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Abstract 

In this thesis we derive and apply influence functions for the detection of 

observations in multivariate analysis which when omitted from, or added to, 

the data lead to substantial changes in some aspect of our analysis. Emphasis 

is placed on the influence functions for the eigenvalues and eigenvectors in 

principal component analysis, from both the covariance and correlation 

matrices, and correspondence analysis. Also considered are the influence 

functions for the bivariate, multiple and partial correlation coefficients and 

the eigenvalues and eigenvectors in canonical correlation analysis. 

We derive algebraic expressions, in terms of the original analysis, for the 

theoretical influence function in all cases and it is compared with the sample 

influence function when this has a 'simple' algebraic form. Only limited 

sample expressions can be derived for the changes in the eigenvalues and 

eigenvectors in principal component analysis and correspondence analysis, but 

the functions are compared numerically when applied to datasets. Problems 

in assessing the influence on eigenvectors when we have close eigenvalues, 

due to rotation within a relatively unchanged subspace, are highlighted in 

both principal component analysis and correspondence analysis and are 

discussed. 
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Chapter 1: Introduction 

This thesis is concerned with the derivation and application of measures 

of influence for observations in multivariate analysis. In particular, we 

concentrate on the affect of observations in principal component analysis and 

correspondence analysis, which both involve the calculation of eigenvalues 

and eigenvectors, and on three types of correlation coefficient. 

An influential observation is one whose deletion from, or addition to, the 

dataset leads to an unusually 'large' change in some aspect of our analysis. 

Snedecor and Cochran (1967, p157) advised that one should check the affect 

of an outlier, i.e. an extreme or atypical observation, by comparing the results 

when the outlier is both included and omitted from the analysis. It is possible 

that an outlier need not be influential, and if we perform an influence analysis 

on all the observations in the dataset we can reveal the 'outliers that matter' 

without carrying out procedures for detecting outliers. This is particularly 

useful in multivariate analysis where the detection of outliers is difficult since 

an outlier need not reveal itself when we look at the variables individually or 

in pairs (for example, by looking at two dimensional plots of the variables). 

It is also possible for an influential observation not to be an outlier. If we 

find influential observations, we would not usually remove them completely 

from the analysis unless, for example, they were found to be recording errors. 

The influence analysis provides us with invaluable information on the 

reliability of our results and interpretations, and can further our 

understanding of the structure of the data we are analysing. It is for the 

above reasons that the influence techniques have received wide attention in 

the recent literature, although most applications have been confined to 

regression analysis. 

Two comprehensive books have been written on the topic of influence in 
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regression analysis by Belsley, Kuh and Welsch (1980) and Cook and 

Weisberg (1982). Various statistics have been proposed for detecting 

influential observations depending on what part of the analysis one is 

interested in. For example, the Cook statistic is defined as 

D. = !r.2_ hll_··_ 
I p I 1 - h;; 

(1.1) 

where r; is the studentised residual, hi =!';(X'X)-l!i is ith diagonal element 

of the hat matrix, x is the set of regressor variables and p is .. the number of 

regressor variables. The Cook statistic is a scalar measure of influence based 

on the vector of changes in the regression coefficients ~ when the i th case is 

deleted. The Cook statistic can be written as, 

D. = (~- ~(-i»'(X 'X)(~ - ~(-i) 
I A2 

pa 
(1.2) 

where ~(-i) is the vector of regression coefficients when the i th observation is 

removed. The choice of (1.2) to provide a scalar measure from the changes in 

the regression coefficients is that it can be linked to the confidence ellipsoid 

for ~. Alternative ways of forming a scalar measure are discussed in Cook and 

Weisberg (1982,§ 3.5). We obtain (1.1) from (1.2) by deriving an expression 

for ~(_;) involving the original ~ and other terms from the analysis of the full 

dataset. This means we do not need to repeat our analysis a further n times 

corresponding to the deletion of each observation in tum. Beckman and Cook 

(1983) note of (1.1), , it is clear that outlying cases (r? large) need not be 

influential if hii is sufficiently small. .... Conversely , a non outlying case may 

be highly influential if hii is sufficiently large', (we have a large hii if the x 

variables lie in a remote part of the factor space). 

The sample influence curve for ~ is defined as 

SIC~, ID = (n -1)(~ - ~(-i) (1.3) 
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The reason for the multiple of (n-1) will be discussed below. We prefer to use 

a scalar measure like (1.1) to (1.4) so that we can rank our observations by 

their influence on all the coefficients simultaneously. 

Multivariate statistical analyses such as principal component analysis 

(PCA) and cOrrespondence analysis (CA) involve the calculation of 

eigenvalues and eigenvectors. Except for small p, the eigenvalues and 

eigenvectors do not have algebraic expressions and, even when they do, we 

find we cannot derive expressions for the perturbed sample eigenvalues and 

eigenvectors in terms of the original eigenvalues ).1: and eigenvectors ~. 

However, we can use the theoretical influence function defined by Hampel 

(1974) to give an asymptotic expression for the influence of points on our 

eigenvalues and eigenvectors involving only terms from the original problem. 

Substituting the sample equivalents, ).1: for AI: and ~ for ~ , into the 

theoretical expressions enables us to use the theoretical influence curve to 

investigate influence in samples. This means we do not need to recalculate 

our eigenvalues and eigenvectors for each observation omitted as would be 

required for the sample influence curve. This will be discussed further below. 

The definition of the theoretical influence curve is as follows. Let y be a p-

variate random vector with cumulative distribution function F (y) and a is a 

vector of parameters which can be expressed as a functional of F (y ). IT F is 

perturbed to become (1 - £)F + £8x , where 8x is the cumulative distribution 
- -

function of a random variable which can only take the single value!, and ~ is 

the corresponding perturbed parameter then, 

-
TIC <! ,~ = ~~ a E a (1.4) 

Under suitable conditions ~ can be expanded in a Taylor series (see Rey 

(1983,§ 2.4) for further details) such that, 
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(2 
Q = Q + (~I + 2" ~ 2 + ...... (1.5 ) 

111e theoretical influence function for 0 is thus TIC (~ ,~) = ~ \. the coefficient 

oC ( in this expansion. Hence, only tenus up to oCt) need to be retained when 

calculating (1.4). This is an advantage in any situation where our parameter 

has a complicated expression. As desired for the sample influence curve 

discussed above, TIC ~ ,~ will only involve terms Crom the original analysis. 

The theoretical function is in fact a right-hand derivative and thus we can 

apply the product rule to give, for example, 

T/C~, U'~) = T/C~, U')~ + U'TIC~ ,~) 

This can also be seen by using (1.5) and letting, 

U' = u' + £U l' + a «(2) 

where 0(£2) denotes terms of order £2 and smaller. 
f = ~ + £~ 1 + 0 «(2) . . .. 

Multiplying these together gives, 

U ' f = u' ~ + £ [ U ' ~ 1 + u' I~ 1 + a {(2) 

and substituting into (1.4) gives (1.6). 

(1.6) 

Taking (= -1/ n -1 and F = F, where F is the empirical distribution 

function based on a set of observations ~ 1 ...... ~ we have 

(1 - f.)F + f.&~ = F{-i) 

the cumulative distribution function with the i th point missing. Substituting 

this into (1.4) we obtain the definition of the sample influence curve, when 

the i th point is removed, as 

- - -
SIC (--i)(S ,Q) = (n -1)(Q - Q( -i) (1.7) 

Conversely, the sample influence curve for adding in an extra observation is 

defined as, 

- - -
SIC (II +I){~ +1 ,Q) = {n + 1 )(Q(II +1) - Q) (1.8) 
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where ~II +1) is the estimated parameter with the extra observation included. 

From expression (1.4) and (1.5) we can see that the theoretical influence 

curve provides a first order approximation to the sample curves when the 

sample equivalents are substituted in. There are two empirical influence 

curves that can be defined from the substitution of the sample equivalents into 

the theoretical expressions. The first is called the empirical influence curve 

and it is obtained by substituting the sample c.d.f., F, for F in the influence 

curve. This is what we have described above and will be used throughout this 

thesis. However, from the definition of the theoretical influence function, 

when evaluated at the point ~ we are in fact considering the addition of ~ 

given it is already in the analysis. An informal approach throughout this thesis 

justifies the use of this empirical curve for estimating the deleted sample 

curve; as do the good comparisons it gives with this sample curve. The 

alternative empirical curve is called the deleted empirical curve and is 

obtained by substituting F (-i) into the theoretical influence function. The 

perturbed distribution is thus (1 - E)F (-i) + E8! = F so this curve measures the 

effect of adding in the point ~ given it is not initially in the analysis. This 

results in n different empirical curves as each will be expressed in terms of the 

n possible deleted datasets. We wish to avoid the ,calculation of the n 

separate analyses so we would need to write the terms from the deleted model 

in terms of those from the full analysis. However, this is difficult since it 

involves the parameters that we are wanting the influence expressions for. 

Critchley (1985) examines the two types of empirical curves for principal 

component analysis on the covariance matrix. If EIC (-i) denotes the deleted 

empirical curve for either the eigenvalues or eigenvectors he finds 

EIC (-i) = EICi + 0 (1 /(n -1» 

where EICi is the empirical curve evaluated at the i th case. The higher order 
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tenn.~ involve the second order tenn.~ ~2 (and higher) from the expansion in 

(1.5) which we may not wish to calculate. We find in many analyses that the 

empirical tends to underestimate the actual sample change and the deleted 

empirical overestimates. An example of this can be seen on page 212. 

The theoretical influence function for the bivariate correlation coefficient 

was derived by Mallows in some unpublished work and used by Devlin, 

Gnanadesikan and Kettenring (1975) to detcct outlie~ with respect to 

bivariate correlation. Otemick (1983) derived the theoretical influence 

function for the multiple correlation coefficient of y on ~ 1 , ~). Campbell 

(1978) looked at influence functions in discriminant analysis, where it was 

applied to the Mahalanobis distance, the discriminant means and the 

discriminant function coefficients, when one of the distributions is perturbed. 

The theoretical influence function has been derived for a variety of statistics 

in multivariate analysis by Radhakrishnan and Kshirsagar (1981). This 

involves work on the eigenvalues and eigenvectors from a symmetric matrix, 

with application to PCA based on the covariance matrix. Critchley (1985) also 

derives theoretical influence functions for the eigenvalues and eigenvectors in 

PCA b<L<;ed on the covariance matrix. His expression for TIC (~ , ~) appears 

different to that of Radhakrishnan and Kshirsagar due to the different ways of 

dealing with the singular matrix (): - At I), see § 3.5 and § 3.6 for further 

details. Other 'influence' techniques in PCA which do not use the influence 

curves above have been examined by Krzano .... 'Ski (1984) and Benassini 

(1985). There is also work by E~o[ier and Le Roux (1976), recorded in 

Greenacre (1984), which gives upper bounds for the angle between the 

original and perturbed eigenvectors when observations are omitted. This is 

mainly for correspondence analysis but it can be applied to other statistical 

methods that involve eigenvectors. Most of these references will be discussed 
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further in the relevant sections. The theoretical influence curve was originally 

derived for use in robust estimation. Huber (1981) says it is 'perhaps the most 

useful heuristic tool of robust statistics'. We wish our estimator to have a 

bounded influence curve, so that the effect of extreme points cannot exceed 

some value. This has lead to various proposals for robust estimators. The 

influence curve can also be used to derive the asymptotic variance of the 

estimators. See Huber (1981) for many applications of the influence curve in 

robust estimation. 

In Cllapter 2 we shall examine the influence functions for the bivariate, 

multiple and partial correlation coefficients. H possible it is preferable to 

obtain an expression for the sample influence curve. This chapter will show 

when this is possible and when it is better to use the theoretical influence 

function. When both sample and theoretical curves have an algebraic 

expression they will be compared, and for each correlation coefficient we have 

numerical comparisons of the deleted sample and empirical influence 

functions. 

The theoretical influence functions for the eigenvalues, eigenvectors and 

component scores, in a principal component analysis, from both the 

covariance and correlation matrices are derived and discussed in Cllapter 3. 

Contour plots of the influence functions are presented for p = 2 and p = 3. 

Multiple case deletion will also be considered. Otapter 4 is concerned with the 

practical application of the influence curves derived in Otapter 3. A suitable 

scalar measure for the change in the eigenvectors will be proposed and we will 

compare the 'actual sample change' with the empirical divided by (n -1). The 

'actual sample change' is found by numerically finding the perturbed 

eigenvalues and eigenvectors for each observation omitted (although we can 

make use of formulae for the change in the covariance matrix when a point is 
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omitted). A number of problems arise in principal component analysis when 

assessing the influence of observations, due to the eigenvectors switching in 

order or rotating within a relatively unchanged subspace. The theoretical and 

sample curves behave differently in such situations and this behaviour will be 

explained. Critical levels for the percentage change in an eigenvalue, for both 

the covariance and correlation matrix, are found by simulation and are 

discussed. Finally, we consider influence in detail for three datasets. 

In Cltapter 5 we derive the theoretical influence functions for the 

eigenvalues and eigenvectors in canonical correlation analysis and In 

correspondence analysis. Three types of perturbation are considered in 

correspondence analysis. The first is when we add a single observation so that 

a cell of a two way contingency table is incremented by one. The theoretical 

influence functions for this are found as special cases of the influence 

functions for canonical correlation analysis. Secondly, we consider the 

deletion of a row from a contingency table and lastly adding into cells for a 

multiway correspondence analysis. In Cltapter 6 influence in correspondence 

analysis is examined by application to real datasets. Canonical correlation 

analysis is not discussed in Cltapter 6 since most of the points which could be 

illustrated are the same as for other eigenvector methods. Furthermore, the 

first type of influence considered in correspondence analysis is a special case 

of canonical correlation analysis, and the multiple correlation coefficient, 

discussed in § 2.4 is another special case. 

Cltapter 7 discusses the usefulness of the different influence functions 

and influence in general, in light of the work in the thesis. 
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Chapter 2: Influence Functions for Correlation Coefficients 

2.1. Introduction 

We shall introduce the different influence functions, and the 

relationships between them, by looking at their applications to the covariance 

matrix and to three types of correlation coefficient. We shall obtain the 

sample and theoretical influence functions for the bivariate and multiple 

correlation coefficients. The theoretical expressions will be seen to be 

simplified versions of the sample curves. If we form the empirical curve by 

substituting the sample equivalents into the theoretical expression we can 

observe that the empirical will tend to underestimate the sample influence 

curve for omitting an observation, (which is what we are normally interested 

in ), and over-estimate the sample influence curve for adding an observation. 

The theoretical influence function for the partial correlation coefficient is 

derived in § 2.5 and we shall discuss why it would be difficult to obtain a 

simple algebraic expression for the sample curve. We will usually consider 

both types of sample curves, and it will be shown how the empirical curve can 

be used to approximate either curve. For all the correlation coefficients we 

will numerically compare the deleted sample curve with the empirical. 

2.2. Influence Functions for the Covariance Matrix 

2.2.1. Sample Influence Function 

Let S denote the perturbed covariance matrix when we add an extra 

observation ~ + 1 then 

~ n -1 1 (.,. ;:- \(.,. ;:- \' S = --s + --1 ~+1-~~+1-~ 
n n + 

(2.2.1) 

where x , sand n are the mean, covariance matrix and the sample size 

without the extra observation included. 
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Proof of (2.2.1) 

Let x - be the mean with the extra observation included. Then, 

II 

= ~x"x"' + X +1x +1' - (n +1)x - x -, ~~ ::11::11 __ 
j=l 

(2.2.2) 

Substituting 

_ _ n X +~+1 
X = 

n+l 

into (2.2.2) we have 

II 2 
nS~ ~ '+ n ,n --, n - , n -, 

= j~!.i!.i n +1 ~+1~+1 - n +1..!.....!... - n +1 x X II +1 - n +1 ~+1.!.... 

Putting in n x x ' and taking out again gives 

which is the same as (2.2.1). Subtracting the original covariance matrix and 

multipling by (n+l) gives the sample influence curve 

(2.2.3) 

If we wish to delete an observation ~, say, from the existing dataset then a 

proof similar to the above gives 

n-l n 
s(-i)= n -2 S - (n-l)(n -2) ~ - D(~ - D' (2.2.4) 

and, noting that for the deleted sample curve we subtract the perturbed from 

the original and multiply by (n -1), we have, 

( ) n-l n (!; D(!; -)' SIC(_") S ,x" = ---S + -- x" - x x" - X 
I::::J n -2 n -2 - (2.2.5) 

where x , sand n are based on the full dataset involving !i. Expressions 

(2.2.3) and (2.2.5) are very similar only differing in the functions of n and in 

the order of subtraction of the original and perturbed covariance matrices. It 

is due to the similarity of these expressions that we can convert the empirical 
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rt:lIloved. \Ve ~ill retum tn thi" ill ~ 2.2.2. 

2.2.2. ·l1ll,.,rl'tical and Empiriral lnflurnrr FUllrtion.\ 

"111e pcrturhcd population covariance matrix is given by C1mpbcll (197H) 

and results in the influence function 

T1C~ ,L) = - L+(~ - ~)(~ - ~)' (2.2.6) 

Substituting S for Land x for ~ we obtain 

F.lC (!.. ,S) = --5 + (:.. - x )(!.. --{ )' (2.2.7) 

which only differs from (2.2.3) or (2.2.5) in the appropriate functions of n. 

However, the functions of n in the sample curves are of 0(1) so we see that 

(2.2.7) would provide a good approximation to (2.2.3) or (2.2.5). This 

means that the theoretical expression ~uld be useful in describing influence 

in samples when the an algebraic expressIon for the corresponding sample 

curve is not possible. 

As pointed out by the external exanuner, it would have been rather more 

appropriate to use n instead of S in much of what follows, where 

1· - -
0= - L (Xj -x)(Xj -x), = (n /(n -1»S 

n j = 1 

This makes little difference to most of the work but changes the functions of n 

involved slightly. See in particular § 4.4 where adjustments to the functions of 

n are considered. 

In O1apter 1 we noted that the theoretical influence curve is an 

asymptotic result that provides a first order approximation to the sample 

results. Omsequentlj, We would obtain the same expression as the empirical 

if we considered the sample curve as n - 00 as the higher order are not dependent 

upon n. This approach is used for some of 

the influence expressions in correspondence analysis. The sample influence for 

s and the empirical are perhaps two of closest expressions one will obtain. It 

is hecause the theoretical and sample expres.sions for the covariance matrix are 

so similar that the theoretical influence functions for the eigenvalues and 

eigenvectors in principal component analysis usually approximate the s,a.mple 

li te small da lasets. See ( 11;lpter 4. 
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2.3. Influence Functions for the Bivariate Correlation Coefficient 

2.3.1 Sample Influence Function 

Using (2.2.1) and omitting the subscript n + 1 so that Xl is the k th 

variable of the added observation ~ +1 we have 

n -1 1 ( _)( _) _ -n-Skj + -n-+-l Xl - X 1 Xj - X j 
'lj = -::---------:~--~...;.....,..--:-------------....,.... 

[
_n_-_l Sa + _1_(Xl - X 1)2j1l2 [_n_-_l Soo + _1_(xo - X 0)2j1l2 

n n +1 n II n +1 I I 

'lj + (n-l)(n+l)YkYj 

- -[:--1-+-( n-l-)n-(n-+-l-) -Yl~2:"-'r,....;..L:':':'[ 1"':+-=...L..(-n -1 )-'(n-+-l )-y-/-j"""""112 

n 

where Yl is the standardised Xl variable. We cannot express the above 

perturbed correlation coefficient as the original correlation coefficient plus an 

extra term representing the change. However, subtracting the original 'lj and 

noting that (n ~1) SIC(n+1)<!"lj) is the actual change in the correlation 

coefficient we have 

~1 SIC(II+1)~+1' 'kj) = (2.3.1) n+ 

-rkj [1 + (n_1)(n+1)Yk
2

jlJ2 [1 + (n_1)(n_+l)y/jlJ2 +rkj + (n-1)(n+1)YtYj 

[1 + (n -l)(n +1) Yt 2 r [1 + (n -1)(n +1) y/ r 
This expression is rather cumbersome but it would not be very time consuming 

to calculate. The sample influence function when we delete an observation ~ 

is given by 



.. 

- 1.1 -

1.-'.2. Tht'orl'lical and Empirical IlInlll'IH:r FlInrtions 

'1l1C thcorctical innucncc function TlC(~. Pi,) is quoted and used hy 

Devlin ci a/ (I (75) and is dcrived hy Mallows in some unpuhlished work. A 

derivation of this influence function is given here, this proof serves to 

illustrate the duality between the sample and theoretical curves (TIC ~ • Pt) 

could be derived as a special case of the partial correlation coefficient in § 

2.5.2). From (2.2.6) the pcrturhed population covariance matrix is 

(2.3.3) 

Using this we have 

One advantage of looking at the theoretical curve is that tenns of 0(£2) 

disappear, see Glapter 1, and this means we can expand out our brackets to 

0(£) which simplifies our expressions. It also enables us to write Ptj in tenns of 

the original correlation coefficient plus other tenns which we could not do for 

the two sample curves. Noting that the expansion for 

(\ + (b)-112 = \ - ~b + 0(£2) 
2 

and letting)'t he the k th standardised variahle of ~ we have, 

f>'i ~ [P., + .( - P., + YU',) 1 [1 - ~ ( -1 + Y.') I [1 - ~ (-1 + Y/) I + 0 (.') . 

Multiplying out the hrackets gives 

(2.3.4) 

Hence, 

(2.3.5) 

Devlin Ci a/ (1975) give a plot of (2.3.5) for P = 0.5 and we have a plot in 

§ 3.8.3 for r = 0.2 since the eigenvalues for a 2x2 correlation matrix are 1 :!:PI~ 
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i.e. TICR~ ,Ak) = ±TIC~ ,Pkj)' Fig 3.8.2 is a hyperbola and we find that the 

lines of zero change for Pkj make a smaller angle with the x axes as Pkj 

decreases. Thus, if we have uncorrelated data adding the standardised points 

(Yk ,0) or (0, Yj) will not change Pkj' Conversely, if we have perfectly 

correlated data then adding the point (Yk ,Yj), where Yk = Yj' will not affect Pkj. 

This can be seen by substituting Pkj = 1 and Yk = Yj into (2.3.5). These are the 

two extreme cases that the other values of P will lie between. 

Expression (2.3.5) is much simpler than (2.3.1), although (2.3.1) would 

not take much longer to calculate than the empirical version of (2.3.5). The 

sample and theoretical proofs show that the empirical based on the theoretical 

result is a first order approximation to (2.3.1). If we considered the sample 

influence function, obtained by multiplying (2.3.1) through by (n +1), as n- oo 

and ignore terms of 0 (11 n) we would be able to expand out the brackets as we 

did in the theoretical. This would result in the same expression as the 

empirical if we approximated n I(n-l) to be 1. We ignore terms to o(l/n) as 

we are considering the influence curve not the perturbed parameter. In fact 

the numerator of the sample curve would give us a similar expression to the 

empirical, as the tetmS in the denominator once expanded up do not enter 

into the expression since they are of a higher order. The same is true if we 

considered (2.3.2) as n-OO. 

2.3.3. Practical Application of the Functions 

The empirical curve based on (2.3.5) differs more In appearance to 

(2.3.1) or (2.3.2) than EIC~ ,S) was to SIC~ ,S). The more terms we have to 

expand out in our theoretical derivation the greater the two curves will differ. 

However, as n increases, since it is an asymptotic result, the closer the 

influences from the two curves will become. Below we will consider an 

example where n = 55 and we shall see the comparisons are good. We shall 
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compare the empirical with the sample change when we delete each 

observation in tum from the dataset. The empirical can be used equally well 

to approximate (2.3.1) or (2.3.2) as these to the first order only differ slightly 

in the functions of n involved. Although some of the signs are different this 

would not affect the asymptotic results when we let n-clO. We will consider the 

difference in the empirical approximation to the two sample curves below. 

When we compare the empirical with deleted sample curve we will in fact 

compare the actual change in the parameter, in this case given by the L.H.S. 

of (2.3.2), with the empirical divided by (n -1). This is equivalent to taking 

E = 1 /(n -1). When we use the empirical like this we will refer to it as the 

'estimated change'. The data used below are taken from Barnett and Lewis 

(1984,p 262). It consists of two variables, the age and salary of electrical 

engineers and the bivariate correlation between the variables is 0.67. In 

Table 2.2.1 are the three most influential observations, ranked by their 

sample influence, recorded as the actual change, and the corresponding 

estimated change. 

Table 2.2.1 
Ranked Influences for the Sample Influence 

Function and Corresponding Empirical Val ue 

actual estimated 
Obsn. change change 

20 -0.053 -0.046 
19 -0.049 -0.046 
26 0.031 0.027 

As we subtract the perturbed parameter from the original a negative change 

means the parameter has increased and vice versa. Apart from two switches 

in rank for two observations whose influences were close, it was found, over 

the 55 observations, that the rankings by actual and estimated change were 

identical. From Table 2.2.1 we see that the estimated change consistently 

underestimates the sample change, in absolute value. We would similarly 
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find that the estimate for adding an extra observation would overestimate the 

actual sample change. This is the general rule in most applications of- the 

curve we have examined, although it need not occur for every single 

observation. Why this occurs here can be understood from our sample and 

theoretical expressions. As discussed above we could obtain the empirical 

expression by considering the sample curve as n....oo. H we do this for the RHS 

of (2.3.2) multiplied by the (n -1) and only expand out the brackets on the 

numerator the top would become the same as the empirical (apart from 

differing functions on n) but we would still have the denominator terms. For 

expression (2.3.2) the denominator terms are less than one leading to a larger 

value than the empirical for the sample change. A similar argument for 

(2.3.1) would leave us with the empirical divided by terms which are greater 

than 1. 

We shall now consider what type of observations have come out as the 

mOst influential. The Mahalanobis distances for the three most influential 

observations are 13.7, 9.2 and 6.0 respectively. These values are given by 

Barnett and Lewis (1984) and using critical values they conclude observation 

20 to be an outlier but say 'the status of L is more questionable' where ~ is 

observation 19. However, despite the differences in their Mahalanobis 

distances their affects on the bivariate correlation only differ by 0.004. Both 

increase the correlation when they are omitted, since from the plot of the data 

in Fig. 2.2.1 we can see both undennine the correlation. Observation 26 

decreases the correlation when it is omitted since it is enhancing the 

correlation. The effect of observation 26 is smaller than those for observations 

20 and 19 but it is possible that this is due as much to its positioning in the 

plot than because it has a smaller Mahalanobis distance. To examine this, 

observation 26 was multiplied through by 0.75 to make it smaller, and so 
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Figure 2.3.1 Plot of ages and salaries of 55 electrical 
engineers in the U. K in 1974 
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more extreme (at the tx)ttom o( the plot) than it was originally. llle new 

Mahalanobis distances and sample chang~ (or the resulting data were 

-

Obs Mah. Sample 
Dist. Cllan~e 

20 13.5 -0.050 
19 8.0 -0.041 
26 17.2 0.044 

Observation 26 now has the largest Mahalanobis distance but its absolute 

influence is still smaller than that (or observation 20. This is the (irst example 

to show that the most outlying point need not be the most influential. From 

the theoretical contour plot we see the affect of an observation would be zero 

no matter how far along the zero asymptote it was, at least in population case. 

2.4. Influence Functions for the Squared Multiple Correlation Coefficient 

2.4.1. Sample Influence Function 

The squared multiple correlation coefficient is the squared correlation 

between y and the fitted; s in multiple regression. It is thus the proportion of 
- -

the total sums of squares (TSS) of y explained by its regression on the set of X 

variables. 

., . ') • SyxSU -ISA)' 
R - = Corr(y ,X fD = ~'---'-

- Syy 

where X has a column of 1 's for the constant tenn and 
wnere the covanance marnx 

We can re-express 

R'1 = REG (SS) = 1 _ RSS 
TSS TSS 

(2.4.1) 

where RI:G{SS) and RSS are the regression and residual sums of squares 

respectively. We will cOllsider the influence function for R2 when we delete 

the i th observation from the full dataset since we can use existing deletion 

(omlulae, and deletion is what we are interested in practice. Then 
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TSS = (n-l)var(y) = (n-l)s _ Y1 

TSS(_;) = TSS - _n_(y;_;)2 
n-l 

From Belsley et al (1980, p64) 

e·2 
RSS (-i) = RSS _ 1 

1- hii 

where ei is the residual (yj - Y~) and hii is the i th diagonal element of the hat 

matrix X(X'X)-lX', where x is centred. Hence, 

[ 
e.

2
] 

l RSS ( .) RSS - 1 ~ hii R (-i) = 1 - -I = 1 - -=----'_~ ___ --L.._ -

TSSC-i) [ ] 
TSS - n n 1 (Yi - ;)2 

and 

1 {¥. 2 _ 2 l 
(n_1)SICC-i)\!i ,R ) -R -R(-i) 

[ 
e.

2
] 

= --:;----'_RS_S __ 1_
' 

_hu_' .... ____ _ RS_S 

[TSS - n n 1 (y, - Y)'] TSS 

2 
ej n 2 - 2 

1 - h.. + n -1 (1 - R )(y; - Y ) 
Jl 

=----~----------~---

[
TSS - _n_(yj _ ;)2] 

n-1 

Multiplying each side by (n-l) we have, 

2 
n 2 "\2 ej 

n-1 (l-R )(yiJ - (l-h .. )s 
2 _ Jl yy 

SIC (-i){!J ,R ) - [ 2 ] 
1 _ n (yl) 

(n _1)2 

(2.4.2) 

where yt = (yj - Y ) I sJf and Syy = TSS I (n -1). Hence, yl is the standardised y 

variable w.r.t. the sample variance of the Yo rather than by &2 = RSS I(n -p) 

which is the estimated variance of the YJ specified by the regression model. 
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2.4.2 Theoretical and Empirical Influence Functions 

The population squared multiple correlation coefficient p2 is defined as 

"S'. ~-l~ , 
p2 = -yx .u-yx 

a yy 
(2.4.3) 

and is the squared correlation between y and the linear combination of the x s 

which has maximum correlation with y • 

Cllernick (1983) derived the theoretical influence curve for p2 for two X 

variables by writing it in terms of the correlation coefficients 

This results in a long expression for the influence curve and he notes that one 

could derive p2 for any number of variables by this approach but the number 

of parameters would increase rapidly and the formulae would not be useful in 

practice. Radhakrishnan and Kshirsagar (1981) also obtain the influence 

function for p2 for any number of variables, as a special case of generalised 

variance. There appear to be typing errors in their expression and it is not 

expressed in the simplest possible form. Below is a derivation of TIC <! ,p2) 

and we will compare this with the sample curve in (2.4.2). The influence 

curve is also derived in § 5.2.3, where it comes out as a special case of the 

canonical correlations. 

Then using (2.3.3) the perturbed covariance matrix is 

[ 

(1 - £)air + £(y - JLy)2 (1 - £)~x + £(y - JLy)(! -b)' ) 

(1 - £)Lyx' + £<! - b)(Y - JLy) (1 - £)L.u + £<! - b)<! - b)' 

From Campbell (1978) 

(2.4.4) 

We wish the perturbed fonn of (2.4.3); therefore, by ignoring tenns of order 
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¥",l;;; I = l:,..:r.;; 1+£ !l:,.. {:r';;1 - :r.;; I<! - & ) <! - &),:r.;; I } 

+ {-l:,.. + (y - Jl.y)<! - &)' }:r';;lj 

Similarly 

~~l~'=~~~l~' 

+ £ U _l:,..:r.;;I<! - &)<! - & ),:r.;;1 + (y -Jl.y)<! -& )':r.;;I}l:,..' 

+ l:,..:r.;;1 {-:ry.: + <! - &)(y - Jl.y) } I (2.4.5) 

Letting C = ~yx~~l<! - &) = j!'<! - &) be the point on the regression line for 

y, then (2.4.5) becomes 

;'x~l;'x' = Lyx~~lLyx' + E [-C2 + 2(y - ~y)' - ITyyp2] 

Noting that 

[
1 + _E_(_IT + (y - ~ )2)]-1 

1 ITyy yy Y 
-=~--------=--

_ [1-«-1+ (y::'f)] 
ITyy 

and substituting this and (2.4.5) into the perturbed form of (2.4.3) we obtain 

after some tidying that 

(2.4.6) 
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Addi 
. (y - .... y )2 • 

ng In E and taking out again we obtain 
an 

(2.4.8) 

where 'Y is the residual (y -...., - t), and yl is the standardised y variable. The 

empirical curve is obtained by substituting the sample equivalents R2, and e; 

for p2, and 'Y respectively. This gives 

EIC<! ,R2)= (1-R2)(y1)2- ej 

Sn 

The empirical and sample curve given by (2.4.2) are thus quite similar. The 

residual for the sample influence curve has the divisor (1- hi) and so the 

sample and empirical may differ most when h jj is large Le. ~ is remote in the 

factor space (see Cook and Weisberg, 1980). like the bivariate they differ in 

the denominator as this is expanded up for the theoretical. The denominator 

in (2.4.2) is smaller than one which should lead to the estimated change 

generally being smaller than the actual sample change. 

2.4.3. Practical Application of the Functions 

We will now apply the sample and empirical influence functions to a 

dataset taken from Cook and Weisberg (1982,pl18-122). The data are 

concerned with the amount of drug (y) retained in the liver of rats. There are 

19 observations (rats) and three regressor variables for the body weight and 

liver weight of the rats and the dose they are given. Cook and Weisberg note 

that none of the simple regressions of y on the individual X s are significant 

but when y is regressed on all three variables together there are significant 

regression coefficients for Xl and X3. They gave plots of the studentised 

residuals, leverage (hi) values and the Cook statistic (all of which are defined 

in Cltapter 1) against the observation numbers. The last two, but not the 

studentised residual, have a large value for the third observation and when it 
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is omitted there are no longer significant regression coefficients. They note 

that the influence of the case is due to this rat receiving a higher dose for its 

weight than the others, see Cook and Weisberg (1982) for further details. 

Table 2.4.1 gives the most influential observations by the sample change 

on the multiple correlation coefficient and the corresponding estimated change 

from the empirical. 

Table 2.4.1 
Most Influential Observations on the Multiple Correlation Coefficient 

Obs. Actual Estimated 
Chan2e Chan2e 

3 0.343 0.224 
1 -0.104 -0.076 

19 -0.093 -0.059 

The three most influential observations on R2 are the same for the two 

curves but the empirical underestimates the sample (clearly, we would not 

wish to use the empirical in a practical situation when we have as simple an 

expression for the sample curve). The two curves disagree most for 

observations 5 and 13, where the sample has smaller values, (but larger 

absolute value for observation 13) than the empirical. These observations 

have the 2nd and 3rd largest leverages, after observation 3, which gives a 

larger negative coefficient multiplying the residual term in the sample than 

empirical culVe. 

However, obselVation 3 is the most influential for both cUlVes. The 

original R2 was 0.364 and when it is omitted R2 falls to 0.021. The 2nd and 

3rd most influential obselVations lead to an increase in the multiple 

correlation coefficient when they are omitted, as do most of the other 

obselVations. This probably occurs as obselVation 3 which is still in there 

receives more weight and so greater pull in the regression due to the decrease 

in n. If we had just relied on the studentised residual rather than calculating 
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the Cook influence measure, that looks at the changes in the regression 

coefficients, or examining the change in R2, the important nature of 

observation 3 would not have been highlighted. The Cook statistic and the 

change in the multiple correlation coefficient are two different measures of 

influence. Although they both give observation 3 as the most influential they 

differ in their second and third rankings. When the two coincide and when 

they differ is not examined here. 

2.S. Influence Functions for the PartiaI Correlation Coefficients 

2.5.1 Sample Influence Function 

The partial correlation between two variables ~ and !i given the 

variables in x is the correlation of the two sets of residuals from regressing ~ 

and ~ individually on x. If we let Sl;j be the covariance between ~ and!i and 

Sh be the vector of covariances between ~ and x and similarly S jx' then the 

partial correlation is defined as 

r'j~ = [ 'r [ P ] 1/2 Sa - ShS;uSh I Sjj - S jxs;us jx I 

SI;' -sus -IS, I 

(2.5.1) 

This can be re-expressed as 

S S -IS ' / 1/2 1/2 TI;'- u 'Sa s .. 

rl;j.:x = [J :] 172 [IX 2 ]lk 
t-RI; t-Rj 

(2.5.2) 

where Rk 2 is the squared multiple correlation coefficient for the regression of 

!.J: on the set in x. The sample influence curves for the bivariate and squared 

multiple correlation coefficients when a point is deleted from the dataset are 

given by (2.3.2) and (2.4.2) respectively. Substituting the perturbed forms for 

these parameters into the perturbed expression for (2.5.2) would yield a very 

uninformative sample expression for the perturbed partial correlation. The 

square roots in (2.5.2) make the mathematics intractable in the sample case as 
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we can see they did to a certain extent for the bivariate correlation. 

2.5.2 Theoretical and Empirical Influence Functions 

We will derive the theoretical influence function for Ptj.z usmg the 

definition similar to (2.5.2) which is 

(2.5.3) 

This enables us to use the perturbed form for the bivariate and squared 

multiple correlation coefficients in § 2.3.2 and § 2.4.2 respectively. Using 

equations (2.3.5) and (2.4.8) for the above terms we have 

(2.5.4) 

where YI.; is the standardised value of the k th variable in the added point; and 

(2.5.5) 

If we let 

then similar algebra to that for squared multiple correlation coefficient in § 

2.4.2 gives 

- [ E 2 2] 'Vt 'Vj ) A =A 1- 2(Y1.; + Yj) + E(-JJ2JJ2 + YjYI.; 
(J' I:J: (J' jj 

(2.5.6) 

where 'VI.; is the standardised residual from the regression of ~ on the variables 

in x. If we let B denote the numerator of (2.5.3) then using (2.5.4) and 

(2.5.6) gives 

- [ E 2 2] 'VI.; 'Vj B = B 1 - -2 (Yt +Yj) + E-ui-ui 
(J' kI: (J' jj 

For the denominator, 

(2.5.7) 
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1 

[ - 2]112 = 1-Pi 

Ignoring terms of 0(£2) and letting VL = "Ii whi h· th ·d al 
& 112 [ ] 112 , C IS e resl u 

CTkJ: 1 - Pl
2 

standardised w.r.t. the partial variance, we have 

[1 + f(yl + yl - vl- vJ) 1 
[ 1 - Pl

2 fll [1 _ p/ ] 112 . 
1 

(2.5.8) 

Multiplying (2.5.7) and (2.5.8) together and performing the necessary steps 

results in, 

(2.5.9) 

The empirical curve is then formed by substituting in the sample equivalents. 

The form of (2.5.9) is similar to that for (2.3.5) but the standardised X 

variables in (2.3.5) are replaced by the two sets of residuals standardised 

w. r. t. their partial variance. This result makes sense since the partial 

correlation coefficient is the usual bivariate correlation between the two sets of 

residuals. However, this means that the empirical does not take into account 

any changes in the individual unstandardised residuals when an observation is 

omitted from, or included in, the analysis. Instead, the residuals are treated 

like a fixed set of variables as in the usual bivariate correlation coefficient. 

2.5.3. Practical Application of the Functions 

We shall compare the sample and empirical curves for the partial 

correlation coefficient for two examples from the same dataset. The dataset 
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was collected by Dr. B.J. T. Morgan and consists of seven anatomical 

measurements made on statistic students at the University of Kent. The data 

were collected over three years, and we will examine the data from one of the 

years here. These data will be used throughout Cbapter 4 as well. An 

influence analysis for the three different years, including when they are 

combined together, is discussed in a paper by Calder, Jolliffe and Morgan 

(1986). For the dataset discussed here, n = 33 and it contains one clear 

outlier, observation 30, in the 3rd and 7th variables which were the hand and 

wrist measurements respectively. It appeared that these readings may have 

been entered in the wrong order since if we swop them around the point is no 

longer an outlier. Fig. (2.5.1) is a plot of variables 3 and 7. We will consider 

P37.4 and P34.7 where variable 4 is the head circumference. 

Table 2.5.1 gives the largest and smallest actual ( sample) changes and 

corresponding estimated (empirical) changes in P37.4 (the actual change = 

l/(n-l) SIC and the estimated change = l/(n-l) Elq. We will not always 

look at the smallest changes, but it does serve to show how much the two 

curves agree. In fact, we often find that they agree more for the smallest 

changes as the empirical tends to underestimate the largest changes the larger 

they get. Table 2.5.2 gives the largest and smallest changes for P34.7. The 

sample and empirical disagree on the 2nd and 3rd rankings, with the sample 

placing observation 30 second. However, both agree that observation 27 is the 

most influential on P34.7 and that observation 30 which is 'highly influential' 

on P37.4 has comparatively little affect on P34.7. Also given in the tables are the 

influences for the observations on . the bivariate correlations P37 and P34 

respectively. We will now consider briefly the differences in the most 

influential observations on P37.4 and P34.7 and how these differ with the usual 

bivariate correlations P37 and P34. We may use the partial correlation 
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coefficient if we think the high correlation between two variables is due to 

their dependency on a third (or possibly more) variable. Since we are 

introducing another variable we can find those observations most influential 

on the partial and bivariate may differ due to an outlier in the variable being 

conditioned upon. However, if an observation has a similar structure to the 

rest of the data but is extreme on all variables then it may be influential on 

the bivariate correlation coefficient but not the partial since it maybe 

accounted for in the regressions and so has two small residuals. The values of 

the partial and bivariate correlations are given below the tables. The affect of 

observation 30 was so great on P37.4 that when it was included the correlation 

was negative. The bivariate correlation was also exceedingly undermined. 

Observation 30 is thus highly influential on both the partial and bivariate 

correlation. This is not surprising as the discrepancy in observation 30, which 

is outlying only on variables 3 and 7 is not likely to be explained in the 

regression of these variables on another variable. Observation 30 is not so 

influential on P34.7 but it is still influential on the bivariate correlation P34. The 

bivariate correlation increases when it is omitted as the observation is 

undermining the correlation (note, a negative influence refers to an increase 

in the parameter when an observation is removed). However, it appears that 

taking account of variable 7, which is the other variable that 30 was 

discrepant on, has helped to reduce the affect of the outlier. 
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Table 2.5.1 
Ranked Actual Changes and Corresponding Estimated 

Cnanges for P37.4 

obsn. samole emoirical biv( sample) 
30 -0.83 -0.38 -0.66 
27 0.08 0.07 0.03 
17 0.05 0.04 0.05 
" " " " 
" " " " 

21 0.00 0.00 0.00 
20 0.00 0.00 0.00 

P37.4 = -0.18 P37 = 0.11 

Table 2.5.2 
Ranked Actual Changes and Corresponding Estimated 

Cnanges for 1>34.7 

1:-

LLl 
-.-J en 
...c 
0--< 

a:::: 
<: 
::-

obsn. samole emoirical biv(sample) 
27 -0.05 -0.05 -0.03 
30 0.05 0.03 -0.15 
18 -0.04 -0.04 -0.03 
" " " " 
" " .. .. 

