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ABSTRACT

Some difficulties of non-linear time series modelling are discussed. The importance of likelihood
plots and information matrix calculation is demonstrated. A constructive use of reparametrization is illus-
trated. Possible non-invertibility of two bilinear models fitted to real data is discussed. The relation between
the variance of error term and the variance of the estimate of the bilinear term is also studied. We have
examined numerical solutions for a recursive relation for computing the m-step-ahead conditional density
of a non-linear autoregressive model by using the Chapman-Kolmogorov formula. The stationary marginal
probability density function of the model is approximated by the m-step-ahead conditional depsity, for
sufficiently large m. The advantage of incorporatipg the matrix squaring procedure is also studied. The
conditional mean (regression function) and conditional variance of some non-linear models are studied
briefly .The importance of non-parametric estimation of l;aglession functions in non-linear time series
analysis is demonstrated. A comparison of likelihood ratio tests using the pewly available asymptotic
results with the non-likelihood ratio approach such as the modified Petruccelli-Davies’s test and Tsay’s test
is studied . The 5% empirical critical values for the some cases of likelihood ratio test is also obtained. The -
effect of outliers on the tests is briefly studied. The importance of the profile likelihood plots in locating the
threshold and estimating the delay paramet-er is -demonstrated. The blowfly data (raw and transformed) are
analysed. The impénance of influential data is also discussed. The non-monotonicity of the conditional
variance of the error of a m-step non-linear least squares predictor is discussed . We have also studied
methods of evaluating the conditional variance for non-linear antoregressive models and illustrated these
with both real and simulated data. Bias correction is included. Moreover, the possibility of combinations of
forecasts is explored. The performances of linear, bilinear and SETAR models in predicting the sunspot

numbers are compared.



Table of Contents

Chapter One: Introduction

Chapter Two: Linear Stationary Processes

2.1: Stationary stochastic processes and Gaussian process

2.2: Some linear processes

2.2.1: General linear processes

2.2.2: Autoregressive and moving average processes

Chapter There: Non-linear Models

3.1: Threshold antoregressive models

3.1.1: The stability of a special class of threshold autoregressive models

3.1.1.1: Notations and definitions

3.1.1.2: Stability in time series analysis

3.2: Bilinear models

3.3: Exponential autoregressive models

Chapter Four: Some Structural Properties of Linear and Non-linear Models

4.1: Moving average

4.1.1: Exact maximum likelihood estimation of MA(1)

4.1.2: Conditional maximum likelihood estimation

4.2: Exponential autoregressive models

4.2.1: Reparametrization

4.3: Bilinear models

4.3.1: Invertibility

12

12

13

22

25

26

28

28

30

31

38

40

47



4.4: SETAR models 49
4.5: Real data 49
Chapter Five: Stationary Probability Density Function of Non-linear Autoregr;assive Process .......oeee... 52
5.1: Numerical solution 54
5.1.1: Series expansion 55

5.1.2: Iterative numerical quadrature method . 55

5.2: Conditional density approach 55

5.3: Application : 57

5.4: Acceleration by matrix squaring 70
Chapter Six: Conditional Mean and Conditional Variance In Time Series Analysis 73
6.1: Gaussian processes . 74

6.2: Bilinear models ; 75
6.2.1: Superdiagonal bilinear models 15

6.2.2: Diagonal models 76

6.2.3: Subdiagonal models 77

6.3: Non-linear autoregressive models 78

6.4: Real data : 80

Chapter Seven: A Comparison of Likelihood Ratio Test and CUSUM and Tsay’s Tests For

Threshold Autoregression 85
7.1: The likelihood ratio test for threshold autoregression 85

7.2: Tests based on predictive residuals ; | 88

7.3: Empirical critical value 90

7.4: A comparative study of likelihood ratio test and the reverse CUSUM test 99

7.5: Power plots 106
7.5.1: Piecewise constant models 107

7.5.2: Piecewise linear models 108




Chapter Eight: SETAR Modelling of Blowfly Data

8.1: Some background of A.J. Nicholson data

8.2: A test for multi-modality based on kernel density estimation

8.3: Influential data

8.4: Profile likelihood

8.5: A case study

8.6: Transformation

8.7: Model diagnostic checking

8.7.1: Test of whiteness

8.7.2: Test of nomality

Chapter Nine: Multi-step Non-linear Least Squares Prediction

9.1: Introduction

9.2: Non-monotonicity

9.3: Non-linear models

9.3.1: Bilinear models

9.3.1.1:"Superdiagonal models

9.3.1.2: Diagonal models

9.3.1.3: Subdiagonal models

9.3.2: Non-linear autoregressive models

9.3.3: Two experiments

9.3.4: Prediction from SETAR models

9.4: Bias correction of forecasting transformed series

9.5: A comparative study of linear, bilinear and SETAR models in predicting sunspot

numbers

9.6: Combination of forecasts

9.7: Risky prediction of Wolf’s sunspot numbers

110

110

110

115

116

118

125

125

126

127

131

131

134

135

135

136

137

138

139

142

145

149

150

154

157



9.8: Linear non-Gaussian autoregressive models 159
References 162
Three computer programs for plotting the contours, approximating the stationz;ry probability den-

169

sity function and calculating the m-step-ahead forecasting of SETAR models.



CHAPTER ONE

INTRODUCTION

It is probably fair to say that linear time series modelling was bormn at the beginning of this century,
with the introduction of such linear models as the autoregressive models and moving average models, and
has reached its height in recent years. For example, the book by Box and Jenkins (1970) and the structural
clarification by Akaike (1974) suffice as demonstrations of maturity of the subject of linear time series
modelling. In fact the impact of Box and Jenkins was such that the field in the 1970’s was pre-dominated
by linear and Gaussian. However, these two assumptions have finally been abandoned and time series
analysis has moved in a new direction. This new direction is, of course, the study of non-linear models. The
mathematical ideas involved are much more complex than those of linear models, and the statistical prob-
lems of model identification and parameter estimation are- similarly more intricate. (See e.g. Tong, 1987a

and Priestley, 1988)

Although the era of non-linear time series models started with Wiener (1958) and was discussed by
Nelson and Van Ness (1973) it is in the last ten years that most progress has been made in the field of non-
Linear time series analysis. Granger and Andersen (1978) and Subba Rao and Gabr (1984) studied bilinear
time series models in some detail. These models were originally developed by control engineers to describe
input-output relationships for a deterministic non-linear system. Tong (198731983) has discussed another
important class of non-linear time series models commonly known as threshold autoregressive models.
These models are general enough to capture the notion of limit cycles, which play a key role in the model-
ling of cyclical data and in physical and biological sciences. Other non-linear time series models are
exponential autoregressive models introduced by Ozaki and Oda (1978), non-linear ;hreshold models,
exponential moving average and other related models introduced by Lawrance and Lewis (1977) and some
other non-Gaussian time series models introduced by Mckenzie (1984) and Raftery (1982). All the models,

bilinear, threshold autoregressive and exponential autoregressive as well as linear ARMA models can be



considered as special cases of the State-dependent models, introduced by Priestley (1980).
In this thesis, we have discussed some aspects of non-linear time series analysis.
Chapter Two contains some basic idea of time series analysis and stochastic processes.

Some of the non-linear models are introduced in Chapter Three. The Lagrange stability of a special

class of threshold autoregressive model has been discussed.

In Chapter Four, some difficulties of non-linear time series modelling are discussed. The importance
of likelihood plots and information matrix calcnlation is demonstrated. A constructive use of reparametriza-
tion is illustrated. Possible non-invertibility of two bilinear models fitted to real data is discussed. The rela-

tion between the variance of error term and the variance of the estimate of the bilinear term is also studied.

In Chapter Five we have examined numerical solutions for a recursive relation for computing the m-
step-ahead conditional density of a non-linear autoregressive model by using the Chapman-Kolmogorov
formula. We have approximated the stationary marginal probability density function of the model by the
m-step-ahead conditional density, for sufficiently large m. We have also studied the advantage of incor-
porating the matrix squaring procedure.

Chapter Six contains a brief study of the conditional mean (regression function) and conditional vari-
ance of some non-linear models. The importance of non-parametric estimation of regression functions in
nop-linear time series analysis is demonstrated.

A comparison of likelihood ratio tests using the newly available asymptotic results with the non-
likelihood ratio approach such as the modified Petruccelli-Davies’s test and Tsay’s test is studied in Chapter
Seven. In the highlight of Monte Carlo method the 5% empirical critical values for the some cases of likel-
ihood ratio test is also discussed. The effect of ontliers on the tests is briefly studied.

In Chapter Eight the kernel depsity estimate method is employed to construct a test for multi-
modality of the density of a time series data set. The importance of the profile likelihood plots in locating
the threshold and estimating the delay parameter is also demonstrated. The blowfly data (raw and

transformed) are analysed. The importance of influential data is also discussed.

The non-monotonicity of the conditional variance of the error of a m-step non-linear least squares



predictor is discussed in Chapter Nine. We have also studied methods of evaluating the conditional vari-
ance for non-linear autoregressive models and illustrated these with both real and simulated data. Bias
comrection is included. Moreover, the possibility of combinations of forecasts is explored. The performances

of linear, bilinear and SETAR models in predicting the sunspot numbers are compared.



CHAPTER TWO

LINEAR STATIONARY PROCESSES

In this chapter we introduce some basic idea of time series analysis and stochastic processes. A time
series is a set of observations x, ,each one being recorded at a specified time 7. A discrete-time series is one
in which the set T, of time at which observations are made is a discrete set. Continuos-time series are

obtained when observations are recorded continuously over some time interval.
The first step in the analysis of a time sedes is the selection of a suitable mathematical model (or

class of models) for the data. To allow for the possibly unpredictable pature of future observations it is

natural to suppose that each observation x, is a realized value of a certain random varable X,.

The time series {x, ,tE T,,} is then a realization of the family of random variables {X, ,tE To}. These

considerations suggest modeling the data as a realization ( or part of a realization ) of a stochastic process

{X,, t € T} where very often T = {0,41,42,..} o T,.

2.1. Stationary Stochastic Processes and Gaussian Processes

Definition 2.1.1. A time sequence, {X, , t€ T} , is said to be deterministic if there exist a function of past
and present values g, =g (X;_;, j=0,1,...) such that
E[X,1—8)*1=0.
Definition 2.1.2. A stochastic process is a family of random variables {X, , 1€ T} defined on a probability
space (Q,F,P).
We note that for each fixed t € T, X, is a function of X,(.) on Q. On the other hand for each fixed

e Q, X (w)is a function on T

Definition 2.1.3. The functions {X (), ® € 2} on T are known as the realizations or sample-paths of the

process {X, ,te T}.



Definition 2.1.4. ( The Distribution Function of a Stochastic Process {X,.teTcR} ). Let T be the set of all
vectors {t=(t;,...,t1,) €T :t,<ty<*+-<t,,n=1,2,3,..}. Then the (finite-dimensional) distribution

functions of {X, , te T} are the functions {Fy() , t € T} defined fort=(z,...,2,) by

FyX)=P (X, Sx1,0 - Xy S5), X= (1, ..., %) €R".
Theorem 2.1.1. ( Kolmogorov’s Theorem ). The probability distribution functions { F(),te T} are the
distribution functions of some stochastic process if and only if for any n € {1,2,3,...}, t=(t,...,,)€T

and 1<i<n,

im Fy(x) = F y;y(x(1)) , 2.1.2)
x—>eo
where t(i) and X(i) are the (n-1)-component vectors obtained by deleting the i*™ components of t and X
respectively. Hence forth, unless the contrary explicitly stated, we will assume that, for each t, X, is a con-
tinuous random variable with probability density function f;(x) defined for all x , so that, the mean and the

variance of X, will be given by

h=EQC)= J i,
o =V()= | P hiGMs,

and the covariance between X, and X, will be

‘Yr,.r =cov (XnX:) = E [(Xr"P-:)(X:_F:)] ]
if they exist.

In time series analysis, it is often impossible to make more than one observation at a given time so
that we only have an observation on the random variable at time ¢t. With a single realization, it is not possi-
ble to estimate with any precision J,, for every ¢ if the p, sequence is allowed to take any set of values. To

overcome such problem, the time series analyst is forced to assume the process to be stationary and ergodic.
Definition 2.1.5 The time series {X, , t€ Z}, with index set Z = {0,+1,32, ...}, is said to be stationary if

() EX}<owforaliteZ,
@#) EX)=mforallte Z,
and

@) .= Yrats4e forall rs,t €Z .



Stationarity as just defined is frequently referred to in the literature as weak stationarity, covariance sta-

tionarity, stationarity in wide sense or second order stationarity.

Definition 2.1.6 The time series { X,,te Z} is said to be strictly stationary if the joint distributions of
(X,,, een ,X,.) and (X,‘#,, - 'X:.H-) are the same for all positive integer kand forall ¢,, . . ., #, ke Z.

A strictly stationary process with finite second moments is stationary. The converse of the previous

statement is not true.

The methods which have been used to estimate the mean and autocovariance function using observa-
tions from a single realization are all based on the basic strategy of r;aplacing ensemble! average by their
corresponding #ime average. If the resulting estimates are mean square consistent it follows that the time
average over a period of n points converges in mean squares, as n— oo, to the corresponding ensemble aver-

age. Processes which possess this type of property are called érgodic.
Consider a stationary time series {X,}, it follows from definition (2.1.5) that cov (X, ,X,,) is simply a

function of |#;—¢, |. This function is called autocovariance function of [X,} at lag (1,—t,), which will be

denoted by ¥;,, . It has the following properties:

D y=VarX,),.

i) |%|<£Y.Y1eZ,

i) Y.=%,V1eZ,

) Vity,ta,...,t, € Z, forall positive integer n , and
for all real number z,,...,z,€R",

n n
z Zl'y,'_,’ z, 2,20 .

r=ls=

The ratio p,=%, T € Z, is called autocorrelation function of {X,} of lag 7. Properties (if),(iii) and (iv)

(4
still hold if the ¥ ’s are replaced by the p s with corresponding suffixes. It is well known that p; can be

interpreted as a measure of linear association between X, and X,,..

Definition 2.1.7. The process {X, } is a Gaussian time series if and only if the distribution functions of

{X,} are all multivariate normal.

1 The collection of all possible records of random variable X,.



If {X, , 1€ Z} is a stationary Gaussian process then {X,} is strictly stationary, since for all
n € {1,2,3,..) and for all &, ty,1,,... € Z, the random vectors (X, ,...,X, ) aod (X, 4, ...,X, ) have

the same mean and covariance matrix, and hence the same distribution.

2.2. Some Linear Processes

In many respects the simplest kind of time series { X, }is one in which the random variables
X, , t=0,11,12, - - - are independently and identically distributed with zero mean and variance o’.
Definition 2.2.1. The process {e,} is said to be white noise with mean zero and variance o if and only if

{ e, } has zero mean and covariance function

o2 ifh=0
Ya=10 ifhz0.

It will then be called strict white noise if { e, } is a sequence of independent random variables.

A very wide class of stationary processes can be generated by using white noise as the forcing terms

in a set of linear difference equations.

2.2.1. General Linear Processes

A general liear process { X, } is one that can be represented as a weighted linear combination of the
present and past terms of a white noise process { e }:

X, = ety 1 ty2eat..., (22.1)

where {V;} is a sequence of constant real numbers satisfying ‘3 Y2 < oo,
By using the backward shift operator B, (B*X, = X,.;), equation (2.2.1) is equivalent to
X, =¥(B)e, , (22.2)

where W(B) = 14y, B+y, B2+... . In fact 'W(B) is a linear operator which transforms {e,} into {X,}. We

can write (2.2.2) symbolically in the equivalent form

1
¥(B)

where ®(B) = 1+¢, B+6,B%+ - - - , if W(B) is invertible, It implies that equation (2.2.3) can be written as

X, =®(B), , (22.3)



DB, =e,,

or

X0, X1+ X, o+ =¢, . 2249
The condition for stationarity of the general linear model (2.2.2) is that ‘¥(B) , which is the generating func-
tion of W weights, must converge for |B|< 1, and the invertibility condition for the model (2.2.4) is that

®(B) must converge for|B|< 1. That is, on or within the unit circle.

2.2.2. Autoregressive and Moving Average Processes

It may be said that the era of linear time series modeling began with such linear model as Yule’s

autoregressive models (1927), first introduced in the study of sunspot numbers.

Definition 2.2.2. The process (2.2.4) with all except the first p coefficients equal to zero can be written as

Xt+¢1Xr-l+"-+¢pXr-p =& , (22.5)
and {XJ is called an qutoregressive process of order p, AR (p). The equation (2.2.5) equivalently can be
written in the form

OBX, =e,, 22.6)
where ©(B) = 1+, B+ - - +9,B? . The AR (p) model is stationary if all the roots of ®(B) lie outside a unit

circle.

Definition 2.2.5. In general linear model (2.2.1) if Wg4,=0,i=1,2,... then

X, =e+yre1t -y, e, 22.7)

or

Xt = ‘P(B )et ?
where ¥(B) = 1+ B+..+y,B?, and the process will be called moving average processes ; MA(q). The

MA (q) process is invertible if all the roots of ‘¥(B) lie outside the unit circle.
A more general class of linear models is obtained by replacing e, by a weighted average of

€ney, " 16 thatis

X9y X, g+ 0, X, = eyt HYe (2.2.8)
or ®(B)X, = ¥(B)e,. This is known as the mixed autoregressive moving average process of order p and g,

denoted by ARMA (p,q). This process is stationary if all the roots of ®(B) lie outside the unit circle and is

invertible if all the roots of W(B) lie outside the unit circle.



CHAPTER THREE

NON-LINEAR MODELS

Many processes occurring in nature and in a variety of physical and engineering fields display some
form of non-linear behaviour. The most well-known non-linear phenomenon is the limit cycle, which has
proved extremely useful in such widely differing areas as ecology, hydrology, medical engineering, etc.
Such behaviour is quite unknown to any form of linear representational model, and hence many sets of time
series data can not be adequately represented by a linear model. This and other facts have led to the
development, in recent years, of many interesting non-linear time series models. Some of these models
have been shown to be capable of modelling a wide variety of non-linear behaviour and have also been

shown to provide extremely good fits to real data. We now describe some of these models below.

3.1. Threshold Auteregressive Models

The idea of using piecewise linear models in a systematic way for the modeling of discrete time

series data was first mentioned in Tong (19772). A comprehensive account is available in Tong (1983).
Let { X, } be a k-dimensional time series and, for each ¢, let J, be an observable (indicator) random
variable, taking integer values { 1,2,3,...,1 } A canconical form of a threshold model is given by ( for

t=0,%1,12,...)

X, =BVX +A"X, _ +H%e,+CY" (3.11)
where, for J,=j , AV , BO) and H? are kxk (nonrandom) matrix coefficients, C? is kx1 vector of con-

stants, and { e, } is a sequence of independent and identically distributed k-dimensional random vector with

zero mean and a covariance matrix and e, independent of X, , s <t .

For each ¢, the value taken by J, indicates the regime the system ( X, ) is currently in and the switching from
one regime to the next may be related to the crossing of a threshold by an exogenous or endogeneous vari-

able.
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Let { A SRR } denote a linearly ordered subset of the real numbers, such that r,<r;< - <r;,
where r, and r, are taken to be —eo and + e respectively. They define a partition of the real line R , i.e.

R=R1UR2U s URI >

where

R;=(r;1,n).
Writing X, = (X,.X,_;, = X)) »

a@ ay) e agll I af)

I I T I
Ao L, I 0

W= 0=
B —O,H 0 0 ’

3% 0]

€= (enet—l’ Y PN T | )' ’ ch = (09),0,...,0)' .
and RY) = RXRX - - - XRXR;XRX - - - XR, the cylinder set in the Cartesian product of k real lines, on the

interval R; with d-th coordinate space, de {1,2,...,k}. Setting J, = j if X,_, € RY), we have

X, =a$’)+é1a,(’7X,_,-+h?3e, , (3.1.2)
conditional on X,_j€R;, j=1,2,...,I. Since {J,} is now a function of {X,} itself, we call the univariate time
series { X, } given by (3.1.2) a self-exciting threshold autoregressive model of order (lLk,...k) or
SETARMA(!;k, ...,k), where k is repeated ] times.

If for j=1,2,...,]

af) =0 for i=k+1,k+42, -k,

then { X, } is called SETAR(/;ky,k, - - * ,k). The parameters ry,...,r,_; are threshold parameters and d

is called delay parameter.

If the first row of HY) is of the form

(PRSP, - - - DY, ()0, ((=1,2,...0) ,

then the generalization of SETAR to a self-exciting threshold autoregressive moving average model of

order (/;k,...,k;k~1,...,k—1) or simply SETAR(/;k, ..,k ;k—1,....k—1), takes the form
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X, =a,‘,j’+é1a,""X,-.-+Eh,“’e,_; , (3.1.3)

conditional on X, 4€R;, j=1,2,..,L
Jones (1976,1978) has given a comprehensive study of the probabilistic structure of a first order
non-linear autoregressive time series model . Some other authors have studied ergodicity of specific non-
linear time series models mostly SETAR models of order one, Tong(1983), Petruccelli and Woolford
(1984), Chan et al (1985). The case of non-linear models of higher orders 1s insufficiently studied although

the approach of Chan and Tong (1985) seems promising.
Definition 3.1.1: The Markov process { X, } :;0 defined on (X,F) with transition probabilities

p"(x,A)=p,X,€A|X,=x),xeX, A€F,

is ergodic if there exists a unique, finite invariant measure © on F such that

nA) =n(dy)p' .4) .
The link between stability and ergodicity of a stochastic difference equations have been studied by

Chan and Tong (1985). Let

m
h(x1,X2, " ** \Xp) =c,-+'21a,-jxj ifr; <x;<r;,
j=
where {—ee=r,, <ri< - <n =°°} is an ordered partition of R, d <m, c; and a;; are constants. The func-

tion h is the autoregressive function for the SETAR model. If we define T: R™ - R™ by

h(x) X1
X1 X2
TEy= |- where x= |- |eR™,

Xm-1 Xm
€n
0 , ) .

then this T with e, = | _ ., | with e, ii.d., each having an absolutely continuous distribution and the proba-

0

bility density function f (.) is positive every where in R, constitutes the Markovian state-space equation for

the SETAR mode). (See Chan and Tong 1985 p. 670).
Lemma 3.1.1: If max;Z|a;;| <1 and e,, possesses first absolute moment, then X, 41 =T (X, )1+, is ergodic.
j

(See Chan and Tong 1985 ).
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Suppressing the random forcing term e, in X,41 =T (X, )+€n41, we obtain X, =T (X,,) which will
be called the associated deterministic difference equation or the deterministic part of the stochastic differ-
ence equation X, 41 =7 (Xa)+e,,;. The study of the deterministic difference e;quation X, =T(X,) may be
the skeleton of the study of the stochastic difference equation X, =T (X, He,,;- If the range of T is

bounded, it is clear that X,; =T (X, He, is ergodic. Boundedness is one form of stability of the dynamics

Xn+l = T(Xn)-

3.1.1. The Stability of a Special Class of Threshold Autoregressive Models

The term stability is so expressive that it almost tells its own story. A device of some sort operates
under certain conditions. These conditions are slightly changed. Does the change have little or considerable
effect upon the device? In the first case it is thought as stable, and in the second as unstable. Nowadays
there is more and more reason for studying difference equations systematically. First let us consider the
difference equation

xll+1 =T(x,.) n =0’i1 ;:tz’ Tt
The solution to the initial value problem

Xna1 =T (%a) X =x° s (3.1.1.1)
is x, =T"(x°), where T" is the nth iterate of T : T"*! =T(T") and T'° =1, the identity mapping. The product
of functions is composite.

There are many reasons for being interested in what happens to 7" (x) for large values of n. This con-
cem with the asymptotic behaviour of T"(x) is what stability theory is all about. More than that, stability
has to do with dynamic behaviour. Basic to methods of successive approximation of solutions of x =T (x) is

the fact that, if T"(x®) converges, its limit is a solution ( a fixed or invariant point ).
3.1.1.1. Notations and Definitions
ForxeR™ and § any setinR™

p(x,S)=inflly-x|;yes},

the distance of x from S;
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T"(x)—> S as n—eo means p(T"(x),S)—0 as n—yoo;

S= {x;p(x,S)zO} is the closure of S.

Aset Sis closedif S =S and open if its complement is closed.

T(S)={T(x);xeS}

Definition 3.1.1.1.1 (Birkhoff). A point y is a limit point of T"(x) if there is a sequence of integers n; such
that 7" (x) —y and n;—oo as i—os. The limit set Q(x) of the motion (the motion or trajectory 7"(x) from x
refers to the sequence of states x,T(x), -+ ,T"(x), - -+ ) T"(x) from x is the set of all limit points of
T*(x).

Definition 3.1.1.1.2. A motion T"(x) is said to be periodic (or cyclic ) if for some k>0, T*(x)=x. The
least such integer k is called the period of the motion or the order of cycle. If k=1, x is a fixed point of T

and is called an equilibrium state of (3.1.1.1).

Definition 3.1.1.1.3. A motion T"(x) which is bounded for all n>0, is said to be stable in the sense of
Lagrange.
3.1.1.2. Stability in Time Series Analysis

The idea of innovations is now well-developed and may be formalized by the expression

X,—E[X,|F,_1] where Fs denotes the sigma field generated by X,,X,_,, -+ . (See e.g. Tong, 1987b).
Let the innovation sequence be denoted by { £, } , then we may decompose a time series { X, } by

X, =Xr+e, (3.1.12.1)
where X, =E[X,|F,_1], & =X,~X,. We refer to X,=X, as the skeleton of the time series specified by

(3.1.1.2.1).

Consider the class of non-linear autoregressive model, i.e. models of the form

X, =AMX, e, , (3.1.12.2)
and its higher order generalization. In this case

X = ;"(Xr-l)
and &, =¢,. If the skeleton ( difference equation X, =A(X,_,)) is asymptotically stable at the origin in the
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sense that the recursion X, =A(X,_,) always tends to zero as t—>o~ regardless of initial X,, then motion of
A"(x) is Lagrange stable and the time series defined by (3.1.1.2.2) is ergodic under quite general conditions
on ¢, and A. ( Chan and Tong, 1985). .

Now, except for the linear case, there is no systematic way of checking stability. Chan and Tong
(1984) and Tong (1987b) have considered an application of symbolic dynamics in studying the Lagrange

stability of difference equation

01X, 1+ X, 5 X, >0
Xa = 01 X1 otherwise , (3.1.1.2.3)

where $3+44, < 0. His method will be used in studying the stability of the following models.

Consider
01 X51 X, <r
X, = {01X,_,+0.X,, ifr <X, ; <r (3.1.1.2.4)
01X, ifX, ;>r,

where &1, 07 , 92, &1, 7, r , are real constant. Without loss of generality let r > 0 and r <0. To under-

stand the stability of (3.1.1.2.4), it is more convenient to use the state space representation.

)l _ | X 41 0
we - ) e 1
B= ["’11 %2} and C = F;‘ g}.

ANote that A , B and C are companion matrices, A and C being degenerate. Then (3.1.1.2.4) is equivalent to

Let

CZ,,_, ifz,];_] <f
Z,= {BZ,, ifr <z}_<r
AZn—] i.fz,l,_l >r,

(3.1.12.5)

X,=(1 0)Z,. Obviously, X, is Lagrange stable if and only if Z, is so.

Define
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R= {(x,y):x>r} , M= {(x,y):r'SxSr} ,
L={yyx<r},0i={xyeRr:y<0},
0;={xy)eR:y20}, 03 ={(xy)eM},
Qs={(xy)eL:y20}, 0s={(xy)eL:y <0} .

Foreach Z,eR , Z, , is obtained by the action of A on Z, and similarly for any Z,eM and Z, €L, Z,,, is
obtained by the action of B and C on Z, respectively.
Case (i) Let ¢, 20, ¢; =0, then we may have the pictorial representation of Fig. 3.1.1.2.1a and 3.1.1.2.1b

which displayed the action of A on R.

B[ o Ble ] mere.
P 2 Y z \g
‘; =z r { {
y [ !
:z | \ z ]
o | @
w w I
- : 7§> z R i = z
o : = )
' , ! |
> o > Lo
1] o’ l
o co
Q. EZ0D @ [Frorme, |
6. 722 8,
The action of C on L (Figs. 3.1.1.2.2a and 3.1.1.22b) can be represented as
C B] =x [4;‘;] .x&r'<0.
.- {' 2‘ v Y‘ zz 'd
] N
:fa 2 . B
® // : s |
bt . v : i .
f: ! » | |
) - : o X !
aQ,

) G, e
Q; [

%
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For each point Z,€R , Z,,; =AZ,€Q, or Q3. In the first case, Z,,; will be under action A again. In the
second case, Z,,; under action B may move to any other regime or stay in Q5. Note that in this case, we
will show that Z, can not stay in Q53 and move along the z2 axis to +eo. i.e After finite actions under B it
will move to R or L or may absorb to the origin. For each Z,€L , Z,,; =CZ,€ Qs or M. In the first case
Zp 41 will be under action C and in the second case under a finite number of actions of B, may move to R or
L or stay at the origin. Therefore for ¢,20, ¢;>0, the tail of trajectories, which are important, are of the
form A" or B”. In this case the system is Lagrange stable if ¢, <1 and ¢7<1.

Similar to the case (i), when ¢; <0, &1 <0, we can show that the system is Lagrange stable if ¢, ¢; <1.

Case (ii) Let ¢; <0 and 7 20. the action of A on R and C on L are given by Figs. 3.1.1.2.3a, 3.1.1.2.3b

and 3.1.1.2.4a, 3.1.1.2.4b respectively.

-1 B3

,x&r>0,6,<0.

Iz'
© 7 7

¢ AW & g
Q. 27 G ]

Fig.3.1.1.2.3 i
ig.3.1.1.2.3a Fig. 3.1.1.2.3p



17

p 2 C[yx]= [é]_; g] [;] =x[¢{] ,x&r'<0,¢~>0.
e

¢

z

I
|
i
!
i
t x
{
|
}
1
l

Q bz 3,
&, Qs o]

Fig. 3.1.1.2.4a

Fig. 3.1.1.2.4b-

It is easy to show that the important tail of trajectories takes the form (A ;C"). Thus the system is
Lagrange stable if ¢; <1 and ¢, <0. Similarly for the case 61 <0, §; 20, the system is Lagrange stable if

$;<1and ¢; <0.

Lemma 3.1.1.2.1: Let Z, satisfy (3.1.1.2.4), then { Z, } is lagrange stable iff one of the following conditions
hold:

(@) 0<¢;<land0<¢;<1,

(i) ¢; <0, 61 <0and §10; <1,

(iii) ¢ <0, 0<¢; <1,

.(vi) $;<0,0<0;<1.

Example 3.1.1.2.1.: The system

-5.0X,_, if X,y <-1.0
X, = {-3.0X,_,+8.0X,_, if-1.0<X, <2
0.9X,_, X,.1>20,

has two unstable sub systems but the whole system is stable. ($,;=5.0<0and 0<¢;=0.9<1.) This sys-

tem has a limit cycle with a long period.
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Now we will show that the system (3.1.1.2.4) can not move parallel to a single axis. Suppose after n

steps transition z}_; € ir, r] for some integer n. Then Z, ,; can be obtained by the action of B on Z,,. Thus

Zpy =BZ, = [4;1 ¢02} m _ [Q)lx-:\)zy}

where Z, = [;] . It is clear that

AZn-H if ¢’)X+¢’2y < r'
Z,.2= {BZ,, ifr <¢x+oyy<r
CZyyy if Qyx+42y > .

Case () Zyip =AZyy = [¢1’ 8} {W:%y] = P‘ﬁiﬁ;ﬁ]'

Case (i) Zpiz = BZpp = ‘hl %2] P’x:%y] = F‘@;’iﬁff’”‘] ,

and

Case (i) Zn.a = CZous = [‘T 8} F‘?ﬂ] = [“"é?iﬁ?;”} :

In all cases the second component of Z, 2 is equal to the first component of Z,+1. Therefore as n — e, Z,

can not move parallel to one of the axis.

It may be useful to investigate the affect of changing the delay parameter on the stability conditions
of system (3.1.1.2.4).

Consider

X,y ifX, p<r
X, = {01 X, +oX,_, if r <X, ,Sr (3.1.12.6)
01X, ifX, o>,

where ¢ , 4)'1 , ¢'2 , t'p'l' , rand r are real constants. Using the state space representation we may have

z}l Xn ¢l 0
_ [ 6 01 0
B‘[f 02]’C=[11 0]-
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Then the system (3.1.1.2.6) is equivalent to

AZ, ifz2_, <r
Z,= Bz, ifr'ss2isr (3.1.12.7)

CZ,,_‘ ifzi-; >r,

X,=(1 0)Z,.
Define

U={(x,y):y>r} , M=[(x,y):r'$;y$r} s
L= {(x’)’)ty<r'} 0= {(x,y)EU:x>0} ,
0, ={eet:x<0} , 05 ={(y)eU:x=0},
Q4= {(X,}’)GM} ,0Os= {(x,y)eL X >0} s
Qs={@yeL:x=0} , 0;={(y)L:x<0} .
_[0
For every point Z, in Q3 or Q¢ , Z,4; is obtained by the action of C or A on Z,. Let Z, = [y} €M, then
AZ,=CZ,= [8] For each Z,eU , Z,,; is obtained by the action of C on Z, and simjlarly for every point

Z,eM and Z €L , Z,,, is obtained by the action of B and A on Z, respectively.

Case 1:Let0<¢, , 059y, the action of C on U (Figs. 3.1.12.52 and 3.1.1.2.5.b) is given by

k3

zz' ' z
-— _/%é& —r ——— —— | — —_Tr
z! ra
—_—— e —_— ~— r —_ — -} — - -r

NN q [l
6. 22 - q,

Fig.3.1.1.2.5a Fig. 3.1.1.2.5b
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The action of A on L (Fig. 3.1.1.2.6a and Fig. 3.1.1.2.6b) can be represented as

2 z

x
o]
& 2
L B v w1 X _
w w
. . ¢ .
= z - 2
- ;__‘ ,
(S ] —_ —_—— . —— ——— — — r
. Y (V)
X \V// X
o o

a5 7)) g
NN 8, [P |

let Z,eQ,, then Z,,+1'=CZ,,6Q,. therefore the syste.m is stable if |¢; |€1. If Z,€Q,, then
Z, 1 =CZ,€M 01 CZ,€ Q7. If Zp 1€ Q5, then Z, ;, =AZ, ;€M o1 €Q5, thus the condition | ¢1 |<1 ensures
the stability of the system. If Z,€Qs, then Z,,;€M or @y . More generally, by starting from any point, Z,
under (finite number) action of A or C or both along the line (¢ , 1) or (¢7 , 1) will lie in M, and then under
action B may move to the other region or to stay in M. Thus, in this case the system is stable if
0<¢, <1, os¢{é1.

Case2:0<¢,; , &; <0, the actions of A on U and C on L can be represented in the same way as the Case 1.

By starting from Q,, the system under action C may move to O, or M. If the system lies in M, then
under action B may stay in M or move to any other region. If the sfstcm lies in 0 ,, then under action C will
move to Qs or M. If it moves to O, then under action A it will move to 9, or M. It can be seen that the
important tail of trajectories takes the form (4,C,C). Therefore the condition 4)14)': <1 (the eigenvalue of

matrix AC? ) ensures the stability of the system.

Similarly if ¢; <0, 0 <41, then ¢19? <1 is the stability condition.
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Case 3 : ¢, <0, ¢7 <O0. Similar to case 1 the system is stable if ¢, 1 <1.

Lemma 3.1.1.2.2: Let Z, satisfy (3.1.1.2.6). Then {Z,} is Lagrange stable if and only if one of the follow-

ing conditions holds:
)0<¢, <1, 0< oy <1,
ii) (4, =0, |7 |S1) or (67=0, |4, [<1),
iii) §; <0, 0<¢] and 4307 <1,
” »
iv) $; <0, 0<¢; and $, ¢, <1,
v) $, <0, ¢7 <0and ;01 <1.

Example (3.1.1.2.2): The system

_15X,_, i£X,_, <—1.0
X, = {-8.0X,,+3.0X,, if-10<X,,<2.0
0‘4Xn—1 ifX,‘_z >2.0 N

is stable with a limit cycle with a long period . In fact this system satisfies the condition (iii) of lemma

3.1.1.22.
The system
-1.5X, 4 ifX, ,<-1.0
X, = 104X,.,-06X,_, if-1.0<X, ,<20
0.6.X,,_1 ifX,._z >2.0,

is not stable since <t)1<l>'1'z =135>1,

The results of Lemma 3.1.1 2.1 and 3.1.1.2.2 can be easily generalized to a more general case.

Lemma 3.1.1.2.3: The system

. P
X, = a,(,')+j}£.1a§')X,,_j ifriy <X, 4<r;,
where {—°°=’o < <-:--<ngy <r,=°°} is an ordered partition of R, d<p , a¥’, af") are real constant, is

P
Lagrange stable if ;:1,,,1(1) |and ¥ |afD|<1.
j= i=l
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In fact these two conditions control the behaviour of the system in the two extreme regions and push it

towards the origin.

Example (3.1.1.2.3) The system

0.240.3X,,-0.1X, ,+0.3X, 5 ifX, ;<-50.0
X, = {2.0+1.5X,,4.0X, ,+3.0X, ;s if-50.0<X,_5<100.0
—0.140.2X, _,-0.3X, ,+0.3X, ; ifX, ;>100.0
is stable with possibly a chaotic behaviour. Fig. 3.1.1.2.7 shows the scatter plot of X, vs X,,_; of this sys-

tem.

