POLYHEDRAL DOMAINS FOR ABSTRACT
INTERPRETATION IN LOGIC PROGRAMMING

A THESIS SUBMITTED TO
THE UNIVERSITY OF KENT AT CANTERBURY
IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By
Patricia Mary Benoy
January 2002

Contents

Dedication

Abstract

Acknowledgements

1

Introduction

1.1 Abstract Interpretation in the Analysis of Logic Programs
1.2 Research Objectiveo
1.3 Thesis Prospectus

Lattice Theory and Logic Programming

2.1 Lattice and Order Theory

2.2 Logic Programming e
2.2.1 A First Order Theory
2.2.2 Fixpoint Semantics and the Tp Operator

Abstract Interpretation & Spatial Approximation

3.1 Abstract Interpretation L.
3.1.1 Abstract Interpretation in Logic Programming

3.2 Spatial Approximation Techniques

Abstract Domains
4.1 Polyhedra and Cones
4.2 Defx a Class of Boolean Function

Argument Size Analysis with CLP(R)

5.1 Introduction

5.2 Worked Example

5.3 Semantics L. e e e e e
5.3.1 Concrete Domain Lo
5.3.2 Abstract Domain
5.3.3 Program Abstraction Lo
5.3.4 Analysis Framework - a Galois Connection
5.3.5 Concrete Semantics o000
5.3.6 Abstract Semantics.
5.3.7 Widening

5.4 Widening Criteria

ii

vii

viii

ix

LN N

=2 = B A=A

13
16
17

23
23
29

5.4.1 Widening with Uniform Increments. 41

5.4.2 Widening within a Hierarchy 42
5.4.3 Widening with Non-uniform Increments 43
5.5 The Computation of the Convex Hull 44
5.5.1 The Closure of the Convex Hull 45
5.5.2 The Matrix Method 47
5.5.3 The Computation of the Closure of the Convex Hull 49
5.6 A Bottom-up Interpreter 51
5.6.1 Implementation Issues 52
5.7 Example Analyses 53
5.8 Summary e 56
Polyhedral Widenings 58
6.1 Preliminary Definitionso 59
6.2 Alternative Representations and Rotations 65
6.2.1 The Terms of Reference and Notation 65
6.2.2 Exchanging Elements in Alternative Representations 69
6.3 Representation Independence 73
6.4 When is this Widening Useful? 79
6.5 Representation of affinehulls 80
6.5.1 Imequalities 80
6.5.2 Equalities L 82
6.6 Reducing Operations to the Affine Hull of the Union of Both Operands 83
6.7 Summary 84
¢ : an Isomorphism 88
7.1 Introduction. 88
7.2 Polyhedral Cones and Boolean Functions 89
7.3 Representationin Defyx 0oL 90
7.4 The Abstraction of Cone™ 92
7.4.1 The Abstraction Operator 93
7.4.2 Representation in a(Cone™) 94
7.4.3 Joins and Meets in a(Cone™) 100
7.5 Is a(Cone™) really an abstraction? 105
7.6 A Lattice Isomorphism Lo oL 106
7.6.1 From Polyhedral Cones to Boolean Functions 107
T.7 Summary oL e 109
Groundness Analysis with SICStus clp(QR) 111
8.1 Imtroduction. 111
8.2 Worked Example Lo 114
8.3 Def vs. Pos - the Condensing Property 114
8.4 Semantics L 115
8.4.1 Program Abstraction oL 116
8.5 Operations over Abstract Cones 117
8.6 Implementation L 118
86.1 AnalyserI 118
8.6.2 Analyser IT 119

iii

8.7 Example Analyses
8.8 Summary

9 Summary

A Implementation I

A.1 kalah

Bibliography

iv

124

127
127

135

List of Figures

T W N -

(@)

10
11
12
13
14
15

16
17

18
19
20
21

Affine Approximations L. Lo 18
Interval Approximations 19
Simple Sections e 19
Polyhedral Approximations 20
Infinite band 1 <y < 2 vs. the halfspacey <2 22
Convexity o e 25
Triangle and Convex Hull example in R? 26
Dependencies between SCCs of the quicksort? program 43
Triangle ABC in R2 and R®. 60
Triangle ABC in R 61
Triangle ABC in R3 and some of its supporting hyperplanes. 62
The line ABER? 66
Polyhedra P; € R3 where dim NPy =4 67
The point (1, 1) € R2 70
Increasing sequences of polyhedra. 80
Hasse diagrams confirming an isomorphism in the dyadic case 89
Sets of points in R™ 105
Groundness dependency analysis for append(R,S,T) 114
The magic version of ¢/2 and its analysis in Defy. 115
Analysis Results for Implementation T 122
Analysis Results for Implementation IT 123

List of Tables

0 3O Tk W

Triangle ABC in R and R®. 60
Triangle ABC in R 61
Triangle ABC in R? and some of its supporting hyperplanes. 62
Tangent hyperplanes and facets of ABC in R 63
Relative tangent hyperplanes and facets of ABC in R® 64
The line ABER? 66
Polyhedra P; € R? where dim NPy =4 oo .. 68
Different Representations of the point (1, 1) € R 70

vi

Dedication

This thesis is dedicated to my father, Ralph Wheeler, whose patience instilled in me a
love of mathematics. Had he still been alive, he would have been intrigued by this work.

vii

Abstract

The motivations for program analyses are many. The impetus for the static analysis of
programs initially ranged from the need for more efficient code to program transforms
for parallel systems, but with the passage of time now also encompasses: providing the
programmer with debugging information, program verification and program testing.

Abstract interpretation is a methodology for static analysis that was formalised at
the beginning of the last decade and is employed in both declarative and imperative
programming paradigms. Abstract interpretation is a rigorous approximation technique
that allows an analysis to focus on a particular property and infer useful information
about the run time behaviour of the program being analysed. In order to implement an
abstract interpretation it is necessary to chose an abstract domain that expresses the
property of interest with sufficient precision to be useful.

The focus of this thesis is on the use of two polyhedral domains as a means of
capturing these properties of interest in logic programs. This thesis demonstrates how
polyhedra can be employed to capture analyses that relate to dependency information
with respect to some measure of size. Polyhedral analyses require a technique known as
widening to ensure analysis convergence. Computational issues associated with widening
prompted an investigation into the way linear spaces interact and how it is possible for
a polyhedron to have different representations as a set of implicitly conjoined linear
inequalities. Some useful computational insights are the outcome of this investigation.

The observation that certain linear inequalities might represent dependency infor-
mation prompted a novel approach to capturing dependency analysis with the subclass
of polyhedra that can be represented by those linear inequalities. This could be advan-
tageous for analyses in environments with constraint support as no set-up costs for the
analysis would be incurred as the existing environment would be capable of supporting
the abstract domain. Central to this thesis is the isomorphism that reveals the precise
extent to which these polyhedra can represent dependency information.

An argument-size analysis using polyhedra and a groundness analysis using certain
polyhedral cones have been implemented up to the prototype stage.

viii

Acknowledgements

First and foremost I must thank my supervisor Dr Andy King for his support throughout
this time. Secondly, my grateful thanks to go to the Computing Laboratory here at Kent
for the E.B.Spratt Bursary that made it possible for me to embark on a PhD.

The argument size analysis presented in Chapter 5 is based on work co-authored
with my supervisor that I presented at the 6th International Workshop on Logic-Based
program Synthesis and Transformation in Sweden.

As a researching student the phrase virtual-ivory-tower-experience comes to mind.
Therefore, my thanks must go to authors, in particular R. Tyrell Rockafellar, who most
emphatically "rocks”, and who has opened the door to the fascinating subject of convex
analysis, which I have hardly scraped the surface of in my investigations here. Also
to Patrick and Radhia Cousot whose papers on abstract interpretation provided the
impetus for this journey. I would also like to thank Tony Daniels, Jacob Howe and
Jon Martin for their helpful comments on preliminary chapters and Jan Smaus for his
comments on the first attempt at writing up the isomorphism.

On a more personal level my close family, Lawrence, Ivor, Rosalie and Becci have
been great. They have put up with burnt offerings disguised as meals with commendable
stoicism, ever since the time that twenty five fish fingers went the way of all flesh in
my first year undergraduate days as I hit on the algorithm for the Fibonacci sequence.
They have been there to listen when things have gone well and when when they haven’t,
in spite of the fact that none of them speak computer science!

I am so very fortunate in knowing and counting as friends, Maria Stergiou and John
Crawford here at Kent, Jon Martin and last but not least Tony, husband of my daughter
Olwynne, whose support and encouragement have made the last three years bearable.

Finally, Olwynne, my first born, who has supported me through the wonderful ups
and awful downs since I became a student in 1989 with a faith in my ability that
has been unshakable even in the face of my own despair. Her presence in my life has
been a constant joy and her ability to reduce me to laughter when faced by perceived
intellectual disaster has not only made this journey easier, it has helped me to learn far
more about myself, the world and the meaning of life than I would have done otherwise.
Thankyou Olwynne :-)

ix

Chapter 1

Introduction

“Discovery consists of seeing what

everyone else has seen and thinking

what no-one else has thought.”

- Albert Szent-Gyorgyi, The Scientist Speculates

The computing industry is going through the same metamorphosis that has over-
taken the car industry in recent years: the gap between the emphasis on speed and
safety as selling-points is narrowing. In computing, the underlying cause of this change
lies in that fact that both the complexity of software and the impact it has on our lives
as a controlling entity is increasing rapidly. Software is in control in areas as diverse as a
real-time safety critical system and a credit-rating facility. A software system is consid-
ered to be safe if it can be formally verified that its behaviour is contained within certain
measurable parameters. The parameters may range from the safety-critical kind asso-
ciated with nuclear power stations and aircraft to the more mundane, but none-the-less
important criteria that operate over our bank accounts.

Fast imperative languages like C and C++ are the preferred choice, although the
rise of the popularity of Java, initially a useful tool for creating applets on web pages,
suggests that a change is taking place - Java is presented as being a “safer” language than
its C counterparts. Logic based languages are still perceived as too slow and of limited
use, despite the fact that logic programming languages and constraint handling systems
like Chip V! are used in the “real” world. No particular programming language is a
universal panacea, but there are certain classes of problems that benefit from expression
in a declarative language and a language based on logic has the potential to allow the
verification that is going to be required of software systems in the future.

Logic programming was introduced by Robert Kowalski and Alain Colmeraur in the
1970’s. The “eureka” step occurred with the realisation that a procedural interpretation
could be applied to first order predicate logic. Logic, with a sound basis in mathematics
would seem to be an ideal medium in which to specify programs, especially if verification
is an issue. The classical logic that is the basis of logic programming languages has been
pruned to achieve better computational efficiency. With the passage of time interpreters
have given way to compilers and machine architectures have been designed that go a
long way towards efficient implementation, notably the work of Taylor [Tay91]| and van

1cosytec.com

CHAPTER 1. INTRODUCTION 2

Roy [vR90] for Prolog.

Of the several means and devices that have been explored to improve both declar-
ative and imperative language performance, the automatic analysis of programs is of
primary interest here, and in particular the methodology known as abstract interpreta-
tion. The initial impetus for abstract interpretation in logic programming was analyses
that would allow compiling techniques aimed at more efficient space utilisation and/or
program execution time. Increasingly though, the scope of application for such analyses
in both declarative and imperative paradigms has been extended to encompass program
verification, the provision of debugging information for programmers, and more recently
for abstract testing, a generalisation of model-checking [CCO00]. In effect, analyses can
contribute not only to more efficient, but also to more reliable software.

1.1 Abstract Interpretation in the Analysis of Logic Pro-
grams

Patrick and Radhia Cousot formalised the lattice theoretic approach in the late seven-
ties. They developed the theory of abstract interpretation as a means to elicit static
analyses that could infer the dynamic properties of programs. Abstract interpretation
is applied to program source code in order to carry out a static analysis that can infer
an approximation of the meaning of the program’s run-time behaviour. In this context
approximation means ignoring irrelevant program details and focusing on a particular
“property of interest” that can be exploited by a compiler. One source of variant pro-
gram behaviour is the input data, so, typically, the property of interest is a property
associated with data.

The abstract domain that represents the property of interest is the lynch pin of
this methodology. A simple example [CC92a] is the abstract domain that approximates
that of the positive and negative integers, due to the Ancient Greeks, known as the
“rule of signs”. Given that the required information is whether a particular variable
at a particular program point is positive or otherwise, an abstract interpretation of a
program might use the abstract values +1 and —1 to describe positive and negative
integers respectively. Then, by re-interpreting operations like addition or multiplication
according to the rule of signs, certain properties of a program may be deduced. For
example, when a particular loop is entered it may be deduced that a certain program
variable is positive. Abstract interpretation has been applied to logic programs to
deduce a wide range of useful information, including types, modes and aliasing.

The choice of abstract domains for abstract interpretation and a survey of some of
the most noteworthy examples in the literature are explored further in Chapter 3.

1.2 Research Objective

This thesis is broadly concerned with the static analysis of logic programs and in par-
ticular with abstract interpretation as a methodology. The overall research objective
has been the investigation of the possibilities of using abstract domains of a polyhe-
dral character. This idea has been pursued as positive results would mean that logic
programming environments that include constraint solvers, like CLP(R) could conduct
program analyses using the solving machinery that is already available without hav-
ing to set up the machinery for an abstract domain, for example like that required for

CHAPTER 1. INTRODUCTION

reduced order binary decision trees. The substance of this thesis is in three parts:

1. An investigation into widenings for polyhedral domains qualifies precisely how and
when different representations of a polyhedron are possible. As a consequence of
this understanding an optimisation technique for polyhedra under certain condi-

tions is noted.

2. Central to the thesis is the presentation of an isomorphism between a subclass of
certain polyhedra that are known as polyhedral cones, and a subclass of Boolean
functions known as the definite functions. The subclass of polyhedral cones are
known as abstract cones and the process of, and motivation for, the abstraction are
expounded in Chapter 7. This association highlights the fact that this subclass is
a finite abstraction of all polyhedral cones. Employing a finite domain in abstract
interpretation has the advantage that termination of the analysis itself is not an

issue.

3. Two implementation studies at the prototype level, using polyhedral abstract do-
mains are presented. An argument size analysis is presented that involves a pro-
gram transform and a static analysis of the run time properties of the transformed
program. As the abstract domain is not finite, a simple widening technique is de-
vised that forces the analysis to converge. Any property that can be characterised
by definite Boolean functions can be characterised by the abstract cones, so the
finite polyhedral domain is employed as an abstract domain for the purpose of

groundness analysis for logic programs.

1.3 Thesis Prospectus

The remainder of this thesis is structured as follows:

e Chapters 2, 3 and 4 constitute a reference for the terminology and notation that

is required to negotiate this thesis.

— Chapter 2 comprises some lattice theory terminology and an introduction to

logic programming.

— Chapter 3 introduces abstract interpretation as an analysis methodology
along with spatial approximation techniques and some pertinent examples
from the literature. This chapter also introduces the notion of widening,

a technique for accelerating analysis convergence, or in the case when the

analysis domain is infinite, ensuring analysis termination.

— Chapter 4 introduces the abstract domains of polyhedra and Boolean func-

tions.

e Chapters 5, 6, 7 and 8 constitute the body of this thesis.

— Chapter 5 presents an analysis that infers useful inter argument relationships
with respect to size. This type of information is useful in termination analysis.
The abstract domain employed is that of linear inequalities over rational
numbers. The sets of inequalities that constitute the analysis output can
be viewed spatially as polyhedra in R™. A technique known as widening is

CHAPTER 1. INTRODUCTION 4

employed to ensure analysis termination. The analysis is illustrated over a
sample of structurally diverse Prolog programs.

— Chapter 6 is an interesting discussion associated with a well-known widen-
ing for polyhedral domains. This widening can be viewed algebraically or
spatially. This discussion concentrates on the spatial view of the widening
providing insight into how it works and the circumstances when it is most
useful. Further, insight is provided into how representations of polyhedra as
sets of inequalities can uniquely qualify polyhedra. In the light of this in-
formation an alternative widening is suggested, and the association between
this widening and the one introduced in the previous chapter is qualified.

— Chapter 7 introduces abstract convex cones and the isomorphism with def-
inite Boolean functions showing exactly how these two apparently diverse
domains are connected.

— Chapter 8 presents two prototypes that employ the finite domain of abstract
convex cones to capture a groundness analysis. The analysis outcomes are
commensurate with those for other analyses using domains such as Positive
Boolean functions.

e Chapter 9 summarises and suggests further areas for investigation.

Throughout this thesis, a small square - s, denotes the end of both Definition and
Example environments, and a slightly larger square - m, denotes the end of Theorem,
Proposition, Lemma or Corollary environments.

Chapter 2

Lattice Theory and Logic
Programming

Familiarity with lattice and order theory, and with logic programming is assumed but
some basic definitions are provided for completeness.
Throughout, the following notational conventions will be adhered to:

e ¢ denotes the empty set,

e in complex formulae the square brackets, [and ']’ serve only to clarify the limit
of the scope of universal and existential quantifiers.

2.1 Lattice and Order Theory

The sources for the definitions regarding lattice and order theory are taken from [Bir48]
and [DP90].

Definition 2.1.1 A partially ordered set or poset is a set L in which a binary relation
C is defined, which satisfies, for all Iy, I, I3 € L,

1. [C 1. (Reflexive)
2. if l; Clp and Iy C [; then [; = lo. (Antisymmetric)
3. if Iy Cly and Iy C 3 then I; C 3. (Transitive)

A poset L, is denoted (L, C). .

Definition 2.1.2 Let L(C), L'(C') be posets and ¢ : L — L', then v is an (strict)
order embedding if Vll, ly e L.I1 Cl & 1/)([1) E’ w(ZQ), (Vll, loy e L1 Cly &

Y(l1) ' Y(l2)). .
Definition 2.1.3 Let (L,C) be a poset and Iy, I € L then if [; Z ly and lp Z [;, then
[1 and [y are said to be incomparable and this is denoted I |f l>. .

Definition 2.1.4 Let L be a poset and L' C L, then a € L' is the least element of L'
iff Vz € L' .a C z. Similarly, a € L' is the greatest element of L' if Ve € L' .2 Ca. =

CHAPTER 2. LATTICE THEORY AND LOGIC PROGRAMMING 6

Definition 2.1.5 Let L be a poset and L' C L, then a € L is an upper bound of L' iff
Vz € L' .x C a; and a is the least upper bound of L' iff a C y for all upper bounds y of
L. .

Definition 2.1.6 Let L be a poset and L' C L, then similarly, a € L is a lower bound
of L' iff Vx € L' .a C x; and a is the greatest lower bound of L' iff y C a for all lower
bounds y of L’. .

Definition 2.1.7 A lattice, L, is a poset such that for any two elements, l1,lo € L there
is a greatest lower bound, [NIy and a least upper bound, [; Lls. A lattice, L, is denoted
by (L,C, L,). .

Definition 2.1.8 A complete lattice, L, is such that: VL' C L there is a least upper
bound or join, denoted: LIL' and a greatest lower bound, or meet, denoted: ML'. A
complete lattice, L, is denoted (L,C,LI,M, T, L), where T denotes the top or greatest
element of L, and L denotes the bottom or least element of L. .

Note that the definition of a complete lattice means that every finite lattice is complete,
but every complete lattice is not finite.

Definition 2.1.9 Let L be a lattice and ¢ # L' C L. Then L’ is a sub-lattice of L iff
VYa,be L' .albe L’ ANalbe L. .

Hereafter, in accordance with common practice, the least upper bound is referred to as
the join and the greatest lower bound as the meet.

Definition 2.1.10 Let L be a poset, then L is a chain iff for any two elements, {1, lo € L
either [{ C Iy or Iy C [7. .

Definition 2.1.11 Let L be a poset and ¢ # L' C L is a chain. Then L is chain-
complete iff VL' . U L' exists. .

2.2 Logic Programming

The logic programming definitions and descriptions are drawn from Lloyd’s seminal
work [L1093], and [Hog90]. Further details can be found in either of these texts. Simple
example programs are included to illustrate the logic programming terminology. The
analyses that are part of this thesis have been devised for logic programs, and in partic-
ular for definite programs consisting of definite clauses. The following definitions clarify
these concepts.

2.2.1 A First Order Theory

Definition 2.2.1 A first order theory comprises:
e an alphabet,
e a first order language,

e a set of axioms,

CHAPTER 2. LATTICE THEORY AND LOGIC PROGRAMMING 7

e a set of inference rules.

Definition 2.2.2 An alphabet comprises seven classes of symbol:
1. variables,
2. constants,
3. function symbols,
4. predicate symbols,
5. connectives - {—, A, V, =, <>},
6. quantifiers - {3, V},
7. punctuation symbols - {(,), “,”}.

The first four classes vary from one alphabet to another, the second and third classes
may be empty, however, the remaining three classes are the same for all alphabets.

Definition 2.2.3 A term is defined inductively:
e a variable is a term,
e a constant is a term,

e if f is an n-ary function symbol and t¢i,...,t,, are terms, then f(¢1,...,t,) is a
term.

Definition 2.2.4 A well-formed formula is defined inductively:

e if p is an n-ary predicate symbol and ti,...,t, are terms, then p(t1,...,t,) is a
well-formed formula, (alternatively an atomic formula or simply an atom)

o if W7, Wy are well-formed formulae then so are their compositions, =Wy, Wi AWy,
WiV Wy, Wi — Wa, Wi < W,

e if W7 is a well-formed formula and x is a variable then, Vz.W; and dx . W; are
also well-formed formulae. .

Definition 2.2.5 A first order language of a theory is the set of well formed formulae
constructed from the symbols of the alphabet. .

Definition 2.2.6 The scope of Vx (respectively Jz) in Vz . F' (respectively Jz . F) is F.
A bound occurrence of a variable in a formula is an occurrence immediately following a
quantifier or an occurrence within the scope of a quantifier, which has the same variable
immediately after the quantifier. Any other occurrence of a variable is free. .

Definition 2.2.7 A closed formula is a formula with no free occurrences of any variable.

CHAPTER 2. LATTICE THEORY AND LOGIC PROGRAMMING 8

The axioms of a first order theory are a designated subset of closed formulae in the
language of the theory.

Definition 2.2.8 A literal is an atom or the negation of an atom. A positive literal is
an atom, a negative literal is the negation of an atom. .

Definition 2.2.9 A clause is a closed formula of the form:
Vxl...V$n.(L1V...VLm)

where each L; is a literal and z1, ..., x, are all the variables occurring in L; V...V L,,.

A well-founded formula is said to be in clausal form if it is a conjunction of clauses.
Clauses in logic programs are assumed to be universally quantified for all variables so a
clause:

Vzy... Ve, . (A1 V... VA V=B V...2Bp)

where A1,...,A; and By,..., By, are atoms and x1,...,x, are variables occurring in
these atoms, which is equivalent to:

le...vxn.(Al\/...\/Ak)(—(Bl/\.../\Bm)

is denoted:
(Al\/...\/Ak) — (Bl/\.../\Bm)

Although the following definitions apply to clauses in a program, since the context is
clear, the word program is omitted.

Definition 2.2.10 A definite clause is a clause of the form:

A(—Bl,...,Bm

where A and By, ..., B, are atoms, which contains precisely one atom in its consequent.
A is called the head and By, ..., By, the body. Each B; is known as a body atom. .
Definition 2.2.11 A definite program is a finite set of definite clauses. .

Definition 2.2.12 A definite goal is a clause of the form:
— Bl, ey Bm
that is, a clause with an empty consequent. Each B; is a subgoal. .

Definition 2.2.13 A ground term (ground atom) is a term (atom) that does not contain
any variables. .

Definition 2.2.14 Let L be a first order language, then the Herbrand universe for L
is the set of all ground terms formed from the constants and function symbols in L. =

Definition 2.2.15 Let L be a first order language, then the Herbrand base for L is the
set of all ground atoms formed from the predicate symbols in L, with ground terms in
the Herbrand universe as arguments. .

CHAPTER 2. LATTICE THEORY AND LOGIC PROGRAMMING 9

Definition 2.2.16 Let L be a first order language, then a pre-interpretation of L con-
sists of:

e a set D # ¢, the domain of the pre-interpretation,
e for each constant in L, the assignment of an element in D,

e for each n-ary function symbol in L, the assignment of mapping from D" to D.

Definition 2.2.17 Let L be a first order language, then the Herbrand pre-interpretation,
of L consists of:

e the domain of the pre-interpretation, the Herbrand universe H,
e constants in L are assigned themselves in H,

e if f is an n-ary function symbol in L, then the mapping from H" to H, defined
by (t1,...,tn) = f(t1,...,tn) is assigned to f.

Definition 2.2.18 Let L be a first order language, then an Herbrand interpretation,
I, of L based on the Herbrand pre-interpretation of L is the assignment of a mapping
from H™ into {true, false}, for each n-ary predicate symbol in L. .

For Herbrand interpretations the assignment to constant and function symbols is fixed
so that an Herbrand interpretation, I, can be identified with a subset of the Herbrand
base, that is, those atoms in the Herbrand base that are mapped to true.

Definition 2.2.19 An interpretation for which a formula expresses a true statement is
a model of the formula. -

Definition 2.2.20 Let L be a first order language and well-founded formulae W1, Wy €
L then the relation logical implication, denoted |=, is defined: Wy | Wy iff every model
of Wi is a model of Ws. -

Definition 2.2.21 Let L be a first order language and well-founded formulae W1, Wy €
L then the relation derivability denoted F is defined: Wy F Wy iff Wy is derivable
using the inference rules of L. .

Definition 2.2.22 Let L be a first order language and P a set of clauses, then an
Herbrand model for P is an Herbrand interpretation for L which is a model for P. .

Definition 2.2.23 Let a set of definite clauses, P, be a program. The ground instan-
tiation of P, denoted Gp, is the set of all possible ground instances of all of the clauses
in P over the Herbrand universe of P. .

Definition 2.2.24 A truth-assignment to an atom is the assignment to the atom of
either the value true, or the value false. .

CHAPTER 2. LATTICE THEORY AND LOGIC PROGRAMMING 10

The set of all Herbrand interpretations for a definite program P, forms a complete lattice,
ordered by set inclusion [KvE76]. Therefore, there is both a minimal (least element
/bottom) and a maximal (greatest element/top) model for P. The maximal model for
P is the Herbrand base, Bp, as this ensures that every atom that is a component
of a clause in Gp is true, and hence, every clause in Gp is true. However, Bp may
contain many atoms not present in any of the clauses in Gp, so their truth assignment
is irrelevant. An Herbrand interpretation, I, is a truth-assignment to each atom in Bp.
Applying this assignment to the atoms in Gp determines the truth values of the clauses
in Gp, and hence, a truth-assignment to Gp itself. If an interpretation determines that
Gp is true, then it is a model for Gp, and hence, for P.

Example 2.2.1 Consider the program, P :

related(X, florence) <- related(X, olwynne).
related(sophie, olwynne).

The Herbrand base, Bp :

related(florence, florence).
related(olwynne, florence).
related(sophie, florence).

related(florence, olwynne).
related(olwynne, olwynne).
related(sophie, olwynne).

related(florence, sophie).
related(olwynne, sophie).
related(sophie, sophie).

and the ground instantiation of P, denoted Gp :

clause 1: related(florence, florence) <- related(florence, olwynne).
clause 2: related(olwynne, florence) <- related(olwynne, olwynne).
clause 3: related(sophie, florence) <- related(sophie, olwynne).
clause 4: related(sophie, olwynne).

To find the least model it is necessary to find the smallest set of atoms whose individual
assignment to true ensures that Gp, is true. It is convenient to consider the 4 clauses
in reverse order as the truth of clause 4 affects that of clause 3.

e clause 4 is true, only when related(sophie, olwynne) is true.

e since related(sophie, olwynne) is true, clause 3 is true only when related/(
sophie, florence) is true,

e however, neither related(sophie, olwynne) nor related(sophie, florence)
is in the antecedent or the consequent of clause 2, so clause 2 can be true when
both atoms, related(olwynne, florence) and related(olwynne, olwynne),
are false,

CHAPTER 2. LATTICE THEORY AND LOGIC PROGRAMMING 11

e similarly, clause 1 can be true when both atoms, related(florence, florence)
and related(florence, olwynne), are false.

Hence, {related(sophie, olwynne), related(sophie, florence)} is the smallest
set of atoms whose assignment to true ensures that Gp is true, and hence, is the
minimal model for both Gp and P. The minimal model for a program, P, is the smallest
set of ground atoms whose assignment to true guarantees that every clause in Gp is
true, that is, the intersection of all the models for P. The meaning of a program, P, is
defined by its minimal model which constitutes the theorems that can be proven by the
axioms of P. The minimal model of P is said to be the declarative meaning of P.

2.2.2 Fixpoint Semantics and the 7» Operator

Let P be a definite program, then 287, the set of all Herbrand interpretations of P, is
a complete lattice under the partial order of set inclusion, C . The top element is Bp
and the bottom element is ¢. The join is set union and the meet set intersection.
There is an incremental method for constructing the minimal model. The first step is to
chose an interpretation I; € Bp. If there is a clause in G p such that the interpretation
I assigns true to the atoms in the body of that clause, then an immediate consequence
is that the head atom of that clause, the consequent, is also true. Let I be all the atoms
that are made true, then the outcome of applying this method to Iy will be the third
iterate Is. This method can be applied successively and will generate only models of
P. If the initial [is the empty set it has been shown that this sequence of iterates will
stabilise and yield the minimal model.

The repeated application of this process can be formalised in the definition of the
operator known as the Tp operator, but before it is introduced some further definitions
are required.

Definition 2.2.25 Let L and M be posets. A map ¥ : L — M is monotonic if
a C b € L implies ¥(a) C 9(b). A monotonic map may also be called order-preserving. =

Definition 2.2.26 Let L’ be a non-empty subset of a poset L. Further, let F' be a finite
subset of L'. Then L' is a directed set if VF C L' .3a € L' such that a is an upper bound
of F.]

Definition 2.2.27 Let L and M be posets, and L a directed set in L. A map ¥ : L —
M is continuous if, VL' € L. 9(UL") = UI(L’). .

Note that continuity implies monotonicity.

Definition 2.2.28 Let L be a complete lattice and T : L — L be a mapping. Then
a € L is the least fizpoint of T if a is a fixpoint, that is T'(a) = a, and for all fixpoints b
of T, a C b; and the set {b € L | a C b} is the set of post fizpoints of T

The greatest fixpoint is defined similarly. .

Let L be a complete lattice, (L, C,LI,1, T, L), then by Tarski’s fixpoint theorem [Tarb5],
a monotone mapping 71" : L — L has both a least fixpoint, IfpT, and a greatest fixpoint
gfpT. Further, IfpT = {z | T(z) = 2} and gfpT = LW{z | T(z) = =}.

CHAPTER 2. LATTICE THEORY AND LOGIC PROGRAMMING 12

Definition 2.2.29 Let P be a definite and continuous program and 257 the set of
all Herbrand interpretations. Then the monotonic operator, Tp : 287 — 2BP is de-
fined: Tp(l) = {A € Bp | A «+ A,..., A, is a ground instance of a clause € P and
{Ay,..., A} C I} .

Hence, in the case of logic programs the semantics can be defined as the least fixpoint
of the immediate consequences operator. By application of Tarski’s fixpoint theorem
[Tarb5] it can be shown that the least fixpoint of the immediate consequences operator
is coincident with the minimal model.

The following example illustrates the construction of the minimal model for a program
P starting with the empty set and applying the Tp function until the iteration sequence
stabilises. In the example program there are no function symbols so the Herbrand
universe is finite.

Example 2.2.2 Let P be a program and Hp be the Herbrand universe of P :

P = {p(X) <= q(X).
q(a).}

Then the Herbrand base of P, namely Bp, and the ground instantiation of P, namely
Gp are:

Bp = {p(a), q(a),

Gp = {p(a) <= q(a).
p(b) <- q(b).
q(a).}

The minimal model of P, the fixpoint of Tp is derived:

¢

{a(a)}
{a(a), p(a)}
= {a(2), p(a)}

Hence, the minimal model, that is, the meaning of P is {q(a),p(a)}. .

S
|

I =Tp(Iy
_[2 = Tp([l
Is =Tp(I>

~— — —

Definition 2.2.30 For a program P, the set of all ground atoms, {¢ | PU—q + false}
is the success set of P. -

Definition 2.2.31 A substitution, 6, is a finite set of the form {v;/t1,...,v,/t,} where
each v; is a variable, each t; is a term distinct from v; and the variables vy, ...,v, are
distinct. An element, v;/t; of a substitution is called a binding for v;. .

Definition 2.2.32 A substitution 6, is called a ground or grounding substitution if all
of the t; are ground terms. .

The success set of P is coincident with the minimal model of P [KvET76].

Chapter 3

Abstract Interpretation & Spatial
Approximation

The motivations for static program analysis in logic programming are program verifi-
cation, to provide debugging information for the programmer or to infer information
that can be used to improve program performance, in terms of space utilisation or exe-
cution speed. Abstract interpretation is a methodology for static analysis that focuses
on a description, the abstraction, of a useful program property. When the description
domain, the abstract domain, is numeric, representations can become unmanageably
large, hence the application of spatial approximation techniques. Section 3.1 serves to
introduce abstract interpretation and the technique known as widening, and 3.1.1 pro-
vides a brief overview of some of the applications of abstract interpretation, particularly
in logic programming. Section 3.2 describes some spatial approximation techniques and
includes some applications of abstract interpretation that employ these techniques.

3.1 Abstract Interpretation

Patrick and Radhia Cousot have formalised the methodology known as Abstract Inter-
pretation and a detailed review of this is found in [CC92a, CC92b]. Abstract interpreta-
tion is a methodology that formalises the approximation of the run-time behaviour of a
program with respect to a particular property of interest. In this context approximation
means throwing away all but pertinent information and devising a means of characteris-
ing program behaviour in terms of the property of interest. The formal characterisation
of program behaviour, the standard semantics, is the basis on which an abstract inter-
pretation is built. Central to an abstract interpretation is the choice of abstract domain.
Analyses should be both as efficient and as precise as possible so this choice is tempered
by the capacity of the abstract domain to express the program descriptions succinctly
and further, the computational complexity of operations on those descriptions. Hence,
this choice dictates the efficacy of the analyses.

The relationship between an abstract semantics and a concrete semantics is qual-
ified formally in the most precise way possible, for example, the relationship may be
strong enough to be qualified as a Galois connection (see Definition 3.1.3). The formal
association between concrete and abstract values allows the specification of sound ab-
stract operations over the abstract domain. The property of interest, or abstraction,
and its relationship with the concrete semantics induces the abstract or non-standard

13

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION14

semantics, an approximation of the collecting semantics. Since the abstract semantics is
an approximation of the collecting semantics it can be described by a fixpoint equation
and its solution is the information that the analysis infers (this follows only when the
collecting semantics is already a transition system).

Hence, consideration must be given to the operations required to compute the fix-
point, or at least some useful approximation of the fixpoint. Monotonicity is a re-
quirement of fixpoint equations therefore the structure of abstract domains ranges from
pre-orders to complete lattices. When analyses are defined over abstract domains with
infinite or very long chains, they may require a technique that either forces or acceler-
ates convergence. The notions of widening and narrowing were introduced to manage
such situations and are reviewed in [CC92c]|.

Widening and Narrowing A widening is an operator on two successive iterates
in a fixpoint calculation over increasing chains that approximates the fixpoint with a
post fixpoint. The loss in precision is compensated for by operational tractability, as in
practice post fixpoints can be easier to compute than fixpoints. The following definitions
are due to [CC92c].

Definition 3.1.1 A widening denoted v/, on the preorder (L, C) is defined by v/ : L x
L — LsuchthatVz,y e L.z C x\yyand Vz,y € L.y C xv/y and for all increasing
chains o C z; C ..., the increasing chain defined by yo = xo,...,Yi+1 = Yi V Tit1,-- -
is not strictly increasing, that is, y;4+1 C y; for some [. .

Narrowing, denoted A, is a similar technique that is applied to decreasing chains.

Definition 3.1.2 A narrowing denoted A, on the preorder (L, C) is defined by A :
Lx L — LsuchthatVz,ye L.(y C z) - (yC (z Ay)C z) and for all decreasing
chains zp J z; J ..., the decreasing chain defined by yo = xg, ..., ¥i+1 = ¥ & Tiy1, ...
is not strictly decreasing, that is, y;41 2 y; for some [. .

Widening and narrowing can be applied independently or in conjunction with one
another. Widening is discussed more fully in context in Chapter 5 and both techniques
are described in detail in [CC92c]. In the Example 3.1.1, that follows, both techniques
are employed. The narrowing effectively comes in to play to tighten up the approxima-
tion of the post fixpoint induced by the widening. In the example and throughout this
text P denotes the power set.

Example 3.1.1 This example is taken from [CC92a] but is due to earlier texts by
the same authors. The purpose of the abstract interpretation in this example is to
derive an analysis that returns the possible range of integer values as a pair of bounds,
for a variable with a value that controls the execution of a while loop. Let P denote
the concrete domain and A the abstract domain. Consider the abstraction o € P(C)
— A(C) where P = P(Z), A = {[l,u] | |l € ZU{=00} AN u € ZU {+o0} ANl <
u} U{¢}, minZ = —oo, mazZ = +oo such that a(¢) = ¢ and a(X) = [minX, mazX],
where minX, marX, respectively, denote the minimum and maximum values of X.
Hence, VI € A.¢ C I and [a,b] C [c,d] iff ¢ < a A b < d. Since A has strictly increasing
(infinite) chains, a widening is introduced such that VI € A.¢y I =17 ¢ = I and
[a,b] 7 [¢,d] = [if ¢ < athen — oo else a, if d > bthen + oo else b]. The strictly
decreasing chains of A are all finite, but can be very long, so a narrowing is defined,
such that VI € A. ¢ AT =1A¢ = ¢ and [a,b] Alc,d] = [if a = —oco then c else a, if b =
+oo then d else b]. The analysis of the following Prolog program:

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION15

program:- init(X,1), while(X).

init(X,X).

while(X):- inf(X,100,X), write(X),nl,
Y is X + 2,
while(Y).

while(X).

consists of solving the equation: X = ([1,1] U (X +4 [2,2])) M [—o0, 99] where ¢+41 =
I+4¢ = gb and [a, b] —I—A [e,d] = [a 4+ ¢,b+4 d] with —oco +4" z = 2z +4 —00 = —c0
and +oo +4" z = £ +4" 400 = +00. The ascending abstract iteration sequence with
widening is then:

Xo=¢

X1 = Xo v (([L, 1] U (X0 +*[2,2])) N [~00,99]
Xo = X1 v (([1,1] U (X1 +4[2,2])) M [—o0, 99]
X3 =Xz v (([1,1] U (X2 +4[2,2])) N [~00,99]

and the descending abstract iteration sequence with narrowing which initialises the first
iterate of the sequence, Xy, to the last iterate of the widening sequence, X3 is:

¢ v [1,1] =[1,1]
[1,1] v [1,3] = [1, +0o0]
[1,+00] v [L,4+99] = [1,+0q]

XO - X3 [17+]
X1 =Xo A (([1,1]U (X +4[2,2]) M [—00,99] = [1,+00] A[1,99] = [1,99)]
Xy = (([17] (Xl +A [272])) [00799] [799] [1a99] = [1799]

The use of both the widening and narrowing means that the analysis is independent of
the number of iterations in the while loop. .

It is interesting to note that convergence occurs within three iterations for the widening.
In the first iteration the base case conditions are established. The second iterate is
effectively the interval between the greatest lower bound and the greatest upper bound
and this stabilises in the third iterate. The narrowing commences with this interval and
tightens the upper bound, in this case to the least upper bound in the first iterate and
this sequence converges in the second iterate.

Summary - the Design of an Abstract Interpretation The design of an abstract
interpretation, can be seen as a sequence of steps:

1. identify the property of interest

2. choose a concrete collecting semantics that can capture this property - this can
be chosen from the standard semantics for a programming language or an instru-
mented semantics

3. choose an abstract domain that will capture the required property as precisely as
possible, balancing computational and representational constraints

4. establish as precise a connection as possible, between the concrete and abstract
domains

5. identify the required abstract operations and affirm their soundness

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION16

Bearing in mind that the success of an analysis is measured not only in terms of what
it delivers but the speed with which it is delivered, it is the third step, the choice of the
abstract domain that is the most crucial.