13 0.00 0.00 0.02 
6 0.00 0.00 0.00 

P34.7 = 0.54 P34 = 0.53 

Figure 2.5.1 Plot of variables 3 and 7 for 
student anotomica1 measurements 
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Ch"pltT J: Innllcnn' Functions in Prindpal Component Anal)'sL\ 

J.I. Introduction 

Let the p vector random variable x come from a distribution with mean 

vector ~ and positive definite covariance matrix L. If the eigenvalues of L are 

~l > ~2 > ..... >)..p with corresponding eigenvectors ~l'~"""~ then we have 

the relationship, 

(L ~ ;,. t I ) ~l = () where ~l "* 0 

A non-trivial solution to (3.1.1) holds only if, 

IL - )..1/1 = 0 

(J.I.I) 

and expanding this determinant as a power senes In )..t we obtain the 

characteristic equation. The linear transformation 

(3.1.2) 

where r=(~ ........ ~), fonns new variables Zl, ..... ,zp ,called the principal 

components, such that the Zt k = 1, .. .. p are uncorrelated with each other and, 

Var(Zt) = A. t k = 1 •... p 

This means that the principal components have decreasing variance but 

p p p 

L Var(Zt) = L ~t = tr(L) = 2 Var(Xt) 
t=\ t=1 t=\ 

so the total variance remains the same. The k th element of Z is called the k th 

principal component score of the point ~. 

Replacing L by the sample covanance matrix, S, we can define the 

sample principal components as, 

~i = r'(~ - x) (3.1.3) 

where r = (~\, ...... , ~) and ~t is the kth eigenvector of s. The sample 

components have variances ~\ > ..... >~p the sample covariance eigenvalues. 

Principal components is thus a rotation of the original axes so that the 
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structure of the covariance matrix is simplified. If the first few principal 

components account for most of the variance in the original variables then we 

can reduce the dimensionality of our problem by only analysing the first few 

principal components. This does not mean that the principal components with 

small variances are never of interest. These can reveal constant relationships 

among our original variables, and they have been advocated for detecting 

multivariate outliers. 

In practice it is often preferred to carry out our principal component 

analysis on standardised data to avoid the principal components being similar 

to the original variables when there are large differences in the variances. A 

principal component analysis on the covariance matrix of standardised 

variables is the same as the principal component analysis of the correlation 

matrix R. We will consider principal component analysis from both types of 

matrix. Further infonnation on principal component analysis can be obtained 

from any good text book, see for example Mardi a , Kent and Bibby (1979, 

Otapter 8). 

In this chapter we will investigate the influence functions for the 

principal component variances, At, the coefficients of the linear 

transformations, at, and finally the principal component scores for both the 

covariance and correlation matrices. The eigenvector, at represents the 

contrast of the original variables accounting for the k th largest variance, At· 

Thus, the ~ are often interpretated especially for the largest and smallest At· 

It is important to know how reliable our conclusions are and influence 

techniques provide this information by examining to what extent these 

contrasts change when points are added in or omitted. A study of influence on 

the eigenvalues Ai is also important since these are used to detennine how 

many principal components we should retain, and their relative sizes again 
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reveal the structure of the original variables. Most of the chapter is devoted to 

the theoretical influence function as only limited sample results can be 

derived. These sample results are considered first, in § 3.2. Even though 

algebraic expressions exist for the eigenvalues and eigenvectors, when p is 

small, we will see in § 3.3 and § 3.4 that they can only be used to derive the 

theoretical influence functions due to their complicated form. In § 3.5 we 

derive the influence functions for the eigenvalues and eigenvectors of a 

general symmetric matrix w. This is then applied to the covariance and 

correlation matrices respectively in § 3.6 and § 3.7, where the influence 

function for the component scores are also derived. In § 3.5 and § 3.6 we look 

in detail at the different ways one can express the influence function for the 

eigenvectors. Three approaches are considered. One method is developed in 

this thesis and the others were used by Radhakrishnan and Kshirsagar (1981) 

and Critchley (1985). The latter approach uses generalised inverses to deal 

with the singular matrix (L - ).k 1) and only this method is used for the 

correlation eigenvectors as it leads to the simplest equations. In § 3.8 we 

examine and contrast the different influence functions from the covariance 

and correlation matrices. Contour plots for small p are presented in § 3.8.3. 

The section is concluded with a look at alternative influence approaches to 

principal component analysis by &COfier and Roux (1976) (which is outlined 

in Greenacre (1984)), the 'sensitivity' analysis of Krzanowski (1984) and 

work by Benasseni (1985) which gives bounds for the changes in the 

eigenvalues. In the final section we consider the theoretical influence 

functions when we add in more than one point. All practical applications and 

comparisons of the sample and empirical curves are considered in the next 

chapter. 
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3.2. Sample Influence when we Delete Specific Types of Observations in 

Covariance PCA 

3.2.1. Observation Lying out along a Principal Component 

Here we consider deleting an observation ~ whose score on the k th 

principal component is Zo and zero on all the other components. The 

principal component scores are formed from 

f' <!; - x ) = ~i 

where f has the eigenvectors as columns. Taking f over the other side and 

noting that f' f = I so that f-1 = f' we have 

o . 
<!; - x ) = f to = ~zo 

. 
o 

Substituting this into (2.2.4) gives 

n -1 n" 2" " , 
S (-i) = n -2 S - (n -1)(n -2) Zb~~ 

We can show that if ~ j = 1, .... p is an eigenvector of S then it is also an 

eigenvector of S (-i). 

[ 
n 1 n" 2" ~ , I" 

S (-i)~ = n 2 S - (n -1)(n -2) Zb~k~ ~ 

if j =l=k then ~' ~ = 0 and this gives 

" n -1 " 
S (-i)~ = n _ 2 S ~ 

n -1" " 
=--A·a· n-2 j=.J 

." n-1"· 
Taking Aj(-i) = n -2 Aj gives 

" " " 
S (-i)~ = Aj(_i)~ 

so ~ is an eigenvector of s (-i)· 
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H j = k then ~ , ~ = 1 so that 

S "- (n-l n "2 )" (-i)~ - n -2 S - (n -l)(n -2) Zki l ~ 

Letting 

gives 

A "n-l A 

(S (-i) - ).l(-i) I)~ = n -2 (S - ).11) = 0 

so ~ is also an eigenvector of s (-i)' Thus, when we delete an obsetvation 

that lies along a principal component the eigenvectors remain unchanged but 

may switch in order according to the values of the perturbed eigenvalUes. 

These were 

i O( 0) = n -1 i ° j =l=k 
J -, n -2 J 

" n-l" n "2 
).1(-;) = n _2).1 - Zki (n -l)(n -2) 

Hence, 

We have not named the above as SIC since the changes are not for all possible 

values of !. The sum of the perturbed eigenvalues is not the same as the sum 

of the original eigenvalues, (this needs to be the case for correlation 

eigenvalues). We will return to this point later. The same occurs if we add in 

an obsetvation along an existing principal component with 

( )(" " ) n + 1 " J04.k n +1 ).j(n+1)-).j = ---).j r 
n 

" " n+l" "2 ( ) (n + l)().l(n +1) - ).1) = ---).1 + Zk(n+1) 3.2.2 
n 
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3.2.2. Observation lying in a Plane 

The result in § 3.2.1 can be extended to show that if an observation has 

a zero score on the 1 th principal component then it will have no affect on the 

eigenvector, ai, even though other eigenvectors may be changing. The change 

in the corresponding eigenvalue when the observation is removed is again 

" n-l" 
~'(-i) = n -2 ~, 

We shall illustrate this by supposing !J has non-zero principal component 

scores iii and iu and iji = 0 for j = 3,4, .... ,p. Then, 

so, 

S(-i) = : ;s - (n-l)(n-2) [iri~I~I' + i1ii2i~I~' 

+ ilii2i~I' + ii.~·1 
Thus, for any eigenvector ~ j =1= 1 ,2 

A n-l A n-l A " 

S( O)a O = --Sa- = --~-a-
-I :::.J n _ 2:::.J n - 2 J:::.J 

n-l" 
::;> aj(_i)= ~ and ~j(-j) = n -2 ~j 

When j = 1 or 2 we find ~1 and ~ are no longer the eigenvectors of S (-i)' For 

example if j = 1 

A n-l A n ["2" """ 1 S )a - --s al - Z li_al + Z Ij Z2i a " 
(-j _I - n - 2 - (n -1)( n - 2) ~ 

which cannot be written in the form 

(S (-i) - ~1(-i) I)~1 = o. 
Although these sample results are restrictive they do give us something to 

compare our theoretical (empirical) expressions with. These are derived in the 

next few sections. 
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3.3 Theoretica1lnfluence Functions for the FJgenvalues and Eigenvectors from 

the Covariance Matrix for Small p 

When p = 2 (or 3) the characteristic equation is a quadratic (or cubic) in 

x. Solving these equations using the formulae for the roots of quadratic and 

cubic equations provide us with algebraic expressions for our eigenvalues. We 

also have expressions for the eigenvector coefficients. It is interesting to look 

at the theoretical proofs for p = 2 and 3, even though in § 2.5 we will derive 

the results for any p, since they will show that we could not obtain simple 

expressions for the sample curves even though the eigenvalues and 

eigenvectors have an algebraic form. This is due to the square and cubic roots 

that make the mathematics in the sample case intractable, as noted in the 

previous chapter on correlation coefficients. For the theoretical curve one can 

expand the roots and other terms out to 0 (E) and ignore the higher order 

terms that go to zero in the definition. 

We will go through the algebra for p = 2 in some detail but, due to the 

lengthy algebra needed, we shall only touch on the work for p = 3 in § 3.3.2 

3.3.1. The Case for p = 2 

The characteristic equation for the eigenvalues from the covariance 

matrix when p = 2 is 

X2 - X(0"11+0"22) + (0"110"22-0"[2) = 0 

where <Tn is the variance of the first variable and 0"12 IS the covariance 

between the two variables. This results in the formulae, 

(0"11 + 0"22) - V O"tl + 0"12 - 20"110"22 + 40"t2 
X2 = 2 

We will only find the theoretical influence function for Xl and al since the 

proofs for A2 and ~ are almost identical, due to the similarity of their 
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cxpre~"lOn". We .... ill re-expres" 

/1+ 0· 
),1 =- --------

2 

where 

The eigenvectors are obtained by solving, see (3.1.1.) 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

Letting ~ denote the eigenvector whose first coefficient IS 1, we obtain from 

( 3 . 3 .5) , for (J" 12 =;: 0 , 

or ap = 
- XI-(J"~2 

(3.3.6) 

according to whether one takes the first or second equation. The eigenvectors 

that are normalised such that ~' I~I = 1 c~n be written as 

Using (2.3.3) gives 

<Til = «II + £(-cr ll + (XI - ~d~) + o(£~) 

<TI~I = cr?1 + 2£(-cr?1 + crll(XI - ~d~) + o(£~) 

and similarly for <T~~ and <Ti~ . 

Comhining th~ together, as for the unperturbed C in (3.3.4), gives 

where, 

o = (crll - cr21) [(XI - P-I)~-(Xl - ~2)11 + 4crl~(xl - ~I)(x~ - ~1) 

(3.3.7) 

(3.3.8) 

(3.3.9) 

From (3.3.2) we are interested in VC hut for the theoretical influence 

function we can expand this out to 0 (£) as we did for similar tennc; in the 

prevIous sections. This enahles us to write XI in terms of the original 
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eigenvalue which we could not do if we considering the sample influence 

function. Instead for the sample influence function we would be left with a 

complicated expression under the square root sign which would not be very 

informative. 

Since, 

vt =VCV1+ ~(-C+D) +0 (E2) 

= VC + E(-VC + Jc) + 0(E2) 

Using (3.3.3) 

From (3.3.2) 

;,\ ; h\ + • [-hI + ~ [Jc + (x\ - 1'-\)2 + (X2 - .... )2) 1 + 0(.2) 

Substituting in for D and VC as 2AI - (ull + <Tn) gives, after some simple 

algebra, 

TICv~, AI) = 

[(Xl - ~1)2(AI - un) + (X2 - ~2)2(AI - Ull) + 2U12(XI - ~1)(X2 - ~2) ] 
2AI - (Ull + un) 

However, from (3.3.6) 

1 a12 ------=--- = 
2AI - Ull - U22 1 + al2 

U12 

so, 

and, using (3.3.7), 
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= -~1 + zl (3.3.10) 

where Z 1 is the score of :! on the first principal component, and the subscript 

V denotes that it is for an eigenvalue from the covariance matrix. Similarly, 

TICv<! '~2) = -~2 + zl 

These results are very similar to the sample expressions in (3.2.1) or (3.2.2) 

which again shows that we can use the empirical for deletion or addition of 

points. The above indicates that the influence of a point on an eigenvalue 

depends only on its score for that principal component. We were only able to 

show a similar result in the sample case when an observation has a zero score 

on all the other principal components. In Otapter 4 we shall look at 

comparisons of the actual sample change and the estimated change based on 

the theoretical result, as well as the consideration of second order terms for 

the eigenvalues that do involve the other principal component scores for an 

observation. 

We will now derive TICv<!, ~1)' Since all is defined to be unity, its 

influence function TICv<! ,all) = O. 

-
~1 - 0-11 

312 = 
0-12 

Using (2.3.3) and (3.3.10), 

( 
Zr-(X1-~1)2) 

a12+€ -a12 + 

__ --~-----(J'-1-2--~__,_ + 0 (€2) 

- 1 + _€- (-0"12 + (Xl - ~1)(X2 - ~2) ) 1 
0"12 

Expanding up the denominator and ignoring terms of 0 (€2) , after simple 

algebra, results in 

zl - (Xl - ~1)2 - a12(XI - ~1)(X2 - ~2) 
TIC v <! ' a12) = -=---=--..:~:-:.:.--=-:....:..-..:---~--

0"12 

Since we saw that the expression for ~ I was simple when expressed in terms of 
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the principal components we .... ,11 do the same here. If r contains the 

eigellvector.\ as columns then 

and so, 

XI - ~I = 0llli + 02112 

X 2 - ~2 = ° 12Z 1 + ° n l 2 

SUOstituting these into TlCv(~ ,an) gives 

TlCv(~ . a12) = ~~~ l(l - ai~1 - al~OII(}12)7~ - (oil + aI2o~lo:,:,)7i 

- (2a"a2' + a"a22"'2 + a2,a'2"'2)Z,Z2 j 
From (3.3.7) 012 = anoll' Using this and ~';~; = 1 and ~';~ = 0 then 

Hence, 

1 - ° [1 - a 120 11 ° 12 = 1 - ° [1 - ° [2 = 0 

2 °21 
021 + al20 21 0 22 = -{0210 11 + QI20 n)=O 

oIL· 

= 

(3.3.11) 

We thus find that the influence function for al2 is a function of both 

principal component scores. If one eigenvector changes then the other must 

change also, since the eigenvectors must stay orthogonal, 

there is no such restriction for the covariance eigenval ues ~ich 

may account for their differing form. The above influence gives a zero change 

in a'2 if a point lies along either of the principal components, since 7, or 7:, 

will he zero. This was noted for the sample results in § 3.2. 
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3.3.2. The Case for p = 3 

The characteristic equation when p = 3 is 

).3 - ).2(au + an + (33) + ).(allan + aUa33 + anCJ'33 - CJ'l2 - CJ'l3 - alJ) 

- (auan a 33 - al2a 33 - al3an - alJau + 2CJ'12CJ'13CJ'23) = 0 

If we re-express this as 

). 3 - ).28 + ).C + D = 0 

then the roots of this equation are obtained by reducing to standard form 

where 
"13 + U'Y + V = 0 

8 "1=).--
3 

U=-!!..+C 
3 

V=2(: r -B3C 
+D 

This gives the solutions, 

"11= E + F 

E+F .E-F4/;; 
"123 = - 2 ± 1-2- v3 

where, 

E = 3y -~ + v'Q , F = 3y -~ -v'Q 

Q= (~r + (~r 
Using these fonnulae it is possible to work through, with similar algebra to the 

previous section, to obtain 

and, 
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TICv<! ,a13) = 

[ 1 ] z. If [-(0'22 - ~k)at2 + 0'23a t3]Zt I 
(0'22 - ~k)( 0'33 - ~k) - O'~ aU !;1 

These can be re-expressed as, 

(3.3.12) 

No proofs of the above expressions are given as the algebra is rather long and 

uninteresting. Again, a simple algebraic expression for the sample curve 

would not be possible due to the complicated nature of the expressions for the 

eigenvalues. The fact that one can obtain expressions using the theoretical 

shows what a useful tool it can be in providing some idea of what will be 

influential in the most complicated of situations. 

3.4 Theoretical Influence Functions for the Eigenvalues and Eigenvectors from 

the Correlation Matrix for Small p 

3.4.1. The Case for p = 2 

The eigenvalues and eigenvectors from the 2x2 correlation matrix with 

Pl2 ~ 0 are, 

~l = 1 + Pl2 

~2 = 1- Pl2 

a 1 = ( 1IV2 1IV2 ) 

a2 = (1IV2 -1IV2) (3.4.1) 

H Pl2 < 0, then ~l and al are interchanged with ~2 and a2· The perturbed 

-
~l = 1 + Pl2 

= 1 + Pl2 + £ TIC ~ ,Pl2) + 0 (£2) 

Thus, 

Similarly, 
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(3.4.2) 

When p = 2 and P12 > 0 , the influence function for the largest eigenvalue 

is the same as that for P12 and when P12< 0 it is minus the influence function 

for the bivariate correlation. We have TICR <!, AI) = -TICR <! ,A2), and this 

reflects the fact that the sum of the two eigenvalues must equal 2. Thus, a 

change in one eigenvalue must be offset by an equal and opposite change in 

the other eigenValue. This is different to the eigenvalues from a covariance 

matrix where the eigenvalues can change independently. 

The eigenvectors from a 2x2 correlation matrix are given by (3.4.1) for 

all values of P12 • Hence the influence functions for the eigenvectors are zero, 

unless the eigenvectors swop in order. To do this the correlation must change 

sign when a point is added in. The influence functions for the correlation 

eigenvectors will not generally be zero for other values of p • 

3.4.2. The Case for p = 3 

The characteristic equation for the eigenvalUes from a 3 x 3 correlation 

matrix is, 

A3 - 3A2 + A(3-pr2 - Pr3 - Pi3) + (-1 + Pr2 + Pr3 + Pb - 2P12P13P23) = 0 

Using the expressions for the roots of a cubic equations, as given in § 3.3.2, it 

is possible to arrive at the results which we will obtain for general p in § 3.7. 

However, the work required is very tedious and since we do not gain anything 

from looking at the algebra we will not discuss it further. 
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3.S Theoretical Influence Functions for the Figenvalues and Eigenvectors from 

a Symmetric Matrix W 

Since we will need to find the influence functions for the eigenvalues and 

eigenvectors from a variety of symmetric matrices we will first derive the 

influence functions for a general symmetric matrix w . 

Wilkinson (1965) quotes a result from Goursat (1933) which he uses to 

show that if ).t is a simple eigenvalue of w and it is an eigenvalue of w + eU 

then we can write 

Similarly, 

When W + eU is W + ETIC <! , W) we can write 

i1 =).1 + eTIC<! ,).1) + o (e2
) 

~ = ~ + eTIC <! ,~) + 0 (~) 

We saw this was true in our 2x2 results. 

3.5.1. The Influence Function for the Eigenvalues 

We have the relationship 

(3.5.1) 

We will use the eigenvectors ~ which are normalised such that ~ , ~ = 1 and 

~ , ~ = o. Considering only terms up to 0 (£2) we have 

[w -).1 I + e(TIC<! , W) - TIC<! ,).1)1) ] [~ + ETIC<! ,~) ] = 0 

The term in £ is, 

This expression involves both unknowns TIC <! ' At) and TIC ~ ,~) but pre­

multiplying it through by al' will remove the term in TIC ~ ,~) giving 
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~~. 'TIC (~ , ~. )C.!.. = ~ •. TIC (~ t W )~. 

and since TlC(~ . ~k) is a constant the influence function for the eigenvaluc<\ is 

(3.5.3) 

We would amve at the same expression (3.5.3) if we had used the 

eigenvectors ~ which have the alternative nonnalisation of the first coefficient 

set to one in (2.5.1). In the above proof we would have arrived at, 

TlC(!. ,~d~* .~* = ~* 'TlC(!.. W)~t 

and since ~t = _-=,~=---t 112 this also gives (3.5.3). 
(~ ~*) 

3.5.2 The Influence Function ror the Eigenvectors 

Having obtained TIC<!.. ,~t) we can return to (3.5.2) to get TIC(~ ,~) 

which is now the only unknown. Re-arranging (3.5.2) gives, 

(3.5.4) 

(W - ~tl) is singular, as one of the conditions of eigenanalysis is that 

I W - ~ .. I I = 0, so we cannot obtain TIC ~ , ~d on its own on the LHS by 

inverting (W - At). Several options arise. 

The results for p = 2 and 3 suggest that we can convert our problem to 

looking at TIC (~ ,~), and we can obtain the influence function for the (p - 1) 

non-zero coefficients (we will assume the first coefficient is set to zero). The 

influence function for the non-zero coefficients is the given by inverting 

n = (W - ~tl)# which is (W - A*') with the first row and column removed. 

We can then obtain the influence function for the alternative normalised 

eigenvectors by noting 

a_I: = 
( -'- )112 
~* ~* 

Substituting ~t = ~* + £TlC<!. ,~*) + 0(£2) and ignoring terms of 0 (£:'), 

(~ !t ) = ~* '~* + 2£~ , TIC (!. '~i ) 
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so, 

and so, noting 0t I = 1 / (~ , ~) 112 

TlC{~ '~)=0tl [/-~t~' JTlC(~ ,~d (3.5.5) 

An alternativc approach is given by Radhakrishnan and K5hi rsagar (1 YH I). 

111CY make (W - At!) non-singular by adding in ~t ~t' and so, 

TlC~ ,~) = (W - At 1 + ~~ ,)-1 [TlC~, )..t)1 - TIC(~, W) 1~ ~(3.5.6) 
This can be done as, 

~ 'TlC~ ,~) = 0 (3.5.7) 

which can be seen from our normalisation constraints which are 

~'~ =1, ~'~ = 1. (3.5.8) 

but for both expressions in (3.5.8) to hold the tenn in £ above must be zcro, 

which is (3.5.7). 

The third and final alternative considered here uses generalised invcrses 

and was first presented by Sibson (1979). We multiply each side of (3.5.4) by 

the generalised inverse of (W - At!), v.rhich we will denote by (W - At /) ~ , to 

gIve 

(W -AJ:/)+(W -At/)TlC(!. ,~.d =(W -At/)+ [TlC(~ ,Ad / - TlC (!. ,W) J~t 

Taking thc generalised inverse as 

and writing 

p 

(W - Atl)+ = L ~(AJ - Ad 
J = I 
J I- t 

I . 
~ 
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Since 

~ 'a, = 8;, where 8]1' = {o (I=t 
r 1 J=t 

we obtain, 

Noting that f'f = ff' = I, 

= (1-~~ ')TIC<!, ,~) 

Using (3.5.7), 

Hence, 

TIC<!, ,~) = ~ ~("-j - "-jJ-l~' [TIC<!, ,"-k)1 - TIC<!" W)]~ 
)=1 
j:l-k. 

P 
= - L ~("-j - "-k.)-l~'TIC<!" W)~ 

j=l 
j:l-k. 

(3.5.9) 

This approach is used by Critchley (1985) and is used throughout this 

thesis as generalised inverses lead to the simplest expressions for the 

theoretical influence functions of eigenvectors. This also means our 

corresponding empirical curves are quicker to calculate. Specifically, the 

advantage of generalised inverses is that we do not need to calculate and store 

the p inverses corresponding to each eigenvector that the two other 

approaches require. However, we will illustrate and compare the three 

approaches further by applying them all to the eigenvectors from PCA on the 

covariance matrix. 



- 48-

3.6 Theoretical Influence Functions for Principal Component Analy. Using 

the Covariance l\fatrix 

3.6.1 Theoretical Influence Function for the Eigenvalues 

Substituting (2.2.6) into (3.5.3) gives 

TICv<!, ).1) =~' [-}: + <! -10<! -10' ]a1 

= -).1 +zl (3.6.1) 

where zl is the score of the added in point on the k th axis. We can see that 

(3.6.1) is the same as our 2x2 results. We will not discuss the fonn of 

TICv<! ,).1) here, see § 3.8. where it will be examined with the other influence 

functions including those from the correlation matrix. 

3.6.2 Theoretical Influence Function for the Eigenvectors 

Substituting (2.2.6) into (3.5.4) gives 

(}:-).1 J)TICv<! ,~) = [L -).1 1+ zll- <! -10<! -10' ]ak 
and using (3.1.1), 

= [zll - <! -!0<! -10' ]~ 

Using the first approach in § 3.5.2 we have 

TICv<! ,au) = o. 
T1Cv<! ,~) = B-1 [zll* - <! - ~f (! -10' ], 

where * indicates that the first row has been omitted, so 

and B = (L - )..1:1)#, which is (L - )..1:1) with the first row and column 

removed. Dividing through by 1/ au = (, " ) 1/2, 

* -1[2* ('" ,,\*z] auT1Cv<! ,,) =B Zk a k - \! - J:V k 

Re-expressing <! - ~) * in tenns of the principal components, r* ~, the I th row 
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Hence, 

(3.6.2) 

The result for the alternative normalisation is obtained using (3.5.5) and 

TIC (~ ) = [T1CvC!, au)] 
v\! ,~ TICvC! ,~) 

Radhakrishnan and Kshirsagar (1981) leave their expression as 

TICv<! ,~) = (~-).l I + ~~ ')-1 [(~'C! - ~~»21 - C! - ~)C! -' ~)' ]al 

By similar reasoning to the above this can be re-expressed as, 

The generalised inverse approach gives, 

TICvC! ,~) = ~ ~().j - ).1)-1~' [zlf5 - C! -10Zk] 
J=1 
j:l-l 

p 

= - 2 ~().j - ).k)-I~'~ -10Zk 
j=1 
j:l-k 

P -1 
= -Zk 2 ~().j - ).k) Zj 

j=1 
j:l-k 

(3.6.3) 

(3.6.4) 

All three expressions (3.6.2), (3.6.3) and (3.6.4) are similar but the 

generalised inverse approach gives the simplest form. When the sample 

equivalents are substituted in we obtain the same numerical results from the 

three expressions. There were numerical problems with the matrix inversions 

when using (3.6.2) and (3.6.3) when k = 1 and k = p due to lack of positive 

definiteness. However, this problem was avoided if we did not invert the 

matrices but left them on the LHS of the expressions and solved the resulting 
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simultaneous equations. There were also problems due to ' ill-conditioning , 

for the Radhakrishnan and Kshirsagar approach using the simultaneous 

method when it was applied to the correlation eigenvectors. 

3.6.3 Theoretical Influence Function for the Principal Component Scores 

Let Z1c be the value of the point £ on the k th principal component. Then 

Z1c = ~'<£ -10 

Using the prcxluct rule for influence discussed in Cltapter 1, 

(3.6.5) 

As £ is a fixed point TICv<! ,£ - 10 = -TIC <! ,10 and from Campbell (1978) 

-TIC<! ,10 = -<! - 10 
Substituting (3.6.4) into (3.6.5) gives, 

(3.6.6) 

where zJ; is the score of the added in point!. This will be discussed further in 

§ 3.8. 

3.7 Theoretical Influence Functions for Principal Component Analysis Using 

the Correlation Matrix 

We shall not discuss the form of these influence curves until § 3.8, 

except to note that the results are much more complicated than for the 

corresponding covariance results. We replace TIC<! ,W) with the influence 

function for the correlation matrix, R, in the definitions of the influence 

functions for the eigenvalUes and eigenvectors in § 3.5. The influence 

function for the correlation matrix is a matrix whose diagonal elements are 

zero and off diagonal elements are the influence functions for the bivariate 
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correlations. 

o TIC<! ' P12) 

o 
TIC<!, Pip) 

TIC<! ,R) = 

3.7.1 Theoretical Influence Function for the Figenvalues 

Substituting (3.7.1) into (3.5.3) gives, 

p p 

TICR<! ,AjJ = 2:L :L atsakt TIC <! ,Pst) 
.r=II=1 

t>.r 

When p = 2 this specialises to our 2x2 results in § 3.4 as, 

TIC R <! , At) = 2at1 at2TIC <! , P12) 

Thus, when k = 1 and PI2 > 0 

o 

1 1 
TICR <! ,At) = 2"V2"V2TIC <! ,PI2) = TlC<! ' P12) 

(3.7.1) 

(3.7.2) 

We shall now re-express TlCR <! ' At) in terms of the principal components, 

which gave quite simple expressions in the covariance case. Substituting 

(2.3.5) into (3.7.2) we have, 

p P 2 2 Pst p p 

TICR<! ,At) = - S~1 t~ atsatt(Ys + Yt )2 + S~1 t~ atsattY.rY, 

th th 

P P 2 P P 
= -.L .L UtsUJaYs Pst +.L .L UbaJaYsY, 

.1'=1 t=1 s=1 1=1 
t f:.s t f:..r 

(3.7.3) 

The first term in (3.7.3) is, 

-~, a",y,',~ a .. p~ ~ (1 - At) [.t, al,y,' 1 
t f:..r 

p 

as (R - At J)at = 0, so that -.L UJapst = (1- At)Ub. The first term in (3.7.3) 

is thus, 

1=1 
tf:..r 
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(1 - A.) [.t al.y.z] = (1 - A. )Zl - (1 - A.) ,t ,~ a., a.,y,y, 
'oF. 

• [ 2 _ 2 since, aUYI + ...... + atpYp] - Zl. So, (3.7.3) becomes, 

(y) 2 p p 
TICR '.! '~1 = (1- ~l)Zl + ~1}: }: aba&y.y, 

.=1 1=1 
1 oF. 

We now need to write Y. and y, in terms of the principal components. This 
. 

gtves, 

P 2 P P ] 
U~1 au.rautZu + U~1v~1 (au.rayt + autaVJ)ZIIz" 

v oFJ 

TICR <! , ~1) = [1 - ~1 + 2~1.r~1 ,~ ala~ 1Z12 
I>.r 

+ 2X1 U~1 [.r~1 I~l abaktawaut jz} 
uoFk t>.r 

+ 2X1 U~1v~1 [.r~1 t~1 a,lra.tt(aW a'1 + autaV1)lzuZv 

VI-I t *3 

From the normalisations of our eigenvectors we have the relationships, 

P P P 
L L ala~ = L (ll(1- (ll) 

1=1 t=1 3=1 
t*1 

p 

=1 - L a\r 
s=1 

p p p 
L L ab akt (lw aut = L (lb (lw (0 - ab a w ) 

s=1 t=1 1=1 
t*.r 

p 

= - L ala;" 
s=1 

substituting these and similar relationships into TlCR <! , Xk ) gives after some 

algebra, 

TfCR~ ,A.) = [1 - A. ,t! a'., ]Zl +.t -A. ,t al.a;'Z'; 
ul-k 

(3.7.4) 
u=lv=1 1=1 
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J.7.2 'll'l'Or~ti<"HI Innu~n{'~ Funrtion for th~ I'JJ.!~nH'CtOr.i 

We will only use the generalised inverse approach for the theoretical 

influence function of the correlation eigenvector.\. Substituting (3.7.1) into 

(3.5.9) gives, 

" TlCR <!. ,~) = - L ~(AJ - Ad-I~'TlC(~ ,R}~t 
J -I 
In 

- .::..... .\ p... p ... 
--L~(AJ-A!) L L o,oLTlC(X.r.,) 

J-I .-1 I-I -
J I- ! I 1-. 

(3.7.5) 

A similar method to that given for the eigenvaluC'\ gives TlCR (!. . ~) in temlS 

of the principal components as 

TlCR <!. ,~)= -f ~{Aj - Ad- I [_l{Aj + At} f f Q}Qb Q2I11Z} 
J~I 2 II-I ,"'-I 
J I-t 

+ ZjZt - (Aj + Adll*IV~1 '~l ObO}OIllO",ZIIZv j (3.7.6) 
• V >11 

The theoretical influence functions for the eigenvalues and eigenvectors from 

the correlation matrix do not have a simple fOffil when expres.')ed in tenns of 

the principal components. The accuracy of these expres.~ions were checked by 

comparing numerically "ith the curves not expres-<;ed in termc; of the principal 

components, i.e. (3.7.2) and (3.7.5). In practice one would probably use the 

expressions given by (3.7.2) and (3.7.5). However, the alternative fonns do 

provide some insight into the fOffil of the influence curves. For example, the 

second tenn in (3.7.6) is the same as the influence function for the covariance 

eigenvector.\. The interpretation of these curves will he discussed further in § 

3.8. 

3.7.3 'Ibcorctical Innuenc~ Function for the Principal Component Scores 

TlCR (~ ,Ztr) = TlCH (~ • ~t ). y,- + ~t • TIC (~ . y,- ) 
- -

Z ' where y is the point _c whose elements have neen standardised The 
-tr =~. Yc ,-
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perturbed tth element of Yc is, 

To o (E) 

where Yet is the tth standardised variable of the point c, and y, is the tth 

standardised variable of our added in point. Hence, 

[

YCtYf] 
T1CR~ ,~c) = i~c -i :: 2 -~ 

YcpYp 

where Y is the standardised added in point. 1bis gives, 

(3.7.7) 
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J.M. (,lot, und CmT1~riS()n., of the Influence FlInc(i()n~ 

].S.I. SllnHl~'r)' of (he Influence Functions 

TICv~ ,Ad = -AI +zl (3.8.1) 
p 

TlCv~ ,~) = -Zl L ~(A, - Al )-IZ, (3.8.2) ,M I 
, ';'1 

T/ C~, (!: . Z#.r ) = -Z t [1 + ~ ( X, - X d - I Z J Z F j (3 . H . 3 ) 
, -I 
,n 

p P 

TlCR ~ • Ad = 2 2: 2: a La u TIC ~ , p., ) (3.8.4 ) 
.-1,-1 ,>. 

TlCR{=. ,Al:> = 11 - Al f a4b IZl + ± -Al f ala,!Z'} 
.~I It-I .~I 

It .;.t 

.. .;.. 
p p P 

TlCR ~ ,~t) = - L ~(Aj - Al )-1 L L a,aLTIC~, p.,) (3.8.6) 
jel ._1 ,-1 
JI-l II-. 

TlCR~ .~)= -}: ~(Aj - At)-II- ~ {A} + At;)}: f a,ab a2Itt Z.} 
}~I .... I I-I 
,I-! 

p p p 

+ Z,Zt - (A j + At) L L L a u a,a ltt av(Z .. 7-y 
It "" I., '" I ,; I 

.. >., 

p p p 

TlCR~,Ztc)=-L{Aj-Ad-IZFL L a,aLTIC~,p,,) 
j~1 .-1 I~I 
j I-t , .;.. 

(3.8.7) 

(3.8.8) 

3.8.2. Examination and Comparisons of the Theoretical Influence Functions 

As we go dO,-,"TI the functions in § 3.8.1 we see that they gradually 

become more and more complicated. Algebra extracted from the correlation 

matrix is always more complicated and often results can only be represented 

for the covariance matrix. However, in practice we often prefer to use the 

correlation matrix so any results we can derive for it are 'M1rthwhile. 
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Expression (J.X.l) is the simplest and reflects that the only point that 

\'.111 he highly influential on a covariance eigenvalue is a point that is extreme 

on its corresponding principal component. Iflz.~ ~ then an eigenvalue can 

decrease, and ifIZt~~ for all £: then all our eigenvalues could decrease 

when we add the extra point. This could happen for example if our 

additional point ~ =~. (Note, we suhtract the original from the perturbed 

here so a negative influence means a decrease in the eigenvalue). The most 

influential points are those Mth a large component score and they lead to the 

eigenvalue increasing in value when they are added (or a decrease when they 

are omitted). 

It is impossible for all the eigenvalues to decrease when another point is 

added for the correlation matrix, just as it would be impos.~ible for them all to 

. . 
tncrea<;.e, smce 

,,- " L )..1 = L )... = P 
t~1 1=1 

There is no such restriction on the eigenvalues from the covariance matrix. 

We thus find that ""hen we write T1cR~,)..d in tenns of the principal 

components it involves all the square and cros..c; product tenns in the principal 

components. Unlike the covariance eigenvalues the most influential 

observations on a given eigenvalue can be a mixture of positive and negative 

influences. \Ve seem to get a large positive influence i.e. an increase in the 

eigenvalue when a point is included, if it is extreme in the direction of the 

component. A large negative influence may occur when the change is a 

compensatory change for a large increase in one of the other eigenvalues. 

The complicated nature of the influence functions for the correlation matri x 

eigenvalues makes it more difficult to say what sort of points Mil generally he 

influential, particularly on the larger eigenvalues. If)... is very small in 
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(3.8.5) then, 

T1CR<! '~1) ~ Z12 

Thus, the expression for small ~1 from the correlation matrix is more like that 

for the eigenvalues from the covariance matrix since both depend on the 

square of the principal component score for that direction. We tend to get 

very small ~1 s when we have highly correlated data. We will examine the 

function further when we look at contour plots for small p in the next section. 

One question of interest is whether, from expression (3.8.4) and a similar 

one for the covariance eigenvalues which is 

p p 

TIC v <! ' ~1) = ~ , TIC <! ,l:)~ = ~ ~ a1l ab TIC <! ,a II) , 
,=1,=1 

we could decide from looking at influence on the bivariate correlations (or 

covariances and variances) what will be influential in our PCA from the 

correlation ( covariance) matrix. H an observation has a large affect on some 

of the correlations then it is likely to be influential on some part of our 

analysis. However, affects can be cancelled out in the summation term of 

(3.8.4), and it would not be obvious what component the observation may 

come out as influential on. This is important as we usually only retain a few 

of the principal components so the observation although influential on the 

bivariate correlations may not come out in an 'important' direction. 

Investigating influence on the p (p -1) /2 possible correlations would also be 

much more complicated than considering the eigenvalues and eigenvectors 

from the desired principal component directions. In § 4.7 we shall compare 

the observations that are influential on the bivariate correlations, 

corresponding to variables with large coefficients in the latter eigenvectors, 

with those influential on these eigenvectors and the corresponding 

eigenvalUes. 
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Expressions (3.8.1) and (3.8.2) reveal how different observations can be 

influential on the covariance eigenvalues and eigenvectors. An observation 

lying far out along the direction of the k th principal component will be very 

influential on ).1 but not on ~. The two curves and differences between them 

will be discussed further in the next section. Expressions for the eigenvalues 

and eigenvectors from the correlation matrix provide little information on 

what types of observations may be influential on both or just one of them. 

Unfortunately, the plots in the next section do not help us as those for the 

correlation eigenvectors have no obvious pattern. 

If we add a point along the direction of an existing principal component 

we find that the correlation eigenvectors may change although those from. the 

covariance matrix do not. The correlation eigenvectors will change due to the 

square terms in (3.8.7), whereas (3.8.2) only has cross product terms. TIle 

second order terms for the eigenvectors from the covariance matrix, see § 4.4, 

also show that the covariance eigenvectors will not change when only one 

principal component score is non-zero. We did note in § 3.7.2 that one of the 

terms in TICR <!. ,~ .. d was the same as TICv<!. ,~), see (3.8.2) and (3.8.7). The 

other terms in (3.8.7) are very complicated involving all the principal 

component scores. Both eigenvector expressions (3.8.2) and (3.8.7) involve 

terms in ().j - Xt)-l which comes from the generalised inverse, and it means 

that when we have close eigenvalues x,t: and Xu the changes in the 

corresponding eigenvectors can be very large. However, the changes in both 

eigenvectors ~ and au will be nearly equal as (Xu - Xt)-l will dominate both 

influence functions. Since the eigenvalues are very close the large changes in 

the eigenvectors may just represent them rotating within a relatively 

unchanged subspace. This problem may arise more for eigenvalues from the 

correlation matrix since the eigenvalues sum to p so there are often smaller 
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and closer eigenvalues. However, we will see in § 4.3 that it occurs in the 

covariance and correlation matrices alike. 

We will not discuss the influence function for the scores here. An 

example of influence on the scores is given in § 4.8 

3.8.3. Contour Plots of the Theoretical Influence Functions for small p 

In this section we will examine contour plots of some of the expressions 

in § 3.8.1 for p = 2 and p = 3. The heights of the contour plots are the values 

of the theoretical influence functions for the values of the principal 

component scores, or variables, given along the axes. We will see in Otapter 4 

that when we substitute the sample equivalents into our theoretical influence 

curves we obtain good estimates of the sample changes. Thus, the type of 

point we observe as being influential here will have some relevance to what 

observations are influential in samples. 

Fig 3.8.1 is a plot of (3.8.1), for the largest eigenvalue from the 

covariance matrix, 

( 6 -2) ~= -2 3 (3.8.9) 

Expression (3.8.1) is the simplest of all the influence functions and we do not 

really need a plot to understand its behaviour. We include one here for 

completeness and to make comparisons. The contours in Fig. 3.8.1 are 

vertical lines cutting the first principal component axis at right angles. This 

shows that the value of the added point on the second principal component 

has no importance in determining its affect on ).1. The contour plot for ).2 is 

similar, with the contours cutting the second principal component at right 

angles. The contour plots for the covariance eigenvalues would have the same 

fonn for all covariance matrices. 
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Figure 3.8.1 Contour plot of T1CV (x I A1) for the 
2 X 2 covariance matrix of (3.8.9) (axes X 10-1 ) 

Figure 3.8.2 Plot of IR (x I A1) for a 
2 X 2 correlation matrix with p-0.2 (contours x 10) 

2. 

1 • 

-1.-:---

-2. 

