
Smaus, Jan-Georg (1999) Modes and types in logic programming. Doctor
of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/86132/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.86132

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 09 February 2021 in order to hold its content and record within University of Kent systems. It is available

Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If y...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/86132/
https://doi.org/10.22024/UniKent/01.02.86132
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

MODES AND TYPES IN LOGIC PROGRAMMING
a thesis submitted toThe University of Kent at Canterburyin the subje
t of
omputer s
ien
efor the degreeof do
tor of philosophy.

ByJan-Georg SmausDe
ember 1999

Abstra
tThis thesis deals with two themes: (1)
onstru
tion of abstra
t domains for mode anal-ysis of typed logi
 programs; (2) veri�
ation of logi
 programs using non-standard se-le
tion rules.(1) Mode information is important mainly for
ompiler optimisations. The pre
isionof a mode analysis depends partly on the expressiveness of the abstra
t domain. Weshow how spe
ialised abstra
t domains may be
onstru
ted for ea
h type in a typedlogi
 program. These domains
apture the degree of instantiation of a term very pre-
isely. The domain
onstru
tion pro
edure is implemented using the G�odel languageand tested on some example programs to demonstrate the viability and high pre
isionof the analysis.(2) We provide veri�
ation methods for logi
 programs using sele
tion rules otherthan the usual left-to-right sele
tion rule. We
onsider �ve aspe
ts of veri�
ation: termi-nation; and freedom from (full) uni�
ation, o

ur-
he
k,
oundering, and errors relatedto built-ins. The methods are based on assigning a mode, input or output, to ea
h ar-gument position of ea
h predi
ate. This mode is only �xed with respe
t to a parti
ularexe
ution. For termination, we �rst identify a
lass of predi
ates whi
h terminate underthe assumption that derivations are input-
onsuming, meaning that in ea
h derivationstep, the input arguments of the sele
ted atom do not be
ome instantiated. Input-
onsuming derivations
an be realised using blo
k de
larations, whi
h test that
ertainargument positions of the sele
ted atom are non-variable. To show termination fora program where not all predi
ates terminate under the assumption that derivationsare input-
onsuming, we make the stronger assumption that derivations are left-based.This formalises the \default left-to-right" sele
tion rule of Prolog. To the best of ourknowledge, this work is the �rst formal and
omprehensive approa
h to this kind oftermination problem. The results on the other four aspe
ts are mainly generalisationsof previous results assuming the left-to-right sele
tion rule.

ii

A
knowledgementsI am grateful to the many people who helped me write my PhD thesis.The resear
h of this thesis was partly
arried out in the proje
t `Dete
ting andExploiting Determina
y in Logi
 Programs' led by Andy King at the University of Kentat Canterbury and Pat Hill at the University of Leeds. Andy King was also my PhDsupervisor. I would like to thank Andy and Pat for their
riti
al guidan
e and friendlyen
ouragement.I was very fortunate to be a member of the logi
 programming group at the Univer-sities of Leeds and Kent. I would like to thank Floren
e Benoy, Andrew Heaton, Ja
obHowe and Jonathan Martin for the produ
tive and enjoyable time we spent together.I also thank Eerke Boiten, Naomi Lindenstrauss, Fred Mesnard and Erik Poll, whoproofread parts of my thesis. Maarten Steen has given me mu
h advi
e on organisationalmatters.Many
olleagues have inspired my work. I would like to mention Krzysztof Apt,Tony Bowers, Henning Christiansen, Mi
hael Codish, Bart Demoen, Sandro Etalle,Fergus Henderson, Lee Naish and Salvatore Ruggieri.I gratefully a
knowledge the �nan
ial support from the EPSRC and the Com-puting Laboratory of the University of Kent at Canterbury. During the �rst twoyears of my PhD studies I was employed as a resear
h asso
iate under EPSRC GrantNo. GR/K79635, and in the remaining time, I re
eived an E. B. Spratt Bursary.I made many friends during the time I spent in Canterbury, most of them throughmy `lun
h group' or through the or
hestra of Kent University. They have made thesethree and a half years a wonderful time. When I leave Canterbury this summer, I willbe
ome another outpost of this
ir
le of friends whi
h already spans all over Europe,and even further.I am grateful to my family for their
ontinuing support. Last but not least, I thankB�en�edi
te, my muse. iii

Prefa
e
Modes and types are two widely used
on
epts in analysis and veri�
ation of logi
programs. On the analysis side, modes and types allow us to infer information aboutthe program whi
h is useful for
ompiler optimisations, helping to generate more eÆ
ient
ode. On the veri�
ation side, modes and types allow us to prove a number of desirableproperties of the program, su
h as o

ur-
he
k freedom and termination. Some logi
programming languages even go as far as only admitting programs that meet
ertainmode and type requirements. This has great bene�ts in terms of eÆ
ien
y and reliabilityof software.The separations between the above areas are not
lear
ut. Moreover, the notionsof mode and type have di�ering meanings depending on the
ontext in whi
h they areused. There is a whole spe
trum of su
h meanings.This thesis treats two substantially di�erent themes. However, both are related tomodes and types. The two themes are� the
onstru
tion of abstra
t domains for mode analysis of typed logi
 programs,� the veri�
ation of logi
 programs for non-standard sele
tion rules.Modes and types have quite di�erent, albeit
ertainly related, meanings for the twothemes. Within ea
h theme, our usage of these notions follows widespread
onven-tions. To avoid
onfusion, it seems therefore reasonable to keep the two themes
learlyseparated.This gives rise to the following stru
ture of this thesis. The thesis has three parts:an introdu
tory part and two parts
orresponding to the two themes. Part I is dividedinto two
hapters. Chapter 1
onsists of two separate introdu
tions for Parts II and III.Chapter 2 puts the two themes into
ontext by giving an overview of the whole spe
trumiv

of mode and type
on
epts that are used in the literature, whi
h en
ompasses the
on
epts used in this thesis.The work presented in Part II has been a

epted for presentation at the 9th Inter-national Workshop on Logi
-Based Program Synthesis and Transformation(LOPSTR'99) [SHK99a℄. The work presented in Part III is based on three
onfer-en
e papers [SHK98, SHK99b, Sma99℄, two of whi
h the author has written togetherwith Pat Hill and Andy King.

v

Contents
Abstra
t iiA
knowledgements iiiPrefa
e ivI Introdu
tion and Ba
kground 11 Introdu
tion 31.1 Mode Analysis for Typed Logi
 Programs 31.1.1 Previous Work . 31.1.2 Exploiting Type De
larations . 61.2 Non-Standard Derivations . 71.2.1 Corre
tness Properties of Programs 81.2.2 Termination of Input-Consuming Derivations 91.2.3 Ensuring Input-Consuming Derivations 101.2.4 Termination and blo
k De
larations 101.2.5 Further Aspe
ts of Veri�
ation 111.2.6 Weakening Some Conditions . 121.2.7 Related Work and Con
lusion . 122 Notions of Modes and Types 132.1 Modes . 132.1.1 Des
riptive versus Pres
riptive Modes 142.1.2 The Granularity . 162.2 Types . 172.2.1 What is a Type? . 172.2.2 Non-ground Types . 192.2.3 Polymorphism . 192.2.4 Des
riptive versus Pres
riptive Types 202.3 Combining Modes and Types . 212.3.1 Dire
tional Types . 212.3.2 A De
larative View of Modes . 222.4 Summary . 22vi

II Mode Analysis for Typed Logi
 Programs 243 The Stru
ture of Types and Terms 263.1 Introdu
tion . 263.2 Motivating and Illustrative Examples . 273.3 Notation and Terminology . 283.4 Relations between Types . 293.5 Traversing Con
rete Terms . 334 Abstra
t Domains for Mode Analysis 404.1 Abstra
tion of Terms . 404.2 Traversing Abstra
t Terms . 444.3 Abstra
t Compilation . 464.4 Implementation and Results . 494.5 Dis
ussion and Related Work . 50III Non-Standard Derivations 545 Corre
tness Properties of Programs 565.1 Why Non-Standard Derivations? . 565.2 Notation and Terminology . 595.3 Modes and Permutations . 615.3.1 The Order of the Atoms in a Query 615.3.2 Are those Permutations Really Ne
essary? 625.3.3 Uniqueness of Derived Permutations 635.4 Permutation Ni
ely Moded Programs . 655.5 Permutation Well Moded Programs . 685.6 Permutation Well Typed Programs . 695.7 Type-Consistent Programs . 706 Termination of Input-Consuming Derivations 726.1 Termination and the Sele
tion Rule . 726.2 Existential vs. Universal Termination . 746.3 Controlled Coroutining . 746.4 Showing that a Predi
ate is Atom-Terminating 776.5 Applying the Method . 826.6 Dis
ussion . 837 Ensuring Input-Consuming Derivations 847.1 The Simpli
ity of blo
k De
larations . 847.2 Terminology Related to blo
k De
larations 857.3 Permutation Simply Typed Programs 857.4 Permutation Robustly Typed Programs 897.5 Summary of the Corre
tness Properties 97vii

8 Termination and blo
k De
larations 988.1 Two Approa
hes to the Termination Problem 988.2 Left-Based Derivations . 998.3 Termination and Spe
ulative Bindings 1008.3.1 Termination by not Using Spe
ulative Bindings 1018.3.2 Termination by not Making Spe
ulative Bindings 1028.4 Termination and Atom-Terminating Predi
ates 1058.5 Dis
ussion . 1119 Further Aspe
ts of Veri�
ation 1129.1 Uni�
ation Free Programs . 1129.2 O

ur-Che
k Freedom . 1159.3 Floundering . 1169.4 Errors Related to Built-ins . 1179.4.1 The Conne
tion between Delay De
larations and Type Errors . . 1179.4.2 Exploiting Constant Types . 1189.4.3 Atomi
 Positions . 1199.5 Dis
ussion . 12010 Weakening Some Conditions 12110.1 Simplifying the blo
k De
larations . 12110.1.1 Permutation Simply Typed Programs Using Constant Types . . 12110.1.2 Programs that Respe
t Atomi
 Positions 12310.1.3 Exploiting the Fa
t that Derivations Are Left-Based 12410.2 Weakening Input-Linearity of Clause Heads 12610.3 Generalising Modes . 12910.4 Dis
ussion . 12911 Related Work and Con
lusion 13111.1 Related Work . 13111.1.1 The Signi�
an
e of \Pinning Down the Size" of an Atom 13111.1.2 Guarded Horn Clauses . 13211.1.3 Coroutining and Terminating Logi
 Programs 13311.1.4 Strong Termination . 13311.1.5 Generating Delay De
larations Automati
ally 13311.1.6 Veri�
ation Using Modes and Types 13411.1.7 Termination of LD-Derivations 13511.1.8 Termination for Lo
al Sele
tion Rules 13511.1.9 Dire
tional Types . 13511.1.10 Termination by Imposing Depth Bounds 13611.1.11 Beyond Su

ess and Failure . 13611.1.12 Termination of Well-Moded Programs 13611.1.13 9-Universal Termination . 13611.1.14 Assertion-Based Debugging of (Constraint) Logi
 Programs . . . 13711.2 Con
lusion . 13711.2.1 Some Distin
tive Novel Ideas . 13711.2.2 Open Problems . 13911.2.3 Summary of Part III . 140viii

Part IIntrodu
tion and Ba
kground

1

Chapter 1Introdu
tionIn this
hapter, we will give two separate introdu
tions for Parts II and III, respe
tively.As mentioned in the prefa
e, both parts make use of notions of mode and type, but theyuse these notions in quite di�erent ways.In Part II, a mode is a
hara
terisation of the degree of instantiation of a term.A type is a set of terms de�ned by means of a de
laration, as provided in typed logi
programming languages su
h as G�odel [HL94℄ or Mer
ury [SHC96℄.In Part III, a mode is a spe
i�
ation of ea
h argument position of ea
h predi
ate in aprogram as either input or output. A type is any set of terms
losed under instantiation.In Chapter 2, we will
onsider the relationships between these notions in more detail.1.1 Mode Analysis for Typed Logi
 ProgramsIn Part II we provide a generi
 method for
onstru
ting abstra
t domains for mode anal-ysis of typed logi
 programs. A mode is a
hara
terisation of the degree of instantiationof a term at a
ertain point in the exe
ution of a program. Mode analysis is
on
ernedwith �nding the modes of a program. We now present an introdu
tion to mode analysisusing abstra
t domains and then pro
eed to the a
tual
ontribution of Part II.1.1.1 Previous WorkThe following example illustrates the notions of degree of instantiation and point in theexe
ution.Example 1.1 Consider the following program1 for the append predi
ate.append(Xs,Ys,Zs) :-Xs = [℄,Ys = Zs.append(Xs,Ys,Zs) :-Xs = [X|Xs1℄,Zs = [X|Zs1℄,append(Xs1,Ys,Zs1).1The program is in so-
alled normal form, de�ned in Se
tion 3.3.3

