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ABSTRACT

Some difficulties of non-linear time series modelling are discussed. The importance of likelihood

plots and information matrix calculation is demonstrated. A constructive use of reparametrization is illus-

trated. Possible non-invertibility of two bilinear models fitted to real data is discussed. The relation between

the variance of error term and the variance of the estimate of the bilinear term is also studied. We have

examined numerical solutions for a recursive relation for computing the rn-step-ahead conditional density

of a non-linear autoregressive model by using the Chapman-Kolmogorov formula. The stationary marginal

probability density function of the model is approximated by the rn-step-ahead conditional density, for

sufficiently large m. The advantage of incorporating the matrix squaring procedure is also studied. The

conditional mean (regression function) and conditional variance of some non-linear models are studied

briefly .The importance of non-parametric estimation of regression functions in non-linear time series

analysis is demonstrated. A comparison of likelihood ratio tests using the newly available asymptotic

results with the non-likelihood ratio approach such as the modified Petruccelli-Davies's test and Tsay's test

is studied. The 5% empirical critical values for the some cases of likelihood ratio test is also obtained. The•

effect of outliers on the tests is briefly studied. The importance of the profile likelihood plots in locating the

threshold and estimating the delay parameter is demonstrated. The blowfly data (raw and transformed)

analysed. The importance of influential data is also discussed. The non-monotonicity of the conditional

variance of the error of a rn-step non-linear least squares predictor is discussed. We have also studied

methods of evaluating the conditional variance for non-linear autoregressive models and illustrated these

with both real and simulated data. Bias correction is included. Moreover, the possibility of combinations of

forecasts is explored. The performances of linear bilinear and SETAR models in predicting the sunspot

numbers are compared.
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CHAPTER ONE

INTRODUCTION

It is probably fair to say that linear time series modelling was born at the beginning of this century,

with the introduction of such linear models as the autoregressive models and moving average models, and

has machod its height in recent years. For example, the book by Box and Jenkins (1970) and the structural

clarification by Akaike (1974) suffice as demonstrations of maturity of the subject of linear time series

modelling. Jn fact the impact of Box and Jenkins was such that the field in the 1970's was pre-dominated

by linear and Gaussian. However, these two assumptions have finally been abandoned and time series

analysis has moved in a new direction. This new direction is, of course, the study of non-linear models. The

mathematical ideas involved are much mom complex than those of linear models, and the statistical prob-

lems of model identification and parameter estimation are similarly moie intricate. (See e.g. Tong, 1987a

and Priestley, 1988)

Although the era of non-linear time series models started with Wiener (1958) and was discussed by

Nelson and Van Ness (1973) it is in the last ten years that most progress has been made in the field of non-

linear time series analysis. Granger and Andersen (1978) and Subba Rao and Gabr (1984) studied bilinear

time series models in some detail. These models were originally developed by control engineers to describe

input-output relationships for a deterministic non-linear system. Tong (1987,1983) has discussed another

important class of non-linear time series models commonly known as threshold autoregressive models.

These models are general enough to capture the notion of limit cycles, which play a key role in the model-

ling of cyclical data and in physical and biological sciences. Other non-linear time series models are

exponential autoregressive models introduced by Ozaki and Ode (1978), non-linear threshold models,

exponential moving average and other related models introduced by Lawiance and Lewis (1977) and some

other non-Gaussian time series models introduced by Mckenzie (1984) and Raftery (1982). All the models,

bilinear, threshold autoregressive and exponential autoregressive as well as linear ARMA models can be
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considered as special cases of the State-dependent models, introduced by Priestley (1980).

In this thesis, we have discussed some aspects of non-linear time series analysis.

Chapter Two contains some basic idea of time series analysis and stochastic processes.

Some of the non-linear models are introduced in Chapter Three. The Lagrange stability of a speciai

class of threshold autoregressive model has been discussed.

In Chapter Four, some difficulties of non-linear time series modelling are discussed. The importance

of likelihood plots and information matrix calculation is demonstrated. A constructive use of reparametriza-

tion is illustrated. Possible non-invertibility of two bilinear models fitted to real data is discussed. The rela-

tion between the variance of error term and the variance of the estimate of the bilinear tenn is also studied.

In Chapter Five we have examined numerical solutions for a recursive relation for computing the m-

step-ahead conditional density of a non-linear autoregressive model by using the Chapman-Kolmogorov

formula. We have approximated the stationary marginal probability density function of the model by the

rn-step-ahead conditional density, for sufficiently large m. We have also studied the advantage of incor-

porating the matrix squaring procedure.

Chapter Six contains a brief study of the conditional mean (regression function) and conditional van-

ance of some non:linear models. The importance of non-parametric estimation of regression functions in

non-linear time series analysis is demonstrated.

A comparison of likelihood ratio tests using the newly available asymptotic results with the non-

likelihood ratio approach such as the modified Petrucceili-Davies's test and Tsay's test is studied in Chapter

Seven. In the highlight of Monte Carlo method the 5% empirical critical values for the some cases of likel-

ihood ratio test is also discussed. The effect of outliers on the tests is briefly studied.

In Chapter Eight the kernel density estimate method is employed to construct a test for multi-

modality of the density of a time series data set The importance of the profile likelihood plots in locating

the threshold and estimating the delay parameter is also demonstrated. The blowfly data (raw and

transformed) are analysed. The importance of influential data is also discussed.

The non-monotonicity of the conditional variance of the error of a rn-step non-linear least squares
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piedictor is discussed in Chapter Nine. We have also studied methods of evaluating the conditional van-

ance for non-linear autoregressive models and illustrated these with both real and simulated data. Bias

correction is includecL Moreover, the possibility of combinations of forecasts is explored. The performances

of linear, bilinear and SETAR models in predicting the sunspot numbers are compared.
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CHAPTER TWO

LINEAR STATIONARY PROCESSES

In this chapter we introduce some basic idea of time series analysis and stochastic processes. A time

series is a set of observations x, ,each one being recorded at a specified time t. A discrete-time series is one

in which the set T0 of time at which observations are made is a discrete set. Continuos-time series axe

obtained when observations axe recorded continuously over some time intervaL

The first step in the analysis of a time series is the selection of a suitable mathematical model (or

class of modeis) for the data. To allow for the. possibly unpredictable nature of future observations it is

natural to suppose that each observation x is a realized value of a certain random variable X.

Thelimeseries (.x, t To] is thenarealizationofthefamilyofrandomvariables (X,, tE To]. These

considerations suggest modeling the data as a realization ( or part of a realization) of a stochastic process

[x,, t€ r) wheeveyoftnT=[O,±l,±2,...]T0.

2.1. Stationary Stochastic Processes and Gaussian Processes

Definition 2.1.1. A time sequence, (xe , tE T) , is said to be detenninistic if there exist a function of past

and present values g=g(X,_1 , j=O,1,...) such that

E[K,1—g,)2]=O.

Definition 2.1.2. A stochastic process is a family of random variables (x,, te T) defined on a probability

space (ci,F,P)

We note that for each fixed t e T , is a function ofX,(.) on ci. On the other hand for each fixed

(DE ci,X(o))isafunctiononT.

Definition 2.1.3. The functions (X.0o), co E ci] on Tare known as the realizations or sample-paths of the

process Ix,, t e 7').
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Definition 2.1.4. (The Distribution Function of a Stochastic Process (x,, E Tc.R)). Let T be the set of all

vectors (t(t 1 , . .. ,r,) €T':t1<t2<••- <t,, n=1,2,3,...]. Then the (finite-dimensional) distribution

functionsof{X, tET) arethefunctiocs {F(.), tE T] deflnedfort=(t 1 ,. . . ,t,)by

Ft(X)=P(X1^xj,... ,X^rj,x=(xj,. ..,x)' ERIZ.

Theorem 2.1.1. (Kolmogorov's Theorem ). The probability distribution functions frt(.), t E T) are the

distribution functions of some stochastic process if and only if for any n € (1,2,3,...), t=(t 1 ,. .. , t,,) € T

and l^I^n,

limFt(x)=F0(x(i)),	 (2.1.2)

where t(i) and X(i) are the (n-1)-component vectors obtained by deleting the th components of t and X

respectively. Hence forth, unless the contrary explicitly stated, we will assume that, for each t, X is a con-

tinuous random variable with probability density function f(x) defined for all x, so that, the mean and the

variance of X, will be given by

= E (X,) =

= V(X)

and the covariance between X and X will be

= coy	 = E [(X-jt1)(X,--i)],

if they exist.

In time series analysis, it is often impossible to make more than one observation at a given time so

that we only have an observation on the random variable at time t. With a single realization, it is not possi-

ble to estimate with any precision p, for every t if the ji sequence is allowed to take any set of values. To

overcome such problem, the time series analyst is forced to assume the process to be stationary and ergodic.

Definition 2.LS The time series (xe , tE z), with ind set Z = (O,±1,±2,..j, is said to be stationary if

(i) E(X)< oo foral1t€ z,
(ii) E(X,)m forall t€ Z,
and

(iii) Yr.., Yr+r,s+t for all r,s,t EZ.
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Stationaiity as just defined is ñquently referred to in the literature as weak stationaiity, covariance sta-

tionariiy, stationarity in wide sense or second order stationarity.

Definition 2.L6 The lime series (i,, te z} is said to be strictly stationary if the joint distributions of

(x 1 ,. . . ,x6 )	 . .	 are the same forall positive integer k and for all t, - . - i k Z.

A strictly stationary process with finite second moments is stationary. The converse of the previous

statement is not true.

The methods which have been used to estimate the mean and autocovariance function using observa-

lions from a single realization axe all based on the basic strategy of replacing ensemble 1 average by their

corresponding time average. If the resulting estimates are mean square consistent it follows that the time

average over a period of n points converges in mean squares, as n— , to the corresponding ensemble aver-

age. Processes which possess this type of property are called êrgodic.

Consider a stationary time series {xj, it follows from definition (2.1.5) that coy (X, ,X ) is simply a

function of t1—t2 . This function is called autocovariance function of (x} at lag (t2—t 1 ), which will be

denoted by 'y.. It has the following properties:

i) y0=Var(X,),..

ii) IyI^y0,YeZ,
iii)

iv) Vt1 ,t2,... ,t,, Z, for all positive integern ,and

for all real numberz 1 ,. . .

I fl

Z7Zp.Z1^O.
r1s1

The ratio p = -, t E Z, is called auocorrelation function of (xj of lag r. Properties (ii),(iii) and (iv)
'l'o

stillholdifthey'sarereplacedbythep'swithcorrespondingsufflxes.Itiswellknownthatpcanbe

interpreted as a measure of linear association between X, and X.

Definition 2.1.7. The process (x,] is a Gaussian time series if and only if the distribution functions of

(xJ are all multivaiiate normal.

f Thc collccton of all possible records of random VarlablcXr
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ii {x,, IE z] is a stationary Gaussian process then [x,] is strictly stationary, since for all

ii € [1,2,3,...) and for all h, t 1 ,t2 ,... € Z, the random vectors (x, 2 , .. . ,X) and	 . . . ,x,,) lave

the same mean and covariance matrix, and hence the same distribution.

2.2. Some Linear Processes

In many respects the simplest kind of time series (xjis one in which the random variables

X, t=O,±1,±2,	 are independently and identically distributed with zero mean and variance a2.

Definition 2.2.1. The process {ej is said to be white noise with mean zero and variance a2 if and only if

[e,} has zero mean and covariance function

a2 ifh=O
7h	 ifh^O.

It will then be called strict white noise if (er] is a sequence of independent random variables.

A very wide dass of stationary processes can be generated by using white noise as the forcing terms

in a set of linear difference equations.

2.2.1. General Linear Processes

A general linear process [xj is one that can be represented as a weighted linear combination of the

present and past terms of a white noise process

xt = ej+ 1 4_1-Fqfer_+...,	 (22.1)

where [1) is a sequence of constant real numbers satisfying

By using the backward shift operator,B, (B'X, X,), equation (2.2.1) is equivalent to

Xt ='P(B)e,,	 (22.2)

where 'l'(B) 1-i-V1 B -FW2B2+... . In fact '1'(B) is a linear operator which transforms let] into (xj. We

can write (2.22) symbolically in the equivalent form

e	 P(B)Xt	 (2.2.3)

where cX(B) 1+$1 B+ 2B 2-i-" , if'i'(B) is invertible. It implies that equation (2.2.3) can be written as
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or

X,+$1X,_1+42X,_2+— = e, .	 (2.2.4)

The condition for stationarity of the general linear model (2.2.2) is that 'P(B) , which is the generating func-

tion of weights, must converge for !B ^ 1, and the invertibility condition for the model (2.2.4) is that

c1(B) must converge forjB I ^ 1. That is, on or within the unit circle.

2.2.2. Autoregressive and Moving Average Processes

it may be said that the era of linear time series modeling began with such linear model as Yule's

autoregressive models (1927), first introduced in the study of sunspot numbers.

Definition 2.2.2. The process (2.2.4) with all except the liistp coefficients equal to zero can be written as

= e,,	 (2.2.5)

and {xJ is called an autoregressive process of orderp, AR (p). The equation (2.2.5) equivalently can be

written in the form

= e1 ,	 (2.2.6)

where cI'(B)= 1+41B+ . . +?pBP . TheAR(p)mOdelis stationary if all the roots of ()(B)lie outside aunit

circle.

Definition 2.2.5. In general linear model (2.2.1) if	 ,i=1,2,... then

X e1+r1 e,..1+ . +Wpet..q,	 (2.2.7)

or

where 'I'(B) = 1+1B+...+yB, and the process will be called moving average processes ; MA (q). The

MA (q) process is invertible if all the roots of 'f'(B) lie outside the unit circle.

A more general class of linear models is obtained by replacing e by a weighted average of

,e..,;thatis

+4X,..,, =e,+lJi et_i +	 (2.2.8)

or 4?(B)X = 'P(B)e,. This is known as the mixed autoregressive moving average process of order p and q,

denoted by ARMA(p,q). This process is stationary if all the roots of (B) lie outside the unit circle and is

inveilible if all the roots of'I'(B) lie outside the unit circle.



CHAPTER THREE

NON-LINEAR MODELS

Many processes occurring in nature and in a variety of physical and engineering fields display some

form of non-linear behaviour. The most well-known non-linear phenomenon is the limit cycle, which has

proved extremely useful in such widely differing areas as ecology, hydrology, medical engineering, etc.

Such behaviour is quite unknown to any form of linear representational model, and hence many sets of time

series data can not be adequately represented by a linear modeL This and other facts have led to the

development, in recent years, of many interesting non-linear time series models. Some of these models

have been shown to be capable of modelling a wide variety of non-linear behaviour and have also been

shown to provide extremely good fits to real data. We now describe some of these models below.

3.1. Threshold Autoregressive Models

The idea of using piecewise linear models in a systematic way for the modeling of discrete time

series data was first mentioned in Tong (1977a). A comprehensive account is available in Tong (1983).

Let [x,] be a k-dimensional time series and, for each t, let J be an observable (indicator) random

variable, taking integer values (1,2,3,..., i}. A canonical form of a threshold model is given by (for

X =	 (3.1.1)

where, for J, =j, AW , B and H' aie kxk (nonrandom) matrix coefficients, C is kxl vector of con-

stants, and {e,} is a sequence of independent and identically distributed k-dimensional random vector with

zero mean and a covariance matrix and e,. independent of X3 , s <t.

For each t , the value taken by J indicates the regime the system (xe) is currently in and the switching from

one regime to the next may be related to the crossing of a threshold by an exogenous or endogeneous van-

able.
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Let (r0 ,r i ,	 ,r,} denote a linearly ordered subset of the real numbers, such that r0 <r 1 <	 <TI,

where r0 and r1 are taken to be - oo and + oc respectively. They define a partition of the real line R , i.e.

R=R1jR2u"uR,,

where

R. = (r1 .. 1 ,r1]

WiitingX, =(X,,X,_ 1 , .. . ,x,1)',

1a) af	 a'2al
I—I,

L	
'k—i	 10]

BW=0,HO)= [hç o]

e = (e,e,_1 ,	 ,e..^1 )' , C'=(aW,0,...,0)'.

and R = RxRx xRxR1xRx • xR, the cylinder set in the Cartesian product of k real lines, on the

interval R1 with d-th coordinate space, de (1,2,...,k}. Setting J, = j if X1_1 ER?, we have

X =a+EaiX...j+hc'1e,	 (3.1.2)

conditional on X,.ER1, j=1,2,...,l. Since (.1,) is now a function of (xj itseIf we call the univariate time

series {x) given by (3.1.2) a self-exciting threshold autoregressive model of order (l;k.....k) or

SETARMA(1 ;k, ...,k), where k is repeated 1 times.

Ifforj=1,2,...,l

4=0fori=kj+1,k1-+2,	 ,k,

then [xj is called SETAR(l;k 1 ,k2, .. ,k,). The parameters r 1 ,. .. ,r1 _1 are threshold parameters and d

is called delay parameter.

If the first row ofHW is of the form

. .. ,h), hk(j)^O, (j1,2,...,l),

then the generalization of SETAR to a se'f-exciting threshold autoregressive moving average model of

order (l;k ...,kk-1,...,k-1) or simply SETAR(l;k ...,k;k-1,...,k-1), takes the form
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k	 k—I

= a+ E aX,_+ E he,_;,	 (3.1.3)
in

conditional onX,ER1 , j_-1,2,...,l.

Jones (1976,1978) has given a comprehensive study of the probabilistic structure of a first order

non-linear autoregiussive time series model. Some other authors have studied ergodicity of specific non-

linear time series models mostly SETAR models of order one, Tong(1983), Peiruccelli and Woolford

(1984), Chan et al (1985). The case of non-linear models of higher orders is insufficiently studied although

the approach of Chan and Tong (1985) seems promising.

Definition 3.1.1: The Markov process [xj =0 defined on (X,F) with transition probabilities

p'(x,A)=p(XEA X0 =x), xEX , AEF,

is ergodic if there exists a unique, finite invariant measure 7t on F such that

ir(A)=Jir(dy)p1(y,A).

The link between stability and ergodicity of a stochastic difference equations have been studied by

Chan and Tong (1985). Let

h (x 1 ,X2,	 ,X,,) = c+Eax if r11 ^Xd ^r1,

where {—oe=rø <r 1 <	 <r1 =eoj is an ordered partition of R, d^m, c• and are constants. The func-

tion h is the autoregressive function for the SETAR model. If we define T: Rm - Ittm by

h(x)

x 1	x2
T(x) =	 where x =	 € It',

Xm....I

0
then this T with e = ... with e' i.i.d., each having an absolutely continuous distribution and the proba-

0

bility density function f (.) is positive every where in R, constitutes the Markovian state-space equation for

the SETAR model. (See Chan and Tong 1985 p. 670).

Lemma 3.1.1: If max1ZIaij <1 and e' possesses first absolute moment, then X,,+ 1 =T(Xj+e is ergodic.
J

(See Chan and Tong 1985).
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Suppressing the random forcing term e+ in X 1 =T(X)+e+i we obtain X, +i = T(X) which will

be called the associated deterministic difference equation or the deterministic part of the stochastic differ-

ence equation X,, = T (X )+e+i - The study of the deterministic difference equation X,,.. 1 = T (X,) may be

the skeleton of the study of the stochastic difference equation X,, +1 =T(X)+e 1 . If the range of T is

bounded, it is clear that X,,. T(X)+e is ergodic. Boundedness is one form of stability of the dynamics

X,,.1 =T(X,).

3.1.1. The Stability of a Special Class of Threshold Autoregressive Models

The term stability is so expressive that it almost tells its own story. A device of some sort operates

under certain conditions. These conditions are slightly changed. Does the change have little or considerable

effect upon the device? In the first case it is thought as stable, and. in the second as unstable. Nowadays

there is more and more reason for studying difference equations systematically. First let us consider the

difference equation

xn+i=T(x),nO,±1,±2,

The solution to the initial value problem

x 44 = T(x) , xo =x°	 (3.1.1.1)

is x =T'(x°), where T is the nth iterate of T: T" =T(T) and T° 1, the identity mapping. The product

of functions is composite.

There are many reasons for being interested in what happens to T(x) for large values of n. This con-

cern with the asymptotic behaviour of T'(x) is what stability theory is all about More than that, stability

has to do with dynamic behaviour. Basic to methods of successive approximation of solutions of x = T(x) is

'the fact that, if T(x°) converges, its limit is a solution ( afzxed or invariant point ).

3.1.1.L Notations and Definitions

ForxeR m andS any set mRtm

p(x,S)=inf(y_x;yS},

the distance of xfrom 5;
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as n —*co means p(T?R(x),S))O as n-)co;

S = (x;p(x,S)=o} is the closure of S.

A set S is closed if S = S and open if its complement is closed.

T(S)= (T(x);xES)

Definition 3.1.1.1.1 (Birkhoff). A pointy is a limit point of T'(x) if there is a sequence of integers n, such

that T'(x) —y and n . —).00 as j—*oo. The limit set ^(x) of the motion (the motion or trajectoly T"(x) from x

refers to the sequence of states x , T(x), ... , T"(x), ... ) T"(x) from x is the set of all limit points of

T'2(x).

Definition 3.1.1.1.2. A motion T'(x) is said to be periodic (or cyclic) if for some k>0, Tk(x)=x. The

least such integer k is called the period of the motion or the order of cycle. Ilk = i, x is a fixed point of T

and is called an equilibrium state of (3.1.1.1).

Definition 3.1.1.1.3. A motion T"(x) which is bounded for all n>O, is said to be stable in the sense of

Lagrange.

3.1.1.2. Stability in Time Series Analysis

The idea of innovations is now well-developed and may be formalized by the expression

X7—E[X F,_1 ] where Fs denotes the sigma field generated by X,X_ 1 ," . (See e.g. Tong, 1987b).

Let the innovation sequence be denoted by [cj, then we may decompose a time series (xe) by

(3.1.1.2.1)

where X, =E[XIF_i ], c=X—X.. We refer to X=X as the skeleton of the time series specified by

(3.1.1.2.1).

Consider the class of non-linear autoregressive model, i.e. models of the form

X, =?.(X,_1)+e7,	 (3.1.1.2.2)

and its higher order generalization. In this case

X, =?.(X,_1)

and c = e,. If the skeleton (difference equation X =X(X,_1 )) is asymptotically stable at the origin in the
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sense that the recursion X1 =A(X,_1 ) always tends to zero as t—oe regardless of initial X0, then motion of

A'(x) is Lagrange stable and the time series defined by (3.1.1.2.2) is ergodic under quite general conditions

on e, and . (Chan and Tong, 1985).

Now, except for the linear case, them is no systematic way of checking stability. Chan and Tong

(1984) and Tong (1987b) have considered an application of symbolic dynamics in studying the Lagrange

stability of difference equation

	

14iX_i ^2X -2 zfX_2 >0	
(3.1.1.2.3)Xfl 

=	 otherwise,

where 4 +442 <0. His method will be used in studying the stability of the following models.

Consider

(41X,7_l	 ifX.,_1 <r'

= 44X_1 -F$'2X_2 if r ' ^X,,_1 ^r	 (3.1.1.2.4)

ifX_1>r,

where 4 , 44 , 4 , 47, r, r' , are real constant. Without loss of generality let r >0 and r ' <0. To under-

stand the stability of (3.1.1.2.4), it is more convenient to use the state space representation.

Let	 -

Zn 
I:]	

I 
A	 ol

=	 =•X_iJ' = 1 0]'

4	 olB 
= {	 J 

and c =

Note that A , B and C are companion matrices, A and C being degenerate. Then (3.1.1.2.4) is equivalent to

if z,_1 <r'

Z,1 = BZ_1 if r' ^z...1 ^r	 (3.1.1.2.5)

442,,_1 ifz_1 >r

X =(1 0)4. Obviously, X is Lagrange stable if and only if Z is so.

Define
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I—.

15

R=f(x,y):x>r} , M=[(x,y):r^x^r),

L={(x,y):x<r'J , Qi ={(x,y)eR:y<O),

Q2 = {(x,y)ER:y^o) ,	 = [(x,y)M},

Q4=((x,y)EL:y^O) , Q 5 =((x,y)EL:y<0J -

For each ZER , Z, 1 is obtained by the action of A on Z and similarly for any ZeM and ZeL.	 is

obtained by the action of B and C on Z,, iespeciively.

Case (i) Let 4 ^0, 4 ^O, then we may have the pictorial representation of Fig. 3.1.L2.la and 3.1.1.2Jb

which displayed the action of A on R.

I	 I	 I	 I

_____	 c _____

______	 i ______

The action of Con L (Figs. 31.L2.2a and 31.122b) can be represented as

,x&r<0.

a
:	 r

	

a	 2.

	

Y	 I'

414 
I%	 ____

6 5 k\1	 415 NiI



'2

2

2
'2 r
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For each point Z€R , Z,,^ 1 =AZeQ 2 or Q. In the first case, Z 1 will be under action A again. In the

second case, Z,,.,.1 under action B may move to any other regime or stay in Q. Note that in this case, we

will show that Z can not stay in Q and move along the z 2 axis to ±00. i.e After finite actions under B it

will move to R or L or may absorb to the origin. For each ZEL , Z,,. =CZEQ 5 orM. In the first case

Z,, will be under action C and in the second case under a finite number of actions of B, may move to R or

£ or stay at the origin. Therefore for 4^O, 47^O, the tail of trajectories, which are important, are of the

form A" or B". In this case the system is Lagrange stable if 4^1 and 4^1.

Similar to the case (i), when 4 <0, 4 <0, we can show that the system is Lagrange stable if (p 4 <1.

Case (ii) Let 41 <0 and 4 ^O. the action ofA on R and C on L are given by Figs. 3.1.1.2.3a , 3.1.1.2.3b

and 3.1.1.2.4a , 3.1.1.2.4b respectively.

A[]
{4 

o fx	 l4]
1 oj]=x[ijx&r>04i<0.

___

Fig. 3.1.1.2.3a	

Fig. 3-l.1.2.3b



17

And

2

1
	 c[]= [;.; g] [j=x[cJx&r'<o,>o

£

	 1? _____

Fig. 3.l.1.2.4a	
Fig. 3.1.1.2.4b

It is easy to show that the important tail of trajectories takes the form (A ;C"). Thus the system is

Lagrange stable if 4^1 and 4^0. Similarly for the case 4 <0, 4 ^0, the system is Lagrange stable if

41^1and<0.

Lemma 3.1.1.2.1:. Let Z satisfy (3.1.12.4), then {z) is lagrange stable if one of the following conditions

hold:

(i) 0<41^1and0<4^1,

(ii) 4i <0, 4 <0 and 4i4 ^ 1,

(iii)4^0, O^4^1,

(vi) 4^0,O^4^1.

Example 3.1.1.2.1.: The system

if X...1 <-1.0

= —3.0X_1 +8.0X_2 if-1.0^X,,_1 ^2

0.9X,,_1	 'n-i>2.°,

has two unstable sub systems but the whole system is stable. (4i-5.0 <0 and 0< 4 =0.9< 1.) This sys-

tem has a limit cycle with a long period.
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Now we will show that the system (3.1.1.2.4) can not move parallel to a single axis. Suppose after n

steps transition z_1 E [r' , r] for some integer n. Then Z^1 can be obtained by the action of B on 4. Thus

[x =Z +1 = B4 

= 
1 0 I.)'] L

whereZ= [] .Itiscleartliat

1AZ+ ilx-42y<r

Z,, 1 	 1BZn+i fr'^x+dySr

C 41 if 41x+4y>r.

Case (i) Zn+2 4Z,+ =	 01 
[4x+4y	 l(x+4y)1

1 0]	 X	
= L 

4)X+dy j

Case (ii) Z +2 = BZ41 

=	
•'21 ?p ix+4 yl1 1 4"i (4x+$'2y)+4x1

1 ° 
.1 1.	 .1 = L	

Ax+42y	 j'
and

c	 =	 =	 o	 4'1x+4y)1
1	 x	 ix+42Y 

J

In all cases the second component of Z+2 is equal to the rst component of Z+1 . Therefore as n -+ eo, 4

can not move parallel to one of the axis.

It may be useful to investigate the affect of changing the delay parameter on the stability conditions

of system (3.1.1.2.4).

Consider

ifXn_2<r

X1	 4 'iX_1 +4X_2 if r'^X,_2^r
	

(3.1.1.2.6)

if

where 4i	 ,	 , r and r' are real constants. Using the state space representation we may have

—	 F X, 1	 o—	 , A = 1 0j '

B - 

1 

4 21	 t47 o1
- 1 O1=1•l 

°1



1.
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Fig. 3.1.]..2.5a

QI

QlrJ
Fig. 3.1.]..2.5b
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Then the system (3.1.12.6) is equivalent to

AZ,,_1 if z_1 <r

Z= BZ_1 ifr'^4_1^r
	 (3.1.12.7)

cz 4 ifz_ >r,

X—(1 O)Z.

Define

U=[(x,y):y>r) ,M=[(x,y):r'^y^r},

L=((x,y):y<r'} ,Qi[(zy)EU:x>O},

Q2={(x,y)nU:x<O} ,Q3{(x,y)EU:xO},

Q 4 ={(x,y)eMJ , Q5={(xy)EL:x>O},

Q6 = {(x,y)L :x=O} , Q7 =[(x,y)EL :x<O}.

For every point Z,, in Q or Q6 , Z,,..1 is obtained by the action of C or A on Z,,. Let Z,, 
= [) 

EM, then

t4Zn=CZn= [}. For each ZEU , Z,,..1 is obtained by the action of C on Z and similarly for every point

ZEM and ZEL , Z,,.1.1 is obtained by the action of B andA onZ respectively.

Case 1: Let 0 ^ , 0 ^ 4, the action of Con U (Figs. 3.1.1.25a and 3.1.12.5.b) is given by



I
2

I-i.
oq
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0\
0

• _

r

r

I

Y.

•2

I
r

Qi; 1c'})A

p:i

oq
(J)

I—I
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The action of A on L (Fig. 3.1.1.2.6a and Fig. 31.1.26b) can be represented as

Let Z E Q, then Z, = CZ n Q1, therefore the system is stable if I 4 ^ 1. If Z € Q2' then

Z 1 =C4EM or CZEQ 7 . IfZ 1 eQ7 , then Z, 2 =AZ 1 EM or EQ7. thus the condition }4)i ^ 1 ensureS

the stability of the system. If ZnE Q5, then Z,^1 eM or Q1. More generally, by starting from any point, Z,1

under (finite number) action of A or C or both along the line (4i. 1) or (4, 1) will lie in M, and then under

action B may move to the other region or to stay in M. Thus, in this case the system is stable if

0^4^1 , O^4^I.

Case2:O^ 1 , 7<O,theactionsofAonUandConLcanbeiepresentedinthesamewayaStheCaSC 1.

By starting from Qi. the system under action C may move to Q2 or zi: If the system lies mM, then

under action B may stay in M or move to any other region. If the system lies in Q2. then under action C will

-move to Q orM. If it moves to Q5, then under action A it will move to Q orM. It can be seen that the

important tail of trajectories takes the form (A, C,C). Therefore the condition 4) 4) ^ 1 (the eigenvalue of

matrix AC2 ) ensures the stability of the system.

Similarly if 4 <0,0 ^4, then 44^1 is the stability condition.
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Case 3 : 4 <0, 4 j' <0. Sunilarto case 1 the system is stable

Lemma 3.1.1.2.2: Let Z, satisfy (3.1.1.2.6). Then (zn) is Lagrange stable if and only if one of the follow-

ing conditions holds:

i)0<4^1, 0<4^1,

I^')

iii) 4i<0 , 0^4and4411,

iv)47< 0 , 0 ^41 and47'41^1,

v)41<0,4<0andj4j1.

Example (3.1.1.2.2): The systeni

4.5Xn —1

	 if X.2 <1.0

X = 8.0X_1+3.0X_2 if —1.0X_2 ^2.0

O.4X_1	 if X_2>2.0,

is stable with a limit cycle with a long period . In fact this system satisfies the condition (iii) of lemma

3 .1. 1.22.

The system

—1.5X_1	 if X_2 < —1.0

= 0.4X_1 0.6Xn	if 1.O ^X_2 ^ 2.0

0.6Xn _i	if

is not stable since 44	 1.35> 1

The results of Lemma 3.1.1.2.1 and 3.1.1.2.2 can be easily generalized to a more general case.

Lemma 3.1.1.2.3: The system

= a2+Ea5°Xn_j if Tj_1 <X, -d ^

where	 <r1 < ••. <r1 . 1 <rg =oo) is an ordemdpartition of R, d^p , a, a 1 are real constant, is

p
Lagrange stable if : Ia 1 rand	 1a5'" 1< 1.

j=1	 jj
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In fact these two conditions control the behaviour of the system in the two extreme regions and push it

towards the origin.

Example (3.1.1.2.3) The system

0.2+0.3X1-0.1X.2+O.3X.3 if X..3 <-50.0

2.O^1.5X_1-4.0X_2+3.0X_3 if —50.0 ^X_3 ^100.O

—0. 1+0.2X13X2+0.3X3 if X_3 > 100.0

is stable with possibly a chaotic behaviour. Fig. 3.1.1.2.7 shows the scatter plot of X,, vs X,,_ 1 of this sys-

tern.

3.2. Bilinear Models

Granger and Andersen (1978) and Subba Ran (1981) proposed a special class of non-linear models

known as bilinear time series models. This type of models has been extensively discussed in control theory

to describe input-output relationships for a deteiministic non-linear system (See for example Mohier 1973).

The general bilinear autoregressive moving average model of order (p,,P,Q) ( abbreviated as

BL(p,q,P,Q) by Subba Rao and Gabr(1984) is given by

p	 q	 QP

= Z cçX_1 + J31e1 + Z
i=1	 j4	 -J k=1!=1

(3.2.1)

where (ej are independently, identically distributed random variables with mean zero and variance cr

and f3 = 1. The completely bilinear model is given by (3.2.1)withp =q =0, so that

Qp

= kl!l/trt
	 (3.2.2)

If 7k! =0 for all k> 1, the model is called superdiagonal and if y, =0 for all k^l, the model is said to be

diagonal. Fmally if 7k! =0 fork <1, the model is called subdiagonal. Stationarity and invertibility of simple

bilinear models has been discussed by Quinn (1982) and Tuan and Tran (1981). Gabr and Subba Rao

(1981) have discussed the estimation and prediction of subset bilinear time series models and Liu (1985)

has studied theoretical propeities of some more general bilinear models BL(p,q,r, 1). Wang, An and Tong

(1983) have studied the distribution of simple stationary bilinear processes. Subba Rao and Gabr (1984)

gives a comprehensive account of this class of models.
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Let X, be a discrete parameter time series satisfying the difference equation

X, =	 +X-i-(f30+f31X,_1+	 (3.2.3)

where {e,) is a sequence of independent and identically distributed random variables with E (es ) = 0 and

Var (es) = cy and f, = 1. The model (3.2.3) is a special case of the bilinear model, which we will refer to as

Mar/coy Bilinear Stochastic Process. It is more convenient to study the properties of the model (3.2.3),

such as stationarity, invertibility, etc, via an equivalent state-space representation.

The vector form of the model (3.2.3) can be written as

X, = AX,_1+BX,_1e1-i-Ce1

X =

where

a1 a 2 a3 ...
010...O
001	 0	 a1la2"a

A= ......... = —I
°I

000...1

bibz_bq_0
0 0 ... 0	 0	 b1 b 2	bql 0

- _____________________B=	
:	

.	 :::	 :	 ::::	 0	 10

oo...0...0

X = (X1,X1_1 , . .	 , C = (1,0,...,0)'

and B (1,0, . ,0)' . We also assume that e–N(0,cr).

Let

J.L1 E(X,)

V =E(xx;)

Taking expectation on both sides of

X = AX,._1 +BX,

(3.2.4)

one Cafl get
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Hence a sufficient condition for (x} be asymptotically stationary of the first order (i.e E (X,) is indepen-

dent oft as t —+oo ) is

p(A) = max [x,(A)}< 1,	 (3.2.5)
1^z^p

where A. (A), .. . ,?.(A) are the eigenvalues of the matrix A. If this condition is satisfied then

t=limL,=O.
1—

Note that the condition (3.2.5) is the same as the stationarity condition of AR part of the model (3.2.3).

Following Subba Rao (1984) and Neudecker (1969), the sufficient condition for the model (3.1.3) to

be second order stationary is

p[AØA+B®BJ<l,

where A®A is the kronecker product which is of orderp2xp 2•

The covariance of X, and X can be calculated as

4'Yk—p'	 -	 (3.2.6)

which is identical with the covariance of AR(p) part of the model (3.2.3).

