

language as the basis for the development of distributed applications. This is possible

because, as stated above, the world is concurrent by nature, which includes networks

of computers. A programming language such as occam-π, which by design captures

this ‘natural’ concurrency, is particularly suited as the basis for a unified concurrency

model.

1.2 The Need for a Unified Concurrency Model

Concurrency is simple — provided that the underlying model is simple. occam-π

offers just that, a concurrency model that is simple to use, yet based on the formal

algebras of CSP and the π-calculus. One of the major advantages of occam-π is that it

encourages component-based programming. Each occam-π process is such a compo-

nent, which can communicate with other components. occam-π applications may be

highly structured, since a group of processes running in parallel can be encapsulated

into a ‘higher level’ occam-π process, and so on.

This component-based approach is the particular charm of occam-π programming.

It allows the development of sub-components independently from each other, as long

as the interface for communication between those sub-components is clearly defined.

In occam-π, this interface is provided (primarily) by channels; this includes both the

CHAPTER 1. INTRODUCTION 4

‘classical’ occam channels and the new dynamic channel-types3 [BW02]. Once all

components of an occam-π application have been developed, they just need to be

‘plugged together’ via their interfaces.

We want to utilise the advantages of occam-π’s concurrency model for the devel-

opment of distributed applications. In order to do this successfully, it is necessary

to extend occam-π in such a way that the distribution of components is transparent

to the components’ developers. As long as the interface between components (i.e.

processes) is clearly defined, the programmer should not need to distinguish whether

the process on the ‘other side’ of the interface is located on the same computer or on

the other end of the globe.

1.3 Aspects of Transparency

pony, the occam-π Network Environment, extends occam-π in such a transparent way.

There are two aspects of transparency that are important: semantic transparency and

pragmatic transparency.

1.3.1 Semantic Transparency

occam was originally developed to be executed on transputers. The transputer was a

microprocessor with a built-in micro-coded scheduler, allowing the parallel execution

of occam processes. occam channels were either emulated within a single transputer

if their ends were held by processes on the same transputer (‘soft channels’), or im-

plemented using the transputer’s links. Each transputer had four links by which it

could be connected to other transputers (‘hard channels’). The late T9000 transputer

[Inm93], which was the last transputer being developed and which went out of pro-

duction shortly after having been introduced by Inmos, additionally offered a Virtual

3Channel-types are bundles of channels. The ends of channel-types are mobile and may be
communicated between processes.

CHAPTER 1. INTRODUCTION 5

Channel Processor (VCP) [MTW93] which allowed many logical occam channels to

be multiplexed over the same physical link.

This approach allowed the simple construction of networks of transputers offering

large computing power, despite the (comparatively) low processing capabilities of a

single transputer. The great advantage of this approach was that the programmer

of an occam process did not have to care whether a specific channel was a soft or a

hard channel. This distinction was transparent from the programmer’s point of view

— the semantics of channel communication was identical for all occam channels.

After the decline of the transputer, the ‘occam For All’ [Poo96] project successfully

saved the occam language from early retirement. Although occam was originally

targeted at transputers, the aim was to bring the benefits of its powerful concurrency

model to a wide range of other platforms. This was achieved by developing KRoC,

the Kent Retargetable occam Compiler [WW96]. KRoC essentially consists of two

parts. The front-end compiles occam code into Extended Transputer Code (ETC)

[Poo98], which is an extension of the original transputer bytecode.

The back-end of KRoC is a translator that translates ETC into the native code of

the target platform, and links it with a runtime kernel that provides a transputer-style

scheduler. This allows the execution of an entire occam program in a single OS-level

process, without the need to involve OS-level thread scheduling. Therefore, occam

programs compiled with KRoC are highly efficient, offering context-switch times in

the range of nanoseconds. In this way, a KRoC program, together with the linked-in

runtime kernel, provides the same functionality as an occam program running on a

single transputer; the runtime kernel emulating the transputer’s support for process

scheduling and soft channels. What had been lost, however, was the support for hard

channels, since without transputers there were no transputer links anymore.

The pony environment re-creates the notion of semantic transparency from the

old transputer days. pony enables the easy distribution of an occam-π application

across several processors — or back to a single processor — without the need to

change the application’s components.

CHAPTER 1. INTRODUCTION 6

With the constant development of KRoC, occam has been developed into occam-π,

which offers many new, dynamic, features [BW01, BW02, Bar03]. pony takes into

account and exploits this development. In the classical occam of the transputer

days, channels were the basic communication primitive, and semantic transparency

existed between soft and hard channels. pony’s basic communication primitive

are occam-π’s new channel-types, and there is semantic transparency between non-

networked channel-types and network-channel-types (NCTs). This transparency in-

cludes the new dynamic features of occam-π.

All occam-π PROTOCOLs can be communicated over NCTs. Mobile semantics (cf.

Section 1.5.1) are preserved as well, both when mobile data [BW01] is communi-

cated over NCTs, and when ends of (networked or non-networked) channel-types

are communicated over other channel-types. The semantics is always the same, and

the developer of an occam-π process does not have to care whether a given channel-

type is networked or not. Some of pony’s general routing mechanisms are similar to

the Virtual Channel Processor of the T9000 transputer; however, routing in pony is

dynamic, rather than static as on the transputer.

1.3.2 Pragmatic Transparency

When achieving semantic transparency, we do not want to pay for it with bad per-

formance. For instance, a system that uses sockets for every single communication,

including local communication, would still be semantically transparent — since the

developer would not have to distinguish between networked and non-networked com-

munication — but it would be hugely inefficient. Here the other important aspect

becomes relevant, namely pragmatic transparency. This essentially means that the

infrastructure that is needed for network communication is set up automatically by

the pony environment when necessary. Due to pony’s dynamic routing, it is used if

and only if needed.

CHAPTER 1. INTRODUCTION 7

Local communication over channel-types is implemented in the traditional

occam-π way, involving access to the channel-word only. In this way, the pony en-

vironment preserves one of the key advantages of occam-π and KRoC, namely high

performance and lightweight, fine-grained concurrency. Only when the two ends of

an NCT are not located on the same node of a distributed application, communica-

tion between them goes through the infrastructure provided by pony. But also for

this case, high performance was one of the key aspects during pony’s development;

the network communication mechanisms in pony are specifically designed to reduce

network latency.

This pragmatic transparency approach, together with a simple setup and config-

uration mechanism, makes the pony environment very dynamic and highly scalable.

The topology of a distributed application written in occam-π and pony is constructed

at runtime and can be altered by adding or removing nodes when needed or when

they become available.

1.4 History

The development of pony and its predecessors has gone through a number of stages.

Originally, it started as an undergraduate student project in 2001 [Goo01]. In autumn

2001, the first major version was released as part of an MSc dissertation under the

name ‘Distributed occam Protocol’ [Sch01]. This version was implemented fully in

occam and offered a certain degree of transparency. Due to the limitations of the

occam language at that time, it was far from being fully semantically transparent,

however.

Since then, the pony project has continued as part of this PhD thesis work4

[SBW03, Sch04]. During this time, the occam language was extended significantly5,

adding many dynamic features, some of which are discussed in Section 1.5. This

4partly under the provisional name ‘KRoC.net’
5and renamed to ‘occam-π’

CHAPTER 1. INTRODUCTION 8

affected the pony project two-fold. Firstly, the new dynamic features in occam-π

enabled the pony environment to be implemented in a semantically and pragmati-

cally transparent way; being implemented almost entirely in occam-π, with a small

part implemented in C, as well as some compiler-level support built-in directly in

KRoC. Secondly, features such as the new dynamic channel-types were themselves

incorporated in the pony environment. As the development of occam-π progresses in

the future, the pony environment will also have to be extended to accommodate sup-

port for new developments; foremost for mobile processes [BW04] and mobile barriers

[WB05].

Another ongoing project is RMoX, the occam operating system [BJV03]. Inte-

grating the pony environment into RMoX will be another important aspect of the

future development of pony. Since RMoX is implemented in occam, an RMoX-

integrated pony environment would be able to utilise RMoX’s native network drivers

directly rather than going through an underlying operating system. This could fur-

ther enhance network performance compared to versions of occam-π and pony that

are running on top of an ‘ordinary’ OS.

1.5 New occam-π Features Relevant for pony

This section contains a (very condensed) overview of some recent extensions to

occam-π that are relevant to pony in one way or another. For a comprehensive

reference, the reader is referred to the KRoC homepage [WMBW06].

1.5.1 Mobile Data

Mobile data-items differ from traditional static occam data-items in their semantics

of assignment and communication. While static data is copied when it is assigned to

another variable or communicated via a channel, mobile data is moved. This means

CHAPTER 1. INTRODUCTION 9

that after the assignment or communication, the variable that held the data-item

before is now undefined.

If we need an actual copy of a mobile data-item, we can clone it, and then continue

using the clone. The original variable will remain defined and unchanged, and the

clone will contain the same data as the original variable at the time of the cloning.

If we change the value of the original variable or of the clone later, the other variable

will not be affected by this. That is, neither moving nor cloning introduce aliasing.

When mobile data-items are communicated across the network via the pony in-

frastructure, they are physically copied but retain their mobile semantics, i.e. the

source variable is undefined after the communication. This behaviour guarantees

semantic transparency.

A special subgroup of mobiles are dynamic mobile arrays. These are mobile as

defined above, and differ from ordinary occam-π arrays insofar as their size is not

known at compile-time and they are allocated dynamically at runtime.

The key advantage of mobile data is that large data-items that take up a lot of

memory do not need to be copied anymore. This saves resources and time. But also

apart from this, there are applications where mobile data offers a ‘natural’ way of

modelling certain scenarios. For instance, if a data structure models the access to

a particular resource which only one process is allowed to use at a time, it makes

sense to implement this data structure as a mobile — which gives us this property

by definition.

1.5.2 Extended Rendezvous

The extended rendezvous allows to ‘intercept’ an occam-π channel communication.

Contrary to normal input operations, the process writing to the channel is not released

from the write operation until explicitly specified by the inputting process. This

allows for instance to read from a channel, perform some operation on the data that

CHAPTER 1. INTRODUCTION 10

was input, pass the data on to another process, wait for the other process to take the

data, and only then to release the original writing process.

The key point is that for the original writer, the handshake semantics between

itself and the final reader is preserved even though a process in the middle has in-

tercepted the data. This allows to add further processes to an application without

changing the semantics of the existing processes.

The syntax for the extended rendezvous is as follows6:

chan ?? x -- Extended input from channel ‘chan’ into ‘x’

... Stuff to be done while writing process remains suspended

... Stuff to be done after writing process has been released

The first indented process is called the during-process; the second one is called the

after-process. The latter may be omitted, in which case it is treated like ‘SKIP’.

The during-process may not use the ‘extended’ channel since this would result in

deadlock. The after-process is intended for situations where the extended rendezvous

is used in an ‘ALT’ or ‘CASE’ input. For stand-alone extended rendezvous inputs, the

after-process is meaningless, since it may be done just as well after the extended

rendezvous has finished.

pony uses the extended rendezvous mechanism to ‘stretch’ communications over

the network while preserving the original handshake semantics between sender and

receiver, giving us semantic transparency. This means that their codings do not need

to be changed. Application processes do not need to detect and take account of

whether the external channels they are using are networked.

1.5.3 Mobile Channel-types

As already discussed in the above sections, channel-types are mobile bundles of chan-

nels. They have two ends, called ‘client-end’ and ‘server-end’ for convenience. These

6Lines starting with ‘...’ denote parts of the code that have been folded. This notation, which
is used by origami and other folding editors, will be used throughout this thesis.

CHAPTER 1. INTRODUCTION 11

names are merely distinctions, however; channel-types may be used for any topology

necessary, not just for client/server architectures.

A channel-type may contain many channels of different protocols and of different

directions. They are declared from the server-end point of view:

CHAN TYPE FOO

MOBILE RECORD

CHAN INT req?:

CHAN INT reply!:

:

In the above example, the server-end of the channel-type ‘FOO’ holds the reading-end

of the request channel and the writing-end of the reply channel. The client-end of

‘FOO’ holds exactly the opposite ends of the channels.

Channel-types are allocated in pairs of one server-end and one client-end variable.

Either or both of these variables may be shared. The following example allocates a

‘FOO’ channel-type with a shared client-end and an unshared server-end:

SHARED FOO! foo.cli: -- Shared client-end

FOO? foo.svr: -- Unshared server-end

SEQ

foo.cli, foo.svr := MOBILE FOO

... Use ‘foo.cli’ and ‘foo.svr’

Shared channel-type-ends must be claimed before they can be used for communication

over their channels. When a shared end is assigned to another variable, or sent over a

channel, it gets auto-cloned, and then the clone is assigned resp. communicated. Since

internally, channel-type-end variables are pointers to a memory structure that holds

the channel-type, the clone is just another pointer to the same memory structure (i.e.

to the same channel-type). In this way, after the assignment or communication, both

the original variable and the target variable will logically contain the shared end. This

CHAPTER 1. INTRODUCTION 12

introduces aliasing, but it is explicitly declared and controlled by language structures

and rules. In particular, as mentioned above, a shared end must be claimed before

it can be used. When an unshared end is assigned or communicated, the original

variable will be undefined afterwards — as usual for mobile variables.

The mobility of channel-type-ends has the same advantages as the mobility of data

discussed in Section 1.5.1. In particular, it allows to model the access to resources

that are ‘mobile’ in the real world too.

The channels within the channel-type would be used in the following way:

-- Process using shared client-end

INT n:

SEQ

CLAIM foo.cli

SEQ

foo.cli[req] ! 47

foo.cli[reply] ? n

... Use ‘n’

-- Process using unshared server-end

INT n:

SEQ

foo.svr[req] ? n

foo.svr[reply] ! n * 5

Channel-types provide the basic communication paradigm for the pony environ-

ment. As discussed above, the network-channel-types that are implemented by the

pony infrastructure are semantically and pragmatically transparent to occam-π’s non-

networked channel-types.

CHAPTER 1. INTRODUCTION 13

1.5.4 Forking

In classical occam, processes could only be started by calling them directly. Therefore,

the topology of an occam network of processes was determined at compile-time and

could not be altered. occam-π offers the possibility to fork off processes dynamically

at runtime when needed. This approach is similar to the well-known mechanisms of

forking off OS-level processes, for instance in Unix-derived systems, although syntax

and handling are much simpler in occam-π:

FORK proc (...)

This example forks off the process ‘proc’ and then continues in parallel with it. It is

also possible to include forking calls in a special forking block:

FORKING

SEQ

... Do stuff

FORK proc (...)

... Do other stuff

The ‘FORKING’ block will not terminate until all processes that have been forked off

within the forking block have terminated themselves — similarly to a normal ‘PAR’

construct.

Note that forking can always be replaced by ‘PAR’ constructs. In case of a ‘FORK’

in a loop, the replacement ‘PAR’ construct would need to be recursive. For instance,

the following example:

WHILE TRUE

SEQ

... Acquire ‘chan.type.svr’

FORK worker (..., chan.type.svr, ...)

CHAPTER 1. INTRODUCTION 14

could be replaced by

REC PROC rec.proc (...)

SEQ

... Acquire ‘chan.type.svr’

PAR

worker (..., chan.type.svr, ...)

rec.proc (...)

:

rec.proc (...)

However, using ‘PAR’ constructs instead of forks may make the code significantly more

complex and add extra overheads. Especially in an infinite loop, the resources taken

by the recursively entered ‘PAR’ constructs are never freed, whereas a forked process

simply terminates.

The support for forking in occam-π allowed pony to be implemented in a prag-

matically transparent way. Sub-components of pony are only started when they are

needed – which may be never, depending on the needs of the particular application.

1.5.5 Shared Plain Channels

There is now support for declaring shared ‘plain’ occam-π channels as in the following

example:

PROC output.something (SHARED CHAN BYTE out!)

CLAIM out!

... Use ‘out!’ for output

:

CHAPTER 1. INTRODUCTION 15

PROC example (CHAN BYTE key?, SHARED CHAN BYTE scr!, CHAN BYTE err!)

SEQ

FORK output.something (scr!)

FORK output.something (scr!)

:

Shared plain channels are implemented by the compiler as anonymous channel-types

with only one channel inside. pony supports shared plain channels for instance in its

message-handling mechanism.

1.5.6 Variables of Any Channel-type and Type-descriptors

occam-π offers a new special type called ‘MOBILE.CHAN’. Variables of that type can

hold any channel-type. pony uses this feature for its allocation processes. These

processes take variables of any given channel-type as parameters and allocate them

as ends of NCTs.

In order to do this, another recent feature of occam-π is exploited, namely type-

descriptors for channel-types. These are generated automatically for every channel-

type defined in an occam-π program, and describe the structure and protocols within

that channel-type. For ‘MOBILE.CHAN’ parameters, KRoC adds another, hidden, pa-

rameter that points to the type-descriptor of the argument. Using this approach,

pony’s allocation processes can allocate any given channel-type-end variable, even

though the parameters of the allocation processes are of type ‘MOBILE.CHAN’ (with

the actual type being unknown at compile-time).

1.5.7 The occam-π C interface

The C interface (CIF) [Bar05] allows processes written in C to run in parallel with

occam-π processes and communicate with them. Calling external C processes from

occam is a fairly old feature. However, the calling occam process always had to wait

for the C process to terminate before it could continue itself. What is new about the

CHAPTER 1. INTRODUCTION 16

C interface is that now occam-π and C processes can run in parallel (which includes

support for forking off C processes) and communicate with each other.

pony uses the occam-π C interface for its protocol-converters (cf. Section 7.1).

These are implemented in C and interact with the rest of the system via the mecha-

nisms provided by the C interface.

1.6 Related Developments

1.6.1 Static Approaches

In the old transputer days, there was semantic transparency between hard and soft

channels. Since occam itself was a purely static language, also the layout of process

networks had to be determined statically at configuration time, using the ‘PLACED

PAR’ mechanism.

There have been projects to target multi-processor platforms other than trans-

puters. An example is Vella’s work on porting occam to Networks of Workstations

(NoWs) [Vel98, VW99] which uses an interface to communicate with the network,

called ‘ocnet’. This interface is a layer between the occam kernel on the one hand, and

the operating system and the networking hardware on the other. Like the original

networks of transputers, this system was static and the layout of the network had to

be configured in advance.

Another example is MESH [BDv99], which is completely hardware-dependent.

MESH is a messaging and scheduling system that enables access to network hardware

(e.g. ethernet cards) and provides user-level scheduling in Linux. The original version

of CCSP [Moo99], on which the current occam-π kernel is based, could access the

messaging capabilities of MESH. But again, this was hardware-dependent and static.

Lately, Barnes’ ‘Application Link Layer’ [Bar05] was developed. This is essentially

a static core version of the protocol-converters used in pony, which are described in

Chapter 7 of this thesis.

CHAPTER 1. INTRODUCTION 17

1.6.2 Other CSP-based Platforms

There are other platforms based on CSP, in particular JCSP (CSP for Java) [Wel99]

and C++CSP (CSP for C++) [BW03]. These are libraries on top of their host

languages that offer occam-style concurrency mechanisms. This includes:

• processes, channels

• networks of processes

• read, write, ‘ALT’ constructs

• channels with shared ends (similar to the shared channel-type-ends in occam-π,

cf. Section 1.5.3)

It is possible to move channel-ends and processes over channels (since they are ob-

jects), similar to the new mobility features in occam-π. Everything is ‘naturally’

mobile, since it is object references that are passed around. However, this incurs

the risk of aliasing, whereas mobility in occam-π is explicitly aliasing-free (cf. Sec-

tion 1.5.1).

The JCSP Network Edition (JCSP.net) [WAF02, WV02] is the network extension

of JCSP. Some of the concepts in pony and JCSP.net are similar. JCSP.net allows the

stretching of channels over a networking fabric (e.g. TCP/IP) and the dynamic cre-

ation of distributed networks of processes. The basic paradigm are network-channels

rather than NCTs as in pony. JCSP.net uses a Channel Name Server which allows

processes to find network-channels by a pre-defined name. pony uses a similar concept

with its Application Name Server; see below.

JCSP.net is not fully transparent, however. When a Java object is communicated

over a JCSP channel locally, its object reference is communicated, which introduces

aliasing. Across the network, objects are serialised and copied when they are com-

municated over JCSP.net channels. This gives us different semantics locally and

networked. Also the semantics of channel-ends is not fully transparent in JCSP.net.

CHAPTER 1. INTRODUCTION 18

The reading-end of a JCSP.net channel may be moved across the same node, but

not in the same way across the network. To move a reading-end over the network,

the user-level code must ‘lease’ the channel from the Channel Name Server, move

an identifier of the channel to the target node, and re-register the channel with the

Channel Name Server. That is, the user-level code must be aware that this is a

‘network operation’.

A network environment for C++CSP was also implemented [Bro04]. This is still

very basic, however, and lacking most of the dynamic features of JCSP.net and pony.

For instance, there is no Channel Name Server such as in JCSP.net, which means that

currently network-channels in C++CSP.net are connected by using physical network

locations.

1.6.3 Channel Mobility in Icarus

The mobility of ends of network-channel-types was inspired by the mobile channels

in Muller and May’s Icarus language [MM98]. However, implementing mobility for

pony’s NCT-ends is substantially more complex because it needs to take into account

the special properties of channel-types compared to plain channels. This includes the

fact that channel-types are bundles of channels, as well as that channel-type-ends

may be shared and that shared ends must be claimed before they can be used. All

these features had to be incorporated into NCTs as well, in order to achieve semantic

transparency.

1.6.4 Other Languages Based on the π-calculus

There are other languages that are based on the π-calculus, for instance Pict [PT00]

and PiLib [CO03]. The latter is a library written in Scala [OAC+05], a Java-style

language merging object-oriented and functional programming. Both Pict and PiLib

are closely related to the π-calculus, especially as far as the syntax is concerned.

CHAPTER 1. INTRODUCTION 19

Unlike occam-π, whose concurrency features are based on the classical imperative

programming paradigm, Pict and PiLib/Scala are, in principle, functional program-

ming languages. This makes them less intuitive than occam-π, and entails a much

steeper learning curve, especially for programmers who are not used to functional

programming.

1.7 Other Approaches for Distributed Application Development

There is a vast number of other approaches for developing distributed applications,

with a variety of different basic distribution primitives. This section gives an overview

of some of the most common architectures and how they relate to the pony/occam-π

approach.

1.7.1 The Grid

The most ‘traditional’ paradigm are remote process or method calls. The basic dis-

tribution primitive of Grid-based systems, such as the Globus Toolkit [FK97, IBM03]

or the Minimum intrusion Grid [Vin05], are ‘jobs’.

There are resource and user nodes — a user node submits a job to be executed

by some resource node. This approach is specifically designed to be distributed, and

there is a clear distinction between the farming-out of jobs to remote resources and

the code that is executed locally.

1.7.2 CORBA

The Object Request Broker mechanism of CORBA [Obj93] provides support for the

distribution of object-oriented applications. CORBA allows access to the methods

of a remote object by providing a ‘proxy’ object that receives method calls and

forwards them to the remote object. Essentially, CORBA also belongs to the RPC

based platforms, just in an OO context.

CHAPTER 1. INTRODUCTION 20

1.7.3 DSM/ Tuple Spaces

Other architectures are built on distributed shared memory or tuple spaces, for in-

stance Linda [CG89] and Java PastSet [PV02]. Tuple-spaced systems are semantically

transparent because both local and networked communication are done via the tuple

paradigm.

Since tuple spaces are built on a distributed shared memory system, a growing

distributed application can cause pragmatic problems. This is because all available

information is stored in the distributed shared memory as a central resource. Keeping

a consistent view of the shared memory is not trivial and gets more complex as the

system grows.

1.7.4 PVM/MPI

Another common approach for developing distributed applications are PVM (Parallel

Virtual Machine) [Sun90] and its de-facto successor MPI (Message Passing Interface)

[MPI97], implemented for instance in the popular LAM/MPI library [Ind04]. As in

occam-π and pony, message passing is the basic paradigm here.

Contrary to pony, however, a distributed application using an MPI implementa-

tion would not be fully transparent in the way described earlier. Either the semantic

transparency is missing — because local communication7 is typically not done through

the message passing mechanisms provided by the MPI library — or the pragmatic

transparency is missing. Of course, a program which uses MPI’s functions for every

single communication is imaginable, but the overheads would be significant so that

such a program would not meet our criteria of pragmatic transparency.

7provided that the host language is also concurrent and based on message passing, otherwise it
would not be semantically transparent anyway

CHAPTER 1. INTRODUCTION 21

1.7.5 Java Isolates

A recent Java related development are Java Isolates [Sun05]. The Java Isolation

API allows to run several Java programs, each with its own main method, in the

same JVM. Each of these programs is run in an ‘isolate’ that provides the same

level of protection as if the programs were run in separate JVMs. This approach

increases performance and scalability without losing security. Compared to occam-π’s

concurrency model, concurrency in Java Isolates is coarse-grained only.

Part of the specification is the possibility to communicate between isolates via

‘links’. If we draw a connection to a process algebra, isolates could be seen as processes

whereas links have a certain resemblance with channels. Comparing Java Isolates

links to occam-π channels, however, shows that link mobility is much more restricted

than in the π-calculus. In particular, a link is permanently bound to the two isolates

(at each end) with which it is initiated. Also, spawning links between different JVMs

in a transparent way (which would be inevitable for a transparent distribution model

such as pony’s) is not part of the Java Isolates specification.

Ultimately, the basic idea behind Java Isolates is not distribution but security

and efficient memory protection within a single JVM (compared with the memory

protection in separate JVMs) — something already present for occam-π processes.

1.7.6 Singularity

Singularity [Mic05] is a recent research project in Microsoft Research that is aimed

at creating an operating system whose primary design goal is dependability. The

Singularity operating system is built on so-called Software-Isolated Processes (SIPs)

which show surprisingly many parallels to the occam/CSP process model, as well as

to the way RMoX [BJV03], the occam operating system, is designed. SIPs can be

created with low overheads and allow fine-grained concurrency.

There is a strong separation between different SIPs that disallows simultaneous ac-

cess to the same resource by two processes. Communication between SIPs is through

CHAPTER 1. INTRODUCTION 22

strongly typed channels, although in Singularity these are bidirectional and asyn-

chronous as opposed to the channels in occam-π and RMoX. Singularity channels are

typed by a contract that allows the specification of valid sequences of messages along

a (bidirectional) channel.

Singularity also uses the same notion of mobile data as occam-π. When a resource

is sent from one process to another, the sending process loses it. This ensures that

the ownership of mobile data always belongs to one process only; this semantics is

the same as in occam-π.

Although supporting distributed applications is no great concern of the project at

the moment, Singularity offers the potential for a unified concurrency model. Since

everything in Singularity, from low-level drivers up to user-level software, is built on

SIPs, it would seem logical to use the same model for distributed applications as well.

How the Singularity project will develop in the years to come remains to be seen.

1.8 Thesis Structure

This thesis consists of three main parts. The first part describes the usage of pony for

the development of distributed applications. Chapter 2 introduces the terminology

used in this thesis and presents the architecture and the startup of the pony environ-

ment. The operation of pony nodes is covered in Chapter 3. Chapter 4 is concerned

with pony’s error-handling and message-handling mechanisms. Finally, Chapter 5

outlines a sample pony application.

The second part of this thesis presents the design and implementation of the pony

environment. Chapter 6 gives an overview of the internal structure of the pony sys-

tem. pony’s protocol-conversion mechanism is examined in Chapter 7. Chapter 8

describes how networked channel-types are implemented in pony. In Chapter 9, the

network-specific parts of pony are explained. The second part concludes with Chap-

ter 10, where the implementation of pony’s error-handling and message-handling

CHAPTER 1. INTRODUCTION 23

mechanisms, the Application Name Server and pony’s startup and shutdown mecha-

nisms are discussed.

The last part of this thesis evaluates pony’s performance and contains the final

conclusions. Chapter 11 presents a number of tests that were carried out to examine

the performance of the pony environment. Chapter 12 concludes with a discussion of

the work presented in this thesis, along with an outline of possible future research.

The appendices provide supplementary information that is not part of the main

thesis. Appendix A contains a list of abbreviations and acronyms used in this thesis.

Appendix B gives a comprehensive reference of the public interface of the pony envi-

ronment, consisting of the public processes, data-types and constants. Appendix C

compares the traditional implementation of the ‘commstime’ benchmark with a dis-

tributed one using pony, in order to give a practical example of how to use pony

to make an existing application distributed. Finally, Appendix D lists the author’s

publications that are related to pony and its development.

Part I

Using pony

This part of the thesis is concerned with the usage of the pony environment for the

development of distributed applications. Chapter 2 introduces the terminology used

in this thesis and presents the architecture and the startup of the pony environment.

The operation of pony nodes is covered in Chapter 3. Chapter 4 is concerned with

pony’s error-handling and message-handling mechanisms. Finally, Chapter 5 outlines

a sample pony application.

24

Chapter 2

Getting Started

2.1 Architecture and Terminology

2.1.1 Applications and Nodes

A group of occam-π programs which are interconnected by the pony infrastructure will

be referred to as a pony application for the remainder of this thesis. Each application

consists of several nodes — one master node and several slave nodes.

The term ‘node’ refers to an occam-π program which is using the pony environ-

ment. That is, there may be several nodes on the same physical computer; these

nodes may belong to the same application or to different applications. In the non-

networked world, node and application would be congruent. In the networked world,

an application is made up of several nodes; the master is the logical equivalent of the

main process of a non-networked occam-π program (in the sense that all the ‘wiring’

of the application originates from there).

2.1.2 Network-channel-types

A network-channel-type (NCT) is a channel-type that may connect several nodes, i.e.

whose ends may reside on more than one node. An individual NCT-end always resides

on a single node, and like any channel-type, an NCT may have many end variables if

25

CHAPTER 2. GETTING STARTED 26

one or both of its ends are shared. NCTs are the basic communication primitive for

pony applications. Nodes communicate with each other over NCTs, using the same

semantics as for conventional channel-types. This includes the protocol semantics of

the items that are communicated over the NCT’s channels as well as the semantics

of NCT-ends.

Like any other channel-type-end, NCT-ends may be communicated over channels,

which includes channels of other NCTs. Also, if an NCT-end is shared, it must be

claimed before it can be used, and it is ensured by the pony infrastructure intercon-

necting the application that every shared NCT-end can only be claimed once at any

given time across the entire application. Practically, the master node queues claim

requests for each end of each NCT and ensures that each NCT-end is only claimed

once at any given time.

NCTs are either allocated explicitly, under a name that is unique within the

application, or implicitly by moving ends of locally allocated channel-types to a remote

node.

2.1.3 The Application Name Server

An Application Name Server (ANS) is an external server that administrates appli-

cations. Each application has a name that is unique within the ANS by which it is

administrated. Nodes of the application find each other by contacting the ANS. This

concept is similar to the ‘Channel Name Server’ in JCSP.net, only on the level of

applications rather than channels (respectively NCTs for pony). This allows a better

abstraction, as well as a simpler name-spacing.

With pony, NCTs are still allocated by using names, but this is managed by the

master node of the application to which the NCT belongs, rather than by the ANS.

This two-level approach makes it simpler to have a single ANS for many applications.

In JCSP.net, it is also possible to administrate network-channels of many separate

CHAPTER 2. GETTING STARTED 27

JCSP.net applications within the same Channel Name Server; however, avoiding

naming conflicts is the programmer’s task there.

The ANS stores the location of the master node of an application. When a slave

node wants to join the application, it would contact the ANS and request the master’s

location. Then the slave would contact the master node itself. Each slave node of

an application has a network link to the master node. Links between slave nodes

are only established when this becomes necessary, namely when an NCT is stretched

between those two slave nodes for the first time.

2.1.4 Network-types

The pony environment has been designed to support potentially many network infras-

tructures. These are referred to as network-types in the following. Currently, the only

supported network-type is TCP/IP. However, adding support for other network-types

in the future would be easy because the internal structure of pony is modular.

In order to add support for a new network-type, modified versions of the network

drivers and the ANS would have to be added to pony. These only comprise a relatively

small part of the pony infrastructure. The non-network-type-specific components of

pony would interact with the new network drivers using the existing interface.

2.1.5 Variants of Channel-types and Their Graphical Representation

For the remainder of this thesis, we will refer to the following variants of channel-

types: one2one channel-types have an unshared client-end and an unshared server-

end. any2one channel-types have a shared client-end and an unshared server-end.

one2any channel-types have an unshared client-end and a shared server-end. Lastly,

any2any channel-types have a shared client-end and a shared server-end. This prop-

erty will henceforth be called the x2x-type of the channel-type. The x2x-type is a

property of concrete instances of a channel-type, not of its type declaration (see

Section 1.5.3 for details).

CHAPTER 2. GETTING STARTED 28

Figure 2.1 shows how channel-types are depicted in this thesis. The client-end

of a channel-type is represented by a straight edge, the server-end by a pointed

edge. Shared ends are darkened. So, for instance a one2one channel-type has no

darkened edges, whereas an any2one channel-type has the straight edge darkened

and the pointed edge not darkened. The other channel-type variants are depicted

accordingly.

one2one any2one

one2any any2any

Figure 2.1: Channel-type variants

2.2 Running pony on a Node

On each node of a pony application, the pony environment must be active. This

section describes the general mechanisms of how pony operates on a node and how

it interacts with the user-level code.

2.2.1 pony-enabled occam-π Programs

The pony environment mainly consists of an occam-π library incorporating pony’s

functionality. In order to achieve full semantic transparency, however, a small amount

of supportive code had to be integrated directly into the KRoC compiler. Details are

discussed in Section 6.3.

The compiler support for pony introduces a minor overhead to the handling of

channel-types in occam-π programs. Although the additional cost is reasonably small,

we want occam-π programmers to be able to choose whether or not to introduce this

CHAPTER 2. GETTING STARTED 29

overhead to their programs. For this, a new build-time option has been added to

KRoC.

If KRoC is built with the ‘--with-pony’ option, the compiler support for pony is

enabled for occam-π programs compiled with this KRoC build; otherwise traditional

occam-π programs are compiled. In the following, we will refer to occam-π programs

that are compiled by a ‘--with-pony’ KRoC build as pony-enabled programs.

Currently, pony-enabled programs and traditional occam-π programs are incom-

patible as far as the handling of channel-types is concerned. For instance, a library

compiled by a traditional KRoC build could not be used by a pony-enabled program,

unless the library uses no channel-types. This is not a major drawback at the mo-

ment, since any traditional occam-π program (or library) can be re-compiled by a

pony-enabled KRoC build without changing its functionality. Only the pony support

for handling channel-types, with the small extra cost, would be introduced.

In the future, it would be desirable to make pony-enabled and traditional KRoC

builds more compatible. A possible approach is outlined in Section 12.3.2.

2.2.2 The pony Library

In order to make the pony environment available on a node, the node must use the

pony library. This is done in the usual occam-π way by adding the following compiler

directives to the source code:

#INCLUDE "ponylib.inc"

#USE "pony.lib"

When the program is being compiled, the following linker options:

-lpony -lcif -lcourse -lsock -lfile -lproc

must be given to KRoC in order to link the program with the pony library as well

as with all libraries that the pony library itself uses.1 pony uses the CIF library for

1It is planned to enable KRoC to recognise the linker options automatically so that they would
not have to be given as parameters anymore; this has not been implemented yet, however.

CHAPTER 2. GETTING STARTED 30

its protocol-converters, and KRoC’s course, socket, file and process libraries [Bar00a]

for calling various routines that are needed for its functionality.

2.2.3 Public pony Processes and Handles

There is a runtime system which handles the internal functions of pony, called the

pony kernel. The user-level code of a node interacts with the pony kernel through a

set of public pony processes. The number of public processes has been kept to the

necessary minimum in order to make the usage of pony as simple and intuitive as

possible.

There are public processes for starting the pony kernel, allocating ends of NCTs,

shutting down the pony environment, as well as for error- and message-handling.

Error-handling is used for the detection of networking errors in pony; message-

handling is used for the reporting of status and error messages while pony is active.

The startup process will return a given set of handles. A handle is the client-end of

a channel-type2 which is used by the user-level code to interact with the pony kernel.

This is done by calling the relevant public process and passing the corresponding

handle as a parameter.

Handles returned by the startup process may be shared if this is requested by

the user-level code. The user-level code may pass a shared handle to several of its

sub-processes, which then need to claim the handle before they can use it for calling

a public pony process. This conforms with the general rules for shared channel-type-

ends, which makes sense since the handles are normal occam-π channel-type-ends.

Apart from the tasks covered by the public processes, all interaction between

the user-level code of a node and the pony kernel running on that node is implicit.

This includes the communication via NCTs between processes on different nodes, the

2Please note that in this thesis, the term ‘handle’ may refer either to the channel-type as such, or
to its client-end. Typically, it is clear from the context which of them is meant; in case of doubt, we
will refer to ‘the handle channel-type’ or to ‘the client-end of the handle’ specifically. The server-end
will always be explicitly referred to as ‘the server-end of the handle’.

CHAPTER 2. GETTING STARTED 31

claiming and releasing of shared NCT-ends, as well as the movement of NCT-ends

between nodes of an application. All these things are done by the user-level code in

exactly the same way as in a traditional (non-networked) occam-π application, which

gives us semantic transparency.

By design rule, handles are not allowed to leave their node. That is, they may not

be sent to other nodes over NCTs, since this would result in undefined behaviour.

2.3 The Startup Mechanism

The pony environment is started on a node by calling one of pony’s startup processes.

If the startup process completes successfully, it forks off the pony kernel and returns

the handles that are needed to call the other public pony processes.

2.3.1 Different Versions of the Startup Process

There are several startup processes with different names, depending on the needs of

the node. The name of the startup process specifies which handles it is supposed to

return. The following signature3 describes the naming of the startup processes:

pony.startup.(u|s)nh[.(u|s)eh[.iep]][.mh]

If the name of the startup process contains ‘unh’, an unshared network-handle is

returned. If it contains ‘snh’, the startup process returns a shared network-handle.

The network-handle can then be used for calling pony’s allocation and shutdown

processes; these are described in Sections 3.1 and 3.2.

If the name of the startup process contains ‘ueh’ or ‘seh’, the startup process

returns an (unshared resp. shared) error-handle which can then be used by the user-

level code to call pony’s error-handling processes. An ‘iep’ in the name of the startup

process means that an initial error-point will be returned along with the error-handle.

3‘[...]’ means optional, ‘|’ is a choice, ‘(...)’ is for grouping.

CHAPTER 2. GETTING STARTED 32

What an error-point is will be explained in Section 4.1.2, which describes pony’s error-

handling mechanism.

Finally, if the name of the startup process contains ‘mh’, a message-handle is

returned. Message-handles are always unshared. The user-level code must then

use the message-handle with one of pony’s message-outputters in order to display

messages from the pony kernel. Details are given in Section 4.2.

2.3.2 Parameters of the Startup Processes

The different startup processes have different parameters, depending on which handles

they are supposed to return. The following parameter list is a superset of all possible

parameters:

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT [SHARED] PONY.NETHANDLE! net.handle,

RESULT [SHARED] PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

The order of the parameters is the same for all startup processes. Depending on the

name of the startup process, certain parameters may be unused, however. ‘[SHARED]’

means that it depends on the startup process whether the parameter is ‘SHARED’ or

not.

The following parameters are common to all startup processes:

• ‘net.type’ is the network-type. At the moment, the only supported network-

type is TCP/IP. This is expressed by passing the ‘PONYC.NETTYPE.TCPIP’ con-

stant to the ‘net.type’ parameter.

CHAPTER 2. GETTING STARTED 33

• ‘ans.name’ is the name of the ANS. This can either be an empty string, or a

string consisting of the following allowed characters: letters, digits, dash, dot

and underscore. The ANS-name determines which ANS is contacted by the

node. Details about this are given in Section 3.3.2.

• ‘app.name’ is the name of the pony application to which the node belongs.

Under this name, the application is administrated by the ANS. Any string is

allowed as the application-name except the empty string.

• ‘node.name’ is the name of the node. The same characters are allowed as for the

ANS-name. The node-name determines which configuration file is used by pony

to resolve the network location of the node. Details are given in Section 3.3.1.

• ‘node.type’ is the type of the node. The following values are allowed:

– ‘PONYC.NODETYPE.MASTER’ means that the node is the master node of the

application. If the ANS has another master node for this application stored

already, the startup process will fail.

– ‘PONYC.NODETYPE.MASTERRESET’ also means that the node is the master

node. However, if the ANS has another master node for this application

stored already, the entire application will be reset in the ANS, and the

requesting node will be made the master of the (new instance of the)

application. Unless other errors occur, the startup process always succeeds

in this case. This mechanism can be used for recovery after an error has

occurred within an application. In this way, an application can be reset in

the ANS without the need to shut down and restart the ANS itself.

– ‘PONYC.NODETYPE.SLAVE’ means that the node is a slave node. If the ANS

has no master node for this application stored yet, the startup process will

fail.

– ‘PONYC.NODETYPE.SLAVEWAIT’ also means that the node is a slave node.

If the ANS has no master node for this application stored yet, it will wait

CHAPTER 2. GETTING STARTED 34

until a master node signs up for this application. Once that happens, the

ANS will notify the waiting slave node, and the startup process can finish.

• ‘result’ is the result returned by the startup process upon completion. If

the startup process completes successfully, the ‘result’ parameter will re-

turn ‘PONYC.RESULT.STARTUP.OK’, otherwise it will return an error. There are

several ‘PONYC.RESULT.STARTUP.*’ constants for errors that can occur during

startup; these are presented in detail in Appendix B.2.6. The implementation

of the startup processes is explained in Section 10.4.

• If the startup process completes successfully, ‘own.node.id’ returns the ID of

the node. Each node of an application is assigned a unique ID. The node-ID of

the master is always 0. The master assigns node-IDs to the slaves in the order

in which the slaves connect to the master, starting with 1. Please note that the

knowledge of the own node-ID is not needed for the function of the pony node;

the node-ID is only returned for debugging purposes.

• Finally, if the startup process completes successfully, ‘net.handle’ will contain

the network-handle. It will be unshared or shared, depending on which startup

process is used.