4 CHAPTER 1. INTRODUCTIONappend(Xs,Ys,Zs) :-ground(Xs),iff(Ys,Zs).append(Xs,Ys,Zs) :-iff_and(Xs,X,Xs1),iff_and(Zs,X,Zs1),append(Xs1,Ys,Zs1).
ground(ground).iff(X,X).iff_and(ground,ground,ground).iff_and(any,ground,any).iff_and(any,any,ground).iff_and(any,any,any).Figure 1: An abstra
tion of appendWhen we assume an initial query append([1; 2℄; [3; 4℄; Cs) and the standard left-to-rightsele
tion rule, then we
an say that at ea
h point in the exe
ution just before an atomappend(s; t; u) is
alled, s and t have the following degree of instantiation: they areground. Moreover, for every
omputed answer, Cs is instantiated to a ground term. /Information as in the above example
an be derived using abstra
t interpretation [CC77℄.Here we will look at a parti
ular te
hnique of abstra
t interpretation
alled abstra
t
om-pilation [CD94, CD95, DW86, HWD92℄, meaning that an abstra
t program is evaluatedusing a
on
rete semanti
s.Example 1.2 Corresponding to the program in Example 1.1 is the abstra
t programshown in Figure 1. Note that the abstra
t program is obtained by repla
ing all uni�
a-tions in the
on
rete program with
alls to ground, iff and iff_and. These
alls are
alled abstra
t uni�
ations. The abstra
t uni�
ations operate on abstra
t terms any andground, where ground represents a term that is de�nitely ground and any representsany term. For example, iff and(s; t; u) expresses that s is a ground term if and only ift and u are both ground terms. This re
e
ts that on the
on
rete level, a list is groundif and only if its head and tail are ground.When we assume an initial
all append(ground,ground,_), all
alls to append inthis abstra
t program will have the term ground in the �rst two arguments, and the onlyanswer for append is append(ground; ground; ground). It has been shown by Codishand Demoen [CD95℄ that from this, it
an be
on
luded that in the
on
rete program,all
alls to append have ground terms in the �rst two arguments, and all answers toappend have ground terms in all arguments | just as was observed in Example 1.1. /The te
hnique of the above example has been developed further [CD94℄ to derive ground-ness dependen
ies with more detail, using a more or less ad-ho
 notion of type. This isshown in the following example. Note that we are still assuming untyped languages.Example 1.3 Figure 2 shows an alternative abstra
tion of the program in Example 1.1.Without worrying about the details, observe that the abstra
t terms used in this ab-stra
tion would be terms su
h as integer, representing an integer,2 list(integer),representing a nil-terminated list of integers, list(any), representing a nil-terminatedlist whose elements
ould be arbitrary terms, and any, representing any term.2Integers are just used as an example here.

1.1. MODE ANALYSIS FOR TYPED LOGIC PROGRAMS 5append(Xs,Ys,Zs) :-nil_dep(Xs),iff(Ys,Zs).append(Xs,Ys,Zs) :-
ons_dep(Xs,X,Xs1),
ons_dep(Zs,X,Zs1),append(Xs1,Ys,Zs1).
nil_dep(list(bot)).iff(X,X).
ons_dep(list(A),B,list(C)) :-lub(A,B,C).
ons_dep(any,_,C) :-C \== list(_).lub(A,A,A).lub(A,A,bot).lub(A,bot,A).lub(any,A,B) :- A \== B.Figure 2: An alternative abstra
tion of appendThe
on
rete uni�
ation Xs = [XjXs1℄ is abstra
ted as
ons_dep(Xs,X,Xs1), whi
hrelates an abstra
t term for the list Xs with the abstra
tions of its head X and itstail Xs1. For example, if X is integer and Xs1 is list(integer), then Xs would belist(integer). If however X is any and Xs1 is list(integer), then Xs would belist(any).For example, assume an initial
all append(list(any),list(any),_), meaning thatappend is
alled with the �rst two arguments being instantiated to lists. Then all
allsto append in this abstra
t program will have list(any) in the �rst two arguments,and the only answer for append is append(list(any); list(any); list(any)). For the
on
rete program, this implies: if append is
alled with the �rst two arguments beinglists, then all subsequent
alls to append also have lists in the �rst two arguments, andall answers to append have lists in all arguments. Similarly, we
ould infer: if append is
alled with the �rst two arguments being lists of integers, then all subsequent
alls toappend also have lists of integers in the �rst two arguments, and all answers to appendhave lists of integers in all arguments. /

Clearly, in order to abstra
t the append program as in the above example, one hasto know what a list is. The de�nition of a list underlying the above example is thestandard one: for any type � , nil is of type list(�); moreover, if h is of type � and t isof type list(�), then
ons(h; t) is of type list(�). Codish and Demoen [CD94℄ are not
on
erned with how su
h de�nitions
ould be derived in general, but only deal with aspe
i�
 set of types in
luding integers, lists, di�eren
e lists, and trees, and provide thede�nitions of the abstra
tions, su
h as the de�nition of
ons_dep in the above example.Of
ourse, this set in
ludes the most frequently used types and therefore mu
h usefulinformation
an already be inferred.

6 CHAPTER 1. INTRODUCTION1.1.2 Exploiting Type De
larationsIn typed logi
 programming languages, all types are de�ned by a type de
laration. Forexample, in G�odel, the type of lists is de�ned as follows.CONSTRUCTOR List/1.CONSTANT Nil: List(u).FUNCTION Cons: u * List(u) -> List(u).The �rst line de�nes a type
onstru
tor List with one type parameter. We say thatList(u) is a polymorphi
 type, where u is a type parameter. In Se
tions 3.2 and 3.3, weexplain the syntax of G�odel in more detail, but this example should be self-explanatory.Throughout the rest of this se
tion, we will use G�odel type de
larations to de�ne types.In Part II, we des
ribe a method whi
h takes a program, say the append program,in
luding the type de
larations, and generates an abstra
t program similar to the onein Example 1.3. In parti
ular, the method generates the dependen
y predi
ates su
h as
ons_dep, whose
onstru
tion seems quite ad-ho
 in the work of Codish and Demoen,sin
e they are
onsidering untyped languages.To understand why this work is a proper generalisation of the work of Codish andDemoen [CD94℄ and also Codish and Lagoon [CL96℄, we must look at some more
om-plex types. It is not surprising that when one introdu
es an ad-ho
 notion of types intoan untyped programming language, one is unlikely to deal with types that are more
omplex than, essentially, lists and trees. This is di�erent when one
onsiders typedlanguages, as we do in Part II.First
onsider the following type de
larationsBASE IntegerList.CONSTANT Nil: IntegerList.FUNCTION Cons: Integer * IntegerList -> IntegerList.These de
larations de�ne the type of integer lists, where we assume that Integer isthe usual built-in type. Note that IntegerList
ontains exa
tly the same terms asList(Integer), and therefore it is reasonable to expe
t that the abstra
t domain
har-a
terising the degree of instantiation of terms of type IntegerList should be the sameas the one sket
hed in Example 1.3. In our formalism, this is indeed the
ase.Our formalism is based on a relation on types
alled \is a subterm type of". Integerand IntegerList are both subterm types of IntegerList, meaning that a term of typeIntegerList
an have subterms of type Integer and subterms of type IntegerList.If � is a subterm type of � , and � is not a subterm type of �, then we say that � is anon-re
ursive subterm type of � . If � is a subterm type of � , and � is a subterm typeof �, then we say that � is a re
ursive type of � . Integer is a non-re
ursive subtermtype of IntegerList, and IntegerList is a re
ursive type of IntegerList.The relation \is a non-re
ursive subterm type of" is a generalisation of the relation\is a parameter of" whi
h underlies the domain
onstru
tion of Example 1.3. One
an argue that the type IntegerList has no raison d'être sin
e it is better to use theinstan
e List(Integer) of the polymorphi
 type List(u). However, we shall see otherexamples of a non-re
ursive subterm type not being a parameter.

1.2. NON-STANDARD DERIVATIONS 7Example 1.4 As another example,
onsider a family tree.CONSTRUCTOR Family/1.FUNCTION Person: u * List(Family(u)) -> Family(u).For a person, we may want to store the name, the age, or any other attribute. The �rstargument of Person is used for this purpose. Moreover, we want to store the list of
hildren of this person, that is, a list of family trees, one for ea
h
hild. As an example,
onsider Family(String). Our formalism
onstru
ts an abstra
t domain for this typewhi
h
an
hara
terise that all the \names" in the termPerson("Lisa",[Person("Frank",[℄),Person("Sara",[℄)℄)are instantiated, whereas this is not true for the termPerson("Lisa",[Person(x,[℄),Person(y,[℄)℄): /The methods of Codish and Demoen [CD94℄ and Codish and Lagoon [CL96℄
annotdeal with the above examples. We will see more examples in Part II.The abstra
t domains used in our mode analysis are entirely in the spirit of previouswork [CD94, CL96℄, and the inherent
omplexity of our mode analysis is thereforesimilar. In general, the
omplexity of a mode analysis depends on the
omplexity ofthe type de
larations. We will argue that the formalism presented in Part II providesthe highest degree of pre
ision that a generi
 domain
onstru
tion should provide. Italso helps to understand other, more ad-ho
 and pragmati
 domain
onstru
tions asinstan
es of a general theory. One
ould always simplify or prune down (widen) theabstra
t domains for the sake of eÆ
ien
y.Our method has been implemented in G�odel for G�odel programs. We show forsome example programs that the analysis times
ompare well with a domain that onlydistinguishes ground and non-ground terms [CD95℄.1.2 Non-Standard DerivationsPart III is
on
erned with veri�
ation methods for logi
 programs that use non-standardderivations, that is, they use a sele
tion rule other than the usual left-to-right sele
-tion rule of Prolog. We
onsider �ve aspe
ts of veri�
ation: termination, uni�
ationfreedom3, o

ur-
he
k freedom,
ounder freedom, and freedom from errors related tobuilt-ins.Non-standard derivations are useful for a variety of purposes: multiple modes, par-allel exe
ution [AL95℄, the test-and-generate paradigm [Nai92℄, and
ertain uses of a
-
umulators [EG99℄.3A program is
alled uni�
ation free if it only requires (double) mat
hing instead of the full uni�
ationpro
edure.