-3.0 -2.0 -1 .0 .0 1 .0 
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Fig. 3.8.2 is a plot of the theoretical influence function for ).1 from the 

2 x 2 correlation matrix with P12 = 0.2. We ObselVed in § 2.3.2 that this is the 

same as the influence function for P12. The plot is different to the plots for the 

covariance eigenvalue and reflects the fact that we cannot have independent 

changes in the ).s due to the fixed sum of the eigenvalues. This means the 

contour plot for ).2 is the same as Fig. 3.8.2 but the contours have the 

opposite sign. The asymptotes, which correspond to no change in the 

eigenvalues, make an angle 0 with the first principal component axis where, 

[
2 ).)112 

0= tan-I:t ~I I (3.8.10) 

and Table 3.8.1 gives some values of 0 for some choices of P12' We will prove 

result (3.8.10) for general p later in this section. As P12 increases the angle 0 

decreases so that the value on the second principal component becomes more 

important in determining the influence of a point on ).1' This could reflect the 

fact that as ).1 becomes more distinct, as P12 increases, a point needs to be 

further out along the first axis to be 'unusual'. 

Table 3.8.1 

e (degrees) for Given Values of P 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

e 45 42.1 39.2 36.3 33.2 30.0 26.7 22.8 18.4 12.9 

Since the influence functions for the correlation eigenvalues are much 

more complicated than those for the covariance eigenvalues, and so provide 

less infonnation on what points are influential, we will look in detail at plots 

for p = 3. Three types of correlation matrices will be considered and we shall 

plot the influence function for each eigenvalue in the first two dimensions for 

Z 3 = O. The correlation matrices are: 
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(i) A matrix with high correlations 

(

1 0.9 0.8 ) 
1 0.85 

1 

Xl = 2.7, X2 = 0.21 and X3 = 0.09. 

(ii) A matrix with low correlations 

(

1 0.3 0.2 ) 
1 0.25 

1 

Xl = 1.5, X2 = 0.81 and X3 = 0.69. 

(iii) A matrix whose correlations are wider apart 

(

1 0.2 0.4) 
1 0.8 

1 

Xl = 2.0, X2 = 0.84 and X3 = 0.17. 

First consider Figs 3.8.3, 3.8.4 and 3.8.5, which are the contour plots of 

TICRC!. ,Xl) from the above three matrices respectively in the first two 

dimensions with Z3 fixed at zero. As for the 2x2 results the angles that the 

asymptotes make with the first axis decrease as the correlations increase. 

Thus, the value of an observation on the first principal component becomes 

less important in determining its influence on AI' The plots show that points 

wi th a large principal component score on the second axis decrease A I when 

they are included. (Conversely they would increase Al if they were deleted). 

TIlls must occur since if the variance along one direction increases some of the 

other variances (eigenvalues) must decrease to maintain the constant sum. 

The angles that the two asymptotes make with the first axis differ most for the 

third matrix. We can show when all correlations are equal that the angles that 

the two asymptotes make with the axes for the plot of TlCRC!. ,AI) in the first 

two dimensions, are the same. The angle is given by, 
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Figure 3.8.3 Plot of TICR (x , Al) for 
the matrix with high correlations (Z3-0)(contours x 10) 

-1.0 

-2~v--I __ - _----38 --------__ _ 
L-------~----------------------
~---------~9------------------
L---------~------------79----------_ -3.01~~~~~---~_.---.-_.~~~~=-.__+_ 

-3.0 -2~0 -1.0 

Figure 3.8.4 Plot of TICR (x , A1) for 
the matrix with low correlations (Z3-0) (contours x 10) 

2.0 

1.0 

.0 

-1 .0 

2.0 
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Figure 3.8.5 Plot of TIeR (x , Al) for the matrix 
whose correlations are wider apart (Z 3 - 0) '( contours x 10) 

-2.13 ~---20 

-3.0-+~~~~~~~~~~~~~~~--~--~--~--~ 

-3.0 -2.13 -1 .13 .0 1 .0 2.13 3.0 
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(3.8.11) 

Proof 

When all off diagonal elements are equal to p we have 

Xl = 1 + (p -1)p , Xj = 1- p j::J:1 

and, al = (1/Vp ...... I/Vp). So expression (3.8.5) becomes, 

TICR <! • AI) = [1- Alj~ lip 2 ]zr 
+ it [-Alj~1 I1po.2ij ]Zf 

- i~1 ~l 2Alj~1 lIpo.",o.'j ]ZlZ' 

= [1- ~]Zl- ~ fZl 
P P k=2 

Setting all but one of the Zk to zero and fixing TICR~' AI) = 0 (which 

represents a point on the asymptotes) we have, 

[
AI] 2 Xl 2 0= 1 - - Zl - -Z . 
P P J 

[
AI ]112 

:;> ~ Z· =Zl 
P -AI J 

Letting Zj = 1 say, then 

which leads to (3.8.11), and (3.8.10) is a special case of this. The correctness 

of the angles given by (3.8.11) has been checked by the examination of many 

contour plots. Plots for TICR~ ,At) when Z2 rather than Z3 is zero are not 

presented here but they are very similar to these plots, differing most for the 

third matrix perhaps due to the two smallest eigenvalues being wider apart 

than for the other two matrices. 
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Figs J.H.6, J.H.7 and 3.H.H are plots of TlC,d!. . A~). when l, = 0, for the 

above three correlation matrices re~pcclivcly. \Ve find the value a point has 

on the second principal axis is very important in determining its influence on 

~2, unlike the case for ~I were the value on its own axis was not very 

important. We will see later that the influence contours for TICIf~ '~l) in the 

first two dimensions are not very large so that ~I and ~2 in these dimensions 

are mostly compensating each others changes to maintain the constant sum of 

J. 'Il,C contours. particularly in Fig. 3.H.6 are almost straight and 

perpendicular to the second axic;. Tllis is even more so in the plots (not 

presented here) oC TIVIf~ , ).2) when ZI rather than Zl is set to zero. This 

pattern is also true Cor TlCR C!. ' ~3) when Z I or Z2 is set to zero but these plots 

are not presented here. As noted in the previous section expression (3.8.5) 

tends to zl as the eigenvalue tends to zero. 

Finally, Figs. 3.8.9, 3.8.10 and 3.8.11 represent TlCRC!. ' ~3) for the three 

correlation matrices when Z3 = O. The set for TlCR <!. '~2) when Z2 = 0 are 

almost identical to these, all of which are ellipses. Since the plots are only 

unique up to a change in sign of the initial eigenvectors the different direction 

of the ellipse in Fig. 3.8.11 is not important since this is just a reflection 

about the axis. The value of the first principal component plays a more 

important role than the second component on TlCRf.!. ,A3), even though a fixed 

value of three, say, would be more extreme on the second than first axis. A 

possible explanation for this can be seen from the corresponding plots of 

TlCR (~ , AI) and TlCR f.!. ' A2) when z) = O. For all the three types of correlation 

matrix we can see that the value of Z I IS more important in determining 

TlCR(~ ,At> than TlCRf.!., A2) (although it IS the value of Z2 that plays the 

J 

greatest role for both). Since we need to keep the sum L At = 3 the last 
t -I 

eigenvalue ha.c; changed accordingly. TIle only plots not mentioned are those 
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Figure 3.8.6 Plot of TICR (x , ),2) for 
the matrix with high correlations (Z3-0)(contours x 10) 
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Figure 3.8.7 Plot of TICR (x • ).2) for 
the matrix with low correlations (Z3-0) (contours x 10) 
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Figure 3.8.8 Plot of TIeR (x • ).2) for the matrix 
whose correlations are wider apart (Z3-0) (contours x 10) 

'l0 

2. 
1.0 

~ -----
~--1e----

1.0 
8 

.0 

\ 

-1 .0 ~ 

-2.0 

-3.0 -2.0 -1 .0 3.0 



- 69 -

Figure 3.8.9 Plot of TICR (x , ).3) for 
the matrix with high correlations a3-0) (contours x 10) 

2.0 

1.0 

.0 

-1.0 

-2.0 
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Figure 3.8.10 Plot of TICR (x , ).3) for 
the matrix with low correlations (Z-3 -0) (contours x 10) 
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Figure 3.8.11 Plot of TICR (x , ).3) for the matrix 
whose correlations are wider apart (Z3-0) (contours x 10) 
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for TICR <.!, ).1) for ZI = o. These plots are almost circular for the first two 

correlation matrices but more ellipsoidal for the last matrix. This may be due 

to the closeness of the last two eigenvalues in the first two matrices compared 

to the last matrix. 

Fig. 3.8.12 is a contour plot for the coefficient all from the covariance 

matrix in (3.8.9). From (3.8.2), 

TICv<.! ,all) = -ZIZ 2().2 - ).1)-la21 

TICv<! ,aI2) = -ZIZ2().2 - ).1)-la22 

TICv<! ,a21) = ZIZ 2().2 - ).1)-lall 

TICv<! ,a22) = Z lZ 2().2 - ).1)-la12 

and from (3.3.11) 

Z1Z 2 a21 
TICv<.! ,aI2) = -----

0'12 all 

SO we find that the contour plots for all these coefficients are similar but with 

different constant terms multiplying the contours. The contour plots for the 

coefficients of an eigenvector from a 3 x 3 covariance matrix, where one of the 

component scores not involving the eigenvector number is set to zero, is also 

similar to Fig. 3.8.12. This occurs since we will only have one term in (3.8.2) 

which will be similar to the above expressions. 

As discussed in the previous section, points placed out along an existing 

principal component will have no influence on the eigenvector coefficients. 

From the plot we see that the component score involving the eigenvector 

number is not more important than the other score in determining the 

influence on the eigenvector coefficient. Influence increases most rapidly as 

the two component scores increase together. This is partly due to the special 

nature of (3.8.2) when we have only two non-zero components as ZI and Z2 

play an equal role in the expression. If we look at contour plots of the 

eigenvectors from a p Xp matrix in the first two dimensions, then as we 
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Figure 3.8.12 Plot of TrCV (x , all) for the 
2 x 2 covariance matrix (3. 8-:-9) (contours x 10) 
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increase the values of the other component scores, rather than fix them at 

zero, the contours may become much straighter (although this is not always 

the case). We can write 

where C is some constant. C can be large or small depending on whether the 

terms in the sum add together or cancel each other out. The larger C is the 

more weight Zt will have compared to Z2 in determining the influence of a 

point on the first eigenvector. Figs 3.8.13 and 3.8.14 are contour plots, in the 

first two dimensions, for au from the 3x3 covariance matrix, 

L= (~ ~ ~] 
425 

(3.8.12) 

for Z3 = 1 and Z3 = 3 respectively. Thus, if we were looking for influential 

points on the covariance eigenvectors by examining 2 way plots of the 

principal components it may not be obvious what would be influential due to 

the changing nature of these contour plots. The numerical evaluation of the 

influence functions for certain observations is the best way to detect 

influential points, and this will be discussed in detail in the next chapter. 

No contour plots for the correlation eigenvectors are presented here. 

Little pattern was found to the contours. Sometimes they were found to be 

similar to plot for the corresponding eigenvalue and sometimes not. However, 

as noted in the last section the eigenvectors may change if we add along an 

existing component, unlike the covariance eigenvectors. 

3.8.4. Comparisons with Other Influence Techniques 

Greenacre (1984,§ 8.1) gives measures, based on the work of Escofier 
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Figure 3.8.13 Plot of T1CV (x , (11) for the 
3 x 3 covariance matrix (3.8.12) (Z 3 -1) (contours x 10) 
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Figure 3.8.14 Plot of T1CV (x , (11) for the 
3 x 3 covariance matrix (3.8.12) (Z 3 - 3) (contours X 10) 
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and Le Roux (1976), for the affect of observations on eigenvalues and 

eigenvectors in general. For the eigenvalues from a covariance or correlation 

principal component analysis (using the divisor n so that f W; = f lIn = 1) 
;::1 ;=1 

this specialises to, 

('tI' ) . 1 n "2 l~ ,~t = --1 ~t - 2Zki 
n- (n-l) 

(3.8.13) 

where iii is the k th sample principal component score of the i th observation, 

and I represents that it is an influence measure not based on the influence 

function. Expression (3.8.13) is the same as the empirical influence function, 

divided through by a function of n, for the covariance eigenvalue (obtained 

by substituting the sample equivalents into the theoretical influence function). 

However, it is not like the empirical expression for the correlation 

eigenvalues. Expression (3.8.13) has a different sign to the empirical as we 

have subtracted the original from the perturbed. Expression (3.8.13) comes 

about as follows. The sample variance of the n principal component scores, 

ikl, ..... i kn is it , the kth eigenvalue, and when we omit the ith observation 

the perturbed variance of the fixed set of principal component scores using 

(2.2.4), but on divisor n is, 

• nAn "2 
V = --~k - Zkj 

n -1 (n -1)2 

Subtracting the original eigenvalue (variance) from this gives expreSSIOn 

(3.8.13). The theoretical influence function for the correlation eigenvalues is 

more complicated than the influence measure (3.8.13) which allows all the 

different variances (eigenvalues) to change independently. However, we need 

to maintain the constant sum of p. Greenacre (1984) notes that the above 

measure does not account for any changes in the metrics, which for PCA from 

the correlation matrix would be the standard deviations. The specialisation of 

the expression in Greenacre (1984) to correspondence analysis will be 
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discussed in § 6.3.1 and § 6.3.4. 

The influence of points on the eigenvectors is given as upper bounds for 

the rotation of the axis when an observation is removed. For PCA on the 

covariance or correlation matrix this results in , 

1 p "2 
-~Z,; 
n -1 6 =1: 

h=--~-
(~I: - ~1:+1) 

with the simplest upper bound as, 

sin2<t» < h 

(3.8.14) 

Often h ~ 1, so putting h = 1 results in a bound of <t» = 45°. A more refined 

bound is given by, 

(3.8.15) 

h <1: tan2<t» < hsin20.rl: /(1- hcos20.rl:) 

where, 

(3.8.16) 

Greenacre notes that these bounds are only approximate and they assume that 

the principal components previous to the k th are negligibly rotated by 

omitting the point !i. In practice this will not usually hold particularly for the 

later components. In particular, the term (~I: - ~1:+1)-1 in (3.8.14) shows the 

angle for the kth axis will be large when the kth and (k + l)th eigenvalues are 

close, but the above measure, unlike the theoretical influence function, would 

not record large changes in the k + 1 th eigenvector as well. One disadvantage 

of the bounds above is we cannot find them for the last eigenvector, which we 

may be interested in as it often defines near constant relationships between the 

variables. The bounds will be examined further in § 4.9, where they are 
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applied to a dataset for a covariance PCA. We will see that the bounds are 

good for the first two dimensions but less so for the latter. 

Krzanowski (1984) considers an alternative form of influence, called 

sensitivity analysis, which is not based on case deletion. Expressions are 

obtained for the maximum change in the coefficients of the eigenvector ~ 

given a small increase ( or decrease), £ , in the corresponding eigenvalue i l . 

The angle between the original eigenvector and the vector which differs 

maximally from it, but with a variance at most £ less than it is given by, 

cosO = [1 + £ 1-112 

~t - ~l+l 
(3.8.17) 

Similarly, the angle between the original eigenvector and that which differs 

maximally from it , but with a variance at most £ greater than it is, 

cosO = [1 + £ 1-112 

~k-l - ~l 
(3.8.18) 

We again see that the closeness of the eigenvalues is important in determining 

the sensitivity of the eigenvectors, but as above only the closeness of the 

eigenvalue in one direction is involved. 

Benasseni (1985) derives upper and lower bounds for the change in the 

eigenvalues from a covariance and correlation matrix when the frequency of 

the i th observation is increased or decreased. Adding an observation, when all 

the observations have the same frequency, is a special case of an increase in 

the frequency of the (n +l)th observation, with the original frequency, 

I,. +1 = 0, and the perturbed frequency, 1:+ 1 = 1 / (n + 1) . Similarl y , for 

omitting an observation the original frequency, Ii = 1/ n, and the perturbed 

frequency is It = o. The bounds for the eigenvalues from a covariance matrix 

when we add an observation specialise to, 

n " ". n" n ( -)'(y -) -- Al < At S --1 At + 2 ~ + 1 - x ~ + 1 - x 
n+l n+ (n+l) - -

(3.8.19) 
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where i.; is the perturbed eigenvalue. 

From our derivation of the theoretical influence function we can write our 

perturbed eigenvalue as, 

'A; = 'At + £( - 'At + Zl) + 0 (£2) 

Letting £ = 1/(n +1) and putting in the sample equivalents gives, 

To 0(£) 

n" 1 "2 = --'At + --Zt 
n +1 n +1 

Taking it = 0, the smallest value for the perturbed eigenvalue, it, is n: 1 it 

which coincides with the above lower bound. The upper bound in (3.8.19) 

can be re-expressed as, 

n" n P "2 
--1 'At + 2 L Zj 
n+ (n+1) j=l . 

Slnce 

r'~+1 - D = ~+1 and f'f = ff' = I 

If i j = 0 for j =l=k then the bound is similar to the theoretical expression and if 

only it = 0 then the two differ, as they do for any value of it, as the bound 

considers the other dimensions. The bounds do seem generous as the lower 

bound was found to be independent of the observation and the upper bound 

accounts for the decomposition of ~ +1 on all the axes. Another upper bound 

is also derived that involves the Mahalanobis distance of the observation. 

The bounds for adding an observation for the correlation matrix 

eigenvalues specialise to, 

where y is the standardised variable. Again, another upper bound is given. 
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These bounds to not compare easily with the theoretical expressions as both 

are quite complicated. The bounds are also used by Benasseni to give 

conditions on the variables so that the change in an eigenvalue does not 

exceed some specified level when the frequency is increased from Ii = 11 n . 

3.9. Influence Functions for Adding m Observations 

We usually have two options open to us when we wish to look for 

multiple outliers or subsets of influential points. The first is to carry out the 

techniques for finding individual outliers (influential points) sequentially, but 

due to 'masking' we may prefer to use block procedures. These involve the 

deletion of m observations together but it can lead to heavy computational 

problems due to the number of possible subsets one can consider for each 

value of m. Also it can be difficult to decide on the value of m. In PCA we 

find that a good estimate of the sample change when we add (or omit) m 

observations, provided m is reasonably small compared to n , is the sum of the 

m individual changes when the m observations are added to (or omitted from) 

the analysis singularly. In this section we will present the algebra that gives 

this result and show to what extent it is likely to be supported in samples. 

Numerical comparisons of the sum of the individual sample changes with the 

sample change when all m observations are omitted together are given in § 4.5 

If we perturb the underlying distribution by adding in the distribution 

functions 8~1"""'" 8:!,. (where the subscript on :! is for convenience) which 

have mass 1 at:!i then as a simple extension of the result (2.3.3) 

_ m 

~= (1- Em)~ + EL <:!; - I0<:!; -~)' 
i=1 

which gives the influence function 

m 

TIC(, ,~) = -m~ + L <:!; - I0<:!; - ~)' (3.9.1) 
i=1 
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We obtain the theoretical influence function for ).1 from the covariance 

matrix, as by (3.5.3), giving 

m 
TIC c., , ).1) = -m).1 + ~ Z2jj 

;=1 
(3.9.2) 

Thus, the effect of omitting m observations is the same as the sum of the 

individual effects. When m = 1 we noted that the empirical influence function 

for the covariance matrix and sample function were very similar, see § 2.2.2, 

and it is partly for this reason that we will see in the next chapter how well the 

empirical can be used to estimate the sample changes in eigenvalues and 

eigenvectors from the covariance matrix. We will examine here how well 

(3.9.1) approximates the sample influence function when we add (or omit) m 

observations. This will provide sOme insight into how well the additive 

property for the eigenvalues will hold in practice. The sample covariance 

matrix with m extra observations included is, 

1 1 lI+m 
S(+m)= n-_ S+-- L ~-D~-D' 

n +m 1 n +m i=lI+1 

2 lI+m lI+m 

- L L ~ - D(~ - D' (3.9.3) 
(n + m )( n + m -1) i =11 +1 i =11 +1 

i*-i 

where :!,a+b ••••••• :!,a+m are the added observations. Similarly, 

n-1 n-m+1 ~ tv. ~\( -)' 
S(-m) = 1 S - ( )( 1) .LJ ~ - .!J ~ - .£ n-m- n-m n-m- iEM 

- ( _ )/ _ -1) L L ~i - D(~ - D' (3.9.4) 
n m n m iEMjEM 

i*-i 

where ~ i EM a~e the m observations omitted from the dataset. These 

expressions specialise to (2.2.1) and (2.2.4) respectively when m = 1 as the 

final terms in each expression will not exist. We shall prove result (3.9.3), the 

proof for (3.9.4) follows in a similar way. 

lI+m 

(n +m -1)S +'" = L (~- X *)~i - X *)' 
;=1 
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Adding in and taking out x from each bracket and multiplying out gives, 

Substituting in 

x • = n£ +mK..". 
n+m 

where 3.....J,. is the mean of the m added observations so that 

- -. m(x - £m) II+IJI <!t - D 
x -x = =- ~ 
- - n + m i =11 +1 n + m 

gives, 

n -1 1 lI+m 

S+IJI = n+m-1 S + _ ~ <!t - D<!t - D' 
n +m 1 ;=11+1 

1 II +m II +m 

~ <!t - D ~ <!t - D' 
(n + m ) (n + m - 1) i =11 + 1 i =11 +1 

This then gives result (3.9.3). 

The first term in (3.9.3) can be expressed as (1- m l)S and in 
n+m-

(3.9.4) as (1 + n-:-1)S, and taking the sample influence functions as 

(n +m )(S (+m) - S) and (n -m )(S - S (-m» respectively gives 

(".) m(n+m) II~ (". -;:-\(.... -;-\' 
SIC(+m)\!m,s =- -1 S + L.J \:!i-£j\:!i-£j 

n +m ;=n+l 

2 n +m II +m 

- L L ~-D~-D' 
(n + m - 1) i =n +1 j =n + 1 

jo/;; 

(3.9.5) 

SIC (-m)(, ,S) = - m(n-m)s + n-m +1 L ~ - D(!; - D' 
n-m-1 {n-m-1);EM 

+ 2 L L ~ - D~ - D' (3.9.6) 
(n-m-1) iEMjEM 

j 0/;; 

Comparing (3.9.5) and (3.9.6) with (2.2.3) and (2.2.5) respectively, we see 

that to the first order, the sample curves (apart from slight changes in the 

functions of n) exhibit the same additive structure as the theoretical influence 
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function. However, there is also an extra term of 0 (11 n) in the above sample 

influence functions which will affect the accuracy of the estimated change 

based on (3.9.2) when we delete m observations. Comparisons of how well 

this additive approximation holds are given in § 4.5. There seems to be a 

greater restriction on the size of m in the deleted sample function for this 

additive property to hold as the second order term in (3.9.6) has the 

coefficient 1/(n -m-l) multiplying it, and this increases as m increases. 

We can look at this additive nature from an alternative angle, but we 

will restrict our attention to m = 2 for illustration purposes. In Section 3.6.3 

we derived the influence function for the principal component scores from the 

covariance matrix when we add the point !. We would expect this to affect 

the additive nature of the theoretical influence for the covariance eigenvalues 

whose influence functions involve the component scores since, if we add one 

point and then the other, the (perturbed) score of the point added second will 

not be the same as if it was added first. H i l is the perturbed eigenvalue 

when we add the first point !l then from (3.6.1) 

(3.9.7) 

where Zu is the principal component score. H we now let i· I denote the 

perturbed i l when we add the second point !2 then, 

(3.9.8) 

where in is the score of the second point on the new axis after :! 1 has been 

included. Putting (3.9.7) into (3.9.8) we obtain by writing 

il2 = Zl2 + 2eZl 2 TIC <:!l ,Zl 2) 

i· I = Al + ( - 2AI + Zll + Z11) + 0 «(2) 

This means the change in the scores, if we were using the theoretical for 

estimating the changes when adding or deleting m observations, only affect 

the perturbed Al to 0 «(2) and so will not come into the theoretical influence 
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function. We thus get that the theoretical influence function for the 

eigenvalues is additive. 

We similarly find that the theoretical influence function for the 

eigenvectors is additive, and from (3.9.1) we can write 

The theoretical influence function for the correlation matrix is also additive 

and so we find the theoretical influence function for its eigenvalues and 

eigenvectors are also additive. 

The additivity of the theoretical influence functions has interesting 

properties. We noted in the previous sections that the correlation eigenvalues, 

particularly on the larger eigenvalUes, often have as large positive influences 

as negative. Thus, when we delete two or more influential points they can 

cancel out each others effects. This, is less true for eigenvalues from the 

covariance matrix were the largest influences all tend to be of the same sign 

and correspond to large principal component score. Some examples of this 

cancelling out of influence will be seen in our practical examples in § 4.5. 

The additive property means we should not need to carry out multiple 

procedures in practice, particularly where we have large datasets. This is 

extremely advantageous in such datasets where there would be heavy 

computational problems. The above cancelling out property shows it could in 

fact be confusing to look at multiple case deletion. In small datasets where the 

asymptotic result may not hold so well there may be some need to consider 

multiple case deletion using the sample influence curve. This additivity is not 

likely to hold when two observations are extreme in the direction of a 

principal component so that this component disappears when both are 

omitted. We will see in § 4.8 that the empirical does not reflect the sample 
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changes well when one observation causes a dimension to disappear. 

However, it still gives this observation as being 'highly influential'. 
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Chapter 4: Practical Applications of the Influence Functions in Principal 

Component Analysis 

4.1. Introduction 

In this chapter we concentrate on the practical applications of the 

influence functions in PCA. We first consider, in § 4.2, an appropriate scalar 

measure of influence for the changes in the coefficients of the k th eigenvector. 

This is chosen to be the angle between the original and perturbed 

eigenvectors, which can be written in terms of the the sample influence 

function for the eigenvectors. We shall see that the empirical influence 

function for the eigenvectors provides a second order approximation to this 

angle. In § 4.3 we compare the empirical and sample curves for the 'actual' 

change in the eigenvalues and the angle discussed above. Comparisons for the 

eigenvalues and eigenvectors from both the covariance and correlation 

matrices are considered. We shall see that the influences compare well, but 

they often differ when we have close eigenvalues or if a dimension should 

completely disappear when an observation is deleted. In § 4.4 we shall 

consider the use of second order terms to improve the accuracy of the 

empirical, with emphasis on the covariance matrix eigenvalues and 

eigenvectors. In § 3.9 we gave the theoretical justification for influence being 

additive. This was supported for the sample covariance matrix provided m is 

not too large compared to n. We compare the sample influence when m 

observation are omitted with the sum of the individual sample changes, for 

both the covariance and correlation eigenvalues, in § 4.5. 

In § 4.6 we discuss simulated critical values for the covanance and 

correlation eigenvalues. For the eigenvalues from the covariance matrix these 

are seen to take a fairly simple fonn. The influence values for the 

eigenvectors are largely detennined on how close the eigenvalues are, due to 

the terms (~J - ~k )-1. It is possible if there are a number of close eigenvalues 

that the influences could he small if the terms cancelled each other out. 
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Alternatively, and as discussed in § 4.3, if there are only two close 

eigenvalues we can obtain large changes in the two corresponding 

eigenvectors. Hence, determining critical values for the changes in the 

eigenvectors could be difficult. 

This chapter is concluded with an examination of influence in three 

datasets. In the first dataset emphasis is placed on the differences and 

similarities of the outliers and influential points that have been detected in the 

dataset (this is continued to a certain extent for the other datasets as well). 

Only the principal components for the correlation matrix are considered in 

this dataset as the data are standardised. Also considered in this dataset is 

how well changes in the bivariate correlations can be used to indicate what 

will be influential on the principal component analysis. In the second dataset 

the influence of observations in both the covariance and correlation principal 

component analyses are considered. We shall consider the changes of one 

particular observation, which when omitted leads to a dimension disappearing. 

Influence for the covariance and correlation principal component scores is also 

looked at. In the final dataset we consider the covariance principal component 

analysis only, and consider its application to the covariance biplot. 

4.2. Measures of Influence 

Influence procedures for one principal component analysis, if one looks 

at both the eigenvalues and eigenvectors, can result in many measures to 

examine. The problem is enhanced by the vector valued influence functions 

for the eigenvectors. However, one usually only retains a fraction of the p 

dimensions so we would restrict our influence procedures to those dimensions 

of interest. It is not really worthwhile to compute an overall measure of 

influence for an observation on the principal component analysis since 

important features of change could be lost when combining the dimensions. 



- 87-

This is particularly important in principal component analysis where we 

usually interpret the dimensions individually and so influence measures 

applied to each dimension singularly provide invaluable information on our 

interpretations and conclusions. However, it is worthwhile to convert the p-

vector influence functions for the eigenvectors into scalar measures. One 

possible scalar measure is the sums of squares of the individual changes in the 

eigenvector coefficients. The sums of squares for the covariance eigenvectors 

using the theoretical influence function (3.8.2) is, 

Similarly, for the correlation eigenvectors we get, 

, P -2 [ P 
TICR <! ,~) TICR <! ,~) = j~l (~j - ~k) .r~1 

j:f:.k 

t~ abab T1C <! ,pst)]2 
ti'.r 

For both the covariance and correlation eigenvectors we find 

E.
2 

1 - TTIC<! ,ak)'TIC<! ,~) 

is the cosine of the angle between the original and perturbed eigenvector up to 

terms in 0 ( E.
2). 

First we will consider the sample results. If ~ is the perturbed sample 

eigenvector and 

1 A A A • 

--SICv(x ,at) = at - at n-1 ~ - - -

then 

1 A ,.. ... " ,,*..... ... "* 
(n _1)2 SICv <! ,~)'SICv<! '~k) = ~'~t + ~'~t - 2~ '~t 

and since ~t ' ~t = 1 and ~;' ~ = 1 we get, 

1 A A 

---2 SICv(X ,at)' SICv~ ,at) = 2 - 2 COSet 
(n-1) - - -

1 A, A 

~ CosOt = 1 - 2 SICv(.-c ,at) SICv(x ,at> 
2(n -1) - - - -
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For the theoretical we only consider terms up to 0 (E2). Let the perturbed 

eigenvector be, 

then, 

Since Qk' ~ = 1 to have ~' ~ = 1 all terms in E
r =0 , = 1 ,2 .... , this implies 

that, 

~'£1 = 0 and ~'£2 = - £1'£1 

The angle is given by, 

cosOk = ~'~ 

_ , + ' + E2 , + (3) - Qk ~ E~ £1 2~ £2 0 E 

Using the relationships above 

2 
= 1 - ~Cl'Cl + 0(E3) 2 - -

£2 
= 1 - 2TIC~ ,~)'TIC~ ,~) + 0(£3) (4.2.1) 

Looking at the angle rather than just the sums of squares of individual 

coefficient changes gives a more meaningful interpretation to the changes in 

the eigenvectors. It is also better at highlighting rotations and swops in the 

eigenvectors, particularly when using the sample influence curve. One also 

needs to be careful when using the sums of squares of the sample changes in 

the eigenvector coefficients that the perturbed eigenvector is returned with the 

same sign as the original eigenvector. We can usually guard against this by 

changing the sign of the perturbed eigenvector if p /2 or (p + 1) /2 of its signs 

are different from the original eigenvector but the odd one may slip through. 

This may occur when the eigenvector is dominated by one or two coefficients, 

and it is whether the signs of these coefficients have changed that is the most 

important. If a change of sign is not picked up the influences will appear 
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unusually large since one has in affect added the original and perturbed 

eigenvectors. This problem does not occur when using the theoretical 

influence function since the perturbed eigenvectors are not calculated. The 

problem of change in sign of the sample eigenvectors is avoided when we use 

the angular measure of influence as this just leads to an angle greater than 90° 

and subtracting this from 1800 gives us the same angle as would be obtained if 

the sign had not changed. 

Due to the similarity of the sample influence functions for the covariance 

matrix when we add or delete an observation, see § 2.2, we find that the 

theoretical influence functions can be used for the deletion of observations in 

principal component analysis as well as addition. We also noted in § 2.2.2 

that if we considered the sample curve for the covariance matrix as n....oo we 

would obtain the same expression as the empirical. The same holds here for 

the eigenvalues from the covariance matrix whose influence function from 

(3.5.3) only depends on the influence function for the covariance matrix. 

Substituting the sample influence curve for the covariance matrix for V in 

(3.5.3) and letting n....oo would give the same as the empirical curves based on 

(3.8.1) to (3.8.3). We thus find that rather than just take E = 1/ (n -1) to 

form our estimated change from the theoretical; if we let our estimate for the 

sample change in the covariance eigenvalues be 

A 

A A1 n A 2 
Ev~ ,A1) = - n -2 + (n -l)(n -2) Zti (4.2.2) 

then the estimated change in the covariance eigenvalues gives closer values to 

the actual sample change. The functions of n in (4.2.2) come from those in 

(2.2.5) when it is divided through by (n -1) to give the actual sample change 

in the sample covariance matrix. The actual sample change for the 

eigenvalues and eigenvectors is found by using the expression for the sample 

change in the covariance matrix and then using the eigenvalue and 
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eigenvector routines. No adjustments to the other empirical influence 

functions lead to a noticeable improvement in the estimates. 

Our measures of influence are thus taken as the change in the individual 

eigenvalues when observations are omitted from the sample and the angle 

between the original and perturbed eigenvectors which can be calculated from 

the influence functions. A possible alternative to the change in the 

eigenvalues is the percentage change. We shall see in § 4.6 that for all the 

eigenvalues in a covariance principal component analysis we can expect the 

same percentage change irrespective of their initial values. This is not true for 

the correlation eigenvalues. 

4.3 NumericaI Comparisons of the Sample and Empirical Functions and 

Proble.m Arising from Oose Eigenvalues 

We will compare the empirical and sample curves by calculating the 

estimated and actual sample changes in the eigenvalues, and the actual and 

estimated angle between the original and perturbed eigenvectors, when an 

observation is removed, for two datasets. The estimated change in the 

covariance eigenvalues is given by (4.2.2) and for the correlation eigenvalues 

by the empirical based on (3.8.4) divided by (n -1). The estimated angle is 

taken from (4.2.1), with the sample equivalents substituted in and 

E = 1/ (n -1). Both the covariance and correlation principal component 

analyses will be considered. The first dataset has 160 observations and five 

variables which are measurements on turtles. The other dataset was 

introduced in § 2.5.3 and its variables consist of seven anatomical 

measurements on Students at the University of Kent. There are 33 

observations, so we may expect our comparisons with the asymptotic result to 

be poorer than for the first dataset. Tables 4.3.1 to 4.3.8 bring to light some 

interesting aspects of the similarities and differences between the influence 
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curves in principal component analysis. 

4.3.1. Influence for the Eigenvalues from the Covariance and Correlation 

Matrices 

Tables 4.3.1 and 4.3.3 compare the actual and estimated change for the 

three most influential and three least influential observations on each 

covariance eigenvalue from the two datasets. The order is determined by the 

ranked sample influences and the corresponding estimated change is given 

underneath. The rankings for the two curves can differ when we have 

observations with close influences or when we have problems such as 

eigenvectors swopping. We have considered all eigenvalues here, in practice 

one may only be interested in a subset of these. We have given the three 

smallest influences, which we also considered for the partial correlation 

coefficient, to show that the curves agree well for large and small influences. 

Tables 4.3.2 and 4.3.4 give similar comparisons for the correlation 

eigenvalues from the two datasets. We have only considered the most 

influential here, the smallest influences are very small. 

From the tables we see that the estimates for the covanance and 

correlation matrix eigenvalues provide us with reliable information on what 

observations are most influential in datasets and on what eigenvalues. 

Comparisons for the first dataset, with 160 observations, are very good as we 

would hope since this is a reasonably sized dataset. However, the comparisons 

for the smaller dataset are also good, except for those involving observation 

30, particularly in the principal component analysis from the covariance 

matrix. 

The large differences in the empirical and sample either occur on 

observation 30, as noted above, or when the eigenvectors have swopped in 

order of importance. This means the variance (eigenvalue) in an earlier 
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Comparisons of the Sample and Empirical Functions for Eigenvalues from the 

Turtle Dataset 

Table 4.3.1 
Comparisons of the Actual Sample and Estimated Change 

for the Most and Least Influential Observations on the 
Covariance Eigenvalues 

~l = 101845.62 177.34 51.93 29.24 13.27 
Obs. (143) (56) (10) (103) (151) 

Actual 6360.46 13.69 1.55 1.25 2.15 
Estimated 6361.06 13.74 1.57 1.20 2.11 

Obs. (121) (119) (104) (142) (143) 
Actual 5714.93 9.62 1.49 0.71 1.20 

Estimated 5715.25 9.67 1.50 0.72 1.05 
Obs. (61) (141) (38) (157) (81) 

Actual 2936.10 7.83 1.33 0.71 1.13 
Estimated 2936.16 7.85 1.33 0.67 1.04 

" " " " "" " " " " " " 
" " " " It It " " " " " " 
" " " tt " " "" " " " " 

Obs. (83) (58) (62) (74) (78) 
Actual -53.25 0.05 0.01 -0.00 -0.00 

Estimated -53.24 0.06 0.01 -0.00 -0.00 
Obs. (151) (46) (73) (93) (159) 

Actual 37.92 -0.05 0.00 -0.00 0.00 
Estimated 37.94 -0.05 0.01 -0.00 -0.00 

Obs. (108) (111) (97) (158) (88) 
Actual 18.25 0.03 0.00 0.00 -0.00 

Estimated 18.26 0.02 0.00 -0.00 -0.00 

Table 4.3.2 
ComQarisons of Actual Samfle and Estimated Change 

for the Most Influentia Observations on the 
Correlation Matrix 

~k = 4.115 0.449 0.187 0.175 0.074 

Obs. (151) (151) (56) (104) (121) 
Actual -0.050 0.043 0.011 0.007 -0.003 

Estimated -0.047 0.042 0.016 0.006 -0.003 
Obs. (135) (72) (151) (76) (157) 

Actual 0.022 0.018 0.008 0.007 0.002 
Estimated 0.021 0.018 0.007 0.007 0.002 

Obs. (155) (61) (69) (19) (61) 
Actual 0.020 0.015 0.006 0.005 -0.002 

Estimated 0.020 0.015 0.006 0.003 -0.002 
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Comparison of the Sample and Empirical Functions for the Eigenvalues from 

the Student Dataset 

Table 4.3.3 
Comparisons of the Actual Sample and Estimated Change 

for the Most and Least Influential Observations on 
the Covariance Eigenvalues 

A.l = 35.31 2.78 1.41 0.86 0.68 0.38 0.25 

Obs. (19) (25) (31) (30) (24) (27) (30) 
Actual 6.40 0.42 0.25 0.14 0.27 0.06 0.16 

Estimated 6.42 0.42 0.22 0.46 0.25 0.05 0.01 
Obs. (10) (8) (8) (29) (30) (30) (18) 

Actual 2.60 0.40 0.06 0.05 0.27 0.06 0.09 
Estimated 2.62 0.44 0.03 0.09 0.03 -0.01 0.07 

Obs. (26) (30) (24) (2) (17) (5) (19) 
Actual 1.57 0.29 0.06 -0.03 0.07 0.05 0.05 

Estimated 1.58 0.43 0.10 -0.03 0.06 0.04 0.04 .... "" " " " " " " " " " " " " 
" " " " " " " " " .. " " " " " " 
" " "" " " " " " " " " " " " " 

Obs. (9) (3) (13) (15) (20) (33) (27) 
Actual -0.18 -0.02 0.00 -0.00 -0.01 -0.00 0.00 

Estimated -0.18 -0.02 0.00 -0.00 -0.01 -0.00 -0.00 
Obs. (28) (10) (22) (6) (7) (3) (22) 

Actual 0.05 -0.01 -0.00 -0.00 0.01 0.00 0.00 
&timated 0.05 -0.01 -0.00 -0.00 0.01 -0.00 -0.00 

Obs. (1) (32) (23) (5) (18) (16) (29) 
Actual 0.03 -0.00 0.00 -0.00 0.00 0.00 -0.00 

&timated 0.04 -0.00 0.01 -0.00 0.00 0.00 -0.00 

Table 4.3.4 

Comparisons of Actual Sample and Estimated Change 
for the Most Influential Observations on 

the Correlation Eigenvalues 

At = 4.80 0.93 0.40 0.37 0.28 0.13 0.10 

Obs. (30) (30) (24) (27) (30) (19) (18) 
Actual -0.58 0.46 -0.07 0.06 0.10 -0.02 0.03 

&timated -0.33 0.39 -0.05 0.05 -0.04 -0.02 0.02 
Obs. (10) (17) (19) (19) (24) (5) (24) 

Actual 0.12 -0.05 -0.03 -0.04 0.09 0.02 0.02 
&timated 0.11 -0.05 -0.02 -0.03 0.05 0.01 0.01 

Obs. (19) (10) (29) (29) (25) (31) (31) 
Actual 0.12 -0.05 0.02 0.03 0.03 0.01 0.02 

Estimated 0.10 -0.05 0.05 -0.00 0.03 0.01 0.01 
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direction has fallen down below that in the next direction (it would be possible 

for it to fall below two or more of the other eigenValues) when observations 

are omitted. The estimate records a swop in the eigenvalues by some larger 

changes in the eigenvalues and the sample reflects this swop when we look at 

the eigenvectors by angles close to 90°. The theoretical influence function 

(and so the estimate) gives the change in the eigenvalue and eigenvector in 

the k th direction irrespective of whether it changes its ranked position when it 

is perturbed. The sample curve will compare the k th original eigenvalue and 

eigenvector with the perturbed (k + l)th eigenvalue and eigenvector when a 

swop occurs. This is one of the circumstances where the empirical will have a 

larger value than the deleted sample curve (although, using the adjustment in 

the functions of n for the estimated change in the covariance eigenvalues, 

discussed in § 4.2, we find the usual underestimation is not so obvious). 