The following parameters are related to pony’s error-handling mechanism (described

in detail in Section 4.1):

• If the name of the startup process contains ‘ueh’ or ‘seh’, and if the startup

process completes successfully, ‘err.handle’ will contain the (unshared resp.

shared) error-handle.

• If the name of the startup process contains ‘iep’, and if the startup process

completes successfully, ‘err.point’ will contain the initial error-point.

The following parameters are related to pony’s message-handling mechanism (de-

scribed in detail in Chapter 4.2):

CHAPTER 2. GETTING STARTED 35

• If the name of the startup process contains ‘mh’, the message-type must

be passed to ‘msg.type’. There are the following valid message-types:

‘PONYC.MSGTYPE.STATUS’ means that the pony kernel will output only status

messages. ‘PONYC.MSGTYPE.ERR’ means that only error messages are output.

Finally, ‘PONYC.MSGTYPE.STATUSERR’ tells the pony kernel to output both sta-

tus and error messages.

• If the name of the startup process contains ‘mh’, and if the startup process

completes successfully, ‘msg.handle’ will contain the message-handle.

2.3.3 Design Rules

There are certain design rules that must be followed in order to ensure the correct

function of pony applications. As mentioned already, none of the handles is allowed

to be sent to another node. Handles are relevant only to the node that has created

them.

As far as the startup of pony is concerned, the general design rule is that on each

node, the pony environment is only started once, i.e. that each node only belongs

to one pony application.4 The reason for this design rule is to avoid cases where

NCT-ends that belong to one pony application are sent to a node that belongs to

another pony application, which would result in undefined behaviour.

As an exception to this general rule, it is possible to write pony-enabled occam-π

programs that act as a ‘bridge’ between pony applications. Such a program could be

used to exchange data-items of any type, but not NCT-ends, between the different

applications. Extra careful programming would therefore be required. Such a ‘bridg-

ing node’ would need to start a pony environment separately for each application,

and use separate handles for the different applications. It would be vital not to mix

up NCTs of separate applications. That is, no NCT-ends of one application may be

4Please recall that by ‘node’ we mean a pony-enabled occam-π program, not a physical computer.
The latter may run many nodes at the same time.

CHAPTER 2. GETTING STARTED 36

sent to nodes of a different application. As long as this is ensured, a ‘bridging node’

will function properly.

Another design rule concerns the general order of events regarding pony, namely

the startup, the usage and the shutdown of pony. This will be examined in detail in

Section 3.2.

2.4 Starting the ANS

As discussed in Section 2.1.3, the ANS may administrate many different applications.

Each node of a given application must know the network location of the ANS by which

the application is administrated. The ANS itself is a pre-compiled occam-π program

coming with KRoC. It is placed in the ‘bin’ directory of the KRoC distribution; the

same place where the ‘kroc’ command itself is located. The ANS for TCP/IP can

be started by calling:

ponyanstcpip

provided that KRoC’s ‘bin’ directory is in the path of the current shell. The ANS

can be configured with its own configuration file; see Section 3.3.3 for details. The

implementation of the ANS is discussed in Section 10.3.

Chapter 3

Operation of pony Nodes

3.1 Allocating NCT-ends

The basic communication paradigm in pony are network-channel-types, i.e. channel-

types whose ends may reside on more than one node. The process of establishing

a new NCT in a pony application is called allocation. There are two ways of al-

locating NCTs. The first possibility is to allocate the ends of an NCT explicitly,

using one of pony’s allocation processes. The other possibility is to send an end of a

previously non-networked channel-type to another node. By doing this, the channel-

type becomes networked and thus, a new NCT is established in the pony application

implicitly.

3.1.1 Explicit Allocation

NCT-ends are allocated explicitly by using a name that is unique for the NCT across

the entire pony application. This name is a string under which the master node of

the application administrates the NCT. The several ends of an NCT can be allocated

on different nodes using this unique NCT-name. The NCT-name is a string which is

passed as a parameter to pony’s allocation processes; it is not the variable name of the

channel-type-end that is allocated. The variable name may be different for different

37

CHAPTER 3. OPERATION OF PONY NODES 38

ends of the NCT, and may change over time (by assignment and communication) —

as usual for occam-π variables.

There are four different allocation processes whose names have the following sig-

nature:

pony.alloc.(u|s)(c|s)

If the name of the allocation process contains ‘uc’, it is the process for allocating

an unshared client-end of an NCT. The names of the allocation processes for shared

client-ends, unshared and shared server-ends contain ‘sc’, ‘us’ or ‘ss’ accordingly.

Please note that any end of an NCT may be allocated at any time. There is no

prerequisite (such as for instance in JCSP.net) that a client-end may only be allocated

when a server-end has been allocated first, or similar restrictions.1 In pony, this

characteristic has been ‘moved up’ to the application level and now applies to the

slaves and to the master (although the ‘slave/wait’ mechanism allows to start a slave

node before the master; it just waits in this case, cf. Section 2.3.2).

The parameters of the allocation processes are essentially the same; the only

difference is the channel-type-end that is to be allocated. This is the parameter list

of the allocation processes:

(PONY.NETHANDLE! net.handle,

VAL []BYTE nct.name, VAL INT other.end.type,

RESULT <alloc-type> chan.type.end, RESULT INT result)

• ‘net.handle’ is the network-handle.

• ‘nct.name’ is the name of the NCT to which the end belongs that is to be

allocated. Under this name, the NCT is administrated by the master node

of the application. Any string is allowed as the NCT-name except the empty

string.

1In JCSP.net, this prerequisite would apply to writing-ends and reading-ends of network-channels
rather than client-ends and server-ends of NCTs.

CHAPTER 3. OPERATION OF PONY NODES 39

• ‘other.end.type’ is the share-type of the other end of the NCT, i.e. of the

server-end if a client-end is to be allocated and vice versa. Valid values are

‘PONYC.SHARETYPE.UNKNOWN’ if we do not know or do not care about whether

the other end is shared or not, ‘PONYC.SHARETYPE.UNSHARED’ if the other end is

meant to be unshared, or ‘PONYC.SHARETYPE.SHARED’ if the other end is meant

to be shared. Any mismatches will cause the allocation process to return an

error and fail. This would be the case for instance if on one node we allocate

a client-end of an NCT where we specify the share-type of the server-end to

be ‘unshared’, and later we try to allocate a shared server-end of that NCT

on some other node. In this case, the allocation of the server-end would fail

because there is a mismatch.

• ‘chan.type.end’ is the channel-type-end variable that is to be allocated.

‘<alloc-type>’ is a wildcard for the type of the variable. It would be

‘MOBILE.CHAN!’ for the ‘uc’ version, ‘SHARED MOBILE.CHAN!’ for the ‘sc’ ver-

sion, ‘MOBILE.CHAN?’ for the ‘us’ version, or ‘SHARED MOBILE.CHAN?’ for the

‘ss’ version.

• ‘result’ is the result returned by the allocation process. If the allocation

is successful, the ‘result’ parameter will return ‘PONYC.RESULT.ALLOC.OK’,

otherwise it will return an error. The following errors may occur:

– ‘PONYC.RESULT.ALLOC.ILLEGALNCTNAME’: The NCT-name is illegal.

– ‘PONYC.RESULT.ALLOC.CHANTYPEMISMATCH’: There is a mismatch in the

type of the channel-type. This means that earlier on, another channel-

type-end was allocated under the same name which was of a different type

from the end that we try to allocate now. For instance, if after having

allocated a client-end of type ‘FOO!’ on some node, we try to allocate a

server-end of type ‘BAR?’ under the same name, this error will be triggered.

CHAPTER 3. OPERATION OF PONY NODES 40

– ‘PONYC.RESULT.ALLOC.X2XTYPEMISMATCH’: There is a mismatch in the

x2x-type between the channel-type-end that we try to allocate and a pre-

viously allocated one. This error occurs for instance, if after a client-end of

an NCT was allocated with the share-type of the server-end being specified

as ‘unshared’, we try to allocate a shared server-end of that NCT.

– ‘PONYC.RESULT.ALLOC.X2XCOUNTMISMATCH’: This error occurs if although

there is no mismatch in the x2x-type as in the previous error, there is a

mismatch in the x2x-count, i.e. if we try to allocate more than one one2x

client-end or more than one x2one server-end.

3.1.2 Usage of NCTs and Implicit Allocation

Once an NCT-end variable has been allocated, it may be used like any other channel-

type-end variable. From the point of view of the user-level code, the usage is seman-

tically transparent. This includes the possibility of sending a channel-type-end along

a channel.

If the channel over which we want to send a channel-type-end is inside an NCT

whose opposite end is on another node, the channel-type-end that we send will end

up on that node as well. There are two possibilities now — either the channel-

type to which the end that is to be sent belongs is already networked, or not. The

latter means that the channel-type-end was originally allocated on our node in the

traditional way, together with its opposite end.

If the channel-type is not yet networked, it becomes networked during the send

operation. This implicit allocation happens internally and is transparent to the user-

level code. The pony environment becomes aware of the new NCT and will henceforth

treat it just like an explicitly allocated one. The only difference is that implicitly

allocated NCTs have no NCT-name, which means that no other ends of that NCT

may be allocated explicitly. This is not necessary, however, since the NCT had

originally been allocated in a client-end/server-end pair anyway. If one or both of

CHAPTER 3. OPERATION OF PONY NODES 41

its ends are shared, the relevant channel-type-end variable may be multiplied by

simply assigning it to another variable or sending it over a channel — as usual for

channel-types.

The second possibility is that the channel-type-end that is to be sent belongs to

an NCT already, i.e. the pony environment is already aware of this NCT. This may

apply to both explicitly and implicitly allocated NCTs. In this case, no prior implicit

allocation is done by the pony environment before the end is sent to the target node.

When an end of an NCT arrives on a node where no end of that NCT has been

before during the lifetime of the pony application, the NCT-end is established on the

target node by the pony infrastructure.2 Again, this may apply to both explicitly

and implicitly allocated NCTs.

In summary, apart from the actual explicit allocation itself, there is no difference

between explicitly and implicitly allocated NCTs from the point of view of the user-

level code. Any operation that can be done with channel-types can be done with

both explicitly and implicitly allocated NCTs as well.

Details about the implementation of explicit and implicit allocation and the move-

ment of NCT-ends can be found in Part II of this thesis.

3.2 Shutting Down Nodes

At the end of a pony-enabled program, the pony environment must be shut down.

This is done by calling the pony shutdown process. The only parameter of the

shutdown process is the network-handle:

PROC pony.shutdown (PONY.NETHANDLE! net.handle)

2Future research may enhance pony’s performance by not establishing the entire infrastructure
needed for an NCT-end if the end is just ‘passing through’ a node and never used for communication
on the node itself. Details are given in Section 12.2.6.

CHAPTER 3. OPERATION OF PONY NODES 42

By design rule, the pony shutdown process may only be called after all usage of

networked (or possibly networked) channel-type-end variables has finished. ‘Usage’

here means:

• claiming/releasing the channel-type-end if it is shared

• using the channel-type-end for communication over its channels (either way)

The occam-π programmer must make sure that none of the above is happening in

parallel with (or after) calling the shutdown process. Of course, the user-level code

may use channel-types in parallel with or after calling ‘pony.shutdown’, but the

programmer must ensure that none of these channel-types are networked. Typically,

calling ‘pony.shutdown’ would be the very last thing the node does, except possibly

checking for errors via the error-handling processes (cf. Section 4.1) or waiting for the

last few messages from the message-handle (cf. Section 4.2) — none of which involves

networked channel-type-ends. Algorithm 3.1 shows the typical structure of a pony

node.

Algorithm 3.1: Typical structure of a pony node

SEQ

... Do stuff

pony.startup... (...)

... Do stuff like forking off the message-outputter

FORKING

... Do stuff using NCTs, i.e.

... * allocate them

... * claim/release them

... * communicate over their channels

... * fork off processes that are using NCTs

... Do stuff

pony.shutdown (...)

... Do stuff like a final check for errors and shutting down

... the error-handler

The ‘FORKING’ block is there to ensure that all processes using NCTs that might

have been forked off have finished before the shutdown process is called. Of course,

CHAPTER 3. OPERATION OF PONY NODES 43

if no processes are forked off during the node’s lifetime, the ‘FORKING’ barrier would

not be necessary. Please note that the above layout is just a general suggestion.

Programmers may organise the user-level code differently if they wish, as long as the

general order of pony-related events is preserved.

The shutdown process tells the pony kernel to shut down, which includes shutting

down all its components. If our node is the master node of the application, the pony

kernel also notifies the ANS about the shutdown, which will then remove the appli-

cation from its database. This will prevent any further slave nodes from connecting

to the master. On slave nodes, the shutdown process finishes immediately after the

pony infrastructure on that node has been shut down. On the master node, the pony

kernel waits for all slaves to shut down before shutting down itself.

3.3 Configuration

The configuration of the pony environment depends on the network-type that is

used. Apart from the networking settings, no configuration is needed by pony. This

section is concerned with the configuration for TCP/IP (which is currently the only

supported network-type) on Linux/x86 (which is currently the only platform on which

pony runs).

Since a node must be able both to contact other nodes and the ANS and to be

contacted by other nodes and the ANS, it is vital that the node can be contacted via

the same IP address/ port number from all computers involved in the pony application

(i.e. all computers that are running nodes or the ANS). This includes the computer

on which the node itself is running. Therefore, topologies with Network Address

Translation between computers involved in the application are not supported at the

moment. Please note that if all computers involved in the application are located on

a sub-network that uses NAT to communicate with the outside world, the NAT has

no impact on the pony application. Similarly, if there is only one computer involved

in the application (i.e. all nodes and the ANS are running on the same computer),

CHAPTER 3. OPERATION OF PONY NODES 44

the loopback IP address may be used to identify the location of nodes and the ANS;

in this case only the ports would be different.

pony’s network-specific components are configured using simple plain-text config-

uration files that contain the relevant settings. Settings may be omitted, in which

case either defaults are used or the correct setting is detected automatically. There

are three different configuration files, which are discussed in the following sections.

3.3.1 The Node-file

During startup, a node-name must be supplied to the startup process (cf. Sec-

tion 2.3.2). This name may be an empty string, or a string consisting of letters,

digits, dash, dot and underscore. This name is used to determine the name of the

configuration file that is used to resolve the location of the node on the network (the

node-file). In TCP/IP terms, ‘location’ means the IP address and port number over

which the node can be contacted by other nodes or by the ANS. If the node-name is

an empty string, the name of the node-file is:

.pony.tcpip.node

Otherwise it is:

.pony.tcpip.node.<node-name>

where ‘<node-name>’ is the name of the node. The startup process will look for the

node-file first in the directory from which the node is started; if the node-file is not

there, the startup process will look in the user’s home directory. If the node-file is

found, the startup process will look for the following settings in the node-file:

ip=<ip-address>

port=<port-number>

where ‘<ip-address>’ is the IP address (in standard notation) and ‘<port-number>’

is the port number under which the node can be contacted. This IP address/ port

CHAPTER 3. OPERATION OF PONY NODES 45

number pair is used as a unique identification for the node’s location across the entire

application.

If no node-file is found, or if one or more of the settings are missing in the node-file,

the relevant settings will be determined automatically by the startup process. If no

IP address is found, the startup process will attempt to resolve the default outgoing

IP address of the computer. If this is not possible, the startup process will fail. If

no port number is found, pony will automatically assign the first free port that is

greater or equal to port 7500, the default port number for pony nodes. With this

mechanism, it is possible to run several pony nodes on the same physical computer

and use the same node-name for all of them. If the port number is not specified in

the corresponding node-file, pony automatically chooses the next free one.

It is possible to run pony nodes on computers which get their IP address via

DHCP, as long as the current IP address can be resolved (which should normally be

no problem). Since the application does not know (and does not need to know) about

the location of a node until the node effectively joins the application, computers with

variable IP addresses do not present a problem.

3.3.2 The ANS-file

Similarly to the node-name, the name of the ANS must be given to the pony startup

process. The same rules as for the node-name apply to the validity of the ANS-name.

The ANS-name is used to determine the name of the ANS-file, which is used to find

out the location of the ANS. The name of the ANS-file is either:

.pony.tcpip.ans

if the ANS-name is an empty string; otherwise it is:

.pony.tcpip.ans.<ans-name>

where ‘<ans-name>’ is the ANS-name. Again, the startup process will look for the

ANS-file first in the current directory and then in the user’s home directory. If the

CHAPTER 3. OPERATION OF PONY NODES 46

ANS-file is found, the startup process will look for the following settings in the ANS-

file:

host=<hostname-or-ip-address>

port=<port-number>

where ‘<hostname-or-ip-address>’ is either the hostname or the IP address (in

standard notation) and ‘<port-number>’ is the port number under which the ANS

can be contacted.

If no ANS-file is found, or if one or more of the settings are missing in the ANS-

file, the startup process will use default settings instead. If no hostname is found,

the startup process will use the loopback IP address to try to contact the ANS —

which will fail if the ANS is not running on the same computer as the node itself. If

no port number is found, port 7400 will be used as the default port number for the

ANS.

The location of the ANS must be known by all nodes in order to be able to start

the pony application. Therefore, running the ANS on a computer using DHCP is not

advisable. An exception might be static DHCP configurations where the computer

running the ANS is always assigned the same hostname/ IP address by the DHCP

server.

3.3.3 The ANS-configuration-file

The last file is the ANS-configuration-file, which is used by the ANS to find out its

own port number.3 The name of the ANS-configuration-file is:

.pony.tcpip.ans-conf

Again, the file is searched for in the current and in the home directory. If it is found,

the following setting is looked up:

3The ANS does not need to know its own IP address, since it never notifies any nodes about it
at runtime — nodes find the ANS via the ANS-file.

CHAPTER 3. OPERATION OF PONY NODES 47

port=<port-number>

where ‘<port-number>’ is the port number under which the ANS listens for con-

nections. If the file or the setting are not found, the default ANS port of 7400 is

used.

Chapter 4

Error-handling and

Message-handling

4.1 Error-handling

4.1.1 Non-transparent Error-handling

‘Error-handling’ in pony refers to the detection of networking errors that occur during

the operation of the pony application. All other errors that may occur with respect to

the pony environment are errors during the call of one of pony’s public processes. As

already pointed out in the previous chapters, these errors are handled by returning

the relevant error via the ‘result’ parameter of the respective process. Networking

errors, on the other hand, cannot be handled by result parameters, because they may

occur at arbitrary points in time during the operation of the pony application.

This raises the question of error- and exception-handling in occam-π (and simi-

lar parallel processing architectures) in general — a topic that is still under ongoing

discussion in the parallel processing community. Although there have been several in-

teresting approaches, such as Hilderink’s [Hil05], there is no ‘common model’ for error-

or exception-handling in parallel processing architectures yet. Also occam-π lacks a

48

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 49

general fault tolerance mechanism. Whether ideas such as Barnes’ ‘TRY’/‘CATCH’ pro-

posal [Bar03] or a similar approach will be implemented in the near future, cannot

be foreseen at the moment.

Since there is currently no built-in error-handling or fault-tolerance mechanism

in occam-π on which pony’s error-handling could be built, we have chosen an ap-

proach specific to the pony environment. Therefore, error-handling is the only part

of pony that is not semantically transparent in the way defined earlier in this thesis.

Programmers of pony nodes have two options now. They may either do it the ‘tra-

ditional’ occam way, namely trust that the application is error-free and live with the

consequences otherwise, or use pony’s (non-transparent) error-handling mechanism

to check for errors.

4.1.2 pony’s Error-handling Mechanism

If the startup process is requested to return an error-handle, the pony kernel starts an

error-handler which keeps track of errors that occur during the lifetime of the node.

Every time a networking error happens on the node, the error-handler is notified

about it and stores it. The user-level code may check for errors kept by the error-

handler by using pony’s error-handling processes together with the error-handle.

Please note that pony’s error-handling mechanism was specifically designed for

the detection of networking errors, not for fixing them. The absence of a general

fault-tolerance mechanism in occam-π as a base for pony’s error-handling makes it

very difficult to develop a mechanism that allows to recover from networking errors

in all possible situations where they might occur. It is therefore up to the user-level

programmer to react to errors appropriately. This may involve using existing patterns

such as poisoning [Wel89].

pony’s error-handling allows the user-level code to check for errors that happened

after a given point in time. This point is called an error-point. The general mecha-

nism is that the user-level code asks the error-handler for an error-point before the

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 50

occurrence of an event that shall be watched for errors. The event may be anything

the programmer wishes, be it communication over NCTs, allocating new NCT-ends,

etc. The user-level code may now at any given time check for errors that happened

after the error-point, i.e. after the event started.

Algorithm 4.1 shows an example where a networking event is watched for errors.

Please note that this is just an example. There may be situations where a timeout

of ten seconds, or even a timeout in general, would not be appropriate. pony’s error-

handling processes have specifically been designed as a general tool for the detection

of errors — how to use them is up to the user-level code.

Algorithm 4.1: An error-handling example

SEQ

... Get error-point from error-handler

CHAN BOOL sync:

PAR

SEQ

... Event that is to be watched

sync ! TRUE -- Event has finished, synchronising

TIMER tim:

INT t:

SEQ

tim ? t -- Prepare timer

PRI ALT

BOOL any:

sync ? any -- Event has finished successfully

... Prepare to continue normally

tim ? AFTER t PLUS 10000000 -- 10 seconds timeout

SEQ

... Get errors that happened after the error-point

... React accordingly

A special error-point is the so-called initial error-point which may be returned by

the startup process if requested. The purpose of the initial error-point is to cover

errors that may occur right from the startup of the pony environment. There are

networking events happening even before the startup process finishes. It would not

be possible for the user-level code to get an error-point before those events via the

error-handling processes; hence it is returned by the startup process itself. Once the

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 51

user-level code has acquired it, the initial error-point is a normal error-point just like

the ones acquired later.

Errors returned by the error-handler are records that contain specific information

about the error that occurred. The layout of the error record is as follows:

DATA TYPE PONY.ERROR

RECORD

BOOL ans.concerned:

BOOL master.concerned:

BOOL remote.node.concerned:

INT remote.node.id:

INT err.code:

:

The fields of the record are fairly self-explanatory. The three Boolean flags de-

note whether the error had anything to do with the ANS, the master or a remote

node1. ‘remote.node.id’ contains the ID of the remote node if applicable. Finally,

‘err.code’ contains the error-code. For TCP/IP (which is currently the only sup-

ported network-type), this may be one of the constants set out in Appendix B.2.9.

4.1.3 Getting Information About NCTs and Remote Nodes

In order to evaluate the ‘remote.node.id’ field of a returned error properly, we

need to be able to find out which remote nodes might be involved in a networking

event. Between slave nodes, network communication may only happen while the link

between them is established or shut down, or when there is a session of an NCT

between the two nodes. The latter means that the NCT is stretched between them

for communication, i.e. the client-end of the NCT is located on one of the nodes,

the server-end on the other, and each of the ends is either unshared, or shared and

1Note that the master may be a remote node too.

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 52

claimed on the respective node. Any other network communication may only happen

between a slave and the master, or between the master and the ANS during shutdown.

With pony’s error-handling processes, it is possible to find out about the current

remote node of an NCT-end. This is the node on which the other end of the NCT is

currently located (if unshared) or claimed (if shared). Finding out about the current

remote node of an NCT-end is done in two steps. The first step is to find out the ID

of the NCT to which the end belongs. Each NCT has a unique ID across the entire

pony application which is assigned when the NCT is allocated. This applies both

to explicitly and implicitly allocated NCTs. Once the NCT-ID has been assigned,

it does not change during the lifetime of the NCT. Finding out the NCT-ID for an

NCT-end would typically be done right after its (explicit or implicit) allocation.

There are four processes for finding out the NCT-ID whose names have the fol-

lowing signature:

pony.err.get.nct.id.(u|s)(c|s)

The naming follows the same scheme as for the allocation processes. That is, there

are processes for unshared/shared client-ends/server-ends. Apart from the channel-

type-end that is to be checked, the parameters are the same for all four processes:

(<end-type> chan.type.end,

RESULT INT nct.id, result)

• ‘chan.type.end’ is the channel-type-end variable that is to be checked.

‘<end-type>’ is a wildcard for the type of the variable. It would be

‘MOBILE.CHAN!’ for the ‘uc’ version, ‘SHARED MOBILE.CHAN!’ for the ‘sc’ ver-

sion, ‘MOBILE.CHAN?’ for the ‘us’ version, or ‘SHARED MOBILE.CHAN?’ for the

‘ss’ version.

• ‘result’ is the result returned by the process. It can be one of the following

constants:

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 53

– ‘PONYC.RESULT.ERR.GNI.OK’: The process completed successfully. In this

case, ‘nct.id’ now contains the NCT-ID for the channel-type-end that

was checked.

– ‘PONYC.RESULT.ERR.GNI.CTENDUNDEFINED’: The channel-type-end vari-

able was undefined.

– ‘PONYC.RESULT.ERR.GNI.CTENDNOTNETWORKED’: The channel-type belong-

ing to the channel-type-end variable was not networked.

Knowing the ID of a given NCT, we may now at any time ask the error-handler about

its current remote node. This is done with the following process:

PROC pony.err.get.current.remote.node

(PONY.ERRHANDLE! err.handle,

VAL INT nct.id,

RESULT INT remote.node.id, result)

• ‘err.handle’ is the error-handle.

• ‘nct.id’ is the ID of the NCT that is to be checked.

• The ‘result’ can be one of the following constants:

– ‘PONYC.RESULT.ERR.GCRN.OK’: The process completed successfully. If this

is the case, ‘remote.node.id’ now contains the ID of the current remote

node of the checked NCT.

– ‘PONYC.RESULT.ERR.GCRN.INVALIDNCTID’: The NCT-ID is invalid. This

does not necessarily mean that there is no NCT with this ID anywhere

in the pony application, but that on this node, there has never been an

NCT-end with the given NCT-ID since the application has started.

– ‘PONYC.RESULT.ERR.GCRN.NOSESSION’: There is currently no session be-

tween this node and a remote node for the given NCT.

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 54

– ‘PONYC.RESULT.ERR.GCRN.SAMENODE’: There is currently a session for the

given NCT, but both of its ends are on the same node (namely this one).

4.1.4 Getting and Deleting Error-points

To get a new error-point from the error-handler, the following process must be called:

PROC pony.err.new.err.point

(PONY.ERRHANDLE! err.handle,

RESULT INT err.point)

where ‘err.handle’ is the error-handle. The new error-point will be returned by

‘err.point’.

If an error-point is no longer needed, it should be deleted. This is done by calling

the following process:

PROC pony.err.delete.err.point

(PONY.ERRHANDLE! err.handle,

VAL INT err.point,

RESULT INT result)

Again, ‘err.handle’ is the error-handle. ‘err.point’ is the error-point that is to be

deleted. The ‘result’ will be either ‘PONYC.RESULT.ERR.DEP.OK’ if the error-point

has been deleted successfully, or ‘PONYC.RESULT.ERR.DEP.INVALIDERRPOINT’ if the

error-point was invalid.

The main purpose for deleting an error-point is to save the error-handler from

unnecessary work. Internally, the error-handler only keeps errors if there was an

error-point beforehand, otherwise the errors are discarded. This makes sense, since

without an error-point, the errors cannot be retrieved by the user-level code. So,

if an error-point that is no longer needed is not deleted, the error-handler will keep

accumulating errors that may (if there were no other error-points beforehand) never

be retrieved. For the user-level code itself, not deleting error-points that are no longer

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 55

needed makes no practical difference, because errors that have not been retrieved are

discarded automatically when the error-handler is shut down. It is more a matter of

‘clean programming’, such as freeing memory that is no longer used in C programs.

4.1.5 Getting Errors That Happened After a Given Error-point

The following process will retrieve errors that happened after a given error-point:

PROC pony.err.get.errs.after

(PONY.ERRHANDLE! err.handle,

INT err.point,

VAL BOOL check.ans, check.master, check.all.nodes,

VAL []INT nodes.to.check,

RESULT MOBILE []PONY.ERROR err.array,

RESULT INT result)

• ‘err.handle’ is the error-handle.

• ‘err.point’ is the error-point. If the process completes successfully, the value

of the error-point will be adapted. Logically, the error-point is ‘moved’ to the

current point in time. If it is used again later to retrieve errors, the error-handler

will then return errors that happened after now.

• The ‘check.ans’ and ‘check.master’ flags tell the error-handler whether to

return errors that involve the ANS or the master node of the application.

• ‘nodes.to.check’ is an array of node-IDs. The error-handler will return errors

involving these nodes. If the ‘check.all.nodes’ flag is ‘TRUE’, all errors involv-

ing remote nodes are returned; in this case the content of ‘nodes.to.check’ is

irrelevant.

• The returned ‘result’ will be either ‘PONYC.RESULT.ERR.GEA.OK’, in which

case ‘err.array’ will return all errors that happened after ‘err.point’ and fit

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 56

the above criteria, or ‘PONYC.RESULT.ERR.GEA.INVALIDERRPOINT’ if the error-

point was invalid.

4.1.6 Shutting Down the Error-handler

Unlike the other internal components of the pony kernel, the error-handler is not shut

down automatically when the ‘pony.shutdown’ process is called. Instead, it must be

shut down manually by calling a special shutdown process, whose only parameter is

the error-handle:

PROC pony.err.shutdown (PONY.ERRHANDLE! err.handle)

The reason for having a separate shutdown process is that while the pony environment

is being shut down, there are still networking events happening which may fail. Hence,

the user-level code may want to check for errors during (i.e. in parallel with) or after

the shutdown of the pony kernel.

After the ‘pony.shutdown’ process has been called, it is not allowed to call

‘pony.err.get.nct.id.*’ or ‘pony.err.get.current.remote.node’ any longer,

because the infrastructure necessary for calling them is not in place anymore. It

would not make much sense to call them at this point anymore anyway, since as

explained in Section 3.2, NCTs are not allowed to be used anymore after the pony

kernel has been shut down. All other error-handling processes may still be used after

the shutdown of the pony kernel, up until the error-handler is shut down itself.

4.2 Message-handling

‘Message-handling’ in pony refers to the reporting of status and error messages by

the pony kernel. It is intended for debugging purposes and no requirement for the

actual function of the pony environment.

If requested during the startup of the pony environment on a node, the pony kernel

reports status and/or error messages (cf. Section 2.3.2). Status messages are there

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 57

primarily for debugging and testing purposes. They inform about important events

during the operation of the pony environment, such as the communication between

the internal components of the pony kernel, the forking off of new components, and

networking events. Error messages are reported when networking errors occur, i.e.

whenever the error-handler would be notified about an error as well.

If the startup process is requested to return a message-handle, the pony ker-

nel starts a message-handler. The internal components of the pony kernel send all

messages to the message-handler, which buffers them until they are output. This

mechanism is similar to how the error-handler works.

The actual output of the messages is performed by pony’s message-outputters.

Unlike the error-handling processes, a message-outputter is called once, and then

autonomously outputs all messages it gets from the message-handler until the pony

kernel, and the error-handler if applicable, have been shut down. After the last

message has been taken by the message-outputter, the message-handler shuts itself

down automatically. The same applies to the message-outputter after the last message

has been output.

Typically, a message-outputter would run in parallel with everything else the

node does that might trigger messages from the pony environment. It should be

either forked off after the startup of the pony kernel, or put in a ‘PAR’ construct to

run in parallel with the rest of the node’s function.

There are eight different message-outputters whose names have the following sig-

nature:

pony.msg.out.(u|s)(o[.(u|s)e]|e)

There are message-outputters with unshared/shared output channels (for status

messages) and/or unshared/shared error channels (for error messages) — depending

on which kind(s) of messages are supposed to be reported. Output and error channels

are ordinary occam-π channels carrying ‘BYTE’s. Although the message-outputters

may be plugged into any ‘BYTE’ channels the programmer wishes, it would typically

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 58

be the standard output and standard error channels declared in the header of the

node’s main process.

The different message-outputters have different parameters, depending on which

channels are meant to be plugged in. The following parameter list is a superset of all

possible parameters:

(PONY.MSGHANDLE! msg.handle,

[SHARED] CHAN BYTE out!,

[SHARED] CHAN BYTE err!)

Depending on the name of the message-outputter, one of the channels may be not

used. ‘[SHARED]’ means that it depends on the message-outputter whether the chan-

nel is ‘SHARED’ or not.

• ‘msg.handle’ is the message-handle.

• If the name of the message-outputter contains ‘uo’ or ‘so’, ‘out’ is the (unshared

resp. shared) output channel for pony’s status messages.

• If the name of the message-outputter contains ‘ue’ or ‘se’, ‘err’ is the (unshared

resp. shared) error channel for pony’s error messages.

Chapter 5

A Sample Application

This chapter presents a sample pony application in order to enable a better under-

standing of what has been discussed so far. This sample application has purposely

been kept simple. The idea is to draw the attention of the reader to the interplay of

the different aspects of the pony environment, rather than presenting a very realistic

but unnecessarily complex application. Therefore, parts of the code that are not

directly related to pony are usually folded in the sample algorithms.

The sample application consists of three types of nodes. The master node is a

broker that establishes connections between worker nodes and customer nodes. The

workers provide some service for the customers. Both workers and customers connect

to the broker via an explicitly allocated NCT, the broker-handle. When a worker

becomes ready, it passes the client-end of a channel-type (the worker-handle) to the

broker; the worker itself holds the server-end of the worker-handle. When the client-

end of the worker-handle is sent to the broker for the first time, it becomes implicitly

networked.

The broker keeps the client-ends of the worker-handles in a database. When a

customer needs the service of a worker, it notifies the broker, which then passes

a worker-handle from its database to the customer if there is one available. The

customer and the worker can now communicate over the worker-handle about the

service needed by the customer. When the transaction between the customer and

59

CHAPTER 5. A SAMPLE APPLICATION 60

the worker is finished, the customer sends the client-end of the worker-handle back

to the worker over the worker-handle itself. The worker can then re-register with the

broker.

Algorithm 5.1 shows the declarations of the handles and the protocols that are

carried by the channels inside the handles. These declarations are in an include

file that will be included by the three nodes. Algorithms 5.2 through 5.4 show the

implementation of the broker, worker and customer nodes.

For the sake of simplicity, the broker and the worker are running infinitely. Only

the customer node terminates. To keep the algorithms short, pony’s error-handling

and message-handling are only demonstrated in the customer node. Especially the

demonstration of the error-handling is very simple — the entire operation of the node

is guarded by a single timeout and watched for errors collectively. Typically, the user-

level code would watch the individual networking events for errors separately. For an

example timeout/ error watching mechanism, please refer to Algorithm 4.1.

Figure 5.1 shows a possible layout of the sample application. Since the topology

of the application changes dynamically, the figure can only be a ‘snapshot’ of a given

point in time. There are seven nodes altogether, namely the broker, three workers

and three customers.1 All workers and customers are connected to the broker via the

broker-handle. Customer 1 currently holds the worker-handle connecting to worker 1;

the other customers have not acquired a worker-handle yet. Worker 2 may have

just started and not yet registered with the broker, or just finished the service for

a customer but not yet re-registered with the broker. Therefore, worker 2 currently

holds the client-end of its worker-handle itself. Finally, worker 3 is currently registered

with the broker, which holds the relevant worker-handle.

1For the sake of simplicity, nodes and processes are depicted as a single box, because in this
sample application, on each node there is only the main process. Generally, it is important to
distinguish between nodes and processes, since many processes may run on the same node.

CHAPTER 5. A SAMPLE APPLICATION 61

Algorithm 5.1: Sample application: Declarations

-- Filename: ‘decls.inc’

-- Forward declaration

CHAN TYPE WORKERHANDLE:

-- To broker

PROTOCOL BROKERHANDLE.TO.BROKER

CASE

-- Register worker

reg.worker; WORKERHANDLE!

-- Get worker

get.worker

:

-- From broker

PROTOCOL BROKERHANDLE.FROM.BROKER

CASE

-- No worker available

no.worker.available

-- Return worker-handle

get.worker.confirm; WORKERHANDLE!

:

-- Broker-handle

CHAN TYPE BROKERHANDLE

MOBILE RECORD

CHAN BROKERHANDLE.TO.BROKER to.broker?:

CHAN BROKERHANDLE.FROM.BROKER from.broker!:

:

-- To worker

PROTOCOL WORKERHANDLE.TO.WORKER

CASE

... Stuff dealing with the service provided by the worker

-- Finish transaction and return worker-handle

finish; WORKERHANDLE!

:

-- From worker

PROTOCOL WORKERHANDLE.FROM.WORKER

CASE

... Stuff dealing with the service provided by the worker

:

-- Worker-handle

CHAN TYPE WORKERHANDLE

MOBILE RECORD

CHAN WORKERHANDLE.TO.WORKER to.worker?:

CHAN WORKERHANDLE.FROM.WORKER from.worker!:

:

CHAPTER 5. A SAMPLE APPLICATION 62

Algorithm 5.2: Sample application: The broker

#INCLUDE "decls.inc"

#INCLUDE "ponylib.inc"

#USE "pony.lib"

PROC broker (CHAN BYTE key?, scr!, err!)

INT own.node.id, result:

PONY.NETHANDLE! net.handle:

BROKERHANDLE? broker.handle.svr:

SEQ

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",

"", PONYC.NODETYPE.MASTER,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate server-end of broker-handle

pony.alloc.us (net.handle, "broker-handle", PONYC.SHARETYPE.SHARED,

broker.handle.svr, result)

ASSERT (result = PONYC.RESULT.ALLOC.OK)

-- Start infinite loop (therefore no shutdown of pony kernel later)

WHILE TRUE

-- Listen to requests from broker-handle

broker.handle.svr[to.broker] ? CASE

-- Register worker

WORKERHANDLE! worker.handle:

reg.worker; worker.handle

... Store ‘worker.handle’ in database

-- Get worker

get.worker

IF

... Worker available

WORKERHANDLE! worker.handle:

SEQ

... Retrieve ‘worker.handle’ from database

broker.handle.svr[from.broker] ! get.worker.confirm;

worker.handle

TRUE

broker.handle.svr[from.broker] ! no.worker.available

:

CHAPTER 5. A SAMPLE APPLICATION 63

Algorithm 5.3: Sample application: The worker

#INCLUDE "decls.inc"

#INCLUDE "ponylib.inc"

#USE "pony.lib"

PROC worker (CHAN BYTE key?, scr!, err!)

INT own.node.id, result:

PONY.NETHANDLE! net.handle:

SHARED BROKERHANDLE! broker.handle:

WORKERHANDLE! worker.handle:

WORKERHANDLE? worker.handle.svr:

SEQ

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",

"", PONYC.NODETYPE.SLAVEWAIT,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate shared client-end of broker-handle

pony.alloc.sc (net.handle, "broker-handle", PONYC.SHARETYPE.UNKNOWN,

broker.handle, result)

ASSERT (result = PONYC.RESULT.ALLOC.OK)

-- Allocate worker-handle

worker.handle, worker.handle.svr := MOBILE WORKERHANDLE

-- Start infinite loop (therefore no shutdown of pony kernel later)

WHILE TRUE

SEQ

-- Register with broker

CLAIM broker.handle

broker.handle[to.broker] ! reg.worker; worker.handle

-- Inner loop

INITIAL BOOL running IS TRUE:

WHILE running

-- Listen to requests from worker-handle

worker.handle.svr[to.worker] ? CASE

... Stuff dealing with the service provided by the worker

... Deal with it

-- Finish transaction and get worker-handle back

finish; worker.handle

-- Exit inner loop

running := FALSE

:

CHAPTER 5. A SAMPLE APPLICATION 64

Algorithm 5.4: Sample application: The customer

... Compiler declarations

PROC customer (CHAN BYTE key?, scr!, err!)

INT own.node.id, err.point, result:

PONY.NETHANDLE! net.handle:

PONY.ERRHANDLE! err.handle:

PONY.MSGHANDLE! msg.handle:

SEQ

pony.startup.unh.ueh.iep.mh -- Start pony

(PONYC.MSGTYPE.STATUSERR, PONYC.NETTYPE.TCPIP, "", "sample-app",

"", PONYC.NODETYPE.SLAVEWAIT, own.node.id, net.handle,

err.handle, err.point, msg.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

CHAN BOOL sync:

PAR

pony.msg.out.uo.ue (msg.handle, scr!, err!) -- Message-outputter

SHARED BROKERHANDLE! broker.handle:

SEQ

... Allocate shared client-end of broker-handle

IF

result <> PONYC.RESULT.ALLOC.OK

... Deal with allocation error

TRUE

BOOL worker.available:

WORKERHANDLE! worker.handle:

SEQ

CLAIM broker.handle -- Get worker-handle from broker

SEQ

broker.handle[to.broker] ! get.worker

broker.handle[from.broker] ? CASE

no.worker.available

worker.available := FALSE

get.worker.confirm; worker.handle

worker.available := TRUE

IF

worker.available

SEQ

... Communicate over worker-handle regarding service

-- Finish transaction and return worker-handle

worker.handle[to.worker] ! finish; worker.handle

TRUE

... Deal with absence of workers

pony.shutdown (net.handle) -- Shut down pony kernel

sync ! TRUE

SEQ

... Wait for ‘sync’ signal or timeout and check for errors

pony.err.shutdown (err.handle) -- Shut down error-handler

:

CHAPTER 5. A SAMPLE APPLICATION 65

broker

worker 1 worker 2 worker 3

customer 1 customer 3customer 2

BROKERHANDLE

W
 O

 R
 K

 E
 R

 H
 A

 N
 D

 L
 E

W
 O

 R
 K

 E
 R

 H
 A

 N
 D

 L
 E

W
 O

 R
 K

 E
 R

 H
 A

 N
 D

 L
 E

Figure 5.1: Sample application: Possible dynamic layout

Part II

Design and Implementation of

pony

This part of the thesis presents the design and implementation of the pony envi-

ronment. Chapter 6 gives an overview of the internal structure of the pony system.

pony’s protocol-conversion mechanism is examined in Chapter 7. Chapter 8 describes

how networked channel-types are implemented in pony. In Chapter 9, the network-

specific parts of pony are explained. This part concludes with Chapter 10, where the

implementation of pony’s error-handling and message-handling mechanisms, the Ap-

plication Name Server and pony’s startup and shutdown mechanisms are discussed.