8 CHAPTER 1. INTRODUCTIONFor veri�
ation of logi
 programs [AE93, AL95, BC99, EBC99℄, in parti
ular pro-grams using non-standard derivations, it has been shown to be useful to assign a mode(input or output) to ea
h argument position of ea
h predi
ate, and require
ertain
or-re
tness properties
on
erning those modes. We will adopt some
orre
tness propertiesthat have previously o

urred in the literature and also introdu
e some new ones.Considering non-standard derivations does not imply that any atom in a query
an besele
ted for resolution at any time. For some aspe
ts of veri�
ation, su
h as terminationor freedom from errors related to built-ins, it is ne
essary to ensure a
ertain degreeof instantiation of an atom before that atom is sele
ted [AL95℄. We will argue thata reasonable minimal assumption is that derivations are input-
onsuming, that is, anatom is only sele
ted on
e it is suÆ
iently instantiated in its input arguments, so thatuni�
ation with a
lause head does not instantiate these arguments any further.Input-
onsuming derivations have not been de�ned in this form previously, althoughthe
on
ept is related to (F)GHC [Ued86℄ and non-destru
tive programs [ER98℄. Thisis dis
ussed in Se
tion 11.1.In existing implementations, input-
onsuming derivations
an be ensured by delayde
larations [HL94, SIC98, SHC96℄. Using delay de
larations, an atom in a query issele
ted only if its arguments are instantiated to a spe
i�ed degree. In parti
ular, wewill
onsider blo
k de
larations. These are a simple kind of delay de
laration where onlytests for partial instantiation are possible, but not, for example, tests for groundness.Hen
e Part III of this thesis is aimed at verifying programs with delay de
larations,but we try to take the more abstra
t view and formulate results in terms of input-
onsuming derivations wherever possible. This view has not been taken by other authorspreviously [AL95, L�ut93, MT95, MK97, Nai92℄.We now give an overview of Part III. Note �rst the following general points:� Se
tion 5.2 de�nes most of the notation and terminology. Se
tions 7.2 and 8.2introdu
e some further terminology related to delay de
larations. In any
ase, theindex
an be used to �nd the pla
e where notation or terminology is introdu
ed.� Se
tion 11.1 is devoted to the literature related to Part III. However, the relatedliterature is also
onsidered throughout the rest of Part III wherever useful formotivation or illustration.1.2.1 Corre
tness Properties of ProgramsIn Chapter 5, we introdu
e a number of
orre
tness properties
on
erning the modes ofa program. The following example gives a
avour of these properties.Example 1.5 Consider the usual append=3 program (it will be given in Figure 10 onpage 57), where the �rst two arguments are input and the third is output. The queryappend([1℄; [2℄; Xs); append([3℄; [4℄; Ys); append(Xs; Ys; Zs)is \well-behaved" in that it meets all
orre
tness properties we introdu
e.In parti
ular, note that the third atom has variables Xs and Ys in input positions,and that these variables o

ur elsewhere in output positions. In other words, every

1.2. NON-STANDARD DERIVATIONS 9variable has a produ
er. Moreover, note that Xs and Ys o

ur ea
h only on
e in anoutput position. In other words, every variable has at most one produ
er. Finally,note that for ea
h variable, the output o

urren
e pre
edes any input o

urren
e. If weassumed the left-to-right sele
tion rule, this
ould be interpreted as follows: every pie
eof data is produ
ed before it is
onsumed.Having at most one produ
er is the main aspe
t of a well-known
orre
tness property
alled ni
ely-modedness, and having at least one produ
er is the main aspe
t of an equallywell-known
orre
tness property
alled well-modedness. In
ontrast, the queryappend([1℄; [2℄; Xs); append([3℄; [4℄; Xs); append(Xs; Ys; Zs)is not ni
ely moded be
ause there are two output o

urren
es of Xs, and it is not wellmoded be
ause there is no output o

urren
e of Ys. /As
an be seen in the above example, the
orre
tness properties are traditionally de�nedassuming that there is a left-to-right data
ow in a query (or
lause body) [AE93,AL95, AM94, AP94b, BC99, EBC99, EG99℄: every atom only uses as input data thatwas produ
ed by other atoms o

urring to the left. With su
h a restri
ted view, it isnot possible to reason about programs where the textual order of atoms di�ers fromthe data
ow. We will therefore generalise these properties by
onsidering them upto permutation of a query. For example, a query is permutation ni
ely moded if somepermutation of it is ni
ely moded.1.2.2 Termination of Input-Consuming DerivationsInput-
onsuming derivations formalise the natural meaning of input. For most pro-grams, assuming input-
onsuming derivations is ne
essary for termination. For exam-ple, it is easy to see that given the usual append program, an in�nite derivation for thequery append([1℄; [℄; As); append(As; [℄; Bs)is obtained by always sele
ting the rightmost atom (see Figure 10 on page 57).This raises the question whether assuming input-
onsuming derivations is suÆ
ientto ensure termination. In Chapter 6, we de�ne a
lass of predi
ates for whi
h this isindeed the
ase. We present a method for showing that a predi
ate is in this
lass.This method is based on level mappings,
losely following the traditional approa
h forderivations using the standard left-to-right sele
tion rule [EBC99℄.Note however that the
lass of predi
ates for whi
h all input-
onsuming derivationsare �nite is quite limited. Relying on this assumption alone
annot be a
omprehensivemethod of showing termination for realisti
 programs. This is also the reason why wespeak of a
lass of predi
ates and not of a
lass of programs. Within one program, somepredi
ates may be in that
lass and some may not.

10 CHAPTER 1. INTRODUCTION1.2.3 Ensuring Input-Consuming DerivationsIn Chapter 7, we show how blo
k de
larations, whi
h are a parti
ularly simple andeÆ
ient kind of delay de
laration,
an be used to ensure that derivations are input-
onsuming. The blo
k de
larations de
lare that
ertain arguments of an atom must benon-variable before that atom
an be sele
ted for resolution.Usually, one would have blo
k de
larations su
h that an atom is only sele
ted whenits input positions are non-variable. However, this is sometimes not suÆ
ient. Supposewe have a predi
ate p=1 whose argument is input, and \p(f(1))." is a
lause de�ningthis predi
ate. The atom p(f(X)) is non-variable in its input position. Nevertheless itssele
tion would violate the requirement of an input-
onsuming derivation, sin
e uni�-
ation with the
lause head instantiates X. This and similar problems give rise to thede�nition of two further
orre
tness properties for programs. Despite these problems,blo
k de
larations are adequate for ensuring input-
onsuming derivations in existingimplementations.Previous literature on delay de
larations has not re
ognised that the simpli
ity andeÆ
ien
y of blo
k de
larations give them a spe
ial role. There has never been a system-ati
 a

ount of when blo
k de
larations are suÆ
ient to ensure any desired propertiessu
h as termination, and when more
omplex
onstru
ts, say groundness
he
ks, areneeded.1.2.4 Termination and blo
k De
larationsIn Chapter 8, we present two approa
hes to showing or ensuring termination for pro-grams with blo
k de
larations. As suggested above, it is often ne
essary to makestronger assumptions about the sele
tion rule rather than just to assume that deriva-tions are input-
onsuming. We do so by assuming left-based derivations. This formalisesthe \default left-to-right" sele
tion rule of most existing Prolog implementations.The �rst approa
h is relatively simple and tries to eliminate the well-known problemof spe
ulative output bindings [Nai92℄. The approa
h
onsists of two
omplementarymethods: one exploits the fa
t that a program does not use any spe
ulative bindings;the other exploits the fa
t that a program does not make any spe
ulative bindings.The idea of the se
ond approa
h is as follows: �rst, blo
k de
larations must beused to ensure that derivations are input-
onsuming. Some predi
ates are known, byChapter 6, to terminate for all input-
onsuming derivations. For all other predi
ates,the textual position of atoms using those predi
ates must be taken into a

ount. Morepre
isely, the latter atoms must be pla
ed suÆ
iently late, whi
h ensures that they areonly sele
ted on
e their input is
ompletely instantiated.Example 1.6 The following
lause is part of a program for the well-known n-queensproblem. It is an example of the test-and-generate paradigm.nqueens(N,Sol) :-sequen
e(N,Seq),safe(Sol),permute(Sol,Seq).

1.2. NON-STANDARD DERIVATIONS 11A solution to the n-queens problem is en
oded as a permutation of the list [1; : : : ; n℄,whi
h represents the position of the queen in ea
h row of the
hess board. The predi
atesequen
e generates the list [1; : : : ; n℄. This list is then permuted using permute and thesolution
andidates are tested for being legal
on�gurations by the predi
ate safe. The
all to safe o

urs before the
all to permute to a
hieve
oroutining of the two atomssafe(Sol) and permute(Sol,Seq).In the
lause body, the
all to permute is pla
ed suÆ
iently late. Assuming left-based derivations, this means that when permute is
alled, the input Seq is ground.With less instantiated input, termination of permute
ould not be guaranteed. In
ontrast, the predi
ate safe will frequently be
alled with partially instantiated listsas input. However, this is not a problem be
ause, as we will see, the assumption ofinput-
onsuming derivations is suÆ
ient to ensure termination of safe. /Chapter 8 formalises and extends heuristi
s that have previously been proposed toensure termination of programs with blo
k de
larations under the assumption of adefault left-to-right sele
tion rule [Nai92℄. In this informal work, even the sele
tion ruleitself is not formalised.Most approa
hes to the termination problem for programs using non-standard der-ivations abstra
t from the relevan
e of the textual order of atoms for the sele
tionrule. These approa
hes must either yield relatively weak results, or strengthen theassumptions about the sele
tion rule in some other way rather than assuming the defaultleft-to-right sele
tion rule [AL95, L�ut93, MT95, MK97℄.1.2.5 Further Aspe
ts of Veri�
ationIn Chapter 9, we study some further aspe
ts of veri�
ation of logi
 programs usingnon-standard derivations.The �rst aspe
t is freedom from uni�
ation. This means that the uni�
ation pro
e-dure
an be repla
ed with so-
alled double mat
hing. The idea is that when a sele
tedatom in a query is uni�ed with the head of a
lause, the input arguments of the
lausehead are �rst bound to the input arguments of the sele
ted atom. This �ts with the ideathat derivations are input-
onsuming, sin
e it means that the input arguments of thesele
ted atom are not instantiated. Afterwards, the output arguments of the sele
tedatom are bound to the output arguments of the
lause. We will see that under
ertain
onditions, programs are free from uni�
ation.The se
ond aspe
t is freedom from o

ur-
he
k. It is well-known that the uni�
ationalgorithm used in existing logi
 programming systems leaves out the o

ur-
he
k foreÆ
ien
y reasons. We show that for programs meeting
ertain
orre
tness
onditions,namely permutation ni
ely moded, input-linear programs, the o

ur-
he
k
an safely beomitted.The third aspe
t is freedom from
oundering. A derivation
ounders if it ends witha non-empty query where no atom is suÆ
iently instantiated to be sele
ted in a

or-dan
e with the blo
k de
larations. Freedom from
oundering is an important aspe
tof veri�
ation mainly be
ause of its relationship to termination. In prin
iple, termina-tion and
ounder freedom are
on
i
ting aims. Clearly, termination
ould trivially beensured by having blo
k de
larations su
h that no atom
an ever be sele
ted, whi
h

12 CHAPTER 1. INTRODUCTIONmeans that all derivations would
ounder immediately. We show however that underreasonable assumptions, namely that programs are permutation well typed, no deriva-tions
ounder. This implies that our methods for showing termination in no way relyon trivial termination by
oundering.As the last aspe
t, we
onsider freedom from errors related to built-ins. These aretype errors, arising from
alls like X is foo, or instantiation errors, arising from
alls likeX is V. One previous proposal for preventing su
h errors uses well typed programs anddelay de
larations to ensure that built-ins are only
alled when their input argumentsare ground [AL95℄. Unfortunately, blo
k de
larations
annot test (dire
tly) whetheran argument is ground. The main
ontribution of Se
tion 9.4 is to show that under
ertain
onditions, blo
k de
larations are nevertheless suÆ
ient. The method is basedon
onstant types, that is types
onsisting only of
onstants. The most prominentexamples would be integer or other numeri
 types. We exploit the fa
t that for a termof
onstant type, being non-variable implies being ground.1.2.6 Weakening Some ConditionsIn Chapter 10, we
onsider ways of simplifying the blo
k de
larations by omitting teststhat
an be proven at
ompile time to be always met at runtime. This is parti
ularlyuseful for built-ins, sin
e there is usually no dire
t way of having delay de
larations forthose. We will also
onsider ways of weakening a restri
tion imposed for many resultsin Part III, namely that the input arguments of ea
h
lause head
ontains no variablemore than on
e. This restri
tion is quite severe in that it prevents two input argumentsbeing tested for equality. Moreover, we
onsider a generalisation of the notion of a modeof a program, allowing for a predi
ate to be used in di�erent modes even within a singleexe
ution of the program.1.2.7 Related Work and Con
lusionChapter 11 takes a look at the literature related to Part III. It then dis
usses some ideasand features that are distin
tive of this work, as well as some open problems. Finally,it
on
ludes the thesis with a summary of Part III.