We shall look at the values of the perturbed eigenvalues given by the 

sample and empirical functions when swopping has occured. Note that a 

positive influence refers to a decrease in i 1 , as we subtract the perturbed from 

the original eigenvalue. We will consider this for two examples. In Table 

4.3.4 the original third and fourth eigenvalues are, 

A A 

A3 = 0.399 ~ = 0.366 

The sample influences give the perturbed eigenvalUes when observation 29 is 

omitted as 

i;.r = 0.379 ).;.r = 0.336 

The perturbed eigenvalues using the empirical curve are, 

i;e = 0.349 ).;e = 0.362 

There was another swop in these two dimensions when observation 5 was 

omitted but this is not seen from Table 4.3.4 as it was not in the top three 

ranked sample changes which the observations are presented by. 
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We shall consider the example from Table 4.3.2 which shows that swops 

can occur even in large datasets provided the original eigenvalues are close 

enough. The original third and fourth eigenvalues are, 

.. .. 
Xl = 0.187 A.t = 0.175 

The sample influences give the perturbed eigenvalues when observation 56 is 

omitted as 

ijl = 0.176 i;1 = 0.171 

The perturbed eigenvalues using the empirical curve are, 

ije = 0.171 i.;e = 0.175 

The theoretical influence function records a swop In the 

eigenvalues/eigenvectors when observation 30 is omitted for the 4th and 5th 

dimensions in Table 4.3.3. However, this is not a good reflection of the 

sample change as we find the original fourth dimension is attributed to 

observation 30 only, and it disappears in the perturbed problem. This, and the 

deletion of observation 30 in the correlation PCA analysis, is discussed in 

detail in § 4.8. 

4.3.2. Influence for the Eigenvectors from the Covariance and Correlation 

Matrices 

Tables 4.3.5 to 4.3.8 compare the actual and estimated angle. These are 

given by (3.8.2) and (3.8.6). The angles for the least influential observations 

are not given as these are very small. 

The angles using the sample and empirical curves are very close in Table 

4.3.5 and Table 4.3.6 except for those under 83 and 84 for the latter table. 

Table 4.3.9 contains the most and least influential observations, and their 

angular changes, on the third and fourth eigenvectors from the correlation 

matrix of the Turtle dataset when using the two types of curves. The original 
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Comparisons of the Sample and Empirical Functions for the Eigenvectors from 

the Turtle Dataset 

Table 4.3.5 
Comparisons of the Actual and Estimated Angle Between 

the Original and Perturbed Eigenvectors from the 
Covariance Matrix for the most Influential Observations 

Angle 01 ~ 03 04 Os 
Obs. (143) (119) (19) (81) (81) 

Actual 0.140 1.590 3.040 3.820 3.700 
Estimated 0.130 1.450 2.880 3.800 3.650 

Obs. (121) (56) (76) (19) (142) 
Actual 0.100 1.580 2.320 3.010 2.120 

Estimated 0.100 1.400 2.140 2.850 2.000 

Obs. (34) (76) (103) (142) (143) 
Actual 0.050 1.390 2.190 2.290 1.570 

Estimated 0.050 1.330 2.220 2.200 1.430 

Table 4.3.6 
Comparisons of the Actual and Estimated Between the Original 

and Perturbed Eigenvectors from the Correlation Matrix 
for the most Influential Observations 

Angle 01 ~ 63 64 6s 

Obs. (151) (151) (56) (56) (56) 
Actual 0.720 5.1r 82.320 82.320 2.540 

Estimated 0.700 4.230 3.740 3.99° 2.15° 
Obs. (61) (143) (151) (151) (119) 

Actual 0.30° 5.11° 23.410 22.940 2.53° 
Estimated 0.29° 4.48° 6.25° 4.69° 2.28° 

Obs. (72) (81) (19) (19) (76) 
Actual 0.29° 2.690 22.10° 22.11° 2.04° 

Estimated 0.28° 2.49° 22.30° 22.30° 1.87° 
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Comparisons of the Sample and Empirical Functions for the Eigenvectors from 
the Student Dataset 

Table 4.3.7 
Comparisons of Actual and Estimated Angle Between the Original 

and Perturbed EiE~nvectors from the Covariance Matrix 
for the Most Influential Observations 

Angle 91 ~ 93 94 95 96 97 

Obs. (19) (30) (24) (30) (30) (30) (30) 
Actual 1.74° 13.96° 13.81 ° 65.88° 80.56° 69.36° 52.58° 

Estimated 1.29° 14.65° 16.57° 49.96° 46.79° 6.90° 9.48° 
Obs. (24) (8) (31) (29) (24) (24) (24) 

Actual 1.51° 11.55° 13.11° 26.95° 65.92° 64.43° 26.96° 
Estimated 1.37° 7.81° 10.47° 23.26° 35.35° 4.49° 5.03° 

Obs. (10) (31) (8) (24) (29) (27) (27) 
Actual 1.49° 9.09° 12.06° 16.09° 27.80° 16.98° 16.10° 

Estimated 1.25° 9.26° 7.9r 32.49° 22.1r 8.36° 6.43° 

Table 4.3.8 
Comparisons of Actual and Estimated Angle Between the Original 

and Perturbed EiE~nvectors from the Correlation Matrix 
for the Most Influential Observations 

Angle 91 92 93 94 95 96 97 

Obs. (30) (30) (5) (5) (30) (31) (30) 
Actual 6.60° 70.25° 83.65° 82.54° 70.13° 26.86° 28.28° 

Estimated 4.23° 8.94° 10.26° 4.92° 17.23° 21.97° 10.35° 
Obs. (19) (29) (29) (30) (27) (30) (31) 

Actual 1.38° 5.31° 68.93° 69.64° 47.21° 26.06° 26.93° 
Estimated 1.09° 5.12° 19.37° 11.44° 8.75° 9.09° 21.14° 

Obs. (27) (19) (30) (29) (17) (12) (24) 
Actual 1.20° 4.69° 63.64° 69.01° 29.67° 20.22° 23.73° 

Estimated 1.08° 3.91° 15.82° 18.63° 18.47° 26.82° 11.10° 
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Table 4.3.9 
Angles Given b~ the Two Influence Functions for Observations in the 

Third and Fourth Dimensions from the Correlation Matrix 
. Analysis of the Turtle Dataset 

Sample Guve Empirical Curve 

Obsn. 6.1 ~"- Obsn. 63 64 

56 820 820 119 270 270 

151 230 230 141 240 240 

19 220 220 19 220 220 

141 220 220 121 170 170 

119 210 210 104 140 140 

" " " " " " " " " " " " 
" " " " " " " " " " " " 
" It " " " " " " " " " " 

131 0.050 0.050 131 0.050 0.050 

156 0.010 0.010 156 0.010 0.010 
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eigenvalues for these dimensions are i3 = 0.187 and i.. = 0.175. This shows 

that when we have two close eigenvalues the change in the corresponding 

eigenvectors when a point is omitted are nearly equal. This means that while 

the eigenvectors may be changing a lot in appearance they are just rotating 

within a relatively unchanged subspace. This occurs because the 'ellipse of 

variation' described by the two principal components with close eigenvalues is 

nearly circular. Rotation within this subspace will usually cause little change 

in the eigenvalues but large changes in the eigenvectors. Why large angles 

occur can be seen from the terms (Aj - Ak)-l in the influence functions for the 

eigenvectors from both the covariance and correlation matrices. 

Figs. 4.3.1 and 4.3.2 provide an illustration of rotation. Fig 4.3.1 is a 

plot of the original principal component scores in the third and fourth 

dimensions for the problem above. Fig 4.3.2 is a plot of the principal 

component scores for the two perturbed dimensions when observation 19 is 

removed. On each plot we have labelled the same observations and also given 

are the angles between the two closest lines joining these points to the origin. 

Examination of these plots shows that the observations have stayed in the 

same relative positions to each other and hence the angles of 22° in Table 

4.3.9 for observation 19 are mostly caused by rotation. A statistic is proposed 

in § 4.3.3 for measuring to what extent such eigenvectors have rotated out of 

the subspace. 

We will now consider the differences in using the sample and empirical 

curves in Table 4.3.9. Observations 56 and 151 have the largest angles using 

the sample curve but do not appear in the top group on the empirical. The 

angles for observation 56 are close to 90° and this corresponds to the swop in 

the eigenvectors that was discussed in the previous section. The sample curve 

compares the original third eigenvector with the perturbed fourth eigenvector 
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Figure 4.3.1 Plot of the Original Principal Component Scores 
from the Third and Fourth Dimensions of the Covariance PCA of 

the Dataset on Turtles. 
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Figure 4.3.2 Plot of the Principal Component Scores in the Third 
and Fourth dimensions when Observation 19 is Omitted. 
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so we obtain large angles close to 90°. The empirical only looks at the change 

in the eigenvector defining that direction so we do not obtain large angles. 

The angles for observation 151 are not close to 90° and it does not appear in 

the top group of the empirical. This tends to occur when the perturbed 

eigenvalues are even closer than the original, here ij = 0.179 and i.; = 0.175, 

and so the sample curve is affected by the greater indeterminacy of the two 

perturbed eigenvectors. 

We will now consider the second dataset. In Table 4.3.7 the comparisons 

of the two curves are good for the first three dimensions but after that the two 

deviate. However, the deviations tend to be occurring for specific 

observations, namely observations 30 and 24. We will not discuss observation 

30 until § 3.8 where we will look at the form of the original and perturbed 

eigenvectors in detail. Omitting observation 24 causes the fifth eigenvalue, 

which was originally close to the fourth, to decrease and become very close to 

the sixth eigenvalue instead. We find that the fifth and sixth eigenvectors 

rotate, see § 4.8, due to close perturbed eigenvalues. Again, the theoretical 

does not reflect the large changes caused by the perturbed rather than the 

original eigenvalues being close. In Table 4.3.8 the largest angles using the 

sample curve tend to occur for observations 5, 29 and 30. In the previous 

section we noted that observations 5 and 29 caused a swop in the third and 

fourth eigenvalues when they were omitted so this accounts for their large 

angles. The original second dimension, like the fourth from the covariance 

matrix analysis, is a contrast of variables 3 and 7. When observation 30 is 

omitted the variance along that direction falls, and in the sample case the 

perturbed fifth eigenvector is similar to the original second with leading 

coefficients in :!3 and :!7. However, the theoretical does not record a swop, 

although it gives a large change in the second eigenvalue. See § 4.8 for 
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further details. 

In summary we find that the angles when using the sample or empirical 

curves are close in the first few dimensions where no swopping or rotation of 

the eigenvectors tends to happen. H one is only extracting the first few 

dimensions then one may not need to worry about such problems. However, 

in the correlation analysis for the Student dataset the eigenvalue from the 

second dimension decreases so much that by the 0.7 rule for retention of 

eigenvectors (Jolliffe, 1972) it would not be retained for inspection in the 

perturbed problem. We also find, see Section 4.8, that the second eigenvector 

changes its form so we can obtain problems in the early dimensions. The 

angles for the two curves tended to differ in two circumstances. The first is a 

swop in the eigenvectors. The empirical shows this has occurred by the 

changes in its eigenvalues but the sample reveals it in large angles, as it 

compares the original kth eigenvector with the perturbed (k +l)th eigenvector, 

when the kth and (k +l)th eigenvectors switch. Secondly, the two seem to 

differ when the perturbed eigenvalues are closer than the originals. Further 

comparisons of the two types of curves can be found in Jolliffe(1986, § 10.2) 

and Calder et. al. (1986). 

4.3.3. A Measure of Influence for the Eigenvectors When There is Rotation 

It is important to know if our eigenvectors are unsteady, due to close 

eigenvalues, since we usually interpret the sizes of their coefficients. However, 

it may be desirable to have some measure of influence that tells us to what 

extent the original subspace has changed, since it is possible that small 

angular changes may represent a larger change in the subspace than the big 

angular changes caused by rotation of the eigenvectors in a relatively 

unchanged subspace. The theoretical influence function can be used to give a 

measure of influence that shows to what extent an eigenvector has rotated out 
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of the original subspace. 

We will use the theoretical influence function for the covariance matrix 

eigenvectors in the illustration, but exactly the same reasoning holds for 

eigenvectors from the correlation matrix. We will first consider the case of two 

close eigenvalues. The perturbed eigenvector from the covariance matrix, to 

O(E), from (3.8.2) can be written as, 

(4.3.1) 

If ~k and ~k+l are close then from (4.3.1) we can see that we obtain large and 

nearly equal changes (and so angles) in the corresponding eigenvectors as the 

term in (~k - ~k+1)-l will dominate both their influence functions. We can 

write, to 0 (E), 

- -1 ~ = ~ + E(~k - ~k+l) ZkZk+1~+l + E"'1 

~+1 = ~+1 - E(~k - ~k+1)-IZkZk+la1 + £"'1+1 

where, 

The terms E'I'k and E'I'k+1 represent the extent to which the kth and (k +l)th 

eigenvectors respectively have rotated out of the original subspace generated 

by their close eigenvalues. The first two terms represent the rotation within 

the original subspace as ~ and ak +1 fonn a basis for the original subspace and 

a linear combination of these eigenvectors is still in the space. We can use the 

sums of squares of the elements in "'1 and 'l'k+l as our scalar measures of 

influence for the two eigenvectors when we substitute in the sample 

equivalents and divide by (n -1)2. We will refer to these measures as ERk 

where, 
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(4.3.2) 

This idea extends easily to higher dimensional subspaces, we merely need 

to omit terms from (4.3.1) when the eigenvalues differ by less than some 

preassigned value, for example 0.05. This can lead to one eigenvector being 

included in two different subspaces because of fairly close eigenvalues either 

side of it, but these eigenvalues on either side differ by more than the 

preassigned value. It is preferable for the value chosen to cover all 

eigenvalues in a set so we do not have overlapping subspaces. It is possible 

for eigenvectors to be steady when there are a number of close eigenvalues, as 

if there are number of large terms in ()'j - A1)-1 they can cancel each other 

out. This could result, say, in a stable last dimension that reflects a high 

correlation. Noting that the influence function for the correlation 

eigenvectors from (3.8.6) can be written as, 

we see that exactly the same argument applies to the correlation eigenvectors. 

Another possible way of seeing whether the eigenvectors have rotated out of 

the. subspace may be to subtract the two original angles, since rotation should 

lead to equal angular changes in the two eigenvectors. However, this assumes 

that it is only the eigenvector with the larger angular change that has rotated 

out, which may not be true. We will look at an example using measure 

(4.3.2) for the Turtle dataset on the third and fourth dimensions from the 

correlation matrix. Table (4.3.10) gives the values of ER3 and ER4 compared 

to the original sums of squares of the influences gIven by 

1 2 E1C (x ,Cl3)'EIC(x ,Cl3) and 1 EIC(x ,Cl4)'EIC(x ,Cl4). We refer to 
(n -1) ~ - ~ - (n _1)2 ~ - - -

these measures of influence in the table as SSE. This table shows how much 
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Table 4.3.10 
Comparison of Inft uence Measures When We Have Rotation 

Obsn. Measure ~ Q4 

119 SSE 0.1278 0.1286 
ER 0.0008 0.0008 

141 SSE 0.1462 0.1463 
ER 0.0001 0.0002 

19 SSE 0.1469 0.1471 
ER 0.0003 0.0002 

121 SSE 0.0736 0.0734 
ER 0.0006 0.0003 

104 SSE 0.0274 0.0257 
ER 0.0001 0.0009 
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the large angles in the third and founh dimensions are caused hy the one tenn 

in (~l - ~ .. ) I from thc cmpirical inOucnce functions. In this example all the 

inOuenccs have t1(Xome small indicating there is prohahly little change in the 

eigenvectors other than from their rotation in the subspace. However, we can 

see that observation 104 had the smallest influences for SSE) and SSE 4 but has 

the largest influence in the Table for ER 4. 

~A. using Second Order Term."i 

Since the estimated change IS hased on the asymptotic theoretical 

influence function, as n becomes smaller so our estimate becomes less 

accurate. To improve it one could use the second order terms from 

(4.4.1) 

and similarly for the eigenvectors. The second order terms for the covariance 

eigenvalues and eigenvectors are 

( 4.4.2) 

(4.4.3) 

see Critchley (1985). We could thus take as an estimate of the change in the 

k th eigenvalue when an observation is removed 

r:~(~ • At) = n ~ I (- At + z/) + (n ~ 1 )~ (z.' + Z.',t Z/('-, - '-.>-,] 
J ~t 

(4.4.4) 

Note that the second order term is included with reversed sign. When we 

form the deleted sample curve we take f. = -1/ (n -1) and subtract the 
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perturhed parameter from the original which maintains the sign of the 

empirical curve when used for addition or deletion of points. Suhstituting 

t = - I I (II - I) into (4.4.1) and suhtracting from the original eigenvalue we 

ohtain as our estimate 

• 1· 1 £ = --c - c (4 4 5) n-l I 2(n-l)2 2 •• 

where C I is (3.8.1) and C2 is (4.4.2) with the sample equivalents suhstituted 

in. If we were considering the addition of points the sign of the second order 

term would be maintained. It was found that (4.4.4) did not give better 

estimates of the sample change in the eigenValues when we omit an 

observation than our previous estimate (4.2.2), which was the first order term 

with adjusted functions of n. However, some contour plots of the sample 

influence function (not given here) show~ that while the contours tended to 

the straight lines of the theoretical contours quite quickly as n increased, for 

small n they were slightly bent indicating that some quadratic terms would be 

appropriate. We find that these second order terms do help to increase the 

accuracy of our estimated change in the eigenvalues when we again adjust our 

functions on n. 

Note that the eigenvalues in (4.4.3) are the eigenvalues from the matrix 

O=(nl(n-l»S, so we need to substitute in (n/(n-l»).j to get the 

eigenvalues from s. This will affect some of the arguments in this Section. In 
-

particular, substituting 0 = (n / (n -1»S for L in (4.4.6) and x for ~ and taking 

£ = 1 I(n +1) will give expression (2.2.1) since (4.4.6) is exact to 0(£2), as higher 

tenns in £ are zero. This would lead to the appropriate functions of n for the 

addition of an observation. In deletion of an observation one can use 

expression (6) of Critchley (1985) to obtain more accurate results when using 

our second order tenns, without considering adjustments to the functions of n. 

However, the conclusions from the original text below are similar to what 

would have heen ohtained had the ahove been used. 
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First we will reconsider our justification of the functions of n in (4.2.2). 

We have to o(t.), 

and from (2.2.4) 

S (-i) = (I + _I_]S - n (x- - D~ - x )' 
n-2 (n-l}(n-2) =.J -

In the proof for TlCv(~ ,)..d, in § 3.6.1, we see that the -)..t term in the 

influence function com<...~ from -2: in TlC(~ ,2:), and the z/ term from the 

(:! - ~)~ - ~)'. Since we would ohtain the same empirical expres..~ion if we 

considered the a~ymptotic sample result from using S (-i) rather than L we 
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Ita vc takcn 

where £1 =-1 I (n - 2) and £2 = - n . Our usual theoretical proof follows 
(n-l)(n-2) 

through in the same way as before since £1 and £2 are of the same order, and 

results in expression (4.2.2). This modification was found to improve our 

estimate. When we include the second order term we find 

(4.4.6) 

see Critchley (1985). Taking £ = -1/ (II -\) and substituting in the sample 

equivalents into (4.4.4) we obtain as an estimate of the perturbed sample 

covariance matrix 

• 1 n 
S = (I + --)S - (x· - X )f..t"j - x)' 

n + 1 (n _1)2'6 . - ~ -

which is a less accurate estimate of the' change in the sample covariance 

matrix than when we just used the first order term with modifications. We 

can write the perturbed sample covariance matrix 

S(-i) = (1 + _1_)S - _1_~ -x)~ - x)' - 1 (x - x)~ - x)' 
n-2 n-2 - - (n-l)(n-2)::J - -

(4.4.7) 

So re-expressing (4.4.6) as 

and following through the derivation of the second order terms with these 

different epsilon terms and substituting fl = f2 = 1 I(n -2) and 

f) = 1 I(n -1)(n -2) which are taken from the functions of n in (4.4.7) we 

arrive at the estimate, 

. ., 
E• = _ ~ + ___ n __ ·" It.t:.~ i2{~ _ ~.)-I lk· + ., ~ ) I a 

- n - 2 (n - 1 )( n - 2) (n - 2)' J::I 
J ~A 

The justification for the above approach IS the greater accuracy of the 
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estimate when compared against the actual sample changes in the eigenvalues. 

No such modifications seemed necessary for the covariance eigenvectors. 

We thus take as our improved estimate the first and second order terms with 

sample equivalents substituted in. Again the sign of the second order term for 

deletion of observations from the dataset needs to be reversed. The use of the 

second order terms for the eigenvectors did improve the accuracy of the 

estimated angle. However, for the Student dataset, discussed in § 4.3.1 and § 

4.3.2, we find that the theoretical seems to break down when using second 

order terms when observation 30 was omitted. The theoretical gives an 

argument out of the range of the cosine, this was the only example where this 

was seen to occur. We noted in § 4.3.1 that the empirical had problems when 

this observation was removed even when just the first order term was used. 

Tables 4.4.1 and 4.4.2 give comparisons for the Student dataset where n =33, 

of the actual sample change and the estimated change in the eigenvalues and 

eigenvectors when the second order terms are used. These should be 

compared with Tables 4.3.3 and 4.3.7 respectively which are comparisons for 

the first order term. We see the second order terms have improved the 

estimate although not for observation 30 on the eigenvectors as discussed 

above. We still have the same disagreements due to swops and rotations 

though. In other datasets where we had less of these problems the comparisons 

were better. 

The use of second order terms does not really seem to be worth the extra 

computational time, particularly for the eigenvectors where there are several 

parts to the second order term, as it is possible in some circumstances that the 

actual sample change may not take much longer to calculate. This would be 

particularly true for the correlation eigenvalues and eigenvectors whose first 

order terms were quite complicated. It is for this reason that the second order 
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Comparisons of Actual Sample Change and Emmated Change using Second 

Order Terms for the Student Dataset. 

Table 4.4.1 
Comparisons for the Covariance Eigenvalues 

A.k = 35.31 2.78 1.41 0.86 0.68 0.38 0.25 
Obs. (19) (25) (31) (30) (24) (27) (30) 

Actual 6.40 0.42 0.25 0.14 0.27 0.06 0.16 
Estimated 6.40 0.42 0.26 0.44 0.37 0.06 0.03 

Obs. (10) (8) (8) (29) (30) (30) (18) 
Actual 2.60 0.40 0.06 0.05 0.27 0.06 0.09 

Estimated 2.60 0.42 0.05 0.07 0.17 -0.00 0.09 
Obs. (26) (30) (24) (2) (17) (5) (19) 

Actual 1.57 0.29 0.06 -0.03 0.07 0.05 0.05 
Estimated 1.57 0.28 0.05 -0.03 0.07 0.05 0.05 

Table 4.4.2 
Comparisons for the Angles Between Perturbed and Original Eigenvectors 

Angle 61 62 63 64 65 66 67 

Obs. (19) (30) (24) (30) (30) (30) (30) 
Actual 1.74° 13.96° 13.81 ° 65.88° 80.56° 69.36° 52.58° 

Estimated 1.670 15.37° 14.820 - - 16.54° 21.19° 
Obs. (24) (8) (31) (29) (24) (24) (24) 

Actual 1.51° 11.55° 13.11° 26.95° 65.92° 64.43° 26.96° 
Estimated 1.510 10.99° 12.25° 33.67° 25.69° 10.19° 10.00° 

Obs. (10) (31) (8) (24) (29) (27) (27) 
Actual 1.490 9.09° 12.06° 16.09° 27.80° 16.98° 16.10° 

Estimated 1.48° 9.45° 11.29° 11.07° 33.68° 12.54° 11.12° 
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terms for the correlation matrix have not been derived. In Otapter 7 we will 

discuss what type of curve may be preferable to use in certain circumstances 

which, takes into account the computation times. 

4.5. Multiple Case Deletion 

In § 3.9 we found from the theoretical influence function that the affect 

of deleting m observations was to sum the influences when each observation 

was removed individually. We will now give examples using the Turtle and 

Student datasets for the covariance and correlation matrix eigenvalues. We 

will consider the deletion of five observations for the Turtle dataset and two 

for the Student dataset which has a smaller sample size. We noted in § 3.9 

that additivity of influence in samples is only likely to hold if m is small 

compared to the total sample size. The observations that we delete are those 

that were most influential on the largest eigenvalue when omitted 

individually. In Tables 4.5.1 to 4.5.4 we have written the individual sample 

changes in the eigenvalues when each point is omitted, these are then 

summed, and the sample change when all are omitted together is given 

underneath. The sums are actually calculated to greater accuracy than the 

two decimal points given in the tables for the individual changes. We can see 

the additive property is well supported in practice (however, we are not saying 

it is an exact relationship as it is only based on a first order approximation). 

In Table 4.5.4. we have examples, on the first two eigenvalues, showing the 

cancelling out of influence due to the different signs of the individual 

influences. 
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Comparisons of Summed Individual Sample Influences with Influence when 

Five Observations are Omitted Together from the Turtle Dataset 

Table 4.5.1 
Comparisons for the Covariance Eigenvalues 

Obs kl k2 k3 k4 k5 
143 6360.46 6.19 -0.31 -0.10 1.20 
121 5714.93 3.23 0.30 -0.09 -0.08 
61 2936.10 -0.89 0.45 -0.16 0.60 
34 2926.98 1.18 -0.31 -0.18 -0.05 

155 1687.17 -0.41 -0.31 -0.15 -0.05 
Sum of 19625.64 9.30 -0.18 -0.68 1.62 

Individual 
Block 20349.56 11.74 -0.13 -0.71 1.53 

Deletion 

Table 4.5.2 
Comparisons for the Correlation Eigenval ues 

Obs kl k2 k3 k4 k5 

151 -0.05 0.04 0.01 -0.00 -0.00 
135 0.02 -0.01 -0.00 -0.00 -0.00 
155 0.02 -0.01 -0.00 -0.00 -0.00 
72 -0.02 0.02 -0.00 0.00 -0.00 

101 0.02 -0.01 -0.00 -0.00 -0.00 
Sum of -0.01 0.03 -0.01 -0.01 -0.01 

Individual 
Block -0.01 0.03 -0.01 -0.01 -0.01 

Deletion 
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Comparisons of Summed Individual Sample Influences with Influence when 
Two Observations are Omitted Together from the Student Dataset 

Table 4.5.3 
Comparisons for the Covariance Eigenvalues 

Obs A.l A.2 A.3 A.4 A.,S A.6 A.7 
19 6.40 -0.08 -0.00 -0.03 -0.01 -0.01 0.05 
10 2.60 -0.01 0.03 0.01 -0.02 -0.01 -0.01 

Sum of 9.00 -0.09 0.03 -0.02 -0.03 -0.02 0.04 
Individual 

Block 8.96 -0.10 0.05 -0.03 -0.03 -0.03 0.05 
Deletion 

Table 4.5.4 
Comparisons for the Correlation Eigenvalues 

Obs A.l A.2 A.3 A.4 A.,S A.6 A.7 

30 -0.58 0.46 -0.00 0.02 0.10 -0.00 0.01 
10 0.12 -0.05 -0.02 -0.02 -0.02 -0.00 -0.00 

Sum of -0.46 0.41 -0.02 0.00 0.08 -0.00 0.01 
Individual 

Block -0.48 0.42 -0.03 0.01 0.08 -0.01 0.01 
Deletion 
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4.6. Simulated Critical Values for the Percentage Change in an F.Jgenvalue 

To decide whether an observation is 'highly influential' we can rank the 

influences on a particular parameter and look at the gaps separating 

successive values. This is called the gap test, it is a very useful but subjective 

test for assessing the influence of observations. In this section we shall 

investigate the 5% simulated critical values for the largest percentage change 

in an eigenvalue for multivariate normal data. Both the sample and empirical 

influences will be considered and for both the covariance and correlation 

eigenvalues. Two types of simulation studies have been done. The first 

involved the generation of 1000 multivariate normal datasets from the same 

covariance (or correlation matrix) as an existing real dataset and for the same 

sample size. The largest absolute influence (which is the same as the largest 

non-absolute influences for the covariance matrix as the largest influences 

always occur for those observations which decrease the eigenvalue when they 

are omitted) from each simulated dataset is stored and the critical values 

formed from the resulting 1000 values. Some of these simulations are used in 

the final sections of this chapter. For the second simulation study, which we 

will concentrate on in this section, we generate a covariance matrix with a 

given set of eigenvalues and then simulate from this matrix 1,500 datasets for 

a given value of n. The critical values are then formed as above. This was 

also done for the correlation eigenvalues using the routine by Lin and Bendel 

(1985) to generate a correlation matrix from a given set of eigenvalues. Since 

we can combine any p eigenValUes together for the covariance matrix 

simulations it is easy to investigate the critical values for a variety of 

situations. It is more restrictive for the correlation eigenvalues since we need 

p 

to satisfy L Al = P • 
1=1 



- 115 -

We will consider the simulated critical values for the covariance 

eigenvalues first. Tables 4.6.1 and 4.6.2 give the simulated critical values for 

the sample and empirical influences respectively for n = 150 and p =4,5 and 6. 

The eigenvalues of each of the covariance matrices simulated from are 

specified by the columns that the critical values are entered in; and so the 

number of dimensions p is given by the number of entries in a given row. For 

examples involving the same p the same N(O,l)s were used to generate the 

datasets which will aid our comparisons of the critical values for different 

matrices. Two rows for p =5 in Tables 4.6.1 and 4.6.2 give the critical values, 

which are identical, for the same set of eigenvalues but from different 

covariance matrices. This shows the individual entries of the covariance 

matrices are not important in determining the critical values. The critical 

values for all the eigenvalues from a given covariance matrix are about equal, 

this means that we can expect the same percentage change in all the 

eigenvalues irrespective of their original sizes. Another example of this is 

given by the simulations from the same covariance matrix as that for the 

Turtle dataset. This matrix has a dominant eigenvalue Xl = 101845.62 

compared to ~5 = 13.27 and the sample 5% critical values for these two 

eigenvalues are 7.28% and 7.39% respectively. There is a tendency for the 

sample critical values on the smaller eigenvalues to be slightly larger. This is 

not so for the empirical (although generally the critical values are similar to 

the sample ones). This may occur due to the terms in the second order 

expression for the eigenvalues that involve (Xj - Xk ) -1, see (4.4.2), which will 

be large for the small eigenvalues which are usually closer together. Also from 

Tables 4.6.1 and 4.6.2 we see that the critical values change little over the 

different combinations of eigenvalue used to form the covariance matrices, 

and for the different values of p. There does seem to be a tendency for a 
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Table 4.6.1 
Sample 5% Critical Values for Covariance Eigenvalues 

).- 1000 200 35 20 10 9 5 3 2 
C V 7.72 7.78 7.53 7.96 
R A 7.75 7.76 7.51 7.88 
I L 7.74 7.80 7.52 7.87 
T U 7.73 7.82 7.49 7.87 
I E 7.66 7.54 7.84 7.83 8.19 
C S 7.66 7.54 7.84 7.83 8.19 
A 7.66 7.59 7.83 7.83 8.19 
L 7.73 7.56 7.80 7.83 8.18 

7.65 7.67 7.84 7.75 8.16 
7.66 7.66 7.82 7.76 8.14 

7.82 7.50 7.93 7.73 8.08 
7.80 7.71 7.88 7.73 8.07 

7.71 7.70 7.64 7.91 7.67 8.31 

Table 4.6.2 
Empirical 5% Critical Values for Covariance Eigenvalues 

).= 1000 200 35 20 10 9 5 3 2 

C V 7.80 7.83 7.55 7.62 
R A 7.80 7.73 7.53 7.60 
I L 7.81 7.79 7.53 7.63 
T U 7.74 7.77 7.55 7.63 
I E 7.74 7.58 7.79 7.80 7.72 
C S 7.74 7.58 7.79 7.80 7.72 
A 7.71 7.61 7.78 7.79 7.71 
L 7.80 7.58 7.80 7.80 7.72 

7.77 7.59 7.73 7.82 7.76 
7.77 7.66 7.72 7.80 7.77 

7.83 7.60 7.76 7.77 7.78 
7.80 7.65 7.79 7.72 7.76 

7.87 7.73 7.63 7.78 7.46 7.87 
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Table 4.6.3 
Sample 5% Critical Values for a Fixed Set of Eigenvalues 

and Varying n 

n\~ 1000 200 35 3 2 
50 18.32 19.65 19.52 18.51 20.84 

100 10.58 10.70 11.14 10.93 11.33 
150 7.80 7.71 7.88 7.73 8.07 
200 5.90 6.07 6.12 6.06 6.28 

Table 4.6.4 
Empirical 5% Critical Values for a Fixed Set of Eigenvalues 

and Varying n 

n\~ 1000 200 35 3 2 
50 18.48 19.16 18.69 18.94 18.23 

100 10.61 10.54 10.95 10.92 10.73 
150 7.81 7.65 7.79 7.72 7.76 
200 5.91 6.03 6.04 6.07 6.03 



- 118 -

critical value to increase as the eigenvalue moves down in its ranked position, 

but there are exceptions. The steadiness of the critical values over the 

eigenvalues in a given dataset is very useful in assessing influences in the 

dataset. It also provides a very useful way of forming one influence statistic 

for a number of dimensions if one did not want to look at all the dimensions 

separately. Perhaps the best measure would be the maximum percentage 

change in any eigenvalue (or for those eigenvalues one is interested in) when 

we omit an observation. If one forms an average, say, one can overlook an 

observation that is highly influential on one eigenvalue only. 

All the critical values in the above Tables have been based on the same 

value of n and we have seen that the critical values are steady over variations 

of other factors. In Tables 4.6.3 and 4.6.4 we have for the sample and 

empirical curves respectively the changes in the critical levels as we vary n for 

a covariance matrix with eigenvalues 1000,200,35,3 and 2. The critical values 

for another example examined, but not presented here, were very similar. 

When we go from n =50 to n = 100 the critical values decrease by a little under 

1/2. We would expect this to be roughly so, as we form an estimate from the 

empirical by dividing by (n-l), although we did consider modifications for the 

covariance eigenvalues but these were still to 0 (lin). A rough guide to the 

critical values for the percentage change in the eigenvalues would seem to be 

1000/(n -1) %, i.e. a proportional change of 10/(n -1) in any eigenvalue. 

Tables 4.6.5 and 4.6.6 give the simulated 5% critical values for the 

percentage (absolute) change in the correlation eigenvalues for the sample 

and empirical respectively. For a given set of eigenvalues from the same 

correlation matrix the critical values are not steady over the different 

eigenvalues as they were for the covariance eigenvalues. The critical values 

increase as the eigenvalues decrease. We also find that the critical values for 



- 119 -

Table 4.6.5 
Sample 5% Critical Values for Correlation Eigenvalues 

" 

A- 4.39 3.0 2.5 2.0 1.5 1.0 0.8 0.5 0.3 0.2 0.1 0.01 
C V 2.04 10.73 11.89 
R A 3.81 4.85 9.79 
I L 4.34 6.40 8.49 10.46 
T U 4.32 6.31 8.61 10.55 
I E 2.96 5.69 10.42 11.04 
C S 5.42 5.97 8.07 10.60 10.75 
A 3.47 4.79 9.70 10.84 11.67 
L 4.61 6.35 7.17 10.68 11.27 

1.50 10.84 11.57 12.52 12.92 
4.07 7.42 9.69 11.18 11.19 

4.50 6.25 8.84 10.57 11.20 
6.11 7.26 7.97 9.65 10.35 12.06 

2.56 7.64 10.31 11.67 12.10 12.33 

Table 4.6.6 
Empirical 5% Critical Values for Correlation Eigenvalues 
" A= 4.39 3.0 2.5 2.0 1.5 1.0 0.8 0.5 0.3 0.2 0.1 0.01 

C V 1.83 9.89 10.65 
R A 3.73 4.41 8.91 
I L 4.06 6.07 7.52 9.84 
T U 4.07 5.85 7.67 9.79 
I E 2.76 5.12 9.55 10.14 
C S 5.29 5.68 7.38 9.73 9.90 
A 3.33 4.42 9.26 10.06 10.37 
L 4.57 5.89 6.61 10.15 10.25 

1.33 10.19 10.73 11.51 11.61 
3.76 7.01 9.00 10.37 10.15 

4.23 6.13 8.17 9.60 10.29 
5.74 6.98 7.21 9.29 9.89 10.66 

2.34 6.98 10.23 10.75 11.18 11.30 
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the absolute change, rather than the percentage change, increase as the 

eigenvalues increase. No divisor in ~I,r = 0, ... 1, was found to give critical 

levels that were constant over the different eigenvalues. This also follows from 

Table 4.6.5 as the critical values for a given eigenvalue vary, even when p is 

fixed. See for example, ~ = 1.5 for p = 5. The critical values for the smallest 

eigenvalues tend to increase when other eigenvalues are close to them, but the 

largest eigenvalues tend to get larger critical values when the other 

eigenvalues are further away. 

As p increases the critical value for a given eigenvalue increases, see for 

example, the column for A = 2.5. As p decreases the percentage of variance, 

A / p, accounted for by that eigenvalue increases. This means that a larger 

proportion of the data may be confirming this direction, so omitting one point 

may have less affect. Comparing the critical values for p = 3 and p = 6 we see 

that as the eigenvalues decrease the steadier the critical values are over p. 

There is a three-fold increase in the critical value from p = 3 and p = 6 for 

~ = 2.5, a doubling for ~ = 1.5, but the critical values for the smallest remain 

steady or possibly even decrease as p increases. 

The sample and empirical critical values follow the same pattern but the 

empirical values are smaller. 
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4.7. Influence in a Dataset of Rock-Chip Samples 

In this example we shall specifically be examining the differences and 

similarities of outliers and influential obselVations. We shall also consider 

whether the detection of influential obselVations on the individual correlation 

coefficients has much bearing on what is influential in the principal 

component analysis of this correlation matrix. This dataset consists of 12 

variables which are recordings of the trace elements present in 75 rock chip 

samples. The data have been standardised, so we will only be considering the 

principal components from the correlation matrix. The data is published in 

Hawkins and Fatti (1984) and Table 4.7.1 gives the observations in the 

dataset found to be outliers by Hawkins and Fatti, using three types of 

measures. The first measure was just the original standardised variables, the 

second was the principal component scores computed from the D matrix, 

which has the eigenvectors standardised by their variances, and the third 

measure consisted of the scores computed from a varimax rotation of this D 

matrix. Hawkins and Fatti's criterion for an obselVation to be an outlier was 

that at least one of the twelve variables/components had an absolute value 

greater than 3.34, which corresponded to an overall Bonferroni significance 

level of 1 % for the twelve variables/scores. This testing was done by assuming 

normality. The Mahalanobis distance, which was used in § 2.3.3, has a 

special form when we have multivariate normal data. It can be written in 

terms of the difference in the log-likelihoods for the full dataset and for the 

dataset with the i th observation omitted, when the true form of the covariance 

matrix is known, and as the ratio of the two log-likelihoods if the covariance 

matrix is not known. Fig. 4.7.1 is a plot of the Mahalanobis distances against 

observation number, and we see that all the observations in Table 4.7.1 have 

large Mahalanobis distances, except perhaps for observation 25 which was 
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Table 4.7.1 

Observations Found to be Outliers by Hawkins and Fatti and 

the Techniques that Found them as Outliers 
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only highlighted by the vanmax procedure. Critical values for the 

Mahalanobis distance only exist up to p = 5 so we will examine such plots 

informly when discussing our datasets rather than performing any formal test. 

We will first analyse this dataset as if we were carrying out a principal 

component analysis with the aim to reduce the dimensionality of the problem. 

Using the 0.7 rule of Jolliffe (1972) we would retain the first three dimensions 

which account for 83% of the total variance. One question of interest is to 

what extent are the outliers found by Hawkins and Fatti, which are found to 

be outlying on the minor principal components, influential on our principal 

component analysis when we are only extracting the first three dimensions. 

We discussed in § 3.8.2 that as).J: decreases its influence, as revealed by the 

theoretical expressions, becomes dominated by its own score zJ:, but since the 

eigenvalues sum to p it is possible that these outliers with large (minor) scores 

will be influential on the early components. However, as ).k becomes smaller 

so do the component scores, Zki' so although the change may be large 

compared to).J: it may not be large compared to the earlier eigenvalues. 

Table 4.7.2 gives the three most influential observations on the first three 

and last two eigenvalues and eigenvectors. To the left of the observation 

number we have its ranked position on the principal scores in that direction. 

On the right we have the sample influence which is recorded as the percentage 

change in the eigenvalues and the angle between the original and perturbed 

eigenvector. Using an informal gap test one could conclude observation 32 

was influential but it only leads to a perturbed second eigenvalue of 1.36 

which seems reasonably unimportant (however, we noted in our simulation 

results of § 4.6 that we would expect smaller percentage changes in the early 

components). Observation 21 causes X3 to change by more than 10% and the 

perturbed eigenvalue is, X3 = 0.703, so it has nearly fallen below the 0.7 rule 
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Table 4.7.2 

~l = 7.86 ~2 = 1.29 X3 = 0.8 
ranked Obsn. Sam. ranked Obsn. Sam. ranked Obsn. Sam. 

PC score Inft. PC score Infl. PC score Infl. 
2 24 1.5% 20 32 -5.6% 1 21 12% 

53 55 -1.2% 2 52 3.2% 2 22 9.3% 
71 1 1.1% 1 33 3.2% 3 23 7.7% 

~l !!l a3 
ranked Obsn. Sam. ranked Obsn. Sam. ranked Obsn. Sam. 

PC score 
1 
4 

53 

Inft. PC score 
32 1.20 22 
46 0.90 29 
55 0.90 1 

~1l = 0.06 
ranked Obsn. Sam. 

PC score Inft. 
1 16 39.4% 
2 37 24.7% 
3 35 20.5% 

all 
ranked Obsn. Sam. 

PC score Inft. 
2 37 31.30 

18 67 28.50 

3 35 24.80 

Infl. PC score 
26 5.10 3 
23 4.30 5 
35 4.30 1 

Xll = 0.03 
ranked Obsn. Sam. 

PC score Inft. 
2 9 11.8% 
1 43 11.6% 
6 1 9.7% 

all 
ranked Obsn. Sam. 

PC score Inft. 
6 1 7.650 

40 35 5.230 

26 67 4.930 

Inft. 
23 8.90 

1 8.90 
21 8.90 

.' , 
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used above for the retention of componentc;. Comparing the change in ).3 

when observation 21 is omitted against simulated critical values, obtained by 

simulating nonnal data from the same correlation matrix and the same sample 

size as this dataset, we find observation 21 is just influential at the 5 % level. 