3.2. Bilinear Models

Granger and Andersen (1978) and Subba Rao (1981) proposed a special class of non-linear models
known as bilinear time series models. This type of models has been extensively discussed in control theory

to describe input-output relationships for a deterministic non-linear system (See for example Mohler 1973).

The general bilinear autoregressive moving average model of order (p,q,P,Q) ( abbreviated as

B1(p,q.P,Q) by Subba Rao and Gabr(1984) is given by

P g QP
Xi= ZoXeit 2 Biert Z T puXerers s (B2.1)
where { e, } are independently, identically distributed random variables with mean zero and variance G2

and §,=1. The completely bilinear model is given by (3.2.1) with p =¢ =0, so that

X = élély,dX,_,e,_ﬁe, . (32.2)
If ¥y =0 for all k >/, the model is called superdiagonal and if vy, =0 for all k#l, the model is said to be
diagonal. Finally if y,=0 for k <, the model is called subdiagonal. Stationarity and invertibility of simple
bilinear models has been discussed by Quinn (1982) and Tuan and Tran (1981). Gabr and Subba Rao
(1981) bave discussed the estimation and prediction of subset bilinear time series models and Liu (1985)
has studied theoretical properties of some more general bilinear models BL(p,q,r, 1). Wang, An and Tong
(1983) have studied the distribution of simple stationary bilinear processes. Subba Rao and Gabr (1984)

gives a comprehensive account of this class of models.
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Let X, be a discrete parameter time series satisfying the difference equation

X, =X, 1+ +qut—p+(Bo+BlXI-l+ s 4By Xiger (32.3)
where { e } is a sequence of independent and identically distributed random variables with E(¢,)=0 and
Var (e,)=c? and B, =1. The model (3.2.3) is a special case of the bilinear model, which we will refer to as

Markov Bilinear Stochastic Process. It is more convenient to study the properties of the model (3.2.3),

such as stationarity, invertibility, etc, via an equivalent state-space representation.

The vector form of the model (3.2.3) can be written as

X, = A.X,_l +BX'_1 e,+Ce,

X, =HX,, (3.2.4)
where
Pal a,; aj . ap.
010 -0
-0 ay la; " q

0l I

00 0 0 by by - byl 0
B=|" ° . e T E f———— | —

0 10

X, =EeXeas " Xipa) , C=(1,0,..,0)
and H = (1,0, - - - ,0). We also assume that e,~ N (0,02).

Let

lLt = E(Xl) ,
v' =E (XIX:) -
Taking expectation on both sides of

X, = AX,1+BX,_; e+Ce, ,

one can get
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Bo=Ap, .
Hence a sufficient condition for {X, } be asymptotically stationary of the first order (i.e E(X,) is indepen-
dent of r as 1—e0 ) iS

PA)= gy MA)}<1, (32.5)
where A, (A), - -+ ,A,(A) are the eigenvalues of the matrix A. If this condition is satisfied then

p=lmp,=0.
=00
Note that the condition (3.2.5) is the same as the stationarity condition of AR part of the model (3.2.3).
Following Subba Rao (1984) and Neudecker (1969), the sufficient condition for the model (3.1.3) to
be second order stationary is

p[ARQA+BR®BaG2I1,
where AQA is the kronecker product which is of order pZxp2.

The covariance of X, and X,_; can be calculated as

Ye = EXp o Xi) = 00 Y+ +0uYep » - (3.2.6)
which is identical with the covariance of AR(p) part of the model (3.2.3).

Multiplying both sides of equation (3.2.3) by X, and taking expectation, one can get

EX?) = oqyi+ -+ 405 Y, EK e B E X, e 1+ - +BEX X, ge0)

or

P q .
E(th) = gla'n'yx'*'E (Xrer)'*‘jElBjE(X,X,.je,) .

It can be shown that

EX.e)= 53 )
EXX,_1e)= Cf(ﬁl'Ya"'Bz'Yl"' T +Bq79-1) ’
EXX, 2e)= GE(BI Nyt +Bqu-2) ’

E(X,X,_qe,) = cf(Bl’Yq—l"'BZYq-Z'*‘ e +Bq70) .
Hence

Yo =0T+ 'pr‘Yp"'cE'*'U%[ﬁl (B1.Y°+B2'YI+ T +Bq7q-l)
B Brri P2yt - +l3qu—2)+ T +Bq(Bqu—1+Bz‘Yq_2+ 43,70
=1+ e 'HXP'YP'FGE'Yo(ﬁ%'Fp%-*- T +B§)
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+02B; By Byt - - BoYgadr o+
o? By(Bi¥g1+BaYyat - +Bea1n)

P
‘_)=:]oc,.7;+cf[3, G+ - +[3qu_1)+ . Wfﬁq(ﬁﬂq-ﬁ’ - +B, 1)
1-0Z(B1+p3+- - - +B]) '

As the autocovariance function of X, is equal to autocovariance function of AR part of the model,

therefore the spectrum of X, is equal to the spectrum of AR part.

3.3. Exponential Autoregressive Models

An exponential autoregressive model of order p EXPAR(p) for a univariate time series

{X,, t=0,£1, - - - }, which was first announced in Ozaki and Oda (1978), takes the form

P
Xr = ZA,'jX,_j‘f'e, N (3.3.1)
j=1
where { e } is a sequence of independent identically distributed random variables with zero mean and con-
stant variance o2 and e, independent of X, , s<t. Here
A, j=bjtc; exp(—gXi1),
b;’s , c;j’s and g20, being constants. Ozaki (1982) gives a comprehensive account of the development of

EXPAR models.

The physical idea seems to be that the impulse response { A, ,~}, at time ¢ or equivalently the instan-
taneous frequency response, is controlled by the rise and fall of X2 ;, interpreted as energy at time #—1. (See
Tong (1987a)).

The model (3.3.1) has a symmetric distribution about the origin, which can be easily deduced from
Theorem 1, Tong (1983) page 16. The model (3.3.1) was extended by Ozaki (1982) to

_X:-x —X:-x
X =(oy+/iXia)e "X+ +(G?+f;,(X,_1)e X pte, (33.2)
with the object of giving a more sophisticated specification of the dynamics of the characteristic roots of
AR model using Hermite type polynomials f:(x,_, Y™ (i=1,2, ...,p) Where
fiGo) = n@ x4 xy (i=1,2,..p) . (33.3)
The limitation of symmetry distribution of model (3.3.1) may be obviated if a model of type (3.3.2) is

employed where the order r; for some i of the Hermite polynomials f;(x,-,) are odd integers.
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Fig. 3.1.1.2.7 : Scatter diagram of example 3.1.1.2.3. X, (vertical axis) vs

X,-1 (horizonal axis) for n=1500,...,1600, with X1=X,=X3=0,
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CHAPTER FOUR

SOME STRUCTURAL PROPERTIES OF
. LINEAR AND NONLINEAR
MODELS

To be able to use time series models in practice, we must be able to fit the models to data and esti-
mate the parameters. Computational procedures for determining parameters for various non-linear model
classes are studied by many authors. Often these are based on a least squares or a maximum likelihood type

criterion.

The method of conditional least squares (CLS) seems to be popular among users of SETAR models,
EXPAR models and more generally non-linear autoregressive models appropriately parametrized. The
method is essentially one of minimizing the sum of squares Ze? . The paper by Kilmko and Nelson (1978)
and Tjostheim (1986) provide most of the theoretical framework for sampling properties of the estimates.
For SETAR models, strong consistency Chan (1987), asymptotic normality and rates of convergence of

parameters estimates are available ( See e.g. Chan and Tong (19862)).

Let {X, it= 1,2,...} be a stochastic process defined in a probability épace (Q,F,Pg) whose distribu-
tion depends on a (column) vector 6=(6,, - - -,6, ) of unknown parameters, which lies in some open set A

of the Euclidean p-space. The following notations are adapted:

e’ =(61,---,6p) denotes the true’ value of 6 ;

Eq(.) denotes the expectation where 6 is the parameter ;

Eg(.1.) denotes the conditional expectation with 6 being the parameter ;

{ F} denotes the sequence of sub-sigma fields with F, generated by an arbitrary subset
=0

of {XI,XZ, AN ,X,}, t21, and with F, equal to the trivial sigma field.
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Assume that E|X;| < e , 1=1,2,.... Define the function g(.,.)by
g0, F)=Eg(X;1 | F), 120.
Given a set of observations X, , t=1,2,...,N, we minimize the conditional sum of squares

N-1
Sn®)= X [Xrn—(®, F)I, 4.1

with respect to 6 to obtain the estimates. That is we solve the ‘least-squares”equation

dSn(8)
09;

=0,i=12,.,p.

It can be shown that for non-linear autoregressive models, maximizing the conditional likelihood
function is equivalent to minimizing the conditional sum of squares of errors, under the normality assump-
tion of ¢, .

The error sum of squares function Sy(0) is a function of the elements of © only; the data provide the
numerical coefficients in Sy(0) and these are fixed for many specific estimation problem. In the parameter

space , that is, the p-dimensional Euclidean space of 8, , - - , 8, , the function Sy(6) can be represented by

the contours of a surface.

If the g(8, F,) were linear in the 6's, the surface contours would be ellipsoidal and would have a single
local ( and so a single global ) minimum height, SN(é), at the location defined by the least-square estimator

0. The error terms are assumed to be normal.

If the g(0,F,) is non-linear, the contours may not be ellipsoidal but tend to be irregular and some times
‘banana-shaped’, perhaps with several local minima and perhaps with more than one global minimum, that

is, the minimum height may be obtained at more than one 6-location.

The precise shape and orientation of the Sy(©) contours depend on the model and the data. When the
contours surrounding the least-squares estimator 8 are greatly elongated, and many possible 6-value are
‘nearly as good as’ 0 in the sense that their Sn(8) bowl height values are close to SN(é) , the problem is said
to be ill-conditioned and 8 may be difficult to obtain computationally.

Two obvious ways of examining the error sum of squares surface Sy(0) are often overlooked; they
can be particularly useful when an iterative procedure ( most non-linear time series ), beginning from

chosen values, does not satisfactorily converge.
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The first of these is to select a grid of points in the space of the parameters (6,,6,, - - -,6,) and to
evaluate the error sum of squares function at every point of the grid. These values will provide some idea of
the form of the error sum of squares surface and may reveal, for example, that multiple minima are possi-
ble. In any case, the grid points at which the smallest error sum of squares is found can be used as the start-
ing point of an iterative parameter estimation procedure, or a reduced grid can be examined in the best

neighbourhood, to obtain a better starting point.

The second possibility is to draw the error sum of squares contours in any particular region of the
parameter space in which difficulty in convergence occurs or in which additional information would be
helpful. This is usually straightforward when only one or two parameters are involved. When there are
more than two parameters, two-dimensional slices of the contours can be obtained for selected values of all

but two of the parameters, and a composite picture can be built up.

All iterative procedures require initial values 8y,,62,, * * - ,6,,, Of the parameters 6,,8,, ---,6, , to
be selected. All available prior information should be used to make these starting values as reliable as they
possibly can be. Also if multiple minima exist or if there are several local minima m addition to an absolute
minimum, poor starting values may result in convergence to an unwanted stationary point of the error sum
of squares surface. This unwanted point may have parameter values which are physically impossible or

which do not provide true minimum value of Sy(68) . As suggested above, a preliminary evaluation of Sy(6)

at a number of grid points in the parameter space is often useful.

4.1. Moving Average

In the maximum likelihood estimation of a moving average process non-invertible estimates fre-
quently appear, both with actual data and in simulation studies. Kang (1975) showed how noninvertibility
occurs in the moving average of order one and indicated why it should be expected with positive probabil-
ity. The positive probability that an estimated moving average process be non-invertible is studied for max-

imum likelihood estimation of a univariate process by Anderson (1986).

4.1.1. Exact Maximum Likelihood Estimation of MA(1)
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Let { X,} be a stochastic process defined by

X, =0¢,_;+e, ,t=0,11,--- , 4.1.1.1

where {e,} is a sequence of unobservable random variables with the properties

E(e)=0, V(e,)=0% < oo, E(e,e,)=0 ts .

If 161 <1, we caninvert (4.1.1.1) to obtain the autoregressive representation of order infinity

e =X,—0X,_,+6°X, o+ - . 4.1.12

The autoregressive representation is important because it may be used for prediction.

It is easy to show that the lag one autocorrelation of process (4.1.1.1) is

__9
1+6%
The other autocorrelations are zero. If 8 is replaced by its reciprocal,
1
e 0
p = 1 ) = 1_‘_62 N
14{3)

the autocorrelation is unchanged. The exact likelihood function of the parameters (8, 62) in the first order

moving average model (4.1.1.1), where ¢,~N (0, 62) is

Ly L
L®,62Ix)=(2nc2) 2 1Q| 2exp(—2i2 X' Qg'x),

where X' = (X,X,, -+ +,Xy) and Qq is an NxN band matrix with elements w; =1+6% , w; ;,; =W;41,, =—9
and w;=0, i#jt1 . (Cryer and Ledolter, 1981). Maximizing over o2 one can obtain the concentrated
likelihood function
1
Lo 10={s@) * ,

where

1
g(©) =19 1 ¥ xQ5'x.



The matrix Qg4 may be represented as

1+6
-0 1+6?
0 -0
0 0
Qg = . .
0 0
0 0
One can check that
Hence

1
1 N e
g(g)= 1Q0! NXQl}ex

1

Q= ezQm; .

= 16720, 1 ¥ X' [62Q, T'x

= | Qg 1X'Qex

=g©).
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( Chan private communication).

It shows that g(0) has two equal local minimum on R, at é and -'1" . This is related to the two identi-
0

cal MA(1) processes with parameters 6 and %

For N=2 the maximum likelihood estimates can be found by minimizing

1
£(0) = (1462+6*) 2 {(1+6*)(2 +x} 14261 1%, .

The graph of g(6) is given by Fig. 4.1.1.1.

4.1.2. Conditional Maximum Likelihood Estimation

Box and Jenkins (1970) have developed a simple procedure for evaluating an approximate likelihood

function numerically by first determining the { e,} recursively, as follows. Given observations

X,,X3, <+, Xy from the model ( 4.1.1.1) we may first set ( as starting value ) e, =0. We then have,
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€, =X1
€9 =X2—9X1
€3 =X3—66'2 =X3—9X2+92X1

e, =X,—Oe,_; .

Under the assumption that the e,’s are normal, the conditional likelihood estimates are thus obtained by
N
minimizing Sy(0) = Z‘e?, and may therefore regarded also as conditional least squares estimates. Note,
=
however, that Sy(0) is no longer a quadratic function of the parameters.
For N =3, S§y(0) is a polynomial of degree four and its derivative §3(0) is a polynomial of degree 3 in
6. The cubic polynomial S'3 (6) may bave three real roots. Suppose that f; <M, <H3 denote the real roots.
Since the coefficient of 6* in §5(6) is positive, S3(8) has two local minimum at él =u, and éz =p3. Unfor-

tunately the exact relation between § 3(61) and S 3(63) is not available. The graph of S4(6) for X; =-1,

X,=1.2 and X5 =1.6 is given by Fig. (4.1.2.1).

4.2. Exponential Autoregressive Models -

Consider the family of Exponential Autoregressive (EXPAR) Models
. 2
X, = j§1{ O/ 1) €p (—YX21 )X, re, 4.2.1)

where o(s are real constants and 0 <y< e, {e,} is a sequence of independent and identically distributed

random variables with mean zero and constant variance, and e, is independént of X, ,s <tand

fx)= _Zln,(")x .

where 1t{)’s are real constants.

The simultancous estimation of parameters {P, ‘Y,(Ot;,vtf”)} J4=1,2,...,p, and j=1,2,...r;, is essen-
tially a nonlinear optimization procedure, involving all the computational difficulties inherent in such a pro-
cedure. This problem may be overcome by fixing the parameter y at one of a grid of values and estimating
the order, p , and the corresponding ¢; , m; parameters. The problem then becomes one of fitting a linear

-‘YX:_,

regression of X, on the series {X, ;8 < t} and {e™ X, ;s < 1}. The order p can be estimated by using

AIC or other criterion for non-linear time series. The models fitted for each y may then also be compared
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using one of the criterion ( AIC ), to find the ‘best” model over all y. The above method was proposed by
Haggan and Ozaki (1981), who assumed that { X, } is a mean-deleted series.

In model (4.2.1) it is obvious that if Y=o, the model is linear. Thus, the parameter v is a key factor
affecting the non-linearity of the model and we would naturally pay special auenﬁon to its estimation. Our
experience, and we understand also of Dr. Valerie Haggan ( now Dr. Valerie Haggan - Ozaki ) - private
communication with Professor Howell Tong, strongly suggests that the estimation of ¥ can encounter

difficulties, Chan et al (1988).

We may illustrate the type of difficulties by reference to the likelihood function based on 100 obser-

vations artificially generated by the following model
X, = {bHc+dX, 1) exp (—gXia )} Xy +e, 42.2)

where ¢,~N(0,1), b=0.6, c=0.6 , d=g=1. In our simulation studies, we use NAG routine GOSCBF(4)
to initialize the random number generator GO5SDDF to generate a fixed sequence of normal random
numbers with mean zero and variance equal to one. The value of X, is set to be.zero and the first 1499
observations of X, are discarded to remove the affect of the starting point. The contours of negative log
likelihood function, which is proportional to Sy(6) =Xe?, of model (4.2.2) are given by Figs. 4.2.1 - 4.2.3 .
The contours of (b,c),(b,d),(c,d) are ellipsoidal, for fixed g=1, and it confirms that when the scale

parameter g is known, the parameters can be estimated efficiently.

A family of contours of (d, g) when 4=0.6, c=—0.6 over differer;t grids of points are plotted to
show the difficulties of estimation of parameters. An isometric projection of Sy(6) is also included, Fig.
427 . Asit can be seen, most of the curves are open from above along the g axis, and near the minimum,
they are elongated. On considering the height of curves, the flatness of likelihood surface is quite clear.

Fig. 4.2.6 reveals the existence of two local minima.

The likelihood surface of (g,d) in Figs. 4.2.6 reveals the difficulty in the elongated shape of the
contours. Shown in Table (4.2.1) is the theoretical information matrix of the four parameters based on
numerical integration with respect to the stationary distribution of the model which may be obtained by

numerical techniques. ( Details will be given in chapter five).
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Table 4.2.1

(Model 4.2.2)

Information Matrix

| 1.5588
| 0.1861 0.0802

| 0.0568 0.0142 0.0516
I

b
c
d
g | 0.0210 0.0158 —0.0464 0.0764

The eigenvalues of information matrix are 0.0098, 0.0603, 0.1125, and 1.5844 .

The eigenvalues range from 0.0098 to 1.5844 ( ratio of maximum to minimum = 161.67 ) and the deter-
minant is approximately 1.05x10~%, which clearly high light the near-singularity of the information matrix.
The inverse of information matrix is given by Table 4.2.2 .
Table 4.22 -
(Model 4.2.1)

The Inverse of Information Matrix

0.8988
-1.8952 22.9870
—0.7408 -17.7297 62.8325
—0.3035 ~15.0124 42.0293 41.8091

The variances of b,c,d, g are 0.8988, 22.9870, 62.8325, 41.8091 and the covariance of (¢,d), (¢, g)
and (d, g ) are -17.7297, -15.0124 and 42.0293 respectively.

The likelihood surface of (g,d) shown in Figs. 4.2.5 and 4.2.6 reveals the difficulty in the elongated
shape of the contours.

The general message is that corresponding to some non-linear time series models, the information
matrix may be ill-conditioned. We now explain that the ill-conditioning is closely connected with the rela-
tive variation of n, as g varies over [ 0, ], where 7, denotes the stationary distribution with parameter g .

For simplicity of discussion, we consider a simple example.
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EXAMPLE 4.2.1: Let {X,} satisfy the EXPAR model

X, = T, (X, 1€, . (4.2.3)

where €, ~N(0,1), and

T,(x) = {0.2-0.2exp (-gx2)}x .
It is clear that T, is odd and increasing for 20 and | T,(x)|<|Tp(x)| for 0< g <g' <+, VxeR . For

any two probability measures |t and v on R , we write
LaVifVe>0, pl—c,cj2vi—c,cl,
i.e. p is more concentrated around the origin than v .
Now, using Proposition 2 of Hognas (1986, p. 207), we may deduce that g <g ’ implies that Tg AT,
where m, denotes the stationary distribution of model (4.2.3) with g as the parameter. For g=0, X, =¢, and

g=,X,=02X,_,+e,. Hence, for g €[0,+o0] , it holds that

N(@,1)=7, am, <7 =N(0,0.967) .
Thus, the infinite range of g only corresponds to a very small variation of the stationary distributions. This

lies at the heart of the ill-condition of the information matrix.

We approximate a family of stationary marginal probability density functions of model ( 4.2.3 ) and (
4.2.2 ) over the finite range g, g€[0,20] and [0.5, 15] respectively, to show that the large range variation
of g only corresponds to a small variation of the stationary distribution. The resuits are given in Fig. 4.2.8

and Fig. 4.2.9 .

Let
X, ={a+be ™ }X,  +e, ,
where ¢,~N(0,1),a=02, b=-0.2 and g=2.5. The condition la | + | b | <1, ensure the asymptotic nor-
mality of (a, b,2). Tjostheim (1986). The information matrix, E(H(6)), is calculated by employing the

, *Sn(®
numerical integration technique, where ©=(a,b,g) ,H@®)=072 [ 39;(9) . 1,7=1,2,3,
i99;

y "Bxf-x 2
N - t =174 .
S, (6)—'§2(X —aX,_;—bX,_,e )

The information matrix, its eigenvalues and the inverse of information matrix are given by
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Information Matrix

a | 2.0744
b | 0.1348 0.0541
g | 0.0136 0.0030 0.0003

The eigenvalues of the information matrix are 0.0001, 0.0452, and 2.0834 . We test the validity of the
above by simulation with a random sample of size 10000 . The eigenvalues of the simulated information
matrix are 0.0001, 0.0452, and 2.0796 .

The Inverse of Information Matrix

0.6860
0.0342  41.4955
—31.4385 —416.5032 8923.5768

The determinant =9.41x10™® and the eigenvalues range from 0.0001 to 2.0834 ( ratio of maximum to
minimum =20834 , which high light the near-singularity of the information matrix. The entries of the
inverse of information matrix clearly show that the variances of b and g are substationally large and g is
highly correlated with b.

The above analysis then suggests that we should examine the likelihood function of EXPAR models

fitted to real data.
EXAMPLE 4.2.2 ( An EXPAR model for the Canadian Iynx data ).
Ozaki (1982, Equ. 3.1) has reported the following model,

X, = {0.138+(0.316+0.982X, ;)¢ "™~ JX,
— {0.437+(0.659+1.260X, ) P~ JX, ,4¢, “2.4)

where € ~N(0,6"), §=3.89,8 =4327 x 102 , and {X,} are the mean deleted logarithmically
transformed Iynx data. The parameter estimates were supposed to be obtained by the method of least

squares i.e. by minimizing £e?. Checking the above parameter estimates, we have discovered that there

must be a misprint in the recorded value of 0.138 because with the above stated parameter values, the nor-
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malized residual sum of squares differs substantially from the value of 4.327 x 1072 given for & In fact,
our non-linear optimization gives 1.167 in lieu of 0.138 with all other parameters estimates in agreement

with those given in (4.2.4). We therefore smdy the revised EXPAR model

X, = {1.167+(0.316+0.982X,_,)e ¥~ JX,_,
©216) (0.486) (1.152)

— {0.437+(0.659+1.260X, _ )e - JX, ,+¢, (4.2.5)
(0268) (0.360) (1.146)

where €, ~N 0,8%, ¥=3.39, & =4.327 x 102 . The misprint might explain the peculiar second order
(3.68)

moments of model (4.2.4) reported by Lim (1987). Taking model (4.2.5) as the true model, a sample of
10000 observations is generated by using a simulation technique and the sample autocovariance function of
the lynx data (1821-1934) and the simulated data are given in Fig. 4.2.10 . Using model (4.2.5) and repeat-
ing the same simulation technique leading to the likelihood function shown in Figs. 4.2.11-4.2.14, we may

trace the likelihood function of the following model

X, = {ao+(a 1+aaX, )e_SXL}X,_l .
+ {boHb1+bo X, )e X, e, (4.2.6)

where €, ~N (0,6%) .

Fig 4.2.12 clearly reveals similar difficulty for model ( 4.2.5 ) as that experienced by model (4.2.2 )
and shown in Fig. 4.2.6 . Shown in Table ( 4.2.3 ) is the theoretical information matrix of the parameters of
model ( 4.2.6 ) based on numerical integration with respect to the stationary distribution of the model which

may be obtained by numerical techniques. The eigenvalues range from 0.0029 to 14.2046 . The determinant

is approximately 4.2x10™° and the ratio of the maximum eigenvalue to the minimum eigenvalue is 4831.49
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Table 4.2.3

(EXPAR MODEL FOR LYNX DATA)

. . A2
Information Matrix XG

a, aji as bo bl b2 8

a, | 76136

a; | 12113 0.5055

a, | —0.0238 —0.0161 0.0880

b, | 59868 0.9862 —0.0067 7.6136

b, | 09862 0.4218 -0.1200 2.2380 ' 1.4088

b, | —0.0067 —0.0120 0.0714 —0.0257 —0.0246 0.1209

g | 00818 0.0205 0.0007 0.1575 0.0554 0.0132 0.0102

The eigenvalues of the information matrix are 0.0029, 0.0333, 0.1340, 0.1771, 0.5682, 2.2406 and 14.2046

Table 4.2.4

The Inverse of Information Matrix +&_

1.0812
. =1.6790  5.4589
1.6233 -1.6337 30.6559
-1.1926  1.6008 -2.5461 1.6539
12808 -2.5112 1.1916 -1.6981 3.0016
-1.9960 25199 —24.1376  3.1008 -1.3201 30.3614
8.6096 —11.7149 52.0432 -13.7589 6.3107 —67.1161 312.7660

Not surprisingly, Table 4.2.3 reveals the near-singularity of the information matrix associated with
the parameters a’s , b’s and g. Similarly to example 4.2.1, the parameters a, , a5, by, b, , and g have a
large variance and the scale parameter g is highly correlated with the others.

1t should also be mentioned that EXPAR models of the form (4.2.1) give in general E (X,)=0, unless

all the f;’s are even functionals and e, has a symmetric distribution. ( See e.g. Pemberton and Tong, 1981).

Therefore, it violate the least squares principle to estimate the unknown parameters by minimizing Te?
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when the data are mean deleted. However, fortunately for the present example, the affect does not seem

very serious and we shall therefore ignore it here and in the pext section.

4.2.1. Reparametrization

With the benefit of hindsight, perhaps we should have anticipated problems because of the ‘exponen-
tial regression” nature of the EXPAR models. Analogy may be made with ordinary regression involving
exponential type functions ( See, e.g., Draper and Smith, 1981, p. 489). The analogy then naturally sug-
gests reparametrization as a way out of the difficulty. Specifically, we may replace exp(—gX,z_l) by
exp (g (Xi-1—13)), ¢ by E=c exp (~g;) and d by d=d exp (-glip) where

P, =EXZ, .
We shall refer to the above replacement by the term ‘centering” and the reparametrized model as the ‘cen-

" tered model”. Typically p.'z is estimated by the obvious second sample moment.

Comparing Fig. 4.2.1.1-4.2.1.4 for the centered version of model (4.2.2) with Figs. 4.2.1-4.2.6 ,we

can see substantial improvement. The estimate of g is now much closer to the true value. (X-‘2 =1.643)
Table 4.2.1.1

(Model 4.2.2 centered)

Information Matrix

~

b c d g

| 1.5281
| 0.8586 1.7164

b

c

d | 02563 0.2987 1.0973

g | 0.0223 0.0750 —0.2139 0.0765

The eigenvalues of the information matrix are 0.0227, 0.7601, 1.0456 and 2.5899 .



Table 4.2.1.2
{ Model 4.2.2 centered )

The Inverse of Information Matrix

0.9217
—0.4197 1.0798
-0.1607 -0.8314 2.9510
~0.3060 -3.2607 9.1112 41.8258
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The visual improvement is confirmed by the calculations recorded in Table 4.2.1.2 . Now the deter-

minant has increased to 4.67x1072 and the eigenvalues range from 0.0277 to 2.5899 ( ratio =114.09 ). Note

that the information matrix of the centered model is calculated by a simulation method based on a simulated

data of size 10000 .

Substantial improvement may also be gained by centering the EXPAR model ( 4.2.5 ) for the Cana-

dian lynx data as can be seen by comparing Figs. 4.2.11-4.2.12 with Figs. 4.2.1.5 and Table 4.2.4 with

Table 4.2.1.4 . (X? =0.30908, and typically &, =a; exp (~gts).)
Table 4.2.1.3

(CENTERED EXPAR MODEL FOR LYNX DATA)

. . a2
Information Matrix XG

a, a a b, by by

a, | 8.0011
@, | 46131 7.2820

a, | —0.1157 —0.2301 1.2814
b, | 6.3353 3.7912 —0.0501 8.0024

by | 3.7912 6.1543 -0.1917 8.6580 20.7964
b, | —0.0501 —0.1917 1.0474 —0.1340 —0.4225 1.8025

g | 0.0849 0.0786 0.0025 0.1628 0.2153 0.0518 0.0106

The eigenvalues of information matrix are 0.0033, 0.4563, 0.5278, 2.5940, 4.0232, 9.2703 and 30.3014.

The determinant =2.33 .
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Table 4.2.1.4
( CENTERED EXPAR MODEL FOR LYNX DATA )

The Inverse of Information Matrix 5

1.0177
-0.4142 0.3659
0.4095 —0.1094 2.0841
-1.1174 0.3927 -0.6319  1.5372
03123 -0.1642 0.0694 -0.4094 0.1949
—-0.4955 0.1643 —1.6236  0.7658 —0.0738  2.0323
 8.0807 —2.8764 13.2925 -12.8756 1.3912 -17.0938 301.5600

Note, in particular, the substantional reduction in the Var( typically a, ) and the covariances of esti-

mates. The information matrix of the centered model is obtained by using the simulation method.

A family of stationary marginal probability density functions of model (4.2.5) over the finite range of
g, g€[0.5, 7] is approximated by numerical integration technique and the result is given in Fig. 4.2.1.6 .

It can be seen that for large variation of g, there are a small change in the stationary-distribution.

4.3, Bilinear Models

A discrete parameter time series { X, } that satisfies the difference equation
P P Q
X,+.21a,'X,_,-+a,, = e,+121k21b,kX,_;e,_,, N (43.1)

where { e } are independent and each e, is distributed N(0, c?), is said to be a bilinear process of order
BL(p,0, P, Q). Proceeding as in Subba Rao (1981), we can show that maximizing the likelihood function

of X, X 415 * * * »Xn), With m; =p+1, p being the maximum order of the AR model fitted to the data, is

N
the same as minimizing the function §y(8) = I €? with respect to the parameters. The maximization of the
r

likelihood is then typically performed numerically either by the Newton Raphson algorithm or any other

method. This approach is adopted in bilinear models. e.g. See Subba Rao and Gabr (1984).

The parameter estimates so obtained are consistent (op. cit). However, the asymptotic distribution of

the estimates is not available. One difficulty may be due to the lack of moment property of bilinear models,
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e.g. See Tong (1987a) and Granger and Andersen (1978, page 40 ). Another difficulty may be intimately
connected with the invertibility problem of bilinear models, e.g. See Tjostheim (1986, page 259 ). The

invertibility problem, except for some rather special cases, seems 10 be very complicated.

The exact likelihood function of any class of bilinear models does not seem to be possible .to
obtained, therefore we consider the conditional likelihood function of the simple diagonal bilinear model of
the form

X, =bX, €,1+e, , t=0,11,..., 4.3.2)
where ¢,~N(0, ¢2). Since maximizing . the likelihood function is equivalent to minimizing the function
Sn(b) = Ze?, we may adopt the following method:

Given the observations X,,X,, * - * , Xy, from the model (4.3.2), we first set ¢, =0, then we have

e; =X
€y =X2—bX1€1

=X,-bX? .

en =Xy—bXy_1en-1

N
and Sy(d) =,§1€? . Obviously Sy(b) is not a quadratic function in b . Similarly to MA(1), suppose that 3

observations are available, the function Sy(b) is given by

$u0) = Ze2 = X4y bR+, X
which is a polynomial of degree four in b and under some conditions on X{ , X, , X3 , Sy(b) has three real
roots, such that the smallest and the largest one of which correspond to the two local minima. Although the
simulation study show that b 1 is inside the invertibility region and £1 outside, the exact relation between
I;l and 32 is not clear, When N > 3, Sx(b) is a polynomial of degree greater than four in b, therefore Sy(b)
may have several local minima. Shown in Figs. 4.3.1-4.3.12 are the negative of the likelihood function of
diagonal and super diagonal bilinear models. Some simulation study show that when b the parameter of the
model is inside the invertibility region, the likelihood function has a unique minima, but when the simu-

lated model is not invertible, the likelihood function has more than one local minimum,
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As the asymptotic distribution of the estimates of bilinear models is not available, we employed the
Monte Carlo method to investigate the effect of the variance of the noise term on the variance of estimates.
For both the diagonal bilinear model

Xl = —0.4X,_1 e _1+e, ,
and the linear AR(1) process

X, =-04X,_,+e,,
where e,~N (0, 62), 100 replications each of length 50 and 100 of length 100 were generated using NAG
routine GO5SDDF, which was initialized by NAG routine GOSCCF. For each replication, start-up values
were set to zero and the first 1499 observations discarded to remove transient effects. For each realization
the error sum of squares Sy(0) is calculated and an estimate of b is found by searching over a grid of points
for which the bilinear model is stationary and invertible ( in the bilinear case ) and the linear model is sta-

tionary ( in the linear case ). The results are given in Table 4.3.1

Table 4.3.1

Linear model Bilinear model

G, N=50 N=100 N=50 N=100

EG) | vy | E®) | vy | E®) | vby | E®) | V®)

1.0 -0.404 | 0.0173 | -0.390 | 0.0088 | -0.383 0.0077 | -0.389 0.0027
0.80 | -0.364 | 0.0186 | -0.392 | 0.0113 | -0.380 0.0130 | -0.391 0.0052
0.60 | -0.416 | 0.0168 | -0.390 | 0.0091 | -0.423 0.0190 | -0.403 0.0119
0.40 | -0.405 | 0.0143 | -0.385 | 0.0080 | -0342 | 0.0353 | -0.397 0.0228
020 | -0.371 | 0.0215 | -0.394 | 0.0074 | -0.402 0.1823 | -0414 0.1082
0.10 | -0.408 | 0.0195 | -0.401 | 0.0087 | -0.350 0.6448 | -0.369 0.3505
0.05 | -0.420 | 0.0152 | -0.407 | 0.0068 | -0.303 2.1609 | -0.322 1.2671

0.01 | -0.330 | 0.0174 | -0.390 | 0.0073 | -0.841 | 23.9600 | -0.236 | 20.2834
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The general message is that decreasing the variance of error term ¢, leads to an increasing of the variance of

the estimates of the bilinear term.

Let { X, } be a discrete parameter time series satisfying the difference equation

P 9
X,=.Zla,-X,_,-+ _Zlij,_je,-*-e, N (433)
1= ]=
where the ¢,’s are independent and identically distributed N(0, o2). The method of conditional least
squares can not be applied for estimating the parameters of the model (4.3.3), because some of the parame-

ters are absent in the expression of the conditional mean of the observations. Since the e,’s are normal, we

may use the conditional maximum likelihood method to estimate the parameters a;,dz, *°* , 4,
by,by, -+ ,byandc?.
. . e . oe,
It may be shown that the Jacobian of the transformation is given by | X | =1J | where
- 041 "
- 0 0o ... O
X1
e, oe, .
k42 k+2 0 . 0
0X;yy 0Xpyo
7 1"_’1 de,
h B t=k+1 BX,
BeN aeN BeN aeN
aXI:+1 an+2 an+3 o aXN

ﬁ 1
T | 1kb X, g+ b X, |

and k=max{ P, q } The joint probability density function of X, ,,,...,Xy given Xy, * + - ,X; may be writ-

ten as
-+ X-SaX
N -TaX .
1 1N SN
Xiearrn Xy | X1, 02 X)) = J - p> .
JXearnXy | X, k) o2 | ICXP( 2o 1 +1( q ))
€ 1+Eij,_j

j=1



For given 62, maximizing the likelihood function is equivalent to minimizing the function

P
N ) X,—.Ea,-X,_; 2
Sw(©)= T 20%In|1+b 1 Xyt - +b Xy |+( -
I+ Z ijl-j
j=1
The maximum likelihood estimate of o2 is given by 63 =N _kS,v(O) where 8 is the maximum likelihood
estimate of O =(ay, -~ *,by, ,bq)'. Some examples are given below to illustrate the effect of 62 on the

variance of the estimates of bilinear parameters.

Example 1 : Consider the simple bilinear model

X, =(1+bX, )e, , t=0,%1, - -
where ¢,~N(0, 62). The log likelihood function of this model is given by

N
r

L(b)— 1n0'2+(1 N)ln\/21t—21n]1+bX,_1| 2.

z  —s
202 :_2( 145X,
Following Basawa and Scott (1980), in general E(§x(b)) = In(b), where Iy(b) is the usual (mean) Fisher

information and

_ X dlogL(b) dlogLli,(b) ,
Ev®)= ZE((— ————_ V[Fua},

where L, (b) is the likelihood function based on the observations X, - - - ,X; and F; =6(X,, - - - ,X}), with

F,, the trivial o-field.