Chapter 2Notions of Modes and TypesThis
hapter gives an overview of mode and type
on
epts used in the literature, en-
ompassing the uses made of these
on
epts in this thesis. In Se
tion 2.1, we
onsidermodes, in Se
tion 2.2, we
onsider types, and in Se
tion 2.3, we
onsider ways of
om-bining the two
on
epts. Finally in Se
tion 2.4, we re
all very brie
y the
on
epts ofmodes and types as used in this thesis.2.1 ModesOne of the distin
tive features of logi
 programming, as opposed to other programmingparadigms, is that there is no a priori notion of input and output. The same program
an be used to
ompute answers to di�erent problems [Apt97℄. The following exampleillustrates this.Example 2.1 A program like the following is the standard example to introdu
e logi
programming to novi
es [Apt97, SS86℄.dire
t_flight(rome, london).dire
t_flight(paris, london).dire
t_flight(paris, rome).dire
t_flight(london, bristol).
onne
tion(X, Y) :-dire
t_flight(X, Y).
onne
tion(X, Y) :-dire
t_flight(X, Z),
onne
tion(Z, Y).This program
an be used to answer questions of di�erent kinds.� Is there a
ight
onne
tion from Rome to Bristol?| ?-
onne
tion(rome, bristol).yes 13

14 CHAPTER 2. NOTIONS OF MODES AND TYPES� To whi
h
ities are there
ight
onne
tions from Rome?| ?-
onne
tion(rome, City).City = london ? ;City = bristol ? ;no� From whi
h
ities are there
ight
onne
tions to Rome?| ?-
onne
tion(City, rome).City = paris ? ;no� Where do I
hange planes
ying from Paris to Bristol?| ?- dire
t_flight(paris, City), dire
t_flight(City, bristol).City = london ? ;noThese di�erent ways of using a logi
 program are usually referred to by saying that theprogram is used in di�erent modes. For example,
onsider the se
ond query above. The�rst solution to this query is
omputed by the following derivation:
onne
tion(rome; City); dire
t flight(rome; City); 2:One way of
hara
terising this derivation is by saying that the �rst argument positionsof
onne
tion and dire
t flight, respe
tively, are used as input positions, whereasthe se
ond positions are used as output positions.Another way of
hara
terising this is by saying that
onne
tion(rome; City)and dire
t flight(rome; City) are
all patterns in this derivation, whereas
onne
tion(rome; london) and dire
t flight(rome; london) are answer patterns. Ormore abstra
tly,
onne
tion(ground ; free) and dire
t flight(ground ; free) are
allpatterns, whereas
onne
tion(ground ; ground) and dire
t flight(ground ; ground)are answer patterns.For the last query, assuming the standard left-to-right sele
tion rule, we might alsosay that the �rst atom is a produ
er of City and the se
ond atom is a
onsumer of City.All those
hara
terisations suggest that modes are inextri
ably linked to the pro
e-dural rather than the de
larative view of logi
 programming. However, it is also possibleto take a de
larative view of modes [Nai96℄, as we will dis
uss in Subse
tion 2.3.2.We will now shed some light on di�erent notions of modes o

urring in the litera-ture by
omparing them under two
riteria. The �rst
riterion is how pres
riptive ordes
riptive the notion of modes is. The se
ond
riterion is the granularity with whi
hmodes are
hara
terised.2.1.1 Des
riptive versus Pres
riptive ModesThis
riterion is
losely linked to the question: In whi
h
ontext and for whi
h purposeare modes used? Figure 3 shows a rough subdivision of the literature into three groups.

2.1. MODES 15
groundness analysismodes as veri�
ation toolmoded languages 6?des
riptive

pres
riptive
Figure 3: Des
riptive versus pres
riptive modesGroundness analysisMode analysis, more often
alled groundness analysis, is
on
erned with the question \ata given program point, what is the degree of instantiation of variable x?", and in parti
-ular, \is x bound to a ground term1?". Su
h information is useful for
ompiler optimisa-tions su
h as the spe
ialisation of uni�
ation, but also be
ause it improves the pre
isionof other analyses [MS93℄. It is also important for termination analysis [LS96, LS97℄.Mu
h resear
h has been done on groundness analysis [AMSH94, AMSH98, BCHK97,Cod97, CBGH97, CDY94, CD94, CD95, CGBH94, CL96, GGS99, HHK97, HACK00,KSH99, MS93, TL97℄.For the derivation on the fa
ing page, it
an be inferred that at the point just beforedire
t flight is
alled, the �rst argument of dire
t flight is a ground term, and atthe point after dire
t flight is resolved, the se
ond argument is also a ground term.In this
ontext, \mode" is a des
riptive
on
ept, that is, no assumptions are madeabout how programs are | or should be | written. The analysis takes an arbitraryprogram and des
ribes the modes of this program. This is usually done using abstra
tinterpretation [CC77℄. Sin
e groundness is an unde
idable property, this des
ription
an only be approximate. For some program points an analysis might be able to inferthat a variable is bound to a ground term, but it
annot de
ide the groundness of everyvariable for every program point.One usually distinguishes goal-dependent and goal-independent groundness analy-ses [CBGH97, CDY94, CGBH94, MS93℄. In the former, one assumes that the programis exe
uted with an initial goal that is instantiated to a
ertain degree. This introdu
esa slight pres
riptive aspe
t into groundness analysis, sin
e it assumes that programsshould be used in a
ertain way. Most of the literature on groundness analysis howeveris relevant for goal-dependent and goal-independent groundness analyses alike.Part II is about the
onstru
tion of abstra
t domains for groundness analysis. Inthe implementation, these domains are used for goal-dependent groundness analysis.1A term is
alled ground if it does not
ontain variables.

16 CHAPTER 2. NOTIONS OF MODES AND TYPESModes as veri�
ation toolModes have been used for a variety of veri�
ation purposes [AM94, EG99℄. For exam-ple, they have been used to show that programs are o

ur-
he
k free [AL95, AP94b℄,uni�
ation free [AE93℄, su

essful [BC99℄, and terminating [EBC99℄. Here it is assumedthat ea
h argument position of ea
h predi
ate is either input or output, and that theprogram and initial goal ful�ll
ertain
orre
tness properties su
h as being well modedor ni
ely moded. Usually, this approa
h is not
on
erned with how these modes aredetermined.For the derivation on page 14, one would say that for both predi
ates, the �rstargument is input and the se
ond is output, whi
h
an be denoted by writing the modeof the program as f
onne
tion(I ;O); dire
t flight(I ;O)g.In this
ontext, \mode" is a fairly pres
riptive
on
ept, sin
e assumptions are madeabout how programs should be written and used. If a program does not adhere tothe
orre
tness property required for a
ertain veri�
ation purpose, the veri�
ationmethod is not appli
able. Part III of this thesis uses modes to verify properties su
h astermination and o

ur-
he
k freedom.Moded languagesThe most pres
riptive approa
h to modes is to use a moded language, for example Mer-
ury [Hen92, SHC96℄. In Mer
ury, the user has to de
lare the mode of some predi
ates,while the mode of others is inferred. The program has to ful�ll
ertain
orre
tnessproperties
on
erning these modes. Otherwise it is not a

epted by the
ompiler.These
orre
tness properties restri
t the
lass of legal programs and hen
e to a
ertain extent limit the expressiveness of a language. On the other hand, as Mer
uryshows, they allow the
ompiler to generate very eÆ
ient ma
hine
ode.2.1.2 The GranularityWe now distinguish di�erent mode
on
epts by another
riterion: the granularity of theformalism to
hara
terise the instantiation of a term, or in other words, the degree ofpre
ision with whi
h the instantiation of a term
an be
hara
terised. Note that forthis
riterion, we
annot easily draw a pi
ture like the one in Figure 3 on the pre
edingpage, sin
e there is no su
h obvious hierar
hy. We distinguish between two-valued andmore �ne-grained
hara
terisations.Two-valued
hara
terisationsThe lowest granularity is given when we have a
hara
terisation whi
h
an only take twopossible values. Most groundness analyses only distinguish ground and possibly non-ground terms [AMSH94, AMSH98, BCHK97, CD95, HHK97, HACK00, KSH99, MS93℄.Likewise, the works whi
h use modes for veri�
ation purposes only distinguish input andoutput positions [AE93, AL95, AM94, AP94b, BC99, EBC99, EG99℄. Part III of thisthesis also falls into this
ategory, sin
e we assume that an argument position is eitherinput or output.

2.2. TYPES 17More �ne-grained
hara
terisationsThe mode analyses by Codish and others [CD94, CL96℄
hara
terise the degree of in-stantiation of the list, say, [1; x; 5℄ by the abstra
t term list(any), that is, a list whoseelements
annot be
hara
terised. Note that
hara
terising this degree of instantiationis only meaningful with some notion of type. Similar approa
hes have been taken byGallagher and de Waal [GW94℄ and Van Hentenry
k et al. [VCL95℄, and in Part II ofthis thesis.Other mode analyses that provide a relatively high degree of granularity but withoutusing any notion of type have been developed by Janssens and Bruynooghe [JB92℄ andTan and Lin [TL97℄.The mode system of Mer
ury is based on instantiation states, whi
h are a formalismfor asserting how instantiated a term is. With instantiation states, one
ould express,say, that an argument position of a predi
ate is bound to a list of variables when thepredi
ate is
alled and to a ground list when the predi
ate su

eeds. This is a re�nementof the notion of input and output.2.2 TypesIn logi
 programming, a type is usually a set of terms asso
iated with an argumentposition, re
e
ting the programmer's understanding of what \kind" of term is expe
tedin this argument position. For example, as arguments to the predi
ate dire
t flightwe might expe
t terms su
h as rome and paris, but not the number 3 or the list [3; 5℄.Types have been shown to be useful in all programming paradigms, sin
e they
anhelp dete
t logi
al errors in a program. However, types are not as widespread in logi
programming as in imperative and fun
tional programming.As before, we dis
uss di�erent notions of types o

urring in the literature lookingat them from various angles.2.2.1 What is a Type?First, we distinguish various approa
hes by how abstra
tly and generally the types aredes
ribed. Figure 4 shows a rough subdivision of the literature into �ve groups. In thissubse
tion, we ignore the existen
e of variables, that is, we only
onsider ground terms.Built-in types in PrologProlog is an untyped programming language. Nevertheless, in Prolog implementations,there are usually a few built-in types su
h as integer or atom [ISO95, SIC98℄. These areonly of any signi�
an
e in
onne
tion with built-in predi
ates, for example fun
tor=3.Any
all to fun
tor where the third argument is a ground term other than an integerresults in a type error.Ad-ho
 typesCodish and Demoen [CD94℄ have shown how to derive type dependen
ies of logi
 pro-grams using a spe
i�
 set of types in
luding integers, lists, di�eren
e lists, and trees.

18 CHAPTER 2. NOTIONS OF MODES AND TYPES

built-in types in Prologad-ho
 typesregular typesde
lared typesarbitrary types 6
?
on
rete, ad-ho

abstra
t, general

Figure 4: Expressiveness, generality of type formalismsThey suggest that this
hoi
e is for illustrative purposes and that it
ould easily begeneralised, but as we will dis
uss in Se
tion 4.5, the generalisation is by no meansobvious.Regular typesMany authors have developed formalisms to
hara
terise types in a more general way,for example regular approximations [GW94, GL96, SG95a℄ or type graphs [VCL95℄. Thework of Codish and Demoen has also been developed further in this respe
t [CL96℄. Inall of these formalisms, an unlimited number of di�erent types
an be designed, butrestri
tions are imposed whi
h ensure that these types are, in some sense, regular.De
lared typesTyped logi
 programming languages su
h as Mer
ury [SHC96℄ or G�odel [HL94℄ providea syntax used to de
lare types. Ea
h
onstant, fun
tion and predi
ate symbol used in aprogram must have its type de
lared. The type de
larations have to meet a number ofrestri
tions that
an be synta
ti
ally
he
ked. With these restri
tions it is possible totype-
he
k programs at
ompile time. Part II of this thesis uses this notion of types.Arbitrary typesThe literature that uses types for veri�
ation purposes [AE93, AL95, AM94, AP94b,BC99, BLR92℄ has the most general notion of type: any set of ground terms
ould bea type. On the level of the theory, there is no need to impose any restri
tions. Part IIIof this thesis uses this notion of types.