Thus, the only influential observation on all of the first three eigenvalues is 

not included in the list of outliers found by Hawkins and Fatti. However, we 

do find that the score for observation 21 on the third axis for the second 

outlier technique is 3.19 (compared to the level 3.34 which it was tested 

against) which was higher than any of the scores on this technique for 

observations 25 and 41 which were found to be outliers with the varimax 

approach. However, observation 41, and less so observation 25, do come 

close to the top ranked scores on several dimensions rather than just one like 

observation 21. The most influential observations on the second and third 

eigenvectors are not among the list of outliers in Table 4.7.1. Observation 

(outlier) 32 is at the top of ranked influences on ~l but an angle of 10 will not 

make the eigenvector change in appearance. A question of interest is just 

what does a 50 or 90 change look like in an eigenvector, as given by 

observation 26 on ~ and 23 on ~3 respectively. These are given in Table 

4.7.3 and we see that neither of these angles leads us to change our 

interpretation of the eigenvector. We do usually find that eigenvectors 

corresponding to large well separated eigenvalUes, for example the first 

eigenvector from highly correlated data, are stable as most of the data tend to 

be supporting its direction. However, this is not true for the second 

eigenvector from the correlation principal component analysis of the Student 

dataset that we will discuss in § 4.8 and first mentioned in § 4.3.2. 

Observations 26 and 23 would not be classed as 'highly influential' when 

using the gap test, and since our interpretation of the relevant eigenvectors 

.' I 
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Table 4.7.3 

5%chan.se 9% chan.se 
!!l ~ ~ ~ 

(26 deleted) (23 deleted) 
-0.13 -0.16 -0.40 -0.43 
-0.17 -0.18 -0.14 -0.20 
0.28 0.29 0.05 0.06 
0.37 0.39 0.24 0.22 
0.05 0.04 -0.25 -0.19 
0.02 0.04 0.38 0.31 

-0.47 -0.42 0.48 0.53 
-0.21 -0.22 -0.06 -0.05 
-0.18 -0.13 0.38 0.41 
-0.14 -0.15 -0.22 -0.19 
-0.00 -0.03 -0.32 -0.31 
0.65 0.66 0.12 0.06 

Table 4.7.4 

Obsn. 16 37 35 67 
deleted 

X11 0.035 0.044 0.046 0.055 

an 0.71 0.50 0.52 0.60 
-0.42 -0.20 -0.54 -0.57 
-0.00 -0.00 -0.03 -0.08 
0.12 0.07 0.11 0.24 
0.01 0.09 0.00 0.06 
0.05 -0.13 -0.08 0.11 
0.09 0.11 -0.02 0.01 
0.14 0.15 0.52 0.23 
0.01 0.14 0.02 -0.09 

-0.51 -0.78 -0.31 -0.17 
-0.11 0.14 -0.22 -0.33 
-0.07 -0.01 -0.04 -0.20 

, , 

~; 
~' 
.~ 
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has not changed we will ignore their affects. 

Although they were not found to be 'highly influential' (by the use of the 

gap test or simulated critical values) out of the nine outliers found by 

Hawkins and Fatti four appear in the top three rankings for the first three 

eigenvalues and eigenvectors. This is despite the low component scores most 

of these have in these dimensions. This may be due to their large affects in 

the other dimensions since we need to maintain the sum f i1 = p and the 
1=1 

orthogonality of the eigenvectors. 

Using the simulated critical values, as discussed earlier, we find the 

following observations are influential on the latter eigenvalues, 

~I> ... . .. ~Q ~tO ~" 
55* 35* 67* 16· 
32* 32· 1· 37 

35 

(this is after we have taken into account the swops in ~6 and ).7 when 

observations 55 and 32 are omitted, individually). The· means that the 

observation was also found to be an outlying along this direction by Hawkins 

and Fatti when using the component scores calculated from the D matrix. 

Observations 37 and 35 were not found to be outlying using the 11 th 

eigenvector from the D matrix but they did have large scores for it. This 

supports the theoretical result that as ).1 decreases its influence is dominated 

by its own score. The only two observations that were classed as outliers that 

have not come out as influential on some eigenvalue are 25 and 41 which 

were detected by the varimax procedure only. Observation 41 does come out 

in the top three ranked influences on the fourth, seventh, eighth and ninth 

eigenvectors and this may be due to the number of large (but not largest) 

component scores it had. This was seen to be important in the covariance 
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eigenvectors from the theoretical influence function (3.8.2) where 

observations with just one large score would not be so influential on the 

eigenvectors. We could not actually show this for the correlation eigenvectors 

but we did note that one of the terms in the theoretical influence function for 

the eigenvectors was. the same as the function for the covariance eigenvectors. 

Observations 25 and 41 are the second and third most influential obselVations 

on i8 with changes of 9% and 7.5% respectively. However, the most 

influential on i8 is observation 39 with 12.7% and this was not included in 

Hawkins and Fatti's list of outliers. 

We saw in § 4.4.2 that when the eigenvalues are closer together, which 

often occurs when they are small, we can get very large changes in the 

eigenvectors, so we n~ to be careful about our interpretations. However, 

when eigenvalues are small we may wish to examine the eigenvectors since 

they define near-constant relationships among the variables. However, if we 

have many close eigenvalues we may not obtain large angles as the large 

contributions to the influence functions can cancel each other out. This could 

occur in this dataset since the smallest three eigenvalues are 0.08, 0.06 and 

0.03. From Table 4.7.2 we can see the angular changes for ~12 are fairly 

small. Since they define nearly constant relationships, variables with large 

coefficients in the latter eigenvectors will often have large correlations with 

each other. We would thus expect that obselVations that undennine or 

enhance these correlations should be influential on the relevant eigenvalues 

and eigenvectors. This appears to be supported by the theoretical influence 

function for the correlation eigenvalues which is 

p 

TIeR ~ ,).1) = L aljTIC ~ ,Pit )aJ:r , (4.7.1) 
J=l 
j*t 

since if alj and alt are large then the changes in Pit will be given a lot of 
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weight in the influence function. The influence function for the correlation 

eigenvectors can also be written in terms of the influence function for the 

bivariate correlation, see(3.8.8), but the coefficients multiplying it are from 

different eigenvectors and there are other complicated terms in the influence 

function. Hence, it is not immediate that observations affecting the large 

correlations will also be the most influential on the eigenvectors defining the 

near constant relationships. Below, where we consider the sample changes, we 

will see that it can be difficult to understand influence in principal component 

analysis through influence on the correlations in R, although there are 

obviously strong links between the two. 

The last two eigenvectors are given below and the most influential 

observations on the eigenvectors and corresponding eigenvalues are given in 

Table 4.7.2. 
.. 

~ll ~12 

0.65 -0.01 
-0.49 0.03 
0.07 0.70 
0.11 -0.67 
0.03 -0.01 

-0.01 0.18 
0.06 0.00 
0.22 -0.02 
0.06 -0.03 

-0.50 -0.09 
0.10 -0.14 
0.07 0.05 

The last eigenvector has large coefficients in X3 and x" and the correlation 

r34 = 0.94. No observation could have undermined this correlation by much 

and from the low influences it appears the high correlation was not due to one 

discrepant value. We will confine our attention to the 11 th dimension which is 

more interesting. 

Using simulated critical values, or the gap test, since the fourth largest 

influence is 4.6%, we would find all three observations on ill as influential. 
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Since the fourth largest angle of change is 13.5 0 we may also pick out the top 

three influences on the eigenvector as well. We can see from Table 4.7.2 that 

observations 37 and 35 come out on both the eigenvalue and eigenvector but 

not observations 16 and 67. Eigenvector ~1l is a contrast of variable x _ I 

against X2 and XIO. When observation 16 is omitted all correlations involving 

Xl increase and when observation 37 is omitted all correlations involving XIO 

increase. Both lead to a decrease in ~1l which corresponds to the closer 

relationships among the variables. This supports the earlier comment, made 

from looking at the theoretical influence function, that observations 

influential on the last few eigenvalues will tend to be influential on the 

correlations involving the variables with high coefficients in the corresponding 

eigenvector. However, only observation 37 is influential on the corresponding 

eigenvector. Table 4.7.4 gives the perturbed eleventh eigenvector when 

certain observations are omitted. When observation 37 is omitted the 

coefficient of XIO has increased at the expense of Xl and particularly X2' 

Observation 16 causes the coefficient of Xl to increase by only a small amount 

and the other coefficients hardly change. The difference of the two 

observations on the eigenvector may be attributed to observation 37 changing 

the structure of the eigenvector, which becomes more of a contrast between Xl 

and XlO when it is omitted, whereas omitting observation 16 leads to a closer 

relationship between the variables without changing the form of the original 

relationship. 

When observation 35 is omitted all the correlations involving Xs increase 

and from Table 4.7.4 we see that the 8th coefficient more than doubles. 

Observation 35 is thus highly influential on ~ll without affecting correlations 

involving Xl, x2 and XlO (except with xs). Expression (4.7.1) also shows that 

this can happen since if the change in a set of correlations is large enough 
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they can affect the eigenvalues irrespective of the sizes of the coefficients. It 

may not be clear what eigenvalue they may affect though. Finally, 

observation 67 does not affect iu when it is omitted but it does have a large 

influence on the eigenvector. When it is omitted all the correlations decrease 

except those involving x 11 and x 12 and from Table 4.7.4 we see the coefficients 

of these variables increase at the expense of x 10. Why it is at the expense of 

XI0 and not Xl or X2 is not clear and this shows why influence is not easy to 

follow through when looking at the correlation coefficients. The theoretical 

influence function for the eigenvectors shows the relationship between the 

influences on the correlation and those on the eigenvectors is complicated. 

Even the simpler expression for the eigenValues shows that there can be 

cancelling out affects. 

In summary, we have used this dataset to illustrate several points. First, 

we saw that if we were interested in just the first few dimensions of the 

principal component analysis we would not need to worry about the numerous 

outliers found in this dataset. The only observation that was influential in 

these dimensions was not one of these outliers. We then saw that all the 

outliers found by Hawkins and Fatti were influential somewhere in the 

analysis, except perhaps for observation 25. These outliers tended to come 

out on the dimensions they were discrepant on, which coincided with the 

result from the theoretical influence function that as the eigenvalues become 

smaller the influence of an observation depends more on its score in that 

dimension. Finally, we considered investigating influence indirectly through 

looking at influence on the bivariate correlations in R. Although there are 

links with influence on the bivariate correlations, there is no better way to 

find influential observations in principal component analysis other than 

carrying out the influence procedure on the eigenvalues and eigenvectors 

directly. 
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4.8. Influence in the Dataset of Anatomical Measurements on Students at the 

University of Kent. 

This dataset was introduced in § 2.5.3 and in § 4.3 we saw that there 

were problems with swops in the eigenvalues/eigenvectors when certain 

observations were omitted. This is an interesting dataset so we will consider 

influence in detail for this dataset in this section. Both the covariance and 

correlation principal component analyses will be considered. We shall also 

consider influence on the principal component scores. Fig. 4.8.1 is a plot of 

the Mahalanobis distances, against observation number, for these data. This 

plot suggests that a few observations could be outliers and from the plots of 

the data we can see the reasons why they are outlying. A plot of variables 3 

and 7 is given by Fig. 2.5.1 and we see, as discussed in § 2.5.3, that 

observation 30 is clearly outlying on these two variables. We also noted in § 

2.5.3 that it is possible that the two measurements had been written down in 

the wrong order since when they are swopped the observation is no longer 

outlying. Fig. 4.8.2 shows that observation 24 is undermining the correlation, 

rS6, and less so observation 19. However, we usually find that observation 19 

has a similar correlation structure to the rest of the data but corresponds to a 

'large' person. Observation 18 has a large Mahalanobis distance but is not 

shown to be unusual on any of the pairwise plots of the variables. 

The three largest influences on each eigenvalue and eigenvector for the 

covariance and correlation matrices are given in Tables 4.3.3, 4.3.4,4.3.7 and 

4.3.8. First, we will consider the changes in our analysis if only the first two 

dimensions were of interest. For the covariance and correlation matrices these 

correspond to 91 % and 82% of the total variance respectively. Out of all the 

observations with large Mahalanobis distances only observation 19, with an 

18.1 percentage change on ~17 has much affect on the first two principal 
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Figure 4.8.1 Plot of the Maha1anobis Distances for the Dataset on 
Anatomical Measurements of Students. 
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components from the covariance matrix. When compared against simulated 

critical values (see § 4.6 for details) this was not significant at the 5% level. 

However, using the gap test one would probably conclude observation 19 as 

'influential' as the next largest percentage change is 7.4%. Observation 30 

leads to a 14° change in ~ when it is omitted but, as we will see later, our 

interpretation of ~ does not change much so we shall not regard it as 

influential (of course, an influence which is significant need not lead to a 

change in our interpretations etc, particulary as n increases). So observation 

19 is the only one that has much affect on the first two components from the 

covariance matrix. When it is omitted the first eigenvalue falls from 35.31 to 

28.91 which suggests that observation is inflating the variances rather than 

one countering the multivariate structure of the data. 

The situation is quite different if we consider the first two eigenvalues 

and eigenvectors from the correlation matrix. Although observation 19 is in 

the top groups of influence on these eigenvalues and eigenvectors it has little 

affect. However, observation 30 has a substantial affect on the first two 

components. Eigenvalue i2 falls to 0.47 from 0.93 and i1 increases to 5.38 

from 4.80. Using the 0.7 rule, discussed in the previous section, for the 

retention of components we would no longer consider the second dimension. 

In the original data we find that the second dimension has been determined 

almost entirely by observation 30 which has a score of Z2,30 = 4.88 compared to 

the next largest absolute score of 1.14. The original second eigenvector is a 

contrast of variables 3 and 7 which are the variables we found observation 30 

to be unusual on. When observation 30 is omitted we find the angle of 70.25 

in Table 4.3.8 is not so much caused by rotation or swopping of the 

eigenvectors as a change in the structures (this will be seen below). 

The above comments show how different our influence procedure can be 
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on the covariance and correlation matrices. We would not need to worry 

about the presence of certain outliers, especially observation 30, when looking 

at the first two components from the covariance matrix. However, outliers can 

be highly influential on the first few dimensions, as shown by observation 30 

on the correlation matrix analysis. We will now consider the other dimensions 

and in particular the affect of observation 30 across the whole analyses. 

The original and perturbed eigenvalues and eigenvectors when 

observation 30 is omitted for the covariance matrix are given in Tables 4.8.1 

and 4.8.2 respectively. The 140 change in ~, mentioned above, has not 

changed our original interpretation of this eigenvector. The coefficients of 

variables X3 and X7 have decreased but they were not large originally. The 

original eigenvector ~ is a contrast of variables X3 and X7, ~ is dominated by 

X6 and ~6 by x". When observation 30 is omitted ~; and ~ are similar to ~s 

and ~ respectively. Eigenvectors ~ and ~; are dominated by variables ~3 and 

X7 respectively. Hence the original fourth eigenvector is no longer present in 

the analysis. Only by looking at the coefficients for all the eigenvectors is this 

obvious, so after finding influential observations, using scalar measures of 

influence, one should consider in detail the affects of these observations by 

looking at the individual coefficients of the eigenvectors. Since the original 

fourth dimension does not exist in the perturbed problem this raises 

difficulties in that it should not be compared with any of perturbed 

eigenvectors. The sample curve will just compare it with the new fourth 

eigenvector, which is why we obtain the large angles. The theoretical thus 

appears to be the best curve to use in such circumstances since it only 

considers changes along that given direction. Unfortunately, there are 

difficulties with this curve as well. We noted, in § 4.4, that when we included 

the second order tenns into the estimated angle we did not get a valid range 
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Table 4.8.1 

Original Eigenvalues and Eigenvectors from the Covariance Matrix for 
the Student Dataset 

.. .. .. .. .. .. .. 
).1 ).2 ).3 ).4 ).5 ~ ).7 

35.31 2.78 1.41 0.86 0.68 0.38 0.25 .. A .. .. .. .. .. 
!!1 !!2 !!3 !!4 !!s !!6 Q7 

0.42 0.48 0.74 0.16 -0.06 -0.06 0~09 
0.57 0.46 -0.60 0.08 0.26 -0.02 0.16 
0.15 -0.31 -0.08 0.67 0.21 0.02 -0.62 
0.12 -0.01 -0.00 -0.00 -0.19 0.97 -0.01 
0.65 -0.66 0.14 -0.33 0.07 -0.08 0.13 
0.17 -0.07 -0.18 0.32 -0.88 -0.20 0.14 
0.10 0.17 -0.17 -0.56 -0.26 -0.07 -0.74 

Table 4.8.2 

Eigenvalues and Eigenvectors from the Covariance Matrix for 
the Student Dataset when Observation 30 is Omitted 

i; 
.. 

i; 
.. 

i; i; i; ).; ,..; 
36.44 2.49 1.45 0.72 0.41 0.32 0.09 .. . .. . A • .. .. . .. . ... 

!!1 !!2 !!3 !!4 !!s !!6 !!7 
0.42 0.53 0.72 -0.11 -0.02 0.12 -0.02 
0.57 0.46 -0.67 0.23 -0.02 -0.10 0.11 
0.15 -0.16 -0.12 -0.11 0.38 0.86 0.20 
0.12 -0.04 0.00 -0.20 0.86 -0.38 -0.23 
0.65 -0.69 0.18 0.17 -0.14 -0.14 0.03 
0.17 -0.06 -0.19 -0.92 -0.25 -0.09 0.08 
0.09 -0.01 -0.13 -0.02 -0.16 0.25 -0.94 
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for the cosine when obseIVation 30 was omitted. In fact we find the theoretical 

does not behave correctly either when just using the first order tenn, for this 

example. In Table 4.2.7 we see that the theoretical gives angles 49.96° and 

46.79° for the fourth and fifth eigenvectors respectively. Although these are 

valid angles the resulting eigenvectors no longer have elements whose sums of 

squares are 1, and their cross multiplication with some of the other 

eigenvectors are no longer zero. The empirical influence function leaves the 

first three and last two eigenvectors virtually unchanged when obseIVation 30 

is omitted. The perturbed fourth and fifth eigenvectors given when using the 

empirical, become dominated by X3 + X6 and X3 vs X6 + X7 respectively. The 

coefficient for x 6 in the perturbed fourth eigenvector by the empirical has a 

coefficient similar to that in the perturbed sample eigenvector at 0.97. 

However, the coefficient for x 3 also remains large, close to the original at 

0.65, which explains why we get a sum of squares larger than 1. Thus, the 

perturbed eigenvectors in the fourth and fifth dimensions, when using the 

empirical, have become combinations of the original coefficients that 

dominated these directions. It is interesting to look at how the deleted 

empirical CUIVe, discussed in Otapter 1, deals with the emergence of a 

dimension (i.e. the fourth) when it is not in the original set of eigenvectors, 

which are now based on the dataset without observation 30. We find that this 

CUIVe fairs no better than the empirical influence function above. The first 

four dimensions using the deleted empirical curve remain virtually 

unchanged. This means the fourth dimension remains dominated by x 6 rather 

than becoming a contrast of variables X3 and X7, as in the sample case, for the 

dataset including observation 30. In the remaining three perturbed 

eigenvectors given by the deleted empirical curve, when observation 30 is 

added, there is one coefficient over 1 for either X3, x, or X7, and often a large 
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coefficient under 1 as well. These variables are those that were large 

originally (in the deleted dataset) for these dimensions. The fifth dimension 

remains dominated by x., but its coefficient is above 1. The contrast of x J 

against X7 does a~ in the perturbed eigenvectors from the deleted 

empirical curve but for the seventh eigenvector (rather than the fourth as for 

the sample perturbed eigenvector based on the full model). However, the 

coefficient in XJ is above 1 in this eigenvector. The perturbed sixth dimension 

has large coefficients in all of XJ, x. and X7. 

Tables 4.8.3 and 4.8.4 give the original and perturbed eigenvalues and 

eigenvectors from the correlation matrix when observation 30 is omitted. Like 

~4 from the covariance matrix , ~ from the correlation matrix is a contrast of 

variables X3 and X7. The second dimension seems to disappear when 

observation 30 is omitted, but unlike the covariance matrix we do not have 

problems with the theoretical giving invalid eigenvectors. This may be due 

the perturbed 5th eigenvector which is reasonably similar to the original 

second dimension. However, the theoretical does not imply even a switch in 

the eigenvectors when observation 30 is omitted. Looking at the changes in 

the eigenvalues it gives that the original i2 falls down to 0.54, without a swop. 

This would isolate observation 30 as highly influential but it does not reflect 

the sample changes well. So we again see that when an observation is 

extremely discrepant, the empirical will indicate this but not in a way 

comparable to the sample influence function. In Tables 4.8.3 and 4.8.4 the 

middle eigenvectors seem to change a lot, rather than just moving up in their 

ranked position as in the covariance case. However, all the same variables 

seem to involved in the original third, fourth and fifth eigenvectors as in the 

perturbed second, third and fourth eigenvectors. Hence, the changes could be 

due to rotation, particularly as their eigenvalues are all close. The angles 
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Table 4.8.3 

Original Figenvalues and Figenvectors from the Correlation Matrix for 
the Student Dataset 

A A A A A ... ... 
~l ~2 ~3 ~ ~5 ~ ~7 

4.80 0.93 0.40 0.37 0.28 0.13 0.10 
A A A A A A A 

~1 !!2 ~3 ~4 !!s ~ ~7 
-0.40 0.12 -0.28 0.44 -0.56 -0.04 0.49 
-0.43 0.11 -0.01 0.27 -0.07 0.52 -0.67 
-0.33 -0.63 0.15 0.19 0.47 0.30 0.35 
-0.37 0.00 -0.65 -0.64 0.13 0.08 0.04 
-0.43 -0.12 -0.01 0.18 0.20 -0.79 -0.32 
-0.38 -0.12 0.63 -0.51 -0.44 -0.03 0.03 
-0.29 0.74 0.28 -0.00 0.46 0.04 0.29 

Table 4.8.4 

Figenvalues and Figenvectors from the Correlation Matrix for 
the Student Dataset when Observation 30 is omitted 

A A A ... A A A 

~1 ~2 ~3 ~ ~5 ~ ~7 
5.38 0.47 0.40 0.35 0.18 0.13 0.09 

... . A. A • A • A. A • A • 

~1 !!2 ~3 ~ !!s ~ ~7 
-0.37 0.14 0.65 0.24 -0.38 0.24 0.40 
-0.40 -0.09 0.32 0.07 0.26 0.21 -0.78 
-0.38 -0.09 -0.36 -0.60 -0.42 0.42 -0.02 
-0.35 0.79 -0.20 -0.07 0.43 0.03 0.16 
-0.41 0.02 0.05 -0.18 -0.27 -0.85 -0.11 
-0.36 -0.14 -0.55 0.72 -0.18 0.04 -0.01 
-0.38 -0.57 0.03 -0.13 0.57 -0.04 0.43 
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between ~ and ~, ~ and ~, ~ and ~, are 35.580,43.820 and 320 

respectively, indicating there could be some rotation. The last two 

eigenvectors mostly have the same large coefficients as they did originally, 

although some of the sizes of the coefficients have altered. 

We will now consider some of the other observations in this dataset that 

had large Mahalanobis distances. Observation 24 is highly influential on is 

from the covariance matrix and the angles of change in ~ and ~ are almost 

equal. We noted in the § 4.3.2 that the perturbed fifth and sixth eigenvalues 

were closer than the originals and the sample and empirical differed as this 

can cause rotation in the perturbed eigenvectors which the empirical does not 

take account of when the original eigenvalues were not too close. The original 

fifth and sixth eigenvectors were dominated by variables X6 and x. 

respectively, and when observation 24 is omitted ~; is a contrast of X6 and x" 

and ~; is the sum of the two variables. This shows that the two eigenvectors 

have rotated as the perturbed, rather than the original eigenvalues, were 

close. Observation 24 is also highly influential on is from the correlation 

matrix. We saw in § 4.3.1 that observations 5 and 29 caused a swop in the 

third and fourth eigenvectors when they were omitted. Observation 24 

actually had a larger influence than observations 5 and 29 on the third 

eigenvalue, even after the swops were taken into account. Observation 24 

lead to an increase of 17.7% in the third eigenvalue whereas observations 29 

and 5 lead to decreases in i3 of 15.96% and 8.64% respectively. This shows a 

swop need not correspond to the largest changes in an eigenvalue but it can 

just depend on the closeness of the two eigenvalues. Observation 18, which 

has a similar Mahalanobis distance to observation 19, is influential on the 

smallest eigenvalue from both the covariance and correlation matrices; it also 

has the largest scores in these two dimensions. Most of the correlation 
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increase when observation 18 is omitted but without any particular correlation 

changing drastically. Both of the smallest eigenvalues decrease, when 

observation 18 is deleted, possibly to reflect the stronger relationships 

indicated by the slightly higher correlations. However, observation 18 is not 

influential on either of the corresponding eigenvectors. This may occur as no 

one correlation was affected more than the others, so the basic structure 

remained the same. 

In § 3.6.3 we derived the theoretical influence function for the principal 

component scores from the covariance matrix. We will use this dataset to 

examine which observations may be influential on the other principal 

component scores when it is deleted. Fig. 4.8.3 is an example of the 

movement of the first two scores, for nine of the 33 observations, when each 

observation is omitted from the dataset in tum (note, an observation cannot 

affect its own score when it is omitted). The scores do not seem to have 

moved much, with little change in their ranked positions along the two axes. 

The observations with the most positive and negative ranked influences on the 

first five scores (numbered by observation number) in the first dimension are 

given in Table 4.8.5. The ranked non-absolute influences for all scores are 

similar and these correspond to moving from left to right of the observations 

plotted along the first axis in Fig 4.8.3. Hence, observation 19 has the largest 

positive influence on all the scores in the first dimension and observation 10 

the largest negative influence. This means that the positioning of an 

observation in the first dimension is almost determining its influence on all 

the other scores in that dimension. The changes in the 32 scores given by 

observation 19 range from 0.40 to 0.54, and those for observation 10 from 

-0.28 to -0.41. This means the affect of an observation is almost the same for 

all the scores. The reason for this can be seen from the theoretical influence 
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Figure 4.8.3 Plot of the Original Covariance Principal Component Scores 
from the First Two Dimensions and the Perturbed Scores for Nine 

Observations when the 33 Observations are Omitted Individually. 
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Table 4.8.5 

Three Most Positive Influential Observations on the First Five 
Scores from the First Component of the Covariance Matrix 

123 
19 19 19 
27 27 27 
26 26 26 

4 5 
19 19 
27 26 
26 27 

Three Most Negative Influential Observations on the First Five 
Scores from the First Component of the Covariance Matrix 

12345 
10 10 10 10 10 
13 13 13 13 3 
3 3 11 3 13 
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function given by (3.8.3), which is 

TICvCc. ,Zlc) = -Zl [1 + f ~(AI - Al)-lZIZjc 1 
1=1 
1*1 

where Zl is the score for the point omitted and Zlc is the score whose change 

we are interested in. When Al is large and distinct from the other 

eigenvalues, as i1 is in this dataset, the second term in the above influence 

expression will be small and the term in - Zl will dominate. From the 

derivation of this influence function in § 3.6.3 the term -Zl comes from the 

change in the mean when the observation is deleted. We thus obtain similar 

changes in all the scores due to dominant term -Zl' and this represents the 

mean of the principal axis moving. We usually use the theoretical results by 

substituting in the sample equivalents and dividing by (n -1). This gives, 

- Z~~9 = 0.46 and -Z~~o = -0.32 

which are within the sample ranges of influence given above. 

The pattern, observed in the first dimension, gradually disappears as i 1 

becomes smaller and less distinct from the other eigenvalues. We can see why 

this happens from the theoretical influence function as the summation term 

will start to dominate. Although the observations with large principal 

component scores in these later dimensions tend to be those that are 'highly 

influential', there seems to be little pattern to which scores they are influential 

on, and their influences on some scores will be positive and negative on 

others. 

Fig. 4.8.4 is a plot of the first two principal component scores from the 

correlation matrix. Observation 19, as for the covariance matrix analysis, has 

the largest Z1 score but we do not find it is always the most (positive) 

influential observation on the other scores as above. Those observations that 

come out as most influential (with positive influence) are a combination of 
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16,22,30,26,19,15,17 and 24, all of which are to the left of the plot, except 

for observation 30. However, the largest influences over the scores do occur 

for observation 19 and this is on the scores that lie close to it in the first 

dimension, for example, on the scores for observations 24,26,22 and 27. 

Again, we can look at the theoretical influence function to explain why this is 

so. This is, 

P -1 P 
TIC.<! ,Zit) = - ~ ~(}..J - }..i) Zit ~ 

J=l .. =1 
J.i 

P 
~ QJtQu TIC<! ,P .. ,) 
r=l 
r ... 

lIP 
+2"Zit - 2" ~Qi'Yt'Y,2 - Zi 

r=l 

The first term is small when }..1 is large and distinct, as in this dataset, and 

(taking sign into account) when Zic and Zi are large and close, terms (2) and 

( 4) must cancel each other out to a certain extent and we find the third term 

is large and the same sign as Zi. Conversely, when Zic and Zi are large but 

opposite signs terms (2) and (4) will combine together but the third term is 

large and a different sign to zj: . For example, the four terms when observation 

19 is omitted for the influence function on Zl,24 are, 

(1) +0.64 (2) -1.68 (3) 7.03 (4) 4.84 

and for the influence function on Zl,lO 

(1) -0.14 (2) 1.90 (3) -8.04 (4) 4.84 

For the other dimensions the first term will become more important, like the 

similar term in the influence function for the covariance scores, and no clear 

picture of influence emerges. 
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4.9. Influence on a Dataset for the Protein Consumption in Europe and Russia 

(Application to Covariance Biplot). 

This dataset has been published in two books (see Greenacre(1984) and 

Gabriel (1981» and it is also given in Table 4.9.1, since we shall be 

discussing the individual observations. This dataset is also discussed in 

Otapter 6. In this section we will consider influence on the covariance 

principal component analysis only, and then apply this to the covariance 

biplot. Fig 4.9.1 is a plot of the Mahalanobis distances for the 25 

observations. The largest Mahalanobis distances are for observations 1 and 

17, but the values are not particularly distinct from the others. Greenacre 

notes that observation 17 (Portugal) has a large score on the second principal 

component due to its generally low consumption of protein (a feature of size) 

but has a large score on the second correspondence analysis due to its high 

consumption of the variable fish ( a feature of shape). Although this is true, 

we find that omitting observation 17 has a large affect on the covariance 

biplot due to this unusually high consumption of fish. Greenacre (1984, § 

9.6) also considers the influence of observations in PCA for this dataset and 

uses the upper bounds for angles of rotation discussed in § 3.8.4. We shall 

consider these bounds in greater detail here. The most influential 

observations on the first two eigenvalues and eigenvectors are given in Table 

4.9.2. The order of influence on the first two eigenvalues, even though n is as 

small as 25, is the same as that for the ranked principal component scores as 

suggested by our theoretical expression for the covariance eigenvalues. The 

angles for the observations on the first two eigenvectors were all less than the 

upper bounds given for the angles of rotation discussed in § 3.8.4 and 

outlined in Greenacre(1984, § 8.1). The only exception was observation 8 on 

the second eigenvector. This observation had the largest affect on the first 
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Table 4.9.1 
Dataset on the Consumption of Protein in Europe and Russia 

Couotrv MEAT PIPL EGGS MILK FISH CERS STAR NUTS FRVG Total 
ALBA 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7 71.2 
AUsr 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3 86.4 
BELX 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0 87.3 
BULG 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2 90.6 
CZEC 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0 82.8 
DENM 10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4 89.8 
EGER 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6 75.7 
FINL 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4 90.4 

FRAN 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5 98.2 
GREE 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5 97.7 
HUNG 5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2 84.3 
IREL 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9 91.3 
ITAL 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7 84.0 
NETH 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7 84.7 
NORW 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7 81.7 
POLA 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6 92.7 
PORT 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9 75.6 
RUMA 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8 86.9 
SPA! 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2 77.2 

SWED 9.9 7.8 3.5 24.7 7.5 19.5 3.7 1.4 2.0 80.0 
SWIT 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9 88.1 
UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3 88.4 

USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9 91.9 
WGER 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8 79.3 
YUGO 4.4 5.0 1.2 9.S 0.6 55.9 3.0 5.7 3.2 88.5 
Total 245.7 197.4 73.4 427.8 107.1 806.2 106.9 76.8 103.4 2144.7 

Abbreviations 

ALBA Albania AUST Austria BELX Belgium/Luxembourg 
BULG Bulgaria CZEC Czechoslovakia DENM Denmark 
EGER East Germany FINL Finland FRAN France 
GREE Greece HUNG Hungaria IREL Ireland 
ITAL Italy NETH Netherlands NORW Norway 
POLA Poland PORT Portugal RUMA Rumania 
SPAI Spain SWED Sweden SWIT Switzerland 
UK United Kingdom USSR Russia WGER West Germany 
YUGO Yugoslavia - - - -
MEAT Meat(grazing) PIPL Pigs & Poultry EGGS Eggs 
MILK Milk FISH Fish CERS Cereals 
STAR Starch NUTS Nuts/Pulses FRVG FruitIV egetables 
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Table 4.9.2 
Most Influential Observations on the First Two Dimensions of the 

Covariance peA of the Protein Consumption Dataset 

).1 = 155.23 ).2 = 30.70 
ranked " Obsn. Infl. ranked Obsn. Infl. 

PC score PC score 
1 4 15.4% 1 17 27.4% 
2 25 14.8% 2 8 11.9% 
3 18 6.2% 3 19 10.9% 

~1 ~ 
ranked Obsn. Infl. ranked Obsn. Infl. 

PC score PC score 
8" 8 3.20 1 17 30.90 

1 4 2.90 2 8 15.50 

2 25 2.70 3 19 8.50 

Figure 4.9. 1 Plot of the Mahalanobis Distances for the Dataset on ; 
Protein Consumption in Europe. 
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eigenvector, and it was noted that the bounds would not be so good for the 

Ie th axis if previous axes had rotated when the obsetvation was omitted. The 

upper bounds given by 3.8.14 and 3.8.15 for the obsetvations in Table 4.9.2 

are given in 4.9.3. For the first axis the ordering of the obsetvations by the 

refined bound was almost the same as by the order of sample influence, and 

the upper bound was always greater. The same is true for the second axis, 

apart from observation 8 and obsetvations 25 and 4 that were given larger 

upper bounds than obsetvation 19 but they only had the 7th and 8th largest 

influences respectively. The bounds were less accurate for the latter principal 

axes especially when, as noted by Greenacre, an obsetvation had a large 

affect on the earlier components. For example, when obsetvation 17 was 

omitted ~ and ~ changed by 30.90 and 34.10 respectively but the refined 

bound (and the simple bound was similar) for ~3 was 4.1°. Obsetvation 8 had 

an angular change of 19.40 on ~ and its bound is slightly above that for 

observation 17 at 4.80
• Most of the refined bounds in the latter dimensions 

were too small and often the simple bound was better here, but this was still to 

small if an obsetvation had affected previous dimensions. For example, in the 

6th dimension the ranked obsetvations using the actual angle between original 

and perturbed eigenvectors were 1,9,10,19 and 23. The simple bound for 

obsetvations 10 and 23 are larger than the actual angle, and these 

obsetvations had not affected previous directions. However, the bounds for 

obsetvations 1,9 and 19 were small. The refined bounds for obsetvations 10 

and 23 were the largest, but they were smaller than the actual angle. As noted 

in § 3.8.4, we cannot obtain the upper bounds for the last principal 

component which is likely to be of more interest than the principal 

components in the middle. 

From Tables 4.9.2 we see that the first principal axis does not change 



- 150-

much when a single observation is omitted. The angular changes in the 

second axis are larger, and we will consider the affect that the two most 

influential observations on this axis have on the corresponding covariance 

biplot. The original and perturbed eigenvectors in the second dimension 

when observations 17 (Portugal) and 8 (Finland) are removed are given in 

Table 4.9.4. Each eigenvector has large coefficients for the variables 'milk' 

and 'cereal' (Note, that the first axis is a contrast of these variables), but 

when observation 'Finland' is removed these are contrasted more with the 

'fish' variable. Gabriel (1981) notes that the fish variable is at about 900 from 

the animal and cereal sources of protein on the (original) covariance biplot 

(see Fig 4.9.2) and so concludes that 'fish' must be 'pretty uncorrelated' with 

these sources of protein. When the observation 'Finland' is removed the 

negative coefficient for fish becomes larger indicating that protein sources 

'milk' and 'cereals' do not tend to be consumed by the same countries who 

have a high consumption of fish. Finland has the largest consumption of milk 

but its consumption of the other animal proteins, especially on pigs/poultry is 

quite low or average. In the original biplot Finland is positioned close to the 

milk marker, as are Ireland and Switzerland who also have a high 

consumption of milk. When Finland is removed the milk marker remains 

relatively unchanged but the angles between the four animal products become 

smaller. Otherwise the biplot is largely unchanged (see Fig 4.9.3). 

When observation 17(Portugal) is omitted the 'fish' coefficient becomes 

smaller and less prominent in the interpretation of the second axis. This is the 

opposite affect to that when 'Finland' was omitted. However, the actual 

change in the 'fish' coefficient is larger than when 'Finland' was omitted. If 

we look at the data in Table 4.9.1 we see that after Portugal the next highest 

consumers of fish are Denmark and Norway, but like all the observations high 
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on the milk variable these two countries are placed far from the 'fish' marker. 

Fig 4.9.4 is the biplot when 'Portugal' is removed. The RHS of the plot looks 

different to the original biplot but the LHS is almost unaltered. The 'fish' 

marker in Fig. 4.9.4 has moved closer to 'Denmark' and 'Norway' and is 

close to the 'meat' marker. This alters the interpretation for the original 

biplot given by Gabriel, and outlined above. The 'fish' protein, like the 

animal proteins is now associated with the Northern and Western countries 

and not the Mediterrenean countries as noted by Gabriel. In Fig. 4.9.4 the 

animal products have sprayed outwards with the 'pigs/poultry' and 'eggs' 

markers rotating clockwise, their coefficients in the second eigenvector having 

changed sign. The 'pigs/poultry' marker has almost moved to where the 

original 'fish' marker was, and countries 'Austria' and the 'Netherlands', 

which have a high consumption of pigs/poultry and eggs, have moved down. 

The original and perturbed (for Portugal omitted) correlation matrices 

for the animal protein variables are given in Table 4.9.5. These help to 

explain the changes in the 'pigs/poultry' marker. 'Pigs/poultry' has a low 

correlation with all the other animal products, except with 'eggs' which may 

occur due to the poultry category (this suggests that 'pigs' and 'poultry' should 

not have been combined together to form a variable, but perhaps eggs and 

poultry may have been better). In the original biplot the 'pigs/poultry' marker 

was probably close to these other animal products, that it has a low correlation 

with, due to its negative correlation with the 'fish' variable, which meant it 

could not placed below the 'egg' marker. In the perturbed biplot where the 

'fish' marker moves closer to the 'milk' marker, the marker for 'pigs/poultry' 

can rotate clockwise with less restraint and so becomes placed further from the 

'meat' and 'milk' markers. The marker for 'eggs' also moves with the 

'pigs/poultry' but less so, as it is still quite highly correlated with the other 
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Table 4.9.3 
Upper Bounds for the Angle of Rotation in the Eigenvectors 

al 

Obsn. Simple Refined 
8 3.350 3.30 
4 7.130 3.20 

25 6.880 2.90 

~ 
Obsn. Simple Refined 

17 35.70 31.90 
8 16.10 12.30 

19 11.30 10.80 

Table 4.9.4 

Original and Perturbed Second Eigenvector 

Variable 

MEAT 
PIPL 

EGGS 
MILK 
FISH 

CEREALS 
STAR 
NUTS 
FRVG 

Original ~ 

0.13 
0.04 
0.02 
0.83 

-0.29 
0.41 

-0.08 
-0.07 
-0.17 

When Finland 
Omitted 

0.21 
0.24 
0.06 
0.75 

-0.41 
0.35 

-0.08 
-0.09 
-0.15 

Table 4.9.5 

When Portugal 
Omitted 

0.07 
-0.32 
-0.05 
0.85 
0.07 
0.38 

-0.06 
0.00 

-0.11 

Original and Perturbed (for 'Portugal' Omitted) Correlation Matrix 

Between the Animal Products 

MEAT 
PIPL 

EGGS 
MILK 

MEAT 
PIPL 

EGGS 
MILK 

PIPL 
0.15 

PIPL 
0.11 

EGGS 
0.59 
0.62 

EGGS 
0.56 
0.59 

MILK 
0.50 
0.28 
0.58 

MILK 
0.46 
0.22 
0.52 

FISH 
0.06 

-0.23 
0.07 
0.14 

FISH 
0.26 

-0.12 
0.37 
0.48 



CERS_ 

- 153 -

Figure 4.9.2 Original Covariance Bip1ot. 
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Figure 4.9.3 Covariance Bip10t when Observation 8 (Finland) is Omitted. 
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Figure 4.9.4 Covariance Bip10t when Observation 17 (Portugal) is Omitted. 
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animal proteins. 

The only noticeable change to the LHS of the biplot when 'Portugal' is 

omitted is the position of 'Hungary', that has moved downwards close to the 

'fruit/vegetables' marker. From the original data in Table 4.9.1 we see that 

Hungary has a high consumption of pigs/poultry but a low consumption of 

fish. The perturbed biplot reflects this better than the original one does. 

It would be interesting to see the position of a 'pigs' marker on its own as 

it is possible that it positioning, even in the biplot when 'Portugal' is omitted, 

is due to a high correlation of 'poultry' and 'eggs'. The positioning of the 

combined marker for 'pigs/poultry' in the perturbed biplot does seem to reflect 

its relationships with the other variables better than in the original. We will 

analyse this data further in § 6.3 using correspondence analysis, and we will 

see that it the pigs/poultry mark remains quite steady in the resulting two 

dimensional display when 'Portugal' is again omitted. 
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Chapter 5: Derivation of Influence Functions in Canonical Correlation Analysis 

and Correspondence Analysis 

5.1. Introduction 

5.1.1. Canonical Correlation Analysis 

In canonical correlation analysis we are interested in the relationships 

between two sets of variables Y (II PI) and x (II P2) which are collected on the same 

set of individuals, as opposed to PCA where we are concerned with 

relationships within one set of variables. This is an extension of multiple 

linear regression and, when PI = 1, the only non-zero canonical correlation is 

R2, the multiple correlation coefficient discussed in § 2.4. We form new 

variables, namely the linear combinations ~' y and !;':!, such that these 

variables have maximum possible correlation ).1n. where ).In. ~ ).in. ~ ...... ~ ).;~ 

(assuming PI <P2) and the ~ and!; are orthogonal, k = 1,2, ..... 'PI. The 

correlation between ~ I ' Y and!!.l':! is found by maximising 

obtain !l , !; and ).1n. from the eigen-relationships 

(Ly;ILYXLX:ILXY - )..} )!l = 0 

(Lx:ILXyLy;ILyX - All)!; = 0 

(5.1.1) 

(5.1.2) 

(5.1.3) 

(see Mardia et al., 1979, Cltapter 10). Assuming PI <P2, we would solve 

(5.1.2) for ~ and obtain!; from 

(5.1.4) 

which also prevents problems with the arbitrariness of sign from using both 

(5.1.2) and (5.1.3). If PI> P2 we would use (5.1.3) so that the eigenanalysis 
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is performed on the smaller matrix. 