Here,
dlogli(b) dlogl,,(b) * X, L EoelX,
db db T2 14bX, o2 14bX,
+k—1 X'_l _L k-1 Xl—l
=2 14bX, ;o2 =2 14bX,;
K d X
14X,y o2 " 1+bXe ;'
and
E.uN(b) - { 1+bX l)le-l.}
N 2
=3 L R L SPICY
RASTE R 2 D
N X
=2 % (—=d

k=2" 1+bX, )2
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Thus
In(b) = EEn(b)) = 2, E E o +ka_1 )
=2(N- 1)13(m)2
Here
X, =(1+bX,_1)e, , all ¢ .
Now e?:(l—fb'—;_—l)z and Iy(b)=2(N-1)c? , m‘(b)=m . For fixed o2, the estimate of b , b, is

efficient but, as 62— 0 the Fisher information Iy(b) tends to zero and V(l';)—) oo,
Example 2: Let

X, = aX,_,+bX,_1e+e, , t=0,%1,..., ¢~N(0,c?).
The log likelihood function is proportional to

-1
L(a b)"‘zlnll"'bXt-ll 20_2 _2( 1+b )

and it is not difficult to show that the inverse of the information matrix Z, has the following form

N—l Xr—l 2 -1
EC 1+bX,; ) 0
Z=
__, 2
0 2(N- 1)12(1 bX_1 )
1 o2 1 o
T N-1° X,
2 |0
Ex 20:

Tong (1981) has proved that E(X7) does not exist for all integer n if b#0. However, for small b we may

X,
approximate the function W by its Taylor expansion about zero. Using this approximation, we can
-1
show that
By =EX? o
oz, ) ~BED =0k =10 -

Substituting the above approximation, the information matrix Z reduces to

12?2 |2 0
T 2(N-1) o L

o?
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Obviously & and b are uncorrelated and V(b)—> e as 62-0.
In order to examine the relation between the variance of the parameter estimates and 62 by simula-
tion, we consider the bilinear models

X, =a X, +H1+bX,)e, ,a; =03, Model 1

and
X, =a\X,_1+aX, o+as X, 3H1+bX, 1)e, ,a,=0.7,a,=-0.6,a3=03, Model IT

where ¢,~N(0, 62) and b=0.4. For estimating the variance of the parameters, 100 replications each of
length 250 using a simulation technique are generated. For each realization, the simplex method is
employed to maximize the log likelihood function. The sample mean and sample variance are taken as

approximations of the mean and variance of the parameter estimates. The results are given in Table 4.3.2

Table 4.3.2

Model I

o. | E@) | v@) | E®) V(b)

1.0 -0.299 [ 0.0009 | 0.391 0.0003
0.1 -0281 | 0.0036 | 0.304 0.1303
0.01 -0.314 | 0.0036 | 0.213 11.8762

0.001 | -0.313 | 0.0037 | -4.239 | 1093.8762
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Model I

o. |EG) | V@) | EGy) | V@ | EGs) | V@) | EG) | V)

1.0 0.696 | 0.0017 | -0.600 | 0.0004 | 0.298 | 0.0008 | 0.380 | 0.0015

0.1 0.695 | 0.0031 | -0.607 | 0.0038 | 0.297 | 0.0034 | 0.292 | 0.1050

0.01 | 0.694 | 0.0029 | -0.603 | 0.0039 | 0.295 | 0.0034 | 0.721 | 9.6659

These results reveal the conflicting aspect of bilinearity and RSS: if you want bilinearity, you must

allow RSS to be of reasonable size.

43.1. Invertibility

It is well known that one way to obtain 2 unique identification of linear Gaussian moving average
model is by imposing the invertibility condition. It is also well known that the condition has a bearing on
prediction. The major source of difficulties is the complexity of the likelihood function, which tends to have

several local maxima.

The situation with a more complicated case like a bilinear time series model is expected to be even
more complex. Consider the univariate class of time series models which takes the form
X, =fXi-jrer_jpj=1,2,....p 1e, . | (43.1.1)
where ¢, is pure white noise, so that e, and e, are independent for all #zs, and is an unobserved input to the
system. If this type of model is to be used for forecasting and provided the function f(.) does contain some
€,-j, j21, it is necessary to be able to estimate the e, sequence from the observed X;’s. A natural way of
doing this is to assume values for as many initial, or starting up e’s as are necessary, i.e.
2_}- » 7=0,1,...,(p-1), say. Assuming now that X_;, j=0,1, - - - ,(p—1) are also observed, then ¢, can be
estimated directly from the assumed known generating function ( 4.3.1.1) by

e =X1-f(X1—j721-jvj=1’ “.p)s
and then ¢, is estimated by
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€2 =Xo—~f(Xojséaj, j=1,2,...p),
and so forth. Thus, using the assumed starting up values, an iterative procedure can be used to estimate all

&,, based on the observed X,’s and the generating model. The error that will almost certainly arise from such
a procedure will be denoted €, =¢,—e,.
The model (4.3.1.1) is said to be invertible if

EE€) >0 ast—>e, 4.3.1.2)

which assumed that the correct generating formula is known completely, both in form and the actual param-

eter values.
If the parameter values in the model are not known exactly, as would occur if they were estimated
from an earlier finite length of data for instance, (4.3.1.2) might be replaced by

E@E )—>c,as 1.

where ¢ < o is some constant.

It would therefore seem always prudent to check the invertibility of bilinear models fitted to real data,
especially if prediction is part of the principal purpose of the exercise. We adopt the definition of invertibil-
ity introduced by Granger and Anderson (1978, P. 69). We propose the following practical procedures for
checking invertibility of non-linear time series models becanse analytic conditions of invertibility are usu-
ally impractical except for the simplest situations. To describe the method, we consider the model (4.3.1.1)
which has been fitted to data X, -+, Xy conditional on X,=X_,=--- =X_ =g =e =" =€, =0.
We can extend the sample by using the fitted model and a simulated random sample of €,.41,€,425 * * * 1€n4m
( m say equal 1000 ) from the fitted distribution of ¢,. Replacing e, by &, in ( 4.3.1.1 )) and setting
§,=8,="---=£_,=0, we may obtain & , t=1,2,..,n+m , where &;=¢; for j=—p,...n . Thus, a practical
check for invertibility is to calculate the sample mean of (g,—£,)?. Explosive tendency suggests non-
invertibility.

Figs. 4.3.1.1 and 4.3.1.2 suggest that the bilinear models fitted by Gabr & Subba Rao (1981, equa-

tions 5.3 and 5.7) to the Wolf’s sunspot numbers and the Canadian lynx data are likely to be non-invertible.

As a check on this practical method, it has been applied to the linear model which is fitted to lynx data by

Gabr and Rao (1981). The result is given in Fig. 4.3.1.3 . Since there is po theory to tell us how to restrict
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our search over surfaces like that shown in Fig. 4.5.8 to invertible bilinear models only, one possibility is to

adopt a trial-and-error method. However, this may involve borrendous calculations.

4.4. SETAR Models

Chan (1987) has shown that under suitable regularity conditions, the least squares estimate of a sta-
tionary ergodic Threshold Autoregressive model are strongly consistent. In particular, both the threshold
and the delay parameters can be consistently estimated by the method of least squares. Chan (1988) has
proved that for SETAR(2;p,p) the asymptotic distribution of 7 is related to a Compound Poisson Process.
Also he has shown that for all sufficiently large N, ZVN:d with probability one. The sampling properties of

the other parameters are studied by Tong (1983), Chan and Tong ( 1984) and (1986a).

To assess some properties of the conditional error sum of squares, Sy(€), of the class of SETAR

models, we consider the simple SETAR(2;1,1) model

ao+a1X,_1 +e, ifX'_l <r

Xt = bo+b IX,_1+e, ier-l >r’ -

4.4.1)
where ¢,~N(0, 1), ¢,=0.7, a;=0.5, b,=1.8 , b,=0.7 and r=0. Since the estimation of threshold is quite
important and moreover, SETAR is linear in each piece, therefore we only plot the contour of the surface of
Sn(0) for a; and b, versus r . The result is given in Fig. 4.4.1 and Fig. 44.2 . An isometric projection of
Sy(0) is also given in Fig. 4.4.3 . As it can be seen, there exist a dip around the 7 and a, in the isometric

projection. Also all contour curves from: contour key 78 to 145 are closed.and ellipsoidal. In the next sec-

tion we will study the function Sy(6) of SETAR models which are fitted to real data in more details.

4.5. Real Data

In previous sections we have described some difficult aspects of non-linear time series modelling.
This section considers some univariate non-linear models which have been applied to Canadian lynx data.
A collection of contours of the likelihood surface of each model are obtained to reveal some features of the

fitted models likelihood functions.

Tong (1983) has reported two SETAR models which were fitted for two different periods to the log

transformation of the Canadian lynx data. The first SETAR(2;5,2) model, which will be referred as SETAR
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model L, is fitted to the first 100 observations. This model i given by

s
ao+.2‘a,-X,_,-+e$1) ifX, ,<r
=

x={ (Model Ty
bo+,zlbiXt—i+e|('2) ifX,5>r

where

a,=0.77,a,=1.06,,a,=-0.20, a;~(.16, a4 =-0.43 , a5 =0.18,
bo =2-25 ’ b] =1.47 ’ b2 't-—l-zo ’ r=3.05 .

The second model, SETAR(2;7,2), which is fitted to 114 observations and will be referred as model I,

takes the form
7
a,+ X a,-X,_,-+e$1) ifX, s <r
i=1
X = 2 (Model IT)
bo+,21b.-X,_.-+e§2’ X, >r
where i

4,=0.546 , a1 =1.032, a,=-0.173 , a5 =0.171 , a, =—0.431 , a5 =0.332,
ag=—0284,a,=0210, b,=2.632, b, =1.492, b, =-1.324, b3 , r=3.116.

Gabr and Subba Rao (1981) have fitted the following subset bilinear model to the log transformation

of the first 100 observations of lynx data. Their fitted model may be written as

Xa,+a, X, +a0X, o +asX, 3+a X, ytagX, g+apX, g,
=b3oX, 36 9tbgeX, g€, gtber X; g1 2+b 11 X161
+byX, e 7tb X, 4e,_o+e; ,

where

a,=—1.486292 , a,=—-0.77227 , a, =0.091527 , a3 =—0.083073 , 24 =0.261493 ,
ag=—0.225585 , a1, =0.245841 , bsg=—0.7893 , bgg =0.4798 , b, =0.3902 , by, =0.1326,
by =0.07944 , bsy=—03212 .
Results are give in Figs. 4.5.1-4.5.28 .

As far as the experiment goes, it seems that the estimation of threshold is not difficult and since in
Ppractice only a finite nominations for parameter r exist, therefore it is easy to obtain the least square estima-

tion of threshold. The contour plots of the likelihood function of SETAR models which were fitted to lynx
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data, do not exhibit any unexpected pattern in the likelihood function of those fitied models.

The contour plots of the bilinear model which was fitted to lynx data reveal the complexity and
difficulty of estimation of coefficient of bilinear terms and the existence of more than one local maxima in
the likelibood function. In the contour plot of (599 , 311), it seems that the global minimum is near point
(0.8,0.7) whereas the maximum likelihood estimates of these two parameters which are reported by Gabr
and Subba Rao (1981), are b 99 =0.4798 and b 11 =0.1326 which correspond to another local minima. Since
the estimation procedure which has been used by Gabr and Subba Rao (1981, page 159) is based on the
Newton Raphson iterative method with initial estimates of the coefficient of bilinear terms equal to zero,
therefore it is not surprising that the iterative procedure converges to a local minimum nearest to this initial
point. There thus is no guaranteey of a global minimum. Similar problems arise in estimation of
coefficients of the other bilinear terms. In practice it seems that the likelihood plots may give some vital

information about the fitted model which might ultimately lead to an improvement .
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Fig. 4.2.13-4.2.14 : isometric projections of negative log likelihood func-
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CHAPTER FIVE

STATIONARY PROBABILITY DENSITY FUNCTION
OF NON-LINEAR AUTOREGRESSIVE
PROCESSES

In this chapter we examine the stationary probability density function of certain non-linear, discrete
time series. In particular, we examine numerical solutions for a recursive relation for computing the m-
step-ahead conditional density of a non-linear autoregressive model which is obtained by using the
Chapman-Kolmogorov formula. We approximate the stationary marginal probability density function of the

model by the m-step-ahead conditional density, for sufficiently large m.

Although the classical autoregressive linear model is very useful as a first order approximation to sto-
chastic discrete time phenomena, the generating mechanism of most physical phenomena is essentially
non-linear. Jones (1978) has considered the first order non-linear autoregerssive model, NLAR(1),

Xr = A(Xl—l )+el ’ t =oai1v--, (5‘ 1)
where A(.) is a fixed real function of a real argument and { e,} is a sequence of independent and identically

distributed random variables with mean zero and constant variance.

The problem of evaluating the stationary marginal distribution of the model (5.1) explicitly is
extremely involved and usually intractable. Jones (1978) has proposed three methods for evaluating
numerically the stationary distribution of the model (5.1). All the procedures are based on power-series

expansions. However, they are rather complicated for practical use.
One type of non-linear discrete time parameter models is the SETAR model for which the simplest
first order SETAR is of the following form

(XX,_1+€' if X!—l <r

X = 1BX, y+e, if X,y >, (5.2)

where {e,} is a sequence of independent and identically distributed random variables with zero mean and
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constant variance. Generally it is difficult to obtain the explicit form of the marginal statio?xaxy distribution
of X, ( if it exists). A pecessary and sufficient condition for ergodicity of model (5.2) and hence the
existence the stationary marginal distribution is that o<1, B<1, af <1, ( Petruccelli and Woolford
1984). Andel et al (1984) have proposed a method for evaluating the stationary marginal density in non-
linear processes and have managed to obtain the explicit analytic solution for a special subclass of (5.2)
namely

X, =—o|X, | e, , (5.3)
where 0. (0,1) and e, ~ N(0,1). The stationary marginal density function is shown to be

1
2

f@) = [201-0A/m? el (1-aAp0¢0x), 5.4)

where ®(.) is the distribution function of the standard normal.

Let {,} in model (5.3) be independent Cauchy variables with density . Andel and Barton

1
n(1+x2)

(1986) have proved that for this case the process { X, ] has a unique stationary distribution with the density

fx)= % [-{ AAZ (1A% 422} B { X104 2 (1422 YA 2-14xV)arcig | + (5.5)
@AY H{ (1+A Y422 }-1(1+A)1|:] ,

where A =_cx_.
1«

Chan and Tong (1986b) have considered the integral equation in f

foxy= [KG=TNf0)My »
where X is a probability density function and T:R"-R". They have shown that the success of the method
of Andel et al (1984,1986) in fact depends on the symmetry of the autoregressive function in (5.3), which is
linear over the non-negatives and defined over the negative by assigning the function values taken by the
mirror images. They have developed a systematic method and generalized it to higher dimension by

exploiting the symmetry of the autoregressive function defined by a compact group.
Denote the conditional density of X, given X, by f,,. On letting m tend to infinity, f,, will converge

to the stationary marginal density function of X, if {X,} is ergodic. The Chapman-Kolmogorov formula

gives a recursive relation to compute f,. In this chapter we use the numerical integration method to



calculate the m-step-ahead conditional density f,, and we compare the numerical approximation of the sti-
tionary density function f(x) with the theoretical probability density function in the bench-mark cases,

pamely cases studied by Andel at al (1984,1986).

A general univariate NLAR(p) process may be written as

X = Mxr-l He, ;.6
where X,_; =(X,, ... ,X,_P)', { eJ is a sequence of independent and identically distributed scalar random
variables with mean zero and constant variance and e, is independent of X, for all s<t. The conditional den-

sity function of X, given X,_, may be written as
Sz, & X =y) =K (x-My)) , CN))
where K(.) is the probability density function of the random variable e,. The joint density of (X,,X,_;) can

be obtained simply as

fx, &y)=Kax-AINhE), (5.8)
where k(.) denotes the joint density of (X,_y, ... ,X,_,)'. By integrating with respect to y over R? on both

sides of (5.8), the stationary marginal density function of X, may be obtained as

f @)= JEG-MDh )y - (5.9)

For the self-exciting threshold autoregressive model SETAR(!;k,,...,k;) of the form

s kl -
X, =b§;)+,§1b§”X,_,-+e$D ifX,_4e(rjor]), (5.10)

for j=1,2,...,], where —eo=r,<r{< - - - <r;=so, it can be shown that

1T
16)= 2 | KM@y, 6.11)
= ’I“
where K;(.) denotes the probability density function of e and Ai(.) denotes the autoregressive function in

the j-th regime. The integral equations (5.9) and (5.11) do not readily admit analytic solutions.

5.1. Numerical Solution

As the numerical solution is commonly the only solution, we will review briefly some of the numeri-
cal methods and then employ the Chapman-Kolmogorov relation to obtain a simple recursive formula for a

numerical solution of integral equation (5.9). Without loss of generality, first we restrict our discussion to
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the first order case, i.e. NLAR(1).

5.1.1. Series Expansion

Jones (1976,1978) has derived power series expansions for obtaining the probability density function
and moments of a stationary discrete time series model (5.1). The method involves consideration of the
family of time series indexed by the parameter §

X,(B) = a-+b%, 1 BHBINK -1 (BY)-a-bX, Bl e:
where a is an arbitrary fixed constant and |b|<1. The resulting series expansion in powers of B usually
requires b to be zero for practical calculation, with truncation. The value of the constant a affects the con-
vergence of the series and so its value has to be chosen carefully. Some difficulties have been experienced

with convergence when A(.) is piecewise linear and the variance of e, is "small” ( Pemberton, 1985).

5.1.2. Iterative Numerical Quadrature Method

Pemberton (1985) has approximated the solution of integral equation (5.11) through the iteration

!

frn®)=C, E | £OI D00y G.12.1)

=17,

with some suitable starting function f,(x), normalized so that

fde=1.
The multiplying factor C, is a normalization constant, and is necessary because the numerical evaluation of
the integral requires a finite range of integration. It is mentioned by Pemberton (1985) that convergence is

not always achieved. The starting function £,(x) can be the standard normal density.

5.2. Conditional Density Approach

The idea of approximating the stationary distribution as the limit of conditional distribution was
reported by Jones (1976). In practice it would appear that it is not so easy to use his results and we there-

fore propose an alternative. (See Moeanaddin and Tong , 1989).

Since we have a Markov chain over R, we may recall the Chapman-Kolmogorov relation

£ Giom 5= T fm 50413 |21 52.1)
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where f(x;|x,) denotes the conditional probability density function of X, given X, =x,. Let K(.) denote the
probability density function of e, and let f,,(x) denote the conditional density of X, given X,. Equation

(5.2.1) immediately gives

1) = ] f 0K (e-MMy (522)

Equation (5.2.2) gives, in particular a recursive formula for conditional density with

HO) =fx, 1x & X=y) = K&x—My)).
In evaluating the improper integrals of the form (5.2.2), we are faced with two difficulties: (i) The

discontinuity of A and (ii) the integration over R. In case (i) the integral can be split up over disjoint inter-
vals, over each of which the intervals A is continuous. In case (ii), by employing a suitable method, the
integral can be approximated efficiently. We adopt the following procedure: it is well known that if fis

integrable over an interval, then there exist some points x,,x,,...X, with corresponding weights
n
wi,Wa, * * W, such that i f (x)dxzkzlwkf (%) so that it is exact for functions f of class P,,_;. ( P, denotes

the class of all functions that are polynomial of degree <n.) Needless to say, when numerical integration is

employed, care must be taken to handle the accumulation of rounding errors.

In practice, one may employ some Gauss-type formula to generate an appropriate set of points
Xy, ***,x, With comresponding weights w,, - ,w, and by using the recursive formula (5.2.2) with
F1(x)=K(x—A(y)), a sequence of conditional densites f,,(x) , m=2,3,..., can be calculated. As m increases,
the conditional density £, converges to f,- the unique stationary marginal pr;)bability density function of X,,
if the latter exists. Convergence is deemed to have been achieved when | f,,—fn-; | <€ for a small positive

value of €, e.g. €=1075.

In our study, NAG routine DO1BBF is employed to generate an appropriate set of points x;, * * * ,X,
with corresponding weights wy, - - - ,w,. We normalized the conditional density to unity at each step, to
avoid accumnlating errors, and also we check the integration of conditional density, before normalization,
over R in each step, as a measure of accuracy. If the evaluated integral is not close to one (i.e. with error
>1073), then we would change the parameters of the NAG routines to generate another set of points and so

on until a more adequate set is found.
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5.3. Application

As a check on the methed, it has been applied to obtain the unique stationary marginal density of the
linear AR(1) process

X, =X, +e, , |aj< 1, (5.3.1)
and the results are given in Table (5.3.1).

‘We repeated the exercise with the SETAR(2;1,1) process

X, =X, |+e, 0<a<l, (53.2)
where ¢,~N(0,1), for different values of o, and different number of points. Since the theoretical stationary
probability density function and rth moment for model of the form (5.3.1) and (5.3.2) are available, in
Table (5.3.1) and Table (5.3.2) we compare the approximation of rth moments (r=1,2,3,4) based on the con-
ditional density approach with £<10~® (column marked approx.) with the theoretical (column marked

theo.). Using the same points xy, * - ,x, and wy, * -+ ,w, and the theoretical probability density function
f(x), we may also perform numerical integration to evaluate | x"f (x)dx. Results_are listed in the column

marked numerical .



Table 5.3.1
EX) EX}) run
n [0d time
approx. numerical theo. | approx. | numerical theo. (in sec.)
12 | 09 | 8.6416x107* 1.9377x107% 00 | 526547 | 526316 | 5.26316 7.50
24 | 09 | -1.4769x10°° | -9.7981x10® | 00 | 526316 | 5.26316 | 5.26316 9.23
48 | 09 | 6.0558x10™ | -1.4428x107 0.0 | 526316 | 526315 | 526316 | 16.70
64 | 09 | -1.2280x10™™ | -6.7862x10®° | 0.0 | 526315 | 526316 | 5.26316 | 15.41
12 | 0.5 | 1.4903x107® 2.1202x107% 0.0 | 133333 | 133333 | 1.33333 2.45
24 | 05 | -4.4961x10™° | -9.0807x107° | 0.0 | 1.33333 | 1.33333 | 1.33333 282
48 | 0.5 | -2.0900x107 3.6395x107° 0.0 | 1.33333 | 1.33333 | 1.33333 5.48
64 | -0.5 | -1.0532x10"° | 3.4370x10° | 0.0 | 1.33333 | 133333 | 1.33333 6.32
12 | 02 | 2.7223x10®° | 7.0360x10° | 00 | 1.04167 | 1.04167 1104167 2.05
24 | 02 | 18319x107° 1.5711x10° 0.0 | 1.04167 | 1.04167 | 104167 2.19
48 | -02 | 1.5378x10°° 5.0135x107° 00 | 1.04167 | 1.04167 | 1.04167 3.65
64 | 02 | 1.5165x107° 5.5102x107 00 | 104167 | 1.04167 | 1.04167 4.96
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Table 5.3.1 (continue)

EX?) E(X% run
n (02 time
approx. numerical theo approx. | numerical theo. (in sec.)
12 | 0.9 | 1.3692x107° | -1.1456x1077 | 0.0 | 83.15470 | 83.10154 | 83.10245 7.50
24 | <09 | -1.7757x1077 | 1.8475x1077 | 0.0 | 83.10223 | 83.10243 | 83.10245 9.23
43 | -0.9 | 1.8262x107 | 8.0142x10°% | 0.0 | 83.10185 | 83.10229 | 83.10245 | 16.70
64 | -0.9 | -1.0245x107° | 2.9038x107 | 0.0 | 83.10244 | 83.10246 | 83.10245 | 1541
12 | -0.5 | -5.8058x107* { -2.9490x107* | 0.0 533173 | 5.33180 | 5.33333 245
24 | -0.5 | 3.2773x107° | -1.5317x107° | 0.0 533333 | 533333 | 5.33333 2.82
48 | -0.5 | -1.1381x1077 | 7.4208x10°* | 0.0 533333 | 533333 | 5.33333 5.48
64 | -0.9 | 2.4576x10° | -9.6766x107° | 0.0 533333 | 533333 | 533333 6.32
12 | -02 | 7.4203x107* | 4.2992x10”° | 0.0 3.25521 | 3.25521 ;.25521 2.05
24 | -02 | -6.1182x10™ | -2.1336x10°®* | 0.0 3.25521 | 325521 | 325521 2.19
48 | 02 | 2.1607x10°° | -3.4305x10°* | 0.0 325521 | 325521 | 3.25521 3.65
64 | -02 | -1.1060x107 | 4.1696x10°% | 0.0 3.25521 | 3.25521 | 3.25521 4.96




Table 5.3.2

EX) EXD) nun
n a time
approx. numerical theo, approx. numerical theo. (in sec.)
24 | 09 1.64855 1.64742 1.64742 527112 5.26316 5.26316 7.79
48 | 09 1.64742 164742 1.64742 526314 5.26311 5.26316 1498
% | 09 1.64742 1.64742 1.64742 526316 5.26316 526316 36.11
128 | 09 1.64742 1.64742 1.64742 526312 526315 5.26316 75.89
24 | 0.5 0.46066 0.46066 0.46066 1.33333 1.33333 1.33333 3.50
48 | 05 0.46066 0.46066 0.46066 133333 1.33333 1.33333 4.90
9% | 05 0.46066 046066 0.46066 1.33333 1.33333 1.33333 1276
128 | 05 0.46066 0.46066 0.46066 1.33333 1.33333 1.33333 1655
24 | 02 0.16287 0.16287 0.16287 1.04167 1.04167 1.04167. 236
48 | 02 0.16287 0.16287 0.16287 1.04167 1.04167 104167 5.03
9% | 02 0.16287 0.16287 0.16287 104167 1.04167 1.04167 9.39
128 | 02 0.16287 0.16287 0.16287 1.04167 1.04167 1.04167 10.80
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Table 5.3.2 (continue)
EXD) EXD) run
n a time
approx. numerical thoo. approx. numerical theo. (in scc)
24 | 09 19.04422 18.98873 18.98874 83.40329 83.10229 83.10242 779
48 { 09 18.98840 18.98809 18.98874 83.09683 83.09399 83.10242 1498
9% | 09 18.98893 18.98874 18.98874 83.10239 83.10245 83.10242 36.11

128 § 09 18.98837 18.98861 18.98874 83.09853 83.10078 83.10242 75.89

24 | 05 1.68908 1.68908 1.68908 533333 5.33333 533333 3.50
48 05 1.68908 1.68908 1.68908 533333 5.33333 533333 490
9 | 05 1.68908 1.68908 1.68908 533333 5.33333 533333 12.76
128 | 05 1.68908 1.68908 1.68908 533333 5.33333 533333 16.55
24 | 02 0.50217 0.50217 0.50217 3.25521 3.25521 325521 2.86
48 02 0.50217 050217 0.50217 3.25521 3.25521 325521 5.03
96 02 0.50217 050217 0.50217 325521 3.25521 325521 939
128 02 0.50217 0.50217 050217 325521 3.25521 325521 10.80

For model (5.3.2), E (X?) is given by

E(X?)= (1—a2>-1(1——2—f—m—<%>”’ o 1-02) %
__1
1o’

which is equal to the E(X?) of the linear model (5.3.1). We can also check that E(X?)’s of these two

models are equal for fixed o.

As further evidence of the efficiency of the conditional density method, we have computed the den-

sity and moments of the process considered by Jones (1976). This is of the form X, = A(X,_, He,, where

e,~N(0,1) and
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0.5+x if -15<x<1

AMx)={ (53.3)

1 otherwise.

The results are given in Table (5.3.3).

Table 5.3.3

run-time
n E(X,) EX?) EX?) E(X}) | Skewness | Kurtosis

(in sec.)

16 | -0.18206 | 1.68061 | -0.62693 | 7.87811 | 0.13195 | -0.14362 5.78
20 { -0.18232 | 1.68340 | -0.65533 | 7.81880 | 0.11957 | -0.18397 4.19
28 | -0.18216 | 1.68417 { -0.65196 | 7.83041 | 0.12083 | -0.17972 458
40 | -0.18216 | 1.68416 | -0.65198 | 7.83036 | 0.12082 | -0.17974 5.52

56 | -0.18216 | 1.68416 | -0.65198 | 7.83036 | 0.12082 | -0.17974 9.64

Jones’ values are: mean=-0.18216, variance=1.65098, skewness=0.12082 and kurtosis=
-0.17974.

In order to investigate the affect of the probability density function of ¢, on the conditional density
method, it has been applied to obtain the unique stationary marginal density function of the SETAR(2;1,1)

process

X, =-021X, |+, (53.4)

where e, is Cauchy variable with density . Since the theoretical probability density function of

n(1+x?)
model (5.3) with Cauchy innovations has a very heavy tail ( f (£500) > 107 ), therefore we expect that the

accuracy of the method in this case should not be as good as the previous experiments i.e. ¢~N (0, a?).
Although convergence is not achieved, we approximate the stationary probability density function of model

(5.3.4) by 30-steps-ahead conditional density, with the error Z}(}(Jc,-)—f(,\f,-))2 =25x1075 ., The approximated

and the theoretical stationary marginal probability density function of model (5.3.4) are shown by Fig. 5.3.1
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. It seems that the two curves are almost identical. (See Table 5.3.4 for comparison of the approximated
values i.e. }(x,-) and the theoretical values i.e. f(x;) of this experiment ) . However, regardless of some
difficulties in obtaining an adequate set of points { X1,Xg, """ ,x,J for evaluating the conditional densities
pumerically, it seems that the method is able to provide a good approximation of the stationary probability
density function of a process when the kernel, X (.) , is not near zero outside the finite range of integration

i.e. It is not close to zero on intervals (—, a ) and (b, , o) for moderate values of a and b, say a & b < 100



Table 5.3.4

X fx) f=x:) lerror| x; f(x) fx) lerror|
-1179.047852 | 0.000000 | 0.000000 | 0.000000 | -300.525299 | 0.000004 | 0.000005 { 0.000001
-1095.159302 | 0.000000 [ ©.000000 | 0.000000 | -283.718109 | 0.000004 | 0.000006 | 0.000002
-1028.360107 | 0.000000 | 0.000000 | 0.000000 | -267.533508 | 0.000005 ( 0.000007 | 0.000002

-970.755676 | 0.000000 | 0.000001 | 0.000001 | -251.951996 | 0.000005 | 0.000008 | 0.000003
-919.291016 | 0.000000 | 0.000001 | 0.000001 | -236.955719 | 0.000012 | 0.000009 [ 0.000003
-872.374756 | 0.000000 | 0.000001 | 0.000001 | -222.528183 { 0.000008 | 0.000010 | 0.000002
-829.043030 | 0.000000 | 0.000001 | 0.000001 | -208.654175 | 0.000009 | 0.000011 | 0.000002
-788.655396 | 0.000001 | 0.000001 | 0.000000 | -195.319656 | 0.000014 | 0.000013 | 0.000001
-750.758301 | 0.000001 { 0.000001 | 0.000000 | -182.511612 | 0.000014 | 0.000014 | 0.000000
-715.015625 | 0.000001 | 0.000001 | 0.000000 | -170.218002 | 0.000013 | 0.000017 | 0.000004
-681.168945 | 0.000001 | 0.000001 | 0.000000 | -158.427597 | 0.000022 | 0.000019 | 0.000003
-649.014404 | 0.000001 | 0.000001 { 0.000000 | -147.130051 | 0.000017 | 0.000022 [ 0.00000S
-618.387329 | 0.000001 | 0.000001 | 0.000000 | -136.315689 | 0.000033 | 0.000026 | 0.000007
-589.152222 { 0.000001 | 0.000001 | 0.000000 | -125.975525 | 0.000025 | 0.000030 | 0.000005
-561.196045 | 0.000001 | 0.000002 | 0.000001 | -116.101212 | 0.000030 | 0.000036 | 0.000006
-534.422974 | 0.000001 { 0.000002 | 0.000001 | -106.684982 | 0.000049 | 0.000042 { 0.000007
-508.751160 | 0.000001 | 0.000002 | 0.000001 -97.719589 | 0.000048 | 0.000051 | 0.000003
-484.109711 | 0.000001 | 0.000002 | 0.000001 -89.198318 | 0.000052 | 0.000061 | 0.000009
-460.436890 | 0.000002 [ 0.000002 | 0.000000 -81.114906 | 0.000062 | 0.000074 | 0.000012
-437.678467 | 0.000002 | 0.000003 | 0.000001 -73.463539 | 0.000078 | 0.000090 | 0.000012
-415.786530 | 0.000002 | 0.000003 | 0.000001 -66.238823 | 0.000101 | 0.000111 | 0.000010
-394.718384 | 0.000002 0.0000d3 0.000001 -59.435753 | 0.000131 | 0.000137 | 0.000006
-374.435944 | 0.000002 | 0.000003 | 0.000001 -53.049698 | 0.000170 | 0.000173 | 0.000003
-354.904907 | 0.000003 | 0.000004 | 0.000001 -47.076378 | 0.000245 | 0.000220 ( 0.000025
-336.094360 | 0.000003 | 0.000004 | 0.000001 -41.511848 | 0.000290 | 0.000283 ) 0.000007
-317.976318 | 0.000003 | 0.000005 | 0.000002 -36.352493 | 0.000387 | 0.000370 | 0.000017




Table 5.3.4 (continue)

X; fix) =) lerror | x; fix) fix:) lerror |
-31.594995 | 0.000519 | 0.000491 | 0.000028 -4.382050 { 0.025372 | 0.025323 | 0.000049
-27.236332 | 0.000702 | 0.000663 | 0.000039 -4.299705 | 0.026289 | 0.026244 | 0.000045
-23.273764 | 0.000917 { 0.000911 | 0.000006 -4.213091 | 0.027308 | 0.027266 | 0.000042
-19.704826 | 0.001285 | 0.001275 | 0.000010 -4.122414 | 0.028438 | 0.028399 | 0.000039
-16.527319 | 0.001785 | 0.001819 | 0.000034 -4.027888 | 0.029690 | 0.029654 | 0.000036
-13.739298 | 0.002594 | 0.002641 | 0.000047 -3.929739 | 0.031076 { 0.031042 | 0.000034
-11.339070 | 0.003867 | 0.003889 | 0.000022 -3.828199 | 0.032607 | 0.032578 | 0.000029

-9.325185 | 0.005833 | 0.005760 | 0.000073 -3.723508 | 0.034302 | 0.034279 | 0.000023
-7.696431 | 0.008509 | 0.008452 | 0.000057 -3.615915 { 0.036179 | 0.036162 | 0.000017
-6.451829 | 0.012085 ( 0.011986 | 0.000099 -3.505675 | 0.038261 | 0.038247 | 0.000014
-5.590613 | 0.015968 | 0.015869 | 0.000099 -3.393050 { 0.040569 | 0.040557 | 0.000012
-5.112079 | 0.018951 | 0.018872 | 0.000079 -3.278307 | 0.043130 | 0.043120 | 0.000010
-4.998263 | 0.019781 | 0.019708 | 0.000073 -3.161718 | 0.045972 | 0.045962 | 0.00001C
-4.990850 { 0.019837 | 0.019764 | 0.000073 -3.043559 | 0.049129 | 0.049118 | 0.000011
-4.977533 | 0.019939 | 0.019866 | 0.000073 2924111 | 0052638 | 0.052623 | 0.000015
-4.958341 | 0.020086 | 0.020014 | 0.000072 -2.803657 | 0.056540 | 0.056518 | 0.000022
-4.933317 | 0.020281 | 0.020209 | 0.000072 -2.682483 | 0.060878 | 0.060847 | 0.000031
-4.902522 | 0.020525 | 0.020453 | 0.000072 -2.560876 | 0.065700 | 0.065658 | 0.000042
-4.866028 | 0.020819 | 0.020748 | 0.000071 -2.439124 | 0.071058 | 0.071003 | 0.0000S5S
-4.823923 | 0.021167 | 0.021097 | 0.000070 -2.317517 | 0.077007 | 0.076937 | 0.000070
-4.776305 | 0.021570 | 0.021501 | 0.000069 -2.196343 | 0.083602 | 0.083514 | 0.000088
-4.723289 | 0.022032 | 0.021964 | 0.000068 -2.075889 | 0.090897 | 0.090792 | 0.000105
-4.664998 | 0.022556 | 0.022490 | 0.000066 -1.956441 | 0.098943 | 0.098820 | 0.000123
-4.601573 | 0.023147 | 0.023084 | 0.000063 -1.838282 | 0.107783 | 0.107642 | 0.000141
-4.533163 | 0.023809 | 0.023750 | 0.000059 -1.721693 | 0.117445 | 0.117289 | 0.000156
-4.459931 | 0.024548 | 0.024494 | 0.000054 -1.606950 | 0.127938 | 0.127766 | 0.000172
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Table 5.3.4 (continue)

x; fx) flxd lerror| x; fix) fx) lervor|
-1.494325 | 0.139238 | 0.139054 | 0.000184 0.022467 | 0.252410 { 0.252191 | 0.000219
-1.384085 | 0.151284 | 0.151088 | 0.000196 0.041659 | 0.250185 | 0.249968 | 0.000217
~-1.276492 | 0.163963 { 0.163757 | 0.000206 0.066683 | 0.247122 | 0.246908 | 0.000214
-1.171801 | 0.177104 | 0.176890 | 0.000214 0.097478 | 0.243121 | 0.242910 | 0.000211
-1.070261 | 0.190473 | 0.190251 | 0.000222 0.133972 | 0.238080 | 0.237875 | 0.000205
-0.972112 | 0.203774 | 0.203546 | 0.000228 0.176077 | 0.231918 | 0.231718 | 0.000200
-0.877586 | 0216663 | 0216428 | 0.000235 0.223695 | 0.224585 | 0.224392 | 0.000193
-0.786909 | 0.228765 | 0.228526 | 0.000239 0.276711 | 0.216085 | 0.215900 | 0.000185
-0.700295 | 0239713 | 0.23%471 | 0.000242 0.335002 | 0.206481 | 0.206304 | 0.000177
-0.617950 | 0245181 | 0.248936 | 0.000245 0.398427 | 0.195905 | 0.195737 | 0.000168
-0.540069 | 0256925 | 0256679 | 0.000246 0.466837 | 0.184548 | 0.184389 | 0.000159
-0.466837 | 0.262813 | 0.262565 | 0.000248 0.540069 | 0.172649 | 0.172501 | 0.000148
-0.398427 | 0.266836 | 0.266589 | 0.000247 0.617950 | 0.160474 | 0.160337 | 0.000137
-0.335002 | 0.269109 | 0.268863 | 0.000246 0.700295 | 0.148289 | 0.148161 | 0.000128
-0.276711 | 0.269848 | 0.269604 | 0.000244 0.786909 | 0.136337 | 0.136219 | 0.000118
-0.223695 | 0.269341 | 0269099 | 0.000242 0.877586 | 0.124824 | 0.124717 | 0.000107
-0.176077 | 0267907 | 0.267669 | 0.000238 0972112 | 0.113911 | 0.113812 | 0.000099
-0.133972 | 0.265872 | 0.265637 | 0.000235 1.070261 | 0.103704 | 0.103614 | 0.000090
-0.097478 | 0263539 | 0.263307 | 0.000232 1.171801 | 0.094268 | 0.094186 | 0.000082
-0.066683 | 0261172 | 0.260943 | 0.000229 1.276492 | 0.085626 | 0.085551 { 0.000075
-0.041659 | 0.258990 | 0.258763 | 0.000227 1.384085 | 0.077770 | 0.077H02 | 0.000068
-0.022467 | 0257165 | 0.256941 | 0.000224 1.494325 | 0.07067! | 0.070609 | 0.000062
-0.009150 | 0.255825 | 0.255602 | 0.000223 1.606950 | 0.064285 | 0.064228 | 0.000057
-0.001737 { 0.255054 { 0.254831 | 0.000223 1.721693 | 0.058558 | 0.058506 | 0.000052