3.1.1 Abstract Interpretation in Logic Programming

Approximating the Concrete Fixpoint Semantics with the Abstract Seman-
tics The choice of concrete semantics is dictated by the property of interest as the
semantics must be able to express this property in order for it to be abstracted. Ideally
the collecting semantics are the most precise of the standard semantics expressed as a
formalised transition system that can capture the property of interest. In logic pro-
gramming the collecting semantics is typically the fixpoint semantics as characterised
by the immediate consequences operator, denoted Tp, (see Definintion 2.2.29). The
Tp operator defines the concrete semantics of a logic program as its least fixpoint,
UpTp = U,>0 Th(¢) where Vn > 0.T8(¢) C T (¢). When the association between
the concrete domain and the abstract domian is a Galois connection the properties of
this strong association allow the inducing of the abstract (fixpoint) semantics.

Definition 3.1.3 Let L(C), L'(C’) be posets. Further, let « : L — L' and v : L' — L.
A Galois connection is a pair of mappings «, v such that

VieL VI el .a(l) T 1< 1C A1)

Hence, whenever o maps [to I’ then «(«(l)) is an upper approximation of [.

This means that the analysis can be couched in terms of the solution to a fixpoint
equation that is an abstraction of the collecting semantics and hence, the goal of an
abstract interpretation over a logic program is a(lfpTp). One approach is to compute
an abstract image of the concrete iteration sequence, that is, an abstraction of [fpTp =
U,>0T5(#). The approach taken in this thesis is to compute the abstract fixpoint over
a program that is an abstraction, P4, of the concrete program, P. In an ideal situation,
a(lfpTp) = lfpTpa, but in practice it may be difficult or impossible to compute the least
fixpoint of the abstract iteration sequence and so there is recourse to a postfixpoint
which, as an upper approximation of a fixpoint, is also correct (by Tarski’s fixpoint
theorem [Tarb55]). In particular this is the case where the abstract domain is infinite as
in the argument size analysis presented in Chapter 5.

An Overview In this thesis abstract interpretation as a vehicle for the analysis of
logic programs is considered at the source code level as this is primarily where it has
proven to be most useful. The two analyses introduced in this thesis are concerned
with reasoning about data flow and are at the variable, rather than predicate level. An
argument size analysis is presented in Chapter 5 and a groundness analysis in Chapter
8. The motivation for these types of analysis and a closer look at some of the more
significant examples in the literature is presented in the respective introductions to
these chapters. A brief overview of abstract interpretation in the wider context follows
and then the next Section, 3.2, considers spatial approximation techniques.

The efficacy of program analysis is measured primarily in terms of the precision
of the analysis and its cost in terms of space and time. If precision is adequate and
the cost is cheap enough then the analysis may be incorporated into a compiler and

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION17

its efficiency measured at a higher level in terms of reductions in code size, compile
time and run time for a program. The interested reader is referred to Getzinger’s
paper [Get94], which despite its age, not only stands as a survey of the various types
of analysis, but is also an account of the systematic incorporation of several of these
analyses into van Roy’s Aquarius compiler [vR90] in order to quantify their relative
efficiency. Overall, as one would expect, complex domains are computationally more
expensive than simpler ones, and the corresponding increase in program efficiency with
more precise analyses is bought with a longer compile time and increased code size. The
outstanding observation from Getzinger’s work is that a substantial gain at reasonable
cost is possible with relatively simple domains. Getzinger’s evidence suggests that the
primary driver for the choice of abstract domain should be the information that can
definitely be used rather than the best precision affordable.

It may be, that for a certain class of program in a particular circumstances, a complex
analysis could produce dividends, however, for general purposes abstract interpretation
with the simpler domains is the most likely choice for incorporation into any system,
commercial or otherwise. The CIAO program development system [HBC*99] is such an
example, the result of many ideas and years of collaborative work in the field, is a pro-
gramming environment that offers the programmer/developer a number of applications
of abstract interpretation, including program optimisation, a debugging facility, pro-
gram validation and an assertion language. Some of the techniques used in the CIAO
system have been incorporated into CHIP V, the constraint system used by Cosytec
in Paris. It should also be noted that in the wider context there are two commercial
companies marketing program verification tools [Cou00]; Polyspace Technologies base
their product on the notion of abstract testing [CC00] for C and Ada, whilst Absint
Angewandte Informatik GMBH offers, for example, abstract interpretation as a route
to high quality C code generation.

3.2 Spatial Approximation Techniques

The driving force behind spatial approximation techniques is to render something dif-
ficult to model, simple. Such techniques are also driven by a need for a simple repre-
sentation of the approximation, especially in the case where there are many variables
involved and consequently the dimension is high.

In the following resumé of some of the most significant approaches, the figures depict
some of the different approximations of the line y = z, (the left hand figure), and a
triangle (the right hand figure) in the positive orthant of R2.

Most Specific Generalisation (msg) Approximations Argument size analysis can
be specified by defining an appropriate pre-interpretation and by using msg approxima-
tions [GBS95]. msg approximations are formed by taking most specific generalisations
of sets of atoms. With the aid of query-answer transforms, the analysis of [GBS95]
can infer, for example, that the length of the first argument of naive reverse, rev/2,
is the same as the length of the second argument. Although useful relationships can
be inferred the pre-interpretation domain of the natural numbers expressed in terms
of 0 and the successor predicate does not allow the expression of inter-argument size
relationships of the kind that can be modelled by a non-strict linear inequality.

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION1S8

Affine Approximations The intuitive picture of an affine space is that of an infinite
linear space like a line or a plane. In general an affine set A C R”, is such that
(1-AN)z+Age Aforeveryz € A, g € A, A € R. This definition includes the empty set,
a single point and R" itself. In the context of imperative programs, the affine approach
has been used to deduce invariant linear relations between the nested indices of DO
loops in FORTRAN programs for the purpose of compiler optimisation [Kar76]. In
[VD92, GDL92], invariants are characterised by affine spaces which can be represented
and manipulated using matrices. In [VD92] abstract interpretation is applied to the
task of inferring invariant argument size relations, a principle aid to proving program
termination. Relationships over the natural numbers are of the form {(z1,...,z,) | co+
11+ . .4+cpxy, = 0} where ¢; € Z. However, affine approximations can be very imprecise
as demonstrated by the approximation of the triangle as the whole of R?, in Figure 1.

Approach y=X x>=0 triangle

Affine

i)y =x
but not
confined to
+ve X.

ii) space
defined by

R2 « /

Figure 1: Affine Approximations

Interval Approximations Interval approximations offer more accuracy than the pre-
vious approach, but as can be seen from Figure 2, information is confined to lower and
upper bounds that are scalars and inter-argument relationships are lost. In the context
of termination analysis, as many of the spaces that are approximated are unbound, this
method would lose significant relationships that are characterised by spatial boundaries.
CHINA [Bag94, Bag96, BGL92] is an analyser for CLP(R) and CLP(FD) that approxi-
mates conjunctions of constraints with bounding boxes. Bounding boxes are rectangular
regions with sides parallel to the axes that are derived from sets of constraints using an
algorithm that gradually restricts the bounds in order to represent each variable within
an interval. Interval widening is required for termination analysis and constraints are
solved by propagation around a constraint network [Bag94, Bag96]. An interval analysis
for CLP(R), not dissimilar to that used in CHINA, is described in [JBE94]. The purpose
of the global analysis is program specialisation by adding derived redundant constraints
to CLP(R) programs. Interval abstraction is employed with an implementation, in C,
of GAIA (Generic Abstract Interpretation Algorithm). Narrowing is proposed in order
to recover some of the precision lost in widening interval approximations, but not im-
plemented. Results indicate a significant improvement in execution times on the tested

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION19

Approach y=%xx>=0 triangle

Interval
Approximations
y=Xx
confined to
+Ve X.
ii) the triangle
approximated
by a square

Figure 2: Interval Approximations

programs.

Simple Section Approximations Simple sections were developed as a means of
detecting task parallelism, for example, parallelism between different loop nests. The
idea is to model data accesses in a given program region within the simple sections.
Although developed for imperative languages, simple sections [BK89] might be used to
characterise simple inter-argument relationships. Simple sections represent spaces that
are bound by hyperplanes of the form z = ¢, * +y = ¢ or * — y = ¢ where linear
relationships are considered over the variables, and y, and a constant, c. Intuitively,
they are similar to interval approximations but with a further level of accuracy given
by bounds that are at 45 degree angles to the horizontal and vertical bounds, as shown
in Figure 3.

Approach y=%xx>=0 triangle

Simple Sections y N y
i)y =x N
confined to

+ve X.

ii)the triangle
approximated
by 8 lines at
angles of.45
degrees to X A
one another.

Figure 3: Simple Sections

Although simple sections are less complex to manipulate and do not require CLP(R)

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION20

support, they cannot afford the precision of polyhedral representations. Further, repre-
sentations may become intractable for predicates of large arity.

Polyhedral Approximations The greater accuracy that is possible with polyhedral
approximations makes this approach attractive and in consequence its suitability has
been more widely investigated than other techniques. The polyhedral approach is by
far the most expressive and for this reason was chosen as the most suitable, see Figure
4,

Approach y=x,Xx>=0 triangle

Polyhedral

Approximations

iLy=x
confined to
+ve X

ii. the triangle
as a set of
linear
inequalities.

Figure 4: Polyhedral Approximations

e In [MG92] a Prolog III program is presented for checking the invariants of the
CLP(Q) program to partially mechanise the derivation of inter-argument rela-
tionships. The proof method is neither a decision procedure (it is not complete)
nor is it automatic since it requires the user to postulate an inter-argument relation
to be proven.

e In [van91], an analysis for inferring linear inequalities is proposed with a suite of
matrix transformations for mechanising the derivation of the inequalities. How-
ever, as the analysis may not converge in finitely many steps a heuristic for finding
fixpoints is proposed, otherwise user intervention is required. It is noted that use-
ful fixpoints are not easy to find.

e The argument size analysis for logic programs of [Soh94] builds on the matrix
transforms of [van91] but employs a widening to ensure termination. The widen-
ing, however, returns the affine hull of the convex hull and therefore loses precision.
In order to avoid the widening and its loss of precision, an unfolding transform is
proposed for the class of linearly recursive programs. A frame representation is
used to check for a fixpoint and this representation is used in the convex union
calculation.

e A widening for polyhedra is reported in [Hal79, HPR94] that refines the widening
first proposed in [CH78]. Originally used for overflow and array bounds check-
ing, these widenings essentially remove inequalities from the i¢th polyhedron that
are not satisfied by the (¢ + 1)th polyhedron. So that less information is lost
the widening reformulates the representation of the first polyhedron in order to

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION21

maximise the number of common constraints. For example, to calculate P; <7 P
where P| = {(z,y) € R? |z = 0,y = 0} and P, = {{z,y) € R2|0 <y <z < 1},
Py is re-expressed as P, = {(z,y) € R?|0 < y < z < 0}, yielding a result
P Py = {(z,y) € R?,|0 <y < z} rather than {(z,y) € R? |0 < 2,0 < y}. An
algorithm for reformulating P; is detailed in [Hal79].

e In [Han95] Handjieva suggests the use of polyhedra to approximate numerical
constraints in a program. The idea is that by approximating the constraints using
a backward semantics, a form of the traditional Tp semantics, a program transform
is achieved that has the same semantics as the original, but is computationally
more efficient.

e A recent use of polyhedra is that of Howe and King in [HK99] and [HKO00]. They
propose an abstract interpretation, based on a Galois connection, of finite domain
constraint logic programs. One tactic that finite domain constraint solvers em-
ploy is that of propagating linear constraints that restrict variable domains. This
effectively reduces the search space and expedites problem solution. The analysis
they propose allows the addition of supplementary constraints at compile time,
as a program specialisation that preserves the semantics of the original program.
These constraints may restrict variable domains further than is normally possi-
ble with the propagation tactics employed by the solver. Some of the analysed
programs exhibited a significant execution time improvement and no analysed
program had a slower execution time.

e Besson et al [BJT99] introduce a polyhedral approximation of the set of reachable
states in a reactive system implemented in the synchronous language SIGNAL.
The purpose of the analysis is program verification rather than a compiler op-
timisations. A reactive system monitoring the condition of some object may be
set up to raise an alarm under certain conditions and possibly set in motion sta-
bilising or recovery procedures. Verification in this context amounts to infer the
prescribed conditions for the alarm state and confirming any subsequent states as
stable or recovered. They define an operational semantics for SIGNAL and anal-
yse an abstraction of the source code. Faced with the usual problems associated
with abstract domains that contain infinite chains, two widening techniques are
introduced. One of the widening techniques is based on a heuristic for the choice
of an extra extreme ray. The second is based on the notion that certain increasing
bounds can be replaced by their normed linear combination, as shown in Figure 5,
where the increasing sequence of inverted triangles bound by the line y = 2 can be
approximated by the infinite band 1 < y < 2 rather than just the half space y < 2.
The analysis is proven correct and the proposed widenings do ensure convergence
in circumstances when the widening of [CH78] would lose information.

CHAPTER 3. ABSTRACT INTERPRETATION & SPATIAL APPROXIMATION22

Figure 5: Infinite band 1 < y < 2 vs. the half space y < 2

Chapter 4

Abstract Domains

The purpose of this chapter is to provide points of reference for the terminology relating
to the abstract domains in this thesis. Both polyhedra and Boolean functions are
considered over a totally ordered, finite set of variables, X, where n = |X|. It is sufficient
to consider a finite set of variables because at each step an abstract interpreter considers
only the variables in a particular clause, and of necessity these will be finite in number.
The definitions presented here are taken predominantly from R. Tyrell Rockafellar’s
Convex Analysis [Roc70], with a few from S. Lay’s Convex Sets and their Applications
[Lay82].

4.1 Polyhedra and Cones

Throughout the text, the following conventions are adhered to, unless otherwise stated.
In accordance with convention, R" denotes n-dimensional space over real numbers and
Z is an n-tuple, (z1,...,zy), denoting a point (column vector) in R™. Sets of points in
R™ are usually denoted by the letter S, but in order that they be easily distinguishable
from other sets, a polyhedron is denoted by a letter P. Similarly, a polyhedral cone is
denoted by a letter C. Since polyhedra (cones or otherwise) are viewed as sets of points,
P € R" is represented by {Z € R" | ¢1...c¢n}, where the ¢;s are linear inequalities.
However, for brevity, the representation of P may be written {ci,...,cn}, where, in
accordance with convention, the implicit conjunction of the constraints represented by
the linear inequalities is denoted by a comma rather than A. Also for brevity, a pair of
opposing linear inequalities may be represented as an equality, for example, {z = y}
instead of {z < y, y < z}; and, in diagrams, if the polyhedron is a point it will be
labelled as an n-tuple rather than a set of inequalities. It should be noted that set
operations on polyhedra are operations on sets of points not operations on the sets of
inequalities used to represent them. Should it be necessary to consider operations on
the inequalities in the representation, it will be made clear in the text or by additional
notation that will be defined in advance.

The following definitions serve to define the context for the polyhedral domains.

Definition 4.1.1 Let z, ' € R™ then the inner product of two vectors, z and ' is
denoted: (z, ') = X" z;z;. .

Definition 4.1.2 Positive scalar multiplication of a set of points, S C R®, A > 0 is
defined: \S ={A\z |z € S}. .

23

CHAPTER 4. ABSTRACT DOMAINS 24

Definition 4.1.3 Let S C R”, then S is affine iff VZ, g€ S.VA € R.[(1 = N)Z + Ay €
S]. .

Definition 4.1.4 The subspaces of R" are the affine sets which contain the origin. =

Definition 4.1.5 Let S C R™, then the affine hull of S, denoted aff S is the smallest
affine set containing S. .

Definition 4.1.6 A hyperplane is an affine set of dimension (n — 1) in R”. -

Example 4.1.1 (Examples of affine sets) Consider some of the affine spaces of R?,
defined over X = {z,y}.

affine set subspace of R? | hyperplane of R?
{{z, y) | * =3,y = 2} point | no no
{<x, y) | £ =0,y = 0} point | yes no
{{z,y) |z =1} line | no yes
{{z, y) |y =3} line | no yes
{(z,y) |z =y} line | yes yes
Y =1 z=
4

o
<
I
w

2 - (3,2)
1
(0,0) z
1 2 3 4

Affine sets in R?

Definition 4.1.7 A sum: A\MZ1 + ... + M\Ty is a conver combination of Ty...Zy iff
VA . 0<)\ A E;c:l/\i =1. .

Definition 4.1.8 Let S C R", then S is a convez set iff it contains all the convex
combinations of its elements. .

Intuitively, in any set of points, if all the points in a line joining any two points in the
set are within the set itself, then the set is convex.

Definition 4.1.9 Let S C R", then the convez hull of S, denoted conv(S), is the
intersection of all the convex sets that contain S, that is, conv(S) =N{S' e R* | S C
S’, S’ is a convex set} .

CHAPTER 4. ABSTRACT DOMAINS 25

cN_ U f

Convex Non-convex Convex hull

Figure 6: Convexity

Example 4.1.2 Figure 6 illustrates convexity and the convex hull, a,b,e,f,c of two
convex sets, the triangles a,b,c and d,e,f. .

Given any arbitrary collection of convex sets in R™, there is a unique largest convex
set included in all of those sets, their intersection, and a unique smallest set containing
all of those sets, their convex hull. In other words, the collection of all convex sets in
R™ is a complete lattice under the natural partial ordering corresponding to inclusion.

Definition 4.1.10 The open ball, with centre T and radius § € R is denoted B(Z,d) =
{g € R* | d(Z,7) < 6}, where § > 0 and d(Z,§) = (T — 7, % — 7)'/? returns the distance
between two points in R”. .

Definition 4.1.11 Let S C R™ and z € S, then z is an interior point of S iff 4§ > 0
such that B(Z,0) C S. The set S is open iff for all Z € S, T is an interior point of S =

Definition 4.1.12 A set S is closed iff its complement, ~ S = R"/S is open. The
closure of a set S is the intersection of all of the closed sets containing S and is denoted

cl(S). .

Definition 4.1.13 Let £ € R®, i € R" such that i # 0 and € R, then a closed
half-space in R™ is a set of points:

{71 (& @) < n} _
Definition 4.1.14 A polyhedron is a set of points in R™ which can be expressed as the

intersection of a finite collection of closed half-spaces, that is, as the solution set of some
finite system of linear inequalities of the form

Thus a closed half-space is a set of points that satisfy a non-strict linear inequality and
a polyhedron is a set of points that satisfy the conjunction of a set of non-strict linear
inequalities. For example, P = {1 <y, y < z,z < 3} represents a triangle in R2, as in
Figure 7.1. The preceding definition means that polyhedra are both convex and closed
and Poly™ denotes the set of polyhedra in R™.

Since the convex hull of two or more polyhedra may not be closed, the join operator is
defined as the closure of the convex hull. The convex hull of the union of a bounded space

CHAPTER 4. ABSTRACT DOMAINS 26

He
—_
IN
<
Y
—~
o
—
~
—_

A
x x
1 2 4 0 1 2 3 4
1. Triangle ABC in R? 2. Convex hull of {x =0,y =1} and {0 < z,z < y,

y <z} in R? is {0<y,z<y,y<z+1}U{(0,1)}

Figure 7: Triangle and Convex Hull example in R?

and an unbounded space will not be closed, for example, in Figure 7.2, the “bound”
y < z + 1 is not closed.

Proposition 4.1.1 (Poly",C,U,N) is a lattice under the natural partial ordering of
set inclusion. The top element is R", the bottom element is the empty set, the closure
of the convex hull is the join, denoted U, and the meet is intersection.

Proof It is sufficient to show that the closure of the convex hull is the join for polyhedra.
Let P; € Poly™. Since all P; are convex, by definition, conv(PU...UP,) is the smallest
convex set containing all of the P;s. There are two cases to consider:

o If conv(PyU...UPR,) is closed, then conv(P,U...U P,) € Poly™.

o If conv(PLU...U P,) is not closed then, by the definition of closure and [Roc70]
[Theorem 19.6], the smallest closed polyhedral convex set containing conv(P; U
...UP,) is cl(conv(PLU...UP,)). Since cl(conv(PyU...U P,)) is polyhedral
cl(conv(PLU...UP,)) € Poly".

By the definition of closure, if a convex set S is closed then S = cl .S, therefore in general
the smallest polyhedron containing an arbitrary collection Pi,..., P, of polyhedra is
cl(conv(Py U...UP,)). Hence the closure of the convex hull is the join for Poly". =

Definition 4.1.15 A subset S of R" is called a cone iff it is closed under positive scalar
multiplication. -

Definition 4.1.16 A polyhedral cone is a set of points in R™ that can be expressed as
the intersection of a finite system of closed half-spaces

{z | (z, ;) <0} iel,...,m.

CHAPTER 4. ABSTRACT DOMAINS 27

This means that a cone is polyhedral iff it can be expressed as the intersection of a finite
set of closed half spaces whose boundary hyperplanes pass through the origin.

Example 4.1.3 (Examples of Polyhedral Cones) In the table that follows the rep-
resentation of each cone is a set of implicitly conjoined linear inequalities:

polyhedral cones in R? | representation

non-negative orthant | {0 < z,0 <y}

origin {0<z,2<0,0<y,y <0}
Ch {0< 2,2 <y}

& {0 <y,3y <2z, v < 4y}

Note that both C; and C5 are subsets of the non-negative orthant in R2.

y a’;:y

4

3y =2z
3 C1
2

Co =4y

1

xXr
0 1 2 3 4

Polyhedral cones C; and C5 in R?

The preceding definition means that polyhedral cones are cones that are closed, convex
and include the origin. The set of all polyhedral cones defined over a set of n variables
X, is denoted Cone™, and therefore, Cone™ C Poly™. The following definition is required
for Proposition 4.1.2 that demonstrates that Cone™ is a lattice.

Definition 4.1.17 Let S1, So be convex sets in R™, then their sum is defined:

S1+ So = {#1 + @2 | 1 € 51,22 € Sz}
Proposition 4.1.2 (Cone™, C,U,N) is a lattice.

Proof Since polyhedral cones, like all polyhedra, are ordered by set inclusion it is
sufficient to demonstrate that (i) the intersection of an arbitrary collection of polyhedral
cones is a polyhedral cone, and (ii) the convex hull of an arbitrary collection of polyhedral
cones is a polyhedral cone.

e (i) [Roc70][Theorem 2.5] states that the intersection of an arbitrary collection of
convex cones is a convex cone, and the intersection of an arbitrary collection of

CHAPTER 4. ABSTRACT DOMAINS 28

polyhedra is a polyhedron. Therefore the intersection of an arbitrary collection of
polyhedral cones is both a cone and polyhedral, that is, a polyhedral cone.

e (ii) Let C1, Cy € Cone™. [Roc70][Theorem 3.8] states that conv(Cy U C2) = C; +
C> and C1+C> is a convex cone. Further, [Roc70][Corollary 19.3.2] states that the
sum of two polyhedral convex sets is polyhedral. Hence, conv(C; U C2) = C1+Co
is a polyhedral cone. Since addition is both associative and commutative, the
convex hull of an arbitrary collection of polyhedral cones is a polyhedral cone. g

Note that the convex hull of two polyhedral cones is always polyhedral and therefore

always closed, so, it is with a slight abuse of notation that U denotes the join operator

for Cone™.

The convex cones that are considered in this work are confined to the non-negative

orthants of R™. These cones are, by definition, unbounded and it is useful to be precise

about the direction in which they are unbounded. The following definitions are required.

Definition 4.1.18 Let A C R” be an affine set and 77 € R”, then the translate of A by
7 is defined by the set: {Z +7 | Z € A}. An affine set A is parallel to an affine set A’ iff
they are translates of one another. .

The notion of a translate can now be extended from affine sets to half-lines.

Definition 4.1.19 Let § = (y1,.--,Yn), ¥ = (Y1,---,Y,) be points in R" and | =
A | AeRAXN>0LT ={\ | X € RAX > 0} be half-lines in R". [and !’ are
translates of one another iff aff [is parallel to affl’. .

Consider an unbounded convex set C' and a point Z € C. Intuition dictates that C' must
contain some entire half-line starting at x, otherwise C' cannot be unbounded. Each
closed half-line in R"™, then, should have a direction and two half-lines have the same
direction if and only if they are translates of one another. Hence, a direction of R” is
an equivalence class of the collection of all closed half-lines of R™ that are translates of
one another. This allows a formal definition of the directions of an unbounded convex
set. An unbounded convex set is said to recede in certain directions that are qualified
by the following Definition 4.1.20.

Definition 4.1.20 Let S be a non-empty convex set in R", then S recedes in the di-
rection of § where § # 0, iff Z + A\j € S for every A > 0 and Z € S. .

Definition 4.1.21 Let S, S’ be non-empty convex sets in R"™, such that S recedes in
the direction of 4. S’ recedes in the opposite direction to the direction that S recedes in
ifft vz € S".VA>0.[z+ \(—g) € 5] .

Informally the recession cone of a convex set can be viewed as the set of directions that
the convex set recedes in, augmented with the zero vector. The formal definition follows
and this completes the context definitions for the polyhedral domains.

Theorem 4.1.1 [Roc70][Theorem 8.1] Let S be a non-empty convex set in R" and
7 € R™. The recession cone of S, denoted 0TS, is a convex cone containing the origin,
defined:

0"S={g|S+7 < S}

CHAPTER 4. ABSTRACT DOMAINS 29

Example 4.1.4 The following examples of polyhedra and their recession cones are in

R2,
Polyhedron Recession Cone
P1={:U=1,y:2} 0+P1:{:13:0,y:0}
PQZ{:E:2} 0+P2:{£E:0}
Pa={x=y,2>0,y>0} | 0"P3s={z=y,2>0,y >0}

~ Ps W0t P
(1,2)e

x (0,0) x

4.2 Defy a Class of Boolean Function

Throughout this thesis Boolean functions are represented by propositional formulae.
The definitions in this section establish the distinguishing characteristics of Boolean
functions in Def x.

Definition 4.2.1 Let Bool = {false, true} and Bool™ denote the set of nm-tuples of
values in Bool; then a Boolean function is a mapping from Bool™ to Bool. Let the set
of Boolean functions over a set of variables, X, be Boolx. Let f € Boolx and |X| =n,
then f: Bool™ — Bool, where the ith element of the Boolean n-tuple is associated with
the i-th element of the set, X. .

This means that a Boolean function defined over n variables maps 2™ n-tuples of Boolean
values to a single Boolean value. An example follows.

Example 4.2.1 Let X = {z,y}, the Boolean function represented by the formula z Ay,
is described by the following set of mappings:

{(true, true) — true,
(true, false) — false,
(false, true) — false,
(false, false) — false} .

An n-tuple that is mapped by a function to true is a model for that function. By defining
a mapping, truevar, from n-tuples of Boolean values to the powerset of X, the mapping
from a function to its set of models in terms of the variables in its representation is
clarified.

CHAPTER 4. ABSTRACT DOMAINS 30

Definition 4.2.2 truevar: Bool™ — P(X)
Let (b1,...,bn) € Bool", and X = {z1,...,%,}, then:

truevar((b1,...,bn)) = {x; € X | bj = true}

Definition 4.2.3 modelx: Boolx — P(P(X)) is defined:

modelx (f) = {truevar(b) | f(b) = true}

An example follows.

Example 4.2.2 Let X = {z,y}, the function represented by the formula z V y, returns
the following mappings:

{(true, true) — true

(true, false) — true,

(false, true) — true,

(false, false) — false}

then truevar((true, true)) = {z, y}
truevar((true, false)) = {x}
truevar((false, true)) = {y}

hence modelx(zVy) = {{z,y}, {z}, {y}} -
Since Boolean functions are distinguished by their sets of models, there is a natural

partial ordering corresponding to set inclusion.

Definition 4.2.4 Let fi, fo € Boolx, then fi entails f2, denoted fi = fa, iff modelx (f1)
C model x(f2). .

Definition 4.2.5 A function f € Boolx is positive iff X € modelx(f). The set of
positive Boolean functions over X is denoted Posy. .

Definition 4.2.6 A Boolean function f is definiteiff f € Posx and VM, M' € modelx (f)
(M N M) € modelx(f)]. The set of functions in Posx that are definite is denoted

DefX.]

By Definition 4.2.6, a function in Def y has a set of models that are closed under
intersection, however, a Boolean function may have a set of models that is closed under
intersection but not be in Posx, as in Example 4.2.3.

Example 4.2.3 Let X = {z,y} and f = x A —y. Therefore, modelx(f) = {{z}}
which is closed under intersection, but X ¢ modelx(f) and therefore f ¢ Posx, and
consequently f & Def x. .

Definition 4.2.7 Let + S = {M'| M € S A M C M' C X}. A function f € Boolx
is said to be monotonic iff T modelx(f) = modelx(f). The set of monotonic Boolean
functions over X is denoted Monx. .

Both (Def x, =, V, A) and (Posx, |=, V, A,) are complete lattices, where the join in Def y
is denoted by V, and f1V fo = A{f € Defx | (f1 E f) N (f2 E f)} [AMSS98]. The
meet in both cases is classical conjunction, however, whilst the join in Posx is classical
disjunction this is not the case in Def x, as shown in Example 4.2.4.

CHAPTER 4. ABSTRACT DOMAINS 31

Example 4.2.4 Let X = {z,y}, then since X € modelx(z < y) = {¢,{z},{z,y}},
and {¢,{z},{z,y}}, is closed under intersection it follows that (z <+ y) € Defy.
However, (z Vy) € Posx but {z},{y} € modelx(x V y) and {z} N {y} = ¢ and
¢ & modelx (xz V y) therefore (z Vy) & Def x. .

The join in Def x is computed from formulae in Orthogonal Reduced Monotonic Body
Form, as follows [AMSS98]:

Definition 4.2.8 Let f € Defx and f = A\]_; z; < M; where M; € Monx \ {z;}, and
VSCX. fANSEz < ANSE M;Va;, then f is in Orthogonal Reduced Monotonic
Body Form. Further, let f' = A ; z; < M] also be in Def x and in ORMBF. Then,
f\'/f’z/\?zl(xi(— (Mz/\MZl)) =

The orthogonal form of RMBF ensures that transitive dependencies are explicit. An
example that illustrates the computation of the join for Defyx and how it differs from
classical disjunction, follows:

Example 4.2.5 Let X = {z,y,z} and f; € Defy, where fi = 2 A (y < 2z) and
fo = yA(z < z) then in ORMBF, f; = (z < true) A (y < 2) A (z «+ y) and
fo=(z + 2) A (y < true) A (z < z). Hence, f1Vfo =z <+ (true A z) ANy < (2 A true)
ANz < (z ANy) = (x Ay) < z. Note that modelx ((z A y) <> 2z) = {¢,{z},{y},{z, v, 2}}
whereas the set of models for the outcome of classical disjunction is modelx(z A (y <>

z) VyA(z < z2) ={{y} {z,y,2}}. .

Definition 4.2.9 Let fi, fo € Boolx, then f; is logically equivalent to f2, denoted
hi=f it iEfo N2 E .

Chapter 5

Argument Size Analysis with

CLP(R)

5.1 Introduction

Inter-argument size relationships have a variety of uses. Some examples follow: In IBM
Prolog Horspool [Hor90] proposed the use of argument size relationships for improv-
ing the memory management of cdr-coded lists by representing them as arrays. In
Reform Prolog [Mil90], in order to avoid overheads incurred by run-time unfolding, dur-
ing compilation the for loop is used to implement recursion; in this context argument
relationships can allow structurally recursive predicates to be recognised and the com-
piler can deduce the recursion bound by inspection of the input arguments. Argument
relationships can also be employed in planning the evaluation of queries in deductive
databases [Ull85] and in optimising database queries [KS93].

Further, argument size relations can play a significant role in termination analysis.
The aim of termination analysis, is to answer the question: Is this predicate guaranteed
to terminate for some class of queries? and if so to identify the class of queries. Termi-
nation analysis is useful in program verification, but also on other counts. For example,
as a de-bugging aid, if a programmer believes that a program will always terminate and
an analysis fails to infer just that, then the program (and perhaps the analyser) require
scrutiny [SSS97]. Such an analysis is also useful to an optimising compiler that might
transform a program, as it is essential that the transform is a program that terminates
for the same class of queries as the original program. The part argument size analysis
can play in deducing termination properties lies in the association of some notion of size
with a predicate call. Then if it is known that terms are rigid (their size is constant over
all possible substitutions) and if certain inter-argument size relations can be proven,
termination is guaranteed. The underlying principle is that a notion of term size, for-
malised by Pliimer [Plu95], is established and if the size of an input term is strictly
decreasing from call to recursive call, then the derivation will necessarily be finite, as
size is a strictly non-negative attribute. Van Gelder and Ullman first proposed the use
of constraints amongst argument sizes to model the necessary conditions for termination
in [UvG88]. For structurally recursive predicates like append/3, as the input argument
of the recursive body call is a subterm of the input argument in the initial call queries
will terminate. However, for predicates that have recursive behaviour, but whose input
arguments to their recursive body calls are not strict subterms of those in the initial

32

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 33

call, the situation is more complex. Argument size relationships at the auxiliary pred-
icate level are required to infer the argument size relationships of the predicate at the
uppermost level. For example, for quicksort/2, defined in the table of analyses on page
54, this means inferring that the recursive body call to quicksort/2 is smaller than
that of the initial call, by determining the argument size relationships for the auxiliary
predicate partition/4. The work presented here, based on [BK96], is an argument size
analysis able to infer useful relationships for predicates like quicksort/2. This work
is an abstract interpretation of logic programs. To keep the implementation simple the
analyses here are primarily concerned with lists which are ubiquitous in recursive logic
programs, however, the techniques involved can be extended to other size metrics, for
example terms [CT97] and level mappings [MK97].

An abstract program is devised and argument size information is captured in the
form of sets of inequalities that can be viewed as polyhedra. The approach to termina-
tion analysis that is employed in this work is attractive on two counts. By employing
a relaxation technique used in disjunctive constraint programming [DB93], the solver
and projection machinery of CLP(R) and the clp(Q,R) libraries of SICStus are able
to compute the convex hull as the solution to a system of linear inequalities. This
approach is advantageous as it has not been necessary to manipulate matrices as in
[Kar76, van91, VD92]; frames as in [CH78, Hal79]; or implement the Chernikova con-
version mechanism as in [Wil93]. Further, results are comparable or better than those
achieved by the more complex widening in [CC92c|, without loss of precision.

Polyhedral approximations of the kind considered here are also employed in the
analysis of constraint logic programs to approximate numeric constraints in [SG97].
The pre-interpretation domain is R® where a subset of R" is expressed in terms of
both frame (vertices and rays) and a linear constraint system of both equalities and
inequalities. This technique is employed further, [SG98] by using linear constraints to
augment the regular approximation analysis of conventional logic programs (as opposed
to CLP).

This chapter is structured as follows: Section 5.2 presents the analysis method with a
worked example. Section 5.3 covers the theory behind the abstraction process, formalises
the association between the abstract and concrete domains and introduces notation.
Section 5.4 considers the impact of predicate structure on widening tactics. Sections
5.5 and 5.6 cover the computation of the convex hull and outline the implementation.
Section 5.7 includes a table and summaries of some interesting analyses. The chapter
concludes with a summary and indications for future work in Section 5.8.

5.2 Worked Example

In Prolog program text environments variables are represented by single upper case
letters or strings that begin with uppercase letters, predicate names begin with lower
case letters and the calligraphic letter C stands for a set of linear constraints. Consider
an argument size analysis for the predicate append, here denoted append/3. Analysis
is of an abstract program, denoted appendA/ 3. The arguments of each predicate in
the abstract program represent the sizes with respect to list length of the arguments of
the corresponding predicate in the original program. The original program is hereafter
referred to as the concrete program. Relationships that hold between arguments of
append“/3 are interpreted as inter-argument size relationships for append/3, in the

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 34

original program.

append([], S, S). append” (0, S, S).
append([RIRs], S, [RIT]) :- append”(RRs, S, RT) :-
append(Rs, S, T). RRs = 1 + Rs,
RT =1+T,

append“(Rs, S, T).

The analysis terminates with a solution to a fixpoint equation that characterises the
inter-argument relationships. The i** iterate is denoted by I; and Iy is the empty set of
points. Each iteration in the fixpoint calculation takes an I; as input and generates an
I;1; as output. To compute I;11, terms in each body atom of each clause are unified with
terms in the same atoms in I;. Since Iy is empty, I; contains only those relationships
explicit in the unit clause of append”/3, that is:

I ={({rst)eR|r=0,s =t}

I; contains just a single set of inequalities, but the number of sets of inequalities for a
predicate can grow at each iteration. Therefore, to keep the size of each iterate small
and manageable, the sets of inequalities are approximated. Each set of inequalities
characterises a set of points, in this example, a space in R?. Instead of maintaining
several sets of inequalities for each predicate, the union of the spaces they represent
is approximated by the closure of their convex hull. The closure of the convex hull
under union of sets of points is the smallest closed convex set of points that contains
the union. As the closure of the convex hull of an arbitrary number of polyhedral sets
is also polyhedral, it can be represented by a single set of inequalities so that only one
such set need be maintained for each predicate. Hence I, is computed as follows:

L = {(rnst)eR|r=0,s=t}U

{{r;s,t) eER3 |r=1+71"s=5t=1+t7"=0,s =t}
= {(rst)eR|r=0,s=t}U

{{r,s,t) eR3 |r=1,s=t— 1}
= {{rns,t)eR3|0<rr<1t=r+s}

Although the closure of the convex hull is an approximation, useful relationships are
preserved; for example, the inter-argument size relationship ¢t = r + s, that is common
to both clauses of the predicate.

Since the analysis domain is infinite the technique known as widening is employed
to contain the growth of the set for each predicate and enforce convergence to those
inequalities that are invariant in all iterations. In order to incorporate the widening
process into the iteration sequence, the third iterate is named I, as follows:

I' = {{rst)eR|r=0,s=t}U

(rys,ty eER3 |[r =141 s=st=1+t,0<r 7" <1t/ =1 +5}
<Tst>ER3|r—Os—t}U

(rys,t) eR3 |1 <r,r <2,t =7+ s}

(r,s,t) R |0 <r,r<2,t=r1+s}

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 35

Then the widening is introduced so that:
L=LvI={rst)cR|0<rt=r+s}

Only those inequalities present in both I and I3’, are present in I3. The last two steps
are repeated by naming the fourth iterate I,/ = {(r,s,t) € R3 | 0 < r,r < 3,t =r + s},
and computing Iy = I3 57 I/ demonstrating that:

Ii={(r,s,t) eR* |0 <t =7+ 5}

and the iteration sequence has converged.

To recap, for each predicate, each iteration generates a space described by the in-
tersection of a set of inequalities and successive iterations return a space that both
includes and extends the previous space. The widening defined here retains only those
inequalities that are invariant from one iteration to the next. Spatially, these inequali-
ties characterise boundaries common to each iterate. The inequalities that are discarded
are those that represent the unconstrained growth in size of an argument that is a list.
Once widening commences termination of the analysis will follow, since at each iteration
the finite set of inequalities can only decrease or remain the same.

5.3 Semantics

5.3.1 Concrete Domain

Let Vars be a denumerable set of variables, ¥ a set of function symbols and constant
symbols and II a set of predicate symbols. The set of finite trees over Vars and X is
THery, and the set of finite trees over just X is Dge. Hence, a program P is a finite
set of clauses of the form: p(t) < pi(t1),..., pn(tn) where p, p; € I1, ¢, ¢; € T},,- The
interpretation base for P is Byen, = {p(t) | p € IIAt € DY, }. The variables in a
syntactic object, o, are denoted var(o). 3{z1,...,z,}.h and IX h are abbreviations for
dz1...3zy, . h and I(var(h) \ X).h where h is an Herbrand constraint.

5.3.2 Abstract Domain

Let Lin be the system of sets of linear constraints over R and the set of constraint
predicates, {<, =}. Lin is ordered by entailment, denoted =, and VC; € Lin.C; =Cy <
C1 | C3 AC2 = (. Since many different sets of linear equalities are equivalent in this way
Lin is quotiented by equivalence to give Lin/= () which is a poset. Lin is closed under
variable elimination and I{z1,...,z,}.C and 3X .C are abbreviations for 3z; ... 3z, .C
and J(var(C) \ X).C where C € Lin. Since a polyhedron is defined as the set of points
included in the intersection of a set of closed half-spaces and a closed half-space can
be represented by a non-strict linear inequality, there is a total mapping from Lin™ to
polyhedra in R™, namely, Poly™. Hence, given a totally ordered finite set of variables
X = {z1,...zn} when [C]= € Lin", then [C]= = {&’ € R* | (A, =i = z}) = C}, and
the meet and join for polyhedra, set intersection and the closure of the convex hull,
respectively, also serve as the meet and join for Lin™.