The matrix in (5.1.2) is not symmetric but we can use our usual 

symmetric eigenvalue routines by forming the matrix e such that 

l:-l = ee' 
11 

where e can be lower triangular with positive diagonal elements, as used by 

Radhakrishnan and Kshirsagar (1981), or alternatively e can be l:-1I2 

" 
calculated by noting, if l:" has spectral decomposition r Ar' then l:,;1 has 

spectral decomposition r A -lr' and l:,;l/l has spectral decomposition r A -1/lr'. 

We find the eigenvalues and eigenvectors "'It and ~ from the symmetric 

(5.1.5) 

and, by multiplying on the left bye, we obtain 

(5.1.6) 

Comparing (5.1.6) with (5.1.2) we have At = "'It and ~ = c ~. 

The above approach will be used in finding the influence functions in 

this chapter. 

5.1.2. Correspondence Analysis of a Two-Way Contingency Table 

This technique was developed by Benzecri in the 1960s and many articles 

in French have been written on the subject. Below is a brief outline of the 

method which is required to understand the algebra in this chapter. For a 

detailed account, one is referred to Greenacre (1984). 

Correspondence analysis, dual (or optimal) scaling and reciprocal 

averaging all require similar calculations, but the rationale behind each 

method, and so the presentation of results, differs. The aim of correspondence 

analysis is to obtain a joint display of the rows and columns of the 
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contingency table such that row (or column) co-ordinates that are close 

together have similar row (column) profiles, which are the rows (columns) 

divided by their sums, and a row co-ordinate will tend to be close to a column 

co-ordinate that is prominent in its profile. 

Correspondence analysis is a special form of canonical correlation 

analysis with dummy variables (see below) and it is for this reason both 

techniques have been considered in the same chapter. One of our influence 

techniques for correspondence analysis is derived as a special form of the 

canonical correlation influence functions derived in § 5.2. 

Let p be a two-way contingency table, N, divided through by the grand 

total n , and r and c be column vectors of the row and column totals of p .. - -

respectively. Then the matrix p - rc', whose (i j)th element is 

(niJ - ni.n.Jln..)/n .. , i = 1,2, .... ,1, j = 1,2, .... ,) (i.e the table has 1 rows and) 

columns), is the matrix of residuals from fitting a model of independence 

between the rows and columns, divided by through by n... If Dr (Dc) is the 

diagonal matrix of !:.. {£) then the chi-square statistic calculated on our 

contingency table, divided by n._, is 

The eigenvalues and eigenvectors for these matrices are found from solving 

(vr-1(P - rc ')Dc-1(P - rc ')' - Aj) )£t = 0 (5.1.7) 

(Dc-1(P - rc ')' Dr-1(P - rc') - At 1 )!t = 0 (5.1.8) 

with normalisation It' Dr It = gt' Dcgt = At. If} < I we would only solve (5.1.8) 
- - - -

and obtain It from the transition formula 
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I - 1 D-1p 
I: - -m, gl: 

- ~I: -
(5.1.9) 

We shall assume 1 <I throughout this chapter. We do not need to centre the 

P matrix, but can solve 

(5.1.10) 

and use the same transition formula, (5.1.9). This results in a trivial 

dimension of ~1 = 1 and ~ 1 =!t and ~1 = !J. This trivial dimension is useful in 

checking our algebraic results, which should give zero influences. Equations 

(5.1.10) and (5.1.9) are similar to (5.1.2) and (5.1.4), and we shall return to 

this below. 

The row (column) profiles are the rows (columns) of the contingency 

table divided by the row (column) totals. The larger is x2 In .. , the more 

association there is between the rows and columns, and so the more our row 

J 
(column) profiles differ. The sum of our eigenvalues ~ ~J: = x2/n .. , and if the 

J:=2 

first two (non-trivial) eigenvalues (principal inertias) account for most of the 

total inertia, (x2/n..), then a plot of the co-ordinates V2i/3i), i = 1,2, ..... ,1, 

will reveal which of the row categories have the most similar and dissimilar 

row profiles by their distances apart. We also plot, on the same graph, the 

co-ordinates (g2j g3j), j = 1,2, .... ,1, and the same relationship between the 

plotted column categories holds. 

The relationship defined between the rows and columns are determined 

by the transition formula (5.1.9). This shows that a row co-ordinate will tend 

towards a column co-ordinate that is prominent in its profile. The distances on 

the plot between any two rows (or columns) are defined as chi-squared 

distances, but although we interpret rows and columns that are close together 

on the plot, the actual distances between them are less meaningful. 
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The above may seem unusual in that we are actually plotting the 

eigenvectors rather than any sort of principal component score. In fact, the F 

co-ordinates (likewise the G co-ordinates) can be calculated as the principal 

component scores in the metric Dc- 1 (D,-I) from the eigenvectors of the matrix 

of row (column) profiles. Alternatively, they can both be found as principal 

co-ordinates of the matrix P (or P - rc '). If the generalised singular value 

decomposition (SVO) of P is 

P =AD » A'D-1A =B'D-IB =/ 
~lJ2U , c 

then, in the metries Dc- 1 and D,-l respectively, 

(for further details see Greenacre, 1984, chapter 4). 

Above we noted the similarity between the eigen-equations (5.1.10) and 

(5.1.2) and the transition formulae (5.1.9) and (5.1.4). If we perform a 

canonical correlation analysis on two sets of dummy variables Y (/I J) and x (/I I) 

where 

I
1 If the L th individual belongs 

YLj = to the jth column category 
o Otherwise 

{

1 If the L th individual belongs 
Xli = to the i th row category 

o Otherwise 

(5.1.11) 

L = 1,2, .... ,n, i = 1,2, .... ,I, j = 1,2, .... ,1, but we do not centre our variables, 

we obtain from the sample version of (5.1.1) 

but 

~Y'Y=Dc ~X'X=Dr ~X/Y=P , 
n n n 

(5.1.12) 
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which gives us (5.1.10). Similarly, substituting (5.1.12) into (5.1.4) gIves 

(5.1.9). If we centre our variables then Sxy = P - rc' but Syy and Sxx would be 

singular. Because we have dummy variables, our observations are 

!J' =(~<~')=(00 .. 010 .. 00 00 .. 010 .. 00), where the "l"s are in the YLJth 

and Xu th places of YL and ~ respectively. Therefore, our canonical scores, 

Y '!k and!' ~, just pick out the jth and ith elements of our eigenvectors !k 

and ~ respectively. In correspondence analysis these scores are then 

displayed for the first two, non-trivial, dimensions on the same plot. For a 

more detailed account of the relationship between canonical and 

correspondence analysis see Greenacre (1984, pp108-116). 

5.1.3. Multiple Correspondence Analysis 

Let z be the n .. x (/ + J) bivariate indicator matrix [X Y] where X and Y 

are made up of variables, as defined in (5.1.11), and the contingency table 

N = n .. P = X'Y. The correspondence analysis of the matrix z yields a plot of 

the row and column co-ordinates which is a re-scaled version of the plotted 

row and column co-ordinates from a correspondence analysis of the 

contingency table N. The eigenvalues (principal inertias) of the indicator 

matrix are related to those of the contingency table by 

(5.1.13) 

This results in double the number of eigenvalues for the indicator matrix 

analysis and there are a further / - J (assuming J < /) inertias, AZ = 1/2. The 

percentages of inertia are thus much smaller and there are smaller differences 

in successive (ranked) inertias. However, these extra dimensions are 

unimportant, as are those in (5.1.13) that are less than 1/2, which result from 

the negative roots. This justifies the proposal of Benzecri (1979) to recalculate 

the percentages of inertia based only on those A Z exceeding 1 12 and on the 
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values ~z - 1/2. 

The correspondence analysis of a multivariate indicator matrix , 
Z = [Zt Z2 .... Zo], for Q variables having Jj categories, j =1, 2, .... , Q, yields a 

plot of the column co-ordinates which are a re-scaled version of the column 

(or row) co-ordinates of the symmetric Burt matrix. The Burt matrix, 

o 
B(J XJ) =Z'z, where J = ~ Jj , contains on its off-diagonal all the two-way 

j=t 

contingency tables between the Q sets of variables. On its diagonal, it has 

diagonal matrices of the category sums, i.e. 

Nl1 N12 .. .. Nto 
N12 

, 
N22 N20 .. .. 

B= .. .. .. .. 
.. .. .. .. 

Nto 
, 

N20 
, 

Noo .. .. .. .. 

Since it is symmetric, the row and column co-ordinates are the same and its 

eigenvalues have the relationship 

with the eigenvalues from the multivariate indicator matrix. When Q = 2, the 

eigenvalues from the Burt matrix, using (5.1.13), are therefore 

~: = 1..(1 ± ).f 112)2 • 
4 

Again we obtain unimportant extra dimensions and Greenacre (1984, p144-

145) gives a formula for recalculating the percentages of inertia. If we let H 

denote the column (or row) co-ordinates from the Burt matrix correspondence 

analysis, then H can be divided into the categories for each variable. Then, 

the expression for the co-ordinates, on the k th axis, for the categories of the 

q th variable, in terms of the other variables, is 
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where Rqf , = Df-1pqq , is the matrix of row profiles for the contingency table 

Nqq ,. This expression is an extension of the transition formula (5.1.9). Thus, 

the category C<rordinates of one variable will tend towards category C<r 

ordinates of other variables that are dominant in any of its row profiles across 

the (Q - 1) contingency tables involving it. 

5.1.4. Summary of Chapter 

In § 5.2 we derive the theoretical influence functions for the eigenvalues 

and eigenvectors in canonical correlation analysis. Radhakrishnan and 

Kshirsagar (1981) derived the influence function for the eigenvalues and the 

same approach is used here, but the expression for the eigenvalues is 

simplified and we derive the theoretical influence function for the 

eigenvectors. In § 5.2.3 we consider the specialisation of the influence 

function for the canonical eigenvalues to the multiple correlation coefficient. 

This influence function was derived in § 2.4.2, by an alternative method. In § 

5.3 the influence functions derived in § 5.2 are used to obtain the influence 

functions for correspondence analysis when we add an extra observation, so 

that a cell of the contingency table is incremented by one. This uses the 

relationship between canonical correlation analysis and correspondence 

analysis discussed in § 5.1.2. 

In § 5.4 we derive expressions for the changes in the eigenvalues and the 

G and F co-ordinates in correspondence analysis when we add a row to a 

contingency table. These expressions are derived in a slightly different way to 

the previous ones. They are derived as an asymptotic result by expanding out 

tenns to o(l/(n .. + m» where m is the sum of the new row. If we take 

E = 1/ (n .. + m) we can follow the usual derivations of the theoretical influence 

functions for the eigenvalues and eigenvectors. Since the expressions are 

derived as n -00 we will refer to the final expressions immediately as the 
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empirical influence curve. A similar approach is used for the our final type of 

perturbation, which is adding m identical observations so a cell of a multiway 

table is incremented by m. This leads to Q2 elements of the Burt matrix, 

introduced in § 5.1.3, increasing by m. Since we can do an analysis on the 

Burt matrix when we have just two variables we would expect some 

similarities of influence by perturbation of the Burt matrix, as by the 

perturbation of a cell of a contingency table. This is discussed in detail in § 

6.4. 

The second type of perturbation, adding a row to a contingency table, is 

different from our usual influence procedures in that we obtain an extra c0-

ordinate in the perturbed problem for the row added. The term in £0 for this 

co-ordinate in the perturbed problem is the same expression as that used by 

Greenacre (1984, p70-74) to add a supplementary point to an existing 

display. If we add an extra column rather than a row where J < I we would 

obtain an additional dimension in the perturbed analysis. We will not consider 

this problem in this chapter, but in § 6.3.5 we shall examine the extension of 

the formulae in § 5.4 to deal with addition (deletion) of columns. 
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5.2. Influence Functions in Canonical Correlation Analysis 

5.2.1. Influence Function for the Eigenvalues 

We wish to find the influence function for the eigenvalues from the 

symmetric matrix C'~,.r~~l~X1C, see (5.1.5), which are the same as the 

eigenvalues from the unsymmetric matrix ~y;l~,.r~~l~X1' where ~,;1 = cc'. 

Since the matrix C'~,.r~~l~.r,C is symmetric, if its eigenvectors are!!.l, such 

that ~'~ = 1 then, from (3.5.3) 

(5.2.1) 

where! is the added in point (y ,:!). From (2.4.4) 

so that if ~y; 1 = CC ' , we can see 

(5.2.3) 

will give us (5.2.2). Simple algebra using (5.2.2) and (2.3.3) and the product 

rule for influence functions discussed in Olapter 1 (or by multiplying together 

the perturbed terms) gives us, 

+ (y - &)<! - &)'L~lLxy - LyxL~lLx, 

+ LyxL~l<! - &)(~ - &)' ] C 

+ 1.. (c' - C'(y - &)(y - &)'Ly/)L,xL~lLx,C 
2 --

+ ~C'LYXL~lLXy (c -Ly;l~ -&)~ -&),c) . 
(5.2.4) 
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Simplifying (5.2.4) gives 

TIC<! ,C'~,xl:~Il:.r,C) = -C'~,.rl:.r~l<! - ~)<! - ~)'~~l~.rlC 

+ C'~ - b)<! - ~)'~~l~XYC 

+ C '~YX~~I<! - ~)~ - b )'C 

- ~C'~ - b)~ - b)'l:y;l~,.r~~l~.rJC 

- ~ C 'l:y.r~~Il:.ry~y;l~ - b)~ - b )'C 

(5.2.5) 

From (5.1.6), c~ =!t and since a scalar is equal to its transpose, we can 

write (5.2.1), using (5.2.5), as 

TIC<! '~l) = - [!t'l:yxl:~l<! -~) r 
+ 2!l'~ - b)<! - ~)'l:~l~.rJ!t 

-!t'~ - b)~ - b)'~,;l~y.r~.r.r~x,!l 

Using (5.1.2), (5.1.4) and letting the canonical scores be 

then, 

The k th canonical correlation is ~l12 and its influence function is 

SInce 

so that 

- 112 _ 112 [1 TIC <! , ~l ) 
~l - ~l + E ~l 

Expanding the bracket, we obtain 

(5.2.6) 

(5.2.7) 
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and hence (5.2.7). 

5.2.2. Inftuence Functions for the Canonical Vectors 

First we shall obtain the influence function for the eigenvector ~ from 

the symmetric matrix C 'l':yzl':~Il':zyC and then for!t = C ~. Using (3.5.9), we 

have 

J 

TIC<! ,~) = - L ~()., - ).l)-I~'TIC<! ,C'l':yxl':~ll':XYC)~ 
,=1 
,"'I 

Using (5.2.5), (5.1.2), (5.1.4) and!t = c~, we find 

so 

1 + ).lflRtyRu + ).,tflRrxR1y - 2).lR"R11 

1 
- 2).,RtyR1y 

= - ().,tflRrx - Rty ) ().lflRu - R1y ) 

1 1 + (1 - 2).1 - 2).' )R1yRty , 

TIC<! ,~) = - ± a,()., - ).1)-1 [- ().,tflRrx -R,,)(AlflRu -Rty ) 
,=1 
,"'I 

+ (1 - ~ (~. + ~,»R"R~ I. (5.2.8) 

From either using the product rule or multiplying together the perturbed C~, 

to 0 (e), 

where, 

and 

Using (5.2.8) and (5.2.3) we have that, 
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TIC<! ,~) = ~~ - ~ ~J;1~ - b)RI , 

J 

- r~ ~(A, - AI )-1 [- (A,112Rta: - R" )(Al12Ru - RI ,) + 
1*1: 

(1 - ; (A.. + A.,»R'JR~ ]. (5.2.9) 

The influence function TIC <! , !!.I) can be obtained using the relationship in 

(5.1.4) and applying the product rule for influence discussed in Cllapter 1. 

5.2.3. Specialisation to the Squared Multiple Correlation Coefficient 

We can derive the theoretical influence function of p2, given by 

expression (2.4.8), as a special case of (5.2.6) when we take P1 = 1, i.e. we 

have only one y variable. Since P 1 = 1 there is only one canonical correlation 

Al'2 from (5.1.1), and this is the maximum correlation between y and a linear 

combination of the x variables which is the definition for the multiple 

correlation coefficient P. We obtain 

(see expression (2.4.3» from (5.1.1) by taking 

1 
a1 = --m 

CTyy 

b _ L~ILXy = ~ 
1 - (Lyx L~ 1 Lxy ) 112 (1!' Lxx 1!) 112 

The forms for the scalar a 1 and £1 occur due to normalisations imposed in 

canonical analysis i.e. 

Substituting 
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into (5.2.6), and letting C = <! - &)'j!, we arrive at 

TIC(! '~1) = TIC(! ,p2) = _1_ [- (2 + 2(y - .... ,)C - p2(y - .... , )2] 
CT" 

This expression is the same as (2.4.6) which then leads to result (2.4.8). 



- 171 -

5.3. Influence Functions in Correspondence Analysis When we Add a Single 

Observation to the (i j)th Ceu 

As di~ in § 5.1.4, the influence functions for adding to the (i j)th 

cell of a contingency table in correspondence analysis can be derived as a 

special form of the canonical correlation functions. Adding 1 to a cell is the 

same as adding an observation !' = (y' !') of dummy variables in canonical 

correlation analysis. However, we do need to note two differences in the 

proofs. 

First, we do not wish to centre our variables due to the singularity 

problems discussed in § 5.1.2. This does not noticeably affect our working as 

everything has a similar form. 

l:.u = E (<! - &)<! - &Y) = f <! - ~(F»<! - ~(F»' dF 

taking F = (1 - E)F + E8~ (see Cltapter 1), then 

~.u = f <! - ~(F»<! - ~(F»' di' 

= (1 - £)~.u + £<! - &)<! - &Y + 0(£2) 

Similarly if 

Vu = E~') = f xx' dF 

then 

V.u=fxx'dF 

= (1- £)Vu + €XX' 

(we have no second order term when we do not centre). So our influence 

expressions have the same form but there is no centering. 

Second, we normalise our vectors differently. In canonical analysis we let 

~ 'l:yy ~ = £1 'l:u!!.J: = 1 , 

but in correspondence analysis we let 

The only consequence of this is that if Vy; 1 = CC' , then we take ~k = X{2C ~ , 



- 172-

whereas in canonical correlation analysis we take !k = c~ where I,-;1 = CC ' . 

The canonical scores were defined as 

Rkl = ~ - &) '!k , Rb = <! - ~)' ~ , 

so that our scores in correspondence analysis would just be 

since !' = (y' ,!') = (00 .. 0 1 0 .. 000 .. 0 1 0 .. 00), where the "1 Its are in the j th 

and ith rows of ~ and ! respectively, and because ~k = >..11l!k (where!k is 

based on the uncentred model), we replace RkJ in (5.2.6) by gkJ />..11l to give, 

(5.3.1) 

As we have not centred our variables, i.e. we have P rather than P - rc' 

in correspondence analysis, this means that we have the trivial dimension in 

the original and perturbed analyses. Thus, 

>"1 = i.1 = g I} = i I} = / 11 = i li = 1 

and, substituting these into (5.3.1), we obtain 

as required. 

N . III h oting gk = >"k !k, we ave, 

TIC ~ ,gk ) = TIC ~ ,>..lll)!k + ~F2T1c ~ , !k ) 

= TIC ~ ,~lll) g:n + ~lllTlc ~ , ~ ) , 
>"k 

Using (5.2.7), (5.2.9) and (5.3.1) and substituting the correspondence 
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(5.3.2) 

As for TIC <! , Xl ), since we have not centred our variables, we can show that 

TIC <! ,~1) = Q, for the trivial dimension. Now, 

Now, 

so that 

TIC<! ,gl) = 0 + ~! - ~ Dc-l~ 

-t :: ()., -1) -1 [0 - ~ ()., - 1 )g'j I 
t*l 

1 1 _ 1 J 1 
= -! - -Dc ly + - L -gtg,'y 

2 2 - 2 t=1 Xt - - -
t*l 

- 11 1 D -1 1 C~ 'C' -2--2c~+2t~~~ ~ 
t*l 

J 
L atat ' = rr' - alaI' = I - ~lal' , 

t=l 
t*l 

since CC' = D -1 and C a = a = ~ = 1. c _1 _1 Al'2 -

= .11 - .111 'y 
2- 2--

=0 

(5.3.3) 

because y' = (00 .. 010 .. 00), the "1" being in the j th row of the vector The 

influence function for II:. can be obtained using the relationship (5.1.9). 
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5.4. Influence Functions for Adding a Row to a Contingency Table 

5.4.1. Influence Function for the Eigenvalues 

When we add a row to the contingency table, we are actually adding m 

observations such that our matrices of dummy variables for Y and x become 

Y x 

column entries row entries 

1 ......... J 1. ........ .I 1+1 

• • 
• 

• 
· . . . . .. . . . . . ..... 

• 

. ' ..... . e· .• • •. e .••• 

Using (5.1.12), we have 

_ 1 - - 1 [n .. D r 

D = X'X = , 
r n .. + m n .. + m Q.r 

_ [(1 - £m }Dr Q.r) 
- Q.r' £m' 

where we let £ = 1 /(n .. + m) and, since Dr is diagonal, to o(£} we have 

(5.4.1) 

D = 1 Y'Y = 1 (n.Pe + y. ,y.) 
en .. + m n .. + m 

} ·,y· = (1 - £m De + £y . 

• - -1 
Since Y· is a matrix, we need to use the following matrix result to obtatn De 

(see Mardia et aI., 1979, p459). 

(A + BCD }-1 = A-I - A -IB (C- 1 + DA -IB )-IDA -1 (5.4.2) 

~ r ., C I and D = Vey· . In the above we take A = (1 - £m)De, B = v£Y, = 
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Omitting the detail" (we actually need to u~ (S.4.2) tv.ice). we ohtain to 

o(t), 

- I 
Dr =(1 +un)O 1_ tD ly·'y·O I 

provid~ m. ~s ~ma11 compared to n:. . r r 

Let D,. - Y Y be the dIagonal matnx of the added row ( (since each row of 

y. only contains one entry of 1 for the column that the observation falls in) 

then, to 0(£), 

(5.4.3) 

We wish to find the influence function for the eigenvalues from the symmetric 

matrix C'P 'D,-lpC, which are the same as those from the matrix D -lp'D -lp c , , 

where Dc-
1 = CC'. Taking (to 0(£», 

(5.4.4) 

(which is diagonal), we see that cc' = 6 ~- I . 

p= 1 X'Y= 
n +m (5.4.5) 

where r·' is the added row. 

Using (5.4.5) and (5.4.1), 

(5.4.6) 

(5.4.7) 

We can use the same formulae to obtain the influence functions for the 

eigenvalues and eigenvectors as used previously for the theoretical influence 

functions as the perturbed expressions above are similar. The only difference 

is it is an asymptotic result where we consider expansions to 0 (£) where 

( = 1/ (n. + m). Since, this is an a~ymptotic derivation we will refer to the 

influence functions immediately as the empirical. Using (5.4.7) and (5.4.4) 

hy the product rule for influence, 
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EIC<!:..* ,C'p'D,-1PC) = ~ C' (m I - D,.D~-1 )P'D,-1PC 

+C' (-mP'D,-1p +~*~*'/m)C 

+ ~ C' P' D,-1p (m I - Dc- 1D,. )C 

= _lC' (D .D-1p'D-1p + P'D- 1PD- 1D )C 2 r c, , c ,. 

(5.4.8) 

The influence function using (3.5.3) (which would not be affected by this 

being derived asymptotically) and taking ~I: = xF1.c~ gives 

EIC <!:..* ,Xd = - _1_gl:' (D D -1p' D -1p + P'D -1PD -1D )g 2XI: _ ,. c, , c ,._1: 

+ 1 , * * --gl: , , 'g . 
m " - - I: AI: - -

Using (5.1.10) 

- 'D + 1 ,* *, - - gl: • gl --gl" gl 
- , - m XI: - - - - (5.4.9) 

= - L 'j*gl:] + -,,- L 'j-glj 
J 1 [J ]2 

j=1 mAl: ·=1 
(5.4.10) 

Alternatively, from the transition formula (5.1.9), the ith row co-ordinate is 

f - 1 1 , 
li - " 112 -!j gl 

Al mi -

where mi is the ith row sum. We can substitute into (5.4.9) 

f 
1 *, 

a = ,,112 ~ 81 , 
mAl -

(5.4.11) 

where fa is the plotting co-ordinate for the extra (supplementary) row with 

respect to the original 81 and Xl. This is used by Greenacre (1984) to display 

a supplementary point (hence the subscript s) on the existing plot of rows and 

columns. As Greenacre notes, the point is not contributing to the display. We 

shall see later that this representation of the extra point is useful when we 

look at the influence function for fl. 

J 

So, letting Wu = L r j 81] , 
)=1 
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(5.4.12) 

Since we are dealing with uncentred matrices, ~ I = 1J and XI = 1. Substituting 

J 

these into (5.4.10) and noting that ~ rj = m, the row sum, then 
j=1 

as required. 

5.4.2. Influence Functions for the Co-ordinates 

As with the influence function for the eigenvalues, result (3.5.9) will not 

be affected by our asymptotic approach to influence. Therefore, 

J 

EIC<!.· ,aj:) = - ~ a,(X, - Xj:)-la,'EIC<!.· ,C'PID,-lpC)~ 
,=1 
,ot-j: 

d . 1f2 h an sInce gj: = C~Xj: ,t en 

EIC <!.. ,gj:) = EIC <!.. ,C)~ xlf2 + CEIC «( ,~)xlf2 

+ C ~ EIC C!:.. ,xlf2) 

(5.4.13) 

(5.4.14) 

which occurs from considering the perturbed forms for C, aj: and xlf2 , or 

directly from the product rule. 

Using (5.4.8), 

Using (5.1.10), 

1 [X 1f2 X 1f2 ) 
a,'EIC<!.· ,C'p'D,-lpC)~ = - 2" X:lf2 + X/12 ~,'D,.~ 

1 , •• , + g r r gj: 
" If2" 112 _, - -

mA, Aj: 
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Using this and (5.4.11), (5.4.13) becomes 

(5.4.15) 

J 

where Wkt = L 'j*gtjgkj. Using (5.4.15), (5.4.4), (5.2.7) and (5.4.12), 
j=l 

(5.4.14) becomes, 

(5.4.16) 

Again, we have worked with the uncentred matrix P, so that EICC!:* ,gl) 

should be zero. Substituting ~1 = 1, f 1 = ! and gl = !, we obtain, in a similar 
- -

way to adding to a cell, 

(r* ) 1 ~ 1 , * 1 1 1 D -1 * 0 
EIC ~ ,!1 = -2 ~ -!t!,!. +"2m - -"2 e !. + , 

- '=1~' 
,*1 

J 

because W It = L 'j* g,j = g,' ( and, 

Therefore, 

j=1 -

" 1 , * 
mf uf l.r = mJ u = ~ 112!' !. , 

(r· ) lC~ 'C,·+ll ID- 1 • 
EIC~ ,!1 ="2 ,-:;Q,a, !. "2m_-"2 e !. 

Using (5.3.3), 

1 ( ) 1 1 -1 * EICC!:· ,!1) ="2C 1- al~.t' C'!.* + "2m! - "2De !. 

1 1 1 • 1 lID -1 * =-D-'·--OlOI" +-m --2 e!. 2 e - 2- - - 2-

but ~ 1 = ! and !'!.. = m, the row sum. Therefore, 
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We obtain the influence function for /1 from the transition formula 

(5.1.9), which is 

1 
However, ~ 112 gl = ~l and 

Al -

I - 1 D -lp 
I - 112 r gl 

- Xl -

EIC <!:. * ,~) = EIC <!:. * ,C)~ + CEIC <!:.. ,~) 

(5.4.17) 

Because of (5.4.14), we can obtain this influence function by dividing 

(5.4.16) by xl12 and, omitting the last term, this gives 

(5.4.18) 

From (5.4.6), 

[

D _lP] 
D,-lft = ~(' + 0(.2) 

i.e. it does not involve a first order term, so that 

(5.4.19) 

Therefore, il ' = kt c 2) where, 
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(5.4.20) 

Using (5.4.11) we can re-express C2 as, 

The perturbed £1 vector is different to all the other eigenvector perturbations 

we have considered as it contains one more element than the original It. 

Thus, we find that the first 1 rows of i1 can be written in the form 

and the term for the extra (I + 1 )th row is 

- (0 2 11(1+1)=/0 + E/1(1+1) + O(E) (5.4.21) 

i.e. it is the term for displaying the extra row on the original plot, as discussed 

earlier, plus higher order terms. We have not written EICC!:.- ,/1 (I + 1» since it 

was not in the original problem. However, the term in E, 11(H + 1), is similar to 

that for the other co-ordinates. Using f 0 , for displaying supplementary points 

on the original correspondence plot, is thus justified by the form for i1 (I + 1). 
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S.S. Adding m Identical Observations in Multiple Correspondence Analysis 

5.5.1. Influence Function for the Eigenvalues 

As discussed in § 5.1.3, we have a Q-variate indicator matrix z such that 

the symmetric Burt matrix, which contains all the two-way contingency tables, 

is B = Z'Z. If there are lq categories, q = 1,2, ... ,Q, on each variable then we 

will add m identical observations with the categories Lq , q = 1,2, ... , Q. Then, 

B =B + W (5.5.1) 

where w is a symmetric matrix consisting of m in the (Li ,Lj)th positions, 

i ,j = 1,2, .... , Q, and zeroes elsewhere. Thus, m is added to Q cells in the Q 

rows, corresponding to the Lq categories, of the Burt matrix, so that the grand 

total of B is Ii .. = n .. + Q2m . 

As P = B / n.. is a symmetric matrix, the correspondence analysis of the 

Burt matrix results from finding the eigenvalues and eigenvectors of 

(D -lpD -lp - A /)h = 0 r r 1_1 (5.5.2) 

with normalisation!; 'Dr!; = Ai. However, the eigenvectors of Dr-1p are the 

same as those from Dr-1pDr-lp and the eigenvalues are square-rooted so that 

(5.5.3) 

From (5.5.1), 

- B B +W p=-= = + 
Ii.. n .. +Q2m n .. + Q2m n .. + Q1

m 

nP W 

Letting E = 1 /(n .. + Q 1m), then 

(5.5.4) 

H ! = W'!, then s consists of entries, Qm, corresponding to the Lf th 

categories, and zeroes elsewhere. These non-zero entries occur in the vf 

positions where 

(5.5.5) 
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From (5.5.4) we have, 

Dr = (1 - EQ
2m )Dr + EDs 

where Ds is a diagonal matrix of !. Using (5.4.2) we obtain, in a similar 

manner to (5.4.3), 

D -1 = (1 + EQ 2m )D - 1 - ED -1 D D -1 r r r s r 

and letting Dr -
1 = CC', similarly to (5.4.4) we have 

(5.5.6) 

The asymptotic form of (3.5.3) is, 

E1C(m~ ,A;I2) = ~ 'E1C(m~ ,C'PC)~ 

= ~' [E1C(m~ ,C')PC + C'E1C(~ ,P)C + C'P EIC(m~ ,C) l~ 

from multiplying e' PC together, or from the product rule. Simple algebra 

(similar to previous sections), using (5.5.4) and (5.5.6), gives 

E1C(~,A;I2)=~'C' [-Ds Dr-
1P + wlc~ . 

We wish to normalise our vectors so that !; 'Dr~1: = AI:, so we take 

!; = c~AII2. Therefore, using (5.5.3), 

Since, 

then 

EIC (mz AI: ) = 2AI12EIC (In! ' AII2) 

= -2!; 'Ds!; + ~12!; 'W!; , 
AI: 

(with Vq defined as in (5.5.5», and 

(5.5.7) 
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so that the influence function only involves the eigenvector c~ordinates for 

the categories of the m extra observations. Thus from (5.5.7) 

(5.5.8) 

Substituting ~1 = 1 and!!1 = ! gives EIC (m~ '~l) = 0, for the trivial dimension. It 

can be shown that (5.5.8) specialises to the eigenvalue influence function for 

adding to a cell of a contingency table, derived in § 5.3, by using the 

relationship ~f = 4(W - 1/2)2. As for the tw(}-way results, we see that 

influence depends only on the c~ordinates corresponding to the categories 

involved in the m observations. We can see that the affect of adding m , rather 

than unity, is just to multiply the influence by m (since all m observations are 

identical). 

5.5.2. Influence Function for the Co-ordinateslEigenvectors 

The influence function for the eigenvector from the symmetric matrix 

C' PC, using (3.5.9), is 

J 
E1C(m~ ,~) = - L ar(~rlf2 - ~1f2)-la,'E1C(~ ,C'PC)~ , 

r=1 
r*1 

(5.5.9) 

where J is the sum of the number of categories on each variable. Using 

(5.5.4) and (5.5.6), 

Using (5.5.3) and!; = c~~lf2, then 

(5.5.10) 
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As in (5.4.14), 

EIC(m!. ,~) =EIC(m!. ,C)~Al!2 + CEIC("'!. ,~)Al!2 + C~EIC(mz ,All2) 

Using (5.5.6) and substituting (5.5.10) into (5.5.9), then 

1 
EIC(m!. ,!!k) = I(Q 2m1 -D,-lDs)!!k 

- ,~, ;, MIo.,'" - 10.;12)-',,/ [-; (10.,112 + A.'I2)D, + W]!!t 
,*k 

(5.5.11) 

where 

Q 
~, , Ds ~ = Qm ~ h, v hk V 

q=1 t t 

Q Q 
h, 'Wh.. = m ~ ~ h, V hk V ' 
- ~ t t 

q =1 q=l 
q'*q 

In exactly the same way to previous influence procedures, we can show 

EIC (mz ,h 1) = O. The proof is omitted as the steps are almost identical to 

earlier work. 

Expression 5.5.11 only involves the co-ordinates for the categories from 

the added points. This is similar to the expr~on for the changes in the c0-

ordinates when we add a single observation to a cell. 
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Chapter 6: Investigation of Influence in Correspondence Analysis by 

Application to Real Datasets 

6.1. Introduction 

In this chapter we examin,e influence in correspondence analysis for the 

three types of perturbations given in the last chapter. The three influence 

procedures are, 

(1) adding in a single observation so that a cell of a contingency table is 

incremented by one. 

(2) Deletion of a row from a contingency table. (No justification is given 

here, apart from the good comparisons of empirical and sample, but we 

find that it is justifiable as in other influence techniques to use the 

empirical expression for deletion as well as addition). 

(3) Adding in a single observation to a multiway table so that Q2 (where Q is 

the number of variables) cells of the Burt matrix increase by one. 

These influence procedures are examined by application to real contingency 

tables. We investigate influence by looking at the patterns of sample influence 

and where possible we relate this back to our empirical expressions. The 

empirical expressions for the G and F co-ordinates in any of the perturbation 

schemes are not easy to interpret, but we can often gain insight from the 

eigenvalue expressions. If not stated otherwise the influence values given in 

this chapter refer to the sample function. We will refer to the first non-trivial 

dimension as the first dimension etc. 

The first two types of perturbation are considered in detail, as well as the 

extension of (2) to the deletion of columns. Problems with the rotation and 

swopping of eigenvectors, as seen in PCA, will be observed in the first few 

dimensions from correspondence analysis under the perturbations in (2). This 
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is particularly seen when we delete columns rather than rows. In the latter 

influence method we point out the similarities with the patterns observed in 

(1) by considering the analysis for two and three variables. 

In § 6.3.6 we consider an adaptation of the empirical influence function 

for the k th eigenvectors (G and F co-ordinates) that involves just the 

summation over the dimensions close to the k th dimension. For example, use 

the two dimensions either side of the one of interest or any dimensions whose 

eigenvalues are close. This is done to increase the speed of computation of 

the empirical influences and is justifiable as the terms in (Aj - Ai )-1 will 

usually be largest for the closest eigenvalues. 

6.2. Investigation of Influence When Adding in a Single Observation to the 

Cell of a Contingency Table 

6.2.1. Influence for the Eigenvalues (Principal Inertias) 

Investigation of such influence, for two contingency tables below, gives 

us interesting insights into the sensitivity of correspondence analysis. The 

results from the asymptotic theory for adding to a cell should hold quite well, 

provided n .. is fairly large. The actual dimensions I and J should be less 

important in determining whether the asymptotic results hold well in practice. 

The first contingency table we will consider is given in Table 6.2.1 and is 

taken from Greenacre (1984,p 259). The table is concerned with the worries 

of Israeli adults according to where in the world they live and where their 

father lived. The plot of the first two dimensions is given in Fig. 6.2.1 and the 

interpretation of the plot is given by Greenacre. The sample size is n .. = 1554, 

so we may expect our comparisons of actual sample and estimated change to 

be good. We will consider influence in the first two dimensions in detail, since 

we usually hope our analysis results in a useful two dimensional plot, and will 
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Table 6.2.1 
Contingency Table of the Principal Worries of Israeli Adults 

WOrry ASAF 
Demography 

EUAM IFAA IFEA IFI Total 
ENR 61 104 8 22 5 200 
SAB 70 117 9 24 7 227 
MIL 97 218 12 28 14 369 
POL 32 118 6 28 7 191 
ECO 4 11 1 2 1 19 
OTH 81 128 14 52 12 287 
MfO 20 42 2 6 0 70 
PER 104 48 14 16 9 191 
Total 469 786 66 178 55 1554.0 

Abbreviations 

ENR Enlisted relative SAB Sabotage 
MIL Military situation POL Political situation 
ECO Economic situation OTH Other 
MTO More than one worry PER Personnal economics 
ASAF Asia/Africa EUAM Europe/America 
IFAA Israel,father Asia/Africa IFEA Israel,father Europe/America 
IFI Israel,father Israel 

Figure 6.2.1 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Worries of Israeli Adults. 
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briefly outline the influence 10 later dimensions. The most influential 

observations/cells, ranked by the sample influence, and corresponding 

empirical estimated change, are given in Table 6.2.2. The change is recorded 

as the percentage change in the eigenvalue. The most influential observation 

is recorded as the cell that causes the largest change in the eigenvalues when 

its value is incremented by one. 

Table 6.2.2. 
Most influential Cells (when one is added to them) for the First 

Two Eigenvalues From Israeli Dataset 

Al A2 
Cell Actual Estimated Cell Actual Estimated 

Cllan2e Cllange Cllange Cbange 
8,2 -1.5% -1.6% 6,4 4.4% 4.3% 
8,1 1.2% 1.2% 7,4 3.5% 4.0% 
8.3 1.2% 0.9% 3.4 3.3% 3.5% 

These changes are small but we are considering a small perturbation. The 

comparisons above are good and so we can interpret our asymptotic expression 

(5.3.1), to give us a clear picture of influence in practice. Expression (5.3.1) 

can be re-expressed as, 

TIC C! ' ~, ) = - (g,) - ",), + 2g'J'" (~~12 -1 ) 

1 
where --v2 > 0 as 0 < Arl < 1 

Al 

(6.2.1) 

Since we are considering the sample function for adding in points (so the cell 

entries are incremented by 1) the original parameter is subtracted from the 

perturbed. A positive influence thus corresponds to an increase in the 

parameter. 

From (6.2.1) we obtain a large negative influence, i.e. Al decreases, 

when the co-ordinates glj and Iii are far apart and have opposing signs. 

Adding in one to the (i ,j yn cell increases the association between the 

corresponding categories. Thus, if gij and Iii are at the opposite extremes of 

the dimension they should move inwards towards each other, and so the 
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variance decreases. The eigenvalue increases if gij and Iii are close and at the 

extreme of the dimension. This occurs as the row and column are already 

highly associated with each other, and become more so when one is added to 

the cell entry. Thus, the two are relatively less associated with the rows and 

columns and so move further out together. The variance thus increases. 

The comparisons between sample and empirical were good in this 

dataset, so we find the above patterns are exhibited for this contingency table. 

The influence of cell (8,2) on i.l is negative and from Fig. 6.2.1 the ro­

ordinates for 'Personal economics' and 'Europe and America' are far apart at 

opposing sides of the axis. Conversely, the ro-ordinates for 'Personal 

economics' and 'Asia! Africa' are close together and both large, and the affect 

of cell (8,1) on i.l is positive. The same pattern occurs for the second axis 

with, for example, the affect of cell (6,4) being positive and the ro-ordinates 

for the categories 'Other' and 'Israel fatherlEurope America' being close 

together and large in the second dimension. 

The same pattern occurs for the second contingency table from 

Greenacre (1984, p 55), where n .. = 193, which is smaller than that for the 

above dataset. The contingency Table is given in Table (6.2.3) and the 

correspondence plot for the first two dimensions in Fig. 6.2.2. This is a set of 

artificial data, relating to the smoking habits of employees. The three most 

influential cells on the first two eigenvalues and the sign of the influence are, 

3,4 
2,1 
41 

~2 
Cell Si 
2,4 + 
2,2 
14 + 

The C<rordinates in the first dimension for 'Senior employees' and 'Heavy 

smoking' are far apart, and the influence when adding to cell (3,4) is 

negative, i.e. a decrease in the variance. The co-ordinates for 'Junior 
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Table 6.2.3 
Artificial Contingency Table on the Smoking Habits of Personnel Staff 

Staff None 
Smoking 

Li2ht Medium Heavy Total 
Senior managers 4 2 3 2 11 
Junior managers 4 3 7 4 18 
Senior employees: 25 10 12 4 51 
Junior employees 18 24 33 13 88 

Secretaries 10 6 7 2 25 
Totals 61 45 62 25 193 

Figure 6.2.2 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Smoking Habits of Employees. 
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managers' and 'Heavy smoking' in the second dimension are large and close 

together and the influence of cell (2,4) is positive. 