Multiplying both sides of equation (3.2.3) by X7 and taking expectation, one can get

E(X) =	 . .	 (Xe)+f3iE (XX_i e)+ . . . +13qE(XtXt.qer),

or

E(X)

It can be shown that

E(Xe,)=cy,

E(XX,_ie) =	 +I3q7j),

E(XX,_2e) = a(j31y1+J32y0+	 q1q_2)'

E(X,Xe) =	 +f3qYo)

Hence

7 = ay	 2[f3	 Yo 13271+	 I3q1q-i)

+Pq(J31yq_1+J32yq_2+. +13q70)]
=	 .. . +f y +2 (J32+132+. 

+)
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+

q(131Yq_12Yq_2+

a1yj+cf3 1 (f3 +•• +f3y )+"	 qUi Yq-1	 I3q-i Yi)

• • +f)

As the autocovariance function of X, is equal to autocovaiiance function of AR part of the model,

therefore the spectmm of X1 is equal to the spectrum of AR pait

33. Exponential Autoregressive Models

An exponential autoregressive model of order p EXPAR(p) for a univariate time senes

(X,, t=O,±1, "}, which was first announced in Ozaki and Ode (1978), takes the form

P
X =

	

	
(3.3.1)

j=1

where {e} is a sequence of independent identically distributed random variables with zero mean and con-

stant variance cr and e independent of X,, s<t. Here

A .1 = b+c1 exp(—gX_1),

b/s , c/s and g^O, being constants. Ozaki (1982) gives a comprehensive account of the development of

EXPAR models.

The physical idea seems to be that the impulse response {A J), at lime t or equivalently the instan-

taneous frequency response, is controlled by the rise and fall of X 1 , interpreted as energy at time t-1. (See

Tong (1987a)).

The model (3.3.1) has a symmetric distribution about the origin, which can be easily deduced from

Theorem 1, Tong (1983) page 16. The model (3.3.1) was extended by Ozaki (1982) to

= (a1 +fi (X_1 )e1 )X,_4+" -i-(,+f(X,_1 )e'' )X_+e	 (3.3.2)

with the object of giving a more sophisticated specification of the dynamics of the characteristic roots of

AR model using Hermite type polynomials f,(x_1 )e ' (i =1,2, ...,p) where

f1(x,.1)=t+x,_1++içx..j (i=l,2,...,p). 	 (3.3.3)

The limitation of symmetry distribution of model (3.3.1) may be obviated if a model of type (3.3.2) is

employed where the order r for some i of the Hemute polynomials f1 (x.. i ) are odd integers.
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CHAPTER FOUR

SOME STRUCTURAL PROPERTIES OF

LINEAR AND NONLINEAR

MODELS

To be able to use tune series models in practice, we must be able to fit the models to data and esti-

mate the parameters. Computational procedures for determining parameters for various non-linear model

classes are studied by many authors. Often these are based on a least squares or a maximum likelihood type

criterion.

The method of conditional least squares (CLS) seems to be popular among users of SETAR models,

EXPAR models and more generally non-linear autoregressive models appropriately parametrized. The

method is essentially one of minimizing the sum of squares	 . The paper by Kihnko and Nelson (1978)

and Tjostheim (1986) provide most of the theoretical framework for sampling properties of the estimates.

For SETAR models, strong consistency Clan (1987), asymptotic normality and rates of convergence of

parameters estimates are available ( See e.g. Chan and Tong (1986a)).

Let {x, ; t = 1,2,...) be a stochastic process defined in a probability space (fl,F,P 0) whose distribu-

tion depends on a (column) vector 0= (8 k ,	 ,8,,)' of unknown parameters, which lies in some open set A

of the Eucidean p-space. The following notations are adapted:

00 (0?,	 ,0)	 denotes the 'true'value of 8;

E 9(.)	 denotes the expectation where 0 is the parameter;

E 9(. I.)	 denotes the conditional expectation with 0 being the parameter;

[F]	 denotes the sequence of sub-sigma fields with F generated by an arbitrary subset

of(X j ,X2 , . . ,xj, t^1, andwithF0 equaltothetrivialsigmafield.
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Assume thatEI X,koo ,	 Definethe functiong(., .)by

g(0,F,)=Eo(X,+1 IF,), r^O.

Given a set of observations X,, t=1,2, ...,N, we minimize the conditional sum of squares

N-I
SN(0) =	 [X,^1 —g(O, F,)]2

	
(4.1)

with respect to 0 to obtain the estimates. That is we solve the 'least-squares - equation

asN(e) 
=O,i=1,2,...,p.

It can be shown that for non-linear autoregressive models, maximizing the conditional likelihood

function is equivalent to minimizing the conditional sum of squares of errors, under the normality assump-

tion of e,.

The error sum of squares function SN(0) is a function of the elements of 8 only; the data provide the

numerical coefficients in SN(0) and these are fixed for many specific estimation problem. In the parameter

space , that is, the p-dimensional Euclidean space of 0, , O , the function SN(0) can be represented by

the contours of a surface.

If the g(0, F,) were linear in the 0's, the surface contours would be ellipsoidal and would have a single

local (and so a single global ) minimum height, SN(0), at the location defined by the least-square estimator

6. The error terms are assumed to be normaL

If the g(O , F,) is non-linear, the contours may not be ellipsoidal but tend to be irregular and some times

'banana-shaped', perhaps with several local minima and perhaps with more than one global minimum, that

is, the minimum height may be obtained at more than one 0-location.

The precise shape and orientation of the SN(9) contours depend on the model and the data. When the

contours surrounding the least-squares estimator 0 are greatly elongated, and many possible 8-value are

'nearly as good as' 0 in the sense that their SN(0) bowl height values are close to SN(0), the problem is said

to be ill-conditioned and 0 may be difficult to obtain computationally.

Two obvious ways of examining the error sum of squares surface SN(0) are often overlooked, they

can be particularly useful when an iterative procedure ( most non-linear time series ), beginning from

chosen values, does not satisfactorily converge.
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The first of these is to select a grid of points in the space of the parameters (1 ,62 ,	 ,O,,) and to

evaluate the error sum of squares function at eveiy point of the grid. These values will provide some idea of

the form of the error sum of squares surface and may reveal, for example, that multiple minima are possi-

ble. In any case, the grid points at which the smallest error sum of squares is found can be used as the start-

ing point of an iterative parameter estimation procedure, or a reduced grid can be examined in the best

neighbourhood, to obtain a better starting point.

The second possibility is to draw the error sum of squares contours in any particular region of the

parameter space in which difficulty in convergence occurs or in which additional infonnation would be

helpful. This is usually straightforward when only one or two parameters are involved. When there are

more than two parameters, two-dimensional slices of the contours can be obtained for selected values of all

but two of the parameters, and a composite picture can be built up.

All iterative procedures require initial values 	 . ,O,,,, of the parameters e 1 ,e2 , . . ,O, , to

be selected. All available prior information should be used to make these starting values as reliable as they

possibly can be. Also if multiple minima exist or if there are several local minima in addition to an absolute

minimum, poor starting values may result in convergence to an unwanted stationary point of the error sum

of squares surface. This unwanted point may have parameter values which are physically impossible or

which do not provide true minimum value of SN(0) . As suggested above, a preliminary evaluation of SN(0)

at a number of grid points in the parameter space is often useful.

4.1. Moving Average

In the maximum likelihood estimation of a moving average process non-invertible estimates fie-

quently appear, both with actual data and in simulation studies. Kang (1975) showed how noninvertibility

occurs in the moving average of order one and indicated why it should be expected with positive probabil-

ity. The positive probability that an estimated moving average process be non-invertible is studied for max-

imum likelihood estimation of a univariate process by Anderson (1986).

4.1.1. Exact Maximum Likelihood Estimation of MA(1)
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Let {x,} be a stochastic process defined by

X, =0e1 _i +e , t=O,±1, -.• ,	 4.1.1.1

where (e} is a sequence of unobservable random variables with the properties

E(e)=O, V(e,)=a<oo,E(e1e)=O:^s.

If I 0 I <1, we can invert (4.1.1.1) to obtain the autoregressive representation of order infinitY

e, =X OX,..1+02X,..2-i-" . 	 4.1.1.2

The autoregressive representation is important because it may be used for prediction.

It is easy to show that the lag one autocormiation of process (4.1.1.1) is

0
P

The other autocorrelations are zero. If 0 is replaced by its reciprocal,

1

= 1+02

the autocorrelation is unchanged. The exact likelihood function of the parameters (0, cr) in the first order

moving average model (4.1.1.1), where e—N(O, a) is

-i-N	 1
L(0,cr I x) = (27to) 2	 2 exp(—x'	 x),

2

where x' = (X 1 ,X2 ,	 ,XJ) and ^ is an NxW band matrix with elements w 1 = 1+02 , wj1 =w +j,j =-8

and w,, = 0, i^j±1 . (Cryer and Ledolter, 1981). Maximizing over	 one can obtain the concentrated

likelihood function

L(OIx)oc(g(0)) 2

where

g (0) = I	 I Nxl	 x.
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The matrix ^2 may be represented as

One can check that

1+02

0 —0 1+02

0 0 —0 1+02

o	 0	 0	 0 0000_81+02
0	 0	 0	 0 00000 0 1+02

ce 02L110•

Hence

I Clue INxfljex

= 0 2 n8 q x' I 02Cl T 1 x

= I ^2 Ix'flx

= g (0).

(clan private communication).

It shows that g(0) has two equal local minimum on R , at 0 and 4 . This is related to the two identi-
8

cal MA(1) processes with parameters 0 and

For N=2 the maximum likelihood estimates can be found by minimizing

g(0) = (1+02+84)2 ((1+02)(4^x)+20x1x2).

The graph of g(9) is given by Fig. 4.1.1.1.

4.1.2. Conditional Maximum Likelihood Estimation

Box and Jenkins (1970) have developed a simple procedure for evaluating an approximate likelihood

function numerically by fist determining the (et) recursively, as follows. Given observations

X 1 ,X2 ,	 ,XN from the model (4.1.1.1) we may first set (as starting value) e0 =0. We then have,
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e 1 =X1

e 2 =X2-8X1

e 3 =X3 -0e 2 =X3-0X2-i-02X1

e =X-0e_1

Under the assumption that the es's are normal, the conditional likelihood estimates are thus obtained by

minimizing SN(0) =	 and may therefore regarded also as conditional least squares estimates. Note,

however, that SN(0) is no longer a quadratic function of the parameters.

For N = 3, SN(6) is a poiynomial of degree four and its derivative S ' (0) is a polynomial of degree 3 in

0. The cubic polynomial S (0) may have three real roots. Suppose that L1 <p <j.t3 denote the real roots.

Since the coefficient of 8' inS 3 (0) is positive, S 3 (0) has two local minimum at 61 = i1 and 02 = .L3 . Unfor-

tunately the exact relation between S 3 (0 1 ) and S 3 (03 ) is not available. The graph of S 3 (e) for X 1 =—1,

= 1.2 and X3 = 1.6 is given by Fig. (4.1.2.1).

4.2. Exponential Autoregressive Models

Consider the family of Exponential Autoregressive (EXPAR) Models

(a1+f(x_1) exp (—yX.1 ))X,_3+e,	 (4.2.1)

where a's are real constants and 0 ^y^ co, (ej is a sequence of independent and identically distributed

random variables with mean zero and constant variance, and e is independent of X , s <t and

f(x) = Eir1>x,
ir1

where	 are real constants.

The simultaneous estimation of parameters [p,y,(aj,ir)} ,i=l,2,...,p, and j=1,2,...,rj, is essen-

tially a nonlinear optiniization procedure, involving all the computational difficulties inherent in such a pro-

cedure. This problem may be overcome by fixing the parameter y at one of a grid of values and estimating

the order, p, and the corresponding tx , ic parameters. The problem then becomes one of fitting a linear

regression of X on the series {x5 ;s <1] and {e''X;s <:). The orrlerp can be estimated by using

AIC or other criterion for non-linear time series. The models fitted for each y may then also be compared
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using one of the criterion C AIC), to find the 'best' model over all y. The above method was proposed by

Haggan and Ozaki (1981), who assumed that [xj is a mean-deleted series.

In model (4.2.1) it is obvious that if y=o°, the model is linear. Thus, the parameter yis a key factor

affecting the non-linearity of the model and we would naturally pay special attention to its estimation. Our

experience, and we understand also of Dr. Valerie Haggan (now Dr. Valerie Haggan - Ozaki) - private

communication with Professor Howell Tong, strongly suggests that the estimation of 7 can encounter

difficulties, Chan et al (1988).

We may illustrate the type of difficulties by reference to the likelihood function based on 100 obser-

vations artificially generated by the following model

= (b+(c+dXj_j) exp (—gX 1 )}Xt_1 +e,	 (4.2.2)

where e—N(0, 1), b=O.6, c=—O.6 , d=g=1. In our simulation studies, we use NAG routine GO5CBF(4)

to initialize the random number generator GO5DDF to generate a fixed sequence of nonnal random

numbers with mean zero and variance equal to one. The value of x 1 is set to be zero and the first 1499

observations of X, are discarded to remove the affect of the starting point. The contours of negative log

likelihood function, which is proportional to SN(0) =i4, of model (4.2.2) are given by Figs. 4.2.1 - 4.2.3.

The contours of (b ,c),(b , d),(c ,d) are ellipsoidal, for fixed g=1, and it confirms that when the scale

parameterg is known, the parameters can be estimated efficiently.

A family of contours of (d, g) when b=0.6, c—O.6 over different grids of points are piotted to

show the difficulties of estimation of parameters. An isometric projection of SN(6) is also included, Fig.

4.2.7. As it can be seen, most of the curves are open from above along the g axis, and near the minimum,

they are elongated. On considering the height of curves, the flatness of likelihood surface is quite clear.

Fig. 4.2.6 reveals the existence of two local minima.

The likelihood surface of (g , d) in Figs. 42.6 reveals the difficulty in the elongated shape of the

contours. Shown in Table (4.2.1) is the theoretical information matrix of the four parameters based on

numerical integration with respect to the stationary distribution of the model which may be obtained by

numerical techniques. (Details will be given in chapter five).
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Table 4.2.1

(Model 4.2.2)

Information Matrix

b	 c	 d	 g

b I 1.5588

c	 0.1861 0.0802

d 0.0568 0.0142 0.0516

g I 0.0210 0.0158 —0.0464 0.0764

The eigenvalues of information matrix are 0.0098, 0.0603, 0.1 125, and 1.5844.

The eigenvalues range from 0.0098 to 1.5844 (ratio of maximum to minimum 161.67 ) and the deter-

minant is approximately 1.05x10, which clearly high light the near-singularity of the information matrix.

The inverse of information matrix is given by Table 4.2.2.

Table 4.2.2	 -

(Model 4.2.1)

The Inverse of Information Matrix

0.8988
—1.8952 22.9870

—0.7408 —17.7297 62.8325
—0.3035 —15.0124 42.0293 41.8091

The variances of b , c , d, g are 0.8988, 22.9870, 62.8325, 41.8091 and the covariance of(c , d), (c g)

and (d, g ) axe -17.7297, -15.0124 and 42.0293 respectively.

The likelihood surface of (g,d) shown in Figs. 41.5 and 4.2.6 reveals the difficulty in the elongated

shape of the contours.

The general message is that corresponding to some non-linear time series models, the information

matrix may be ill-conditionet We now explain that the ill-conditioning is closely connected with the rela -

tive variation of ir as g varies over [ 0,00 I , where denotes the stationary distribution with parameter g.

For simplicity of discussion, we consider a simple example.
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EXAMPLE 4.2.1: Let {x,} satisfy the EXPAR model

where c, - N (0,1), and

(4.2.3)

Tg(x) {o.2_o.2exp(_gx2)}x.

It is clear that T is odd and increasing for g ^ 0 and T(x) I I Tg(x) J for 0 ^ g <–g' + 0o, Vx R. For

any two probability measures j.t and v on R , we write

i . v'Vc>0, ji[–c,c]^v[–c,c]

i.e. p. is more concentrated around the origin than v.

Now, using Proposition 2 of Hôgnãs (1986, p. 207), we may deduce that g ^g' implies that ir

where ir denotes the stationary distribution of model (4.2.3) with g as the parameter. For g = 0 , X, = e and

g =eo , X = 0.2X1 _i+e. Hence, forg E[0,+oo] , it holds that

N(0,l)=7t0 c7r8	.,=N(0,0.96)

Thus, the infinite range of g only corresponds to a very small variation of the stationary distributions. This

lies at the heart of the ill-condition of the information matrix.

We approximate a family of stationary marginal probability density functions of model( 4.2.3 ) and (

4.2.2 ) over the finite range g, g E [0, 20] and [0.5, 15] respectively, to show that the large range variation

of g only corresponds to a small variation of the stationary distribution. The results are given in Fig. 4.2.8

and Fig. 4.2.9.

Let

= {a+be'}X7_1+e7,

where e–N(0, 1), a=0.2, b-0.2andg=2.5. Thecondilion Ia I ^ lb 1<1, ensuretheasyniptoticnor

mality of ( a , b , ). Tjostheim (1986). The information matrix, E(H(8)), is calculated by employing the

I S(0) 1
numerical integration technique, where e =(a, b , g)' , H(8)= a2	

J, 
i ,j = 1,2,3,

N

SN(0)

The information matrix, its eigenvalues and the inverse of information matrix are given by
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Information Matrix

a	 b	 g

a 2.0744
b I 0.1348 0.0541
g I 0.0136 0.0030 0.0003

The eigenvalues of the information matrix are 0.0001, 0.0452, and 2.0834 . We test the validity of the

above by simulation with a random sample of size 10000 . The eigenvalues of the simulated information

matrix are 0.000 1, 0.0452, and 2.0796.

The Inverse of Information Matrix

0.6860
0.0342 41.4955

—31.4385 —416.5032 8923.5768

The determinant 9.41x10 and the eigenvalues range from 0.0001 to 2.0834 ( ratio of maximum to

minimum 20834 , which high light the near-singularity of the information matrix. The entries of the

inverse of information matrix clearly show that the variances of b and are substationally large and g is

highly cormiated with b.

The above analysis then suggests that we should examine the likelihood function of EXPAR models

fitted to real data.

EXAMPLE 4.2.2 (An EXPAR model for the Canadian lynx data).

Ozaki (1982, Equ. 3.1) has reported the following model,

= {0.138+(O.3160.982X,_i)e4'')X_i

- (0.437+(o.659+1.260x7_1 )e')X1..2+e	 (4.2.4)

where c —N(0,&2), = 3.89, = 4.327 x 10_2 , and (x,) axe the mean deleted logarithmically

transformed lynx data. The parameter estimates were supposed to be obtained by the method of least

squares i.e. by minimizing 4. Checking the above parameter estimates, we have discovered that there

must be a misprint in the recorded value of 0.138 because with the above stated parameter values, the nor-
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malized residual sum of squares differs substantially from the value of 4.327 x 10-2 given for a2 . In fact,

our non-linear optimization gives 1.167 in lieu of 0.138 with all other parameters estimates in agreement

with those given in (4.2.4). We therefore study the revised EXPAR model

= (i. 167^(0.3 16+0.982X,_ 1 )e'')X,_1

	

(0216)	 (0.486) (1.152)

- [0.437^(0.659-1-1.260X_i )e"]X,_2+E

	

(0.268)	 (0.360) (1.146)
(4.2.5)

where c, —N(0,&), ' = 3.89, &2 = 4.327 x 10-2. The misprint might explain the peculiar second order
(3.68)

moments of model (4.2.4) reported by Urn (1987). Taking model (4.2.5) as the true model, a sample of

10000 observations is generated by using a simulation technique and the sample autocovariance function of

the lynx data (1 821-1934) and the simulated data are given in Fig. 4.2.10. Using model (4.2.5) and repeat-

ing the same simulation technique leading to the likelihood function shown in Figs. 4.2.11-4.2.14, we may

trace the likelihood function of the following model

= [a0+(a1+a2X1_1)e'}X,_1

+ (bo+(bi+b2X,_j)e_1)X_2+c, 	 (4.2.6)

where —N(0,a2).

Fig 4.2.12 clearly reveals similar difficulty for model (4.2.5 ) as that experienced by model (4.2.2)

and shown in Fig. 4.2.6. Shown in Table ( 4.2.3 ) is the theoretical information matrix of the parameters of

model (4.2.6 ) based on numerical integration with respect to the stationary distribution of the model which

may be obtained by numerical techniques. The eigenvalues range from 0.0029 to 14.2046. The determinant

is approximately 4.2x10 5 and the ratio of the maximum eigenvalue to the minimum eigenvalue is 4831.49
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Table 4.2.3

(EXPAR MODEL FOR LYNX DATA)

Information Matnx xcy

a0	a1	 a2	 b0	 b1	 b2	 g

a0
	 7.6136

a
	 1.2113 0.5055

a2 I -0.0238 -0.0161 0.0880

b0 I 5.9868 0.9862 -0.0067 7.6136

b1
	 0.9862 0.4218 -0.1200 2.2380 1.4088

b2 -0.0067 -0.0120 0.0714 -0.0257 -0.0246 0.1209

gI 0.0818 0.0205 0.0007 0.1575 0.0554 0.0132 0.0102

The eigenvalues of the information matrix aie 0.0029, 0.0333, 0.1340, 0.1771, 0.5682,2.2406 and 14.2046

Table 4.2.4

The Inverse of Information Matrix

1.0812

	

-1.6790	 5.4589
1.6233 -1.6337 30.6559

	

-1.1926	 1.6008 -25461	 1.6539
1.2808 -2.5112	 1.1916 -1.6981 3.0016

-1.9960 2.5199 -24.1376 3.1008 -1.3201 30.3614
8.6096 -11.7149 52.0432 -13.7589 63107 -67.1161 312.7660

Not surprisingly, Table 4.2.3 Ivea]s the near-singularity of the information matrix associated with

the parameters a's , b's and g. Similarly to example 4.2.1, the parameters a1 , a 2 , b , b 2 , and g have a

large variance and the scale parameter g is highly correlated with the others.

It should also be mentioned that EXPAR models of the form (4.2.1) give in general E(X,)^ 0, unless

all the f1 's are even functionals and e has a symmetric distribution. (See e.g. Pemberton and Tong, 1981).

Therefore, it violate the least squares principle to estimate the unknown parameters by minimizing z4
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when the data axe mean deleted. However, fortunately for the present example, the affect does not seem

very serious and we shall therefore ignore it here and in the next section.

4.2.1. Reparametrization

With the benefit of hindsight, perhaps we should have anticipated problems because of the 'exponen-

tial regression' nature of the EXPAR models. Analogy may be made with ordinaiy regression involving

exponential type functions (See, e.g., Draper and Smith, 1981, p. 489). The analogy then naturally sug-

gests reparametnzation as a way out of the difficulty. Specifically, we may replace exp (—gX.1 ) by

exp (—g (X 1 —p)), c by =c exp (—g) and d by d =d e. (—g) where

= EX

We shall refer to the above replacement by the term 'centering' and the Ieparametrized model as the 'cen-

tered model'. Typically is estimated by the obvious second sample moment.

Comparing Fig. 4.2.1.1-4.2.1.4 for the centered version of model (4.2.2) with Figs. 4.2.1-4.2.6 ,we

can see substantial improvement. The estimate of g is now much closer to the tree value. (X = 1.643)

Table 4.2.1.1

(Model 4.2.2 centered)

Information Matrix

b	 g

b	 1.5281

0.8586 1.7164

d 
J 

0.2563 0.2987 1.0973
g 0.0223 0.0750 —0.2139 0.0765

The eigenvalues of the information matrix are 0.0227, 0.7601, 1.0456 and 2.5899.
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Table 4.2.1.2

(Model 4.2.2 centered)

The Inverse of Information Matrix

0.9217
-0.4197 1.0798
-0.1607 -0.8314 2.9510
-0.3060 -3.2607 9.1112 41.8258

The visual improvement is confinned by the calculations recorded in Table 4.2.1.2. Now the deter-

minant has increased to 4.67x10 2 and the eigenvalues range from 0.0277 to 2.5899 (ratio 1 14.09 ). Note

that the infonnation matrix of the centered model is calculated by a simulation method based on a simulated

data of size 10000.

Substantial improvement may also be gained by centering the EXPAR model (42.5 ) for the Cana-

dian lynx data as can be seen by comparing Figs. 4.2.11-4.2.12 with FIgs. 42.1.5 and Table 4.2.4 with

Table 4.2.1.4. (X 2 = 0.30908, and typically = a 1 exp (-g.L' ).)	 -

Table 4.2.1.3

(CENTERED EXPAR MODEL FOR LYNX DATA)

Infonnation Matrix x&2

a0	 b1	 b2	 g

a0	8.0011

I 4.6131 7.2820

a 2 -0.1157 -0.2301 1.2814

b0	 6.3353 3.7912 -0.0501 8.0024

I 3.7912 6.1543 -0.1917 8.6580 20.7964

b2 I -0.0501 -0.1917 1.0474 -0.1340 -0.4225 1.8025

g	 0.0849 0.0786 0.0025 0.1628 0.2153 0.0518 0.0106

The eigenvalues of information matrix are 0.0033, 0.4563, 0.5278, 2.5940, 4.0232, 9.2703 and 30.3014.

The determinant 2.33.
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Table 4.2.1.4

(CENTERED EXPAR MODEL FOR LYNX DATA)

The Inverse of Information Matrix

1.0 177

—0.4142 0.3659
0.4095 —0.1094 2.0841

—1.1174 0.3927 —0.6319	 1.5372

0.3123 —0.1642 0.0694 —0.4094 0.1949

—0.4955 0.1643 —1.6236 0.7658 —0.0738 2.0323

8.0807 —2.8764 13.2925 —12.8756 1.3912 —17.0938 301.5600

Note, in particular, the substantional reduction in the Var( typically i ) and the covariances of esti-

mates. The information matrix of the centered model is obtained by using the simulation method.

A family of stationary marginal probability density functions of model (4.2.5) over the finite range of

g , gE [0.5, 7] is approximated by numerical integration technique and the result is given in Fig. 4.2.1.6.

It can be seen that for large variation of g, there are a small change in the stationary distribution.

43. Bilinear Models

A discrete parameter time series {xj that satisfies the difference equation

p	 PQ
X+ a .X,_+a0 =	 b,,X,...,e,	 (4.3.1)

i=1	 l=lk=1

where (ej are independent and each e is distributed N( 0, a), is said to be a bilinear process of order

BL(,p .0, P , Q). Proceeding as in Subba Rao (1981), we can show that maximizing the likelihood function

of (Km, ,Xm,+i , . ,XT), withm 1 =p+l, p being the maximum order of the AR model fitted to the data, is

N
the same as minimizing the function SN(0) = e with respect to the parameters. The maximization of the

:=nI

likelihood is then typically perfonned numerically either by the Newton Raphson algorithm or any other

method. This approach is adopted in bilinear models. e.g. See Subba Rao and Gabr (1984).

The parameter estimates so obtained are consistent (op. cit). However, the asymptotic distribution of

the estimates is not available. One difficulty may be due to the lack of moment property of bilinear models,
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e.g. See Tong (1987a) and Granger and Andersen (1978, page 40). Another difficulty may be intimately

connected with the invertibility problem of bilinear models, e.g. See Tjostheim (1986, page 259). The

invertibility problem, except for some rather special cases, seems to be very complicated.

The exact likelihood function of any class of bilinear models does not seem to be possible to

obtained, therefore we consider the conditional likelihood function of the simple diagonal bilinear model of

the fonn

X=bX_ie,_i±e1, :=0,±l,...,	 (4.3.2)

where e —N( 0, at). Since maximizing the likelihood function is equivalent to minimizing the function

SN(b) = Ee, we may adopt the following metho&

Given the observations X 1 ,X2, . . .	 from the model (4.3.2), we first set e0 = 0, then we have

e 1 =X1

e 2 =X2—bX1e1

= X2—bX

e =XN—bXN_leN..1

and SN(b) =Ze. Obviously SN(b) is not a quadratic function in b. Similarly to MA(1), suppose that 3

observations are available, the function SN(b) is given by

SN(b) = >e =X+(X2—bX)2-i-(X3—bX+b2Xx2)2,

which is a polynomial of degree four in b and under some conditions on X 1 , , X3 , SN(b) has three real

roots, such that the smallest and the largest one of which correspond to the two local minima. Although the

simulation study show that b is inside the invertibility region and b 2 outside, the exact relation between

b 1 and b 2 is not clear. When N> 3, SN(b) is a polynomial of degree greater than four in b, therefore SN(b)

may have several local minima. Shown in Figs. 4.3.1-4.3.12 are the negative of the likelihood function of

diagonal and super diagonal bilinear models. Some simulation study show that when b the parameter of the

model is inside the invertibility region, the likelihood function has a unique minima, but when the simu-

lated model is not invertible, the likelihood function has more than one local minimum.
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As the asymptotic distribution of the estimates of bilinear models is not available, we employed the

Monte Carlo method to investigate the effect of the variance of the noise term on the variance of estimates.

For both the diagonal bilinear model

X, =-0.4X1_1e1_i+e,.,

and the linear AR(1) process

X, =

where e,-N(0, at), 100 replications each of length 50 and 100 of length 100 were generated using NAG

routine GO5DDF, which was initialized by NAG routine GO5CCF. For each replication, start-up values

were set to zero and the first 1499 observations discarded to remove transient effects. For each realization

the error sum of squares SN(e) is calculated and an estimate of b is found by searching over a grid of points

for which the bilinear model is stationary and invertible (in the bilinear case) and the linear model is sta-

tionary (in the linear case). The results are given in Table 4.3.1

Table 4.3.1

Linear model	 Bilinear model

N=50	 N=100	 N=50	 N=100

E(b) I V(b)	 E(b) I V(b)	 E(b) I V(b) I E(b) I V(b)

1.0	 -0.404 0.0173	 -0.390	 0.0088 -0.383	 0.0077	 -0.389	 0.0027

0.80	 -0.364	 0.0186	 -0.392	 0.0113	 -0.380	 0.0130	 -0.391	 0.0052

0.60 -0.416 0.0168	 -0.390	 0.0091	 -0.423	 0.0190 -0.403	 0.0119

	

0.40 -0.405 0.0143 -0.385	 0.0080 -0342	 0.0353 -0.397	 0.0228

0.20 -0.371	 0.0215	 -0.394	 0.0074 -0.402	 0.1823	 -0.414	 0.1082

0.10 -0.408 0.0195	 -0.401	 0.0087 -0.350	 0.6448	 -0.369	 0.3505

0.05	 -0.420 0.0152	 -0.407	 0.0068	 -0.303	 2.1609	 -0.322	 1.2671

0.01	 -0.330 0.0174 -0.390	 0.0073	 -0.841	 23 .9600 -0.236 20.2834
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The general message is that decreasing the variance of enor term e, leads to an increasing of the variance of

the estimates of the bilinear term.

Let (x,} be a discrete parameter time series satisfying the difference equation

p	 q

	

X,=Z a,X,...1+ Z	 (4.3.3)
i=1	 j=l

where the e,'s axe independent and identically distributed N( 0, at). The method of conditional least

squares can not be applied for estimating the parameters of the model (4.3.3), because some of the parame-

ters are absent in the expression of the conditional mean of the observations. Since the er's are normal, we

may use the conditional maximum likelihood method to estimate the parameters a 1 , a 2 ,	 ,

b,b2 ,	 , bqando.

ae,
It may be shown that the Jacobn of the transformation is given by I - 	 I = 1 J I where

0..
)Xk+1

)ek+2 aek+Z

)Xk+l Xk+2

eN	 eN	 efq

)Xk+l aXk+2 Xk+3

0

0

N

aeN

xI'1

N
=11

tk+ I l+b 1X_1 + 	 +bqX;q I

and k =max(p , q}. The joint probability density function of 	 . ,XN given X 1 , . .. ,X may be writ-

ten as

p

f(Xk+l ,...,XN IX 1 , • . ,Xk)=	

2 t+1	 q	
)2) -1 j

	
Jexp(_---	 ( 

i=I

1±bX_1
j=1
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For given a, maximizing the likelihood funclion is equivalent to minimizing the function

p

N	 X,—ZaX_;

	

/	 1=1
)2

SN(0) = 	 2aInll+b 1 X,_1 +" -I-bX,_I+(
rk+I	 q

1+
j=I

The maximum likelihood estimate of o is given by =	 SN(0), where 0 is the maximum likelihood

estimate of 0 = (a 1 ,	 ,b 1 , -. ,bq )'. Some examples are given below to illustrate the effect of a on the

variance of the estimates of bilinear parameters.

Example 1 Consider the simple bilinear model

X, = (l+bX_1)e,, t=0,±l, -•• *

where e—N(0, a). The log likelihood function of this model is given by

N	 1N	 X,
L(b) = i l2 <1N)th r_ E in l+bX_1 I	 1±bx_, 

)2

Following Basawa and Scott (1980), in general E((b)) = IN(b), where !N(b) is the usual (mean) Fisher

information and

N	 dlogLk(b) d logL_1 (b) )2 Fk_l),-
k1	 db	 db

where Lk(b) is the likelihood function based on the observations X 1 ,	 ,Xk and Fk = a(X 1 , - - ,X), with

F0 the trivial a-field.

Here,

d lOgL(b) - d logL._1 (b)	 k Xe_I	 1 
k

=—E
d b	 d b	 r=2 1+bX,_1	 r=2 l+bX_1

k-I X_1	 i	 _________
+ E ________	

k-i X7_1

:=2 1+bX 1 a r=2 1^bX,1

-- X,,..1	e	 Xfr1

- l+bXk_1 a	 1+bXk....i

and

N	 Xk_l	 €2	 2
(b)=

k2	 l-l-bXk_l ae

N	 Xk..1	 4=
k_2 l+bXk_I	 q

N

2 E (-
k=2 l+bXk_l
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Thus

N

1N(b) = E((b)) = 2 E(	 )2
k=2 l+bXk_l

xt-1
=2(N-l)E( 

1+bx1_, 
)2

Here

= (1+bX_1 )e, ,all t.

xl-'	 ______

Now e=(	 )2 and IN(b) = 2(N-1)a , I7(b)=	
1	

For fixed r, the estimate of b , b, is
l+bX,...1	 2(N-1)cy

efficient but, as a-3 0 the Fisher infonnation IN(b) tends to zero and V(b)-3 00

Example 2: Let

X = aX1_1 +bX1_,e+e1 , t=M,±1,..., e1 -N(O, o).

The log likelihood function is proportional to

N	 1 N X1-aX,_1 2
L(a,b)'Inhl+bXj_iI---E(	 )2a :=2 1+bX,_1

and it is not difficult to show that the inverse of the information matrix Z, has the following form

Xl_l)2	 0

	

I a	 i+bX._1	 I
xt_1	 Iz=[	 I

0	 2(N-1)E( 1+bX,_1 )2j

1101

	

- N-i	 Xt_l)2 jo 
--jE(

l+bX1_1

Tong (1981) has proved that E(X) does not exist for all integer n if b^0. However, for small b we may

xt-1
approximate the function	 by its Taylor expansion about zero. Using this approximation, we can

i+bX1_1

show that

______	 cY

E(l+bxl)2=E(X)=G= l-a2-b2c

Substituting the above approximation, the information matrix Z reduces to

1-a2--b2o 12 0 1

2(N-l) [
cr J
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Obviously and b are uncorrelated and V(b)- o as cr-9 0.

In order to examine the relation between the variance of the parameter estimates and o by simula-

lion, we consider the bilinear models

X, =ajX,_i+(l+bX,_1)e, , a 1 =-0.3,	 Model I

and

= a i X,_i -fa 2X1 _2 -I-a 3X,_3 +(l+bX_i )e , a 1 =0.7 , a2 =-0.6, a 3 =0.3,	 Model II

where e,-N(0, r) and b = 0.4. For estimating the variance of the parametem, 100 replications each of

length 250 using a simulation technique are generated. For each realization, the simplex method is

employed to maximize the log likelihood function. The sample mean and sample variance are taken as

approximations of the mean and variance of the parameter estimates. The results are given in Table 4.3.2

Table 4.3.2

Model I

I	 I	 I V(a 1 )	 E(b) I	 V(b)	 I

1.0	 I -0.299	 0.0009 I 0.391 I	 0.0003

	

0.1	 -0.281	 0.0036	 0.304	 0.1303

	

0.01	 -0.314	 0.0036	 0.213	 11.8762

	

0.001 -0.313	 0.0037 -4.239	 1093.8762
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e 2 =X2-f(X2_,e2_1 , j=1,2,...,p),

and so forth. Thus, using the assumed starting up values, an iterative procedure can be used to estimate all

2,, based on the observed X,'s and the generating model. The error that will almost certainly arise from such

a procedure will be denoted E, =e,-e.

The model (4.3.1.1) is said to be invertible if

E(E)-+O ast- oo ,	 (4.3.1.2)

which assumed that the correct generating formula is known completely, both in form and the actual param-

eter values.