2.2. TYPES 192.2.2 Non-ground TypesIn the previous subse
tion, we disregarded the possibility that a type might
ontain non-ground terms, or in other words, that a non-ground term might have a type. Consideringnon-ground terms adds another dimension to the
lassi�
ation of di�erent approa
hesto types. Therefore this aspe
t should be studied separately.In typed logi
 programming languages su
h as Mer
ury [SHC96℄ or G�odel [HL94℄, avariable has a type whi
h is inferred from the de
lared types of the surrounding symbols.This ensures that the type of a term does not
hange via further instantiation. Hen
ethe degree of instantiation and the type of a term are
ompletely di�erent issues. In
ontrast, Codish and others [CD94, CL96℄ would use, say, list(any) to represent a listwhose elements
annot be
hara
terised, and they would refer to list(any) as a type. InPart II, we also introdu
e obje
ts su
h as list(any), but we
all them abstra
t terms,not types, sin
e they only
hara
terise the instantiation of a term, not its type.Summarising, in typed logi
 programming languages, a non-ground term has a typewhi
h will not
hange via further instantiation. In the terminology used by some workson groundness analysis, a non-ground term also has a type, but this type represents thedegree of instantiation of a term and hen
e may
hange via further instantiation.The literature that uses types for veri�
ation purposes [AE93, AL95, AM94, AP94b,BC99, BLR92℄ de�nes a type as any set of terms
losed under instantiation. Comparedto requiring that a type must be a set of ground terms, this has the advantage thatone
an reason about programs that operate on non-ground data stru
tures. For ex-ample, the predi
ate append
an be used to append two lists whose elements are notinstantiated. Part III also de�nes types in this way.De�ning a type as a set of terms
losed under instantiation links the notion of typeto that of mode. Therefore, we will
onsider non-ground types further in Se
tion 2.3.2.2.3 PolymorphismPerhaps more important than the fa
t that the predi
ate append
an be used to appendtwo lists whose elements are not instantiated, is the fa
t that append
an be used toappend two lists regardless of the type of the list elements. Using a predi
ate for termsof di�erent types in this way is
alled (parametri
) polymorphism.A polymorphi
 type is a type that is parametrised by another type. For example,the type list(integer) is the type of integer lists and is
omposed of a type
onstru
torlist and a type integer. For any type � , there is a type list(�). Note that allowing fortype-
he
king at
ompile time, as pra
tised in typed programming languages, is a mu
hharder problem for polymorphi
 languages than for monomorphi
 ones [Hen93, Hil93,Mil78, MO84℄.Part II of this thesis deals with groundness analysis of polymorphi
ally typed pro-grams. Previous works only allowed for very restri
ted forms of polymorphism. Theworks whi
h use types for veri�
ation purposes [AE93, AL95, AM94, AP94b, BC99,BLR92℄, in
luding Part III of this thesis, do not treat polymorphism expli
itly.There is another notion of polymorphism
alled ad-ho
 polymorphism, but this isusually
alled overloading [Mil78, Str67℄. For example, the
onstant nil may be used

20 CHAPTER 2. NOTIONS OF MODES AND TYPES
type analysistypes as veri�
ation tooltyped languages 6?des
riptive

pres
riptive
Figure 5: Des
riptive versus pres
riptive typesto denote the empty list as well as the empty tree. We are not
on
erned with ad-ho
polymorphism in this thesis.2.2.4 Des
riptive versus Pres
riptive TypesAs with modes, we
an
ompare notions of types with respe
t to how des
riptive andpres
riptive they are. Figure 5 shows a subdivision of the literature into three groups.Note that this subdivision is very similar to the one we had for modes (Figure 3 onpage 15).Type analysisType analysis [CD94, CL96, GGS99, VCL95℄ is
on
erned with the question \what isthe type of an argument or a variable?". This question
an be quali�ed further by� spe
ifying the types of the arguments of the query with whi
h the program is used,� spe
ifying program points of interest, su
h as the entry or exit point of a predi
ate.In this
ontext, \type" is a des
riptive
on
ept, and type analysis is inseparably linkedto mode analysis. Saying that x is bound to a list
an be viewed as a statement aboutthe type of x as well as the degree of instantiation of x. Type analysis is a parti
ularlypre
ise kind of mode analysis, as des
ribed in Subse
tion 2.1.1, and further in the nextse
tion.Type analysis is usually done using abstra
t interpretation [CC77℄. The points madeabout abstra
t interpretation on page 15 apply here as well.Types as veri�
ation toolJust as type analysis is a parti
ularly pre
ise kind of mode analysis, types as veri�
ationtool [AE93, AL95, AM94, AP94b, BC99, BLR92℄
an be regarded as a re�nement ofmodes as veri�
ation tool, and have been used for the same purposes. In addition toassuming that ea
h argument position of a program is either input or output, a type isasso
iated with ea
h argument position. The program and initial goal have to be welltyped, whi
h is a property ensuring that all
omputed answers have terms of the
orre
t

2.3. COMBINING MODES AND TYPES 21type in ea
h argument position. Usually, this approa
h is not
on
erned with how thetype of ea
h argument position is determined.Just like modes as veri�
ation tool (page 16), \type" is a fairly pres
riptive
on
epthere, sin
e assumptions are made about how programs should be written and used.Part III of this thesis uses this notion of type.Typed languagesAs with modes, the most pres
riptive approa
h to types is having a typed language su
has Mer
ury [Hen92, SHC96℄ or G�odel [HL94℄. Part II deals with typed languages andhen
e uses this pres
riptive notion of types. In typed languages, the user has to de
larethe types of ea
h
onstant, fun
tion and predi
ate symbol used.2 The type de
larationshave to meet a number of restri
tions that
an be synta
ti
ally
he
ked. These ensureat
ompile time that no type errors
an o

ur. That is, a predi
ate
annot be
alledwith an argument not having the de
lared type.2.3 Combining Modes and TypesWe have seen on page 17 that �ne-grained
hara
terisations of the instantiation of aterm often use some notion of type. On the other hand, we have seen in Subse
tion 2.2.2that the degree of instantiation of a term plays a role in some
on
epts of types. Hen
e,modes and types are
losely related. We now look at two ways of developing thisrelationship.2.3.1 Dire
tional TypesA natural way of joining modes and types is by the notion of dire
tional types [BM95,BLR92, RNP92℄. A dire
tional type for an argument of a predi
ate has the form � ! � .It is an assertion that if the argument is instantiated to a degree spe
i�ed by � at
all time, then it will be instantiated to a degree spe
i�ed by � when the predi
atereturns. For example, the predi
ate append in forward mode
ould be spe
i�ed byappend(list! list; list! list; free! list) whi
h should be read as: if append is
alledwith the �rst and se
ond arguments being lists, then for any answer, all arguments willbe instantiated to lists.Dire
tional types have two aspe
ts [BM95℄. One is input-output
orre
tness: if a
all satis�es the input assertion, then the answer should spe
ify the output assertion. Itdoes not depend on the sele
tion rule. The other is
all
orre
tness: If a
all satis�es itsinput assertion, all triggered
alls should also satisfy their input assertion. This aspe
tdepends on the sele
tion rule.Both Part II and Part III of this thesis use formalisms that resemble dire
tionaltypes. The formalisms allow to express the intuition that, say, append is used in forwardmode, although the pre
ise meanings of the formalisms di�er of
ourse. To illustratethis point, we now show how this would be expressed. In Part II, simplifying the syntax2This requirement
ould sometimes be relaxed sin
e the types of some symbols
an be re
onstru
tedfrom the
ontext.

22 CHAPTER 2. NOTIONS OF MODES AND TYPESsomewhat, this intuition would be expressed by saying that append(list; list; any) isa
all pattern and append(list; list; list) is an answer pattern. In Part III, it wouldbe expressed by saying that the mode of append is append(I ; I ;O) and the type isappend(list; list; list).2.3.2 A De
larative View of ModesTo understand Naish's de
larative view of modes [Nai96℄, we must �rst understandhis notion of type. It often happens that the su

ess set of a program, that is, theset of ground atoms that are true in all its models,
ontains atoms that are not truea

ording to the programmer's intentions. For example, the su

ess set of the usualappend program
ontains the atom append([℄; 7; 7). A type is a set of atoms spe
i�ed bythe programmer whi
h ex
ludes su
h unintended atoms. For example, a natural typeof append would be the set of all ground atoms append(s; t; u) where s; t; u are lists.It is desirable that any
all to a logi
 program
an only give answers that are in thetype. Calls that
ould result in answers not in the type should be
onsidered unsafe.Suppose we are wondering whether a
all to append(s; t; u) is safe. If we knew that allground instan
es of append(s; t; u) that are in the su

ess set of append are also in thetype of append, then we would know that the
all append(s; t; u) is safe. However, thereis no way we
ould know the su

ess set without a
tually exe
uting the program.Therefore, we have to approximate the su

ess set. A mode of a program is anyset of ground atoms whi
h is a superset of the su

ess set. One mode suggested forappend is fappend(s; t; u) j s 2 list ^ (t 2 list () u 2 list)g. Consider again thequestion whether a
all is safe. If the
all is append([℄; X; X), then it has a ground instan
eappend([℄; 7; 7) whi
h is in the mode but not in the type, and it is therefore unsafe. Ifthe
all is append([℄; X; [℄), then for all instan
es in the mode, X must be bound to a list,and hen
e all instan
es in the mode are also in the type and the
all is safe. In short,the mode together with the type en
ode the requirement that either the se
ond or thethird argument must be a list for a
all to be safe, whi
h means that either the se
ondor the third argument must be input. This shows how pro
edural information
an bederived from this de
larative view.2.4 SummaryIn this
hapter, we gave an overview of mode and type
on
epts used in the literature,by looking at these
on
epts from di�erent angles. We now re
all the most importantproperties of the mode and type
on
epts used in Parts II and III of this thesis.In Part II, modes are� des
riptive: the modes of a program are analysed, not pres
ribed;� �ne-grained: the modes are
hara
terised very pre
isely.In Part II, types are� de
lared: a syntax for this purpose is provided in typed programming languages;

2.4. SUMMARY 23� pres
riptive: we
onsider typed programming languages, where a program mustmeet
ertain
riteria
on
erning the types before it
an be a

epted by the
om-piler;� polymorphi
: a type
an be parametrised by another type;� independent of instantiation: the type of a term does not
hange via instantiation.In Part III, modes are� (relatively) pres
riptive: the programs must meet
ertain
riteria
on
erning themodes for our methods to be appli
able;�
oarse: it is only possible to de
lare that arguments are input or output.In Part III, types are� \arbitrary": on the level of the theory, any set of terms (
losed under instantiation)
ould be a type;� (relatively) pres
riptive: the programs must meet
ertain
riteria
on
erning thetypes for our methods to be appli
able;�
losed under instantiation: if a term has a type, then it
ontinues to have thattype even after it has been further instantiated.

Part IIMode Analysis for Typed Logi
Programs

24

Chapter 3The Stru
ture of Types andTermsThis part of the thesis des
ribes a mode analysis for typed logi
 programs using abstra
tinterpretation. It is divided into two
hapters. This
hapter is
on
erned with
on
reteterms, whi
h are the data used in the programs we want to analyse. We de�ne relationsbetween the types in a program giving rise to
ertain stru
tural properties of termswhi
h the mode analysis is supposed to
hara
terise.In the next
hapter, we will then de�ne abstra
t terms to
hara
terise these stru
-tural properties, as well as the a
tual mode analysis.3.1 Introdu
tionTypes are used in programming to restri
t the underlying syntax so that only meaningfulexpressions are allowed. This enables most typographi
al errors and in
onsisten
ies inthe knowledge representation to be dete
ted by the
ompiler. As a
onsequen
e, anin
reasing number of appli
ations using typed logi
 programming languages su
h asMer
ury [SHC96℄ or G�odel [HL94℄ are being developed.Modes
hara
terise the degree to whi
h program variables are instantiated at
ertainprogram points. This information
an be used to underpin optimisations su
h as the spe-
ialisation of uni�
ation and the removal of ba
ktra
king, and to support determina
yanalysis [HK97℄. When a mode analysis is formulated in terms of abstra
t interpreta-tion, the program exe
ution is tra
ed using des
riptions of data (the abstra
t domain)rather than a
tual data, and operations on these des
riptions rather than operations onthe a
tual data. A simple domain for mode analysis has two elements ground and non-ground to distinguish between ground and possibly non-ground terms. More
omplexdomains
an
hara
terise partially instantiated data stru
tures with more pre
ision.The main
ontribution of this part of the thesis is to des
ribe a generi
 method ofderiving pre
ise abstra
t domains for mode analysis from the type de
larations of a typedprogram. Ea
h abstra
t domain is spe
ialised for a parti
ular type and
hara
terisesvarying degrees of instantiation of terms of this type. In parti
ular it
hara
terisesthe property of termination. This property is well-known for lists as nil-terminationand is here generalised to arbitrary types. Observe that termination of terms is
losely26