Let Vars be a denumerable set of variables, and Lin™ a set of linear constraints over a
totally ordered set of variables X C Vars.|X| = n. Hence, P is a finite set of clauses
of the form: p(t) < C, pi(t1),..., pn(tn) where p, p; € II,C € Lin™, t, ¢ € T},

erb*

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 36

The semantics of a program in the abstract domain can be expressed in s-style for
constraint logic programs [BGLM91|. The interpretation base Br;, for a program is the
set of constrained atoms of the form p(Z) <— C quotiented by equivalence. Equivalence,
~, is defined:

p(Z) + C~p(@) + C + Fvar(z).C =3var(z).[C' A (T =7)]

where C, C' are sets of inequalities. The preorder on inequalities lifts to a preorder on
interpretations, P(BLin)/~ (C) where:

ICIiff Vp(z) « Cl. € I.3p(z) « . eI .C=C

The preorder also defines an equivalence relation: I ~ I' iff I C I' A I' € I which, in
turn, defines the poset P(Bp,)/~ (C) where [I]x C [I']~ iff I T I'. Note that, although
an interpretation I is a set of constrained atoms of the form p(Z) < C, where C is a set
of implicitly conjoined inequalities, the ordering is defined semantically with respect to
the constraints over the arguments in each predicate. This means that for any set of
constraints C, C'.C |= C' it is also true that in terms of the polyhedra P, P’ that C and
C' represent, P C P’.

5.3.3 Program Abstraction

The formal mapping from terms to the natural numbers that returns the size of a term
is known as a norm. Norms are qualified by type and a size metric that is applied to
ground terms [Gia93]:

Definition 5.3.1 Let 7' be a term system, then a norm denoted |.|¢, is a function:
||C : T — N]

In this case the measure that is required is that of list length and this is defined:

Definition 5.3.2 A norm denoted |.|je,, that measures the length of a list, is a partial
mapping, |.|en : T — N, defined:

|tlen = O if t is a variable
|tlen = 0 ift =]
tlen = 1+ |Tail|jen if t = [Head|Tail]

The list length norm is lifted to non-ground terms to enable the abstraction of programs
and interpretations that necessarily reference non-ground terms. Hence, the co-domain
is not simply the non-negative integers, it comprises expressions constructed from non-
negative integers, variables which can have non-negative integer values and the operator
‘4+’. Such a norm is effectively a symbolic norm.

Definition 5.3.3 Let Vars and Vars’ each be a distinct denumerable set of variables.
Let T be a term system described over Vars, and N is the set of finite expressions
constructed from NU{+}U Vars'. A norm denoted |.|j,, that measures the length of a

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 37

list, is a partial mapping, |.|je, : T — N, defined:

|tlien = t if ¢ is a variable
|tlen = 0 if t =]
tlen = 1+ |Tail|jen if t = [Head|Tail]

In order to formally define program abstraction, it is necessary to ensure that con-
straints over like terms are mapped to constraints over like variables in the numerical
domain. This is achieved using the mapping sol, which is based on the solved form
algorithm of [LMMS88]. Let X denote a finite set of variables. An equation is of the
form s =t where both s and t are terms and Fqn denotes a set of equations. Similarly,
let Eqnr;, denote the set of linear equations of the form = = e where e € N..

Definition 5.3.4 The mapping sol : P(Egn) — P(Egn) is defined by: sol(E) =
{E' | E ~* E'} where * is transitive closure and the relation, Eqn ~» FEgn is the
least binary relation defined by:

e {r=t}UE~{z=s}UE ift=sAs¢g X
e {r=t}UE~{z=y}UE ift=yAyeX
where X C Vars. .

The mapping ag., is defined to allow the deduction of constraints based on the list-
length norm. This mapping is fundamental to program abstraction and although Lin is
defined over R as |.|jey, is defined over N, the abstraction implicitly includes non-negative
constraints on all variables; these constraints are necessary as the analysis is concerned
with size which is non-negative.

Definition 5.3.5 Let E € P(Eqgn), then a;, : P(Eqn) — P(Eqnri,) is defined by:

Aien(E) = {x = |t|ien) | x =t € s0l(E)}

Definition 5.3.6 The abstraction of a program P, to its abstract counterpart, P4, is
defined:

w € P,

PA = p(Z0) < ien(E), pr(E1), - Do (En) Ziifﬁllﬁ“’ e (),

U o&; Nvar(w) = ¢

Example 5.3.1 Consider append/3:

wy append(],Y,Y).
w2 append([X|Xs],Y, [X|ZD C T
append(Xs, Y, Z).

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R)

38

and the application of both sol and a;.,, to each clause as prescribed by the abstraction:

w1
sol({zo; = toi}) | ten(sol({zoi = toi}))
{zor =tor, tor =1} ~ {zo1 = [I} {zor = [[Jlien} ~ {zo1 = 0}
{zo2 = toz, toz =y} ~ {zoz = y} {zo2 = |Ylien } ~ {zo2 = y}
{mo3 = to3, toz =y} ~ {zo3 =y} {mo3 = |ylien} ~ {3 =y}
w2
sol({zoi = toi}) | tien(sol({zoi = toi}))
{zor =tor, tor = [zlws]} ~ {zor = [z|as]} | {zor = [[zls]lien} ~ {wor =1+ |wslien}
~ {zgy =1+ xs}
{zo2 = to2, toz =y} ~ {wo2 = y} {zo2 = |Ylien } ~ {2 = y}
{zos =tos, tos=[ylz]} ~ {wos =[ylzl} | {zos = I[yl2llien} ~ {203 = 1+ |2]ien’}t
~ {xoz =14z}
SOl({Qﬁli = tli}) alen(sol({xli = tli}))
{z11 =t ti1 =zs} ~ {x11 = xs} {z11 = |S|ien} ~ {x11 = xs}
{12 =tz tiz=1y} ~ {212 = y} {z12 = ylien} ~ {zi2 =y}
{z13 =t13 tiz3 =2} ~ {x13 = 2} {z13 = |2|ien} ~ {z13 = 2}

Hence, an abstract version of append/3 is derived; the far right column is a more concise
expression of the abstract program, included for clarity.

w; append”(Xo1, Xo2, Xo3).-

w; append”(0,Y,Y).

PUNN
Xo1 =0,
Xo2 =Y,
Xos = Y.
wy append”(Xo1,Xo2,%X03) : — | ~ | wo append?(1+Xs,Y,1+2Z): —
Xo1 = 1 + Xs, append“(Xs, Y, Z).
Xo2 =Y,
Xos =147,
Xll = XS,
X120 =Y,
X13 = Zv
appendA(Xn,X12,X13),

5.3.4 Analysis Framework - a Galois Connection

The notion of abstraction is extended to interpretations to qualify the relationship
between an abstract and a concrete interpretation:

Definition 5.3.7 Abstraction o : P(Bpgery) — P(BLin)/~ is defined:

a(J) ={[p(z) « a(E)]= | p(t) € J A E = sol(z =1)}

The definition of « allows a reciprocal definition of ~:

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 39

Definition 5.3.8 Concretisation v : P(BpLin)/~ — P(BHer) is defined:

V(U]x) =U{J [a(J) C I}

Lemma 5.3.1 («, v) is a Galois Connection.

Proof Since y([I]x) = U{J | a(J) C I} it follows that:
a(J) CE]~ < J CSv([]~)

Hence, (a, 7y) is a Galois Connection. [

5.3.5 Concrete Semantics

The fixpoint semantics of P is defined as the least fixpoint of the immediate consequences
operator T%, that is, F[P] = lfp(T).

Definition 5.3.9 7% : P(Bpers) — P(BHers) is defined:

we P, w=pd) ¢« pi(@). . .palF).
T8(1) = { @) | pilE) € 1,
(t =) = TFoar(D) . (N (1 =)

5.3.6 Abstract Semantics

Let PC denote a (constraint) logic program, then the immediate consequences operator,
for T'pc, is defined:

Definition 5.3.10 Tpc : P(BpLin)/~ — P(BLin)/~ is defined as Tpc([I]x) = [J]~
where:

w e Pca w = pO(E) — Clapl(:fl)a s apn(:fn)a
[wi], € I, w; = pi(F:) + C,

J =X [pi(Z) « C] | Vi.var(w)Nvar(w;) = ¢,
Vi # j . var(w;) Nvar(w;) = ¢,
C=Fvar(z).[C' AN (Zi =i A C)

In fact, Tpc returns one or more constrained atoms for each predicate p;. Each con-
strained atom is of the form [p;(Z) < C,| , where each C, is a set of implicitly conjoined
linear inequalities. Recall from the previous Section 5.2 that for each predicate, the join
operator is applied over all C, so that the output from each iteration is a single set of
constraints for each predicate.

In the same way as the preorder on inequalities lifts to interpretations, so the join on
inequalities is lifted to interpretations, | | : P(Bri)/~— BrLin/~:

Unez{[Pi(f) — Cpl~} = [pi(%) = UpezCyl~

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 40

Let P4 be an abstract program, then the immediate consequences operator for the
abstract domain is defined:

Definition 5.3.11 Tpa : P(BpLin)/~ — P(BLin)/~ is defined as Tpa([I]x) = [J]~
where:

w € PA, w=py(Z) « C',p1(Z1),...,0n(En),
[wi].. €I, wi=pi(¥) <+ Ci,
J = Uizt { Unezd[pi(@) < Col}| Vi var(w) Nvar(w;) = ¢,
Vi # j . var(w;) Nvar(w;) = ¢,
Cp = §var(:1_c) JCTA /\?:1(3_%' =g N C)]

5.3.7 Widening

To recap, each iteration of the Tra operator returns a set of linear inequalities for each
predicate that defines a polyhedron in R", and since T'p.a is continuous, for each predicate
the sequence of generated polyhedra will be increasing. When there are alternative
clauses for a predicate the iteration sequence returns the closure of the convex hull of
the alternative polyhedra. Approximating in this way helps to reduce the number of
individual inequalities for each predicate in an interpretation. However, Poly™ is infinite
and is not chain complete!, so the sequence of iterations may not converge. In order
to ensure that the analysis converges, a technique known as widening is used to force
convergence to a post fixpoint. The following proposition is adapted from [CC92c].

Proposition 5.3.1 Let (L, C) be a poset, F' : L — L be continuous, L € L be such
that L C F(L) and v € L x L — L be a widening, then the upward iteration sequence
with widening, x; where ¢,k € N, is defined:

rg= L
Ti+1 = &4 if F(a:l) E xI;
ziy1 = F(x;) elseif 1 < k

i1 = x; vV F(z;) elseifi >k
will converge and its limit Z is such that ifp(F) C Z and F(2) C Z.]

The tenet of a widening is that it trades precision for finiteness. The widening presented
here, an adaption of the widening of [CHT78| lifted to interpretations, retains those
inequalities that are invariant from one iteration to the next. By definition, Tpa is
continuous on the poset P(BLin)/~ (C) so that [I;]x C [Ij+1]~. Both [Ii]~ and [Liy1]~
contain at most one set of inequalities for each predicate symbol, and the widening
lifts naturally from the predicate level to that of interpretations. In each iteration
the set of inequalities expressing variable constraints for each predicate describes
a polyhedron. For each predicate the polyhedron described in [I;]~ will be a subset
or equal to the polyhedron described in [/;11]~. Consider then, p(z) < C; € [;]~ and

p(:f) —Ciy1 € [Ii+1]z- It follows that C;): Ci+1. Since C;): Civ1 < VB €Cita. [CZ): ,3],

!The increasing chain of polyhedra, Pi,...P;,... € R? each circumscribed by a circle, S, does not
converge to a unique polyhedron.

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 41

in order to identify inequalities that are invariant from one iteration to the next, it is
necessary to retain only those inequalities in C; that are entailed by C;1.

Definition 5.3.12 7 : P(Brin)/~ XP(BLin)/~— P(BLin)/~ is defined:
Lil~ V [Lit1]~ = {[p(@) + Ci v Cisa]~ | [p(Z) — Cil~ € Ii A [p(T) = Cita]~ € Lita)]
where C; \V4 Ci+1 = {,3 e | Ci+1): ﬂ} n

Since interpretations are ordered by entailment over the constraints on each atom it
follows that C; |= Ci+1. In terms of the polyhedra P;, P;;; that C; and C;;1 represent,
this means that P; C P;;1. (Therefore, spatially, if a constraint 5 € C; is entailed by
C;+1 then P;y; is a subset or equal to the half-space represented by 8, and the boundary
of B acts as a bound on both P; and P;11.) Both sets, C; and C;11 are maintained as lists
of inequalities in the ground representation. A fixpoint is reached as the widening does
not allow the list representing C; <7 C;+1 to grow by introducing any new inequalities?.
Hence, the iteration sequence with widening where i,k € N is as follows:

Iy= ¢
Liygn= I; if Tp,(L;) C I;
IiJrl = TPA(Iz) else if ¢ S k

Liyi= Ly TPA(Ii) elseif i > k

The widening is applied after a bounded number of iterations, k£, and in order to select a
bound that will maximise precision, the structure of the predicates in the program must
be considered. In the following section three different types of structure are identified.

5.4 Widening Criteria

The following Sections 5.4.1, 5.4.2 and 5.4.3 show how different classes of predicate
dictate different optimal choices for a bound on the number of iterations. In practice of
course, the cost of classifying the predicate and identifying a strategy has to be weighed
against the cost incurred by unnecessary iterations when an upper approximation of the
optimal choice of bound is chosen.

5.4.1 Widening with Uniform Increments

Consider the append”/3 program of Section 5.2 listed below.

append?([1, S, S). append(0, S, S).
append([R|Rs], S, [RIT]) :- append*(1 + Rs, S, 1 + T) :-
append(Rs, S, T). append“(Rs, S, T).

Each iteration of the analysis generates an atom append” (r,s,t) < C where the variables
r and t are both incremented by 1 relative to the previous iterate. That is, the it?
iteration of the analysis, [I;]~, takes the form I; = {[append?(z,y,2) + C;].} where

2If the solver guarantees the return of inequalities with the same meaning in the same syntactic form
then a naive widening, the intersection of the inequalities in C; and C;41 is sufficient.

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 42

each C; represents a polyhedron P; € R3. For example, with reference to Section 5.2,
the iterations I; and I, represent the polyhedra P; and P, respectively:

P ={(r,s,t)|r=0,s=t}, Po={(rst)|0<rr<1lt=r+s}

Generally for append”/3, P,y; = PiU{(1 +r, s, 1+1t) | (r, s, t) € Pi} so that P,y
extends and includes that of P;. Each P;;; can be obtained from F; in the same way
since P;y; differs from P; by uniform increments in the first and third dimensions.
Although inter-argument relationships 0 < r and ¢ = r + s are entailed implicitly
by Pi, they are not explicit until P, and the ensuing P;. Widening can therefore be
invoked on the third iterate by imposing a bound of k£ = 2, without loss of significant
information. The invariant constraints are confirmed in the third iteration I3, where
Py = {(r,s,t)|0 < r,t = r 4+ s}. The increments are uniform in the first and third
dimensions because the order of terms and subterms in the recursive call is preserved.

Definition 5.4.1 Let p/n be a recursive predicate where in the recursive clause the
consequent is p(¢) and in the antecedent the recursive call is p(t’), then p/n is ordered
structurally recursive if 3t; € t'.3t; € t. ¢, is a subterm of ¢;. .

It is conjectured that for ordered structurally recursive predicates with a single recursive
clause all of the invariant constraints can be found within three iterations.

5.4.2 Widening within a Hierarchy

Consider the quicksort? program described in Section 5.7. The program consists of a.
hierarchy of several predicates, where the top level predicate quicksort“ has calls in the
body to other predicates, the auxiliaries: partition? and append”. Therefore, each I;
will consist of up to three constrained atoms of the form, [p(Z) < C]., but at most one
for each predicate symbol, p. However, I;;; can only include [quicksort”(z) < C].,
when I; includes both [partition?(Z) ¢+ C]. and [append?(Z) < C].. partition#
and append” are structurally recursive with uniform increment and therefore can be
widened with k& = 2.

In general, however, precision can be lost if a predicate is widened before the analysis of
its auxiliaries has stabilised. One method of coping with this is to reference the Strongly
Connected Components of the call graph of clause dependencies. By inspecting the
clauses of a program, the call graph and its Strongly Connected Components can be
computed. The SCCs of the quicksort# program, for example, are the clause sets:

{{append*/3/1}, {append“/3/2},
{partition”/4/1}, {partition”/4/2, partition*/4/3},
{quicksort*/2/1}, {quicksort“/2/2}}

where p/a/m abbreviates the m'* clause defining the predicate p of arity a.

By considering the SCCs in topological order with the deepest predicates first, the
fixpoint may be computed in the usual bottom-up way, see Figure 8. In this case
analysis begins with the base cases of the deepest predicates, progressing upwards to
derive fixpoints for partition? and append”, before moving on to quicksort”. A
complete analysis for quicksort# is given in the table.

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 43

Interpretation Step

I; = {[append?(z,y,2) < =0,y = 2]} base

I, = {[append?(z,y,2) + 0< 2 <1, 2=y + 2]} recurse
I3 = {[append?(z,y,2) < z=y + =z, 0 < z].} widen
Iy = {[append?(z,y,2) <z =y + =z, 0 < z].} stabilise
Is = Iy U {[partition?(w,z,y,2) < =0,y =0, 2 = 0]} base

Is = Iy U {[partition?(w,z,y,2) -z =2+y, 0<y < 1,y < z].} | recurse
I; = LU {[partition?(w,z,y,2) -z =2+y,y <z, 0 < y].} widen
Is = LU {[partition?(w,z,y,2) -z =2+y,y <z, 0 < y].} stabilise
Iy = Ig U {[quicksort?(z,y) =0,y = 0]} base

Ip = I3 U {[quicksortA(z,y) <y =2, 0 <z < 1]} recurse
Iy = Iy U {[quicksort?(z,y) <y =z, 0 < x].} widen
Iy = Ig U {[quicksort?(z,y) <y =z, 0 < x].} stabilise

The topological ordering minimises the size of the interpretations as the auxiliary pred-
icates are dealt with one by one rather than simultaneously and each SCC is widened
separately. Further, since a predicate will not be referenced until its auxiliaries have
been analysed, fewer computations will lead to failure.

Figure 8: Dependencies between SCCs of the quicksort” program

5.4.3 Widening with Non-uniform Increments

Under certain conditions all pertinent information may not be found in three iterations,
even when the SCCs are considered in the topological order described in the previ-
ous Section 5.4.1. Two classes of predicate have been identified that require a more
intelligent widening strategy. Consider the split“#/3 predicate:

split([1, [0, [1). split“(0, 0, 0).
split([X|Xs], [XI0s], Es):- splitA(1+Xs, 1+0s, Es):-
split(Xs, Es, 0s). splitA(Xs, Es, 0s).

Elements of the first list are placed alternately in the second and third lists. Associating
a polyhedron P; with each iteration I; the definition of split“/3 is such that, given
any P; in the sequence, P;y; and Pjyo are derived as follows:

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 44

R+1:PZ~U{(1+x,1+z,y>|(ac,y,z> GPi}a
Pi+2=PiU{<2+x,1—|—y,1+z>|<a:,y,z> EIDZ}

This means that split“t/3 has a bi-modal incrementation behaviour where a uniform
increment of 2, 1 and 1 in the first, second and third dimensions respectively, occurs in
every second iteration. Consequently, the invariant condition is not explicit until the
fourth iteration and cannot be confirmed until the fifth, so that a bound, k& = 4, is
required. An analysis for split“ is shown below where I; = {[split?(z,y, 2) + C;]<}.
The invariant constraints are in bold type.

Ci|z=0 y=0[2=0
C |z <1 0<z|z=0 y==x
C3|x=y+2z|0<y|x<2y|y<x y<1

Ci|x=y+2z2|0<y|x<2y|2y<x+1l|y<x|z<y+1
C5 |x=y+z|0<y |x<2y|2y<x+1|y<x

In this case the recursive call for split/3 does not preserve the ordering of terms and
subterms in the initial call. The widening as described in [CC92c] would converge after
three iterations having only deduced x = y + z.

To recap then, the ideal moment to apply the widening is when the iterations have
captured all of the invariant relationships. However, as shown above, detecting this
moment may present some difficulties and since widening prematurely can lead to a loss
of information, this implementation permitted the user to vary k. The choice of which
is the most propitious moment to widen will be tempered by the usual trade-off between
cost and accuracy.

5.5 The Computation of the Convex Hull

The convex hull of an arbitrary collection of polyhedra is defined:

Theorem 5.5.1 Let Cq,... C, be an arbitrary collection of non-empty convex sets in
R™. Then the convex hull of the union of the collection, C}, is defined:

Ch = U{ZP_ \Ci}

where the union is taken over all finite convex combinations, that is for all combinations
such that 0 < A\; <1 and ¥ ;\; = 1. [Roc70][Theorem 3.3] n

The convex hull of an arbitrary collection of polyhedra in R" is not always a polyhedron,
if there is an unbound polyhedron in the collection then the convex hull will not be
closed, as demonstrated by the following example:

Example 5.5.1 Consider the convex hull of the polyhedra P, = (0, 1) and P, = {0 <

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 45

(0,1) (0,1) 1

The convex hull, Po = conv(PLUP;) = {(0, 1)} U{0 <z, z <y, y < x+1} which is not
closed, despite the fact that both P; and P, are closed. Consider the point P’ = (1, 2)
on the line y = = + 1. There is no linear combination of P; = {(0, 1)} with any point
in P, = {(0, 0),...,(1, 1),...,(2, 2),...}, that is the point (1, 2). The smallest closed
convex space containing the convex hull will be cl(Po) = {0 < z,z <y, y <z + 1},
and this is a polyhedron. The closure of Pp requires y < x + 1 rather than y < z + 1.

5.5.1 The Closure of the Convex Hull

To define the closure of the convex hull of a collection of polyhedra some account must
be taken of the direction in which unbound polyhedra recede and this requires some
terms of reference at the individual variable level. When a polyhedron is described over
a set of variables Z, for each variable ,z; € Z, z; has a lower bound :Ezl»b, and an upper
bound z¥°. For example, let P = {z > 0,y < z, x < 7}, then = € [0,7] where [0, 7]
denotes the interval (in this case closed) between 0 and 7, so that % = 0 and z,;, = 7.
In this case y is constrained to the same interval and has the same lower and upper
bounds as . Recall the definition of a recession cone:

Theorem 5.5.2 Let P be a non-empty convex set in R”. The recession cone, 07C is a
convex cone containing the origin, that is:

0"C={y|C+y C C}
[TR70] [Theorem 8.1] n

The recession cone of a convex set can be reformulated in terms of its unbound variables:

0tP = {r|P+rCP}
{r|Vx € Plx+r € P]}
= {(ri,...,rn) | Y{(z1,...,20) € P.(x1 +71,..., 20 +Ty) € P}

where ri € [—00,400] if x; € [—o0, +00]
ri € [—00,0] if 2/ = —c0
i € [0, +00] if 2% = +o0
r; =0 otherwise

Lemma 5.5.1 Let P; P> be polyhedral convex sets in R™. Then given the reformulation
of the recession cone of a polyhedron, P; + 0" P, can be expressed in similar terms.

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 46

Proof There are two cases to consider:

e P, is bound.
Since P, is bound, 0" P> = 0 [Roc70] Theorem 8.4. Therefore, P; + 07 P, = P.

e P is unbound.

Pi4+0"P, = {(si,...,8n) | $i =wi+ri, (1,...,yn) € P1,
(r1,...,mn) € 0T Py}
where si € [—00, +00] if r; € [—00, +00]
8; € [—00,y™] if r; € [—o0, 0]
s; € [yfb, +00] if r; € [0, +o0]
€ [’ u"] ifr; =0

This allows a definition with reference to P, as follows:

Pi+0tPy = {(si,-..,sn) | si =yi + 75, (Y1, .-, yn) € P,
<£171,-. -’I?'n,> EPQ, <7"1,...,’l"n> EO+P2}
where € [—o0, +0] if z; € [—o0, +00]
€[- OO?JZ] if 2/ = —c0
bw+w] if 2; = 400
[yz ' Y;] otherwise

This computation forms an integral part of the definition of the closure of the convex
hill as it allows the directions in which unbound polyhedra recede to be taken into
account. P; + 07 P, must include P; as the recession cone of P includes the origin
(all recession cones contain the origin by definition). A recession cone that is not the
zero vector, recedes in certain directions, therefore, by definition of the sum operation
on convex sets, P; + 0" P, recedes in the directions of Ps. Intuitively, P; + 0" Py is P
stretched or extended infinitely in the directions of P». Thus, the closure of the convex
hull is the union of the linear combinations of points in P; and P» as the \;’s range over
the open interval [0, 1] with P; receding in the directions of P, and P, receding in the
directions of P;. This effectively ensures the closure of the convex hull when either or
both polyhedra are unbound.

Theorem 5.5.3 Let Py,... P, be an arbitrary collection of non-empty polyhedral con-
vex sets in R". Let P = cl(conv(PLU...UP,)). Then P is also a polyhedral convex set
and:

P = U{Alpl + ...+)\nPn}

where the union is taken over values for)A;, where 0 < \; <1 and X7 ; = 1, but, 0+ P
is substituted for \; P; when A; = 0, [Roc70][Theorem 19.6]. [

The convex hull of two polyhedra is, by definition, the linear combination of all pairs of
points one from each polyhedron. Recall that the closure of the convex hull is denoted
U, so where Py, P, € Poly™, then PiUP;, is the union of:

1. the linear combination ranging over \;’s where 0 < \; < 1,

2. the sum of P; with the recession cone of P and

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 47

3. the sum of P, with the recession cone of P;.

Consider P{UP, = P’ U (0+P1 + PQ) U (P1 + 0+P2), where

P’:{x

An example follows:

i::)\ly—i-/\gz AM+X=1 X\ >0
Ay < A1z < B

Example 5.5.2 Consider the point P; = {(1, 1)} and the line P, = {z = 2} in R2.

, P
xi ‘ Tx—

|
(1,1)s (1,14
|
|

Py = PUP, = P U (0+P1 + P2) U (P1 + 0+P2)
= {1<z,z<2}U{{0,0)}+{z=2})

U{(L, 1)} + {z =0})
= {l<z,z<2}U{x=2}U{z=1}
= {1<z,z<2}

Note that in both cases the addition of the the recession cones of P; and P, has the
effect of stretching, or extending, the convex hull so that it is closed.

5.5.2 The Matrix Method

Consider the matrix computation method proposed for the closure of the convex hull of
P, U Py, a linear relaxation of:

Py = {

The computation method can be reformulated into an equivalent expression which
reflects the informal argument above:

E::)\y—i—/\gz A+ =10\,
Ag§ A22§B27

Matrix Method

Vo, € T.Vy; € §.V2z € 2. x; € [min(y, 2), maz(y*®, 22°)]

Pop=(Z| Nz = (T =M7+ \Z, A+ =10\,
A1y < By, Ayz < By)

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 48

This means that the values of x; € & are considered separately and despite the fact
that in principle, where cj,cy are arbitrary constants and ¢ # j, if 1) x; = ¢; when
At = 0and Ay = 1 and ii) ; = ¢ when Ay = 1 and Ay = 0, then there is no z
where z; and z; can take those values simultaneously, in this computation there is no
constraint that can express this restriction. Thus, in the matrix method of computation
the union of the two spaces is interpreted as a variable-wise union of intervals for each
x; in (z1,...,T,) € Py with those intervals for each z; in (z1,...,2,) € (P'U P), and
vice versa for each z; in (z1,...,z,) € P5. This does not take into account the fact that
the bounds on § do not allow the points (zi,...,zy) to recede into infinite space. This
method effectively, computes conv(P; U P,) extended in the directions that both P; and
P; recede in. The following Proposition demonstrates that the matrix method returns
the closure of the convex hull in the general case:

Proposition 5.5.1 Let P; € Poly™ and P; = A1y < By, P, = AsZ < Bs and

p,_ 1=z T=M7+XZ M +A=1 0<),
2= A1y < By, AszZ < By

then P12 = PIUPQ.

Proof By [Roc70][Theorem 19.6], PLUP, = U{\ P, + A\oP»}, where \; € [0,...,1]
and A\ + A2 = 1, but, 0T P; is substituted for \;P; when \; = 0. Hence, Pi{UP, =
P'U (0TP,+ P) U (0T P, + Py), where

P = {Z|z=M7+ Nz A1 < B, A1Z2 < By
AL+ A =1, /\i>0}

By definition of P, P C Pis, Py C Py3, Po» C Pio, hence, let Pjg = P upPUP,UP"

where P" = Pi3\ (P'UP; U P,). Since the recession cone of a polyhedra always includes

the zero vector, it follows that Py C (P + 0" FP) and P, C (P2 + 07 P;). Therefore

(PIUP1UP2) C Pis and (PIUP1UP2) C PUP;. (1)
The proof is in two parts:

e Py C cl(conv(P1 U P,)) The proof is by contradiction.

suppose T € P13.Z & cl(conv(Py U Py))
therefore dz € P".z & ((P1+ 0" P2)

U(Py + 07 P)) by (1)
Consider P, + 0T P, :
P +0"P = {(siy...,sn) |8 =i +7i,(y1,---,yn) € Py,
(zl, - ,Zn> € Py, (T‘l, - ,T‘n> S 0+P2}
where si € [—00, +00] if z; € [—00, +00]
s; € [—oo,yfb] if sz = —00
s; € [yl +o0] if z; = +o0
s; € [y, y] otherwise

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 49

But

Vo; €T.Vy; €7.Vz € 2. x; € [min(yP, 22), maz(y¥®, 2°)]

k3 1
Po=<z /\xi)=(§:=)\1?j+)\2§, A+ =1,0< A,
A1y < By, Az < By)

therefore, every Z € P” is either in (P} + 0" P,) or in (P, + 0 P2).

o cl(conv(Py U Py)) C Pio

Similarly, the argument follows that every z € (P; + 07P) \ {P1} and every
T € (Po+0"P)\{P} is also in P".

Hence Plg = P10P2.]

5.5.3 The Computation of the Closure of the Convex Hull

There are various approaches [CH78, HPR94, Wil93] to computing the convex hull of
polyhedra. Some rely on the frame representation, some on the constraint represen-
tation as sets of linear inequalities and some on both. For the frame representation a
polyhedron is represented as a system of generators, that is, two finite sets, V and R of
vertices and rays, respectively:

P = {Su,evAivi + Spjerpri A >0, pj >0, Tih =1}

The convex hull P of two polyhedra P, and P», respectively represented by (V1, R;) and
(Va, Ry), is then given by (V, R) where V =V, UV, and R = R; U Ry [Ker94].

Example 5.5.3 Consider again, the point P; and the half line P», referred to at the
beginning of this section and illustrated in the diagram that follows.

P 4 Y=TH]

(0,1) (0,1)

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 50

The convex hull of P; and P, is the space Po. Both the constraint and frame represen-
tations of P, P» and Pp are given below.

=0, [0]
P = {<x,y>eR2 ' } V= { : } Ri= ¢
. 9| T=1y, o [0] . (1]
r= {ewem[i2) w= {[5]} m= {[1]]
0<x, .- o
Po= S (z,y) eR*| z <y, Vo = { 0 ,[0]} R¢o = { ! }
1 0 1
y<z+1 - -

In [Ker94], for example, both representations are used with the convex hull being com-
puted from the frame and ray representation and intersection from the representation
as sets of inequalities. An improved version of the Chernikova algorithm is used to
compute one representation from another.

CLP(R) provides the projection and solver machinery for manipulating sets of in-
equalities but a naive approach to calculating the convex hull may flounder, as non-linear
constraints that cannot be reduced to linear constraints will be indefinitely postponed.
Consider two arbitrary polyhedra, P; and P», represented in standard form:

Plz{i'ERn|Alf§Bl}, PQZ{ZZ‘ERn|A23_7§BQ}

The convex hull of Py U P», P¢, is then defined by:

PC:{QSE]Rn

T =0121 +02T2, o1+o02=1, 0<o0;
A7, < By, AsTo < B

However, the equation 01Z1 + 02T = 1, is non-linear and in a constraint language that
delays non-linear constraints the worst case can result in an infinite loop [HIMT92].
A relaxation technique employed by [DB93], reformulates this system of equations and
inequalities allowing the computation of the convex hull without recourse to the frame
and ray representation. It is asserted that this relaxation is equivalent to the convex
hull, but this is clearly not the case as the solution to a system of linear inequalities
will be another system of linear inequalities which will be closed. For this reason this
computation method cannot be equivalent to the convex hull, although, as has been seen
it is equvalent to the closure of the convex hull. The technique amounts to reformulating
the equations above by putting: §; = 01Z; and g2 = 02Z2 so that:

=01+, Aijn <oiBi, Axja <02B
and Pg¢ is defined by:

PC:{EGRn

I=jh+y2, o1t+oz=1 0<o;, }
A1 < 01By, Ay < 02By,

Example 5.5.4 To illustrate this method, consider example 5.5.3. Substituting for the
matrices Ajand As, and the vectors B; and Bs, the above system of equations, where

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 51

z = (z,y) and §; = (x;,y;), is as follows:

T=21+T2, Y =Y1+Y2
o1+02=1,0<01,0< o0,

21 <0, -2 <0, y1 <01, —y1 < —o1,
2o —Y2 <0, —z2+y2 <0, —22 <0

Po={{zeR?

Hence, Po = {0 < z,z < y,y < x + 1} is derived through projection onto Z. The
solution to the intersection of a set of non-strict inequalities is the intersection of a
set of non-strict inequalities. Therefore, after projection onto Z, this computation will
also return the intersection of a set of non-strict inequalities, which, by definition is
polyhedral.

Proposition 5.5.1 confirms that the matrix method returns the closure of the convex
hull, and so all that remains now, is to confirm that the linear relaxation technique
employed above is simply a computational technique and not an upper approximation
of the closure of the convex hull. Since the relaxed system of equations and inequalities
is algebraically equivalent to the original system and no variable in the original system is
removed from the relaxed system, the two systems are equivalent. Hence the relaxation
technique returns the closure of the convex hull. The significant difference between
the two methods lies in the fact that linear constraint solvers can solve the system of
inequalities expressed as a relaxation, but may flounder with the original formulation.

It is interesting, though, to consider what happens when the original system is
composed of homogeneous equations and inequalities, that is, B; = 0. In this case
the A;’s effectively disappear from the calculation altogether which is then reduced to
addition over each pair of points § € P; and z € P,. However, spatially, systems of
homogeneous equations and (non-strict) inequalities represent polyhedral cones. Since
the convex hull of an arbitrary collection of polyhedral cones is always polyhedral (and
therefore closed and convex), and the computation reduces to addition, the relaxation
technique is confirmed.

5.6 A Bottom-up Interpreter

The bottom-up analyser is a simplified version of the meta-interpreter listed in [CL95].
The main difference between the two analysers is that interpretations are ground. This
simplifies the meta-interpreter as atoms can be looked up in the interpretation without
inducing aliasing and therefore variance (goal renaming) is not an issue.

For a given clause, the interpreter unifies each (non-ground) body atom in the def-
inition of the clause with a matching (ground) atom in the interpretation, and then
projects onto the head. Built-ins are solved directly. The task of unifying a body atom
with an atom in the interpretation reduces to decoding the ground representation of
constraints. For example, if the body atom is p(X, Y, Z) and the interpretation con-
tains atom(p, 3, [less(plus(var(l), var(2)), 0)]) then the call to decode from
the ground representation:

decode([lesseq(plus(minus(var(1)), var(2)), 0)1, 3, [X, Y, Z])

imposes the constraint Y < X on the constraint store. Constraints on head variables
are projected using meta-programming built-ins to obtain an output in a ground form.

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 52

Polyhedral abstractions from each of the clauses of a predicate are then combined in-
crementally as a convex hull. The convex hull is implemented as a binary operation so
for a predicate of, say, three clauses returning the polyhedra P;, P», P3, the convex hull
is calculated: (P; U P;) U Ps. There is no loss of precision since the operation is both
associative and commutative. Recall that the convex hull is described over a vector of
variables Z and T = 71 + ¥, the sets of equations over each y; are generated by a single
recursive pass over the ground representation of constraints over each ;. The equations
and inequalities are posted to the constraint store and the their solution projected onto
Z is the convex hull. By employing a builtin meta-programming facility the constraints
that define the convex hull are encoded into a ground representation.

5.6.1 Implementation Issues

The computation of the convex hull requires projection and the widening requires an
entailment test. Both of these operations raise some implementation issues.

e Projection In CLP(R) constraints on head variables are projected using the
meta-programming built-in dump/3 [HJM192], and the projection is encoded and
output in a ground form. For example, with constraint store: {X =4+ Y, Z < X},
the call:

dump ([X, Y], [var(1), var(2)], Cons)

instantiates Cons to [var(2) = var(1) - 4] which corresponds to a ground rep-
resentation of the projection onto X and Y. dump/3 was the only meta-programming
facility in CLP(R) employed in the implementation.

The call_residue/2 built-in in SICStus has a similar role to dump/3 in CLP(R).
Apart from some syntactic differences, the main difference between the solvers
CLP(R) and SICStus 3 lies in their respective projection facilities. In SICStus,
projection is rather more complex as inequalities and equalities have to be dealt
with separately, and consequently, the analyser implemented in SICStus 3 had to
take this into account. call_residue/2 accesses the residual constraints, that is,
those constraints that are not satisfiable at the time of calling. For example, the
call:

call_residue({X = Y + Z, X = P}, Cons)

instantiates Cons to [[Z]1-Z = P-Y], denoting a single residual constraint, Z =
P-Y, on the variable Z. Note, however, that Cons excludes the equality relationship
between X and P. call_residue/2 requires an input argument, a goal, and the
residue that is returned constitutes those subgoals unsatisfied after the call to
goal. Therefore, the program is dynamically modified with the call:

assert (dummy (Target_Vars))
where Target_Vars are the variables that are the projection target. A dummy/1

goal is then passed to call residue/2 to retrieve the constraints. A final post-
processing phase assembles the residual constraints with the equality constraints.

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 53

¢ Entailment The widening operation identifies those constraints that are invariant
from one iteration to the next. At the implementation level this involves an
entailment test which is based on the premise that for a linear constraint ¢ to be
entailed by a set of constraints C, it is sufficient to show that C A —c has no solution

[Col90)].

e Arithmetic in CLP(R) and SICStus 3 In both CLP(R) and SICStus 3 clp(R)
the coeflicients of variables within the inequalities are represented as real numbers
so, for example, the inequality 2x < 3y may be stored in one iteration as = —
1.5y < 0, and as z — 1.4999999y < 0 in another. Although the widening ensures
analysis termination, roundoff errors can lead to the loss of invariant relationships.
Roundoff errors in CLP(R) were not a problem, since a small € is used as slack
in numerical comparisons. However, roundoff problems encountered in the initial
port to SICStus 3 clp(R) (in the Trd/3 problem (see Section 5.7)) hastened the
transfer to clp(Q).

5.7 Example Analyses

There follows some analyses of programs which have traditionally proved difficult to
analyse.

leq/2 The leq(X, Y) predicate, adapted from [van91, pp. 55], holds if x < y. The
base case constraint establishes the non-negativity of size, which is perpetuated in the
recursive case as the size of succ(y) is one greater than that of y and the size of z is
constant. The 1eq(X, Y) predicate is an example for which the analysis of [van91] does
not terminate. In [CC92c| a similar predicate is analysed in a finite number of iterations
through widening; the widening is a refinement of those proposed in [CH78, Hor90] and
is precise enough to infer z < y.

trd/2 The affine approach [GDL92, Kar76, VD92] cannot deduce any information for
the trd(X, Y) predicate of [VD92]. In contrast, the polyhedral approach with widening
can infer useful results. The non-negativity of x and y follows from %:E <yandy < %:E
The norm in this example and those that follow is list length.

perm/2 The perm(L,P) predicate enumerates all the permutations P of the list L. To
deduce termination it is necessary to infer that L in the recursive call is smaller than
[HIT]. This can only be inferred by deducing an inter-argument relation for del/3,
namely, that the third argument of del/3 is smaller than the second argument. It is
precisely this relation that the analysis infers.

quicksort/2 Like perm/2, quicksort/2 is not structurally recursive and therefore it
is necessary to infer that for partition/4, the arguments L and G in the recursive calls
are strictly smaller than [X|Xs].

split/3 Although split/3 is structurally recursive it is unusual in that the recursive
call switches the last two arguments around. It can be deduced that the sum of the
sizes of the second and third arguments is equal to size of the first. Further, the second

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 54

argument will either be the same size as the third or at most 1 element larger than the
third.

In the table that follows the first column displays the original program, the second
its abstraction with respect to argument size and the third the set of inter-argument
relations derived by analysis.

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R)

95

del(X, Z, W).

delA(_, Z, W).