If the parameter values in the model are not known exactly, as would occur if they were estimated

from an earlier finite length of data for instance, (4.3.1.2) might be replaced by

E(t)-*c,as j-400

where c < 00 is some constant.

It would therefore seem always predent to check the invertibility of bilinear models fitted to real data,

especially if prediction is part of the principal purpose of the exercise. We adopt the definition of invertibil-

ity introduced by Granger and Anderson (1978, P. 69). We propose the following practical procedures for

checking invertibility of non-linear time series models because analytic conditions of invertibility axe usu-

ally impractical except for the simplest situations. To describe the method, we consider the model (4.3.1.1)

which has been fitted to data X 1 , .. ,X conditional on X0 =X_1 =" =X=e,=e_1 = ... =e.., =0.

We can extend the sample by using the fitted model and a simulated random sample of

(m say equal 1000 ) from the fitted distribution of e. Replacing e, by , in ( 4.3.1.1 )) and setting

, =, =0, we may obtain , t=1,2,...,n+m , where j =ej for j=.-p,...,n. Thus, a practical

check for invertibility is to calculate the sample mean of (E — ,)2. Explosive tendency suggests non-

invertibility.

Figs. 4.3.1.1 and 4.3.1.2 suggest that the bilinear models fitted by Gabr & Subba Rao (1981, equa-

tions 5.3 and 5.7) to the Wolf's sunspot numbers and the Canadian lynx data are likely to be non-invertible.

As a check on this practical method, it has been applied to the linear model which is fitted to lynx data by

Gabr and Rao (1981). The result is given in Fig. 4.3.1.3. Since there is no theory to tell us how to restrict
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our search over surfaces like that shown in Fig. 4.5.8 to invertible bilinear models only, one possibility is to

adopt a trial-and-error method. However, this may involve horrendous calculations.

4.4. SETAR Models

Chan (1987) has shown that under suitable regulanty conditions, the least squares estimate of a sta-

tionary ergodic Threshold Autoregressive model are strongly consistent. In particular, both the threshold

and the delay parameters can be consistently estimated by the method of least squares. Chan (1988) has

proved that for SETAR(2;p,p) the asymptotic distribution of? is related to a Compound Poisson Process.

Also he has shown that for all sufficiently large N, dN = d with probability one. The sampling properties of

the other parameters are studied by Tong (1983), Chan and Tong (1984) and (1986a).

To assess some properties of the conditional error sum of squares, SN(0), of the class of SETAR

models, we consider the simple SETAR(2;1,l) model

Vo+a1xt_i+e, if X,_ 1 ^r
Xf= 

lbolxt_l+et if X_i>r'	
-	 (4.4.1)

where e–N(O, 1), a0=O.7, a 1 —O.5 , b0=-1.8, b 1 0.7 and r4). Since the estimation of threshold is quite

important and moreover, SETAR is lineax in each piece, therefore we only plot the contour of the surface of

SN(0) for and b 1 versus r. The result is given in Fig. 4.4.1 and Fig. 4.4.2. An isometric projection of

SN(8) is also given in Fig. 4.4.3 . As it can be seen, there exist a dip around the ? and in the isometric

projection. Also all contour curves from contour key 78 to 145 are closed.and effipsoidal. In the next sec-

tion we will study the function SN(e) of SETAR. models which are fitted to real data in more details.

4.5. Real Data

In previous sections we have described some difficult aspects of non-linear time series modelling.

This section considers some univariate non-linear models which have been applied to Canadian lynx data.

A collection of contours of the likelihood surface of each model are obtained to reveal some features of the

fitted models likelihood functions.

Tong (1983) has reported two SETAR models which were fitted for two different periods to the log

transformation of the Canadian lynx data. The first SETAR(2;5,2) model, which will be referred as SETAR
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model 1, is fitted to the first 100 observations. This model is given by

5

Ia0+Xa1X,_+e1) if X,	 r
=1

2	 (ModelI)

1

b0+ b1X_;+e 2) if X_2 > r
1=1

where

a0=0.77, a 1 =1.06, a2 =—O.20, a 3	a4 —0.43 , a 5 =0.18,

b0 =2.25 , b1.47, b2 _j.20, r=3.05.

The second model, SETAR(2;7,2), which is fitted to 114 observationS and will be referred as model II,

takes the form

a0+Za1X_1+e1) if X_2 ^r

X7 =

	

	 (Modelil)
b0+b1X_1+e 2) if X,_2 > r

where

a0=0.546,ai=1.032,a2=—O.173,a3=O.171,a4=-0.431,as=0.332,

a6=-0284,a7=O.210,b0=2.632,b1=j.492,b2=-1.324,b3,r3.116.

Gabr and Subba Rao (1981) have fitted the following subset bilinear model to the log transfonnation

of the first 100 observations of lynx data. Their fitted model may be written as

X+a0-I-a X_i +a 2X_2 -1-a 3X,_3 +a 4X...4+agX,. 9 +ci 12Z-12

= b 39X..3	11X,_1 e_1

+ b27X,_2e_i+b42Xe,_2+e,,

where

a0 =-1.486292, a 1 = -O.77227, a2 0.091527, a 3 =-0.083073 , a =0.261493,

a 9 =-O.225585, a 12 =0.245841 , b 39 =-0.7893, b =0.4798, b 62 =03902, b 11 =0.1326,

b 27 =0.07944, b42=-0.3212.

Results are give in Figs. 4.5.1-4.5.28.

As far as the experiment goes, it seems that the estimation of threshold is not difficult and since in

practice only a finite nominations for parameter r exist, therefore it is easy to obtain the least square estima-

tion of threshold. The contour plots of the likelihood function of SETAR models which were fitted to lynx
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data, do not exhibit any unexpected pattern in the likelihood function of those fitted models.

The contour plots of the bilinear model which was fitted to lynx data reveal the complexity and

difficulty of estimation of coefficient of bilinear terms and the existence of more than one local maxima in

the likelihood function. In the contour plot of (b, b 11 ), it seems that the global minimum is near point

(0.8,0.7) whereas the maximum likelihood estimates of these two parameters which are reported by Gabr

and Subba Rao (1981), are b = 0.4798 and b 11 = 0.1326 which correspond to another local minima. Since

the estimation procedure which has been used by Gabr and Subba Rao (1981, page 159) is based on the

Newton Raphson iterative method with initial estimates of the coefficient of bilinear terms equal to zero,

therefore it is not surprising that the iterative procedure converges to a local minimum nearest to this initial

point. There thus is no guaranteey of a global minimum. Similar problems arise in estimation of

coefficients of the other bilinear teims. In practice it seems that the likelihood plots may give some vital

information about the fitted model which might ultimately lead to an improvement.
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CHAPTER FIVE

STATIONARY PROBABILITY DENSITY FUNCTION

OF NON-LINEAR AUTOREGRESSIVE

PROCESSES

In this chapter we examine the stationary probability density function of ceitain non-linear, discrete

time series. In particular, we examine numerical solutions for a recursive relation for computing the m-

step-ahead conditional density of a non-linear autoregressive model which is obtained by using the

Chapman-Kolmogorov fonnula. We approximate the stationary marginal probability density function of the

model by the rn-step-ahead conditional density, for sufficiently large m.

Although the classical autoregressive linear model is very useful as a first order approximation to sto-

chastic discrete time phenomena, the generating mechanism of most physical phenomena is essentially

non-linear. Jones (1978) has considered the first order non-linear autoregerssive model, NLAR(l),

X = X(X7_1 )+e , t =O,±l,...,	 (5.1)

where X(.) is a fixed real function of a real argument and (es) is a sequence of independent and identically

distributed random variables with mean zero and constant variance.

Tl problem of evaluating the stationary marginal distribution of the model (5.1) explicitly is

extremely involved and usually intractable. Jones (1978) has proposed three methods for evaluating

numerically the stationary distribution of the model (5.1). All the procedures are based on power-series

expansions. However, they are rather complicated for practical use.

One type of non-linear discrete time parameter models is the SETAR model for which the simplest

first order SETAR is of the following form

1ciX,_1+e if X 1 ^r
X:=	 if X,_1>r,	

(5.2)

where {ej is a sequence of independent and identically distributed random variables with zero mean and
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constant variance. Generally it is difficult to obtain the explicit form of the marginal stationaiy distribution

of X (if it exists). A necessary and sufficient condition for ergodicity of model (5.2) and hence the

existence the stationary marginal distribution is that a <.1 , J < I , aJ3 < 1, (Petruccelli and Woolford

1984). Andel et al (1984) have proposed a method for evaluating the stationary marginal density in non-

linear processes and have managed to obtain the explicit analytic solution for a special subclass of (5.2)

namely

X, =-aX,_1 +e
	 (5.3)

where ae (0,1) and e, N(0, 1). The stationary marginal density function is shown to be

f(x) = [2(1—a2)f ic]2 exp [_(1_.a2)x2N(—ax),	 (5.4)

where (.) is the distribution function of the standard normal.

Let {ej in model (5.3) be independent Cauchy variables with density	 2 Andel and Barton
ic(1+x )

(1986) have proved that for this case the process {xj has a unique stationary distribution with the density

f(x) = •J- [_{4A 2x2 t-(l_A 2-t-x 2 )2] {x1nA_2(1+x2)l(A2_1tx2)arctgx) +	 (5.5)

(2A)' {(1+A)2+x2)'(l+A)xJ,

awhere A = -
1—a

Chan and Tong (1986b) have considered the integral equation inf

f(x) =fK(x—T(y))f(y)ay,

where K is a probability density function and TR	 !. They have shown that the success of the method

of Andel et al (1984,1986) in fact depends on the symmetry of the autoregressive function in (5.3), which is

linear over the non-negatives and defined over the negative by assigning the function values taken by the

mirror images. They have developed a systematic method and generalized it to higher dimension by

exploiting the symmetry of the autoregressive function defined by a compact group.

Denote the conditional density of Xm given X0 by fm. On letting m tend to infinity, fm will converge

to the stationary marginal density function of X, if {x) is ergodic. The Chapnian-Kolmogorov formula

gives a recursive relation to compute fm. In this chapter we use the numerical integration method to
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calculate the rn-step-ahead conditional density fm and we compare the numerical approximation of the stä-

tionary density function f(x) with the theoretical probability density function in the bench-mark cases,

namely cases studied by Andel at al (1984,1986).

A general univariate NLAR(p) process may be written as

X, =X(X_)+e,,	 (5.6)

where Xr_j = (X,...1 ,. .. ,X,)', {ej is a sequence of independent and identically distributed scalar random

variables with mean zero and constant variance and e, is independent of X for all s<t. The conditional den-

sity function of X given X,_1 may be written as

fjç 1x,1 (XJX_i =y) =K(x—X(y)),	 (5.7)

where K(.) is the probability density function of the random variable e,. The joint density Of(X,X_1 ) can

be obtained simply as

fx,x,.(x,y) =K(x—X(y))h(y), 	 (5.8)

where h(.) denotes the joint density of (X,_ 1 , . . . , X,Y. By integrating with respect to y over R on both

sides of (5.8), the stationary marginal density function of X may be obtained as

f (x) = A,K(x_X&)) (y)dy.	 (5.9)

For the self-exciting threshold autoregressive model SF1I'AR(l ;k 1 ,...,k,) of the form

k

=	 b'X_1+e if X,...de(rJ_l,rJ],	 (5.10)
•i=1

forj=1,2,...,1, where —co=r0 <r 1 <	 <r1=o, it can be shown that

f(x)= iKj(x-2.))h&)dy, 	 (5.11)
j_-1r,

where K1(.) denotes the probability density function of e/ and X1(.) denotes the autoregressive function in

the j-th regime. The integral equations (5.9) and (5.11) do not readily admit analytic solutions.

5.1. Numerical Solution

As the numerical solution is commonly the only solution, we will review briefly some of the numeri-

cal methods and then employ the Chapman-Kolmogorov relation to obtain a simple recursive formula for a

numerical solution of integral equation (5.9). Without loss of generality, first we restrict our discussion to
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the first order case, i.e. NLAR(1).

5.1.1. Series Expansion

Jones (1976,1978) has derived power series expansions for obtaining the probability density function

and moments of a stationary discrete lime series model (5.1). The method involves consideration of the

family of time series indexed by the parameter l

X,() a+bX,... 1 (J3)+j3[AX,_1 (3))—a—bX,_1 (J3)]+e,

where a is an arbitraiy fixed constant and b!<1. The resulting series expansion in powers of usually

requires b to be zero for practical calculation, with truncation. The value of the constant a affects the con-

vergence of the series and so its value has to be chosen carefully. Some difficulties have been experienced

with convergence when X(.) is piecewise linear and the variance of e is "small" (Pemberton, 1985).

5.1.2. Iterative Numerical Quadrature Method

Pemberton (1985) has approximated the solution of integral equation (5.11) through the iteration

f +i (x) = C E I f(y)K(x—?.1(y))dy, 	 (5.1.2.1)

with some suitable starting function f0 (x), normalized so that

Ifoxdx=1.

The multiplying factor C is a normalization constant, and is necessary because the numerical evaluation of

the integral requires a finite range of integration. it is mentioned by Pemberton (1985) that convergence is

not always achieved. The starting function f0(x) can be the standard normal density.

5.2. Conditional Density Approach

The idea of approximating the stationary distribution as the limit of conditional distribution was

reported by Jones (1976). In practice it would appear that it is not so easy to use his results and we there-

fore propose an alternative. (See Moeanaddin and Tong, 1989).

Since we have a Markov chain over R, we may recall the Chapman-Kolmogorov relation

f(x,.,,, x) =	 IX,+i)f(x,+i Ix)cfr,+1 ,	 (5.2.1)
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where f(x3 Ix,) denotes the conditional probability density function of X given X, =x,. Let K(.) denote the

probability density function of e, and let fm(X) denote the conditional density of X,.,,, given X,. Equation

(5.2.1) immediately gives

f(x)=Jf_1(y)K(x—X(y))dy.	 (5.2.2)

Equation (5.2.2) gives, in particular a recursive formula for conditional density with

f (x) =fx X, (X X,=y) = K(x—?ty)).

In evaluating the improper integrals of the form (5.2.2), we are faced with two difficulties: (i) The

discontinuity of X and (ii) the integration over R. In case (i) the integral can be split up over disjoint inter-

vals, over each of which the intervals ? is continuous. In case (ii), by employing a suitable method, the

integral can be approximated efficiently. We adopt the following procedure: it is well known that 1ff is

integrable over an interval, then there exist some points x 1 ,x2 , ...,x with corresponding weights

w 1 ,w 2 ,	 , w such that .1! (x)dx— ; wJ (Xk) so that it is exact for functions f of class P,,_1 . (P denotes

the class of all functions that axe polynomial of degree ^n.) Needless to say, when numercal integration is

employed, care must be taken to handle the accumulation of rounding errors.

In practice, one may employ some Gauss-type formula to generate an appropriate set of points

x 1 ,	 ,x with corresponding weights w 1 ,	 ,w,, and by using the recursive formula (5.2.2) with

Ii (x) = K(x—X(y)), a sequence of conditional densities fm(X), m =2,3,..., can be calculated. As m increases,

the conditional density fm converges to f, the unique stationaiy marginal probability density function of X,,

if the latter exists. Convergence is deemed to have been achieved when Jfm-fm..i <a for a small positive

value of a, e.g. c=lO.

In our study, NAG routine DO1BBF is employed to generate an appropriate set of points x 1 ,	 ,x,,

with corresponding weights w 1 , ,w. We normalized the conditional density to unity at each step, to

avoid accumulating errors, and also we check the integration of conditional density, before normalization,

over R in each step, as a measure of accuracy. If the evaluated integral is not close to one (i.e. with error

^1O), then we would change the parameters of the NAG routines to generate another set of points and so

on until a more adequate set is found.
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53. Application

As a check on the method, it has been applied to obtain the unique stationary marginal density of the

linear AR(1) process

X. =aX,_1-i-e. , JcL< 1,	 (5.3.1)

and the results are given in Table (5.3.1).

We repeated the exercise with the SETAR(2;1,1) process

X,=—aIX,_il+e,,O<a<1, 	 (5.3.2)

where e—N(O, 1), for different values of a, and different number of points. Since the theoretical stationary

probability density function and rth moment for model of the form (5.3.1) and (5.3.2) are available, in

Table (5.3.1) and Table (5.3.2) we compare the approximation of rth moments (r=1,2,3,4) based on the con-

ditional density approach with £<1O (column marked approx..) with the theoretical (column marked

theo.). Using the same points x 1 ,	 ,x,, and w 1, " ,w and the theoretical probability density function

f(x), we may also perform numerical integration to evaluate Jx'f(x)dr. Results are listed in the column

marked numerical.
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Table 5.3.1

E(X)	 E(X)	 run

n	 CX	 time

approx.	 numerical	 theo. approx. numerical	 theo.	 (in sec.)

12 -0.9	 8.6416xlO	 1.9377x10	 0.0	 5.26547	 5.26316	 5.26316	 7.50

24 -0.9 -1.4769x10	 -9.798lx10	 0.0	 5.26316	 5.26316	 5.26316	 9.23

48 -0.9	 6.0558x10	 -1.4428x10	 0.0	 5.26316	 5.26315	 5.26316	 16.70

64 -0.9 -1.2280x1(F'°	 -6.7862x10	 0.0	 5.26315	 5.26316	 5.26316	 15.41

12 -0.5	 1.4903x1O	 2.1202x10	 0.0	 1.33333	 1.33333	 1.33333	 2.45

24 -0.5 -4.4961x10	 -9.0807x101°	 0.0	 1.33333	 1.33333	 1.33333	 2.82

48 -0.5 -2.0900x10	 3.6395x10	 0.0	 1.33333	 1.33333	 1.33333	 5.48

64 -0.5 -1.0532x10	 3.4370x10	 0.0	 1.33333	 1.33333	 1.33333	 6.32

12 -0.2	 2.7223x10	 7.0360x10	 0.0	 1.04167	 1.04167	 1.04167	 2.05

24 -0.2	 1.8319x10	 1.5711x10	 0.0	 1.04167	 1.04167	 1.04167	 2.19

48 -0.2	 1.5378x1tr	 5.0135x10	 0.0	 1.04167	 1.04167	 1.04167	 3.65

64 -0.2	 1.5165x10	 5.51(Y2x1Cr	 0.0	 1.04167	 1.04167	 1.04167	 4.96
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Table 5.3.1 (continue)

E(X)	 E(X)	 run

n	 a	 time

approx.	 numerical	 theo.	 approx. I numerical	 theo.	 (in sec.)

12 -0.9	 1.3692x1cr3 -1.1456x1cr7	0.0	 83.15470 83.10154 83.10245	 7.50

24 -0.9 -1.7757x10 7	 1.8475x1cr7	0.0	 83.10223	 83.10243	 83.10245	 9.23

48	 -0.9	 1.8262x10'	 8.0142x10	 0.0	 83.10185	 83.10229	 83.10245	 16.70

64 -0.9 -1.0245x1cr'	 2.9038x1cr7	0.0	 83.10244 83.10246	 83.10245	 15.41

12 -0.5 -S.8O58x10	 -2.949thdO	 0.0	 5.33173	 5.33180	 5.33333	 2.45

24 -0.5	 3.2773x10	 -1.53 17x1(r8	0.0	 5.33333	 5.33333	 5.33333	 2.82

48	 -0.5 -1.1381x10 7	7.4208x10	 0.0	 5.33333	 5.33333	 5.33333	 5.48

64 -0.9	 2.4576x10	 -9.6766x10	 0.0	 5.33333	 5.33333	 533333	 6.32

12 -0.2	 7.4203x10	 4.2992x1Cr9	 0.0	 3.25521	 3.25521	 3.25521	 2.05

24 -0.2 -6.1182x10	 -2.1336x10	 0.0	 3.25521	 3.25521	 3.25521	 2.19

48	 -0.2	 2.1607x1Cr	 -3.4305x10	 0.0	 3.25521	 3.25521	 3.25521	 3.65

64 -0.2 -1.1060x1O	 4.1696x1Cr8	 0.0	 3.25521	 3.25521	 3.25521	 4.96
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Table 5.3.2

E(X1 )	 I	 E(X)
	

run

nla
	

time

approx.	 numcTical	 thco.	 applo.	 nmcncal	 thco.	 (incc.)

24	 0.9	 1.64855	 1.64742	 1.64742	 5.27112	 5.26316	 5.26316
	

7.79

48	 0.9	 1.64742	 1.64742	 1.64742	 5.26314	 5.26311	 5.26316
	

14.98

96	 0.9	 1.64742	 1.64742	 1.64742	 5.26316	 5.26316	 5.26316
	

36.11

128	 0.9	 1.64742	 1.64742	 1.64742	 5.26312	 5.26315	 5.2.6316
	

75.89

24	 0.5	 0.46066	 0.46066	 0.46066	 133333	 133333	 1.33333
	

330

48	 03	 0.46066	 0.4.6066	 0.46066	 133333	 1.33333	 1.33333
	

4.90

96	 0.5	 0.46066	 0.46066	 0.46066	 133333	 1.33333	 1.33333
	

12.76

128	 03	 0.46066	 0.46066	 0.46066	 1.33333	 133333	 133333
	

1635

24	 0.2	 0.16287	 0.16287	 0.16287	 1.04167	 1.04167	 1.04167
	

2.86

48	 0.2	 0.16287	 0.16287	 0.16287	 1.04167	 1.04167	 1.04167
	

5.03

96	 0.2	 0.16287	 0.16287	 0.16287	 1.04167	 1.04167	 1.04167
	

939

128	 0.2	 0.16287	 0.16287	 0.16287	 1.04167	 1.04167	 1.04167
	

10.80
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Table 5.3.2 (continue)

E(X)	 E(X)	 run

n	 a	 time

approx.	 numerical	 thvo.	 appzx.	 numerical	 thco.	 (in icc.)

24	 0.9	 19.04422	 18.98873	 18.98874	 83.40329	 83.10229	 83.10242	 7.79

48	 0.9	 18.98840	 18.98809	 18.98874	 83.09683	 83.09399	 83.10242	 14.98

96	 0.9	 18.98893	 18.98874	 18.98874	 83.10239	 83.10245	 83.10242	 36.11

128	 0.9	 18.98837	 18.98861	 18.98874	 83.09853	 83.10078	 83.10242	 75.89

24	 03	 1.68908	 1.68908	 1.68908	 533333	 5.33333	 533333	 330

48	 03	 1.68908	 1.68908	 1.68908	 5.33333	 5.33333	 5.33333	 4.90

96	 0.5	 1.68908	 1.68908	 1.68908	 5.33333	 5.33333	 5.33333	 12.76

128	 03	 1.68908	 1.68908	 1.68908	 533333	 5.33333	 533333	 1635

24	 0.2	 0.50217	 030217	 0.50217	 3.25521	 3.25521	 3.25521	 2.86

48	 0.2	 0.50217	 030217	 050217	 325521	 3.25521	 325521	 5.03

96	 02	 0.50217	 050217	 0.50217	 325521	 3.25521	 3.25521	 939

128	 02	 0.50217	 0.50217	 030217	 325521	 3.25521	 325521	 10.80

For model (5.3.2), E(X) is given by

E(X) 

=	

a2) ]2

which is equal to the E(X) of the linear model (5.3.1). We can also check that E(X)'s of these two

models are equal for fixed a.

As further evidence of the efficiency of the conditional density method, we have computed the den-

sity and moments of the process considered by Jones (1976). This is of the fomi X =A.(X,_1)+e,, where

e,-N(O, 1) and
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I0.5+x if -1.5<x^1

=	 otherwise.	 (5.3.3)

The results are given in Table (5.3.3).

Table 5.3.3

run-time
n	 E (X,)	 E (X)	 E (X) I E (X')	 Skewness Kurtosis

(in sec.)

16	 -0.18206	 1.68061	 -0.62693	 7.87811	 0.13195	 -0.14362	 5.78

20	 -0.18232	 1.68340 -0.65533	 7.81880	 0.11957	 -0.18397	 4.19

28	 -0.18216	 1.68417 -0.65196 7.83041	 0.12083	 -0.17972	 4.58

40	 -0.18216	 1.68416 -0.65198	 7.83036	 0.12082	 -0.17974	 5.52

56	 -0.18216	 1.68416 -0.65198 7.83036	 0.12082	 -0.17974	 9.64

Jones' values are: mean=-0.18216, variance=1.65098, skewness=0.12082 and kurtosis=

-0.17974.

In order to investigate the affect of the probability density function of e on the conditional density

method, it has been applied to obtain the unique stationary marginal density function of the SETAR(2;1,1)

process

X=-0.2X,_1 I+e,	 (5.3.4)

where e is Cauchy variable with density

	

	
1 
2 

Since the theoretical probability density function of
7t(1+x )

model (5.3) with Cauchy innovations has a very heavy tail (1 (±500)> 10 ), therefore we expect that the

accuracy of the method in this case should not be as good as the previous experiments i.e. e-N(0, a2).

Although convergence is not achieved, we approximate the stationary probability density function of model

(5.3.4) by 30-steps-abead conditional density, with the error Z(f(x1)-f(x1))2 2.5xl0. The approximated

and the theoretical stationary marginal probability density function of model (5.3.4) are shown by Fig. 5.3.1
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• It seems that the two curves are almost identical. (See Table 5.3.4 for comparison of the approximated

values i.e. f(x1) and the theoretical values i.e. f() of this experiment). However, regardless of some

difficulties in obtaining an adequate set of points (x 1 ,x2, . ,xJ for evaluating the conditional densities

numerically, it seems that the method is able to provide a good approximation of the stationary probability

density function of a process when the kernel, K(.), is not near zero outside the finite range of integration

i.e. it is not close to zero on intervals (._oo, a) and (b, , oc) for moderate values ofa and b,say a & b <100
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Table 5.3.4

f(x,)	 fix1)	 I error I	 f(x1)	 f(x.)	 I error I

-1179.047852 0.000000 0.000000 0.000000 -300.525299 0.000004 0.000005 0.000001

	

-1095.159302 0.000000 0.000000 0.000000 	 -283.718109 0.000004 0.000006 0.000002

	

-1028.360107 0.000000 0.000000 0.000000 	 -267.533508 0.000005 0.000007 0.000002

	

-970.755676 0.000000 0.000001 0.000001	 -251.951996 0.000005 0.000008 0.000003

	

-919.291016 0.000000 0.000001 0.000001 	 -236.955719 0.000012 0.000009 0.000003

	

-872.374756 0.000000 0.000001 0.000001	 -222328183 0.000008 0.000010 0.000002

	

-829.043030 0.000000 0.000001 0.000001	 -208.654175 0.000009 0.000011 0.000002

	

-788.655396 0.000001 0.000001 0.000000	 -195.319656 0.000014 0.000013 0.000001

-750.758301 0.000001 0.000001 0.000000 -182311612 0.000014 0.000014 0.000000

	

-715.015625 0.000001 0.000001 0.000000	 -170.218002 0.000013 0.000017 0.000004

	

-681.168945 0.000001 0.000001 0.000000	 -158.427597 0.000022 0.000019 0.000003

	

-649.014404 0.000001 0.000001 0.000000	 -147.130051 0.000017 0.000022 0.000005

	

-618.387329 0.000001 0.000001 0.000000	 -136.315689 0.000033 0.000026 0.000007

-589.152222 0.000001 0.000001 0.000000 -125.975525 0.000025 0.000030 0.000005

	

-561.196045 0.000001 0.000002 0.000001	 -116.101212 0.000030 0.000036 0.000006

	

-534.422974 0.000001 0.000002 0.000001	 -106.684982 0.000049 0.000042 0.000007

	

-508.751160 0.000001 0.000002 0.000001 	 -97.719589 0.000048 0.000051 0.000003

	

-484.109711 0.000001 0.000002 0.000001	 -89.198318 0.000052 0.000061 0.000009

	

-460.436890 0.000002 0.000002 0.000000 	 -81.114906 0.000062 0.000074 0.000012

	

-437.678467 0.000002 0.000003 0.000001	 -73.463539 0.000078 0.000090 0.000012

	

-415.786530 0.000002 0.000003 0.000001	 -66.238823 0.000101 0.000111 0.000010

	

-394.718384 0.000002 0.000003 0.000001	 -59.435753 0.000131 0.000137 0.000006

	

-374.435944 0.000002 0.000003 0.000001	 -53.049698 0.000170 0.000173 0.000003

	

-354.904907 0.000003 0.000004 0.000001	 -47.076378 0.000245 0.000220 0.000025

	

-336.094360 0.000003 0.000004 0.000001	 -41311848 0.000290 0.000283 0.000007

	

-317.976318 0.000003 0.000005 0.000002 	 -36.352493 0.000387 0.000370 0.000017
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Table 5.3.4 (continue)

x1	f(x)	 flx)	 I cior I	 f(xJ	 f(x)	 I error I

	-31.594995 0.000519 0.000491 0.000028	 -4.382050 0.025372 0.025323 0.000049

	

-27.236332 0.000702 0.000663 0.000039 	 -4.299705 0.026289 0.026244 0.000045

	

-23.273764 0.000917 0.000911 0.000006	 -4.213091 0.027308 0.027266 0.000042

	

-19.704826 0.001285 0.001275 0.000010 	 -4.122414 0.028438 0.028399 0.000039

	

-16-527319 0.001785 0.001819 0.000034	 -4.027888 0.029690 0.029654 0.000036

	

-13.739298 0.002594 0.002641 0.000047 	 -3.929739 0.031076 0.031042 0.000034

	

-11.339070 0.003867 0.003889 0.000022	 -3.828199 0.032607 0.032578 0.000029

	

-9.325185 0.005833 0.005760 0.000073	 -3.723508 0.034302 0.034279 0.000023

	

-7.696431 0.008509 0.008452 0.000057	 -3.615915 0.036179 0.036162 0.000017

	

-6.451829 0.012085 0.011986 0.000099 	 -3.505675 0.038261 0.038247 0.000014

	

-5.590613 0.015968 0.015869 0.000099	 -3.393050 0.040569 0.040557 0.000012

	

-5.112079 0.018951 0.018872 0.000079 	 -3.278307 0.043130 0.043120 0.000010

	

-4.998263 0.019781 0.019708 0.000073 	 -3.161718 0.045972 0.045962 0.000010

	

-4.990850 0.019837 0.019764 0.000073 	 -3.043559 0.049129 0.049118 0.000011

	

-4.977533 0.019939 0.019866 0.000073 	 2.924111 0.052638 0.052623 0.000015

	

-4.958341 0.020086 0.020014 0.000072 	 -2.803657 0.056540 0.056518 0.000022

	

-4.933317 0.020281 0.020209 0.000072 	 -2.682483 0.060878 0.060847 0.000031

	

-4.902522 0.020525 0.020453 0.000072 	 -2.560876 0.065700 0.065658 0.000042

	

-4.866028 0.0208 19 0.020748 0.000071	 -2.439124 0.071058 0.071003 0.000055

	

-4.823923 0.021167 0.021097 0.000070 	 -2.317517 0.077007 0.076937 0.000070

	

-4.776305 0.021570 0.021501 0.000069 	 -2.196343 0.083602 0.083514 0.000088

	

-4.723289 0.022032 0.021964 0.000068	 -2.075889 0.090897 0.090792 0.000105

	

-4.664998 0.022556 0.022490 0.000066 	 -1.956441 0.098943 0.098820 0.000123

	

-4.601573 0.023147 0.023084 0.000063 	 -1.838282 0.107783 0.107642 0.000141

	

-4.533163 0.023809 0.023750 0.000059	 -1.721693 0.117445 0.117289 0.000156

	

-4.459931 0.024548 0.024494 0.000054 	 -1.606950 0.127938 0.127766 0.000172
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Table 53.4 (continue)

x,	 f(;)	 ft.x)	 I cnu I	 f(;)	 f(x3	 I crror I

	-1.494325 0.139238 0.139054 0.000184	 0.022467 0.252410 0.252191 0.000219

	

-1.384085 0.151284 0.151088 0.000196	 0.041659 0.250185 0.249968 0.000217

	

-1.276492 0.163963 0.163757 0.000206	 0.066683 0.247122 0.246908 0.000214

	

-1.171801 0.177104 0.176890 0.000214 	 0.097478 0.243121 0.242910 0.000211

	

-1.070261 0.190473 0.190251 0.000222 	 0.133972 0.238080 0.237875 0000205

	-0.972112 0.203774 0.20354.6 0.000228	 0.176077 0.231918 0.231718 0.000200

	

-0.877586 0216663 0.216428 0.000235	 0.223695 0.224585 0.224392 0-000193

	

-0.786909 0.228765 0.228526 0.000239	 0.276711 0.216085 0.215900 0.000185

	

-0.700295 0.239713 0.239471 0.000242 	 0.335002 0.206481 0.206304 0.000177

	

-0.617950 0.249181 0.248936 0.000245	 0.398427 0.195905 0.195737 0.000168

	

-0340069 0.256925 0.256679 0.000246	 0.466337 0.184548 0.184389 0.000159

	

-0.466837 0.262813 0.262565 0.000248	 0.540069 0.172649 0.172501 0.000148

	

-0.398427 0.266836 0.266589 0.000247 	 0.617950 0.160474 0.160337 0.000137

	

-0.335002 0.269109 0.268863 0.000246	 0.700295 0.148289 0.148161 0.000128

	

-0.276711 0.269848 0.269604 0.000244	 0.786909 0.136337 0.736219 0.000118

	

-0.223695 0.269341 0.269099 0.000242 	 0.877586 0.124824 0.124717 0.000107

	

-0.776077 0.267907 0.267669 0.000238	 0.972112 0.113911 0.113812 0.000099

	

-0.133972 0.265872 0.265637 0.000235 	 1.070261 0.103704 0.103614 0.000090

	

-0.097478 0.263539 0.263307 0.000232 	 1.171801 0.094268 0.094186 0.000082

	

-0.066683 0.261172 0.260943 0.000229	 1.276492 0.085626 0.085551 0.000075

	

-0.041659 0.258990 0.258763 0.000227 	 1384085 0.077770 0.077702 0.000068

	

-0.022467 0.257165 0.256941 0.000224	 1.494325 0.070671 0.070609 0000062

	

-0.009150 0.255825 0.255602 0.000223 	 1.606950 0.064285 0.064228 0.000057

	

-0.001737 0.255054 0.254331 0.000223	 1.721693 0.058558 0.058506 0.000052

	

0.001737 0.254686 0.254464 0.000222	 1.838282 0.053435 0.053387 0.000048

	

0.009150 0.253888 0.253667 0.000221 	 1.956441 0.048859 0.048815 0.000044
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Table 5.3.4 (continue)

f(. )	 f(x)	 lcrrorl	 .ç	 f(.)	 lerrorl

	

2.075889 0.044773 0.044733 0.000040 	 4.723289 0.011382 0.011371 0.000011

	

2.196343 0.041127 0.041090 0.000037 	 4.776305 0.011157 0.011146 0.000011

	

2.317517 0.037872 0.037838 0.000034 	 4.823923 0.010959 0.010949 0.000010

	

2.439124 0.034965 0.034933 0.000032 	 4.866028 0.010789 0.010779 0.000010

	

2.560876 0.032366 0.032337 0.000029 	 4.902522 0.010645 0.010635 0.000010

	

2.682483 0.030041 0.030013 0.000028	 4.933317 0.010526 0.010516 0.000010

	

2.803657 0.027958 0.027932 0.000026	 4.958341 0.010430 0.010420 0.000010

	

2.924111 0.026090 0.026066 0.000024 	 4.977533 0.010358 0.010348 0.000010

	

3.043559 0.024412 0.024390 0.000022	 4.990850 0.010308 0.010298 0.000010

	

3.161718 0.022904 0.022883 0.000021	 4.998263 0.010280 0.010270 0.000010

	

3.278307 0.021546 0.021526 0.000020 	 5.112079 0.009870 0.009861 0.000009

	

3.393050 0.020323 0.020303 0.000020	 5590613 0.008388 0.008380 0.000008

	

3.505675 0.019219 0.019200 0.000019 	 6.451829 0.006446 0.006439 0.000007

	

3.615915 0.018222 0.018204 0.000018	 7.696431 0.004641 0.004636 0.000005

	

3.723508 0.017321 0.017304 0.000017 	 9.325185 0.003233 0.003229 0.000004

	

3.828199 0.016506 0.016490 0.000016 	 11339070 0.002228 0.002226 0.000002

	

3.929739 0.015769 0.015754 0.000015 	 13.739298 0.001542 0.001540 0.000002

	

4.027888 0.015101 0.015087 0.000014	 16.527319 0.001079 0.001078 0.000001

	

4.122414 0.014498 0.014484 0.000014 	 19.704826 0.000767 0.000766 0.000001

	

4.213091 0.013952 0.013938 0.000014 	 23.273764 0.000555 0.000554 0.000001

	

4.299705 0.013458 0.013445 0.000013 	 27.236332 0.000408 0.000407 0.000001

	

4.382050 0.013013 0.013000 0.000013 	 31.594995 0.000305' 0.000305 0.000000

	

4.459931 0.012611 0.012599 0.000012	 36352493 0.000231 0.000231 0.000000

	

4.533163 0.012250 0.012239 0.000011	 41.511848 0.000178 0.000178 0.000000

	

4.601573 0.01 1927 0.01 1916 0.000011 	 47.076378 0.000139 0.000139 0.000000

	

4.664998 0.011638 0.011627 0.000011	 53.049698 0.000110 0.000110 0.000000
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Table 5.3.4 (continue)

f()	 f(xJ	 I error I	 f(x,)	 f(i)	 I error I

	

59.435753 0.000088 0.000088 0.000000	 394.718384 0.000002 0.000002 0.000000

	

66.238823 0.000071 0.000071 0.000000 	 415.786530 0.000002 0.000002 0.000000

	

73.463539 0.000058 0.000058 0.000000	 437.678467 0.000002 0.000002 0.000000

	

81.114906 0.000047 0.000047 0.000000 	 460.436890 0.000001 0.000001 0.000000

	

89.198318 0.000039 0.000039 0.000000 	 484.109711 0.000001 0.000001 0.000000

	

97.719589 0.000033 0.000033 0.000000	 508.751160 0.000001 0.000001 0.000000

	

106.684982 0.000028 0.000028 0.000000	 534.422974 0.000001 0.000001 0.000000

	

116.101212 0.000023 0.000023 0.000000	 561.196045 0.000001 0.000001 0.000000

	

125.975525 0.000020 0.000020 0.000000	 589.152222 0.000001 0.000001 0.000000

	

136.315689 0.000017 0.000017 0.000000	 618.387329 0.000001 0.000001 0.000000

	

147.130051 0.000015 0.000015 0.000000	 649.014404 0.000001 0.000001 0.000000

	

158.427597 0.000013 0.000013 0.000000	 681.168945 0.000001 0.000001 0.000000

	

170.218002 0.000011 0.000011 0.000000	 715.015625 0.000001 0.000001 0.000000

	

182.511612 0.000009 0.000009 0.000000	 750.758301 0.000001 0.000001 0.000000

	

195.319656 0.000008 0.000008 0.000000	 788.655396 0.000001 0.000001 0.000000

	

208.654175 0.000007 0.000007 0.000000 	 829.043030 0.000000 0.000000 0.000000

	

222.528183 0.000006 0.000006 0.000000 	 872.374756 0.000000 0.000000 0.000000

	

236.955719 0.000006 0.000006 0.000000 	 919.291016 0.000000 0.000000 0.000000

	

251.951996 0.000005 0.000005 0.000000	 970.755676 0.000000 0.000000 0.000000

	

267.533508 0.000004 0.000004 0.000000 	 1028.360107 0.000000 0.000000 0.000000

	

283.718109 0.000004 0.000004 0.000000 	 1095.159302 0.000000 0.000000 0.000000

	

300.525299 0.000004 0.000003 0.000001 	 1179.047852 0.000000 0.000000 0.000000

317.976318 0.000003 0.000003 0.000000

336.094360 0.000003 0.000003 0.000000

354.904907 0.000003 0.000003 0.000000

374.435944 0.000002 0.000002 0.000000

We now illustrate results concerning the stationaxy and conditional densities etc.