66

Chapter 6

Structure of pony

The first part of this chapter introduces the internal components of the pony system

and defines certain terms that are necessary in order to explain pony’s functionality.

The second part discusses the compiler support for pony-enabled KRoC builds, and

the functionality of the main pony kernel.

6.1 NCTs and CTBs

There are two important terms related to pony which it is vital not to get confused:

network-channel-types and channel-type-blocks. As already defined, a network-

channel-type (NCT) is a channel-type that may connect several nodes. An NCT

is a logical construct that comprises a networked channel-type across the entire pony

application. Each NCT has a unique ID, and a unique name if it was allocated

explicitly, across the application.

A channel-type-block (CTB) is the memory block of a channel-type on an individ-

ual node. This memory structure holds all information that is needed for the function

of the channel-type. CTBs are located in the dynamic mobilespace of the node. All

channel-type-end variables belonging to a certain channel-type are pointers to that

channel-types’s CTB. Details about the layout of a CTB can be found in [Bar03].

67

CHAPTER 6. STRUCTURE OF PONY 68

In the pony environment, we distinguish between non-networked and networked

CTBs. A traditional (intra-processor) channel-type is made up of exactly one, non-

networked, CTB. An NCT is made up of several, networked, CTBs, namely one

CTB on each node where there are (or have been) ends of that NCT. The CTBs of

an NCT are interconnected by the pony infrastructure. Non-networked CTBs can

become networked by implicit allocation, cf. Section 3.1.2.

6.2 Internal Components of pony

Apart from some compiler support for CTBs in pony-enabled programs (discussed

in detail in Section 6.3), pony is implemented entirely as an occam-π library. Most

parts of this library were implemented in occam-π. Some auxiliary functions were

implemented in C. The protocol-converters (see below) were implemented as CIF

processes. Figure 6.1 shows the layout of the pony environment with its various

components and the external and internal handles1 used for communication between

the individual components.

The figure assumes that the network-handle and the error-handle are unshared,

the node is the master, and the network-type is TCP/IP. In order to keep the figure

uncluttered, each component is just depicted once, even if it may occur several times

within the pony environment. Unshared client-ends of internal handles are held by

the process in which the end is located in the figure.2 Shared client-ends of internal

handles may be held by several component processes at the same time. If such an

end extends into another process (the instant-handler in the CTB-handler or one of

the managers), this means that the relevant process holds the end and will pass it to

other components on request.

1Both the external and the internal handles are channel-types.
2This applies to the internal decode- and encode-handles, whose client-ends are held by the

relevant CTB-handler.

CHAPTER 6. STRUCTURE OF PONY 69

main kernel

CTB-handler

CTB-manager

instant-

handler

decode-

handler

decode-

handle

internal

decode-handle

encode-

handler

internal

encode-handle

protocol-

decoder

protocol-

encoder

decode-

reply-handle

CTB-instant-

handle

network-hook-

handle

client-

listener

server-

listener

CTB-claim-

handle

CTB-claim-

handle

CTB-main-

handle

CTB-manager-handle

encode-

handle

NCT-manager-handle NCT-manager

NCT-handle

link-manager-handle

TCP/IP

link-manager

link-handle

TCP/IP

link-manager-handle

NCT-handler

TCP/IP

link-handler

internal

message-handle

message-

handler

internal

error-handle

error-handler

kernel-

reply-handle

message-

outputter
message-handle

error-handle

network-

handle

error

output

socket

Figure 6.1: Layout of the pony environment

CHAPTER 6. STRUCTURE OF PONY 70

The communication between the individual components of the pony environ-

ment follows the principle of cycle-free client/server communication as set out in

[MW96]. Although the communication structure between the individual components

may change dynamically, it is guaranteed that at any given time, the client/server

digraph is cycle-free; the communication is therefore deadlock-free.

6.2.1 The Individual Components

This section briefly introduces the individual components of the pony environment.

A detailed description of their functionality, which includes the usage of the internal

handles for communication between the components, will follow in the next chapters.

The Protocol-converters

The purpose of the protocol-converters is to enable the pony environment to support

networked channels carrying all common occam-π protocols. For each networked

channel (i.e. for each channel in a networked CTB), there is one set of protocol-

converters, consisting of a protocol-decoder and a protocol-encoder.

On the sending node, the decoder decodes the incoming protocol into a special

protocol that is used internally by the pony kernel. After something has been sent

from one node to another via the pony environment, the encoder on the receiving node

takes the intermediary pony protocol and encodes it back into the user-level protocol

before passing it on to the receiving user-level process.3 The protocol-converters are

described in detail in Chapter 7.

3The terms ‘decode’ and ‘encode’ are to be seen from the point of view of the user-level protocol.
This is just a convention — from the point of view of the intermediary pony protocol, the two terms
would have to be exactly the other way round.

CHAPTER 6. STRUCTURE OF PONY 71

Decode-handler and Encode-handler

The decode-handler takes the data from the decoder and packs it into a suitable format

for sending it over the network. On the receiving node, the encode-handler takes the

packed data coming from the network, unpacks it, and passes it on to the encoder.

Additionally, the decode-handler and the encode-handler deal with the implications

arising from the movement of NCT-ends over networked channels and the implicit

allocation of NCT-ends where applicable. Details are given in Section 7.8.

The CTB-handler

The CTB-handler deals with the function of a networked CTB. There is a CTB-

handler for each networked CTB on the node. The CTB-handler handles incoming

claim and release requests for the ends of the CTB, as well as the communication

along its channels. Please note that the instant-handler, the client-listener and the

server-listener in the CTB-handler (cf. Figure 6.1) are no actual components of pony

but just simple sub-processes of the CTB-handler. What they do is explained in

Section 8.1, which describes the functionality of the CTB-handler in detail.

The CTB-manager

The CTB-manager is responsible for starting new CTB-handlers when needed (during

explicit allocation and when making a previously non-networked CTB networked). It

also keeps the various internal handles for existing CTB-handlers and passes them to

other pony components on request (via the CTB-manager-handle). The implemen-

tation of the CTB-manager is discussed in Section 8.2.

The NCT-handler

NCT-handlers only exist on master nodes. There is one NCT-handler for each NCT

in the application. The NCT-handler is responsible for handling claim and release

CHAPTER 6. STRUCTURE OF PONY 72

requests coming from the CTB-handlers on the various nodes of the application. This

involves queueing claim requests (if several nodes try to claim the same NCT-end)

until they get served. Details can be found in Section 8.3.

The NCT-manager

The NCT-manager resides on the master node and starts new NCT-handlers when

needed. This is the case when the first end of an NCT is allocated explicitly, or

when a previously non-networked CTB is made networked on a node and a new

NCT needs to be allocated implicitly. The NCT-manager keeps the NCT-handles for

existing NCT-handlers and passes them (via the NCT-manager-handle) to requesting

link-handlers4. Section 8.4 describes the implementation of the NCT-manager.

The link-handler

Link-handlers handle network links between two nodes of a pony application. On

each node, there is a link-handler for each link that has been established to another

node. The link-handler takes messages from pony’s various components and passes

them on to the remote node via the link. When the link-handler on the receiving

node gets a network-message over its link, it passes it on to the component for which

the message is intended. Section 9.1 discusses the implementation of the link-handler

for TCP/IP.

The link-manager

The link-manager establishes new links (and starts new link-handlers) when necessary.

For TCP/IP, this means that new socket connections to other nodes are established or

incoming socket connections from other nodes are accepted. The link-manager keeps

4No other components will ever request an NCT-handle.

CHAPTER 6. STRUCTURE OF PONY 73

the link-handles for existing link-handlers and passes them (via the link-manager-

handle) to requesting pony components. The implementation of the link-manager for

TCP/IP is explained in Section 9.2.

All messages exchanged between two nodes are multiplexed over the link between

the nodes. This applies especially to messages sent over networked channels. The

multiplexing of possibly many networked channels over a single link was inspired by

the Virtual Channel Processor of the T9000 transputer [Inm93], although the routing

in pony is dynamic because NCT-ends may move to other nodes. pony’s routing is a

dynamic version of the ‘crossbar’ routing found in JCSP.net [WAF02].

Error-handler and Message-handler

The error-handler and the message-handler have already been introduced in Chap-

ter 4. A detailed description of the implementation of pony’s error-handling mech-

anism is given in Section 10.1. pony’s message-handling mechanism is discussed in

detail in Section 10.2.

6.2.2 Modular Design of pony

The structure of the pony environment is modular, which makes it easy to replace

components when needed. The most obvious application for this feature would be

adding support for new network-types to pony. This could easily be done by adding

new network drivers (a link-handler and a link-manager), as well as a new ANS, for

the new network-type. The other pony components would not need to be modified

and could communicate with the new network drivers via the existing interface (the

internal handles). During startup, the correct link-manager is started by the pony

environment, depending on the network-type used.

The implementation of the startup and shutdown of the various components, as

well as the ANS, are described in detail in Sections 10.3 through 10.5. To understand

the details of the startup and shutdown of pony properly, it is necessary to understand

CHAPTER 6. STRUCTURE OF PONY 74

the implementation of pony’s components first, therefore startup and shutdown are

discussed in the last chapter of Part II.

6.3 CTBs in pony-enabled Programs

In order to accommodate the needs of NCTs, CTBs in a pony-enabled KRoC build

contain more information than their ‘traditional’ counterparts. This applies to both

networked and non-networked CTBs, since non-networked CTBs may implicitly be-

come networked at any time. In traditional (non-pony-enabled) KRoC builds, the

memory layout of CTBs remains as it used to be.5 The changes in the memory layout

and the handling of CTBs in pony-enabled programs were implemented in the KRoC

compiler by Fred Barnes from the University of Kent. A traditional CTB contains

the following:

• A reference-count that keeps track of how many ends of the channel-type are

currently in scope. It is 2 at the point of allocation, but may increase (when

shared ends get auto-cloned) or decrease (when an end goes out of scope) during

the lifetime of the channel-type. When the reference-count reaches zero, the

CTB is deallocated.

• The channel-words for the channels in the channel-type.

• Semaphores for the client-end and the server-end if the respective end is shared.

The server-semaphore is located above the client-semaphore. The memory for

the server-semaphore is not allocated if the server-end is unshared; the memory

for the client-semaphore is always allocated unless both ends are unshared. The

latter is to ensure that the server-semaphore is always located at the same

memory offset.

5A possible future improvement to keep also in pony-enabled programs the traditional, smaller,
memory layout for CTBs that will never become networked is outlined in Section 12.3.2.

CHAPTER 6. STRUCTURE OF PONY 75

Table 6.1 shows the layout of a CTB in a pony-enabled KRoC build. The order is

bottom-up, i.e. the reference-count is located at the lowest address. The reference-

count, the channel-words and the client-/server-semaphores are the same as for tra-

ditional CTBs. Please note that there are always both semaphores in the CTB (even

if neither end is shared) because the state-field and the state-semaphore are stored

on top of them.

Size Item
1 word reference-count
1 word pointer to type-descriptor
1 word network-hook pointer
n words channel-words of the channels in the channel-type
2 words client-semaphore
2 words server-semaphore
1 word state-field
2 words state-semaphore

Table 6.1: Memory layout of CTBs in a pony-enabled KRoC build

6.3.1 The Pointer to the Type-descriptor

As discussed in Section 1.5.6, in pony-enabled KRoC builds, the compiler generates

type-descriptors for all channel-types that have been declared. In the CTB of each

channel-type, there is a pointer to the relevant type-descriptor. The type-descriptor

describes the structure of the CTB and the protocols carried by the channels within

the CTB. The information stored in the type-descriptor is used during the explicit

allocation of NCT-ends, for the implicit allocation of an NCT when a non-networked

CTB becomes networked, and when an end of an NCT arrives on a node for the first

time and a new networked CTB needs to be allocated for it.

As already pointed out in Section 1.5.6, pony’s allocation processes use a special

‘MOBILE.CHAN’ parameter for the end that is to be allocated. Since the actual type

of the end is unknown at compile-time, the type-descriptor, which is supplied to the

allocation process as a second, hidden, parameter, is used to determine the structure

CHAPTER 6. STRUCTURE OF PONY 76

of the channel-type. This is necessary both to allocate the memory for the CTB and

its internal structure, as well as for setting up the necessary infrastructure for the

NCT in the pony environment. The explicit allocation mechanism is described in

detail in Section 6.4.2.

When sending an end of a non-networked CTB over the network for the first

time, the CTB must be made networked. Although no memory for the CTB needs

to be allocated (since it already exists), the infrastructure for the new, implicitly

allocated, NCT to which the CTB will belong still needs to be set up. In order to do

this, pony’s protocol-decoder (described in Section 7.5) needs to extract the necessary

information about the structure of the channel-type from its type-descriptor. The

mechanism for making a non-networked CTB networked when necessary is described

in detail in Section 6.3.2.

The third case where type-descriptors are needed is when an end of an NCT

arrives on a node for the first time. In this case, pony’s protocol-encoder (described

in Section 7.6) needs to allocate a new networked CTB and set up the infrastructure

for the NCT on the node where the end arrives. This mechanism is similar to the

mechanism used for explicit allocation by the allocation processes, and likewise needs

to access the information stored in the type-descriptor.

When a CTB becomes (explicitly or implicitly) networked, a set of protocol-

converters (one protocol-decoder and one protocol-encoder) are started for each chan-

nel of the CTB. Both the decoder and the encoder have access to the protocol-

descriptor of the channel they serve. By ‘protocol-descriptor’ we mean the type-

descriptor of a channel, which describes the protocol carried by the channel. It is

part of the type-descriptor of the channel-type to which the channel belongs. For

channels carrying channel-type-ends, the protocol-descriptor of the channel contains

a pointer to the type-descriptor of the channel-type to which the carried end belongs.

CHAPTER 6. STRUCTURE OF PONY 77

To access a type-descriptor when a CTB is being made networked, the decoder

uses the pointer stored in that CTB. When the encoder needs to access a type-

descriptor in order to allocate the CTB for a newly arriving NCT-end, it uses the

pointer stored in the protocol-descriptor of the channel it serves.6

6.3.2 The Claim/Release Mechanism

The network-hook, the state-field and the state-semaphore are necessary for the cor-

rect handling of claiming and releasing shared ends of networked CTBs, as well as

for making a CTB networked during an implicit allocation. In traditional CTBs, the

claiming or releasing of a shared end is implemented as a claim or release of the re-

spective semaphore in the CTB. In networked CTBs, the compiler additionally needs

to inform the pony kernel about the claim or release request. This is done via the

network-hook.

For each networked CTB on a node, the relevant CTB-handler holds the server-

end of a network-hook-handle which contains two channels: one for the client-end and

one for the server-end of the CTB. When the respective end is claimed or released,

a claim or release signal is sent to the CTB-handler via the correct channel in the

network-hook-handle. The CTB-handler will read from the channel using an extended

rendezvous, which will be released when the claim has been accepted, respectively,

when the release operation has been completed. This is important especially for the

claim — as soon as the handshake for the claim signal has been completed, KRoC

knows that the end is now claimed in the pony application, i.e. our node is the only

one allowed to use the end. Thus, KRoC may now access the CTB’s channel-words.

It is important to note the two-step approach here. When the end of a networked

CTB is claimed, first the client- or server-semaphore is claimed as usual. Once that

6The decoder might as well use the type-descriptor pointer stored in the protocol-descriptor of
the channel it serves, since it is identical to the pointer stored in the CTB that is to be made
networked. Using the pointer in the CTB simplifies the implementation, however.

CHAPTER 6. STRUCTURE OF PONY 78

claim has been accepted, the claim signal is sent over the network-hook. For a release,

first the network-hook signal is sent, then the client- or server-semaphore is released.

The network-hook pointer in a networked CTB ‘hooks’ into the network-hook-

handle, which means that it points to the base of its channel-words. Using this

mechanism, the network-hook pointer in the CTB replaces the client-end of the

network-hook. During the lifetime of a networked CTB, the reference-count of its

network-hook-handle is therefore 1, which means that the network-hook-handle will

automatically get deallocated when the pony kernel is shut down and the server-end

of the network-hook-handle goes out of scope. Details are given in Section 6.3.3.

For non-networked CTBs in a pony-enabled program, the network-hook pointer is

null. To find out whether a pony-enabled CTB is networked or not, its network-hook

pointer is checked for nullness.

There are two purposes for the state-field in a pony-enabled CTB — one for

non-networked and one for networked CTBs. While the CTB is non-networked, its

state-field contains the state of the CTB’s ends. More precisely, it stores for both the

client-end and the server-end whether they are unshared or shared, and, if an end is

shared, whether it is currently claimed or not. This information is necessary when

an end of a non-networked CTB is sent to another node for the first time and the

CTB becomes networked in the process.

For each NCT in a pony application, the relevant NCT-handler on the master

node keeps track, for both the client-end and the server-end, of whether they are

currently claimed, and if so, on which node they are claimed. When a claim or

release signal for the end of a CTB comes in via the network-hook, the CTB-handler

notifies the NCT-handler on the master node, which then updates the current state

of the respective NCT. This involves queueing claim requests (if several nodes try to

claim the same end of the NCT) until they get served. In order for this mechanism

to work properly, it is vital that the NCT-handler always clearly knows which nodes

have requested claims, and which nodes currently hold a claim, for all NCT-ends

across the application.

CHAPTER 6. STRUCTURE OF PONY 79

When an NCT gets allocated explicitly, it always starts with both of its ends

unclaimed. For implicit allocation, this is not necessarily the case. As a reminder:

implicit allocation happens when an end of a currently non-networked CTB is sent

to another node for the first time. At the point in time when this happens, either

or both ends of the CTB may be claimed. This applies to the opposite end, but

also to the end that is currently being sent. In the latter case, the end variable that

is to be sent is an auto-clone of the claimed variable (cf. Section 1.5.3). When a

non-networked CTB becomes networked, pony uses the state-field to find out about

the current unshared/shared claimed/released state of the CTB’s ends so that the

(implicitly allocated) NCT can start its life in a clearly defined state.

Once a CTB is networked, it will stay networked for the rest of its lifetime. Hence

keeping track of the unshared/shared claimed/released state in the state-field is only

relevant for non-networked CTBs. For networked CTBs, this has no significance

anymore, since once a CTB becomes networked (which for CTBs belonging to an

explicitly allocated NCT is right from the start), the pony environment will keep

track of whether an end is claimed or not by using the network-hook mechanism.

For networked CTBs, the state-field instead stores the ID of the NCT to which

the CTB belongs. This information is needed when ends of that CTB are being sent

over the network. During an implicit allocation, what is stored in the state-field is

‘swapped’. As mentioned before, this happens when a non-networked CTB becomes

networked, i.e. when one of its ends is sent over the network for the first time. For

explicitly allocated NCTs, their CTBs start their life being networked straight away,

therefore their state-field stores the NCT-ID right from the start.

Algorithm 6.1 shows the compiler mechanism for claiming and releasing ends

of a CTB in a pony-enabled program. The state-semaphore is used to protect the

state-field. This is necessary in order to prevent race hazards between the update

of the state-field for non-networked CTBs and the readout of the state-field during

an implicit allocation. Every time an end of a CTB is being sent over a networked

CHAPTER 6. STRUCTURE OF PONY 80

channel7, the protocol-decoder serving that networked channel checks whether the

CTB that is sent over the networked channel is already networked or not. In the

latter case, the CTB is made networked and a new NCT for the CTB is allocated

implicitly. This mechanism is shown in Algorithm 6.2.8

Algorithm 6.1: Claiming/releasing ends of a pony-enabled CTB

SEQ

... In case of a claim: claim client- resp. server-semaphore now

... Claim state-semaphore

IF

... CTB is non-networked (i.e. network-hook is null)

SEQ

... Update the state-field (depending on whether we are

... claiming/releasing a client/server)

... Release state-semaphore

TRUE -- i.e. CTB is networked (network-hook <> null)

SEQ

... Release state-semaphore

... Send relevant claim or release signal over the client

... or server channel of the network-hook

... Don’t change the state-field (it contains the NCT-ID)

... In case of a release: release client- resp. server-semaphore now

An important characteristic in Algorithm 6.1 is that for non-networked CTBs,

the state-semaphore is released after the state-field has been updated, whereas for

networked CTBs, the state-semaphore is released before the claim/release signal is

sent over the relevant network-hook channel. The latter is vital in order to avoid

race conditions between a client-claim and a server-claim, or between a claim and the

check in Algorithm 6.2. As pointed out above, the handshake for the claim signal

over the network-hook is not released until the claim has been accepted. Therefore,

it is vital that the state-semaphore is released before a claim signal is sent over the

network-hook, because otherwise a pending claim might block the possibility to claim

the other end of the CTB, or to send an end of the CTB over a networked channel.

7In pony, all networked channels are part of an NCT.
8These algorithms are in a pseudo-occam notation and not actually implemented in occam-π.

Algorithm 6.1 is implemented directly in the compiler; Algorithm 6.2 is part of the protocol-decoder,
which is implemented as a CIF process.

CHAPTER 6. STRUCTURE OF PONY 81

Algorithm 6.2: Making a CTB networked when necessary

SEQ

... Claim state-semaphore

IF

... CTB is non-networked (i.e. network-hook is null)

SEQ

... Check state of client and server in state-field

... Notify pony kernel about client- and server-state and

... everything necessary for an implicit allocation

... Wait for pony kernel to implicitly allocate a new NCT

... for the CTB

... Get NCT-ID, client-end of network-hook-handle and

... handles for the protocol-converters from pony kernel

... Store NCT-ID in state-field

... Set up network-hook pointer with channel-words in

... network-hook-handle

... Decrease reference-count of network-hook-handle

... Fork off protocol-converters for all channels in the CTB

TRUE -- i.e. CTB is networked (network-hook <> null)

SKIP

... Release state-semaphore

6.3.3 Shutting Down pony-enabled CTBs

Contrary to non-networked CTBs, when the reference-count of a networked CTB

reaches zero, the CTB’s memory is not freed. Algorithm 6.3 shows the modified

reference-count check that is made by the compiler after the reference-count of a

CTB has been decreased.

Algorithm 6.3: Reference-count check for a pony-enabled CTB

SEQ

... The CTB’s reference-count has just been decreased

IF

... (Reference-count = 0) AND

... (CTB is non-networked (i.e. network-hook is null))

... Deallocate CTB

TRUE

SKIP

The reason for keeping networked CTBs with a reference-count of zero in place is

that when a new end of the NCT to which the CTB belongs is allocated explicitly,

CHAPTER 6. STRUCTURE OF PONY 82

or when another end of that NCT arrives on our node, we can re-use that CTB as

well as its infrastructure (including the protocol-converters).

When a new end of an NCT comes into existence (by explicit allocation or by

arriving over a networked channel) on a node where there already is a networked CTB

for that NCT, no allocation needs to be done. In such a case, simply the reference-

count of the CTB is increased. This also applies to CTBs whose reference-count is

currently zero (for instance because all ends of the NCT to which the CTB belongs

have left our node earlier). When a new end for such a CTB comes into existence on

our node, pony (more specifically, the allocation process resp. the encoder) increases

the reference-count of the CTB — to 1 in this case.

The deallocation of networked CTBs is done as part of the pony shutdown pro-

cess. As discussed in Section 3.2, the shutdown process may only be called after all

usage of networked (or possibly networked) channel-type-end variables has finished.

Therefore, it is safe now to deallocate networked CTBs, because neither the user-level

code nor the pony kernel will access them anymore.

The shutdown process tells the pony kernel to shut down, which in turn will shut

down all its components. After this has happened, the pony kernel returns an array

that contains the pointers to all networked CTBs on the node. At this point, the

reference-count of those CTBs matches exactly the number of ends of the particular

CTB that are in scope within the user-level code (as it would be for non-pony-enabled

occam-π programs).

If we consider the typical structure of a pony node shown in Algorithm 3.1, it

emerges that if all possibly networked channel-type-ends are declared right before (or

inside) the ‘FORKING’ block, obviously, all their reference-counts would be zero now.

However, possibly networked channel-type-end variables may have been declared else-

where by the user-level code — even right at the start of the program for instance.

In that case, some of the networked CTBs would have reference-counts greater than

zero now.

CHAPTER 6. STRUCTURE OF PONY 83

The pony shutdown process now calls an auxiliary C function9, which is given

the array of pointers to networked CTBs that was returned by the pony kernel. The

auxiliary function performs Algorithm 6.4 for each networked CTB.

Algorithm 6.4: Shutdown of a networked CTB

IF

... Reference-count = 0

... Deallocate CTB

TRUE

SEQ

... Set network-hook pointer in CTB to null

... (thus making it look non-networked)

... Don’t deallocate the CTB

After the pony shutdown process has finished, all networked CTBs with a

reference-count of zero have been deallocated. The formerly networked CTBs which

still have ends in scope, and whose reference-count is still greater than zero, will be

deallocated automatically by the normal compiler mechanism (see Algorithm 6.3) as

soon as their last end goes out of scope.

Please note that in Algorithm 6.4 we use the term ‘making it look non-networked’

rather than ‘making it non-networked’ because the only point in setting the network-

hook pointer to null is to ‘fool’ the reference-count check in Algorithm 6.3, so that

it will deallocate the CTB when the reference-count reaches zero. The CTB is not a

‘normal’ non-networked CTB, since the state-field still contains the NCT-ID and not

the unshared/shared claimed/released state of its ends as for ‘normal’ non-networked

CTBs. This is not a problem, however, since, as mentioned before, the ends of those

formerly networked CTBs are not allowed to be used anymore anyway, hence it is

irrelevant what is stored in the state-field. The only thing that will still happen to

those CTBs is their deallocation when their last end goes out of scope.

9This function, as well as the other auxiliary C functions mentioned in this thesis, have largely
been implemented by Fred Barnes from the University of Kent.

CHAPTER 6. STRUCTURE OF PONY 84

6.4 The Main pony Kernel

6.4.1 Layout and Startup

As discussed earlier, user-level processes communicate with the pony kernel via the

network-handle, the error-handle and the message-handle if applicable. While the

server-ends of the latter two are held by the error-handler and the message-handler

respectively, the server-end of the network-handle is held directly by the main pony

kernel.

During the startup of the pony environment (cf. Section 10.4), the main kernel

starts off its various subcomponents, namely the error-handler, the message-handler

and the various managers as the case may be. Then it waits for requests via the

network-handle. These may be requests for the explicit allocation of NCT-ends, or

the request to shut down the pony environment. The implementation of the explicit

allocation is discussed in Section 6.4.2, the shutdown mechanism in Section 10.5.

6.4.2 Explicit Allocation of NCT-ends

When a user-level process wants to allocate a new NCT-end, it needs to call one

of pony’s allocation processes (cf. Section 3.1.1). The first thing the allocation pro-

cess does is checking whether the NCT-name is an empty string. If this is the case,

the allocation process terminates returning an error. Otherwise, it calls an auxil-

iary C function that extracts the following information from the type-descriptor of

the channel-type (which the auxiliary function can access via the hidden parameter

discussed in Section 1.5.6):

• The number of channels in the channel-type.

• The number of reading-ends in the channel-type from the point of view of its

server-end — henceforth called ‘readers-in-server’.

CHAPTER 6. STRUCTURE OF PONY 85

• The type-hash of the channel. This is calculated by the compiler for each

channel-type that is declared on a node. The type-hash is de-facto unique

for each channel-type, since although duplicate type-hashes are theoretically

possible, chances for them to occur are vanishingly small.

Now the allocation process requests the explicit allocation from the main pony kernel

via the network-handle. Doing this, it gives the following information to the main

kernel:

• The direction-type of the end that is to be allocated, i.e. whether the end is a

client-end or a server-end.

• The share-type of the end that is to be allocated. This may be ‘unshared’ or

‘shared’.

• The share-type of the opposite end. As discussed in Section 3.1.1, this may be

‘unknown’, ‘unshared’ or ‘shared’.

• The number of channels.

• The number of readers-in-server.

• The type-hash of the channel-type.

• The NCT-name under which the end is to be allocated.

The main kernel now forwards all this information, except the number of channels

and the number of readers-in-server, to the NCT-manager on the master node. This

is done by first passing the message (via the corresponding link-handle) to the link-

handler that holds the link to the master — henceforth called ‘master-link-handler’

— which then passes it on to the master node via its link.

Then the main kernel waits for a reply from the NCT-manager. This will come

via the link from the master node. When getting the reply, the master-link-handler

passes it on to the main kernel via the kernel-reply-handle. The reply may either be

CHAPTER 6. STRUCTURE OF PONY 86

an error or a confirmation. An error would be returned to the allocation process,

which would then return it to the user-level process through its result parameter.

If a confirmation arrives from the NCT-manager, it comes together with the ID

of the NCT to which the NCT-name belongs. For the NCT-manager, this may have

been a new or an existing NCT, depending on whether the given NCT-name was used

before to allocate an NCT-end somewhere across the pony application.10 If the NCT

is new, the NCT-manager has forked off a new NCT-handler for it. For the main

kernel, it is irrelevant whether the NCT is new or not; the only thing that matters is

that the NCT-manager has returned the NCT’s ID.

The main kernel now requests the allocation of a new channel-type-end for that

NCT-ID from the CTB-manager. This is done via the CTB-manager-handle. There

are now two possible replies from the CTB-manager. If there already is a CTB

for the NCT with the given ID on our node, the CTB-manager will tell the main

kernel that no new CTB needs to be allocated but just the reference-count of the

existing CTB must be increased. Together with this message, the CTB-manager gives

the main kernel the pointer to the CTB — henceforth called ‘CTB-pointer’.11 The

main kernel then passes this information on to the allocation process, which in turn

calls an auxiliary C function that increases the CTB’s reference-count and returns

a channel-type-end pointing to the CTB. This channel-type-end is then returned to

the user-level process by the allocation process.

If there is no CTB for the NCT with the given ID on our node yet, the CTB-

manager tells the main kernel to allocate a new CTB. The main kernel then notifies

the CTB-manager about the number of channels and the number of readers-in-server

in the CTB that is to be allocated. The CTB-manager now allocates a set of handles

and returns the following (client-ends of the) handles to the main kernel:

10The NCT-manager uses the type-hash to ensure that only NCT-ends of the same type are
allocated under the same NCT-name.

11In the occam-π context, the CTB-pointer is not the actual pointer, but its integer value.

CHAPTER 6. STRUCTURE OF PONY 87

• A network-hook-handle.

• An array of decode-handles — henceforth called ‘decode-handle-array’.

• An array of encode-handles — henceforth called ‘encode-handle-array’.

The handles in the two arrays will be used by the protocol-converters to communicate

with the decode-handlers and encode-handlers. The size of the arrays equals the

number of channels in the CTB. The main kernel now tells the allocation process

that a new CTB must be allocated, and passes the NCT-ID, the network-hook-handle

and the two arrays to the allocation process. The allocation process then calls an

auxiliary C function that does the following:

• Allocate a new CTB according to the type-descriptor.

• Initialise the reference-count to 1.

• Store the type-descriptor pointer in the CTB.

• Initialise the client-, server- and state-semaphores.

• Store the NCT-ID in the state-field.

• Set up the network-hook pointer with the channel-words in the network-hook-

handle.

• Decrease the reference-count of the network-hook-handle.

• Fork off a protocol-decoder and a protocol-encoder for each channel-word in the

CTB.

For each channel-word in the CTB, both a decoder and an encoder must be started.

This is necessary because every channel may be used in both directions — depend-

ing on whether the client-end or the server-end of the NCT are claimed on our

node (which may change dynamically). This, obviously, applies to both readers-in-

server and writers-in-server (the latter being channels that have their writing-end in

CHAPTER 6. STRUCTURE OF PONY 88

the server-end of the channel-type, accordingly). The protocol-converters are given

the channel-word, the protocol-descriptor of the channel, and the correct decode- or

encode-handle from the arrays as parameters.

The CTB-handler, which will be holding the server-ends of the decode- and

encode-handles, needs to know which of them are connected to protocol-converters

serving readers-in-server, and which of them are connected to protocol-converters

serving writers-in-server. This is necessary so that the channels in the CTB can

always be used in the correct direction, both when the client-end and when the

server-end of the NCT are claimed on our node. Therefore, the order of the handles

in the decode- and encode-handle-arrays is vital.

The rule for the order of the handles is that both arrays contain first the handles

for the readers-in-server, then the handles for the writers-in-server, and that the same

index in the arrays refers to the handles for the same channel-word. The auxiliary

function must obey this rule when forking off the protocol-converters for the channels

in the CTB. Please note that the actual order of the channels in the CTB itself is

irrelevant for the CTB-handler. The CTB-handler only needs to know how many

readers-in-server there are in the CTB in order to distinguish between the handles

for readers-in-server (at the beginning of the arrays) and the handles for writers-in-

server (at the end of the arrays).

With this rule, the CTB-handler knows that if the client-end of the NCT is claimed

on our node, the handles at the beginning of the arrays are used by protocol-converters

serving channels to which the user-level-process writes, and the handles at the end

of the arrays are used by protocol-converters serving channels from which the user-

level-process reads. If the server-end of the NCT is claimed on our node, it is exactly

the other way round.

The auxiliary function returns the newly allocated channel-type-end and its CTB-

pointer to the allocation process. The allocation process then passes the CTB-pointer

on to the main pony kernel and terminates, returning the newly allocated channel-

type-end to the user-level process. The main kernel now passes the CTB-pointer

CHAPTER 6. STRUCTURE OF PONY 89

on to the CTB-manager, which stores it and forks off a new CTB-handler for the

newly allocated CTB. The CTB-handler for its part forks off a decode-handler and

an encode-handler for each channel in the CTB.

CTB-handlers do not distinguish between unshared and shared ends. They always

treat both ends of the CTB as if they were shared. Unshared ends are claimed and

released by the pony environment internally if applicable. They are claimed when

they are allocated explicitly or when they arrive on our node via a networked channel;

they are released when they are sent to a remote node over a networked channel.

Internal claim and release messages are sent via a CTB-claim-handle. For each

CTB-handler, there are two CTB-claim-handles — one for the client-end and one for

the server-end. If the newly allocated NCT-end was unshared (no matter whether

a new CTB was allocated or an existing CTB’s reference-count was increased), the

main kernel now requests the CTB-claim-handle for the newly allocated end from the

CTB-manager, and uses it to send a claim signal to the end’s CTB-handler. In this

way, the newly allocated end gets internally claimed.

Chapter 7

Protocol-conversion

Figure 7.1 shows the pony components related to protocol-conversion that are dis-

cussed in this chapter.

decode-

handler

decode-

handle

internal

decode-handle

encode-

handler

internal

encode-handle

protocol-

decoder

protocol-

encoder

decode-

reply-handle

encode-

handle

Figure 7.1: pony components related to protocol-conversion

7.1 The Protocol-converters

The protocol-converters are the interface between the user-level process and the pony

environment (or, more specifically, the decode-handler and the encode-handler dis-

cussed in Section 7.8). As introduced above, they are used with networked channels

to convert any given user-level protocol into a special protocol understood by the

pony kernel, and back.

pony’s protocol-converters were implemented in C as CIF processes by Adam

Sampson from the University of Kent. They are an extended version of the generic

90

CHAPTER 7. PROTOCOL-CONVERSION 91

‘DECODE.CHANNEL’ and ‘ENCODE.CHANNEL’ processes presented in [SBW03]. They are

more complex, however, since they need to cope with channel-type-ends as well,

rather than just with data-items as the old generic versions.

One reason for implementing the protocol-converters as CIF processes was that

they need to be able to fork off other protocol-converters — something not possible for

a generic process created directly by the compiler. Additionally, implementing them

in C allows a greater flexibility than the generic implementation did. Implementing

the protocol-converters in occam-π itself was not an option because the low-level

manipulations of channels and CTBs needed cannot be done in occam-π.

For each channel-word in a networked CTB, there are both a protocol-decoder and

a protocol-encoder. These are forked off when the CTB becomes networked. This

happens either during explicit allocation (cf. Section 6.4.2) or inside other protocol-

converters. The latter can happen either when an end of a previously non-networked

CTB is sent over a networked channel and the CTB becomes networked in the process

(this is handled by the decoder), or when an end of an NCT arrives on a node where

there is no CTB for this NCT yet (this is handled by the encoder).

7.2 Levels of Communication

The term ‘communication’ generally refers to an occam-π communication (using the

‘!’ and ‘?’ notations in the source code), but is too general for the purpose of

describing the functionality of the protocol-converters, and the pony environment in

general. Therefore, we distinguish between three different levels of communication.

A user-level communication (ULC) is the entire communication carried by an

occam-π channel, i.e. everything noted after the ‘!’ or the ‘?’. So, for instance:

c ! x; y; z

CHAPTER 7. PROTOCOL-CONVERSION 92

would be one ULC. A ULC therefore comprises the entire user-level protocol as de-

scribed in the protocol-descriptor for the channel (which is part of the type-descriptor

of the channel-type to which the channel belongs).

A compiler-level communication (CLC) is an actual communication on a channel-

word. For instance, a ULC carrying a sequential protocol consists of several CLCs.

A network-level communication (NLC) is a communication between the protocol-

decoder and the decode-handler, or between the encode-handler and the protocol-

encoder. It is important to note that an NLC is a theoretical construct describing an

atomic unit of information exchange between the protocol-converters and the rest of

the pony environment. An NLC is not measuring the actual number of occam-π com-

munications between the protocol-converters and the pony kernel, since one NLC may

be implemented as several occam-π communications between decoder and decode-

handler or encode-handler and encoder respectively.

We distinguish between NLCs for data-items and NLCs for channel-type-ends.

Data-item NLCs carry an address/size pair, as in the earlier ‘DECODE.CHANNEL’ and

‘ENCODE.CHANNEL’ [SBW03]. These are the address and size (in bytes) of a piece of

data that is to be sent from one node to another. Typically, this would be the address

and size of the data-item itself, although some data-items may require a more com-

plex implementation; see below. For most purposes, a CLC can be decoded as one

NLC. Some data-items require more than one NLC per CLC; other cases allow the

decoding of more than one CLC in a single NLC. Details about the implementation

of the decoding and encoding of occam-π’s various data-item protocols are given in

Section 7.7.1. Channel-type-end NLCs are implemented as special sequences of com-

munications between the protocol-converters and the pony kernel; see Section 7.7.2

for details.

CHAPTER 7. PROTOCOL-CONVERSION 93

7.3 Implementation of the Protocol-converters

When a user-level process sends something along a networked channel, the decoder

takes the first CLC of the ULC as an extended input, i.e. the user-level process is

not released until the decoder specifically releases it. The decoder can now calculate

how many data-item NLCs and how many channel-type-end NLCs there are for the

first CLC.1 The convention for counting the NLCs is that for data-item NLCs, each

address/size pair is counted as one NLC. For channel-type-end NLCs, the sequence of

communications between the protocol-converters and the pony kernel that deals with

one channel-type-end is counted as one NLC, i.e. each channel-type-end is equivalent

to one channel-type-end NLC.

The decoder passes the number of NLCs in the first CLC, together with a Boolean

flag telling whether there are any ‘remaining’ CLCs in the ULC (i.e. CLCs that will

follow the first one), to the pony kernel, followed by the NLCs of the first CLC

themselves. The pony kernel sends the first CLC, together with the information just

mentioned, to the receiving node, where it gets passed to the protocol-encoder. If the

remote protocol-encoder is able to output the first CLC of the ULC to the remote

user-level process, an acknowledgement is sent back to the sending node. In this case,

the procedure can be repeated for the ‘remaining’ CLCs of the ULC if there are any.

Since the remote user-level process is now committed to take the entire ULC, the

pony kernel can send the ‘remaining’ CLCs to the receiving node in one go. Again,

the ‘remaining’ CLCs are preceded by the number of data-item NLCs and the number

of channel-type-end NLCs in them.2 When they have been taken by the user-level

process on the receiving node, this again gets acknowledged. After having received

this acknowledgement (or the acknowledgement for the first CLC in case there are

1Currently, no protocols are implemented in the protocol-converters where a single CLC would
need to be decoded as a mixture of data-item NLCs and channel-type-end NLCs, or even as more
than one channel-type-end NLC. Nevertheless, the pony kernel is able to cope with such protocols
for future uses.

2The ‘remaining’ CLCs may obviously contain mixtures of NLCs, or several channel-type-end
NLCs, since there may be more than one ‘remaining’ CLC (for instance in a sequential protocol).

CHAPTER 7. PROTOCOL-CONVERSION 94

no ‘remaining’ CLCs), the decoder knows that the ULC has been taken completely

by the remote user-level process, and can therefore now release the sending user-level

process from the extended rendezvous.

7.4 Cancelling Started ULCs

There are cases where the first CLC of a ULC will not be taken by the user-level

process on the remote node. This may happen if the remote NCT-end gets released

on the remote node (in case it is shared), or if it gets moved over a networked channel

to some other node (in case it is unshared). In the latter case, the remote NCT-end

would get internally released by the pony environment, as discussed earlier.

In cases like these, started ULCs must be cancelled. There are two possibilities

now. Either the first CLC of the started ULC has already reached the encoder on the

receiving node, or not. For the decoder on the sending node, this does not matter.

It would in any case receive a ‘cancel’ message rather than the acknowledgement for

the first CLC. When this happens, the decoder must cancel the started ULC, which

means that it must leave the outputting user-level process in the same state as it

was before the ULC started. This specifically means that the extended input for the

first CLC, which the decoder had started, is not released, and thus the outputting

user-level process remains suspended.

After the cancel, the decoder gets deactivated until the opposite end of the NCT

is available again — when it is claimed again somewhere in case it is shared, or when

it arrives on the target node (and gets internally claimed there) in case it is unshared.

Then the decoder gets activated again and restarts with the extended input of the

first CLC. The essential property of the cancel operation is that when the decoder

gets activated the next time, it must be able to access the channel-word and perform

the decoding of the first CLC as if the previous attempt (which has been cancelled)

had never happened in the first place.