Program Abstract Program Inter-argument
Relationships
leq(X, X). leq? (X, X):- leqA(z, y) :-
leq(X, succ(Y)):- 0 < X. {z <y,
leq(X, Y). leq? (X, 1+Y):- 0<z}
0 S X',
0<Yy,
leg (X, Y).
trd([1, [1). trd4 (0, 0). trdd(z, y) :-
trd ([_,-I1X], [.,_,_1Y]):- trdA (2+X, 3+Y):- {2z <y,
trd(X, Y). trdA (X, Y). y < 3z}
trd(l_,_,_1X], [.,_1Y]):- trdA (3+X, 2+Y:-
trd(X, Y). trd4(x, Y).
perm([]1, [1). perm” (0, 0). perm‘A(:c, y) -
perm([HIT], [AIP]):- permA (1+T, 1+P):- {y = =,
del(a, [HITI, L), del(_, 1+T, L), 0<z}
perm(L, P). perm? (L, P).
del?(z, y, 2) :-
del(X, [XIY]l, V). del”(_, 1+Y, V). {z=y -1}
del(u, [YIZ], [YIW]):- delA(_, 1+Z, 1+W):-

quicksort([1, [1).

quicksort ([X|Xs], 8):-
part(X, Xs, L, G),
quicksort (L, SL),
quicksort (G, SG),
append(SL, [X[|SG], S).

part(_, [1, [1,
part(X, [YlYs], L,
X =<Y,
part(X, Ys, L, G).
part(X, [Yl|ys], [YIL], ®:
Y =< X,
part(X, Ys, L, G).

.
[YIG]):

append([1, Y, V).
append([X|Xs], Y, [X|Zs]):
append(Xs, Y, Zs).

quicksortA(O, 0).

quicksortA(1+Xs, S):-
partA(_, Xs, L, G),
quicksortA(L, SL),
quicksortA(G, SG),
append” (SL, 1+SG, S).

partA(_, 0, 0, 0).

part? (X, 1+Ys, L, 1+G):
part'A(X, Ys, L, G).

partA(X, 1+Ys, 1+L, G):
partA(X, Ys, L, G).

append“(0, Y, Y).
append” (1+Xs, Y, 1+Zs):
append” (Xs, Y, Zs).

quicksort?(z, y) :-

{z =y,
0<uz}

part™(w, z, y, z) -
{z=y+z
y=uz,
0<uz}

append” (z, y, z) :-
{z=2+y,
0<z}

split([1, [0, [1):-
split ([X|Xs], [X|0s], Es):
split(Xs, Es, 0Os).

split“(0, 0, 0):-
split'A(1+Xs, 1+0s, Es):
splitA(Xs, Es, 0s).

splitA(x,y,z) -
{z=y+z2,
y <z,
Y- lz <l
51' S Y,
0<y}

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 56

5.8 Summary

The work described in this chapter is an implementation study in argument size anal-
ysis based on polyhedral approximations. The approach to polyhedral approximation
presented here has much to commend it as it combines accuracy with a relatively simple
implementation. The relative simplicity of the implementation was allowed: i) by the
use of a computation method for the convex hull that requires only a constraint rep-
resentation and ii) by employing languages with constraint support, namely CLP(R)
and SICStus 3. A relaxation technique employed in disjunctive constraint programming
[DB93] allows the expression of the join computation, the closure of the convex hull, as
the solution to a system of linear inequalities. Recall that there are occasions when the
convex hull of two polyhedra may not be closed (and therefore is not polyhedral). It is
demonstrated that the computation method employed here is an approximation of the
convex hull that is the closure of the convex hull. The closure of the convex hull is the
most precise approximation of disjunctions of convex spaces that is polyhedral, and it is
this polyhedral property that is important as this property entails representation as the
solution to a system of linear inequalities that represent closed half-spaces. Therefore
by exploiting the computational machinery of CLP(R) and the clp(Q,R) libraries of
SICStus, it has not been necessary to manipulate matrices or frames, or implement the
Chernikova conversion mechanism to switch between the representations.
The advantage of the method with a single representation over the method with two
representations can only really be assessed if the various time complexities of the oper-
ations in question are taken into account. If both methods use the same technique for
solving linear equations and inequalities, then the cost of intersection is the same for
both methods. This leaves the convex hull operation in the single representation case to
be weighed against the combined cost of: i) either a) maintaining both representations
and updating at least one representation using the conversion mechanism each time an
operation is carried out or b) carrying one representation and converting when neces-
sary to the other, and ii) the cost of the convex hull operation over frames and rays.
The convex hull operation over frames and rays, as simple set unions, will be relatively
fast. However, the cost of maintaining both representations at each computational step
or converting between the two representations when necessary, will depend on both the
time complexity of the conversion mechanism and on how often the conversion opera-
tion takes place. The frequency with which the convex hull is required will also have
some bearing on this comparison. In designing an analyser, Howe and King in [HKO01]
note that in the analysis of 8 large programs, including the Aquarius compiler itself,
the frequency of the join operation counts for less than 10% of the operations required
by the analyser. Howe and King’s analyser is occupied with groundness dependency
analysis but the overall technique, albeit streamlined, of abstract interpretation over
abstract programs is the same as the analysis here. Suppose then that the convex hull
is relatively infrequently required, then the impact on the overall time cost could be less
significant than might be expected by a straightforward comparison between the convex
hull over systems of linear inequalities and over frames and rays. Hence, providing the
time cost is accepatable, the method with a single representation may well have the
advantage over the method with two representations.

Irrespective of representation, convergence of the analysis iterates with an infinite
abstract domain is an issue. Convergence of the analysis iterates is enforced by the
technique known as widening. By observation it is apparent that the precision of the

CHAPTER 5. ARGUMENT SIZE ANALYSIS WITH CLP(R) 57

suggested widening can be improved by delaying its invocation until the propitious
moment. Currently a heuristic is employed to gauge that moment. Forecasting that
moment may or may not be cost effective as it must be weighed against the cost of
superfluous iterations incurred in some circumstances by the use of the heuristic. Hence,
this is an area for future investigation. The widening here is an adaptation of the more
complex widening of [CC92c| and it returns comparable or better results than those of
[CCI2¢].

Further, this polyhedral work can be applied in other areas. For example, in [KSB97]
the polyhedral technique was applied to the automation of time complexity analysis for
parallel environments; if program tasks can be assigned a measure of time complexity
that can be compared to some threshold for spawning, then the programmer is released
from the error-prone task of specifying process assignment and scheduling. Possible
future refinements of the techniques expounded here include: in terms of precision in
some contexts widening can be improved by a single narrowing step and SCCs can
be used to improve the iteration strategy. In particular polyhedral widenings require
investigation on several counts. Not only is the feasibility of deducing the propitious
moment to widen of interest but observation of the way in which polyhedral widenings
work prompts questions about how these techniques work when the polyhedra are of
a dimension that is less than the mn-space in which they are embedded. Hence, the
investigation that follows in the next chapter.

Chapter 6

Polyhedral Widenings

In the previous chapter a relatively simple widening was devised, an adaptation of a
complex widening suggested by Halbwachs and Cousot [CC92c]. Some interesting ques-
tions arise concerning the original widening of Halbwachs and Cousot. Since several
systems of inequalities may have the same solution, several systems of inequalities can
represent the same space, so will this widening always return the same space irrespec-
tive of the representation? Are there sequences of increasing polyhedra for which this
widening will not work, and if not, why? Questions like this prompted the investigation
that follows. Further, Halbwachs asserts and proves that the widening is representation
independent, but it is not a proof that appeals to the intuitive understanding of what is
happening spatially. This chapter also offers a proof that satisfies spatial understanding
as a complement to Halbwachs semantic proof, but also draws attention to the pre-
condition that must be satisfied if the widening is to be representation independent.
In order to attain these ends a close look is taken at just how a polyhedron is defined
uniquely by the intersection of a set of closed half-spaces. This amounts to identifying
which subset of points in each half-space actively contributes to the delineation and
substance of the polyhedron. This allows the qualification of both i) how different rep-
resentations of a polyhedron relate to one another and ii) when different representations
are possible. In the process of this investigation, it also becomes apparent just how the
widening of the previous chapter is related to Halbwachs original widening, and why it
works after a bounded number of iterations.

With reference to binary operations, for example, a ¢ b, where g is a binary opera-
tor, then a and b are referred to as the operands. It will be demonstrated that a set of
constraints defines the bounds of a polyhedron and both widenings return the common
bounds of their operands, also a polyhedron. The spatial insights afford an understand-
ing of the widening process that not only identifies when it is most useful but also allows
a new interpretation of the widening that amounts to a simpler computation.

Throughout the discussion that follows only minimal representations of polyhedra
are considered, that is, representations such that the removal of any inequality in the
representation set would change the shape of the polyhedron. The notion of a minimal
representation, is defined formally in the Section 6.1 that describes the terms of reference
for the discussion and proofs that follow. Unless otherwise stated, the source of the
definitions in this section is [Roc70].

58

CHAPTER 6. POLYHEDRAL WIDENINGS 99

6.1 Preliminary Definitions

The definitions that follow provide the terminology for the discussion and proofs that
constitute this chapter. The definitions are interspersed with explanatory text and
diagrams.

Definition 6.1.1 The dimension of a convex set S € R” is the dimension of aff S and
is denoted dim S. -

Note that if the dimension, say m, of some subset of R" is pertinent then the descriptor
is prefixed with m. For example, an m-dimensional polyhedron may be referred to as
an m-polyhedron.

The concept of interior (defined within Definition 4.1.11 of open) can be absorbed into
that of relative interior allowing for the expression of the relative interior of an m-
polyhedron in R™, where m < n, which has a natural interior relative to its affine hull.

Definition 6.1.2 The unit ball is defined, B = {z | d(z, 0) < 1}, where d is a function
that returns the distance between two points, in this case, Z € R" and 0, the origin. =

Definition 6.1.3 The relative interior of a convex set, S € R™, denoted ri.S, is defined
as the interior which results when S is regarded as a subset of its affine hull. Hence,

where e ¢ R, riS ={z € aff S|3e >0, (z+eB)N (aff S) C S}. .

This means that the relative interior of a set S is all of those points in the affine hull of
S, also in S but such that every adjacent point to each of those points is also in S. This
is in effect, defining every point in S within its affine hull that is not in its boundary,
without actually referring to the boundary.

Definition 6.1.4 The relative boundary of a convex set S € R”, is the set difference:

rb S = (clS)\ (1iS). .

Recall that when the convex set is a polyhedron, then the closure of the polyhedron is
equal to the polyhedron.

Definition 6.1.5 An m-polyhedron in R", where m < n, is said to be embedded in
each of the affine sets, including R", that contains it. .

Definition 6.1.6 The set of all closed half-spaces in R" is denoted Half™. .

Since a closed half-space has only one possible representation as a linear inequality, no
notational distinction is made between them but the meaning will be clear from the
context. However, in the discussion that follows it is necessary to distinguish between
the sets of inequalities that represent polyhedra and the sets of points represented by
their implicit intersection. Given the definition of Half", when P € P(Half") it follows
by Definition 4.1.14 that the intersection of the elements of P is a polyhedron. In the
remainder of this chapter the intersection of the elements of P, the set of points, is
denoted explicitly by NP to distinguish it from P, the set of linear inequalities.

Definition 6.1.7 Let NP € Poly™, then 8 € Half™ supports NP iff NP C § and
NP N rbpB # ¢. .

CHAPTER 6. POLYHEDRAL WIDENINGS 60

Yy Yy
! C
4
3 C
3
2
2 T
4 B 7
. 1
0 1 2 3 4 i
0] 1 5
3 4

1. Triangle ABC in R? 2. Triangle ABC in R3

Figure 9: Triangle ABC in R? and R3.

ABC | representation relative relative affine hull
interior boundary
in R? | NT}; where T} = rinNTy = tbh NTy = af NTy =
{1<y,y<z,z<3} | N{l<y,y<z,z<3}| ABUBCUCA R?
in R? | NT, where T, = rinNT, = tb NT, = af N1y =
{1<y,y<z,z<3, |IN{l<y,y<z,z<3}| ABUBCUCA 2=0
0<z 2<0} embedded in z =0 embedded in z =0 | in R3

Table 1: Triangle ABC in R? and R3.

If 8 € Half™ supports NP € Poly™ then (§ is a said to be a closed supporting half-
space to NP. Figure 9 and Table 1, illustrate the difference between the notions of an
n-polyhedron in R™ as opposed to an m-polyhedron in R"™, where m < n. In the table,
AB for example, denotes the set of points in the line joining the points A and B.

Recall (Definition 4.1.6) that an affine set of dimension (n — 1) in R is called a
hyperplane. Intuitively a hyperplane of R* has two sides, like a line in R? or a plane
in R3. In general then, if a; and oy are n-dimensional closed half-spaces in R” and
aiUas =R", then h = a3 Nag = rba; = rbasy is a hyperplane of R”.

Definition 6.1.8 A supporting hyperplane, h to NP € Poly™ is such that h = rb(3),
where [is a closed supporting half-space to NP. If NP C h, in which case both closed
half-spaces with relative boundary, h, are supporting half-spaces then h is an improper
supporting hyperplane. If NP ¢ h, then h is a proper supporting hyperplane. [Bro83]|

Definition 6.1.9 A pair of closed half-spaces a, g is opposing iff rb(ay) = rb(ag) and
a1 ?5 a9.]

CHAPTER 6. POLYHEDRAL WIDENINGS

61

representation | proper relative improper supporting | opposing

of ABC in R3 supporting | boundary | supporting | half-spaces | supporting
hyperplanes hyperplane half-spaces

N1y where To = |z =y ACU z=0 15 0<z

{1<y,y<z, |z=3 BCU z2<0

xz <3, y=1 AB

0<z 2<0}

Table 2: Triangle ABC in R?

This means that if a pair of opposing closed half-spaces a1, as both support NP € Poly",
then h = rba; = rbagy is an improper supporting hyperplane to NP, as NP C h. Pairs
of opposing closed half-spaces (and the opposing linear inequalities that represent them)
are in general denoted 1 and as.

Figure 10 and Table 2 illustrate the association between the proper supporting hyper-
planes of NP € Poly™ with the relative boundary of NP. The triangle ABC is again
embedded in R?, and, for example, the intersection of the hyperplane =y with ABC
is the line AC, a subset of the relative boundary of ABC.

Figure 10: Triangle ABC in R3

The following definitions clarify the different ways in which supporting hyperplanes
intersect with polyhedra that they support.

Definition 6.1.10 A subset f, of a polyhedron NP € Poly™, is called a proper face of
NP if there exists a proper supporting hyperplane h to NP such that f = AN NP. The
improper faces of NP are f = ¢ and f = NP. [Lay82] .

Let NP € Poly™, then from the above definition if dim N P = n the set of proper faces
F of NP will comprise k-faces where 0 < k < n — 1. (The 0-faces will be the extreme

CHAPTER 6. POLYHEDRAL WIDENINGS 62

points of NP.) However, if dim NP =m and 0 < m < n — 1, the set of faces F' of NP
will comprise k-faces where 0 < kK <m — 1.

Definition 6.1.11 A facet, f¢ of an m-polyhedron, NP, is a proper face of NP where
dim f¢=4k and 0 < k=m — 1. [Bro83] .

However, there are proper supporting hyperplanes that can support a polyhedron at
a face that is not a facet. In Figure 11 of the triangle ABC embedded in R3, the
hyperplane = = 1 supports ABC' at the point (1,1) and although this point is not a
facet of ABC, it is a face of ABC' In general therefore, if a proper supporting hyperplane
of an m-polyhedron, NP € Poly™, does not support NP at a facet of NP, then it supports
NP at a k-face where 0 < k < m — 2. This is illustrated in Figure 11 and Table 3 that
follow:

Figure 11: Triangle ABC in R?® and some of its supporting hyperplanes.

representation | proper proper facets | improper | improper
of ABC in R3 supporting | faces (dim) | supporting | faces
(dim) hyperplanes | (dim) hyperplane | (dim)
NT, where Th = |z =y AC (1) AC (1) |z=0 ¢ (na)
{1<y,y<z, |z=3 BC (1) BC (1) ABC (2)
z <3, y=1 AB (1) AB (1)

0<%z 2<0} r=1 A=(1,1) (0)

(2) y=6—xz | C=31) (0)

Table 3: Triangle ABC in R? and some of its supporting hyperplanes.

CHAPTER 6. POLYHEDRAL WIDENINGS 63

It is interesting to note that a face of a polyhedron that is not a facet is also a face of
at least two of the facets of the polyhedron and the union of the proper and improper
faces of a polyhedron form a complete lattice ordered by set inclusion.

Definition 6.1.12 The tangent hyperplanes to NP are the unique supporting hyper-
planes of an n-polyhedron in R™. .

This means that the tangent hyperplanes are the affine hulls of the facets of NP. This
definition concurs with the notion that the set of facets of a polyhedron is unique.
The relative boundary of a half-space is a hyperplane so that it is said that a half-space
is bound by a hyperplane, or that a half-space has a boundary hyperplane. It follows
then that the intersection of the set of supporting half-spaces that are each bound by a
tangent hyperplane to a polyhedron uniquely defines that polyhedron, as in the following
theorem:

Theorem 6.1.1 An n-dimensional closed convex set C € R" is the intersection of the
closed half-spaces tangent to it. [Roc70][Theorem 18.8]. [

For example, Table 4 illustrates these concepts with reference to the earlier Figure 9 of
triangle ABC in R2.

representation | tangent facets | improper | improper
of ABC in R? hyperplanes supporting | faces
dimension 1 dimension 2 hyperplane

N1} where T} =

{1 <y, y=1 AB none N1y
y<a, r=y AC

z <3} r=3 BC

Table 4: Tangent hyperplanes and facets of ABC' in R?

Since each tangent hyperplane to an n-polyhedron in R™ is unique, it follows that the set
of supporting half-spaces tangent to NP is also unique. In the previous Definition 6.1.12
the tangent hyperplane is considered relative to the affine hull of an n-polyhedron, NP
in R™, that is, relative to R™. Now, suppose that NP € Poly™ such that dim NP < n.
Following a similar line of reasoning to that used by Rockafellar, to extend the notion
of the interior of n-polyhedra in R™ to the relative interior of m-polyhedra, m < n in
R™, the notion of a tangent hyperplane can be absorbed into that of a relative tangent
hyperplane; the definition follows immediately.

Definition 6.1.13 Let NP be an m-polyhedron in R®, m < n, then the affine hull of a
facet of NP is a relative tangent hyperplane of NP. .

Note that the dimension of the relative tangent hyperplanes to NP, will be m — 1, that
is, relative to the affine hull of NP, not to R™ in which NP is embedded. This means
that if the dimension of NP is less than n the relative tangent hyperplanes are the affine
hulls of the facets of NP. Table 5 illustrates the concept of a relative tangent hyperplane
with reference to the earlier Figure 11 of the triangle ABC in R3.

For the following definitions let F¢(NP) denote the facets of NP € Poly™ and F(NP)
denote the faces of NP. Note that F¢(NP) C F(NP), but F(NP) € F¢(NP).

CHAPTER 6. POLYHEDRAL WIDENINGS 64

representation | relative facets | improper improper
of ABC in R3 tangent supporting | faces
dimension 2 hyperplanes hyperplane

dimension 2

NT5 where Ty =

{1<y, y=1 AB
y < uz, rT=y AC
x <3, x=3 BC
0<2z22<0} z=0 ABC

Table 5: Relative tangent hyperplanes and facets of ABC in R3

Definition 6.1.14 Let 8 € Half™ and NP € Poly™ then B is a constraint on N P <«
NPCrbp vV (NPCB A rbhpgNNP € F¢(NP)) and S is said to constrain NP. .

This means that if 5 constrains NP then 8 supports NP. On the other hand, if 8 supports
NP then 8 may or may not constrain NP.

Hence, a set of constraints defines a unique polyhedron in R™, not because the
set of constraints that define the polyhedron are necessarily unique, but because, by
definition, a constraint contributes to the unique set of attributes that define the poly-
hedron, namely the affine hull that contains NP and the relative tangent hyperplanes
that contain the facets of NP.

Definition 6.1.15 P € P(Half™) is minimal iff V3 € P.[NP # N(P \ {B})] .

This definition means that P is minimal only when every element of P constrains NP and
further, that no two elements contain the same facet within their relative boundaries.
However, each element that contributes to the delineation of the affine hull of NP will
of necessity contain NP within its relative boundary. For example:

Example 6.1.1 Consider the polyhedron NP € R?, where P = {y < z,1 < y,z < 2}.
The closed half-space 1 < z supports NP at the point (1,1) € NP as (1,1) € rb(1 < z).
Let P = PU{1 < z}. Although NP = NP’ and all of the elements in each set support
NP, P is a minimal representation and P’ is not, as the removal of 1 < x from P’ would
not change the shape of NP'. .

Definition 6.1.7 of supports can be rephrased as shown by the following Lemma.
Lemma 6.1.1 Let 8 € Half™ and NP € Poly", then the following are equivalent:
1. B supports NP < NPC B A NPNthB#¢
2. B supports NP < NP CrbpB V (NPCB A tbhfNNP € F(NP))

Proof Note that by definition, rb /3 is a supporting hyperplane of NP.
Assume that 1. holds, then there are two cases to consider:

e NPN1thB=nNP

Since NP N rb 8 = NP, and NP is an improper face of NP, it follows that in this
case rb [is an improper supporting hyperplane of NP, by Definition 6.1.10.

CHAPTER 6. POLYHEDRAL WIDENINGS 65

e NPNrbp#NP

Let s = NP N rbf, since rb S is a supporting hyperplane of NP and s is a non-
empty subset of NP, it follows that s is a face of NP, and rb 3 is a proper supporting
hyperplane of NP at s.

Now assume that 2) holds, there are two cases to consider:

e NPC rbpg
Since NP C rb G, it follows that NP C 8 A NP N rb B # ¢.

e NPC B A thpgnNNP e F(NP)

Since tb3NNP € F(NP), then rb SN NP # ¢, by definition of F. Hence, NP C
B A NPNhB# .

6.2 Alternative Representations and Rotations

When m = n, the tangent hyperplanes are the relative boundaries of the closed sup-
porting half-spaces of NP and as the tangent hyperplanes are unique, so are the closed
supporting half spaces of NP. On the other hand, if m < n the relative tangent hy-
perplanes of NP are affine subsets of the relative boundaries of the closed supporting
half-spaces of NP. It is in this case that there are alternative representations of the same
polyhedron. With a minimal representation in terms of shape, Definition 6.1.15, it is
now possible to consider precisely what conditions allow alternative representations.
Further, since the widening is defined in terms of exchanging elements of alternative
representations it is important to understand when this can happen.

Section 6.2.1 describes the terms and introduces the notation that supports this
discussion. Section 6.2.2 takes a closer look at what happens when the alternative
supporting hyperplanes are actually improper supporting hyperplanes; and also at the
conditions that allow them to be exchanged, in their respective representations, without
changing the shape of the set of points they describe.

6.2.1 The Terms of Reference and Notation

Every affine subset of R" is the intersection of a finite set of hyperplanes [Roc70]
[Cor.1.4.1]. Hence, an affine set can be represented as the intersection of two opposing
linear inequalities whose shared relative boundary is a hyperplane.

Let P € P(Half") be a minimal representation of NP, an m-polyhedra in R" where
m € {0,...,n}. Now consider a partition of P, let P = Ap U Bp where Ap = {a €
P|rbannP = NP} so that NAp = aff N P. Then Bp = P\ Ap, is a set of closed
supporting half-spaces with relative boundaries that are proper supporting hyperplanes
of NP. If dim N P = n then the proper supporting hyperplanes of NP are the tangent
hyperplanes to NP, but if dim N P < n, then the proper supporting hyperplanes of NP
contain the unique relative tangent hyperplanes to NP. Recall that a tangent hyperplane
to NP is the affine hull of a facet of NP, so Bp = {f € P | tbfNNP € F¢(NP)}. Hence
NAp defines the m-space in which NP is embedded and NBp the delineation of NP
within the m-space. The boundary hyperplanes of NP that are the relative boundaries

CHAPTER 6. POLYHEDRAL WIDENINGS 66

of the elements of Bp can be thought of, informally, as cutting the m-space in which
NP is embedded into two disjoint sets. Ap and Bp are referred to as the A and the B
components of P, respectively.

Alternative Representations in R?. Note that in a slight abuse of notation, the
word direction is used to quantify the amount of space in which rotations can take place.
Its use in this way is particular to this section and should not be confused with its use
elsewhere in this thesis. The following Figure 12 and Table 6 serve to illustrate (i) the
distinguishing features of a polyhedron and (ii) the function of the linear inequalities
in the representation of a polyhedron. In Table 6, P; and P> both represent the same

y X=4
2y=5x-3
y y=2x-1
X+y=2 x=1
y=1
(0,0) X
Figure 12: The line AB € R?
P Ap, Bp, Hp, Hp,
Py {1§$,J}S4, {1Syay§1} {1§J},$S4} {3’321,3’):4} {y:]'}
1<y, y<1}
Pl{y<z <4, |[{1<y,y<1} |{y<z,z<4} | {z=12=4} | {y=1}
1<y, y<1}

Table 6: The line AB € R?2

polyhedron, the line segment y = 1 € R? where 1 < 2 < 4, named AB in Figure 12. In
the table the second column contains Ap, the half-spaces in P; that define the affine hull
of NP; and the third column Bp, the half spaces in P; that define NP; within it affine
hull. The third column contains the set Hp T the set of relative tangent hyperplanes to
NPF;, and the fourth column contains the hyperplanes the intersection of which defines
the affine hull Hp, of NP;. In this case the Ap, sets are identical but the Bp, sets are

CHAPTER 6. POLYHEDRAL WIDENINGS 67

different. The relative tangent hyperplanes to the line segment AB are also identical,
since they uniquely define AB within the line y = 1. Here, at the bottom end of the
dimensional scale, the relative tangent hyperplanes to AB are of dimension zero and
they are coincident with the facets of AB. AB is embedded in R? and each half-space
in the representation of AB is also of dimension 2, so the relative boundary of each
half-space in Bp, is a 1-dimensional hyperplane that intersects the affine hull of AB at
a relative tangent hyperplane of AB. Clearly there are many hyperplanes that intersect
the line y = 1 at the point where x = 1, for example, the lines £ = 1 and =z = y;
and more of these lines are illustrated in Figure 12. These alternative hyperplanes are
rotations! about the facet, the point (1, 1), which allows alternative closed half-spaces
in the representation of AB, as, for example, 1 < z in Bp, is an alternative to z < y in
Bp,.

Figure 13: Polyhedra P; € R? where dim N P; =i

Now consider what might happen in R3. In Table 7, the polyhedra, illustrated in
Figure 13, are in R and this further illustrates how alternative representations of a
polyhedron are possible. For example, consider P», the triangle ABC' embedded in its
affine hull the plane, z = 0. In P» the affine hull is defined by the elements of Ap,. In
this case the facets of ABC' are line segments, AB, BC' and AC, the union of which
is the relative boundary of ABC) recall that the relative boundary is the boundary of
the polyhedron within the confines of its affine hull. Since ABC' is embedded in z =0
the relative tangent hyperplanes of ABC, the lines {x =y, © = 3, y = 1} can each be

!The notion of the rotation of a line about a point is well understood and can be extended to the
rotation of a hyperplane and in consequence a half-space of R" about any space of dimension k, where
0 <k <n—1, [Lay82] and [Gru67].

CHAPTER 6. POLYHEDRAL WIDENINGS 68

Pi:APiUBPi H;";I Hpi FI%Z
P | Ap ={1<y,y<1} |{z=1,2=2} {y =1, {z=1,2=2}
0<2,2<0} |dim =0 z =0} dim =0
Bp, ={1<uz,z<2} dim =1

Py APzz{OSzaZSO} {w:37y:17y:$} {Z:O} {$:3,1§y§3}

Bp,={1<y,y<wz, | dim =1 dim =2 |{y=1,1<2<3}
x < 3} {y=2,1<z<3}
dim =1
Py | Ap, =9 {t=4,y=1y==z, |¢ {t=4,1<y<4,0<2<5}
Bp, ={z <4, z=0,z=5} {y=1,1<z<4,0<z<5}
1<y,y<wz, |dim =2 {y=2,1<x<4,0<2<5}
0<2 2<5} {z=0,1<z<4,1<y<z}
{z=5,1<z<4,1<y<uz}
dim =2

Table 7: Polyhedra P; € R3 where dim NP, =4

embedded in any of the 2-dimensional hyperplanes that intersect with z = 0 at those
lines. Each alternative hyperplane containing a particular line is a rotation of all the
other hyperplanes about that particular line. For example, the hyperplane y + 2z = 1
(coloured pink in Figure 13) intersects the plane z = 0 at the liney = 1,s0in P, 1 <y
could be replaced by y 4+ z > 1 as ABC' is a subset of y + z > 1 and is bound by the
relative boundary of y + z > 1, namely y + z = 1. The prism, NP3, illustrates the case
where the A component is empty as NPs is a 3-polyhedron in R? and the dimension
of the relative tangent hyperplanes and of the facets is 2. There is no space to allow
rotation so there is only one representation possible for NPs.

At the other end of the scale, NPy, the line segment AC' in the plane z = 0, is now a
candidate for many alternative representations. Switching back to R? for a moment,
consider the point (1, 1), in R? and its alternative boundary hyperplanes that can rotate
about (1, 1), effectively through = radians as rotations in R? through more than w
radians will be repeats of those through 7 radians. In R3 the alternative supporting
hyperplanes that contain aff N P, are of dimension 2 and must all be rotations about
aff N Py, namely the line y = 1. Since they must contain a line of dimension 1 there
is space to rotate through 7 radians in just one direction. However, the hyperplanes
of dimension 2 that contain the facets of dimension zero, must intersect the plane of
z = 0 at the point (1, 1), so they can rotate through the full range of 7 in z = 0, but
also through 7 again in each of many planes that intersect z = 0 at y = 1. So here
the rotations of y = 1 can rotate through 7 radians in two directions. The proper
supporting hyperplanes of an m-polyhedron in R"™ support the m-polyhedron at k-faces
where 0 < k < m and can rotate through 7 in n — 1 — k directions about a k-face.
Similarly the improper supporting hyperplanes are of dimension m, since they contain
the polyhedron and can rotate through 7 about the m-polyhedron in n—1—m directions.
Extending the concept of rotations in this way allows the provision of an intuitive path to

CHAPTER 6. POLYHEDRAL WIDENINGS 69

understanding the way in which alternative systems of linear inequalities can represent
polyhedral sets.

6.2.2 Exchanging Elements in Alternative Representations

Let the set of relative tangent hyperplanes to NP C R" be H};, and let the elements of
H}g, each associated with a 8 € Bp, be denoted hg. Recall that for any m-polyhedron
NP € R*, P = Ap U Bp, so, when m = n then Ap = ¢. Since when m = n, V§ €
Bp.[dim hg =n — 1], it is clear that there is only one minimal P. On the other hand,
if NP is a point in R” then Bp = ¢, and Ap will comprise n pairs of closed supporting
half-spaces, each pair represented by a pair of opposing inequalities, one pair for each
hyperplane. It is possible to represent an affine space with a set of inequalities that is
not made up of pairs of opposing inequalities but this consideration is dealt with later,
in Section 6.5.1. As alternative representations of affine sets are possible, what can be
asserted about any of these inequalities with regard to their being swapped between
alternative systems?

In order to answer this question it is necessary to look closely at what happens
when the representation of an affine set is a set of pairs of opposing closed half-spaces.
When considering the intersection of closed half-spaces, focus is normally on the space
that is included in the intersection, but if the space is affine, the function of each
opposing pair of half-spaces is as much to exclude as to include. Consider the line
represented by P = {1 < z,z < 1} € R%. The affine hull of NP is the same as NP
and NP has only one face, the improper face that is NP. In this case there is only one
possible representation; the key point is that the half-spaces that support NP have no
space in which to rotate around NP, so there are no alternative representations. The
intersection of {1 < z,x < 1} is the line z = 1, the dual property of this intersection
is that it excludes any value for x that is less than 1 and any value for x that is
greater than 1. The observation is then, that the function of the intersection operation
on the half-spaces in the representation of NP is not only to restrict the value of x
but, in consequence, to exclude the two open half-spaces on either side of the x = 1.
This means that the dimension of NP is the dimension of the real space in which it is
embedded reduced by 1, as the exclusion of the two open half-spaces has the effect of
projecting out z, so that the dimension of NP is 1. Hyperplanes are of dimension n — 1,
so the intersection of two hyperplanes will be an affine space of dimension n — 2, the
intersection of three hyperplanes is an affine space of dimension n — 3 and so on. Thus,
in general to represent an affine space in R” of dimension m in R™® then n — m pairs
of opposing inequalities are required to delineate the affine space. An example that
appeals to intuition is the origin in R™. The origin is an affine space, the intersection
of the hyperplanes that are the variable axes of R". Applying the above reasoning, the
intersection of the n hyperplanes that are the variable axes is the origin and this gives
the dimension of the origin as n — n = 0, as expected.

From the previous paragraph it is clear that when there are opposing pairs of in-
equalities in the representation each pair has a dual function, to include the hyperplane
that is their intersection and to exclude the two open half-spaces on either side of the
hyperplane. When the dimension, m, of an affine set in R™ is such that m < n — 2,
there is room for the half spaces to rotate about the delineated affine space and more
than one representation is possible.

Consider the point (1, 1) in Figure 14. Three of the possible different representations

CHAPTER 6. POLYHEDRAL WIDENINGS 70

of the point (1, 1) in R?, described over the variables {z, y} are given in the accompa-
nying Table 8. The solution to each of the three systems of inequalities is the same,
namely that x = 1 and y = 1 which is reflected most directly in the representation Fp.

X+y=2 y x=1 X=y
(11)
00))
Figure 14: The point (1, 1) € R?
P Hp,
Po|{1<z,z<1 {z=1,y=1}
1<y y<1}
P {2<z+4y,z+y<2|{z+y=2,z=y}
v <y, y<a}
P l{2<z+y,z+y<2|{z+y=2,z=y,y=1}
r<y y<1}

Table 8: Different Representations of the point (1, 1) € R?

Consider now NFPy. The intersection of each opposing pair of inequalities is a hy-
perplane, in this case the lines £ = 1 and y = 1. This representation is minimal as
if any linear inequality were to be removed from Py that shape of NPy would change.
This is confirmed, by observing that each of the open half lines bound at one end by
the point, NPy, is present in only three out of the four half-spaces associated with the
representation. The absence of the open half line from the fourth half-space excludes its
presence from the intersection. Consider (1,1) as depicted in Figure 14. The open half
line x = 1 such that y > 1 is excluded in the opposing half-space y < 1. Therefore any
half space that does not include z = 1 such that y > 1 (or conversely, includes z = 1
such that y < 1) can replace y < 1 in a representation of (1,1) without changing its
shape. For example, in P; the half-space y < x could replace y < 1 and in P» either

CHAPTER 6. POLYHEDRAL WIDENINGS 71

y < xorx+y < 2could replace y < 1, as each of the three half spaces does not include
x = 1 such that y > 1.

This example concerns the representation of a point of dimension 0 in R? and, as has
been observed, since alternative representations of affine sets require the affine set to be
of dimension at least 2 less than n, points are the only affine sets in R? that can have
alternative representations. The observations for the point in R? can be generalised for
any point in R? as follows in Lemma 6.2.1 which is then used to generalise the premise
for R”. The motivation for separating this preliminary proof for R? from the general case
for R™ is to introduce the proof tactic in the simplest case possible. It should be noted
that the representations of affine sets are minimal in accordance with all representations
in this discussion. The Tucker representation is a formal definition of such a minimal
representation [Roc70], that confirms when the representation is minimal the number
of hyperplanes required for an affine set of dimension m is n — m. Note that in the
proof that follows « is used to denote one of a pair of opposing closed half-spaces and
subscripts are employed only when it is necessary to distinguish between elements in a
pair.

Lemma 6.2.1 Let A;, As C Half™ such that the elements of A; are opposing pairs
of inequalities so that NAi, NAy are affine sets in R?> and NA; = NAy but A; %+ As.
Further let dim N A; = m =0, where 0 < m <n—2. Then Va € A; .30/ € As. N(41\
{a}U{d}) =NA;.

Proof Let Hi ={h|h= rbaAa € A1}, sothat NA; = NH;. Note that H; is a set, not
a multiset. Since the dim N A; = 0 it follows that |H;| = 2. Each hyperplane in H; is a
line and there will be two open halves of that line that are not contained within NH;.
Let h', h” be the open halves of a hyperplane h in Hy, so that {h'} U {h"} UNH; = h.
This means that Vz’ € h'.z' € NA;. Now consider a € A;. Suppose that h # rba so
that h' ¢ rba. Since the union of o and its opposing half-space is R", h’ must be a
subset of either a or its opposing half-space. Let h' C . In order for a linear inequality
to replace o in A; without changing the shape of NA; the half-space it represents must
include A’ and in consequence exclude h”. Now consider the representation As. As Ao
contains n — m = 2 pairs of opposing half-spaces VZ € R" .Z € NAy.T € o for at least
two o's, as Vay, ag € Half" .V € R*.Z € a1 VT € ag, where (a1, az) is a pair of
opposing half-spaces.
Therefore 3o’ € Ay . h' C o/. There are three cases:

o if i ¢ rba’ then Y C rid/ and o' can replace a in A; without changing the
shape of NA;.

e if B’ C rba’ and @’ = « then trivially o’ can replace a € A; without changing
the shape of NA;.

e if B C rba’ and o' # a then o/ and «a are opposing pairs of inequalities so that
the opposing inequality to o’ can trivially replace o in Ay without changing the
shape of NA;.

Hence, in all cases there exists a linear inequality in A; that can be replaced by a linear
inequality in Ay without changing the shape of NAs. [

CHAPTER 6. POLYHEDRAL WIDENINGS 72

The question that follows then is: What happens as alternative representations of affine
spaces are considered in higher dimensions? The key observation is that providing there
are sufficient degrees of freedom, that is, the dimension of the affine space is at least
two less than the real space in which it is embedded, the way the hyperplanes, and
in consequence the pairs of opposing inequalities each representing a closed half-space,
interact is constant, no matter what the value of m and n are. Hence the proof tactic
employed in the previous lemma, is not dependent on the fact that n = 2.

Lemma 6.2.2 Let Ay, Ao C Half™ such that the elements of A; are opposing pairs of
inequalities so that NA;, NAg are affine sets in R” and NA; = NAs but A; # As. Further
let dim NA; = m, where 0 <m <n—2. ThenVa € A;.3a' € Ay. N(A1\{a}U{'}) =
NAj.

Proof The proof tactic is to consider a particular hyperplane in H; as in the case where
n = 2. Consider H; \ {h, g} where h, g € H;. Both h and g intersect NH; \ {h, g} and
the function of h is to exclude both ¢’ and ¢” Let Hj = {h | h = rba Aa € A1}, so
that NA; = NH;. Therefore for every hyperplane in H; there will be two open halves of
that hyperplane that are not contained within NH;y. Let h’, h” be the open halves of a
hyperplane h in Hy, so that {h'} U{h"} UNH; = h. This means that ¥z’ € b’ .z’ ¢ NA;.
Now consider @ € A;. Suppose that h # rb a so that b’ ¢ rb . Since the union of @ and
its opposing half-space is R, A’ must be a subset of either a or its opposing half-space.
Let A’ C «. In order for a linear inequality to replace a in A; without changing the
shape of NA; the half-space it represents must include b’ and in consequence exclude
h". Now consider the representation As. As Ao contains n — m > 2 pairs of opposing
half-spaces VZ € R".Z € NAy.Z € o for at least two o's. Therefore 3o’ € Ay . h' C .
There are three cases:

e if i/ ¢ rba’ then ' C rid/ and o' can replace a in A; without changing the
shape of NA;.

e if A C rba’ and o/ = « then trivially o’ can replace a € A; without changing
the shape of NA;.

e if B C rba’ and o' # a then o' and « are opposing pairs of inequalities so that
o' can trivially replace the opposing inequality to o in A; without changing the
shape of NA;.

Hence, in all cases there exists a linear inequality in A; that can be replaced by a linear
inequality in As without changing the shape of NAs.]

The following Corollary 6.2.1 explicitly states that pairs of opposing inequalities can
always be exchanged between alternative representations allowing Corollary 6.2.2 which
demonstrates that when NA; C NAjg, all the elements in As are replaceable by elements
in Aj, say A} without changing the shape of NAj, and the elements in A} can be replaced
in A; by those in Ay without changing the shape of NA;.