0.001737 | 0254686 | 0.254464 | 0.000222 1.838282 | 0.053435 | 0053387 | 0.000048
0.009150 | 0.253888 | 0.253667 | 0.000221 1.956441 | 0.048859 | 0.048815 | 0.000044
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Table 5.3.4 (continue)

X fx) f=) Verror| x fx) fx) ferror|
2.075889 | 0.044773 | 0.044733 | 0.000040 4723289 | 0011382 | 0011371 | 0.000011
2.196343 | 0.041127 | 0.041090 | 0.000037 4776305 | 0011157 | 0011146 | 0.000011
2317517 | 0037872 | 0.037838 | 0.000034 4823923 | 0.010959 | 0.010949 | 0.000010
2.439124 | 0.034965 | 0.034933 | 0.000032 4866028 | 0.010789 | 0.010779 | 0.000010
2.560876 | 0.032366 | 0.032337 | 0.000029 4902522 | 0010645 | 0.010635 | 0.000010
2.682483 | 0.030041 | 0.030013 | 0.000028 4.933317 | 0010526 { 0.010516 | 0.000010
2.803657 | 0.027958 | 0.027932 | 0.000026 4.958341 | 0010430 | 0.010420 | 0.000010
2.924111 | 0.026090 | 0.026066 | 0.000024 4977533 | 0.010358 | 0.010348 | 0.000010
3.043559 | 0.024412 | 0.024390 | 0.000022 4.990850 | 0.010308 | 0.010298 | 0.000010
3.161718 | 0.022904 | 0.022883 | 0.000021 4.998263 | 0.010280 | 0.010270 | 0.000010
3.278307 | 0.021546 | 0.021526 | 0.000020 5.112079 | 0.009870 | 0.009861 | 0.000009
3.393050 | 0.020323 | 0.020303 | 0.000020 5590613 | 0008388 | 0.008380 | 0.000008
3.505675 | 0.019219 | 0.019200 | 0.000019 6.451829 | 0.006446 | 0.006439 | 0.000007
3.615915 | 0.018222 | 0.018204 | 0.000018 7.696431 | 0004641 | 0.004636 | 0.000005
3.723508 | 0.017321 | 0.017304 | 0.000017 9.325185 | 0.003233 | 0.003229 | 0.000004
3.828199 | 0.016506 | 0.016490 | 0.000016 | 11339070 | 0.002228 | 0.002226 | 0.000002
3.929739 | 0.015769 | 0.015754 | 0.000015 | 13.739298 | 0.001542 | 0.001540 | 0.000002
4.027888 | 0.015101 | 0.015087 | 0.000014 | 16.527319 | 0001079 | 0.001078 | 0.000001
4.122414 | 0.014498 | 0.014484 | 0.000014 19.704826 | 0.000767 | 0.000766 | 0.000001
4213091 | 0.013952 | 0.013938 | 0.000014 | 23.273764 | 0.000555 | 0.000554 { 0.000001
4299705 | 0.013458 | 0.013445 | 0.000013 | 27.236332 | 0.000408 | 0.000407 | 0.000001
4382050 | 0.013013 | 0.013000 | 0.000013 | 31.594995 | 0.000305 | 0.000305 | 0.000000
4459931 | 0012611 | 0.012599 | 0.000012 | 36352493 | 0.000231 | 0.000231 | 0.000000
4533163 | 0.012250 | 0.012239 | 0.000011 | 41511848 | 0.000178 | 0.000178 | 0.000000
4.601573 | 0.011927 | 0.011916 | 0.000011 | 47.076378 | 0.000139 | 0.000139 | 0.000000
4.664998 | 0.011638 | 0.011627 | 0.000011 | 53.049698 | 0.000110 | 0.000110 | 0.000000
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Table 5.3.4 (continue)

% 7 fx) | lemort x, fx) fx) | lemorl

59.435753 } 0.000088 { 0.000088 | 0.000000 394.718384 | 0.000002 | 0.000002 | 0.000000

66.238823 | 0.000071 | 0.000071 | 0.000000 415.786530 | 0.000002 | 0.000002 | 0.000000

73.463539 | 0.000058 | 0.000058 | 0.000000 437.678467 | 0.000002 | 0.000002 | 0.000000

81.114906 | 0.000047 | 0.000047 | 0.000000 460.436890 | 0.000001 | 0.000001 | 0.000000

89.198318 | 0.000039 | 0.000039 |{ 0.000000 484.109711 | 0.000001 | 0.000001 | 0.000000

97.719589 | 0.000033 | 0.000033 | 0.000000 508.751160 | 0.000001 | 0.000001 | 0.000000
106.684982 | 0.000028 | 0.000028 | 0.000000 $34.422974 | 0.000001 | 0.000001 | 0.000000
116.101212 | 0.000023 | 0.000023 | 0.000000 561.196045 | 0.000001 | 0.000001 | 0.000000
125.975525 | 0.000020 { 0.000020 | 0.000000 589.152222 | 0.000001 | 0.000001 | 0.000000
136.315689 | 0.000017 | 0.000017 | 0.000000 618387329 | 0.000001 | 0.000001 | 0.000000
147.130051 | 0.000015 | 0.000015 | 0.000000 649.014404 | 0.000001 | 0.000001 | 0.000000
158.427597 | 0.000013 | 0.000013 | 0.000000 681.168945 | 0.000001 | 0.000001 | 0.000000
170.218002 | 0.000011 | 0.000011 | 0.000000 715015625 | 0.000001 | 0.000001 | 0.000000
182.511612 | 0.000009 | 0.000009 | 0.000000 750.758301 [ 0.000001 | 0.000001 | 0.000000
195.319656 | ©0.000008 | 0.000008 | 0.000000 788.655396 | 0.000001 | 0.000001 | 0.000000
208.654175 | 0.000007 | 0.000007 | 0.000000 829.043030 | 0.000000 | 0.000000 | 0.000000
222.528183 | 0.000006 | 0.000006 | 0.000000 872374756 | 0.000000 | 0.000000 | 0.000000
236.955719 | 0.000006 | 0.000006 | 0.000000 919.291016 | 0.000000 | 0.000000 | 0.000000
251.951996 | 0.000005 | 0.000005 | ©.000000 970.755676 | 0.000000 | 0.000000 | 0.000000
267.533508 | 0.000004 | 0.000004 | 0.000000 | 1028.360107 | 0.000000 | 0.000000 | ©.000000
283.718109 | 0.000004 | 0.000004 | 0.000000 | 1095.159302 | 0.000000 | 0.000000 | 0.000000
300.525299 | 0.000004 | 0.000003 | 0.000001 | 1179.047852 ; 0.000000 | 0.000000 | 0.000000
317.976318 | 0.000003 | 0.000003 | 0.000000
336.094360 | 0.000003 | 0.000003 | 0.000000
354.904507 | 0.000003 | 0.000003 | 0.000000

374.435944 | 0.000002 | 0.000002 | ©0.000000

We now illustrate results conceming the stationary and conditional densities etc.

Example 1: Let {X,} satisfy the SETAR(2;1,1) model

1.5-0.9X,_,+e, if X,1<0

X171 _0.4-0.6X,_,+e, if X,1>0,

(53.5)

where ¢,~N(0,1). This model has a limit cycle of period 2 at C= { ~2.826,4.043}. The stationary marginal
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probability density function of model (5.3.5) is shown in Fig. 5.3.2 when 6?=1 and in Fig. 5.3.3 when o?=4

and in Fig. 5.3.4 when ¢, is a Cauchy variable with density NG
(1+x*)

Also we plot the conditional density of X,..,, given X,=1 for m=1,2,3,4,5 and c®=4 to highlight the
non-normality and complexity of these densities for m>2. Obviously the conditional density of X, given
X,_y is nomnal. The results are shown in Figs 5.3.5-5.3.9 . The joint probability density function of
(X,,X,_;) may be found by using

fraa(x,y) = Kix=A;00f 0) » ye(rja,r))
and since the process is Markovian, this can be extended to obtain the joint density of
X, X1, " - * . X,—) , k=1. The joint density function of (X,,X,_;) for o?=1 is given in Figs 5.3.10 and the
joint density function of (X,,X,_,) for o?=1is givenin Fig. 5.3.11.
Example 2: Let

X, = {0.1+0.1-20.0%, ) = } X, +e, , (5.3.6)
where ¢,~N(0,1). The stationary probability density function of this model is given by Fig. 5.3.12.

Let

X, =MX, 1, X, 2 )re, , t=0,11,..., (53.7)
where A(.,.) is a fixed real function of real arguments and { ¢ } is a sequence of independent and identically

distributed random variables with probability density function K(.). Denote the conditional density of
XrimsXram-1 8iven X,_1,.X, 5 by ful®,¥) = fx_x_,1x.%.&|X<1%-2)- It can be shown, by arguments

similar to those of order one case, that the following recursive formula holds

Frnr @, 3) = £, DK G-MO. )z (53.8)

fm+l(x) =J{fm+l (X ’ y)dy ’

where f1(x, ) = fx, XX, =50 Xa=r & Y [ X1 =210, X 2 5 X1 2)

=K x-A3X 1 DK 0—-Mx,1,%22)) -

Example 3: As an application of our method for order two case, we consider the following SETAR(2;2,2)
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model

0.62+1.25X,_,—0.43X, +e, if X,.,<3.25

= 12.25+1.52X,_,-1.24X, ,+e, if X, >3.25, (53.9

X,

where { e ] is a sequence of independent and identically distributed random variables N(0,0.0503), Tong
(1983). Our numerical method gives the joint densities of (X, X;—1), X;,X,), (X,,X,_3) which are
given by Figs. 5.3.13-5.3.15 and the conditional expectations of (X;|X;_;), j=1,2,3 which are given by

Figs 5.3.16-5.3.18..

5.4. Accelerating by Matrix Squaring

In the above experiments we have found that a judicious choice of the set of grid points x; may
increase the accuracy and improve the convergence of the method. Moreover, when the model has a limit
point or its autoregressive function is continuous, convergence is achieved after at most 10 steps. When the
model has a limit cycle and the variance of e, is small the convergence rate is slower. In all our experiments

convergence is always achieved.

However, by comparing the numerical integration of (5.2.1) with the numerical eigenvalue problem,
it is clear that we may consider adopting the matrix-squaring method (See, eg. Wilkinson, p. 615) from the
latter. Specifically, instead of iterating (5.2.1) over m=1,2,3,.., we may calculate f(x.o=|x, for
m=0,1,2,.... Intermediate conditional densities may be calculated in an obvious economical way. For

example, we may calculate f(x, . |x,) by -

f Gras %)= 17 G| 502) f o )t
which in;/olved S(es2? | x;) and f(x,42' ;) already calculated. The number of iterations is nominally reduced
from m to log,m. However, our experience suggests that whether there is any reduction in the computing
time depends to a large extent on the ratio [A,/A, |, where |A; | is the largest absolute value of the eigen-
values and | A, | the next largest. Here, the eigenvalues correspond to the ‘transition matrix” whose i-j th
entry is (x4 |x,) with x, set equal to §; and x,,, set equal to §;, {€,,&;, - - - ,&y) being the points selected
for the numerical integration described in §5.2 . Our observations are as expected by analogy with the
situation in the numerical eigenvalue problem. (Wilkinson, op.cit.) That is, there a substantial saving in

computing time if | Ay /A, |is close to unity. Otherwise there need not be any saving at all. We illustrate our
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observations in Table 5.4 and 5.5 below.
Table 5.4

Numerical Evaluation of stationary Density of the AR(1) Model

X, =05X,_,+e,,
where ¢,~N(0,1).
1Al . . .
N im0 IMI I_M—l run time without  run time with

matrix squaring  matrix squaring

24 3.896 0.938 4.1 14 13

32 5542 1303 42 2.0 24

64 9.190 2.184 42 44 11.9
Table 5.5

Numerical Evaluation of the Stationary Density of the

1.5-0.9X,_,+e, ifX,; <0

Xe=1_04-06X,_1+e X1 >0,
where e,~N (0, 1).
(A . o
N iMml inl m rn time without  run time with
matrix squaring  matrix squaring
24 149 0973 15 76.9 1.2
32 2482 1544 1.6 85.0 2.5
64 5.038 3.063 1.6 160.0 209

However, we have observed in the above experiments that

6] the variance of e, and the number of points, N, do not affect the ratio of |A,/A, |in the linear case.

However, in the SETAR case N does not affect the ratio of| A1/, | but the variance of e, does.
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In the linear case, the run time with Var(e,)=0.01, are approximately the same as those with
Var(e,)=1.

In the non-linear case, when the Var (¢;) is reduced the method without matrix squaring does not
converge but the method with matrix squaring converges whether Var(e,)=1 or Var(e,)=0.01

and the run time are similar,

In the non-linear case with Var (e,)=0.01, the ratio|X,/A, |is approximately equal to one.
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CHAPTER SKX

CONDITIONAL MEAN AND CONDITIONAL
VARIANCE IN TIME SERIES
ANALYSIS

Graphical methods should form a very important part of identification and diagnostic checking of
non-linear time series models. Graphical methods found useful in building linear time series models should

also be used in building non-linear time series models. (See Tong 1987a).

The importance of non-parametric lag regression in non-linear time series modelling, has been
emphasised by Tong (1983). In this chapter the lag regression function of non-linear autoregressive models
and bilinear models are considered. Post-model examination of observed non-parametric lag regression
versus the fitted non-parametric lag regressions of some models which were fitted to the real data are also
included. The numerical integration technique is employed to obtain the exact lag regression function of

some simple non-linear autoregressive models.

The problem of evaluating the regression functions of some of the non-linear models explicitly is
extremely involved and usually intractable. It seems that the non-parametric estimates of regression func-

tions can provide valuable information. (See e.g. Robinson P.M., 1983).

Non-parametric estimates of the regression function of X, on X,%j , (j=1,2...,p , say ) provide some
information about the non-linearity of the time series. Let m;(x) denote E(X; | X,4j=x). It is suggested that
the estimates of these m;(x)’s, denoted by ﬁij-(x)’s, may be useful for the identification of the delay parame-

ter in SETAR models. (See Tong, 1983).

Let { 8,,,(:)} be a sequence of non-negative functions of z, of total area unity. As N—ee, §y(z) is to

tend to the Dirac delta function. Such a sequence may be realized by introducing a fixed function

k(z)20, Je(z)dz=1 and a By so that the family is {B;,‘k(; ) ie. aN(z)=B;,1k(Bi), with By— 0 as
R n 'N
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N—> o, For convenience, we further require [zk (z)dz =0. Given the observations {x,,x,, - - - X}, 2 kernel
estimate of m;(x) may be given by, for j=1,2,...,p ,p << N,

N

'El xraN(x_xH-j)

m; n(x) = N-j
15N(X'X:+j)

=

and

N
, Z X,SN(X—X,_j)
~ _ =
m—j,N(x) =
t=

+)

N

3;+15N(x-x:-j)

The second suffix, namely N, emphasizes the dependence of the estimate on the sample size. A simple form

of k{(z) which we use in our numerical study is given by

1-|z| for|z|<1
ke)= |,

otherwise .
In practice, estimates corresponding to the two ends of the horizontal axis generally tend to exhibit greater

sample fluctuations. In all our non-parametric estimates, we choose the standard deviation of observations

as the smoothing parameter By.

6.1. Gaussian Processes

Consider a Gaussian process, {X,}. For any admissible subset of two elements { r, s}, the joint pro-
bability distribution of (X, , X;) is a bivariate normal distribution. Hence the conditional probability distri-
bution of X, given X, is normal and the conditional expected value and the conditional variance of X; given
X, =x are linear in x and constant respectively. In linear Gaussian processes, it is well known that processes
are time-reversible i.e. ( E(X; | X, =x)=E(X, | X, =x)) for any r and s. (See Weiss, 1975).

A real process, {X, }, may be considered the transformation of a white noise process, { e }, by an
unknown function, say I'(B). If the unknown function is linear and {X, } is stationary and Gaussian, then
tbe regression function of X, on X,, for any s and r, of the process should appear linear and the conditional

variances should be constant. Thus, if the plot of E(X,|X,=x) and Var(X,|X,=x) agaiost x does not

appear linear, then the linearity assumption of the function is questionable. Also, the two-dimensional his-

togram of X, and X;, for any r and s, of an observed process {X, } gives some preliminary indication about
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the joint probability distribution of X, and X;.

6.2. Bilinear Models

As far as the bilincar models are concemed, obtaining analytic expreésion for the conditional mean
and the conditional variance of these models is not always easy except for some special cases. In order to
get some idea about the behaviour of regression functions and the variance of X; given X,_;, j=1,2,..., we
will study some theoretical properties of E(X,|X,_;) and Var(X,|X,_;) of some sub-classes of bilinear

models. In all cases the non-parametric estimates are also considered.

6.2.1. Superdiagonal Bilinear Models

In this section the regression function of the easiest class of bilinear models, which takes the follow-

ing general form, is considered.

o P

X= k2='1 IEZBkler-&Xt—l'*'et » (6.2.1.1)
k<t

where ¢, is strict white noise, and as a special case the model

X, =BX,se,2%e; , (62.1.2)
will be used throughout this section as a particular example.

Assuming E(e,)=0, it follows that E(X,) =0 for all £ Obviously the conditional expectation of X, given X,_;
of model (6.2.1.1) are equal to zero for all j > k. The regression functions, E(X, |X,_;j=x) for j=1,2,...k,
are involved with the terms E(X, |X,_;=x) and E(e, {X;—; =x) which because of the dependence of X,

with X,; and ¢, , with X, _;, cannot be evaluated explicitly.

In order to examine the properties of regression functions of model (6.2.1.1) approximately, we gen-
erate a sample of size 5000 observations using a simulation technique, of model (6.2.1.2) with $=0.5 and
B=-0.5, and calculate m_; , j=1,2,3,4. The results are given in Figs. (6.2.1.1). It seems that regardless of
the sign of J3, the expectations of X, given Xi-j» j=1,2,3,4 are all very close to zero and none of them

shows any obvious regular pattern.

Obtaining the conditional variance of X, given X,_; for the model (6.2.1.1) is more complicated.

However, for model (6.2.1.2), r'ﬁ_j=0 , J=3. Therefore
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Var (X, IXI—3) = E(Xr2 |X1—3 =x)
= Bzsz(elz—Z IX1—3 =x)+E(e:2 IX:—S =x)
=(1+p*x?)o?, (62.1.3)

which is a quadratic function in x. The results of non-parametric estimates of conditional variances of
model (6.2.1.2) are given by Figs. 6.2.1.2. The agreement of the non-parametric estimate of Var (X, |X,_3)
with formula (6.2.1.3) is quite remarkable. The graph of Var(X, | X, =x) exhibits some non-linearity in x

which may be related to the dependence of X, _; on X, _,.

6.2.2. Diagonal Models

In this section a group of models are considered which are possibly more interesting than the superdi-

agonal models. Let

P
X = k}_:lBket_&X'_k-}-e' . (6.2.2.1)

where e, is strict white noise. As an especial case the model

X, =BX, 3¢, _3te ) (62.2.2)
will be used throughout this section. Suppose

X = BXr-key_&'f'e, k21 (6.2.2.3)

then X, can be written as

X, = ﬁ[ﬁXt—uev—u*'et-k]et—&*‘er
= B2X, pxe,-axeutBelite, .

Hence

EX,|X,—;=x) = B EX, ez | Xej=X)E (€, | X,-j=%)
+ 5E(erz-k |Xr-j =x)
which is equal to Ba? for j > k.

For j=k we bave

EX,| X, =x)=EPX,s,+|Xi=x)
= BxE (€, | X1+ =x)
= BxE[X,2—PXi o€ 2 | X, ¢ =x]
= Bx[x—BEX, 242 IX,_* =x]
= Bx2—PAE X, ol | X, ¢ =x)
which is a quadratic function in x when we approximate the term E(X,_sx€;-2¢ | X1 =X) by
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BE(X, _3c€1-3¢ IXr—k =x)E(€r2 | X, =x)+E(e,2_2k [X;=x)
which for B small, is approximately equal to E (e,z_u | X, x=x)=C >0 ,say.

For k> j, E(X; (X,_j =x) involves the term E(e’4 ,—;j=x) which it seems f:ould be approximated by o?
and the term B2E(e, | X,_ ;=x) which is close to zero. However, the non-parametric estimates of regression
functions of model (6.2.2.3) show that E(X, |X,;=x)=Pc? for k#j and is a quadratic function in x for
k=j. Figs. 6.2.2.1 show the non-parametric estimates of regression functions of model (6.2.2.3) with

B=0.5 and —0.5.

With similar arguments, one can show that the conditional variance of X, |X,_j =x, j=1,2,4,5 are
approximately constant. Figs. (6.2.2.2) show the non-parametric estimates of these conditional variances.

It can be seen that Var(X, |X,_3 =x) is a non-linear ( quadratic ) function in x.

6.2.3. Subdiagonal Models

The subdiagonal models which will be considered in this section are those of the form

X, =BX, e, 1+e, , (6.2.3.1)

where k < 1, ¢, is strict white noise, and a special case is
X, =BX,2¢,3+e, (623.2)
which will be used through this section as a particular example. Assuming E (e,)=0, it is easy to show that

EX,)=0forallk,!>0.

The conditional expectation of X, given X,_ ;=x for model (6.2.3.2) takes the form

E(X,|X,j=x)=BEX, 26,3 |X,_j=x)
= BE((BX,ers+ei-2)er3 | X,—j=x)
=PB2E(X, €5 | X,—j=x)E(e;-3 | X,-j =x)
+BE(er2 | X, =x)E(€3 | X,_j=x)
=0forj>3.

For j <3, the exact value of regression function does not seem to be easy to obtain. However, for model
(6.2.3.2), the non-parametric approximation of regression functions for B=0.5and ~0.5 show that

E(X,|X,_;=x)=0 for all j>0.

If we accept that the conditional mean of the model (6.2.3.1) is equal to zero, then the variance of X,
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given X,_;=xis equal to E(X? | X,_;=x). For j=2 we have

Var (X, |X,,=x) = B’ E(X? ye? 3 | X, =x }4+c?
=PB2x*E (el | X, =x)1+0?,

which is a non-linear function in x. The non-parametric estimates of regression functions and conditional

variances of model (6.2.3.2) are given by Figs. 6.2.3.1 and 6.2.3.2 respectively.

6.3. Non-linear Autoregressive Models

The class of non-linear autoregressive models has a very close connection with the analysis of cycli-

cal data. A general univariate NLAR(p) process may be written as
Xl = MXI—I )+er * (631)
where X, ; =(X,_;, " ,X,_P)' . { e } is a sequence of independent and identically distributed scalar ran-

dom variables with mean zero and constant variance and e, is independent of X, forall s <t.

The conditional density function of X,,; given X, can be written as

fx x| X =y) = k(x-My)), ) (6.3.2)

where k(.) denotes the probability density function of e,. Obviously the conditional mean and the condi-
tional variance of X,,; given X,=y are equal to A(y) and o2 respectively.

Since we have a Markov chain over R?, we may recall the Chapman-Kolmogorov relation

Frim lxr) = _zf(xr-&m | Xe41 ) (et Ixf)‘1xt+l . (6.3.3)

where f(x;|x,) denotes the conditional probability density function of X, given X, =x,. Let f,,(x) denote

the conditional density function of X,.. given X,. Equation (6.3.3) immediately gives

fn)= T fra @My (63.9

Equation (6.3.4) gives, in particular a recursive formula for evaluating the conditional density with
f1(x) = kx=A(y)).

By using the results of Chapter Five, we may employ the numerical integration method to obtain the

conditional mean and conditional variance of X, ,,, given X, for m 22. Let us first restrict our discussion to

the first order case:
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X, =MX, o yre ,t=0%1, -,

where { e, ] is a sequence of independent and identically distributed normal random variables with E(e,)=0
and Var(e,)= o? all 1. Since A(.) is a non-linear function in its argument, therefore EX y | X, =x)=7Mx)
may takes any non-linear shape. In order to compare the regression functions of SETAR(2;1,1) and

EXPAR(1) models, we conduct some experiments.
Example 1: Let {X,} satisfy the EXPAR(1) model

X, =MX,_1 e, ,
where ¢,~N (0, 1) and

Ax)=(a+b e”"’")x .
It is clear that for large values of x|, ™ is close to zero, and A(x) is approximately equal to ax which is a
linear function in x. For all x small, A(x) is non-linear in x. The conditional mean of X, ., given X,, for m
small, is a linear function in the tails and a non-linear function around the origin. Obviously this non-
Linearity depends on A(.) and it is well known that the conditional mean and the conditional variance tend

to the mean and variance of the process as m— oo,

The regression functions and the conditional standard deviation of X; given X,_;=x , j=1,2,3,4,5 of

three EXPAR(1) models with
A(x) =—0.9x—0.95xe™> . (63.5)
and
Ax) = —0.5x+0.8xe™ +2xZe ™ (63.6)
and
Ax) = 0.85x+0.35xe ™™ (63.7)

are given by Figs. 6.3.1, 6.3.2 and 6.3.3 respectively. These three examples show the varieties of regression

functions which may be produced by those simple EXPAR(1) models.
Example 2: Let {X,} satisfy the SETAR(2;1,1) model

X, =MX, 1 e,
where ¢,~N (0, 1) and

aa+a X ifx<r
M) =y 4byx ifx>r.
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Similar to Example one, E(X, |X,_, =x)=A(x) which is obviously a non-linear function in x. Usually, A(x)
is the union of two discontinuous line segments. The regression function and the conditional standard devi-

ation of X, given X,_; , j=1,2,3,4,5 of SETAR(2;1,1) models with

07-05x ifx<0 (i
Mx)=1_18407x ifx>0, (6.3.8)
and
0.5x ifx<0
M) =1_055 ifx>0, (6.3.9)

are given by Figs. 6.3.4 and 6.3.5 respectively.
Example 3: As an application of our numerical method for the order two case, we consider the following
SETAR(2;2,2) model

0.62+1.25X,_,-0.43X, ,+e, ifX, ,<3.25

Xt = 1225+1.52,_,~1.24X, ,+e, ifX,,>3.25, (6.3.10)

where { e, } is a sequence of independent and identically distributed normal random variables with mean
zero and variance 0.0503 . Tong (1983, pp 102-106) has given a rough-and ready calculation of
E(X,|X,-)» j=1,2,3,4. Our numerical approximation of expectation of X, given X,_;,Jj=1,2,3,4 (Figs.

6.3.6), may be compared with Tong’s rough calculations.

6.4. Real Data

In the past, various authors bave used the annual record of the numbers of Canadian Lynx trapped in
the Mackenzie river district of North West Canada for the years 1821-1934 and different periods of Wolf's

annual sunspot numbers to illustrate their time series models, both linear and non-linear.

A comparative study of various univariate time series models which have been applied to the lynx
data, has been done by Lim (1987). This section only considers the comparison of non-parametric esti-
mates of regression functions and conditional variances of some of different models which are fitted to lynx

and sunspot data.

A detailed statistical analysis of the lynx data was first attempted by Moran (1953). In order to reduce

the asymmetry of the original data, he initially applied a logarithmic transformation to the raw data, X,.



81

The transformation ¥, =log;oX; was thereafter adopted by many other authors. All models discussed in this
section use this transformation. The AR(2) model which was obtained by Moran is given by

X, = 1.0549+1.4101X,_,—0.7734X, ,+e, - (64.1)
where V (e,)=0.0459.

Tong (1977b) fitted an AR(11) model based on the Akaike’s Information Criterion (AIC). The chosen

model is given by

X, . 1.13X,_.1 ~0.5 1X,_.2+0.23X,_3—0.29X,_4+0.14X,,5 (642)
- 0.14X,_6+0.08X,_7—0.04X,_8+0.13X,_9+0.19X,_]0-0.31X,_11+e, ,
with V(e,)=0.0437. A type of TAR model, self-exciting threshold autoregressive model was fitted to the

first 100 observations of the log-transformation of lynx data . (See Tong, 1983). The fitted model is given
by

0.77+1.06X,_,-0.20X, _,+0.16X, 5

~0.43X,_,+0.18X,_s+e{) if X, , <3.05
X, = (6.4.3)

2.25+1.47X,_1-1.20X, ,+e@® ifX, 5 >3.05,
where V(efV)=0.0302, V(e®)=0.0564 and the pooled variance is equal to 0.0415. For the full set of lynx
data, a SETAR(2;7,2) has been obtained. (See Tong, 1983). The model can be written as

0.55+1.03X,_,-0.17X,_,+0.17X,_,—0.43X,_,

0.33X,_s—0.28X, _¢+0.21X,_;+e{V if X, , <3.116

X, = (6.4.4)

2.63+1.49%,_;-1.32X,_,+¢? ifX,,>3.116
where V(e{1)=0.0258 , V(¢{?)=0.0505 (pooled var=0.0360).

Gabr and Subba Rao (1981) have fitted another class of non-linear model, a bilinear model, to the lynx data.
By using the log-transformation of the first 100 observations, they have reported the following subset bil-

inear model.

X, = 1.486292+0.77227X,_,—0.091572X,_,+0.083073X,_3
—0.261493%, 4+0.225585X, 9—0.24841X,_,,—0.7893X, 3¢,
+0.4798X, _o€,9+0.3902X, g€, ,+0.1326X,_, €, ;
+0.07944X, €,.7—0.3212X, 4 €, 2 t€, (6.4.5)
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where V(e,)=0.0223.

The Exponential Autoregressive Model was another class of non-linear model for the lynx data.
Ozaki (1982) found that the almost symmetric series generated by an EXPAR model developed by Haggan
and Ozaki (1981) was unsatisfactory. He then has fitted two exponential autoregressive models to the full
set log-transformation of lynx data. The first one which could reproduce the asymmetric limit cycle struc-

ture of the lynx data may be written { as

X, = { 1.1668+(0.316+0.982X, ) > }x, |
— {0.437(0.659+1.260X, _; ) >*%~ } X, _y-+e, (6.4.6)
where V(e,)=0.04327.
The second EXPAR model with smaller variance of fitted residuals, which was believed to be more

appropriate for forecasting is given by

X, =—0.481X,_,—0.247X, _,+0.318X, _,+0.23X, _, (6.4.7)
+0.352X,_s+0.096X,_4—0.085X,_;—0.289X, ¢
—0.181X,_g+¥, ,

Y, = {1.514+(0.480-3.332Y,_,~0.610Y2, +8.90672_, )e >~ },_,
+ {~0.902+(~0.228+0.923Y, _; +0.193¥2_, ~4.216¥>_ )e >*"~ J¥, -+, ,

where V(e,)=-0.03153.

Gabr and Subba Rao (1981) for their first illustration have considered the annual sunspot numbers for
the years 1700-1955, giving 256 observations. Their linear and bilinear models which are fitted to the first
221 observations are as follows

a) AR model

The fitted model to the mean deleted observations is given by

X, =1.2163X,,-0.4670X,_,—0.1416X,_3+0.1691X,_4,—0.1473X, _s
+0.0543X, _¢—0.0534X, 7+0.0667X,_g+0.1129X, g+, (6.4.8)
where V(e,)=199.27.

t Note : The first cocfficient of this model has been corrected in Chapter Four.
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b) Subset bilinear model

The reported subset bilinear model is

X, =6.8860+1.5012X,_;-0.767X, ,+0.1152X, 4
—0.01458X, oe,1+0.006312X, ge,-1~0.007152X,_,¢,3
+0.006047X, 4 €, 3+0.003619X, _; £, 6+0.00433X, ¢, 4
+0.001782X,_3€,_5+e, , (6.4.9)
where V(e,)=124.33.

As far as the SETAR models are concemed, different SETAR models have been fitted to the different
period of raw and transformed sunspot data. In this section we will only consider the SETAR(2;3,11) which

is fitted to the raw sunspot numbers of period 1700-1920, and is given by (See Tong, 1983)

11.97+1.71X,_,~1.26X, ,+0.43X, _3+eV ifX, 3<36.6

X, = {7.84+0.73X,_,-0.04X,_,—0.20X,_3+0.16X, 4 (6.4.10)
—0.22X,_s+0.02X, _4+0.15X,_7-0.24X, ¢

L0.31X,_9—0.37X,_10+0.38X,_11+e§2) X, 3>366,

where V (e{)=254.64 , V (e/?)=66.80, pooled var=153.7 .

In order to examine the post-model of observed non-parametric lag regression versus the fitted non-
parametric lag regression of those models which have been fitted to the sunspot and lynx data, we generate
a sample of size 10000 observations using a simulation technique, of the fitted models and estimate

ERX, | X)), VX | X)), j=1,2,..,11

The Figs. 6.4.1 ( the non-parametric estimates of conditional mean and conditional variance of bil-
inear for lynx data ), 6.4.2 ( those of SETAR models ) and 6.4.3 ( those of EXPAR models ) show that the
SETAR models compare very well with the others for lynx data. Also, it can be seen that EXPARI] is
better than EXPAR2 and perhaps the bilinear model is the worst model for this particular data set. It should
be noted that the performance of the comrected EXPAR] model is much better than uncorrected model

‘which have been reported by Lim (1987).

Comparing the Figs 6.4.5 ( conditional mean and conditional variance of bilinear model which is

fitted to sunspot) with Figs. 6.4.6 ( those of SETAR model ), we can see that the performance of SETAR



model is superior to that of bilinear model for raw sunspot data .
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EXPAR model which is fitted to lynx data.
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Bilinear model which is fitted to sunspot data.
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SETAR(2;3,11) which is fitted to sunspot data.
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SETAR(2;3,11) which is fitted to sunspot data.
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CHAPTER SEVEN

A COMPARISON OF LIKELIHOOD RATIO TEST
AND CUSUM AND TSAY’S TESTS FOR
THRESHOLD AUTOREGRESSION

As the theory and application of non-linear time series analysis continues to evolve, the need of tests
for non-linearity will grow. If, as appears to be the case, there is a need for non-linear modelling in time

series analysis, it certainly follows that there is a need for methods to ascertain when a series is non-linear.

Recently there has been a growing interest in studying the problem of testing threshold non-linearity
in time series. One of the proposed tests is the Portmanteau test of non-linearity of Petruccelli and Davies
(1986); it is based on ordered autoregression and predictive residuals. Tsay (1987)-considered a variant of
the test. Earlier, K.S. Chan and Tong suggested a likelihood ratio approach in a Research Workshop in
Singapore in 1984. The details have been circulated in the form of an unpublished technical report from the
Chinese University of Hong Kong and some details are available in K.S. Chan and Tong (1986a). A first
implementation of the idea was reported in W.S. Chan and Tong (1986). Also, they give a detailed discus-

sion of several frequency and time domain tests for general non-linearity.