CHAPTER 7. PROTOCOL-CONVERSION 95

The second possibility is that the first CLC of the started ULC has reached the

encoder on the receiving node already when the ‘cancel-triggering’ event happens. In

this case, the encoder is now attempting to output the first CLC to the user-level

process — which will not take it. If this happens, the decoder that is connected to

the same channel-word as the outputting encoder (i.e. not the decoder on the sending

node, but the one on the receiving node) will get a ‘cancel-encode’ message from the

pony kernel.

This decoder then inputs the first CLC that the matching encoder tries to out-

put. The decoder must undo all operations that the encoder performed before out-

putting the CLC. This especially involves deallocating any previously allocated mem-

ory (for dynamic mobiles) and decreasing any previously increased reference-counts

(for channel-type-ends). Then, the decoder releases the encoder from the communi-

cation. Semantically, the ‘cancel-encode’ operation behaves like a user-level process

that reads the first CLC of the ULC from the networked channel (i.e. from the en-

coder), but then every variable it has just read goes out of scope.

After the ‘cancel-encode’, everything must be in the same state as if the first CLC

of the ULC had never reached the encoder in the first place. If the cancelled ULC

consists of more than one CLC, the pony kernel will then notify the encoder that the

ULC was cancelled, so that the encoder will not wait for the ‘remaining’ CLCs of the

ULC anymore. If the ULC has just one CLC, it is irrelevant for the encoder whether

the ULC was cancelled or not, because the first CLC of the ULC is output by the

encoder in any case — either to the matching decoder if the ULC is cancelled, or the

user-level process otherwise.

7.5 The Protocol-decoder

As mentioned above, the protocol-decoder may be activated or deactivated. It is

activated when the NCT-end which holds the writing-end of the channel served by

the decoder is claimed (externally or internally) on our node, and the opposite end is

CHAPTER 7. PROTOCOL-CONVERSION 96

claimed on another node. At all other times, the decoder is deactivated. As discussed

above, the deactivation of the decoder may happen in the middle of a started ULC,

in which case the ULC is cancelled. The decoder communicates over the decode-

handle with its decode-handler, which for its part communicates over the internal

decode-handle with the CTB-handler that is responsible for the CTB which holds the

channel that is served by the decoder.

When the decoder starts its main loop, it waits for requests from the decode-

handler. This may be an activation, a ‘cancel-encode’ request, or a shutdown signal.

The ‘cancel-encode’ operation was discussed in Section 7.4 already; pony’s shutdown

mechanism will be explained in Section 10.5.

When a decoder gets activated by the decode-handler, it ALTs over the user-level

channel and the incoming channel of the decode-handle. From the decode-handler, it

may get a ‘cancel’ message, in which case the decoder is deactivated and returns to

the main loop, after having sent a cancel confirmation back to the decode-handler.

From the user-level channel, the decoder may get the first CLC of a new ULC. This

would be taken by the decoder as an extended input.

After getting the first CLC from the user-level process, the decoder tries to output

the number of NLCs in the first CLC to the decode-handler.3 In parallel to that, it

listens to the incoming channel of the decode-handle for a possible ‘cancel’ message

from the decode-handler, as shown in Algorithm 7.1. This mechanism4 is used instead

of an output guard, which does not exist in occam-π and CIF. The counterpart

mechanism in the decode-handler is shown in Algorithm 7.2.

Using this mechanism, the decode-handler may send a ‘cancel’ message to the

decoder at any time before it has received the number of NLCs in the first CLC

(which starts the ULC) from the decoder. It will definitely get a cancel confirmation,

but may get a started ULC beforehand — which it must ignore.

3The number of NLCs in the first CLC is always accompanied by a Boolean flag telling whether
there are any ‘remaining’ CLCs in the ULC (cf. Section 7.3). For simplicity, this Boolean flag will
not be mentioned separately below.

4Implemented in C like the rest of the decoder; the notation in the algorithm is pseudo-occam.

CHAPTER 7. PROTOCOL-CONVERSION 97

Algorithm 7.1: Pseudo output guard mechanism used in the protocol-decoder

BOOL was.cancelled:

SEQ

CHAN BOOL cancel.sync:

PAR

SEQ

... Send number of NLCs in first CLC to decode-handler

cancel.sync ! TRUE

ALT

... Get ‘cancel’ message from decode-handler

SEQ

BOOL any:

cancel.sync ? any

was.cancelled := TRUE

BOOL any:

cancel.sync ? any

was.cancelled := FALSE

IF

was.cancelled

SEQ

... Cancel the started ULC and deactivate decoder

... Send cancel confirmation to decode-handler

TRUE

... Continue with ULC normally

If no ‘cancel’ message comes in from the decode-handler during the mechanism in

Algorithm 7.1, the decoder will now output all NLCs of the first CLC to the decode-

handler. Afterwards, the decoder waits for a reply from the decode-handler. This

may be an acknowledgement for the first CLC, or a ‘cancel’ message. Again, if it gets

a ‘cancel’ message, the decoder would perform the cancel operation and send a cancel

confirmation back to the decode-handler. In this case, however, the decode-handler

can be sure that only a cancel confirmation can come from the decoder, therefore no

complex mechanism as in Algorithm 7.2 is needed in the decode-handler here.

If the first CLC was acknowledged, the decoder can now do the necessary cleanup.

This involves deallocating the memory of dynamic mobiles that were sent away, and

decreasing the reference-count of the CTBs for all channel-type-end NLCs in the first

CLC. If there are ‘remaining’ CLCs in the ULC, the decoder now reads them from

CHAPTER 7. PROTOCOL-CONVERSION 98

Algorithm 7.2: Counterpart to pseudo output guard in the decode-handler

SEQ

... We need to cancel a started ULC

... Send ‘cancel’ message to decoder

... Get CASE input from decoder

... Cancel confirmation

SKIP

... Number of NLCs in first CLC -- ignore!

... Get ‘real’ cancel confirmation from decoder

the user-level channel, again with an extended input (for the very last CLC). After

this is done, the decoder sends the number of NLCs in the ‘remaining’ CLCs to the

decode-handler, followed by the NLCs themselves. They will definitely be taken,

since the remote user-level process is now committed to take the entire ULC. The

decoder now waits for the acknowledgement from the decode-handler; then it does

the cleanup after the ‘remaining’ CLCs. After having done this cleanup (or after the

cleanup for the first CLC in case there are no ‘remaining’ CLCs), the decoder releases

the user-level process from the extended rendezvous and returns to the main loop.

CHAPTER 7. PROTOCOL-CONVERSION 99

7.6 The Protocol-encoder

The protocol-encoder is significantly simpler than the decoder for two main reasons.

Firstly, the encoder does not need to do any cancelling itself — started ULCs that the

encoder tries to output are cancelled by the matching decoder with the ‘cancel-encode’

operation. Secondly, the encoder does not need to ALT between messages from the

encode-handler and the user-level process — since it outputs to the user-level channel.

Therefore, we do not need to distinguish between activated and deactivated states

for the encoder.

The encoder communicates over the encode-handle with its encode-handler, which

for its part communicates over the internal encode-handle with the CTB-handler that

is responsible for the CTB which holds the channel that is served by the encoder.

When the encoder starts its main loop, it waits for a request from the encode-handler.

This may be either a shutdown signal (cf. Section 10.5 for pony’s shutdown mecha-

nism) or the number of NLCs in the first CLC of a new ULC. In the latter case, the

encoder would input all NLCs of the first CLC from the encode-handler and output

the first CLC to the user-level channel. Once the first CLC has been taken, the

encoder sends an acknowledgement to the encode-handler.

If there are ‘remaining’ CLCs in the ULC, the encoder then waits for the next

message from the encode-handler. If this is a ‘cancel’ message, the encoder now knows

that the first ULC was not taken by the user-level process, but by the matching

decoder performing a ‘cancel-encode’. In this case, the encoder does not need to wait

for the ‘remaining’ CLCs and may return to the main loop. The other possibility is

that the encoder gets the number of NLCs in the ‘remaining’ CLCs from the encode-

handler. In this case, the encoder then inputs all NLCs of the ‘remaining’ CLCs from

the encode-handler and outputs all ‘remaining’ CLCs to the user-level channel. Once

they have been taken, the encoder sends an acknowledgement to the encode-handler.

After this is done (or after having sent the acknowledgement for the first CLC in case

there are no ‘remaining’ CLCs), the encoder returns to the main loop.

CHAPTER 7. PROTOCOL-CONVERSION 100

Algorithm 7.3: Implementation of ‘cancel-encode’ operation in the decoder

SEQ

... We just got a ‘cancel-encode’ request

ALT

... Input first CLC that the matching encoder is sending

SEQ

... Cancel that CLC

... Release matching encoder from communication

-- Wait for acknowledgement that CLC was output by encoder

dec.handle[to.decoder] ? CASE cancel.encode.ack

-- Return confirmation

dec.handle[from.decoder] ! encode.cancelled

-- Acknowledgement that CLC was output by encoder

dec.handle[to.decoder] ? CASE cancel.encode.ack

-- Return confirmation

dec.handle[from.decoder] ! encode.not.cancelled

Algorithm 7.3 shows how the ‘cancel-encode’ operation is implemented in the

decoder. Regarding the ‘cancel-encode’ operation, the decode-handler behaves like an

‘invisible’ intermediary between the CTB-handler and the decoder. It exchanges all

messages between the two, and behaves towards the CTB-handler in exactly the same

way as the decoder would. Algorithm 7.4 shows how the ‘cancel-encode’ operation is

initiated in the CTB-handler, and how the CTB-handler reacts.

This mechanism is necessary because the CTB-handler may get an (external or

internal) release signal for an NCT-end containing the reading-end of a channel while

an output is pending in the encoder which serves that channel. ‘Pending’ here means

that the first CLC has already been sent to the encoder (with the encode-handler

as an intermediary), but no acknowledgement has come back yet. In such a case,

the CTB-handler will initiate the ‘cancel-encode’ operation, but does not know yet

whether the first CLC will actually be cancelled or whether the user-level process had

already taken it when the release was triggered. The CTB-handler will only know

this after getting the reply from the decode-handler. Please note that if there is more

than one CLC in the ULC, only the decoder performing the ‘cancel-encode’ may have

CHAPTER 7. PROTOCOL-CONVERSION 101

Algorithm 7.4: Initiating ‘cancel-encode’ operation in the CTB-handler

SEQ

... We need to do a ‘cancel-encode’ because of a release

... (external or internal)

... Send ‘cancel-encode’ request to decode-handler

... Wait for acknowledgement for first CLC from encode-handler

-- Send ‘cancel-encode’ acknowledgement to decode-handler

int.dec.handle.array[i][to.handler] ! cancel.encode.ack

-- Get reply from decode-handler

int.dec.handle.array[i][from.handler] ? CASE

-- First CLC was cancelled

encode.cancelled

SEQ

... Send ‘cancel’ message to encode-handler

... Pass ‘cancel’ on to remote CTB-handler

-- First CLC was taken by user-level process

-- (can only be the case if there are no ‘remaining’ CLCs)

encode.not.cancelled

SEQ

... Send confirmation to encode-handler that output was successful

... Pass acknowledgement on to remote CTB-handler

taken the first CLC. This is obvious from the fact that the ‘cancel-encode’ operation

can only be triggered by a release — which cannot happen in the middle of a ULC.

The encode-handler must be notified whether the ULC was taken by the user-level

process or not. This is necessary because if the output was successful, the encode-

handler needs to internally claim all unshared NCT-ends that were output as part of

the ULC. If the ULC was cancelled, this is not the case.

CHAPTER 7. PROTOCOL-CONVERSION 102

7.7 Decoding and Encoding the Various occam-π Protocols

The following occam-π protocols are currently supported by the protocol-converters:

• Regular (i.e. non-MOBILE) simple types:

– INT

– INT16

– INT32

– INT64

– BYTE

– BOOL

– REAL32

– REAL64

• Regular arrays (single- and multi-dimensional) of regular simple types.

• Regular RECORDs containing regular simple types or regular arrays or regular

RECORDs.

• Regular arrays (single- and multi-dimensional) of regular RECORDs.

• MOBILE simple types.

• Fixed-size MOBILE arrays (single- and multi-dimensional) of regular simple types

or regular RECORDs.

• MOBILE RECORDs containing regular simple types or regular arrays or regular

RECORDs.

• Dynamic MOBILE arrays (single- and multi-dimensional) of regular simple types

or regular RECORDs.

CHAPTER 7. PROTOCOL-CONVERSION 103

• Channel-type-ends.

• Counted array PROTOCOLs.

• Sequential PROTOCOLs of the above.

• Tagged PROTOCOLs of the above.

The following occam-π protocols are currently not supported by the protocol-

converters:

• ‘MOBILE.CHAN’ ends.

• Nested MOBILEs such as:

– MOBILE arrays (fixed-size or dynamic) of MOBILE simple types.

– MOBILE arrays (fixed-size or dynamic) of MOBILE arrays.

– MOBILE arrays (fixed-size or dynamic) of MOBILE RECORDs.

– MOBILE arrays (fixed-size or dynamic) of channel-type-ends or

‘MOBILE.CHAN’ ends.

– MOBILE RECORDs containing MOBILE simple types.

– MOBILE RECORDs containing MOBILE arrays.

– MOBILE RECORDs containing MOBILE RECORDs.

– MOBILE RECORDs containing channel-type-ends or ‘MOBILE.CHAN’ ends.

• New occam-π features such as:

– MOBILE PROCesses.

– MOBILE BARRIERs.

– Arrays/RECORDs of these.

CHAPTER 7. PROTOCOL-CONVERSION 104

Some of the currently unsupported protocols are not yet fully working in KRoC itself.

This applies especially to nested mobile types; the only nested mobiles that are fully

working at the moment are dynamic mobile arrays of dynamic mobile arrays of BYTEs

and dynamic mobile arrays of channel-type-ends. The above list takes into account

the general rule on nested mobiles in occam-π, which says that “everything containing

a mobile must be mobile itself” — hence there are no ‘mobiles-in-non-mobiles’ in the

above list of unsupported protocols, since they are not allowed in occam-π anyway.

For most of the currently unsupported protocols, supporting them in the future

will only require adapting the protocol-converters. Others, such as mobile processes

and mobile barriers, will require further adaptations in the internal structure of the

pony kernel itself. Some thoughts on that are discussed in Sections 12.2.1 and 12.2.2.

7.7.1 Data-item NLCs

As mentioned above, data-item NLCs are address/size pairs, which are exchanged

between the decoder and the decode-handler on the sending node, and between the

encode-handler and the encoder on the receiving node. On the sending node, the

address may point to any place in memory that holds a piece of data which needs

to be sent to the receiving node. This may be the workspace or vectorspace of the

process, but also the static or dynamic mobilespace — depending on what kind of

data the NLC actually decodes.

On the receiving node, data-item NLCs are address/size pairs as well. However,

no matter which user-level protocol is encoded, the address/size pair always refers to

a dynamic mobile array (of bytes) that was detached by the encode-handler before

passing the NLC on to the encoder. This dynamic mobile array contains the relevant

data for the NLC, which was received from the network. The encode-handler uses the

generic ‘DETACH.DYNMOB’ process presented in [SBW03] to detach a dynamic mobile

array and acquire its address and size:

PROC DETACH.DYNMOB (MOBILE []BYTE dynmob, RESULT INT addr, size)

CHAPTER 7. PROTOCOL-CONVERSION 105

This process leaves the dynamic mobile array variable undefined (i.e. its size-slot set to

zero) and returns the address and size of the data in the array. The address returned

is the address of the actual data (in the dynamic mobilespace), not the address of

the array variable (which would be in the normal workspace). This mechanism is the

same as with the old generic ‘ENCODE.CHANNEL’ process — which also had to be given

address/size pairs of detached dynamic mobile arrays.

Non-mobile Data-items

Regular, non-mobile, data-items are decoded as a single NLC which carries their

address (in workspace or vectorspace) and size. When the encoder receives an NLC

for a regular data-item from the pony kernel, it copies the relevant data from the

detached dynamic mobile array to the user-level channel. Once the data has been

taken, the encoder frees the memory that was held by the detached array and returns

it to the free-list.

Sequential and Tagged Protocols

Sequential and tagged protocols are decoded as several NLCs — one or more NLCs for

each CLC, i.e. for each item in the list.5 The individual items are treated in the same

way as if they were the only CLC of the ULC. This applies to all types supported by

pony, including mobile data-items and channel-type-ends, whose decoding/encoding

is discussed below.

This means that the number of NLCs in the first CLC equals the number of NLCs

for the first item in the list. The number of NLCs in the ‘remaining’ CLCs equals

the sum of the NLCs for all remaining items. A special case regarding the number of

NLCs are counted array protocols; see below.

A special feature of decoding sequential protocols is that for regular (non-mobile)

data-items, the data is copied into a temporary piece of memory, and the address

5The tag of a tagged protocol counts as one item, decoded as one NLC.

CHAPTER 7. PROTOCOL-CONVERSION 106

of that temporary is used for the NLC, unless the data-item is the first or the very

last CLC of the ULC. This is necessary because the data-item might have been an

expression evaluated by the compiler that ended up on the stack, and in a sequential

protocol, the same stack address might be used several times. For instance, this ULC:

chan ! i + 1; i + 2; i + 3

would use the same stack address three times. For the first and the last CLC (i.e.

‘i + 1’ and ‘i + 3’), this would be no problem. The first CLC is decoded, sent to the

remote node and acknowledged before the second CLC is being read by the decoder.

The ‘remaining’ CLCs, however, are sent to the remote node in one go. This means

that for the second and the third CLC, the same address (from the stack) would

be sent, which would result in the same value (namely ‘i + 3’) being output to the

receiving user-level process for both of them.

Therefore, the data for all CLCs except the first and the very last needs to be

copied, and the address of the copy then used for the NLC that is to be sent to the

remote node as part of the ‘remaining’ CLCs. The very last CLC obviously does not

need to be copied since its stack address cannot be re-used by a subsequent CLC.

This means that for non-sequential protocols, as well as sequential protocols with

only two elements — which will be the bulk of communication in a typical pony

application — no copying is necessary. Also, no copying is necessary for mobile data,

since even if the data-item is the result of an evaluated expression, the compiler would

place the result into the relevant mobilespace before engaging in the CLC, and not

communicate from the stack directly.

Counted Array Protocols

A counted array consists of two CLCs, one for the count and one for the array

data. According to the general rule for CLCs and NLCs, a counted array would

always have to be decoded as two NLCs, namely one for each CLC. For performance

reasons, however, it is desirable to decode a counted array as a single NLC — which

CHAPTER 7. PROTOCOL-CONVERSION 107

can be done as long as both CLCs of the counted array are part of the ‘remaining’

CLCs. In this case, the count is decoded implicitly in the size of the array data, with

the count being the size of the array data divided by the size of the base type of the

array.

If the ULC only consists of the counted array, or if the counted array is at the

beginning of a sequential protocol, the count and the array data have to be decoded

in two separate NLCs. This is necessary in order to enable the ULC to be cancelled

if necessary. The decoder will only read the array data from the user-level process

after having received the acknowledgement from the remote encoder that the remote

user-level process has taken the count; otherwise the ULC is cancelled as described in

Section 7.4. Therefore, the CLC containing the count has to be decoded separately,

in the same way as an individual data-item of the count type (e.g. INT or BYTE) would

be decoded.

A special case is a count of zero. KRoC has a built-in optimisation which works

in such a way that if the count of a counted array happens to be zero, no CLC takes

place for the array data anymore. For pony, this means that if the counted array is

at the beginning of a ULC, only the count (of zero) is decoded. If nothing follows the

counted array, the relevant ULC would contain no ‘remaining’ CLCs. If the counted

array is not at the beginning of the ULC, which means that the count is part of the

‘remaining’ CLCs, only the array data is decoded as described above. In this case,

the size of the relevant NLC would be zero.

Algorithm 7.56 shows several examples of decoding counted arrays, varying in the

position of the counted array in the ULC, as well as the count being zero or not.

‘chan’ here stands for the user-level channel served by the decoder. ‘first.clc’ is

the message from the decoder to the pony kernel that contains the number of data-

item NLCs and channel-type-end NLCs in the first CLC, as well as a flag indicating

whether there are any ‘remaining’ CLCs in the ULC. ‘rest.clcs’ is the message

6Please note that this is not an ‘algorithm’ in the proper sense of the word, but a collection of
examples.

CHAPTER 7. PROTOCOL-CONVERSION 108

from the decoder that contains the number of data-item NLCs and channel-type-end

NLCs in the ‘remaining’ CLCs.

The encoding of a counted array is done by copying, since both the count and the

array data are regular (non-mobile) data.

Static Mobiles

Static mobiles are normally communicated in KRoC using pointer-swapping. Both

the source and the target variable are pointers to pre-allocated pieces of memory

located in the static mobilespace of the occam-π program. When a communication

between two static mobile variables takes place, their pointers are swapped, and the

source variable is treated as undefined afterwards. Decoding a static mobile variable

does not involve pointer-swapping. Instead, the protocol-decoder simply uses the

address and size of the data (in mobilespace) for the NLC that is to be sent to the

remote node, and leaves the pointer of the variable unchanged. After the CLC is

completed, the source variable is left undefined as usual.

Encoding a static mobile is done using pointer-swapping, i.e. the user-level pro-

cess will not notice any difference from a non-networked communication. Inside the

encoder, the operation is more complex, however, since the encoder must be able to

encode static mobiles of any type, whose size it does not know until the relevant NLC

arrives from the network. Therefore, the encoder uses a special pool of memory. This

pool is shared by all encoders across the entire pony-enabled program.

When an NLC for a static mobile data-item arrives in the encoder, the encoder

browses the static mobile pool for a piece of memory of the relevant size. If there

is a piece of memory of that size, it is taken out of the pool; otherwise the encoder

allocates a piece of memory of the relevant size from the dynamic mobilespace. The

data from the detached array is then copied into the memory from the pool (resp.

the newly allocated memory), after which the memory that was held by the detached

array is freed and returned to the free-list. Then the memory from the pool is used

CHAPTER 7. PROTOCOL-CONVERSION 109

Algorithm 7.5: Several examples of decoding counted arrays

* chan ! 0::array

first.clc; 1; 0; FALSE -- the count (= 0)

* chan ! 0::array; an.integer

first.clc; 1; 0; TRUE -- the count (= 0)

rest.clcs; 1; 0 -- the ‘an.integer’

* chan ! count.greater.than.zero::array

first.clc; 1; 0; TRUE -- the count

rest.clcs; 1; 0 -- the array

* chan ! count.greater.than.zero::array; an.integer

first.clc; 1; 0; TRUE -- the count

rest.clcs; 2; 0 -- the array, the ‘an.integer’

* chan ! a.byte; 0::array

first.clc; 1; 0; TRUE -- the ‘a.byte’

rest.clcs; 1; 0 -- the array (of size 0)

-- [no count sent since count is implicit]

* chan ! a.byte; 0::array; an.integer

first.clc; 1; 0; TRUE -- the ‘a.byte’

rest.clcs; 2; 0 -- the array (of size 0)

-- [no count sent since count is implicit]

-- the ‘an.integer’

* chan ! a.byte; count.greater.than.zero::array

first.clc; 1; 0; TRUE -- the ‘a.byte’

rest.clcs; 1; 0 -- the array (of size > 0)

-- [no count sent since count is implicit]

* chan ! a.byte; count.greater.than.zero::array; an.integer

first.clc; 1; 0; TRUE -- the ‘a.byte’

rest.clcs; 2; 0 -- the array (of size > 0)

-- [no count sent since count is implicit]

-- the ‘an.integer’

CHAPTER 7. PROTOCOL-CONVERSION 110

for an ordinary mobile output operation; the user-level process takes the static mobile

by performing the normal pointer-swap.

After the output operation has been completed, i.e. after the pointers have been

swapped, the encoder returns the piece of memory whose pointer it just received

from the user-level process to the static mobile pool. Using this mechanism, the

pool, which is initially empty, grows whenever a static mobile NLC of a new size

arrives from the network. The same applies if there has been a static mobile NLC of

that size before, but the relevant piece of memory from the pool is currently in use

by an encoder.

The items in the static mobile pool are never freed until the operating system

automatically frees them anyway at the end of the pony-enabled program. This is

because the encoder does not know whether the pointer that was returned by the

user-level process during the swap points into the static or the dynamic mobilespace.

The latter would be the case if the static mobile variable in the user-level process

had been used for networked communication before. This means that after a while,

the static mobile pool will typically contain pieces of memory from both the static

and the dynamic mobilespace. Accordingly, throughout the pony-enabled program,

there will be both static mobile variables pointing to the static mobilespace and static

mobile variables pointing to the dynamic mobilespace.

Although the static mobile pool may appear ever-growing (and therefore danger-

ous) at first glance, this is not the case. Since the items in the pool are re-used

when possible, there is a saturation in the growth of the pool after some time. This

is because the longer the program runs, the more likely it gets that the pool will

already contain a piece of memory of the size needed for a particular NLC — which

means that the likelihood of having to add a new item to the pool will get smaller

and smaller.

CHAPTER 7. PROTOCOL-CONVERSION 111

Dynamic Mobile Arrays

Dynamic mobile arrays are allocated at runtime, i.e. their size is not known to the

compiler. Dynamic mobile array variables are implemented as (n + 1) words in

workspace — one for the pointer to the array data (in the dynamic mobilespace),

and n words for the dimension counts, where n is the number of dimensions of the

array.

When decoding and encoding dynamic mobile arrays, the protocol-converters dis-

tinguish between single- and multi-dimensional arrays. Single-dimensional arrays are

decoded as a single NLC containing the address and size of the array data (in the

dynamic mobilespace). The dimension count is decoded implicitly in the size of the

array data. As for counted array protocols (see above), the dimension count can be

calculated by dividing the size of the array data by the size of the base type of the ar-

ray. On the receiving node, the encoder stores the address of the detached dynamic

mobile array, as well as the calculated dimension count, in a temporary dynamic

mobile array variable. This is then output to the user-level process.

Please note that no copying of array data is necessary here. The memory from

the detached array is not freed, since it is now used by the user-level process. Only

the temporary dynamic mobile array variable is freed by the encoder after the output

to the user-level process has been completed. On the sending node, after receiving

the acknowledgement, the decoder frees the memory of the source dynamic mobile

array variable and returns it to the free-list. The dimension count is set to zero, so

that the variable is now undefined for the sending user-level process.

Multi-dimensional dynamic mobile arrays are decoded as two NLCs. The first

NLC contains the dimension counts of the source dynamic mobile array variable (with

the address pointing to the start of the dimension counts in workspace). The second

NLC decodes the array data in the dynamic mobilespace as for single-dimensional

arrays. The encoder again uses a temporary dynamic mobile array variable, into

which it copies the dimension counts from the first NLC, after which the memory

CHAPTER 7. PROTOCOL-CONVERSION 112

from the detached array of the first NLC is freed and returned to the free-list. The

rest is the same as for single-dimensional arrays, i.e. the address of the detached array

of the second NLC is stored in the temporary variable etc.

7.7.2 Channel-type-end NLCs

Making a Non-networked CTB Networked

When encountering a channel-type-end NLC, the decoder must check whether the

CTB is already networked, and make it networked if necessary, before outputting the

actual NLC to the decode-handler. This was described in Algorithm 6.2. Since this

algorithm was presented relatively early in this thesis, certain details could not yet

be discussed. Therefore, Algorithm 7.6 contains a more detailed description.

When the decode-handler gets the request from the decoder, it notifies the NCT-

manager on the master node. This is done through the master-link-handler, in the

same way as during an explicit allocation (cf. Section 6.4.2). The following informa-

tion is passed to the NCT-manager:

• The NCT-ID and channel-ID of the decode-handler making the request. The

channel-ID is the ID of the channel in the CTB. The corresponding index in

the decode-handle-array is used as the channel-ID.

• A Boolean flag indicating whether the client-end of the CTB is currently claimed

on our node. This is true if the client-end is shared and claimed, or if it is

unshared. In the latter case, it is treated as being internally claimed.

• A Boolean flag indicating whether the server-end of the CTB is currently

claimed on our node.

Unlike for explicit allocation, the type-hash of the channel-type does not need to be

given to the NCT-manager, since no other ends of an implicitly allocated NCT may

ever be allocated explicitly. Hence, a check of the type-hash will never be necessary

CHAPTER 7. PROTOCOL-CONVERSION 113

Algorithm 7.6: Making a CTB networked — detailed description

SEQ

... Claim state-semaphore

IF

... CTB is non-networked (i.e. network-hook is null)

SEQ

... Check state of client and server in state-field

... Notify decode-handler about

... * CTB-pointer

... * client- and server-state

... * number of channels in CTB

... * number of readers-in-server

... Wait for pony kernel to implicitly allocate a new NCT

... for the CTB

... Get reply from decode-handler containing

... * NCT-ID

... * network-hook-handle

... * decode-handle-array

... * encode-handle-array

... Store NCT-ID in state-field

... Set up network-hook pointer with channel-words in

... network-hook-handle

... Decrease reference-count of network-hook-handle

... Fork off a decoder and an encoder for each channel-word

... in the CTB

TRUE -- i.e. CTB is networked (network-hook <> null)

SKIP

... Release state-semaphore

in the NCT-manager. The NCT-manager now forks off a new NCT-handler, which

takes into account whether the client-end and/or the server-end are currently claimed

on our node when setting up its initial state.

The decode-handler waits for a reply from the NCT-manager, which will come via

the link from the master node. When getting the reply, the master-link-handler passes

it on to the decode-handler via the decode-reply-handle. In order for the master-

link-handler to acquire the correct decode-reply-handle, it needs the NCT-ID and

channel-ID of the decoder — which is why this information was sent along with the

CHAPTER 7. PROTOCOL-CONVERSION 114

original request to the NCT-manager. To get the decode-reply-handle, the master-

link-handler first contacts the CTB-manager via the CTB-manager-handle, and re-

quests the CTB-instant-handle of the CTB-handler for the corresponding NCT-ID.

Then the master-link-handler contacts the CTB-manager via the CTB-instant-handle

and requests the decode-reply-handle for the corresponding channel-ID. Having got

the decode-reply-handle, the master-link-handler passes the reply from the NCT-

manager on to the decode-handler.

As can be seen from Figure 6.1, there is a small sub-process inside the CTB-

handler called the instant-handler. This deals with requests that need to be answered

instantly while the ‘main’ CTB-handler may be engaged in other things (which may

involve communication with other components), in order to avoid deadlock.

The only purpose of the decode-reply-handle is passing the reply from the NCT-

manager on to the decode-handler. This reply contains the NCT-ID of the newly

(implicitly) allocated NCT. Having got that, the decode-handler sends an implicit

allocation request to the CTB-manager via the CTB-manager-handle. This request

contains the following information:

• The NCT-ID.

• The CTB-pointer.

• A Boolean flag indicating whether the client-end of the CTB is currently claimed

on our node.

• A Boolean flag indicating whether the server-end of the CTB is currently

claimed on our node.

• The number of channels in the CTB.

• The number of readers-in-server.

The CTB-manager stores the CTB-pointer for the new NCT-ID and forks off a new

CTB-handler, which for its part forks off a decode-handler and an encode-handler

CHAPTER 7. PROTOCOL-CONVERSION 115

for each channel in the CTB. The new CTB-handler takes into account whether the

client-end and/or the server-end are currently claimed on our node when setting up

its initial state. Now the CTB-manager sends a reply to the decode-handler, contain-

ing the network-hook-handle and the decode- and encode-handle-arrays (which have

just been allocated by the CTB-manager). These are then returned to the decoder,

together with the NCT-ID of the implicitly allocated NCT.

The decoder then continues making the CTB networked as set out in Algo-

rithm 7.6. This involves forking off a set of protocol-converters for each channel

in the CTB. The same rules for the order of the handles in the decode- and encode-

handle-arrays apply as during an explicit allocation.

Please note that the mechanism in the decoder that checks whether a CTB is

networked or not, and makes it networked if necessary, is not part of, but done before

the actual channel-type-end NLC. Hence, it will not be reversed if a started ULC

is cancelled. Once a CTB is networked, it will stay networked for the rest of its

lifetime. So, even if a started ULC is cancelled, only the actual channel-type-end

NLC is cancelled; the CTB itself will remain networked.

Actual Channel-type-end NLCs

The actual channel-type-end NLC performed by the decoder consists of a single mes-

sage to the decode-handler containing the following information about the NCT-end

that is to be sent:

• The NCT-ID.

• The direction-type (client-end or server-end).

• The share-type (unshared or shared).

The decode-handler will internally release the end in case it is unshared. Then the

NLC gets packed into a suitable network format (cf. Section 7.8.2) and passed on

CHAPTER 7. PROTOCOL-CONVERSION 116

to the CTB-handler, which will send it to the remote node. There, the relevant

CTB-handler passes it on to the encode-handler.

When the encode-handler on the receiving node encounters a channel-type-end

NLC, it requests the allocation of a new channel-type-end for the given NCT-ID

from the CTB-manager. This is done using the same request as during an explicit

allocation — the CTB-manager does not know whether the request comes from the

main kernel during an explicit allocation or from an encode-handler dealing with a

channel-type-end NLC. As discussed earlier, the reply from the CTB-manager may

either be a notification that the reference-count of an existing CTB must be increased,

or a notification that a new CTB must be allocated. In either case, the reply is

forwarded to the encoder.

If the reference-count of an existing CTB must be increased, the message from the

encode-handler to the encoder contains the CTB-pointer of the existing CTB. After

the encoder has increased the CTB’s reference-count, the channel-type-end NLC is

ready to be output to the user-level channel.

If a new CTB must be allocated, the message from the encode-handler to the

encoder contains the NCT-ID for the received NCT-end. The encoder will now do

the following:

• Allocate a new CTB according to the type-descriptor.

• Initialise the reference-count to 1.

• Store the type-descriptor pointer in the CTB.

• Initialise the client-, server- and state-semaphores.

• Store the NCT-ID in the state-field.

The encoder then sends a reply to the encode-handler containing the CTB-pointer

of the newly allocated CTB, the number of channels in the CTB, and the number

CHAPTER 7. PROTOCOL-CONVERSION 117

of readers-in-server. As during an explicit allocation, the CTB-manager is now noti-

fied about the number of channels and the number of readers-in-server. The CTB-

manager sends a reply to the encode-handler, containing the network-hook-handle

and the decode- and encode-handle-arrays (which have just been allocated by the

CTB-manager). These are then passed on to the encoder, which will complete the

allocation by doing the following:

• Set up the network-hook pointer with the channel-words in the network-hook-

handle.

• Decrease the reference-count of the network-hook-handle.

• Fork off a protocol-decoder and a protocol-encoder for each channel-word in the

CTB.

When the protocol-converters are forked off, the same rules for the order of the

handles in the decode- and encode-handle-arrays apply as explained above. After

the encoder has completed the allocation, the channel-type-end NLC is ready to be

output to the user-level channel.

The encode-handler completes the channel-type-end NLC by notifying the CTB-

manager about the CTB-pointer of the newly allocated CTB. The CTB-manager

stores the CTB-pointer and forks off a new CTB-handler, which for its part forks off

a decode-handler and an encode-handler for each channel in the CTB. The reason

why the CTB-pointer was not given to the CTB-manager earlier, together with the

number of channels and the number of readers-in-server, is that in this way, we can

use the same request for allocating an NCT-end both in the main kernel during an

explicit allocation and in the encode-handler during a channel-type-end NLC. Thus,

the corresponding mechanism in the CTB-manager only had to be implemented once.

As pointed out earlier, after the first CLC has been output to the user-level chan-

nel, the encoder acknowledges this to the encode-handler, which passes the acknowl-

edgement on to the CTB-handler. If the output of the first CLC was successful (i.e.

CHAPTER 7. PROTOCOL-CONVERSION 118

taken by the user-level process), the CTB-handler either notifies the encode-handler

about it (if there is only one CLC in the ULC) or sends the ‘remaining’ CLCs to

the encode-handler (in which case the encode-handler automatically knows that the

output was successful). If the output of the first CLC was cancelled during a ‘cancel-

encode’ operation, the CTB-handler sends a ‘cancel’ message to the encode-handler,

which will pass the ‘cancel’ message on to the encoder if there is more than one CLC

in the ULC. After the encode-handler has acknowledged the output of the ‘remaining’

CLCs (if there are any) to the CTB-handler, no notification is returned, because it

is obvious that only the user-level process may have taken the ‘remaining’ CLCs.

At this point, the encode-handler knows whether the ULC has been taken by the

user-level process. If this is the case, the encode-handler now internally claims all

unshared NCT-ends that were output to the user-level process as part of this ULC.

If the first CLC was cancelled, the decode-handler on the sending node re-claims all

previously released unshared ends that were part of the cancelled first CLC.

Dealing With the Reference-count

The general rule for dealing with the reference-count of networked CTBs during the

operation of pony is that when it needs to be increased, this is done before completing

the operation that requires the increase; when it needs to be decreased, this is done

after completing the relevant operation, or when a previous operation is cancelled.

The reference-count is increased in the following situations:

• In the allocation process during an explicit allocation.

• In the encoder during a channel-type-end NLC.

This applies both to new CTBs (whose reference-count is initialised to 1) and existing

CTBs (whose reference-count is ‘really’ increased), and is done before the user-level

process gets the relevant NCT-end.

CHAPTER 7. PROTOCOL-CONVERSION 119

The reference-count is decreased in the following situations:

• In the decoder after receiving the acknowledgement for the first CLC or the

‘remaining’ CLCs. This is done for all channel-type-end NLCs in the relevant

CLC(s) at once.

• In the decoder during a ‘cancel-encode’ operation. Again, this is done for all

channel-type-end NLCs in the first CLC that is cancelled.

It is worth noting that the same rules as for increasing and decreasing the reference-

count of CTBs also apply for operations related to data-item NLCs. This particularly

applies to the allocation and deallocation of memory for dynamic mobiles.

Dealing With Internal Claims and Releases

The rule for internally claiming and releasing unshared NCT-ends during the opera-

tion of pony is that when they need to be claimed, this is done after completing the

operation that requires the internal claim, or when a previous operation is cancelled;

when they need to be released, this is done before completing the relevant operation.

Unshared NCT-ends are internally claimed in the following situations:

• In the main kernel after an explicit allocation.

• In the encode-handler after the entire ULC has been taken by the user-level

process. This is done for all channel-type-end NLCs in the relevant ULC at

once.

• In the decode-handler, when the first CLC has been cancelled. In this case all

previously released unshared ends are re-claimed.

When a previously non-networked CTB is being made networked, unshared ends are

treated as being internally claimed when the new NCT-handler and the new CTB-

handler are set up. Hence, no internal claim signal needs to be sent.

CHAPTER 7. PROTOCOL-CONVERSION 120

Unshared NCT-ends are internally released in the following situations:

• In the decode-handler during a channel-type-end NLC.

• During the shutdown of the pony kernel. See Section 10.5 for details about

pony’s shutdown mechanism.

7.8 Decode-handler and Encode-handler

The decode-handler and the encode-handler present the interface between the

protocol-converters and the CTB-handler. They are forked off by the CTB-handler

when the CTB-handler starts. Their general structure is the same as that of the

decoder and the encoder, and will therefore not be repeated in this section. Instead,

we will focus on the differences between the protocol-converters on the one hand, and

the decode-handler and the encode-handler on the other.

7.8.1 Differences Compared With the Protocol-converters

Most messages passing through the decode-handler and the encode-handler are just

forwarded between the protocol-converters and the CTB-handler. The decode-

handler and the encode-handler behave towards the protocol-converters in the same

way as the CTB-handler behaves towards them, and towards the CTB-handler in the

same way as the relevant protocol-converter behaves towards them. There are only

the following minor exceptions to this rule:

• While between the protocol-converters and the decode- or encode-handler, all

NLCs are exchanged separately (see above), between the decode- or encode-

handler and the CTB-handler, the entire first CLC or the entire ‘remaining’

CLCs are exchanged at once as a special CLC-packet. For this, all NLCs of the

first CLC, or of the ‘remaining’ CLCs, are packed by the decode-handler and

unpacked by the encode-handler. Details about this are given in Section 7.8.2.

CHAPTER 7. PROTOCOL-CONVERSION 121

• Between notifying the CTB-handler about the number of NLCs in the first CLC

or in the ‘remaining’ CLCs and passing the relevant CLC-packet to the CTB-

handler, the decode-handler sends a special message to the CTB-handler if the

CLC-packet contains a channel-type-end NLC where an NCT-end is sent over

itself.7 This would need to be treated in the CTB-handler as a special case; see

Section 8.1.6 for details.

• As mentioned in Section 7.7.2, if there is a ULC with only one CLC, the CTB-

handler notifies the encode-handler whether the output was successful or not,

whereas the encode-handler does not send such a notification to the encoder.

The reason for this is that the encoder does not care about a cancelled first

and only CLC, since the handling of such a ULC is completed anyway after the

first CLC has been output, no matter whether the user-level process has taken

it or the matching decoder during a ‘cancel-encode’ operation. The encode-

handler, on the other hand, needs to know whether it was actually the user-level

process that has taken the ULC, because only then it would internally claim

the unshared NCT-ends that were output as part of the ULC.

Apart from these exceptions, the communication structure between the decoder and

the decode-handler is identical to the one between the decode-handler and the CTB-

handler. The same applies to the communication structure between the CTB-handler

and the encode-handler and the one between the encode-handler and the encoder

accordingly.

The other differences between the decode-handler and the encode-handler on the

one hand and the protocol-converters on the other, which do not affect the communi-

cation structure as discussed above, are the following things related to the handling

of channel-type-end NLCs:

7The decode-handler finds out about this by comparing the NCT-ID of the end that is being
sent with the ID of its own NCT. If they are identical, and the end that is being sent is unshared,
this means that the end is sent over itself.

CHAPTER 7. PROTOCOL-CONVERSION 122

• Making a CTB networked if necessary in the decode-handler. This involves

communication with the NCT-manager on the master node, and with the CTB-

manager.

• Dealing with incoming channel-type-end NLCs in the encode-handler. This

involves communication with the CTB-manager.

• Internally claiming or releasing unshared NCT-ends where applicable. This

involves communication with the CTB-manager, and with the responsible CTB-

handler via the relevant CTB-claim-handle.

All these things were discussed in Section 7.7.2.