3.2. MOTIVATING AND ILLUSTRATIVE EXAMPLES 27related to the termination of programs that operate on these terms. For example, ifthe predi
ate Append is
alled with the �rst argument being a nil-terminated list, allinvoked
alls to Append also have the �rst argument being a nil-terminated list, andAppend is guaranteed to terminate.The pro
edure for
onstru
ting su
h domains is implemented (in G�odel) for G�odelprograms. By in
orporating the
onstru
ted domains into a mode analyser, we see thatalthough the pre
ision of the analysis is signi�
antly improved, the analysis times (forthe programs tested)
ompare well with a domain that only distinguishes ground andnon-ground terms.The abstra
t domains are used in an abstra
t
ompilation [CD95, DW86, HWD92℄framework: a program is abstra
ted by repla
ing ea
h uni�
ation with an abstra
t
oun-terpart, and then the abstra
t program is evaluated by applying a standard operationalsemanti
s to it.We believe that this work is the natural generalisation of work by Codish and oth-ers [CD94, CL96℄ and takes the idea presented there to its limits: our abstra
t domainsprovide the highest degree of pre
ision that a generi
 domain
onstru
tion should pro-vide. It thus helps to understand other, more ad-ho
 and pragmati
 domain
onstru
-tions as instan
es of a general theory.This
hapter is organised as follows. Se
tion 3.2 introdu
es three examples. Se
-tion 3.3 de�nes some syntax. Se
tion 3.4 de�nes relations between types. Se
tion 3.5de�nes termination of a term, as well as fun
tions that extra
t
ertain subterms of aterm.3.2 Motivating and Illustrative ExamplesWe introdu
e three examples that are used throughout Part II. The syntax is that ofthe typed language G�odel [HL94℄. Variables and (type) parameters begin with lower
ase letters; other alphabeti
 symbols begin with upper
ase letters. We use Integer(abbreviated as Int) to illustrate a type
ontaining only
onstants (1; 2; 3 : : :).Example 3.1 This is the usual list type. We give its de
larations to illustrate the typedes
ription language of G�odel.CONSTRUCTOR List/1.CONSTANT Nil: List(u).FUNCTION Cons: u * List(u) -> List(u).List is a (type)
onstru
tor; u is a type parameter that
an be instantiated to any typesu
h as Int or List(Int); Nil is a
onstant of type List(u); and Cons is the usual
onstru
tor for lists whose elements must all have the same type. We use the standardlist notation [: : : j : : :℄ where
onvenient. It is
ommon to distinguish nil-terminated listsfrom open lists. For example, [℄ and [1; x; y℄ are nil-terminated, but [1; 2jy℄ is open. /Example 3.2 This example was invented to
ounter a
ommon point of
riti
ism that\list
attening"
annot be realised in G�odel, that is terms su
h as [1; [2; 3℄℄
annotbe de�ned, let alone
attened. The Nests module formalises nested lists by the typeNest(v).

28 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSIMPORT Lists, Integers.CONSTRUCTOR Nest/1.FUNCTION E: v -> Nest(v);N: List(Nest(v)) -> Nest(v).A trivial nest is
onstru
ted using fun
tion E, a
omplex nest by \nesting" a list ofnests using fun
tion N. The notable property of the de
laration for N is that the rangetype, Nest(v), is a proper sub\term" (in the synta
ti
 sense) of the argument typeList(Nest(v)). We have seen a similar type de
laration in Example 1.4. We use thisexample throughout to demonstrate that this work is a non-trivial generalisation of pre-vious approa
hes to abstra
t domain
onstru
tion [CD94, CL96, TL97℄. The Integersmodule is imported sin
e we frequently use Nest(Int) as an example. /Example 3.3 A table is a data stru
ture
ontaining an ordered
olle
tion of nodes,ea
h of whi
h has two
omponents, a key (of type String) and a value, of arbitrarytype. We give part of the Tables module whi
h is provided as a system module inG�odel.IMPORT Strings.BASE Balan
e.CONSTRUCTOR Table/1.CONSTANT Null: Table(u);LH, RH, EQ: Balan
e.FUNCTION Node:Table(u) * String * u * Balan
e * Table(u) -> Table(u).Tables is implemented in G�odel as an AVL-tree [Emd81℄: A non-leaf node has a keyargument, a value argument, arguments for the left and right subtrees, and an argumentwhi
h represents balan
ing information. /3.3 Notation and TerminologyThe set of polymorphi
 types is given by the term stru
ture T (�� ; U) where �� is a �nitealphabet of
onstru
tor symbols whi
h in
ludes at least one base (
onstru
tor of arity0), and U is a
ountably in�nite set of parameters (type variables). We de�ne theorder � on types as the order indu
ed by some (for example lexi
ographi
al) order on
onstru
tor and parameter symbols, where parameter symbols
ome before
onstru
torsymbols. Parameters are denoted by u; v. A tuple of distin
t parameters ordered withrespe
t to � is denoted by �u. Types are denoted by �; �; �; �; ! and tuples of types aredenoted by ��; �� .Let �f be an alphabet of fun
tion (term
onstru
tor) symbols whi
h in
ludes atleast one
onstant (fun
tion of arity 0) and let �p be an alphabet of predi
ate sym-bols. Ea
h symbol in �f (respe
tively �p) has its type as subs
ript. If fh�1:::�n;�i 2 �f(respe
tively ph�1:::�ni 2 �p) then h�1; : : : ; �ni 2 T (�� ; U)? and � 2 T (�� ; U) n U . Iffh�1:::�n;�i 2 �f , then every parameter o

urring in h�1; : : : ; �ni must also o

ur in � .This
ondition is
alled transparen
y
ondition. We
all � the range type of

3.4. RELATIONS BETWEEN TYPES 29fh�1:::�n;�i. A symbol is often written without its type if it is
lear from the
ontext.Terms and atoms are de�ned in the usual way [HL94, HT92℄. In this terminology, ifa term has a type �, it also has every instan
e of �.1 Thus in general, the type of aterm is not unique. However the most general type of a term is unique up to parameterrenaming. If V is a
ountably in�nite set of variables, then the triple L = h�p;�f ; V ide�nes a polymorphi
 many-sorted �rst order language. Variables are denotedby x; y; terms by t; r; s; tuples of distin
t variables by �x; �y; and a tuple of terms by �t.The set of variables in a synta
ti
 obje
t o is denoted by vars(o).A substitution (denoted by �) is a mapping from variables to terms whi
h is theidentity almost everywhere. The domain of a substitution � is dom(�) = fx j x� 6= xg.The appli
ation of a substitution � to a term t is denoted as t�. Type substitutionsare de�ned analogously and denoted by .Programs are assumed to be in normal form. Thus a literal2 is an equation ofthe form x = y or x = f(�y), where f 2 �f , or an atom Q(�y), where Q 2 �p. A queryG is a
onjun
tion of literals. A
lause is a formula of the form Q(�y) G. If S is aset of
lauses, then the tuple P = hL; Si de�nes a polymorphi
 many-sorted logi
program.3.4 Relations between TypesAn abstra
t term
hara
terises the stru
ture of a
on
rete term. It is a
ru
ial
hoi
ein the design of abstra
t domains whi
h aspe
ts of the
on
rete stru
ture should be
hara
terised [TL97, VCL95℄. In this part of the thesis we show how this
hoi
e
an bebased naturally on the information
ontained in the type de
larations. This is formalisedin this se
tion. We des
ribe how fun
tion de
larations relate types to one another.De�nition 3.1 [subterm type℄ A type � is a dire
t subterm type of � (denotedas � / �) if there is fh�1:::�n;�i 2 �f and a type substitution su
h that � = � and�i = � for some i 2 f1; : : : ; ng. The transitive, re
exive
losure of / is denoted as /�.If � /� �, then � is a subterm type of �. /Throughout Part II, we impose two restri
tions on the language de
larations we
onsider.We �rst need to de�ne a simple type.De�nition 3.2 [simple type℄ A simple type is a type of the form C(�u), where C 2 �� ./The restri
tions are as follows:Simple Range Condition: For all fh�1:::�n;�i 2 �f , � is a simple type.Re
exive Condition: For all C 2 �� and types � = C(��); � = C(��), if � /� � ,then � is a sub\term" (in the synta
ti
 sense) of � .1For example, the term Nil has type List(u), List(Int), List(Nest(Int)) et
.2We ignore negated literals here. In the implementation, negated literals may o

ur in the analysedprogram, but they are ignored in the analysis, whi
h means that they do not
ontribute any information.

30 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSWe do not know of any real programs that violate these
onditions. In parti
ular, theyare met by all examples in Se
tion 3.2. We now motivate the need for these restri
tions.The Simple Range Condition allows for the
onstru
tion of an abstra
t domain fora type su
h as List(�) to be des
ribed independently of the type �. An example of aviolation of this
ondition would be to de
lareFUNCTION F: String -> List(Float).in addition to the de
larations in Example 3.1. Then we would have the pathologi
alsituation that a term of type List(Float)
an have subterms of type String, Floatand List(Float), whereas for all � 6= Float, List(�)
an only have subterms of type� and List(�). In Mer
ury [SHC96℄ and in typed fun
tional languages su
h as ML orHaskell [Tho99℄, this
ondition is enfor
ed by the syntax. For example, the list typewould be de
lared in Haskell asdata List u = Nil | Cons u (List u)and adding another de
laration su
h asdata List Float = F Stringwould be illegal. Being able to violate the Simple Range Condition
an be regarded asan artefa
t of the G�odel syntax.An example of a violation of the Re
exive Condition would be to de
lareFUNCTION F: List(List(u)) -> List(u).in addition to the de
larations in Example 3.1. Then a term of type List(Int)
ouldhave subterms of type List(Int), List(List(Int)), List(List(List(Int))) et
. The
ondition ensures that, for a program and a given query, there are only �nitely manytypes and hen
e, the abstra
t program has only �nitely many abstra
t domains.De�nition 3.3 [re
ursive type and non-re
ursive subterm type℄ A type � is a re
ursivetype of � (denoted as � ./ �) if � /� � and � /� �.A type � is a non-re
ursive subterm type of � (denoted as � // �) if � 6/� �and there is a type � su
h that � / � and � ./ �. We write N (�) = f� j � // �g: IfN (�) = f�1; : : : ; �mg and �j � �j+1 for all j 2 f1; : : : ;m � 1g, we abuse notation anddenote the tuple h�1; : : : ; �mi by N (�) as well. /Note that for example, Int ./ Int, although one might �nd it
ounterintuitive to thinkof Int as re
ursive type. Note moreover that in the above de�nition, � ./ � in
ludesthe
ase that � = �. The de�nition has been designed to a
hieve uniformity of thepresentation.It follows immediately from the de�nition that if � // �, then � 6./ �. The relation /
an be visualised as a type graph (similarly de�ned by Janssens and Bruynooghe [JB92℄,Somogyi [Som87℄ and Van Hentenry
k et al. [VCL95℄). The type graph for a type � isa dire
ted graph whose nodes are subterm types of �. The node � is
alled the initialnode. There is an edge from �1 to �2 if and only if �2 / �1. The re
ursive types of � areall the types in the strongly
onne
ted
omponent (SCC) of �, and the non-re
ursive

3.4. RELATIONS BETWEEN TYPES 31
Nest(v)

v

List(u)

u

List(Nest(v))

u

BalanceTable(u)

StringFigure 6: Some type graphs, with initial node highlightedsubterm types are all the types � not in the SCC of � but su
h that there is an edgefrom the SCC to �. The �niteness of this graph is ensured by the Re
exive Condition.Our domain
onstru
tion relies on the fa
t that N (�) is �nite.Example 3.4 In Figure 6 there is a type graph for ea
h of the examples in Se
-tion 3.2. Trivially Int ./ Int. However, List(u) ./ List(u) is non-trivial in that,in the type graph for List(u), there is a path from List(u) to itself. FurthermoreList(Nest(v)) ./ Nest(v). Non-re
ursive subterm types of simple types are often pa-rameters, as in N (List(u)) = hui and N (Nest(v)) = hvi. However, this is not alwaysthe
ase, sin
e N (Table(u)) = hu; Balan
e; Stringi. /It is important that the relation / is
losed under instantiation of its arguments.Lemma 3.1 Let �; � be types and a type substitution. If � / � then � /� . If� /� � then � /� � .Proof. For the �rst statement, there is fh�1:::�n;�i 2 �f and a type substitution 0su
h that for some i 2 f1; : : : ; ng, �i 0 = � and � 0 = �. Consequently �i 0 = � and� 0 = � , so � / � . The se
ond statement follows from the �rst. 2The following lemma states another useful property of the relations /� and ./.Lemma 3.2 Let �; �; � be types so that � /� � /� � and � ./ �. Then � ./ �.Proof. Sin
e � ./ �, it follows that � /� �. Thus, sin
e � /� � , it follows that � /� � .Furthermore � /� �, and therefore � ./ �. 2The following lemma ensures that the abstra
t domains de�ned later are well-de�ned.It states that any sequen
e of non-re
ursive subterm types terminates.Lemma 3.3 Let � 2 T (�� ; U) n U and � � �� . Let I be a non-empty index set(�nite or in�nite) starting at 1 and f(Ci(�ui); �i; i) j i 2 Ig a sequen
e where C1 2 �,�1 = C1(�u1) 1 = � , dom(1) � �u1 and, for ea
h i 2 I where i > 1:� Ci 2 �, dom(i) � �ui and Ci(�ui) i = �i i�1,� �i 2 T (�; U) and �i //Ci�1(�ui�1).