In this chapter we investigate some tests designed to detect self exciting threshold autoregressive

(SETAR) type non-linearity.
7.1. The Likelihood Ratio Test for Threshold Autoregression
Consider the following threshold model, i.e. the SETAR(2;p,p) model

P .
b,(,l)‘i"Elel)X,_ﬁe, if X, 4g<r
=

X, = (7.1.1)

P
b22)+_zl bPX,_+e, if X,_4>r,
=

where p and d are known positive integers, r is an unknown parameter usually called the threshold
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parameter, { e ] is a sequence of independent identically distributed random variables with zero mean and
variance 62 < =, and ¢, is independent of X, , s < ¢. Given a set of observations X,,X,, - * - . Xy, K.S. Chan
and Tong (1986a) consider testing the hypothesis

H,: bV =pP® | fori=0,1,2,....p,

against
H,: bW £ b® | forsomei, i=0,1,2,...,p .
H, states that the generating mechanism is non-linear and is piecewise linear. Under H,, the nuisance

parameter, r , is absent.
Assume that ¢, is normally distributed; then the likelihood ratio test statistic A, is given by

WN-p)
2

a2 a2
)\,,. = O(NL,r)/G(L)] (71.2)

A2 .
where N denotes the sample size, Gz, ) is the usual average residual sum of squares under &, for fixed »

and é‘st) is that under H,,.

If r is known, then under H,, —2InA, is asymptotically x;.u (X.S. Chan and Tong, 1986a). However,

in practice, the threshold parameter r is seldom known and the likelihood ratio test statistic becomes

N-p)
’ a2 a2
A= [G(NL,?),G(L)} 2 (7.1.3)

where 7 is the least squares estimate of . The asymptotic distribution of A’ is no longer x2. To use the
likelihood ratio test in practice, W.S. Chan and Tong (1986) have resorted to the computing-intensive
Monte Carlo method to obtain approximate tail areas of the null distribution for the likelihood ratio test
statistic ..

Inherent in the likelihood ratio approach is a fundamental difficulty in that the threshold parameter is
a nuisance parameter which is absent under the null hypothesis ( of linearity ). This invalidates the standard
asymptotic theory. The two implementations of the likelihood ratio approach represent two different prag-
matic methods of obtaining a crude null distribution. A major disadvantage of the W.S. Chan-Tong imple-
mentation is the computation time which is much greater than the other time-domain tests for non-linearity,

although it may still be argued that with modern fast computers the problem should not be exaggerated.
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Fortunately, much theoretical progress bas been made in the past~year and there are now available
theoretical results: The asymptotic null distribution may be identified with the first passage probability of an
m-dimensional Gaussian process (Chan and Tong 1988). If m is equal to one, explicit null distribution may
be tabulated via a Brownian bridge result . If m is greater than one, unfoxtunately the first passage probabil-
ity problem is not yet resolved by the probabilists to the extent that explicit null distributions may be tabu-
lated. In such cases, an approximation of the tail probability of the null distribution may be obtained using

a Monte Carlo technique.

It is therefore of interest to compare the likelihood ratio test using the newly available asymptotic
results with a non-likelihood ratio approach such as the modified Petruccelli-Davies’ test and Tsay'’s test.
Definition 7.1.1: A stochastic process {X,(co) : t20} defined on a probability space (Q,F,P) is called a
Brownian motion or a Wiener process if it satisfies:

a. X,(w)=0 for almost all ® and

b. the system {X,(®):¢20} is Gaussian on (Q,F,P), and for any ¢ and k with t+h > 0, X, ,4(®)-X,(®)
has expectation 0 and variance|h |.

The parameter 7 denotes time and usually extends over the interval [0, 1] or [0, ].

Take a Brownian motion which begins at the point x, such motion being realized by X;(w)+x. We
wish to "deform" it so that it passes through a fixed point y at a fixed instant ¢, of time. In other words we
are interested in the modified motion of_a Brownian particle constrained at the extreme points of the inter-
val [0, ].

Definition 7.1.2: A Brownian bridge or tied down Brownian motion is a Gaussian process whose mean 1,

and covariance ¥, are of the form

t,—t

!
X+—y,
o t

Y.s = E{[X,~E(X))] [X,~E(X,)}}
t,—t

K, =EX,)=

=s » §<t.

(4

A Brownian bridge depends on the choice [0, #, ] of the time interval, the starting point x and the terminal

point y. ( See T. Hida 1980 ).
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Recently, K.S. Chan and Tong (1988) have proved that the null distribution is given by the first pas-
sage probability of a higher dimensional Gaussian process. Moreover, for the special cases of (i)
SETAR(2;0,0) and (ii) SETAR(2;1,1) without th;z intercepts, (i.e. b3’ =0, all i ), the asymptotic distribu-
tion of the likelihood ratio test may be tabulated. ( See Chan and Tong i988 for detail ). This greatly facili-

tates the use of the test.

In practice, we may proceed as follows: First, the time series data X,,X,, - ,Xy are sorted in

ascending order, giving X ;)<X < - - <X (). Foreach r =X;), the likelihood ratio test statistic

A, =N

(6fL)_3fNL,r))/ 6?NL,r)] (7.1.4)
can be calculated. At level o, H, will be rejected if A, >C for some r, where C is the critical value deter-
mined from the first passage probability of a 1-dimensional Brownian bridge. To use the tabulated values, r
is allowed to vary from Xy to X(y), V1<V,, where X, and X, are such that Py (X,<X,,)=p and

Py (X,<X(,)) =4, (g >p). Inall our comparative study to be described later, we set p =25 % and ¢ =75 %.

7.2. Tests Based on Predictive Residuals

Consider a SETAR(/;p,p) model with delay parameter d and thresholds —ee=r, <r; < -+ <r; =00,

P

X, = b$,’7+A}31b,U’X,_,-+e, y Tja <X,4S<r;j, (72.1)
where ¢ =max { d+1,p+l } ,...N, and {e,} a sequence of independent identically distributed random
variables with mean zero and variance o2 < «. It is more convenient to re§vxite the model (7.2.1) in terms

of an ordered autoregression.

Let h=max { 1,p+l-d } and X denote the ith smallest observation among
Xnr .o XN, i=12,. ,N-d-h+l. Suppose m,=0,m=N and mj,j=1,...,l—1, are such that

X("'l) Srj <X("‘l+1)' Model (7.2.1) may be rewritten as

P
X iya = b9+ ZUPX yra e ipa (12.2)
i =mj_1+1. s 9mj ’ j=1,o..,1 .

Under the null hypothesis that b{) = p{® for all j#k and for each i, i.e. model (7.2.1) is linear, we

can write the ordered autoregression (7.2.2) as
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Y = Xb+e - (723)

where Y is a column vector containing X (g, i =1,...,N—d—h+1, X is an (N-d—h+1)x(p+1) design
matrix and b is a column vector of unknown parameters b | p{l | --- | bgl) , e is a column vector of

noise terms.

Let r,;, denote a positive integer «<N. For each r2r;, , an AR(p) (p is the fixed order) model of
the form (7.2.3) is fitted and z,,; , the one step ahead standardized forecast error (i.e. the predictive resi-

dual) is computed successively for r =r ;.7 mint+1, ..., N—d—h.
Petruccelli and Davies (1986) form the CUSUMS

r

Z,= X z;,r=rpp+l,... ,N—d-h+1

i=r g+l

and from them they construct the P statistic,

P= max |Z, |/ \N*
FeninH1SrSN +r 0
where N* = N—d—h+1—r ;..

More recently, Petruccelli (1988) has improved the test and a reverse CUSUM test results. Let

r
-
Wr=Zansr ni »7=12,.N" .
=

In order to provide greater sensitivity to deviations in W, for small r, he has used boundaries of the

form ar+b, and H,, is rejected if| W, | > ar+b for some r, 1<r<N*,

For alevel « test, he has suggested that choosing

b=[V(=(N"/2)in(0/2))] /2 and a = V(-In(c/2)/2N"*)
gives satisfactory results. We follow this suggestion in our comparative study in §4.
The second test based on one step ahead forecast errors is that of Tsay (1987). He suggests perform-

ing the regression

z= )~{B+£ ,
where z is the vector of standardized one step ahead forecast errors with entries z; , i=r i+, * * * ,N +r o

,and X is the design matrix of the form (7.2.3) with the first r,;;, rows deleted, and computing the usual test

statistic F for testing H,:$=0,
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v, = . )
{

He has shown that under H,, , F is asymptotically distributed as F,, ,, where v;=p +1,v,=N"—p-1.

7.3. Empirical Critical Value

For the special cases of (i) SETAR(2;0,0) and (ii) SETAR(2;1,1) without the intercepts (i.e.
b$?=0, aill i ) in formula (7.2.1), the asymptotic distribution of the likelihood ratio test is tabulated. ( See
Chan and Tong 1988). For models of the forms (i) and (ii), the asymptotic 5% point to the likelihood ratio
statistic is 7.84 . An uncritical use of the standard likelihood ratio theory would refer the test statistic to the
5% point of a %3 (i.e. 3.84) . The correct value of 7.84 is closer to the 5% point of a %3 distribution ! In
practice for those models outside the special cases (i) and (ii), we need the empirically determined 5%
point.

The similarity of the 5% point of the cases (i) and (ii) with the %3 suggests that the empirical 5% point of
the model (7.2.1) with intercept is close to the 5% point of X§y and without intercept is near to the 5% point
of X3-1)-

In order to examine this suggestion, for each following model, 100 replications each of length 100,
using a simulation technique is generated. For each realization, the likelihood ratio test statistic (7.1.4) is
calculated. At level 5% , linearity is rejected if A,> C for some r, where C is the critical value determined
from the x%P distribution and r is allowed to vary from X, to Xv,), where X;’s are ascending sorted data,
X v, and Xy are such that Py (X, <X, ))=0.25 and Py (X; <X(y,))=0.75. The results are given by Table

73.1.



The models are:

Model 1: X, =0.4X,.,~0.3X,_3+e,
Model 2: X, =-0.4¢,_,+0.3¢, 5+,
Model 3 : X, =(03-0.8exp (-X?; )X, +e,
Model 4 : X, =0.5-04X,_1+0.4X,_je,_,+e,

1-0.5X,_,+e, ifX, <0
Model 5: X, = -1-0.5X,+e, ifX,;>0

2+0.5X,+e,  if X, <1
Model 6: X:= 105 04,  +e, if X, ;21

Model 7: X, =~0.4e,_1+0.3¢, ,4+0.5¢, 5¢,_;+e,

Model 8: X, =~03e¢,_140.2¢, p+0.4¢,_je, ;~0.25¢%; +e,
Model 9 : X,=04X,.,-0.3X, ,+0.5X,_,e,_;+0.8¢,_;+e,
Model 10 : X, =-0.5X,_;+e,

Model 11 : X, = 1.0+0.5X,_,+e,

Model 12: X, = ¢,

Model 13 :

1+e, ifX,..ISO
X, = [-1+e, ifX,>0

Model 14 : X, = 1.0+0.5X,_,-0.75X, o+e,

140.5X,_ +e, if X, ;<0

Model 15 : Xr = _1+X'_1+e‘ ifX,> 0

Model 16 :

—I—O.SX,_I +e, ifX,_] <0
X, = [I—X,_l-*-e, fX,50

_0.540.3X, y+e, ifX,,<0.2
Model 17 : X, = [1+0.3X,_1+e, ifX,_,>02

Model 18 : X, =0.5X,_,-0.3X,_s+e,
Model 19 : X, =2.0+0.5X,_1—0.8X,_4+0.3X,_s+e,
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140.5X,_;~0.6X, ,+0.6X, 4+0.3X, _s+e, if X,_;<0
~2+0.5X,_1-0.8X,_4+0.5X, _s-+e, if X,>0

Model 20 : X, =

Judging by the results with respect to Table 7.3.1 and models 1,2, 10, 11 ,12,14 ,18 and 19, the
test for all p, seems to detect the linear models satisfactorily , aithough frequencies as high as 98 , 99 and
100 are slightly higher than expected. The performance of the test to detect the non-linearity of models 3 , 4
,5,8,13,15, 16, 17, decrease regularly as the order p increase. These suggest that the degree of freedom
of null distributions may not be exactly 3p for all p and sample size 100 and d =1, therefore we adopt as the
null distribution of the test %> with 3, 6, 8, 10, 12 and 14 degree of freedom for p =0,1,2,3,4,5, and repeat
the same experiments in order to examine the adequacy of this adoption. The results of frequency (per cent)
of correct decision where a nominal 5% significance level is used in each of the 100 replications, are given
in Table 7.3.2 . Examining the performance of tests to detect the non-linearity of models 4 , 12, 14, 16 and
17 suggests that the likelihood ratio statistics to the 5% point may be chosen as 7.81 , 12.6 , 145,170,
19.5 and 22.0 . Under the same conditions, we repeat our experiments on 20 models. The results are given
in Table 7.3.3. Note that columns 7 to 11 in tables 7.3.1-7.3.3 represents the percentages of correct deci-

sions.



Table 7.3.1

original p
Model )
type 1 2 3 -4 5
1 L 98 | 97| 97 | 100 | 99
2 L 97 | 100 | 100 | 99 | 100
3 NL 210 07 12 03 | 02
4 NL 86 | 79| 76| 56 | 56
5 NL 97 | 78 | 63| 52| 39
6 NL 100 | 100 | 100 | 100 | 100
7 NL 24| 46| 33| 28| 20
8 NL 64 | 61 | 54| 49| 52
9 NL 8| 73! 53| 55| 60
10 L 92! 99 (100 [ 98 | 96T
11 L 98 | 99 100 | 98 [ 99
12 L 9 | 99 96 | 97 | 100
13 NL 100 | 98| 93 87 | 83
14 L 99 | 98 | 98| 99 | 98
15 NL 100 99| 99| 97| 92
16 NL 100 [ 99 94 92| 90
17 NL 72| 69| 61| 43| 34
18 L 98 | 99 99} 100 | 98
19 L 97 | 96 | 100 | 100 | 100
20 NL 87 | 99| 98 | 100 | 100

* Note: L= Linear model and NL= Non-linear model.




Table 7.3.2

original p
Model
type 1 2 3 4 5
1 L 98 | 95| 98 | 9 | 96
2 L 95 1 98 ¢{ 95| 96| 92
3 NL 18 15 17 19| 11
4 NL 86 | 77| 8 76| 74
5 NL 99| 93| 8 | 72| 73
6 NL 100 | 100 | 100 | 100 | 100
1 NL 25| 54| 46 | 42| 45
8 NL 56 | 67| 65| 65| 63
9 NL 11| 65| 71| 791 70
10 L 98 ) 96 9 | 96| 99
11 L 99 | 93| 96 ] 100 | 96
12 L 98 | 951! 98| 96| 96
13 NL 100 | 99| 100 | 96 | 92
14 L 98 | 97| 96| 9 | 91
15 NL 99 | 100 { 100 | 99 96
16 NL 98 | 99| 99| 97| 93
17 NL 771 72| 77 ) 65 50
18 L 99 | 100 | 96 | 98 | 94
19 L 97 | 98| 98| 98} 96
20 NL 76 | 100 | 100 { 100 | 100
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Table 7.3.3
original p
Model
type 1 2 3 4 5

1 L 971 99| 91 94| 99

2 L 100 | 94| 97| 94 | 97

3 NL 19 17 14 8 19

4 NL 89 | 91 84 | 82| 83

5 NL 97 | 96 | 8 | 81 79

6 NL 100 | 100 | 100 | 100 | 100

7 NL 15| 43| 49| 53| 52

8 NL 60 | 74| 65| 67| 72

9 NL 10 | 73 86 | 70 | 76
10 L 95 93 95 | 98 | 96|~
11 L 97 | 97| 95 95| 93
12 L 97 1 95} 95| 9 98
13 NL 100 ] 98 ) 98 ) 96 | 93
14 NL 98 | 98 | 97| 91 92
15 NL 100 | 100 | 100 | 100 | 99
16 NL 99 | 100 | 98 { 98 | 97
17 NL 84 82 | 75| 70 69
18 L 97 1 991 97| 9 | 94
19 L 9 97| 99| 97 94
20 NL 87 99 | 100 | 100 | 100

Examining the results of tests with respect to the models 7, 8, 9, and 20 in Tables 7.3.1, 7.3.2 and

7.3.3 , shows the importance of order p higher than one in improvement of the performance of the likeli-
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hood ratio test in detecting the non-linearity. Finally, the following adaptation seems to be applicable.

In practice one can detect the non-linearity of a time series by applying the likelihood ratio test on
data set for some values p (e.g. p=1,2) and d <p. Then one can say the data is a non-linear time series data

set if at least one of the different combination of p and d shows the non-linearity of the series.

We employed the above suggestion and applied the likelihood ratio test (with intercept) for
p=1, d=1 and p=2, d=1, 2 to some real data sets. The nominal 5 per cent significance is used. The

empirical 5% level critical values for likelihood ratio tests are 12.6 and 15.6 (%% and x3). The results are

given in Table 7.34 .
Table ;1.3 4
data order and reverse
data LR®
transformation delay ** CUSUM
Lynx,N =114 RAW NL p=1,d=1 NL
logyo NL p=2,d=1 L
Sunspot, N=256 RAW NL p=2,d=1 L
square root NL p=2,d=2 L
Blowfly (first part), N=126 RAW NL p=2,d=1 L
square root NL p=2,d=1 L
log;o NL p=1,d=1 L
Blowfly (last part), N=82 RAW L L
square root L L
logyo L L

* LR: Likelihood ratio test.

** Order and delay: These are the order and delay with which the test reject the hypothesis of linearity.

Not surprisingly the results of Table 7.3.4 column 3 are exactly the same as Table 8 in W.S Chan and
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Tong(1986).

A Monte Carlo study has been done by W.S Chan and Tong (1986) based on 100 replications of each
the nine models listed as models 1-9 with a minor change in model 7 (i.c. The term e,y ¢,.5 is replaced by
ere,_ to make the model 7 identical to W.S. Chan and Tong’s model). Each replication has a sample size
204 and in each case, ¢,~N (0,1).

If the choice of xgp for p=1, 2 as the 5% critical value of likelihood ratio test is adequate, then we will
expect to get approximately the same result as W.S. Chan and Tong (1986). A Monte Carlo experimenta-
tion along the same line as W.S Chan and Tong (1986) with the same models (i.e Models 1-9), gives simi-
lar results and it tends to support the adequacy of this choice. Frequencies in per cent of correct decision
with nominal significance level at 5 per cent with critical value equal to 12.6 and 15.6 for p=1 and p =2

are given in Table 7.3.5.
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Table 7.3.5
model and  original CT™ LR™
numbers type” test . test
1 AR(2) L 99 91
2 MA(2) L 96 96
3 EXPAR NL 34 37
4 BL NL 96 100
5 SETAR NL 100 100
6 SETAR NL 100 100
7 NLMA NL 14 21
8 NLMA NL 96 95
9 BL NL 98 89

* 1_: Linear; NL: Non-linear.
** CT: W.S. Chan and Tong (1986) results.
*x% T R: Likelihood Ratio test results.

The poor performance of the likelihood ratio test with respect to model 7 (after a minor change) is
perhaps due to the fact that E(X, |X, .5 <?) is linear in ¢, , s <2 W.S. Chan and Tong (1986). Monte Carlo
experimentation along the same lines as before with following models may give a better support in choos-

ing the 3p degree of freedom forp=1and p=2.
Model A: X, = e¢,—0.4e,_,+0.3¢,2+0.5¢,_1€,_5
Model B: X, = e,—0.4¢,_,+0.3¢,_,+0.5¢2_,
Model C: X, = ¢,~0.4¢,_;4+0.3¢,_o+0.5¢,¢,;
Model D: X, = e,—0.4¢,_,+0.3¢,,+0.5¢,¢,

The results with 100 replications in each case are given in Table 7.3.6 .
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Table 7.3.6
Frequency of correct decisions
Model (5 per cent significance lével)
CT test LR test
A 95 89
B 97 100
C 14 29
D 12 22

7.4. A Comparative Study of the Likelihood Ratio Test and the Reverse CUSUM Test

To assess the performance of the likelihood ratio test by reference to the tabulated tail probability of
the newly available asymptotic pull distribution we simulate a number of SETAR processes which were
studied by Petruccelli (1987 and 1988). In our comparative study we follow Petruccelli (1987) and assume

that the true parameters p and d are known.

In this study, for those models which fall within the special cases (i) and (ii) described in §2, we refer
the likelihood ratio statistic to the asymptotic 5% point of 7.84. An uncritical use of the standard likelihood
ratio theory would refer the test statistic to the 5% of a x? distribution (i.e. 3.84), and this would be wide
off the mark. The correct value of 7.84 i$ closer to the 5% point of a x3 distribution! For those models out-
side the special cases (i) and (ii), we refer the test statistic to the empirically determined 5% point of 12.6;
as we have said earlier, we await with keen interest results from probabilists working on higher dimensional

Brownian bridges so that the empirical value may be replaced by an asymptotic value.

For each process, 100 replications each of length 50 and 100 replications each of length 100 were
generated using the NAG routine GOSDDF, which was initialized by NAG routine GOSCCF. For each repli-
cation, start-up values were set to zero and the first 1499 observations discarded to remove transient effects.
It is important to discard a sufficient number of observations. In our simulation studies we have found that

discarding the first 500 observations, as suggested by Petruccelli (1987), is not always sufficient.
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We have repeated all the models used by Petruccelli (1987) with the exception of two. He has

included the two following models in his study:

~140.5X,_;+¢, if X,_;<0
X = 14X, +& if X, >0° (7.4.1)
and
—1-0.5X,_;+¢, if X,_;<0
Xe=\14x,+¢,  ifX,4>0 . (74.2)

These are not ergodic (K.S. Chan at. al 1985) and | X, | will tend to infinity in probability as t— eo. (See Fig.
7.4.1 for a partial realization of model (7.4.1).) It is not immediately obvious if existing tests, likelihood

ratio approach or not, apply to the non-ergodic cases. We have therefore excluded them in our study.

In our comparative study, we have not been able to duplicate all of Petruccelli’s (1987) results for his

test; therefore we will give both his reported results ( Petruccelli 1988) and our results together.

Note that in Moeanaddin and Tong (1988) the Petruccelli’s (1987) results are slightly different from those
of Petruccelli’s (1988) which will be used here. Since the number of replications cannot be considered
large some discrepancies are to be expected. However, in some cases the discrepancies are apparently con-
siderable. In all the tables, the first column (marked RC* ) of power for each N is taken from Petruccelli
(1988) and the second column (marked RC) is based on our running the programs { for the reverse CUSUM

test.

Table 7.4.1 shows the results (all averaged over 100 replications each) for the 5% test and for N=50

and 100 on the AR(1) processes

X, =b,X, +e
for b; =10.9,40.5,40.1 and 0. It may be seen that the significance level of likelihood ratio test based on

asymptotics is reasonable (See column under LR).

+ Note: We arc most grateful to Professor J. Petruceelli for providing us with his program.



Table 7.4.1
N=50 N=100

b,
RC* RC LR RC* RC LR
09 | 007 | 006 | 004 | 009 | 0.06 | 0.06
05 | 009 | 005 | 002 | 009 | 003 | 0.06
01 | 008 | 003 [ 008 | 005 [ 004 [ 006
00 | 006 | 003 | 004 | 003 | 0.03 | 0.06
01 | 006 | 003 | 006 | 009 | 0.01 | 0.02
05 | 003 | 001 | 009 | 004 | 0.03 | 0.03
09 | 002 | 006 | 009 { 005 | 003 | 0.09

101

Table 7.4.2 shows the power results for data simulated from models of the form (7.1.1) with

d=p=1;1=2;r;=0, 0.2 ; sample size=50, 100. These models correspond to SETAR models with con-

tinuous and discontinuous autoregressive functions, with zero and non-zero thresholds.

Table 7.4.3 shows the power results of SETAR(3;1,1) with r; =-1, rp =1,



Table 7.4.2
power
SETAR parameters threshold
N=50 N=100
b b" »® P r, RC® RC LR RC” RC LR
0 0.9 0 0.1 0 0.25 0.31 0.59 0.60 0.62 0.93
0 0.9 0 0.77 0 0.48 0.47 0.79 0.79 0.75 0.99
0 0.5 0 05 0 043 0.38 0.83 0.59 0.70 0.99
0 0.5 0 0.1 0 0.62 0.62 1.00 095 091 1.00
0 0 0 -1.0 0 0.49 0.48 0.86 0.74 081 0.99
0 05 0 -1.0 0 0.33 0.27 0.51 0.45 045 0.86
0 -1.0 0 0.5 0 0.30 0.23 0.54 048 049 0.81
0 -1.0 0 0 0 0.52 0.46 0.88 0.81 Q.77 0.99
0 -1.0 0 0.5 0 0.66 0.62 0.99 0.93 0.93 1.00
0 05 0 0.5 0 0.43 0.31 0.81 0.66 0.73 0.98
0 0.77 0 0.9 0 0.31 0.41 0.82 0.78 0.74 0.97
0 0.1 0 0.9 0 0.24 0.25 0.56 0.55 0.61 0.90
1 05 -1 1 0 0.56 0.56 0.91 0.89 0.89 1.00
1 0.5 -1 1 0 0.99 0.98 0.99 1.00 1.00 1.00
-1 05 1 -1 0 0.10 0.16 0.15 0.08 0.16 0.12
1 05 -1 -1 0 1.00 1.00 1.00 1.00 1.00 1.00

Note that the null hypothesis, H,, states that X, = oX,_;+e,.
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Table 7.4.2 (continued)
power
SETAR parameters threshold .
N=50 N=100

" | BN | p@ | BP ry RC* RC LR RC* RC LR
-1 0.5 1 -1 0 038 | 036 | 088 [ 061 [ 0.60 | 1.00
1 05 | -1 -1 0 051 | 048 | 082 } 084 | 0.78 1.00
1 0 1 05 0 0.18 [ 015 | 0.13 | 027 | 020 | 0.18
1 0 -1 05 0 064 | 064 | 090 | 096 | 093 | 099
1 05 1 -15 0 100 | 1.00 | 099 | 1.00 100 | 1.00
1 05 | -1 -15 0 1.00 100 | 1.00 1.00 100 | 100
0 0.6 0 03 0.2 007 | 007 { 0.1 | 0.16 | 007 | 023
0 0.6 0 03 02 022 | 027 | 067 | 051 | 057 | 098
05| 03 | -1 03 0.2 042 | 037 | 056 | 075 | 062 | 093
05| 03 1 03 0.2 008 | 0.13 [ 045 | 027 | 034 | 090

Table 7.4.3
power
threshold
SETAR parameters
parameters N=50 N=100
B | b | 2@ | P} BD | P r r; | RC* RC LR RC® RC LR
0 as 0 05 o 0.5 -1 110151 011 [ 045 | 032 | 026 | 0.78
-1 0 0 1 1 0 -1 1 ] 016 | 022 | 012 | 032 | 027 | 0.18
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After determining the empirical critical value for the likelihood ratio test of order 1 and 2, it is
beneficial to compare the relative performance of the likelihood ratio test (LR), reverse CUSUM and Tsay’s
test on the models which have been used before in comparative studies. The results of Tsay's test have been
reported by Petrucelli (1987), therefore we have not repeated them here.' ‘We applied the likelihood ratio test
on the simulated data withp=1, d=1 and p =2 ,d=1,2. The simulated data is assumed to be non-linear if

at least one of the different combination of p and d shows the non-linearity of the data.

Table 7.4.4 shows the results (all averaged over 100 replications) for the 5% test and for N =50 and

N =100 on the AR(1) processes

X, = le,_1+e,
forb,=10.9, 0.5, £0.1 and 0.

Table 7.4.4

N=50 N=100 -

Ttest | RC LR Ttest | RC LR

-0.9 0.02 0.06 0.05 | 0.06 0.06 0.09
-0.5 0.05 0.05 0.10 | 0.06 0.03 0.06
-0.1 0.05 0.03 0.09 | 0.03 0.04 0.06
0.0 0.06 | 0.03 0.10 | 0.04 0.03 | 004
0.1 0.02 0.03 010 | 0.06 | 0.01 0.09
0.5 0.05 0.01 0.09 | 0.04 | 0.03 0.05

0.9 0.07 | 0.06 | 0.08 0.03 0.03 0.06

Table 7.4.5 shows the power results for data simulated from models of the form 7.1.1 with

d=p=1;1=2;r;=0, 0.2; sample size =50 and 100.



Table 74.5
power
SETAR paramcters threshold
N=50 N=100
M | b | B 1454 ry Ttest | RC LR T test RC LR
0 09 0 0.1 0 0.11 0.31 0.36 0.20 0.62 0.60
0 0.9 0 0.77 0 0.16 | 047 | 058 0.36 0.75 0.75
0 0.5 0 0.5 0 0.17 | 0.38 0.39 045 0.70 0.65
0 0S5 0 -0.1 0 044 | 062 | 0.60 0.80 051 0.87
0 0 0 -10 0 035 | 048 0.47 0.58 081 0.65
0 | -05 0 -1.0 0 0.18 027 | 029 026 045 0.39
0 |-10 0 05 0 0.18 0.23 0.29 032 0.49 0.30
0 | -1.0 o 0 0 0.39 0.46 | 0.50 0.71 0:77 0.75
0 | -10 0 05 0 0.61 0.62 | 0.68 0.90 0.93 0.87
0 | 05 0 0.5 0 025 | 031 0.39 0.67 0.73 0.53
0 077 | 0 0.9 0 042 | 041 0.56 0.84 0.74 0.73
0 | -0.1 0 0.9 0 035 | 025 | 027 0.61 0.61 0.54
1 05 -1 1 0 031 0.56 | 0.91 0.50 0.39 1.00
1 0S5 -1 1 0 0.97 0.98 0.99 1.00 1.00 1.00
-1 05 1 -1 0 002 | 016 | 0.15 0.11 0.16 0.12
1 0.5 -1 -1 0 1.00 1.00 1.00 1.00 1.00 1.00
Note that under Ho » Xp = O+ X,y +e,.
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Table 7.4.5 (continued)
power
SETAR parameters threshold
N=50 N=100
»M [ B | @ | pP r Ttst | RC LR | Ttest | RC | LR
-1 0.5 1 -1 0 0.15 0.36 0.88 0.18 0.60 0.98
1 0.5 -1 -1 0 0.52 0438 092 0.69 0.78 1.00
1 0 1 05 0 0.17 0.15 0.19 0.28 0.20 0.21
1 0 -1 05 0 0.53 0.64 092 0.75 0.93 1.00
1 05 1 -15 0 0.97 1.00 1.00 1.00 1.00 1.00
1 05 -1 -1.5 0 1.00 1.00 1.00 1.00 1.00 1.00
0 0.6 0 03 0.2 0.12 0.07 0.13 0.21 0.07 0.07
0 0.6 0 03 02 0.22 0.27 029 035 0357 050
051] 03 -1 03 02 0.10 0.37 0.70 0.30 0.62 0.93
05 03 1 03 0.2 0.28 0.13 0.55 037 0.34 0.86
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The run-time of the likelihood ratio test with reference to the asymptotic null distribution is negligi-

ble. For sample size of 50, the run-time varies from ¥ to 1 second and for N =100 it varies from 0.5 to 2.0

seconds. The run-time depends on the nature of the model. All in all, computing time involved in the

application of the likelihood ratio test is no longer a problem. The performance of the test is quite

encouraging as far as the study goes.

7.5. Power Plots

To assess the power performance of the likelihood ratio test (LR), we simulate two classes of SETAR

models, SETAR(2;0,0) and SETAR(2;1,1). Specifically we simulate series of lengths 50, 100, 150, 200 and

250, and the power of each test is obtained from 100 replications of each model. We repeat the same experi-

ments with the reverse CUSUM test with a view to comparison.
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7.5.1. Piecewise Constant Models

Data are generated by SETAR(2;0,0) models of the form

a-e, ifX,_] <0

X = —a+te, ifX,_ >0’

(75.1.1)

where €,~N(0,1) and a€[-3,3]. The null hypothesis, H,, states that X, =a+te,, and the altemative

hypothesis is a SETAR model of the general form

bite, ifX,,<r
X = byteqy ifX, >r.
As described at the end of §2 the threshold parameter, 7, is allowed to range over r=X;), i=Vy, = **,V,.

The 5% asymptotic critical value is 7.84, which is adopted throughout our studying.

The power plots of the LR test and the reverse CUSUM test are given in Figs 7.5.1.1 and 7.5.1.2
respectively. It is quite clear that the reverse CUSUM test has low power for sample sizes 50 and 100. The
improvement in power of the reverse CUSUM test seems quite marked when the sample size increases
from 100 to 150. Overall, the LR test is more powerful in this case. The rather wavy power curves of the

reverse CUSUM test also suggest the test’s susceptibility to sampling fluctuations.

‘We repeat the experiments with the SETAR(2;0,0) model of the form

l4+a+e, if X, ;<0

X = 1 1—a+e, ifX,_;>0°

(75.12)
where ¢,~N (0,1) and —1<a<1. The power plots are given in Figs 7.5.1.3. and 7.5.1.4.

As can be seen in Fig 7.5.1.3, the performance of likelihood ratio test remains good for a>0 but
becomes poor for a<0 compared with the reverse CUSUM test. To investigate the situation further, we
obtain the stationary marginal distribution function of the model (a =-1)

&, ifX,_ISO

X = 2+e, ifX,1>0°

(1.5.1.3)

by numerical integration, and then plot the density function of this model together with the normal density

function, N(,0?), p=E(X;) and o =Var(X,). The result is given in Fig 7.5.1.5.

The similarity of the p.d.f’s suggests that low power is not unexpected for the case a<0. The ques-

tion still remain as to why the reverse CUSUM test performs almost as well with ¢ < 0 as with a>0. Since
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the form of model (7.5.1.3) resembles an “outlier situation in time series, we suspect that the performance

of the reverse CUSUM test may be connected with its sensitivity to ‘outliers’. This suggests that the

reverse CUSUM test may not be ‘robust’. To investigate this aspect, we simulate 100 replications of the

linear model

X, =2+¢,,

(7.5.1.4)

where ¢,~N (0,1). In each replication we replace X(N/2) with some large value say k , k=-20, -15, -5, 10,

15, 20 ( N is the sample size ). The type I error probabilities of the tests are given in Table 7.5.1.1.

Table 7.5.1.1
k
N 20 .15 .10 5 10 15 2
Rc | e {re | 1R | Re | R | Re | 1R | Re | & | Re [ & | Re | &
50 | 075 | 012 | 056 | 0.08 | 037 | 008 | 0.13 | 0.02 | 0.08 | 0.06 | 0.51 | 0.14 | 0.25 | 0.08
100 | 044 | 003 | 034 | 002 | 0.19 | 002 | 0.06 | 0.05 | 005 | 0.02 | 024 | 002 | 0.15 | 002
150 | 027 | 001 | 018 | 0.01 | 0.11 { 001 | 0.06 | 0.04 | 007 | 0.02 [ 0.14 | 001 | 0.09 | 0.0

RC = reverse CUSUM test

LR = likelihood ratio test

It is clear that the CUSUM test is more sensitive to outliers and tends to regard a linear series with an

outlier as non-linear.

7.5.2. Piecewise Linear Models

We consider the SETAR(2;1,1)

aX,_1+e,

X, =

if X, <0

—aX, +e, ifX,_1>0°

(1.52.9)

where ¢,~N(0,1) and a€[-0.9,0.9]. Under the null hypothesis, H, , the model is of the form
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X, = aX,_, +e,; under the alternative, the model is of the form

b,X,_+e ifX,_<r
X'= b2X1—1+er ifX,_1 >r . (7.5.22)
Again, the asymptotic critical value is 7.84. The power plots of the tests are given in Figs 7.5.2.1 and

752.2.
Also, we consider the SETAR models

(@+0.5)X,_;+e, if X,_,<0

X1 = 1(0.5~a)X,_y+e, ifX,_,>0°

(7.52.3)

where e,~N (0,1) and a€ [-0.5,0.5]. The power plots of the tests are given in Figs 7.5.2.3 and 7.5.2.4. The
power of the reverse CUSUM test seems to drop abruptly as |a| exceeds 0.45. Overall, the likelihood ratio

test seems to perform better than the reverse CUSUM in this case.

In this chapter we have compared, via simulation studies, the performance of the likelihood ratio test
with the reverse CUSUM test. The resuits of Tables 7.3.4, 7.3.5, 7.3.6 and 7.4.5 show that 6 and 9 degree
of freedom as a critical 5% point for the likelihood ratio test with p=1 and p =2.-in presence of an inter-
cept, is quite practical. Also, the results of Table 7.4.5 show that the performance of the likelihood ratio test

in comparison to the CUSUM and Tsay’s tests is quite remarkable.

The main strengths of the new implementation of the likelihood ratio test are (i) it does not depend on
the optimal model selection (ii) the parameters threshold and delay need not to be estimated and (iii) it is

fast in view of CPU time.
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CHAPTER EIGHT

SETAR MODELLING OF BLOWFLY DATA

8.1. Some Background of A.J. Nicholson Data

In the 1950’s, the Australian entomologist, A.J. Nicholson, conducted a series of experiments with
blowflies, Lucilia Cuprina. His laboratory data have since become classic and simulated wide interest in

population ecology. Of particular note are the cycles apparent in his population data.

The data we are going to analyse are abstracted from Brillinger et al (1980) and correspond to the bi-
daily record of one of A.J. Nicholson’s experiments extending over two years, in which a caged population
of approximately 1000 blowflies was initiated with a reasonably balanced sex ratio. The caged blowflies
were fed a limited amount (about 500 mg.) of ground liver daily as the only so;lrce of protein which is
necessary for egg production. Experimental evidence suggests that egg production usually ceases when
daily protein intake for the female fly drops below 0.14 mg. and levels out at 10 eggs per fly per day when
protein supply is plentiful.