7.8.2 CLC-Packets

A CLC-packet contains all NLCs of a CLC — either of the first CLC, or of all

‘remaining’ CLCs. Actually, a CLC-packet is not a single ‘packet’, but consists of

two arrays in a sequential protocol. In this way, it is passed from the decode-handler

to the CTB-handler, and then on to the link-handler that holds the link to the target

node. After arriving on the target node, the link-handler there forwards the CLC-

packet to the relevant CTB-handler, which in turn passes it on to the encode-handler

responsible for our networked channel. Details about this are given in Section 8.1.5.

CLC-packets look different on the sending node and on the receiving node. In

the decode-handler, they are assembled as an address-array and a size-array. These

arrays contain the addresses and sizes of pieces of data that are relevant for the CLC.

These are sent in a single operation over the link; see Section 9.3. On the receiving

node, CLC-packets consist of a data-array and a size-array. The data-array is a

dynamic mobile byte array containing the entire data received over the link as part

of the CLC, consecutively in a single chunk of memory. The size-array is the same as

on the sending node. Naturally, the sum of all sizes in the size-array equals the size

of the data-array.

CHAPTER 7. PROTOCOL-CONVERSION 123

If there are no channel-type-end NLCs in the relevant CLC, all pieces of data

in the CLC-packet are data-item-NLCs. On the receiving node, they are copied

by the encode-handler from the data-array into separate dynamic mobile arrays. If

the CLC-packet only contains one data-item NLC, the data-array is used without

copying. For each NLC, the encode-handler detaches the relevant dynamic mobile

array (cf. Section 7.7.1) and passes the address/size pair on to the encoder.

If the relevant CLC contains channel-type-end NLCs, the CLC-packet contains a

special piece of data, called the CLC-descriptor. This is located at the very end of

the CLC-packet, after all data-item NLCs that are part of it. The CLC-descriptor

describes the layout of the CLC. For each NLC, it stores whether it is a data-item

NLC or a channel-type-end NLC. This is necessary to preserve the correct order of the

NLCs in the CLC when sending them from the encode-handler to the encoder. For

each channel-type-end NLC, the CLC-descriptor additionally contains the NCT-ID,

the direction-type and the share-type of the relevant NCT-end.

The CLC-descriptor is organised as a byte array. It consists of consecutively laid

out NLC-descriptors. The size of an NLC-descriptor is one byte for data-item NLCs

or five bytes (one byte plus an integer) for channel-type-end NLCs. So, the total size

of the CLC-descriptor in bytes is the number of data-item NLCs plus five times the

number of channel-type-end NLCs in the CLC.

The first (and, for data-item NLCs, only) byte of the NLC-descriptor denotes the

type of the NLC (data-item or channel-type-end), plus the direction-type and the

share-type of the NCT-end in case of channel-type-end NLCs. Table 7.1 shows the

layout of that byte. ‘Bit 1’ here means the least significant bit; the five most significant

bits are always zero. If the NLC is a channel-type-end NLC, the remaining four bytes

of the NLC-descriptor contain the NCT-ID of the NCT-end.

The decode-handler uses the following generic process to determine the address

and size of the CLC-descriptor after it has been allocated:

PROC DECODE.DATA (* data, RESULT INT addr, size)

CHAPTER 7. PROTOCOL-CONVERSION 124

Bit

Bit 1 0 1
data-item NLC channel-type-end NLC

Bit 2 0 0 1
client-end server-end

Bit 3 0 1 0 1
shared unshared shared unshared

Total value 000 001 101 011 111
0 1 5 3 7

Table 7.1: Layout of the first byte of an NLC-descriptor

Similarly to ‘DETACH.DYNMOB’, this process returns the address and size of an occam-π

variable. ‘*’ may be any occam-π type here. Unlike ‘DETACH.DYNMOB’, however,

‘DECODE.DATA’ leaves the variable untouched, i.e. it is still defined when the process

returns. The decode-handler stores the address and size of the CLC-descriptor at

the last index of the address- and size-arrays of the CLC-packet. It is ensured that

the address/size pair for the CLC-descriptor remains valid until the CLC-packet has

been sent to the remote node, because the CLC-descriptor remains in scope until the

acknowledgement for the CLC has been received.

The encode-handler on the receiving node extracts the CLC-descriptor from the

data-array of the CLC-packet. Then it runs through the CLC-descriptor. When the

encode-handler encounters a data-item NLC, it copies the next piece of data into a

new dynamic mobile array, detaches it, and passes the address/size pair on to the

encoder. When a channel-type-end NLC is encountered, the relevant operation is

started according to the content of the NLC-descriptor for that NLC.

Chapter 8

Handlers and Managers for

CTBs and NCTs

Figure 8.1 shows the CTB-handler with its sub-components, the CTB-manager, the

NCT-handler and the NCT-manager. These pony components are discussed in this

chapter.

8.1 The CTB-handler

The CTB-handler deals with the function of an individual networked CTB. This

involves handling incoming claim and release requests for the ends of the CTB, as

well as the communication along its channels. The latter is done using the decode- and

encode-handlers, which the CTB-handler forks off when it starts. The CTB-handler

can be contacted by link-handlers via the CTB-main-handle.1 This is available from

the CTB-manager on request, as are the CTB-instant-handle and the two CTB-claim-

handles, which will be discussed in Sections 8.1.1 and 8.1.2.

1No other components, except the CTB-manager during shutdown (cf. Section 10.5), will ever
contact the CTB-manager via the CTB-main-handle.

125

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 126

CTB-handler

CTB-manager

instant-

handler

decode-

handler

decode-

handle

internal

decode-handle

encode-

handler

internal

encode-handle

protocol-

decoder

protocol-

encoder

decode-

reply-handle

CTB-instant-

handle

network-hook-

handle

client-

listener

server-

listener

CTB-claim-

handle

CTB-claim-

handle

CTB-main-

handle

CTB-manager-handle

encode-

handle

NCT-manager-handle NCT-manager

NCT-handleNCT-handler

Figure 8.1: pony components related to CTBs and NCTs

8.1.1 The Instant-handler

As already mentioned in Section 7.7.2, the instant-handler is a small sub-process of

the CTB-handler dealing with requests that need to be answered instantly while the

‘main’ CTB-handler may be engaged in other things. Since during its function, the

‘main’ CTB-handler needs to communicate with other pony components, it would

not be available to answer such ‘instant’ requests via the CTB-main-handle. In the

worst case, this would lead to deadlock; to avoid that, we need the instant-handler.

The instant-handler can be contacted by other pony components via the CTB-

instant-handle. The following requests are handled by the instant-handler:

• Getting the decode-reply-handle for a given channel-ID. This is used by the

link-handler for replies to the decode-handler coming from the NCT-manager.

Details were discussed in Section 7.7.2.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 127

• Getting the current remote node of the CTB. This is used by the error-handler

during the call of the ‘pony.err.get.current.remote.node’ process (cf. Sec-

tion 4.1.3).

8.1.2 Client-listener and Server-listener

As can be seen from Figure 8.1, the client-listener and the server-listener are two

small sub-processes of the CTB-handler that listen to claim and release signals for

the ends of the CTB. This applies to both external and internal claim or release

signals.

Both the client-listener and the server-listener are ALTing over the relevant channel

of the network-hook-handle and the relevant CTB-claim-handle. In both cases, this is

done using the extended rendezvous. When an (external or internal) claim or release

signal arrives, the listener notifies the ‘main’ CTB-handler about it via an internal

channel.

The ‘main’ CTB-handler then deals with the claim or release request. Doing

this, it is irrelevant for the ‘main’ CTB-handler whether the request was external or

internal — they are handled in exactly the same way. After the handling of the claim

or release request has been completed, the ‘main’ CTB-handler sends a confirmation

to the relevant listener, which will then release the channel in the network-hook-

handle or the CTB-claim-handle from the extended rendezvous.

8.1.3 Sessions for NCTs

In order to understand the internal function of the CTB-handler, it is necessary to

understand the concept of sessions in pony. There are three general states in which

a CTB-handler can be (plus two special ones discussed in Section 8.1.6):

• outside a session

• inside an external session

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 128

• inside an internal session

This distinction will be referred to as the session-state of the CTB-handler in the

following. Being inside a session means that one end of the NCT is claimed on our

node while the opposite end of the NCT is claimed as well. If the opposite end

is claimed on another node, the session is external. In this case, the CTB-handler

on our node communicates with the CTB-handler on the remote node via the link

between the two nodes. If both ends of the NCT are claimed on our node, the session

is internal.

During external sessions, the CTB-handlers on both nodes activate the decode-

handlers (which in turn activate the decoders) of the channels whose writing-ends

are in the NCT-end that is claimed on their node.2 In this way, for each channel in

the NCT, exactly one decoder is activated — either on the client-end node or on the

server-end node, depending on the direction of the channel in the channel-type.

During internal sessions, all decoders are deactivated. Since both ends of the NCT

are claimed on the same node, they can both access the channel-words of the same

CTB. Therefore, channel communication during internal sessions does not involve the

protocol-converters at all, but works in the ‘traditional’ way; the outputting and the

inputting user-level process simply access the relevant channel-word.

To handle claim and release requests, the CTB-handler needs to communicate with

the NCT-handler that is responsible for our NCT. This is done in the usual way, using

the link between our node and the master. When the link-handler gets a message for

a CTB-handler, it requests the relevant CTB-main-handle from the CTB-manager

and then passes the message on. Likewise, if a message for an NCT-handler arrives,

the link-handler requests the relevant NCT-handle from the NCT-manager before

forwarding the message. During external sessions, the CTB-handler communicates

with the CTB-handler on the node which holds the opposite end of the NCT. Again,

this is done over the link between the two nodes.

2To which channels this applies is determined by using the number of readers-in-server, and the
correct order of the handles in the decode- and encode-handle-arrays; cf. Section 6.4.2 for details.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 129

There are three channels in the CTB-main-handle from which the CTB-handler

can input — one for messages coming from the NCT-handler regarding claim or re-

lease requests for the client-end, one corresponding channel for the server-end, and one

channel for messages coming from the remote CTB-handler during external sessions.

There is a clear separation between when a CTB-handler is outside a session, and

when it is inside a session. The CTB-handler communicates with the NCT-handler

if and only if it is outside a session; it communicates with a remote CTB-handler if

and only if it is inside an (external) session.

8.1.4 Starting a Session

When the CTB-handler gets a claim signal for one of its ends from the relevant

listener, the claim request is passed on to the NCT-handler. The NCT-handler main-

tains queues for the client-end and for the server-end of the NCT, where it stores

nodes from which it has received claim requests for the respective end. When a claim

request arrives in the NCT-handler, it is stored at the end of the relevant queue.

The NCT-handler deals with claim requests either immediately when they arrive

— if no other node has currently claimed the respective end — or after the node

that had previously claimed the end has released it. In both cases, the NCT-handler

checks whether the opposite end of the NCT is currently claimed. If this is the case, a

‘new-other-end’ message is sent to the CTB-handler of the opposite end. Otherwise, a

‘claim-confirm-nootherend’ message is sent to the CTB-handler from which the claim

request came. What these messages mean is explained below.

Both ends of a CTB can be in one of three possible states in the CTB-handler:

• released

• pending

• claimed

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 130

‘Pending’ means that the CTB-handler has sent a claim request for the end to the

NCT-handler, but not received a reply yet. ‘Claimed’ means that our node has

reached the top of the respective queue in the NCT-handler, and the NCT-handler

has therefore sent a claim confirmation for the end to the CTB-handler. There are two

possible claim confirmations that may arrive for a pending NCT-end: ‘claim-confirm-

nootherend’ and ‘claim-confirm-otherendclaimed’. Which of the two confirmations

arrives from the NCT-handler depends on whether the opposite end of the NCT is

currently claimed on another node or not. If a ‘claim-confirm-nootherend’ message

arrives, the CTB-handler changes the state of the pending end to ‘claimed’ and sends

a confirmation to the relevant listener, but does not start a session (i.e. the session-

state remains unchanged).

If an end is claimed in a CTB-handler while there is no session3, there are two

things that may happen — either a release signal comes in from the relevant listener

(which would need to be forwarded to the NCT-handler), or a ‘new-other-end’ mes-

sage (carrying a node-ID) arrives from the NCT-handler. The latter means that a

new claim request for the opposite end of the NCT is now being dealt with by the

NCT-handler. Since both things may happen at the same time, we need a mechanism

to avoid race conditions. Therefore, release requests are generally confirmed by the

NCT-handler with a dummy ‘new-other-end’ message4 unless the NCT-handler had

sent a real ‘new-other-end’ message before, for which it is now awaiting a confirma-

tion from the CTB-handler. The following sequences of events may occur while an

NCT-end is claimed but the CTB-handler is outside a session:

• The end gets released. The CTB-handler sends a release request to the NCT-

handler. The NCT-handler receives the request and returns a dummy ‘new-

other-end’ message as confirmation. When it has arrived, the CTB-handler

3This may be the case either if the end has only just been claimed and the CTB-handler received
a ‘claim-confirm-nootherend’ message from the NCT-handler, or if there was a session before which
was closed (cf. Section 8.1.5) because the opposite end was released.

4carrying a dummy node-ID of -1

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 131

changes the state of the end to ‘released’ and sends a confirmation to the relevant

listener.

• The end gets released. The CTB-handler sends a release request to the NCT-

handler. At the same time, the NCT-handler sends a real ‘new-other-end’

message to the CTB-handler. The CTB-handler discards the ‘new-other-end’

message (in fact, it does not care whether it is a real or a dummy message),

changes the state of the end to ‘released’, and sends a confirmation to the

relevant listener. The NCT-handler then handles the incoming release request.

• The NCT-handler sends a real ‘new-other-end’ message to the CTB-handler.

The CTB-handler takes the message and handles it.

In the first case, the NCT-handler removes the node of the CTB-handler from which

the release request came from the relevant queue. Then it checks whether there is

another node in that queue. If this is the case, the NCT-handler now sends a ‘claim-

confirm-nootherend’ message to the new node, since the opposite end is currently not

claimed.

If the NCT-handler gets a release request from a CTB-handler to which it has

just sent a ‘new-other-end’ message (the second case), it removes that CTB-handler’s

node from the relevant queue. Then it sends a ‘claim-confirm-nootherend’ message

to the CTB-handler of the opposite end. If there is another node in the queue for the

first end, a ‘new-other-end’ message, containing the ID of the new node in the first

queue, is sent immediately to the opposite CTB-handler (which will therefore receive

a ‘claim-confirm-nootherend’ and a ‘new-other-end’ message from the NCT-handler

in quick succession).

If the CTB-handler gets a real ‘new-other-end’ message from the NCT-handler

(the third case), it checks the node-ID that comes with it. If it is different from

the ID of its own node, the CTB-handler can now start an external session (i.e. the

session-state is changed to ‘external session’). To start an external session, the CTB-

handler contacts the link-manager to acquire the link-handle for the link-handler

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 132

that is responsible for the remote node. Then the CTB-handler activates all decode-

handlers for channels whose writing-ends are in the NCT-end claimed on our node.

When this is done, the CTB-handler sends a ‘new-other-end-confirm’ message to the

NCT-handler, and waits for a ‘start-session’ message from the remote CTB-handler.

When the NCT-handler gets a ‘new-other-end-confirm’ message, it knows that

the end for which the ‘new-other-end’ message was sent has not been released. In

this case, it now sends a ‘claim-confirm-otherendclaimed’ message to the other node,

unless both ends are claimed on the same node.

If the claim confirmation from the NCT-handler for a pending end is ‘claim-

confirm-otherendclaimed’ (which will carry the ID of a remote node), the state of the

pending end is changed to ‘claimed’ and a confirmation is sent to the relevant listener.

Now an external session can be started. The CTB-handler changes the session-state

to ‘external session’, acquires the relevant link-handle from the link-manager, and

activates the relevant decode-handlers. When this is done, the CTB-handler sends a

‘start-session’ message to the remote CTB-handler.

If a CTB-handler receives a ‘new-other-end’ message which carries a node-ID that

is identical to the ID of its own node, this means that an internal session needs to be

started (i.e. the session-state is changed to ‘internal session’). In this case, no link-

handle needs to be acquired from the link-manager, and no decode-handlers need to

be activated. The ‘new-other-end-confirm’ message still needs to be sent to the NCT-

handler, however, to comply with the procedure mentioned above. In this case, it is

obvious that the state of the other end is ‘pending’. Since that other end is on our own

node, the CTB-handler can now change the other end’s state to ‘claimed’ and send

a confirmation to the relevant listener without having to await a claim confirmation

from the NCT-handler. As mentioned above, the NCT-handler only sends the claim

confirmation if both ends are claimed on different nodes.

Analysing the above protocol, it emerges that before an external session is started,

one of the nodes receives a ‘new-other-end’ message and the other node receives a

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 133

‘claim-confirm-otherendclaimed’ message. The ‘new-other-end’ message always ar-

rives on the one node first and gets acknowledged; only then will the ‘claim-confirm-

otherendclaimed’ message arrive on the other node. In order to preserve a clear

separation between the states of the CTB-handler (i.e. between times when it is out-

side a session and times when it is inside a session), there must be a synchronisation

between the two nodes. Therefore, the ‘start-session’ message is sent from the node

that has received the ‘claim-confirm-otherendclaimed’ message to the node that has

received the ‘new-other-end’ message before the session is actually started. This en-

sures that no session-related communication is sent from one node to the other before

the other node is actually aware of the session.

8.1.5 Handling Sessions

As mentioned above, during internal sessions, all communication over the channels of

the NCT is done locally by accessing the channel-words in the CTB directly from the

user-level processes which are writing to and reading from the channels. No decoders

are active in this case, which means that no session-related messages are exchanged

between nodes.

During external sessions, the CTB-handler must forward messages from the

decode- and encode-handlers to the CTB-handler on the remote node. This has been

discussed in the previous chapters. Communication between the two CTB-handlers

is done in the usual way. One of the CTB-handlers sends a message to the relevant

link-handler over the link-handle that was acquired at the start of the session. The

message is then sent over the link. The link-handler on the receiving node passes the

message on to the relevant CTB-handler via its CTB-main-handle.

The CTB-handler maintains a special flag for all channels in the CTB called the

ULC-state. There are four possible ULC-states:

• No ULC pending.

• First CLC is pending, no ‘remaining’ CLCs in ULC.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 134

• First CLC is pending, ‘remaining’ CLCs yet to come.

• ‘Remaining’ CLCs are pending.

Using the ULC-state, the CTB-handler is able to correctly communicate with its

decode- and encode-handlers, both when getting messages from the decode- or

encode-handler for the remote node and vice versa. For the handling of ULCs, please

refer to Chapter 7. The ULC-state is also important when it comes to closing sessions;

see below for details.

During a session, ends that are claimed on our node may be released. In such a

case, a release signal arrives in the CTB-handler from the relevant listener. If the

session is external, this obviously applies only to one of the ends; if it is internal,

both of the ends may be released on our node.

If an end gets released during an internal session, the CTB-handler sends a release

request for that end to the NCT-handler. Then it waits for a dummy ‘new-other-

end’ message from the NCT-handler as confirmation. When the CTB-manager has

received the confirmation from the NCT-handler, the session-state is changed to ‘no

session’. The state of the relevant end is changed to ‘released’, and a confirmation

is sent to the relevant listener. If an end gets released during an external session, all

this needs to be done as well. Before sending the release request to the NCT-handler,

however, the session needs to be closed (see below). This is necessary to maintain a

clear separation between the states of the CTB-handler.

When the NCT-handler gets a release request from a CTB-handler while there

is a session (i.e. while both ends are claimed), it returns a dummy ‘new-other-end’

message and removes the CTB-handler’s node from the relevant queue. Then it

checks whether there is another node in that queue. If this is the case, the NCT-

handler now sends a ‘new-other-end’ message, containing the ID of the new node, to

the opposite CTB-handler.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 135

Algorithm 8.1 shows how the closing of a session is initiated.5 Please note that all

decode-handlers can be deactivated straight away since none of them may be pending.

This is clear because if the end is shared, it cannot be released in the middle of a ULC.

If the end is unshared, the end cannot be moved (which is the only event that can

trigger an internal release for an unshared end) in the middle of a ULC (unless the end

is being sent over itself, but this is a special case; see Section 8.1.6). Algorithm 8.2

shows how a CTB-handler reacts when it gets a ‘close-session’ message.

Algorithm 8.1: Initiating the closing of a session

SEQ

... We just received a release signal

... Deactivate all active decode-handlers

... Send ‘close-session’ message to remote CTB-handler

... For all pending encode-handlers

IF

... ‘Remaining’ CLCs pending

SEQ

... Wait for acknowledgement (will definitely come)

... Pass acknowledgement on to remote CTB-handler

TRUE -- First CLC pending

SEQ

... Initiate ‘cancel-encode’

... Depending on the outcome, pass either cancel

... or acknowledgement on to remote CTB-handler

-- Wait for confirmation from remote CTB-handler

INITIAL BOOL running IS TRUE:

WHILE running

ctb.main.handle.svr[to.handler] ? CASE

... First CLC of a new ULC for one of the channels

... Discard, send cancel message to remote CTB-handler

... ‘close-session’ message

running := FALSE

After a CTB-handler has reacted to an incoming ‘close-session’ message, it changes

the session-state to ‘no session’. The state of the end that is claimed on our own node

5Updates of ULC-states for the individual channels are not shown in the algorithms in this
chapter in order to keep them short. Please note that no update of the session-state is included in
Algorithm 8.1, because the session-state is updated afterwards, when the release request has been
sent to and confirmed by the NCT-handler. The same applies to the state of the end that has been
released.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 136

Algorithm 8.2: Reacting to a ‘close-session’ message

INITIAL INT num.pending.decode.handlers IS 0:

SEQ

... We just received a ‘close-session’ message from remote CTB-handler

... For all active decode-handlers

IF

... Decode-handler is not pending

... Deactivate decode-handler

TRUE -- Decode-handler is pending

num.pending.decode.handlers := num.pending.decode.handlers + 1

-- Wait for cancel or acknowledgement for all pending decode-handlers

SEQ i = 0 FOR num.pending.decode.handlers

ctb.main.handle.svr[to.handler] ? CASE

... Cancel CLC

... Pass cancel on to decode-handler (this deactivates it)

... Acknowledgement

SEQ

... Pass acknowledgement on to decode-handler

... Deactivate decode-handler

... Send ‘close-session’ message to remote CTB-handler

... Change session-state to ‘no session’

is not changed, since the closing of the session was initiated by the remote end getting

released. Our own end is now in exactly the same state as if it had just been claimed

and the NCT-handler had confirmed the claim with a ‘claim-confirm-nootherend’.

If both ends of the NCT are getting released at the same time, the CTB-handlers

on both nodes will close the session using Algorithm 8.1. This is no problem, however,

since the confirmation for a ‘close-session’ request is the ‘close-session’ message itself.

If both ends get released at the same time, no ULCs (in either direction) may be

pending. Therefore, on either node, no encode-handlers may be pending and no ‘first

CLC’ messages may arrive from the remote CTB-handler anymore, which enables a

safe handshake between the two CTB-handlers both using Algorithm 8.1.

A special characteristic regarding internal claim and release signals has not yet

been discussed. As described in Section 7.7.2, when an unshared NCT-end arrives

on our node, it is internally claimed by the encode-handler after it has been taken

by the user-level process. When an unshared end is sent to another node, it is

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 137

internally released by the decode-handler before the CLC-packet is passed on to the

CTB-handler.

In cases where an NCT-end arrives on our node and is immediately sent away

again, the decode-handler responsible for sending the end may try to release the end

before the encode-handler that has just output the end to the user-level process has

had the chance to claim it. Therefore, the CTB-handler accepts release signals also for

ends that are currently released if the CTB-handler is currently not inside a session.6

The CTB-handler keeps a count for each end which stores how often a release signal

for the end was received while the end was released. When such a release signal

comes in, the count is increased and a confirmation is sent to the relevant listener.

No release request is sent to the NCT-handler in such a case.

When a claim signal comes in for an end whose count of previous dummy releases

is greater than zero, the count is decreased and a confirmation is sent to the relevant

listener. Again, no message is sent to the NCT-handler. The reason for keeping a

count rather than a Boolean flag is that an NCT-end may arrive on our node and be

immediately sent away again several times in a row (via different networked channels),

so that several consecutive dummy release signals might arrive in the CTB-handler.

Admittedly, the chance of the dummy release count ever being greater than 1 is

very low, since this would require an NCT-end to arrive on our node (in an encode-

handler), be sent away, return to our node via another networked channel (i.e. in

another encode-handler), and be sent away a second time, before the first encode-

handler has had the chance to internally claim the end. Since the network latency is

magnitudes larger than occam-π’s context-switch time, the chances of this happening

are infinitesimal. Nevertheless, it may theoretically happen, so it is necessary to cater

for this possibility. A dummy release count of 1 may occur more frequently, since this

only requires the decode-handler to release the end before the encode-handler claims

it; no network latency is involved here.

6During sessions, the CTB-handler accepts release signals only for ends that are currently
claimed.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 138

8.1.6 Sending an NCT-end Over Itself

One special case has not yet been discussed: sending an NCT-end over itself (or to be

more specific, over one of its channels). In the user-level code, such a communication

would look like this:

foo.cli[chan] ! foo.cli

For the traditional (non-networked) occam-π communication mechanism, this presents

no problem, since only a pointer (to ‘foo.cli’ in the above example) is communicated

over a channel-word (‘foo.cli[chan]’). It is irrelevant whether the pointer belongs

to the same channel-type as the channel-word over which it is sent, or not. For

networked communication, however, this case is non-trivial, and cannot be handled

using the ordinary mechanisms described so far.

When a shared NCT-end is sent over a clone (cf. Section 1.5.3) of itself, no special

care needs to be taken by the pony environment. This is because no internal claims

and releases are involved in this case.

When an unshared NCT-end is sent over itself, however, the normal mechanisms

would not work. The decode-handler would try to internally release its own CTB-

handler, which in turn would try to deactivate the decode-handler — this would

deadlock the NCT. Therefore, we need two more session-states in the CTB-handler:

• sending an end over itself (shorthand: ‘sending eoi’)

• suspended

As described in Section 7.8.1, before sending a CLC-packet to the CTB-handler

that contains a channel-type-end NLC where an NCT-end is sent over itself, the

decode-handler sends a special message to the CTB-handler. When the CTB-handler

receives such a message, it must suspend the session. A suspended session is one where

all decode-handlers are deactivated except the one dealing with the ‘end-over-itself’

CLC. During a suspended session, the session-state of the CTB-handler on the node

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 139

where the end is sent over itself is ‘sending eoi’; the session-state of the opposite

CTB-handler is ‘suspended’.

Algorithm 8.3 shows how the suspension of a session is initiated by the CTB-

handler. The reaction of the remote CTB-handler when it gets the ‘suspend-session’

message is shown in Algorithm 8.4. It can be seen that initiating a suspension is

similar to initiating the closing of a session. Likewise, the algorithms reacting to the

respective messages are similar.

Algorithm 8.3: Initiating the suspension of a session

SEQ

... We just got an ‘end-over-itself CLC’ message from a decode-handler

... Get the CLC itself from ‘eoi’ decode-handler

... Deactivate all active decode-handlers except the ‘eoi’ one

... Send ‘suspend-session’ message to remote CTB-handler

... ‘Cancel-encode’ (or get acknowledgement from) all

... pending encode-handlers and pass either cancel

... or acknowledgement on to remote CTB-handler

-- Wait for confirmation from remote CTB-handler

INITIAL BOOL running IS TRUE:

WHILE running

ctb.main.handle.svr[to.handler] ? CASE

... First CLC of a new ULC for one of the channels

... Discard, send cancel message to remote CTB-handler

... ‘close-session’ message (only possible if ‘eoi’ in first CLC)

SEQ

... Send cancel message to ‘eoi’ decode-handler

... (this deactivates it)

... Send ‘close-session’ message to remote CTB-handler

... Change session-state to ‘no session’

running := FALSE

... ‘suspend-session’ message (only possible if ‘eoi’ in first CLC)

... Do nothing -- leave this NCT to deadlock (as would

... a non-networked channel-type in the same situation)

... ‘suspend-session-confirm’ message

SEQ

... Change session-state to ‘sending eoi’

... Pass the CLC on to the remote CTB-handler

running := FALSE

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 140

Algorithm 8.4: Reacting to a ‘suspend-session’ message

SEQ

... We just received a ‘suspend-session’ message from remote CTB-handler

... Deactivate all non-pending active decode-handlers

... Wait for cancel or acknowledgement from remote CTB-handler for all

... pending decode-handlers and pass the relevant message on to the

... respective decode-handler. Deactivate decode-handlers to which we

... passed on an acknowledgement.

... Send ‘suspend-session-confirm’ message to remote CTB-handler

... Change session-state to ‘suspended’

If an attempt is made to send both ends of the NCT over themselves at the

same time, the NCT will deadlock, because each CTB-handler will send a ‘suspend-

session’ message to the other one. This is no problem, however, since a non-networked

channel-type would deadlock as well in the same situation, so semantic transparency

is preserved in this case too.

When the last CLC of the ULC that contained the ‘end-over-itself’ CLC has

been output to the receiving user-level process, the suspended CTB-handler gets

an acknowledgement from the encode-handler as usual. When this happens, the

suspended CTB-handler changes its session-state to ‘internal session’, and the state

of the end that was sent over itself to ‘claimed’, since that end is now claimed on the

receiving node. Then a special ‘eoi-done’ message is sent to the NCT-handler. When

the NCT-handler gets this message, it updates the queue of the respective end, so

that the queue now contains the receiving node on the top (and only7) position. No

further communication happens between the NCT-handler and the CTB-handler on

the sending node.

The acknowledgement from the encode-handler is sent to the CTB-handler on the

sending node as usual. When it arrives there, it is forwarded to the decode-handler.

Then the decode-handler is deactivated. The session-state of the CTB-handler on

the sending node is changed to ‘no session’; the state of the end that was sent over

itself is changed to ‘released’.

7because the end is unshared

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 141

The last thing that needs to be done in order to fully support NCT-ends being sent

over themselves is adapting Algorithms 8.1 and 8.2. If a suspended CTB-handler gets

a release signal, obviously no decode-handlers are active — hence no active decode-

handlers need to be deactivated. If during Algorithm 8.1 a suspended CTB-handler

receives an acknowledgement from an encode-handler, this can only come from the

encode-handler whose encoder has just output the last CLC of the ‘end-over-itself’

ULC to the user-level process. In this case, the state of the end that was sent over

itself is changed to ‘claimed’, and an ‘eoi-done’ message is sent to the NCT-handler.

There is no point in changing the session-state, because after the closing of the session

has been completed, the session-state will be changed to ‘no session’ anyway — since

the closing of the session was initiated because the NCT-end over which the ‘end-

over-itself’ end was received has been released.

Algorithm 8.2 must be adapted as well. If the NCT-end on the receiving node is

released, the CTB-handler on the sending node, whose session-state is ‘sending-eoi’,

will receive a ‘close-session’ message from the suspended CTB-handler on the re-

ceiving node. Obviously, there is only one active decode-handler in the ‘sending-eoi’

CTB-handler, namely the ‘end-over-itself’ decode-handler. Hence, no non-pending

active decode-handlers need to be deactivated. If during Algorithm 8.2 an acknowl-

edgement arrives for the ‘end-over-itself’ decode-handler, the state of the end that

has been sent over itself must be changed to ‘released’. The session-state is changed

to ‘no session’ at the end of Algorithm 8.2 anyway.

8.2 The CTB-manager

The CTB-manager keeps the CTB-main-, -instant- and -claim-handles for all CTB-

handlers on a node. They are given to other pony components on request. Addition-

ally, the CTB-manager stores the CTB-pointers of all networked CTBs. They are

used when the CTB-manager handles requests to make a previously non-networked

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 142

CTB networked (cf. Section 7.7.2) or to allocate a new NCT-end (cf. Sections 6.4.2

and 7.7.2).

The CTB-manager maintains arrays to store the various handles and the CTB-

pointers. The index in the arrays corresponds to the NCT-ID of the relevant CTB.

Since not for every NCT across a pony application there is necessarily a networked

CTB (and a CTB-handler) on every node, some indices of the arrays may not be

used. However, as discussed in the previous chapters, a new networked CTB may be

allocated on a node at any given time. Therefore, the free indices may come into use

at any time as well.

The arrays used are dynamic mobile arrays. When a new CTB must be allocated

on our node with an NCT-ID greater or equal to the current size of the arrays, the

arrays are extended. To determine the new size of the arrays, the current size is

doubled until the new size is greater than the NCT-ID of the new CTB. Then arrays

of the new size are allocated and the old arrays are copied to the beginning of the

new arrays.

During the shutdown of the pony kernel, the CTB-manager is responsible for

internally releasing unshared NCT-ends that are on our node, and for shutting down

the CTB-handlers. pony’s shutdown mechanism is explained in detail in Section 10.5.

8.3 The NCT-handler

The NCT-handler resides on the master node and is responsible for the claiming and

releasing of the ends of an individual NCT. It handles claim and release requests

from the CTB-handlers across the pony application. The general functionality of the

NCT-handler was described in Sections 8.1.3 through 8.1.6 already and will therefore

not be repeated here.

The claim request queues for the client-end and the server-end are implemented

as ring buffers using dynamic mobile arrays. When a queue is full, the relevant array

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 143

is doubled. This involves allocating a new array twice the size of the old one and

copying the old array to the beginning of the new one.

8.4 The NCT-manager

The NCT-manager resides on the master node and keeps the NCT-handles for all

NCT-handlers. They are given to link-handlers on request. Additionally, the NCT-

manager stores the following information for explicitly allocated NCTs:

• NCT-name

• client-state

• server-state

• type-hash

The client- and server-states can be one of the following:

• unknown

• unshared, not yet allocated

• unshared, already allocated

• shared

All data is kept in dynamic mobile arrays. The index in the arrays corresponds to

the NCT-ID. When a new NCT comes into existence, the relevant data is stored at

the end of the arrays. When the arrays are full, they are doubled.

During explicit allocation (explained in detail in Section 6.4.2), this data is used

to determine whether the NCT-end can be allocated or an error needs to be returned.

When the NCT-manager receives an explicit allocation request, it searches for the

given NCT-name in its database. If the name is not found, the data of the new NCT

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 144

is stored at the end of the arrays, and a new NCT-handler is forked off. Then the

new NCT-ID is returned to the requesting node.

If the NCT-name already exists in the NCT-manager’s database, the data coming

with the allocation request is verified against the data in the database. If an error

is encountered (see Section 3.1.1 for a detailed description of possible errors), the

error is returned to the requesting node. Otherwise, the client- and server-states are

updated, and the NCT-ID of the existing NCT is returned to the requesting node.

It is significantly simpler for the NCT-manager to handle implicit allocation re-

quests coming from a decode-handler which is making a previously non-networked

CTB networked. Details about this are given in Section 7.7.2. No data except the

NCT-name needs to be stored for implicitly allocated NCTs. The NCT-name stored

is an empty string. Since empty strings are not valid as NCT-names for pony’s allo-

cation processes, the NCT-manager cannot accidentally find an implicitly allocated

NCT when searching through its database during an explicit allocation request.

During the shutdown of the pony kernel, the NCT-manager is responsible for shut-

ting down the NCT-handlers. Please refer to Section 10.5 for a detailed description

of pony’s shutdown mechanism.

Chapter 9

The Network Drivers

Figure 9.1 shows pony’s network drivers, which are discussed in this chapter.

link-manager-handle

TCP/IP

link-manager

link-handle

TCP/IP

link-manager-handle

TCP/IP

link-handler
socket

Figure 9.1: pony’s network drivers

9.1 The TCP/IP Link-handler

The link-handler is responsible for the communication over network links. Links are

two-way asynchronous buffered connections between two nodes; they are preserving

the order of messages. All network communication between a given pair of nodes

is multiplexed over the link between them. The practical implementation of links

depends on the network-type used. This chapter discusses the link-handler and the

link-manager for TCP/IP, which is currently the only supported network-type in

pony. TCP/IP links are implemented as sockets.

145

CHAPTER 9. THE NETWORK DRIVERS 146

Every slave of a pony application has a link to the master. This is used to

communicate with the NCT-manager and the NCT-handlers. Additionally, there are

links between every pair of slaves that have or had a session established between two

of their CTB-handlers. This means that if between a given pair of slave nodes there

was never a session established so far, there is also no link between them. Of course,

there may also be sessions between the master and a slave, but as just mentioned,

every slave has a link to the master anyway; that link is used for sessions as well.

The creation of new links between slave nodes is discussed in Section 9.2. The link

between a slave and the master is created during the startup of the slave node; this

is described in Section 10.4.

The link-handler consists of two parallel sub-processes — the reader and the

writer. The names ‘reader’ and ‘writer’ are to be seen from the point of view of

the socket. This means that the reader reads network-messages from the socket and

forwards them to the target component. The writer reads messages which pony

components have sent over the link-handle, and sends them over the socket to the

target node.

As discussed earlier, if a networking error occurs during the operation of the

link-handler or the link-manager, the error-handler is notified about it. For the

implementation of pony’s error-handling mechanism, please refer to Section 10.1.

Since communication between slaves only happens during external sessions, there

is no need for a link-handler between a slave node and itself. This is different for

the master, since also components on the master node need to communicate with

the NCT-manager and the NCT-handlers. Therefore, one of the link-handlers on

the master node is a dummy link-handler which simulates a ‘loop’ link between the

master and itself. This dummy link-handler only ever handles messages related to the

master, such as claim and release requests for NCT-handlers. It never needs to handle

session-related messages, since, just like on a slave node, sessions between the master

and itself are always internal and therefore do not involve the pony infrastructure.

CHAPTER 9. THE NETWORK DRIVERS 147

The reader is inactive in the dummy link-handler — since there is no socket to

read from. The writer does not write messages to a socket, but forwards them to the

target components on the master node itself. In order to preserve the semantics of

links, being asynchronous and buffered, it is not possible for the writer to send the

message directly via the handles to the target components, since communication over

occam-π channels is synchronous and unbuffered. Instead, a special link-outputter is

forked off by the writer, which outputs the message when the target component is

ready to take it.

This gives us asynchronism and buffering. However, the other important char-

acteristic of links, the fact that the order of messages must be preserved, has to

be taken into account as well. This means that in order to simulate a link cor-

rectly, the link-outputters are not allowed to output their respective message until

the ‘previous’ outputter has done so. This behaviour is implemented by using a

chain of link-outputter-chain-handles between the individual link-outputters. These

are channel-types containing a single channel whose client-end is held by one link-

outputter, and whose server-end is held by the link-outputter that was started next.

A link-outputter waits for a signal coming in over the ‘previous’ chain-handle

before outputting its message to the target component. When the message has been

taken, the link-outputter sends a signal over the ‘next’ chain-handle. The very first

signal is sent by a small sub-process running in parallel with the main loop of the

writer. The very last signal is taken by the writer after its main loop has finished

(i.e. when the link-handler is shut down).

9.2 The TCP/IP Link-manager

The link-manager keeps the link-handles for all link-handlers on the node and passes

them to other pony components on request. When a session is established between

two slaves for the first time, the link-manager creates a new link and forks off a new

link-handler. TCP/IP socket links are created by either connecting to the remote

CHAPTER 9. THE NETWORK DRIVERS 148

node, or accepting an incoming socket connection. The rule for this is that the link-

manager on the node with the greater node-ID always contacts the link-manager on

the node with the lesser ID. This conforms with the fact that the master (whose

node-ID is 0) is being contacted by slaves (whose node-ID is greater than 0) during

the startup of slave nodes. For details on pony’s startup mechanism see Section 10.4.

When a link-handler writer on the master node gets a ‘new-other-end’ or a ‘claim-

confirm-otherendclaimed’ message from an NCT-handler, it examines the node-ID

carried by that message. If it is greater than 0 but less than the node-ID of the

target node of the message, the writer contacts the link-manager and requests the

network location of the node with the ID carried by the message. The request is

made via the TCP/IP link-manager-handle, which is different from the normal link-

manager-handle.

The special handle is used because the network location of a node is network-

type-specific (IP address and port number in case of TCP/IP) and should therefore

not be exchanged over the normal link-manager-handle. The link-manager on the

master node definitely knows the location of the node with the given ID because

all slave nodes in the application have contacted the master during their startup.

When the writer gets the location for the given node-ID, it stores it in the outgoing

network-message.

When the reader on the target node gets the ‘new-other-end’ or ‘claim-confirm-

otherendclaimed’ message, it checks the node-ID that comes with it. If it is greater

than 0 but less than the ID of the own node, the reader knows that the network-

message contains the location of the node whose ID was carried by the message. In

this case, the reader extracts the location and passes the node-ID and the location

from the network-message to the link-manager via the TCP/IP link-manager-handle.

The link-manager stores the location for the given node-ID because it knows that it

will soon get a request (from a CTB-handler) for the relevant link-handle.

CHAPTER 9. THE NETWORK DRIVERS 149

When the link-manager gets a request for a link-handle for which there is no link-

handler yet1, the link-manager compares the node-ID of the request with the ID of

its own node. If the own node-ID is greater, the link-manager connects to the other

node. The location of the remote node is definitely stored in the link-manager because

the CTB-handler has received a ‘new-other-end’ or a ‘claim-confirm-otherendclaimed’

message beforehand — so that the link-handler has stored the location in the link-

manager. When the connection to the other node has been established, the link-

manager forks off a new link-handler, giving it the socket that was just created, and

returns the new link-handle to the requesting CTB-handler.

If the own node-ID is less than the node-ID of the request from the CTB-handler,

this means that the other node will connect to us. In this case, the link-manager

allocates a new link-handle and returns the client-end to the requesting CTB-handler

without forking off a new link-handler. Instead, the server-end of the link-handle is

kept by the link-manager, together with a flag that the respective link is pending,

which means that the remote node will contact us soon.

When the link-manager on a slave node accepts an incoming socket connection

from another slave2, a new link-handler is forked off. If the respective link was

pending, no new link-handle is allocated, but the one that was previously allocated

is used. With this mechanism, it is possible to answer requests from CTB-handlers

for link-handles before the actual link is established. When the CTB-handler sends

a message over the link-handle while the link is pending, the message is simply not

taken. When the socket connection from the remote node has been accepted, the

then forked off link-handler will start reading messages from the link-handle as usual.