Corollary 6.2.1 Let NAj, NAs be affine sets in R” such that NA; = NAs but A; # As.
Further let dim NA; = m, where 0 < m < n—2. Then, when {a;, as} and {}, o4} are
opposing pairs of inequalities, Yoy, ag € Ay .3a), o € As. N (A1 \{a}U{a'}) = NA;.

CHAPTER 6. POLYHEDRAL WIDENINGS 73

Proof Let N(A1 \ {1} U {a1}') = NA1, then by Lemma 6.2.1 o] performs the same
functions with regard to delineating affine space as a;. Therefore since ao performs the
opposite function to «; it follows that as of performs the opposite function to o}, af
can replace ag in A1 without changing the shape of NAj. |

Corollary 6.2.2 Let NA;, NAz be affine sets in R” such that NA; C NAs but Ay ¢ A;.
Further let dim N A; = m;, where 0 < m; < n—2, and 0 < me < n — 1. Then
Vao! € As.Ja € A1 . N (A1 \ {a} U {a’}) =NA;.

Proof Consider NA, = NAj, such that A; # Aj. By Corollary 6.2.1 every pair of
opposing half-spaces in A}, can replace a pair of opposing half-spaces in A;. Suppose
that a pair of opposing half spaces is removed from A/, and the remaining non-empty set
is called A,. Every pair of opposing half-spaces in A can still replace a pair of opposing
half-spaces in Aj, as the removal of half-spaces from A/, does not affect the shape of A;.
However, now NA; C NAs, and hence, Vo' € Ay .Ja € A1. N(Ai\{a}U{d'}) =NA;.m

6.3 Representation Independence

This section is concerned only with demonstrating that 7* is representation indepen-
dent when certain pre-conditions are met. The demonstration is couched in terms of the,
now identifiable, unique spatial properties of polyhedra in R™ rather than in algebraic
terms. Therefore, those readers with a primary interest in the observations that are
the outcome of this investigation, may wish to proceed to Section 6.4 and the ensuing
sections which build on the insights afforded by this investigation.

The following definition is taken from [CC92al, but it should be noted that in [Hal79]
the definition given in association with this widening makes the assumption that equal-
ities are represented as pairs of opposing inequalities. A discussion concerning the
possible outcomes if this assumption is not adhered to, concludes this section. The
widening is defined as follows:

Definition 6.3.1 Let P; € P(Half"), and NPy,...,NP;,... be an increasing sequence
such that Vi < j. N P; C NP;. Then the sequence Q; = Q;—1 VH P; is defined: Q; = P;
when ¢ = 0 and Q; = Q;_; U P/, otherwise, where

i1 = {BEQim1| NP CPB}
Pl = {yeP|3BeQiannN(Qi-1 \{BtU{"}) =NQi-1}

To support the proof that the widening 57 is representation independent it is necessary
to affirm certain properties of the iterates that are the outcome of applying the widening
to a sequence of increasing polyhedra. The proof of the supporting Lemma 6.3.2 is by
induction and it depends on the fact that in the widening sequence it can be asserted
that whenever an inequality is in B,Qi717 the B component of Q}_; it means that the
inequality supports NP;. This last is shown formally in the following Lemma 6.3.1.

Lemma 6.3.1 Consider Q);—; in the sequence defined by Definition 6.3.1, so that QQ;—1 =
Qi_o 7 P;_y, for all i > 2. Assume that V3 € Bg,_, . f constrains N P; 1, then
VB € Bg,_,.|NP; C B — [supports N P, and if further, the affine hulls of NP;_;
and NP; are the same then § also constrains NP;.

CHAPTER 6. POLYHEDRAL WIDENINGS 74

Proof (i) The proof is by contradiction. Consider § € Bg, ,. N FP; C B.

suppose NP, C rif

then Vz € rb [T ¢ NP}

but dy e rbB[y € tb N P,_1] as [constrains P

and VZ e tb NP1 [z € NP]] as P,_1 C NP; by defn P,
hence NP, Z rip by contradiction

therefore 3z € NP; [€ rbf] as NP Cp

and B supports N P; by Definition 6.1.7 of supports

(ii) Let aff NQ;—1 = aff NP;,_; = aff NP;, and their dimension be m. Since V3 € By,_, . f
constrains both NQ;—1 and NP;—1, and aff N Q;—1 = aff N P,_1, it follows that
constrains both NQ;_1 and NP;_; at a facet.

VB € Qi—1 [P constrains N P;_;] assumption

therefore rbfNNP_1 CNPF; as NP_1 CNP;

suppose 3T € tbfNNP,_1 [T € ri N P}]

then JgeNP.y¢p

but VienPk.zep as NP, Cp

therefore Az € thfNNP;_1.[Z € ri N P;] by contradiction

and VZe rtbfNNP_1.[z€ b NP] as NP_; CNPF

now dimrbgNNP_1=m-—1 as (B constrains P; 1 at a facet of N P;_4
but Vf¢e F¢(NP;).dim f¢=m—1

therefore rbfNNP; € F¢(NE;)

and B constrains N F; by Definition 6.1.14 of constrains

[

Corollary 6.3.1 It follows from Lemma 6.3.1 that aff NQi—1 = aff NP, — Q,_; =
{8 € Qi1 | Bconstrains NP} and aff N Q11 # af NP — Q. , = {8 €
Qi—1 | B supports N P;}, where Q)_, is defined as in Definition 6.3.1. n

The following Lemma 6.3.2 demonstrates:

e how the affine hull and therefore the dimension of successive iterates is dictated
by that of NP;, and

e how the elements of the A and B components of); 1 and P;, are placed in the
A and B components of Q;_1 vt P;.

It is this result that allows the proof strategy in Proposition 6.3.1 to safely focus on the
A and B components of the operands independently and to pin-point the area where an
element from an A component in Q;_; will become an element of the B component in
Q;_1 V™ P,. In an abuse of notation the space N{3}, is abbreviated to 3 for reason of
clarity; it will be clear from the context whether 3 is an inequality or the set of points
that satisfy .

Lemma 6.3.2 Let Q;, P; € P(Half™) and Q; = Q; 1’* P; as in Definition 6.3.1. Then
o aff NQ; = aff N F;

e Q; ={B | B constrains NQ;_1 A [constrains N P;}

CHAPTER 6. POLYHEDRAL WIDENINGS 75

o aff NQ;_1 = aff NP, — ﬂQ;_l = ﬂPi,

o af NQi_1 C af NP — NP/ CNQ;_,

Proof Let Q;—1 = Ag,_,UBg,_,,and P; = Ap,UBp,. Hence, Q; = A’QF1 UB’QFIUAQ%U
B},Z_, by definition of 7*. The proof is by induction on the number of representations of
polyhedra, ¢ in the sequence. The tactic employed is to consider the A and B components
of each operand separately and then to consider how they interact with one another to
define the new polyhedron NQ;. So for each widening operation, Q; ; = A'QF1 U Bbiil
and P/ = A, UB}p.

e The base step:

— Case l: af NPy=aff NP

* consider A, ={a € Ap, | NP Ca}
Va € Ap, . [NP1 C o] as NAp, = NAp,. Hence, A = Ap, and NAp, =
ﬂApO.

* consider Ap = {a' € Ap, | 3B € Po.[N(Po \ {8} U{a}) =NH]}
Vo' € Ap, . [3a € Ap, . [N(Py \ {a} U{a'}) = NPR]], by Corollary 6.2.1.
Hence A = Ap, and NAp = NAp,.

* consider Bp = {8 € Bg, | NP1 C B}. Therefore, by Corollary 6.3.1:

By, = {B € Bp, | B constrains N Py}
= {B€Bp, |IyeBp .[hy € HE, hl € HE . [} = b1}

* consider Bp = {v € Bp, | v constrains N Py}. This means that:
Bp, ={y € Bp, |36 € Bp,.[h3 € Hp,, hf € Hp, . [h] = hgl]}

Therefore, if 8 € B};O then there is a v € B},l such that their intersection
with the affine hull of both Py and P; is the same, and vice versa. Hence,
N(Ap, U Bp) = N(Ap, U Bp) as NAp = NAp and NBp = NBp, that is
NPy = NP;.

— Case 2: af NPy C aff N P,

* consider Ay = {a € Ap, | NP1 C a}. As aff NPy C aff N P; this means
that a € A}DO either supports NP; at an improper face or at a proper
face of NP;. Therefore:

Ap = {a€Ap | NP Crbaju
{a€Ap,| NPLCa ANP, Z rtba}

The intersection of those elements of A’P0 that contribute improper sup-
porting hyperplanes of NP; will be aff N P;. The remaining elements of
ASDO contribute proper supporting hyperplanes of NP; and therefore will
contribute to the definition of NQ; within aff N Q1. It follows that if «
contributes a proper supporting hyperplane to NP; then a supports NPy
and therefore 3y € Bp, . [Elhg € H17;1 . [hf C rba]].

CHAPTER 6. POLYHEDRAL WIDENINGS 76

Therefore, ﬂAjDO defines either an affine space equal to the affine hull of
P, or a space within the same affine hull as NP that is defined by some
elements that support NP;. (2)
* consider A, = {a' € Ap, | @ constrains N Pp}. By Corollary 6.2.2:
Vo' € Ap, .[3a € Ap, . [N(Ap, \ {a} U{a'}) = NAp]], therefore A} =
Ap, and mA’P1 =NAp,.
* consider B, = {8 € Bp, | NP1 C B}. Therefore, by Corollary 6.3.1:

= {B € Bp, | B supports N P}

= {8€Bp |IyeBp, . [} € Hy, bl € HE . [hf C b1}
Since dim hg < dim hz, and NFy C NP, it follows that the relative
tangent hyperplane to NPy contained within the boundary of 3 is a subset
of the relative tangent hyperplane to NP; contained within the boundary
of ~. If h; C rb g then § constrains NP; as it contains a relative tangent
hyperplane of NP;. However, in general it is not possible to assert that
any element of B}JO constrains NPy, only that it supports NP;.

* consider By, = {vy € Bp, | v constrains N Py}. This means that:
Bp, ={y € Bp |38 € Bp,.[hl € HE , b}y € H} .[hY > b))}

From the above aff N @1 = aff N P, and the definition of ; within its
affine hull is described by the conjunction of (i) any element of A}, that
does not contain NP; within its relative boundary, and (ii) the elements of
B}, and Bl . Since the elements of B}, constrain NPy by definition, but
those in A},O or B}JO only support NP; any a or S that is not a constraint
on P; will be redundant in the intersection of the union of those two sets.
On the other hand, if any « or § is not redundant it must constrain NP}
(that is, it intersects the affine hull of NP;) at the same place as some 7y
from Bp, . Therefore, if all as in A, and s in B, constrain NP it follows
that NP} = NF;. Hence, in general N(Ap U Bp) C N(Ap U Bp), that is
NP C NPj and as Qo = Py then NP; C NQy.

e The induction step:

By the induction hypothesis:

af NQ;_1=aff NP4

— Qi—1 =1{B | B constrains N P;_5 A [constrains N P;_1}
aff NQi 1 =aff NPy — NQ; ,=NP

—af NQi 2 Caff NPy — NP, CNQ} ,

Since

— Case 1: aff NQ;_1 = aff NP,
* consider A’QF1 ={acAy,_,| NP Ca}
Va € Ag,_, -[NP; C o] as aff N Q;—1 = aff N P;. Hence Ay, | = Ag,_,
and NA,, | =NAg, ;-

1

CHAPTER 6. POLYHEDRAL WIDENINGS 77

* consider A,Pi ={d' € P |30 € Qi1 [N(Qi-1 \ {B} U{a}) =NQ;-1]}
Vo! € Ap,.[Fa € Ag,_, . [N(Qi—1 \ {a} U{'}) = NQ;_1]] by Corollary
6.2.1. Hence Ap = Ap, and NAp = NAp,.

* consider B, = {B € Bg,_, | N P; C B}. Therefore, by Corollary 6.3.1:

Bp,_, = {B€ Bg, , | B constrains N F;}
= {8€Qi1|3veBp.[3nf € HY), | .3hl € HE . [nf = b1}

* consider By, = {7y € Bp, | 7 constrains N P;_1}. That is:
Bp, ={y€Bp .38 € Bg,_,.13n] € HE, .30 € H), | [T = hf]]}

Therefore, if § is in Bbi_l then there is a vy is in B},i such that the intersection
with the affine hull of both N@Q;_1 and NF; is the same and vice versa which
means that ﬁBé2 = NBp.. Further, aff N1 Q;—1 = aff NQ;_; = aff N P, =
aff N P. Therefore N(Ag,_, UBg,_,) = N(Ap, UBp) as NAy, | =NAp and
NBy, , = NBp,, that is NQ;_; = NP,
— Case 2: aff NQ;_1 C aff N F;
* consider Ay, | ={a€Aq, , | NP Ca}
Following the same reasoning as in the base step Case 2: for A}, (see
2), aff N Ay, | = NAp, and Aj,, | may contain elements that do not
contribute to an improper supporting hyperplane, but that do support
NPF;, and possibly constrain NFP;. Therefore:

-1

Ag,, = {a€dq, | NP Crbalyu
{a€dg, ., | NP, CaAnP; Z rba}

The intersection of the relative boundaries of those elements of A,C2¢_1
that contribute improper supporting hyperplanes of NP; will be equal to
aff N P;. Those elements of A’ that contribute improper supporting
hyperplanes of NF; will contrlbute to the definition of NQ; within aff N
Q;. It follows that if & contributes a proper supporting hyperplane to NF;
then a supports N P; and therefore 3y € Bp, . [h; € le;l_ [h; C rba]].

Therefore, ﬂA’Qi_l defines either an affine space equal to the affine hull
of P;, or a space within the same affine hull as NP; that is defined by
some element(s) that support NFP;. (2)

* consider A, = {a € A | a constrains Q; 1}

now NAg, , CNAp, as aff NQ;_1 C aff N P,
and Vo' € Ap,.[Ja € Ag, , .
N(Ag, , \ {a}U{d'}) =nNAg, ,]] by Corollary 6.2.2
therefore A}Di =Ap,

* consider B’Qi—l ={B € Q;—1 | N P; C 8}. Therefore, by Corollary 6.3.1

B, , =1{B € Bq,_, | B supports N P;}
={B€Bq, ,|3veBp,.[hy c Hj,_,hi € HE .[h C R}

CHAPTER 6. POLYHEDRAL WIDENINGS 78

From the above aff N Q; = aff N P;, and the definition of (); within its
affine hull is described by the conjunction of (i) any element of AIQi—l that
does not contain NP; within its relative boundary, and (ii) the elements
of B, | and Bj,. Since the elements of B}, constrain NP by definition,
but those in Ay, | or By | only support NPy any « or (8 that is not
a constraint on P; will be redundant in the intersection of the union
of those two sets. On the other hand, if a or § is not redundant it
must constrain NP; (that is, it intersects the affine hull of NP;) at the
same place as some 7 from B},Z_. Therefore, if all as in A,C2¢_1 and Ss
in By, | constrain NF; it follows that NP/ = NQ;_;. Hence, in general
N(Ap, U Bp,) CN(Ap, , UBp), that is NP, CNQ;_;.

* consider B,
k3

By ={y € Bp, | v constrains N Q;_1}
={yeBp |36 €Bq,_,.[h) € H}, hy e HY . [T C hi]}
Therefore, as before, when 8 € Bbiil or a € A’qu support NP; but do not
constrain NP, then in N(Ap, | UBg, | UAp UBp) it follows that 8 and «
will be redundant. This means that NP/ C NQ’_, and that all elements of
P/ U Q)_, constrain NP;.

Hence, by induction the required properties are proven for @;, for all integers, ¢ > 0.
[

The following proposition builds on the previous lemmas allowing a significant reduction
in the number of cases that need to be considered in order to confirm that /7 is rep-
resentation independent. In the proof that follows, recall that when a linear inequality
in a representation of a polyhedron constrains that polyhedron (Definition 6.1.14), it
means that the linear inequality makes a contribution to the shape of the polyhedron
by contributing either to the delineation of the affine hull of the polyhedron or to the
delineation of the polyhedron within its affine hull.

Proposition 6.3.1 Let P; € P(Half™) and NP, be an increasing sequence of polyhedra.
Further, let NP; = NR; and Q; = Q;_1 VH P, and K; = K;_1 VH R;. Then, providing
equalities are represented as pairs of opposing inequalities, NQ; = NK;, that is, /7 is
representation independent. Put NQ = NQ;—1 = NK;—1 and NP = NPF; = NR;.

Proof Recall that 77t is defined over the elements of the sets of inequalities in the
representation of polyhedra in R™. When both polyhedra are of dimension n since the
representation of an n-polyhedron in R™ is unique the result follows. It is sufficient to
consider a) aff N P;_; C aff N Q;_1, as by Lemma 6.3.2 aff N Q; = aff N P;, b) the B
components of P/ and R}, as by Lemma 6.3.2 aff N Q; = aff N P;, and NP/ C NQ’_;.

e Case 1. aff NQ;_1 = aff N P, and dim N Q;_1 < n.

VB € Bp, .30 € Bg,.fNaff NQ = p'Naff NQ, as aff NQ = aff N P. Therefore,
whenever § constrains NQ, £’ is a constraint on NQ. Hence, NP/ = NR, and
NQ; = NK;.

CHAPTER 6. POLYHEDRAL WIDENINGS 79

e Case 2. aff NQ;—1 C aff NP

By Definition 6.3.1, V8 € P].[constrains NQ and (3 constrains NP; and Vf3' €
R} .3 constrains NQ and /3’ constrains NP.

NP; = NR; = NP, therefore V5 € Bp, .30 € By, .N af NP =N aff NP and
vice versa. As aff N Q; = aff N K; = aff N P, and aff N Q C aff N P it follows
that whenever 3 € Bp, constrains both NQ and NP, there is a 5’ € Bp, that also
constrains both NQ and NP, and vice versa.

Therefore, NP} = NR; and hence NQ; = NK;.

Therefore, providing equalities are represented as pairs of opposing inequalities, since
in all cases NQ; = NK;, the widening 7’ is representation independent.]

6.4 When is this Widening Useful?

Properly, the first question that arises when considering polyhedral approximation (or
any other spatial approximation) is: When can increasing sets of points be sensibly
approximated? Sensible approximations of increasing sequences can only be made when
there is a repeating pattern associated with an identifiable subset of the whole domain.
The widening described here is useful and it is, perhaps, simpler to start with what is
useful rather than what is not. At the outset of this discussion the widening could be
informally described as returning the common bounds of its operands. It is now clear
precisely what this means. The widening returns a set of half-spaces, where each element
of that set is a supporting half-space to and that constrains both of the polyhedra that
are the operands. Therefore, this widening will return R™ if there are no half-spaces
that constrain both operands, that is, if the increasing sequence is such that there are no
bounds common to successive polyhedra then the widening will return R™. This means
that the widening will be most useful when the monotonic function that generates the
increasing sequence of polyhedra is not only monotone on the polyhedra, but also, over
each variable in the set X, of n variables over which the polyhedra in R™ are described.
That is, if NP € R*, and F is a monotonic and increasing function over polyhedra in R™
then for every (z1,...,2,) € NP and everyi € [1,...n], thereisno (z},...,z}) € F(NP)
such that =} < x;. (This covers the case where the polyhedra increase in a positive way
over the variable set, but would similarly apply if they were to increase in a negative
way over the variable set. That is, if NP € R®, and F is a monotonic and increasing
function over polyhedra in R™ then for every (zi,...,2z,) € NP and every i € [1,...n],
there is no (z},...,z),) € F(NP) such that &, > z;.) This is confirmed by the example
in [BJT99] referred to in Chapter 3, Figure 5 where there was only one supporting half-
space that constrained every polyhedra in the sequence and the increasing sequence
was not monotone over the variables « and y. Now consider Figure 15, that depicts a
sequence of increasing squares with no common bounds, a sequence of irregular unbound
polyhedra also with no common bounds where the widening would return R?, and finally
a sequence of polyhedra with common bounds, where the widening would return the
shaded space.

CHAPTER 6. POLYHEDRAL WIDENINGS 80

?7(A X

Figure 15: Increasing sequences of polyhedra.

6.5 Representation of affine hulls

" is defined with representations of polyhedra as sets of inequalities. If the inequalities
that delineate the affine hull of a polyhedron are not pairs of opposing inequalities then
in certain circumstances the outcome of the widening may not be as expected. This is
demonstrated in Section 6.5.1. In section 6.5.2 the consequence of lifting the restriction
on equalities in the representation of a polyhedron is considered.

6.5.1 Inequalities

The pre-condition that affine hulls be represented as sets of opposing inequalities sug-
gests that in an automated system some kind of re-write system would have to be
employed as no solver would return equalities as opposing inequalities. In fact this is
suggested in [HPR94] where this widening is proposed in an abstract interpretation that
models reachable states of hybrid automata. Given the previous discussion it is clear
that this pre-condition is in place so that when the dimension increases in the sequence
of P;s entailed information is not lost. However, this pre-condition masks the fact that
an affine space can be represented as a set of linear inequalities that do not contain any
pairs of opposing inequalities and if this is the case then it is possible for the widening
to return different outcomes for different representations of the same polyhedra. Repre-
sentation independence relies on the inductive proof of Lemma 6.3.2 which is supported
by Corollaries 6.2.1 and 6.2.2 to auxiliary Lemma 6.2.2 that only holds when affine
sets are represented as pairs of opposing inequalities. Consider Example 6.5.1 and the
associated diagram, Figure 15a (at the end of this chapter).

Example 6.5.1 Let Pjpy ={y > 11—z, y>2x+ 1,y <1}, Pp={0<z,2<0,1<
y,y<ltand P, ={0<uz,2<3,1<y,y<1}. Both Py, and Py, represent the point
(0, 1); Py represents the line segment y = 1 between and including z = 0 and z = 3;
and P; represents the triangle bound by y < z,1 <y and = < 3. Consider the sequence

CHAPTER 6. POLYHEDRAL WIDENINGS 81

of Q;s generated by v, first using Py, then the sequence of Q;s using Ppy.

Qo = Poa Qo = Py
Qi=Qv"*P = QyUP] QL=Quv"*P = QyUP]

Qy = {y>1-a,y<1} Q = {0<=z,1<y,y<1}

Pl = {0<z,y<1} Pl = {0<2,1<y,y<1}

Qur = {y>1-=z,y<1} QUP, = {0<z,1<yy<1}

Q=1 vV"*"P, = QLUP; Q=Q:1v"*"P, = Q|UP}

Qy = {y>1-z} Q, = {0<z 1<y}

Po= 9 P, = {1<y,y<z+1}

QUP, = {y>1-ux} QUP, = {I<yy<z+l1}

Minimal representations of affine sets do not necessarily have the same number of
elements in the way that Bp component of the representation of an n-polyhedron NP
does. Recall that in the representation of an m-polyhedron, m < n, the number of
facets is constant, therefore, as each facet is contained within a single relative tangent
hyperplane, the number of relative tangent hyperplanes is constant. Similarly, each
relative tangent hyperplane is contained within a the relative boundary of a half-space
in the representation. Hence |Bp| is constant for all representations of NP. However,
the situation is not so straightforward with affine spaces as the example illustrates. In
the example NQg is represented by just three inequalities, although there are many
minimal representations of NQo as two pairs of opposing inequalities. The problem
occurs because only one of the inequalities that delineate the affine hull of NP; can
actually replace any element of (g without changing the shape of NQqg. The example
sequence with Py, converges to a single half-space within two iterations and it can never
grow, as a single half-space has a unique representation so no new element of any P;
could constrain it, no matter how NF; grows. In this example if NP;’s growth is restricted
to the increase in an upper bound for x then NQ; will be a safe approximation.

This prompts the question: Is it simply the odd number of constraints with no
opposing pairs that causes this phenomenon? The answer is that it is not simply the
lack of opposing pairs, as the following Example 6.5.2 illustrates. Here Py, has no
opposing pairs, but the widened @Q;s with Q9 = Py, are coincident with those that that
arise from the sequence with Qg = Pyp.

Example 6.5.2 Let Pp, = {1 <z, 2 <y, z+y <2}, Ppp={1<z,2<1,1<y,y<
1} A={0<uz,2<3,1<y,y <1}. Both Py, and Py, represent the point (1, 1);
P represents the line segment y = 1 between and including x = 0 and « = 2; and P»
represents the triangle bound by y < z, 1 < y, z < 3. Consider the sequence of Q;s

CHAPTER 6. POLYHEDRAL WIDENINGS

82

generated by 7™, first using P, then the sequence of Q;s using Pyp.

Qo = Poa Qo = Pop
QL=Qv"*P = QyUP] QL=Qv"P = Q) UP
Qb {L<a} Q0 {1<z,1<y,y<1}
Pl = {1<2,1<y,y<1} Pl = {1<z,1<y,y<1}
Qo U Py {1<z,1<y,y<1} Qo U Py 1<z, 1<y, y<1}
Q=1 V" P, QU P, Q=1 V" P, QLU P
Qi = {1<z, 1<y} Qr = {1<z, 1<y}
P, = {y<=z 1<y} P, = {y<z 1<y}
QLUP, ly<ez 1<y} QLUP; {y<z, y<1}

Further questions arise: Is there any way of deducing that a representation without
opposing-pairs is going to cause this type of problem? Is it worth the trouble to find out?
Answers to both of these questions are pre-empted by the next section, however, beyond
these two questions is a further consideration that is important. The post conditions for
this widening are dependent on a pre-condition and although the outcome in Example
6.5.1, where the pre-condition is not met, is a safe approximation it does not return the
expected outcome, the common bounds. In a situation where the use of the outcome
depends on it being the expected outcome this may have serious consequences.

6.5.2 Equalities

Recall that in the widening, Q; 1V P, = Q! UP/,P/ =8 € P,.38 € Q. ;.[N(Qi-1\
{BYU{B'}) = NQi-1]. The aim of the widening is to retain the common bounds and
these are in effect the relative tangent hyperplanes within the relative boundaries of
the elements of each representation. The idea is to focus on the relative boundaries
as these are instrumental in delineation of the polyhedra. Suppose that affine hulls
are represented as equalities, so that the representation of a polyhedron is a set of
inequalities and equalities. In this case, then given that by definition, the relative
boundary of an affine space is the affine space itself, P/ could easily be computed from a
set of mixed equalities and inequalities. Given also that by Lemma 6.3.2 NP} C NQ:_,
it follows that a widening defined:

Qi—1 vV Pi = P where P/ = {3’ € P; | V3 € Qi—1.tb' N rb 3 # ¢}

could be computed (in SICStus Prolog, for example) by posting the relative boundaries
of each element in); 1 to the store in turn and then posting the relative boundary
of each element in P; also in turn onto the store (by simply replacing inequalities with
equalities). As each relative boundary of an element of P; is posted to the store, if the
outcome evaluates to true then retain that element and continue, if not just continue
until all the elements of P; have been tested. Since @; is made up of elements from
P;, the rotations that occur when there is a dimension change need to be kept and the
criterion here will allow this. However, this set of tests will have the effect of throwing
out the translations of any previous bound as there will be an instance when a relative
boundary of an element in ;_; has an empty intersection with the relative boundary
of an element of P;.

CHAPTER 6. POLYHEDRAL WIDENINGS 83

Since no re-writing is required and solvers handle equalities faster than inequalities
such a widening based on P; would be computationally advantageous. Further, this
widening would adequately cover dimension changes when they occur so could be applied
at any point in the increasing sequence.

Example 6.5.3 Let an increasing sequence of polyhedra be defined by Py = {z =
Ly=1}PA={1<z,2<3,y=1}, b ={1l <y,y <z, z <4}, and let Qo = Fp.
In the table that follows the first and fourth columns show the initial posting to the
store for the computation of ()1 and ()2 respectively. The second and fifth columns
show each relative boundary that is posted individually to the store. If the intersection
of an element in these columns with each of those in the first and fourth respectively
is non-empty, then the linear inequality that represents the half-space that has that
relative boundary is retained, in columns three and six respectively, for Q1 and Qs.

thB.8€Qo | thp' .f e P | € tbf.8eQi | hp .feP| B €@

r=1y=1 rz=1 1<z r=1,y=1 y=1 1<y
y=1 y=1 y=z y<zx
=3 — r=4 —

Hence the computation of the widening:

Qr=QvhP = {1<z,y=1}
Q=1vP = {1<y y<z}

A further observation is that an initial step of stripping out like equalities, that is
focusing the computation on the smallest affine space that contains both polyhedra,
will further simplify the computation. In the example above, that would mean retaining
y = 1 for Q;, but removing y = 1 from the tests carried out by the solver. This last
technique can be exploited in other circumstances as described in the next Section, 6.6.

6.6 Reducing Operations to the Affine Hull of the Union
of Both Operands

Two observations were made early on in this chapter: i) that considering a polyhedron
within its affine hull rather than just within R allowed useful insight into alternative
representations of a polyhedron and ii) that the representation P € P(Half™) of a
polyhedron may be considered in two distinct components: the Ap component that
constitutes the delineation of aff P and the Bp component that delineates NP within
its affine hull. Consider the operations over polyhedra, namely, entailment, the closure
of the convex hull and intersection. It is clear that for the first two of these operations
(this discussion has focussed on binary versions of intersection and the closure of the
convex hull, but since these operations are both commutative and associative, there is
no loss of generality) then the computation can be restricted to the affine hull of the
union of the operands. In the case of program analyses of the kind proposed here these
operations are conducted over polyhedra P;, P» where aff P; C aff P>, so there may
be computational advantages to be gained by reducing the amount of work required by
the constraint solvers. The techniques described below will be most efficient when the
output from the solvers is syntactically consistent between iterations.

CHAPTER 6. POLYHEDRAL WIDENINGS 84

Entailment Consider NP;, NP> where their respective dimensions, mi, mg are such
that m; < n, and NPy = NP, is to be computed. When aff P} C aff P, entailment can
be reduced to entailment within aff P» which means that like equalities can be discarded
from both P; and P». This means that the entailment test will in consequence be cheaper,
as removing the equalities will be the equivalent of projecting out some variables and
reducing the dimension, before the solvers begin computation. For example:

Example 6.6.1 Let NP, NP, C R? such that P, = {z = 1,y = 1}, » = {1 <
x, x < 2,y = 1}. Suppose that the computer representation in the analysis of a logic
program is such that P; = [equals(var(1),1.0),equals(var(2),1.0)] and P =
[lesseq(1.0,var(1)),lesseq(var(1),2.0),equals(var(2),1.0)]. Since aff NP} C
aff N P», where the computer representation of P; and P» are lists containing identical
elements of the form equals(argl, arg2) before any elements are decoded and posted
to the store the element that denotes y = 1, namely equals(var(2),1.0) is removed
from both representations. This will simplify solver computation by projecting out
y and reducing the entailment check to verifying whether or not N{z = 1} entails
N1l <z, z <2} .

Closure of the Convex Hull In this case the common affine constraints should be
retained for inclusion in the outcome of the closure of the convex hull operation, but
otherwise computation can be reduced to that within the affine hull of the union of the
operands. In the context of the analyses described here this is simply the affine hull of
the operand with the greater dimension.

Intersection The situation is a little more complex here, as some pre-computation
manipulation of the representations is required, and it is a moot point as to whether
the time taken by the pre-processing would outweigh the advantage gained by posting
a simpler computation to the constraint store.

Example 6.6.2 Let NPy, NP CR3suchthat Py = {1 <z, 2<3,y<z,2=0}, P =
{0<z,2<4,y=2,-1<z z<1}. In asimilar way to that described in the previous
example, the underlined constraints that are equalities can be removed from those to
be posted to the constraint store, but retained for the solution. When the equalities
equate a variable with a constant then the variable should be replaced with the constant
wherever it occurs in the rest of the constraints. In this example, this would leave the
constraints store to compute {2 < z, 1 < z,z < 3} N {0 < z,z < 4}, and then the
outcome, {2 < z, z < 3} is added to the equality constraints {y = 2, z = 0}, for the
solution, {2 <z, z <3,y =2, z=0}. .

Two further considerations are i) that in the case of equalities between variables, a
choice of which variable to eliminate would have to be made and ii) as happens in the
case above with the substitution z = 0 into the constraints on P, it would be sensible
to discard inequalities like —1 < 0, but of course, this would require their detection.

6.7 Summary

The outcome of this investigation has yielded a precise understanding of when it is
possible to have alternative representations of the same polyhedron as a set of linear

CHAPTER 6. POLYHEDRAL WIDENINGS 85

inequalities. Further, as a result of this understanding it has been demonstrated that the
widening of [Hal79] is representation independent in terms of the spatial attributes that
uniquely define a polyhedron providing equalities are represented as pairs of opposing
inequalities. A new less complex computation approach is suggested and some further
ideas for reducing the computation involved in some frequently used operations over
polyhedra are explored.

A constraint is a closed supporting half-space that either i) contributes an improper
supporting hyperplane to the definition of the affine hull of an n-polyhedron in R", or
ii) contributes a relative tangent hyperplane to the definition of an m-polyhedron in R”
within its affine hull. Hence, a set of constraints defines the bounds of a polyhedron
and the widening, 7", returns the common bounds of its operands, also a polyhedron.
The choice criteria for 577 that are applied to the constraints in Q;_; and P; relate to
the unique properties of the polyhedra, and this is the reason why * is representation
independent, providing the pre-condition that each equality is represented as a pair of
opposing inequalities is met. It has been shown that V3 € Q;.[5 constrains N Q;—1 A
B constrains N P;]. Since Qp is initialised to Py and in consequence, Q)1 is computed in
terms of Py and Py, it follows by Lemma 6.3.1 that the above statement can be couched
in terms of P;’s as follows Q; = {3 | Vi > 0./ constrains N P;}. There are two principle
cases. In Case 1, when the affine hulls of the operands are the same then NQ}; ; = NFP;.
In Case 2 when the affine hulls of the operands are different, then NP] C NQ;_; so that
the constraints from (;—; are superfluous. This means that the widening operation
could be reduced to computing only P;. However, the choice criterion for NQ;_; is only
less precise than that for NP} when the dimensions of the operands are different. Thus
if the widening is considered as applicable at any point in an increasing sequence, if it
is delayed until the dimension has stabilised then NQ_; is as precise as NP/; and this
technique is employed by [Sa97] who further observes that the nature of the increasing
polyhedra is such that the two way entailment test can be reduced to a one way test.
However, with an appropriate delay, Q; ; = {8 € Q;—1 | N P; C B} is also a suitable
alternative widening. This tactic, employed over equalities as well as inequalities is the
widening suggested in Chapter 5. Since the widening is delayed to allow relationships
to stabilise, the dimension of the polyhedra also stabilises and Q) ; matches P/ in
precision.

The clarification of precisely what happens spatially has allowed a further adaptation
of the original widening devised for representations of polyhedra that are mixtures of
equalities and inequalities. This widening is based on P as defined before, but with a
prescribed computation method that exploits what is known about the way in which the
different representations of a polyhedron interact and uniquely define a polyhedron. This
widening (Section 6.5.2) is potentially the most attractive as it i) is computationally
less complex, and ii) accommodates dimension changes in the sequence of increasing
polyhedra and therefore it can be applied at any point in the sequence. A further
benefit of the spatial insight afforded by this investigation is a reduced computation
technique for both entailment and the closure of the convex hull proposed in Section
6.6 that reduces solver computation to the affine hull of the union of the operands.

Finally, there remains an insight into choosing the propitious moment to widen. If
what has been observed here is associated with the observations towards the end of
Chapter 5 regarding the stabilising of relationships with different classes of predicate,
it is clear that i) the stabilising of the dimension and ii) the appearance of a constraint
that is a translate of one in the previous iteration, are both good indicators of the

CHAPTER 6. POLYHEDRAL WIDENINGS 86

stabilising of relationships. Dimension stability is likely to be simple to evaluate through
tracking equalities in representations. Translates can be recognised when there is an
empty intersection of the boundary hyperplanes of any two constraints from consecutive
iterations. Both of these techniques are relatively cheap indicators as to when to widen.

Future investigations might focus on identifying and dealing with increasing se-
quences with the potential for approximation like those identified by [BJT99] in Figure
5 and sequences that although monotonic and increasing have a decreasing rate of in-
crease that indicates a convergence to some limit.

CHAPTER 6. POLYHEDRAL WIDENINGS

87

Note, with reference to Figure 15a, the P;’s are in the middle column, the Q}s commenc-
ing with Qg = Py, are in the left-most column and the Q;’s commencing with Qg = Py

are in the right-most column.

j \lj'%&xﬁ
g
B,
Vg
/ <& a7 \ L4

=3

kYe!
555 7
Q
1Y
ﬁﬂ.}[-x
B \ 7%
&, o

& [y
e
Os=x
.
Loy $ley
\ v Llj&l
\ = Ed Foap = X
) X
J j L
Tex J
s
- —
xs2
Tk i&j
d,lj‘.:. I
ooy 7u <o,07 X
9, Q,
L4
j \lj‘éx ‘}j A&ﬂx.
a—_ss‘%
fley / ey
5,55 7 X /g-\c,[,,u 5 X

==

Qﬂjmf B, Eu,uw.._cadj %rbumt&

|
\

Q.

Sluwioes .
)

Chapter 7

@ : an Isomorphism

An Isomorphism between Abstract Polyhedral Cones and
Definite Boolean Functions

7.1 Introduction

In logic programming Boolean functions are a well-known medium for capturing depen-
dencies, typically between program variables or terms. Many of the representations of
Boolean functions are not unique and manipulation with meet and join operations can
prove computationally very expensive. In CLP systems the solvers required to manipu-
late linear inequalities are already in place. Therefore, the motivation was to explore the
possibility of representing Boolean functions with linear inequalities, so that analyses
using Boolean functions in CLP environments might be carried out without the cost of
setting up complex computational machinery.

Consider the Boolean functions over variables {z, y, z} expressing information about
a particular property p and represented by propositional formulae. For example:

formula | dependency information
x <+ y | if y has property p then x has property p
z A (y < z) | z has property p and if z has property p then y has property p

Similarly, given the observation above, this information could equally well be expressed
by sets of linear inequalities over a set of non-negative variables {z, y, z} in this way:

linear inequalities | dependency information

{0 <z, z <y} | if y has property p then z has property p
{r=0,0<wy,y <z} |z has property p and if z has property p then y has property p

However, linear inequalities cannot express all Boolean functions, for example, no linear
inequality can express x V y, conveying the information either that = has property p or
that y has property p. Linear inequalities can be viewed algebraically or spatially; so,
by considering the conjunction of its elements, a set of linear inequalities can represent
a set of points in R™. Such spaces are, by definition, polyhedra. In Figure 16 (ii) the set
of points represented by each vertex in the Hasse diagram can be further distinguished
as a cone since each space is closed under positive scalar multiplication. Since polyhe-
dral cones are ordered by set inclusion this allows a semantic ordering between sets of

88

CHAPTER 7. ¢: AN ISOMORPHISM 89

(true)

{z <y} {z >y}
(7 < y) (z = y) UTx UTx
‘ \ / ’ o0 e 20
(z < y) UTx T UTx
x/\y {r=0,y=0}UTx
(i) Boolean functions. (ii) Polyhedral cones.

Tx ={0<=z,0<y}
Figure 16: Hasse diagrams confirming an isomorphism in the dyadic case

inequalities with respect to the polyhedral cone that each set of inequalities represents.
The Boolean functions in (i) are ordered by logical consequence. The Hasse diagrams in
Figure 16, illustrate the association, an isomorphism, between certain Boolean functions
and certain polyhedral cones in the case with two variables. In the two variable case
identical diagrams confirm the isomorphism [DP90][Proposition 1.15]. In the general
case (when there are more than two variables) the proof strategy is to demonstrate that
the map is both bijective and a strict order embedding. The mapping requires a normal
form for both domains.

The remainder of this chapter is divided as follows. Section 7.2 provides an informal
view of the analogy between certain cones and certain Boolean functions. Section 7.3
demonstrates a normal form representation for Boolean functions in Def yx. Section 7.4
describes the mapping on cones that identifies the particular cones that capture depen-
dencies. This mapping is known as the abstraction. Section 7.4.2 demonstrates that
the abstraction mapping is both total and well-defined and further, that the mapping
induces a normal form representation for abstract cones in a(Cone™). Section 7.5 con-
firms that the relation between Cone™ and a(Cone™) is abstraction and that a(Cone™)
cannot be derived from Cone™ through the introduction of equivalence classes. Sec-
tion 7.6 introduces ¢x, the mapping between Def y and a(Cone™) and confirms the
isomorphism. Section 7.7 concludes. This work is based on [BK99].

7.2 Polyhedral Cones and Boolean Functions

Recall that cones are closed under positive scalar multiplication and with the exception
of the origin, a special case, they are unbound. Concern here is only with polyhedral
cones, that is, cones that are the intersection of a set of closed half spaces. A closed
half space can be represented as a non-strict linear inequality and, as illustrated in the
previous Section 7.1, it is the linear inequalities in the representation of a polyhedral
cone that allow the characterisation of dependencies.