The first question is whether this data set is non-linear. The results of Table (7.3.4) in Chapter Seven
shows the non-linearity of the first part (the first 182 observations ) of the blowfly data. Also the results of

three other different tests (i.e Subba Rao-Gabr-Hinich’s, Keenan’s and CUSUM ) support the non-linearity

of this data set. (See Tong 1987a and W.S. Chan & Tong 1986 ).

Since the marginal density function of all linear Gaussian processes are unimodal therefore, before
following the Tong’s SETAR fitting model procedure, it will be useful to consider a test for testing multi-

modality of the marginal probability density function of a data set.

8.2. A Test for Multi-modality Based on Kernel Density Estimation

A test statistic for hypotheses concerning the number of modes in the density is obtained by con-
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structing kemel density estimates of the data (Silverman, 1981). The kemel depsity estimate (Rosenblatt,

1956) for window width k based on univariate observations X 1,X5,....X,, is defined by

Fsy=n"7 TR{T X}
where X is a kemel function {, which we shall assume through out to be normal density function.
The window width h controls the amount by which the data are smoothed to obtain the kemel esti-
mate. Suppose that we wish to test the null hypothesis that the density f underlying the data has k modes,
against the alternative that fhas more than £ modes. Define the s —critical window width A.,;; by

heyir = inf{h : (ki) has at most k modes } .
Large values of h_;, will reject the null hypothesis.

For any particular k~-mode simple null-hypothesis it is easy to assess, by simulation, the significance
of the value of the critical window width obtained from the data. Suppose the null hypothesis is that the true

density is g and that the value of A,;, obtained from the data is ,. Silverman (1981) has shown that

Pry(hepi > h,) = Pr{f(.;h,) has more than k modes| {X;, - - ,X,} is drawn from g} .

The hypothesis that the true density is at most k-modal is of course a compound hypothesis. To provide a
conservative assessment of the significance of 4,, an appealing choice of the representative g, from which
to simulate is obtained by rescaling }(.;h,,), as constructed from the data, to have variance equal to the sam-
ple variance. It is easy to simulate from &.- Efron (1979) pointed out that independent observations ¥,
from g,, are given by

ey
Y, = (1+‘0_2‘) 2 Xraythot)

where X; ;) are sampled uniformly, with replacement, from the data X {,X3, ** - .X, , o is the sample vari-

ance of the data and €; is an independent sequence of standard normal random variables,

We applied this test to different sets of real and simulated data, which are typically serially depen-

dent. It seems that the test works quite well .

1 The kemnel K is a symmetric function satisfying JK (0 dr=1, [t K(1)dr=0, f K (f)dr =k, #0.
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Fig. 8.2.1 shows the histogram and critical window widths and significance levels for tests of the null
hypothesis that the underlying density has at most k¥ modes against the alternative that it has more than k

modes of the monthly U.S. air passengers miles data . The data are taken from Cryer (1986, p. 270) .

Histogram i C1 ® = Zio
fid=oing Count
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14 13 R43&iknesstdikw .

i1z 32 AESAXKIERISRFIARIELIIXFIEXIR4ULRRE

14 25 4VkKzLETiebEaviRedEiaiiiie

14 1o £¥35&38Ixekédiay

iB 6 aRERx¥

2¢ t €

Fg. 82.1

Number of Modes h; p-value

1 3.239 0.01
2 0.634 0.92 "
3 0.544 0.84

The second example is log,, transfomation of lynx data. The data are taken from Tong (1983). The results

are shown in Fig. 8.2.2.

Histogram of C3 K = 114
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3.8 4 tkkx

Fig. 822
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Number of Modes  k_; p-value

1 0.297 0.03
2 0.145 045
3 0.087 - 072

In the third example we consider the Milk Production in Pound per Cow per Month of U.S. data . The data

are taken from Cryer (1986, p. 269). The results are given in Fig. (8.2.3) .

Sistogram of C2 N - 1¢8

Sso S <eedse

€00 17 eecacwceceacecace
€50 18 <weedeedececccencee
700 27
150 25
800 34
850 1€ e<eseceeaceceeceses
$00 16 eeeceecevecencae
950 8 weeveean
Fig. 8.23

Number of Modes h; p-value

1 25572 0.75
2 21.264 0.53
3 19.253 0.65

In order to investigate the efficiency of the test by simulated data, we conduct two experiments.

Experiment I
1.5-0.9X,_;+e, ifX,,<0
X = 1_0.4-0.6X,_+¢ ifX, >0,
and experiment II

1.5—0.7X,,.1+e, ifX,,l <0
X1 = 11.0+0.8X, s +e, ifX,>0.

In each experiment, e,~N (0,1) and the sample size is equal to 100. The number of replication is 20.
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The stationary marginal deasity function and the results of applying the test on the model I (biomodal) and

model II (unimodal) are given by Figs. 8.2.4 and 82.5 respectively.

e

o

Hg. 824
Number of Modes  k,; p-value
1 290 0.00 -
2 - 059 058
Fig. 825

Numberof Modes  h,;  p-value

1 051 057
2 038 0.49
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8.3. Influential Data

Quite often, a simple residual check is not sufficient in suggesting improvement/inadequacy of the

fitted model. It is always useful to look for the influential data.

A new approach, which is not based on residuals, has been explored by Hau and Tong (1984). Their

emphasis were on the influential data.

Consider the linear Gaussian autoregressive model of order p

Yl = ¢1 Yl—1+¢2yt—7.+ Tt wpy(.—p"'eg £ (8.2.1)
where e,’s are independent and identically distributed random variables and e,~N 0,6%).

Let

ZZ. = (Yl—l’Yt—2’ toe 7Y1—p) B
¢T = (¢lv¢2a T »¢p) 3

then (8.2.1) can be rewritten as

Y, =Z ¢+e, .

Suppose that n observations Yy, - - - ¥, are available, then we have the following normal equation

=T ¢+e,
(nx1)  (nxpXpx1) (nx1)
where Y=(¥y, --,Y,) , e= (ey, " ,e,,)T and I' is design matrix. Here

H=[h]=T@'1y?'1"
is known as the hat matrix. 1t has been shown that the diagonal elements of the hat matrix ie.

h,=Z7(I7T)'Z, contain some vital information about the influential data. (See Hau and Tong, 1984).

Consider the SETAR(2;k,,k,) model of the form

k’
a§1)+_zla§1>x,_,+e$1) ifX;g<r
J:
% - (82.2)
a§2)+_21a?)X,_j+e§2) ifX,q>r,
J:
where d and r are delay and threshold parameters respectively. For eachi=1,2, {’s are assumed to be

i.i.d. and normally distributed with mean zero and variances o7 , i =1,2. Using the extended conventional

least square procedure, since the model (8.2.2) consists of 2 piecewise linear models, we may have the fol-
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lowing piecewise linear model formalism:

Xl = A] 91 + €

(n,x1)  (n,%k Xk, X1) (n,X1)
X = A 6, +e ,
(n;32)  (nyxky(k,X1) (n,Xx1)

where, fori=1,2,

X =, - XQ s er=(efd - ef), 0,=(af), -+ af?) and

2]
z§”
A= " |,
z{’
[
where Zf’r =(1 X&‘)_l X§")_2 s XY)_;,, ). Because of the piecewise linearity, we may define hat matrices

TARH; ,i=1,2 as follows:
TARH; = A(ATA)'AT | i=1,2.

For influential data detection in model (8.2.2), the diagonal elements 4 of TARH; are examined.
Large values of k(s correspond to the influential row vector Z{) ’s of A;. In the linear AR case, a large
value, A, say, is due to the fact that some of the X1, ", and X, are large. In the case of SETAR
modelling, of course, X{?); is not necessarily, X, _;. Therefore, unlike the linear AR case, even if h{?), is
small and k(" is large, we can not conclude that X, _; is an influential data. To identify the influential data,

it is suggested that we print out the design matrix A; with the vector b; augmented in the last column:

I, =(Alh),
nx(k+1)
where b =(A{), 5, - - - ,hD) and k) =2 (ATA)Z() .

Examining the diagonal elements k(") of TARH; and the original observations, can therefore identify those
data which are the most influential.

8.4. Profile Likelihood

Inference in the presence of nuisance parameters is a widely encountered and difficult problem. Prob-

ably the simplest approach is to maximize out the nuisance parameters for fixed values of the parameters of
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interest, and construct the so called profile likelihood. The profile likelihood is then treated as an ordinary

likelihood function for estimation and inference about the parameters of interest.

We begin with a random N-sample ¥,,Y,, - - ,¥y. The parameters vector 6 can be partitioned as
8=(y, A) where y=(y,, - - - ,W,) is the parameter of interest and A=(A,, - - - ,A,) is the puisance parame-

ter. The log-likelihood will be denoted by /(8).

Denote by é=(\'|} , A) the overall maximum likelihood estimate. Let ;. denote the maximum likeli-
hood estimate of y for fixed A and iw may be define in a similar way. The profile log-likelihood for y is

defined by

LW =1y, Ay).
To obtain the profile likelihood plot for a SETAR(2;p, , p,) model the vector of parameters

0=(rda®, - ,aa®, - ,a?)
can be partitioned as ©=(y,A), where y=(r,d) and A the rest of parameters. For each
de { 1,2,....m:m<«N }, we can calculate the likelihood function or equivalently the residuals sum of
squares, for each r, r=Y;€[2,, 03], (Y;’s being the ascending sorted data and @, , Q3 the first and
third quartial of data). For fixed d the family plots of profile likelihood vs r, may reveal some vital informa-

tion about the location of threshold and the estimation of parameter delay.

In order to examine the application of profile likelihood in locating the threshold and estimating the

delay, we conduct to the following simulation study. The model is

1+0.5X,_; —0.6X,_,+0.6X, ,+0.3X,_s+e, ifX,_ 5<0
X = 1-240.5X, ,—0.8X, (+0.5%, _s+e, ifX,5>0, (83.1)
where e,~N (0, 1) and the sample size is equal to 200. In this experiment we assume that the order of each
piece is known and is equal to 5 . The profile likelihoods are plotted ford=1,2,...,7. Figs. (8.3.1) show the
profile likelihood of simulated data with a good estimation of delay (27 =5) and a good interval estimation

for threshold (re(-0.1, 0.1)).
Our simulation studies suggest that the estimation of p, and p, is not crucial. Thus in practice, for each d

and r, they can be considered as puisance parameters and could be estimated by using AIC, BIC or any

other criterion. In all our experiments with real data, the AIC criterion has been used for estimating the
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order of each piece.

8.5. A Case Study

Now we will try to model the original (raw) blowfly data. Fig. (8.4.1) shows the time plot of the data,
from which it is clear that the data exhibit population cycles and also shows a change in the dynamic sys-
tem of this process (non-stationarity of this data set). Therefore, the data set is divided into two stationary

sets, the first consisting of the first 200 observations and the other the rest of data.

Definition 8.4.1: A stationary time series { X, } is time-reversible if for every positive integer n, and every
t1,t2,..t, €Z, where Z denotes the set of integers, the vectors (X, ,X, , -*,X,)and X_, ,.X_, , - ,.X)
have the same joint distribution.

A stationary time series which is not time-reversible is said to be time-irreversible.

Weiss (1975) has proved that ARMA processes with an auforegressive component are reversible if
and only if they are Gaussian. The implications are far reaching, Stationary series which show evidence of
irreversibility, cannot be modelled by Gaussian ARMA models, they need to be modelled by non-Gaussian

ARMA models or some type of non-linear models. (See Lawrance, 1987)
In practice the reverse data plot may be used to detect time-irreversibility of a data set.

Comparing Fig. (8.4.2) (time plot of the first 200 observations) with Fig. (8,4,3) (reverse time plot of the

data) reveals the time-irreversibility of the first part of blowfly data.

From the time plot of the data (Fig. 8.4.2), we may see that the mean length descent periods (5.7)
tends to exceed that of ascent (3.8)periods. Table (8.4.1) shows the descent and ascent periods of blowfly

data
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Table 8.4.1

Ascent and Descent Period of blowfly data

Ascentperiod 1 1 4 1 2 2 6 2 12 6

Descentperiod 9 1 13 1 123 9 2 9 9

Ascentperiod 8 1 6 1 8 1 1 9 1 6 1

Descentperiod 9 1 8 2 8 1 1 9 1 11 1

Non-parametric sample estimates of E (X; | X,3j=x), for j=1,2,...,11, reveal some vital information.
Whilst E (X, |X,ij) , j=1,2 are almost linear in x, for j=3,...,11 all are non-linear. There is a systematic
change in E(X;|X,,;), j=3,...,11, which is different from that of E(X,|X,_;). The dissimilarity between
E(X;|X,_;) and E(X,|X.;) is further evidence of time-irreversibility of this data set. Also, it can be seen
that the non-parametric regression for j=8,...,11 are all approximately the same. Thus it may be suggested

that d=8 could be a crude estimate for the delay parameter. The results are given by Figs. 8.4.4a and 8.4.4b

A family of profile likelihoods of the first 200 observations of blowfly data is given by Fig. (8.4.5),
which shows 8 could be a good estimate for parameter delay. The profile likelihoods for d =13,...,18, exhi-
bit quite substantial fluctuation for different values of r, therefore d 213 does not seem to be an adequate
estimate for d.

The scatter diagrams of (X;, X;.;), j=1,2,...,8, consist of spirals which with j increasing, show 2
systematic change with an obvious hole in the center near the origin (Fig. 8.4.6), which tends to support the

existence of a limit cycle in the data.

The marginal histogram (Fig. 8.4.7) of the data does not show any strong evidence of bimodality.
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The test for bimodality rejects the unimodality of the data at the 34% point, and rejects bimodality at the
70% point. However, there is no strong evidence for bimodality of this data set. The marginal histogram
shows clearly the skewness of data (skewness=0.77). The kurtosis is equal to -0.39 which togethef with
skewness show the non-Gaussianity of the data .

The sample bivariate distribution of (X, , X,.;) , j=1,...,10 (Figs. 8.4.8), show particularly interesting
non-Gaussianity of the data structure. Notice especially quite a regular change from unimodality (j=1,...,6)
to bimodality (j > 6) of sample bivariate distribution. Also, the "L" shape of sample bivariate distributions
for j > 6, suggests that a SETAR model with one threshold, could be a good preliminary model for this data

set.

The power spectrum estimate of the data tends to suggest quite strongly the existence of higher har-

monics to the fundamental period of approximately 36 to 40 days. (Fig. 8.7.2).

To fit a SETAR model, first we will describe a systematic procedure for obtaining estimates of
d »ripPys at()l) y 7T agl) * 09)1 ;agz') s T, a}(:za) ’ 022)" Wherepl »P2, 09)1 » o-_za)z are the order and the

variance of error term in the first and second piece respectively. (See Tong, 1983 p. 134).

STEP 1: Let d and r be fixed at d, and r, respectively. Let L denote the maximum order to be entertained
for each of the two piecewise linear AR models. The choice of L is subjective and is usually dictated by the

sample size.

STEP 2: Let d remain at d,. Allow r to .vary over { IS SHEEEIN } and minimize the AIC(d, , r) over this

set.

STEP 3: We search over { 1,2, ,1:} for the minimum AIC of 4. Since the different choice of d changes
the effective number of observations in estimating parameters and AIC, therefore we may use the normal-

ized AIC by dividing AIC by N-max{d , L}. The minimum of normalized AIC is calculated by

min min : {NAIC(d,r)} .

de(l,..,T} refry,...r.

Now by using the above identification procedure, we may give a full analysis of the first 200 observa-
tions of the blowfly data. Table (8.4.2) details the results of the identification procedure to the first 200

observations with t=10 and s=7. The seven candidates for the threshold are obtained by using the
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following relation, where S = standard deviation and X the data mean.
X-(1-(2i-1)/7)§ ,i=1,..,7

The entries under N, and N, the sample size for the two piecewise linear AR models, are quite important.
Unduly small N, or N, generally leads to a poor model. The maximum possible autoregressive order,L, is
set at 20. In the table, NAIC means normalized AIC, and o2 denotes the pooled mean square of the fitted

residuals.
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Table 8.4.2
T N, | N, | p, { p | NAIC o limit cycle status period

7956 | 44 [ 136 | 2 | 7 | 13.4348 | 598684 Jimit point
1398.1 { 72| 108 | 2 | 7 | 133848 | 594698 " limit point
2006 | 9 | 9| 2 | 7} 132952 | 583229 limit point
2603.1 | 104 | 76 | 3 | 7 | 13.2486 | 577076 limit point
32056 | 113 | 67 | 8 | 2 | 132086 | 616249 limit point
3808.1 | 130 | S0 | 7 | 2 [ 13.2219 | 593581 limit point
44106 | 142 | 38 | 7 | 2 | 132511 | 544701 limit point

7956 | 44| 136 | 3 | 8 | 13.4450 | 591341 limit point
1398.1 { 71| 109 | 3 | 7| 133969 | 597570 limit point
20006 | 89| 91| 3 | 7 [ 133302 | 591065 limit point
2603.1 | 104! 76 3 | 7| 132992 | 586339 Timit point
32056 { 113 | 67 | 8 | 7| 133383 | 556922 373!l 6
3808.1 | 130 | 50 | 7 2 | 134141 | 613998 8T7l 15
4410.6 | 142 | 38 | 7 1 | 13.3835 | 618855 Jimit point

7956 | 44 | 136 | 4 | 8 | 13.4337 | 578277 limit point
1398.1 | 71 [ 109 | 4 | 7 | 134274 | 591753 limit point
20006 | 88 | 92| 4 | 16 | 133861 | 519495 non-stationary
2603.1 | 103 | 77| 9 | 7 | 13.4238 | 569966 limit point
32056 | 112 ( 68 | 9 | 7 | 13.4631 | 587896 | lLimit cycle with long period
3808.1 [ 129 51| 8 1 | 13.4158 | 601308 918l 17
44106 | 142 | 38| 8 1 | 13.4061 | 606612 limit point

7956 | 44 | 136 | 5 | 16 | 13.4298 | 524050 limit point
13981 | 71| 109 | 5 | 7| 134363 | 587386 Timit point
2000.6 | 107 { 93 | 5§ | 16 | 13.4007 | 512413 non-stationary
2603.1 | 102 | 78 | § | 2 | 13.4320 | 609885 9T74 16
32056 | 111 | 69 | 8 | 2 | 134351 | 592789 9Tsd 17
3808.1 | 128 | 52| 8 1 ] 13.4118 | 589666 | limit cycle with long period
44106 | 141 | 39| 8 | 2 | 13.4252 | 589267 limit point




Table 8.4.2 (continue)
r N, | N, | p | Po | NAIC o limit cycle status period

7956 | 44 | 136 | 2 | 16 | 13.4046 | 537910 limit point
1398.1 [ 71 | 109 | 6| 7 | 13.4273 | 570446 " limit point
20006 | 86 | 94| 7| 7| 134102 | 561190 7T10d 17
2603.1 1 100 | 79| 7| 2 | 13.4202 | 600267 978!l 17
32056 | 110 | 70| 7| 2| 13.4530 | 613308 0Tsl 18
3808.1 | 127 | 53| 7| 7| 13.4778 | 599021 limit point
44306 | 140 | 40 | 7| 1| 13.4689 | 626151 limit point

7956 | 44 | 136 | 2| 7 | 133338 | 580233 limit point
1398.1 | 71 [ 109 | 7| 7 | 133309 | 548205 Timit point
20006 | 8 | 95| 7| 2| 133504 | 585035 9Tl 19
26031 | 100 | 80 | 7 | 1| 133353 | 587518 | limitcycle with long period
32056 | 109 | 71| 7] 1| 133773 | 595389 | limit cycle with long period
3808.1 | 126 | S4 | 7| 2 [ 13.1949 | 572825 9Ti0!l 19
44106 ) 139 | 41 { 7| 2| 13.1843 | 590531 fimit point

7956 | 44 | 136 | 2| 8 | 133120 | 559181 Limit point
1398.1 | 71 | 109 | 2| 7| 13.1923 | 597020 8Tl 17
20006 | 8 | 96| 2| 3| 132563 | 623615 8Tl 17
26031 | 99| 81| 2| 3| 12.7253 | 620900 9T9l 18
32056 | 108 | 72| 7 |. 2| 12.8324 | 568193 | limitcycle with long period
3808.1 | 125 | 55 ) 7| 2| 128750 | 577809 | lLimit cycle with long period
44106 | 138 | 42| 7| 2| 129742 | 578411 | limit cycle with long period

7956 | 44 | 136 ] 2| 8 | 133359 | 571833 Iimit point
1398.1 | 61 [ 109 | 2| 7| 129510 | 559186 1nTwluTel 41
20006 | 8 | 96| 2| 9| 125976 | 575764 1ntel 20
2603.1 | 98 | 8 | 2| 9| 12.6053 | 615862 11Tol 20
32056 | 107 | 73|10 | 2| 127441 | 564266 sT1loTud 39
3808.1 | 124 | 56 | 8| 2 | 12.7618 | 568190 | Lmitcycle with long period
44106 | 137 | 43| 8 | 2 | 12.8941 | 571346 | limit cycle with long period
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Table 8.4.2 (continuc)
d r N, N, |2 | P2 NAIC o? limit cycle status period
7956 | 44 | 136 | 2| 8 | 133238 | 588150 Timit point
1398.1 | 71| 109 ] 2| 6 | 125347 | 535619 ontTel 20
20006 | 8 | 9 | 2| 6 | 124712 | 588527 10T11d 21
9| 26031 | 98| 82| 7| 3 | 124207 | 552477 s§T13d 21

3205.6 | 107 73 {10 | 3 }| 125388 532957 | limit cycle with long period

3808.1 | 123 | 57| 10 | 2 | 127341 | 549085 limit point
44106 | 136 | 44 | 8 | 4 | 129009 | 581221 limit point
7956 | 44 | 136 | 2| 8 | 133718 | 623689 limit point
1398.1 | 71| 109 | 7| 8 | 13.2448 | 566405 | limit point
20006 | 8| 95| 7| 7 | 124382 | 513115 limit point
10 | 26056 | 99| 81| 7| 7 | 124656 | 532333 limit point
32056 [ 108 | 72| 7| 7 | 1258146 | 563039 limit point
3808.1 | 124 | S6 | 8| 4 | 127368 | 565393 limit point
44106 | 136 | 44 | 7| 2 | 12.8897 | 591513 limit point

Models with no obvious limit cycles over the dynamic range of the data or with estimated order
greater than 10 are discarded. After this discarding of unwanted models and by considering the NAIC, it
seems that the best estimate for the delay parameter could be 7 or 8 or 9. Among the selected models, after

searching over a fine grid tuning near the selected threshold the following model ie. SETAR(2;2,9) is

selected.
ifX, <1790

1369.46+0.90X,_;—0.19X, 5 +e{

(24893) (0.12) ©.11)

X, = §246.75+1.11X, ,-0.23X, ,—0.11X, 5;—0.03X,_, (8.4.1)

(102.72)  (0.05) (0.06) 0.05) (0.05)
+0.04X,

(0.04) t 5‘%8‘%}(1-6_% 0043)X' 7‘2)936)}{1—8
+%826)X,_9+e$2) ifX,_g >1790,

where Var (e{V)=1167684.0 , Var (e{?)=68844.8 , pooled Var =563322.4, NAIC=12.5691.
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On comparing the coefficients of the second piece with their respective standard deviations we may

adopt the more parsimonious SETAR(2;2,2) model for this data set.

1)
1(3298993% ?gx, 1—3 }9X ~atef if X,5 <1790

163.32+L14, 035X, L+e®  ifX,>1790,
(4346) (0.05)

X, = (84.2)
where Var (e{))=1167684.0 , Var (¢)=80851.8 and pooled Var =567224.2, the normalized AIC is equal

to 12.5727 which is comparable with that of model (8.4.1).

8.6. Transformation

The scatter diagrams of (X, , X,,;) , j=1,...,8 (Fig. 8.4.6), show frequent visits to the neighbourhood
of the origin, which is a point of condensation. It has been suggested that the logarithmic transformation
could remove this point of condensation and perhaps the fitted residuals of the selected model for log;q
transformation of this data set will not be non-Gaussian. (See Tong, 1983 p. 210). Therefore we will use the
log)o transformation for the first 200 observations, and after fitting a SETAR model, a full diagnostic check

will be applied to the selected model.

Applying the same procedure which has been used for selecting model (8.4.1) to the log;o transfor-

mation of the blowfly data, the following SETAR(2;1,3) model is adopted.

2.66+0.27X,_, +e()

(0.23) (0.07) ifX, §<3.00

X, = ' P (8.4.3)
0.44+1.52X,_,-0.33X,_,—0. 32X, a+e® ifX, §>3.00,
(0.09) (0.11) (020) 0.12)

where Var(e{")=0.0246 , Var(e?)=0.0101 , pooled Var =0.0154. The first 20 observations are discarded
and the last 50 observations are set aside for one-step ahead prediction. The maximum lag for the first piece

is 10 and for the second piece is 3.

8.7. Model Diagnostic Checking

Suppose that a TAR model has been identified. The question left is to examine the adequacy of the

model. In other words, the goodness of fit of the fitted model need to be tested for.
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According to the proposed requirements of non-linear time series models, we prefer a model which

can capture the probabilistic structure of the data.

Some preliminary diagnostic checking on models (8.4.1) and (8.4.2) shows that these two models can
not pass all the diagnostic checks successfully. Therefore, our ‘discussion will centre around the

SETAR(2;1,3) model fitted to the log transformation of blowfly data i.e. model (8.4.3).

Let {e?} denote the fitted residuals in the jth regime. It is assumed that {e{?} is a zero mean Gaus-
sian white noise sequence with Var(e{?)=c? and cov(e{”, ¢/’)=0, i #j. The diagnostic checks of the
fitted residuals need to be applied to the separate series of fitted residuals. It bas been suggested that a nor-
malization of fitted residuals by dividing e’ by O, the root mean squares of the fitted residuals of the jth

region, is satisfactory. (See Tong, 1983).

8.7.1. Test of Whiteness

The whiteness of the fitted (pormalized) residuals {e,...ex} can be tested by using the estimated

autocorrelation function p,, where

- ék - 1V -
pe=%,Ci="5 T (e—eXew—2)  k=0,1,...L,
C N ¢=1

o

Under the null hypothesis of whiteness, §; , k=1,...,L, are asymptotically independent and normally distri-
buted with zero mean and variance N™'. A simple test may be constructed by plotting the p,’s against k.
We may expect that approximately 95% of p,’s should lie within the band +1.96 / VN if the e,’s are to be

accepted as approximately white noise. (See, e.g. Tong, 1983 p. 157).

Fig. (8.7.1.1) shows the sample autocorrelation function of the normalized fitted residuals obtained

from the SETAR(2;1,3), equation (8.4.3). It does not show any significant point outside the 95% confidence

interval,

More formal tests based on p,’s have also been developed for the class of linear models. Ljung and
Box (1978) have demonstrated that the statistic
Pi

M
0 =N(N+2)‘_§1—(A',—_5 ,M<N,
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provides a closer small-sample approximation to x%M—p—q)v where p & g are the orders of the AR and MA

parts of a linear model.

The Ljung-Box statistic with M =20, is 24.61 which is not significant compared with the x30(5%).

8.7.2. Test of Normality

Suppose that the e, s are accepted as approximately white noise, we may then proceed with the Gaus-
sian investigation. A histogram usually contains a fair amount of information, and provides a good graphi-
cal indicator. Fig. (8.7.2.1) shows the histogram of the normalized fitted residuals of model (8.4.3) which
does not show a substantial departure from normality. Also, the normal probability plot of the normalized
fitted residuals does not reveal any serious deviaton from normmality. (See Fig. 8.7.2.2). Sample

coefficients of skewness and kurtosis are 0.52 and 1.93 respectively.

Using the fact that the population is normal if and only if the sample mean and sample variance are
independently distributed, Lin and Mudholkar (1980) proposed the following test for normality against

asymmetric alternatives.

If ;,e2, - , ey are independent and identically normally distributed, then the test statistic

1
271 (N/3) 2 Inf(1+R) / (1-R)}, where

N -
z (e—e)(¥;-Y)

Re—=—"~>~ —_-
VI (eef Z(-YY

1
N-1

1
1 N N iy .
wt Y=y [Zg T Gl =t

is asymptotically normally distributed with mean zero and unit variance, The Lin-Mudholkar (L-M) statis-
tic is -1.74 which is slightly significant at the nominal 5% point of N(0,1). The autocorrelation function plot
of the square of the normalized fitted residuals (Fig. 8.7.2.3) does not show any significant results at the 5%
point.

McLeod and Li (1983) have proposed a test for testing statistical independence based on the squares

of fitted residuals, autocorrelations of a linear model fitted to the data.



The autocorrelation function of e? is estimated by

- N 2, a2 N,
P« =k§1(el_o Nei—O )/‘E(el_q )2 ’

2 1N
where ¢ = — X ey,
N =1

A significance test is provided the portmanteau statistic

M 5?
Q=NW\N+2) X — ,M<«N,
izt N—i

which is asymptotically x5 if the e, are independent.

The Mcleod and Li statistic is 13.69 which is not significant at the nominal 5% point of X0)-
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In order to examine the mean, variance and higher moments of model (8.4.3), a sample of 10000

observations, using a simulation technique, is generated. Mean, variance, third and fourth sample moments

of the data and simulated data are given in Table (8.7.1). It seems that most of the statistics of the model are

quite close to those of the data
Table 8.7.1
Stat. EX) E(X» EX? EX%) MN MAX Q,
DATA 321 1055 3531 120.02 178

SIMULATION | 3.22 1066 3633 12530 0.72

Fig. (8.7.1) shows the sample autocovariance function of the blowfly data and the 10000 simulated

observations for model (8.4.3). The agreement of the autocovariance function of simulated data with that of

the data is quite good.

Using the Tukey window, the smoothed spectral density functions of the data and 10000 simulated

observations are estimated. Fig. (8.7.2) shows a good agreement between the spectral density function for

the data and simulated observations.

The sample probability distribution of the blowfly data may be used to check the adequacy of the

fitted model. It is expected that a good fitted model, will generate a similar probabilistic structure as that of



129

the data. We will use the graphical methods based on marginal distributions, bivariate distributions and
regression functions to check the adequacy of model (8.4.3) for the first 200 log transformation of blowfly

data.

Using the Monte Carlo method, we obtained a simulated da;ta size of 10000 observations from
SETAR(2;1,3), equation (8.4.3). The sample histograms of data and simulated data are given by Figs.
(8.7.3) and (8.7.4) respectively. The marginal distribution of the SETAR model and that of data are quite
similar.

Figs. (8.7.5) show a remarkable agreement between the bivariate frequency distributions of simulated

observations and those of the data.

Non-parametric estimates of E(X, | X,.;) and Var (X, [X,4;) (Figs. 8.7.6), show that the lag regression

and the conditional variance of the fitted model and those of the data have a good agreement.

The time plot of a realization of SETAR(2;1,3) model (Fig. 8.7.7), shows a reasonable agreement

with the time plot of the data. -

Fig. (8.7.8) and Fig. (8.7.9) show the one-step ahead predictions and the systematic part of the model
(8.4.3) with the white noise suppressed and with the latest few observations as initial values of the recur-
sion.

Although the model (8.4.3) could pass all (except the test for normality) diagnostic checks, the diago-
nal elements of hat matrix may reveal a.very interesting feature of this data set. Figs. (8.7.10) show the
diagonal elements of the hat matrixes associated with the piecewise linear autoregressive model. From
these, it is clear that the ’influential pattern’ remains cyclical with a period of about 20 units of time, which
is about the same as that of the blowfly population cycle. This suggests the need of at least a bivariate time
series, incorporating the egg count, for example. It is feasible that the interaction between the fily population

and the egg population will give a better understanding of the cycle generating mechanism.

Tsay (1988) has pointed out that for all non-linear models fitted to the blowfly data which have been
considered by him, large residuals persistently appear at the same time points. Many of the large residuals

correspond to the big jumps in blowfly population caused by an unusual amount of emergence. Since emer-
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gence depends on the number of eggs laid, therefore the egg series can be incorporated. Tsay (1988) by
incorporating the egg series has managed to reduce the variance of fitted residuals 57.2%. However, the
residual analysis shows that the resulting residual is not Gaussian, with some large values. In order to assess
the effect of outlying (influential) observations, he has used some dum;ny (binary) variables. Then by using
four dummy variables, the skewness and kurtosis of fitted residuals are reduced substantially, but there is

some evidence that the fitted residuals are non-Gaussian.

The general message is that we should always look for influential data, since influential data pattemn
may suggest a direction of modification.

Finally the following AR(3) model is fitted to the second part (201 <7<361) of log;e transformation

blowfly data.

X, =0.64+1.03X,_,-0.09X,_,-0.12X,_3;+e, ,
(0.15) (0.08) 0.11) (0.08)

where Var(e,)=0.0115. The maximum lag is equal to 10 and the AIC criterion is employed for model

selection. .
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Fig. 8.4.8 : Bivariate histograms of data.
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Fig. 8.7.3 : Histogram of the data.
Fig. 8.7.4 : Histogram of simulated data.
Fig. 8.7.7 : Arealization of model (8.4.3).




Fig. 8.7.5 : Bivariate histograms of data and simulated data.
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CHAPTER NINE

MULTI-STEP NON-LINEAR LEAST SQUARES
PREDICTION

9.1. Introduction

Let { X, ] be some discrete time stationary stochastic process, which for the time being will be
assumed to be stationary. Suppose that we are at time # (=now ) and we wish to forecast 1 m units abead to

time ¢ +m (m =hence ), so that attention is directed to the random variable X, ,.,,.. Any forecasting procedure
will have to be based on some information set, e.g. B the o-algebra generated by {X, ; s <t}.

Since the variable to be forecast X, is a random variable, it can be fully cl{amcteﬁzed only in terms
of a probability density function or some equivalent function. However, since the information set is to be
utilized we need to use a conditional density function, i.e.

Prob(x <X, ,m <x-+dx |Information set ) = g.(x)dx
where the subscript ¢ depotes "conditional". If g.(x) were available, then all other properties of X, ., such
as the conditional mean E,(X,,,, ), could be immediately determined. Hmyever, in practice, it is generally
rather too ambitious to hope to be able to characterize fully X, ,,,, and so we attempt the less ambitious task
of finding some confidence band for X, ,,, or some single value, called a point forecast, that in some way

"best" represents the random variable X, ..

To obtain any kind of best value for a point forecast, one requires a criterion against which various
alternatives can be judged. An intellectually satisfying way to proceed is to introduce the idea of a cost
Sfunction. Since forecast errors are virtually certain to occur in connection with a random process, suppose

that we can cost the effect of an error of size e to be C(e), with C(0)=0. One particular cost function

1 The words forecast and prediction will be used interchangeably.
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gives a rather tidy and easily used solution, and that is the function

C(e)=ae?

where a is some positive constant.

Suppose we wish to form an optimal point forecast f; ., ( the point forecast of X, based on the

information set at time ¢ ) of X, ,,,, using the information set and a cost function C (e ).

The cost function will be assumed to have the properties that C (0) =0, C (e ) is monotonic nondecreasing
for e > 0 and monotonic nondecreasing for e < 0. Let g, be the conditional probability density function of
X,4m given X, , 5 <t, then the required optimal forecast f; ,,, which will be a function of only X, , s <¢, will

be found by choosing f; ., so that the expected cost is a minimum, i.e. minimizing

J = | COfymgem@)d .
In the case when C (e ) = ae? with a > 0, J becomes

o

J=_La(x_ﬁ,m)zgc,m(x)dx .

Define i’,(m) to be the conditional mean of X,,,,, given X; , s <t, so that I?,(m) = Xgc,m{x)dx, then it can be
shown that

T =a @)= fymP+a ) )Y g )

So J is minimized by taking ( Granger, C.W.J. and Newbold, 1986)

fim =EcfXpum|X; , s<t}.

In the Gaussian situation, where every finite subset of variables is normally distributed, this leads to

the important result that the optimal least-squares prediction of X, is & linear sum of the terms in
{ X, ,s%t } It should also be noted that in this case g, ,,(x) is a nommal distribution with mean i,(m) and

variance that does not depend on { X, st } .

Let {X,:1=0,%1,%2, -+ } be a second order stationary time series with zero mean and finite

variance which admits a strict linear representation,

X, = jEOaje,—j . (9.1.1)
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where the ¢,’s are independent and identically distributed random variables with

E(e,)=0,Var(e,)=02<e, V1.
Thus

E(X,)=0 and Var(X,)=conan<°° .
J

Moreover, the linear representation is assumed to be invertible in the usual sense.

The problem is to find a linear forecast for X, .., of the form

j;'m= Sw. X -

j=0 Jymi=y

using a least-squares criterion. Thus, the w; ,, need to be chosen so that

J=E {(X'_"n—z Wj'mX,_j)z} ’
j=0
is minimized. Since f; ,, is a linear function of X,, therefore it will also be a linear function of current and

oo

past ¢,. Thus the forecast f; ,, = _)=30¢ ;,m€r—j» 1S expressed in terms of the white noise e,.
j

By letting ¢ take the value ¢+m, it is seen that J/ may be expressed as

m-1

- 2
J=E {(;EO ajet-m-""jz'o(aj-m—q’j,m)et—j) } ’

which gives

m=1 L
J =07 £ aj+0. Z(@jum=bjm) -
It is immediately clear that J is minimized by taking

Gjm = Bjm »
so that the optimal m-step ahead forecast may then be written as

fr,m = j%najmey-j ’

and the m-step ahead error will be

m-~1

€tm =Xr-0-m_f;,m = j‘foaje:«u—j .
Simply it follows that the errors have mean zero and variances given by

m-1
Var(e,m)= E(ef,,,) = 03 x a? s
: j=
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which

limt Var (e, ) = Var(X,)=c? L a% <.
m—oo j=0
The sequence of error variances is seen to be monotonically nondecreasing. It thus follows that, when

using optimal linear forecasts, the further ahead one forecasts the worse one does, on average.