The link-manager uses dynamic mobile arrays to store the link-handles and the

data associated with a particular link. The index in the arrays corresponds to the

node-ID of the remote node. On slave nodes, the same mechanism is used for the

1This can only be the case on slave nodes; such a request can only come from a CTB-handler.
2The case when the link-manager on the master node accepts an incoming socket connection

from a slave is discussed in Section 10.4, which explains pony’s startup mechanism.

CHAPTER 9. THE NETWORK DRIVERS 150

arrays as in the CTB-manager. That is, some indices may be unused if there is

currently no link to the respective node. When a new link is established to a node

with a node-ID greater or equal to the current size of the arrays, the arrays are

extended in the same way as in the CTB-manager. On the master node, the array

mechanism is like in the NCT-manager. When a new slave connects to the master,

the next free index at the end of the arrays is used as the node-ID of the new slave.

When the arrays are full, they are doubled.

During the shutdown of a slave node, the link-manager is responsible for shutting

down the link-handlers. This is explained in detail in Section 10.5, where pony’s

shutdown mechanism is discussed.

9.3 Optimising TCP/IP Network Performance

pony uses Barnes’ socket library [Bar00a] to communicate over links. Some auxiliary

processes were implemented specifically for pony; these are based on the socket library

as well. The Nagle algorithm3 [Wik06] is turned off for sockets used by pony in order

to avoid delays when sending relatively small network-messages (which will be the

bulk of network communication in a typical pony application).

As discussed earlier, when a ULC is sent over a networked channel, the first CLC

or the ‘remaining’ CLCs of the ULC are sent over the link in a single network-message.

This significantly improves network latency compared to previous versions of pony,

where every NLC was sent and acknowledged separately. In order to be able to send

network-messages that contain CLC-packets, two special processes are used by the

link-handler:

3The Nagle algorithm aims to improve the efficiency of TCP/IP networks by reducing the number
of packets that are to be sent. It coalesces several small outgoing messages and sends them all
together once a certain packet size has been reached or a timeout has occurred. In pony, this is
counterproductive, however, since pony awaits acknowledgments for all data messages sent, in order
to preserve the handshake semantics of occam-π’s channel communication. Therefore, an immediate
transport of each message offers better performance in pony.

CHAPTER 9. THE NETWORK DRIVERS 151

PROC pony.int.tcpip.socket.fullwrite.multi

(SOCKET sock, []BYTE header,

VAL []INT addr.array, size.array,

RESULT INT result)

PROC pony.int.tcpip.socket.fullread.multi

(SOCKET sock, RESULT []BYTE header,

RESULT MOBILE []BYTE data.array,

RESULT MOBILE []INT size.array,

RESULT INT result)

For convenience, their names will be abbreviated ‘fullwrite-multi’ and ‘fullread-multi’

in the following. Both processes are based on the socket library and use Barnes’ mech-

anism to make blocking system calls without blocking the occam-π kernel, described

in [Bar00b]. The actual socket operations are done by C functions called from within

‘fullwrite-multi’ and ‘fullread-multi’. Both ‘fullwrite-multi’ and ‘fullread-multi’ only

need to call a ‘blocking’ C function once.

With these processes, it is possible to send and receive network-messages that

consist of a fixed-sized header and any number of variably-sized items. ‘fullwrite-

multi’ expects an address-array and a size-array; ‘fullread-multi’ returns a data-array

and a size-array. This fits the needs of CLC-packets (cf. Section 7.8.2). In the

case of CLC-packets, the items are the individual NLCs, and the CLC-descriptor if

applicable.

The header of the network-message must be eight bytes (the size of two integers)

larger than the actual header data, because the last eight bytes of the header are

used by ‘fullwrite-multi’ and ‘fullread-multi’ internally. ‘fullwrite-multi’ stores the

number of items in the last four bytes of the header. If there is exactly one item, its

size is stored in the penultimate four bytes of the header. If the arrays are empty,

‘fullwrite-multi’ only sends the header. If there is exactly one item, ‘fullwrite-multi’

sends the header and the single item. If there is more than one item, ‘fullwrite-multi’

CHAPTER 9. THE NETWORK DRIVERS 152

sends the header, the size-array and all items. Everything is sent in one go using the

‘writev’ function. No copying of the items that are sent is necessary, which improves

performance.

‘fullread-multi’ first reads the header and extracts the number of items. If there

are no items, empty arrays are returned. If there is exactly one item, ‘fullread-multi’

extracts the item’s size from the header and reads the item. Then ‘fullread-multi’

returns the item itself in the data-array, and for the size-array an array with the

item’s size as the only element. If there is more than one item, ‘fullread-multi’ reads

the size-array (whose size in bytes is four times the number of items). Then it sums

up all sizes in the size-array and reads the corresponding number of bytes into the

data-array. Using this mechanism, fixed-sized network-messages (most non-CLC-

related ones) only require one socket read. Network-messages with only one item

in the arrays require two socket reads. (The bulk of CLC-packets in a typical pony

application will only contain a single item — either a data-item NLC or a CLC-

descriptor.) Network-messages with more than one item in the arrays require three

socket reads.

‘fullwrite-multi’ and ‘fullread-multi’ are also used by the ANS, the link-manager

and the link-handler to allow strings of variable length as part of network-messages.

This is used for application-names and NCT-names. In this case, the address-array

and the size-array for ‘fullwrite-multi’ only contain one element each. Hence, the

data-array returned by ‘fullread-multi’ contains the relevant name only.

Chapter 10

Other Implementation Issues

10.1 Implementation of Error-handling

Figure 10.1 shows the error-handler with the internal and the external error-handle.

internal

error-handle

error-handler

error-handle

Figure 10.1: The error-handler

If an error-handler has been started on a node (cf. Section 2.3), the link-handler

and the link-manager use the internal error-handle to report networking errors oc-

curring during their operation. For the storage of errors, the error-handler maintains

a ring buffer which is doubled in size whenever it gets too small.

Except the ‘pony.err.get.nct.id.*’ processes, all other error-handling pro-

cesses (cf. Section 4.1) are implemented as a simple request/reply sequence over

the (external) error-handle. The error-handling process makes a request to the error-

handler, carrying the relevant data from its parameters, and waits for a reply. During

its main loop, the error-handler ALTs over the internal and the external error-handle.

153

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 154

When a request arrives from one of the error-handling processes over the external

error-handle, the error-handler sends a reply to the requesting process. The data

coming with the reply is then returned by the error-handling process to the user-level

code via the relevant parameters. The only error-handling process that gets no reply

from the error-handler is the ‘pony.err.shutdown’ process, which just sends a shut-

down signal to the error-handler (see Section 10.5 for details about pony’s shutdown

mechanism).

The ‘pony.err.get.nct.id.*’ processes are a special case, since they do not

communicate with the error-handler. Instead, they first check whether the channel-

type-end parameter is defined or not. If the end is undefined, an error is returned.

Otherwise, a small inline assembler routine determines the CTB-pointer of the end.

Then an auxiliary C function is called to find out the NCT-ID stored in the CTB.

If the CTB is not networked, the auxiliary function returns an error, otherwise it

returns the NCT-ID. The ‘pony.err.get.nct.id.*’ processes terminate after the

auxiliary function has finished, returning the NCT-ID and the result via the relevant

parameters.

When the ID of the current remote node for a given NCT-ID is requested over

the external error-handle, the error-handler contacts the CTB-manager and requests

the CTB-instant-handle for the relevant CTB-handler. If the reply from the CTB-

manager says that the NCT-ID is invalid, the error-handler notifies the requesting

process about it. Otherwise, the error-handler now requests the ID of the current

remote node from the CTB-handler’s instant-handler. The reply from the instant-

handler (which may either be the requested node-ID, or a notification that there is

currently no external session) is then forwarded to the requesting process.

The error-handler associates a unique running number (called the ‘position’) with

each error that gets stored in the buffer. This number is not stored in the array

together with the error; instead, the error-handler keeps two special variables. These

variables store the position of the first error that is currently stored in the buffer

(called ‘first running number’), and the position of the next error that will happen

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 155

(called ‘next running number’). When a new error-point is requested from the error-

handler, the ‘next running number’ will be returned. The error-handler keeps another

variable, which stores the number of pending error-points at the current ‘next running

number’. Every time an error-point is requested, this number is increased.

When an error is reported over the internal error-handle, the error-handler dis-

cards the error if the buffer is empty and the number of pending error-points is zero.

Otherwise the error, together with the number of pending error-points1, is stored in

the buffer. Then the ‘next running number’ is increased and the number of pending

error-points is set to zero. In this way, the error-handler knows for every error that

is stored in the buffer how many error-points were given to user-level processes while

the position associated with the error was the ‘next running number’.

When the deletion of an error-point is requested over the external error-handle,

the error-handler deletes the error-point as set out in Algorithm 10.1.

When the error-handler receives a request for all errors after a given error-point

over the external error-handle, it does a similar check as in Algorithm 10.1. If the

error-point is at the ‘pending’ position and the number of pending error-points is

greater than zero, an OK and an empty array are returned, together with the un-

changed error-point. If the error-point is out of range, or if there are no error-points

stored in the buffer at the given position, the requesting process is notified that the

error-point is invalid.

Otherwise, the error-handler now goes through the buffer, starting with the error

at the position of the given error-point, and assembles an array with all errors that

fit the criteria which came with the request. Please note that the assembled array

may be empty if none of the errors that happened after the given error-point fits the

criteria. Then the error-point at the given position is deleted in the same way as in

Algorithm 10.1. This involves deleting errors without an error-point from the start

of the buffer. When this is done, the number of pending error-points is increased.

1which may be zero if there are errors in the buffer already

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 156

Algorithm 10.1: Deleting an error-point

SEQ

... We just received a request to delete an error-point

... (‘err.point’ is the error-point to be deleted)

... Set ‘rel.err.point’ to the index of the error-point in the buffer

IF

-- Error-point at ‘pending’ position

(err.point = next.running.num) AND (pending.err.points > 0)

SEQ

pending.err.points := pending.err.points - 1

... Return OK

-- Error-point out of range

(err.point < first.running.num) OR (err.point >= next.running.num)

... Return ‘invalid error-point’ error

-- No error-point at given position

err.data.array[rel.err.point][num.err.points] = 0

... Return ‘invalid error-point’ error

TRUE

SEQ

-- Delete error-point at given position

err.data.array[rel.err.point][num.err.points] :=

err.data.array[rel.err.point][num.err.points] - 1

IF

... Deleted error-point was at start of buffer and

... was the only error-point stored at this position

... Delete all errors with no error-point from start of buffer

... (afterwards buffer is either empty, or new first element

... of the buffer has a stored ‘num.err.points’ > 0)

TRUE

SKIP

... Return OK

Finally, the error-handler returns an OK to the requesting process, together with the

assembled array, and the current ‘next running number’ as the updated error-point.

10.2 Implementation of Message-handling

Figure 10.2 shows the pony components that are related to message-handling.

If a message-handler is active on a node, the pony components use the internal

message-handle to report status messages to the message-handler. The link-handler

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 157

internal

message-handle

message-

handler

message-

outputter
message-handle

error

output

Figure 10.2: pony components related to message-handling

and the link-manager may report error messages as well. Which messages are reported

depends on the message-type given to startup process (cf. Section 2.3).

As described in Section 4.2, there are different message-outputters using various

combinations of output and error channels. The correct message-outputter should

be chosen according to the message-type used. A message-outputter with an output

channel should be chosen if and only if status messages are reported by the pony

kernel; the same applies to an error channel and error messages accordingly. Never-

theless, it is possible to use any combination of message-type and message-outputter.

If there are misfits between the channels and the message-type, warnings are displayed

by the message-outputter.

When the message-outputter is started, it requests the ID of its own node and

the message-type from the message-handler. If the message-outputter has a channel

for a type of message that is not reported by the pony kernel, it displays a warning.

The same applies if a type of message is reported by the pony kernel for which the

message-outputter has no channel. In the latter case, the corresponding messages are

discarded by the message-outputter. The own node-ID is displayed when messages

are output.

Then the message-outputter starts its main loop, which consists of an auto-

prompter requesting the next message from the message-handler. Whenever a mes-

sage arrives, it is output to the correct channel (unless it needs to be discarded; see

above). When the message-outputter receives a shutdown signal from the message-

handler, it leaves its main loop and terminates.

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 158

The message-handler maintains a ring buffer to store messages from the pony

components until they have been taken by the message-outputters. The size of the

buffer is doubled whenever it gets too small. During its main loop, the message-

handler ALTs over the internal and the external message-handle. Each time a new

message arrives over the internal message-handle, it is stored in the buffer. When a

shutdown signal arrives over the internal message-handle, the message-handler sets a

special flag to store this fact.

Requests over the external message-handle are only accepted by the message-

handler if the message-outputter has not requested initialisation yet, if there is at

least one message in the buffer, or if a shutdown signal was received from the pony

kernel earlier. If the message-outputter requests initialisation, the message-handler

replies with the own node-ID and the message-type. If the message-outputter requests

a message, the message-handler returns either a message from the buffer if the buffer

is not empty; otherwise it sends a shutdown signal to the message-outputter.

10.3 The Application Name Server

The ANS is not part of the pony library as such, but a stand-alone occam-π program.

It displays status and error messages on the screen and allows the user to terminate

the program via the keyboard. The ANS for TCP/IP uses Barnes’ socket, file and

process libraries [Bar00a] for calling various routines that are needed for its function-

ality. When the ANS is started, it first tries to find its ANS-configuration file (cf.

Section 3.3.3) and to extract the port number from it. If the file is not found or if

it contains no port number, the default ANS port number is used. Then the ANS

creates a listening socket and starts its main loop. During the main loop, it accepts

incoming connections from master or slave nodes of pony applications.

The ANS keeps a buffer of all applications that are currently active or pending.

A pending application is one where one or more slave nodes have contacted the ANS

using ‘slave/wait’ as their node-type (cf. Section 2.3.2) and are currently waiting for

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 159

the master to contact the ANS. When an application is shut down, the index of the

application in the buffer is put on a free-list so that the index can be re-used. If the

buffer is full, it gets doubled in size. In order to avoid mix-ups between nodes of

old and new applications using the same index, each application is assigned a unique

code, which is implemented as a running number. For each application, the ANS

also keeps a count of how many slave nodes have requested the master’s network

location so far. This information is needed during the shutdown of applications, cf.

Section 10.5.

When the ANS is contacted by a node, it looks up its database for an application

with the application-name that came with the request. If the application-name is

new and the node-type is ‘master’ or ‘master/reset’, the new application is added to

the database and the location of the master is stored. Then the ANS sends a reply

to the master node, containing the application-index and the application-code. If

the node-type is ‘slave’, an error is returned because there is no master yet. If the

node-type is ‘slave/wait’, a new pending application is added to the database. For

pending applications, the ANS keeps a buffer of slaves that are currently waiting for

the master.

If an active application with the given application-name already exists and the

node-type is ‘master’, an error is returned. If the node-type is ‘master/reset’, the

existing application is removed from the database and the new application (getting

a new application-code) is stored instead. Then the new master node is notified

about the application-index and the application-code. If the node-type is ‘slave’ or

‘slave/wait’, the location of the master is returned to the slave node by the ANS.

If a pending application with the given application-name already exists and the

node-type is ‘master’ or ‘master/reset’, the state of the application is changed to

‘active’ and all waiting slaves are notified by the ANS about the location of the

newly arrived master. Then the master is notified about the application-index and

the application-code. If the node-type is ‘slave’, an error is returned because there is

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 160

no master yet for the application. If the node-type is ‘slave/wait’, the slave node is

added to the buffer of waiting slaves.

When the ANS gets a shutdown request from the master of an application, this

request will contain the application-index and the application-code. The ANS checks

whether the application-code is correct and sends a reply to the master node, con-

taining the number of slaves that have requested the location of the master so far.

Then the application is removed from the buffer; the application-index is put on

the free-list. If the application-code is wrong, an error is returned to the requesting

master node, and the application is not removed from the database.

During its operation, the ANS displays status messages about incoming requests

and how they are handled. After each request, the current number of active and

pending applications is displayed. If networking errors happen during the handling

of requests, the ANS closes the current socket and displays a warning that the state of

the database might be inconsistent. If the listening socket fails, the ANS terminates.

The ANS can be shut down by pressing ‘q’. If there are currently active or pending

applications stored in the ANS, a warning is displayed and the shutdown must be

confirmed by pressing ‘q’ a second time.

10.4 The Startup Mechanism

As for the ANS, KRoC’s socket, file and process libraries are also used by the pony

library itself for the startup of a pony node. When the startup process (cf. Section 2.3)

is called, it starts a special process whose task it is to connect to the ANS, set up

the link to the master if necessary, and start the link-manager. Since this process is

network-type-specific, it is kept separate from the rest of the startup mechanism.

The special process for TCP/IP tries to find the ANS-file and the node-file, and to

determine the network location of the ANS and of the own node. This is done as set

out in Section 3.3. If the settings are not found, defaults are used where applicable.

If the lookup fails, an error is returned. Otherwise, the special process now creates

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 161

the listening socket for the node. If this is successful, the ANS is contacted. The

message to the ANS contains the node-type, the application-name and the location

of the node.

As discussed in Section 10.3, upon success, the ANS will return the application-

index and the application-code if the node is the master, or the location of the master

if the node is a slave. If the node-type is ‘slave/wait’, the reply from the ANS may

tell the slave to wait because there is no master yet. In this case, the slave will close

the connection to the ANS and accept a new incoming connection from the ANS

— which will arrive as soon as a master for the application has contacted the ANS.

When the connection from the ANS has been accepted, the slave node is notified by

the ANS about the location of the new master. Then the connection with the ANS

is closed.

If the node is a slave, it will now connect to the master and notify the master

about its own location. The link-manager on the master node accepts the incoming

connection. If the master is in the process of shutting down, it will notify the slave

about it. Otherwise, it checks whether the location sent by the slave is used by

another slave already, in which case an error is returned to the slave, so that the

slave’s startup would fail. Otherwise, the master notifies the slave about its node-ID

(which is the next free node-ID in the application), and forks off a link-handler for

the new link.

If the reply from the master was that the master is currently shutting down, and

the node-type is ‘slave’, the slave’s startup would fail. If the node-type is ‘slave/wait’,

the special process will start over and connect to the ANS again — and (if necessary)

wait for the next master that will start an application of the given name.

If the above sequence of events has been completed successfully, the special process

forks off the link-manager. The link-manager starts its acceptor sub-process, which

starts accepting incoming connections. Then the link-manager forks off the master-

link-handler. If our node is a slave, the master-link-handler uses the socket which was

just established to the master. If our node is the master, obviously, no such socket

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 162

exists. Instead, the master-link-handler will be a dummy (cf. Section 9.1). Then the

link-manager starts its main loop.

If the special process has finished without errors, the startup process can now

fork off the main kernel. The main kernel then forks off its subcomponents. First

the message-handler is forked off if the startup process is meant to return a message-

handle, then the error-handler is forked off if the startup process is meant to return

an error-handle. Then the main kernel requests the link-handle to the master-link-

handler from the link-manager. Now the CTB-manager is forked off. On the master

node, the last component to be forked off is the NCT-manager. Then the main kernel

starts its main loop.

10.5 The Shutdown Mechanism

When pony’s shutdown process (cf. Section 3.2) is called, it sends a shutdown request

to the main kernel via the network-handle. The main kernel then shuts down all its

internal components in the following order:

• CTB-manager and CTB-handlers

• link-manager and link-handlers

• On the master node: NCT-manager and NCT-handlers

• If applicable: error-handler and message-handler

CTB-manager and CTB-handlers

The main kernel first sends a shutdown signal to the CTB-manager via the CTB-

manager-handle. In the CTB-manager, a small sub-process then sends internal release

signals to both CTB-claim-handles of all CTB-handlers that are currently known by

the CTB-manager, in order to release unshared NCT-ends that are located on our

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 163

node. All those release signals are sent in parallel. While they are being processed,

the CTB-manager continues accepting and handling incoming requests normally.

For the sake of simplicity, release signals to the CTB-handlers are sent for all ends,

no matter whether the ends are unshared or shared2, and whether they are currently

claimed or not. Ends that are shared, as well as unshared ends that are currently

not on our node, are not in a claimed state in their respective CTB-handlers when

the release signals are sent. As discussed in Section 8.1.5, however, this presents no

problem, since CTB-handlers accept release signals for ends that are already released

when the session-state of the CTB-handler is ‘no session’. This is the reason for

sending the release signals in parallel. If there is currently a session in the CTB-

handler, this means that at least one end is currently claimed. The internal release

signal for a claimed end will be accepted in any case. When the end has been released,

there is definitely no more session in the CTB-handler, so the internal release signal

for the other end will then be accepted as well, even if it is already released.

When all ends have been released, the CTB-manager fills an array with the CTB-

pointers of all networked CTBs and shuts down all CTB-handlers on the node. Please

note that the number of CTB-handlers that are on our node now may be higher than

the number of CTB-handlers whose ends were just internally released. The reason

for this is that between the shutdown signal from the main kernel, which initiated

the internal releasing of all ends, and the completion of the internal releasing of these

ends, channel-type-end NLCs may still have been arriving in encoders on our node.

Although none of these NCT-ends were output to user-level processes, new CTBs

for them may still have been established before the pending CLCs were cancelled

due to the internal releasing of all ends. This was the reason for still letting the

CTB-manager handle requests as usual — otherwise a deadlock may have occurred

between the CTB-manager trying to release an end, the relevant CTB-handler trying

to ‘cancel-encode’ a pending outgoing CLC, and the encoder dealing with that CLC

2In fact, the release signal during shutdown is the only case where the CTB-claim-handle is used
for shared ends.

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 164

trying to contact the CTB-manager in order to allocate a new NCT-end for a pending

channel-type-end NLC.

Even though there may be new CTB-handlers now, there is no need to internally

release their ends, since those ends were not internally claimed before — because the

relevant channel-type-end NLCs were never output to user-level processes. The CTB-

manager now sends a shutdown signal to all CTB-handlers that are currently on our

node. When the CTB-handlers are shut down, they shut down all their decode- and

encode-handlers, which in turn shut down their respective decoders and encoders.

When all this is done, the CTB-manager sends a shutdown confirmation to the main

kernel via the kernel-reply-handle, together with the array of CTB-pointers. Then

the CTB-manager terminates.

Link-manager and Link-handlers

Now the main kernel sends a shutdown signal to the link-manager. The link-manager

reacts differently to the shutdown signal depending whether our node is the master

or a slave. If our node is a slave, the link-manager will send a shutdown signal to all

its link-handlers. This is safe to do now, since once the CTB-handlers have all been

shut down, it is not possible anymore for link-handlers to contact the link-manager3

— therefore there is no danger of deadlock here.

When a link-handler on a slave node gets a shutdown signal from the link-manager,

it checks whether the link still exists. If it does, the link-handler sends a shutdown

message over the link to the remote link-handler. Then it waits for a shutdown

message from the remote link-handler. When that arrives, the link-handler closes the

socket, sends a shutdown confirmation to the link-manager over the link-manager-

handle, and terminates.

3The only case where link-handlers on slave nodes may contact the link-manager is in order to
store the network location of a node in the link-manager, cf. Section 9.2.

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 165

When a link-handler on a slave node gets a shutdown message from the remote

link-handler before getting the shutdown signal from the link-manager, it sends a

shutdown message back to the remote link-handler and closes the socket. Then it

waits for the shutdown signal from the link-manager. When that arrives, the link-

handler sends a shutdown confirmation to the link-manager over the link-manager-

handle, and terminates.

On the master node, this is different. The link-manager there does not send

a shutdown signal to its link-handlers, but waits for them to be shut down by a

shutdown message from the respective slaves. Therefore, link-handlers on the master

node never initiate the shutdown of a link, but only react to a shutdown message

from the remote link-handler. If this arrives, a shutdown message is returned to the

remote link-handler and the socket is closed. The shutdown confirmation is then sent

immediately to the link-manager, and the link-handler is shut down. This means

that the link-manager on the master node can get shutdown confirmations from its

link-handlers at any given time, whereas on slave nodes, the link-manager would need

to send the shutdown signal to the link-handlers first.

The reason for implementing the shutdown in this way is that, as pointed out in

Section 3.2, on slave nodes, the pony kernel is meant to terminate immediately when

the pony shutdown process is called, whereas on the master node, the pony kernel

continues serving the slaves (which may still be using the NCT-manager and the

NCT-handlers on the master node) until all slaves have been shut down themselves.

On slave nodes, the link-manager shuts down its acceptor immediately when it

receives the shutdown signal from the main kernel. When the link-manager on a slave

node has received the shutdown confirmations from all its link-handlers, it sends a

shutdown confirmation to the main kernel via the kernel-reply-handle, and terminates

itself.

When the link-manager on the master node gets the shutdown signal from the

main kernel, it contacts the ANS to inform it about the shutdown of the application.

As soon as the master has notified the ANS about the shutdown, no more requests

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 166

from slave nodes will be accepted by the ANS for this application. However, some

slaves may have got the location of the master from the ANS before the ANS was

notified about the shutdown, but not connected to the master yet. Therefore, when

the ANS gets the shutdown notification from the master, it returns the number of

slaves that have requested the location of the master so far. The link-manager on

the master node keeps a count of how many slaves have connected to it so far. If the

two counts are not equal, the link-manager will not shut down its acceptor until the

remaining slaves have connected to it. When this happens, the slave nodes are notified

that the master is in the process of shutting down, and the accepted connections from

the respective slaves are closed immediately.

The link-manager on the master node waits until both all remaining slaves have

connected to it (whereupon the acceptor is shut down) and the shutdown confirma-

tions from all link-handlers have arrived. Once both conditions are met, it sends a

shutdown confirmation to the main kernel via the kernel-reply-handle, and terminates

itself.

NCT-manager and NCT-handlers

If our node is the master, the main kernel now sends a shutdown signal to the NCT-

manager — which we know will not be used anymore since all links to other nodes are

gone. The NCT-manager sends a shutdown signal to all NCT-handlers, which will

confirm the shutdown and terminate straight away. Then the NCT-manager confirms

its own shutdown to the main kernel, and terminates itself.

Terminating the Shutdown Process

Now the main kernel sends a reply to the shutdown process, containing the array of

CTB-pointers it had received from the CTB-manager earlier. The shutdown process

then calls an auxiliary C function which will shut down all previously networked

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 167

CTBs. This mechanism was described in detail in Section 6.3.3. When the auxiliary

function has finished, the shutdown process terminates.

Error-handler and Message-handler

For the main kernel, there is now only one thing left to do, namely notifying the

error-handler and the message-handler about the shutdown — if they are running

on our node. If the error-handler is running on our node, the main kernel sends a

shutdown signal to the error-handler via the internal error-handle. In this case, the

error-handler is responsible for sending the shutdown signal to the message-handler

via the internal message-handle (if there is a message-handler on our node) when the

error-handler has finished itself. If there is no error-handler on our node, but there

is a message-handler on our node, the main kernel itself sends the shutdown signal

to the message-handler via the internal message-handle. When all this is done, the

main kernel leaves its main loop and terminates.

The error-handler only terminates after having received both a shutdown signal

via the internal error-handle and one via the external error-handle. When getting

one of the two shutdown signals, the error-handler stores this fact in a special flag.

After having received the internal shutdown signal, it will stop taking requests from

the internal error-handle; after having received the external shutdown signal, it will

stop taking requests from the external error-handle. As soon as the second shutdown

signal arrives, the error-handler sends a shutdown signal to the message-handler (if

there is one on our node), and terminates.

When the message-handler gets the shutdown signal via the internal message-

handle, it stores this fact in a special flag. After having received the shutdown sig-

nal, the message-handler will stop taking requests from the internal message-handle.

When all remaining messages (including the shutdown signal at the very end) have

been taken by the message-outputter, the message-handler terminates.

Part III

Performance of pony,

Evaluation and Conclusions

This part of the thesis evaluates pony’s performance and contains the final conclu-

sions. Chapter 11 presents a number of tests that were carried out to examine the

performance of the pony environment. Chapter 12 concludes with a discussion of the

work presented in this thesis, along with an outline of possible future research.

168

Chapter 11

Performance Evaluation

To examine the performance of the pony environment, we ran a number of tests, the

results of which are presented in this chapter. The performance tests were carried

out jointly with Adam Sampson from the University of Kent and Dyke Stiles from

Utah State University [Uta06].

The author particularly wishes to thank Adam Sampson for implementing the

‘bmthroughput’ benchmark program, as well as the ‘mandelbauer’ demo and the

distributed pony version of the classical occam ‘commstime’ benchmark [SS06]. All

these programs, together with the ‘bmpingpongtime’ program also presented in this

chapter, are included in the KRoC distribution. Thanks also go to Dyke Stiles for

implementing a pony version of his Distributed Robust Annealing package [Sti05].

11.1 Basic Considerations

All tests were run on the TUNA cluster at the University of Kent. This cluster

was funded by EPSRC as part of the TUNA project [SWP+05], a joint project of the

University of Kent and other universities. The cluster consists of 30 PCs with 3.2 GHz

Intel Pentium IV processors, running Linux 2.6.8, linked by a reliable switched gigabit

Ethernet network.

169

CHAPTER 11. PERFORMANCE EVALUATION 170

The test programs, as well as the pony library itself, were compiled using KRoC’s

highest optimisation options. Some random checks, however, showed that the com-

piler optimisation had no measurable effect on the test results.

For the duration of the tests, no other tasks were performed on the machines used.

Memory usage was watched carefully to avoid going into swap. Each pony node was

run on a dedicated host, unless stated otherwise (see Section 11.7). The ANS was

also given a dedicated host. This was done primarily for ease of management, since

the ANS is not performance-critical.

All tests (except the annealing tests, which are a special case; see Section 11.7)

aim to be ‘steady-state’ measurements. The loops are started and allowed to run

for at least two seconds before the timer is started, in order to avoid CPU caching

effects; the performance of the loop is then measured over a period of ten seconds.

Each measurement was repeated three times (five times for the annealing tests)

and the average of the results taken. We have omitted error bars for clarity; the error

was within 1% on all tests.

It is worth noting that, to date, the main concern in the implementation of pony

was its proper function according to the objectives set out in Section 1.3. Only

little time has been invested in performance optimisation so far. Still, the results of

our tests are very encouraging, and should only improve when pony’s performance is

further optimised in the future. We have already built several distributed applications

using pony which perform well on PC clusters.

11.2 Communication Time

‘commstime’ is a standard benchmark that has traditionally been used with various

incarnations of occam and similar CSP-based platforms. Its process layout is shown

in Figure 11.1.

The ‘commstime’ benchmark consists of four parallel processes, three of which

are running in a loop. The processes are connected by channels carrying INTs. The

CHAPTER 11. PERFORMANCE EVALUATION 171

prefix (0)

succ

delta
consume

Figure 11.1: The ‘commstime’ benchmark

‘prefix’ process first outputs a pre-defined number. Then it inputs incoming INTs

and passes them on. The ‘delta’ process inputs INTs and passes them on via two

output channels. The ‘succ’ process inputs INTs and outputs their successors. Fi-

nally, the ‘consume’ process inputs the INTs from the above circuit and acts as a

monitoring process. Since the processes are effectively only doing communications,

the cycle rate of the network (i.e. how long it takes for a piece of data to travel around

the loop) can be used to estimate the overhead of a single communication.1

The pony version of the ‘commstime’ benchmark modifies the standard program

so that each of the four processes runs on a separate node. The channels between

processes become NCTs containing a single INT channel. Appendix C compares the

traditional and the distributed implementation of ‘commstime’ in order to give a

practical example of how to use pony to make an existing application distributed.

Since pony sends INTs as single NLCs, the communication time measured is the

time for a basic network communication — which includes not just several occam-π

context-switches, but also eight pthreads context-switches, four system calls into the

kernel, and two TCP round-trips across the network.

The standard ‘commstime’ was compiled using the same KRoC version and options

as the other test programs, and reported a communication time of 19 ns with CPU

usage at 100%. The pony ‘commstime’ reported a communication time of 66 µs with

CPU usage on each node at 3% — approximately fifteen thousand communications

per second.

1There is also a ‘parallel delta’ version of the original benchmark which is used to measure process
startup time; the benchmark used here is the ‘sequential delta’ version in which no processes are
created or destroyed while the benchmark is running.

CHAPTER 11. PERFORMANCE EVALUATION 172

These results met our expectations. They are also in line with the through-

put measurements below. The measurement in Figure 11.3 gave a throughput of

21.6 KB/s2 for a single node running 50 worker processes each outputting messages

of 1 B size, i.e. about 21.6 thousand messages per second arriving at the measuring

process. As expected, the fact that 50 workers were running in parallel moderately

increased the communication rate compared to the fifteen thousand communications

per second measured in the ‘commstime’ benchmark above.

11.3 Throughput

‘bmthroughput’ is a benchmark program intended to measure the aggregate data

rate available across a group of networked channels. We will refer to that rate as

‘throughput’ in the following. The ‘bmthroughput’ program is designed to be a

flexible tool for throughput measurement, allowing variations of several parameters

of the distributed benchmark application.

A collection of worker processes — distributed across a number of slave nodes —

sends ‘MOBILE []BYTE’ arrays to a master process (on the master node); the master

measures the rate at which it is receiving data from the collection of workers. The

number of slave nodes, number of workers per slave node, range of message sizes (fixed

or randomly distributed) and transmission rate (in messages per second, or simply

‘as fast as possible’) can be varied. In this set of benchmarks, the code generating

messages is trivial, and there are no other occam-π processes running to compete

with pony for CPU time.

Using 100 KB — a message size typical for applications rendering real-time graph-

ics — the saturation point of the network can be reached with relatively few sending

processes. Figure 11.2 shows the throughput available with one to 25 slave nodes,

each running two workers; network saturation is just reached at 25 slave nodes (i.e.

2All byte prefixes used in this chapter are decimal, e.g. 1 KB = 1000 B.

CHAPTER 11. PERFORMANCE EVALUATION 173

50 workers). The peak at two slave nodes was persistent through all measurements;

we have no explanation for it at the present stage.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Slave nodes

Figure 11.2: Throughput: 100 KB messages, two workers per slave

Figure 11.3 shows the throughput available from one slave node running 50 work-

ers as the message size is varied between 1 B and 1 MB. Since pony (like occam-π

internally) does approximately the same amount of work per communication regard-

less of the size of the message, there is an obvious advantage in using larger messages

if your application is optimised for throughput.

Figure 11.4 shows the throughput available from one slave node using 50 KB

messages as the number of workers is varied between 1 and 500. pony uses blocking

system calls, so other occam-π processes can execute while pony is waiting for net-

work operations to complete; throughput-sensitive applications should therefore use

multiple processes per node, or have internal buffering, to ensure that the networked

channels always have data available to send.

CHAPTER 11. PERFORMANCE EVALUATION 174

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Message size [B]

Figure 11.3: Throughput: Varying message size, one slave with 50 workers

11.4 Network Overhead

An analysis of the results of ‘bmthroughput’ gives an idea of the network overhead cre-

ated by the pony environment. The throughput measured by the master process only

includes the data actually being sent by the application (that is, the ‘MOBILE []BYTE’

arrays); the network overhead due to the pony and TCP/IP protocols is not included.

It can be estimated by comparing the measurement with the network data rate re-

ported by the operating system.

The rightmost data point in figure 11.2 is 99.1 MB/s. At the same point, the net-

work usage measured (using the Linux ‘saidar’ tool) was 104.9 MB/s. The network

overhead was thus approximately 5.8%, or 5.8 KB for every 100 KB array of data.

Since each 1.5 KB Ethernet frame will contain approximately 60 B of Ethernet, IP

and TCP headers, the network overhead can be split up into some 4% which are due

CHAPTER 11. PERFORMANCE EVALUATION 175

 0

 20

 40

 60

 80

 100

 1 10 100 1000

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Workers

Figure 11.4: Throughput: 50 KB messages, one slave, varying number of workers

to the network protocols in use, and 1.8% due to pony itself. This shows the low

impact the pony protocol has on the network traffic.

11.5 CPU Overhead

The computational overhead introduced by the pony environment can be evaluated

by measuring the CPU time per ULC. This is the time between starting to send a

ULC via a networked channel and receiving the acknowledgement for the ULC’s last

CLC (at which time the user-level process is released from the extended rendezvous),

specifically excluding the network latency from this measurement. The time measured

reflects the CPU overhead on the sending node.

The ‘bmpingpongtime’ benchmark measures the time needed by the CLCs of a

ULC to travel through the protocol-decoder, into the pony kernel, and then all the

way through the pony kernel until the point where they would have to be output to

CHAPTER 11. PERFORMANCE EVALUATION 176

the network. At this point, nothing is sent to the network, but the acknowledgement

for the relevant CLC is sent to the CTB-handler as if it had just been received from

the network. The measurement includes the ping-pong times for all CLCs of the ULC.

After the last acknowledgement has been returned, the sending operation finishes as

usual, with the decoder assuming that the remote node has received the data, and

therefore releasing the user-level channel.

‘bmpingpongtime’ sends regular byte arrays in order to exclude any dynamic mem-

ory allocation (for instance of ‘MOBILE []BYTE’ arrays) from the figures. Figure 11.5

shows the CPU time per ULC for single byte arrays of varying size. As expected, the

CPU time is fairly constant. This is because the pony infrastructure does not copy

the user-level data, but uses its address and size (cf. Chapter 7).

 0

 2

 4

 6

 8

 10

 1 10 100 1000 10000 100000 1e+06

C
P

U
 t

im
e

 p
e

r
u

se
r-

le
ve

l c
o

m
m

u
n

ic
a

ti
o

n
 [

µ
s]

Array size [B]

Figure 11.5: CPU overhead: Single byte array of varying size

An interesting phenomenon is that sending one byte of regular data is slower than

sending 10 or 1000. An analysis of the bytecode generated by the compiler shows

CHAPTER 11. PERFORMANCE EVALUATION 177

that KRoC uses the ‘OUT8’ instruction for the single byte and ‘OUT’ for the rest, so

presumably those have different performance characteristics.

Another test measures the CPU time per ULC for sequential protocols with a

varying number of items. In each sequential protocol, all items are regular byte

arrays of the same size; we have carried out measurements for array sizes of 1 B,

1 KB and 1 MB.

Figure 11.6 shows the CPU time per ULC for sequential protocols of 1 B arrays.

The jump between the results for one and two items is rather big, since the second

item is sent as part of the ‘remaining’ CLCs, whereas for a single item, there is just

the first CLC to be sent. The CPU time per ULC then gradually increases due to

the fact that the individual items of the sequential protocol, except the first and the

last, are copied internally by the decoder, and then the address/size pair of the copy

is passed on (cf. Section 7.7.1); the copying takes more time the more items there are

in the protocol.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

C
P

U
 t

im
e

 p
e

r
u

se
r-

le
ve

l c
o

m
m

u
n

ic
a

ti
o

n
 [

µ
s]

Number of protocol items (1 B arrays)

Figure 11.6: CPU overhead: Sequential protocol, 1 B arrays

CHAPTER 11. PERFORMANCE EVALUATION 178

For sequential protocols with two or more items, there are always two ping-pongs,

since the first CLC and the ‘remaining’ CLCs need to be sent, the latter always in

one go. Hence, only the copying of the NLCs of the ‘remaining’ CLCs causes the

gradual increase, with (n - 2) copy operations for protocols with n items.

Figure 11.7 shows the CPU time per ULC for sequential protocols of 1 B, 1 KB

and 1 MB arrays. For sequential protocols with one and two items, the CPU time

per ULC is nearly identical for all three array sizes, since no copying is involved.

As expected, from three items onwards, the results diverge, because the aggregate

amount of data that needs to be copied depends on the length of the protocol and

the size of the individual arrays.

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

C
P

U
 t

im
e

 p
e

r
u

se
r-

le
ve

l c
o

m
m

u
n

ic
a

ti
o

n
 [

µ
s]

Number of protocol items

1 B arrays
1 KB arrays

1 MB arrays

Figure 11.7: CPU overhead: Sequential protocol, several array sizes

Particularly notable is the big jump between two and three items for the 1 MB

arrays. This shows the impact of copying large amounts of data — and the advantage

of not having to copy non-sequential regular data or mobile data, which will be the

bulk of communication in a typical pony application.

CHAPTER 11. PERFORMANCE EVALUATION 179

Nevertheless, network latency always outweighs local copying. Therefore, copying

items of a sequential protocol locally and then sending them in a single network

operation is still better than not copying them and sending each item over the network

separately.

11.6 Application Scalability

‘mandelbauer’ is an example of using pony to make an existing application dis-

tributed; in this case, the original program computes a region of the Mandelbrot

set. The approach taken is ‘farming’: the master node generates work requests for

rectangular sections of the region being computed; a number of slave nodes read the

requests, do the appropriate computation and send the results back to the master;

the master then collects and displays the results. For the purposes of this test, the

display has been disabled; the master just measures the rate at which pixels are being

computed.

master slave slave ...

response

request

slave

Figure 11.8: The ‘mandelbauer’ application: Shared mode

The ‘mandelbauer’ application can be run in two modes. In shared mode (see

Figure 11.8), there is a single pair of shared networked request/response channels (in

two separate NCTs) used by all the slaves. In multiplexing mode (see Figure 11.9),

each slave has its own pair of networked request/response channels (in a single NCT),

connected to a handler process on the master node. When a slave is started up, it

CHAPTER 11. PERFORMANCE EVALUATION 180

master

slave

slave

...

farm

request/response

request/response

request/response slave

handler

handler

handler

Figure 11.9: The ‘mandelbauer’ application: Multiplexing mode

sends the server-end of its ‘request/response’ NCT to the master over the ‘farm’ NCT;

the master will then set up a new handler process for the slave. The master uses local

shared channels to distribute work to and collect results from the handler processes.

The slaves have small internal buffers to hold incoming and outgoing messages.

Figure 11.10 shows the rendering performance of ‘mandelbauer’ in both modes.