In the discussion that follows only non-strict linear inequalities are considered but
hereafter, for reasons of readability, non-strict linear inequalities are referred to as
linear inequalities. Consider the polyhedral cone represented by the set: {0 < z, 3z <

CHAPTER 7. ¢: AN ISOMORPHISM 90

2y}. Each linear inequality describes an inter-variable relationship over a numeric do-
main that is scaled by the ratio between the variable coefficients. In the example above
the upper bound on z is two thirds of that on y, so that the relationship between = and
y is scaled by the ratio of the coefficients of = and y, namely 3 and 2 respectively. In gen-
eral a scaled relationship can only relate to variables with numeric domains. However, if
all variable coeflicients are unitary, then the relationships involve only one-to-one ratios,
for example as in {z < y}, where the coefficient both of z and of y is one. Therefore,
if variables are constrained to be either non-negative or zero and only unit variable co-
efficients are allowed then linear inequalities can characterise inter-variable dependency
relationships that are valid in non-numeric domains in precisely the same way as certain
Boolean functions.

Different polyhedral cones may encode the same unscaled inter-variable dependencies.
For example, {0 < z,3z < 4y}, {0 < z,1.2z < 0.01y} and {0 < z,x < y}, all express
scaled inter-variable dependencies with a degree of precision relevant only in a numerical
domain, but they all have the property that if y is zero then then it can be inferred
that x is zero. This property is an abstract property in that it is an approximation of
what is happening in the wider numeric domain. Therefore, by defining an abstraction
operator that captures the means to infer that variables can be assigned the value zero,
the three sets above can each be generalised to {0 < z, © < y}. Before abstraction
the linear inequalities describe scaled dependencies between variables. Hence, after ab-
straction the linear inequalities are said to describe unscaled dependencies. It is these
unscaled dependencies that map to the dependencies that can be captured by functions
in Def x. By defining an abstraction operator that effectively puts aside the non-unit
coefficients whilst retaining only the dependency aspect of the inter-variable relation-
ships, the abstract polyhedral cones can express the same dependency information as
Def x. The abstract polyhedral cones can be manipulated with the usual meet and join
operators from the more expressive domain as any cone that is generated by their oper-
ations can be abstracted to a cone represented by linear inequalities describing unscaled
inter-variable dependencies. It will be shown that abstraction collapses the infinite do-
main of convex cones to a finite subset of itself which, ordered by set inclusion, forms a
complete lattice. In order to qualify the mapping between Boolean functions in Def yx
and the abstract cones in a(Cone™) a normal form representation of Boolean functions
in Def y is required. A Boolean function encodes, for each variable, inference rules that
are a means of inferring that the variable is true when certain other variables are true.
The next section derives a unique representation for Boolean functions as propositional
formulae. For each function, this representation is in the form of conjoined implications
where the implications are an explicit description of all of the inference rules for each
variable.

7.3 Representation in Def

Various representations of Boolean functions can be derived from the conjunctive normal
form of a definite sentence, AJ" ; (V' z;;) where each x;; is either a propositional variable
or the negation of a propositional variable. Reduced Monotonic Body Form [AMSS98,
Dar91] is such a variant where each variable occurs exactly once as a head and each
body is not only monotonic, but the variable in the head does not occur in the body.
A function f € Defy iff f can be represented in Reduced Monotonic Body Form

CHAPTER 7. ¢: AN ISOMORPHISM 91

[AMSS98, Dar91].

Definition 7.3.1 A formula: .
/\ T; +— M;
i=1
is in Reduced Monotonic Body Form (RMBF) iff each M; € Monx\ (4,3 -

Definition 7.3.2 A Boolean function f = A F, described over a set of variables X is
in Definite Monotonic Body Form (DMBF), iff the following conditions on F' hold:

F={y< AY|VyeX.VY CX/{y}.[f Fy« AY AVY' CY.[fly < AY]}

The definition of DMBF is such that F' contains all of the implications for a particular
variable that are entailed by f and including explicit transitive dependencies and no
implication in F' will entail any other in F. As transitive dependencies are explicit,
DMBEF is said to be in orthogonal form.

Example 7.3.1 Consider fi = A{z <y, y <z, } and fo = A{z +y, x + 2, y + z}.
Clearly f1 = f2, but the representation of f; is not in orthogonal form whereas that of

f2 1s.]

Proposition 7.3.1 If a formula f € Def x then f can be represented in Definite Mono-
tonic Body Form.

Proof A function f € Def x iff f can be represented in RMBF [AMSS98]. Let f =
/\ M B where
MB = U?:l{a:i <~ M; | M; € MOHX\{%}}

be in RMBF. The proof is in two parts.

Part 1. By relaxing the reduced condition, that each variable occurs at least and only
once as a head, a set of implications F’ can be derived from those in M B such that
AF' = A MB. The aim is to derive for each variable z;, that is not implied only
by false, a set of implications, F;, such that the body of each implication in F; is a
conjunction of propositional variables and then F' = J;.7 Fi.

The proof is by induction on the depth, &, of the formulae that compose M;.

e Base Step: Consider x; «+ M; where k = 0, that is, there are no connectives.

— x; < x; where ¢ # 7, is in the required form.
— x; « true = z; +)\ ¢ [Dar91], which is in the required form.
— x; « false is a tautology and can be discarded.
e Induction Step: Now consider z; - M;, where k > 0, and by the induction hy-
pothesis, let every formula M; of depth k—1 or less be expressible as a conjunction

of variables in the set X;, such that z; ¢ X;. Since M; can only be constructed
from Monx there are two cases to consider, M; = fi A fo and M; = f1 V fa:

— Case 1: z; < fiA fo. By the induction hypothesis f; = A X} and fo = A X2.
Therefore, F; = {z; + A(X} U X?)} and is in the required form.

CHAPTER 7. ¢: AN ISOMORPHISM 92

— Case 2: z; < f1V fa2. By the induction hypothesis f; = A X} and fo = A\ XZ.
Therefore, since z; + AX} VAX? = z; < AN X} A i+ A\ X? it follows
that x; < f1 V fa can be replaced by the conjunction of the two implications

on the right hand side of the equivalence, that are both in the required form.
Hence F; = {x; + N\ X}, = + N X?}.

Hence as the hypothesis holds when £ = 1 and when k > 0, by the principle of math-
ematical induction a function f € Defx iff f can be represented as A\;c.rz; + A X;
where X; C X \ {z;}. The condition on X; arises as in RMBF each M; € Monx\ (4,}-
Let Ujcq1..ny Fi = F' and then AF' = A MB. Providing F’ is derived from MB,
in the manner of the inductive proof, transitive dependencies will be explicit. Further,
y<— \NY € F/ + fEy+« AY and since no single implication in F” can entail another
with a different single variable in the head, y < AY € F/ — VY CY.[f Fy+ AY'].
Part 2. Now consider the definition of DMBF and a Boolean function f = A F' where:

F={y« ANY|fEy< ANY AV CY.[fEy< AY']}

It follows that if f € Def x and f can be represented as A F’ the f can also be repre-
sented as \ F. F' C F, and \ F' = \ F, therefore f € Def x iff f can be represented in
DMBEF.

]

7.4 The Abstraction of Cone™

This section is divided into subsections as follows:
e 7.4.1 defines the mapping between polyhedral cones and abstract polyhedral cones.

e 7.4.2 comprises a discussion and proofs that demonstrate that the mapping is
well-defined and prescribes a normal form for abstract cones.

e 7.4.3 defines the meet and join operators for abstract polyhedral cones and demon-
strates that abstract cones form a complete lattice.

A polyhedral cone is the set of points contained by the intersection of a set of closed
half spaces. As cones are closed under positive scalar multiplication this means that the
closed half spaces have boundary hyperplanes that pass through the origin. Therefore
the linear inequalities that represent such half spaces are of the form bz < 0. For exam-
ple, see Chapter 4 Example 4.1.3. By constraining variables to non-negative values and
restricting variable assignment only to zero, non-numeric dependencies can be described
by linear inequalities with variables that have only unitary coefficients!. Recall that dif-
ferent sets of inequalities can encode the same unscaled dependencies between variables;
for example, x < 3y, and = < 0.6y express the same dependency as x < y, as in each
case if y = 0 then it can be inferred that = 0. Since it is only the dependencies that
are of concern here, not the degree of dependency, the abstraction operator is defined
solely with respect to the facility to infer that a variable can be assigned the value zero.

1t is assumed that the linear inequalities are such that like variables of the same order are coalesced.
For example, neither 0 < z + y + z nor 0 < 2% — zy + = + zy — 22 could occur in the representation of
an abstract cone.

CHAPTER 7. ¢: AN ISOMORPHISM 93

Since the abstraction maps from Cone™ to Cone™ the abstract cones are ordered by set
inclusion and will retain their relative ordering as in Cone™.

7.4.1 The Abstraction Operator

Hereafter the non-negative constraints on the totally ordered set of variables X are
denoted by Yy = {0 < z | z € X}, and E* denotes a set of non-strict inequalities
as mapped by the abstraction. Hence, the union, Yx U E®, represents an abstract
polyhedral cone in the non-negative orthant of n-dimensional space.

Definition 7.4.1 a: Cone™ — Cone™ Let C € Cone™, y € X, Y C (X\{y})-
Oé(C) =Tx U E®

where,
EY ={y<ZY [(C AN Uyeyy =0) E y=0}

and
E*={y<IY €E”| AY'.[Y' CY A (CAUyey ¥ =0) E y=0}

This means that £ in the representation of an abstract cone is minimal. Since « is
defined over the whole of Cone™ it is a total mapping and in the next Section 7.4.2,
that follows, it is demonstrated that « is well-defined.

Example 7.4.1 Let X = {z1,z9,23} and C = Tx U {321 < z2}. Now (Tx U {z; <
z2} U{z2 =0}) E (z1 = 0), and (Tx U{z1 < z2} U {ze = 0,23 = 0}) = (z1 = 0), but
{z1} C {z2, z3}, therefore a(C) = Tx U {z1 < z2}. .

In E“ there may be more than one non-strict inequality with the same variable on the
left hand side of the inequality sign. In this case, all such non-strict inequalities are
incomparable, for example:

Example 7.4.2 Let C =Yx U {3z < y,0.5z < 2z}, then a(C) =Yx U{z <y,z < z},
and {z <y} [J {z < z}. .

Overall, the abstraction operator has the effect of relaxing the scaled dependencies by
(i) making all coefficients unitary and (ii) relaxing equations of the form $bY < X&Y',
where b and ¢ are |Y| and |Y’|-vectors, respectively, in R, to {y < XY’ | Vy € Y}. The
Example 7.4.3, that follows, illustrates both (i) and (ii):

Example 7.4.3 Let X = {z1,2z2,23,24}, and C € Cone™, where C = V'x U{2z1+z9 <
4x3 + 1.5x4}.
a(C) =Tx U{z1 <z3+ 4,220 < T3+ 24} .

The abstraction operator is such that « is a many-to-one, idempotent mapping with no
inverse and it follows that a(Cone™) is a strict subset of Cone™ that is finite. Hereafter
cones in a(Cone™) are denoted C* to distinguish them from cones that are not in
a(Cone™).

CHAPTER 7. ¢: AN ISOMORPHISM 94

7.4.2 Representation in a(Cone™)

In general, different sets of inequalities may represent the same set of points, and linear
combination of those inequalities can disclose entailed dependencies. The question that
arises naturally, then, is this: “Is it possible for there to be dependencies in the repre-
sentations of abstract cones that are not explicit?”. The answer is “No.”, but precisely
what is meant by the technique known as linear combination when applied to linear
inequalities and how the use of scalar multipliers might facilitate this technique must
be considered first. This section is divided into subsections as follows:

e 7.4.2.1 comprises a discussion on the rationale for linear combination and defini-
tions that allow the process of linear combination to be formally qualified.

e 7.4.2.2 focuses on how the use of scalar multiplication in linear combination facil-
itates the disclosure of entailed dependencies and demonstrates that although it
is a useful tactic in the wider mathematical context, it does not serve the same
purpose in the context of abstract cones.

The definition of o has a significant impact on the usefulness of linear combination.
A cone in a(Cone™) is represented by a set of inequalities, Tx U E®. Each non-strict
inequality in E¢ is of the form y < XY, that describes an inference rule for y with
respect to the assignment of zero. By definition of a every such rule is explicit including
those derived from transitive dependencies. Direct dependencies and those derived
from transitive dependencies are considered to be non-redundant (the formal definition
follows). Finally, in the two lemmas that follow these subsections, it is shown that:

e any non-redundant linear combination of the set of non-strict inequalities that
represents a cone in a(Cone™) will already be explicit in the representation,

e the representation of any cone in a(Cone™) as prescribed by «, is unique up to
ordering of the elements in T'x U E°.

7.4.2.1 Linear Combination in «o(Cone™)

Throughout the discussion that follows the index ¢ associated with a variable, indicates
its position in the ordered set of variables over which the non-strict inequalities are
considered, and the index j indicates the jth element of an ordered set of m non-strict
inequalities.

In computations involving linear inequalities information about a particular variable
may be entailed in the conjunction of those linear inequalities rather than being explicit.
Linear combination is a tactic that is used to elicit entailed information. The information
that is sought is invariably the same as that required by any algorithm designed to solve,
that is find solutions for, a system of linear inequalities, namely, anything that makes
a contribution towards minimising the range of possible values for each variable. This
means the primary goal is to assign a variable a single value and failing that to minimise
its possible range of values. Now consider just how the motives for linear combination
in the wider mathematical context differ from those in the context of a(Cone™) :

e assigning a value in R to a variable - in a(Cone™) the only value ever assigned to
a variable is zero.

CHAPTER 7. ¢: AN ISOMORPHISM 95

e inferring a range of constants for a variable - not applicable in «(Cone™), since
variables are only assigned to zero, and all variables are greater than or equal to
Zero.

e inference of inter-variable dependencies - in a(Cone™) the dependencies are strictly
confined to those that facilitate variable assignment to zero.

There now follow formal definitions that allow a more precise expression of linear com-
bination. In the following definition, the A;’s are the coefficients for the non-negative
constraints on the n variables and the);’s for the remaining linear inequalities. The
non-negative constraints are treated separately because they play no real part in linear
combination in this context as will become apparent as the discussion proceeds.

Definition 7.4.2 The linear combination of a set of m linear inequalities in a(Cone™)
with n variables constrained to non-negative values, where A\; and \; are non-negative
scalars, such that at least two of these scalars are greater than zero, is:

A0+ B Ny < BEg Ny + 2T N(BY)

In this discussion all but one of the examples are binary linear combinations; since ad-
dition is associative and commutative, binary combinations may be considered without
loss of generality. Linear combinations are denoted in the following way: let I; be a
linear inequality and the symbol 4+ denote any binary linear combination of inequali-
ties. Then the linear combination, denoted ++, of k£ linear inequalities, 1 < k, is itself
a linear inequality I’ where I' = l;4++ ... ++1.

Definition 7.4.3 A linear combination, ¥Z < XZ' of the n + m non-strict linear
inequalities T'x U E® € a(Cone™), is considered redundant iff,

HZuZN.(Tx U{ZZ<xZ'}) ¥ I(ZUZ).(Tx U EY

Examples of a redundant and a non-redundant linear combination follow.

Example 7.4.4 Consider X = {z1,z2, 23,24} and C* = Vx U {z1 < 29,29 < z3,21 <
x3}, and the linear combination:

00 < 0.7 ++

00 < 0.2 ++

00 < 0.x3 +H

1 < m2 ++

220 < 223 ++
0.931 S 0..%3
z1+ 222 < 273

Since, ﬁ{ml,xg,:vg} ATx U {zy + 220 < 223} ﬁ{ml,xg,:vg} ATx U {z; < 29,22 <
x3, 21 < x3}], it follows that {z1 + 2z < 2z3} is redundant. .

CHAPTER 7. ¢: AN ISOMORPHISM 96

Example 7.4.5 Consider X = {z1,z2, 23,24} and C* = Vx U {z1 < z9,22 < 23,21 <
x3}, and the linear combination:

00 < 017 ++
0.0 < 0.2 +H+
0.0 < 0.x3 ++
0.0 < 0xg ++
ry < wm2 +Ht
T2 < X3

1 < @3

Since, g{xl,xg} . [TX U {xl < 333}]): g{xl,xg} . [TX U {xl < xo,x2 < 23,71 < Ig}],
it follows that {z1 < x3} is non-redundant. .

Definition 7.4.4 S, is a system of non-cyclic transitive dependencies iff

Sq=UL {y; <SVi|lyi gVi AVi,d2<i<d.[3p1<p<i.ly €Y}

The previous Definition 7.4.4 means that the linear combination of such a system will be
of the form y; < XY" where Y’ C J., ¥;. In the context of a(Cone™), when the variables
in Y’ are zero, y; is also zero, and therefore this expresses a variable dependency, or
inference rule for y;, and y; is said to be the root of the system. An example follows:

Example 7.4.6 Let {z,y,z,p,q,7,s} C X, and Tx hold,

z < y+z +H
y < pt+q ++
p < r +H
q < s

r < z4r+s

In Example 7.4.6 linear combination of the system is a variable dependency, x < z+7+s
for the root of the system, x. .

Given the representation of an abstract cone the circumstances in which a linear combi-
nation of that representation is non-redundant must be considered. Linear combination
with variable elimination allows the explicit representation of entailed constraints on
variables, as illustrated in Example 7.4.5 above. If no variables are eliminated in the
combination process then the linear combination is a relaxation of the explicit con-
straints, as illustrated in Example 7.4.4 above. This occurs because the inequalities in
E® are of the form y; < XY}, and any linear combination of the form XY < XY, where
yj € Y and Y; C Y’ will be redundant, since it is a relaxation of y; < XYj. Therefore a
non-redundant linear combination must be of the form y < XY. In the wider context,
positive scalar multiplication aids variable elimination so the next step is to examine its
effectiveness in the context of a(Cone™).

1.4.2.2 Scalar multiplication in a(Cone™)

Consider how scalar multiplication facilitates variable elimination in the general math-
ematical context.

CHAPTER 7. ¢: AN ISOMORPHISM 97

1. A variable can be eliminated if it occurs on the same side of each inequality with
coefficients of the same cardinality, but different signs. An example follows:

Example 7.4.7

r < 3y+2z++
g < p—2z
z+q < 3y+p

2. A variable can be eliminated if it occurs on both sides of the resulting inequality
with coefficients of the same cardinality and sign. This can only occur if there is
at least one transitive dependency. See Example 7.4.6.

Generally then, positive scalar multipliers are applied in linear combination to equate
the cardinality of like variables. However, since all variables in any system of linear
inequalities have positive unit coefficients, further positive scalar multiplication is inef-
fective, as the following lemma demonstrates. It will be shown that variable elimination
can only be effected when (i) there is a system of non-cyclic transitive dependencies
and (ii) if at each step the current coefficient of the root is equated with that of the
next linear inequality to be combined (a system of non-cyclic transitive dependencies is
ordered by definition). Therefore, the only possible non-redundant linear combination
can, can actually be obtained without using non-unit positive scalar multipliers.

Lemma 7.4.1 Let C* € o Cone™) and C* = T'x U E°. Further, let Sy be a non-cyclic
system of transitive dependencies such that S; C E“. Then the only non-redundant
linear combination,

PP INUES E?iﬂl)\jyj < YAy + E?irﬁl/\j(zyj),

can be derived with all non-zero A\; = 1. (Note that in all cases \; = 0, as otherwise the
linear combination will be redundant.)

Proof A system of non-cyclic transitive dependencies is ordered, by definition. Since
the linear combination is of an ordered system, the proof is by induction on the depth
d of the system.

Let S; be a system of non-cyclic transitive dependencies, then given 0 < X;, Sq =
{)\1?;1 <)\12Y, e ,Adyd <)\dEYd}

e Base step: Consider the linear combination of a system of non-cyclic transitive
dependencies of depth d = 2.

Ayt < A+
Ay < AYs
Ayt + Aoy < MY+ Y

By Definition 7.4.4 y; is the root and y3 € Y;. Therefore the linear combination
can be expressed as,

Ayt + A2y < AMi(Yi/{y2}) + Ay + A2Y2

CHAPTER 7. ¢: AN ISOMORPHISM 98

In order to facilitate the elimination of y» from both sides of the inequality A\;
must equal As.

e Induction step: Consider the linear combination of a system of non-cyclic tran-
sitive dependencies of depth d > 2. Let the linear combination of a system of
non-cyclic transitive dependencies of depth d — 1 be R = \jy1 < A (XY]) +
..+ Aa-1(2Y]_,), where Y/ is the residue of Y after variable elimination. By
the induction hypothesis,

R=X\yy < Al(E(Y{ U...u Yd,—l))'
Now consider the linear combination of R with the dth element in the system:

AMyr <)\1(2(Y1’ U...U chfl)) ++
Aaya < AgYy
Ay + Agyg <)\1(2(Y1’ u...u chfl)) + Yy

By definition, y4 € (Y{ U...UY, ,), therefore the the linear combination of R
with the dth element in the system can also be expressed as:

My +Aaya < M(B(Y UL UY q)/{ya}) + \iya + AaYa

As before, in order to facilitate elimination, here of y4, A1 must equal \g.

Therefore, by the principle of mathematical induction, in order to facilitate variable
elimination in a linear combination of a system of non-cyclic transitive dependencies,
the scalar multipliers employed at each combination step must be the same. Since
variables throughout the system have unit coefficients to begin with, the only linear
combination of a system of non-cyclic transitive dependencies that is non-redundant
can be derived with all non-zero \; = 1.]

It can now be shown that linear combination of the representation of a cone in
a(Cone™) cannot yield a non-redundant result that is not already explicit in its repre-
sentation.

Lemma 7.4.2 Let 'x U E® represent a polyhedral cone, in a(Cone™), then,

V non-redundant y < XY . [Ix UE® =y < XY « Jy < XY € E°]

Proof The proof is in two parts:
1. ’x UE* Ey<XYY « Jy<X¥Y € E* Elementary.

2. TxUEY =y <XY — Jy<XY € E°

The proof is by contradiction. Let 7x UE® represent a cone in a(Cone™), suppose
that Tx U E® |= y < XY, where y < XY is non-redundant and assume that
Ay < XY € E*. This assumption asserts that there exists a linear combination
of elements in T'x U E* that is equal to y < XY. Consider the possible linear
combinations of the elements in 'x U E¢ :

CHAPTER 7. ¢: AN ISOMORPHISM 99

(a) In all cases a linear combination that includes a linear inequality that is a
non-negative constraint will be redundant.

(1) (i)

0 < y1 ++ 0 < y1 ++
n < XY y2 < XYy
0 < ¥n y2 < y1+3XYo

In case (i), 0 < XY} is redundant. In case (ii) y2 < y1 + 2Y> is redundant.
(b) Without variable elimination

The non-strict inequalities are of the form y < XY. Hence, any linear combi-

nation of these non-strict inequalities without variable elimination, will be of

the form XY < XY’. This will relax the upper bound on each of the variables

in Y, and therefore be redundant.

(c) With variable elimination

i. A variable can be eliminated if it occurs on the same side of each in-
equality with coefficients of the same cardinality, but different signs.
This method is inapplicable, since in any linear combination,

a0+ P Ny < Sy + ST AG(2YG)
there are no variables with negative coefficients on either side of the
inequality.

ii. Variable elimination can occur when facilitated by a system of non-cyclic
transitive dependencies, however, by Lemma 7.4.1, any linear combi-
nation of a system of non-cyclic transitive dependencies that is non-
redundant can be derived with unit multipliers (A;).

Hence, the only non-redundant linear combinations are derived through transitive
dependencies, and all transitive dependencies are explicit in £¢, by definition of a.
That is, where y < XY is non-redundant, ’x UE® = y < XY — Jy < XY € E*.

Hence,
TXUEa|:y§EY<—>EIy§EY€Ea ™

Corollary 7.4.1 Let Y C X, then, given the non-negative constraints on the variables
in X, when y; € X and y; < XY, it follows that VY’ D YV .[y; < XY | v < Y]
Therefore:

(YxUE* Ey<3Y') < I(y<XY)e E*.[Y CY'] -

Corollary 7.4.2 Let Cf =Tx U Eff and C§ =1x U EY then
Ci=0C3 <& Tx UEY="x U EY

Hence a prescribes a normal form for abstract cones that is unique up to the ordering
of the elements in E<. |

Since the abstraction prescribes an orthogonal normal form for abstract cones in the
form of a set of inference rules like those for representations of functions in Def x, at an
intuitive level, the very strong association between abstract cones and definite Boolean
functions that is asserted at the end of this chapter becomes feasible.

CHAPTER 7. ¢: AN ISOMORPHISM 100

7.4.3 Joins and Meets in a(Cone™)

Since a(Cone™) is a subset of Cone™ the join and meet operators in Cone™, can be ap-
plied to cones in a(Cone™). The join of two cones is their convex hull and the meet their
intersection. However, although these operators can be applied to cones in a(Cone™) it
is possible for the outcome to be outside of a(Cone™). An example follows:

Example 7.4.8 Consider Cf, C$ € a(Cone™) where X = {z, y, 2, w}, Cff = Tx U
{z <y+z}and C§ =TxU{y <w, z <w}. CPNCT =TxU{z <y+z, y <w, z <w},
but o(C1NCy) =Tx U{z<y+z y<w, z<w z<w} .

This phenomenon occurs because in the wider context, although z < 2w is entailed by
this intersection, it is only when w = 0 that it is possible to infer that both y and z
are 0 and hence, as = is non-negative, that x = 0 as well. The abstraction of C7* N C3
which includes z < w, is a strict subset of CT' N C§ as x < w introduces another facet.
A slightly different example in R3 :

Example 7.4.9 Consider Cy, C§ € a(Cone™) where X = {xz, y, 2z}, Cf = Tx U{z <
y+zand O =Tx U{y =2} CPNCY =Tx U{y =z, < 2y}, but a(CNCS) =
TXU{xﬁyaJ3SZ;?J§Z,ZS?J}=TXU{9US%JJSZ;?J:Z}:TXU{xf%?J:z}-

Again, the abstraction of C{'NCY is a strict subset of CPNCS. (TxU{z <y, z <z, y=
z} is not a minimal representation of this 2 dimensional space, the planes z = y and
x = z, the boundary hyperplanes of the half spaces z < y and x < z, repectively are
orthogonal to one another and the half spaces each intersect the plane y = z at the same
place.) In both of the above examples the abstraction has a tightening effect on the
shape of the cone as it explicitly introduces transitive dependencies with respect to the
assignment of zero and replaces non-unit coefficients with unit coefficients. Therefore,
the abstraction of intersection cannot be a relaxation of the original intersection it must
be either the same or tighter than the original intersection. However, since all cones
in Cone™ can be abstracted to a(Cone™), the application of a to the outcome of set
intersection on cones means that a(Cone™) is closed under this operation, allowing the
definition of a meet operation for a(Cone™) :

Definition 7.4.5 Let C{ € a(Cone™), then Cf N* C§ = «(Cy N CF). .

Since set intersection is commutative it remains only to demonstrate N, is associative.
The proof is more easily assimilated with some insight into what the abstraction means
spatially. Recall that when C' € Cone™ then a(C) returns the non-negative constraints
with a set of inequalities denoted E“ specified in this way:

a(C)=Yx U{y<EY [(CAUyeyy =0) E y=0}

such that each y < XY is the least element of that form for which the conditions
specified are true. Consider how this might be viewed spatially. By the definition
of Cone™, every cone in Cone™ is the intersection of a set of closed half spaces with
boundary hyperplanes that pass through the origin. The specification for the inequality
is couched in terms of equality, it is specifying that y < XY should be included in the
set E“ only if the intersection of C' with hyperplanes {y/ = 0|y’ € Y} is a subset of the
hyperplane y = 0. This intersection may be a boundary hyperplane of C' or it may be

CHAPTER 7. ¢: AN ISOMORPHISM 101

embedded in the relative interior, ri C, if so then this is when the abstraction is tighter
than the intersection. In the proof that follows, note that C}* denotes a set of points
and T'x U E;* the set of linear inequalities that delineate C}*.

Lemma 7.4.3 Let Cf = Y'x UE?® € a(Cone™), then (C{N*CH)N*CS = CFN* (C§ N
C$).

Proof Now, C¢ % 0 = N(I'x U fy < ¥ | (Cf N C5) AUyey v/ = 0) = 3 = 0)).
Let {y < 2V | (CF N O$) AUy o/ = 0) b y =0} \ (B U B) = By, and note
that EY, may be empty. Similarly let {y < XY | (C§NCE) A N\yeyy' =0) EF y=
0} \ (B3 U ES) = Eg;.

e Consider ((CYN*C§)N*CY) :
CyN*Cs =N(Tx UEYUESUEY,), and therefore

(CeN*CEHNCS =N((Tx UEFUESUEY)UES). Since set union (of inequalities)
and set intersection (of sets of points) are both associative and commutative, it
follows that:

(CeN* C$) N Cg =N(Tx UEYUESUES, U EY).
e Similarly, C2 N (C$N* C$) = N(Tx UE*U EY U ES UES,).

Consider: (1) a(N(Tx UEfUESUESUEY)) and (2) a(N(Tx UEFUESUESUES;)).
In (1) a will return, amongst other inequalities ES; as both ES and Ef are present.
Similarly in (2), @ will return, amongst other inequalities, E7,. Hence, by the definition
of a, in both cases the sets of inequalities returned will be the same, up to the ordering

of the elements, and hence the intersection of the inequalities will be the same.
Therefore: a((Cf N* C§)NCY) = a(CY N (CF N CYF)). Hence, N* is associative. =

There is a similar case with the join operator. The closure of the convex hull of two
or more cones in a(Cone™) will be a polyhedral cone, but it may not be in a(Cone™),
as demonstrated in the following Example 7.4.10. However, an abstraction of this
cone preserves the properties associated with assignment of zero and returns a cone
in a(Cone™).

Example 7.4.10 Let C{,Cs € a(Cone™), where X = {x1,z2,23,24}, C = Tx U
{z1 < z3,22 <24} and CF =Tx U {z1 < z4,22 < z3}. Hence,

ClaUCQa:TX U {931+J,‘2S.T3—|—334},

but Y'x U{x1+z2 < z3+x4} & a(Cone™). Now, a(Cf U CF) = Tx U{z1 < x3+24,22 <
x3 + x4}, and although Cf U C§ C a(C{ U C%), if 3 = 0 and x4 = 0 then in both
cases it can be deduced that both z; = 0 and x2 = 0, and abstraction preserves the
propagation of variable assignment to zero. .

Employing the same tactic as with the meet, the application of « to the output of the
U operator (closure of the convex hull) on cones means that a(Cone™) is closed under
this operation, allowing the definition of a join operation for a(Cone™). The definition
of both the join and meet in this more general domain means that a(Cone™) is a lattice
in its own right, but since neither C{* N C§ nor CfUCY is always in a(Cone™), it is not
a sublattice of Cone™.

CHAPTER 7. ¢: AN ISOMORPHISM 102

Definition 7.4.6 U”: a(Cone™) x a(Cone™) — a(Cone™) is defined:
CyU* Cf = a(CT UCY)
where Cf, C$ € a(Cone™), and U is the closure of the convex hull, the join for Cone™.s

In order to demonstrate that, the abstraction of the join for cones is a join for abstract
cones, it is necessary to take a closer look at the computation method of the convex hull
for cones and the effect abstraction has on its output. C; € Cone™ is represented by
Tx U E;. For the purpose of computing the convex hull of two cones in Cone™, consider
the inequalities in ¥y U E; in a matrix format so that Tx U E; = A;X; < 0, where A4; is
an m by n matrix of coefficients in {—1, 0, 1} and X; is an n-vector of variables. Now,
CitulCy,=C1+0Cy = {J,Tl + T2 | T; € CZ}, by Definition 4.1.17. Let C; = Ale < (_),
then C1 + Cy = {X | X = Xl +X2, A1X1 < (_), A2X2 < (_)}

The next step is to qualify the circumstances when the convex hull of two abstract cones
is not an abstract cone. The following definition is required.

Definition 7.4.7 Let Cf =1x U EY, C$ =Tx U E € a(Cone™). If {y < XY, z <
YZ} C Ef and {y < ¥£Z, 2 < XY} C E§ then y and z are a pair of interchangeable
variables. .

In Example 7.4.10, x1 and x2 are interchangeable. If there are pairs of interchangeable
variables in the inequalities in the operands then the convex hull of the two abstract
cones may not be an abstract cone. In the discussion that follows if, for example,
{z < y + z} then (the value of) x is said to be bound from above by the sum of the
variables in the set {y, z}. Consider the computation required for the following Example
7.4.11:

Example 7.4.11 Let C{ € a(Cone™) and X = {z, y, 2z, w} where Cf = Tx U {z <
y, y <w}, and C§ =Tx U {x < 2z}, then the matrix computation reduces to this:

(T = 1 + T2, z1 < yi,
x2 < 22,
=YL+ Y2 y1 < wy
Ca+Ca — P 2w Yy Y1))
1 2 < 'Y %y > 2=z +22,
w = w1 + wa,
\ where TXa TXI? TX2)

The solution to the above system of inequations is:
CT + 05 =Tx U {(z,y,2,w) [z <y+2}

Inspection of the example computation above indicates, informally, that:

e if a variable y is bound from above by the sum of a set of variables Y7 in one cone
and by the sum of a set of variables Y5, in the other cone, then in their convex
hull y will be bound from above by the sum of the union Y; U Y3,

e if a variable y is unbound from above in either or both of the two cones, then in
their convex hull y will be unbound from above.

The lemma that follows confirms these observations.

CHAPTER 7. ¢: AN ISOMORPHISM 103

Lemma 7.4.4 Let Cla u Cg =Tx UE, Oz(TX UEh) =Tx UE;:, and Cza =Tx; UEia,
then:

y<SY €EY & <TY, €EY . [Fy<SY2 € ES.[Y =Y; U Y]

Proof CfUCSE ={X|X =X+ Xy, Tx1UEY, Txoa UES}. Let y € X, y; € X3 and
y2 € Xo such that y = y1 + yo. It is sufficient to consider the pairwise combinations of
constraints on any y € X. The proof is in two parts:

Part 1.y <XY € B — Jy<XY1 € Ef.[Jy<EY, € ES.[Y =Y1 U Y3

The convex hull of two polyhedral cones reduces to their sum as defined above, and
each variable y = y; + y2. Suppose that either y; or yo are not bound from above.
Then y is equal to the sum of two variables, one of which has no upper bound and
therefore y will have no upper bound in the convex hull. Hence, if y is bound from
above in the convex hull then both of y; and y2 must be bound from above, that is:
y<XY €E - Jy<EY1€EY. [Gy<EYo € ES.[Y =Y1 U Ys]

Part 2. y<XYXY; € Ef < Jy<EY1 € E} . [<EYo € E5.[Y; =Y U Y3

If y is bound from above in both C¢ and C¢' then y is bound from above in C{U*CY.
Since y < XY7 € Ef and y < XYs € Ef, y < XY7 + XY5, as y = y1 + y2. There are two
cases to consider, where y is not one of a pair of interchangeable variables and where it
is.

e Case 2.1. y is not interchangeable with another variable.

Let k € [1,...,n] such that k& # i. Now consider y < X¥Y; + XY3. Whenever
z1 € Y1 N z9 € Yo, their sum can be replaced by z, as z = 2z; + z9. Whenever
z1 € Y1 A 290 € Ya, or vice versa, z; or ze can be replaced by z in the sum on the
right hand side of the inequality, as z = z1 + 29.

Therefore, projecting out X; and X, if y < XY; € Ef and y < XY> € E$
then y < ¥(Y1 UY3) € Ef. By the definition of «, if y < 3(Y; UY3) € Ej then
y<X(Y1UYs) € Ep.

e Case 2.2 Let y and z, be interchangeable variables, then y < XY, z < ¥Z; € EY
and y < XYs, 2 < X7y € ES, where Y1 = Z3 and Z; =Y.

There are three cases to consider, in the first when Y; = Z1, the convex hull is the
same as its abstraction, otherwise it is not.

1. =2
Y1=Ys =21 =7y as Y1 = Zy and Z; = Yo, by definition of interchangeable.
Hence, as y = y; + y9 it follows that y < XY7, 2 < ¥Z; € Ej where Y7 = Z;.
Put Y =Y; = Zy, then by definition of o, y < XY, 2 < XY € Ej.

2. Yl;éZl anleﬂzl?é(]ﬁ
If there is a pair of interchangeable variables, y and z but Y; # Zi, then
in C{UCg, the variables y and z will be constrained as follows: y + z <
YAY1UZ1), yp < B(Y1U Z1) y. < (Y1 U Z;) where, in an abuse of notation,
) is a vector of variable coefficients in {1, 2}, and the set intersection of
variables is viewed as a vector of variables. A variable coefficient in A will be

CHAPTER 7. ¢: AN ISOMORPHISM 104

2 only when the variable is in both Y; and Z;. By Definition 7.4.1 of «, the
abstraction will relax these constraints to y < 3(Y1 U Z1), 2 < £(Y1U Z)

3. YiNZi=¢:
If there is a pair of interchangeable variables, y and z such that Y1 N Z; = ¢,
then in CT' U CY, the variables y and z will be constrained as follows: y+ 2z <
E(Yl U Zl)
However, by Definition 7.4.1 of «, the abstraction will relax this constraint
toy < E(Yl U Zl), z < E(Yl U Z1)

Hence, in all cases: y < XY € B «+ dy < XY, € Ef .[Jy < XYp € ES.[Y =
Y: U YQ]]

Therefore y < XY € E® » Jy < XY, € B¢ .[Ay <XYo € BS.[Y =Y, U Ya]] -
Lemma 7.4.5 U” is associative, that is, VC¢, C§, C$ € a(Cone™),
CrU%(C3U"Cy) = (CT U Cy) U Cy

Proof Let C3 =Tx U E*. By Lemma 7.4.4, for each convex hull operation there are
two cases to consider, let y € X, when (1) y is bound from above in both operands and
(2) when y is bound from above in only one or neither operand.

1. Let C§UCY = Cpy where Cfy = Tx U EY| and CUCy = Cf, where Cf), =
Tx U Ei?2'

Consider C§UCY. Vy € X .[y<XY2 € E$ Ny <XY3 € E§ + y < X(YaUY3) €
Ep,], by Lemma 7.4.4.

Now consider C{ U*CP,. Similarly, Vy € X . [y < XY; € Ef Ay < XYy € B}
y<X(Y1 U (Y2 UYs) € Efy)], by Lemma 7.4.4.

Hence, Vy € X .[y < XY € EY, < Jy < TY; € Ef .Jy < XY, € E§ . Ty <
Y3 € Egé . [Yh2 = (Y1 UYs, U Yg)]

2. Let CPU°CS = Cf; where Cfy = Tx U Efy and CfyU*C§ = CpYy where CPy =
Tx U E}?4.
Consider C{UCS. Vy; € X.[y < XY € Ef Ny; < XY € EY « y <
%(Y1 U Ys) € Ep;], by Lemma 7.4.4.

Now consider Cg, U*CS'. Similarly, Vy € X . [y < XYj3 € Efy Ay < XY3 € Ef
y < E(Yha U (Yig U Y3) € ER,)], by Lemma 7.4.4.

Hence, Vy € X.[y < Y € B ¢ Jy < SVi € BR.3y < TV, € ES. 3y <
EYE;EE?.[Y}A:(Y& U, UYg)].

Hence, y is bound from above in C¢ U*(C§ U*CY) iff it is bound from above by Yo =

(Y1 U Y2 U Y3) and y; is bound from above in (C{U*CS)UCY iff it is bound from

above by Yp4 = (Y1 U Y2 U Y3). Since in all cases Yo = Y4, it follows that
CyU*(Cs U Cs) = (CyUYCe)U*CY

Proposition 7.4.1 (a(Cone™),C, L, T,U% N%) is a complete lattice.

CHAPTER 7. ¢: AN ISOMORPHISM 105

Proof U and N are associative by Lemmas 7.4.5 and 7.4.3 respectively. Therefore U”
and N® are the join and meet, respectively for a(Cone™) and a(Cone™) is a lattice. Since
a(Cone™) is finite, it is a complete lattice, [Sza63], with top element: the non-negative
orthant in n-dimensional space, and bottom element: the origin. |

Polyhedral Cones

Abstract Polyhedral
Cones

Sets of points

Figure 17: Sets of points in R”

Figure 17 demonstrates how the various sets of points in R” fit together. There are
cones that are neither polyhedral nor convex, but all abstract cones are polyhedral.