32 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMS
�4 �3 �2 �1

C3(�u3) C2(�u2) C1(�u1)6 6 6? ? ?

�

�

�= = = 2 1 0 3 2 1: : :: : : // // //
Figure 7: The sequen
e of non-re
ursive subterm typesThen I and hen
e f(Ci(�ui); �i; i) j i 2 Ig is �nite.Proof. Let 0 be the identity substitution. The sequen
e is illustrated in Figure 7.First note that, by Lemma 3.1 and De�nition 3.3, for ea
h i 2 I where i � 2, we have�i i�1 /� �i�1 i�2. Thus, for all i; j 2 I where i > j, �i i�1 /� �j j�1.Let d(�) be the number of o

urren
es of
onstru
tors in a type �. If �0 � �� , de�neD(�0; �) = d(�) + XC2�00� X�2N (C(�u)) d(�)1A :The proof is by indu
tion on D(�; �). Sin
e � =2 U , it follows that D(�; �) � 1. IfD(�; �) = 1, then � = C1(�u1), N (C1(�u1)) � U and jIj � 2.Suppose that D(�; �) = M > 1. Assume that, for all types � and sets of
onstru
tors�0 � � su
h that D(�0; �) < M , the result holds. Sin
e the result obviously holdsif jIj � 2, suppose jIj > 2 so that �2 is not a parameter. Consider the sequen
ef(Ci(�ui); �i; 0i) j i 2 I 0g where I 0 is an index set starting at 2, 01 is the identitysubstitution and, for ea
h i 2 I 0, we have Ci(�ui) 0i = �i 0i�1. Sin
e �i //Ci�1(�ui�1), 0i 1 = i for ea
h i 2 I 0. As in the �rst paragraph, for ea
h i 2 I 0, �i 0i�1 /� �2.However, �2 //C1(�u1). Thus, by the Re
exive Condition and Lemma 3.2, for ea
h i 2 I 0,we have Ci 6= C1. Thus, for ea
h i 2 I 0, we have Ci 2 �0 where �0 = � n fC1g. However,D(�0; �2) = d(�2) +D(�; �)� d(�) � X�2N (C1(�u)) d(�):Hen
e, as d(�) > 0 and �2 2 N (C1(�u)), D(�0; �2) < M and we
an use the indu
tionhypothesis. Hen
e I 0 is �nite.Assume now that I 0 is maximal with respe
t to the above
onditions and that jI 0j = N 0and suppose K = N 0 + 1 2 I. (If K =2 I, then, as I 0 is �nite, I is �nite.) Then�K 0K�1 = u where u is parameter sin
e, if �K 0K�1 = CK(�uK) 0K , then K also satis�esthe above
onditions so that I 0 is not maximal. Thus 0K�1 is the identity substitutionand �K = u. By the transparen
y
ondition, sin
e �K /� C1(�u1), u 2 �u1. As K�1 = 0K�1 1, we have K�1 = 1 and �K K�1 2 �u1 1. Hen
e d(�K K�1) < d(�) so thatD(�; �K K�1) < D(�; �):

3.5. TRAVERSING CONCRETE TERMS 33
7

E(7) N([E(7)]) [E(7)] Nil

Figure 8: Term tree for N([E(7)℄)Nest(v)Hen
e, the indu
tive hypothesis
an be applied to the remaining sequen
e starting at�K . Thus the subsequen
e starting at �K is �nite and therefore the
omplete sequen
estarting at � is �nite. 23.5 Traversing Con
rete TermsWe now de�ne termination of a term, as well as fun
tions that extra
t
ertain subtermsof a term.From now on, we shall often annotate a term t with a type � by writing t�. The useof this notation always implies that the type of t must be a (possibly trivial) instan
e of�. The annotation � gives the (type)
ontext in whi
h t is used. If S is a set of terms,then S� denotes the set of terms in S, ea
h annotated with �.De�nition 3.4 [subterm℄ Let t� be a term. Then t� is a subterm of t� at depth 0.If s = fh�1:::�n;�i(s1; : : : ; sn) and for some type substitution , s� is a subterm of t�at depth d, then s�i i is a subterm of t� at depth d + 1 for i 2 f1; : : : ; ng. We writes� /� t� if s� is a subterm of t� at some depth d (s� / t� when d = 1). /It
an be seen that s� /� t� implies � /� �. When the supers
ripts are ignored, theabove is the usual de�nition of a subterm. The supers
ripts provide a uniform way ofdes
ribing the \polymorphi
 type relationship" between a term and its subterms, whi
his independent of further instantiation.Example 3.5 xv is a subterm of E(x)Nest(v), and 7v is a subterm of E(7)Nest(v). /De�nition 3.5 [re
ursive subterm℄ Let s� and t� be terms su
h that s� /� t� , and �a type su
h that � ./ � and � /� �. Then s� is a �-re
ursive subterm of t� . Iffurthermore � = �, then s� is a re
ursive subterm of t� . /In parti
ular, for every type �, a variable is always a �-re
ursive subterm of itself. The
orresponden
e between subterms and subterm types
an be illustrated by drawing theterm as tree that resembles the
orresponding type graph.Example 3.6 The term tree for t = N([E(7)℄)Nest(v) is given in Figure 8 where the nodefor t is highlighted. Ea
h box drawn with solid lines stands for a subterm. We
an mapthis tree onto the type graph for Nest(v) in Figure 6 by repla
ing the subgraphs en
losed

34 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSwith dotted lines with
orresponding nodes in the type graph. Thus the re
ursivesubterms of t o

ur in the boxes
orresponding to nodes in the SCC of Nest(v). Allsubterms of t ex
ept 7v are re
ursive subterms of t.Note that E(7)Nest(v) is a Nest(v)-re
ursive subterm of [E(7)℄List(Nest(v)) (in De�-nition 3.5, take � = � = Nest(v) and � = List(Nest(v))). However, E(7)u is not are
ursive subterm of [E(7)℄List(u). Thus whether or not a member of a list should beregarded as a re
ursive subterm of that list depends on the
ontext. /We now de�ne termination of a term. Consider a term t�, where � is simple. Termina-tion of t means that no re
ursive subterm of t� is a variable. The formal de�nition isslightly more general.De�nition 3.6 [termination fun
tion Z℄ Let t� be a term and � be a type su
h that� ./ �. De�ne Z(t� ; �) = false if a �-re
ursive subterm of t� is a variable, and trueotherwise.A term t is terminated if t = fh�1:::�n;�i(t1; : : : ; tn) and Z(t� ; �) = true.3 A termis open if it is not terminated. For a set S� of terms de�ne Z(S� ; �) = Vt2S Z(t� ; �).We omit � in the expression Z(t� ; �) whenever � = �. /Example 3.7 Any variable x is open. The term 7 has no variable subterm, thereforeZ(7; Int) = true and 7 is terminated. The term [x℄List(u) has itself and NilList(u)as re
ursive subterms, therefore Z([x℄; List(u)) = true and [x℄ is terminated. How-ever, [x℄List(Nest(v)) has xNest(v) as a Nest(v)-re
ursive subterm, and so it follows thatZ([x℄List(Nest(v)) ; Nest(v)) = false. Furthermore, N([x℄)Nest(v) has xNest(v) as a re
ursivesubterm, so Z(N([x℄); Nest(v)) = false and N([x℄) is open. /The abstra
t domain should not only
hara
terise termination, but also the instantiationof subterms of a term. We de�ne fun
tions whi
h extra
t sets of subterms from a term.De�nition 3.7 [extra
tor E� for �℄ Let t� be a term and �, � be types su
h that � ./ �and � 2 N (�). Let R be the set of �-re
ursive subterms of t� . De�neE�(t� ; �) = vars(R) [fs j r� 2 R and s� / r�g:For a set S� of terms de�ne E�(S� ; �) = St2S E�(t� ; �). As with Z, we write E�(t� ; �)simply as E�(t; �). /Example 3.8 For the term N([E(7)℄) of type Nest(Int), we haveEv(N([E(7)℄); Nest(v)) = f7g:The type Table(u) has three non-re
ursive subterm types u, Balan
e and String,and so there are three extra
tor fun
tions: Eu, whi
h extra
ts all value subterms;EBalan
e, whi
h extra
ts all arguments
ontaining balan
ing information; and EString,whi
h extra
ts all key subterms. In parti
ular, this means that for a term t of typeTable(String), both EString(t) and Eu(t) would
ontain terms of type String. /3Note that this in
ludes the
ase that t is a
onstant.

3.5. TRAVERSING CONCRETE TERMS 35Note that a priori, the extra
ted terms have no type annotation. This is be
ause, inthe proofs, we sometimes need to write an expression su
h as E�(E�(t; �)� ; �), whi
hreads: �rst
ompute E�(t; �), then annotate it with � , then pass it to E�.Note also that if t has a �-re
ursive subterm whi
h is a variable, then this variableis always extra
ted. Intuitively this is be
ause this variable might later be instantiatedto a term whi
h has variable subterms of type �. Thus the property \E�(t� ; �) does not
ontain variables" is
losed under instantiation of t.The following lemma shows that Z and E�
an be expressed in terms of the im-mediate subterms of a term. This provides the basis for de�ning the abstra
tion of a(normal form) equation in a
on
rete program, whi
h naturally involves a term and itsimmediate subterms. A
tually, we
ould have de�ned Z and E� by this property, butthe de�nition using subterms is probably more intuitive.Lemma 3.4 Let t = fh�1:::�n;�i(t1; : : : ; tn) be a term and � 2 N (�). ThenZ(t; �) = ^�i./�Z(t�ii ; �)E�(t; �) = fti j �i = �g [[�i./�E�(t�ii ; �):Proof. Let r� be a � -re
ursive subterm of t�ii , for some i 2 f1; : : : ; ng where �i ./ � .Then by De�nitions 3.4 and 3.5, � ./ � and r� /� t� , and hen
e r� is a re
ursive subtermof t� .Now let r� be a re
ursive subterm of t� . Then either r� = t� or, for some i 2 f1; : : : ; ng,r� /� t�ii . In the latter
ase, by De�nitions 3.4 and 3.5, � /� �i, �i / � and � ./ � . Hen
e,by Lemma 3.2, �i ./ � so that r� is a � -re
ursive subterm of t�ii .Thus the re
ursive subterms of t are t, together with the � -re
ursive subterms of t�ii , forall �i ./ � . The result then follows from De�nitions 3.6 and 3.7. 2The following lemmas are needed in the proof of Lemma 3.7, whi
h is the key lemmaused to prove Theorem 4.3.Lemma 3.5 Let � be a type, a type substitution, and t a term having a type whi
his an instan
e of � . If s� is a subterm of t�, then s has a type whi
h is an instan
e of� .Proof. Indu
tion on the depth of subterms. 2Lemma 3.6 Let �1; �2; �3 be types. If �1 ./ �2 and �2 ./ �3 for some type substitution then �1 ./ �3.Proof. By Lemma 3.1 it follows that �1 /� �3 and �3 /� �1 . 2Consider simple types � and � su
h that � ./ � for some type substitution (forexample � = Nest(v), � = List(u) and and = fu=Nest(v)g). The following keylemma relates � with � with respe
t to the termination and extra
tor fun
tions.