9.2. Non-monotonicity

As we have shown that for linear forecasting the conditional variance of e, ,, given X, s<t¢, is a
monotonic nondecreasing function of m. Results of this type seem to have generated the pagular belief that.
the further ahead we forecast the less "reliable” is the forecast. However, as first pointed out in our abstract
in the January 1987 issue of the IMS Bulletin ( Tong and Moeanaddin, 1987a) and in a concurrent technical
report ( Tong and Moeanaddin, 1987b) and in Tong and Moeanaddin (1988), the belief could be misleading

with respect to non-linear least-squares predictors.

To demonstrate the point, let us consider first a simple strictly stationary bilinear time series model of

the type which has been studied extensively by Quinn (1982),

X, =oe 1 X;0+e, , t=0,%1, ---, 92.1)
where { e } is a sequence of independent and identically distributed random variables with E(e,) =0, and

Var(e,) =02 <, and 6202 <% . Here, e, is independent of X; , s <. Clearly 0 < Var(X, ) <, all ¢, and

let J},(m) denote the conditional expectation and therefore the least-squares predictor of X, given
X, , s £t. To evaluate Var(X,.,,,,—Jz,(m)) conditional on X; , s <t, we only need to evaluate Var (X,,.) con-

a2
ditional on X, , s <t. Let this be denoted by o, (). Simple calculation gives

& (1) =Var (X, |X, , s <1)
=Var(oe X, +€41 | X, , sS1)
= Var(oexi—1+e4 | X, , s St)
=Var(e,,1)
=g?.

5/ =Var®X, 2|, , s<0)
=Var (0,1 Xi+e42 | X, , s <)

= Var (e, o H02x2Var (e,,,)
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=cl+olc2i? .

6. (3)=Var(X, 5 |X, , s <)
= Var(a2e1+2Xl+l+a'eI+l erate 3| X, , s<1)
=o2+alol+ratclelxl,

etc.
[Notice that oczVar(e,)<% ensures that e, is measurable with respect to the o-field generated by
{X, W Xi1, " -].] It is therefore clear that, as expected,

G, (1)2c,(2).

However,

57(2)26:(3) if and only if x? 2c2+oe?x2 ; . 92.2)
Inequality (9.2.2) is an event with non-zero probability and has the interpretation that 3-step ahead predic-
tion need not be less ‘reliable * than 2-step ahead prediction. In hindsight, inequality (9.2.2) simply reflects
the sometimes neglected fact that ‘prediction accuracy” is also influenced by where we are currently (i.e. at
time ¢ ) . This last observation is particularly relevant when we are dealing with cyclical data, to which we
turn our attention next. We shall also demonstrate that the nonmonotonicity just desc;ibed is not pathologi-

cal.

9.3. Non-linear Models

Almost all of the specific non-linear models give rise to fairly straightforward one-step ahead least-
squares predictions. For more than one-step ahead least-squares predictions, the situation becomes radically

different.

9.3.1. Bilinear Models

As far as bilinear models are concemed, short-to-medium-term ( say up to five-step ahead) forecast is
manageable without straining the algebra too much and presumably with due regard to rounding errors,
recalling the multiplicative nature of the models. It should be noted that linear / non-linear models (e.g. sub-
‘set bilinear model) are used more often than full model in the time series literature. However, the results of

Copas (1983) on this kind of practice suggest its potential complication. Subba Rao and Gabr (1984) have
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given the method of calculating the optimal m-step ahead (E (X, 4 | X-Xr -1, " * ) =)?,(M)) prediction of the

general bilinear model of the form (3.2.1).

In this section, very briefly, we will consider the multi-step ahead least-squares prediction of some

sub-classes of bilinear model.

9.3.1.1. Superdiagonal Models

The first class to analyze are the super diagonal completely bilinear models, the general form of

which is

Q P
X, =X X B,de,_*X,_,-!-e, N
k=1 I=2
k<l

where e, is strict white noise, and a special case is

X, =BeXi+e , k<1, (9.3.1.1.1)
which will be used here as a particular example. Assuming e, ~N (0, 62), it follows from (9.3.1.1.1) that

2

. .
EX,)=0 and Var(X,)= o provided B?cZ < 1. Suppose that the model 19.3.1.1.1) is invertible,
o S

therefore knowledge of {X, * - - Xy} implies the knowledge of { e, - - - ,ex}.

Now

XH—m = Bel-{-m—.lnxym-l ) k, 121 .
Then the m-step ahead prediction of this model is given by term

- BerimstXram— ifm<k
X(m)= 1o ifm>k,

where x, ande, are the observed values of the random variables X, ande,. Let V,(.) denote the
Var(.|X, , s <t), then
. ol fm<i
V(e (m)) =V (Xiim) = Bchxfm4+O3 ifk<m<l.

For m > l it can be shown that

VilX14m) = B2 62V (X psmi 07

and as m — o , we have

Vi(X,4m) = 2420t +B 05+ - -
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=o2+B%cl(1+p%*c2+B4ci+- - -)

2. Rl
= o +p*a; 1_plo?
o2

1-p*c?

=Var(X,).

9.3.1.2. Diagonal Models

The second group of models are diagonal models. The following special model will be considered

here.

X, =BX, ce,ite; (9.3.1.2.1)
where it is assumed that the model is invertible and e, ~N(0, 62) . From equation (9.3.1.2.1) it follows

that E(X,) = Bo? and
1+p2c2+B%c?

1-*c?

which is a necessary and sufficient condition for second order stationarity. Now

Var(X,)= , 1-p?62>0,

Xy 4m = BX sk CramitCrim >

X(m) = EXyyon | X Xoos )
By sm—tEram—t if m <k
= Bo’f ifm>k,

ViXiim) =VarX, ., ]Xan—lv---)

= BZVt(XH-m—kerm—k)‘Fof
=c? if m<k.

For m > k we have

VX 4m) = B2V,(X, s i €r4m i HO2
= B2 [E (XY moselam—e)—0t J+a?
= B* e E (X sm-arrimu 3B 0l B0l 402

— 2
= BOGSE X2, sl ram-3e 3B S -p2ol+a?

=3B%ci(1+p%c 4B+ - - }-Blol+o?

=30t Ty Fotsc?




_ HpPc2+piol

1-po?

=Var(X,) asm— oo,

9.3.1.3. Subdiagonal Models

The third group of models which will be considered here are those of the form

X, = BXl—kel—k—j+el ) k,jZI N

oZ
E(X,)=0 and Var(X,)= ”3—202 , with B?c2 < 1.

Now we can show that

i(m) = E,(X;4m) = EXym [ X0 Xy, 00 0)

Brism—riCrom—t=j  if m <k+j
= {PErsmi—X(m—k) ifk+j<m<k
0 ifm>k >

VilXpsm) = Var Keam [ XX, 07 )
= Vi(BX smt € smt—j+Cr4m)
=c? ifmsk
- p%%*.,,*_,-v,(xm_*mi ifk<m<k+j,

and for m > k+j we have

ViX;4m) = ﬁZVr(Xt-m-kerm—k-j)"'os
= szt(X?M-ke?m—k—J)w%
= ﬁ4Et(X'2+m—2ke12+m—2k—j)+Bzc:+Uf

B E Kt Chmnt R

where

2

1-132”03” )

2("-1) 2, ... 2 4-+-0'2=
R_-—_p oe + +B ct e ( 1_’320_3

Therefore, as m — e,

2

S.
V'(X'-}m)'_é 1_ 202 = Var(X,) .

[

o; .
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9.3.1.3.1)
where it is assumed that the models are invertible and e, ~ N (0,62). From (9.3.1.3. 1) it can be shown that
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9.3.2. Neon-linear Autoregression Models

The class of non-linear autoregression (NLAR) models for discrete time series has been studied
extensively for the past ten years. It has, however, apparently been thought that optimal least-squares fore-
casts for more than one-step ahead are difficult to obtain. In this section we will show that a simple

recurrence relation exists from which these forecasts can be calculated.

Without loss of generality, we restrict our discussion to the first order case:
XI=MXI-1)+er ’ t=09i1 ’ ﬁvu ’ (9‘3'2-1)
where {e,} is a sequence of independent and identically distributed random variables with E(e,)=0 and
Var(e,)=cf <o, all . Since we have a Markov chain over R, we may recall the Chapman-Kolmogorov

relation

£ Gam 5= ] fram | %000) £ G [5) s 9322)

where f(x, |x,) denotes the conditional probability density function of X, given X, = x, ( assumed to exist).
Suppose that model (9.3.2.1) is strictly stationary. (Sufficient conditions for strict stationarity are available;
see e.g. Tong 1987a.) Let g denote the probability density function of ¢,. Let k denote a well-behaved (i.e.
Baire) function of X, and suppose E(|k(X;)[)<ee. Let X,(X;) denote the conditional expectation

E (k(X,4+m)|X,). Equation (9.3.2.2) gives immediately

()= ] Kt Goaa) f G [ )t (932.3)

or

En®)= [ Kns0) 50-A0N & , ©032.4)
where K;(X,) = E(k(X,,; | X, =x,)=Mx,) . Equation (9.3.2.4) gives, in particular, recursive formulae for
conditional expectations and conditional variances. These are the type recently discussed by, e.g Al-Qassem
and Lane (1987) and Pemberton (1987) as alternative to the methods developed by Jones (1976).
Apparently, without realizing it, Al-Qassem & Lane (1987) and Pemberton (1987) have actually implicitly

" used the Chapman-Kolmogorov relation, except that they have used it in two different ways. Except for
special cases of A (e.g. the linear case), the integral in equation (9.3.2.4) does not readily admit analytic

solution and numerical integration is commonly the only solution. Needless to say, if numerical integration
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is employed, care must be taken to handle accumulation of rounding errors. An altemative method which is
especially useful for higher order autoregression models is the Monte Carlo method. Here, a sufficiently
long record of data is simulate.d in accordance with the model (i.e. equation (9.3.2.1) or its higher order
generalization and the given values X,,X,_;, * * -, as the starting point ) and the sample ;:sﬁmate of K,.(x) is
taken as an approximation of K, (x). Details of comparison will be given later. Suffice it to say that both

methods give reasonable approximations.

It is clear that K, (x)=constant is one solution of (9.3.2.4) for the case m =<-. In fact, this is the only
solution within our context, which can be shown by appealing to results in the martingale theory (Russel

Gerrard, private communication). Thus, in our case, the remote past plays no material role in prediction.

For the general non-linear autoregressive model of order k (NLAR (k)), of the form
X: = Af(Xr—l )+et s
where X, =(X,,X,_1, " " Xpen1) ER* and ¢, a sequence of zero mean, independent and identically distri-
buted random variables, and A:R*—R, the following recursive integral equation ( using the Chapman-

Kolmogorov relation ) can be obtained

K= ] Kooy (03) 8 Gers=M00) it (932.5)
where K (x) = Mx) and X = (g, Xy, * * * X1) .
Note that for NLAR (k), the prediction functions are of course functions of k variables and that calculation
of K,,,(x) requires knowledge of K,,,_; (Xe41) fora range of x;,; € R¥ and not, as it may appear from (9.3.2.5),
only for a range of the first component of x, ;. Thus the problem is one of extensive numerical evaluation

over R

Cleary for a threshold autoregression, SETAR(2;1,1), of the form

X, =MX,_ Ve

where X(x)=ag)+aﬁi)x, x€(rio1,r:],1i=1,2,3,...,] with —o=r,<r; < -++ <ryj=oo, and @®, a{?) are the !

pairs of constants coefficients, equation (9.3.2.4) simplifies to

1 7
K. (x)= ,51 f K, (7)e(y-Mx))dy , (9.3.2.6)

with boundary condition
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Ki(x)=Ax).

In practice, we may employ some Gauss-type formula to generate an appropriate set of points
X3,X3, " ,X, with corresponding weights wy,w,, * - - ,w, and by using the recursive formula (9.3.2.6) a
sequence of prediction values can be obtained. In our experiments, NAG routine DOiBBF is employed to
generate an appropriate set of points and corresponding weights.

As a check on the method of numerical integration and Monte Carlo method, they have been applied

to obtain the conditional variance of m-step ahead prediction error of the linear AR(2) process

X, =1.7X,_,-0.8X,_, +e,, (93.2.7)
where ¢, ~N(0,1). The results with 1000 replications in Monte Carlo method, are given by Table (9.3.2.1).



142

Table (9.3.2.1)

m | theoretical | numerical | Monte Carlo
1 1.00 1.00 1.00
2 3.89 3.89 3.89
3 7.26 726 7.22
4 12.07 12.07 12.14
5 16.29 16.29 16.47
6 19.33 19.33 19.23
7 21.05 21.05 21.17
8 21.76 21.76 21.50

9.3.3. Two Experiments

To investigate the influence of the skeleton i.e. the equation x, = A(x,.;) without the noise (ie. flesh ),
on the multi-step prediction of (9.3.2.1), we conduct two experiments. ( The term skeleton was first intro-
duced in the present context by Tong, 1987a). It carried a different meaning from the conventional
definition in the theory of Markov Processes. However, our usage is closer to the conventional meaning of
the word in everyday English).

On using the numerical integration technique with accuracy to more than two decimal places, Table

(9.3.3.1) gives the results of the two experiments. In experiment I, x, =4.0435 and

15-09x ifx<0
X)=1-0.4-0.6x ifx>0, (9:33.1)

and in experiment II, x, =5.0 and

1.5-0.7x if x<0
Mx)= 11 04+0.8x ifx>0. (933.2)

In each experiment, e, ~N (0, ¢°).



Table (9.3.3.1)

Experiment I
c=0.4 c=1.0 o=2.0

m | Xm) | 80m) | X,om) | 8(m) | X0m) | &0m)
1] -2.8262 | 0.4000 | -2.8261 | 1.0000 | -2.8261 } 2.0000
2| 4.0435 | 0.5381 | 4.0392 | 13571 | 39151 | 2.8761
3 | -2.8261 | 05141 | -2.8177 | 13076 | -2.5339 | 2.9890
4 | 4.0435 | 0.6116 | 4.0092 | 1.6107 | 3.5602 | 3.6110
5 | -2.8261 | 0.5428 (| -2.7736 | 1.4859 | -2.1061 | 3.5869
6 | 4.0435 | 0.6314 | 3.9524 | 1.7772 | 3.1537 | 4.0278
7 | -2.8261 | 0.5509 | -2.7073 | 1.6497 | -1.6943 | 3.9603
8 | 4.0435 | 0.6371 | 3.8805 | 1.9228 | 2.7753 4.~2814
9 | -2.8261 | 05533 | -2.6309 | 1.8038 | -1.3321 | 4.2007
10 | 4.0435 | 0.6387 | 3.8022 | 2.0557 | 24444 | 4.4415
11 | -2.8261 | 0.5540 | -2.5508 | 1.9454 | -1.0225 | 4.3601
12 | 4.0435 | 0.6392 | 3.7217 | 2.1769 | 2.1615 | 4.5453
13 | -2.8261 0.55.42 -2.4701 | 2.0741 -0.7664 4.4685
14 | 4.0435 | 0.6393 | 3.6414 | 22871 | 19217 | 4.6137
15 | -2.8261 | 05542 | -2.3902 | 2.1905 | -0.5394 | 4.5438

143



144

. Table (9.3.3.1)

Experiment II

~

m | Xm) | &m) | X,om) | &m) | X,(m) | &(m)

1 | 5.0000 | 0.4000 | 5.0000 | 1.0000 | 5.0000 | 2.0000
2 | 5.0000 | 0.5123 | 5.0000 | 1.2806 | 5.0091 | 2.5477
3 | 5.0000 | 0.5727 | 5.0000 | 1.4315 | 5.0524 [ 2.7939
4 | 50000 | 0.6082 | 5.0003 | 1.5198 | 5.0159 | 2.9150
5 | 5.0000 | 0.6299 | 5.0007 | 1.5731 | 5.1551 | 2.9802
6 | 5.0000 | 0.6433 | 5.0012 | 1.6058 | 5.1966 | 3.0177
7 | 5.0000 | 0.6518 | 5.0018 | 1.6260 | 5.2300 | 3.0401
8 | 5.0000 | 0.6572 | 5.0024 | 1.6387 | 5.2565 | 3.0542
9 | 5.0000 | 0.6606 | 5.0029 | 1.6466 | 5.2772 | 3.0633
10 | 5.0000 | 0.6628 | 5.0033 | 1.6515 | 5.2934 | 3.0693
11 | 5.0000 | 0.6642 | 5.0037 | 1.6546 | 5.3058 | 3.0734
12 | 5.0000 | 0.6651 | 5.0040 | 1.6566 | 5.3154 | 3.0763
13 | 5.0000 | 0.6657 | 5.0042 | 1.6578 | 5.3228 | 3.0784
14 | 5.0000 | 0.6660 | 5.0044 | 1.6586 | 5.3285 | 3.0799

15 | 5.0000 | 0.6663 | 5.0046 | 1.6591 | 5.3329 | 3.0810

[Note: 5(m)=VarX.|X,)). :
Some comments are in order:

(i) Let A™(x) denote AMA( - *  (M(x)) - - ), the m-fold application of A. With decreasing signal-to-noise

ratio, the difference between )zo(m) and A™(x,) increases.
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(ii) For model (9.3.3.2) which admits only a periodic attractor of period one (ie. A™(x) = 5.0 as
m — o, Vx), 6(m) is a monotonic increasing function of m for all three choices of 6. The limit is clearly

Var(X,).

(iii) In contrast, for model (9.3.3.1), which admits a periodic' attractor of period two at

C= { -2.8261, 4.0435 }, (i.e.A™"(x)— C as m — =, Vx), we observe that for 6=0.4 and 1.0,

6,(1) < 6,(3)<G,(5) < - -+ <Var(X,)

G,(2) < 6,(4) <G,(6) < - SVar(X,).
However, 6,(2m)46,2m+1), m=1,2,.... Itis clear that it would be interesting and important to establish

the precise role of periodic attractors in m-step ahead prediction. We leave this challenging problem to

future research.

(iv) Gerrard (private communications, 1987) has given heuristic explanation of points (ii) and (iii),
which runs in the same spirit as Tong (1983), pp. 107-114 and p. 192). If A has a limit cycle of period r say,

ie.

Atx)—> {01,62, ** .6 f ,a8Sm—oo,

where

Ae—ocn,i=12,.,r-1,A:¢,>¢c;,

then the stationary density is of the form -

{810—c 1 HgaG—co)t - 48, )} ir
where g; is a density function with variance c?, tending to a S-function as the noise variance tends to zero.
Therefore, unless o;’s are all equal (which may be shown to be the exception rather than the rule) monoton-

icity of G,(m) in m will not be obtained.

9.3.4. Prediction from SETAR Models

Tong and Wu (1981) have conducted a fairly extensive study on the multi-step ahead forecast perfor-
mance of SETAR models for sunspot data. Generally in the case of SETAR model, the prediction problem

becomes very easy for at most up to d-step ahead ( d being the delay parameter). The main point is that we
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know which branch in the SETAR model the future prediction data belongs to. In this case similar to the
linear autoxeéressive model we can easily obtain the point forecast and the conditional variance of predic-
tors. Obviously in more than d-step ahead prediction it is difficult to choose a reasonable linear autoregres-
sive branch instantaneously in the SETAR model to predict the new future value. In thzs case we have to

use the formula (9.3.2.5) to calculate X,(d+1) , &,(d+1) ,... and so on.

" To show the performance of Monte Carlo method in approximation of m-step ahead forecasting of

non-linear models, the following example is in order.

To the Wolf’s annual sunspot numbers for the period (1700-1979) after an instantaneous square root
transformation, Ghadder and Tong (1981) fitted a threshold autoregressive (SETAR(2;9,2)) model. Let X,

denote the sunspot number for the year 1699+t(r=1,2,...,280), and let Y, =2[(X,+1)* -1]. Then the

SETAR(2;9,2) model for { Y,} with d=8 is given by

1.89+0.86Y,_,+0.08Y, _3+0.16Y, 4—0.21Y,

—0.00Y, ¢+0.19Y,_;—0.28Y,_s+0.20Y, o+efV) if ¥, §<11.9284
Y, = ) (0.34.1)

4.53+1.41Y,_,—0.78Y, ,+e® ifY, ¢>11.9284,

where Var (e{)=1.946, Var(e®)=6.302 and pooled Var =3.734. Using the above model, we can obtain
the exact multi-step al;ead forecasts of the transformed series i.e. { Y, }, for eight years. Having the exact
point forecast and the exact conditional variance of the predictor of ¥,,,,, and under normality assumption
of eV and e{?, we may use the following relations and calculate the exact conditional mean and conditional

variance of X, ., , m=1,2,...,8.

2
t4m

Yiim = 2[(X,+,,,+1)"‘ —1] is equivalent to X, ,, = 4“+Y,+.,,‘ The optimal m-step ahead point forecast of
series X, is given by

Er(XHm) = E(th-m |XnXx-1v e )
= LB Tim)
= L TR )

Similarly
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Y?,, 2
ViXim) = E, [(T+Y1+m) ]"Exz(an)
1 4 2 1o 32
= 1_6E1(YH~"1)"'Er(Yl-fm)‘i'EEr(Yt-m)—X: (m)
= (38} 1 F! 6] (m)otm)]
+ 8}y my - 3oy ) Ko m)
where 62(m)=V,(¥,4m) =Var psm | Yo ¥ic1s = *).

In our Monte Carlo study, we simply record the simple back-transformation of the simulated data,
and then we use the sample mean and sample variance of 1000 simulated series as an approximation of

X,(m) and &-(m). The results are given in Table (9.3.4.1).

Table (9.3.4.1)

Theoretical (exact) Monte Carlo

m | X(m) | &(m) | X(m) | 8(m)

1 162.5 32.02 | 162.6 | 32.05
2 144.0 30.86 | 1443 | 30.89
3 102.8 2799 | 103.1 | 28.07
4 65.8 19.89 66.0 | 19.84
5 35.1 14.36 353 | 1437
6 19.5 10.27 195 | 10.29
7 19.5 14.62 19.5 | 14.76

8 313 15.96 311 | 25.96

It can be seen that the performance of the Monte Carlo method is quite remarkable. Our experiments

show that similar accuracy can be achieved for the bilinear model.

To compare the performance of the multi-step ahead prediction of SETAR and bilinear models on
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real data, we choose the following SETAR(2;3,11) and the subset bilinear model which is fitted to the same
period (1700-1920) of the sunspot numbers. The SETAR(2;3,11) which is reported by Tong (1983) is given

by

(

11.97+1.71X,;—1.26X, ,+0.43X, s+ ifX, ;<36.6

X, = {7.84+0.73X,_,—0.04X,_,~0.20X,_3+0.16X, (9.3.42)
—0.23X,_s+0.02X, +0.15X,_7—0.24X, s

+0.31X,_9—0.37X,_10-H).38X,_u+e§2) if X3 > 366,

\

where Var(e{"")=254.64, Var(e{?)=66.80 and pooled Var=153.7. The subset bilinear model which is

reported by Gabr and Subba Rao (1981) is given by

X, = 6.8860+1.5012X,_,~0.7670X,_,+0.1152X, (934.3)
—0.01458X, _5¢€,.;+0.006312X, _ge,;—0.007152X, s e,-3
+0.006047X, _ye,.3+0.003619X, _; £,6+0.004334X, ¢,
+0.001782X,_3€,2+¢, ,

where Var(e,) = 124.33.

The point forecast together with the error bounds (J?,(m) + 6,(m)) of models (9.3.4.2) and (9.3.4.3)
are given by Figs 9.3.4.1 and 9.3.4.2 respectively. The non-monotonicity of 5,(m) for both models are quite
clear.

For comparison, we also considered the linear autoregresive AR(9) model which is fitted by Gabr and
Subba Rao (1981) to the mean deleted sunspot data with the same period (1700-1920). Their fitted linear

autoregression model is given by

X, = 12163X,_,-0.4670X, ,~0.1416X,_,+0.1691X, 4 (9.3.4.4)
—0.1473X, _s+0.0543X, 6—0.0534X, _;+0.0667X, g
+0.1129%, o+e, ,

where Var(e,) = 199.27. Fig. (9.3.4.3) shows the point forecasts and the error bounds of the linear model
" predictions.

Some comments are now in order
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(i) Over the short period of (1921-1935)(especially for the first five years) the performance of

SETAR model prediction is better than the other models.

(ii) Associated with the SETAR model, for the non-linear predictors of peak value those are greater

conditional variances.

(iii) Notice that the vertical lines at the troughs in Figs. 9.3.4.3 and 9.3.4.2 have a greater tendency

(especially in Fig. 9.3.4.2) of extending below zero into the negative regime, sometimes quite substantially.

Note that the values of f,(m) and G,(m) in the bilinear case for m > 6 and in the SETAR case for m >3 =d

are obtained by Monte Carlo method with 1000 replications.

9.3.5. Bias Correction of Forecasting Transformed Series

Suppose that a time series analyst has derived a model for a series ¥, = f (X;) , an instantaneous
transformation of time series X,, where f(.) is some well behaved function and thus can forecast the series
Y,. How should forecasts of X, be formed ? It is generally accepted that the simple back transformation of
Y, as a forecast of X, is biased, and a bias correction method is needed. This probiem has been studied by
Granger and Newbold (1976), but it does not seem to be possible to apply their method to the non-linear

models.

The bias due to the square root transformation or more generally any smooth one to one instantane-
ous transformation, may be corrected to a large extent by appealing to the usual 3-technique. Specifically,
let f be a smooth one to one map from x to y. Let g denote the smooth inverse map. Suppose that a model is
fitted to the transformed series {¥,} and we wish to forecast the original series {X,}. Let B denote the
o-algebra generated by {X, , s<t} . B may be defined in a similar way. Now

EXy4m|BO1=Eg @rsm) | BT

2 g (T (MIELY om—T (m))g X 1(m) | BP]
+ %E [, =T (m))2g” (B (m)) | B

~ 1 w A
=g (Yx('n))+'2‘g (¥ (m)) Var(¥rm BT .
In other words, we only need to adjust the naive forecast g(f' +(m)) by the correction term specified above.

Note that the conditional variance of Y’s is involved in the correction term. A similar argument yields



Let y =2[(x+1)*~1]=f (x). Thus g(y)=fhl(y)=(1+%y)2—l and g'(y)= l+%y and g (y)= %

Var(X,m |B®1= [¢'(F (m))P Var(Y, . |BP].
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Table (9.3.5.1) shows the results of applying the the above bias correction method to the sunspot predicted

numbers of SETAR model (9.3.4.2) under Box-Cox transformation with A=0.5.

Table (9.3.5.1)
lead naive theoretical bias corrected Monte Carlo
time
m | Xm) | 6(m) | X(m) | 6,(m) | X,(m) | 8,(m) | Xim) | &,(m)
1 | 1609 | - | 1625 | 32.02 | 1625 | 31.10 | 1626 | 32.05
2 | 1424 | - | 1440 | 30.86 | 144.0 | 30.95 | 1443 | 30.89
3 1009 | - | 1028 | 2799 | 102.8 | 28.12 | 103.1 | 28.07
4 643 | - 658 | 19.89 | 65.8 | 19.99 | 660 | 19.84
5 337 | - 35.1 | 1436 | 351 | 1450 | 353 | 14.37
6 181 | - 195 | 1027 | 19.5 | 1043 | 195 | 1029
7 167 | - 195 | 1462 | 194 | 1511 | 195 | 1476
8 256 | - 313 | 2596 | 31.1 | 27.08 | 31.1 | 2596

The performance of the bias correction method and the Monte Carlo procedures are remarkable. Note

that variance is a non-linear operator, therefore using the simple minded back transformation of V,(¥,.,,) as

a naive conditional variance of X, ,, is not valid.

9.3.6. A Comparative Study of Linear, Bilinear and SETAR models in Predicting sunspot numbers

To assess the performance of some non-linear models by reference to the Monte Carlo and bias

" correction method, we considered a number of SETAR models which have been fitted to raw and

transformed sunspot numbers and the bilinear model (9.3.4.3). The linear model (9.3.4.4) is also considered

with a view to comparison.
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A2
Let 6 (m) denote the sample mean square error of m-step ahead predictions given by

N—m N
62(m)=71— T (XpamX, (M) m=1.2,..., (93.6.1)

-t t,=t—m

where N is the number of data ( sample size ) and ¢ is the starting point of forecasting. -
Smalier sample mean square error of prediction, means a better performance of prediction.

Tong (1983) has reported three different SETAR models with the Serial numbers AS7133, BS8103
and CS8103 (see Tong, 1983 p. 253) which are fitted to the different period of raw and transformed sunspot

numbers.

Tong and Lim (1980, p. 261) have fitted a threshold autoregressive model to the annual Wolf’s sun-
spot numbers of (1700-1920), using the data bank available at the University of Manchester Institute of Sci-
ence and Technology at the time, which contained the data only for the period (1700-1955). We have listed
in Table (9.3.6.1) and (9.3.6.2) the prediction results of the SETAR models and those of linear, subset
linear and subset bilinear models fitted by Gabr and Subba Rao (1981) using Akaike’s Information Cri-
terion. The fitting period of the linear (equation 9.3.4.4), bilinear (equation 9.3.4..3) and SETAR(2;3,11)
(equation 9.3.4.2) and subset linear model (equation 9.3.6.2) and the prediction period for all models are
identical. These are (1700-1920, fitting period) and (1921-1955 and 1956-1979, prediction periods). The
prediction period of (1921-1955 and 1956-1979) represent roughly three and two sunspot cycles and the
latter period (1956-1979) is so chosen to retain some realism in the comparison (risky prediction) since
these data were unknown to Tong & I;im and Gabr & Subba Rao at the time of fitting their models.
Another motivation is to investigate the robustness of various forecasts to unusually influential observations

like 1956. The period (1980-1987) is reserved for further experimentations.
Tables (9.3.6.1) and (9.3.6.2) show the results of the performance of these models. Note that the sub-

set linear model which is reported by Gabr & Subba Rao (1981) is given by

X, =1.2496X,_,-0.5510X,_,+0.1450X, o+e, , (9.3.6.2)
where Var(e,)=203.21.



Table (9.3.6.1)

period 1921-1955

SETAR(BS103

sample | full AR(9) | subset AR®) | SETAR(23,11) | bilinear | SETAR(AS7133) SETAR(CS8103)
prodic.

MSE nsive | biascomrocmd | maive | bias corrocted
& 19927 20321 153.7 12433 15231 .69 kK )

o) 190.87 216.09 153.88 139 161.90 12063 1501 119.77 115.05
o) 41475 429.97 38835 337.60 362.55 31031 276 30394 | 26713
o) 65207 6162 672.67 560.60 593.24 56328 47536 54084 | 46749
& 79132 650.09 641.16 621.29 650.09 64116 |  530.65 62129 | 516381
Eab) 770.84 715.86 83531 718.43 613,15 71476 | 58917 691.14 57091
§e® 786.40 797.50 900.67 73242 584.76 75801 61993 | 73206 603.04
&m 789.01 B14.67 993.83 781.65 508.12 78022 629.97 75131 610.89
§@® 82179 860.76 1083.60 833.18 53176 82822 663.03 796.58 641.63
éo) 862.06 89937 11191 900.61 s18.80 87357 69432 83652 666.58
o) | sesss 93634 112456 961.93 52093 93007 | 73418 886.15 70241
Fany | ess 1040.50 nm3s 1013.20 562.99 osas2 | 77536 s41.02 74029
daz | nees2 1247.49 130426 13921 650.51 1071.68 84127 1022.56 800.83

152



153

Table (93.6.2)
period 1956-1979

sample | full ARG) | subset AR(9) | SETAR(2:3,11) | bilinear | SETAR(AS7133) SETAR(BSIG SETAR(CS8103)
predic.
MSE naive | biascorrected | maive | bias comected
& 19927 20321 1537 12433 15231 3.6 372
&y | ssm 49385 &2810 2112290 50426 asm | 2w 0344 §N4.02
&@ | 10010 100418 1006.43 1465121 105120 1n33.09 | 99390 | 110266 08222
&) | smom 905.91 94650 592805.76 109928 17027 | 112274 | 132007 | 00870
W | 1472 71230 %00.77 174075.50 939.11 126008 | 102579 | 126403 85.60
& | snm 57136 TI359 126232.63 29672 187 | 90153 1079.01 875.21
&6 | ems 560.57 86621 15287092 353.65 90638 | 72099 88149 698.64
&m | esss 611.79 908.09 17458772 29.13 04496 | 157.455 | 91660 653.55
&@® | sesos 55024 8036 140566.50 51513 85507 | eram 81272 634.83
&) | s 65230 92924 89642.04 56397 86564 | 72T 3047 668.78
daoy | es02s 687.23 95555 59455.70 7690 81679 | 65248 m.e 620.42
&Fan | eser 67642 105896 142498 70248 85433 685.21 81657 645.38
&a2) | acsss 75812 127526 15197092 251 989.16 | 78630 93734 736.99

Considering the results of Table (9.3.6.1), it is clear that the short term forecasting of SETAR(2;3,11)
and bilinear model are better than linear models. The SETAR(CS8103) has the best performance for all m,
and SETAR(AS7133) has a quite good performance over the short term predictions. Although the bilinear
model has a better performance for the first period than the SETAR(2;3,11) and SETAR(BS103), the per-
formance of SETAR(AS7133) after five steps is better than bilinear model. Among those models with the

same fitting period, the performance of non-linear models over short term prediction are better than linear
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models.

A very poor performance of the bilinear model in predicting sunspot numbers, over the second period
(ie. 1956-1979) may be due to non-invertibility of this model (See chapter four) and the effect of the
influential observation at 1956. In the former case it scems that the SETAR and linear models except in the
2-step ahead prediction are not seriously affected by this influential observation. For the bilinear model, the
affect of the 1956 observed value has carried on for quite a long time, which seems to be due to the product

terms of ¢ and X.

The prediction results of SETAR models after correcting the bias seems to give a good support for our bias

correction method.

Despite the encouraging performance demonstrated in Table (9.3.6.2), as far as medium to long range
forecasting is concerned our limited experience suggests that a linear multi-step ahead forecast often pro-
vides a robust bench-mark especially in dealing with a fairly complex situation. Now, it is well known that
the Wolf's annual sunspot numbers represent one such complex situation. (See, e.g. Tong 1983, p. 230).

For example, the rise from 38.0 in 1955 to 141.7 in 1956 is unusually steep.

9.3.7. Combination of Forecasts

From Table (9.3.6.2) it is clear that the non-linear forecast of SETAR(2;3,11) out performs the linear
forecast over the short range, the reverse is true over the longer range. Closer investigation reveals that
whilst the non-linear (SETAR) forecast does a better job than a linear forecast over the ‘troughs’, the

reverse is true over the ‘peaks”. See the results of Table (9.3.7.1).
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Table (9.3.7.1)

period (1921-1955)

Full AR(9) SETAR
Combination
&‘(m) below the | above the over below the | above the over forecast
mean mean ell mecan mean all
&, 199.270 153.710

&) | 319314 | 649528 | s25698 | 101848 | 693617 | 422389 422269
§@ | 524930 | 1386.058 | 1049.095 | 135520 | 1579983 | 951956 873.047
&§3) | 412676 | 1314480 | 970006 | 131457 | 1516083 | 886707 766.840
5@ | 420746 | 991899 | 747119 | 107278 | 1549852 | 862912 560380
&) | 408146 | 790305 | 618333 | 290332 | 1287316 | 738974 460.611
&'® | 362916 | 718666 | 603613 | 87201 | 1619232 | 812.900 443.408
() | 360204 | 881548 | 640951 | 112816 | 1553.409 | 833112 490.115
&® | 278.068 820207 | 565083 | 41246 | 1701.446 | 822516 407.398
&©) | 303954 | 865245 | 619680 | 49513 | 1477504 | 852780 462.638
5(10) | 349.445 867.454 | 660250 | 23.627 | 1469.052 | 890.882 488.420

Q1) | 433262 873236 | 684675 | 213.992 | 1412040 | 984.166 580982

3’(12) 709.895 870.906 808.979 626.640 1652.273 1178.904 620.539

This therefore suggests that it might be profitable to combine the two forecasts so as to exploit their
complementary preformances. The final column of Table (9.3.7.1) gives the results when the non-linear
forecasts (NL) and the linear forecasts (L) are combined in the following manner. ( Let M stand for the his-

‘torical mean over the fitting period 1700-1920):

If both NL and L <M, then adopt NL.
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If both NL and L > M, then adopt L.

IENL <M, and L > M, then adopt %(NL+L).

IFNL >M and L <M, then adopt —;—(L+NL).

Our combination rule implies a probability distribution of combination weights of forecasts which is
‘self-excited " by the forecasts themselves (c.f. Granger and Newbold, 1986). Our approach seems to be
closer to an empirical Bayes approach in spirit. Accordingly, we should emphasis the pragmatic (empirical)

nature of our results in this respect at present.

Finally, we retumn to the multi-step ahead prediction of Tong-lim’s threshold autoregressive model
and Subba Rao-Gabr’s linear autoregressive model for the period of 1980-1987. The point forecasts are

shown in Figs (9.3.7.1) and (9.3.7.2) and Table (9.3.7.2).