7.5 Is a(Cone") really an abstraction?

Every cone in Cone™ can be mapped to an abstract cone in a(Cone™) and the mapping
of an infinite domain to a finite one might suggest the notion of equivalence classes.
However, a(Cone™) is not a sublattice of Cone™ and it is this characteristic of the
relation between the two domains that prevents the expression of the relation in terms
of equivalence classes. Equivalence classes are usually defined in terms of some common
property held by the elements of each class, but in this case equivalence would be couched
in terms of an approximation that is not precise enough, to preserve the integrity of
the meet operation, the abstraction of set intersection. Note that in the example that
follows the abstraction of set intersection is coincident with set intersection. This is
demonstrated in Example 7.5.1.

Example 7.5.1 Let X = {z, y} where {0 < z, y < 0}. Consider the notion of equiv-
alence defined with respect to the propagation of the assignment of zero and the two
classes:

Class A [...,{3z<2y},....,{z <y}..]~ ify=0thenz=0

Class B [..., {3y <2z},...,{y<z}..]~ ifz=0theny=0

and the abstract intersections: {8z <2y} N> {3y <22} ={z =0,y =0}
{z<ytn*{y<a}={z=y}

Class C [...,{z=0,y=0},..]~ z=0and y=0

Class D [...,{z=yv},..]~ z=0iff y=0

CHAPTER 7. ¢: AN ISOMORPHISM 106

The conjunction of {3z < 2y} € Class A with {3y < 2z} € Class B, is in Class C, but
the conjunction of {z < y} € Class A with {y < z} € Class B is in Class D. .

The failure of the equivalence class model is interesting in itself. The relation as pre-
scribed above qualifies as an equivalence relation, as it is both reflexive and transitive,
every element in the domain falls into a single class and the intersection of any two
classes is empty. The problem lies in the preservation of ordering between classes and
this occurs because this relation is an approximation that puts aside the notion of scalars
(as coefficients or as constants) which have a significant impact on the ordering of poly-
hedral cones. In this case the notion of equivalence is not strong enough to ensure that
the order of the original elements in the domain is maintained over the classes.

The abstraction of an object is a mapping from the object to a domain that can
represent a certain property(s) of that object and this is precisely the function of the
abstraction operator, a.. Therefore a(Cone™) is a valid abstraction of Cone™. To recap,
inference in a(Cone™) is driven by these aims:

e to infer that as many variables as possible are zero

e to infer dependency relationships, in the form y < XY, for as many variables as
possible in order to facilitate their assignment to zero.

Since no further non-redundant linear inequality can be derived from linear combination
of the prescribed representations, it follows that each representation is a complete set
of inference rules that are entailed by the delineation of the abstract cones. Further, in
a(Cone™), the only inference rule is of the form y < ¥Y, and the prescribed representa-
tion of a cone in a(Cone™) as the union of non-negative variable constraints with a set
of inference rules is unique.

7.6 A Lattice Isomorphism

Abstract cones are uniquely defined as sets of points and functions in Def y are uniquely
defined by their sets of models. In both cases set intersection is the meet operator but
in order that both domains are closed under their respective join operators, a generali-
sation of set union is required. The significant characteristic of the abstract cones that
indicates the necessity for generalisation is their convexity. This characteristic disallows
a straightforward join that comprises the union of those points that are in either or both
operands, as the resulting set must be convex. There are instances when the union of
two particular polyhedra cannot be represented in terms of a single polyhedra, that is,
the union can only be represented as two distinct, albeit possibly abutting, polyhedra.
Hence, the union cannot always be represented as a single polyhedra without generali-
sation and this is precisely what the closure of the convex hull is, a generalisation that
is the smallest convex space that contains all the points in both operands. Similarly,
there are instances when the join of two functions in Def x that in terms of models
is the union of the sets of models for each function, is such that the union of models
represents a function that is not itself in Def x, since its models are not closed under
intersection. The generalisation required is analogous to that required in a(Cone™).

Representations in a(Cone™) are a set of linear inequalities that are inference rules.
Each linear inequality prescribes the means of inferring that the variable on the left
hand side of the inequality is zero. There may be more than one such rule for each

CHAPTER 7. ¢: AN ISOMORPHISM 107

variable, or there may be none for a particular variable. This is consistent with DMBF
representation in Defy. DMBF is such that where f € Defy and f = AF, each
implication in F' is a inference rule for the variable that occurs in the head. Every
possible rule is explicit, but no rule is entailed by any other, and if nothing is known
about a particular variable it will not occur in the head of any implication. Inference and
propagation follow one from the other and Dart [Dar91] considers that such implications
can be thought of, alternatively as propagation rules. However these rules are viewed,
the inequalities in the representation of elements in the abstraction of Cone™ serve the
same purpose as the implications in DMBF representations of functions in Def x.

7.6.1 From Polyhedral Cones to Boolean Functions

Since both abstract polyhedral cones and Boolean functions have normal form represen-
tations (by Definition 7.3.2 and Corollary 7.4.2) the mapping from abstract polyhedral
cones to Boolean functions is described in those terms.

Definition 7.6.1 The mapping ¢x: a(Cone™) — Boolx, is defined:

true when m =0
©Yx <TX U szl{yj > EY]} { /\;”:1 (yj — /\YJ) otherwise

Although ¢’ is syntactic it maps from one normal form to another and therefore, operates
at the semantic level as well. Further, since each element in the domain is uniquely
identified by the normal form and each element in the co-domain is uniquely identified
by the normal form the mapping is well-defined. It will be shown that ¢’y maps a
cone C* € a(Cone™) to a set of implications, definite clauses, the conjunction of which
represents a function in Def y.

Example 7.6.1 Let X = {z,z2, 23},

O (Tx U{zy <29, 23 <0}) = (21 < 22) A (33 ¢ true)
Note that for any variable y € X, when y <0 € E“ this is equivalent to y < XY, where
Y = ¢ and ¢’y maps y < 3¢ to the implication y <— A ¢ which is equivalent to y < true
[Dar91]. Since all variables are constrained to non-negative values whenever y < 0, it
can be inferred that y = 0, giving a mapping from y = 0 to y < true as expected.

The implications in ¢’y (a(Cone™)) represent Boolean functions and it will be shown
that the representations of cones in a(Cone™), as prescribed by «, are such that the
definite clauses in the image conform to DMBF and therefore the Boolean function so
represented is in Def y.

Proposition 7.6.1 ¢’y (a(Cone™)) = Def .

Proof The proof is in two parts:

o o'y (a(Cone™)) C Def y

A cone in a(Cone™) can be represented by Yx U E®. By definition of o, E® is
in orthogonal form, that is, transitive dependencies are explicit and (y < XY') €

CHAPTER 7. ¢: AN ISOMORPHISM 108

EY - (VWY CY.[(y <XY') € E%], by Lemma 7.4.2. Therefore, by definition of
¢'y, F is also in orthogonal form and (y <~ AY) e F > VY' CY .[(y + AY') ¢
F]. Since these are precisely the conditions that describe DMBF, by Definition
7.3.2, it follows that ¢’y (C*) C Def x.

o Defx C ¢'x(a(Cone™)

Similarly, a formula f € Defx can be represented in DMBF and f = A F. By
definition of DMBF, F is in orthogonal form and (y + AY) € F — (VY C
Y.[ANF [~ (y + AY')]. Since the elements of F' are definite clauses it follows
that (y <~ AY) e F — VY CY.[(y + AY') € F|. By definition of o and
¢’y these conditions also apply to every element of ¢’y (C®). Therefore, Def y C
ox (a(Cone™)).

Hence, ¢'y (a(Cone™)) = Def x as ¢y (a(Cone™)) C Def x and Def x C ¢’y (a(Cone™)).
=

Proposition 7.6.1 allows ¢ x to be defined:

Definition 7.6.2 ¢x:a(Cone™) — Def x.

ex (Tx U B*) = ¢ (Yx U E%)
Proposition 7.6.2 ¢x is bijective.

Proof Let px(C§) = A\ F1, px(C$) = N\ Fa, where Cf =Tx U Ef, C$ =Tx U ES €
a(Cone™). Let ¢x(Cy) = ¢x(C5), then A Fi = A\ F», and F; = F, by definition of
DMBEF. Therefore, E{ = E, by definition of ¢ x. Hence:

ox(CT) = ¢x(C3) — C{ =C3.

and ¢ x is injective. Since @ is injective and by Definition 7.6.2 ¢ x (a(Cone™)) = Def x
and is therefore surjective, it follows that @ x is bijective.]

Note that in the proposition that follows it is necessary to distinguish between a
set of inequalities and the set of points it represents, so where C = T'x U Ef, in
the usual way, C;* is a set of points and Ty U E{, is the set of implicitly conjoined
inequalities that represent C;*. Further the relation < over Boolean functions defines a
strict ordering such that when f; € Def x if f1 < fo then fi E fo but fi # fo.

Proposition 7.6.3 ¢x is a lattice isomorphism.

Proof Let C¥ € a(Cone™), then Cf C CF + ¢x(CY) < px(CF).
Let C¢ =Tx U EY, C§ =Tx U ES, px(Cf) = A\ F1 and ¢x(C§) = A F». The proof
is in two parts:
o CF CCF — vx(CF) < ¢x(CF)
Let C{ C Cg. There are two cases, where E = ¢ and where ES # ¢.
Case 1. If EY = ¢, then ¢ x(C%) = true and px(C{) < px(CF).
Case 2. If ES # ¢, then by Corollary 7.4.1:

CHAPTER 7. ¢: AN ISOMORPHISM 109

Viy<XY)e EY. 3y <XY')e E¢.[Y' CY]| and

Ay <XY') e EY My<XY)eES.[Y CY]]
therefore, by definition of px :

Viy < AY) € Fo.[3(y + AY') € Fi.[Y' C Y]] and thus, px(Cf) <
px(C3)-

Ay <+ AY') € Fi.¥V(y < AY) € F».[Y' C Y]] and thus, ¢x(C§) 4
vx(CT)-
Hence, px (CF) < ¢x(C5) and CF C CF = ¢x(CF) < 9x(CF).

o OF CCF «+ vx(CF) < ¢x(CF)
Let px(CY) < ox(C§). There are two cases, where Fy = ¢ and where Fy # ¢.
Case 1. If Fy = ¢, then C§ = Tx and C* C CF.
Case 2. If Fy # ¢, then by the definition of DMBF:
Vy<— AY)eFB. [y« AY)e F.[Y CY]] and
Ay~ AY)eF.Vy+— ANY)e FR.[Y CY]
therefore by definition of px :
Viy<XY) e ES. [y <XY') e E¢.[Y' CY]] and thus Cf C C¥.
Iy <TY') € B¢ . [V(y < XY) € ES.[Y' C Y]] and thus C§ £ C.
Hence Cf C Cf and Cf C CF «+ ¢x(CF) < px(C9F).

Hence,
CT C O3 < ox(C7) = ¢x(C3)

Since ¢x is bijective, by Proposition 7.6.2 and Cf C C§ + ¢x(Cf) < ¢x(C§) then
by [Prop.5.11][DP90], ¢x is a lattice isomorphism. [

7.7 Summary

Def x allows a representation in the form of a set of implications, effectively a complete
set of inference rules for each variable, namely DMBF. The abstraction of Cone™ pre-
scribes a representation that is unique and in the form of a complete set of inference
rules entailed by the delineation of the cone. It is not surprising then, that there is an
isomorphism between these abstract cones and Boolean functions in Def y.

The reason this phenomenon occurs is not due to a property of bijective maps on
complete lattices per se as a bijective map between lattices is not a sufficient condition
for a lattice isomorphism. The proof of the lattice (order) isomorphism is based directly
on the definition of ¢ which maps the normal form representations of abstract cones to
normal form representations of Boolean functions in Def x.

Inspection of ¢ shows that whilst ¢ is syntactic in its nature, it is also semantic
because the representation is a normal form. The crucial characteristic of the normal
forms lies in their expression as a set of inference rules for the variables over which the
elements of both domain and co-domain are described. The inference rules are induced
by the meaning of the ordering that is imposed on the elements of both domains and it
is for this reason and this reason alone that ¢ is a lattice isomorphism.

CHAPTER 7. ¢: AN ISOMORPHISM 110

Consider Figure 16 that depicts the Hasse diagrams for the lattices of Defyx and
a(Cone™) over two variables. It is the interpretation of the symbols that denote the
elements of the lattice that induces the ordering on the elements and in consequence
the meaning of the least upper and greatest lower bounds. The normal forms for both
lattices are sets of inference rules for each variable. What is the common characteristic
of the two domains that makes it possible to express an element of either domain as
a complete set of inference rules for each variable? The answer to this question lies
with the fact that Def x is a domain where variables are assumed false or true until
proven to be true and its counterpart, a(Cone™), where variables are assumed to be
non-negative until proven to be zero. Hence, not only are these domains very simple,
but the motivation for computation in either domain can be matched exactly in its
counterpart. It is, therefore, very straightforward to take each element of these domains
and reduce it to a set of inference rules in the manner prescribed by DMBF and a.

The conjectured generalisation is then, that if there is a bijective map between
two ordered sets from one normal form to another and the normal forms constitute
a complete set of inference rules then there will always be an order isomorphism. In
consequence, if the ordered sets are lattices then the map is a lattice isomorphism. It
is a moot point as to whether the generic class to which it applies will ever have more
than one element and whether as such it actually constitutes a class.

The discovery of abstract cones was driven by a combination of the observation
concerning the propagation of zero assignment and the need to find a useful abstract
domain for representing dependency information. It should be noted that although
abstract cones are formally couched in terms of an orthogonal form with explicit tran-
sitive dependencies, in practise the representations do not need the orthogonal form.
For example, the representation of the abstract cone {z < y,y < z} in any computa-
tion does not require the inclusion of the transitive dependency of on z. Similarly
the non-negative constraint on a variable is only required if the relative boundary of
the half-space that represents such a constraint includes a facet of the abstract cone,
otherwise the non-negativity of that variable will be implicit in the representation.

It has already been noted, in Chapter 3, that the choice of abstract domain is crucial
to the success of an analysis implemented as an abstract interpretation. This relation-
ship between a class of polyhedral cone and a class of Boolean function suggests that
there may be unexpected relationships between other apparently disparate subdomains
of well-understood mathematical domains. The advantage of such associations is that
the behaviour of the elements of these domains and the machinery for the manipulation
of their elements is well understood.

Chapter 8

Groundness Analysis with

SICStus clp(QR)

8.1 Introduction

Groundness analysis is one of the most useful analyses, in its own right and as a fa-
cilitator of other types of analysis. The aim of groundness analysis is to answer the
question: At a certain program point is the variable z always bound to a term that
contains no variables? Groundness analysis in its simplest form infers whether a vari-
able is definitely ground or its groundness status is unknown — this is typically extended
to deducing groundness dependencies between variables. The dependencies are useful
for information propagation between predicates during the analysis but also as an ex-
pression of definite dependency between variables. Optimising compilers can exploit
information of this kind to speed up operations, for example, unification. Initially the
lattices used to represent this information ranged from the simplest linear domain repre-
senting variable status as either ground or unknown, to more complex structures capable
of representing a variable bound to a compound structure with non-ground arguments
[Mel81]. A systematic approach to lattice construction was adopted in [ICMH90] with
status elements ground, unbound and unknown.

Much work has been done in this area and some well understood domains for cap-
turing such properties have been established that encompass relational information as
well. In [Gal95] as a part of an analysis toolkit a groundness analysis is presented that
employs a pre-interpretation domain that associates either the status g - ground or ng -
non-ground with program variables. This analysis infers the minimal Herbrand model
with respect to the groundness status of program variables and in this way groundness
dependencies can be deduced as well as instances of variables that are definitely ground.
In another approach to inferring relational information, the domain Prop of proposi-
tional formula was introduced by Marriott and Sgndergaard in [MS90] as a suitable
abstract domain for groundness information in the form of dependencies rather than
simply assigning variables some particular status.

However, currently Boolean functions are probably the best known medium for en-
coding dependency information. At the implementation level the representation of
Boolean functions has become a crucial issue with regard to program analyses, as it
has in the other areas of application for Boolean functions. In the analysis of large
programs there may be hundreds of variables which has a considerable impact on the

111

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 112

size of the representation and tractability of the required operations. Directed acyclic
graphs known variously as Binary Decision Diagrams, Reduced Order Binary Decision
Diagrams have been devised for representing Boolean functions.

The representation of dependency information with Boolean functions is refined in
[AMSS98]! with the introduction, in particular, of the positive Boolean functions, Pos,
and a subclass of Pos, the definite Boolean functions, Def. They present bottom-up
groundness analyses demonstrating that Pos expresses greater accuracy. They note and
illustrate the condensing/additive property of Pos that allows Pos a greater precision
than Def in bottom-up analyses even when the dependency relation can be expressed in
Def. An illustrative example follows in Section 8.2. Several implementation techniques
are investigated: variations on conjunctive and disjunctive normal forms for both Pos
and Def are tested along with ROBDD’s on a benchmark suite that included programs
like bryant, a prolog implementation of BDD’s and analyze, the analyser itself. The
overall outcome was that whilst Pos based analyses were the most precise, the Dual
Blake Canonical Form representation of Def was the fastest. They note however, that a
top-down analysis employing Def would fare better, with regard to precision, in relation
to Pos based analyses, since this different approach would compensate for Def’s lack of
the condensing property.

The work presented by Codish and Demoen, [CD95] employs a representation of
the domain Prop where programs are transformed to include dependency information
encoded in iff/n predicates that are added to the original program. They employ a
magic-set transform and then a bottom-up analysis. The transform allows call and
answer patterns to be taken into account and analysis results are commensurate with
those for Pos but overall analysis times are slow, for example, by comparison to the
work of [AMSS98].

Under certain circumstances both Pos and Def-based analyses may require itera-
tions that are exponential in the number of symbols in a program. Codish in [Cod99]
has shown that for certain predicates, analyses using BDD’s for Pos-based abstractions
can generate unmanageably large representations. The point of the paper is to highlight
that there is a problem with Pos under some circumstances and that the solution is
widening. However, the nature of a suitable widening is not explored. More recently
[GHCO1], similar circumstances have been identified for Def-based analyses that also
generate unmanageably large representations. In [HAZCKO00] a very simple technique,
that imposes a threshold on the size of representations is introduced to keep their size
manageable. Experimental results draw comparisons with Pos-based analyses and these
confirm the existence of classes of programs for which a Pos-based analysis will not ter-
minate. So although Pos-based analyses are considered more precise than those based
on Def, it is interesting to note that Def can cope with these cases and further, in many
cases where Pos is faster than Def, the difference is negligible, less than 0.1sec.

Howe and King [HKO01] present a definitive, methodical approach to the implementa-
tion of groundness analysis in Prolog. They first investigate the frequency of operations
and then proceed to an implementation that favours representations that allow fast
execution of the those operations that occur most frequently. The analyser is a goal-
dependent bottom-up implementation based on a refinement of the induced magic set
transform that avoids the recomputation of literals inherent in the original transform.
The outcome is a hybrid analyser that performs a precise analysis commensurate in

!This work has been available as a technical report since 1994.

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 113

efficiency terms with BDD based analyses. This work adds fuel to the overriding mes-
sage of Getzinger’s implementation of abstract domains and analysis of performance
[Get94], which was that simple analysis domains are the most effective, and that there
is a threshold beyond which increasing precision is invariably bought at too high a cost
to be of practical use.

Boolean functions are clearly the front runner for capturing dependency information.
Both Pos and Def afford a useful degree of precision, but the recent work of Codish, King
and Howe has brought their levels of precision and efficiency more closely in line with one
another. What distinguishes these two domains now? In certain circumstances, which
may not arise very often, Pos is more precise, but this increase in precision brings with
it the possibility of an eventually-terminating analysis, as shown by Codish in [Cod99].
If it is difficult to widen Pos simply to ensure termination in a reasonable time and or
to pre-empt analysis for predicates that “break” Pos then Def may well be the more
viable option for dependency analyses.

Recall that positive Boolean functions are those that are true when all their variables
are true. Definite Boolean functions are the subset of the positive Boolean functions
that each has a set of models which is closed under intersection. Pos is closed under
classical disjunction whereas Def is not, therefore the join for Def is sometimes an
upper approximation of disjunction. This means that under certain circumstances Def
will lose or approximate dependency relationships that Pos would be able to express.
A simple example illustrates the point. Since Def is a subclass of Pos, every function
in Def is also in Pos. Let f; € Def where fi = z, fo = y. The join in Pos is classical
disjunction denoted V, so that f;V fs is simply «Vy. However the join in Def is the least
Boolean function in Def entailed by both f; and fo, that is, Af : (fi = f A fa = f).
The join in Def is denoted V and f1V fo = true, as in this case true is the only function
in Def (over just two variables) that entails both of the Boolean functions f; = z and
f2 = y. It is here that the association between the join for abstract polyhedral cones
and for functions in Def becomes clear. The polyhedral join for two polyhedra, P; and
P,, (abstract cones or otherwise) is simply the smallest convex set in Poly™ that is a
superset of P; and Ps, that is, NP : (Pp C P A P, C P). The convexity constraint
on all polyhedra disallows the disjoint sets that may be the straightforward union of
any collection of convex sets, in the same way that the constraint that sets of models
be closed under intersection - the formal constraint that distinguishes functions in Pos
that are also in Def from those that are not, disallows classical disjunction. In both
cases, intuitively, it is the notion of “either...or” that is disallowed.

From this discussion it can be surmised that although Pos affords, what in practice
amounts to, slightly better precision than Def, i) Def based analyses can handle certain
classes of program that are troublesome for those based on Pos, ii) precision in Def often
matches that in Pos, iii) the disparity in precision, where it exists, is minimal. Therefore,
Def based analyses are a viable option. Operations carried out in CLP domains may not
always be cheap, but in an environment with constraint support they are available on
tap and bearing in mind that the rate of increases in the efficiency of chip and processing
technology are forecasted as continuing for at least another 15 years, then a Def based
analysis that terminates in a reasonable, rather than the fastest, time and with useful
precision may well be acceptable. Hence, the prototypes undertaken here. The aim
of the investigation that follows, was i) to confirm the theory, that an analysis based
on abstract cones could capture the same dependency information as Def, and ii) to
see if the speed of the analyses based on abstract cones was acceptable. There are two

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 114

implementations of groundness analysis, the first? used the same analyser as that of the
argument size analysis of Chapter 5. The second analysis used a hybrid analyser due to
Howe and King [HKO01], but due to technical problems? and time constraints this work
is incomplete.

The rest of this chapter is as follows. The next Section 8.2 provides an example
analysis. Section 8.3 illustrates the condensing property of Pos but also demonstrates
how the magic transform allows a commensurate analysis with Def. Sections 8.4, 8.5
and 8.6 cover the semantics, operations over abstract cones and the implementations
respectively. Section 8.8 summarises.

8.2 Worked Example

The example below is based on the same iteration scheme of the argument size analysis
in Chapter 5. The initial iterate Iy = ¢ and the iteration sequence proceeds as described
below converging when I = I3 (without the need for widening).

a(Cone™) Def x
L = {(rst)|r=0,s=1t,0<s} I = rA(s<t)
L = {(rst)|r=0,s=t,0<s}U" | b, = rA(s<t)Vts (rAs)
{(r,s,t) | t=r+s,0<s} = t<(rAs)
= {(rst)|t=r+s0<s}
Is = {(rst)|r=0,s=t0<s}U" | I3 = rA(scot)Vte (rAs)
{(r,s,t) | t=r+s,0<s} = t< (rAs)
= {(rst)|t=r+s,0<s}

Figure 18: Groundness dependency analysis for append(R,S,T)

8.3 Def vs. Pos - the Condensing Property

Abstract interpretations for groundness analysis have employed both Posx and Def y,
but Posx is distributive whilst Def x is not, and this lack means that analyses in Def x
may not be so precise as their Posx counterparts. The Example 8.3.1 that follows is due
to [AMSS98|, the analysis output is from the implementation described in subsection
8.6.1.

Example 8.3.1 Consider the predicate ¢/2 :

2This implementation was curtailed prematurely as the author was obliged to intermit for three
months for personal reasons. When work resumed various considerations dictated that the isomorphism
proof, on which the implementation was based, be placed at the top of the agenda.

3A projection problem in SICStus prevented implementation beyond the point detailed in this
chapter.

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 115

qX, V) - pX, V), r(X,V). q(a, Y) :- p(a, Y).
pX, X). q(X, a) :- p(X, a).
r(a, Y). p(X, X).

r(X, a).

Before unfolding r. After unfolding r.

A Def y based analysis for ¢/2 yields x <> y, whereas a Posx based analysis yields
x A y. However, if /2 is unfolded, then a Def x analysis is able to match the precision
of Posx and will return z A y. .

This problem can be overcome by using a magic transform, due to [CD95], on the
program, that avoids the necessity of unfolding during program abstraction, as shown
in Figure 19, where the addition of _c and of _a to a predicate name indicates a call and
an answer respectively. The outcome of a Def x analysis for the magic’d version of ¢/2

Magic’d q/2 Analysis of ¢/2 in a(Cone™) Interpretation
in Def x

qc(,). gc(x, y) :- {0<z, 0<y}. | true

pcX, X) :- pc(x, y) :- {0<z, 0<y}. | true
qc(X, X).

rc(X, Y) :- rc(x, y) :- {z =y} Ty
qc(X, V),
pa(X, Y).

qga(X, Y) :- qga(x, y) :- {z=0,y=0}. |zAy
gcX, V),
pa(X, V),
r.a(X, Y).

pa(X, X) :- p-alx, y) :- {z =y} Ty
pc(X, X).

ra(a, Y) :- ra(x, y) :- {z=0,y=0}. | zAy
rc(a, Y).

ra(X, a) :-
rc(X, a).

Figure 19: The magic version of ¢/2 and its analysis in Def x.

using abstract cones to represent functions in Def y is on the left hand side of Figure
19.

8.4 Semantics

The concrete domain and abstract domains in this analysis are the same as those for
the argument size analysis presented in Chapter 5. However, whereas there is a total
mapping between Lin™ and Poly™, there is a partial map between Lin™ and a(Cone™),
since abstract polyhedral cones, denoted a(Cone™), are a finite subset of Poly™.

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 116

Hence, the Galois connection between these two domains is also the same as for the
argument size analysis, as are the fixpoint semantics over both domains. The abstrac-
tion, however, is different, but couched in similar terms.

8.4.1 Program Abstraction

Program abstraction for groundness analysis is dealt with in a similar way to that for
argument size analysis. As defined in Section 5.3.3, Egqn denotes the set of Herbrand
equations and Eqnr;, denotes the set of linear equations. Recall the mapping sol, (re-
peated for convenience) required to ensure that constraints over like terms are mapped
to constraints over like variables in the numerical domain.

Definition 8.4.1 Recall the mapping sol : Eqn — P(Egn) defined by: sol(E) =
{E' | E ~* E'} where * is transitive closure and the relation, Eqn ~» Egn is the least
binary relation defined by:

o {r=t}UE~{z=s}UE ift=sAs¢gX

o {r=t}UE~{z=y}UE iftt=yAyeX

In order to derive abstract programs from concrete programs a mapping from Her-
brand equations to linear equations is required, so ag- is defined with respect to the
groundness status of the terms: This mapping is fundamental to program abstraction
and includes the insertion of the non-negative constraint on all variables, since the
analysis domain is confined to the non-negative orthant of R™.

Definition 8.4.2 Let ¢ be an Herbrand equation, then ag. : Eqn — Eqnp;, is defined
by:

{z =0} if c = {z =t} and ¢t is ground
() = {0 <=z} if c={x =t} and ¢ is a variable
fgrl€) = {0 < z,z < Swar(t)} if c = {x =t} and ¢ is non-ground

{agr(sol(c1)),...,a4r(s0l(cp))} ife=A{ec1,...,cn}

Note that in the first case above, when ¢ is a ground term agy, returns {0 < z,z <0}
which is equivalent to {z = 0}.

Definition 8.4.3 The abstraction of a program P, to its abstract counterpart, PA, s
defined:

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 117

Example 8.4.1 Consider the program append/3:

append([], Y, Y).
append|([X|Xs], Y, [X|2]) : —
append(Xs, Y, Z).

w1
w2

and the application of both sol and ag4,. to each clause as prescribed by the abstraction:

w1
SOl({JJOi = t()i}) agT(sol({in = t()i}))
{zo1 =tor, tor=1[} ~ {zor = [J} {zo1 = 0}
{zo2 = to2, to2 =y} ~ {zo2 =y} {ro2 =y}
{zo3 = to3, to3 =y} ~ {wo3 = y} {z03 =y}
w2
SOl({JJOi = t()i}) agT(sol({in = t()i}))
{zo1 = to1, tor = [z|zs]} ~ {zxo1 = [z|zs]} | {zo1 < Tvar([z|zs])}
{zo1 < x4 zs}
{zo2 = to2, to2 =y} ~ {zo2 =y} {zo2 = y}
{zo3 =tos, tos=[ylz]} ~ {zos =[ylz]} |{zo3 < Tvar([ylz])}
{zo3 <y + 2}
sol({xli = tli}) agT(sol({:vli = tli}))
{9311 = t11, t11 = xs} ~ {xn = xs} {xn = xs}
{z12 = t12, t12 =y} ~ {zr12 =y} {z12 =y}
{13 =t13, t13 =2} ~ {13 = 2} {13 = 2}

Hence, an abstract version of append/3 is derived:

w1 appendA(X(,l, Xog, Xog).

equivalent to:

w; append”(0,Y,Y).

Xo1 = 07
Xo2 =Y,
Xos = Y.
Wy appendA(X01,X02,X03) - Wy appendA(XXs,Y,XZ) -
Xo1 <X+ Xs, XXs < X+ Xs,
Xos = Y, XZ<X+72,
Xo3 < X + Z, append“(Xs, Y, Z).
X141 = Xs,
X120 =Y,
X13 = Zv

appendA(Xn, Xi2,X13).

8.5 Operations over Abstract Cones

Recall from Chapter 4, that polyhedral cones always include the origin, therefore the
convex hull of an arbitrary number of polyhedral cones is always closed. The convex
hull computation over polyhedral cones is very straightforward as it simply reduces to

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 118

addition. This means that as no A multipliers are needed the operation is linear and can
be expressed in matrix terms without recourse to a relaxation technique. That is, where
C1, Cy € Cone™ such that C7 = A147 < By and Cy = Asds < By then the closure of
their convex hull , C1UCy = {Z | T = @1 + @2, A171 < By, A2y < Bs}. The operation
is further simplified as the elements of A; will be in {—1,0,1} as will the elements of
the vectors B;. The process of abstraction amounts to replacing inequalities of the form
YY < XY, where both Y and Y’ are sets of variables in X, with the set of inequalities
{fy<Y'|yev}

Should scalar multipliers not in {—1, 1} arise in any operation they are simply discarded
when the operation output is coded in whatever form the representation takes.
Abstract intersection is not so straightforward to deal with and no simple way has been
devised to detect when abstract intersection is not the same as intersection. This does
not seem to occur very often and in the second implementation it is addressed by in-
corporating abstraction into the entailment test that always follows the meet operation.
For example, if the test is: Does Cf |= C§7 this means: Are the inference rules with
respect to the assignment of zero in C§ entailed by those in C{'? An example follows
that illustrates the process.

Example 8.5.1 Consider an intermediate entailment test in the process of the second
implementation for the analysis of append/3, where C{ =Yx U{a <d+ f,d<a, f <
a,c<d+e,d<c,e<c,b<e,e< f+b, f <e}and C§ =YxU{a <c, b<c}. To test
C{ = CF requires affirmation that (C{ Nc¢=0) = a=0and (CfNc=0) = b=0.a

This is not a satisfactory solution and needs rigorous attention in any further study.

8.6 Implementation

The implementations that have been carried out have been in the form of prototypes.
The first used the same analyser as the argument size analysis presented in Chapter
5, with preliminary transforms for program abstraction, normalisation (as in the left
hand column of the abstract version of append/3) and the calculation of SCCs. The
second used a hybrid analyser that induces the necessary magic transform as the analysis
proceeds. The analyses also differed in the implementation of the abstraction as detailed
in the following Sections 8.6.1 and 8.6.2.

8.6.1 Analyser I

The analyser is the same bottom-up analyser with ground representation. Apart from
the different abstraction this implementation differs from that of argument size analysis
in the following ways:

e abstraction and normalisation were automated

e the normalised programs were passed through a magic transform and then ab-
stracted

e the SCCs were derived and incorporated into the iteration strategy

The abstraction theory has been covered in Section 8.4.2 and the normalisation and
magic transform are standard. The SCCs were derived in a single pass using an edge
template that kept track of those predicates that had already been encountered.

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 119

The implemented abstraction Various factors encouraged the use of an implemen-
tation shortcut with regard to the abstraction. Empirical evidence during the argument
size analysis suggested that large numbers of inequalities slow the solver down even if
their solution does not require excessive computation. In this initial stage the widening
was still in place as it wasn’t until investigations into the nature of the abstract domain
had been completed that it was realised that the widening was unnecessary. It was clear
that excessive use of the solver would hold the analysis up. Two way implication of the
form x > y is modelled as {x < y, y < z} which is equivalent to z = y. It was apparent
that modelling x <> y Az as * = y+ z instead of {z < y+ 2,y < z, z < x} would
substantially reduce solver activity. Such a shortcut would clearly preserve the propa-
gation facility required of the prescribed abstraction, but could it ever be too precise,
that is, could an analysis ever infer a variable’s groundness or dependency that might
not always, or never be true?

One approach to answering that question is to consider the circumstances when it may
happen and then consider whether the identified circumstance can happen in the context
of the analysis of a logic program. Consider the following example:

Example 8.6.1 Let X = {z,y, 2z} and CY ={z <y+z,y <z, 2<z}, C§ ={z<
y+ao,y<z, e <z}, 0f ={z=y+z2}, Cf ={2z=y+x}, and Tx. Cf and C¥ both
represent the same propagation facility with respect to zero, in that in both cases if x
were assigned zero then it can be inferred that both y and z are zero; and if both y and
z are zero then it can be inferred that x is zero. Similarly with C§ and CF, if z were
assigned zero then it can be inferred that both y and = are zero; and if both y and «
are zero then it can be inferred that z is zero. Now, Cf N C§ = {y < z, x = z}, but
CsNCY ={y =0,z = z}. (CT) = p(CY) =z > (y A 2) and o(CF) = p(CYF) =z
(yAz), but p(CFNCY) = (y + x) A (z < 2) and (C$NCY) =y A (z < z). Hence,
although the propagation facility is the same for C* and C' and is the same for C'$
and Cf, the meet for C§' and Cf is more precise than the meet for C}* and C¥'. .

However, inspection of C{' and Cf', (and C§ and Cf,) discloses a cyclic dependency in
that = is dependent on both y and z in the first, but z is dependent on y and x in the
second. There is a constraint on substitutions in logic programs that they be idempo-
tent and dependencies such as these would break that constraint. Therefore providing
the logic programs are legitimate in this sense it is not an unreasonable conjecture
that the afore mentioned implementation shortcut might be safe. The first automated
abstraction employed this shortcut.

8.6.2 Analyser I1

The analyser is due to King and Howe [HKO01]. A query dependent analysis is a top-
down analysis as it commences from a known goal. A bottom-up analysis proceeds
from what is known at the basest level and is usually based on the Tp operator which
embodies an algorithm for finding the minimal model or meaning of a program. The
analyser employed here is a hybrid, a query dependent bottom-up analyser. This is not
the contradiction in terms that it appears to be. For an analysis to be useful it should
be as general as possible, so the query is as general as possible, that is, a query with no
instantiated arguments. Concern is with the possible computed answers to such a query.
Since the computed answers constitute the success set, this concern extends to the call
and answer patterns for the success set. If a query is to succeed it must satisfy the

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 120

answer pattern for the success set, and a pre-requisite of this condition is that it must
also satisfy the call pattern for the success set. In order to satisfy the call pattern, the
call pattern must be known and in order to infer the call pattern, analysis must begin
at the bottom and work its way up. The analyser references a database of abstract
facts derived from program abstraction and also maintains and references a dynamic
database of facts that fall into two classes. The first consists of current facts known
about a particular predicate, the second acts as a place marker. The need for a place
marker arises because the iteration scheme works its way through the program SCCs
on the fly. This means that there is no need for the pre-processing phase that would
compute the SCCs, but the number of iterations is reduced as auxilliary predicates are
completely analysed before those at the top level. The principles employed are built
on those of [Cod99] and the technique is termed by the authors ordered induced magic.
Hence the only pre-analysis phase required is abstraction.

8.7 Example Analyses

Implementation I In Figure 21 that follows, the first column displays the original
program and the second the set of groundness dependency relationships derived by
analysis. These results are from the first implementation which experimentally employed
a tighter abstraction than that prescribed by a. The dependencies can be interpreted
as formulae representing Def y functions as follows: i) = 0 means that z is true
(definitely ground) ii) z = y + z means that <> (y A z) and iii) 0 < = means that
nothing is known about x, it simply confines the computation to the positive orthant
of n-space. The abstracted magic’d programs are not included for reasons of space.

The first two programs are taken from [AMSS98], and the analyses are those ex-
pected from a top-down call-pattern analysis using Def y. Similarly the output for the
analysis of both the quicksort/2 and the queens/2 programs along with their predi-
cates is commensurate with that expected. The analysis results for the game program
kalah can also be found in Appendix A, and the results are also commensurate with
those expected with Def y analysis.

Implementation II The analysis results for the second implementation, in Figure
21, are very sparse as there was a problem with the projection machinery in SICStus
that prevented further experimentation. The question mark in the table indicates where
the analysis terminated with a system error. Again the analysis output was as expected
with a Def-based analysis. The abstraction was as prescribed in a(Cone™) : i) x =0 is
interpreted as x is true, ii) x <y as z < yand iii) s <y +z as ¢ < (y A 2).

8.8 Summary

Both implementations were curtailed prematurely and the fact that neither analysis

was complete, even as a prototype is vexing to say the least. However, there are some

observations that can be made and the opportunities for further investigation are many.
The aims then of the implementations were:

e to confirm the theory, that an analysis based on abstract cones could capture the
same dependency information as Def - This has undoubtedly been achieved, the

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR) 121

analysis results in both implementations, although sparse have covered various
predicate structures and addressed some of the likely problems with Def analyses
as identified in the literature.

e to see if the speed of the analyses based on abstract cones was acceptable. This is
currently still unknown. The timings for the first analysis were in seconds, but this
implementation was largely experimental and was curtailed before it had reached
an optimisation phase. The second implementation did not reach the point of
speed considerations, but as far as it went, analysis results were those expected.

The first implementation was a groundness analysis based on the previous argument
size analysis - a goal dependent analysis that was bottom up, courtesy of the magic
transform. The implementation used the same iterative technique that had been used
before with the same ground representation. The second implementation was designed
as a plug-in facility to a hybrid analyser that used different domains within one analysis
[HKO01]. Some observations can be made from the experience of these two implementa-
tions, despite their inconclusive nature with regard to timing.

It should be noted that although the orthogonal forms of both Def x and a(Cone™)
are employed in the proof strategy, computation does not require the orthogonal form,
allowing more compact form with transitive dependencies implicit in the representation.

Further, the use of an equality: = y + z, to capture the dependency of the form
z < y A z rather than the inequalities prescribed by the abstraction is a fertile area
for investigation, not only because empirical information and conjecture suggest that it
is sound, but, because if it is a sound optimisation, then there must be an identifiable
subclass of Def, that represents legitimate dependencies between the variables of logic
programs.

In summary, a(Cone™) is a viable abstract domain for representing dependency
information. Further investigation, especially with the implementation of the abstract
meet, is required on the implementation front, but the evidence is promising and with
the facility to capture this information at hand, as is the case in a constraint solving
environment, providing the analysis times are acceptable this domain could prove most
useful.