Example 1: Let (xj satisfy the SETAR(2;1,1) model

1.5-O.9X,_1 +e if X,_10	
(5.3.5)

=	 0.40.6Xr...i +e: if X,..1 >0,

where e-N(0,l). This model has a limit cycle of period 2 at C= (-2.826,4.043). The stationary marginal
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probability density function of model (5.3.5) is shown in Fig. 5.3.2 when 02=1 and in Fig. 5.3.3 when 02=4

and in Fig. 5.3.4 when e, is a Cauchy variable with density 	 2ir(l+x )

Also we plot the conditional density of X,. ffi, given X,=l for m=l,2,3,4,5 and 02=4 to highlight the

non-normality and complexity of these densities for m >2. Obviously the conditional density of X, given

X1 _1 is normal. The results am shown in Figs 5.3.5-5.3.9 . The joint probability density function of

(X,,X,_1 ) may be found by using

1,41 ,(x,y) = K(x—X.1(y))f (y) ,

and since the process is Markovian, this can be extended to obtain the joint density of

(X,,X,_1 , .. . ,X,), k^1. The joint density function of (X,,X,_ 1 ) for 02=1 is given in Figs 5.3.10 and the

joint density function of(X,,X,_2) for 02=1 is given in Fig. 5.3.11.

Example 2: Let

= (0.1 (0.120.0Xr_i)e'}X: _i +et ,	 (5.3.6)

where e,—N(0, 1). The stationaiy probability density function of this model is given by Fig. 5.3.12.

Let

X, =X(X,_i,X,_2)+e,, t0,±1,...,	 (5.3.7)

where X(.,.) is a fixed real function of real arguments and (er) is a sequence of independent and identically

distributed random variables with probability density function K(.). Denote the conditional density of

given X,_1 ,X,_2 by fm(X, y)	 x,.1x,_2). It can be shown, by aTgulnents

similar to those of order one case, that the following recursive formula holds

(5.3.8)
R

and

fm+i(X)=Ifm+i(X,Y)'Y,

where fi (x , y) = fx_1.x,lx.	 (x , y X,_1 =x,_1 ,X,_2 x,...2)

= K(x —?%y,x,_1 ))K(y—?.(x,_1 ,x,...2)).

Example 3: As an application of our method for order two case, we consider the following sETAR(2;2,2)
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model

0.62+1.25X,_i—O.43X_2+e1 if X,_2 ^3.25

= 2.25+1.52X,_1 -1.24X,_2+e, if X,_2 >3.25,	 (5.3.9)

where {e) is a sequence of independent and identically distributed random variables N(0,0.0503), Tong

(1983). Our numerical method gives the joint densities of (X1 , X,_1 ), (X , X,_2 ), (X7 , X,_3 ) which are

given by Figs. 5.3.13-5.3.15 and the conditional expectations of (X: IX,_1), j=1,2,3 which aie given by

Figs 5.3.16-5.3.18.

5.4. Accelerating by Matrix Squaring

In the above experiments we have found that a judicious choice of the set of grid points x, may

increase the accuracy and improve the convergence of the method. Moreover, when the model has a limit

point or its autoregressive function is continuous, convergence is achieved after at most 10 steps. When the

model has a limit cycle and the variance of e is small the convergence rate is slower. In all our experiments

convergence is always achieved.

However, by comparing the numerical integration of (5.2.1) with the numerical eigenvalue problem,

it is clear that we may consider adopting the matrix-squaring method (See, eg. Wilkinson, p. 615) fmm the

latter. Specifically, instead of iterating (5.2.1) over m= 1,2,3,..., we may calculate f(xf+2- IXt) for

m = 0,1,2.... . Intemiediate conditional densities may be calculated in an obvious economical way. For

example, we may calculate f(x x) by.

f(x7. Xi) = Jf(x,. x,^2)f (x, 2 Ix,)drt+2,

which involved f(x +2' x) and f(x +2' frt) already calculated. The number of iterations is nominally reduced

from m to log2m. However, our experience suggests that whether there is any reduction in the computing

time depends to a large extent on the ratio I .i /2 , where j is the largest absolute value of the eigen-

values and	 the next largest. Here, the eigenvalues correspond to the 'transition matrix' whose i-j th

entry is f(x^ x) with x1 set equal to and x,. set equal to , ,&) being the points selected

for the numerical integration described in §5.2. Our observations are as expected by analogy with the

situation in the numerical eigenvalue problem. (Wilkinson, op.cit.) That is, there a substantial saving in

computing time if I i	 is close to unity. Otherwise there need not be any saving at all. We illustrate our



71

observations in Table 5.4 and 5.5 below.

Table 5.4

Numeiical Evaluation of stationaiy Density of the AR(1) Model

=

where e,—N(0,1).

I	 I
N	 I X I	 I A I	 run time without	 run time with

matrix squaring matrix squaring

24	 3.896	 0.938
	

4.1	 1.4	 1.3

	

32 5.542 1.303
	

4.2	 2.0	 2.4

64	 9.190 2.184
	

4.2	 4.4	 11.9

Table 5.5

Numerical Evaluation of the Stationary Density of the

1.5-0.9X,_ i +e	 if X,_1 ^0

= —O.4---0.6X,.1+e if X_1 >0,

where e—N(0, 1).

N	 R1 I	 1X21

24 1.496 0.973

32 2.482 1.544

64 5.038 3.063

I	 I
run time without run time with

matrix squaring matrix squaring

	

1.5	 76.9	 1.2

	

1.6	 85.0	 2.5

	

1.6	 160.0	 20.9

However, we have observed in the above experiments that

(i)	 the variance of e and the number of points, N, do not affect the ratio of X IX. in the linear case.

However, in the SETAR case N does not affect the ratio of I A IA2 but the variance of e does.
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(ii) In the linear case, the run time with Var (e1) = 0.01, are approximately the same as those with

Var(e,)= 1.

(iii) In the non-linear case, when the Var(e) is raduced the method without matrix squaring does not

converge but the method with matrix squaring converges whether Var(e,)=1 or Var(e1)=O.Ol

and the ma time are similar.

(iv) In the non-linear case with Var (es ) = 0.01, the ratio ?i IA.2 j is approximately equal to one.
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CHAPTER SIX

CONDITIONAL MEAN AND CONDITIONAL

VARIANCE IN TIME SERIES

ANALYSIS

Graphical methods should form a very important part of identification and diagnostic checking of

non-linear time series models. Graphical methods found useful in building linear time series models should

also be used in building non-linear time series models. (See Tong 1987a).

The importance of non-parametric lag regression in non-linear time series modelling, has been

emphasised by Tong (1983). In this chapter the lag regression function of non-linear autoregressive models

and bilinear models are considered. Post-model examination of observed non-parametric lag regression

versus the fitted non-parametric lag regressions of some models which were fitted to the real data are also

included.. The numerical integration technique is employed to obtain the exact lag regression function of

some simple non-linear autoregressive models.

The problem of evaluating the regression functions of some of the non-linear models explicitly is

extremely involved and usually intractable. It seems that the non-parametric estimates of regression func-

tions can provide valuable infonnation. (See e.g. Robinson P.M., 1983).

Non-parametric estimates of the regression function of X on X,±j, (j l,2....,p , say) provide some

information about the non-linearity of the time series. Let m(x) denote E(X, jX,4.1 =x). It is suggested that

the estimates of these m1(x)'s, denoted by (x)'s, may be useful for the identification of the delay parame-

ter in SETAR models. (See Tong, 1983).

Let [3N(z)) be a sequence of non-negative functions of z, of total area unity. As N-4 °°, &N(Z) is to

tend to the Dirac delta function. Such a sequence may be realized by introducing a ftxed function

k(z)^O , Jk(z)dz 1 and a BN so that the family is (Bk(---)}, i.e. 6N(z)=BNk(,—), with BN—> 0 as
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N—* oo. For convenience, we further require Jzk(z)dz = 0. Given the observations (x i ,X2, - ,X,}, a kernel

estimate of m1(x) may be given by, forj= l,2,...,p , p <<N,

N.J
XrN(XX,+J)

mJ,N(x) 
=

N(XXz+J)

and

N

t=j+1
m_,N(x)= N

Z 6NXr.J)
t=j+1

The second suffix, namely N, emphasizes the dependence of the estimate on the sample size. A simple form

of k(z) which we use in our numerical study is given by

Il— I z i forlzl^1
k(z) 

= 10	
otherwise.

In practice, estimates corresponding to the two ends of the horizontal axis generally tend to exhibit greater

sample fluctuations. In all our non-parametric estimates, we choose the standard deviation of observations

as the smoothing parameter BN.

6.1. Gaussian Processes

Consider a Gaussian process, {xj. For any admissible subset of two elements {r, }, the joint pro-

bability distribution of (Xr , X) is a bivariate normal distribution. Hence the conditional probability distri-

bution of X, given X is normal and the conditional expected value and the conditional variance of X given

=x are linear in x and constant respectively. In linear Gaussian processes, it is well known that processes

aie time-reversible i.e. (E(X5 I X =x) E(Xr I X5 =x)) for any r and s. (See Weiss, 1975).

A real process, {xj, may be considered the transformation of a white noise process, (es], by an

unknown function, say r(B). If the unknown function is linear and (xj is stationaiy and Gaussian, then

the regression function of X on X, for any s and r, of the process should appear linear and the conditional

variances should be constant. Thus, if the plot of E CX, Xr =x) and Var (X, J X,. =x) against x does not

appear linear, then the linearity assumption of the function is questionable. Also, the two-dimensional his-

togram of X,. and X,, for any r and s, of an observed process (xe) gives some prelimmaiy indication about
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the joint probability distribution of Xr and X.

6.2. Bilinear Models

As far as the bilinear models are concerned, obtaining analytic expression for the conditional mean

and the conditional variance of these models is not always easy except for some special cases. In order to

get some idea about the behaviour of regression functions and the variance of X, given X,_1 , j=1,2,... , we

will study some theoretical properties of E(X X,_) and Var(X X,. j) of some sub-classes of bilinear

models. In all cases the non-parametric estimates are also considered.

6.2.1. Superdiagonal Bilinear Models

In this section the regression function of the easiest class of bilinear models, which takes the follow-

ing general form, is considered.

QP

=	 eX_,+ef,	 (6.2.1.1)
k=1 1=2

k<I

where e is strict white noise, and as a special case the model

X =
	

(6.2.1.2)

will be used throughout this section as a particular example.

Assuming E(e) = 0, it follows that E(X) = 0 for all t. Obviously the conditional expectation of X 1 given X_1

of model (6.2.1.1) are equal to zero for all j > k The regression functions, E (X I X,_1 =x) for j = 1,2, ...,k,

are involved with the terms E(X, X_ =x) and E(e. X,_ =x) which because of the dependence of X,...,

with X....1 and	 with X, cannot be evaluated explicitly.

In order to examine the properties of regression functions of model (6.2.1.1) approximately, we gen-

erate a sample of size 5000 observations using a simulation technique, of model (6.2.1.2) with J3 = 0.5 and

=—O.5, and calculate &...., , 1=1,2,3,4. The results are given in Figs. (6.2.1.1). It seems that regardless of

the sign of 1. the expectations of X, given X,_1 , j = 1,2,3,4 are all very close to zero and none of them

shows any obvious regular pattern.

Obtaining the conditional variance of X, given X,_1 for the model (6.2.1.1) is more complicated..

However, for model (6.2.1.2), ,i...j = 0, 1=3. Therefore



76

Var(X, IX1_3)=E(X X,3 =x)

= 2x2E(e 2 JX_3 =x)+E (e, X1_3 =x)

=(1+j32x2)r,	 (6.2.1.3)

which is a quadratic function in x. The results of non-parametric estimates of conditional variances of

model (6.2.1.2) are given by Figs. 6.2.1.2. The agreement of the non-parametric estimate of Var(X, X,_3)

with formula (6.2.1.3) is quite remarkable. The graph of Var(X, X1 =x) exhibits some non-linearity in x

which may be related to the dependence of X_3 on X,_2.

6.2.2. Diagonal Models

In this section a group of models are considered which are possibly more interesting than the superdi-

agonal models. Let

P
=	 (6.2.2.1)

k=1

where e is strict white noise. As an especial case the model

X=J3X7_3e,_3+e,	 .	 (6.2.2.2)

will be used throughout this section. Suppose

X, = f3Xf 	, k ^ 1	 (6.2.2.3)

then X, can be written as

X. =

=

Hence

E (X I X_ =x) =	 IX_ =x)E(e X_ =x)

n-2 v --r

which is equal to [r for j > k.

For j = k we have

= j3xE(e,.,IX:_kx)

= E{X,_—X,_e,_ IX,-.k =x]

= 3x[x—f3E(X,_ze:_ X, =x]

= 2- 2 E(X,e,_ X, =x)

which is a quadratic function in x when we approximate the term E(Xt_ze:_ I Xz x) by
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13E(X,_3k e,_3k X,_* =x)E(e,_, IX,_k =x)+E(e_,	 =x)

which for f3 small, is approximately equal to E(e,2_,i I	 =x) C >0 ,say.

For k > j, E(X X_j x) involves the term E(e	 _j =x) which it seems could be approximated by cr

and the term f 2E(e,_ X,_1 =x) which is close to zero. However, the non-parametric estimates of regression

functions of model (6.2.2.3) show that E(X, X,_ =x) = 13 for k^j and is a quadratic function in x for

k=j. Figs. 6.2.2.1 show the non-parametric estimates of regression functions of model (6.2.2.3) with

J3=0.5 and —0.5.

With similar arguments, one can show that the conditional variance of X, IX_1 =x , j=1,2,4,5 are

approximately constant. Figs. (6.2.2.2) show the non-parametric estimates of these conditional variances.

It can be seen that Var(X IX3 =x) is a non-linear (quadratic) function in x.

6.2.3. Subdiagonal Models

The subdiagonal models which will be considered in this section are those of the form

X1 =
	

(6.2.3.1)

where k <1, e is strict white noise, and a special case is

X = J3X_2e,_3+e1,	 (6.2.3.2)

which will be used through this section as a particular example. Assuming E ( e) = 0, it is easy to show that

E(X)=0forallk,l>0.

The conditional expectation of X given X,_ =x for model (6.2.3.2) takes the form

E(XIX,_1=x)=E(X,_ze,_3 X_=x)

= 13E(U3X,_4 ef_5 +el _2 )e,_3 !X,..j =x)

= J32E(X_ e,_5 X_ =x)E(e,_3 I X1 _1 =x)

+ f3E(e_z I Xe_i =x)E(e7_3 X,_j =x)

=0 for j >3.

For j ^ 3, the exact value of regression function does not seem to be easy to obtain. However, for model

(6.2.3.2), the non-parametric approximation of regression functions for =O.5 and —0.5 show that

E(X IX_ =x)= 0 forallj>0.

If we accept that the conditional mean of the model (6.2.3.1) is equal to zero, then the variance of X,
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given X,_ =x is equal to E(X JX,_ =x). For j =2 we have

Var(X, X,_2 =x)= f32E(X 2 e_3 X,_2=x)-i-y

= f32x2E(e 3 JX,_2 =x)+c,

which is a non-linear function in x. The non-parametric estimates of regression functions and conditional

variances of model (6.2.3.2) are given by Figs. 6.2.3.1 and 6.2.3.2 respectively.

6.3. Non-linear Autoregressive Models

The class of non-linear autoregressive models has a veiy close connection with the analysis of cyci-

cal data. A general univariate NLAR(p) process may be written as

X(x,_1 )+e,,	 (6.3.1)

where X,_1 = (X,... 1 , .. ,X1_,)', {ej is a sequence of independent and identically distributed scalar ran-

dom variables with mean zero and constant vaiiance and e is independent of X for all s <t.

The conditional density function of X 1 given X can be written as

fx, pç (x X =y) = k(x—X(y)), 	 -	 (6.3.2)

where k(.) denotes the probability density function of e7. Obviously the conditional mean and the condi-

tional variance of X, 1 given X=y are equal to X(y) and cr respectively.

Since we have a Markov chain over R, we may recall the Chapman-Kolmogorov relation

f(xt. I;) = Jf(x. ,, Xr^j)f(x,+i kt)'r+i	 (6.3.3)

where f(x5 x) denotes the conditional probability density function of X given X = x. Let fm(X) denote

the conditional density function of	 given X. Equation (6.3.3) immediately gives

fm(X) = Ifm_i&)k(XX(y)dy.	(6.3.4)

Equation (6.3.4) gives, in particular a recursive formula for evaluating the conditional density with

fi (x) = k(x—X(y)).

By using the results of Chapter Five, we may employ the numerical integration method to obtain the

conditional mean and conditional variance of X,, given X for m ^ 2. Let us first restrict our discussion to

the first order case:
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X, =X(X,_1)+e, t=O,±l,"

where (e} is a sequence of independent and identically distributed normal random variables with E(e,) = 0

and Var(ej=	 all t. Since A(.) is a non-linear function in its argument, therefore E(X, 1 !X1 =x)

may takes any non-linear shape. In order to compare the regression functions of SETAR(2; 1,1) and

EXPAR(1) models, we conduct some experiments.

Example 1: Let [xj satisfy the EXPA1(1) model

= X(X,_1 )+e,

where e,—N(0, 1) and

= (a+b e12)x.

it is clear that for large values of x ,	 is close to zero, and ?(x) is approximately equal to ax which is a

linear function in x. For all x small, ?(x) is non-linear in x. The conditional mean of X given X i., for m

small, is a linear function in the tails and a non-linear function around the origin. Obviously this non-

linearity depends on X(.) and it is well known that the conditional mean and the conditional variance tend

to the mean and variance of the process as m—* oo.

The regression functions and the conditional standard deviation of X givenX_J=x , j = 1,2,3,4,5 of

three EXPAR(1) models with

2(x)=-0.9x—O.95xe".	 (6.3.5)

Xx) = _O.5x t O.8xe_x'+2x2e_	 (63.6)

X(x) = 0.85x+0.35xe '	(6.3.7)

aie given by Figs. 6.3.1 , 6.3.2 and 6.3.3 respectively. These three examples show the varieties of regression

functions which may be produced by those simple EXPAR(1) models.

Example 2: Let (xj satisfy the SETAR(2;I,1) model

X. =

where e1 —N(O, l)and

a0+a1x ifx^r

b0+b 1x if x>r.
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Similar to Example one, E(X, X,_1 =x) = A.(x) which is obviously a non-linear function in x. Usually, X(x)

is the union of two discontinuous line segments. The regression function and the conditional standard devi-

ation of X given X_ ' 1 = 1,2,3,4,5 of SETAR(2;1,1) models with

0.7—O.5x if x ^ 0
Mx) = —1.8+0.7x if x> 0,

and

I0.5x ifx^0

1
—O.5x ifx>0,

axe given by Figs. 6.3.4 and 6.33 respectively.

(6.3.8)

(6.3.9)

Example 3: As an application of our numerical method for the order two case, we consider the following

SETAR(2;2,2) model

0.62+1.25X,_1-0.43X,...2+e if X,_2 ^ 3.25

= 2.25+l.52X,_i -1.24X,_2+e if X_2 >3.25,
	 (6.3.10)

where {e,] is a sequence of independent and identically distributed normal random variables with mean

zero and variance 0.0503 . Tong (1983, pp 102-106) has given a rough-and ready calculation of

E(X IX,_1), j = 1,2,3,4. Our numerical approximation of expectation of X, given X,_1 , j= 1,2,3,4 (Figs.

6.3.6), may be compared with Tong's rough calculations.

6.4. Real Data

In the past, various authors have used the annual record of the numbers of Canadian Lynx trapped in

the Mackenzie river district of North West Canada for the years 182 1-1934 and different periods of Wolf's

annual sunspot numbers to illustrate their time series models, both linear and non-linear.

A comparative study of various univariate time series models which have been applied to the lynx

data, has been done by Lim (1987). This section only considers the comparison of non-parametric esti-

mates of regression functions and conditional variances of some of different models which are fitted to lynx

and sunspot data.

A detailed statistical analysis of the lynx data was first attempted by Moran (1953). In order to reduce

the asymmetry of the original data, he initially applied a logarithmic transformation to the raw data, X.
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The transformation Y =log 10X, was thereafter adopted by many other authors. All models discussed in this

section use this transformation. The AR(2) model which was obtained by Moran is given by

= 1.0549+1.41O1X_1 -0.7734X,_2+e, -	 (6.4.1)

where V(e1)=0.0459.

Tong (1977b) fitted an AR(1 1) model based on the Akaike's Information Criterion (AIC). The chosen

model is given by

= 1.13X,_ —0.5 1X,_2+0.23X,_3 29X,.-f0. 14X1_5	 (6.4.2)

- 0.14X, 0.08X,_7-0.04X,..4^0. 13X,..-fO. 19X_ 10-0.31X_11 +e,,

with V(e) = 0.0437. A type of TAR model, self-exciting threshold autoregressive model was fitted to the

first 100 observations of the log-transformation of lynx data . (See Tong, 1983). The fitted model is given

by

0.77+1.06X,_1 —0.20X_2#0. 16X,_3

O.43X1O.18X,_5+e
	

if X,_2 ^3.05
xr=
	

(6.4.3)

2.25+1.47Xt_i-1.20X,.2+eF
	

if X1 _ >3.05,

where V(4')) 0.0302, V(42 ) =0.0564 and the pooled vaiiance is equal to 0.0415. For the full set of lynx

data, a SETAR(2;7,2) has been obtained. (See Tong, 1983). The model can be written as

0.55^1.03X_1 17X_2-F0.17X_3-0.43X,

0.33X_s-0.28X:..+0.21X1_7+e
	

if X_2 ^3.116
xr=	 -
	 (6.4.4)

2.63+1.49X_1 —1.32X_2+e
	

if X._2 >3.116

where V(4') = 0.0258, V(42)) = 0.0505 (pooled var=0.0360).

Gabr and Subba Rao (1981) have fitted another class of non-linear model, a bilinear model, to the lynx data.

By using the log-Iransfonnation of the first 100 observations, they have reported the following subset bil-

inear modeL

X1 = 1.486292+0.77227X,_1-0.091572X,...2+0.083073X,,..3

- 0.261493X,0.225585X,..—O.24841X_i2-0.7893X,...3e,

+ 0.4798X,e,+0.3 902X,e,_2+0. 1326X,_1 e_1

+ 0.07944X,..2e,_7-0.3212X,_4 e,_2+e	 (6.4.5)
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where V(e1) = 0.0223.

The Exponential Autoregressive Model was another class of non-linear model for the lynx data.

Ozaki (1982) found that the almost symmetric series generated by an EXPAR model developed by Haggan

and Ozaki (1981) was unsatisfactory. He then has fitted two exponential autoregressive models to the full

set log-transformation of lynx data. The first one which could reproduce the asymmetric limit cycle struc-

ture of the lynx data may be wnttent as

—3.8X_, 1
x, = {1.1668+(0.316+o.982X_i)e

—3.89X1- [O.437;(o.659+1.260xt _j )e	 j X,_2-i-e

where V(e) = 0. 04327.

(6.4.6)

The second EXPAR model with smaller variance of fitted residuals, which was believed to be more

appropriate for forecasting is given by

= 481X_1—O.247X7_2+0.318X_3+0.23X,	 (6.4.7)

+ 0.352Xr_5+O.096Xt0.085Xt_7O.289X,

—0.181X,..9+Y,

= {1.514+(0.48o-3.332Y,_ 1 -0.610Y 1 +8.906Y_1

+ [—o.9o2+(—o.228+o.923Y,_ 1 +O.193Y.1 —4.216Y1 )e_389) Y,_2+e,

where V(e)=—O.03 153.

Gabr and Subba Rao (1981) for their first illustration have considered the annual sunspot numbers for

the years 1700-1955, giving 256 observations. Their linear and bilinear models which are fitted to the first

221 observations are as follows

a) AR model

The fitted model to the mean deleted observations is given by

X, = 1.2163X,_ 1 —O.4670X,_2---O.1416X,_3 -i-0. 169lX,-0. 1473X_5

+ 0.0543X..—O.0534X,_7 +0.0667X,..-l-O.1 129X,+e7	(6.4.8)

where V(e1 ) =199.27.

t Note: The first coefficient of this model has been corrected in Chapter Four.
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b) Subset bilinear model

The reported subset bilinear model is

= 6.8860^1.5012X,_1-0.767X1_2+0.1152X

- 0.01458X_2 e,... i +0.0063 l2X1 e1_1 —0.007152X,_

+ 0.006047X,...4 e,_3 +0.003619X,_ 1 e,...6+0.00433X,_2e,...4

+ 0.00l782X,_3e_2+e1,

where V(e) = 124.33.

(6.4.9)

As far as the SETAR models are concerned, different SETAR models have been fitted to the different

period of raw and transformed sunspot data. In this section we will only consider the SETAR(2;3,1 1) which

is fitted to the raw sunspot numbers of period 1700-1920, and is given by (See Tong, 1983)

lI.97+l.71X,_1 —1.26X,_2+0.43X_3 +e 1	 if X1 _3 ^ 36.6

= 7.84--0.73X_1 —0.04X,.-0.20X,_3-i-0. 16X	 (6.4.10)

22X.s+0.02X,0.15X,.7-0.24X,

0.31 :_037Xt_io40.38Xt_ireF 	
if X,_3 >36.6,

where V(e')= 254.64, V(e 2 )= 66.80, pooled var=153.7.

In order to examine the post-model of observed non-parametric lag regression versus the fitted non-

parametric lag regression of those models which have been fitted to the sunspot and lynx data, we generate

a sample of size 10000 observations using a simulation technique, of the fitted models and estimate

E(XIX 1), V(XjX1),j=1,2,...,11.

The Figs. 6.4.1 (the non-parametric estimates of conditional mean and conditional variance of bil-

inear for lynx data), 6.4.2 (those of SETAR models ) and 6.4.3 (those of EXPAR models ) show that the

SETAR models compare very well with the others for lynx data. Also, it can be seen that EXPAR1 is

better than EXPAR2 and perhaps the bilinear model is the worst model for this particular data set It should

be noted that the performance of the corrected EXPAR1 model is much better than uncorrected model

which have been reported by Lim (1987).

Comparing the Figs 6.4.5 (conditional mean and conditional variance of bilinear model which is

fitted to sunspot) with Figs. 6.4.6 (those of SETAR model ), we can see that the performance of SETAR
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mode' is superior to that of bilinear model for raw sunspot data.
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CHAPTER SEVEN

A COMPARISON OF LIKELLHOOD RATIO TEST

AND CUSUM AND TSAY'S TESTS FOR

THRESHOLD AUTOREGRESSION

As the theory and application of non-linear time seiies analysis continues to evolve, the need of tests

for non-linearity will grow. If, as appears to be the case, there is a need for non-linear modelling in time

series analysis, it certainly follows that there is a need for methods to ascertain when a series is non-linear.

Recently there has been a growing interest in studying the problem of testing threshold non-linearity

in time series. One of the proposed tests is the Portmanteau test of non-linearity of Petmccelli and Davies

(1986); it is based on ordered autoregression and predictive residuals. Tsay (1987)-considered a variant of

the test. Earlier, K.S. Chan and Tong suggested a likelihood ratio approach in a Research Workshop in

Singapore in 1984. The details have been circulated in the form of an unpublished technical report from the

Chinese University of Hong Kong and some details are available in K.S. Chan and Tong (1986a). A first

implementation of the idea was reported in W.S. Chan and Tong (1986). Also, they give a detailed discus-

sion of several frequency and time domain tests for general non-linearity.

In this chapter we investigate some tests designed to detect self exciting threshold autoregressive

(SETAR) type non-linearity.

7.1. The Likelihood Ratio Test for Threshold Autoregression

Consider the following threshold model, i.e. the SETAR(2;p,p) model

Ib+Eb'X,_1+e1 if X,^r	

(7.1.1)xt=I	 P

a=1
b+Z b 2 X,_;-i-e if X > r,

where p and d am known positive integers, r is an unknown parameter usually called the threshold
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parameter, (es) is a sequence of independent identically distributed random variables with zero mean and

variance a2 <oo, and e, is independent of X , s <t. Given a set of observations X 1 ,X2 ,	 ,XN, K.S. Chan

and Tong (1986a) consider testing the hypothesis

H0 : b' =b 2 , fori=O,1,2,...,p

against

H1: b^b 2 , for some i , i=O,1,2,...,p

H 2 states that the generating mechanism is non-linear and is piecewise linear. Under H0, the nuisance

parameter, r, is absent.

Assume that e, is nonnally distiibuted then the likelihood ratio test statistic ?,. is given by

,2	 ,2
Q1L,r)'(L)	 (7.1.2)

where N denotes the sample size, &jqj. r) is the usual average residual sum of squares under H 1 for fixed r

and a(L) is that underH0.

If r is known, then under H0 , —2lnX is asymptotically X+i (K.S. Chan and Tong, 1986a). However,

in practice, the threshold parameter r is seldom known and the likelihood ratio test statistic becomes

11

=	 NL)I(L)) 
2	

(7.1.3)

where is the least squares estimate of r. The asymptotic distribution of ?.' is no longer f. To use the

likelihood ratio test in practice, W.S. Chan and Tong (1986) have resorted to the computing-intensive

Monte Carlo method to obtain approximate tail areas of the null distribution for the likelihood ratio test

statistic 2.

Inherent in the likelihood ratio approach is a fundamental difficulty in that the threshold parameter is

a nuisance parameter which is absent under the null hypothesis (of linearity). This invalidates the standard

asymptotic theory. The two implementations of the likelihood ratio approach represent two different prag-

matic methods of obtaining a crude null distribution. A major disadvantage of the W.S. Chan-Tong imple-

mentation is the computation time which is much greater than the other time-domain tests for non-linearity,

although it may still be argued that with modem fast computers the problem should not be exaggerated.
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Fortunately, much theoretical progress has been made in the past year and there are now available

theoretical results: The asymptotic null distribution may be identified with the first passage probability of an

rn-dimensional Gaussian process (Chan and Tong 1988). If m is equal to one, explicit null distribution may

be tabulated via a Browrnan bridge result. If m is greater than one, unfortunately the first passage probabil-

ity problem is not yet resolved by the probabilists to the extent that explicit null distributions may be tabu-

lated. In such cases, an approximation of the tail probability of the null distribution may be obtained using

a Monte Carlo technique.

It is therefore of interest to compare the likelihood ratio test using the newly available asymptotic

results with a non-likelihood ratio approach such as the modified Petruccelli-Davies' test and Tsay's test.

Definition 7.L1: A stochastic process {x,(o) : t ^o} defined on a probability space (l,F,P) is called a

Brownian motion or a Wiener process if it satisfies:

a. X0(to)=0fora]mosta1loand

b. the system [X(co):t^O) is Gaussian on (f2,F,P), and for any t and h with t+h >0, X,(o)–X,(o)

has expectation 0 and variance h

The parameter t denotes time and usually extends over the interval [0, 1] or [0, 00].

Take a Brownian motion which begins at the point x, such motion being realized by X(co)+x. We

wish to "deform" it so that it passes through a fixed point y at a fixed instant to of time. In other words we

are interested in the modified motion of a Brownian particle constrained at the extreme points of the inter-

val[0,t0].

Definition 7.1.2: A Brownian bridge or tied down Brownian motion is a Gaussian process whose mean p.s.

and covariance Yt,s of the form

to—t	 t
= E(X,) =

to	 to

=E([X,–E(X,)] {Xj_E(X.)])

to—t
= s— , S <t.

to

A Brownian bridge depends on the choice [0, t0 I of the time interval, the starting point x and the terminal

pointy. (See T. Hide 1980).
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Recently, K.S. Chan and Tong (1988) have proved that the null distribution is given by the first pas-

sage probability of a higher dimensional Gaussian process. Moreover, for the special cases of (i)

SETAR(2;0,0) and (ii) SETAR(2;1,1) without the intercepts, (i.e. b) =0, all i), the asymptotic distribu-

tion of the likelihood ratio test may be tabulated. (See Chan and Tong 1988 for detail). This greatly facili-

tates the use of the test.

In practice, we may proceed as follows: First, the time series data X 1 ,X2 , "- ,XN are sorted in

ascending order, giving X(l)^X(2)^"- ^X. For each r = X() , the likelihood ratio test statistic

= N [(t)NIr))I&kr)1	 (7.1.4)

can be calculated. At level cx , H0 will be rejected if Xr>C for some r, where C is the critical value deter-

mined from the first passage probability of a 1-dimensional Brownian bridge. To use the tabulated values, r

is allowed to vary from X (V,) to X (V) , V 1 <V2 , where X(V) and X(V ) axe such that PH (XT ^X(V))=p and

PH (X^X (v2)) = q, (q >p). In all our comparative study to be described later, we setp =25% and q =75%.

7.2. Tests Based on Predictive Residuals

Consider a SETAR(1;p,p) model with delay parameter d and thresholds -00 = r, <r 1 <	 <r1 =

.14
1=1

	 r1 .4 <X,^r,	 (7.2.1)

where t =max [d+1 , p+1) ,...,N, and (eJ a sequence of independent identically distributed random

variables with mean zero and variance a 2 <00. It is more convenient to rewrite the model (7.2.1) in teims

of an ordered autoregression.

Let h =max { 1 , p+l—d ) and X ( denote the ith smallest observation among

X,. ..,XN_J, i=1,2,...,N—d—h+1. Suppose m0 =0,m,=N and m1,j=l,...,l—1, are such that

X (,,, ) ^r	 Model (7.2.1) may be rewritten as

= b+ bX(_V+e(l),	 (7.2.2)
v1

Under the null hypothesis that b 1(J = b for all j^k and for each i, i.e. model (7.2.1) is linear, we

can write the ordered autoregression (7.2.2) as
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Y=Xb+e	 (7.2.3)

where Y is a column vector containing X(J, i=l,...,N-d-h+1 , X is an (N-d-h^1)x(p±1) design

matrix and b is a column vector of unknown parameters 	 , b' ,	 ,	 e is a column vector of

noise terms.