The comparisons of the empirical and sample are better for the early 

than latter eigenvalues, but these may be of less interest than they are in 

PCA. Although not derived here, the second order terms for the eigenvalues 

will involve the influence function for the eigenvectors which is made up of 

terms in (Aj - Ai )-1. When the eigenvalues are small and close together the 

more important the second order term is likely to be. We thus find that the 

empirical and sample influences differ more for these later dimensions. The 

two functions do pick out the same observations as influential but differ in the 

values. The most influential cells in these dimensions do tend to follow the 

patterns discussed above for the early dimensions. For example, cell (5,3) in 

the first dataset is the most influential on the fourth eigenvalue (the smallest 

eigenvalue) with a sample change of +8.8% and a smaller, but still largest 

change, of +4.3% for the empirical. Both these co-ordinates are large and 

close in this dimension, see Fig. 6.2.3. 

There is a tendency for cells with low counts to be most influential on the 

later eigenvalues, especially when their row and column totals are small as 

well. The influences on ).3 for the first dataset are dominated by cells in 

column 5 and i. by cells in columns 3 and row 5. From Fig. 6.2.3 we can see 

that the co-ordinates of these categories are extreme in the dimension of the 

eigenvalue that they are influential on. 

6.2.2. Influence on the Eigenvectors ('G and F co-ordinates) 

To compare the sample and empirical estimated changes we will take as 

our statistic the sums of squares of the individual changes in the G and F c0-

ordinates for each dimension. Table 6.2.4 gives the most influential cells on 

the G and F co-ordinates for the first two dimensions. 
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Figure 6.2.3 Plot of the Last Two Dimensions from the Correspondence 
Analysis of the Dataset on Worries of Israeli Adults. 

-0.3 

x 
Ec.o 

0.3 DIM 1 

x 
IFAPt 

-0.3 

X 
,",TO 0.3 

DIM 3 



- 193 -

Table 6.2.4 
Most Influential Observations on the G and F Co-ordinates 

gl g2 

Obs Sample Empirical Obs Sample Empirical 
85 0.0018 0.0018 65 0.0011 0.0012 
83 0.0009 0.0010 75 0.0008 0.0010 
45 0.0006 0.0006 63 0.0005 0.0005 

11 12 
Obs Sample Empirical Obs Sample Empirical 
51 0.0056 0.0062 54 0.0170 0.0194 
53 0.0043 0.0050 55 0.0021 0.0019 
52 0.0012 0.0014 74 0.0017 0.0017 

The changes are small partly because they are largely attributable to the 

observations affect on just one of the coefficients, see below. The comparisons 

are very close, especially if one looked at the individual changes in the c0-

ordinates. Again, the comparisons deteriorate for the latter dimensions 

although the order of ranked influences changes little. Unfortunately the 

asymptotic expressions for the influence on the G and F co-ordinates, see for 

example (5.3.2), are not simple and almost impossible to interpret. However, 

we can obtain a good insight into the influence on the co-ordinates from the 

numerical results and plots below. 

The most influential cells, by the sums of squares of individual 

coefficient changes, on f 1 and f 2 are dominated by combinations with the row 
- -

5 and row 7 categories, i.e. (5,j) or (7,j) j=1,2 ... J. These rows have the 

smallest row totals. The column totals are much larger than the row totals and 

we find that the changes in gland g 2 are less than for f 1 and f 2· However, 
- - --

the most influential cells on gl and g2 are made up of cells involving the 
- -

column categories 5 and 3, which have the smallest column totals. The most 

influential cells on the last two dimensions for both ~ and £ are almost the 

same as each other. In the top ten ranked influences on !3, !4, £3 or £4 

there is not one cell that does not involve one of the row numbers 5 or 7, or 
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one of the column numbers 3 or 5. 

Table 6.2.5 gives the most influential cells on each of the individual ccr 

ordinates, I Ii ;=1, .... 1. If the ith row (or jth column) has a small total then 

the most influential cells on I Ii (or g Ij) tend to be those involving their own 

row (column) number. This does not OCCUr for columns 1 and 2 which have 

large totals. The smaller the row (column) total the larger are the influences, 

i.e. the plotting positions are unstable. Although cell (5,1) was the most 

influential on £ I when we looked at the sums of squares of the individual 

changes, from Table 6.2.5 we see it is only due to its large affect on 115' As 

well as cell numbers (i,j),j=1, .... J coming out as the most influential on Iii 

we usually find that there is a pattern to the order of the column numbers. 

From Table 6.2.5 we see this order tends to be (i, 1), (i ,3), (i ,2)(i ,5) and (i ,4), 

although often (i ,5) and particularly (i ,4) is not in the top 10 ranked 

influences on each I Ii' This order coincides with the ranked absolute g Ij ccr 

ordinates, with gll being the largest and gl4 the smallest, see Fig. 6.2.1. Cells 

involving columns 1 and 3 lead to a decrease in I Ii, corresponding to the ccr 

ordinate I Ii moving to the left, closer to glj j=1,3. Conversely, cell (i ,2) 

leads to an increase in I Ii' If I Ii increases, say, when we add one to cell (i ,j) 

we usually find that all the other ccrordinates lit t =l=i decrease. This occurs 

since we have not only increased the association between row i and column j, 

so that the co-ordinates have moved closer, but we have relatively decreased 

the associations of the other rows with this column. This illustrates that 

correspondence analysis is a very useful technique at displaying the 

relationship between the rows and columns of a contingency table. 

Whereas cells (i ,4) were the least influential out of the cells (i,j) on I Ii 

they are the most influential on 12i i = 1, ... 7 (though not 128)' The ccrordinate 

g2i' corresponding to the category 'Israel: father Europe/America' is the 
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Table 6.2.5 
Most Influential Cells on the Row Co-ordinates from the First Dimension 

of the Israeli Worries Contingency Table 
Actual Sample Change x 100 in Parentheses 

11 21 31 41 51 84 71 82 
(-0.59) (-0.50) (-0.34) (-0.81) (-7.46) (-0.54) (-2.04) (0.69) 

13 23 33 43 53 61 73 84 
(-0.53) (-0.45) (-0.33) (-0.64) (-6.56) (-0.47) (-1.86) (0.50) 

12 22 84 45 52 63 72 81 
(0.37) (0.33) (0.32) (-0.25) (3.50) (-0.41) (1.04) (-0.29) 

85 25 32 42 55 62 75 83 
(0.22) (-0.17) (0.17) (0.24) (-2.73) (0.32) (-0.90) (-0.26) 

15 85 44 84 54 44 85 61 
-0.21 0.13 -0.17 -0.20 0.59 0.22 0.65 0.12 

Table 6.2.6 
Most Influential Cells on the Row Co-ordinates from the First Dimension 
of the Israeli Worries Contingency Table When 10 is Added to Each Cell 

Actual Sample CIiange x 10 in Parentheses 

11 21 31 41 53 84 71 82 
(-0.56) (-0.48) (-0.33) (-0.76) (-9.57) (-0.45) (-1.84) (0.65) 

13 23 84 43 55 61 73 53 
(-0.48) (-0.41) (0.29) (-0.36) (-6.74) (-0.44) (-1.51) (0.58) 

12 22 33 42 51 63 72 83 
(0.36) (0.31) (0.25) (0.23) (-5.11) (-0.39) (0.93) (-0.44) 

85 53 44 84 52 62 85 84 
(0.26) (0.22) (-0.19) (-0.21) (2.43) (0.30) (0.55) (0.35) 

55 85 54 44 54 44 55 55 
0.25 0.18 -0.17 0.17 1.24 0.20 0.54 0.32 
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largest column co-ordinate in the second dimension. This is a similar situation 

to the first dimension where the most influential cell involving the i th row was 

for the most extreme column co-ordinate in the first dimension. 

For the latter dimensions the most influential cells on all the f and g 

co-ordinates include the rows and columns with small totals i.e. rows 5 and 7 

and columns 3 and 5. From Fig. 6.2.3 we can see that the co-ordinates for 

these categories are extreme in the third or fourth dimension. 

We will investigate influence on the G and F co-ordinates in the smaller 

contingency table on smoking habits, by two plots. These plots will illustrate 

some of the patterns observed above in the previous dataset. The plots give 

the new plotting positions, in the first two dimensions, when we add one to 

each cell individually in a given row. We have considered the first and fourth 

row in Table 6.2.3, which have the smallest and largest row totals 

respectively. In Fig. 6.2.4 we observe how the plotting positions change when 

we increment each cell in the first row, corresponding to the category 'Senior 

managers', by one. We can see how the co-ordinates in the first two 

dimensions for 'Senior managers' move towards the smoking category that one 

has been added to. This is nice to observe, given how we normally interpret 

our correspondence analysis. As discussed above for the 'Israeli' dataset, we 

see that whereas as the 0 symbol for 'Senior managers' moves to the left 

towards the 'No smoking' category, the 0 symbol on all the other employee 

categories have moved slightly to the right away from it. This can be observed 

for the other symbols as well. The variability in the 'Senior managers' c0-

ordinate is much greater than the changes in the smoking categories that have 

been added to. This happens because of the low row total for the first row. 

Adding to cells in the first row has little affect on the other row co-ordinates. 

The most influential cell in the first row overall seems to be (1,4), as the + 
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. Figure 6.2.4 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Smoking Habits of Employees 

When lis Added to the Cells in the First Row. 
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. Figure 6.2.5 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Smoking Habits of Employees 

When 1 is Added to the Cells in the Fourth Row. 
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symbol seems to deviate the most for all the co-ordinates. Cell (1,4) is a small 

cell in the column with the lowest total. 

The changes in Fig. 6.2.5 are very smalL These correspond to adding 

one to the cells individually in the fourth row, which has the largest row total. 

The cells with the most influence are (4,1) and (4,4), which correspond to the 

o and + symbols respectively. However, these have as much affect, if not 

more, on the other categories as they do on the 4th row category 'Junior 

employees'. Also, the changes in the 'Junior employees' co-ordinates were as 

great in Fig. 6.2.4, when we were adding to cells in the first row. This was 

also observed in the 'Israeli' contingency table, with columns with large totals 

not having cells involving their own row numbers as the most influential. 

There is usually little pattern to what will be most influential, but most 

prevalent seems to be cells who have extreme co-ordinates in the dimension. 

However, these influences are not usually large. 

6.2.3. Summary and Discussion 

The above results show, perhaps unsurprisingly, that the most sensitive 

plotting positions in the first two dimensions correspond to the categories 

based on the least information, i.e. their row/column total is small. Plots such 

as Fig. 6.2.4 provides useful and clear information on the sensitivity of our 

analysis. One would not necessarily want the different symbols for each cell 

that is perturbed (this was done above to illustrate what direction the c0-

ordinates moved in) but to have a different symbol for each category c0-

ordinate and consider the changes for adding to each cell on one plot. See for 

example Fig. 6.2.6, which clearly indicates which categories are the least 

stable. H one felt that all the rows and columns of the contingency table had 

reasonably large totals then such an analysis may not be needed. The above 

also shows that in the first two dimensions the G and F co-ordinates tended to 
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Figure 6.2.6 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Smoking Habits of Employees 

When 1 is Added to Each Cell in Turn. 
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be most affected by cells in their own row/column, although there was little 

pattern to the most influential on the categories with large totals. However, 

the changes in these tended to be small anyway. In the latter dimensions the 

same cells tended to be the most influential on all aspects of the analysis, and 

these were usually cells with small entries in rows and columns with small 

totals. 

The theoretical expressIon for the changes in the eigenvalues proved 

helpful in describing influence on the eigenvalues, and in particular what cells 

cause the eigenvalues (inertias) to increase or decrease. However, the 

theoretical expressions for the G and F co-ordinates are not very infonnative. 

The specialisation of the Burt analysis empirical expressions, which were 

derived in § 5.5 for adding m observations, to the two way contingency table 

analysis implies that the affect of adding more than one to a cell is additive 

(i.e. the influence is multiplied up by m as we are considering the addition of 

m into the same cell). Table 6.2.6 gives the five most influential 

observations on f Ii when 10 is added to each cell of the 'Israeli' contingency 

table. These are almost the same as in Table 6.2.5, with the values of the 

influence being approximately ten times bigger, sometimes more and 

sometimes less. There are exceptions in the order of influence but it is 

difficult to say why cells go up or down the lists of ordered influence as m 

increases. Many of the influences in the smaller 'Smoking' dataset were also 

a factor of 10 greater when 10 rather than 1 was added to each cell. 

We obtain a similar type of plot to Fig. 6.2.6 if we consider 

bootstrapping of the original n .. = 193 observations of dummy variables making 

up the 'Smoking' contingency table (see Greenacre (1984), Otapter 8). This 

involves drawing samples of size n .. = 193, by sampling from the original 

variables, and plotting the new G and F co-ordinates of the resultant 
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contingency tables. The original sample IS thus being treated like the 

underlying population and we are looking at the possible contingency tables 

that could have arisen. The procedure is thus best if the original data was also 

drawn randomly since it will be more representative of the underlying 

distribution. However, as Greenacre notes most data is collected in a 

'deliberate non-random fashion'. The generated contingency tables are thus 

greater perturbations of the original than the influence technique for adding 

in a single observation (i.e. adding 1 to a cell). Both techniques will reveal 

which plotting positions are the least stable, but as discussed above we may 

only need to consider such plots if we think some of our row or column totals 

are small. 

6.3. Influence When Omitting a Row from a Contingency Table 

We will investigate influence when omitting a row from a contingency 

table using three datasets. The first was introduced in Section 4.9 where we 

considered influence on the covariance biplot which we will compare with the 

influence on the correspondence analysis display. The contingency table for 

this dataset is given in Table 4.9.1 and the original correspondence analysis 

display for the first two dimensions in Fig. 6.3.1. The second dataset is on the 

worries of Israeli adults and was introduced in the previous section. Its 

contingency table is given in Table 6.2.1 and correspondence display in Fig. 

6.2.1. The last dataset is taken from Gabriel and Zamir (1979) (but it is also 

in Greenacre (1984, p268)). Table 6.3.1 gives the contingency table and Fig. 

6.3.2 the correspondence analysis display of the first two dimensions. This 

dataset is concerned with the science doctorates in the USA for different 

years. As before we will not consider the interpretation of the original plots, 

one is referred to Greenacre (1984), except where it is relevant in our 

influence studies. Note, we are again considering the deletion of rows so our 
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. Figure 6.3.1 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Protein Consumption in Europe. 
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Table 6.3.1 
Data on Science Doctorates in the USA 

ub·ect 
E G 

MATH 
PHYS 530 
CHEM 1078 
EART 253 
BIOL 1245 
AGRI 414 
PSYC 772 
SOCI 162 

ECON 341 
ANTH 69 

T 

2073 
685 

1046 
1444 
375 

1963 
576 
954 
239 
538 
82 

ENG Engineering 
GIEM Chemistry 
AGRI Agricultural sc. 
ECON Economics 

Abbreviations 

MATH Mathematics 
EART Earth sc. 
PSYC Psychology 
ANfH Anthrooology 

3144 
1196 
1334 
1792 
570 

3473 
830 

2587 
645 
833 
381 

PHYS 
BIOL 
SOCI 
am 

7 
2959 
1149 
1293 
1762 
556 

3498 
904 

2749 
680 
867 
385 

Physics 

otal 
22710 

8282 
10823 
14374 
3972 

24388 
6135 

15772 
4050 
5966 
1958 
477 

7 07 

Biological sc. 
Sociology 
Other Social sc. 

Figure 6.3.2 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Science Doctorates in the USA. 
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SIgnS of influence will be different to those In the preVIous section for 

increases and decreases in the eigenvalues. 

We will consider the comparisons of empirical and sample influences and 

discuss the usefulness (or lack of it) of the empirical expressions throughout. 

This will be summarised in Section 6.2.6, and in Olapter 7. 

6.3.1. Influence on the Eigenvalues (Principal Inertias) 

The empirical and sample influence functions give similar rankings for 

the eigenvalues from the first two dimensions of the Protein Consumption 

dataset. The top three most influential rows are given in Table 6.3.2, and for 

the Israeli dataset, where n =8, in Table 6.3.3. In Table 6.3.2 we can see the 

usual pattern of the empirical (estimated change) underestimating the large 

sample (actual change) influences. An exception to this is 'Portugal' on i 2 • 

As the influences become smaller the empirical and sample values become 

closer, as occurs in most applications. The empirical and sample differ most 

on the second eigenvalue from the Israeli dataset, particularly on 'Personal 

economics' . This row is highly influential on iI, for both functions, and we 

find when it is omitted that the first two dimensions rotate (and virtually 

switch), see Fig. 6.3.3. This explains why the empirical and sample disagree 

on its influence on i2 as the former will not take this rotation, due to close 

perturbed eigenvalues, into account. 

For both datasets it has been the rows with extreme co-ordinates that 

have been the most influential and they have positive influences, which 

represents a decrease in the variances along the relevant directions. A counter 

example to this is found in the Doctoral dataset. From Fig. 6.3.2 we see that 

'Anthropology' has the largest row co-ordinate in the first dimension but it 

has only the sixth largest absolute influence (using either the sample or 

empirical influence function) on the first eigenvalue. The most influential are 
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Table 6.3.2 
Three Most Influential Rows on the Eigenvalues in the First Two 

Dimensions of the Dataset on Protein Consumption and their 
Sample and Empirical Influences 

Al = 0.087 A2 = 0.039 

Obsn. Sam. Emp. Obsn. Sam. Emp. 
Yugo 11.6% 10.8% Port 36.4% 41.7% 
Bulg 9.1% 8.5% Spai 7.1% 6.8% 
Alba 7.0% 7.0% Denm -6.6% -6.3% 

Table 6.3.3 
Most Influential Observations on the Eigenvalues fron the First 

Two Dimensions of the Dataset on Worries of Israeli Adults 
and their Sample and Empirical Influences. 

Al = 0.060 - A2 = 0.015 

Obsn. Sam. Emp. Obsn. Sam. Em]!. 
Per 69.7% 57.5% Oth 62.0% 32.0% 
Oth -20.9% -17.2% Per 29.6% -8.8% 
Mil -17.4% -14.8% Mil 18.6% 8.4% 

Figure 6.3.3 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Worries of Israeli Adults 
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'Biological sciences' , 'Engineering' and 'Cllemistry' which have 

negative,negative and positive influences respectively. Since both functions 

agree on the lack of influence for 'Anthropology' we can use our theoretical 

expression to find the reason. Extreme points, as seen in Tables 6.3.2 and 

6.3.3 have positive influences and small co-ordinates negative influences, 

which represents a decrease and increase in the variance respectively, when 

they are omitted. Usually the number of negative influences outweigh the 

number of positive. The empirical influence function is 

1 (y A ) _ 1 [~. 2 2] EIC \! ,Ak - - £.J 'j gkj + mlki n -m n -m .. .. j=l 
(6.3.1) 

where rj is the jth element of the row and m is the row sum. We thus find 

that 'Anthropology' has little influence because of its low row sum, or mass 

~, which makes the positive term small. 
n 

The influence measure of Escofier and Le Roux (1976), see Greenacre 

(1984, p211) which is derived in the same manner as that for the eigenvalue 

in a covariance PCA (see § 3.8.4), also depends on the mass. This influence 

measure is 

m A mn 
IEF = - Ak + ( .. )2Ik~ (6.3.2) 

n -m n -m 

The term /17 again obtains more weight than the first term when m is large, 

i.e. (n .. - m) is small. The importance of the mass m stems from the 
n 

normalisation of our vectors which is 

where ~ will be the ; th diagonal element of Dr, which is a diagonal matrix 
n 

of the row totals of P. The term m/17 is thus called the contribution to the kth 

inertia of the ith point. The first term in (6.3.2) is different to that in (6.3.1) 

with the former just involving Ak and the latter a function of the G co-
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ordinates. Since the G co-ordinates also have the normalisation 

and Dc is the diagonal matrix of the column sums of P which involves ~ , , 
n 

the first term in (6.3.1) is like another expression of the current contribution 

of the ith row to the eigenvalue. Expression (6.3.2) behaves similarly to the 

empirical influence but tends to be larger in absolute terms. We also find that 

whereas (6.3.1) is zero for the trivial dimension, when II; = glj = ~I = 1 

expression (6.3.2) is not, but has the value m
2 

(n .. - m)2 

The masses in the Protein Consumption dataset are all about equal and 

we find that the order of non-absolute influence on i l coincides exactly with 

the ordering by 117 (or absolute Iii) value. This was less true for the other 

dimensions and other datasets, but it does hold to a certain extent in the early 

dimensions of many datasets. This means that a point with a very small 117 

value can have a larger affect than one with a larger 117 value, but its 

influence will be negative (i.e. increase i l ) rather than positive. For example, 

in the Protein Consumption 'Poland', see Fig. 6.3.1, has the smallest score on 

the first dimension but it has the fifth largest absolute influence, and the 

largest negative influence, on the first eigenvalue. Only 'Albania', 'Bulgaria', 

'Rumania' and 'Yugoslavia' have a larger affect, but their influence is 

positive. This pattern is most interesting in the Israeli dataset. From Table 

6.3.3 we see that the second most influential row in the first dimension is 

'Other' and it has a small f 11 value, see Fig. 6.2.1. The category 'Political 

situation' has a large f ri value but it is only the sixth largest absolute 

influence. 
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6.3.2. Influence on the G Co-ordinates 

In a practical situation it is unlikely that one would wish to routinely 

look at the individual influences on all the G and F ~ordinates as this would 

lead to many statistics to examine. However, in the next two sections we 

investigate the individual influences to see if we can detect any patterns, and 

in § 6.3.4 we will consider scalar measures of influence that one can calculate. 

U one finds a row to be influential from looking at the scalar measurements 

one may wish to examine how it has affected the individual co-ordinates. This 

is best examined by plotting the perturbed ~ordinates and comparing against 

the original correspondence analysis plot. Such plots will also be examined in 

the next two sections and we will see that even when we have quite large 

changes in our co-ordinates the interpretation of the correspondence analysis 

display may hardly change. The most influential observations on the g I ~ 

ordinates from the Protein Consumption dataset are, 

gll g12 gl3 g14 gI5 g16 g17 gI8 gI9 

Yugo Hung Alba Finl Port Yugo Bulg Bulg Alba 
Alba Alba Yugo Bulg Yugo Bulg Alba Denm Yugo 

and comparisons of the empirical and sample changes for the most influential 

on each co-ordinate are, 

gl1 g12 gl3 g14 g15 g16 g17 gI8 gI9 

SAM 0.037 -0.056 0.037 0.020 -0.090 -0.021 0.054 0.052 0.050 
EMP 0.033 -0.054 0.035 0.018 -0.105 -0.016 0.049 0.045 0.047 

These comparisons, and similar comparisons for the less influential rows, are 

close indicating that the empirical expressions reflect the sample influences 

well. Unfortunately, the empirical expressions are not easily interpretated. 

We thus need to examine observed results to detect any patterns. 

From Fig. 6.3.1 we can see that the most influential rows on the 

individual g I co-ordinates tend to be extreme in the first dimension, although 
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there are exceptions such as 'Portugal' on g15. However, Portugal is extreme 

on the second dimension so this may be some carry on effect. 

'Yugoslavia',' Albania' and 'Bulgaria' are all close in the first dimension and 

are the most extreme rows, but often one of these will not be in the top group 

of influence on a g Ij ccrordinate even though the others are. Whether a row 

comes out in the top group, of influence on the g Ij ccrordinate depends 

jointly on whether it is extreme in the dimension and on the size of its jth 

residual from the independence model. We thus need to consider the (i ,j) th 

cell of the matrix P -rc I, which is given in Table 6.3.4, multiplied through by 

n... We also find that the sign of the influence of omitting a row on a gkj ccr 

ordinate depends on the sign of residual. Countries 'Yugoslavia', 'Albania', 

'Bulgaria' and 'Hungary', which lie on the LHS of the plot, have a positive 

influence on a gkj ccrordinate when the residual is negative and vice versa. 

For example, 'Yugoslavia' has a large negative residual in cell (25,1) on the 

'Meat' category and its influence on g11 is positive (i.e. gll decreases when 

'Yugoslavia' is omitted). Conversely, 'Yugoslavia' has a positive residual in 

cell (25,6) on the 'Cereals' category, and its influence on g16 is negative. 

Since 'Yugoslavia' and 'Meat' have a negative residual we find that they are 

positioned at opposing ends of the correspondence analysis display, whereas 

'Cereals' is positioned on the left of the plot near 'Yugoslavia'. The above 

influences, when 'Yugoslavia' is omitted, thus represent the display moving 

inwards towards the origin since g 11 decreases and g 16 increases. Those pulled 

out close to 'Yugoslavia' and those at the other end of the plot, due to a large 

negative residual, move inwards when it is removed. 

In a similar way, Finland which lies on the RHS of the plot has an 

influence whose sign coincides with that of the sign of the residual. This also 

represents the display of column ccrordinates moving inwards. For example, 
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Table 6.3.4 
Table of Residuals from the Independence Model (Multiplied by n ) 

for the Contingency Table on Protein Consumption .. 

Country MEAT PIPL EGGS MILK FISH CERS STAR NUTS FRVG 
ALBA 1.94 -5.15 -1.94 -5.30 -3.36 15.54 -2.95 2.95 -1.73 
AUST -1.00 6.05 1.34 2.67 -2.21 -4.48 -0.71 -1.79 0.13 
BELX 3.50 1.26 1.11 0.09 0.14 -6.22 1.35 -1.03 -0.21 
BULG -2.58 -2.34 -1.50 -9.77 -3.32 22.64 -3.42 0.46 -0.17 
CZEC 0.21 3.78 -0.03 -4.02 -2.13 3.18 0.87 -1.87 0.01 
DENM 0.31 2.53 0.63 7.09 5.42 -11.86 0.32 -2.52 -1.93 
EGER -0.27 4.63 1.11 -4.00 1.62 -3.86 2.73 -1.91 -0.05 
FlNL -0.86 -3.42 -0.39 15.67 1.29 -7.68 0.59 -2.24 -2.96 

FRAN 6.75 0.86 -0.06 -0.09 0.80 -8.81 -0.09 -1.12 1.77 
GREE -0.99 -5.99 -0.54 -1.89 1.02 4.97 -2.67 4.30 1.79 
HUNG -4.36 4.64 0.01 -7.12 -3.91 8.41 -0.20 2.38 0.14 
lREL 3.44 1.60 1.58 7.59 -2.36 -10.32 1.65 -1.67 -1.50 
ITAL -0.62 -2.63 0.03 -3.06 -0.79 5.22 -2.09 1.29 2.65 
NETH -0.20 5.80 0.70 6.51 -1.73 -9.44 -0.02 -1.23 -0.38 
NORW 0.04 -2.82 -0.10 7.00 5.62 -7.71 0.53 -1.33 -1.24 
POLA -3.72 1.67 -0.47 0.81 -1.63 1.25 1.28 -1.32 2.13 
PORT -2.46 -3.26 -1.49 -10.18 10.42 -1.42 2.13 1.99 4.26 

RUMA -3.76 -1.70 -1.47 -6.23 -3.34 16.93 -1.23 2.19 -1.39 
SPA! -1.74 -3.71 0.46 -6.80 3.14 0.18 1.85 3.14 3.48 

SWED 0.74 0.44 0.76 8.74 3.5 -10.57 -0.29 -1.46 -1.86 
SWIT 3.01 1.99 0.08 6.23 -2.10 -7.52 -1.59 -0.75 0.65 
UK 7.27 -2.44 1.67 2.97 -0.11 -8.93 0.29 0.23 -0.96 

USSR -1.23 -3.86 -1.05 -1.73 -1.59 9.05 1.82 0.11 -1.53 
WGER 2.32 5.20 1.39 2.98 -0.56 -11.21 1.25 -1.34 -0.02 
YUGO -5.74 -3.15 -1.83 -8.15 -3.82 22.63 -1.41 2.53 -1.07 
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Finland has a positive residual in cell (8,4) and a positive influence on the 

'Milk' co-ordinate 814 which also lies on the RHS of the plot. A positive 

influence is a decrease in the co-ordinate (since we are omitting rows) so it 

moves to the left and so inwards towards the origin. 

Portugal is the most influential row on all the column co-ordinates in the 

second dimension except on 'Eggs' and 'Nuts' where it only has ranked 

positions 9 and 20 respectively. The most influential rows on 823 

(corresponding to 'Eggs') and 828 (corresponding to 'Nuts') are 'Spain' and 

'Bulgaria' respectively. We find the sample and empirical differ on the values 

of influence for 'Portugal' but both give it as the most influential on the same 

82 co-ordinates. We have the influences on 82 for 'Portugal' are -

Sam Ie Em 'rical Estimate 
821 -0.066 -0.025 -0.049 
822 0.148 0.070 0.076 
823 0.009 -0.016 0.008 
824 -0.165 -0.066 -0.130 
g25 0.286 0.135 0.290 
826 -0.032 -0.028 -0.031 
827 0.180 0.089 0.146 
g28 0.003 -0.026 0.003 
829 0.266 0.109 0.230 

The empirical is two to three times smaller than the sample influences and 

sometimes varies in sign, but this is only for the small influences. This 

underestimation for the very large influences has been observed in previous 

sections. We discussed in Olapter 2 how for the correlation coefficients the 

empirical based on the full dataset tends to underestimate the deleted sample 

function and over estimate the sample changes when we add in an extra point. 

The third column above, under 'Estimate', is the average of the empirical 

influence calculated from the data without 'Portugal' included and our usual 

empirical based on the full dataset. We see the 'Estimate' tends to give values 

closer to the sample function than the empirical function recorded in the 

table, since the two empirical functions tend to sandwich the sample results. 
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As for the extreme points in the first dimension the sign of the influence 

of 'Portugal' on the ~2 co-ordinates is linked to the sign of Portugal's residual 

on the column categories. Since 'Portugal' is at the top of t he plot i.e. 

positive on the second axis, the sign of the residual coincides with the sign of 

the influence, as it did for Finland which was positive on the first axis. This 

again represents the display moving inwards towards the origin. There were 

exceptions to the above pattern on the co-ordinates in the second dimension 

for the 'Pigs and Poultry' and 'Eggs' categories. The affect of 'Portugal' on 

the 'Eggs' co-ordinate g23 was very small compared to some of its other 

influences, so this lack of pattern maybe less important. The affect on 'Pigs 

and Poultry' will be discussed further by looking at the change in the 

correspondence display. 

In § 4.9 we examined how the covariance biplot for the above dataset 

changed when 'Portugal', which was again extreme in the second dimension, 

was omitted. The markers for 'Fish' and 'Pigs and Poultry' were found to 

move much, changing some of our initial interpretation of the plot. In the 

original biplot the 'Pigs and Poultry' marker was positioned close to some of 

the meat products which it had quite low correlations with, due to its high 

correlation with 'Eggs' and negative correlation with 'Fish'. In the original 

correspondence display, in Fig. 6.3.1, 'Pigs and Poultry' is somewhat 

separated from the other food sources but it is close to 'Eggs' in the first 

dimension, and we find its positioning is quite steady. Fig 6.3.4 is the 

correspondence analysis when 'Portugal' is omitted. This is also given by 

Greenacre (1984, p288) who displays 'Portugal' on the plot as a 

supplementary point. (The connection between the supplementary point 

expression and the empirical influence for the included point was discussed in 

§ 5.4.1). Compared to the covariance biplot, the correspondence plot has 
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Figure 6.3.4 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Protein Consumption in Europe 

When' Portugal' is Deleted. 
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changed little even though the influences for 'Portugal' on five of the g 2 co­

ordinates are much larger than for any other row. Whereas the 'Fish' and 

'Pigs and Poultry' markers were unsteady in the covariance biplot we see that 

they remain in similar positions in the perturbed correspondence analysis 

display. 'Fish' has become less extreme going from 0.72 to 0.43 in the second 

dimension but 'Pigs and Poultry' has become more extreme changing from 

-0.23 to -0.38. As noted above, 'Pigs and Poultry' is thus contrary to the 

usual pattern of the display moving inwards towards the origin. This may be 

caused by the low association between 'Pigs and Poultry' and 'Fish', which 

meant a negative correlation in the covariance biplot. Since 'Fish' has moved 

downwards 'Pigs and Poultry' moves down also to keep away from it. The 

only co-ordinate to change its relative position is 'Fruit and Vegetables' which 

has moved away from 'Spain', even though from Table 6.3.4 it has a large 

residual on it, and is positioned closer to 'Poland' which it also has a large 

positive residual for. We will consider the row co-ordinate changes in the next 

section. 

For the Israeli dataset there is one large f Ii co-ordinate for 'Personal 

economics' and we find it is the most influential on all the g Ij co-ordinates 

except for g 15, relating to the category 'Israel :father Israel ' (IFI). 'Personal 

economics' lies on the LHS of the first axis, and like 'Yugoslavia' from the 

previous dataset it has a negative on a glj co-ordinate when its residual for 

that category is positive, see Table 6.3.5. However, from the perturbed 

correspondence plot for the first two dimensions, see Fig. 6.3.3, we see this 

pattern may be coincidental since it is caused by the anti-clockwise rotation of 

the plot. This means that 'Israel:father Europe/America' (IFEA) has moved to 

the left, but does not represent the display moving inwards since it has 

become extreme in the perturbed display with a large negative score. 
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Table 6.3.5 
Table of Residuals froJ?1 the Independence Model (Multiplied by n ) 

for the Conttngency Table on Israeli Worries. .. 
Worry ASAF EUAM IFAA IFEA IFI 
ENR 0.64 2.84 -0.49 -0.91 -2.08 
SAB 1.49 2.19 -0.64 -2.00 -1.03 
MIL -14.36 31.36 -3.67 -14.27 0.94 
POL -25.64 21.39 -2.11 6.12 0.24 
ECO -1.73 1.39 0.19 -0.18 0.33 
am -5.62 -17.16 1.81 19.13 1.84 
MfO -1.13 6.59 -0.97 -2.02 -2.48 
PER 46.36 -48.61 5.89 -5.88 2.24 

Table 6.3.6 
Table of Residuals form the Independence Model (Multiplied by n ) 

for the Contingency Table on Science Doctorates .. 

Science 1960 1965 1970 1971 1972 1973 1974 1975 
ENG -318.00 212.80 283.85 142.84 112.19 -26.23 -108.02 -299.41 

MATH -114.53 6.61 73.91 13.52 54.63 -4.89 10.04 -39.30 
PHYS 0.05 159.48 154.67 142.45 32.37 -13.31 -215.83 -259.88 
CHEM 374.17 266.61 241.42 82.29 -117.45 -280.35 -266.33 -300.37 
EART 58.51 49.65 -39.62 -36.30 -8.16 -11.41 1.22 -13.90 
BIOL 50.84 -34.65 -20.77 33.15 -31.29 23.19 -19.31 -1.17 
AGRI 113.60 73.48 -47.46 -5.57 -53.45 -55.83 -48.52 23.75 
PSYC -0.28 -337.90 -298.38 -212.06 -73.46 107.55 328.48 486.05 
SOCI -36.31 -92.74 -57.43 -14.81 38.29 -0.96 65.05 98.91 
ECON 48.87 49.32 -1.03 -89.62 -20.42 23.20 -21.32 11.00 
ANTH -26.87 -78.38 -54.43 -49.01 -29.93 33.94 100.62 104.07 
OTH -150.04 -274.27 -234.74 -6.87 96.68 205.09 173.91 190.25 
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However, the same pattern as observed for 'Yugoslavia' etc. is shown by the 

other rows in this dataset, such as for 'Political situation' (and is even 

exhibited in the small artificial dataset on smoking used io § 6.2). We noted 

above that 'Personal economics' had little sample influence on g 15, for the 

category 'IFI', and this true for g25 as well. From the correspondence analysis 

displays this appears to be due to its central position so it has oot moved so 

much in the rotation. The empirical again underestimates the large sample 

changes of 'Personal economics' but both agree on it being the most 

influential on the first four g 1) co-ordinates. The comparisons for the other 

rows are very close even though n (the number of rows) is only 8. The 

empirical gives 'Personal economics' as the most influential on g 15, but on the 

sample it is ranked seventh. The sample changes in the second dimension are 

large when 'Personal economics is omitted, but the empirical changes are not 

large as it ignores the rotation that has occurred by the perturbed, rather than 

the original eigenvalues, being close. This was seen to occur in principal 

component analysis, see Section 4.3, and would be similar in any method 

using eigenvectors. 

The pattern of the sign of influence being determined by the sign of the 

residual and the side of the plot the row co-ordinate lies 00, is also observed 

for the Doctoral dataset. The most influential rows are 'Otemistry' and 

'Psychology' in the .first dimension, and which comes out as most influential 

on a given g 1) co-ordinate coincides with which has the largest residual of the 

two for that category. We find that 'Anthropology', which has the largest 

absolute f li co-ordinate, has little influence on the g 1) ~ordinates. From 

expression (5.4.16) this again seems to be due to its low mass, since m 

multiplies a number of terms. The exact part the mass plays is not clear due to 

the complicated nature of the expression. Generally, if one of the rows 
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'Otemistry' or 'Psychology' is the most influential on the g 1) c(}-ordinate the 

other is the most influential on the g2) co-ordinate. There are just two 

exceptions to this, where 'Engineering' is the most influential on the g.,. c0-
.) 

ordinate. Although the sign of influence does not always depend on the sign 

of the residual for the second dimension, it does on the most influential rows. 

The largest change in the first two dimensions is 'Otemistry' on '1960' with 

the latter falling from 0.155 to 0.030, to be placed between '1971' and'1972' 

on the first axis. 'Otemistry' has the only large positive residual on the '1960' 

category, see Table 6.3.6, with' Agricultural sciences' next largest, and this 

explains why the effect is so large. 

6.3.3. Influence on the F Co-ordinates 

The comparisons between sample and empirical are similar to those for 

the G co-ordinates, with them very close on the smaller influences but 

differing in value but not usually in rank on the very large changes. We will 

not consider the comparisons further here. For the 'Protein Consumption' 

dataset the most extreme points in the first dimension are the most influential 

rows on the fico-ordinates, as on the g 1 co-ordinates. Different rows come 

out as the most influential on different f li co-ordinates and there seems little 

pattern to which come out on which row co-ordinates. We will show this in 

the more simple second dimension which is dominated by 'Portugal' . 

'Yugoslavia', 'Albania', 'Hungary' etc. which lie on the LHS of the plot have 

positive influences on the other row co-ordinates in the first dimension, 

irrespective of what side of the plot they lie on. Conversely, 'Norway' and 

'Denmark' have negative influences on all the row co-ordinates when they are 

omitted. Since a positive influence represents a decrease in the co-ordinates, 

this means omitting 'Yugoslavia' etc. causes the origin of the first dimension 

to move to the right. A similar pattern to this was observed in Section 4.8 on 
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the covariance principal component scores. Thus, the affect of omitting a row 

differs on the G and F co-ordinates with the former taking differing signs of 

influence. 

Portugal is the most influential rowan all of the £2 co-ordinates except 

for 'Belgium/Luxembourg', 'Denmark', 'France' and the 'Netherlands' (and of 

course on itself) where it has ranked positions 2, 19, 2 and 18 respectively. 

The most influential rows on these co-ordinates are 'Norway' 'Ireland' , , 

'Norway' and 'Norway' respectively. There is no obvious reason why these two 

rows come out as the most influential on the specific row co-ordinates above, 

since from the correspondence plot in Fig. 6.3.1 it is not just due to how close 

they are. From the Table of residuals in Table 6.3.4 we see, for example, that 

although 'Norway' and the 'Netherlands' are separated in the second 

dimension they have similar sized residuals on two categories. However, 

looking for patterns using such an approach is likely to be complicated. The 

largest influences on the f 2; co-ordinates in the second dimension are all for 

'Portugal' and are, 

Coun 
Albania 

East Germany 
Finland 
Spain 
UK 

-0.085 
0.030 

-0.042 
0.367 

-0.005 

Sam Ie Influence 
-0.216 
0.180 

-0.224 
0.125 

-0.106 

Ten of the other influences for 'Portugal' lie between 0.07-0.09. The effect of 

'Norway' , for example, on 'BelgiumlLuxembourg' , 'France' and the 

'Netherlands' are -0.022, -0.023 and -0.025 respectively, which are much 

smaller in comparison. The above changes for 'Portugal' are large compared 

to the sizes of the actual co-ordinates. We see from the above that Portugal's 

influences vary in sign unlike that noted for first dimension, and the sign of 

the influence for the above coincide with the sign of the co-ordinate. This is 
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not generally the case; there was little pattern to the signs of the influences for 

'Portugal' or to which co-ordinates it had the largest effects on. From Fig. 

6.3.1 and Fig. 6.3.4 we see that even though some of the influences for 

'Portugal' are large, the relative positions of most of the rows remain 

unchanged. 'Finland' has moved noticeably upwards and 'East Germany' 

downwards towards 'Pigs and Poultry'. Fig. 6.3.5 is the plot of the third 

dimension against the first for the original dataset and we see here that 

'Finland' is extreme in the third dimension at the opposite end to 'Pigs and 

Poultry' and 'East Germany' is very close to 'Pigs and Poultry'. The perturbed 

second dimension thus seems to have taken on some of the characteristics of 

the third dimension. See also the movements of 'UK', 'Starch', and 'Sweden'. 

We will return to this point in § 6.3.4 and § 6.3.5, where we consider the 

deletion of the 'Fish' category. 

We have noted for the 'Israeli Worries' dataset that when 'Personal 

economics' is taken out the first two dimensions rotate. However, 'Personal 

economics' is only the most influential on 3/S of the row co-ordinates (7/8 is 

the maximum as it cannot be most influential on itself) and 'Political 

situation' is the most influential on the other 5/S. For the rows where it is 

most influential 'Personal economics' is very influential, i.e. 0.277, 0.124 and 

0.216 on 'Political situation', 'Economic situation.' and 'Other' respectively, 

whereas 'Political situation' has influences ranging from -0.045 to -0.061. The 

signs of influence for 'Political situation' are all negative and represents the 

origin of the first axis moving to the left. The influences for 'Personal 

economics' were usually positive but not always, this is caused by the rotation. 

'Personal economics' is the most influential on all the other row co-ordinates 

in the second dimension. The influences are greater for the most extreme 

points in the first two dimensions, presumably because these will need to move 
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Figure 6.3.5 Plot of the First and Third Dimensions from the Correspondence 
Analysis of the Dataset on Protein Consumption in Europe. 
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further in the rotation than those in the middle, when 'Personal economics' is 

omitted. 