Network saturation is reached at 25 slaves in multiplexing mode, at which point CPU

utilisation on the slaves in multiplexing mode is approximately 85%; in shared mode

it is approximately 30%.

The scaling performance in multiplexing mode is significantly better than in

shared mode. Since shared NCT-ends must be explicitly claimed over the network,

in shared mode the master is frequently blocked waiting for one of the workers to

claim the request channel. Future research will have to look into ways to improve the

mechanism for claiming NCT-ends — which would narrow the gap between shared

mode and multiplexing mode.

CHAPTER 11. PERFORMANCE EVALUATION 181

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25

C
o

m
p

u
ta

ti
o

n
 r

a
te

 [
K

p
ix

e
l/

s]

Slave nodes

Ideal performance
Multiplexing mode

Shared mode

Figure 11.10: Scalability of a distributed application

It is usually considered good practice to run network-bound processes at a higher

priority than compute-bound processes, in order to reduce latency for network re-

sponses. However, we tried both with and without explicit priorities in this appli-

cation, and there was no measurable difference — perhaps because, as there is only

one calculation process running at a time on each slave node, the pony processes will

never be blocked for longer than the time it takes to process one work request.

11.7 Distributed Robust Annealing Case Study

Simulated annealing [SLGS96, SLG97] is a stochastic optimisation algorithm that is

used to search for minima (or maxima) of complex problems. A classical example

would be the Travelling Salesman, where the goal is to design the shortest route

that covers all of the salesman’s customers. Simulated annealing begins by randomly

CHAPTER 11. PERFORMANCE EVALUATION 182

creating a solution to the particular problem, and calculating the ‘cost’ of the config-

uration. In the Travelling Salesman, the cost would be the length of the salesman’s

complete closed route.

The algorithm then searches for a better solution by generating random changes

to the original configuration. If the change results in an improvement, it is accepted

and serves as the starting point for the next move. If the change yields a poorer

solution, it is accepted at a specified probability, which decreases over the life of the

algorithm. Thus, eventually only changes which improve the system are likely to be

accepted. Under the appropriate conditions, this approach will lead to a result that

is probably very close to the true minimum.

Distributed Robust Annealing [Sti05] is a distributed version of the annealing

algorithm. There are one master and several worker processes. At the beginning,

the master sends the initial configuration to the workers. The workers then indepen-

dently do a sequence of standard annealing runs, beginning with very short runs and

increasing the length by a factor of about 1.2 on each successive run. At the end of

each run, the result is returned to the master. The master stores all results it receives

from the workers in a large database. When a pre-defined stopping condition is met,

each worker terminates independently. The master then selects the best of all results

that have been returned by the workers.

The particular annealing problem in this exercise is the Quadratic Assignment

Problem (QAP), which deals with the allocation of resources to consumers under

certain constraints. This is a classical NP-complete problem. The stopping condition

is a minimum allowed rate of improvement of the cost at the end of a run.

In the tests presented here, we measure the ‘effective time per iteration’, which is

calculated by dividing the total time that has passed by the total number of moves

performed by all workers during that time. A move consists of randomly selecting

one parameter of the system, randomly perturbing that parameter, evaluating the

cost of the configuration, then deciding whether to accept the change based on the

criteria described above.

CHAPTER 11. PERFORMANCE EVALUATION 183

During our tests, the typical number of moves was around one million. Due to the

large number of moves, and the fact that all workers perform their runs independently

without having to interact with each other, the cost of computation is far more

relevant than the cost of communication. As can be seen below, this fact had an

impact on the outcome of our tests, which led to some interesting results that were

not anticipated.

We performed our tests with five different versions of the Distributed Robust

Annealing algorithm:

• A non-networked occam-π version running as a single occam-π program. This

version did not use pony, and (obviously) ran on a single machine.

• A pony version where the master and all workers were separate nodes and all

nodes ran on a single machine.

• A distributed pony version where each node ran on its own dedicated machine.

• A JCSP.net [WAF02, WV02] version with all nodes running on a single machine.

• A distributed JCSP.net version.

Figure 11.11 compares the three occam-π versions. The results for the non-pony

version are more or less constant for an increasing number of workers. The distributed

pony version is getting faster by a factor roughly proportional to the number of

workers. That is, the effective time per iteration for four workers is about a quarter

of the time for one worker. These results conform with what was expected.

Somewhat surprising is the result for the pony version running on a single machine.

It is getting faster as more nodes are added. So, using the pony version on a single

machine creates an advantage compared to the non-pony version, although the overall

computational capability of the hardware is the same. Further spot checks with higher

numbers of workers showed that a saturation is reached at about ten workers; from

CHAPTER 11. PERFORMANCE EVALUATION 184

 5

 10

 15

 20

 25

 30

 1 2 3 4

E
ff

e
ct

iv
e

 t
im

e
 p

e
r

it
e

ra
ti

o
n

 [
µ

s]

Workers

Non-pony
pony, single machine

pony, distributed

Figure 11.11: Annealing: occam-π versions

then onwards, adding further nodes to the pony version on a single machine does not

further decrease the effective time per iteration.

Communication between pony nodes (even on the same machine) is obviously

slower than between occam-π processes in a single occam-π program. But, as discussed

above, for the annealing algorithm computation outweighs communication as the

length of the run increases. The most likely explanation for the advantage of the

pony version on a single machine compared to the non-pony version are caching

effects.

In the non-pony version, the entire annealing algorithm runs in a single OS-level

process. Inside an occam-π program, the KRoC scheduler does not do any time-

slicing but schedules the individual occam-π processes according to when/how they

interact. In the pony version, there is OS-level scheduling (i.e. time-slicing) between

the individual nodes (which are all separate OS-level processes).

CHAPTER 11. PERFORMANCE EVALUATION 185

The non-pony program is obviously larger than the individual nodes of the pony

version. Linux schedules its OS-level processes less frequently than KRoC schedules

its occam-π processes. Therefore, the smaller worker nodes of the pony version make

fair use of their caches in each time-slice (and pay the cache miss penalties when

first scheduled). Within a large KRoC program, the caching behaviour is likely to be

unpredictable.

Figure 11.12 compares the pony and JCSP.net versions on a single machine. Fig-

ure 11.13 compares the distributed pony and JCSP.net versions. In both cases, the

curves of the JCSP.net versions show similar characteristics as in the pony versions,

with the JCSP.net versions being a bit faster.

 12

 14

 16

 18

 20

 22

 24

 1 2 3 4

E
ff

e
ct

iv
e

 t
im

e
 p

e
r

it
e

ra
ti

o
n

 [
µ

s]

Workers

pony
JCSP.net

Figure 11.12: Annealing: Single machine versions

Spot checks with higher numbers of workers showed that at about ten workers,

the JCSP.net single-machine version reaches a saturation similar to the pony single-

machine version. Both versions’ results are then within one standard deviation. The

CHAPTER 11. PERFORMANCE EVALUATION 186

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 2 3 4

E
ff

e
ct

iv
e

 t
im

e
 p

e
r

it
e

ra
ti

o
n

 [
µ

s]

Workers

pony
JCSP.net

Figure 11.13: Annealing: Distributed versions

same applies to the distributed versions — with an increasing number of workers, the

differences between pony and JCSP.net are no longer measurable.

What is surprising is the fact that the JCSP.net versions are faster than the

corresponding pony versions. Previous experiences have always shown that JCSP,

being built on Java, was slower than occam-π. A likely cause of the opposite effect in

our tests is again the specific nature of the annealing, where computation is far more

relevant than communication.

A separate test, which only involved the mathematical calculations relevant to

our annealing problem (manipulation of elements in large matrices), showed that the

occam-π program doing the calculations was slightly faster than the Java program

doing the same calculations. The difference was hardly measurable, however, being

within the standard deviation.

This leaves three possibilities. Either the Java compiler is a bit more optimised

than KRoC in terms of performing the mathematical tasks relevant for our annealing

CHAPTER 11. PERFORMANCE EVALUATION 187

problem, or the speed advantage of the Java version is due to magnified caching effects

(perhaps the JVM is optimised to use the cache more effectively than KRoC), or, as

our tests suggest, with a large enough number of workers (and runs long enough), the

Java and occam-π versions perform nearly identically. Comparing the mathematical

and caching behaviour of Java and occam-π remains an interesting aspect for future

research.

Chapter 12

Conclusions and Future Work

12.1 Evaluation of What Has Been Achieved

This thesis has succeeded in developing a unified model for inter- and intra-processor

concurrency. The pony environment has become a robust and scalable platform for

the development of distributed applications. The author’s contribution to the project

was the specification of the pony system as presented in this thesis, as well as about

90% of the implementation.

pony expands occam-π’s concurrency model into the networked world and achieves

semantic and pragmatic transparency according to our objectives in Section 1.3.

Semantic transparency has been achieved by consequently ensuring that the semantic

behaviour of NCTs — which are the core of pony’s distribution model — matches

the semantic behaviour of conventional channel-types. Particularly the mobility of

NCT-ends allows pony applications to be as flexible and dynamic as their traditional

occam-π counterparts. Another important fact is that NCTs may be shared at both

ends, and the semantics of shared ends, including the mechanism for claiming and

releasing them, is the same as for non-networked channel-types.

pony’s protocol-conversion allows all common occam-π protocols to be carried

by networked channels. Since the protocol-converters are separate from the main

pony kernel, support for future occam-π types and protocols could be added to pony

188

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 189

with comparatively low effort. The internal function of the main pony kernel would

not be affected, since the ULC/CLC/NLC system would be used for new protocols

as well. A special case might need to be made for protocols that are not ‘plain

data’ but constitute a new communication primitive. In the near future, this applies

particularly to mobile barriers, see Section 12.2.2.

Pragmatic transparency has been achieved by a variety of measures. Most impor-

tantly, communication over a channel-type whose ends are on the same node is done

in the traditional occam-π way by only accessing the channel-word. This means that

plain communication does not involve additional overheads if performed locally. An-

other aspect of pragmatic transparency is that communicating ULCs between nodes

has been optimised to require as few network-messages as possible. Also, the amount

of copying data-items has been kept low. On the sending node, no copying is neces-

sary at all except for non-mobile data-items in sequential protocols with more than

two items.

A small extra cost had to be introduced to accommodate the needs of networkable

CTBs. The overhead of the larger CTB memory layout in a pony-enabled KRoC

build only has a minor impact in most applications and configurations. An exception

may be applications with millions of (possibly non-networked) channel-types. The

small extra runtime cost related to the claiming and releasing of shared NCT-ends

should also typically present no problem. A small inconvenience at the moment is

the incompatibility of pony-enabled and non-pony-enabled KRoC builds. Possible

ways to overcome this incompatibility are discussed in Section 12.3.2. This becomes

particularly relevant in applications like the ones mentioned above, where there may

be a potentially huge number of channel-types that are never going to be networked

— according to the proposal in Section 12.3.2, the CTBs of those channel-types would

not need to contain the pony-specific overheads.

In the pony kernel, there is a clean separation between the logical function and the

networking function. This allows a better abstraction, especially when it comes to

extending pony in the future. This applies to adding new features (such as support

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 190

for new protocols) to the ‘front-end’ of the pony kernel as well as to adding new

network drivers in order to support additional network-types.

Our tests have shown that pony already has acceptable performance for dis-

tributed occam-π applications, and that existing occam-π applications can easily be

adapted to take advantage of pony (cf. also Appendix C). Both the networking over-

head and the CPU overhead of pony are very small, and are therefore more than

outweighed by the ease of use due to pony’s semantic transparency.

The scalability of pony applications is acceptable as well, especially considering

the fact that very little ‘tuning’ work has been done on pony so far. We have also

identified areas where future work on the pony implementation may improve the

performance of distributed applications. We hope to test pony in a Grid environment

in the future to identify any scaling problems with larger systems.

The handling of pony for the occam-π programmer is simple and straightforward.

As far as the basic functionality is concerned, only the startup and shutdown of pony,

as well as the explicit allocation of NCT-ends, require a specific consideration of pony

by the programmer. This is done through a minimum number of public processes

which provide the interface between pony and the user-level code.

Startup and shutdown only need to be done once per node, the explicit allocation

only once for each (explicitly allocated) NCT-end. Apart from this, all interaction

between the user-level code and pony is implicit, which includes the implicit allocation

of NCTs. All runtime operations are handled automatically and transparently by the

pony kernel.

Error-handling and message-handling are useful ‘add-ons’ to the basic function-

ality of pony. While the error-handling is not transparent (since occam-π lacks an

underlying fault-tolerance mechanism), it is nevertheless a useful means for detect-

ing errors, allowing the programmer to write more robust pony applications. pony’s

message-handling is a useful debugging tool, especially when it comes to extending

pony in the future.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 191

The configuration of pony is easy to understand and minimises the complexity of

setting up a distributed application. Most settings can be determined automatically;

the only setting that is typically required to start up a node is the location of the

ANS. This simple configuration mechanism allows programmers to write ‘plug and

play’ pony applications that will work straight away without requiring a complex

setup procedure first.

Naturally, this thesis could only break the ground for the new concurrency model,

and the potential for further development never ceases. The following sections give

an overview of what could (and should) be done in the future to further improve

the pony environment and to keep up with the current developments in the occam-π

world.

12.2 Adding Support for New/Future occam-π Features

12.2.1 Supporting Mobile Processes

Mobile processes [BW04] have been added to occam-π recently and are still largely

experimental. Adding support for mobile processes in pony will not require many

changes in the internal structure of the pony environment since they do not introduce

a new communication primitive (unlike channel-types). What has to be dealt with are

items inside a mobile process that are carried with it when it moves over a networked

channel to another node, such as mobile data and channel-type-ends. This can be

done by the protocol-converters.

Mobile data-items inside the mobile process require the adaptation of their point-

ers on the receiving node. This can be done by the protocol-encoder on the re-

ceiving node; the internal function of pony would not be affected. Dealing with

channel-type-end variables stored in the workspace of mobile processes would involve

a channel-type-end NLC for each of them in the usual way (which may involve an

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 192

implicit allocation), plus the adaptation of the pointers by the encoder (as for mobile

data-items).

The code for a mobile process could be stored in a special repository, for instance

on the master node or in the ANS. If the protocol-encoder on the receiving node

does not yet have the code for an arriving mobile process available, it would request

it from the repository. In this way, large code segments would only need to be sent

over the network when needed. In order to avoid naming conflicts when requesting

the code for a mobile process from the repository, a hash value could be used, similar

to the type-hash for channel-types. Apart from adding the code repository, only the

protocol-converters would need to be extended to accommodate mobile processes.

12.2.2 Supporting Mobile Barriers

Mobile barriers [WB05] are currently being added to occam-π and are still at an

experimental stage. Unlike a mobile process, a mobile barrier is a new communica-

tion/synchronisation primitive. Therefore, support for mobile barriers in pony will

require some additions to the internal layout of the pony infrastructure, such as

‘barrier-handlers’ on the master node keeping track of which processes are currently

enrolled on the barrier. The role of such a barrier-handler for a networked barrier

would be similar to that of an NCT-handler for an NCT.

12.2.3 Supporting RMoX

Integrating pony into the RMoX operating system [BJV03] should be relatively

straightforward. The internal structure of pony does not need to be changed; just

the network-specific code, i.e. the link-handler, the link-manager and the ANS, would

need to be adapted in order to use the RMoX built-in network drivers.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 193

12.2.4 Supporting Buffered Channels

The proposed ‘BUFFERED’ channels [Wel04a] for occam-π provide the opportunity for

reducing network latency. pony support for ‘BUFFERED’ channels may be used to

reduce the number of network acknowledgements needed when sending streams of

buffered data.

12.2.5 Supporting Behaviour Patterns

Within the Concurrency Research Group at the University of Kent, the idea of meta

‘behaviour patterns’ for channel-types has been discussed. These patterns could be

declared in a BNF-style syntax along with the type declaration of the channel-type

itself and specify valid sequences of communication along the channels inside the

channel-type. This notion is similar to Boosten’s Formal Contracts [Boo03] or the

contracts in Microsoft’s Singularity project [Mic05].

pony may utilise behaviour patterns to reduce network latency. For instance, if

a channel-type contains a request and a reply channel that are communicating (by

behaviour pattern) in a ping-pong style, pony could use that information to save

unnecessary network acknowledgements (since each communication could be used as

an acknowledgement for the previous one). At the moment these ideas are purely

theoretical, however. Since adding pony support for ping-pong style communication

would be non-trivial, it makes sense not to do it until the occam-π language itself

provides a suitable syntax for expressing it — particularly so since the key objective

of pony is transparency, and the usage of pony should interfere as little as possible

with the usual occam-π way of programming.

12.2.6 Supporting the Proposed ‘GATE’/‘HOLE’ Mechanism

Supporting the proposed ‘GATE’/‘HOLE’ mechanism [Sch04, Wel04b] (or similar ap-

proaches) in occam-π could further enhance pony’s performance. The ‘GATE’/‘HOLE’

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 194

mechanism was proposed in order to tackle a drawback arising from the new dynamic

features in occam-π. The classical static occam fixed the design of its process networks

(and the channels between the processes) at compile time. It was always obvious over

which ‘interface’ a process would communicate with its environment. By introducing

mobile channel-types, we have unfortunately also introduced the possibility of hidden

communication routes that are not declared in the interface (i.e. the header) of the

process.

Previously, the ways in which a process interacted with its environment (e.g.

through channels and barriers) could be statically and explicitly listed in the process

header. Introducing mobile channel-types means that the set of possible interactions

for any process can grow at runtime, so that interactions can take place that were

not declared by its interface. This raises specification and security issues that are

similar to those found in common OO languages (where aliasing is endemic and the

opportunities for object interaction exceed those declared by their public interfaces

[Loc01, Wel00]).

At the Concurrency Research Group at Kent, the following rules have been pro-

posed to ensure that there are no hidden interactions between a process and its

environment — a property which we call ‘structural integrity’ — despite the mobility

of channel-types:

Definition:

(a) Channel-type-end parameters may be qualified as being ‘GATE’ or ‘HOLE’. ‘GATE’

and ‘HOLE’ parameters are live.

(b) All other channel-type-ends are dead (i.e. locally declared channel-type-end-

variables and parameters not qualified as ‘GATE’ or ‘HOLE’).1

1This property of channel-type-ends is static — each variable is either always ‘GATE’ or always

‘HOLE’ or always dead.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 195

Usage:

(c) A process may not communicate over a dead channel-type-end.

Assignment/Communication:

(d) ‘GATE’ channel-type-end parameters have ‘VAL’ semantics — they may not be

changed inside the process in whose header they are declared.

(e) ‘GATE’, ‘HOLE’ and dead channel-type-ends may be freely assigned/communicated

to each other as long as this does not break Rule (d).2

Parameter-Passing:

(f) Arguments for ‘GATE’ parameters may only be live variables — unless the pro-

cess is being forked. If the process is being forked, both live and dead arguments

are allowed, as long as this does not break Rule (d).3

(g) Inside the scope of a ‘CLAIM’, a claimed shared channel-type-end may be passed

as an argument only to an unshared ‘GATE’ parameter of a process that is not

being forked.4

(h) ‘HOLE’ parameters are initially undefined when a process starts. Arguments for

‘HOLE’ parameters may be outer ‘HOLE’ parameters of matching type which must

be currently undefined, or the keyword ‘HOLE’. The latter may only be supplied

to forked processes. ‘HOLE’ parameters have no return value (i.e. for the calling

process they are still undefined when the called process terminates).

2It would, for instance, be possible to assign a ‘SHARED GATE’ parameter to a dead variable, but it
would not be possible to assign an unshared ‘GATE’ parameter to another variable because this would
leave the ‘GATE’ parameter undefined, which is not allowed. Nothing can be assigned/communicated
to a ‘GATE’.

3Note that the semantics of passing arguments to parameters of forked processes is anyway that
of communication. So, this clause conforms with Rule (e).

4This forces conformity to the existing rule that inside a CLAIM, a live parameter may only be
used for communication; it technically becomes unshared and its value frozen. Please note that the
possibility of passing a claimed shared channel-type-end to an unshared parameter, provided that
the value of that parameter is not changed inside the process, has already been incorporated in
KRoC (cf. the possibility to use shared handles for calling pony’s public processes — they have to
be claimed beforehand as well).

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 196

(i) Arguments for dead parameters may only be dead or ‘HOLE’ variables — unless

the process is being forked. If the process is being forked, ‘GATE’ variables are

also allowed as arguments, as long as this does not break Rule (d).

The aim of these rules is that processes only interact with their environment

through formally declared live parameters. In the case of ‘HOLE’ parameters, what

they are bound to may change dynamically, but only by explicit action of the processes

themselves (by internally assigning or communicating a newly acquired channel-type-

end to one of its ‘HOLE’ parameters). But the external shape of a process does not

change — we have structural integrity. There are no undeclared routes into or out of

the process.

Additional issues arise from forking. It is proposed to restrict forking so that a

process cannot fork off another process without the calling process being aware of it.

This could be implemented by introducing a ‘FORKS’ keyword after which a process

would declare all possible processes that it (or any subsequently called processes)

might fork off (similarly to exceptions and the ‘throws’ keyword in Java). Since this

might be a rather heavy burden for the programmer, a lighter approach could be

a marker by which a process may be marked as a ‘FORKING PROC’. Only ‘FORKING

PROCs’ would then be allowed to fork off other processes or subsequently call other

‘FORKING PROCs’.

Since with the ‘GATE’/‘HOLE’ approach, there would be a clear distinction between

‘live’ and ‘dead’ channel-type-end variables, i.e. between variables that are used for

communication and those that are not, pony could exploit this information by not

setting up the internal pony components for a networked CTB until at least one of

its ends is used for communication. In this way, NCT-ends that are just ‘passing

through’ a node would not require setting up the internal pony infrastructure, thus

saving resources.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 197

12.2.7 Supporting New Fault Tolerance Mechanisms

As discussed in Section 4.1.1, the only part of pony that is not transparent at the mo-

ment is the error-handling. There have been various proposals to add fault-tolerance

to occam-π, for instance Barnes’ ‘TRY’/‘CATCH’ approach in [Bar03]. When such a

fault-tolerance mechanism is added to occam-π, pony could use it to improve its own

error-handling in order to make it more transparent to the occam-π programmer.

12.3 Other Things

12.3.1 Adding Support for Networked Plain Channels

Plain network-channels — i.e. the networked version of plain (classical occam) chan-

nels — can be implemented as ‘anonymous’ NCTs that contain exactly one channel.

This approach is similar to the implementation of the anonymous ‘SHARED’ channels

mentioned in Section 1.5.5 (discussed in detail in [Bar03]). The following declaration:

NET CHAN INT iw!: -- These network-channel-ends

NET CHAN BOOL br?: -- must be allocated before

SHARED NET CHAN BOOL sbw!: -- we can communicate over them!

SHARED NET CHAN INT sir?:

SEQ

... Allocate iw!, br?, sbw!, sir?

... Use iw!, br?, sbw!, sir?

would have the semantics of:

CHAN TYPE $anon.INT -- Compiler-generated type

MOBILE RECORD

CHAN INT x?: -- Server-end holds reading-end

:

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 198

CHAN TYPE $anon.BOOL -- Compiler-generated type

MOBILE RECORD

CHAN BOOL x?: -- Server-end holds reading-end

:

$anon.INT! iw$cli:

$anon.BOOL? br$svr:

SHARED $anon.BOOL! sbw$cli:

SHARED $anon.INT? sir$svr:

SEQ

... Allocate iwcli, brsvr, sbwcli, sirsvr

... Use iwcli, brsvr, sbwcli, sirsvr

... resp. iw$cli[x], br$svr[x], sbw$cli[x], sir$svr[x]

where the server-end of the compiler-generated channel-type by definition holds the

reading-end of the channel. Before a process can communicate over a network-

channel-end, that end would need to be allocated. This would be done using al-

location processes similar to those for NCT-ends.

The compiler would replace any occurrences of network-channel-ends in the user-

level code by the appropriate generated variables. In parameters, network-channel-

ends would be replaced by the generated channel-type-end (e.g. ‘br?’ would be re-

placed by ‘br$svr’). When used for communication, they would be replaced by the

actual channel-field (e.g. ‘iw ! 5’ would be replaced by ‘iw$cli[x] ! 5’).

12.3.2 Adding Support for ‘LOCAL’ High Performance Channels

As described in Section 6.1, in a pony-enabled KRoC build, CTBs have a larger

memory footprint than ‘traditional’ CTBs. Furthermore, the special claim/release

mechanism with network-hook, state-field and state-semaphore consumes additional

runtime. Although the extra cost is small and inevitable in order to provide full

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 199

transparency, there may be situations where the programmer might want to elimi-

nate those overheads. This is of course only possible for channel-types that are not

networked and will never become networked in their lifetime.

Currently, the programmer only has the choice to use either a traditional KRoC

build or a pony-enabled one. This means that either networked channel-types are

impossible across the entire application or all channel-types are networkable — with

the known overheads. A ‘mix and match’ solution is not possible at the moment.

This could be achieved by adding an optional ‘LOCAL’ keyword to occam-π.

Channel-type-end variables could be declared ‘LOCAL’; this would restrict them to

be used in a non-networked (‘traditional’) way. Only pairs of ‘LOCAL’ or pairs of

networkable channel-type-ends could be allocated together. The ‘LOCAL’ ones would

be allocated with the traditional CTB layout and without the special claim/release

mechanism. For ‘LOCAL’ channel-type-ends, it would only be allowed to send them

over channels that are specifically declared to carry ‘LOCAL’ ends, or over channels

inside other ‘LOCAL’ channel-types. In this way, ‘LOCAL’ and networkable channel-

types would not get mixed up, and accidentally moving a ‘LOCAL’ channel-type-end

to another node would be impossible (since pony’s allocation processes would require

non-‘LOCAL’ channel-type-ends).

With this approach, it would still be possible to distinguish between pony-enabled

and traditional KRoC builds; however, they could be made more compatible than

before. The compiler would need to treat channel-types in programs compiled by a

traditional KRoC build as implicitly ‘LOCAL’. If a pony-enabled program wanted to

use an occam-π library that was compiled with a traditional KRoC build, it would

simply need to treat all channel-types in the library as ‘LOCAL’, conforming with the

above rules. Or put another way, the library would need to be used as if it were a

pony-enabled one where every single channel-type-end was declared ‘LOCAL’.

A further enhancement could be a compiler analysis to identify NCTs whose

ends are declared locally and never leave the node on which they are declared. These

NCT-ends could then be tagged ‘LOCAL’ by the compiler automatically. Implementing

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 200

such an analysis would be non-trivial, however, and require complex changes in the

compiler.

12.3.3 Supporting Different Architectures

At the moment, pony only runs on Linux/x86 platforms. KRoC/occam-π (with its

new dynamic features) is currently being ported to many different platforms besides

x86. Supporting different architectures in pony would involve adapting the compiler-

specific code (the built-in compiler support and the low-level drivers) and re-compiling

the library.

Ultimately, we want to be able to bridge different platforms across the same pony

application. This raises the question of how to cope with different endianisms on the

different platforms. For this, the pony infrastructure on each node must be aware of

the endianism of each node to which it is connected. This could be done by adding

a flag to each network-message that indicates the endianism of the node from which

the message comes. Alternatively, each node could be notified about the endianism

of a remote node by the time a new link to that remote node is established, so that

the ‘endianism flag’ in every single network-message would not be necessary.

When network-messages are exchanged between nodes with different endianisms,

the relevant parts of the message must be converted to the endianism of the target

node, which could be done either on the sending or on the receiving node. This

conversion would happen at different places in the pony environment. Data-item

NLCs would need to be converted in the protocol-converters. The conversion of CLC-

descriptors would be done in the decode- and encode-handlers. All other parts of a

network-message could be converted in the network drivers directly. An alternative

might be to send all network-messages in plain-text XML or a similar protocol. From

a performance point of view, this seems hardly viable, however.

Bridging several platforms across the same pony application would also affect a

possible code repository for mobile processes as mentioned in Section 12.2.1. Rather

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 201

than storing the native code of several platforms for the same mobile process, the

code repository could store ETC code [Poo98]. Inside the protocol-encoder on the

receiving node, a just-in-time compiler could then compile the mobile process into

native code of the target platform.

12.3.4 Security and Reliability

An area that has not been explored yet with respect to the pony environment is

security. In order to make pony applicable in wider markets, an encryption model

for pony needs to be developed. A possible approach could be public/private keys

similar to the ssh model.

There may be fields of application where encryption cannot be used, for instance

if a server running in a pony application provides services to the world. In such a

scenario, everyone may start a node that joins the application in order to use the ser-

vice provided. This raises the possibility of Denial of Service attacks. Future research

may investigate the detection and defense against such attacks in pony applications,

as well as other well-known security implications that networked applications face

today.

In order for pony to become more reliable, an improvement for the ANS could be

to make its state persistent. Currently, if the ANS crashes, all information stored in

its database is lost. It would be useful to be able to restart the ANS and restore its

state after a failure happened.

12.3.5 Simplifying the Setup

Although setting up a node is simple and straightforward in pony, there may be

ways to improve it. This concerns for instance the way pony is configured. Possible

improvements could be supporting a search path for the configuration files in an en-

vironment variable, or the possibility to configure settings directly via environment

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 202

variables. It would also be interesting to look into ways to find an ANS dynam-

ically through a web page. All these things should be alternatives to the current

configuration files rather than replacing them.

In certain scenarios, for instance when running a pony application on a large

cluster, it may be desirable not to have to start each node separately. Future research

might look into possibilities to automate the startup of pony applications by launching

nodes automatically, for instance by using Grid-style cluster management.

Another field to investigate in the future could be support for Zeroconf-style

[Zer06a, Zer06b] setup of pony applications on local clusters. Similar to Multicast

DNS, a kind of ‘Multicast ANS’ mechanism might be developed to enable nodes of

an application to find each other without the need for an ANS. For applications

spread over big or even global networks such as the internet, the ANS would still be

a necessary and sensible means for interconnecting nodes, but for local clusters, a

Zeroconf-style setup mechanism could further simplify the use of the pony environ-

ment.

Bibliography

[Bar00a] Fred Barnes. Socket, File and Process Libraries for occam. Computing

Laboratory, University of Kent at Canterbury, June 2000. Available at:

http://www.cs.kent.ac.uk/people/staff/frmb/documents/.

[Bar00b] F.R.M. Barnes. Blocking System Calls in KRoC/Linux. In P.H. Welch

and A.W.P. Bakkers, editors, Communicating Process Architectures, vol-

ume 58 of Concurrent Systems Engineering, pages 155–178, Amsterdam,

the Netherlands, September 2000. WoTUG, IOS Press. ISBN: 1-58603-

077-9.

[Bar03] Frederick R.M. Barnes. Dynamics and Pragmatics for High Performance

Concurrency. PhD thesis, University of Kent, June 2003.

[Bar05] F.R.M. Barnes. Interfacing C and occam-pi. In J. Broenink, H. Roeb-

bers, J. Sunter, P. Welch, and D. Wood, editors, Communicating Pro-

cess Architectures 2005, volume 63 of WoTUG-28, Concurrent Systems

Engineering, ISSN 1383-7575, pages 249–260, Amsterdam, The Nether-

lands, September 2005. IOS Press. ISBN: 1-58603-561-4.

[BDv99] M. Boosten, R.W. Dobinson, and P.D.V. van der Stok. MESH: MEs-

saging and ScHeduling for Fine-Grain Parallel Processing on Com-

modity Platforms. In Proceedings of the 1999 International Confer-

ence on Parallel and Distributed Processing Techniques and Applications

203

http://www.cs.kent.ac.uk/people/staff/frmb/documents/

BIBLIOGRAPHY 204

(PDPTA’1999), Las Vegas, Nevada, June 1999. CSREA press. ISBN:

1-892512-15-7.

[BJV03] F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. RMoX: a Raw Metal oc-

cam Experiment. In J.F. Broenink and G.H. Hilderink, editors, Commu-

nicating Process Architectures 2003, WoTUG-26, Concurrent Systems

Engineering, ISSN 1383-7575, pages 269–288, Amsterdam, The Nether-

lands, September 2003. IOS Press. ISBN: 1-58603-381-6.

[Boo03] M. Boosten. Formal Contracts: Enabling Component Composition.

In J.F. Broenink and G.H. Hilderink, editors, Communicating Process

Architectures 2003, WoTUG-26, Concurrent Systems Engineering, ISSN

1383-7575, pages 185–197, Amsterdam, The Netherlands, September

2003. IOS Press. ISBN: 1-58603-381-6.

[Bro04] N.C.C Brown. C++CSP Networked. In I. East, J. Martin, P. Welch,

D. Duce, and M. Green, editors, Communicating Process Architectures

2004, volume 62 of WoTUG-27, Concurrent Systems Engineering, ISSN

1383-7575, pages 185–200, Amsterdam, The Netherlands, September

2004. IOS Press. ISBN: 1-58603-458-8.

[BW01] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic Allocation and

Zero Aliasing: an occam Experiment. In Alan Chalmers, Majid Mirme-

hdi, and Henk Muller, editors, Communicating Process Architectures

2001, volume 59 of Concurrent Systems Engineering, pages 243–264,

Amsterdam, The Netherlands, September 2001. WoTUG, IOS Press.

ISBN: 1-58603-202-X.

[BW02] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Communicat-

ing Processes: Part I. In James Pascoe, Peter Welch, Roger Loader,

and Vaidy Sunderam, editors, Communicating Process Architectures

2002, WoTUG-25, Concurrent Systems Engineering, pages 331–361, IOS

BIBLIOGRAPHY 205

Press, Amsterdam, The Netherlands, September 2002. ISBN: 1-58603-

268-2.

[BW03] N.C.C. Brown and P.H. Welch. An Introduction to the Kent C++CSP

Library. In J.F. Broenink and G.H. Hilderink, editors, Communicat-

ing Process Architectures 2003, WoTUG-26, Concurrent Systems Engi-

neering, ISSN 1383-7575, pages 139–156, Amsterdam, The Netherlands,

September 2003. IOS Press. ISBN: 1-58603-381-6.

[BW04] F.R.M. Barnes and P.H. Welch. Communicating Mobile Processes. In

I. East, J. Martin, P. Welch, D. Duce, and M. Green, editors, Communi-

cating Process Architectures 2004, volume 62 of WoTUG-27, Concurrent

Systems Engineering, ISSN 1383-7575, pages 201–218, Amsterdam, The

Netherlands, September 2004. IOS Press. ISBN: 1-58603-458-8.

[CG89] Nicholas Carriero and David Gelernter. Linda in Context. Communi-

cations of the ACM, 32(4):444–459, April 1989.

[CO03] Vincent Cremet and Martin Odersky. PiLib: A Hosted Language for Pi-

Calculus Style Concurrency. In Domain-Specific Program Generation,

pages 180–195, 2003.

[FK97] I. Foster and C. Kesselman. Globus: A Metacom-

puting Infrastructure Toolkit. International Journal

of Supercomputer Applications, 1997. Available at:

ftp://ftp.globus.org/pub/globus/papers/globus.pdf.

[FKNT02] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Psychology

of the Grid: An Open Grid Services Architechture for Distributed

Systems Integration. Global Grid Forum, June 2002. Available at:

http://www.globus.org/research/papers/ogsa.pdf.

ftp://ftp.globus.org/pub/globus/papers/globus.pdf
http://www.globus.org/research/papers/ogsa.pdf

BIBLIOGRAPHY 206

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of

the Grid: Enabling Scalable Virtual Organizations. Interna-

tional Journal of Supercomputer Applications, 2001. Available at:

http://www.globus.org/research/papers/anatomy.pdf.

[FKT02] I. Foster, C. Kesselman, and S. Tuecke. What is the Grid? A

Three Point Checklist. GRIDToday, July 2002. Available at:

http://www-fp.mcs.anl.gov/∼foster/Articles/WhatIsTheGrid.pdf.

[Goo01] I.N. Goodacre. occam NetChans, March 2001. Project report, Comput-

ing Laboratory, University of Kent at Canterbury.

[Hil05] G.H. Hilderink. Exception Handling Mechanism in Communicating

Threads for Java. In J. Broenink, H. Roebbers, J. Sunter, P. Welch,

and D. Wood, editors, Communicating Process Architectures 2005, vol-

ume 63 of WoTUG-28, Concurrent Systems Engineering, ISSN 1383-

7575, pages 317–334, Amsterdam, The Netherlands, September 2005.

IOS Press. ISBN: 1-58603-561-4.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Lon-

don, 1985. ISBN: 0-13-153271-5.

[IBM03] IBM Corporation. Globus Toolkit 3.0 Quickstart, Redpa-

per. Technical report, IBM Corporation, 2003. Available at:

http://www.redbooks.ibm.com/redpapers/pdfs/redp3697.pdf.

[Ind04] Indiana University LAM Team. LAM/MPI User’s Guide. Tech-

nical report, Indiana University, May 2004. Available at:

http://www.lam-mpi.org/download/files/7.0.6-user.pdf.

[Inm88] Inmos Limited. Transputer Reference Manual. Prentice Hall, March

1988. ISBN: 0-13-929001-X.

http://www.globus.org/research/papers/anatomy.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp3697.pdf
http://www.lam-mpi.org/download/files/7.0.6-user.pdf

BIBLIOGRAPHY 207

[Inm93] Inmos Limited. The T9000 Transputer Instruction Set Manual. SGS-

Thompson Microelectronics, 1993. Document number: 72 TRN 240 01.

[Inm95] Inmos Limited. occam 2.1 Reference Manual. Technical report, Inmos

Limited, May 1995. Available at: http://wotug.org/occam/.

[Loc01] T.S. Locke. Towards a Viable Alternative to OO – extending the oc-

cam/CSP programming model. In Alan Chalmers, Majid Mirmehdi,

and Henk Muller, editors, Communicating Process Architectures 2001,

volume 59 of Concurrent Systems Engineering, pages 329–349, Amster-

dam, The Netherlands, September 2001. WoTUG, IOS Press. ISBN:

1-58603-202-X.

[Mic05] Microsoft Research. An Overview of the Singularity Project, 2005.

Microsoft Research Technical Report MSR-TR-2005-135. Available at:

http://research.microsoft.com/os/singularity/.

[Mil99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus.

Cambridge University Press, 1999. ISBN-10: 0521658691, ISBN-13:

9780521658690.

[MM98] Henk L. Muller and David May. A simple protocol to communicate chan-

nels over channels. In EURO-PAR ’98 Parallel Processing, LNCS 1470,

pages 591–600, Southampton, UK, September 1998. Springer Verlag.

[Moo99] J. Moores. CCSP – a Portable CSP-based Run-time System Support-

ing C and occam. In B.M. Cook, editor, Architectures, Languages and

Techniques for Concurrent Systems, volume 57 of Concurrent Systems

Engineering series, pages 147–168, Amsterdam, The Netherlands, April

1999. WoTUG, IOS Press. ISBN: 90-5199-480-X.

http://wotug.org/occam/
http://research.microsoft.com/os/singularity/

BIBLIOGRAPHY 208

[MPI97] MPI Forum. MPI-2: Extensions to the Message-Passing Inter-

face. Technical report, MPI Forum, July 1997. Available at:

http://www.mpi-forum.org/docs/mpi-20.ps.

[MTW93] M.D. May, P.W. Thompson, and P.H. Welch. Networks, Routers and

Transputers, volume 32 of Transputer and occam Engineering Series.

IOS Press, 1993.

[MW96] J.M.R. Martin and P.H. Welch. A Design Strategy for Deadlock-free

Concurrent Systems. In Transputer Communications, volume 3 (4),

pages 215–232. Wiley and Sons Ltd., UK, October 1996.

[OAC+05] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,

Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Sten-

man, and Matthias Zenger. The Scala Language Specification Version

1.0. http://scala.epfl.ch/docu/files/ScalaReference.pdf, Oc-

tober 2005.

[Obj93] Object Management Group. The Common Object Request Broker: Ar-

chitecture and Specification (CORBA). Technical report, Object Man-

agement Group, December 1993. Available at: ftp://ftp.omg.org/.

[Poo96] M.D. Poole. Occam for all – two approaches to retargetting the INMOS

compiler. In Brian O’Neill, editor, Parallel Processing Developments,

Proceedings of WoTUG 19, volume 47 of Concurrent Systems Engineer-

ing, pages 167–178, Amsterdam, The Netherlands, March 1996. World

occam and Transputer User Group, IOS Press. ISBN: 90-5199-261-0.

[Poo98] M.D. Poole. Extended Transputer Code - a Target-Independent Repre-

sentation of Parallel Programs. In P.H. Welch and A.W.P. Bakkers, edi-

tors, Architectures, Languages and Patterns for Parallel and Distributed

http://www.mpi-forum.org/docs/mpi-20.ps
http://scala.epfl.ch/docu/files/ScalaReference.pdf
ftp://ftp.omg.org/

BIBLIOGRAPHY 209

Applications, Proceedings of WoTUG 21, volume 52 of Concurrent Sys-

tems Engineering, pages 187–198, Amsterdam, The Netherlands, April

1998. WoTUG, IOS Press. ISBN: 90-5199-391-9.

[PT00] Benjamin C. Pierce and David N. Turner. Pict: A Programming Lan-

guage Based on the Pi-Calculus. In G. Plotkin, C. Stirling, and M. Tofte,

editors, Proof, Language and Interaction: Essays in Honour of Robin

Milner. MIT Press, 2000.

[PV02] K.S. Pedersen and B. Vinter. Java PastSet: A Structured Distributed

Shared Memory System. In James Pascoe, Peter Welch, Roger Loader,

and Vaidy Sunderam, editors, Communicating Process Architectures

2002, WoTUG-25, Concurrent Systems Engineering, pages 97–108, IOS

Press, Amsterdam, The Netherlands, September 2002. ISBN: 1-58603-

268-2.

[SBW03] M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexible, Transparent

and Dynamic occam Networking With KRoC.net. In J.F. Broenink

and G.H. Hilderink, editors, Communicating Process Architectures 2003,

WoTUG-26, Concurrent Systems Engineering, ISSN 1383-7575, pages

199–224, Amsterdam, The Netherlands, September 2003. IOS Press.