Let Tmm denote a positive integer ' N. For each r^rmin , an AR(p) (p is the fixed order) model of

the form (7.2.3) is fitted and z , the one step ahead standardized forecast error (i.e. the predictive resi-

dual) is computed successively for r =rn,rmjn+l,...,N-d---h.

Petruccelli and Davies (1986) form the CUSUMS

Zr =	 z1,r=r,+1,...,N.-d-h+l
I =T,+1

and from them they construct the P statistic,

max	 411,IN*

rm+1^r^N*+r,n

whereN* =N-d-h+1-r,rnn.

More recently, Petruccelli (1988) has improved the test and a reverse CUSUM test results. Let

Wr = ZZN.+1_j ,

In order to provide greater sensitivity to deviations in W,. for small r, he has used boundaries of the

form ar+b, and H0 is rejected WrI> ar+b for some r, 1^r^N*.

For a level a test, he has suggested that choosing

b = [,I(-(N* /2)ln(a12))] / 2 and a I(_ln(a/2)I2N*)

gives satisfactory results. We follow this suggestion in our comparative study in §4.

The second test based on one step ahead forecast errors is that of Tsay (1987). He suggests perform-

ing the regression

z=X+,

where z is the vector of standaxlized one step ahead forecast errors with entries z , i=rmm+l, . ,N+r

and X is the design matrix of the form (7.2.3) with the first r rows deleted, and computing the usual test

statistic F for testing H0
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= iPT _____

p+l	 I.E1

He has shown that under H0 , F is asymptotically distributed as F , ,,, where	 p+l .	 N—p—l.

7.3. Empirical Critical Value

For the special cases of (i) SETAR(2;0,0) and (ii) SETAR(2; 1,1) without the intercepts (i.e.

b) =0, all i ) in formula (7.2.1), the asymptotic distribution of the likelihood ratio test is tabulated. (See

Chan and Tong 1988). For models of the forms (i) and (ii), the asymptotic 5% point to the likelihood ratio

statistic is 7.84. An uncritical use of the standard likelihood ratio theory would refer the test statistic to the

5% point of a (i.e. 3.84). The correct value of 7.84 is closer to the 5% point of a distribution! In

practice for those models outside the special cases (i) and (ii), we need the empirically determined 5%

point.

The similarity of the 5% point of the cases (i) and (ii) with the X suggests that the empirical 5% point of

the model (7.2.1) with intercept is close to the 5% point of and without intercept is near to the 5% point

of

In order to examine this suggestion, for each following model, 100 replications each of length 100,

using a simulation technique is generated. For each realization, the likelihood ratio test statistic (7.1.4) is

calculated. At level 5% , linearity is rejected if Ar> C for some r, where C is the critical value determined

from the , distribution and r is allowed to vary from X ( ,) to X ( ,), where X (I) 's are ascending sorted data,

and X(V,) are such that PH.(X ^X(V,))= 0.25 and Pg, (X, ^X(v3) ) = 0.75. The results are given by Table

7.3.1.
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The models are:

Model 1:	 = O.4X,.1-O.3X1_2+e,

Model 2: X =-0.4e,_1+0.3e,_2+e,

Model 3: X 7 = (0.3 -0 .8 exp

Model 4: X, = 0.5 -0 .4X,...1 +0 .4X,_1e,_1

1-0.5X_ 1 +e, if X,_1 ^0
Model 5: 

= f_1.SXt_i +et if X,_1>0

I2-1-0.5X_i+4 if X,_1 <1
Model 6:	

= O.5-0.4X,_1 +e ifX,_1^1

Model 7 : X, =

Model 8:	 = -0 .3 e_1 +0 .2e_2+0 .4e,_1 e1 _2-0.25e 1 +e,

Model 9: X =0.4X,_i-O.3X,_z+0.5Xt_ie,_j+0.8e_1+e

Model 10: X --0.5X...i+e

Model 11:	 1.O^0.5X.j+e

Model 12: X =e,

11+e ifX,_1^0
Model 13: X= 

1_1^et if X>0

Model 14: = 1.00.5X_i0.75X.+e.

11+0.5X_1 +e ifX,...1^0

Model 15: = -1+X,_1+e, if X> 0

-1-0.5X_1+e, if X,_1 ^ 0
Model 16: Xt= [1_Xt _i +et 	if Xt>0

-0.5+0.3X. i+e if X...1 ^0.2
Model 17: 

= (1+0.3Xt _i +et if X_1 >0.2

Model 18: =

Model 19: X. = 2.O0.5X,_1-O.8X+0.3X,_5+e
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I 1+0.5X,_1 —O.6X,_2-I-O.6X,.+0.3X,_5+e if X,_1 <0
Model 

20: = t_25X,_l8X,5_s+e,	 if X,> 0

Judging by the results with respect to Table 7.3.1 and models 1 .2, 10, 11, 12, 14 ,18 and 19 • the

test for all p, seems to detect the linear models satisfactorily, although frequencies as high as 98 , 99 and

100 are slightly higher than expected. The performance of the test to detect the non-linearity of models 3 , 4

5 , 8, 13, 15, 16, 17, decrease regularly as the orderp increase. These suggest that the degree of freedom

of null distributions may not be exactly 3p for allp and sample size 100 and d = 1, therefore we adopt as the

null distribution of the test with 3, 6, 8, 10, 12 and 14 degree of freedom forp =0,1,2,3,4,5, and repeat

the same expeiiments in order to examine the adequacy of this adoption. The results of frequency (per cent)

of correct decision where a nominal 5% significance level is used in each of the 100 replications, are given

in Table 7.3.2 . Examining the perfonnance of tests to detect the non-linearity of models 4, 12, 14, 16 and

17 suggests that the likelihood ratio statistics to the 5% point may be chosen as 7.81 , 12.6 , 14.5, 17.0,

19.5 and 22.0. Under the same conditions, we repeat our experiments on 20 models. The results are given

in Table 7.3.3. Note that columns 7 to 11 in tables 7.3.1-7.3.3 represents the percentages of correct deci-

sions.
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Table 7.3.1

oziginal	 p
Model

typeS	 1 I 2 I 3 I	 I 5

	1
	

L
	

98	 97	 97 100	 99

	

2
	

L
	

97 100 100	 99 100

	

3
	

NL
	

21	 07	 12	 03	 02

	

4
	

NL
	

86	 79 76 56	 56

	5
	

NL
	

97	 78	 63	 52	 39

	6
	

NL
	

100 100 100 100 100

	

7
	

NL
	

24 46 33	 28 20

	

8
	

NL
	

64	 61	 54 49	 52

	

9
	

NL
	

8	 73	 53	 55	 60

	

10
	

L
	

92	 99 100	 98	 96

	

11
	

L
	

98	 99 100	 98	 99

	

12
	

L
	

96	 99	 96	 97 100

	

13
	

NL
	

100	 98	 93	 87	 83

	

14
	

L
	

99	 98	 98	 99	 98

	

15
	

NL
	

100	 99	 99	 97	 92

	

16
	

NL
	

100	 99	 94	 92	 90

	

17
	

NL
	

72	 69	 61	 43	 34

	

18
	

L
	

98	 99	 99 100	 98

	

19
	

L
	

97	 96 100 100 100

	

20
	

NL
	

87	 99	 98 100 100

* Note: L= Linear model and NL= Non-linear model.
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Table 7.3.2

original	 p
Model

pe	 1 I 2 1 3	 I 5

	

1
	

L
	

98	 95	 98	 96	 96

	

2
	

L
	

95	 98	 95	 96	 92

	

3
	

NL
	

18	 15	 17	 19	 11

	

4
	

NL
	

86	 77	 83	 76	 74

	

5
	

NL
	

99	 93	 85	 72	 73

	

6
	

NL
	

100 100 100 100 100

	

7
	

NL
	

25	 54 46 42 45

	8
	

NL
	

56	 67	 65	 65	 63

	

9
	

NL
	

11	 65	 71	 79	 70

	

10
	

L
	

98	 96	 96	 96	 99

	

11
	

L
	

99	 93	 96 100	 96

	

12
	

L
	

98	 95	 98	 96	 96

	

13
	

NL
	

100	 99 100	 96	 92

	

14
	

L
	

98	 97	 96	 96	 91

	

15
	

NL
	

99 100 100	 99	 96

	

16
	

NL
	

98	 99	 99	 97	 93

	

17
	

NL
	

77	 72	 77	 65	 50

	18
	

L
	

99 100	 96	 98	 94

	

19
	

L
	

97	 98	 98	 98	 96

	

20
	

NL
	

76 100 100 100 100
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Table 7.3.3

original	 p
Model

type	 12131415

	

1
	

L
	

97	 99	 91	 94	 99

	

2
	

L
	

100	 94	 97	 94	 97

	

3
	

NL
	

19	 17	 14	 8	 19

	

4
	

NL
	

89	 91	 84	 82	 83

	

5
	

NL
	

97	 96	 85	 81	 79

	

6
	

NL
	

100 100 100 100 100

	

7
	

NL
	

15	 48	 49	 53	 52

	8
	

NL
	

60	 74	 65	 67	 72

	

9
	

NL
	

10	 73	 86	 70	 76

	

10
	

L
	

95	 93	 95	 98	 96 -

	

11
	

L
	

97	 97	 95	 95	 93

	12
	

L
	

97	 95	 95	 91	 98

	

13
	

NL
	

100	 98	 98	 96	 93

	

14
	

NL
	

98	 98	 97	 91	 92

	

15
	

NL
	

100 100 100 100	 99

	

16
	

NL
	

99 100	 98	 98	 97

	

17
	

NL
	

84	 82	 75	 70	 69

	

18
	

L
	

97	 99	 97	 96	 94

	

19
	

L
	

99	 97	 99	 97	 94

	20
	

NL
	

87	 99 100 100 100

Examining the results of tests with respect to the models 7, 8, 9, and 20 in Tables 7.3.1 , 7.3.2 and

7.3.3 , shows the importance of order p higher than one in improvement of the performance of the Jikeli-



data

Lyrix,N= 114

Sunspot, N =256

Blowfly (first part), N =126

Blowfly (last part), N=82

96

hood ratio test in detecting the non-linearity. Fmally, the following adaptation seems to be applicable.

In practice one can detect the non-linearity of a time series by applying the likelihood ratio test on

data set for some values p (e.g. p=l,2) and d ^p. Then one can say the data is a non-linear time series data

set if at least one of the different combination of p and d shows the non-linearity of the series.

We employed the above suggestion and applied the likelihood ratio test (with intercept) for

p = l, d=1 and p = 2, d=l,2tosomerealdatasets.Thenominal5percentsignificanceisused. The

empirical 5% level critical values for likelihood ratio tests are 12.6 and 15.6 ( and ). The results are

given in Table 7.3.4.

Table 7.3.4

data
LR*

transformation

RAW
	

NL

log10
	 NL

RAW
	

NL

square root
	

NL

RAW
	

NL

square root
	

NL

log10	 NL

RAW
	

L

square root
	

L

log10
	 L

order and

delay 
**

p=l , d=l

p=2, d=1

p=2, d=l

p=2,d=2

p=2, d=l

p=2, d=1

p=l , d=l

reverse

CUSUM

NL

L

L

L

L

L

L

L

L

L

* LR: Likelihood ratio test

** Order and delay: These are the order and delay with which the test reject the hypothesis of linearity.

Not surprisingly the results of Table 7.3.4 column 3 are exactiy the same as Table 8 in W.S Chan and
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Tong(1 986).

A Monte Carlo study has been done by W.S Chan and Tong (1986) based on 100 replications of each

the nine models listed as models 1-9 with a minor change in model 7 (i.e. The term e_1 e,_2 is replaced by

e,e,_2 to make the model 7 identical to W.S. Chan and Tong's model). Each replication has a sample size

204 and in each case, e—N(0,l).

If the choice of 4, for p = 1 , 2 as the 5% critical value of likelihood ratio test is adequate, then we will

expect to get appmxiinately the same result as W.S. (Ian and Tong (1986). A Monte Carlo experimenta-

tion along the same line as W.S Chan and Tong (1986) with the same models (i.e Models 1-9), gives simi-

lar results and it tends to support the adequacy of this choice. Frequencies in per cent of correct decision

with nominal significance level at 5 per cent with critical value equal to 12.6 and 15.6 forp =1 and p =2

axe given in Table 7.3.5.
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model and original CT** fJ

numbers	 type*	 test	 - test

1
	

AR(2)
	

L
	

99
	

91

2 MA(2)
	

L
	

96
	

96

3 EXPAR
	

NL
	

34
	

37

4 BL
	

NL
	

96
	

100

5 SETAR
	

NL
	

100
	

100

6 SETAR
	

NL
	

100
	

100

7 NLMA
	

NL
	

14
	

21

8 NLMA
	

NL
	

96
	

95

9 BL
	

NL
	

98
	

89

* L: Unear NL: Non-linear.

** CT: W.S. Chan and Tong (1986) results.

*** U: Likelihood Ratio test results.

The poor perfonnance of the likelihood ratio test with respect to model 7 (after a minor change) is

perhaps due to the fact that E(X IXS . s <r) is linear in e5 , s <t. W.S. Chan and Tong (1986). Monte Carlo

experimentation along the same lines as before with following models may give a better support in choos-

ing the 3p degree of freedom forp = 1 andp =2.

Model A: X	 +0.3e,_2+0.5e,_1 e_2

Model B: X1 e,-0.4e,_j+0.3e_2+0.5e_1

Model C: X

Model 1): X, = e-0.4e,_i+0.3e_2-l-0.5e,e1_2

The results with 100 replications in each case are given in Table 7.3.6.
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Table 7.3.6

Frequency of correct decisions

Model	 (5 per cent significance level)

Cl' test	 L.R test

A	 95	 89

B	 97	 100

C	 14	 29

D	 12	 22

7.4. A Comparative Study of the Likelihood Ratio Test and the Reverse CUSUM Test

To assess the perfonnance of the likelihood ratio test by reference to the tabulated tail probability of

the newly available asymptotic null distribution we simulate a number of SETAR processes which were

studied by Petrucceffi (1987 and 1988). In our comparative study we follow Petruccelli (1987) and assume

that the true parameters p and d axe known.

In this study, for those models which fall within the special cases (i) and (ii) described in §2, we refer

the likelihood ratio statistic to the asymptotic 5% point of 7.84. An uncritical use of the standard likelihood

ratio theory would refer the test statistic to the 5% of a f distribution (i.e. 3.84), and this would be wide

off the mark. The correct value of 7.84 is closer to the 5% point of a distribution! For those models out-

side the special cases (i) and (ii), we refer the test statistic to the empirically determined 5% point of 12.6;

as we have said earlier, we await with keen interest results from probabilists working on higher dimensional

Brownian bridges so that the empirical value may be replaced by an asymptotic value.

For each process, 100 replications each of length 50 and 100 replications each of length 100 were

generated using the NAG routine GO5DDF, which was initialized by NAG routine GO5CCF. For each repli-

cation, start-up values were set to zero and the first 1499 observations discarded to remove transient effects.

it is important to discard a sufficient number of observations. In our simulation studies we have found that

discarding the first 500 observations, as suggested by Petruccelli (1987), is not always sufficient.
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We have repeated all the models used by Petruccelli (1987) with the exception of two. He has

included the two following models in his study:

—l+0.5X,_1+; if X;1^0
xl 

=	 if	 (7.4J)

and

	

—l-0.5X,_1i- if X1_^0	
(7.4.2)X1	 ifX,_1>O

These are not ergodic (K.S. (Ian at. al 1985) and IX, J will tend to infinity in probability as	 oo (See Fig.

7.4.1 for a partial realization of model (7.4.1).) It is not immediately obvious if existing tests, likelihood

ratio approach or not, apply to the non-ergodic cases. We have therefore excluded them in our study.

In our comparative study, we have not been able to duplicate all of Petrucceffi's (1987) results for his

test; therefore we will give both his reported results (Petruccelli 1988) and our results together.

Note that in Moeanaddin and Tong (1988) the Petruccelli's (1987) results are slightly different from those

of Petniccelli's (1988) which will be used hem. Since the number of replications cannot be considered

large some discrepancies are to be expected. However, in some cases the discrepancies are apparently con-

siderable. In all the tables, the fist column (marked RC ) of power for each N is taken from Petruccelli

(1988) and the second column (marked RC) is based on our running the programs f for the reverse CUSUM

test.

Table 7.4.1 shows the results (all averaged over 100 replications each) for the 5% test and for N:50

and 100 on the AR(1) processes

= b1X,_1+e1

for b 1 =±0.9,±0.5,±0.1 and 0. It may be seen that the significance level of likelihood ratio test based on

asymptotics is reasonable (See column under LR).

t Note: Wc are most grateful to Professor J. Petruccdlli for providing us with his program.
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Table 7.4.1

	

N=50	 N=100

b 1 ______ ______ ______ ______ ______ ____
RC*	 RC	 LR	 RC*	 RC	 LR

	-0.9	 0.07	 0.06	 0.04	 0.09	 0.06	 0.06

	

-0.5	 0.09	 0.05	 0.02	 0.09	 0.03	 0.06

	

-0.1	 0.08	 0.03	 0.08	 0.05	 0.04	 0.06

	

0.0	 0.06	 0.03	 0.04	 0.03	 0.03	 0.06

	

0.1	 0.06	 0.03	 0.06	 0.09	 0.01	 0.02

	

0.5	 0.03	 0.01	 0.09	 0.04	 0.03	 0.03

	

0.9	 0.02	 0.06	 0.09	 0.05	 0.03	 0.09

Table 7.4.2 shows the power results for data simulated from models of the form (7.1.1) with

d=p=1; 1=2; r 1 =0, 0.2; sample size=50, 100. These models correspond to SETAR models with con-

tinuous and discontinuous autoregressive functions, with zero and non-zero thresholds.

Table 7.4.3 shows the power results of SETAR(3;1,1) with r 1 =-1, r2 = 1.



b"	 b	 b?t
	

TI

o	 0.9	 0	 -0.1
	

0

0	 0.9	 0	 -0.77
	

0

0	 03	 0	 -05
	

0

0	 0.5	 0	 -0.1
	

0

0	 0	 0	 -1.0
	

0

0	 -0.5	 0	 -1.0
	

0

0	 -1.0	 0	 -0.5
	

0

0	 -1.0	 0	 0
	

0

0	 -1.0	 0	 0.5
	

0

0	 -03	 0	 0.5
	

0

0	 -0.77	 0	 0.9
	

0

0	 -0.1	 0	 0.9
	

0

1	 03	 -1	 1
	

0

1	 -03	 -1	 1
	

0

-1	 03	 1	 -1
	

0

1	 03	 -1	 -1
	

0
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Table 7.4.2

power

SETAR parameters	 threshold

N=50	 N=100

RC	 RC	 LR	 RC	 RC LR

0.25	 0.31	 0.59	 0.60	 0.62	 0.93

0.4S	 0.47	 0.79	 0.79	 0.75	 0.99

0.43	 0.38	 0.83	 0.59	 0.70	 0.99

0.62	 0.62	 1.00	 0.95	 0.91	 1.00

0.49	 0.4	 0.86	 0.74	 0.81	 0.99

0.33	 0.27	 0.51	 0.45	 0.45	 0.86

0.30	 0.23	 0.54	 0.48	 0.49	 0.81

0.52	 0.46	 0.88	 0.81	 oai	 0-99

0.66	 0.62	 0.99	 0.93	 0.93	 1.00

0.43	 0.31	 0.81	 0.66	 0.73	 0.98

0.31	 0.41	 0.82	 0.78	 0.74	 0.97

0.24	 0.25	 0.56	 035	 0.61	 0.90

0.56	 0.56	 0.91	 0.89	 0.89	 1.00

0.99	 0.98	 0.99	 1.00	 1.00	 1.00

0.10	 0.16	 0.15	 0.08	 0.16	 0.12

1.00	 1.00	 1.00	 1.00	 1.00	 1.00

Note that the null hypothesis, H0 , states that X = ciX_1+e,.
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Table 7.4.2 (continued)

power

SETAR parameters	 threshold

N=50	 N=J00

b"	 b t	 b?t	 bS>

-1	 -0.5	 1	 -1

1	 -0.5	 -1	 -1

1	 0	 1	 -03

1	 0	 -1	 -03

1	 0.5	 1	 -1.5

1	 03	 -1	 -1.5

0	 0.6	 0	 0.3

0	 0.6	 0	 -03

0.5	 03	 -1	 03

-03 03	 1	 03

r 1 	 RC	 RC	 LR	 RC	 RC	 LR

o	 0.38	 0.36	 0.88	 0.61	 0.60	 1.00

0	 0.51	 048	 0.82	 0.84	 0.78	 1.00

0	 0.18	 0.15	 0.13	 0.27	 0.20	 0.18

0	 0.64	 0.64	 0.90	 0.96	 0.93	 0.99

o	 1.00	 1.00	 0.99	 1.00	 1.00	 1.00

0	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00

0.2	 0.07	 0.07	 0.11	 0.16	 0.07	 0.23

0.2	 0.22	 0.27	 0.67	 0.51	 (T.57	 0.98

0.2	 0.42	 037	 0.56	 0.75	 0.62.	 0.93

0.2	 0.08	 0.13	 0.45	 0.27	 0.34	 0.90

Table 7.4.3

power

threshold

SETA.R parameters

parameters	 N50	 N-100

b t b'1	b2t	 b	 b?	 b?t	 r1	 r2	 RC	 RC	 LR	 RC	 RC	 LR

0	 03	 0	 -0.5	 0	 0.5	 -1	 1	 0.15	 0.11	 0.45	 0.32	 0.26	 0.78

-1	 0	 0	 1	 1	 0	 -1	 1	 0.16	 0.22	 0.12	 032	 0.27	 0.18



104

After determining the empirical critical value for the likelihood ratio test of order 1 and 2, it is

beneficial to compare the relative performance of the likelihood ratio test (LR), reverse CUSUM and Tsay's

test on the models which have been used before in comparative studies. The results of Tsay's test have been

reported by Petrucelli (1987), therefore we have not repeated them here. We applied the likelihood ratio test

on the simulated data withp = 1 , d= 1 andp =2 ,d= 1,2. The simulated data is assumed to be non-linear if

at least one of the different combination of p and d shows the non-linearity of the data.

Table 7.4.4 shows the results (all averaged over 100 replications) for the 5% test and for N =50 and

N= 100 on the AR(1) processes

forb 1 =±0.9 ,±O.5, ±0.1 and 0.

X, =

Table 7.4.4

N=50	 I	 N=100

Ttestl J?C I LR ITtesti RC I LR

	-0.9
	

0.02
	

0.06
	

0.05
	

0.06
	

0.06
	

0.09

	

-0.5
	

0.05
	

0.05
	

0.10
	

0.06
	

0.03
	

0.06

	

-0.1
	

0.05
	

0.03
	

0.09
	

0.03
	

0.04
	

0.06

	

0.0
	

0.06
	

0.03
	

0.10
	

0.04
	

0.03
	

0.04

	

0.1
	

0.02
	

0.03
	

0.10
	

0.06
	

0.01
	

0.09

	

0.5
	

0.05
	

0.01
	

0.09
	

0.04
	

0.03
	

0.05

	0.9
	

0.07
	

0.06
	

0.08
	

0.03
	

0.03
	

0.06

Table 7.4.5 shows the power results for data simulated from models of the form 7.1.1 with

d=p =1; 1=2; r 1 =0, 0.2; sample size =50 and 100.



bS	 b?	 b?'

o	 0.9	 0	 -0.1
	

0

0	 0.9	 0	 -0.77
	

0

0	 03	 0	 -03
	

0

0	 0.5	 0	 -0.1
	

0

0	 0	 0	 -1.0
	

0

0	 -05	 0	 -1.0
	

0

0	 -1.0	 0	 -0.5
	

0

0	 -1.0	 0	 0
	

0

0	 -1.0	 0	 0.5
	

0

0	 -03	 0	 0.5
	

0

0	 -0.77	 0	 0.9
	

0

0	 -0.1	 0	 0.9
	

0

1	 0.5	 -1	 1
	

0

1	 -05	 -1	 1
	

0

-1	 0.5	 1	 -1
	

0

1	 0.5	 -1	 -1
	

0
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Table 7.4.5

power

SEAR paramctcrs	 threshold

N=50	 N=100

Ttestl RC I LR	 Ttcst	 RC	 LR

	

0.11	 0.31	 0.36	 0.20	 0.62	 0.60

	

0.16	 0.47	 0.58	 036	 0.75	 0.75

	

0.17	 038	 0.39	 0.45	 0.70	 0.65

	

0.44	 0.62	 0.60	 0.80	 0.91	 0.87

	

0.35	 0.48	 0.47	 0.58	 0.81	 0.65

	

0.18	 0.27	 0.29	 0.26	 0.45	 0.39

	

0.18	 0.23	 0.29	 0.32	 0:49	 0.30

	

0.39	 0.46	 0.50	 0.71	 0:77	 0.75

	

0.61	 0.62	 0.68	 0.90	 0.93	 0.87

	

0.25	 0.31	 0.39	 0.67	 0.73	 0.53

	

0.42	 0.41	 0.56	 0.84	 0.74	 0.73

	

0.35	 0.25	 0.27	 0.61	 0.61	 0.54

	

0.31	 0.56	 0.91	 0.50	 0.89	 1.00

	

0.97	 0.98	 0.99	 1.00	 LO0	 1.00

	

0.02	 0.16	 0.15	 0.11	 0.16	 0.12

	

1.00	 1.00	 1.00	 1.00	 1.00	 1.00

Note that under H0	, =
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Table 7.4.5 (continued)

powcr

SETAR parameters 	 threshold

N=50
	

N=l00

b' I b"	 b>

-1	 -0.5	 1	 -1

1	 -0.5	 -1	 -1

1	 0	 1	 -0.5

1	 0	 -1	 -03

1	 0.5	 1	 -1.5

1	 0.5	 -1	 -13

0	 0.6	 0	 0.3

0	 0.6	 0	 -0.3

0.5	 0.3	 -1	 0.3

-03 03	 1	 03

r	 Ttcst RC	 LR	 Ttes	 RC	 ZR

0
	

0.15	 0.36	 0.88	 0.18	 0.60	 0.98

0
	

032	 0.48	 0.92	 0.69	 0.78	 1.00

0
	

0.17	 0.15	 0.19	 0.28	 0.20	 0.21

0
	

033	 0.64	 0.92	 0.75	 0.93	 1.00

0
	

0.97	 1.00	 1.00	 1.00	 1.00	 1.00

0
	

1.00	 1.00	 1.00	 1.00	 1.00	 1.00

0.2
	

0.12	 0.07	 0.13	 0.21	 0.07	 0.07

0.2
	

0.22	 0.27	 0.29	 0.35	 037	 0.50

02
	

0.10	 037	 0.70	 030	 0.62	 0.93

02
	

0.28	 0.13	 0.55	 0.37	 034	 0.86

The run-time of the likelihood ratio test with reference to the asymptotic null distribution is negligi-

ble. For sample size of 50, the run-lime varies from /3 to 1 second and for N = 100 it varies from 0.5 to 2.0

seconds. The mn-time depends on the nature of the modeL All in all, computing time involved in the

application of the likelihood ratio test is no longer a problem. The peiformance of the test is quite

encouraging as far as the study goes.

73. Power Plots

To assess the power performance of the likelihood ratio test (LR), we simulate two classes of SETAR

models, SETAR(2;0,0) and SETAR(2;1,1). Specifically we simulate series of lengths 50, 100, 150, 200 and

250, and the power of each test is obtained from 100 replications of each model. We repeat the same experi-

ments with the reverse CUSUM test with a view to comparison.
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7.5.1. Piecewise Constant Models

Data are generated by SETAR(2;0,0) models of the foirn

Ia+e1 if X,_1 ^0	 -
X=	 (7.5.1.1)

where e,—N(0, 1) and ae [-3,3]. The null hypothesis, H0, states that X, = a-i-e,, and the alternative

hypothesis is a SETAR model of the general form

b 1 +e, if X,_1^i
X	 b 2+e 2 if X,_1>r.

As described at the end of2 the threshold parameter, r, is allowed to range over r=X(, ) , i=v1 ,	 ,V2.

The 5% asymptotic critical value is 7.84, which is adopted throughout our studying.

The power plots of the LR test and the reverse CUSUM test are given in Figs 7.5.1.1 and 7.5.1.2

respectively. it is quite clear that the reverse CIJStJM test has low power for sample sizes 50 and 100. The

improvement in power of the reverse CUSUM test seems quite marked when the sample size increases

from 100 to 150. Overall, the LR test is more powerful in this case. The rather wavy power curves of the

reverse CUSUM test also suggest the test's susceptibility to sampling fluctuations.

We repeat the experiments with the SETAR(2;0,0) model of the form

11+a+e if X_1^0
X	 j1+et if X_1>0'	

(7.5.1.2)

where es — N (0,1) and —1^a^1. The powerplots are given in Figs 7.5.1.3. and 7.5.1.4.

As can be seen in Fig 7.5.1.3, the performance of likelihood ratio test remains good for a>0 but

becomes poor for a^) compared with the reverse CUSUM test. To investigate the situation further, we

obtain the stationary marginal distribution function of the model (a =-1)

[e	 if X1_1^0
Xe.— 2+e if X_1>0'	

(7.5.1.3)

by numerical integration, and then plot the density function of this model together with the normal density

function, NQj.,a), Lt=E(X) and & =Var(X7). The result is given in Hg 7.5.1.5.

The similarity of the p.d.f a suggests that low power is not unexpected for the case a^0. The ques-

tion still remain as to why the reverse CUSUM test performs almost as well with a <0 as with a >0. Since
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the form of model (7.5.1.3) resembles an 'outlier' situation in time series, we suspect that the peiformance

of the reverse CUSUM test may be connected with its sensitivity to 'outliers'. This suggests that the

reverse CUSTJM test may not be 'robust'. To investigate this aspect, we simulate 100 replications of the

linear model

X7 =2+e,	 (7.5.1.4)

where e1.-N(0,1). In each replication we replace X(N12) with some large value say k, k=-20, -15, -5, 10,

15, 20 (N is the sample size ). The type I error probabilities of the tests are given in Table 7.5.1.1.

Table 7.5.1.1

k

NI	 -20	 -15	 I	 -10	 I	 -5	 I	 10	 I	 15	 I	 20

RCILR1RCILRIRCILRIRCILRIRCILRIRCcL.RIRCILR

50	 0.75	 0.12 0.56 0.08	 0.37 0.08	 0.13	 0.02 0.08 0.06 0.51	 0.14 0.25 0.08

100	 0.44 0.03 0.34 0.02 0.19 0.02 0.06 0.05 0.05 0.02 0.24 0.02 0.15 0.02

150	 0.27	 0.01	 0.18	 0.01	 0.11	 0.01	 0.06 0.04 0.07 0.02 0.14 0.01	 0.09 0.01

RC = reverse CUSUM test

LR = likelihood ratio test

it is clear that the CTJSUM test is more sensitive to outliers and tends to regard a linear series with an

outlier as non-linear.

7.5.2. Piecewise Lmear Models

We consider the SETAR(2;1,1)

IaX1_i+e if X_1^0
Xt= t'-.1f if X,_1>O'	

(7.5.2.1)

where e, -N(0,1) and aE[-0.9,0.9]. Under the null hypothesis, H0 , the model is of the form
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= cxX, +e,; under the alternative, the model is of the form

f
b I Xl _ l +et if X,_^r	

(7.5.2.2)X1= 1b 2X,_1 +e, if X,_1>r

Again, the asymptotic critical value is 7.84. The power plots of the tests are given in Figs 7.5.2.1 and

7.5.2.2.

Also, we consider the SETAR models

f(a+0.5)X_1+e, if X,_1^0	
(7.5.2.3)

= 1(O.S—a)X_i+e if X,_1>0'

where e—N(0, 1) and aE[-0.5,0.5]. The power plots of the tests axe given in Figs 7.5.2.3 and 7.5.2.4. The

power of the reverse CUSUM test seems to drop abruptly as a! exceeds 0.45. Overall, the likelihood ratio

test seems to perform better than the reverse CUSUM in this case.

In this chapter we have compared, via simulation studies, the performance of the likelihood ratio test

with the reverse CUSUM test. The results of Tables 7.3.4 , 7.3.5 , 73.6 and 7.4.5 show that 6 and 9 degree

of freedom as a critical 5% point for the likelihood ratio test withp = 1 andp =2,-in presence of an inter-

cept, is quite practical. Also, the results of Table 7.4.5 show that the performance of the likelihood ratio test

in comparison to the CUSUM and Tsay's tests is quite remarkable.

The main strengths of the new implementation of the likelihood ratio test are (i) it does not depend on

the optimal model selection (ii) the parameters threshold and delay reed not to be estimated and (iii) it is

fast in view of CPU time.
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CHAPTER EIGHT

SETAR MODELLING OF BLOWFLY DATA

8.1. Some Background of AJ. Nicholson Data

In the 1950's, the Australian entomologist, A.J. Nicholson, conducted a series of experiments with

blowflies, Lucilia Cuprina. His laboratory data have since become classic and simulated wide interest in

population ecology. Of particular note are the cycles apparent in his population data.

The data we are going to analyse are abstracted from Brillinger et al (1980) and correspond to the bi-

daily record of one of A.J. Nicholson's experiments extending over two years, in which a caged population

of approximately 1000 blowflies was initiated with a reasonably balanced sex ratio. The caged blowflies

were fed a limited amount (about 500 mg.) of ground liver daily as the only source of protein which is

necessary for egg production. Experimental evidence suggests that egg production usually ceases when

daily protein intake for the female fly drops below 0.14 mg. and levels out at 10 eggs per fly per day when

protein supply is plentiful.

The first question is whether this data set is non-linear. The results of Table (7.3.4) in Chapter Seven

shows the non-linearity of the first part (the first 182 observations ) of the blowfly data. Also the results of

three other different tests (i.e Subba Rao-Gabr-Hithch's, Keenan's and CUSUM) support the non-linearity

of this data set. (See Tong 1987a and W.S. Chan & Tong 1986).

Since the marginal density function of all linear Gaussian processes are unimodal therefore, before

following the Tong's SETAR fitting model procedure, it will be useful to consider a test for testing multi-

modality of the marginal probability density function of a data set.

8.2. A Test for Multi-modality Based on Kernel Density Estimation

A test stalistic for hypotheses concerning the number of modes in the density is obtained by con-
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structing kernel density estimates of the data (Silverman, 1981). The kernel density estimate (Rosenblatt,

1956) for window width h based on univaiiate observations X 1 ,X 2 , ...,X is defined by

f(t;h) = n_1 h_' EK{h 1 (r_X.)}

where K is a kernel function t which we shall assume through out to be normal density function.

The window width h controls the amount by which the data axe smoothed to obtain the kernel esti-

mate. Suppose that we wish to test the null hypothesis that the density f underlying the data has k modes,

against the alternative that f has more than k modes. Define the h—critical window width 	 by

hc,rjr = inf(h :f(.,h) has at most k modes).

Large values of will reject the null hypothesis.

For any particular k-mode simple null-hypothesis it is easy to assess, by simulation, the significance

of the value of the critical window width obtained from the data. Suppose the null hypothesis is that the true

density is g and that the value of h0.j obtained from the data is h0 . Silverman (1981) has shown that

Prg (hm, > h0) = Pr(f(.;h0) has more thank modes (X 1 , ... ,X,.) is drawn from g}

The hypothesis that the true density is at most k-modal is of course a compound hypothesis. To provide a

conservative assessment of the significance of h0 , an appealing choice of the representative g 0 from which

to simulate is obtained by rescaling f(.;h0 ), as constructed from the data, to have variance equal to the sam-

pie variance. It is easy to simulate from g0 . Efron (1979) pointed out that independent observations Y1,

from g0 , are given by

h-1y = (1+—i-) 2 (XJ(;)+h0E1),

where X1(I) are sampled uniformly, with replacement, from the data X 1 ,X2, .. . ,X, a2 is the sample van-

ance of the data and , is an independent sequence of standard normal random variables.