Table (9.3.7.2)

year | obscrvations lincar prediction | SETAR di i e
forecast efror forecast error forecast crror

1980 154.7 162.8 -8.1 1747 -20.0 162.8 -8.1
1981 140.5 1335 70 1475 70 1335 70
1982 1159 91.5 244 924 235 91.5 235
1983 66.6 533 133 629 37 533 133
1984 459 23.1 xns 24.1 218 24.1 218
1985 179 46 133 126 53 12.6 53
1986 134 20 114 02 132 02 132
1987 292 21.1 8.1 10.8 184 108 18.4
MSE 224 2539 237.9

[Note: The basc year is 1979)
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It seems that the adverse effect of the 1956 datum on the threshold prediction performance has sub-
sided. With a mean-squared error (MSE) of 253.9, the non-linear forecast compares nearly well with the
performance of the linear forecast(MSE at 222.4). The combination forecast as prescribed earlier again
gives an improvement over the non-linear prediction with a lower MSE at 237.9. See Fig (9.3.7.3) and

Table (9.3.7.2).

It could be argued that we should adjust our forecasts/models in the light of the rather influential
datum of 1956. For example, the parameters of the models could be more robustly fitted by modifying the
least-squares method. Also, in the bilinear case it is very important to check the invertibility of the fitted
model especially if forecasting is the major concern. However, is the adjustment really relevant prior to
19567 It would nevertheless seem worthwhile to explore the possibilities of a combination of forecasts in
the manner that we have experimented with as a means of reducing the adverse effect on prediction of

unusually influential prospective observations.

9.3.8. Risky Prediction of Wolf’s Annual Sunspot Numbers

Ghaddar and Tong (1981) have fitted a threshold autoregressive,SETAR(Z;9,3.) model to the square
root transformation of Wolf’s annual sunspot numbers, on this basis they derived risky predictions for the
period (1980-1987) and their results were in print in 1981. The model is given by equation(9.3.4.1) . How-
ever, at that stage of the development, G(m)’s were not available for their point forecasts. The situation may
now be remedied as shown in Fig. (9.3.8.1). Shown in Fig. (9.3.8.2) ares the risky prediction of sunspot
numbers after comrecting the bias. .

The linear autoregressive model for the original i.e. untransformed, sunspot numbers, which has been

selected by Akaike’s information criterion, is given by

X, =6.9627+1.2064X,_,—0.4507X,_,—0.1747X, _3+0.1974X, 4 (8.3.8.1)
-0.1366X,_s+0.0268X, _4+0.0128X,_,-0.0312X, ¢
'*'0.2123X,_9+e' ’

where Var (e,) =221.2366. Fig. (9.3.8.3) shows the risky prediction of linear autoregressive model.

Some comments are now in order.
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(i) Over the period (1980-1987), it would appear that the non-linear prediction has consistently out-
performed the linear prediction by a noticeable margin in respect of )?,(m)—X,M, . However, associated

with the non-linear predictors of peak values are greater conditional variances.

(ii) Notice that the vertical lines at the troughs in Fig. (9.3.8.3) have the tendency of extending below
zero into the negative regime, sometimes quite substantially. In contrast, the vertical lines in Fig. (9.3.8.2)
have all managed to steer clear of the negative regime. It may also be remarked that the “coefficient of vari-
ation”, G(m)/ff,(m), fluctuates quite violently over m in the linear case but much less so in the non-linear

case. The ranges are 0.09 ~ 4.92 and 0.19 ~ 1.01 respectively.
(cf. approximately 0.8 for the coefficient of variation of the data ).

(iii) The non-linear forecasts for (1988-1993) seem to be much vaguer than their linear counterparts.
Both approaches appear to forecast that (1988-1993) will correspond to an ‘upward” swing of a sunspot

cycle.

For completeness, we fit a linear autoregressive model of order 9 to the first 280 square root
transformed sunspot numbers. The model which has been selected by Akaike’s information criterion is
given by

X, =1.6019+1.2212X,_;-0.4896X,_,-0.1579X, _,
+0.2746X, 4—02489X,_s+0.0257X, ¢

+0.1593X, _;—0.2222X, 3+0.2980X, o+e, , (9.3.8.2)
where Var (e;) = 4.0560. To avoid bias due to square root transformation, we have calculated the raw risky

prediction of linear and SETAR models (equations 9.3.8.2 and 9.3.4.1) for the period (1980-1987). The
results are given in Table 9.3.8.3 and Fig. 9.3.8.4. Again the performance of SETAR model in predicting

the sunspot numbers is quite clear.
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Table 9.3.8.3
year | observations linear  prediction | SETAR prediction
forecast error forecast error -
1980 22.96 22.19 0.76 23.38 -0.42
1981 21.79 20.22 1.57 2195 -0.16
1982 19.62 16.16 3.46 18.19 1.43
1983 14.44 12.52 1.92 14.16 0.28
1984 11.70 8.77 2.93 9.78 1.92
1985 6.69 6.54 0.15 6.74 -0.05
1986 5.59 571 -0.12 6.41 -0.82
1987 8.99 7.60 1.39 8.32 0.67
MSE 3.66 0.89

9.3.9. Linear Non-Gaussian Autoregressive Model

Li and McLeod (1988), have fitted a linear non-Gaussian autoregressive model of order 2, for the
period (1700-1955), to the sunspot data. Their model is given by

X, =1.6759X,_,-0.7840X, ,+q, , (9.3.9.1)

where q, is log-normal distributed with estimated mean 13.88 and variance of 153.39 . Although the resi-

dual variance of 153.39 is comparable to that of the threshold autoregressive model (equation (9.3.4.2)),

and it is better then the Gaussian linear autoregressive model (equation (9.10.3.4.4)), they have claimed that

the non-Gaussian linear model (equation (9.3.9.1)), is certainly more parsimonious.

It may be interesting to see how comparable is the mean of model (9.3.9.1) with the historical mean
of data. Under the stationarity assumption it is easy to show that the mean of model (9.3.9.1) is equal to

128.4, which is quite different the historical mean of data which is close to 43.

To see the performance of this non-Gaussian linear model in predicting sunspot data, we calculate the

risky prediction of model (9.3.9.1) over the period (1956-1979), i.e. 24 points. For comparison, we have
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also included the results based on the linear Gaussian autoregressive model of order 2, which is fitted
(based on the AIC criterion) to the same period (i.e. 1700-1955) of sunspot numbers. The model is given

by

X, =14.0531+1.3605X,_,-0.6706X, _»+e, , 93.9.2)

where Var(e,)=232.41 . The sample mean square error of m-step ahead prediction of these two linear
models are given by Table (9.3.9.1).

Table (9.3.9.1)

Lead Linear Linear

time | Gaussian | Non-Gaussian

1 656.38 710.12
2 1689.70 2345.89
3 2054.01 4445.43
4 1981.48 6759.83 -
5 1692.54 8830.82

6 1476.65 10193.57

7 1491.94 10303.46

8 1356.90 9988.48
9 .| 1495.60 9244.70
10 1530.11 8412.47
11 1603.09 7964.47
12 1844.03 7951.79

On looking at the two linear models (Gaussian and non-Gaussian) more closely, it seems that the
constant term of the Gaussian linear model(i.e. 14.05) is comparable with the mean of the error term in the
non-Gaussian case (i.e. 13.88). Also the coefficients (i.e. 1.36 and -0.67 ) of the Gaussian model are com-

parable with those of the non-Gaussian one (i.e. 1.6759 and -0.7840) .
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Based on Table (9.3.9.1), we can say that if prediction is a major concem, then the Gaussian linear

autoregressive model did a better job than the non-Gaussian linear autoregressive model.
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IN ALL THESE PROGRAMMES SOME DIFFERENT NAG ROUTINE ARE

USED. C  THIS PROGRAM SIMULATES N DATA POINTS FROM EXPAR(1)
MODEL WHICH HAS BEEN USED IN CHAPTER &4

THE CONTOUR OF A PAIR OF COEFFICIENTS WHICH WILL BE
SPECIFIED IS PLOTTED

REAL X(2000)

REAL %8 XMIN, XMAX, YMIN, YMAX

REAL #8 XM, SD, GOSDDF, SURFCE (200, 200) ,CHTS (200)

INTEGER T

CHARACTER %80 HEAD

LOGICAL UNUSED(200,200)

EXTERNAL JO6GBY,JO6GBV

N: SAMPLE SIZE

READ(5,%)N

XM: MEAN OF ERROR TERM

SD: VARIANCE OF ERROR TERMS

XM=0.0

SD=1.0

K: PARAMETER WHICH CONTROLS THE RANDOM NUMBER GENERATOR

READ(5,%)K )

PRINT*,K

TO INITIALIZE THE RANDOM NUMBER GENERATOR

CALL GO5CBF (K)

XXX=999999999.0

NOUT=6

PRINT*,* N=* N

BC,CC,DC,GC: THE COEFFICIENTS OF EXPAR(1) MODEL

READ(5,*)BC,CC,DC,GC

PRINT#*,BC,CC,DC,GC

X(1)=0.0

DO 1 I=2,1500+N+1

F=EXP(-GC*X(I-1)*X(I-1))

X(I)=(BC+(CC+DC*X(I-1))*F)*X(I-1)+GO5DDF (XM, SD)

CONTINUE

DO 13 I=1,N

X(I)=X(1+1499)

$5=0.0

SUM1=0.0

DO 105 I=1,N

SUM1=SUM1+X(I)*%2

SUM=SUM+X (1)

XB=SUM/FLOAT (N)
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XBB=SUM1/FLOAT (N)

PRINT*,’ XBAR=" XB

PRINT#*,’ XBAR**2 =’ ' XBB

I=0

XMIN,XMAX,XINC: THE RANGE OF FIRST PARAMETER
READ(5,*)XMIN,XMAX,XINC
PRINT#*,XMIN,XMAX,XINC

YMIN,YMAX,YINC: THE RANGE OF SECOND PARAMETER
READ(S,*)YMIN, YMAX, YINC

PRINT#*,YMIN, YMAX,YINC

B=BC

Cc=CC

G=GC

D=DC

THE FIRST PARAMETER

DO 2 D=XMIN,XMAX,XING

J=0

I=I+1

THE SECOND PARAMETER

DO 2 G=YMIN,YMAX,YINC )
J=J+1

SUM=0.0

DO 3 T=2,N

F=EXP(-G*X(I-1)#*X)I-1)): NON-CENTRE MODEL
F=EXP(-G*(X(I-1)**2-XBB)): CENTRE MODEL
CHOOSE THE APROPRIATE ONE
F=EXP(-G*X(T-1)*X(T-1))
F=EXP(-G*(X(T-1)**2-XBB))
S=(B+(C+D*X(T-1))*F)*X(T-1)

S=X(T)-S

SUM=SUM+S*S

CONTINUE

PRINT*,’ I=’,1,? J=",J,’ SUM=",SUM

THIS PRINT GIVE YOU A GOOD IDEA OF CHOOSING THE HEIGHTS
SURFCE(I,J)=SUM

IF(SUM.LT.XXX) THEN

XXX=SUM

P=G

ENDIF

CONTINUE

PRINT#*,’ MIN=’ ,XXX,’ G HAT=",P

MIN: THE MINIMUM HEIGHT THAT CAN BE PLOTTED
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PRINT*,’ I=",I

PRINT*,*J=",J

MDIM=200

MA=1

MB=I

NA=1

NB=J

ILAB=1

THIGH=0

CALL XO04AAF (1,NOUT)

CALL XXXXXX

CALL JO6WAF

CALL JO6WBF (XMIN,XMAX , YMIN, YMAX, 1)

CALL JO6WCF(0.0,1.0,0.0,1.0)

CALL JO6AAF

HEAD: THE TITLE OF CONTOUR

READ (*, 5)HEAD

FORMAT (A80)

CALL JO6AHF (HEAD, 80)

d: THE LABEL OF FIRST AXIS

CALL JO6AJF(1,’ d ?)

g: THE LABEL OF SECOND AXIS

CALL JO6AJF(2,’ g *)

NCHTS: NO. OF CURVES IN CONTOUR PLOT

READ (5, *)NCHTS

IGRID=0

ICH=0

ICH: A CODE FOR PLOT
=0 THE HEIGHTS OF CURVES WILL BE CALCULATED BY ROUTINE
=1 THE HEIGHTS OF CURVES MUST BE SPECIFIED BY USER

READ(5,*)ICH

PRINT#*, > ICH=",ICH

IF(ICH.NE.O) READ(5,%) (CHTS(ILl),Il=1,NCHTS)

IFATL~3

CALL JO6GBF (SURFCE,MDIM,MA ,MB,NA, NB, NCHTS , CHTS, ICH,

JO6GBY, ILAB, THIGH,JO6GBV, IGRID, UNUSED, IFAIL)

PRINT#*,’ IFAIL=’,IFAIL

TFORM=2

NWIDTH=8

NDP=2

CALL JO6WDF

CALL JO6GZF(CHTS ,NCHTS , IFORM, NWIDTH, NDP)
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CALL JO6WZF
STOP
END
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THIS PROGRAMME ESTIMATES THE STATIONARY MARGINAL

PROBABILITY DENSITY FUNCTION OF SETAR(2;1,1) BY

USING THE CHAPMAN-KOLMOGOROV RELATION

THE MATRIX SQUARING METHOD IS EMPLOYED TO

ACCELERATE THE CONVERGENGE

THIS PROGRAMME ALSO CALCULATER THE EIGENVALUES

OF THE MATRIX WHICH IS EXPLAINED IN CHAPTER 5

REAL *8 GH(200) ,AM, B, X02AAF, TOL

REAL *8 RR(200) ,RI(200)

INTEGER INTGER (200)

REAL *8 GD (200, 200) ,ZZ(200,200)

REAL *8 W(200) ,X(200)

REAL *8 Z(200) ,X01AAF, P

REAL*8 WW(100) ,A(100)

INTEGER H

EXTERNAL DO1BAX

EXTERNAL DO1BAW

COMMON/AA /PP

COMMON/CC/S

COMMON/BB/AO,A1,B0,B1,R

P=X01AAF(P)

PP=1.0/SQRT(2.0*P)

TOL~X02AAF(TOL)

TOL~0.000001

TOL: THE CONVERGENCE CRITERION

PRINT*,’ A0 Al BO Bl’

AO , Al , BO , Bl : THE SETAR COEFFICIENTS IN THE
FIRST AND SECOND REGIME RESPECTIVELY

READ(5,*)A0,Al,B0,B1

PRINT#*, ’ AO=",A0, ’Al=’,Al, *BO=",B0,’ Bl=’,Bl

PRINT#*,’ R’

R: THRESHOLD

READ(5,%)R

PRINT*,’ R="’ R

XXX=99999999999.0

PRINT*,” X0 S M

X0: X(0) THE GIVEN VALUE FOR CALCULATING THE CONDITIONAL

DENSITIES
S: THE STANDARD DEVIATION OF ERROR TERM
M: NO. OF POINTS/2

READ(5,%*)X0,S,M

IH1=2000
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PRINT 93,X0,S,M

PRINT*,’ B’
93 FORMAT(’ INITIAL VALUE=~’,F6.3,’ SD.=’ F5.2,’ NO. OF POINTS/2=",15
C  B: LAG ROUTINE PARAMETER

READ(5,*)B

PRINT*,’ B=,B

PRINT*,” AM’
C  AM: LOCATION PARAMETER TO SHIFT ALL THE POINTS

READ(S5,*)AM
PRINT#*,* AM=’ ,AM
ITYP=1

IFAIL~0

C  CALLDO1BBF(DO1BAW,AM,B,ITYP,M,W,X,IFAIL)
CALL DO1BBF(DO1BAX,AM,B,ITYP,M,WW,A, IFAIL)
PRINT*,’ IFATIL=’, IFAIL

C  PRINT1,(I,W(I),X(I),I=1,M)

1  FORMAT(1X,I&4,5X,F8.3,5X,F8.3)

DO 116 I=1,M
IM=M-T+1
X(IM)=A(I)
W(IM)=WW(I)

116 CONTINUE
B=-B
CALL DO1BBF(DO1BAX,AM,B, ITYP,M,WW,A, IFAIL)
PRINT*, > DOLBBF IFAIL ’,IFAIL
DO 118 I=1,M
IM=T+M
X(IM)=A(I)

W(IM)=WW(I)

118 CONTINUE
N=M

C  CALLDO1BBF(DO1BAW,AM,B,ITYP,M,W,X,IFAIL)
M=2#M
PRINT 2,X(1),X(M)

2 FORMAT(1X,’X(1l)=',F8.3,5X, ’X(M)=",F8.3)
CALL SIMU

C  THIS SUBROUTINE GIVES A ROUGH IDEA ABOUT THE CUT OFF

C  POINTS FOR CHOOSING B AND AM
T1=SECNDS (0.0)

ANS=G(X0)

C  G(.): THE SKELETON OF SETAR MODEL

PRINT#*,’ ANS=",ANS



10

902
901

904

905
903

864

ANS : THE ONE STEP-AHEAD PREDICTION GIVEN X(0)=X0
DO 10 I=1,M

FB=(X(I)-ANS)/S

GH(I)=PHI(FB)/S

Z(1)=GH(I)

CONTINUE

DO 901 I=1,M
XI=X(I)

ANS=G (XI)

DO 902 J=1,M
FB=~(X(J)-ANS)/S
GD(J,I)=PHI(FB)/S
CONTINUE
CONTINUE

DO 903 I=1,M

SUM=0.0

DO 904 J=1,M
SUM=SUM+W (J)*GD(J, 1)
CONTINUE

DO 905 J=1,M
SUM=1.0
GD(J,I)=GD(J,I)/SUM
ZZ(J,1)=GD(J,I)
CONTINUE

CONTINUE

CALCULATE THE EIGENVALUES OF MATRIX GD
IFAIL~0

IA=200

CALL FO2AFF(ZZ,IA,M,RR,RI,INTGER, IFAIL)
PRINT#*,’ IFAIL=",IFAIL

PRINT 864, (RR(I),RI(I),I=1,M)
FORMAT(1X,F9.6,5X,F9.6)

DO 40 H=2, IH1
$5=0.0

DO 50 I=1,M
SS=SS+W(I)*GH(I)
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60

80

90

442

443
441

444

110

100

CONTINUE

XM=0.0

PRINT*,’ SS=’,SS

DO 60 I=1,M
GH(I)=~GH(I)/SS
IF(GH(I).GT.XM) XM=GH(I)
CONTINUE

ANS=0.0

DO 80 I=1,M
ANS=ANS+W(I)*G(X(I))*GH(I)

CONTINUE

SUM=0.0

DO 90 I-1,M

SUM=SUM+W (I)*(G(X(I))-ANS)**2*GH(I)
CONTINUE

S1=S#*2+SUM

S1=SQRT(S1)

PRINT*,’ MEAN =’ ANS,’ SD=’,S1
IF (H.LE.2) GO TO 441
DO 442 I=1,M

IF(ABS(GH(I)-Z(I))/XM .GT.TOL) GO TO 443

CONTINUE

GO TO 132
CONTINUE
CONTINUE

DO 444 1=1,M
GH(I)=Z(I)

DO 100 I=1,M

DO 100 K=1,M

SUM=0.0

DO 110 J=1,M

SUM=SUM+W (J)*GD(I,J)*GD(J,K)
CONTINUE

ZZ(I,K)=SUM

CONTINUE
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113
111

114

132

33

51

52

53

DO 111 I~-1,M

SUM=0.0

DO 112 J=1,M
SUM=SUMAW(J)*ZZ(J 1)
CONTINUE

DO 113 J=1,M
GD(J,1)=22(J,I)/SuM
CONTINUE

CONTINUE

DO 114 I=1,M
Z(1)=GD(I,N)
CONTINUE

GO TO 32

CONTINUE

T2=SECNDS (T1)

PRINT 33, (X(I1),W(II),CGH(II),II=1,M)
WRITE(7,33)(X(II),W(II),GH(II),II=1,M)
PRINT#*,’ SD=",S1
FORMAT(1X,F12.6,5X,5X,F10.6,5X,F10.6)

SUM=0.0

DO 51 I1=1,M

SUM=SUM+X (I1)*W(IL)*GH(I1)
WRITE(7,%),* MEAN XT IS *,SUM

PRINT#*, * MEAN XT IS *,SUM

XBAR=SUM

SUM=0.0

DO 52 11=1,M

SUM=SUM+(X(I1) -XBAR)#**2+*W(I1)*CGH(I1)
WRITE(7,%) * VARIANCE XT IS *,SUM
PRINT*, * VARTANCE XT IS *,SUM
SIGMA=SQRT (SUM)

SUM=0.0

DO 53 11=1,M

SUM=SUM+ (X (I1) -XBAR) #**3*W(I1)*GH(I1)
WRITE(7,%*)’ E(X-XBAR)*%*3=",SUM
XKOR=SUM/ (SIGMA#*+3)

WRITE(7,*) *® SKEWNESS IS *,XKOR
PRINT*, > SKEW IS *,XKOR
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32

40

Q

a oo aa

SUM=0.0

DO 54 I1=1,M

SUM=SUM+(X (I1) -XBAR) **4*W(I1)*GH(I1)
SK=SUM/(SIGMA**4)-3.0

WRITE(7,%)’ E(X-XBAR)*#%4=", SUM
WRITE(7,*) ’ KURTESISS IS ’,SK

PRINT+, * KUR IS ’,SK

PRINT#*, * TIME=’,T2

STOP

CONTINUE

CONTINUE
STOP
END

REAL FUNCTION PHI(Z)
COMMON/AA /PP
PHI=EXP(-Z#*%2/2.0)*PP
RETURN

END

REAL FUNCTION G(X)
COMMON/BB/AO,Al,B0,B1,R
IF(X.LE.R) THEN
G=A0+A1*X
ELSE
G=BO+B1#X
ENDIF
RETURN
END

SUBROUTINE SIMU

REAL *8 X(7000) ,WT(5000) , SD, XM, XMEAN, XMIN, XMAX, 52,53, S4 , WTSUM

COMMON/GC/S

178



10

20

1

COMMON/BB/AO,Al,BO,B1,R

XM=0.0

SD=S

X(1)=0.0

N=5000

CALL GO5CCF

DO 10 I=2,N+2000

IF(X(I-1).LE.R) THEN
X(I)=A0+A1*X(I-1)+GO5DDF (XM, SD)

ELSE
X(I)=B0+B1*X(I-1)+GO5SDDF (XM, SD)

ENDIF

CONTINUE

DO 20 I=1,N

X(I)=X(I+1999)

CONTINUE

IFAIL-0

J=0

CALL GO1AAF(N,X,J,WT,XMEAN, 52,53, 54 ,XMIN, XMAX ,WTSUM, TFATL)

PRINT*,’ GOLAAF IFAIL=’,IFAIL

PRINT 1,XMEAN,S2,XMIN,XMAX

FORMAT(1X, *MEAN=",F8,4,5X,” SD=",F8.4,5X,’ MIN=",F8 4,

5X,* MAX=',F8.4)
RETURN
END
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THIS PROGRAMME GIVES THE DATA, THE PERIOD OF FORECASTING

AND THE SETAR(2,P1,P2) MODEL AND CALCULATE THE MEAN OF

M-STEP-AHEAD FORECASTING ERROR, M=1,2, ...,

THIS PROGRAM CAN BE USED TO CALCULATE THE M- STEP AHEAD

FORECASTING BY ADDING SUFFICIENT ZERO TO THE END OF DATA SET

THEN IN EACH STEP, THE FIRST PREDICTED VALUE IS THE POINT

FORECAST FOR THAT GIVEN STEP

IMPLICIT DOUBLE PRECISION (A-H,0-Y)

INTEGER T, LO,HO, PER, CODE, D

DIMENSION X(300),E(300),A(0:12),B(0:12),WT(1000)

DIMENSION P(12,35)

THE MAXIMUM ORDER IS 11 AND THE MAXIMUM STEP IS 35

CLEARLY THESE RESTRICTION CAN BE REMOVED BY CHANGING

THE SIZE OF ARRAIES

EXTERNAL XINV

XINV: THE INVERSE FUNCTION OF SQUARE ROOT TRANSFORMATION
FOR SUNSPOT NUMBERS

COMMON /BB /CODE , XBAR

COMMON/AA/A,B,R,D,LO,HO, IOR, S1,S2, PER

READ(5,*)LO

LO: THE ORDER OF LOWER REGIME

READ(5,*) (A(I),I=0,10)

A(I): THE COEFFICIENTS OF THE FIRST REGIME

READ(S,*) HO

HO:; THE ORDER OF SECOND REGIME

READ(5,*) (B(I),I=0,HO)

B(I): THE COEFFICIENTS OF SECOND REGIME

PRINT 1, (A(I),I=0,10)

FORMAT (20X, * LOWER REGION ’/,5X,13(F7.4,2X))

WRITE(1,1) (A(I),I=0,10)

PRINT 2, (B(I),I=0,HO)

FORMAT (20X, * UPPER REGION ’/,5X,13(F7.4,2X))

WRITE(1,2)(B(I),I=0,HO)

READ(5,*)R,S1,52,D

R: THRESHOLD

S1: THE STANDARD DEVIATION OF ERROR TERM IN THE FIRST REGIME

S2: SIMILAR TO S1 IN SECOND REGIME

D: DELAY

PRINT 3,R,S1,52,D

FORMAT (1X, * THRESHOLD=",F7.4,5X,’S1=",F7.3,4X,*S2=" ,F7.3,

1 5X,’DELAY=’",12)

WRITE(1,3)R,S1,S2,D
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READ(5,*)N, PER, CODE
N: NO. OF DATA
PER: NO. OF FORECASTING STEPS
CODE: TRANSFORMATION CODE
0: NO TRANSFORMATION
1: SQUARE ROOT TRANSFORMATION
2: LOG IN BASE 10 TRANSFORMATION
READ(5,*) (X(I),I=1,N+PER)
IF(CODE.EQ.0) THEN
PRINT *, * NO TRANSFORMATION’
WRITE(1,6)
GO TO 10
ENDIF
FORMAT (1X, * NO TRANSFORMATION ’)
IF(CODE.EQ.1) THEN
PRINT *, ’ SQRT TRANSFORMATION’
WRITE(1,*) * SQRT TRANSFORMATION’
DO 20 I=1,N+PER
X(I)=2.0%(DSQRT(X(I)+1.0)-1.0)
GO TO 10
ENDIF
IF(CODE.EQ.2) THEN
PRINT *,’ LOG1O TRANSFORMATION’
WRITE(L,*) ’*LOGLO TRANSFORMATION’
DO 30 I~1,N+PER
X(I)=DLOG10(X(I))
GO TO 10
ENDIF
PRINT*, * CODE=’ ,CODE, ’ ERROR’
STOP
CONTINUE
IOR=MAX (LO, HO)
PRINT*,’ IOR=",IOR
WRITE(1,7)IOR
FORMAT (1X, * ORDER=",13)
SUM=0.0
DO 40 I=1,N
SUM=SUM+X(I)
XBAR=SUM/FLOAT(N)
PRINT 8,XBAR
WRITE(1,8)XBAR
FORMAT (1X, * MEAN OF DATA=',F10.5)
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DO 50 T=IOR+1,N
IF(X(T-D) .LE.R) THEN
SUM=0.0

DO 60 I=1,LO
SUM=SUM+A (I)*X(T-1I)
Y=SUM+A(0)

ELSE

SUM=0.0

DO 70 I=1,HO
SUM=SUM+B (I)*X(T-1)
Y=SUM+B(0)

ENDIF
E(T-IOR)=X(T)-Y
CONTINUE

IFAIL~0

1J=0

M=N-IOR

CALL GO1AAF(M,E, IJ,WT,XM,S,S3, S4,XMIN, XMAX ,WTS, IFAIL)
PRINT *,’ IFAIL=’  IFAIL

PRINT 4,XM, S**2

XM MUST BE CLOSE TO ZERO AND S*%2 CLOSE TO THE POOLED VARIANCE
IF NOT SOMETHING IS WRONG IN INPUT DATA

WRITE(1,4)XM, S**2
PRINT *,’ M=’ M
WRITE(1,9)M

FORMAT (1X, * NO. OF ERRORS=",14)
FORMAT (1X, *MEAN OF ERRORS=",F10.5,5X,’ VAR. OF ERRORS=",F15.5)
TO CALCULATE THE EXACT 1 TO D STEP-AHEAD FORECASTING

DO 99 J=1,D
CALL FOR(X,N,P,J)

TO USE THE MONTE CARLO METHOD TO CALCULATE THE
D+1 TO PER STEP-AHEAD FORECASTING

CALL FORE(X,N)
STOP
END

SUBROUTINE FORE(X,N)

IMPLICIT DOUBLE PRECISION (A-H,0-Y)
DIMENSION X(300),A(0:12),B(0:12)

EXTERNAL XINV
INTEGER CODE
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INTEGER LO,HO, PER,D
COMMON/AA/A,B,R,D,LO,H0, IOR,S1,S2, PER

COMMON/BB/CODE , XBAR

DIMENSION FOR1(1000) ,WT(2000) ,FOR(1000,12),XM(100,12)

1 ,X0(-11:12),p(12,35),SM(12),DM(12),SD(100,12)

11

12

50
40

300

S1=DSQRT(S1)
S2=DSQRT(S2)

NN=35

MM=1000

MM: NO. OF REPLICATION IN MONTE CARLO METHOD
N1=12

CALL GO5GCF

DO 10 J=1,PER

M=N+J-1

DO 11 I=1,NN

DO 11 K=1,N1
XM(I,K)=0.0
SD(I,K)=0.0

CONTINUE

DO 12 1=0, -IOR+1, -1

X0 (I)=X(M+I)

CONTINUE

DO 555 KK=1,NN

DO 40 I=~1,MM

CALL GEN(X0,N1)

DO 50 KJ=1,N1
IF(CODE.EQ.1) THEN -
FOR(T,KJ)=XINV(XO0(KJ))
ELSE

FOR(T,KJ)=XO0(KJ)

ENDIF

CONTINUE

CONTINUE

DO 200 KJ=1,N1

DO 300 I=1,MM
FOR1(I)=FOR(I,KJ)
CONTINUE

IFAIL~0

1J=0

CALL GO1AAF (MM, FOR1,1J,WT,XMEAN, S, 3, S4,XMIN,XMAX ,WTSUM, IFAIL)
IF(IFAIL.NE.O) THEN
PRINT*, ’ GO1AAF FAIL’ , IFAIL



111

200
555

333

777
666

100

10

15
19

" SUM1=SUM1+(XINV(X(I))-P(J,I-N-J+1))**2

STOP
ENDIF

PRINT 111,KJ,XMEAN, S
FORMAT(2X,13,3X,F10.4,5X,F10.6)
XM (KK, KJ )=XMEAN

SD (KK ,KJ)=S

CONTINUE

CONTINUE

DO 333 K=1,N1

SM(K)=0.0

DM(K)=0.0

CONTINUE

DO 666 1J=1,N1

DO 777 I=1,NN
SM(I1J)=SM(IJ)+XM(I,1J)
DM(IJ)=DM(IJ)+SD(I,IJ)
CONTINUE

CONTINUE

DO 100 M2=1,12
P(M2,J)=SM(M2)/FLOAT (NN)
CONTINUE

DO 15 J2=1,PER
WRITE(1,19)J2, (P(I,J2),I=1,12)
CONTINUE

FORMAT(1X,I12,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,
1 2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2,2X,F8.2)

DO 102 J=1,12
IF(CODE.EQ.1) THEN
SUM=0.0

SUM1=0.0

SUM2=0.0

L1=0

L2=0

DO 1001 I=N+J,N+PER
IF(X(I).LE.XBAR) THEN

IF(P(J,I-N-J+1).LE.XINV(XBAR)) THEN

L1=L1+1

ELSE
L2=L2+1

SUM2=SUM2+(XINV(X(I))-P(J,I-N-J+1))**2

ENDIF
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1001 SUM=SUM+(XINV (X(I))-P(J,I-N-J+1))**2
ELSE
SUM=0.0
SUM1=0.0
SUM2=0.0
L1=0
L2=0
DO 101 I=N+J,N+PER
C  IF(X(I).LE.XBAR) THEN
IF(P(J,I-N-J+1) .LE.XBAR) THEN
L1=L1+1
SUML=SUM1+(X(I)-P(J,I-N-J+1))**2
ELSE
L2=12+1
SUM2=SUM2+(X(I)-P(J, I-N-J+1))**2
ENDIF
101 SUM=SUM+(X(I)-P(J,I-N-J+1))**2
ENDIF
WRITE(1,21)J,SUM, SUM/FLOAT (PER-J+1)
21 FORMAT(1X,’SUMOF FOR’,I2,’=’,F15.5,5X, *SIGMA=",F15.5)
WRITE(1,22)J,SUM1, SUM1/FLOAT(L1)
WRITE(1,23)J,SUM2, SUM2/FLOAT(L2)
WRITE(1,24)L1,L2
22 FORMAT(1X,’ LOWER THAN MEAN’ ,2X,’SUM OF FOR’,12,’=’,F15.5,
1 5X,’ SIGMA=’,F15.5)
23 FORMAT(1X,’ UPPER THAN MEAN’, 2X,’SUM OF FOR’,I2,’=",F15.5,
1 5X,’ SIGMA=’,F15.5)
24 FORMAT(3X,’Ll=’,I3,4X,’L2=’,1I3)
102  CONTINUE

RETURN

END
c
U U
c

SUBROUTINE GEN (X, N)
IMPLICIT DOUBLE PRECISION (A-H,0-Y)
DIMENSION X(-11:12),A(0:12),B(0:12)

' INTEGER T,LO,HO,D,PER
COMMON/AA/A,B,R,D,LO,HO, IOR, S1,S2, PER
XM=0.0
DO 10 T=1,N
IF(X(T-D).LE.R) THEN
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30

SUM=0.0

DO 20 I=1,10

SUM=SUM+A (I)*X(T-1I)
X(T)=A(0)+SUM+GO5DDF (XM, S1)
ELSE

SUM=0.0

DO 30 I=1,HO

SUM=SUM+B (I)*X(T-I)
X(T)=B(0)+SUM+GOSDDF (XM, S2)
ENDIF

CONTINUE

RETURN

END

SUBROUTINE FOR(X,N,P,J)

IMPLICIT DOUBLE PRECISION (A-H,0-Y)
DIMENSION X(300),A(0:12),B(0:12)
DIMENSION P(12,35)

INTEGER LO,HO, PER,D, CODE
COMMON/BB/CODE , XBAR

EXTERNAL XINV
COMMON/AA/A,B,R,D,L0,H0, IOR,S1,S2, PER
$=0.0

SUM1=0.0

SUM2=0.0

1L1=0.0

L2=0.0

DO 10 I=N+J,N+PER

T=I-J

IF(X(T-D+J).LE.R) THEN

SUM=0.0

DO 20 II=J,LO

SUM=SUM+A (II)*X(T-II+J)

DO 30 T1=1,J-1
SUM=SUM+A(II)*P(J-II,I-N-J+1)
Y=A(0)+SUM

ELSE

SUM=0. 0

DO 40 II=J,HO
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40 SUM=SUM+B(II)*X(T-II+J)
DO 50 I1=1,J-1

50 SUM=SUM+B(II)*P(J-II,I-N-J+1)
Y=B(0)+SUM
ENDIF
P(J,I-N-J+1)=Y
IF(CODE.EQ.1) THEN
S=5+(XINV(X(T+J)) -XINV(Y) ) **2

C IF(X(T+J) .LE.XBAR) THEN
IF(Y.LE.XBAR) THEN
L1-L1+1
SUM1=SUM1+(XINV(X(T+J)) -XINV(Y))**2
ELSE
L2=12+1
SUM2=SUM2+(XINV(X(T+J) ) -XINV(Y))**2
ENDIF
PRINT 1,I-N-J+1,XINV(Y),XINV(X(T+J))
WRITE(L,1)I-N-J+1,XINV(Y),XINV(X(T+J))
ELSE
S=S+(X(T+J) -Y)**2

C  IF(X(T+J).LE.XBAR) THEN
IF(Y.LE.XBAR) THEN
L1-L1+1
SUM1=SUM1+ (X (T+J) -Y) *#2
ELSE
L2=12+1
SUM2=SUM2+ (X (T+J) -Y) %%2
ENDIF
PRINT 1,I-N-J+1,Y,X(T+J)
WRITE(1,1)I-N-J+1,Y,X(T+J)

ENDIF

10 CONTINUE
PRINT 2,J,S,S/FLOAT (PER-J+1)

2  FORMAT(1X,’SUMOF FOR’,I1,’=’,F15.5,5X, SIGMA=",F15.5)
WRITE(1,2)J,S,S/FLOAT (PER-J+1)
WRITE(1,3)J,SUM1,SUM1/FLOAT(L1)
WRITE(1,4)J,SUM2,SUM2/FLOAT(L2)

| WRITE(1,5)L1,L2

3 FORMAT (1X, * LOWER THAN MEAN’,’ SUM OF FOR’,12,°’=’,F15.5,
1 5X,’SIGMA=’,F15.5)

4 FORMAT (1X, ' UPPER THAN MEAN’ ,* SUM OF FOR’ ,12,’=’,F15.5,
1 5X,’SIGMA=’,F15.5)
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FORMAT(1X,’ L1=",13,5X,’L2=",13)
FORMAT (1X,14,4X,F15.5,4X,F15.5)
RETURN

END

DOUBLE PRECISION FUNCTION XINV(X)
DOUBLE PRECISION X
XINV=( ( (X+2.0)/2.0)*%2)-1.0
RETURN

END

WENT

LIBRARY
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