ISBN: 1-58603-381-6.

[Sch01] M. Schweigler. The Distributed occam Protocol – A New Layer On

Top Of TCP/IP To Serve occam Channels Over The Internet. Mas-

ter’s thesis, Computing Laboratory, University of Kent at Canterbury,

September 2001. MSc Dissertation.

[Sch04] M. Schweigler. Adding Mobility to Networked Channel-Types. In

I. East, J. Martin, P. Welch, D. Duce, and M. Green, editors, Commu-

nicating Process Architectures 2004, WoTUG-27, Concurrent Systems

BIBLIOGRAPHY 210

Engineering, ISSN 1383-7575, pages 107–126, Amsterdam, The Nether-

lands, September 2004. IOS Press. ISBN: 1-58603-458-8.

[SLG97] G.S. Stiles, F.H. Lee, and C. Gyulai. Power-Law Convergence of

Stochastic Optimization Algorithms. In H.R. Arabnia, editor, Inter-

national Conference on Parallel and Distributed Processing Techniques

and Applications (PDPTA’97), pages 1158–1566, Las Vegas, Nevada,

USA, June 1997. CSREA Press. ISBN: 0-9648666-8-4.

[SLGS96] G.S. Stiles, F.H. Lee, C. Gyulai, and V. Swaminathan. The Speedup

of Parallel Randomized Approximation Algorithms. In H.R. Arabnia,

editor, International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA’96), pages 1284–1295, Sunnyvale,

California, USA, August 1996. CSREA Press. ISBN: 0-9648666-4-1.

[SS06] M. Schweigler and A.T. Sampson. pony – The occam-π Network En-

vironment. In Peter Welch, Jon Kerridge, and Fred Barnes, editors,

Communicating Process Architectures 2006, WoTUG-29, Concurrent

Systems Engineering, ISSN 1383-7575, pages 77–108, Amsterdam, The

Netherlands, September 2006. IOS Press. ISBN: 1-58603-671-8.

[Sti05] G.S. Stiles. An occam-pi Implementation of a Verified Distributed Ro-

bust Annealing Algorithm. In H.R. Arabnia, editor, Proceedings of the

2005 International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA’2005), volume 1, pages 208–214.

CSREA Press, June 2005.

[Sun90] V.S. Sunderam. PVM: a framework for parallel distributed computing.

Concurrency, Practice and Experience, 2(4):315–340, 1990.

[Sun05] Sun Microsystems. Application Isolation

API Specification, July 2005. Available at:

http://jcp.org/aboutJava/communityprocess/pr/jsr121/.

http://jcp.org/aboutJava/communityprocess/pr/jsr121/

BIBLIOGRAPHY 211

[SWP+05] S. Stepney, P.H. Welch, F.A.C. Pollack, J.C.P. Woodcock,

S. Schneider, H.E. Treharne, and A.L.C. Cavalcanti. TUNA:

Theory Underpinning Nanotech Assemblers (Feasibility Study),

January 2005. EPSRC grant EP/C516966/1. Available from:

http://www.cs.york.ac.uk/nature/tuna/index.htm.

[Uta06] Utah State University. The Utah State University Website, 2006. Avail-

able at: http://www.usu.edu/.

[Vel98] Kevin Vella. Seamless Parallel Computing on Heterogeneous Networks

of Multiprocessor Workstations. PhD thesis, The University of Kent at

Canterbury, Canterbury, Kent. CT2 7NF, December 1998.

[Vin05] B. Vinter. The Architecture of the Minimum intrusion Grid (MiG). In

J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Wood, editors,

Communicating Process Architectures 2005, volume 63 of WoTUG-28,

Concurrent Systems Engineering, ISSN 1383-7575, pages 189–201, Am-

sterdam, The Netherlands, September 2005. IOS Press. ISBN: 1-58603-

561-4.

[vN93] John von Neumann. First Draft of a Report on the EDVAC. IEEE

Annals of the History of Computing, 15(4):27–75, 1993.

[VW99] K. Vella and P.H. Welch. CSP/occam on Shared Memory Multiproces-

sor Workstations. In B.M. Cook, editor, Architectures, Languages and

Techniques for Concurrent Systems, volume 57 of Concurrent Systems

Engineering Series, pages 87–119, Amsterdam, The Netherlands, April

1999. WoTUG, IOS Press. ISBN: 90-5199-480-X.

[WAF02] P.H. Welch, J.R. Aldous, and J. Foster. CSP Networking for

Java (JCSP.net). In P.M.A. Sloot, C.J.K. Tan, J.J. Dongarra,

and A.G. Hoekstra, editors, Computational Science - ICCS 2002,

http://www.cs.york.ac.uk/nature/tuna/index.htm
http://www.usu.edu/

BIBLIOGRAPHY 212

volume 2330 of Lecture Notes in Computer Science, pages 695–

708. Springer-Verlag, April 2002. ISBN: 3-540-43593-X. See also:

http://www.cs.kent.ac.uk/pubs/2002/1382.

[WB05] P.H. Welch and F.R.M. Barnes. Mobile Barriers for occam-pi: Sem-

ntics, Implementation and Application. In J. Broenink, H. Roebbers,

J. Sunter, P. Welch, and D. Wood, editors, Communicating Process Ar-

chitectures 2005, volume 63 of WoTUG-28, Concurrent Systems Engi-

neering, ISSN 1383-7575, pages 289–316, Amsterdam, The Netherlands,

September 2005. IOS Press. ISBN: 1-58603-561-4.

[Wel89] P.H. Welch. Graceful Termination – Graceful Resetting. In Apply-

ing Transputer-Based Parallel Machines, Proceedings of OUG 10, pages

310–317, Enschede, Netherlands, April 1989. Occam User Group, IOS

Press, Netherlands. ISBN 90 5199 007 3.

[Wel99] P.H. Welch. CSP for Java (JCSP), 1999. Available at:

http://www.cs.kent.ac.uk/projects/ofa/jcsp/.

[Wel00] P.H. Welch. Process Oriented Design for Java – Concurrency for All. In

PDPTA 2000, volume 1, pages 51–57. CSREA Press, June 2000. ISBN:

1-892512-52-1.

[Wel04a] P.H. Welch. Buffered Channels (and PRI ALTs). Technical Report UKC-

CRG-15-04-2004, Computing Laboratory, University of Kent, Canter-

bury, UK, April 2004.

[Wel04b] P.H. Welch. Maintaining Structural Integrity in Dynamic Systems.

Technical Report UKC-CRG-11-03-2004, Computing Laboratory, Uni-

versity of Kent, Canterbury, UK, March 2004.

[Wik06] Wikipedia. The Free Encyclopedia. Nagle’s algorithm, 2006. Available

at: http://en.wikipedia.org/wiki/Nagle’s algorithm.

http://www.cs.kent.ac.uk/pubs/2002/1382
http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://en.wikipedia.org/wiki/Nagle's_algorithm

BIBLIOGRAPHY 213

[WMBW06] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C.

Wood. The KRoC Home Page, 2006. Available at:

http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[WV02] P.H. Welch and B. Vinter. Cluster Computing and JCSP Networking.

In James Pascoe, Peter Welch, Roger Loader, and Vaidy Sunderam,

editors, Communicating Process Architectures 2002, WoTUG-25, Con-

current Systems Engineering, pages 213–232, IOS Press, Amsterdam,

The Netherlands, September 2002. ISBN: 1-58603-268-2.

[WW96] P.H. Welch and D.C. Wood. The Kent Retargetable occam Compiler.

In Brian O’Neill, editor, Parallel Processing Developments, Proceedings

of WoTUG 19, volume 47 of Concurrent Systems Engineering, pages

143–166, Amsterdam, The Netherlands, March 1996. World occam and

Transputer User Group, IOS Press. ISBN: 90-5199-261-0.

[Zer06a] Zeroconf. Zero Configuration Networking (Zeroconf), 2006. Available

at: http://www.zeroconf.org/.

[Zer06b] Zeroconf and DNS Extensions. Multicast DNS, 2006. Available at:

http://www.multicastdns.org/.

http://www.cs.kent.ac.uk/projects/ofa/kroc/
http://www.zeroconf.org/
http://www.multicastdns.org/

Part IV

Appendices

The appendices provide supplementary information that is not part of the main the-
sis. Appendix A contains a list of abbreviations and acronyms used in this thesis.
Appendix B gives a comprehensive reference of the public interface of the pony envi-
ronment, consisting of the public processes, data-types and constants. Appendix C
compares the traditional implementation of the ‘commstime’ benchmark with a dis-
tributed one using pony, in order to give a practical example of how to use pony
to make an existing application distributed. Finally, Appendix D lists the author’s
publications that are related to pony and its development.

214

Appendix A

Abbreviations and Acronyms

The following list contains the pony-specific abbreviations and acronyms used in this
thesis in alphabetical order.

Abbreviation Meaning Where explained?
or acronym
ANS Application Name Server Section 2.1.3
CLC compiler-level communication Section 7.2
CTB channel-type-block Section 6.1
NCT network-channel-type Sections 2.1.2 and 6.1
NLC network-level communication Section 7.2
pony occam-π Network Environment Chapter 1
ULC user-level communication Section 7.2

215

Appendix B

The Public pony Interface

B.1 Public pony Processes

This section contains a reference of all public processes of the pony environment,
complete with a description of their parameters. Developers of distributed occam-π
applications would call these processes in order to access pony’s functionality.

216

APPENDIX B. THE PUBLIC PONY INTERFACE 217

B.1.1 Startup Processes

pony.startup.unh

Process Header

PROC pony.startup.unh

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle, as
well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 218

pony.startup.snh

Process Header

PROC pony.startup.snh

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle, as well
as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 219

pony.startup.unh.ueh

Process Header

PROC pony.startup.unh.ueh

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT PONY.ERRHANDLE! err.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle and
an unshared error-handle, as well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
err.handle Error-handle (unshared).
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 220

pony.startup.unh.ueh.iep

Process Header

PROC pony.startup.unh.ueh.iep

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle, an
unshared error-handle and an initial error-point, as well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
err.handle Error-handle (unshared).
err.point Initial error-point.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 221

pony.startup.unh.seh

Process Header

PROC pony.startup.unh.seh

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle and
a shared error-handle, as well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
err.handle Error-handle (shared).
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 222

pony.startup.unh.seh.iep

Process Header

PROC pony.startup.unh.seh.iep

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle, a
shared error-handle and an initial error-point, as well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
err.handle Error-handle (shared).
err.point Initial error-point.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 223

pony.startup.snh.ueh

Process Header

PROC pony.startup.snh.ueh

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT PONY.ERRHANDLE! err.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle and an
unshared error-handle, as well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (unshared).
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 224

pony.startup.snh.ueh.iep

Process Header

PROC pony.startup.snh.ueh.iep

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle, an un-
shared error-handle and an initial error-point, as well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (unshared).
err.point Initial error-point.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 225

pony.startup.snh.seh

Process Header

PROC pony.startup.snh.seh

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle and a
shared error-handle, as well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (shared).
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 226

pony.startup.snh.seh.iep

Process Header

PROC pony.startup.snh.seh.iep

(VAL INT net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle, a shared
error-handle and an initial error-point, as well as the ID of the own node.

Parameters

Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (shared).
err.point Initial error-point.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 227

pony.startup.unh.mh

Process Header

PROC pony.startup.unh.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle and
a message-handle, as well as the ID of the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 228

pony.startup.snh.mh

Process Header

PROC pony.startup.snh.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle and a
message-handle, as well as the ID of the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 229

pony.startup.unh.ueh.mh

Process Header

PROC pony.startup.unh.ueh.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT PONY.ERRHANDLE! err.handle,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle, an
unshared error-handle and a message-handle, as well as the ID of the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
err.handle Error-handle (unshared).
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 230

pony.startup.unh.ueh.iep.mh

Process Header

PROC pony.startup.unh.ueh.iep.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle, an
unshared error-handle, an initial error-point and a message-handle, as well as the ID
of the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
err.handle Error-handle (unshared).
err.point Initial error-point.
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 231

pony.startup.unh.seh.mh

Process Header

PROC pony.startup.unh.seh.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle, a
shared error-handle and a message-handle, as well as the ID of the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
err.handle Error-handle (shared).
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 232

pony.startup.unh.seh.iep.mh

Process Header

PROC pony.startup.unh.seh.iep.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handle, a
shared error-handle, an initial error-point and a message-handle, as well as the ID of
the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (unshared).
err.handle Error-handle (shared).
err.point Initial error-point.
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 233

pony.startup.snh.ueh.mh

Process Header

PROC pony.startup.snh.ueh.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT PONY.ERRHANDLE! err.handle,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle, an un-
shared error-handle and a message-handle, as well as the ID of the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (unshared).
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 234

pony.startup.snh.ueh.iep.mh

Process Header

PROC pony.startup.snh.ueh.iep.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle, an un-
shared error-handle, an initial error-point and a message-handle, as well as the ID of
the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (unshared).
err.point Initial error-point.
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 235

pony.startup.snh.seh.mh

Process Header

PROC pony.startup.snh.seh.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle, a shared
error-handle and a message-handle, as well as the ID of the own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (shared).
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 236

pony.startup.snh.seh.iep.mh

Process Header

PROC pony.startup.snh.seh.iep.mh

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle, a shared
error-handle, an initial error-point and a message-handle, as well as the ID of the
own node.

Parameters

Parameter Description
msg.type Message-type. Determines which messages are output. For possible

values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name Name of the node. Allowed characters: letters, digits, dash, dot,

underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (shared).
err.point Initial error-point.
msg.handle Message-handle.
result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC PONY INTERFACE 237

B.1.2 Allocation Processes

pony.alloc.uc

Process Header

PROC pony.alloc.uc

(PONY.NETHANDLE! net.handle,

VAL []BYTE nct.name, VAL INT svr.type,

RESULT MOBILE.CHAN! cli, RESULT INT result)

Description

Allocates an unshared client-end of an NCT. On success, returns the allocated NCT-
end.

Parameters

Parameter Description
net.handle The network-handle.
nct.name Name of the NCT. Empty string not allowed.
svr.type Share-type of the server-end of the NCT. For possible values see

Appendix B.2.5.
cli The (unshared) client-end variable to be allocated.
result Result. For possible values see Appendix B.2.7.

APPENDIX B. THE PUBLIC PONY INTERFACE 238

pony.alloc.sc

Process Header

PROC pony.alloc.sc

(PONY.NETHANDLE! net.handle,

VAL []BYTE nct.name, VAL INT svr.type,

RESULT SHARED MOBILE.CHAN! cli, RESULT INT result)

Description

Allocates a shared client-end of an NCT. On success, returns the allocated NCT-end.

Parameters

Parameter Description
net.handle The network-handle.
nct.name Name of the NCT. Empty string not allowed.
svr.type Share-type of the server-end of the NCT. For possible values see

Appendix B.2.5.
cli The (shared) client-end variable to be allocated.
result Result. For possible values see Appendix B.2.7.

APPENDIX B. THE PUBLIC PONY INTERFACE 239

pony.alloc.us

Process Header

PROC pony.alloc.us

(PONY.NETHANDLE! net.handle,

VAL []BYTE nct.name, VAL INT cli.type,

RESULT MOBILE.CHAN? svr, RESULT INT result)

Description

Allocates an unshared server-end of an NCT. On success, returns the allocated NCT-
end.

Parameters

Parameter Description
net.handle The network-handle.
nct.name Name of the NCT. Empty string not allowed.
cli.type Share-type of the client-end of the NCT. For possible values see

Appendix B.2.5.
svr The (unshared) server-end variable to be allocated.
result Result. For possible values see Appendix B.2.7.

APPENDIX B. THE PUBLIC PONY INTERFACE 240

pony.alloc.ss

Process Header

PROC pony.alloc.ss

(PONY.NETHANDLE! net.handle,

VAL []BYTE nct.name, VAL INT cli.type,

RESULT SHARED MOBILE.CHAN? svr, RESULT INT result)

Description

Allocates a shared server-end of an NCT. On success, returns the allocated NCT-end.

Parameters

Parameter Description
net.handle The network-handle.
nct.name Name of the NCT. Empty string not allowed.
cli.type Share-type of the client-end of the NCT. For possible values see

Appendix B.2.5.
svr The (shared) server-end variable to be allocated.
result Result. For possible values see Appendix B.2.7.

APPENDIX B. THE PUBLIC PONY INTERFACE 241

B.1.3 The Shutdown Process

pony.shutdown

Process Header

PROC pony.shutdown (PONY.NETHANDLE! net.handle)

Description

Shuts down the pony environment. Must be called after all activity on (possibly)
networked channel-types has ceased.

Parameters

Parameter Description
net.handle The network-handle.

APPENDIX B. THE PUBLIC PONY INTERFACE 242

B.1.4 Error-handling Processes

pony.err.get.nct.id.uc

Process Header

PROC pony.err.get.nct.id.uc

(MOBILE.CHAN! cli,

RESULT INT nct.id, result)

Description

Returns the NCT-ID for a given channel-type-end if the channel-type is networked
(version for unshared client-ends).

Parameters

Parameter Description
cli The (unshared) client-end to be checked.
nct.id NCT-ID of the channel-type.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC PONY INTERFACE 243

pony.err.get.nct.id.sc

Process Header

PROC pony.err.get.nct.id.sc

(SHARED MOBILE.CHAN! cli,

RESULT INT nct.id, result)

Description

Returns the NCT-ID for a given channel-type-end if the channel-type is networked
(version for shared client-ends).

Parameters

Parameter Description
cli The (shared) client-end to be checked.
nct.id NCT-ID of the channel-type.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC PONY INTERFACE 244

pony.err.get.nct.id.us

Process Header

PROC pony.err.get.nct.id.us

(MOBILE.CHAN? svr,

RESULT INT nct.id, result)

Description

Returns the NCT-ID for a given channel-type-end if the channel-type is networked
(version for unshared server-ends).

Parameters

Parameter Description
svr The (unshared) server-end to be checked.
nct.id NCT-ID of the channel-type.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC PONY INTERFACE 245

pony.err.get.nct.id.ss

Process Header

PROC pony.err.get.nct.id.ss

(SHARED MOBILE.CHAN? svr,

RESULT INT nct.id, result)

Description

Returns the NCT-ID for a given channel-type-end if the channel-type is networked
(version for shared server-ends).

Parameters

Parameter Description
svr The (shared) server-end to be checked.
nct.id NCT-ID of the channel-type.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC PONY INTERFACE 246

pony.err.get.current.remote.node

Process Header

PROC pony.err.get.current.remote.node

(PONY.ERRHANDLE! err.handle,

VAL INT nct.id,

RESULT INT remote.node.id, result)

Description

Returns the ID of the current remote node for a given NCT-ID if the NCT is currently
in a session that involves a remote node.

Parameters

Parameter Description
err.handle The error-handle.
nct.id NCT-ID to be checked.
remote.node.id ID of current remote node.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC PONY INTERFACE 247

pony.err.new.err.point

Process Header

PROC pony.err.new.err.point

(PONY.ERRHANDLE! err.handle,

RESULT INT err.point)

Description

Gets a new error-point from the error-handler.

Parameters

Parameter Description
err.handle The error-handle.
err.point New error-point.

APPENDIX B. THE PUBLIC PONY INTERFACE 248

pony.err.delete.err.point

Process Header

PROC pony.err.delete.err.point

(PONY.ERRHANDLE! err.handle,

VAL INT err.point,

RESULT INT result)

Description

Deletes a given error-point.

Parameters

Parameter Description
err.handle The error-handle.
err.point Error-point to be deleted.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC PONY INTERFACE 249

pony.err.get.errs.after

Process Header

PROC pony.err.get.errs.after

(PONY.ERRHANDLE! err.handle,

INT err.point,

VAL BOOL check.ans, check.master, check.all.nodes,

VAL []INT nodes.to.check,

RESULT MOBILE []PONY.ERROR err.array,

RESULT INT result)

Description

Returns all errors that occurred after a given error-point which meet the given criteria.

Parameters

Parameter Description
err.handle The error-handle.
err.point Error-point.
check.ans ‘TRUE’ in order to return errors that involve the ANS.
check.master ‘TRUE’ in order to return errors that involve the master node

of the application.
check.all.nodes ‘TRUE’ in order to return errors that involve any remote node.
nodes.to.check Array of node-IDs. Process returns errors that involve any of

the nodes in ‘nodes.to.check’.
err.array Array of returned errors. For details about the ‘PONY.ERROR’

data-type see Appendix B.2.1.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC PONY INTERFACE 250

pony.err.shutdown

Process Header

PROC pony.err.shutdown (PONY.ERRHANDLE! err.handle)

Description

Shuts down the error-handler.

Parameters

Parameter Description
err.handle The error-handle.

APPENDIX B. THE PUBLIC PONY INTERFACE 251

B.1.5 The Message-outputters

pony.msg.out.uo

Process Header

PROC pony.msg.out.uo

(PONY.MSGHANDLE! msg.handle,

CHAN BYTE out!)

Description

Outputs status messages from the pony environment (version for an unshared output
channel). To be run in parallel with everything else that involves the pony environ-
ment.

Parameters

Parameter Description
msg.handle The message-handle.
out (Unshared) output channel — typically ‘stdout’.

APPENDIX B. THE PUBLIC PONY INTERFACE 252

pony.msg.out.so

Process Header

PROC pony.msg.out.so

(PONY.MSGHANDLE! msg.handle,

SHARED CHAN BYTE out!)

Description

Outputs status messages from the pony environment (version for a shared output
channel). To be run in parallel with everything else that involves the pony environ-
ment.

Parameters

Parameter Description
msg.handle The message-handle.
out (Shared) output channel — typically ‘stdout’.

APPENDIX B. THE PUBLIC PONY INTERFACE 253

pony.msg.out.ue

Process Header

PROC pony.msg.out.ue

(PONY.MSGHANDLE! msg.handle,

CHAN BYTE err!)

Description

Outputs error messages from the pony environment (version for an unshared error
channel). To be run in parallel with everything else that involves the pony environ-
ment.

Parameters

Parameter Description
msg.handle The message-handle.
err (Unshared) error channel — typically ‘stderr’.

APPENDIX B. THE PUBLIC PONY INTERFACE 254

pony.msg.out.se

Process Header

PROC pony.msg.out.se

(PONY.MSGHANDLE! msg.handle,

SHARED CHAN BYTE err!)

Description

Outputs error messages from the pony environment (version for a shared error chan-
nel). To be run in parallel with everything else that involves the pony environment.

Parameters

Parameter Description
msg.handle The message-handle.
err (Shared) error channel — typically ‘stderr’.

APPENDIX B. THE PUBLIC PONY INTERFACE 255

pony.msg.out.uo.ue

Process Header

PROC pony.msg.out.uo.ue

(PONY.MSGHANDLE! msg.handle,

CHAN BYTE out!, err!)

Description

Outputs status and error messages from the pony environment (version for an un-
shared output channel and an unshared error channel). To be run in parallel with
everything else that involves the pony environment.

Parameters

Parameter Description
msg.handle The message-handle.
out (Unshared) output channel — typically ‘stdout’.
err (Unshared) error channel — typically ‘stderr’.

APPENDIX B. THE PUBLIC PONY INTERFACE 256

pony.msg.out.so.ue

Process Header

PROC pony.msg.out.so.ue

(PONY.MSGHANDLE! msg.handle,

SHARED CHAN BYTE out!, CHAN BYTE err!)

Description

Outputs status and error messages from the pony environment (version for a shared
output channel and an unshared error channel). To be run in parallel with everything
else that involves the pony environment.

Parameters

Parameter Description
msg.handle The message-handle.
out (Shared) output channel — typically ‘stdout’.
err (Unshared) error channel — typically ‘stderr’.

APPENDIX B. THE PUBLIC PONY INTERFACE 257

pony.msg.out.uo.se

Process Header

PROC pony.msg.out.uo.se

(PONY.MSGHANDLE! msg.handle,

CHAN BYTE out!, SHARED CHAN BYTE err!)

Description

Outputs status and error messages from the pony environment (version for an un-
shared output channel and a shared error channel). To be run in parallel with every-
thing else that involves the pony environment.

Parameters

Parameter Description
msg.handle The message-handle.
out (Unshared) output channel — typically ‘stdout’.
err (Shared) error channel — typically ‘stderr’.

APPENDIX B. THE PUBLIC PONY INTERFACE 258

pony.msg.out.so.se

Process Header

PROC pony.msg.out.so.se

(PONY.MSGHANDLE! msg.handle,

SHARED CHAN BYTE out!, err!)

Description

Outputs status and error messages from the pony environment (version for a shared
output channel and a shared error channel). To be run in parallel with everything
else that involves the pony environment.

Parameters

Parameter Description
msg.handle The message-handle.
out (Shared) output channel — typically ‘stdout’.
err (Shared) error channel — typically ‘stderr’.

APPENDIX B. THE PUBLIC PONY INTERFACE 259

B.2 Public pony Data-types and Constants

This section contains a reference of all public data-types and constants that the pony
environment uses via its public processes.

B.2.1 The Error Record

PONY.ERROR

Declaration

DATA TYPE PONY.ERROR

RECORD

BOOL ans.concerned:

BOOL master.concerned:

BOOL remote.node.concerned:

INT remote.node.id:

INT err.code:

:

Description

Represents a networking error in pony. The fields contain specific information about
the error.

Fields

Field Description
ans.concerned ‘TRUE’ if the error involves the ANS.
master.concerned ‘TRUE’ if the error involves the master node of the ap-

plication.
remote.node.concerned ‘TRUE’ if the error involves a remote node.
remote.node.id ID of the remote node involved in the error. Only

relevant if ‘remote.node.concerned’ is ‘TRUE’.
err.code Error-code. Dependent on the network-type. For pos-

sible TCP/IP error-codes see Appendix B.2.9.

APPENDIX B. THE PUBLIC PONY INTERFACE 260

B.2.2 Message-types

Prefix: PONYC.MSGTYPE.*

Suffix Value Description
STATUS 0 Display status messages only.
ERR 1 Display error messages only.
STATUSERR 2 Display status and error messages.

B.2.3 Network-types

Prefix: PONYC.NETTYPE.*

Suffix Value Description
TCPIP 0 TCP/IP. (Currently the only supported network-type.)

B.2.4 Node-types

Prefix: PONYC.NODETYPE.*

Suffix Value Description
MASTER 0 Master node.
MASTERRESET 1 Master node. Reset application if another master is stored

in the ANS already.
SLAVE 2 Slave node. Fails if there is no master stored in the ANS

yet.
SLAVEWAIT 3 Slave node. If there is no master yet, wait until one con-

tacts the ANS.

B.2.5 Share-types

Prefix: PONYC.SHARETYPE.*

Suffix Value Description
UNKNOWN 0 Share-type unknown or not specified.
UNSHARED 1 NCT-end is unshared.
SHARED 2 NCT-end is shared.

APPENDIX B. THE PUBLIC PONY INTERFACE 261

B.2.6 Results for Startup Processes

Non-network-type-specific Results

Prefix: PONYC.RESULT.STARTUP.*

Suffix Value Description
OK 0 Completed successfully.
ILLEGALMSGTYPE -1 Illegal message-type.
ILLEGALNETTYPE -2 Illegal network-type.

Network-type-specific Results for TCP/IP

Prefix: PONYC.RESULT.STARTUP.TCPIP.*

Suffix Value Description
ILLEGALANSNAME -11 Illegal ANS-name.
ILLEGALAPPNAME -12 Illegal application-name.
ILLEGALNODENAME -13 Illegal node-name.
ILLEGALNODETYPE -14 Illegal node-type.
HOMEDIRNOTINENV -15 Home directory not specified in environ-

ment.
ANSFILEACCESSERROR -16 ANS-file not readable.
ANSFILEINVALIDSETTINGS -17 ANS-file contains invalid settings.
NODEFILEACCESSERROR -18 Node-file not readable.
NODEFILEINVALIDSETTINGS -19 Node-file contains invalid settings.
IPADDRNOTRESOLVED -20 IP address could not be resolved.
LISTENSOCKFAILURE -21 Network failure when creating listening

socket.
ANSNETFAILURE -22 Network failure when connecting to ANS.
DUPLICATEMASTER -23 Node’s location is duplicate of master’s lo-

cation stored in ANS.
DUPLICATESLAVE -24 Node’s location is duplicate of a pending

slave’s location stored in ANS or of another
slave’s location stored by master.

OTHERMASTER -25 Master tries to log on to ANS, other master
already there.

NOMASTERYET -26 Slave tries to log on to ANS, no master
there yet.

MASTERNETFAILURE -27 Network failure when slave tries to connect
to master.

MASTERSHUTTINGDOWN -28 Slave tries to log on to master, master is
currently shutting down.

APPENDIX B. THE PUBLIC PONY INTERFACE 262

B.2.7 Results for Allocation Processes

Prefix: PONYC.RESULT.ALLOC.*

Suffix Value Description
OK 0 Completed successfully.
ILLEGALNCTNAME -1 Illegal NCT-name.
CHANTYPEMISMATCH -2 Type mismatch between NCT-end to be allocated

and existing NCT of the same name.
X2XTYPEMISMATCH -3 Mismatch of x2x-type.
X2XCOUNTMISMATCH -4 Mismatch of x2x-count (i.e. trying to allocate more

than one one2x client-end or more than one x2one
server-end).

APPENDIX B. THE PUBLIC PONY INTERFACE 263

B.2.8 Results for Error-handling Processes

Results for ‘pony.err.get.nct.id.*’

Prefix: PONYC.RESULT.ERR.GNI.*

Suffix Value Description
OK 0 Completed successfully.
CTENDUNDEFINED -1 Channel-type-end undefined.
CTENDNOTNETWORKED -2 Channel-type-end not networked.

Results for ‘pony.err.get.current.remote.node’

Prefix: PONYC.RESULT.ERR.GCRN.*

Suffix Value Description
OK 0 Completed successfully.
INVALIDNCTID -1 Invalid NCT-ID.
NOSESSION -2 Currently no session.
SAMENODE -3 Currently both ends on the same node (internal session).

Results for ‘pony.err.delete.error.point’

Prefix: PONYC.RESULT.ERR.DEP.*

Suffix Value Description
OK 0 Completed successfully.
INVALIDERRPOINT -1 Invalid error-point.

Results for ‘pony.err.get.errors.after’

Prefix: PONYC.RESULT.ERR.GEA.*

Suffix Value Description
OK 0 Completed successfully.
INVALIDERRPOINT -1 Invalid error-point.

APPENDIX B. THE PUBLIC PONY INTERFACE 264

B.2.9 Error-codes for TCP/IP

Prefix: PONYC.ERRCODE.TCPIP.*

Suffix Value Description
ACCEPTFAILURE -1 Accepting new connection failed.
CONNECTFAILURE -2 Connecting failed.
SETNODELAYFAILURE -3 Setting no-delay option (turning off Nagle algo-

rithm) failed.
READFAILURE -4 Read operation failed.
WRITEFAILURE -5 Write operation failed.

Appendix C

Different ‘commstime’

Implementations

C.1 The Traditional ‘commstime’ Implementation

This section contains the traditional, non-distributed, implementation of the classical
occam ‘commstime’ benchmark.

PROC commstime (CHAN BYTE key?, scr!, err!)

BOOL use.seq.delta:

INT num.loops:

SEQ

... Find out whether to use the sequential or the parallel delta

... Find out the number of loops

-- Channels between the processes

CHAN INT a, b, c, d:

-- Run sub-processes in parallel

PAR

prefix (0, b?, a!)

IF

use.seq.delta

-- Sequential delta

seq.delta (a?, c!, d!)

TRUE

-- Parallel delta

delta (a?, c!, d!)

succ (c?, b!)

-- Monitoring process

consume (num.loops, d?, scr!)

:

265

APPENDIX C. DIFFERENT ‘COMMSTIME’ IMPLEMENTATIONS 266

C.2 The Distributed ‘commstime’ Implementation

This section contains the distributed implementation of the ‘commstime’ benchmark.
There are four different nodes, each of which is running one of the sub-processes. A
complete distributed ‘commstime’ application consists of all four nodes.

C.2.1 The Channel-type Declaration

-- Channel-type with one INT channel

CHAN TYPE INT.CT

MOBILE RECORD

CHAN INT chan?:

:

C.2.2 The ‘prefix’ Node

PROC commstime.prefix (CHAN BYTE key?, scr!, err!)

-- Network-handle

PONY.NETHANDLE! net.handle:

-- NCT-end variables

INT.CT? b.svr:

INT.CT! a.cli:

-- Other variables

INT own.node.id, result:

SEQ

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "commstime",

"", PONYC.NODETYPE.SLAVEWAIT,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate NCT-ends

pony.alloc.us (net.handle, "b", PONYC.SHARETYPE.UNSHARED,

b.svr, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

pony.alloc.uc (net.handle, "a", PONYC.SHARETYPE.UNSHARED,

a.cli, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Start sub-process

prefix (0, b.svr[chan], a.cli[chan])

-- No shutdown of pony here

-- because the sub-process that was started is running infinitely

:

APPENDIX C. DIFFERENT ‘COMMSTIME’ IMPLEMENTATIONS 267

C.2.3 The ‘delta’ Node

PROC commstime.delta (CHAN BYTE key?, scr!, err!)

-- Network-handle

PONY.NETHANDLE! net.handle:

-- NCT-end variables

INT.CT? a.svr:

INT.CT! c.cli, d.cli:

-- Other variables

BOOL use.seq.delta:

INT own.node.id, result:

SEQ

... Find out whether to use the sequential or the parallel delta

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "commstime",

"", PONYC.NODETYPE.SLAVEWAIT,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate NCT-ends

pony.alloc.us (net.handle, "a", PONYC.SHARETYPE.UNSHARED,

a.svr, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

pony.alloc.uc (net.handle, "c", PONYC.SHARETYPE.UNSHARED,

c.cli, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

pony.alloc.uc (net.handle, "d", PONYC.SHARETYPE.UNSHARED,

d.cli, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Start sub-process

IF

use.seq.delta

-- Sequential delta

seq.delta (a.svr[chan], c.cli[chan], d.cli[chan])

TRUE

-- Parallel delta

delta (a.svr[chan], c.cli[chan], d.cli[chan])

-- No shutdown of pony here

-- because the sub-process that was started is running infinitely

:

APPENDIX C. DIFFERENT ‘COMMSTIME’ IMPLEMENTATIONS 268

C.2.4 The ‘succ’ Node

PROC commstime.succ (CHAN BYTE key?, scr!, err!)

-- Network-handle

PONY.NETHANDLE! net.handle:

-- NCT-end variables

INT.CT? c.svr:

INT.CT! b.cli:

-- Other variables

INT own.node.id, result:

SEQ

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "commstime",

"", PONYC.NODETYPE.SLAVEWAIT,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate NCT-ends

pony.alloc.us (net.handle, "c", PONYC.SHARETYPE.UNSHARED,

c.svr, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

pony.alloc.uc (net.handle, "b", PONYC.SHARETYPE.UNSHARED,

b.cli, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Start sub-process

succ (c.svr[chan], b.cli[chan])

-- No shutdown of pony here

-- because the sub-process that was started is running infinitely

:

APPENDIX C. DIFFERENT ‘COMMSTIME’ IMPLEMENTATIONS 269

C.2.5 The ‘consume’ Node

PROC commstime.consume (CHAN BYTE key?, scr!, err!)

-- Network-handle

PONY.NETHANDLE! net.handle:

-- NCT-end variable

INT.CT? d.svr:

-- Other variables

INT num.loops, own.node.id, result:

SEQ

... Find out the number of loops

-- Start pony

pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "commstime",

"", PONYC.NODETYPE.MASTERRESET,

own.node.id, net.handle, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Allocate NCT-end

pony.alloc.us (net.handle, "d", PONYC.SHARETYPE.UNSHARED,

d.svr, result)

ASSERT (result = PONYC.RESULT.STARTUP.OK)

-- Start sub-process (monitoring process)

consume (num.loops, d.svr[chan], scr!)

-- No shutdown of pony here

-- because the sub-process that was started is running infinitely

:

Appendix D

Own Publications

The following list contains the author’s publications that are related to pony and its
development:

• M. Schweigler. The Distributed occam Protocol – A New Layer On Top Of
TCP/IP To Serve occam Channels Over The Internet. Master’s thesis, Com-
puting Laboratory, University of Kent at Canterbury, September 2001. MSc
Dissertation.

• M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexible, Transparent and Dy-
namic occam Networking With KRoC.net. In J.F. Broenink and G.H. Hilderink,
editors, Communicating Process Architectures 2003, WoTUG-26, Concurrent
Systems Engineering, ISSN 1383-7575, pages 199–224, Amsterdam, The Nether-
lands, September 2003. IOS Press. ISBN: 1-58603-381-6.

• M. Schweigler. Adding Mobility to Networked Channel-Types. In I. East,
J. Martin, P. Welch, D. Duce, and M. Green, editors, Communicating Pro-
cess Architectures 2004, WoTUG-27, Concurrent Systems Engineering, ISSN
1383-7575, pages 107–126, Amsterdam, The Netherlands, September 2004. IOS
Press. ISBN: 1-58603-458-8.

• M. Schweigler and A.T. Sampson. pony – The occam-π Network Environment.
In Peter Welch, Jon Kerridge, and Fred Barnes, editors, Communicating Process
Architectures 2006, WoTUG-29, Concurrent Systems Engineering, ISSN 1383-
7575, pages 77–108, Amsterdam, The Netherlands, September 2006. IOS Press.
ISBN: 1-58603-671-8.

All publications are available on-line at:

http://www.informatico.de/publications/

270

	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Dedication
	Introduction
	Problem and Motivation
	The Need for a Unified Concurrency Model
	Aspects of Transparency
	Semantic Transparency
	Pragmatic Transparency

	History
	New occam-112 Features Relevant for pony
	Mobile Data
	Extended Rendezvous
	Mobile Channel-types
	Forking
	Shared Plain Channels
	Variables of Any Channel-type and Type-descriptors
	The occam-112 C interface

	Related Developments
	Static Approaches
	Other CSP-based Platforms
	Channel Mobility in Icarus
	Other Languages Based on the 112-calculus

	Other Approaches for Distributed Application Development
	The Grid
	CORBA
	DSM/ Tuple Spaces
	PVM/MPI
	Java Isolates
	Singularity

	Thesis Structure

	I Using pony
	Getting Started
	Architecture and Terminology
	Applications and Nodes
	Network-channel-types
	The Application Name Server
	Network-types
	Variants of Channel-types and Their Graphical Representation

	Running pony on a Node
	pony-enabled occam-112 Programs
	The pony Library
	Public pony Processes and Handles

	The Startup Mechanism
	Different Versions of the Startup Process
	Parameters of the Startup Processes
	Design Rules

	Starting the ANS

	Operation of pony Nodes
	Allocating NCT-ends
	Explicit Allocation
	Usage of NCTs and Implicit Allocation

	Shutting Down Nodes
	Configuration
	The Node-file
	The ANS-file
	The ANS-configuration-file

	Error-handling and Message-handling
	Error-handling
	Non-transparent Error-handling
	pony's Error-handling Mechanism
	Getting Information About NCTs and Remote Nodes
	Getting and Deleting Error-points
	Getting Errors That Happened After a Given Error-point
	Shutting Down the Error-handler

	Message-handling

	A Sample Application

	II Design and Implementation of pony
	Structure of pony
	NCTs and CTBs
	Internal Components of pony
	The Individual Components
	Modular Design of pony

	CTBs in pony-enabled Programs
	The Pointer to the Type-descriptor
	The Claim/Release Mechanism
	Shutting Down pony-enabled CTBs

	The Main pony Kernel
	Layout and Startup
	Explicit Allocation of NCT-ends

	Protocol-conversion
	The Protocol-converters
	Levels of Communication
	Implementation of the Protocol-converters
	Cancelling Started ULCs
	The Protocol-decoder
	The Protocol-encoder
	Decoding and Encoding the Various occam-112 Protocols
	Data-item NLCs
	Channel-type-end NLCs

	Decode-handler and Encode-handler
	Differences Compared With the Protocol-converters
	CLC-Packets

	Handlers and Managers for CTBs and NCTs
	The CTB-handler
	The Instant-handler
	Client-listener and Server-listener
	Sessions for NCTs
	Starting a Session
	Handling Sessions
	Sending an NCT-end Over Itself

	The CTB-manager
	The NCT-handler
	The NCT-manager

	The Network Drivers
	The TCP/IP Link-handler
	The TCP/IP Link-manager
	Optimising TCP/IP Network Performance

	Other Implementation Issues
	Implementation of Error-handling
	Implementation of Message-handling
	The Application Name Server
	The Startup Mechanism
	The Shutdown Mechanism

	III Performance of pony, Evaluation and Conclusions
	Performance Evaluation
	Basic Considerations
	Communication Time
	Throughput
	Network Overhead
	CPU Overhead
	Application Scalability
	Distributed Robust Annealing Case Study

	Conclusions and Future Work
	Evaluation of What Has Been Achieved
	Adding Support for New/Future occam-112 Features
	Supporting Mobile Processes
	Supporting Mobile Barriers
	Supporting RMoX
	Supporting Buffered Channels
	Supporting Behaviour Patterns
	Supporting the Proposed `GATE'/`HOLE' Mechanism
	Supporting New Fault Tolerance Mechanisms

	Other Things
	Adding Support for Networked Plain Channels
	Adding Support for `LOCAL' High Performance Channels
	Supporting Different Architectures
	Security and Reliability
	Simplifying the Setup

	Bibliography

	IV Appendices
	Abbreviations and Acronyms
	The Public pony Interface
	Public pony Processes
	Startup Processes
	Allocation Processes
	The Shutdown Process
	Error-handling Processes
	The Message-outputters

	Public pony Data-types and Constants
	The Error Record
	Message-types
	Network-types
	Node-types
	Share-types
	Results for Startup Processes
	Results for Allocation Processes
	Results for Error-handling Processes
	Error-codes for TCP/IP

	Different `commstime' Implementations
	The Traditional `commstime' Implementation
	The Distributed `commstime' Implementation
	The Channel-type Declaration
	The `prefix' Node
	The `delta' Node
	The `succ' Node
	The `consume' Node

	Own Publications