We applied this test to different sets of real and simulated data, which are typically serially depen-

dent. It seems that the test works quite well.

f ThekcrnelKis asymmetricfunciionsatisfyingjK(z)ds=1 ,IZK()dl=O,j:2K(1)dt=k2^O.
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Fig. 8.2.1 shows the bistogiain and critical window widths and significance levels for tests of the null

hypothesis that the underlying density has at most k modes against the alternative that it has moxe than k

modes of the monthly U.S. air passengers miles data. The data axe taken from Cryer (1986, p. 270).

rist,sra ..i Ci	 = 2ic
iiii.	 uu.,t	 -	 -	 -

43
37	 **38sii

0	 -5 4i*iics*t-t4ic
13	 ***$

Lu	 3	 - -
.3

14	 t*1i.**.i
1.0	 t	 *4*34*
.t8	 0
20	 t

FIg. 8.2.1

Number of Modes 	 p-value

1	 3.239	 0.01

2	 0.634	 0.92 I	 -
3	 0.544	 0.84

The second example is log 10 transfonnation of lynx data.. The data are taken from Tong (1983). The msults

axe shown in Fig. 8.2.2.

Histogram of C3 H — 114

Midpoint Count
1.6	 3
1.8	 3
2.0	 5
2.2	 4 ****
2.4	 12 ***t******

2.6	 16
2.8	 15 **&&*.***e**g*
3.0	 6 ****e*
3_2	 1.3 **********
3.4	 19
3.6	 14	 *******
3.8	 4 ****

Fig. 8.2.2
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Number of Modes 	 he,.,,	 p-value

1
	

0.297	 0.03

2
	

0.145	 0.45

3
	

0.087	 0.72

In the third example we consider the Milk Production in Pound per Cow per Month of U.S. data . The data

axe taken from Cryer (1986, p. 269). The results are given in Fig. (8.23).
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SO0	 34 **t*n*nn*en......e.

	

550	 15 ene**een*.nn

	

900	 iC •ten**n.nfln

	

950	 5 tee.....

Fig. 8.23

Number of Modes	 h	 p-value

1
	

25.572
	

0.75

2
	

21.264
	

0.53

3
	

19.253
	

0.65

In order to investigate the efficiency of the test by simulated data, we conduct two experiments.

Experiment I

1.5-0.9X,_1+e if X,_1 ^0
x = —0.4-0.6X,_1+4 if X,_ >0,

and experiment II

if X,... ^0
X1 1

1. :_i; if X.>0.

In each experiment, e,—N(0, 1) and the sample size is equal to 100. The number of replication is 20.
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83. Influential Data

Quite often, a simple residual check is not sufficient in suggesting improvement/inadequacy of the

fitted model. It is always useful to look for the influential data.

A new approach, which is not based on residuals, has been explored by Han and Tong (1984). Their

emphasis were on the influential data.

Consider the linear Gaussian autoregressive model of order p

= 4 1 Y_1 +4Y,_2+" +4pYtp±t,	 (8.2.1)

where e 'S are independent and identically distributed random variables and e,—N(O,o2).

Let

ZT=(Y_1,Y,_2, ... ,Y,_,),

then (8.2.1) can be rewritten as

= Z?'4+e.

Suppose that n observations Y 1 , ... , Y,, are available, then we have the following nonnal equation

Y= r +e
(nxl) (rnço)(pxl) (nxl)

where Y = (Y 1 ,	 , Y,,) ' , e = (e 1 , . , en)" and F is design matrix. Here

H = [h) =r(P"r)1FT

is known as the hat matrix. It has been shown that the diagonal elements of the hat matrix i.e.

= Z'(FTfl 4 contain some vital information about the influential data. (See Han and Tong, 1984).

Consider the SETAR(2;k 1 ,k2) model of the form

a5)X,_j+e1)	

(8.2.2)
j=1

j=1

a )X •+et2 if X, > r,

where d and r aie delay and threshold parameters respectively. For each i =1,2, e's are assumed to be

i.i.d. and normally distributed with mean zero and variances a , i = 1,2. Using the extended conventional

least square procedure, since the model (8.2.2) consists of 2 piecewise linear models, we may have the fol-
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lowing piecewise linear model formalism:

X 1 = A 1 01+e1
(n,X1)	 (n,xk,Xk,X1) (n,X1)

X2 	 A2 02 + e2
(n,X2)	 (n,Xk,)(k,X1) (n,X1)

where, for i = 1,2,

X, = (x'?, • . ,x )T, e = (ef, • . . ,e% 
)T, 0 =(a > ,	 ,a) and

z
TI

.rI
a' j

where Z ) = (1 xyl_1 X)_2

TARH1 , i=1,2 as follows:

X). Because of the piecewise linearity, we may define hat matrices

TARH1 A1(ATA1)' AT, i = 1,2.

For influential data detection in model (8.2.2), the diagonal elements h' of TARH1 are examined.

Large values of h 1 's conespond to the influential row vector 's of A .. In the linear AR case, a large

value, /i say, is due to the fact that some of the X,_1 , ••, and X, , are large. In the case of SETAR

modelling, of course, XL is not necessarily, X_ 1 . Therefore, unlike the linear AR case, even if h'!1 is

small and h is large, we can not conclude that X_ 1 is an influential data. To identify the influential data,

it is suggested that we print out the design matiix A . with the vector h1 augmented in the last column:

I, =(A1)h1),
n,x(k,+1)

where hT = (h,h," h' and = Z (ATA )', a, )

Examining the diagonal elements h of TARH, and the original observations, can therefore identify those

data which are the most influentiaL

8.4. Profile Likelihood

Inference in the presence of nuisance parameters is a widely encountered and difficult problem. Prob-

ably the simplest approach is to maximize out the nuisance parameters for fixed values of the parameters of
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interest, and construct the so called profile likelihood. The proffle likelihood is then treated as an ordinaiy

likelihood function for estimation and inference about the parameters of interest.

We begin with a random N-sample Y 1 ,Y2,' ,YN• The parameters vector 0 can be paititioned as

8=(qr, ) where =(jr,	 ,ty,.) is the parameter of interest arid 	 - ,X) is the nuisance parame-

ter. The log-likelihood will be denoted by 1(0).

Denote by 0 = (çï, X) the overall maximum likelihood estimate. Let ic,. denote the maximum likeli-

hood estimate of ir for fixed X and ? may be define in a similar way. The profile log-likelihood for N' is

defined by

l,,(W)=l(iy, 2w).

To obtain the profile likelihood plot for a SETAR(2;p 1 P2) model the vector of parameters

•. . ,a)

can be partitioned as 0=(qr, .), where N r =(r, d) and ?. the rest of parameters. For each

de [l,2,...,m :m <ZN), we can calculate the likelihood function or equivalently the residuals sum of

squares, for each r, r=Y() E [Qi , Q3}, (Y (1) 's being the ascending sorted data and Q1 , Q3 the first and

third quartial of data). For fixed d the family plots of profile likelihood vs r, may reveal some vital informa-

tion about the location of threshold and the estimation of parameter delay.

In order to examine the application of profile likelihood in locating the threshold and estimating the

delay, we conduct to the following simulation study. The model is

l+0.5X_1 —O.6X,_2+0.6X..4 -f0.3X_s+e if X,..5 ^ 0
X 

= —2+0.5X,_i--0.8X..4+0.5X_5+e 	 ifx_5 >0,	 (8.3.1)

where e,—N(0, 1) and the sample size is equal to 200. In this experiment we assume that the order of each

piece is known and is equal to 5 . The profile likelihoods are plotted for d= 1,2,...,7. Figs. (8.3.1) show the

profile likelihood of simulated data with a good estimation of delay (d = 5) and a good interval estimation

for threshold (re(—O.1 ,O.1)).

Our simulation studies suggest that the estimation ofp 1 and P2 is not crucial. Thus in practice, for each d

and r, they can he considered as nuisance parameters and could be estimated by using AIC, BIC or any

other criterion. In all our experiments with real data, the AIC criterion has been used for estimating the
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order of each piece.

8.5. A Case Study

Now we will tiy to model the original (raw) blowfly data. Fig. (8.4.1) shows the lime plot of the data,

from which it is clear that the data exhibit population cycles and also shows a change in the dynamic sys-

tern of this process (non-stationarity of this data set). Therefore, the data set is divided into two stationary

sets, the first consisting of the first 200 observations and the other the rest of data.

Definition 8.4.1: A stationary time series {xj is time-reversible if for every positive integer n, and every

r1,t2,...,t,, eZ, where Z denotes the set of integers, the vectors (X,X,.,	 ,X) and	 ,X...,)

have the same joint distribution.

A stationary lime series which is not lime-reversible is said to be time-irreversible.

Weiss (1975) has proved that ARMA processes with an autoregressive component are reversible if

and only if they are Gaussian. The implications are far reaching, Stationary series which show evidence of

irreversibility, cannot be modelled by Gaussian ARMA models, they need to be modelled by non-Gaussian

ARMA models or some type of non-linear models. (See Lawrance, 1987)

In practice the reverse data plot may be used to detect lime-irreversibility of a data set.

Comparing Fig. (8.4.2) (time plot of the first 200 observations) with Fig. (8,4,3) (reverse time plot of the

data) reveals the time-irreversibility of the first part of blowfly data.

From the time plot of the data (Fig. 8.4.2), we may see that the mean length descent periods (5.7)

tends to exceed that of ascent (3.8)periods. Table (8.4.1) shows the descent and ascent periods of blowfly

data
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Table 8.4.1

Ascent and Descent Period of blowfly data

Ascentperiod 1 1 4 1 2 2 6 2 12 6

Descent period 9 1 13 1 12 3 9 2 9 9

Ascentperiod 8 1 6 1 8 1 1 9 1 6 1

Descent period 9 1 8 2 8 1 1 9 1 11 1

Non-parametric sample estimates of E (X X,± =x), for] = 1,2,..., 11, reveal some vital information.

Whilst E(X IX,±1) , ]= 1,2 are almost linear in x, for j=3,...,11 all are non-lineal. There is a systematic

change in E (X I f 3,..., 11, which is different from that of E (X, IX_). The dissimilarity between

E(X IX,_1) and E(X, IX,+1) is further evidence of tiine-ineversibility of this data set. Also, it can be seen

that the non-parametric regression for j = 8,..., 11 are all approximately the same. Thus it may be suggested

that d=8 could be a cnide estimate for the delay parameter. The results are given by Figs. 8.4.4a and 8.4.4b

A family of profile likelihoods of the first 200 observations of blowfly data is given by Fig. (8.43),

which shows 8 could be a good estimate for parameter delay. The profile likelihoods ford = 13,..., 18, exhi-

bit quite substantial fluctuation for different values of r, therefore d ^ 13 does not seem to be an adequate

estimate ford.

The scatter diagrams of (X,X,+ ), j=1,2,...,8, consist of spirals which with j increasing, show a

systematic change with an obvious hole in the center near the origin (Fig. 8.4.6), which tends to support the

existence of a limit cycle in the data.

The marginal histogram (Fig. 8.4.7) of the data does not show any strong evidence of bimodalitY.
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The test for bimodality rejects the unimodality of the data at the 34% point, and rejects bimodality at the

70% point. However, there is no strong evidence for bimodality of this data set. The marginal histogram

shows clearly the skewness of data (skewness=0.77). The kurtosis is equal to -0.39 which together with

skewness show the non-Gaussianity of the data.

The sample bivariate distribution of (X, , Xr+j) , j = 1,..., 10 (Figs. 8.4.8), show particularly interesting

non-Gaussianity of the data structure. Notice especially quite a regular change from unimodality (j = 1,...,6)

to bimodality (j> 6) of sample bivariate distribution. Also, the "L" shape of sample bivariate distributions

for j> 6, suggests that a SETAR model with one threshold., could be a good preliminary model for this data

set.

The power spectrum estimate of the data tends to suggest quite strongly the existence of higher har-

monics to the fundamental period of approximately 36 to 40 days. (Fig. 8.7.2).

To fit a SETAR model, first we will describe a systematic procedure for obtaining estimates of

d, r ;pj ,	 ,	 , aV , a(1f ;a 2 , ... , a 2 , a(2)2 wherep 1 P2,	
,	 aretheorderandthe

variance of error term in the first and second piece respectively. (See Tong, 1983 p. 134).

STEP 1: Let d and r be fixed at d0 and r0 respectively. Let L denote the maximum order to be entertained

for each of the two piecewise linear AR models. The choice of L is subjective and is usually dictated by the

sample size.

STEP 2: Let d remain at d0. Allow r to vary over [r j ,r2 , . . . ,rj and minimize the AIC(d0 , r) over this

set.

STEP 3: We search over [1,2, ... ,) for the minimum AIC of d. Since the different choice of d changes

the effective number of observations in estimating parameters and AIC, therefore we may use the normal-

ized AIC by dividing AIC by N—max (d , L). The minimum of normalized AIC is calculated by

miii	 mm	 {NAIC(d,r)).
de(1,_.,r) re(r...... i,)

Now by using the above identification procedure, we may give a full analysis of the first 200 observa-

tions of the blowfly data. Table (8.4.2) details the results of the identification procedure to the first 200

observations with 't= 10 and s =7. The seven candidates for the threshold are obtained by using the
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following relation, where S = standard deviation and X the data mean.

X—(1—(2i-1)/7)S ,i=1,...,7

The entries under N1 and N2 , the sample size for the two piecewise linear AR models, are quite important.

Unduly small N 1 or N2 generally leads to a poor model. The maximum possible autoregressive order,L, is

set at 20. In the table, NAIC means normalized AIC, and a denotes the pooled mean square of the fitted

residuals.
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Table 8.4.2

d	 r	 N1	 N2 Pi Pz	 NAIC	 a	 limitcycicstanls	 period

	

795.6	 44 136	 2	 7	 13.4348 598684	 limit pomt

139&1	 72 108 2	 7 133848 594698	 limit point

	

2000.6	 90	 90 2	 7 13.2952 583229	 limit pomt

	

2603.1	 104	 76	 3	 7	 13.2486 577076	 limitpoint

	

3205.6	 113	 67	 8	 2	 13.2086 616249	 limitpoint

	

3808.1	 130	 50	 7	 2	 13.2219 593581	 limitpoint

	

4410.6	 142	 38	 7	 2	 13.2511	 544701	 Iimitpoint

	

795.6	 44 136	 3	 8	 13.4450 591341	 limit point

	

1398.1	 71	 109	 3	 7	 13.3969 597570	 limitpoint

	

2000.6	 89	 91	 3	 7	 133302 591065	 Iimitpoint

	

2 2603.1	 104	 76	 3	 7 13.2992 586339	 limitpoint

	

3205.6	 113	 67	 8	 7	 13.3383 556922	 3 t 3.1.	 6

	

3808.1	 130	 50	 7	 2 13.4141	 613998	 817.1.	 -	 15

	

4410.6	 142	 38	 7	 1	 13.3835 618855	 limitpoint

	

795.6	 44 136	 4	 8 13.4337 578277	 limit point

	

1398.1	 71	 109	 4	 7	 13.4274 591753	 limit point

	

2000.6	 88	 92	 4	 16	 13.3861 519495	 non-stationary

	

3 2603.1	 103	 77	 9	 7 13.4238 569966	 limitpoint

	

3205.6 112	 68	 9	 7 13.4631 587896 lirnitcycicwithlongperiod

	

3808.1	 129	 51	 8	 1	 13.4158	 601308	 918 .1.	 17

	

4410.6 142	 38	 8	 1	 13.4061	 606612	 limitpoint

	

795.6	 44 136 5	 16 13.4298 524050	 limit point

	

1398.1	 71	 109	 5	 7	 13.4363 587386	 limit point

	

2000.6 107	 93 5	 16 13.4007 512413	 non-stationary

	

4 2603.1	 102	 78	 5	 2 13.4320 609885	 917 .1-	 16

	

3205.6	 111	 69	 8	 2	 13.4351 592789	 918.1.	 17

	

3808.1	 128	 52	 8	 1	 13.4118 589666 limitcycle with long period

	

4410.6 141	 39	 8	 2	 13.4252 589267	 limit point
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Table 8.42 (continue)

d	 r	 N1	 l'	 Th P2	 NAIC	 a	 limitcycic status	 period

	

795.6	 44	 136	 2	 16	 13.4046 537910	 limitpoint

	

1398.1	 71	 109	 6	 7	 13.4273 5704.46	 limit point

	

2000.6	 86	 94	 7	 7	 13.4102 561190	 71104.	 17

	

5 2603.1	 101	 79	 7	 2	 13.4202 600267	 9 18 1.	 17

	

3205.6	 110	 70	 7	 2	 13.4530 613308	 10 18 .1.	 18

	

3808.1	 127	 53	 7	 7	 13.4778 599021	 limitpoint

	

4410.6	 140	 40	 7	 1	 13.4689 626151	 limitpoint

	

795.6	 44 136	 2	 7	 13.3338 580233	 limitpoint

	

1398.1	 71	 109	 7	 7	 133309 548205	 limit point

	

2000.6	 85	 95	 7	 2 133504 585035	 9 1 10 1.	 19

	

6 2603.1 100	 80	 7	 1 133353 587518 limitcycle with long period

	

3205.6 109	 71	 7	 1 133773 595389 limitcycicwithlongperiod

	

3808.1 126	 54	 7	 2 13.1949 572825	 91 104.	 19

	

4410.6 139	 41	 7	 2 13.1843 590531	 limitpoint

	

795.6	 44 136	 2	 8	 133120 559181	 limitpoint

	

1398.1	 71	 109	 2	 7	 13.1923	 597020	 81 ii .1.	 17

	

2000.6	 84	 96	 2	 3	 13.2563 623615	 8 1 11 .1.	 17

	

2603.1	 99	 81	 2	 3 12.7253 620900	 9194.	 18

	

7 3205.6 108	 72	 7 - 2 12.8324 568193 limitcycicwithlongperiod

	

3808.1 125	 55	 7	 2 12.8750 577809 limit cycle with long period

	

4410.6 138	 42	 7	 2 12.9742 578411 limitcycicwithlongperiod

	

795.6	 44 136	 2	 8 133359 571833	 limitpoint

	

1398.1	 61	 109	 2	 7	 12.9510 559186	 11 1 104. 11 19 4.	 41

	

2000.6	 84	 96	 2	 9 12.5976 575764	 11 194.	 20

	

8 2603.1	 98	 82	 2	 9 12.6053 615862	 11 194.	 20

	

3205.6	 107	 73 10	 2 12.7441 564266	 81114.9111Z.	 39

	

3808.1	 124	 56	 8	 2 12.7618 568190 Iitnitcycicwithlongperiod

	

4410.6 137	 43	 8	 2 12.8941 571346 Iimitcycicwithlongperiod
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Table 8.4.2 (continue)

d	 r	 N1	 N2 Pt P	 NAIC	 a	 limit cycle status	 peTiod

	795.6	 44	 136	 2	 8	 133238	 588150	 limiipoint

	

1398.1	 71	 109	 2	 6	 12.5347	 535619	 -	 11t9.L
	

20

	

2000.6	 84	 96	 2	 6	 12.47 12	 588527	 10 1 ii .L
	

21

	

9 2603.1	 98	 82	 7	 3	 12.4207	 552477	 8 1 13 ,l.	 21

	

3205.6 107	 73 10	 3	 12.5388	 532957 limitcycicwithlongpcnod

	

3808.1	 123	 57	 10	 2	 12.7341	 549085	 limitpoint

	

4410.6 136	 44	 8	 4	 12.9009	 581221	 limitpoint

	

795.6	 44 136	 2 8	 133718	 623689

	1398.1	 71	 109	 7	 8	 13.2448	 566405

	

2000.6	 85	 95	 7	 7	 12.4382	 513115

	

10 2605.6	 99	 81	 7	 7	 12.4656	 532333

	

3205.6 108	 72	 7	 7	 12.58146 563039

	

3808.1 124	 56	 8	 4	 12.7368	 565393

	

4410.6 136	 44	 7	 2	 12.8897	 591513

limit point

limit point

limit point

limit point

limit point

limit point

limit point

Models with no obvious limit cycles over the dynamic range of the data or with estimated order

greater than 10 are discarded. After this discarding of unwanted models and by considering the NAIC, it

seems that the best estimate for the delay parameter could be 7 or 8 or 9. Among the selected models, after

searching over a fine grid tuning neal the selected threshold the following model i.e. SETAR(2;2,9) is

selected.

ifX^ 1790
1369.46-i-0.90X_ 1 —0. 19X,_2+e1
(248.93) (0.12)	 (0.11)

246.75+1.1 1X,_1-0.23X,_2---0.l 1X,_3-0.03X
(102.72) (0.05)	 (0.06)	 (0.05)	 (0.05)

04X,..5-0.02X0.03X,...7--0.06X,
(0.04)	 (0.04)	 (0.04)	 (0.03)

+O.O6X,+eF)	 if X, 8 > 1790,
(0.02)

where Var (e 1) ) = 1167684.0, Var (e 2) ) = 68844.8 , pooled Var = 563322.4, NA.IC=12.5691.

(8.4.1)
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On comparing the coefficients of the second piece with their respective standard deviations we may

adopt the more parsimonious SETAR(2;2,2) model for this data set.

I 1369.46+0.90X,_ 1 —0.1 9X,_2+4'
(248.92) (0.12)	 (0.11)	 if X,...8 ^ 1790

= I 163.32+l.14X,_ 1 0.35X,_2 +42 if X;_8 > 1790,
(43.46) (0.05)	 (0.04)

(8.4.2)

where Var (e') = 1167684.0, Var (eF) = 80851.8 and pooled Var = 567224.2, the normalized AIC is equal

to 12.5727 which is comparable with that of model (8.4.1).

8.6. Transformation

The scatter diagrams of (X, ,	 , j =1,..., 8 (Fig. 8.4.6), show frequent visits to the neighbourhood

of the origin, which is a point of condensation. It has been suggested that the logarithmic transformation

could remove this point of condensation and perhaps the fitted residuals of the selected model for log10

transformation of this data set will not be non-Gaussian. (See Tong, 1983 p. 210). Therefore we will use the

log 10 transformation for the first 200 observations, and after fitting a SETAR model, a full diagnostic check

will be applied to the selected modeL

Applying the same procedure which has been used for selecting model (8.4.1) to the log 10 transfor-

mation of the blowfly data, the following SETAR(2;1,3) model is adopted.

12.66+0.27X_1 +e'
(0.23) (0.07)	 ifX^3.00

= j0.44+1.52X,. 1_0.33Xj_z-0.32Xr_3 +eF) if X >3.00,
1(0.09) (0.11)	 (0.20)	 (0.12)

(8.4.3)

where Var(411 )=0.0246 , Var(eF) =0.0101 ,pooled Var = 0.0154. The first 20 observations are discarded

and the last 50 observations are set aside for one-step ahead prediction. The maximum lag for the first piece

is 10 and for the second piece is 3.

8.7. Model Diagnostic Checking

Suppose that a TAR model has been identified. The question left is to examine the adequacy of the

modeL In other words, the goodness offit of the fitted model need to be tested for.
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According to the proposed requirements of non-linear tune series models, we prefer a model which

can capture the probabilistic structure of the data.

Some preliminary diagnostic checking on models (8.4.1) and (8.4.2) shows that these two models can

not pass all the diagnostic checks successfully. Therefore, our discussion will centre around the

SETAR(2; 1,3) model fitted to the log transformation of blowfly data i.e. model (8.4.3).

Let (e(')J denote the fitted residuals in the jth regime. It is assumed that {e/)} is a zero mean Gaus-

sian white noise sequence with Var(e1))=cy and cov (4' ) , e 1 )=O, i ^j. The diagnostic checks of the

fitted residuals need to be applied to the separate series of fitted residuals. It has been suggested that a nor-

malization of fitted residuals by dividing ei by S, the root mean squares of the fitted residuals of the jth

region, is satisfactory. (See Tong, 1983).

8.7.1. Test of Whiteness

The whiteness of the fitted (normalized) residuals (ej,...,e,q] can be tested by using the estimated

autocorrelatiori function k. where

a
Pk ' Ck = -	 k=O,1,...,L,

C	 Nt=i
0

-

e = - e.
N =1

Under the null hypothesis of whiteness, k' k = 1,...,L, are asymptotically independent and normally distri-

buted with zero mean and variance N'. A simple test may be constructed by plotting the ak'S against k.

We may expect that approximately 95% of ak'S should lie within the band ±1.96 / IN if the e,'s axe to be

accepted as approximately white noise. (See, e.g. Tong, 1983 p. 157).

Fig. (8.7.1.1) shows the sample autocorrelation function of the normalized fitted residuals obtained

from the SETAR(2; 1,3), equation (8.4.3). It does not show any significant point outside the 95% confidence

intervaL

More formal tests based on ak'S have also been developed for the class of linear models. Ljung and

Box (1978) have demonstrated that the statistic

M

Q=N(N+2)	
t. ,M.czN,

i=i (N—i)
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provides a closer small-sample approximation to 	 where p & q art the orders of the AR and MA

parts of a linear model.

The Ljung-Box statistic with M =20, is 24.61 which is not significant compared with the ,(%)•

8.7.2. Test of Normality

Suppose that the e, 's are accepted as approximately white noise, we may then proceed with the Gaus-

sian investigation. A histogram usually contains a fair amount of information, and provides a good graphi-

cal indicator. Fig. (8.7.2.1) shows the histogram of the normalized fitted residuals of model (8.4.3) which

does not show a substantial departure from normality. Also, the normal probability plot of the normalized

fitted residuals does not reveal any serious deviation from nonnality. (See Fig. 8.7.2.2). Sample

coefficients of skewness and kurtosis are 0.52 and 1.93 respectively.

Using the fact that the population is normal if and only if the sample mean and sample variance are

independently distributed, Lin and Mudholkar (1980) proposed the following test for normality against

asymmetric alternatives.

If e 1 , e 2 ,	 ,	 are independent and identically normally distributed, then the test statistic

2 1 (N/3) 2 hi((l+R) / (1—R)), where

N-
Z (e1—)(Y1—Y)

i=I

N	 N -

E (e_)2 z (r-y
i=1

and 
Yj=[.j[Ee_(Eej)2J}3 

,i1,...,N,

is asymptotically normally distributed with mean zero and unit variance. The Lin-Mudholkar (L-M) statis-

tic is -1.74 which is slightly significant at the nominal 5% point of N(0,l). The autocorrelation function plot

of the square of the normalized fitted residuals (Fig. 8.7.2.3) does not show any significant results at the 5%

point.

McLeod and U (1983) have proposed a test for testing statistical independence based on the squares

of fitted residuals, autocorrelations of a linear model fitted to the data.
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The autocorrelation function of e is estimated by

N	 2 N
= E (e-4&2)(e.k--â ) I (e__),

k+1	 t=1

.2	 N 2
wherer =—Ze,.

N r=1

A significance test is provided the portmanteau statistic

U
,MN,

i=i N—i

which is asymptotically %(M) if the e are independent.

The Mcleod and Li statistic is 13.69 which is not significant at the nominal 5% point of Xo).

In order to examine the mean, variance and higher moments of model (8.4.3), a sample of 10000

observations, using a simulation technique, is generated. Mean, variance, third and fourth sampLe moments

of the data and simulated data axe given in Table (8.7.1). It seems that most of the statistics of the model are

quite close to those of the data

Table 8.7.1

Stat.	 E(X) E(X2) E(X 3) E(X4) M1N MAX Q1	 Q2

DATA	 I 3.21	 10.55	 35.31	 120.02	 1.78	 3.95	 2.90 3.60

SIMULATION I 3.22	 10.66	 36.33	 125.30 0.72	 5.16	 2.87 3.62

FIg. (8.7.1) shows the sample autocovariance function of the blowfly data and the 10000 simulated

observations for model (8.4.3). The agreement of the autocovariance function of simulated data with that of

the data is quite good.

Using the Tukey window, the smoothed spectral density functions of the data and 10000 simulated

observations are estimated. Fig. (8.7.2) shows a good agreement between the spectral density function for

the data and simulated observations.

The sample probability distiibution of the blowfly data may be used to check the adequacy of the

fitted modeL It is expected that a good fitted model, will generate a similar prebabilistic structure as that of
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the data. We will use the graphical methods based on marginal distributions, bivariate distributions and

regression functions to check the adequacy of model (8.4.3) for the first 200 log transformation of blowfly

data.

Using the Monte Carlo method, we obtained a simulated data size of 10000 observations from

SETAR(2;1,3), equation (8.43). The sample histograms of data and simulated data are given by Figs.

(8.7.3) and (8.7.4) respectively. The marginal distribution of the SETAR model and that of data axe quite

similar.

Figs. (8.7.5) show a remaxtable agreement between the bivariate frequency distributions of simulated

observations and those of the data.

Non-parametric estimates of E(X X, 3) and Var(X jX,^3) (Figs. 8.7.6), show that the lag regression

and the conditional variance of the fitted model and those of the data have a good agreement.

The time plot of a realization of SETAR(2;1,3) model (Fig. 8.7.7), shows a reasonable agreement

with the time plot of the data.

FIg. (8.7.8) and Fig. (8.7.9) show the one-step ahead predictions and the systematic part of the model

(8.4.3) with the white noise suppressed and with the latest few observations as initial values of the recur-

sion.

Although the model (8.43) could pass all (except the test for normality) diagnostic checks, the dingo-

nal elements of hat matrix may reveal a vely interesting feature of this data set. Figs. (8.7.10) show the

diagonal elements of the hat matrixes associated with the piecewise linear autoregressive modeL From

these, it is clear that the 'influential pattern' remains cyclical with a period of about 20 units of time, which

is about the same as that of the blowfly population cycle. This suggests the need of at least a bivariate time

series, incorporating the egg count, for example. It is feasible that the interaction between the fly population

and the egg population will give a better understanding of the cycle generating mechanism.

Tsay (1988) has pointed out that for all non-linear models fitted to the blowfly data which have been

considered by him, large residuals persistently appear at the same time points. Many of the large residuals

correspond to the big jumps in blowfly population caused by an unusual amount of emergence. Since emer-
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gence depends on the number of eggs laid, therefore the egg series can be incorporated. Tsay (1988) by

incorporating the egg series has managed to reduce the variance of fitted residuals 57.2%. However, the

residual analysis shows that the resulting residual is not Gaussian, with some large values. In order to assess

the effect of outlying (influential) observations, he has used some dummy (binary) variables. Then by using

four dummy variables, the skewness and kurtosis of fitted residuals are reduced substantially, but there is

some evidence that the fitted residuals are non-Gaussian.

The general message is that we should always look for influential data, since influential data pattern

may suggest a direction of modification.

Finally the following AR(3) model is fitted to the second part (201 ^ t ^ 361) of log 10 transformation

blowfly data.

X, = 0.64+1.03X_1—O.09X...2--O.12X,_r+e,,
(0.15) (0.08)	 (0.11)	 (0.08)

where Var(e) = 0.0115. The maximum lag is equal to 10 and the AIC criterion is employed for model

selection.



Fig. 8.3.1 Profile likelihood functions of model (8.3.1).
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CHAPTER NINE

MULTI-STEP NON-LINEAR LEAST SQUARES

PREDICTION

9.1. Introduction

Let [x} be some discrete time stationary stochastic process, which for the time being will be

assumed to be stationary. Suppose that we are at time t ( now) and we wish to forecast m units ahead to

time t +m (m hence), so that attention is directed to the random variable X. Any forecasting procedure

will have to be based on some information set, e.g. 	 the o-algebra generated by {x5 ; s ^ t}.

Since the variable to be forecast X is a random variable, it can be fully characterized only in terms

of a probability density function or some equivalent function. However, since the information set is to be

utilized we need to use a conditional density function, i.e.

Prob(x <X,, ^x+dx Infonnation set)= g(x)dr

where the subscript c denotes "conditional". If gc(x) were available, then all other properties of X,,, such

as the conditional mean E(X), could be immediately determined. However, in practice, it is generally

rather too ambitious to hope to be able to characterize fully X,,, and so we attempt the less ambitious task

of finding some confidence band for X,, or some single value, called a point forecast, that in some way

"best" represents the random variable X,,,.

To obtain any kind of best value for a point forecast, one requires a criterion against which various

alternatives can be judged. An intellectually satisfying way to proceed is to introduce the idea of a cost

function. Since forecast errors are virtually certain to occur in connection with a random process, suppose

that we can cost the effect of an error of size e to be C(e), with C(0)=O. One particular cost function

t The words forecast and prediction will be used interchangeably.



132

gives a rather tidy and easily used solution, and that is the function

C(e)= ae2

where a is some positive constant.

Suppose we wish to form an optimal point forecast ft,m (the point forecast of X,, based on the

information set at time r) of X, 4.,,, using the information set and a cost function C ( e).

The cost function will be assumed to have the properties that C (0) =0, C (e) is monotonic nondecreasing

for e >0 and monotomc nondecreasing for e <0. Let gc,m be the conditional probability density function of

X,, given X, , s ^ t, then the required optimal forecastf ,m , which will be a function of only X: , s ^ t, will

be found by choosing ft,m so that the expected cost is a minimum, i.e. minimizing

.1= Ic (x—f m)gcrn(x) dx.

In the case when C (e ) = ae2 with a >0, .1 becomes

J = 5a(x_f,)2g,(x) dx.

DeflneX,(m) to be the conditional mean of X,^,, givenX5 , s ^t, so thatX(m) = .Ixgcm(x)dz, then it can be

shown that

J = a (Xt(in)—fr,m)2 +aJ(x—Xt(m))gc,m(X)dX.

So j is minimized by taking ( Granger, C.W.J. and Newbold, 1986)

ft,m Ec (Xr . n IX: ,

In the Gaussian situation, where every finite subset of variables is normally distributed, this leads to

the important result that the optimal least-squares prediction of X,. N,, is a linear sum of the terms in

(x , s ^t}. It should also be noted that in this case g(x) is a normal distribution with mean X,(m) and

variance that does not depend on (x , S ^ t).

Let {X, :t=0,±l ,±2,	 ) be a second order stationary time series with zero mean and finite

variance which admits a strict linear representation,

X = a1e,_1 ,	 (9.1.1)
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where the e,'s are independent and identically distributed random variables with

E(e,)=O, Var(e,)=cr< cc , Vt.

Thus

E (Xi ) =0 and Var(X, ) =	 <cc•

Moreover, the linear representation is assumed to be invertible in the usual sense.

The problem is to find a linear forecast for X,^,, of the form

fr,m	 mZ—j

using a least-squares criterion. Thus, the Wjm need to be chosen so that

JE [(Xt.iin_Wj,mXtj)2J,
Jr')

iS flhiflilfliZed. Since ft,m is a linear function of X, therefore it will also be a linear function of current and

past e. Thus the forecastfr m = tPj,mer_j, is expressed in terms of the white noise e.
j4)

By letting t take the value t+rn, it is seen that J may be expressed as

ni—i	 -	 2
J = E	 _/,

which gives

J = ra+(aj.in-4pj,m)2.

it is immediately clear that J is minimized by taking

=

so that the optimal rn-step ahead forecast may then be written as

ft,,,,

and the rn-step ahead error will be

e,,	 1r.im,ft,m = Eaje._1.

Simply it follows that the errors have mean zero and variances given by

Var(e) = E(e) =
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which

li,nt Var(etm ) = Var(X1) = cy a <°°.

j

The sequence of error variances is seen to be monotonically nondecreasing. It thus follows that, when

using optimal linear forecasts, the further ahead one forecasts the worse one does, on average.

9.2. Non-monotonicity

As we have shown that for linear forecasting the conditional variance of erm given X , s ^ t, is a

monotonic nondecreasing function of itt. Resu1ts f this qçpe secm tn base ,ecexateithe. WLar ieItha

the further ahead we forecast the less "reliable" is the forecast However, as first pointed out in our abstract

in the January 1987 issue of the IMS Bulletin (Tong and Moeanaddin, 1987a) and in a concurrent technical

report (Tong and Moeanaddin, 1987b) and in Tong and Moeanaddin (1988), the belief could be misleading

with respect to non-linear least-squares predictors.

To demonstrate the point, let us consider first a simple strictly stationary bilinear time series model of

the type which has been studied extensively by Quinn (1982),

X = cxe1_1 X_2 +e,, t=O, ±1, •.. ,	 (9.2.1)

where {ef) is a sequence of independent and identically distributed random variables with E (es) =0, and

Var(e1 )= y < oo,andocj?<. Here,eis independent ofX,s<t.Cleariy0<Var(X,)<zoe,allt,and

let X(m) denote the conditional expectation and therefore the least-squares predictor of X,, given

X1 , s ^ t. To evaluate Var(X1..,,,—X(m)) conditional on X, s ^ t, we only need to evaluate Var con-

ditional onX, , s ^t. Let this be denoted by &(m). Simple calculation gives

ô(1) = Var(X +i IX , s ^t)

= Var (aeX,_i +e, 1 X , s ^ t)

=Var(ae,x,_1 +e,^1 X , s^t)

= Var(e1+i)

=

Var(X +2 IX , s t)

Var(ae,+jX+e+2 X3 , s ^ t)

= Var(e,^2)+crxVar(e^i)
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22cy2x2

= Var (X, 3 I X , s ^t)

= Var (a2e +2X,+j +ae, 1 e+2+e,+3 X , S ^ t)

=

etc.	 -

[Notice that ciVar(e,)< ensures that e, is measurable with respect to the a-field generated by

(x, , x,_1,	 }.] It is therefore clear that, as expected,

However,

if and only if x	 .	 (9.2.2)

Inequality (9.2.2) is an event with non-zero probability and has the interpretation that 3-step ahead predic-

tion need not be less 'reliable' than 2-step ahead prediction. In hindsight, inequality (9.2.2) simply reflects

the sometimes neglected fact that 'prediction accuracy' is also influenced by where we are cunently (i.e. at

time t) . This last observation is particularly relevant when we are dealing with cyclical data, to which we

turn our attention next. We shall also demonstrate that the nonmonotonicity just described is not pathologi-

cal.