For the 'Doctoral' dataset the most extreme point 'Anthropology', has 

little influence. An interesting pattern of influence occurred for the f Ii c0-

ordinates, which was that the two most influential rows on 'Olemistry', 

'Earth', 'Agricultural', 'Psychology', 'Economics' and 'Anthropology', which 

all lie on the top of the second dimension were 'Other', with a positive 

influence, and 'Physics' with a negative influence. On the other row c0-

ordinates, which all lie beneath the axis, the two most influential rows were 

'Psychology' with a positive influence and 'Olemistry' with a negative 

influence. For 'Other' and 'Psychology', the positive influences represent a 

decrease in the co-ordinates i.e. origin of the first dimension moving to the 

right, and vice versa for the negative influences. It is not clear why this 

occurs, and although this pattern is interesting the actual values of influence 

are not large. The most influential rows in the second dimension are 

'Engineering', 'Olemistry' and 'Psychology' which tend to have influences 

representing the origin moving in the appropriate direction. Again, the 

influences are not particularly large. The only extreme co-ordinate in the 

second dimension is for the first cOlumn co-ordinate '1960' and we shall 

investigate the removal of this in § 6.3.5. 

6.3.4. Scalar Measures of Influence 

In a practical situation we would not usually wish to examine the 

influences on the individual coefficients, due to the numbers involved. We 

thus require some scalar measure of influence for the G and F co-ordinates in 

a given dimension, and having decided whether some rows are highly 

influential (using a gap test) we can investigate the individual changes by 

looking at the perturbed two dimensional correspondence analysis display. 
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From the previous work we see that different rows do not tend to come out on 

the G and F co-ordinates. Thus, we can use a scalar measure that combi nes 

both the G and F co-ordinates, which is the sum of squares of the changes in 

all the co-ordinates in a given dimension. As noted in PCA one needs to be 

careful in the sample case of a change in sign of the perturbed eigenvector. 

Table 6.3.7 gives the most influential rows in the first two dimensions, for the 

three datasets, using the sum of squares of the changes in both the G and F 

co-ordinates. The sums of squares are given in parentheses. 

An alternative measure of influence, as in PCA, is the angle between the 

original and perturbed k th axes. Although the G and F co-ordinates are 

derived as eigenvectors, as noted in § 5.1.2 they are principal co-ordinates 

with respect to the principal axes A (in the chi-square metric D,-l) and B (in 

the chi-square metric Dc-I) respectively. We can thus write, 

G = (Dc-1p' - Ir ')D,-IA where A = D,FD~~ 

F = (D,-lp - Ie ')Dc-1B where B = DcGD'I..~~ 

(6.3.3) 

(6.3.4) 

Details of this are omitted, see Greenacre (1984, p88-89). When omitting a 

row we can find the angle between the original!!.k and the perturbed ~ (which 

has an empirical influence function that is similar to that for gk due to 

expression (6.3.4) ) but we cannot find the angle for ~k since from (6.3.3) we 

will have vectors of different lengths when we omit a row. However, one 

angle seems sufficient in indicating the influence of a row (this will be seen 

particularly in the next section). Table 6.3.8 gives the most influential 

observations in the first two dimensions, for the three datasets, when using the 

angular measure of change. The angles are given in parentheses. 'Portugal' 

and 'Personal economics' using either of the scalar measures in Table 6.3.7 or 

6.3.8 stand out as highly influential. The influences in the 'Doctoral' dataset 

appear more important when using the angle rather than the sums of squares. 
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Table 6.3.7 
Mos~ Influential Observati<?ns using the S~ms of S~u~res of Changes 

In the G and F Co-ordinates on the FIrst Two Dimensions 
for Three Datasets. 

SS of Sample Changes Given in Parentheses. 

'Protein Consumption' 

'Israeli Worries' 

'Doctoral' 

Table 6.3.8 
Most Influential Observations using the Angular Measure of Influence 

for the First Two dimensions of Tliree Datasets. 
Sample Angular Measure Given in Parentheses. 

Dataset 
'Protein Consumption' 

'Israeli Worries' 

'Doctoral' 
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The difference in influences for 'Chemistry' and 'Psychology' is greater in the 

first dimension using the sum of squares measure, and greater in the second 

dimension using the angle. The angle for 'Portugal' in the third dimension is 

34.26° so there could be some rotation between the second and third 

dimensions, resulting in some of the similar positionings in the original third 

and perturbed second dimension, which were commented upon earlier (c.f. 

Fish in § 6.3.5). The row 'personal economics' in the 'Israeli' dataset has a 

larger angle in the second than the first dimension indicating that it is not just 

rotation between these two dimensions that has taken place. The angle for the 

third dimension is also large at 36.72° but not in the fourth dimension, so 

there could be rotation in the three dimensions. One can use the empirical 

influence function for ~ to obtain an estimate of this angle, which would be 

given by, 

2 [ 1 [ *]2 1 + E / 2 ~ / EIC <!:. , ~ ) -
2(~ !!.k) 

2(1).>\ .. ) ElC «( ,I>.>)' ElC <!.. ,I>.» 1 
(6.3.5) 

EIC <!:.* ,~) is obtained in exactly the same way as EIC <!:.* ,!k), see § 5.4. This 

differs from the estimate of the angle in PCA, see § 4.2, as our vectors do not 

have the same normalisation. Here, B'Dc-1B = I and not B 'B = I. Expression 

(6.3.5) is again found to underestimate the actual angle. For example, it gives 

the angles 19.12° and 10.55° for the angles in the second and third 

dimensions when 'Portugal' are omitted. However, these are the largest angles 

for the empirical. It disagrees with the angle given for the sample on 'Personal 

economics' as the empirical ignores the rotation due to the close perturbed 

eigenvalues. Greenacre (1984, p213-214) quotes the form of the upper 

bounds for rotation of the principal axes, derived by Escofier and Le Roux 

(1979). These are similar to those given in § 3.8.4 for PCA, with n replaced 

by a function of the mass and ZII by f ki. These were found to be good in the 
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first dimension but poor in the later dimensions, especially if a row had 

affected an earlier dimension. For example, on 'Portugal' in the second and 

third dimensions it gives upper bounds of 31.23 0 and 0.970 respectively. 

6.3.5. Influence When Deleting a Column 

In all three datasets, considered in this Section we have extreme column 

co-ordinates in at least one of the dimensions, and we may be interested in 

the effects from deleting these categories. For the empirical algebra in § 5.4 

we have considered the addition of rows, assuming I > J since this does not 

lead to a change in the actual number of (non-trivial) dimensions, J -1, that 

exist. Since adding in a column leads to an extra dimension the normal 

theoretical influence techniques for an eigenvalue/eigenvector from a 

symmetric matrix, given in § 3.5, will not hold for the additional dimension 

since we need to multiply (3.5.2) by the original eigenvector which will not 

exist. However, we probably will not be actually interested in this extra added 

in dimension, and for deletion of columns the perturbed problem will have the 

smaller dimensions. We find that if we transpose our contingency table, so the 

columns are now the rows, and put this through the programs for omitting a 

row, we obtain good estimates of the actual sample change when we delete a 

column. We need to allow for the fact that the results will be less asymptotic 

than for deleting the rows as J < I. The empirical again gives zero influences 

for the trivial dimension when the column is omitted. Since we transpose the 

matrix, this means in the program the previous G co-ordinates are the F c0-

ordinates, and vice versa, and so influence expressions (5.4.16) and (5.4.20) 

now refer to the row and column influence functions respectively. The 

summation terms in equations (5.4.16) and (5.4.20) are taken over the 

original J (including the trivial dimension) dimensions and not the J-1 

dimensions for the perturbed problem. Since the same empirical expressions 
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can be used for deleting columns as rows, this means we would expect the 

same patterns of influence. However, since I > J the affect of deleting a 

column is likely to be greater since we are omitting a larger proportion of the 

data. We observed, particularly in the 'Doctoral' dataset, that the mass (or 

row sum) of the category, and not just the size of the co-ordinate, played an 

important role in determining the size of its influences. The masses for some, 

if not most, of the columns will be bigger than the row masses since I > J and 

both sets of masses sum to one. This indicates that if a row and column co-

ordinate were close in the original two dimensional display the effect of 

omitting the column could be much greater than for deleting the row. We will 

only examine column effects in the 'Protein Consumption' dataset and the 

'Doctoral' dataset. The three most influential columns in the first three 

dimensions of the 'Protein Consumption' dataset (we have considered three 

dimensions due to the rotations and swoppings) using the angular measure 

(given in parentheses) are given in Table 6.3.9. 

Table 6.3.9 

Most Influential Columns by the Otange in the Principal Axis. 

Dim. 1 Dim.2 Dim.3 
Cereals (57.22°) Fish ~87.73°) Fish (83.14°) 

Milk (17.14°) Cereals 55.01°) Pigs and Poultry (60.66°) 
Fish (10.63°) Milk (17.14°) Milk (50.24<j 

As expected these changes are much larger than for the row influences in the 

previous section. 

The largest column co-ordinate in the first dimension is for 'Nuts' but 

this has only the seventh largest mass, with value 0.036, but 'Cereals' (which 

has the second largest co-ordinate) has a mass of 0.376, and 'Milk' has the 

second largest mass of 0.199. We thus find from the table above that 'Nuts' 

has little influence compared to 'Cereals' and 'Milk'. From expression (6.3.1) 

we know that the influence on the eigenvalue is directly affected by the mass. 
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'Cereals' has a smaller c(rordinate than the row C<rordinate 'Yugoslavia', but 

it leads to a 25% change in Xl compared to the change for 'Yugoslavia' of 

11.6%. The individual changes in the column and row C<rordinates are 

usually much bigger for 'Cereals' than 'Yugoslavia', but from the angles in 

Table 6.3.9 and the perturbed display in Fig 6.3.6 we see that all that has 

really occurred is rotation, with the relative positions of most of the categories 

remaining unchanged. Rotation has occurred to a smaller extent for 'Milk' in 

the first two dimensions and occurs for 'Pigs and Poultry' in the third and 

fourth dimensions. 

Fish is the most extreme column C<rordinate in the second dimension and 

its sample influences of the actual change in the column C<rordinates in the 

second dimensions are, 

g2l g22 g23 g24 g25 g26 g27 828 829 

-0.082 0.066 0.028 -0.278 - -0.063 0.301 0.170 0.507 

Comparing with the sample influences when 'Portugal' is omitted in § 6.3.2 

we see both changes tend to have the largest influences on the same C<r 

ordinates, but those for 'Fish' are usually greater. However, from the angles 

in Table 6.3.9, and by comparing the original correspondence display of the 

first and third dimensions in Fig. 6.3.5 with the plot of the first two 

dimensions when 'Fish' is omitted, see Fig. 6.3.7, we see that there has been a 

swop in the second and third dimensions. Since 'Fish' and 'Portugal' tend to 

have large influences on the same co-ordinates, but 'Portugals' were not large 

enough for a swop to occur, this seems to imply there was some rotation 

between the second and third dimensions when 'Portugal' was omitted. 

The most extreme co-ordinate in the first two dimensions of the 

'Doctoral' dataset is for the first column category '1960', see Fig. 6.3.2. When 

it is omitted ).2 decreases from 0.0033 to 0.0006, but we do not get any 
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Figure 6.3.6 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Protein Consumption in Europe 

When' Cereals' is Omitted. 
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swopptng. The category '1960' has a small mass compared to the other 

columns, and even seven of the rows have larger masses. However, its 811 c0-

ordinate is 0.220 compared to the next largest column co-ordinate of 0.045, 

and row co-ordinate of 0.083. Since both empirical and sample agree on the 

large change in i2 this means the large co-ordinate has outweighed the low 

mass. However, we find '1960' is only the most influential column on 3 of the 

7 column co-ordinates, and its influences compared to those for the row 

'Otemistry' are, 

g21 g22 g23 g24 g25 g26 g27 g28 

1960 -0.064 -0.040 -0.009 -0.008 0.003 0.001 0.013 
Otem 0.004 -0.048 -0.011 -0.005 -0.004 -0.002 0.020 0.022 

Presumably, the low mass has had some affect here since the influences for 

'1960' are not much larger than those for 'Otemistry' and not as large as one 

may initially think when looking at the original plot. '1960' is the most 

influential on 9 of the 12 row co-ordinates. Fig. 6.3.8 is the correspondence 

display when '1960' is omitted and we see how the second dimension has 

become squashed, and rows 'Engineering, 'Mathematics' and 'Anthropology' 

have moved up in there relative positions, and 'Other' has moved down. We 

thus find that the angle for the second dimension (the principal axes being 

derive in a similar way to F) is 41.840 and subsequent angles are also large. 

It is interesting that despite such large angular and sums of squares 

changes, for omitting the above columns, few interpretations of the plots have 

changed. We have not observed some of the patterns for the columns as we 

did for the rows, but this is partly due to the rotations and swoppings. 

Certainly the greater the influence of a category the less these patterns may 

hold due to the complicated reappraisal of the relationships between the rows 

and columns that may occur. 
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Figure 6.3.8 Plot of the First Two Dimensions from the Correspondence 
Analysis of the Dataset on Science Doctorates in the USA 
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6.3.6. Summary and Discussion 

The eigenvector problems of rotation and swopping, observed in PCA, 

has also occurred in correspondence analysis, even though we have mostly 

only considered the first two dimensions. This occurred most when deleting 

the columns which can represent a large proportion (assuming I > J) of the 

data being removed. Rotations between the first and second dimensions can 

lead to large influences while the relative positions of the points in the two 

dimensional display remain virtually unchanged. However, if a swop has 

occurred between the second and third dimensions, the plot of just the first 

two dimensions can change dramatically due to the difference in the second 

and third dimensions. If ~2 and ~3 are close it is worth considering plots for 

the first three dimensions and not just the first two (of course, we may also 

consider other dimensions if the first two inertias do not account for most of 

J-l A 

the total inertia L AJ:)' It must be remembered that we also get rotational 
J:=1 

problems if the perturbed rather than the original eigenvalues are close. 

Using the angular measure of change, rather than the sums of squares of 

individual changes, provides the most useful information on whether rotation 

has taken place. Again, the swopping is highlighted by the empirical from 

looking at the changes in the eigenvalues. For example, in the 'Protein 

Consumption Dataset' ~2 = 0.0390, and ~3 = 0.0200, and when 'Fish' is omitted 

the empirical gives the perturbed eigenvalues as ~; = 0.0180, and ~; = 0.0211, 

which means that the second eigenvalue has fallen below the third. If rotation 

occurs because the perturbed rather than the original eigenvalues are close the 

empirical will not give the large changes of the sample angles. 

When we do not have rotation and swopping of the eigenvectors we do 

observe the same patterns for the columns as for the rows, discussed in § 6.3.2 

and § 6.3.3. 1bis was not exhibited for the columns deleted in § 6.3.5, due to 
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the above problems of rotation, but was observed for the less extreme 

columns. That these patterns should hold for the columns as well follows from 

the fact the same empirical expressions have been used to obtain estimates of 

the sample changes when row and columns are omitted, with equally good 

results. The patterns for omitting the rows on the column and other row c0-

ordinates will be the same as the patterns for omitting columns on the row and 

other column co-ordinates respectively. For the most influential rows, the sign 

of influence on a column co-ordinate is linked to the sign of the residual, in 

the matrix p - rc', that the row has for that column, and to the sign of its own 

co-ordinate in the appropriate dimension. A row was usually the most 

influential on a given column co-ordinate when it was extreme in the same 

dimension and had a large residual for that column. The sign of influence for 

a row on the other row co-ordinates tends to be the same for all the c0-

ordinates and represents a shift in the center of the dimension. The mass of 

the row or column was also found to be important in determining whether a 

row/column was influential in the early dimensions. Extreme co-ordinates in 

a dimension will usually lead to a decrease in the variance (a positive 

influence) and expression (6.3.1) shows clearly the role played by the mass in 

determining the size of the positive term. The part played by mass on the G 

and F co-ordinates is shown to be much more complicated, but from 

expression (5.4.16) we can see it is important. The original row masses in the 

'Protein Consumption' dataset are all roughly equal. An illustration of the 

importance of the mass of a row is given by dividing through the existing row 

by some number, L, which maintains the structure of the row but decreases its 

mass. Taking the sample angular measure of change, Table 6.3.10 gives the 

influences for 'Portugal', as L is varied, in the second dimension. Portugal 

did not have any large influences in the other dimensions either when its mass 
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Table 6.3.10 
Angula.r Measure o~ Influence for the Second Dimension of the Dataset on 

ProteIn Con~umph.on, an~ t~e Ranked Position, when Portugal 
IS OmItted wIth Its Mass Divided by L. 

L Anide Rank 
1 56.45° 1 
2 39.94° 1 
4 21.23° 2 
8 9.99° 6 

16 4.73° 12 

Table 6.3.11 
Two Most Influential Observations Using the Empirical and EMp· 
for the Angular Influence Measure in toe First Two Dimensions 

of the Dataset on Protein Consumption in Europe. 

Dime. 1 Dime.2 
EMP EMp· EMP EMp· 

Countrv Angle Country Angle CounJry Angle Country Angle 
Finl 2.99° Alba 2.98° Port 19.12° Port 19.260 

Alba 2.98° Finl 2.480 Spain 9.98° Spain 7.15° 

Table 6.3.12 
Two Most Influential Observations Using the Empirical and EMp· 
for the Angular Influence Measure in toe First Two Dimensions 

for the Dataset on Doctorates in the USA 

Dime. 1 Dime. 2 
EMP EMp· EMP EMp· 

Science AnJde Science Angle Science Angle Science Angle 

Otem 8.56° Otem 8.46° Otem 11.85° Otem 11.76° 

Psvc 6.91° Psvc 6.89° J>syc 10.15° Psvc 9.95° 
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was small. Table 6.2.10 clearly shows the importance of mass on the c~ 

ordinates. 

The contingency tables examined in this section were not large but the 

empirical gave good comparisons of the sample changes. The two disagree 

more on the latter dimensions, largely due to the rotations, etc, that are 

treated differently by the two functions. We again ObselVed that for the very 

large sample changes the empirical was smaller, but both usually agree on the 

same observations being the most influential, except where rotations may have 

taken place due to close perturbed eigenValues. As the number of dimensions 

increase, as for all other eigenvector influence functions considered in this 

thesis, the empirical expressions for the G and F co-ordinates take longer to 

compute as expressions (5.4.16) and (5.4.20) involve summations over all 

dimensions. Thus, the empirical may take longer to compute than the sample 

function. Also, if the contingency table was not large it would not be time 

consuming to run through the sample influences. However, if we are only 

interested in the first two or three dimensions, we find that if we retain only 

the first four dimensions, then forming the empirical influences in the first two 

or three dimensions by summing over the four retained dimensions leaves the 

empirical influences virtually unchanged. This occurs as the summation terms 

involve (~J - ~A: )-1, and as ~J becomes smaller, with ~A: fixed, (~J - ~A: )-1 

decreases. The more distinct the first few dimensions are the less important 

the summations over the minor dimensions will be. Some examples of this will 

be given using the estimate of the angular change, when a row is omitted, 

given by (6.3.5) (the influence function for!; involves similar summation 

terms to that for gA:). The two most influential rows for the first two 

dimensions by the original empirical and EIC· , which uses sums over the first 

four dimensions only, are given in Tables 6.3.11 and 6.3.12 for the 'Protein 
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Consumption' and 'Doctoral' datasets respectively. The empirical does 

underestimate the sample angles in Table 6.3.8 but the ranked order of rows 

is similar. EIC· gives similar values to the estimated angle based on the full 

empirical function. The empirical expression for the eigenvalues is simple to 

calculate since it only involves tenns from the given dimension. 

An influence analysis to assess the affects of row and columns on the two 

dimensional correspondence display provides useful infonnation, and reveals 

whether we can interpret the display with confidence. For the datasets 

examined in this section most of the large changes do seem to be caused by 

the rotation of the eigenvectors or swops. 

6.4. Adding in an Extra Observation to Multiple Correspondence Analysis 

The patterns of influence for adding in to a cell of a multi way table for a 

multiple correspondence analysis are similar to those when we add into a cell 

of a contingency table, discussed in § 6.2. This could occur since like the two 

way contingency table results the empirical expressions for the eigenvalues 

and eigenvectors from the Burt matrix just involve the co-ordinates of the 

categories involved in the cell that has been added to. See expressions (5.5.8) 

and (5.9.11). Also, since we can do a Burt analysis when we have two 

variables we would expect the same patterns of influence from adding to a 

given cell for the two types of correspondence analyses. The Burt matrix when 

Q = 2 has block diagonal matrices of the contingency table's row and column 

sums on its diagonal, and the contingency table and its transpose on the off 

diagonals. Adding to the (i ,j)th cell of a contingency table results in changes 

to four entries of the Burt matrix. The contingency table eigenvalues and 

those from the Burt matrix have the relationship, 

(6.4.1) 
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and the £t and ~t co-ordinates are rescaled versions of the Burt co-ordinates 

~ such that, 

b=(~~r!!.l where !!.=~:J (6.4.2) 

is partitioned to hold the original order of row and column co-ordinates. 

From expression (6.4.1) we find that the order of cells ranked by their 

influences (sample or theoretical) on the contingency table or Burt matrix 

eigenvalues must be the same (except if influences are close where rounding 

errors from the two methods may lead to some changes in order). The ranked 

absolute influences could only change if x: was close to 0.25 and adding to 

one cell lead to a decrease in x: below 0.25 and another cell lead to an 

increase in xl, due to the different gradients either side of a 114 for the plot of 

(6.4.1). However, only inertias above 114 from the Burt matrix are of 

interest, the rest are artifacts of the analysis, so this situation is not likely to 

occur. See Greenacre (1984, p144) for information on the artificial 

dimensions. The empirical influence function for ~f in terms of ~: is 

.. (~f JII2 .. 
EIC <! , ).f) = 2}! EIC <! ,xt) (6.4.3) 

which shows that we must have the same ordering of cells for the two 

eigenvalues, when using this influence function. Expression (6.4.3) results in 

the empirical version of expression (5.3.1) but multiplied up by 4, this 

accounts for n .. from the Burt matrix being 4 times greater than that from the 

contingency table. 

The ranking of cells by their absolute influence on the co-ordinate for a 

given category can differ in the two analyses. From (6.4.2) the sample 

influence function for adding in an extra observation is 
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where !£ 1 is the perturbed ~ 1· Thus, the rankings of cells on £! and!!t. 1 need 

( 
i c· ) 112 

not be the same as xl . will be different for each cell that we add to. 

However, it was found that the different rankings on the co-ordinates for the 

same category in the two analyses tended to occur for the smaller influences. 

Specifically, it occurred on categories with high row totals which we noted 

changed little when cells were perturbed in the contingency table analysis. 

The same patterns discussed in § 6.2, where the categories with low masses 

have the largest influences and the most influential cells involve the number 

of the row/column co-ordinate, apply to the Burt matrix correspondence 

analysis as well. Two examples of the changing in ranked influences on the 

co-ordinates when using the contingency table or Burt matrix analysis are 

given below, for the two datasets used in § 6.2. Noting that h 13 refers to the 

same category as /13 we have as our examples, 

(i) Israeli dataset 

Cell 
8,4 
3,1 

h13 
Influence 

0.090 
0.080 

Rank 
1 
2 

Cell 
8,4 
3,1 

/13 
Influence 
0.0032 
0.0034 

Rank 
3 
1 

The largest changes on a single co-ordinate in the first dimension is cell (5,1) 

on hiS and / IS with influences 0.190 and 0.075 respectively, which are much 

larger than the influences above. 

(ii) Smoking dataset 

Cell 
5,1 
3,4 

h13 

Influences 
0.030 
0.025 

Rank 
1 
2 

Cell 
5,1 
3,4 

/13 
Influence 

0.009 
0.020 

Rank 
6 
1 

The difference in ranks is greater in this example than that above. However, 
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these influences are small compared to the affect of cell (1 1) h d , on 11 an f 11 

with influences 0.257 and 0.111 respectively. 

We will now consider an example where the number of variables, Q = 3. 

The data is taken from Everitt (1977, Otapter 4) and is concerned with the 

classroom behaviour of ten year old children. The children are classified into 

non-deviant or deviant and the other two variables account for the 'adversity 

of their school conditions' and whether they are at 'Risk' from their home 

conditions. The Burt matrix for this data is given in Table 6.4.1 and the 

original correspondence analysis plot in Fig. 6.4.1. The most influential cell 

(Low,Deviant,At Risk) leads to a decrease in ).1 which coincides with the 

patterns for Q = 2 as 'Low' is at the opposite end of the first dimension to the 

other two categories, and increasing the cell by one has led these categories to 

move inwards towards each other. We actually find that 'Low' and 'Deviant' 

move inwards but 'At Risk' does not. The most influential cell 

(High,Deviant,Not At Risk) leads to an increase in ).2 when one is added to 

it. This again coincides with the patterns observed for the contingency table 

eigenvalues in § 6.2.1 as these three categories have the three largest positive 

co-ordinates in the second dimension, and increasing their association makes 

them more extreme and so the variance increases. In fact, only 'Deviant' and 

'Not At Risk' increase but 'High' decreases, perhaps to become closer to the 

other two co-ordinates as it was originally very extreme in the second 

dimension. The other co-ordinates move downwards as well, perhaps to keep 

away from the category 'High' . 

We have low row sums for the three categories 'Low', 'High' and 

'Deviant', and we find in the first two dimensions that their co-ordinates are 

the least steady. This shown by Fig. 6.4.2, which is a plot of the original and 

perturbed co-ordinates for the first two dimensions when we add to each cell 
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Figure 6.4.2 Plot of the First Two Dimensions from the Multiple 
Correspondence Analysis of the Dataset on Deviant Children 

When 1 is Added to Each Cell in Turn. 
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in tum. For the C<rordinates with low totals we find in the first dimension that 

it is cells involving their column/row number that give the largest influences. 

There is little pattern to influence on the categories with the large masses, but 

it is often cells involving categories extreme in the dimension that come out. 

However, the influences are small. These are all the same patterns as 

observed in § 6.2. 

We shall not discuss adding in m > 1 or the comparisons between sample 

and empirical functions is this section. The comments on these topics are 

similar to those investigated in other situations. See, for example, Cltapter 7 

for a summary of these results. 
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Chapter 7: Summary of the Use of Influence Functions 

The study of influence can be divided into two areas. The first is the 

derivation of expressions for the sample or theoretical/empirical influence 

functions based on terms from the original dataset or model. Such expressions 

will hopefully be interpretable and so reveal information on what type of 

observation is influential on that part of the analysis. This can also provide 

invaluable information on how to make our statistical analysis more robust 

(although this has not been considered in this thesis). The theoretical 

expressions for the eigenvectors revealed why we can get large changes in the 

eigenvectors corresponding to close eigenvalues. We also saw from the 

theoretical influence function that, provided the number of observations (m) 

deleted is not too large compared to n, then influence is reasonably additive 

in samples. This prevents the need to consider multiple block procedures, 

which can be very time consuming. However, this additivity will probably not 

hold if there are two extreme observations in one direction, so that when both 

are removed the dimension disappears. We observed, in § 4.8, how the 

empirical does not deal effectively with the changes when a dimension 

actually disappears. The second side to investigating influence is the 

detection of influential observations in datasets. This involves the numerical 

calculation of the influence functions for the individual observations. This 

provides detailed information on how the analysis may (or may not) alter due 

to changes in the structure of the data from the deletion of individual 

observations. This serves to increase our knowledge of the dataset that we are 

analysing. The observations found to be 'highly influential' maybe as 

interesting as the actual analysis, if they are not found to be recording errors 

etc. Thus, influence is not a way of discarding unusual observations since one 

should be noting the changes in the analysis caused by these observations 
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rather than just take the perturbed analysis as the end result. We have seen 

how the most extreme observations need not be the most influential, see for 

example § 2.3.3 on the bivariate correlation coefficient, or that observations 

found to outliers may not be influential on the part of analysis of interest but 

may be on others, see § 4.7. Influential observations may be easier to find 

than outliers in multivariate data and they provide the added information on 

the stability of our analysis. 

We shall now consider which type of influence function one should use 

for the two areas of influence discussed above. It is preferable to obtain an 

expression for the sample influence function rather than the theoretical where 

possible, since the fonner will give the exact change in the analysis when 

points are omitted from the dataset. However, we have seen a sample 

expression is not always possible, for example for the eigenvectors and 

eigenvectors, or the mathematics of the sample influence function can be 

intractable when the statistics/parameters of interest have a complicated fonn. 

For the theoretical influence function we can expand out square root signs etc, 

to o(€) so we can write the perturbed parameter in terms of the original plus 

some higher order term. The theoretical influence function will help to give 

some insight into influence when a sample expression is not possible. 

Throughout this thesis we have seen that the theoretical can be used to 

describe influence in samples due to the generally good comparisons of the 

sample and empirical functions when calculated for individual observations. 

In Otapter 2 we examined how the sample and theoretical expressions 

compared when both had an algebraic form. The more complicated the initial 

expressions for the correlation coefficients are the greater the sample and 

empirical functions may differ, as we would have expanded out more terms to 

o(€) for the theoretical expression. For the multiple correlation coefficient in § 
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2.4 we could see that the two types of functions would differ when the X s 

were remote in the factor space. We also ObselVed how the empirical \IDUld 

usually underestimate influence when points are deleted and overestimate 

when observations are added. However, the asymptotic results were found to 

be reliable indicators of influence in samples, even for quite small sample 

sizes, for the correlation coefficients. In Oiapter 3 we only had expressions for 

the actual sample change in the eigenvalues and eigenvectors when we add in 

points along one direction or in a plane. The theoretical/empirical expressions 

reflected these sample results, as well as giving insight into the more general 

case. The comparisons of sample and empirical were found to be good, 

particularly in the early dimensions where there is not any swopping or 

rotations of the eigenvectors. In Otapter 5 we had no sample results for the 

eigenvalues and eigenvectors in correspondence analysis. The empirical 

expressions for the eigenvectors were complicated and not easy to interpret, 

but those for the eigenvalues were found to be useful. The above shoM that 

the theoretical expressions, when interpretated, can be useful for describing 

influence in samples, when no sample expressions exist. 

In practice the sample or empirical influence function can be calculated. 

The former may involve the calculation of n extra separate analyses 

corresponding to the deletion of each observation, but the empirical just 

involves terms from the full dataset. H an algebraic expression can obtained 

for the sample influence function involving terms from the full analysis then 

this is what should be used to detect influential observations. When this is not 

possible we need to consider whether the recalculation of the n separate 

analyses will take much longer than using the empirical expressions. When 

calculating the sample influences for the eigenvalues and eigenvectors from 

the covariance (correlation) matrix we can use the deletion formula for the 
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covariance matrix given by (2.3.3) (and calculate the perturbed correlation 

matrix from this) and then recall the eigenvalue/eigenvector routines. With, 

for example, NAG (1982) routines this is simple to program. An alternative 

approach is to use the algorithm of Bunch, Nielson and Sorensen (1978) that 

updates the eigenvalues and eigenvectors of a symmetric matrix when the 

perturbed matrix is of the form B = B + rbb " where r is some constant. Only 

the perturbed covariance (sums of squares) matrix falls into this form. The 

updated eigenvalues are found by iteration and the eigenvectors can then 

found explicitly. There is some timed saved using this algorithm but it does 

not seem considerable as noted by Bunch et al. (1978) in their final section. 

This algorithm is also used in another paper by Bunch and Nielsen (1978) to 

update the singular value decomposition. The empirical influence functions 

for the eigenvalues and eigenvectors from the covariance matrix were very 

quick to calculate. No formal investigation of the number of operations 

needed to calculate the various influence functions has been done. For the 

eigenvalues and eigenvectors in PCA some investigation of CPU time has 

been examined. These revealed the empirical expressions to be much faster to 

calculate the sample influence functions for the covariance eigenvalues and 

eigenvectors but the times were more comparable for the eigenvalues and 

eigenvectors from the correlation matrix. The times taken to compute the 

eigenvalue and eigenvector sample influence functions from the correlation 

matrix are close to those for the covariance matrix as the computations only 

differ in the divisions required to obtain the perturbed correlation matrix from 

the perturbed covariance matrix. However, empirical expressions for the 

correlation influence functions are more complicated than corresponding ones 

for the covariance matrix. One advantage of the empirical over the sample is 

the ease to which we can look at any of the eigenvalues and eigenvectors. 
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Contingency tables may be small, in which case deleting the ro~ or columns 

individually to form the sample influence function may not be very time 

consuming. H there are a large number of dimensions and one is only 

interested in the first two then one disadvantage of the empirical expressions is 

that for the eigenvectors the functions involve summations over all the 

dimensions. This is a particular problem for eigenvectors from the Burt matrix 

where we have additional dimensions that are 'artifacts of the analysis', see 

Greenacre (1984, p144-14S). One alternative to calculating the empirical 

expressions for the eigenvectors in correspondence or principal component 

analysis is to only consider terms in the summation for the dimensions closest 

to the one of interest. This was looked at in § 6.3.6 for the deletion of a row 

in correspondence analysis. These dimensions will be the most important due 

to the size of the terms (AJ - Al )-1 which become smaller the further AJ is from 

A1 • We can improve the estimate of the actual sample change given by the 

empirical influence function by considering second order terms. The second 

order terms will be more complicated than those for the first order and for the 

eigenvectors in particular would not be worth the computation time. Hone 

wanted extra precision to the sample influence it is best to use the sample 

influence function itself. 

In summary, influence is a valuable technique that can be applied to 

most statistical analyses. As well as detecting observations that are highly 

influential on our analysis, and so provide information on the reliability of 

our conclusions, it also adds to our understanding of the structure of the 

dataset. 



- 248 -

References 

BameWjtt'l V. Nand Lewis, L. (1984). Outliers in Statistical Data (2nd Edition) 
t ey, ew York. . 

Beckman, R.J. and Cook R D (1983) Outlt'er T h . 25 119-149. ' . . . ·· ........ s. lec nometrlcs, , 

Belsley, D.A., Kuh, E. and Welch, R.E. (1980). Regression Diagnostics. 
Wiley, New York. 

Benasseni, J. (1985). Influence des poids des unites statistiques sur les valeurs 
propres en analyse en composantes principales. Revue de Statistiques 
AppJiquees, 23, 41-55. 

Benzecri, J.P. (1979). Sur Ie calcul des taux d'inertie dans l'analyse d'un 
questionnaire. Addendum et erratum a [BIN. MUL T]. Cahiers de 
['Analyse des Donnees 4, 377-378. 

Bunch, J.R., Nielsen, C.P. and Sorensen, D.C. (1978). Rank-one 
modifications of the symmetric eigenproblem. Numerische Mathematik 31 
31-48. ' , 

Bunch, J.R., Nielsen, C.P. (1978). Updating the singular value 
decomposition. Numerische Mathematik, 31, 111-129. 

Calder, P., Jolliffe, I.T. and Morgan, B.J.T. (1986). Influential observations 
in principal component analysis: a case study. Submitted for publication. 

Campbell, N.A. (1978). The influence function as an aid to outlier detection 
in discriminant analysis. Applied Statistics, 27, 251-258. 

Olernick, M.R. (1982). The influence function and its application to data 
validation. American Journal of Mathematical and Management Sciences, 2, 
264-288. 

Cook, R.D. and Weisberg, S. (1982). Residuals and Influence in Regression. 
Otapman and Hall: London. 

Critchley, F.' (1985). Influence in principal component analysis. BiometrikiJ , 
72, 627-636. 

Devlin S.J. Gnanadesikan, R. and Kettenring, J.R. (1975). Robust 
estimati~n and outlier detection with correlation coefficients. Biometrika, 
62, 531-545. 

&COfier, B. and LeRoux, B. (1976). Influence d'u~ element sur les f~cteurs 
en analyse des correspondances. Cahiers de I Analyse des Donnees, 1, 
297-318. 



- 249-

Everitt, B.S. (1977). The Analysis oif Contingency ~abl ~ d H 11 London. es. ,_uapman an a, 

Gabriel, K.R. (1.981) .. Biplot display of multivariate matrices for inspection of 
data and diagnosIs. In Interpreting Multivariate Data (Ed Barnett V) 
147-174. Wiley, New York. " ., 

Gabriel, K.R. and ~r, S. (19?9). Lower rank approximations of matrices 
by least squares With any chOIce of weights. Technometrics, 21, 489-498. 

Goursat, E. (1933). Cours d'Analyse Mathematique. Tome 11 (fifth edition). 
Gauthier Villars, Paris. 

Greenacre, M.J. (1984). Theory and Applications of Correspondence Analysis. 
Academic Press, London. 

Hampel, F.R. (1974). The influence curve and its role in robust estimation. 
Journal of the American Statistical Association, 69, 383-393. 

Hawkins, D.M. and Fatti, L.P. (1984). Exploring multivariate data using the 
minor principal components. The Statistician, 33, 325-338. 

Huber, P.J. (1981). Robust Statistics. Wiley, New York. 

Jolliffe, I.T. (1972). Discarding variables in a principal component analysis, 
I: Artificial data. Applied Statistics, 21, 160-173. 

Jolliffe, I.T. (1986). Principal Component Analysis. Springer-Verlag, New 
York. 

Knanowski, W.J. (1984). Sensitivity of principal components. Journal of the 
Royal Statistical Society. Series B, 46, 558-563. 

Un, S.P. and Bendel, R.B. (1985). Generation of population correlation 
matrices with specified eigenvalues. Applied Statistics. 34, 193-198. 

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. 
Academic Press, London. 

NAG (1982). Numerical Algorithms Group Library Manual. Numerical 
Algorithms Group, Oxford. 

Radhakrishnan, R. and Kshirsagar, A.M. (~981). Infl~en~ ~ction~ ~or 
certain parameters in multivariate analySts. Commumcattons In Statistics, 
AIO , 515-529. 

Rey, W.J. (1983). Introduction to Robust and Quasi-Robust Statistical Methods. 
Springer-Verlag, New York. 



- 250-

Sibson, R. (1979). Studies in the robustness of multidimensional scaling: 
perturbational analysis of classical scaling. Journal of the Royal Statlstical 
Society, Series 8, 41, 217-229. 

Snedecor, G.W. and COChran, W.G. (1967). Statistical Methods (6th Edition). 
Iowa State University Press, Ames, Iowa. 

Wilkinson, J .H. (1965). The Algebraic Eigenvalue Problem. Oarendon Press, 
Oxford. 


	375052_0001
	375052_0001a
	375052_0002
	375052_0003
	375052_0004
	375052_0005
	375052_0006
	375052_0007
	375052_0008
	375052_0009
	375052_0010
	375052_0011
	375052_0012
	375052_0013
	375052_0014
	375052_0015
	375052_0016
	375052_0017
	375052_0018
	375052_0019
	375052_0020
	375052_0021
	375052_0022
	375052_0023
	375052_0024
	375052_0025
	375052_0026
	375052_0027
	375052_0028
	375052_0029
	375052_0030
	375052_0031
	375052_0032
	375052_0033
	375052_0034
	375052_0035
	375052_0036
	375052_0037
	375052_0038
	375052_0039
	375052_0040
	375052_0041
	375052_0042
	375052_0043
	375052_0044
	375052_0045
	375052_0046
	375052_0047
	375052_0048
	375052_0049
	375052_0050
	375052_0051
	375052_0052
	375052_0053
	375052_0054
	375052_0055
	375052_0056
	375052_0057
	375052_0058
	375052_0059
	375052_0060
	375052_0061
	375052_0062
	375052_0063
	375052_0064
	375052_0065
	375052_0066
	375052_0067
	375052_0068
	375052_0069
	375052_0070
	375052_0071
	375052_0072
	375052_0073
	375052_0074
	375052_0075
	375052_0076
	375052_0077
	375052_0078
	375052_0079
	375052_0080
	375052_0081
	375052_0082
	375052_0083
	375052_0084
	375052_0085
	375052_0086
	375052_0087
	375052_0088
	375052_0089
	375052_0090
	375052_0091
	375052_0092
	375052_0093
	375052_0094
	375052_0095
	375052_0096
	375052_0097
	375052_0098
	375052_0099
	375052_0100
	375052_0101
	375052_0102
	375052_0103
	375052_0104
	375052_0105
	375052_0106
	375052_0107
	375052_0108
	375052_0109
	375052_0110
	375052_0111
	375052_0112
	375052_0113
	375052_0114
	375052_0115
	375052_0116
	375052_0117
	375052_0118
	375052_0119
	375052_0120
	375052_0121
	375052_0122
	375052_0123
	375052_0124
	375052_0125
	375052_0126
	375052_0127
	375052_0128
	375052_0129
	375052_0130
	375052_0131
	375052_0132
	375052_0133
	375052_0134
	375052_0135
	375052_0136
	375052_0137
	375052_0138
	375052_0139
	375052_0140
	375052_0141
	375052_0142
	375052_0143
	375052_0144
	375052_0145
	375052_0146
	375052_0147
	375052_0148
	375052_0149
	375052_0150
	375052_0151
	375052_0152
	375052_0153
	375052_0154
	375052_0155
	375052_0156
	375052_0157
	375052_0158
	375052_0159
	375052_0160
	375052_0161
	375052_0162
	375052_0163
	375052_0164
	375052_0165
	375052_0166
	375052_0167
	375052_0168
	375052_0169
	375052_0170
	375052_0171
	375052_0172
	375052_0173
	375052_0174
	375052_0175
	375052_0176
	375052_0177
	375052_0178
	375052_0179
	375052_0180
	375052_0181
	375052_0182
	375052_0183
	375052_0184
	375052_0185
	375052_0186
	375052_0187
	375052_0188
	375052_0189
	375052_0190
	375052_0191
	375052_0192
	375052_0193
	375052_0194
	375052_0195
	375052_0196
	375052_0197
	375052_0198
	375052_0199
	375052_0200
	375052_0201
	375052_0202
	375052_0203
	375052_0204
	375052_0205
	375052_0206
	375052_0207
	375052_0208
	375052_0209
	375052_0210
	375052_0211
	375052_0212
	375052_0213
	375052_0214
	375052_0215
	375052_0216
	375052_0217
	375052_0218
	375052_0219
	375052_0220
	375052_0221
	375052_0222
	375052_0223
	375052_0224
	375052_0225
	375052_0226
	375052_0227
	375052_0228
	375052_0229
	375052_0230
	375052_0231
	375052_0232
	375052_0233
	375052_0234
	375052_0235
	375052_0236
	375052_0237
	375052_0238
	375052_0239
	375052_0240
	375052_0241
	375052_0242
	375052_0243
	375052_0244
	375052_0245
	375052_0246
	375052_0247
	375052_0248
	375052_0249
	375052_0250
	375052_0251
	375052_0252
	375052_0253
	375052_0254
	375052_0255
	375052_0256
	375052_0257