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR)

Program Groundness Dependencies
q(X, ¥):- qt(z, y) :-
P&, V), {r=0,y=0}
r(X, V), p(z, y) -
s(X) . {r=0,y=0}
I“A(x, y) T
pX, X). {x =0,y =0}
r(a, Y). sA(z) :-
r(X, a). z =0}
s(X).
or(X, Y, Z):- or(z, y, 2) :-
and(X, Y, U), {r=0,y=0,z=0}
xor(X, Y, V), andA(w,y,z) -
xor (U, V, Z). {z=2+y,0<z,0<y}

and(true, Y, Y).
and (X, true, X).
and(false, false, false).

xor(X, X, false).
xor (true, false, true).
xor (false, true, true).

xort(z, y, 2) :-
{r=9,2=0,0<2}

quicksort ([, [1).

quicksort ([X|Xs], 8):-
part(X, Xs, L, G),
quicksort (L, SL),
quicksort (G, SG),
append(SL, [X[|SG], S).

part(_, [1, [1, [1D.
part (X, [YlYs], L, [YIG]):-

quicksort?(z, y) :-

{z=y,
0 <z}

part™(w, z, y, z) -
{r=0,y=0,2z=0,
0 <w,

append”(z, y, 2) :-

X =<1, {z=z+y,
part(X, Ys, L, G). 0<z 0<y}
part(X, [YI|Ys], [YILI, G):-
Y =< X,
part(X, Ys, L, G).
append([1, Y, V).
append ([X|Xs], Y, [X|Zs]):-
append(Xs, Y, Zs).
queens (X, Y). queens?(z, y) :-
delete(X, Y, Z). {r=9y,0<z}

perm(X, Y).
safe(X).
no_attack(X,Y,Z).

delete(z, y,) :-
ly=z+22<y,0< 2}

pern?(z, y) :-
{z=y,0<a}

safe?(z) :-
{0<az}

no_attack?(z, y, 2) :-
{0<z,y=0, z=0}

Figure 20: Analysis Results for Implementation I

122

CHAPTER 8. GROUNDNESS ANALYSIS WITH SICSTUS CLP(QR)

Program

Groundness Dependencies

reverse([], []1).

reverse([X|Xs],Zs) :-
reverse(Xs, Ys),
append(Ys, [X], Zs).

append([1, Y, V).
append([X|Xsl, Ys, [XIZs]):-
append(Xs,Y, Zs).

reverse’(z, y) :-
{z<y,y<a}

append?(z, y, 2) :-
{z<z+y, <z y<z}

main(X, Y):-

quicksort(X, Y, Z).
quicksort([], Y, Y).
quicksort ([X|Xs], Ys, Zs):-

part(X, Xs, Xs1, Xs2),

quicksort (Xs1, Ys, [X|U]),

quicksort(Xs2, U, Zs).
part (1, -, [0, [1).
part([Y|Ys], X, L, [YIG]):-

X =< Y,

part(X, Ys, L, G).
part([Y|Ys]l, X, [YIL], G):-

Y < X,

part(X, Ys, L, G).

main?(z, y) :-
?

quicksort?(z, y, z) :-
{r=0,y=1z2}

{r=0,2=0,w=0}

Figure 21: Analysis Results for Implementation II

123

Chapter 9

Summary

“As you set out for Ithaka
hope the voyage is a long one,
full of adventure, full of discovery.

Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now...”
- C. P. Cavafy, Ithaka

...except the beginning of the next journey.

The contributions of this thesis are four-fold, two are theoretical and two are prac-
tical; they are all concerned with polyhedra:

The Isomorphism between a(Cone™) and Def The work in Chapter 7 amounts
to the identification of a subclass of polyhedra, namely abstract polyhedral cones. The
abstract polyhedral cones are derived by an abstraction mapping that is couched in
terms of the facility to infer that a variable is zero. The abstraction is a total map on
the domain of all polyhedral cones that effectively collapses an infinite domain to a finite
one. The notion of reducing an infinite domain to a finite one by defining a relation
that is a many to one map, suggests the possibility of equivalence classes. However,
in this case the equivalence relation does not preserve the ordering between potential
classes and the integrity of the meet is not preserved. The abstraction induces a finite
lattice that although a lattice in its own right is not a sublattice of the infinite lattice
of polyhedral cones.

These abstract polyhedral cones can capture dependency relationships in the same
way as a subclass of the positive Boolean functions known as Def. A lattice isomor-
phism is established between these two apparently disparate domains. The isomorphism
required the definition of a normal form for both domains to facilitate an injective map.
The representation of an abstract polyhedral cone is as a set of implicitly conjoined
linear inequalities. Since linear combination of linear inequalities can disclose entailed
information, the establishment of the normal form for the abstract polyhedral cones

124

CHAPTER 9. SUMMARY 125

includes a discussion on the motivation for, and possible outcomes of, the linear com-
bination of linear inequalities. The discussion concludes with a formal demonstration
that the normal form is a complete set of inference rules for each variable, and that no
further inference rule is entailed by the representation of any abstract polyhedral cone.
The establishment of analogous normal forms for these two domains, in that they both
constitute a complete set of inference rules for each variable, allows a bijective map that
is both semantic and syntactic. It is precisely this peculiar attribute of this mapping
that allows the proof of the order isomorphism and with it the lattice isomorphism.
This work concludes with a conjecture that whenever there is a mapping between
sets of inference rules of this kind, then the order isomorphism follows and therefore in
the case where both domains are complete lattices the lattice isomorphism follows too.

Representations of Polyhedra In Chapter 6 the precise conditions that allow dif-
ferent representations of the same polyhedron are established - the outcome of an in-
vestigation of the properties that uniquely identify a polyhedron. The impetus for this
work was to gain a better understanding of how linear spaces interact and to estab-
lish a spatial rationale for a well known widening technique. It is demonstrated that
the widening is representation independent only when the criteria that equalities be
represented as pairs of inequalities is met.

The body of this work consists of the establishment of the unique properties of
polyhedra with respect to their representation as sets of implicitly conjoined linear
inequalities. This entails the definition of the relative tangent hyperplanes which con-
stitute the unique bounds of a polyhedron that allow its delineation in n-space. In any
minimal representation of a polyhedron as a set of implicitly conjoined linear inequal-
ities, each linear inequality represents a closed half-space and the relative boundary
of each half-space is a hyperplane of n-space. So each half-space in a representation
has a boundary hyperplane that contains the relative tangent hyperplane that is one
of the unique bounds of the polyhedron. Hence the relative tangent hyperplanes that
delineate a polyhedron within n-space are each embedded in the boundary hyperplanes
of the half-spaces in the representation of the polyhedron. Alternative representations
are possible only when a polyhedron is of dimension less than the n-dimensional space
in which it is embedded. The reason this is possible is because then the polyhedron is
bound by half spaces that have the space in which to rotate about the relative tangent
hyperplanes or about the polyhedron itself. Each minute rotation, since it contains the
relative tangent hyperplane of the polyhedron, is an alternative candidate for the set of
inequalities in a representation of that polyhedron.

Computational Tactics for Polyhedra In the process of the widening investigation
recounted in the previous paragraph, it became apparent that the representation of a
polyhedron could properly be considered in two parts: i) the representation of the
affine hull of the polyhedron, and ii) the representation of the half-spaces that intersect
the affine hull and so delineate the polyhedron within its affine hull. This leads to the
observation that operations, particularly the convex hull, and entailment, over polyhedra
can be considered within the affine hull that is the least upper bound of the affine hulls
of the operands, rather than in n-space. This may not seem particularly advantageous
but in increasing sequences when such an operation might be required, the affine hulls
of the operands are often either the same or ordered by subset inclusion.

CHAPTER 9. SUMMARY 126

This premise with regard to affine hulls also holds for the technique known as widen-
ing. The improved understanding that this discussion affords has also allowed the sug-
gestion of a computationally less expensive interpretation of this widening tactic which
is aimed at identifying the common bounds of polyhedra in an increasing sequence.

Polyhedra for Analyses Two analyses are presented. The argument size analysis
of Chapter 5 introduced and established as valid, a relaxation technique used in dis-
junctive constraint programming for computing convex hulls. This technique avoids
the cost of dual representations and switching between them, that has been established
practice. This analysis also served to illustrate the very useful information that can
be distilled with analyses employing polyhedral domains. Further, it was noted that
in logic programming, where the recursive definition of procedure is the most usual,
increasing sequences based on program definitions might display different kinds of be-
haviour. Some different behaviours are classified and it is noted that they might warrant
different tactics with regard to introducing a widening to enforce analysis convergence.

The two prototypes for groundness analysis have separately employed a number of
different tactics that are recounted in Chapter 8. Unfortunately neither implementation
was completed and therefore efforts to improve analysis speed had not been commenced,
so in this respect the work is inconclusive. It should be noted that analyses should be
completed within acceptable time frames that are not necessarily limited to the smallest
time frame. Whilst there will be circumstances when the smallest time frame is the only
acceptable one, chip and processor performances are still improving and the convenience
of having solvers able to perform analyses, without the set-up and maintenance costs of
of analysis representation and manipulation machinery, may outweigh the need for the
fastest analysis time, providing the analysis time is acceptable. In any event, prelimi-
nary results confirm the theory that abstract polyhedral cones can capture dependency
information in the same way as Boolean functions in Def.

Overall therefore, there is a positive indication that both polyhedra and abstract
cones are useful abstract domains for the analysis of logic programs, both to capture
analysis with respect to some measure of size and to capture groundness dependency
analysis. However, abstract domains are not paradigm-dependent and the use of these
polyhedral domains and widening techniques may also serve analyses in the imperative
paradigm.

Future Work These contributions constitute a stepping stone to further research.
Primarily further research must be directed at an efficient implementation of the ab-
stract cone domain for Def analyses. Investigations should be directed at the imple-
mentation techniques that have arisen from the work on widenings: the alternative
method to capturing the common bounds of sequence of increasing polyhedra and the
potentially time saving technique of restricting operations to the confines of the smallest
affine space that contains all of the operands. Work should be directed at qualifying
the circumstances when these techniques are most useful and also whether there are
occasions when their application is not sensible, that is, when at best they afford no
tangible gain. A deeper understanding of how linear spaces interact with one another
provided potentially useful computational insights, but there remains much more to be
investigated.

Appendix A

Implementation I

A.1 kalah

Program definition

play(Game,Result) :-
initialize(Game,Position,Player),
displaygame (Position,Player),
play(Position,Player,Result).

play(Position,Player,Result) :-
gameover (Position,Player,Result),
announce (Result) .

play(Position,Player,Result) :-
choosemove (Position,Player,Move),
move (Move,Position,Positionl),
displaygame (Positionl,Player),
nextplayer (Player,Playerl),
play(Positionl,Playerl,Result).

choosemove (Position,computer,Move) :-
lookahead (Depth),
alphabeta(Depth,Position,40,40,Move,Value).

choosemove (Position,opponent,Move) :-
genlegal (Move) .

alphabeta(0,Position,Alpha,Beta,Move,Value) :-
value(Position,Value).
alphabeta(D,Position,Alpha,Beta,Move,Value) :-
D > 0,
allmoves(Position,Moves),
Alphal is O - Beta,
Betal is 0 - Alpha,
D1 is D - 1,
evaluateandchoose(Moves,Position,D1,Alphal,Betal, [],p(Move,Value)).

127

APPENDIX A. IMPLEMENTATION I 128

allmoves (Position, [X]) :-
move (Position,X).

allmoves(Position, [X|Xs]) :-
move (Position,X),
allmoves(Position,Xs).

evaluateandchoose ([Move|Moves] ,Position,D,Alpha,Beta,Record,BestMove) :-
move (Move,Position,Positionl),
alphabeta(D,Positionl,Alpha,Beta,MoveX,Value),
Valuel is 0 - Value,
cutoff (Move,Valuel,D,Alpha,Beta,Moves,Position,Record,BestMove) .
evaluateandchoose([],Position,D,Alpha,Beta,Move,p(Move,Alpha)).

cutoff (Move,Value,D,Alpha,Beta,Moves,Position,Movel,p(Move,Value)) :-
Value >= Beta.

cutoff (Move,Value,D,Alpha,Beta,Moves,Position,Movel,BestMove) :-
Alpha < Value,
Value < Beta,
evaluateandchoose(Moves,Position,D,Value,Beta,Move,BestMove).

cutoff (Move,Value,D,Alpha,Beta,Moves,Position,Movel,BestMove) :-
Value =< Alpha,
evaluateandchoose(Moves,Position,D,Alpha,Beta,Movel,BestMove) .

move (Board, [M|Ms]) :-
member (M, [1,2,3,4,5,6]),
stonesinhole(M,Board,N),
extendmove (N,M,Board,Ms) .

move (board([0,0,0,0,0,0],K,Ys,L),[]).

member (X, [X|Y]).
member (X, [FIT]) :-
member (X,T) .

stonesinhole(M,board(Hs,K,Ys,L),Stones) :-
nthmember (M,Hs,Stones),
Stones > 0.

extendmove (Stones,M,Board, []) :-
Stones =\= 7 - M.
extendmove(Stones,M,Board,Ms) :-
Stones =:=7 - M,
distributestones(Stones,M,Board,Boardl),
move (Boardl,Ms).

move ([N|Ns] ,Board,FinalBoard) :-

APPENDIX A. IMPLEMENTATION I 129

stonesinhole (N,Board,Stones),
distributestones(Stones,N,Board,Boardl),
move (Ns,Boardl,FinalBoard) .

move ([],Boardl,Board2) :-
swap (Boardl,Board2) .

distributestones(Stones,Hole,Board,FinalBoard) :-
distributemyholes(Stones,Hole,Board,Boardl,Stonesl),
distributeyourholes(Stonesl,Boardl,FinalBoard).

distributemyholes(Stones,N,board(Hs,K,Ys,L) ,board(Hs1,K1,Ys,L) ,Stonesl) :-
Stones > 7 - N,
pickupanddistribute(N,Stones,Hs,Hs1),
K1 is K + 1,
Stonesl is Stones + N - 7.
distributemyholes(Stones,N,board(Hs,K,Ys,L) ,Board,0) :-
pickupanddistribute (N,Stones,Hs,Hs1),
checkcapture(N,Stones,Hs1,Hs2,Ys,Ys1,Pieces),
updatekalah(Pieces,N,Stones,K,K1),
checkiffinished(board(Hs2,K1,Ys1,L) ,Board).

checkcapture(N,Stones,Hs,Hs1,Ys,Ys1,Pieces) :-
FinishingHole is N + Stones,
OppositeHole is 7 - FinishingHole,
nthmember (OppositeHole,Ys,Y),
Y >0,
nsubstitute(OppositeHole,Hs,0,Hs1),
nsubstitute(FinishingHole,Ys,0,Ys1),
Pieces is Y + 1.
checkcapture (N, Stones,Hs,Hs,Ys,Ys,0).

checkiffinished(board(Hs,K,Ys,L) ,board(Hs,K,Hs,L1)) -
zero(Hs),

sumlist(Ys,YsSum),

L1 is L + YsSum.
checkiffinished(board(Hs,K,Ys,L) ,board(Ys,K1,Ys,L)) -
zero(Ys),

sumlist (Hs,HsSum),

K1 is K + HsSum.

checkiffinished(Board,Board) .

updatekalah(0,Stones,N,K,K) :-
Stones < 7 - N.
updatekalah(0,Stones,N,K,K1) :-
Stones =:=7 - N,
K1 is K + 1.
updatekalah(Pieces,Stones,N,K,K1) :-
Pieces > O,

APPENDIX A. IMPLEMENTATION I 130

K1 is K + Pieces.

distributeyourholes(0,Board,Board) .
distributeyourholes(Stones,board(Hs,K,Ys,L) ,board(Hs,K,Ys1,L)) :-

1 =< Stones,

Stones =< 6,

nonzero (Hs),

distribute(Stones,Ys,Ys1).
distributeyourholes(Stones,board(Hs,K,Ys,L) ,board(Hs,K,¥s1,L)) :-

Stones > 6,

distribute(6,Ys,¥Ys1),

Stonesl is Stones - 6,

distributestones(Stones1,1,board(Hs,K,Ys1,L),Board).
distributeyourholes(Stones,board(Hs,K,Ys,L) ,board(Hs,K,Hs,L1)) :-

zero(Hs),

sumlist(Ys,YsSum),

L1 is Stones + YsSum + L.

pickupanddistribute(1,N, [H|Hs], [0|Hs1]) :-
distribute(N,Hs,Hs1).
pickupanddistribute(X,N, [H|Hs], [0|Hs1]) :-
K>1,
K1 is K - 1,
pickupanddistribute(K1,N,Hs,Hs1).

distribute(0,Hs,Hs).
distribute(N, [H|Hs], [H1|Hs1]) :-

N > 0,

Ni is N - 1,

Hl is H + 1,

distribute (N1,Hs,Hs1).
distribute(N, [1,[1).

value(board(H,K,Y,L) ,Value) :-
Value is K - L.

gameover (board(0,N,0,N) ,Player,draw) :-
pieces(K),
N =:=6 % K.

gameover (board(H,K,Y,L) ,Player,Player) :-—
pieces(N),
K >6 x N.

gameover (board(H,K,Y,L) ,Player,Opponent) :-
pieces(N),
L>6x*0N,
nextplayer (Player,Opponent) .

announce (opponent) .

APPENDIX A. IMPLEMENTATION I

announce (computer) .
announce (draw) .

nthmember (N, [H|Hs] ,K) :-

N> 1,
N1 is N - 1,
nthmember (N1,Hs,K) .

nthmember (1, [H|Hs] ,H).

nsubstitute(1, [X|Xs],Y, [YIXs]).
nsubstitute(N, [X|Xs],Y, [X|Xs1]) :-
N>1,
N1 is N -1,
nsubstitute(N1,Xs,Y,Xs1).

nextplayer (computer,opponent) .
nextplayer (opponent,computer) .

legal ([N|Ns]) :-
0 <N,

N <7,
legal(Ns).
legal([]).

genlegal ([N|Ns]) :-
member (N, [1,2,3,4,5,6]),
genlegal(Ns) .

genlegal ([]).

swap (board (Hs,K,Ys,L) ,board(Ys,L,Hs,K)) .

displaygame (Position,computer) :-
show(Position).

displaygame (Position,opponent) :-
swap (Position,Positionl),
show(Positionl).

show(board(H,K,Y,L)) :-
reverse(H,Hr),
writestones(Hr),
writekalahs(K,L),
writestones(Y).

writestones(H) :-
displayholes(H) .

displayholes([H|Hs]) :-
writepile(H),

131

APPENDIX A. IMPLEMENTATION I

displayholes(Hs) .
displayholes([]).

writepile(N) :-
N < 10,
write(N) .

writepile(N) :-
N >= 10,
write(N).

writekalahs(K,L) :-
write(X),
write(L).

zero([0,0,0,0,0,0]).
nonzero(Hs) :-
Hs \== [0,0,0,0,0,0].

reverse(L,K) :—
rev(L, [1,K).

rev([],L,L).
rev([H|IT],L,K):-
rev(T, [H|L],K).

sumlist(Is,Sum) :-
sumlist(Is,0,Sum).
sumlist ([],Sum,Sum).
sumlist ([I|Is],Temp,Sum) :-
Templ is Temp + 1,
sumlist(Is,Templ,Sum).

lookahead(2).
lookahead(5) .

initialize(kalah,board(a,0,a,0),opponent) .
initialize(kalah,board(b,1,b,1),computer).

pieces(6).
pieces(1).

Analysis Output

I = [atom(allmoves_a,2, [equal(var(2),0),lesseq(var(1),0)]1),
atom(allmoves_c,2, [lesseq(var(1),0)]1),

atom(alphabeta_a,6, [equal(var(1),0),equal(var(3),0),equal(var(4),0)]1),
atom(alphabeta_c,6, [equal(var(1),0),equal(var(3),0),equal(var(4),0),

132

APPENDIX A. IMPLEMENTATION I 133

lesseq(var(2),0)]),

atom(announce_a,1, [equal(var(1),0)]1),

atom(announce_c,1, [equal(var(1),0)]),
atom(checkcapture_a,7, [equal (var(1),0),equal(var(2),0),equal(var(7),0),
lesseq(0,var(4)) ,lesseq(minus(var(4),var(3)),0),
lesseq(minus(var(6),var(5)),0)]1),

atom(checkcapture_c,7, [equal(var(1),0),equal(var(2),0),lesseq(0,var(3))]),
atom(checkiffinished_a,2, [lesseq(var(1),0),lesseq(minus(var(2),var(1)),0)]1),
atom(checkiffinished_c,2, [1lesseq(var(1),0)]1),
atom(choosemove_a,3, [equal (var(1),0),equal(var(2),0)]),
atom(choosemove_c,3, [equal (var(1),0) ,equal(var(2),0)]1),

atom(cutoff_a,9, [equal(var(1),0),equal(var(2),0),equal(var(3),0),

equal (var(4),0) ,equal(var(5),0),equal(var(6),0),equal(var(8),0),
equal(var(9),0)]1),

atom(cutoff_c,9, [equal (var(1),0),equal(var(2),0),equal(var(3),0),

equal (var(4),0),equal(var(5),0),equal(var(6),0),equal(var(8),0)]),
atom(displaygame_a,2, [equal(var(1),0),equal(var(2),0)]),
atom(displaygame_c,2, [equal(var(2),0),lesseq(var(1),0)]1),
atom(displayholes_a,1, [equal (var(1),0)]),

atom(displayholes_c,1, [lesseq(0,var(1))]),

atom(distribute_a,3, [equal(var(1),0),equal(var(2),var(3))]1),
atom(distribute_c,3, [equal(var(1),0)]),

atom(distributemyholes_a,5, [equal(var(1),0),equal(var(2),0),

equal (var(5),0),lesseq(var(3),0),lesseq(0,minus(var(3),var(4)))]1),
atom(distributemyholes_c,5, [equal(var(1),0),equal(var(2),0),
lesseq(var(3),0)]),

atom(distributestones_a,4, [equal(var(1),0),equal(var(2),0),lesseq(var(3),0),
lesseq(0,minus(var(3),var(4)))]),

atom(distributestones_c,4, [equal(var(1),0),equal(var(2),0),
lesseq(var(3),0)]),
atom(distributeyourholes_a,3, [equal (var(1),0),lesseq(var(2),0),
lesseq(minus(var(3),var(2)),0)1),

atom(distributeyourholes_c,3, [equal(var(1),0),lesseq(var(2),0)]1),
atom(evaluateandchoose_a,7, [equal(var(1),0),equal(var(3),0),equal(var(4),0),
equal (var(5),0) ,equal(var(6),0),equal(var(7),0)]1),
atom(evaluateandchoose_c,7, [equal(var(1),0),equal(var(3),0),equal(var(4),0),
equal (var(5),0),equal(var(6),0)]),
atom(extendmove_a,4, [equal (var(1),0) ,equal(var(2),0),equal(var(4),0),
lesseq(var(3),0)]),
atom(extendmove_c,4, [equal (var(1),0) ,equal(var(2),0),lesseq(0,var(4)),
lesseq(var(3),0)]),

atom(gameover_a, 3, [equal(var(1),0),equal(var(2),0),equal(var(3),0)]),atom(gameover_c,3.
atom(genlegal_a,1, [lesseq(0,var(1))]),

atom(genlegal_c,1,[]),

atom(initialize_a,3, [equal(var(1),0),equal(var(2),0),equal(var(3),0)]1),
atom(initialize_c,3, [lesseq(0,var(1))]),

atom(lookahead_a,1, [equal(var(1),0)]1),

atom(lookahead_c,1,[]),

APPENDIX A. IMPLEMENTATION I 134

atom(member_a,2, [lesseq(0,var(1)),lesseq(minus(var(1),var(2)),0)]1),
atom(member_c,2, [lesseq(0,var(1))]1),

atom(move_a,2, [equal(var(2),0),lesseq(var(1),0)]1),
atom(move_a,3, [equal (var(1),0),lesseq(var(2),0),

lesseq(minus (var(3),var(2)),0)]),

atom(move_c,2, [lesseq(var(1),0)]),

atom(move_c,3, [lesseq(var(2),0)]),

atom(nextplayer_a,2, [equal(var(1),0),equal(var(2),0)]1),
atom(nextplayer_c,2, [equal(var(1),0)]),

atom(nonzero_a,1, [equal(var(1),0)]),

atom(nonzero_c,1,[1),

atom(nsubstitute_a,4, [equal(var(1),0),equal(var(3),0),lesseq(0,var(4)),
lesseq(minus(var(4),var(2)),0)]1),

atom(nsubstitute_c,4, [equal(var(1),0),equal(var(3),0),lesseq(0,var(2))]),
atom(nthmember_a, 3, [equal(var(1),0) ,lesseq(0,var(3)),

lesseq(minus (var(3),var(2)),0)]),

atom(nthmember_c,3, [lesseq(0,var(1))]),atom(parts,3, [Lesseq(0,var(2)),
equal (var (1) ,plus (minus(var(2)),var(3))),lesseq(minus(var(2),var(3)),0)]1),
atom(pickupanddistribute_a,4, [equal (var(1),0),equal(var(2),0),
lesseq(0,var(4)) ,lesseq(minus(var(4),var(3)),0)1),
atom(pickupanddistribute_c,4, [equal(var(1),0),equal(var(2),0)]1),
atom(pieces_a,1, [equal(var(1),0)]) ,atom(pieces_c,1,[]),

atom(play_a,2, [equal(var(1),0),equal(var(2),0)1),

atom(play_a,3, [equal(var(1),0),equal(var(2),0),equal(var(3),0)]1),
atom(play_c,2, [lesseq(0,var(1)),lesseq(0,var(2))]1),

atom(play_c,3, [equal(var(1),0),equal(var(2),0),lesseq(0,var(3))]),
atom(rev_a,3, [lesseq(0,var(2)) ,equal(var(l) ,minus(var(3),var(2))),
lesseq(0,minus(var(3),var(2)))]),atom(rev_c,3, [lesseq(0,var(2))]),
atom(reverse_a,2, [equal(var(1) ,var(2)),lesseq(0,var(1))]1),
atom(reverse_c,2,[]) ,atom(show_a,1, [equal(var(1),0)]),

atom(show_c,1, [lesseq(var(1),0)]),
atom(stonesinhole_a,3, [equal (var(1),0),

equal (var(3),0),lesseq(var(2),0)]),

atom(stonesinhole_c,3, [lesseq(0,var(1)),lesseq(var(2),0)]1),
atom(sumlist_a,2, [equal(var(2),0),lesseq(0,var(1))]),
atom(sumlist_a,3, [equal(var(2),0),equal(var(3),0),lesseq(0,var(1))]1),
atom(sumlist_c,2,[]),

atom(sumlist_c,3, [equal(var(2),0)]1),
atom(swap_a,2, [equal(var (1) ,var(2)),lesseq(var(1),0)]1),

atom(swap_c,2, [lesseq(var(1),0)]),

atom(true,0,[]),

atom(updatekalah_a,5, [equal(var(1),0),equal(var(2),0),equal(var(3),0),
equal(var(4),var(5))]1),

atom(updatekalah_c,5, [equal(var(1),0),equal(var(2),0),equal(var(3),0)]),
atom(value_a,2, [equal(var(2),0),lesseq(var(1),0)]),

atom(value_c,2, [lesseq(var(1),0)]),

atom(writekalahs_a,2, [equal(var(1),0),equal(var(2),0)]),
atom(writekalahs_c,2,[]) ,atom(writepile_a,1, [equal(var(1),0)]),

APPENDIX A. IMPLEMENTATION I 135

atom(writepile_c,1, [lesseq(0,var(1))]),
atom(writestones_a,1, [equal(var(1),0)]),
atom(writestones_c,1,[]),atom(zero_a,1, [equal(var(1),0)]),
atom(zero_c,1,[])]

Bibliography

[AMSS98]

[Bag94]

[Bag96|

[BGLY2|

[BGLMO91]

[Bir4s]

[BJT99]

[BK8Y]

[BK96]

[BK99]

[Bro83]

T. Armstrong, K. Marriott, P. Schachte, and H. Sgndergaard. Two classes
of Boolean Function for dependency analysis. In Science of Computer
Programming, volume 31 (1), pages 3-45, 1998.

R. Bagnara. On the detection of implicit and redundant numeric con-
straints in CLP programs. In Joint Conference on Declarative Program-
ming (GULP-PRODE), pages 312-326, 1994.

R. Bagnara. A hierarchy of constraint systems for data-flow analysis of con-
straint logic-based languages. Technical Report TR-96-10, Dipartimento
di Informaticé, Universita di Pisa corso Italia 40, 56125 Pisa, Italy, 1996.

R. Bagnara, R. Giacobazzi, and G. Levi. Static Analysis of CLP Programs
over Numeric Domains. In Workshop on Static Analysis, volume 81-82,
pages 43-50, 1992.

A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics ap-
proach: theory and applications. Journal of Logic Programming, Special
Issue: Ten Years of Logic Programming, 19-20:149-197, 1991.

G. Birkhoff. Lattice Theory. American Mathematical Society, 190 Hope
Street, Providence, Rhode Island, USA, 1948.

F. Besson, T. Jensen, and J-P. Talpin. Polyhedral analysis for synchronous
languages. In Static Analysis Symposium. Springer-Verlag, 1999.

V. Balasundaram and K. Kennedy. A Technique for Summarizing Data
Access and Its Use in Parallelism Enhancing Transformations. In Pro-
gramming Language Design and Implementation, pages 41-53. ACM Press,
1989.

F. Benoy and A.M. King. Inferring Argument Size Relationships with
CLP(R). In 6th International Workshop on Logic Program Synthesis and
Transformation. Springer-Verlag, 1996.

F. Benoy and A.M. King. An Isomorphism between Abstract Polyhedral
Cones and Definite Boolean Functions. Technical Report 3-99, Computing
Laboratory, University of Kent, Canterbury, CT2 7NF, UK, 1999.

A. Bronstead. An Introduction to Convex Polytopes. Springer Verlag, New
York, 1983.

136

BIBLIOGRAPHY 137

[CC92a]

[CCY2b]

[CCI2c]

[CC00]

[CDY5]

[CHT7S]

[CL95)

[Cod99]

[Col90]

[Cou00]

[CT97]

[Dar91]

[DBY3]

[DP90]

[Gal95]

P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic
Programs. Journal of Logic Programming, 13(2,3):103-179, 1992.

P. Cousot and R. Cousot. Abstract Interpretation Frameworks. In Journal
of Logic Programming. Springer-Verlag, 1992.

P. Cousot and R. Cousot. Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation. In 4th Interna-
tional Symposium on Programming Language Implementation and Logic
Programming, volume LCNS 631, pages 269-295. Springer-Verlag, 1992.

P. Cousot and R. Cousot. Abstract interpretation based program testing.
In Proceedings of the SSGRR 2000 Computer € eBusiness International
Conference. Scuola Superiore G. Reiss Romoli, July 31 — August 6 2000.

M. Codish and B. Demoen. Analyzing Logic Programs using “Prop”-
ositional Logic with a Magic Wand. Journal of Logic Programming, 25
(3):249-274, 1995.

P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints
among Variables of a Program. In 5th Symposium on Principles of Pro-
gramming Languages, pages 84-97, 1978.

M. Codish and V. Lagoon. Persistent Type Analysis using a Non-Ground
Domain. Technical report, Dept of Maths and Computer Science, Ben-
Gurion University of the Negev, Israel, 1995.

M. Codish. Worst-Case Groundness Analysis using Positive Boolean Func-
tions. Journal of Logic Programming, 41(1):125 —128, 1999.

A. Colmerauer. An Introduction to Prolog III. In CACM, volume 33, pages
70-90, July 1990.

P. Cousot. Abstract interpretation: Achievements and perspectives. In
Proceedings of the SSGRR 2000 Computer & eBusiness International Con-
ference. Scuola Superiore G. Reiss Romoli, July 31 — August 6 2000.

M. Codish and C. Taboch. A semantic basis for termination analysis of
logic programs and its realisation using symbolic norm constraints. In The
Sixth International Conference on Algebraic and Logic Programming, 1997.

P. Dart. On Derived Dependencies and Connected Databases. Journal of
Logic Programming, pages 163-188, 1991.

B. De Backer and H. Beringer. A CLP language handling disjunctions
of linear constraints. In International Conference on Logic Programming,
pages 550-563. MIT Press, 1993.

B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

J. Gallagher. A Bottom-Up Analysis Toolkit. In Workshop on Analysis of
Logic Languages, Eilat, Israel, June 1995.

BIBLIOGRAPHY 138

[GBS95]

[GDL92]

[Get94]

[GHCO1]

[Gia93]

[Gru67]

[Hal79]

[Han95)]

[HAZCKO00]

[HBCT99]

[HIM*92]

[HK99)

[HKOO]

J. Gallagher, D. Boulanger, and H. Saglam. Practical Model-Based Static
Analysis for Definite Logic Programs. In J.W. Lloyd, editor, Proceedings
International Logic Programming Symposium, pages 351-365. MIT Press,
1995.

R. Giacobazzi, S. Debray, and G. Levi. Generalised Semantics and Ab-
stract Interpretation for Constraint Logic Programs. Technical report,
Dipartimento di Informatica, Universitd di Pisa, 1992.

T. Getzinger. The Costs and Benefits of Abstract Interpretation- driven
Prolog Optimisations. In Static Analysis Symposium, pages 1-25. Springer-
Verlag, 1994.

S. Genaim, J.M. Howe, and M. Codish. Worst-Case Groundness Analysis
using definite Boolean Functions. Theory and Practice of Logic Program-
ming, 2001. Forthcoming.

R. Giacobazzi. Semantic Aspects of Logic Program Analysis. PhD thesis,
Dipartimento di Informatica, Universita di Pisa corso Italia 40, 56125 Pisa,
Italy, 1993.

B. Grunbaum. Convex Polytopes. Interscience Publishers - J.Wiley and
Sons, London, 1967.

N. Halbwachs. Détermination automatique de relations linéaires vérifiées
par les variables d’un programme. Universit’e scientifique et médicale de
Grenoble, 1979. These de 3 eme d’informatique.

M. Handjieva. Abstract Interpretation of Constraint Logic Programs over
Numeric Domains. Technical report, LIX, Ecole Polytechnique, France,
1995.

A. Heaton, M. Abo-Zaed, M. Codish, and A.M. King. A Simple Polynomial
groundness analysis for logic programs. Journal of Logic Programming,
45:143-156, September 2000.

M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcia de la Banda,
P. Lopez, and G. Puebla. The CTAO Multi-Dialect Compiler and System:
An Experimentation Workbench for Future (C)LP Systems. In Parallelism
and Implementation of Logic and Constraint Logic Programming. Nova
Science, 1999.

N. C. Heintze, J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap.
The CLP(R) Programmer’s Manual Version 1.2, 1992.

J.M. Howe and A.M. King. A Semantic Basis for Specialising Domain
Constraints. Technical Report 21-99, Computing Laboratory, University
of Kent, Canterbury, CT2 7NF, UK, 1999.

J.M. Howe and A.M. King. Specialising finite domain programs using
polyhedra. In A. Bossi, editor, Logic Programming Synthesis and Trans-
formation 1999, volume 1817 of Lecture Notes in Computer Science, pages
118-135. Springer-Verlag, March 2000.

BIBLIOGRAPHY 139

[HKO1]

[Hog90]

[Hor90]

[HPR94]

[JBE94]

[Kar76]

[Ker94]

[KS93]

[KSBY7]

[KVvET6]

[Lay82]

[ICMH90]

[L1093]

[LMMSS]

J.M. Howe and A.M. King. Efficient Groundness Analysis in Prolog. Under
consideration for publication in Theory and Practice of Logic Program-
ming, 2001.

C.J. Hogger. FEssentials of Logic Programming. Clarendon Press, Oxford,
UK, 1990.

R. N. Horspool. Analyzing List Usage in Prolog Code. University of
Victoria, March 1990.

N. Halbwachs, Y.E. Proy, and P. Raymond. Verification of linear hybrid
systems by means of convex approximations. In First International Static
Analysis Symposium, volume LCNS 864, pages 223-237. Springer Verlag,
September 1994.

G. Janssens, M. Bruynooghe, and V. Englebert. Abstracting numeric val-
ues in CLP(H,N). In Programming Language Implementation and Logic
Programming, pages 400-414. Springer-Verlag, 1994.

M. Karr. Affine Relationships Among Variables of a Program. Acta Infor-
matica, 6:133-151, 1976.

Alain Kerbrat. Reachable state space analysis of lotos specifications. In
Tth International Conference on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols, pages 181 — 196, October
1994.

D. B. Kemp and P. J. Stuckey. Analysis Based Constraint Query Optimi-
sation. In International Conference on Logic Programming, pages 666—682,
1993.

A .M. King, K. Shen, and F. Benoy. Lower-bound time-complexity analysis
of logic programs. In Jan Maluszynski, editor, International Symposium
on Logic Programming, pages 261 — 276. MIT Press, November 1997.

R. A. Kowalski and M.H. van Emden. The semantics of predicate logic as
a programming language. Journal of ACM, 23:733-742, 1976.

S. Lay. Convex Sets and their Applications. Wiley Interscience Publication
- J.Wiley and Sons, New York, 1982.

B. le Charlier, K. Musumbu, and P. Van Hentenryck. Efficient and accurate
algorithms for the abstract interpretation of prolog programs. In Research
Paper No. RP-90/9. University of Namur, Belgium, 1990.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Heidel-
berg, Germany, 2nd edition, 1993.

J.L. Lassez, M.J. Maher, and K. Marriott. Unification Revisited, pages
587-625. Morgan Kauffman Publishers Inc, 95. First Street, Los Al-
tos,California 94022, 1988.

BIBLIOGRAPHY 140

[Mel81]

[MG92]

[Mil90]

[MK97]

[MS90]

[Plugs]

[RocT70]

[Sa97]

[SGOT]

[SGO8]

[Soh94]

[S5597]

[Sza63]

[Tarb5]

[Tay91]

C. Mellish. Abstract Generation of Mode declarations for Prolog Programs
(Draft). In DAI Research Paper. University of Edinburgh, 1981.

F. Mesnard and J.-G. Ganascia. CLP(Q) for Proving Interargument Re-
lations. In META’92, pages 308-320, Uppsala, Sweden, 1992. Springer-
Verlag.

H. Millroth. Reforming Compilation of Logic Programs. PhD thesis, Com-
puting Science Department, Uppsala University, 1990.

J.C. Martin and A.M. King. Generating efficient and terminating pro-
grams. In TAPSOFT. Springer-Verlag, 1997.

K. Marriott and H. Sgndergaard. Abstract interpretation of logic programs:
the denotational approach. In GULP. A.Bossi ed,Padova, 1990.

L. Plumer. Automatic verification of parallel logic programs: Termination.
In Logic Programming: Formal Methods and Practical Applications, pages
92-119. Elsevier Science, 1995.

R. Rockafellar. Conver Analysis. Princeton University Press, New Jersey,
1970.

H. Saglam. A Toolkit for Static Analysis of Constraint Logic Programs.
PhD thesis, Department of Computer Science, University of Bristol, 1997.

H. Saglam and J. Gallagher. Static Analysis of Logic Programs Using
CLP as a Meta-Language. Technical Report CSTR-96-003, Department of
Computer Science, University of Bristol, June 1997.

H. Saglam and J. Gallagher. Constrained Regular Approximation of Logic
Programs. In N. Fuchs, editor, Program Synthesis and Transformation.
7th International Workshop, LOPSTR’97, Leuven, Belgium, July 1997,
volume 1463, pages 282-299. Springer Verlag, Lecture Notes in Computer
Science, June 1998.

K. Sohn. Constraints among Argument Sizes in Logic Programs. In Prin-
ciples of Database Systems, pages 68-74. ACM Press, 1994.

C. Spiers, Z. Somogyi, and H. Sgndergaard. Termination analysis for mer-
cury. Technical report, Dept. of Computer Science, University of Mel-
bourne, Australia, 1997.

G. Szasz. Introduction to Lattice Theory. Academic Press, New York,
London and The Publishing House of the Hungarian Academy of Sciences,
Budapest, 1963.

A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pa-
cific Journal of Mathematics, 5:285-310, 1955.

A. Taylor. High Performance Prolog Implementation. PhD thesis, Basser
Department of Computer Science, Sydney, 1991.

[U1185]

[UvGS8S]

[van91]

[VD92]

[VRI0]

[Wil93]

J. D. Ullman. Implementation of Logical Query Languages for Databases.
ACM Transactions on Database Systems, 10(3):289-321, 1985.

J.D. Ullman and A. van Gelder. Efficient tests for top-down logical rules.
In Journal ACM, volume 35(2), pages 345-373. Springer-Verlag, 1988.

A. van Gelder. Deriving Constraints Among Argument Sizes in Logic
Programs. Annals of Mathematics and Artifical Intelligence, 3:361-392,
1991.

K. Verschaetse and D. De Schreye. Derivation of Linear Size Relations
by Abstract Interpretation. In 4th International Symposium on Program-
ming Language Implementation and Logic Programming, volume LCNS
631, pages 296-310. Springer-Verlag, 1992.

P. van Roy. Can Logic Programming Ezecute as Fast as Imperative Pro-
gramming? PhD thesis, Computer Engineering Division, University of
Southern California, 1990.

D. Wilde. A Library for doing Polyhedral Operations. Technical Report PI-
785, Institut de Recherche en Informatique et Systemes Aleatoires, Campus
Universitaire de Beaulieu, 35042 Rennes Cedex, France, 1993.

141