9.3. Non-linear Models

Almost all of the specific non-linear models give rise to fairly straightforward one-step ahead least-

squares predictions. For more than one-step ahead least-squares predictions, the situation becomes radically

different.

9.3.1. Bilinear Models

As far as bilinear models are concerned, short-to-medium-term ( say up to five-step ahead) forecast is

manageable without straining the algebra too much and presumably with due regard to rounding enors,

recalling the multiplicative nature of the models. It should be noted that linear / non-linear modeLs (e.g. sub-

set bilinear model) axe used more often than full model in the time series literature. However, the results of

Copas (1983) on this kind of practice suggest its potential complication. Subba Rao and Gabr (1984) have
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given the method of calculating the optimal rn-step ahead (E ( X,.,, I X,,X,_1 ,	 ) X(m)) prediction of the

general bilinear model of the form (3.2.1).

In this section, very briefly, we will consider the multi-step ahead least-squares prediction of some

sub-classes of bilinear modeL

9.3.1.1. Superdiagonal Models

The first class to analyze are the super diagonal completely bilinear models, the general form of

which is

QP
E

k=1 1=2
k<l

where e is strict white noise, and a special case is

=	 k <1,	 (9.3.1.1.1)

which will be used here as a particular example. Assuming e, —N(O, at), it follows from (9.3.1.1.1) that

E(X) =0 and Var(X1) =	 provided	 <1. Suppose that the model (9.3.1.1.1) is invertible,

therefore knowledge of [x1 , . ,XN) implies the knowledge of {e 1 , ... ,eN).

Now

k,l^1.

Then the rn-step ahead prediction of this model is given by term

J3Er4m-kXt4..nl ifm^k

o	 ifm>k,

where X? and; are the observed values of the random variables X and e. Let V1(.) denote the

Var(.IX , S ^t), then

ifm^l
V(2(m)) = V,(X.+,,) =

	 if k <m ^l.

Form > lit can be shown that

V,(X,) =

and as m -400, we have

V,(X) = a2+f3204+f34cy6+...
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- 2+f32G4(l+f32T2+f34a4+---)

- 2+R2a4_1
C i_a

2

= 1f32

=Var(X).

93.1.2. Diagonal Models

The second group of models are diagonal models. The following special model will be considered

here.

X, =	 (9.3.1.2.1)

where it is assumed that the model is invertible and e1 —N( 0, at). From equation (9.3.1.2.1) it follows

thatE(X)=f3a and

- __________

Var(X)— 
12a

which is a necessary and sufficient condition for second order stationarity. Now -

=

X(m) =: E(Xt X,X,_1,")

t4n—kEt4nk ifm^k
=	

ifm>k,

and

V(X.) = Var(X. IX,X7_1,...)

= 2 V(X,

=cr if,n^k.

Form > k we have

=

= 2 [Ee.)—a4 i±cICj	 C

=

= 6 a6E(X2eZ)+3f34a62a42

	

= 3j32a4(1+22+f44+	 )J3242

1	
I322+
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-

= Var(X1 ) as m -3oo

9.3.1.3. Subdiagonal ModeLs

The third group of models which will be considered here are those of the form

k,j^1,	 (9.3.1.3.1)
where it is assumed that the models are invertible and e, -N(O,a). From (9.3.1.3.1) it can be shown that

E(X) = O and Var(X)=	 ,with2o<1.1_j32a

Now we can show that

X(m) = E.(X,)	 IX,,X,_j,...)

fX,4n-k14'n-k-j if m ^k+j
= f3E._JX(m-k) ifk-i-j<m^k

[0	 ifm>k,

and

V,(X,.) = Var(Z#m X,,X..i,)

=

2 jfm^k

= p2 c2.V(X ..)+a2 if k <n ^k+J,

andform >k+j we have

V(X)
=

=

where

______ 2= 2( G2 + . •	 = I-43o

Therefore, as m -

V(X,.)-' 
1-J32a	

Var(X).
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9.3.2. Non-linear Autoregression Models

The class of non-linear autoregression (NLAR) models for discrete time series has been studied

extensively for the past ten years. It has, however, apparently been thought that optimal least-squares fore-

casts for more than one-step ahead are difficult to obtain. In this section we will show that a simple

recurrence relation exists from which these forecasts can be calculated.

Without loss of generality, we restrict our discussion to the first order case:

= A.(X,_1)+e, r=O,±1, ±2,...,	 (9.3.2.1)

where [ej is a sequence of independent and identically distributed random variables with E(e)=O and

Var(e) = <oo, all t. Since we have a Markov chain over R, we may recall the Chapman-Kolmogorov

relation

f(x	 lx,) = Jf(x, lx,+i)f(x,+i lx,) cfr, 1 ,	 (9.3.2.2)

where f(x5 Ix,) denotes the conditional probability density function of X5 given X, x, (assumed to exist).

Suppose that model (9.3.2.1) is strictly stationary. (Sufficient conditions for strict stationarity are available;

see e.g. Tong 1987a.) Let g denote the probability density function of e,. Let k denote a well-behaved (i.e.

Baire) function of X, and suppose E(lk(X,)l)< oo. Let Km(X,) denote the conditional expectation

E (k(K,.,) IX,). Equation (9.3.2.2) gives immediately

Km(x) = IKm_i (Xt+i )f(Xt+i Ix,)dr,+i ,	 (9.3.2.3)

or

Km(x)=JKm_iy)g(y4.(x))dy, 	 (9.3.2.4)

where K 1 (X,) = E(k(X, 1 jX, =x,) = X(x). Equation (9.3.2.4) gives, in particular, recursive formulae for

conditional expectations and conditional variances. These axe the type recently discussed by, e.g Al-Qassem

and Lane (1987) and Pemberton (1987) as alternative to the methods developed by Jones (1976).

Apparently, without realizing it, Al-Qassem & Lane (1987) and Pemberton (1987) have actually implicitly

used the Chapman-Kolmogorov relation, except that they have used it in two different ways. Except for

special cases of ?. (e.g. the linear case), the integral in equation (9.3.2.4) does not readily admit analytic

solution and numerical integration is commonly the only solution. Needless to say, if numerical integration
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is employed, care must be taken to handle accumulation of rounding enors. An alternative method which is

especially useful for higher order autoregression models is the Monte Carlo method. Here, a sufficiently

long record of data is simulated in accordance with the model (i.e. equation (9.3.2.1) or its higher order

generalization and the given values X,,X,_1 , , as the starting point ) and the sample estimate of Km(x) S

taken as an approximation of Km(X). Details of comparison will be given later. Suffice it to say that both

methods give reasonable approximations.

It is clear that Km(x)constant is one solution of (9.3.2.4) for the case in oo • In fact, this is the only

solution within our context, which can be shown by appealing to results in the martingale theory (Russel

Gerrard, private communication). Thus, in our case, the remote past plays no material role in prediction.

For the general non-linear autoregressive model of order k (NLAR (k)), of the form

X =?(X1_i)+e,

where Xr = (X,,X1_1 , . .. ,X,.1 )TERk and e, a sequence of zero mean, independent and identically distri-

buted random variables, and :Rk+R, the following recursive integral equation ( using the Chapman-

Kolmogorov relation) can be obtained

Km(X) = 1Km _i (Xk+1) g Xk^j—?X)) drk+1,	 (9.3.2.5)

where Kj(x)=A.(x) andx=(xk,xk...l , . . . ,1)T

Note that for NLAR (k), the prediction functions axe of course functions of k variables and that calculation

Of Km(X) requires knowledge of Km_i (xk+i ) for a range of Xk+1 n R' and not, as it may appear from (9.3.2.5),

only for a range of the first component of x. Thus the problem is one of extensive numerical evaluation

over Rk.

Clearly for a threshold autoregression, SETAR(2; 1,1), of the form

= X(X,_ )+e

where X(x)=a-i-ax, xE (r1 _1 ,r] , i=1,2,3,...,l with .-oo=r0 <r 1 <	 <r,=oo, and (a , a) are the 1

pairs of constants coefficients, equation (9.3.2.4) simplifies to

Km(X) =	 I K_1 (y)g(y-2x))dy,	 (9.3.2.6)
j=l i,..,

with boundary condition
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K1(x)=A.(x).

In practice, we may employ some Gauss-type formula to generate an appropriate set of points

x 1 ,x 2, ",x, with corresponding weights w,w2 ,	 ,w and by using the recursive formula (9.3.2.6) a

sequence of prediction values can be obtained. In our expenments, NAG routine DO1BBF is employed to

generate an appropriate set of points and consponding weights.

As a check on the method of numerical integration and Monte Cailo method., they have been applied

to obtain the conditional variance of rn-step ahead prediction error of the linear AR(2) process

1.7X,_ —O.8X1_2 +e,	 (9.3.2.7)

where e, —N(0, 1). The results with 1000 replications in Monte Carlo method, axe given by Table (9.3.2.1).
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Table (9.3.2.1)

m theoretical numerical Monte Carlo

1	 1.00	 1.00	 1.00 -

2	 3.89	 3.89	 3.89

3	 7.26	 7.26	 7.22

4	 12.07	 12.07	 12.14

5	 16.29	 16.29	 16.47

6	 19.33	 19.33	 19.23

7	 21.05	 21.05	 21.17

8	 21.76	 21.76	 21.50

9.33. Two Experiments

To investigate the influence of the skeleton Le. the equation x = A.(x_1 ) without the noise (i.e. flesh),

on the multi-step prediction of (9.3.2.1), we conduct two experiments. (The term skeleton was first intro-

duced in the present context by Tong, 1987a). It carried a different meaning from the conventional

definition in the theoiy of Markov Processes. However, our usage is closer to the conventional meaning of

the woni in everyday English).

On using the numerical integration technique with accuracy to more than two decimal places, Table

(9.3.3.1) gives the results of the two experiments. In experiment I, x0 =4.0435 and

1.5—O.9x ifx^0
—O.4-0.6x if x>0, 	 (9.3.3.1)

andinexpenmentll,x0 =5.0 and

I 1.5—O.7x ifx^0
X(x)= fi.o+o.x ifx>0.	 (9.3.3.2)

In each experiment, e —N(0, az).
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Table (9.3.3.1)

Expenment I

a=0.4	 I	 a=1.0	 I	 a=2.0

m X0(m)	 &(m)	 X0 (m)	 &(in)	 X(m)	 &(m)

1	 -2.8262	 0.4000 -2.8261	 1.0000 -2.8261	 2.0000

2	 4.0435	 0.5381	 4.0392	 1.3571	 3.9151	 2.8761

3	 -2.8261	 0.5141	 -2.8177	 1.3076 -2.5339 2.9890

4	 4.0435	 0.6116	 4.0092	 1.6107	 3.5602 3.6110

5 -2.8261	 0.5428 -2.7736	 1.4859 -2.1061	 3.5869

6	 4.0435 0.63 14	 3.9524 1.7772	 3.1537 4.0278

7 -2.8261	 0.5509 -2.7073	 1.6497	 -1.6943	 3.9603

8	 4.0435 0.6371	 3.8805	 1.9228	 2.7753 4:2814

9 -2.8261	 0.5533	 -2.6309	 1.8038	 -1.3321	 4.2007

10	 4.0435 0.63 87	 3.8022 2.0557	 2.4444 4.4415

11 -2.8261 0.5540 -2.5508	 1.9454 -1.0225 4.3601

12	 4.0435 0.6392	 3.7217 2.1769	 2.1615 4.5453

13	 -2.8261	 0.5542 -2.4701 2.0741 -0.7604 4.4685

14	 4.0435 0.6393	 3.6414 2.2871	 1.9217 4.6137

15 -2.8261 0.5542 -2.3902 2.1905 -0.5394 4.5438
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Expenment II

cy =0.4	 a=1.0	 I	 a=2.0

n X0(m)	 &(m)	 X0(m)	 i(m)	 X0 (m)	 &(m)

1 5.0000 0.4000 5.0000	 1.0000 5.0000 2.0000

2 5.0000 0.5 123 5.0000	 1.2806 5.0091 2.5477

3 5.0000 0.5727 5.0000	 1.4315 5.0524 2.7939

4 5.0000 0.6082 5.0003	 1.5198 5.0159 2.9150

5	 5.0000 0.6299 5.0007 	 1.5731	 5.1551	 2.9802

6 5.0000 0.6433 5.0012	 1.6058 5.1966 3.0177

7 5.0000 0.6518 5.0018	 1.6260 5.2300 3.0401

8 5.0000 0.6572 5.0024 1.6387 5.2565 3.0542

9 5.0000 0.6606 5.0029 1.6466 5.2772 3.0633

10 5.0000 0.6628 5.0033	 1.6515 5.2934 3.0693

11 5.0000 0.6642 5.0037	 1.6546 5.3058 3.0734

12 5.0000 0.6651 5.0040	 1.6566 5.3154 3.0763

13 5.0000 0.6657 5.0042 1.6578 5.3228 3.0784

14 5.0000 0.6660 5.0044 1.6586 5.3285 3.0799

15	 5.0000 0.6663 5.0046	 1.6591 5.3329 3.0810

[Note: &(m)='/Var(XmlXo)].

Some comments ait in order.

(i) Let ?J"(x) denote (( . . (2.(x))	 ), the rn-fold application of ?.. With decreasing signal-to-noise

ratio, the difference between X0(m) and A.m(x0) increases.



145

(ii) For model (9.3.3.2) which admits only a periodic atiractor of period one (i.e. ? m(x) -45.0 as

m —* oo , Vx), &(m) is a monotonic increasing function of in for all three choices of a. The limit is clearly

Var(X,).

(iii) In contrast, for model (9.3.3.1), which admits a periodic attractor of period two at

C = [-2.8261 , 4.0435), (i.e. ??"(x) —* C as m —* oo, Vx), we observe that for a= 0.4 and 1.0,

&(1) < .&(3) < .&.(5) < •.. ^ Var(X1)

and

^Var(X,).

However, &(2m)&,(2m +1), in =1,2.....It is clear that it would be interesting and important to establish

the precise role of periodic attractors in m-step ahead prediction. We leave this challenging problem to

future research.

(iv) Gerrard (private communications, 1987) has given heuristic explanation of points (ii) and (iii),

which runs in the same spirit as Tong (1983), pp. 107-1 14 and p. 192). If?, has a limit cycle of period r say,

i.e.

m(X)	 {c i ,c2, . .. ,cj , asm—*co,

where

, i1,2,...,r-1 ,X:cr —*c j ,

then the stationary density is of the form•

(g1(x—c1)+g2(x---c2)+"

where g, is a density function with variance a, tending to a s-function as the noise vaxiance tends to zero.

Therefore, unless c,'s axe all equal (which may be shown to be the exception rather than the rule) monoton-

icity of &(m) mm will not be obtained.

93.4. Prediction from SETAR Models

Tong and Wu (1981) have conducted a fairly extensive study on the multi-step ahead forecast perfor-

mance of SETAR models for sunspot data. Generally in the case of SETAR model, the prediction problem

becomes very easy for at most up to d-step ahead ( d being the delay parameter). The main point is that we
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know which branch in the SETAR model the future prediction data belongs to. In this case similar to the

linear autoregressive model we can easily obtain the point forecast and the conditional variance of predic-

tors. Obviously in more than d-step ahead prediction it is difficult to choose a reasonable linear autoregres-

sive branch instantaneously in the SETAR model to predict the new future value. In this case we have to

use the formula (9.3.2.5) to calculate X,(d^l), &,(d+1) ,... and so on.

To show the performance of Monte Carlo method in approximation of rn-step ahead forecasting of

non-linear models, the following example is in order.

To the Wolf s annual sunspot numbers for the period (1700-1979) after an instantaneous square root

transformation, Ghadder and Tong (1981) fitted a threshold autoregressive (SETAR(2;9,2)) model. Let X

denote the sunspot number for the year 1699+t (t =1,2, ...,280), and let '1 = 2[ (X+1) —1]. Then the

SETAR(2;9,2) model for (YJ with d 8 is given by

1.89+O.86Y_i0.08Y7_3+0.l6Y0.21Y1..5

if Y-8 ^ 11.9284
-	 (9.3.4.1)

4.53+1.41Y_1 —O.78Y_2+42	 if Y...8 > 11.9284,

where Var (e') = 1.946, Var(eF) = 6.302 and pooled Var = 3.734. Using the above model, we can obtain

the exact multi-step ahead forecasts of the transformed series i.e. (yJ, for eight years. Having the exact

point forecast and the exact conditional variance of the predictor of Y,,, and under normality assumption

of e' and we may use the following relations and calculate the exact conditional mean and conditional

variance of X, m =1,2,..., 8.

Y2
= 2[(X,,^1) —ij is equivalent to	 =	 The optimal rn-step ahead point forecast of

series X, is given by

E(X) = E(X II lXt,Xf_l,

=

=

Similarly
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V,(X,) =

= -j-E7 (Y	 fE,(Y)+--E(Y)--X(m)

=

+ & (m)^Y(ni)+ {3(m)(m)+i (m)]-X(m),

where (m)=V1(Y1.)=Var(Y,. IY 'Y,_i , ").

In our Monte Carlo study, we simply record the simple back-transfonnation of the simulated data,

and then we use the sample mean and sample variance of 1000 simulated series as an approximation of

X(m) and (m). The results are given m Table (9.3.4.1).

Table (9.3.4.1)

Theoretical (exact)	 Monte Carlo

?n	 X1(m)	 &(m) X,(m) &(m)

1	 162.5	 32.02	 162.6	 32.05

2	 144.0	 30.86	 144.3	 30.89

3	 102.8	 27.99	 103.1	 28.07

4	 65.8	 19.89	 66.0	 19.84

5	 35.1	 14.36	 35.3	 14.37

6	 19.5	 10.27	 19.5	 10.29

7	 19.5	 14.62	 19.5	 14.76

8	 31.3	 15.96	 31.1	 25.96

It can be seen that the performance of the Monte Carlo method is quite remarkable. Our experiments

show that similar accuracy can be achieved for the bilinear model.

To compare the perfonnance of the multi-step ahead prediction of SETAR and bilinear models on
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real data, we choose the following SETAR(2;3,1 1) and the subset bilinear model which is fitted to the same

period (1700-1920) of the sunspot numbers. The SETAR(2;3,11) which is reported by Tong (1983) is given

by

	

11.97+1.7 1X._1 —1 .26X,_2+0.43X,_3+e	 if X1_3 ^ 36.6

X, = 7.84^0.73X_1 —0.04X,_20.2QX,..+0.16X1. 	 (9.3.4.2)

0.23X,.02X+0.15X,...7—O.24X,

	

+0.31X,.-0.37X_io+0.38X,_11+e)	
ff X,_3 > 36.6,

where Var(e')=254.64, Var(e 2 )=66.80 and pooled Var= 153.7. The subset bilinear model which is

reported by Gabr and Subba Rao (1981) is given by

= 6.8860+1.5012X_i —O.7670X_2+0. 1 152K
	

(9.3.4.3)

—0 .01458X,...2 e,_1 +0 .0063 12X1 ..8 e_1 —0.007152X,_i e1_3

+0.O06047X,e,...3+0.0O3619X.. i e..+O.O04334X,_2e,..

+0.001782X,_3e,_2+e,,

where Var(e) = 124.33.

The point forecast together with the error bounds (X(m) ± &1(m)) of models (9.3.4.2) and (9.3.4.3)

are given by Figs 93.4.1 and 9.3.42 respectively. The non-monotonicity of &(m) for both modeLs are quite

clear.

For comparison., we also considered the linear autoregresive A.R(9) model which is fitted by Gabr and

Subba Rao (1981) to the mean deleted sunspot data with the same period (1700-1920). Their fitted linear

autoregression model is given by

= 1.2163X,_1 4670X_2-0.1416X_3 +0.1691X	 (9.3.4.4)

—0.1473X_5+0.0543X,..--0.0534X_7+0.0667X.4

+0.1129X+e,

where Var(e) = 199.27. Fig. (9.3.4.3) shows the point forecasts and the error bounds of the linear model

predictions.

Some comments are now in order
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(i) Over the short period of (l92l-1935)(especially for the first five years) the performance of

SETAR model prediction is better than the other models.

(ii) Associated with the SETAR model, for the non-linear predictors of peak value those are greater

conditional variances.

(iii) Notice that the vertical lines at the troughs in Figs. 9.3.4.3 and 9.3.4.2 have a greater tendency

(especially in Fig. 9.3.4.2) of extending below zero into the negative regime, sometimes quite substantially.

Note that the values of X,(m) and &(m) in the bilinear case form >6 and in the SETAR case form >3 =d

are obtained by Monte Carlo method with 1000 replications.

93.5. Bias Correction of Forecasting Transformed Series

Suppose that a time series analyst has derived a model for a series Y = f (X) , an instantaneous

transformation of time series X,, where f(.) is some well behaved function and thus can forecast the series

Yr. How should forecasts of X be formed ? It is generally accepted that the simple back transformation of

Yr as a forecast of Xr is biased, and a bias correction method is needed. This problem has been studied by

Granger and Newbold (1976), but it does not seem to be possible to apply their method to the non-linear

models.

The bias due to the square root transformation or more generally any smooth one to one instantane-

ous transformation, may be corrected to a large extent by appealing to the usual 6-technique. Specifically,

letf be a smooth one to one map from x toy. Let g denote the smooth inverse map. Suppose that a model is

fitted to the transformed series (j and we wish to forecast the original series (x,}. Let BF) denote the

a-algebra generated by [x1 , sat). B may be defined in a similar way. Now

E[XrIB1=Er.in)IB:]

IB')

+ E[(Y,..,,_Y,(m))2g"(Y,(m)) B

= g(Y,(m))+g"(Y,(m)) Var{Y IB')i

In other words, we only need to adjust the naive forecast g(Y(m)) by the correction term specified above.

Note that the conditional variance of rs is involved in the correction term. A similar argument yields
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Var[X,..,,, IE x) ] [g'(Y,(m))]2 Var[Y,..,,, B?'1.

Lety =2[(x+1)-1]=f (x). Thus g(y)=fi(y)=(1+.ijy)2_1 and g '(y)= 1+--y and '()= f
Table (9.3.5.1) shows the results of applying the the above bias correction method to the sunspot predicted

numbers of SETAR model (9.3.4.2) under Box-Cox transformation with ? = 0.5.

Table (9.3.5.1)

lead	 naive	 theoretical	 bias corrected	 Monte Carlo

time

	

m	 X(m) I	 I X,(m)	 (') I	 I X(m)

	1
	

160.9	 -	 162.5	 32.02	 162.5	 31.10	 162.6	 32.05

	

2
	

142.4	 -	 144.0	 30.86	 144.0	 30.95	 144.3	 30.89

	

3
	

100.9	 -	 102.8	 27.99	 102.8	 28.12	 103.1	 28.07

	

4
	

64.3	 -	 65.8	 19.89	 65.8	 19.99	 660	 19.84

	

5
	

33.7	 -	 35.1	 14.36	 35.1	 14.50	 35.3	 14.37

	

6
	

18.1	 -	 19.5	 10.27	 19.5	 10.43	 19.5	 10.29

	

7
	

16.7	 -	 19.5	 14.62	 19.4	 15.11	 19.5	 14.76

	

8
	

25.6	 -	 31.3	 25.96	 31.1	 27.08	 31.1	 25.96

The performance of the bias correction method and the Monte Carlo procedures are remarkable. Note

	

that variance is a	 non-linear operator, therefore using the simple minded back Iransformation of	 as

a naive conditional variance of X.M, is not valid.

9.3.6. A Comparative Study of Linear, Bilinear and SETAR models in Predicting sunspot numbers

To assess the performance of some non-linear models by reference to the Monte Carlo and bias

correction method, we considered a number of SETAR models which have been fitted to raw and

transformed sunspot numbers and the bilinear model (9.3.4.3). The linear model (9.3.4.4) is also considered

with a view to comparison.
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Let	 denote the sample mean square error of rn-step ahead predictions given by

2	 1 N-rn

& (m)= -	 (X,,,—X,(m))2 , ,n=1,2,...,	 (9.3.6.1)
IV—t t,=i-rn

where N is the number of data (sample size ) and t is the starting point of forecasting.

Smaller sample mean square error of prediction, means a better performance of prediction.

Tong (1983) has reported three different SETAR models with the Serial numbers AS7133, BS8103

and CS8 103 (see Tong, 1983 p. 253) which are fitted to the different period of raw and transformed sunspot

numbers.

Tong and Lim (1980, p. 261) have fitted a threshold autoregressive model to the annual Wolf's sun-

spot numbers of (1700-1920), using the data bank available at the University of Manchester Institute of Sci-

ence and Technology at the time, which contained the data only for the period (1700-1955). We have listed

in Table (9.3.6.1) and (9.3.6.2) the prediction results of the SETAR models and those of linear, subset

linear and subset bilinear models fitted by Gabr and Subba Rao (1981) using Akaike's Information Cri-

tenon. The fitting period of the linear (equation 9.3.4.4), bilinear (equation 9.3.4.3) and SETAR(2;3,1 1)

(equation 9.3.4.2) and subset linear model (equation 9.3.6.2) and the prediction period for all models are

identical. These are (1700-1920, fitting period) and (1921-1955 and 1956-1979, prediction periods). The

prediction period of (1921-1955 and 1956-1979) represent roughly three and two sunspot cycles and the

latter period (1956-1979) is so chosen to retain some realism in the comparison (risky prediction) since

these data were unknown to Tong & Lim and Gabr & Subba Rao at the time of fitting their models.

Another motivation is to investigate the robustness of various forecasts to unusually influential observations

like 1956. The period (1980-1987) is reserved for further experimentations.

Tables (9.3.6.1) and (9.3.6.2) show the results of the performance of these models. Note that the sub-

set linear model which is reported by Gabr & Subba Rao (1981) is given by

= 1.2496X,_j -0.5510X_z+0.1450X_c+e,	 (9.3.6.2)

where Var(e)= 203.21.
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161.90

562.53

593.24

650.09

613.15

584.16

508.12

531.76

518.80

520.93

562.99

65031
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Table (9.3.6.1)

period 1921-1955

smplc full AR(9) ub.AR(9) SETAR(23.11) bilinw SEFAR(AS7133)
	

SETAR(BSIO3	 SETA1S8103)

ic.

MSE
	 na,v I bio.d	 ua	 I bhn,ctod

	

199.27	 803.21

	

190.87	 216.09

	

2(2)	 414.75	 429.97

	

a2 (3)	 652.07	 676.22

	

791.32	 650.09

	

2(5)	
770.84	 775.86

	

2(6)	 786.40	 797.50

	

ac7)	 789.01	 814.67

	

a(8)	 827.79	 860.76

	

a2 (9)	 862.06	 899.37

	

895.58	 936.34

	

&(11)	 9*2.82	 104030

	

1168.52	 1247.49

153.7	 I 124.33

153.88	 133.79

38835	 337.60

672.67	 569.69

641.16	 621.29

83531	 718.43

903.67	 732.42

993.83	 781.65

1083.60	 833.18

1111.91	 903.61

1124.56	 961.93

117335	 1013.80

1304.26	 1139.21

	

3.69	 3.12

	

120.63	 115.01	 119.fl	 115.05

	

31031	 271.16	 303.94	 267.13

	

563.28	 47536	 549.84	 467.49

	

641.16	 530.65	 621.29	 516.81

	

714.76	 589.11	 691.14	 570.91

	

758.01	 619.93	 132.06	 603.04

	

780.22	 629.91	 75131	 610.89

	

828.22	 663.03	 79638	 641.63

	

873.57	 694.32	 836.52	 666.58

	

930.07	 734.18	 886.15	 702.41

	

98832	 77536	 941m	 140.29

	

1071.68	 84127	 1022.56	 803.83
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T.bk (9.3.6.2)

piiod 1956-1979

full AR(9) .ub...t AR(9) SErAR(23. 11) 	 bilrn.r	 SETAR(AS7133)
	

SEFAR(BS103	 I	 SFFAR(cS81O3)

MSE	 naive I bi.. co,mctod I naive I bin. ooiveod

152.31

504.26

1051.28

1099.28

939.11

896.72

353.65

439.73

57573

563.97

71 6.90

7024$

692.5)

	

199.27	 203.21

	

82(3)	 525.70	 493.85

	

1049.10	 1006.18

	

970.11	 905.93

	

82(4)	 747.12	 712.30

	

618.33	 577.36

	

82(6)	 603.61	 560.57

	

640.95	 611.79

	

82(8)	 565.08	 590.24

	

619.68	 652.30

	

82(10)	 660.25	 687.23

	

684.67	 676.42

	

62(12)	 308.98	 758.12

153.7	 124.33

428.10	 21122.90

109643	 14651.21

946_So	 592805.76

900.77	 174075.50

773.59	 126232.63

866.21	 152870.92

908.09	 174587.72

880.36	 140566.50

929.24	 89642.94

	

955.55	 59455.70

	

1058.96	 71424.98

	

1275.26	 151970.92

	

3.69	 3.72

	

438.03	 412.79	 433.44	 414.02

	

1133.09	 993.93	 1102.66	 982.22

	

1370.27	 1128.74	 1320.17	 1098.70

	

1266.03	 1025.79	 1264.03	 988.60

	

1111.87	 901.53	 1079.01	 875.21

	

906.58	 720.99	 88149	 698.64

	

944.96	 757.455	 916.60	 653.55

	

855.07	 674.51	 812.72	 634.83

	

865.64	 702.72	 83047	 668.78

	

816.79	 632.48	 777.61	 620.42

	

85433	 685.21	 816.57	 645.38

	

989.16	 736.30	 937.34	 736.99

Considering the results of Table (9.3.6.1), it is clear that the short term forecasting of SETAR(2;3,1 1)

and bilinear model are better than linear models. The SETAR(CS8103) has the best performance for all m,

and SETAR(AS7133) has a quite good perfomiance over the short term predlictions. Although the bilinear

model has a better performance for the first period than the SETAR(2;3,11) and SETAR(BS 103), the per-

formance of SETAR(AS7133) after five steps is better than bilinear model. Among those models with the

same fitting period, the perfonnance of non-linear models over short term prediction are better than linear
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models.

A very poor performance of the bilinear model in predicting sunspot numbers, over the second period

(i.e. 1956-1979) may be due to non-invertibility of this model (See chapter four) and the effect of the

influential observation at 1956. In the former case it seems that the SETAR and linear models except in the

2-step ahead prediction are not seriously affected by this influential observation. For the bilinear model, the

affect of the 1956 observed value has carried on for quite a long time, which seems to be due to the product

terms of e and X.

The prediction results of SETAR models after correcting the bias seems to give a good support for our bias

correction method.

Despite the encouraging performance demonstrated in Table (9.3.6.2), as far as medium to long range

forecasting is concerned our limited experience suggests that a linear multi-step ahead forecast often pro-

vides a robust bench-mark especially in dealing with a fairly complex situation. Now, it is well known that

the Wolf's annual sunspot numbers represent one such complex situation. (See, e.g. Tong 1983, p. 230).

For example, the rise fmm 38.0 in 1955 to 141.7 in 1956 is unusually steep.

93.7. Combination of Forecasts

From Table (9.3.6.2) it is clear that the non-linear forecast of SETAR(2;3,1 1) out performs the linear

forecast over the short range, the reverse is true over the longer range. Closer investigation reveals that

whilst the non-linear (SETAR) forecast does a better job than a linear forecast over the 'troughs', the

reverse is true over the 'peaks. See the results of Table (9.3.7.1).
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Table (9.3.7.1)

peiiod (1921-1955)

Full AR(9)	 I	 SETAR

Combination

(m) below the above the	 over	 below the above the	 over	 fbmeast

mean	 mean	 all	 mean	 mean	 all

&2.	 199.270	 153.710

2(1)	 319.314	 649.528	 525.698	 101.848	 693.617	 422.389	 422269

524.930	 1386.058	 1049.095	 135.520	 1579.983	 951.956	 873.047

472.676	 1314.480	 970.106	 131.457	 1516.083	 886.707	 766.840

&2(4)	 420.746	 991.899	 747.119	 107.278	 1549.852	 862.912	 560.380

&2(5)	 408.146	 790.305	 618333	 290.332	 1287316	 738.974	 4.60.611

&2(6)	 362.916	 778.666	 603.613	 87.201	 1619.232	 812.900	 443.408

340.204	 881348	 640.951	 112.816	 1553.409	 833.112	 490.115

&2(8)	 278.068	 820.207	 565.083	 41.246	 1701.446	 822316	 407398

&2(9)	 303.954	 865.245	 619.680	 49.513	 1477.544	 852.780	 462.638

(10) 349.445	 867.454	 660.250	 23.627	 1469.052	 890.882	 488.420

(11) 433.262	 873.236	 684.675	 213.992	 1412.040	 984.166	 580.982

&2(12)	 709.895	 870.906	 808.979	 626.640	 1652.273	 1178.904	 620339

This therefore suggests that it might be profitable to combine the two forecasts so as to exploit their

complementaiy preformances. The final column of Table (9.3.7.1) gives the results when the non-linear

forecasts (NL) and the linear forecasts (L) are combined in the following manner. (Let M stand for the his-

torical mean over the fitting period 1700-1920):

If both NL and L ^ M, then adopt NL.
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If both NL and L > M, then adopt L.

If NL ^ M, and L> M, then adopt --(NL+L).

IF NL > M and L ^ M, then adopt FL+NL).	 -

Our combination rule implies a probability distribution of combination weights of forecasts which is

'self-excited' by the forecasts themselves (c.L Granger and Newbold, 1986). Our approach seems to be

closer to an empirical Bayes approach in spirit. Accordingly, we should emphasis the pragmatic (empirical)

nature of our results in this respect at present.

Finally, we return to the multi-step ahead prediction of Tong-Jim's threshold autoregressive model

and Subba Rao-Gabr's linear autoregressive model for the period of 1980-1987. The point forecasts are

shown in Figs (9.3.7.1) and (9.3.7.2) and Table (9.3.7.2).

Table (9.3.7.2)

ycar obcrvationa	 lincar	 prcdiction SETAR prediction combination prediction

forecast	 error	 forecast	 error	 forecast	 error

1980
	

154.7
	

162.8	 .8.1
	

174.7
	 .20.0
	

162.8
	 .8.1

1981
	

140.5
	

133.5
	

7.0
	

1473
	

-7.0
	

133.5
	

7.0

1982
	

113.9
	

913
	

244
	

924
	

233
	

913
	

233

1983
	

66.6
	

533
	

133
	

62.9
	

3.7
	

53.3
	

13.3

1984
	

45.9
	

23.1
	

22.8
	

24.1
	

21.8
	

24.1
	

21.8

1985
	

17.9
	

4.6
	

133
	

12.6
	

5.3
	

12.6
	

53

1986
	

13.4
	

2.0
	

114
	

0.2
	

13.2
	

0.2
	

13.2

1987
	

29.2
	

21.1
	

8.1
	

10.8
	

184
	

10.8
	

18.4

MSE
	

2224
	

253.9
	

237.9

[Note: The base year is 1979]
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It seems that the adverse effect of the 1956 datum on the threshold prediction performance has sub-

sided. With a mean-squared error (MSE) of 253.9, the non-linear forecast compares nearly well with the

performance of the linear forecast(MSE at 222.4). The combination forecast as prescribed earlier again

gives an improvement over the non-linear prediction with a lower MSE at 237.9. See Fig (9.3.7.3) and

Table (9.3.7.2).

It could be argued that we should adjust our forecasts/models in the light of the rather influential

datum of 1956. For example, the parameters of the models could be more robustly fitted by modifying the

least-squares method. Also, in the bilinear case it is veiy important to check the invethbility of the fitted

model especially if forecasting is the major concern. However, is the adjustment really relevant prior to

1956? It would nevertheless seem worthwhile to explore the possibilities of a combination of forecasts in

the manner that we have experimented with as a means of reducing the adverse effect on prediction of

unusually influential prospective observations.

9.3.8. Risky Prediction of Wolf's Annual Sunspot Numbers

Ghaddar and Tong (1981) have fitted a threshold autoregressive,SETAR(2;9,3) model to the square

root transformation of Wolf's annual sunspot numbers, on this basis they derived risky predictions for the

period (1980-1987) and their results were in print in 1981. The model is given by equation(9.3.4.1). How-

ever, at that stage of the development, &(m)'s were not available for their point forecasts. The situation may

now be remedied as shown in Fig. (9.3.8.1). Shown in Fig. (9.3.8.2) ares the risky prediction of sunspot

numbers after correcting the bias.

The linear autoregressive model for the original i.e. untransformed, sunspot numbers, which has been

selected by Akaike's information criterion, is given by

= 6.9627+1.2064X1 _y0.4507X_2 O. 1747X,_3+O. 1974X1	(9.3.8.1)

—O.1366X,_5+O.0268X,-FO.0128X,_7 —O.03 l2X,

+02123X,+e1,

where Var (es) = 221.2366. Fig. (9.3.8.3) shows the risky prediction of linear autoregressive model.

Some comments are now in onler.



2746X489X.5+O.0257X

(9.3.8.2)
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(i) Over the period (1980-1987), it would appear that the non-linear prediction has consistently out-

performed the linear prediction by a noticeable margin in respect of X,(m) —X, . However, associated

with the non-linear predictors of peak values are greater conditional variances.

(ii) Notice that the vertical lines at the troughs in Fig. (9.3.8.3) have the tendency of extending below

zero into the negative regime, sometimes quite substantially. In contrast, the vertical lines in Fig. (9.3.8.2)

have all managed to steer clear of the negative regime. It may also be remarked that the 'coefficient of vari-

ation', &(m)/X,(m), fluctuates quite violently over m in the linear case but much less so in the non-linear

case. The ranges are 0.09 —4.92 and 0.19 — 1.01 respectively.

(cf. approximately 0.8 for the coefficient of variation of the data).

(iii) The non-linear forecasts for (1988-1993) seem to be much vaguer than their linear counterparts.

Both approaches appear to forecast that (1988-1993) will correspond to an 'upward' swing of a sunspot

cycle.

For completeness, we fit a linear autoregressive model of order 9 to the first 280 square root

transformed sunspot numbers. The model which has been selected by Akaike's information criterion is

given by

= 1.6019+1.2212X_1-0.4896X,_2--O.1579X_3

where Var(e) = 4.0560. To avoid bias due to square root transformation, we have calculated the raw riskY

prediction of linear and SETAR models (equations 9.3.8.2 and 9.3.4.1) for the period (1980-1987). The

results are given in Table 9.3.83 and FIg. 9.3.8.4. Again the performance of SETAR model in predicting

the sunspot numbers is quite clear.
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Table 9.3.8.3

year observations	 linear prediction SETAR prediction

forecast	 error	 forecast	 error

1980
	

22.96
	

22.19
	

0.76
	

23.38	 -0.42

1981
	

21.79
	

2022
	

1.57
	

21.95	 -0.16

1982
	

19.62
	

16.16
	

3.46
	

18.19
	

1.43

1983
	

14.44
	

12.52
	

1.92
	

14.16
	

0.28

1984
	

11.70
	

8.77
	

2.93
	

9.78
	

1.92

1985
	

6.69
	

6.54
	

0.15
	

6.74	 -0.05

1986
	

5.59
	

5.71
	 -0.12
	

6.41	 -0.82

1987
	

8.99
	

7.60
	

1.39
	

8.32
	

0.67

MSE
	

3.66
	

0.89

9.3.9. Linear Non-Gaussian Autoregressive Model

Li and McLeod (1988), have fitted a linear non-Gaussian autoregressive model of order 2, for the

period (1700-1955), to the sunspot data. Their model is given by

= 1.6759X,_i -O.7840X_2-l-a,	 (9.3.9.1)

where a is log-normal distributed with estimated mean 13.88 and variance of 153.39 . Although the resi-

dual variance of 153.39 is comparable to that of the threshold autoregressive model (equation (9.3.42)),

and it is better then tbe Gaussian linear autoregressive model (equation (9.10.3.4.4)), they have claimed that

the non-Gaussian linear model (equation (9.3.9.1)), is certainly more parsimonious.

It may be interesting to see how comparable is the mean of model (9.3.9.1) with the historical mean

of data. Under the stationarity assumption it is easy to show that the mean of model (9.3.9.1) is equal to

128.4, which is quite different the historical mean of data which is close to 43.

To see the performance of this non-Gaussian linear model in predicting sunspot data, we calculate the

risky prediction of model (9.3.9.1) over the period (1956-1979), i.e. 24 points. For comparison, we have
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also included the results based on the linear Gaussian autoregressive model of ouler 2 which is fitted

(based on the AIC criterion) to the same period (i.e. 1700-1955) of sunspot numbers. The model is given

by

14.0531^1.3605X,_1-0.6706X_2+e,,	 (9.3.9.2)

where Var (e1 ) = 232.41 . The sample mean square error of rn-step ahead prediction of these two linear

models are given by Table (9.3.9.1).

Table (9.3.9.1)

Lead	 Linear	 Linear

time Gaussian Non-Gaussian

1	 656.38	 710.12

2	 1689.70	 2345.89

3	 2054.01	 4445.43

4	 1981.48	 6759.83

5	 1692.54	 8830.82

6	 1476.65	 10193.57

7	 1491.94	 10303.46

8	 1356.90	 9988.48

9	 1495.60	 9244.70

10	 1530.11	 8412.47

11	 1603.09	 7964.47

12	 1844.03	 7951.79

On looking at the two linear models (Gaussian and non-Gaussian) more closely, it seems that the

constant term of the Gaussian linear model(i.e. 14.05) is comparable with the mean of the error term in the

non-Gaussian case (Le. 13.88). Also the coefficients (i.e. 1.36 and -0.67) of the Gaussian model are com-

parable with those of the non-Gaussian one (i.e. 1.6759 and -0.7840).
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Based on Table (9.3.9.1), we can say that if prediction is a major concern, then the Gaussian linear

autoregressive model did a better job than the non-Gaussian linear autoregressive model.
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C IN ALL THESE PROGRAMMES SOME DIFFERENT NAG ROUTINE ARE

C	 USED. C THIS PROGRAM SIMULATES N DATA POINTS FROM EXPAR(1)

C	 MODEL WHICH HAS BEEN USED IN CHAPTER 4

C	 THE CONTOUR OF A PAIR OF COEFFICIENTS WHICH WILL BE

C	 SPECIFIED IS PLOTTED

REAL X(2000)

REAL *8 XMIN,XMAX,YMIN,YMAX

REAL*8 XM,SD,GO5DDF,SURFCE(200,200) ,CHTS(200)

INTEGER T

CHARACTER *80 HEAD

LOGICAL UNrJSED(200,200)

EXTERNAL JO6CBY, JO6GBV

C	 N: SAMPLE SIZE

READ(5,*)N

C XM: MEAN OF ERROR TERM

C	 SD: VARIANCE OFERRORTERMS

XM=O .0

SD=1.0

C K: PARAMETER WHICH CONTROLS THE RANDOM NUMBER GENERATOR

READ (5, *) K

PRINT*,K

C TO INITIALIZE THE RANDOM NUMBER GENERATOR

CALL GO5CBF(K)

XXX.999999999.O

NOUT=6

PRINT*,' N=' ,N

C BC,CC,DC,GC: THE COEFFICIENTS OF EXPAR(1) MODEL

READ (5 , *) BC , CC , DC , CC

PRINT*,BC,CC,DC,GC

X(1)O .0

DO 1 1-2 , 1500+N+1

F=EXP(-CC*X(I1)*X(I1))

X(I)-. (BC+(CC^DC*X(I-1))*F)*X(I-1)^GO5DDF(XM, SD)

1 CONTINUE

DO 13 I=1,N

13 X(I)=X(I+1499)

SS=O.O

SUM1=O. 0

DO 105 I1,N

SUM1=SUM1+X( I) **2

105 SUM==SUM^X(I)

XB=SUM/FLOAT (N)
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XBB-SUM1/FL0AT (N)

PRINT*,' XBAR=' ,XB

PRINT*,' XBAR**2' ,XBB

I=O

C XMIN,XMAX,XINC: TFIERANGEOFFIRSTPARAMETER
READ(5 ,*)X-MIN,XMA-X,XINC

PRINT*,XMIN,XMAX,XINC

C YMIN,YMAX,YINC: THERANGEOFSECONDPARAMETER

READ(5 ,*)YMIN,YMAX,YINC

PRINT* ,YMIN,YMAX,YINC

B=BC

C,=CC

G=GC

DDC

C THE FIRST PARAMETER

DO 2 D=XMIN,XMAX,XINC

J—O

I,.I+1

C THE SECOND PARAMETER

DO 2 G=YMIN,YMAX,YINC

J,=J+1

sUM=O .0

DO 3 T2,N

C	 F.=EXP(-G*X(I-1)*X)I-1)): NON-CENTRE MODEL

C	 F=EXP(-G*(X(I-1)**2-XBB)): CENTRE MODEL

C CHOOSE THE APROPRIATE ONE

C	 FEXP(-G*X(T-1)*X(T-1))

F=EXP(-G*(X(T-1)**2-XBB))

S=(B+(C-l-D*X(T-1))*F)*X(T-1)

S.=X(T)-S

SUM=SUM+S*S

3 CONTINDE

C	 PRINT*,' I-' , I,' J— ' , J,' SUM—' , SUM

C	 THIS PRINT GIVE YOU A GOOD IDEA OF CHOOSING THE HEIGHTS

SURFCE(I ,J)—SUM

IF(SUM.LT.XXX) THEN

XXX=SUM

P=G

ENDIF

2 CONTINUE

PRINT*,' MIN=' ,XXX,' G HAT=' ,P

C MIN: THE MINIMUM HEIGHT THAT CAN BE PLOTTED
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PRINT*,' I=',I

PRINT*, 'J=' ,J

MDIM=200

MA=1

MB=I

NA=1

NB=J

ILAB=1

IHIGH=O

CALL XO4AAF(1,NOUT)

CALL XXXXXX

CALL JO6WAF

CALL JO6WBF(XMIN,XMAX,YMIN,YMAX, 1)

CALL JO6WCF(0 . 0 , 1.0,0.0, 1. 0)

CALL JO6AAF

C HEAD: THE TITLE OF CONTOUR

READ(*, 5)HEAD

5	 FORMAT(A80)

CALL JO6AIIF(HEAD, 80)

C d: THELABELOFFIRSTAXIS

CALLJO6AJF(1,' d')

C g: THEIABELOFSECONDAXIS

CALLJO6AJF(2,' g')

C NCHTS: NO. OF CURVES IN CONTOUR PLOT

READ(5 ,*)NCHTS

IGRID=0

C ICH=O

C ICH: A CODE FOR PLOT

C	 =0 THE HEIGHTS OF CURVES WILL BE CALCULATED BY ROUTINE
C	 -=1 THE HEIGHTS OF CURVES MUST BE SPECIFIED BY USER

READ(5,*)ICH

PRINT*, 'ICH-' , ICH

IF(ICH.NE.0) READ(5,*) (CHTS(I1) ,I1-1,NCHTS)

IFAIL=3

CALLJO6GBF(SURFCE,NDIM,MA,NB,NA,NB,NCHTS,CHTS,ICH,

1	 JO6GBY,ILAB,IHIGH,JO6GBV,IGRID,UNUSED,IFAIL)

PRINT*,' IFAIL-' ,IFAIL

IFORM=2

NWIDTH=8

NDP=2

CALL JO6WDF

CALL JO6GZF(CHTS , NCHTS , IFORM, NWIDTH , NDP)
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CALL JO6WZF

STOP

END
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C THIS PROGRAMME ESTIMATES THE STATIONARY MARGINAL

C PROBABILITY DENSITY FUNCTION OF SETAR(2 ; 1,1) BY

C USING THE CHAPMAN—KOLMOGOROV RELATION

C THE MATRIX SQUARING METHOD IS EMPLOYED TO

C ACCELERATE THE CONVERGENCE

C THIS PROGRAMME ALSO CALCULATER THE EIGENVALUES

C OF THE MATRIX WHICH IS EXPLAINED IN CHAPTER 5

REAL *8 GH(200) ,AM,B,XO2AAF,TOL

REAL *8 RR(200) ,RI(200)

INTEGER INTGER(200)

REAL*8 GD(200,200) ,ZZ(200,200)

REAL *8 W(200) ,X(200)

REAL*8 Z(200),XO1AAF,P

REAL*8 WW(100) ,A(100)

INTEGER H

EXTERNAL DO1BAX

EXTERNAL DO1BAW

COMMON/AA/PP

COMMON/CC/S

COMMON/BB/AO,A1 ,BO ,Bl ,R

P=XO1AAF(P)

PP—i. O/SQRT(2 . O*P)

TOLeXO2AAF (TOL)

TOL=O.000001

C TOL: THE CONVERGENCE CRITERION

PRINT*,' AO Al BO Bi'

C AO , Al , BO , Bi : THE SETAR COEFFICIENTS IN THE

C	 FIRST AND SECOND REGIME RESPECTIVELY

READ(5,*)AO,Al,BO,Bl

PRINT*,' AO—' ,AO, 'Al—' ,Al, 'BO — ' ,BO,' Bl—' ,Bl

PRINT*,' R'

C R: THRESHOLD

READ(5 ,*)R

PRINT*,' R—' ,R

XXX-99999999999.O

PRINT*,' XO	 S	 M'

C XO: X(0) THE GIVEN VALUE FOR CALCULATING THE CONDITIONAL

C	 DENSITIES

C S: THE STANDARD DEVIATION OF ERROR TERM

C N: NO. OFPOINTS/2

READ (5, * ) XO , S , M

IH1=2000 -
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PRINT 93,XO,S,M

PRINT*,' B'

93 FORMAT(' INITIAL VALUE=' ,F6. 3,' SD.-' ,F5.2,' NO. OF POINTS/2=' ,15

C B: LAG ROUTINE PARAMETER

READ (5, *) B

PRINT*,' B=.',B

PRINT*,'	 J{'

C AM: LOCATION PARAMETER TO SHIFT ALL THE POINTS

READ (5, * ) AM

PRINT*,' AM=. ' ,AM

ITYP-1

IFAIL-O

C CALL DO1BBF(DO1BAW,AM,B,ITYP,M,W,X,IFAIL)

CALL DO1BBF(DO1BAX,AM,B, ITYP,M,WW,A, IFAIL)

PRINT*,' IFAIL-' ,IFAIL

C	 PRINT 1,(I,W(I),X(I),I=1,M)

1	 FORMAT(1X,14,5X,F8.3,5X,F8.3)

DO 116 I=1,M

IM=M- 1+1

X(IM)-A(I)

W ( IM) . WW (I)

116 CONTINUE

B=- B

CALL DO1BBF(DO1BAX,AM,B, ITYP,M,WW,A, IFAIL)

PRINT*,' DO1BBF IFAIL ',IFAIL

DO 118 I-1,M

IM=I+M

X(IM)=A(I)

W ( IM) =WW (I)

118 CONTINUE

N=M

C	 CALL DO1BBF(DO1BAW,AM,B, ITYP,M,W,X,IFAIL)

M=.2*M

PRINT 2,X(1) ,X(M)

2	 FORMAT(1X, 'x(l)=' ,F8.3,5X, 'X(M)-' ,F8.3)

CALL SIMU

C THIS SUBROUTINE GIVES A ROUGH IDEA ABOUT THE CUT OFF

C POINTS FOR CHOOSING B AND AM

T1=SECNDS(O .0)

ANS=G (X0)

C G(.): THE SKELETON OF SETAR MODEL

PRINT*,' ANS-' ,ANS
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C ANS: THE ONE STEP-AHEAD PREDICTION GIVEN X(0)=X0

DO 10 I=1,M
FB—(X(I) -ANS)/S

GH(I)'=PHI(FB)/S

Z(I)=GH(I)
10 CONTINUE

C

DO 901 I=1,M

XI=X(I)
ANS=G(XI)
DO 902 J-1,M
FB—(X(J) -ANS)/S
GD(J, I)=PHI(FB)/S

902 CONTINUE
901 CONTINUE
C
C

DO 903 1-1,14
SUM-0 .0
DO 904 J-1,M
SUM=..SUM+W(J)*GD(J , I)

904 CONTINUE

DO 905 J-1,M
SUM-1.0
GD(J,I)=GD(J,I)/SIJM

ZZ(J,I).=CD(J,I)
905 CONTINUE
903 CONTINUE

C
C CALCULATE THE EIGENVALUES OF MATRIX CD

IFAIL-0
IA-200
CALL FO2AFF(ZZ, IA,M,RR,RI , INTCER, IFAIL)

PRINT*,' IFAIL=' , IFAIL
PRINT 864, (RR(I) ,RI(I) ,I-1,M)

864 FORMAT(1X,F9.6,5X,F9.6)
C

C

DO 401-1=2,1111
sS=0.0
DO 50 I=1,M
SS=SS^W(I)*GH(I)
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50 CONTINUE

XM=O .0
PRINT*,' SS=',SS
DO 60 I=1,M

GH (I) GH (1)/S S
IF(GH(I) .GT.XM) XM-CH(I)

60 CONTINUE
C
C

C

ANS=O.0
DO 80 I-1,M

ANS=ANS+W(I)*C(X(I))*GH(I)
80 CONTINUE

SUMO .0

DO 90 I==1,M
SiJMSUM-i-W(I)*(G(X(I))-ANS)**2*GH(I)

90 CONTINUE
S1=S**2+SUM
S1=SQRT(S1)

C

C
C

PRINT*,' MEAN-' ,ANS,' SD-',Sl
IF (H.LE.2) GO TO 441
DO 442 I-1,M
IF(ABS(GH(I)-Z(I))/XM .GT.TOL) GO TO 443

442 CONTINUE
CO TO 132

443 CONTINUE
441 CONTINUE

DO 444 I=1,M
444 CH(I)-Z(I)
C

DO 100 I=1,M
DO 100 K-1,M
STJM=O .0

•	 DO11OJ.=1,M
SUM=SUM+W(J)*CD(I ,J)*CD(J ,K)

110 CONTINUE
ZZ(I ,K)=SUM

100 CONTINUE -
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DO 111 I-1,M

SUM=O .0
DO 112 J-1,M

SUM.=STJM-I-W(J)*ZZ(J ,1)
112 CONTINUE

DO 113 J1,M

GD(J,I)=ZZ(J,I)/S1Jr4
113 CONTINUE
111 CONTINUE

DO 114 1=1,M
Z(I)=GD(I,N)

114 CONTINUE

C
CO TO 32

132 CONTINUE
T2—SECNDS (Ti)

PRINT 33, (X(II) ,W(II) ,GH(II) ,II=1,M)

WRITE(7,33)(X(II) ,W(II),GH(II),II=1,M)
PRINT*,' SD =' ,S1

33 FOr&IAT(1X,F12.6,5X,5X,F1O.6,5X,F1O.6)

C
C
C

SUM=O 0
DO 51 Ii-1,M

51 SUM=S'UH-I-X(Ii)*W(Il)*CH(Il)

1.RITE(7,*),' MEANXTIS',SUM
PRINT*,'MEANXTIS ',SUM
XBARSUM
SUM=O .0
DO 52 114,M

52 SUM=SUM+(X(I1) XBAR)**2*W(Ii)*GH(I1)
RITE(7 ,*) 'VARIJNCE XT IS ',SUM

PRINT*,' VtRIANCEXt Is ',SIJM
SICMA=SQRT(SUM)
SUM. =O .0
DO 53 I1=1,M

53 SUM=SUM-3-(X(I1) -xM)**3*w(fl)*GH(fl)

WRITE(7,*)' E(X-xAk)**3=' ,SUM
XKOR—SUM/ (SIGMA**3)

RITE(7,*)' SKEWSsIs ',XKOR
PRINT*,' SKEW IS ',XkOR
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C

C

C

C

C

C

C
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SUM=O .0

DO 54 I1=1,M

54 SUM=SUM+(X(I1) -XBAR)**4*W(I1)*GH(I1)

SK==SUM/(SICMA**4)-3 .0

RITE(7,*)' E(X-XBAR)**4=' ,SUM

WRITE(7,*) ' 1WRTESISS IS ',SK

PRINT*,'KURIS ',SK

PRINT*,' TIME-' ,T2

STOP

32 CONTINUE

C

C

40 CONTINUE

STOP

END

C

C

REAL FUNCTION PHI(Z)

COMMON/AA/PP

PHI=EXP(-Z**2/2 . O)*PP

RETURN

END

REAL FUNCTION G(X)

COMMON/BB/AO ,A1, BO ,B1,R

IF(X.LE.R) THEN

GAO+A1*X

ELSE

GB0+B1*X

ENDIF

RETURN

END

SUBROUTINE SIMtJ

REAL*8X(7000),TT(5OOO),SD,XM,XMEAN,XMIN,XMAX,S2,S3,S4,WTSUM

COMMON/CC/S
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COMMON/BB/AO,A1,BO,B1,R

XM=O .0

SD=S

X (1) -O 0

N-5000

CALL GO5CCF

DO 10 I-2,N-i-2000

IF(X(I-1) .LE.R) THEN

X(I)AO-FA1*X(I-1)-i-CO5DDF(XM, SD)

ELSE

X(I)=BO-i-B1*X(I-1)-l-CO5DDF(XM, SD)

END IF

10 CONTINUE

DO 20 I=1,N

X(I)-X(I+1999)

20 CONTINUE

IFAIL=0

J=0

CALLCO1AAF(N,X,J,WT,XMEAN,S2,S3,S4,XMIN,XMAX,WTSUMIFAIL)

PRINT*,' GO1AAF IFAIL=' ,IFAIL

PRINT 1,XMEAN,S2,XMIN,XMAX

FORMAT(1X,'MEAN=',F8.4,5X,'SD-',F8.4,5X,'MIN=.',F84

5X,' MAX-' ,F8.4)

RETURN

END
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C THIS PROGRAMME GIVES THE DATA, THE PERIOD OF FORECASTING

C AND THE SETAR(2,Pi,P2) MODELAND CALCULATE THE MEAN OF

C	 M-STEP-AHEADFORECASTINGERROR, M=i,2,...,

C THIS PROGRAM CAN BE USED TO CALCULATE THE M- STEP AHEAD

C FORECASTING BY ADDING SUFFICIENT ZERO TO THE END OF DATA SET

C THEN IN EACH STEP, THE FIRST PREDICTED VALUE IS THE POINT

C FORECAST FOR THAT GIVEN STEP

IMPLICIT DOUBLE PRECISION (A-H2O-Y)

INTEGER T,LO,HO,PER,CODE,D

DIMENSIONX(300) ,E(300) ,A(O:12) ,B(0:12),WT(1000)

DIMENSION P(12, 35)

C THE MAXIMUM ORDER IS 11 AND ThE MAXIMUM STEP IS 35

C CLEARLY THESE RESTRICTION CAN BE REMOVED BY CHANGING

C THE SIZE OFARRAIES

EXTERNAL XINV

C XINV: THE INVERSE FUNCTION OF SQUARE ROOT TRANSFORMATION

C	 FOR SUNSPOT NUMBERS

COMNON/BB/CODE , XBAR

COMMON/AA/A,B,R,D,LO,HO,IOR,S1,S2,PER

READ(5,*)LO

C LO: THE ORDER OF LOWER REGIME

READ(5,*)(A(I),I-O,LO)

C A(I): THE COEFFICIENTS OF THE FIRST REGIME

READ(5,*) HO

C HO: THE ORDER OF SECOND REGIME

READ(5,*) (B(I),I-O,HO)

C B(I): THE COEFFICIENTSOF SECOND REGIME

PRINT 1, (A(I) ,I=O,LO)

1	 FORMAT(2OX,'LOWERRECION '/,5X,13(F7.4,2X))

WRITE(i,i) (A(I),I=O,LO)

PRINT 2, (B(I) , I0,HO)

2	 FORNAT(20X,' TJPPERREGION '/,5X,13(F7.4,2X))

WRITE(1,2)(B(I),I.=O,HO)

READ(5,*)R,S1,S2,D

C R: THRESHOLD

C Si: THE STANDARD DEVIATION OF ERROR TERN IN THE FIRST REGIME

C S2: SIMILARTOS1INSECONDREGIME

C D:DELAY

PRINT 3,R,S1,S2,D

3	 FORMAT(1X,'THRESHOLD=',F7.4,5X,'S1'=',F7.3,4X,'S2-',F7.3,

1 5X,'DELAY',I2)

WRITE(1,3)R,S1,S2,D
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READ(5,*)N,PER,CODE

C N:NO.OFDATA

C	 PER: NO. OF FORECASTING STEPS

C CODE: TRANSFORMATION CODE

C	 0: NO TRANSFORMATION

C	 1: SQIJARE ROOT TRANSFORMATION

C	 2: LOG IN BASE 10 TRANSFORMATION

READ(5,*)(X(I) ,I-1,N+PER)

IF(CODE.EQ.0) THEN

PRINT *,' NO TRANSFORMATION'

WRITE(1,6)

GO TO 10

ENDIF

6 FORMAT(1X,' NO TRANSFORMATION')

IF(CODE.EQ.1) THEN

PRINT *,' SQRT TRANSFORMATION'

RITE(1,*) ' SQRT TRANSFORMATION'

DO 20 I=1,N+PER

20 X(I)2.O*(DSQRT(X(I)-i-1.0)-1.0)

COTO1O

END IF

IF(CODE.EQ.2) THEN

PRINT *,' LOG1O TRANSFORMATION'

WRITE(1,*) 'LOGlO TRANSFORMATION'

DO 30 I-1,N+PER

30 X(I)=DLOG1O(X(I))

GOTO1O

END IF

PRINT*, 'CODE— ' ,CODE, 'ERROR'

STOP

10 CONTINUE

IOR=MAX(LO ,HO)

PRINT*,' bR—' ,IOR

WRITE(1,7)IOR.

7	 FORMAT(1X,' ORDER—',I3)

STJM=O.O

D040 I-1,N

40 SUM=STJM+X(I)

XBAR=SIJM/FLOAT (N)

PRINT 8,XBAR

WRITE(1, 8)XBAR

8	 FORMAT(1X,' MEAN OF DATA=. ' , FlO. 5)
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DO 50 T-IOR+1,N

IF(X(T-D) .LE.R) THEN

STJM=O .0

D0601=1,LO

60 SUM=SUM+A(I)*X(TI)

Y=SUM+A(0)

ELSE

SUMO .0

DO 70 I1,H0

70 SiJM=SUM+B(I)*X(TI)

Y-SUM+B(0)

ENDIF

E(T-I0R).=X(T) -Y

50 CONTINUE

IFAIL.=0

IJ=0

M=N- IOR

CALLGO1AAF(M,E,IJ,WT,XM,S,S3,S4,XMIN,XMAx,wTS,IFAIL)

PRINT*,' IFAIL=',IFAIL

PRINT 4,XM, S**2

C XMMUST BE CLOSE TO ZERO AND S**2 CLOSE TO THE POOLED VARIANCE

C	 IF NOT SOMETHING IS WRONG IN INPUT DATA

WRITE(1, 4)XM, S**2

PRINT*,' M',M

WRITE(1,9)M

9	 FORMAT(1X,' NO. OF ERRORS-' ,14)

4	 FORHAT(1X, 'MEAN OF ERRORS=' ,F1O. 5, 5X,' VAR. OF,ERRORS' ,F15 .5)

C TO CALCULATE THE EXACT 1 TO D STEP-AHEAD FORECASTING

DO 99 J-1,D

99 CALLFOR(X,N,P,J)

C TO USE THE MONTE CARLO METHOD TO CALCULATE THE

C D+1 TO PER STEP-AHEAD FORECASTING

CALL FORE(X,N)

STOP

END

C

C

SUBROUTINE FORE (X, N)

IMPLICIT DOUBLE PRECISION (A-H2O-Y)

DIMENSIONX(300) ,A(O:12) ,B(O:12)

EXTERNAL XINV

INTEGER CODE
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INTEGER LO,HO,PER,D

COFIMON/AA/A,B,R,D,L0,H0,IOR,S1,S2,PER

COMMON/BB/C ODE , XBAR

DIMENSION FOR1(1000) ,WT(2000) ,FOR(1000,12) ,XM(100)12)

1 ,XO(-11:12),P(12,35),SM(12),DM(12),SD(100,12)

S1-DSQRT(S1)

S2=DSQRT(S2)

NN=3 5

MM=1000

C MM: NO. OFREPLICATIONINMONTECARLOMETHOD

N1..12

CALL GO5CCF

DO 10 J=1,PER

M=N-I-J -1

D011 I=1,NN

0011 K=1,N1

XM (I, K) =0.0

SD(I,K)=O.O

11 CONTINUE

DO12I=0,-IOR-i-1,-1

X0(I)=X(M-i-I)

12 CONTINUE

DO 555 KK-1,NN

DO 40 I=1,NH

CALL GEN (X0 ,Ni)

DO 50 KJ-1,N1

IF(CODE.EQ.1) THEN

FOR(I ,KJ)-XINV(XO(KJ))

ELSE

FOR(I ,K.J)-X0(KJ)

END IF

50 CONTINUE

40 CONTINUE

DO 200 KJ-1,N1

DO 300 I-1,MM

FOR1 (I) FOR (I , NJ)

300 CONTINUE

IFAIL=0

IJ=O

CALLGO1AAF(NM,FOR1,IJ,WT,XMEAN,S,S3,S4,XMIN,XMAX,WTSUM,IFAIL)

IF(IFAIL.NE.0) THEN

PRINT*,' CO1AAF FAIL' ,IFAIL
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STOP
END IF

C	 PRINT 111,KJ,XMEAN,S
111 FORMAT(2X,13,3X,F1O.4,5X,F10.6)

XM (KK, KJ ) =XJ1EAN

SD (KR , NJ )

200 CONTINUE

555 CONTINUE

DO 333 K=1,N1

SM(K)-O .0
DM(K)O.O

333 CONTINUE
DO 666 IJ=1,N1

DO 777 I-1,NN

SM(IJ)=SM(IJ)+XM(I , IJ)
DM(IJ)-DM(IJ)+SD(I , IJ)

777 CONTINUE

666 CONTINUE
DO 100 M2..1,12

100 P(M2 ,J)=SM(M2)/FLOAT(NN)

10 CONTINUE

DO 15 J2-1,PER
WRITE(1,19)J2, (P(I,J2) ,I=.1,12)

15 CONTINUE
19 FORMAT(1X,I2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,

1 2X,F8.2,2X,F8.2,2X,F8 .2,2X,F8.2,2X,F8.2,2X,F8.2)
DO1O2J-1,12
IF(CODE.EQ.1) THEN
SUM==O.0

SUM1.=O.0
SUH2O. 0

L1O

L2O
DO 1001 IN+J,N+PER

C	 IF(X(I) .LE.XBAR) THEN
IF(P(J,I-N-J+1).LE.XINV(XBAR)) THEN
L1=L1+1
SUM1=SIJM1+(XINV(X(I))-P(J,I-N-J+1))**2
ELSE

L2=L2+1
SUM2=SUM2+(XINV(X(I)) -P(J, I-N-J+1))**2

ENDIF
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1001 SUMSUM+(XINV(X(I)) -P(J , I-N-J+1))**2

ELSE

SUM=0 .0

SUM1O.O

SUM2=O .0

L1=0

L2=O

DO 101 IN-I-J,N-FPER

C	 IF(X(I) .LE.XBAR) THEN

IF(P(J,I-N-J+1).LE.XBAR) THEN

L1=L1+1

SUM1-SUM1+(X(I) -P(J , I-N-J+1))**2

ELSE

L2=L2+1

SUM2-SUM2+(X(I) -P(J, I-N-J+1))**2

END IF

101 SUM=SUM+(X(I)-P(J,I-N-J+1))**2

ENDIF

WRITE(1, 21)3, STJM,SUM/FLOAT(PER-J+1)

21 FORMAT(1X,'SUM0FFOR',I2,'',F15.5,5X,'SIGMA=',F15.5)

WRITE(1, 22)3, SUM1, SIJM1/FLOAT(L1)

WRITE(1,23)J,SUM2, SIJM2/FLOAT(L2)

WRITE(1,24)L1,L2

22 FORMAT(1X,' LOWER THAN MEAN' ,2X, 'SUN OF FOR' ,12, '=' ,F15.5,

1 5X,' SIGMA-.',F15.5)

23 FORMAT(1X,' UPPER THAN MEAN' , 2X, 'SUM OF FOR' ,12, '-' , F15 .5,

1 5X,' SIGMA-',F15.5)

24 FORNAT(3X,'L1-',13,4X,'L2-',13)

102 CONTINUE

RETURN

END

C

C

C

SUBROUTINE GEN(X, N)

IMPLICIT DOUBLE PRECISION (A-H2O-Y)

DIMENSIONX(-11:12) ,A(O:12) ,B(O:12)

INTEGER T,LO,HO,D,PER

COMMON/AA/A,B,R,D,LO,HO,IOR,S1,S2,PER

XMO .0

DO 10 T1,N

IF(X(T-D) .LE.R) THEN
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S'UM-O .0

DO 20 I=1,LO

20 SUM=SUM+A(I)*X(T-I)
X(T)'=A(0)-I-SUM^GO5DDF(XM,S1)
ELSE
SUM=0 0

DO 301=1,110
30 SUM=SUM+B(I)*X(T-I)

X(T) .-B(0)+SUM+GO5DDF(XM, S2)

ENDIF
10 CONTINUE

RETURN
END

C
C
C....................................................................

C

SUBROUTINE FOR(X,N,P,J)
IMPLICIT DOUBLE PRECISION (A-H2O-Y)

DIMENSIONX(300) ,A(0:12) ,B(0:12)
DIMENSION P(12,35)
INTEGER LO,HO,PER,D,CODE
COMMON/BE/CODE , XBAR
EXTERNAL XINV

COMMON/AA/A,B,R,D,LO,HO,IOR,S1,S2,PER
SO.O

SUM1=O.O

SUM2=O. 0
L1=O.O

L2=0 0
DO 10 I=N+J,N+PER
T=I-J

IF(X(T-D+J).LE.R) THEN
SUM=0.O
DO 20 IIJ,LO

20 SUM=SUM+A(II)*X(T-II+J)
DO 30 II=1,J-1

30 SUM=SUN+A(II)*P(J . II , I-N-J+1)
Y=A(0)+SUM
ELSE

SUM-.O. 0
DO 40 II-J,HO
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40 SUMSIJM+B(II)*X(T-II^J)

DO 50 II1,J-1

50 SUM...SUM-l-B(II)*P(J-II,IN.J+1)
Y=B(0)+SIJM
ENDIF

P(J , I-N-J+1)=Y
IF(CODE.EQ.1) THEN

S=S-i-(XINV(X(T-i-J)) -XINV(Y))**2

C	 IF(X(T+J) . LE .XBAR) THEN
IF(Y.LE.XBAR) THEN

L1-L1+1
SUM1-SUM1±(XINV(X(T+J)) -XINV(Y))**2
ELSE
L2-L2+1
SUM2-SUM2+(XINV(X(T+J)) -XINV(Y))**2
ENDIF
PRINT 1,I-N-J-F1,XINV(Y) ,XINV(X(T+J))
WRITE(1,1)I-N-J-f-1,XINV(Y) ,XINV(X(T-i-J))
ELSE

SS+(X(T+J) -y)**2
C	 IF(X(T-i-J) .LE.XBAR) THEN

IF(Y.LE.XBAR) THEN

L1L1+1
SUM1.=SUM1+(X(T-I-J) -Y)**2
ELSE

L2=L2+1
SUM2-SUM2-1-(X(T-I-J) -y)**2
END IF
PRINT 1,I-N-J-i-1,Y,X(T-i-J)
WRITE(1, 1)I-N-J+1,Y,X(T+J)

END IF
10 CONTINUE

PRINT 2 ,J, S , S/FLOAT(PER-J+1)
2	 F0RMAT(1X,'SUMOFF0R',I1,'-',F15.5,5X,'SIGMA=',F15.5)

WRITE(1, 2)J, S , S/FLOAT(PER-J+1)

WRITE(1, 3)J, SUM1, SUM1/FLOAT(L1)
WRITE(1,4)J, SUM2 , SUM2/FLOAT(L2)
WRITE(1,5)L1,L2

3	 FORMAT(1X,' LOWER THAN MEAN',' SUM OF FOR' ,I2, '=' , F15 .5,
1 5X, 'SIGMA=' ,F15.5)

4	 FORMAT(1X,' UPPER THAN MEAN',' SUM OF FOR' ,12, '=' , F15 .5,
1 5X, 'SIGMA=" ,F15.5)
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5	 FORMAT(1X,' L1' ,13,5X, 'L2' ,13)

1	 FORMAT(1X,14,4X,F15.5,4X,F15.5)

RETURN

END

C

C

C

C

DOUBLE PRECISION FUNCTION XINV(X)

DOUBLE PRECISION X

XINV-(((x+2.0)/2.0)**2)-1.O

RETURN

END
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