36 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSLemma 3.7 Let � and � be simple types su
h that � ./ � for some , let t be a termhaving a type whi
h is an instan
e of � , and � 2 N (�). ThenZ(t� ; �) = Z(t; �) ^ ^�2N (�)� ./�Z(E�(t; �)� ; �) (1)E�(t� ; �) = [�2N (�)� =�E�(t; �) [[�2N (�)� ./�E�(E�(t; �)� ; �) (2)Proof. The proof
onsists of four parts. In Part 1, we de�ne a number of sets ofsubterms of t. We then show six propositions whi
h say that ea
h expression o

urringin (1) and (2)
an be expressed in terms of these sets. In Part 2 we show how the leftand right hand sides of both (1) and (2)
an be related using these sets. This is thenused in Part 3 to show (1), and in Part 4 to show (2).Part 1: To avoid
onfusion between the many symbols o

urring in the proof, keep inmind that �, � , � and o

ur in the statement and thus are �xed. We use f as anabbreviation for fh� 01:::� 0n;� 0i (not fh�1:::�n;�i, as earlier in this
hapter), and �r to denote(r1; : : : ; rn). Supers
ripts are omitted where irrelevant. De�neR = fr! j r! is a �{re
ursive subterm of t� gS = fri j f(�r)� 0 0 2 R and � 0i 0 = �gA = fr! j r! is a �{re
ursive subterm of t�g:Note that, by Lemma 3.5, ea
h r! 2 A has a type whi
h is an instan
e of ! . Further-more for all � 2 N (�) de�neB� = fri j f(�r)� 0 0 2 A and � 0i 0 = �g:Note that, by Lemma 3.5, ea
h ri 2 B� has a type whi
h is an instan
e of � 0i 0 (= �).For all � 2 N (�) with � ./ � de�neC� = fr! j r! is a �-re
ursive subterm of some s� ; s 2 B�gD� = fri j f(�r)� 0 0 2 C� and � 0i 0 = �g:S1-S6 state how these sets relate to the
omputations of (1) and (2).S1 Z(t� ; �) = false if and only if vars(R) 6= ;.S2 Z(t; �) = false if and only if vars(A) 6= ;.S3 E�(t� ; �) = vars(R) [S.S4 For ea
h � 2 N (�), E�(t; �) = vars(A) [B�.S5 For ea
h � 2 N (�) with � ./ �, Z(E�(t; �)� ; �) = false i� vars(C� [A) 6= ;.S6 For ea
h � 2 N (�) with � ./ �, E�(E�(t; �)� ; �) = vars(A) [vars(C�) [D�.

3.5. TRAVERSING CONCRETE TERMS 37S1 and S2 follow from De�nition 3.6 and the de�nitions of R and A. S3 and S4 followfrom De�nition 3.7 and the de�nitions of R;S;A and B�. S5 and S6 are proved below.First we prove S5.Z(E�(t; �)� ; �) = false () (by S4)Z((vars(A) [B�)� ; �) = false () (by Def. 3.6)vars(fr! j r! is a ��re
ursive subterm of s� ; s 2 vars(A) [B�g) 6= ; ()(by Def. 3.5)vars(A) [vars(fr! j r! is a ��re
ursive subterm of s� ; s 2 B�g) 6= ; ()(by Def. of C�)vars(A) [vars(C�) 6= ;:We now prove S6.E�(E�(t; �)� ; �) = (by S4)E�((vars(A) [B�)� ; �) = (by Def. 3.7)vars(fr! j r! is a ��re
ursive subterm of s� ; s 2 vars(A) [B�g) [fri j f(�r)� 0 0 is a ��re
ursive subterm of s� ; s 2 B�; � 0i 0 = �g =(by Def. 3.5)vars(A) [vars(fr! j r! is a ��re
ursive subterm of s� ; s 2 B�g)[fri j f(�r)� 0 0 is a ��re
ursive subterm of s� ; s 2 B�; � 0i 0 = �g =(by Def. of C�;D�)vars(A) [vars(C�) [D�:Part 2: Let r! be a subterm of t� at depth d. We show by indu
tion on d that r! 2 Rif and only if r! 2 A or r! 2 C� for some � 2 N (�) with � ./ �. For d = 0 thisfollows from the de�nitions of R and A.Suppose now that r! is a subterm of t� at depth d > 0. Then there exists a subtermf(�r)� 0 0 of t� at depth d� 1 su
h that for some i 2 f1; : : : ; ng, r = ri and ! = � 0i 0.\)": Assume that r! 2 R. Sin
e ! ./ �, it follows from Lemma 3.2 that � 0 0 ./ �so that f(�r)� 0 0 2 R. By the indu
tion hypothesis there are two possibilities:a) f(�r)� 0 0 2 A. Sin
e � 0 0 ./ � , either ! ./ � or ! // � . If ! ./ � then r! 2 A. If! // � , that is ! 2 N (�), then r 2 B! and hen
e r! 2 C!, and therefore r! 2 C�for some � 2 N (�).b) f(�r)� 0 0 2 C� for some � 2 N (�) with � ./ �. Sin
e ! ./ � it follows thatr! 2 C�.\(": Again we break this up into
ases:

38 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSa) r! 2 A. Sin
e ! ./ � , it follows by Lemma 3.2 that � 0 0 ./ � so that f(�r)� 0 0 2 A.By the indu
tion hypothesis f(�r)� 0 0 2 R. Sin
e ! ./ � and � ./ �, it followsby Lemma 3.6 that r! 2 R.b) r! 2 C� for some � 2 N (�) with � ./ �. By de�nition of C� there are twopossibilities: either r 2 B�, in whi
h
ase ! = � and f(�r)� 0 0 2 A, or ! ./ �and f(�r)� 0 0 is a subterm of an element of B�. In the latter
ase, by Lemma 3.2,� 0 0 ./ � so that f(�r)� 0 0 2 C�.In both
ases, by the indu
tion hypothesis f(�r)� 0 0 2 R. In the �rst
ase, sin
e! = � and � ./ �, it follows that r! 2 R. In the se
ond
ase, sin
e ! ./ �,r! 2 R.Part 3: We prove (1). By S1, Z(t� ; �) = false if and only if vars(R) 6= ;. By Part2, vars(R) 6= ; if and only if vars(A) 6= ; or vars(C�) 6= ; for some � 2 N (�) with� ./ �. Then, by S2 and S5, this holds if and only ifZ(t; �) ^ ^�2N (�)� ./�Z(E�(t; �)� ; �) = false:
Part 4: We prove (2) by showing that:vars(R) [S = [� =�(vars(A) [B�) [[� ./�(vars(C�) [D�):The result then follows from S3, S4, and S6.\�": For a variable x 2 R it follows by Part 2 that x 2 A, or x 2 C� for some � 2 N (�)with � ./ �. For a term r 2 S, there is f(�r)� 0 0 2 R su
h that r = ri, and � 0i 0 = �.By Part 2, either f(�r)� 0 0 2 A, or f(�r)� 0 0 2 C� for some � 2 N (�) with � ./ �.Assume �rst f(�r)� 0 0 2 A. We show that r 2 B� for some � 2 N (�) with � = �,namely � = � 0i 0. Sin
e by
onstru
tion of A, � 0i 0 /� � , we only have to show that not� 0i 0 ./ � . By Lemma 3.6, � 0i 0 ./ � , together with � ./ �, would imply � 0i 0 ./ �.This however is a
ontradi
tion, sin
e it follows from � 0i 0 = � that � 0i 0 // �.Assume now f(�r)� 0 0 2 C� for some � 2 N (�) with � ./ �. Sin
e � 0i 0 = � it followsthat r 2 D�.\�": For a variable x 2 A, or x 2 C� for some � 2 N (�) with � ./ �, it follows byPart 2 that x 2 R.Se
ondly assume r 2 B� for some � 2 N (�) with � = �. By de�nition, there isf(�r)� 0 0 2 A su
h that r = ri and � 0i 0 = �. By Part 2, f(�r)� 0 0 2 R, and sin
e� 0i 0 = �, it follows that r 2 S.Thirdly assume r 2 D� for some � 2 N (�) with � ./ �. By de�nition, there isf(�r)� 0 0 2 C� su
h that r = ri and � 0i 0 = �. By Part 2, f(�r)� 0 0 2 R, and sin
e� 0i 0 = �, it follows that r 2 S. 2

3.5. TRAVERSING CONCRETE TERMS 39Example 3.9 First let � = � = List(u) and be the identity. Then by De�nition 3.3there is no � su
h that � 2 N (�) and � ./ �. Therefore in both equations of Lemma 3.7,the right half of the right hand side is empty. Furthermore there is obviously exa
tlyone � su
h that � = �, namely � = �. Thus the equations readZ(t; �) = Z(t; �) (1)E�(t; �) = E�(t; �) (2)In the same way, Lemma 3.7 redu
es to a trivial statement for the Tables module(Example 3.3) and in fa
t for many types that are
ommonly used. However for Exam-ple 3.6, Lemma 3.7 says thatZ([E(7)℄List(Nest(v)) ; Nest(v)) = Z([E(7)℄; List(u)) ^ Z(Eu([E(7)℄; List(u)); Nest(v))(1)Ev([E(7)℄List(Nest(v)) ; Nest(v)) = ; [Ev(Eu([E(7)℄; List(u)); Nest(v))(2)/In this
hapter, we have de�ned the aspe
ts of the stru
ture of a (
on
rete) term whi
hwe want to
hara
terise. First, we are interested in termination of a term. Se
ondly, wegroup the subterms of a term together a

ording to their types. This is done using theextra
tor fun
tions. In the next
hapter, we will de�ne abstra
t terms based on these
on
epts.

Chapter 4Abstra
t Domains for ModeAnalysisIn this
hapter, we des
ribe a mode analysis using abstra
t domains based on the ter-mination and extra
tor fun
tions introdu
ed in the previous
hapter.This
hapter is organised as follows. Se
tion 4.1 de�nes the abstra
t domains and theabstra
tion fun
tion for terms. Se
tion 4.2 de�nes termination and extra
tor fun
tionsfor abstra
t terms, in analogy to the fun
tions for
on
rete terms. Se
tion 4.3 de�nes anabstra
t program and shows how its semanti
s approximates its
on
rete
ounterpart.Se
tion 4.4 reports on experiments. Se
tion 4.5 dis
usses the results and related work.4.1 Abstra
tion of TermsWe �rst de�ne an abstra
t domain for ea
h type. Ea
h abstra
t domain is a term stru
-ture, built using the
onstant symbols Bot, Any, Ter, Open, and the fun
tion symbolsCA, for ea
h C 2 �� . The meaning of these symbols will be explained shortly.De�nition 4.1 [abstra
t domain℄ If � is a parameter, de�neD� = fBot; Anyg:If C(�u) is a simple type with N (C(�u)) = h�1; : : : ; �mi and � = C(�u) where is a typesubstitution, de�neD� = fCA(b1; : : : ; bm; Ter) j bj 2 D�j g [fCA(Any; : : : ; Any| {z }m times ; Open); Bot; Anyg:D� is the abstra
t domain for �. If b 2 D�, then b is an abstra
t term for �. /By Lemma 3.3, every abstra
t domain is well-de�ned. We shall see later that if anabstra
t term CA(b1; : : : ; bm; Ter) abstra
ts a term t, then ea
h bj
orresponds to anon-re
ursive subterm type �j of C(�u). The bj
hara
terises the degree of instantiationof the subterms extra
ted by E�j . In parti
ular, the value Any for bj
orresponds to the
ase when a variable is extra
ted by E�j from t. Thus, if t is a non-variable open term,ea
h bj must have the value Any. 40

4.1. ABSTRACTION OF TERMS 41The termination
ags Ter and Open in the last argument position of an abstra
tterm are not abstra
t terms but Boolean
ags. The
ag Ter abstra
ts the property ofa term being terminated (and thus
orresponds to true) and Open that of being open(and thus
orresponds to false). Note that for some types, for example Int, a term
an be open only if it is a variable. In these
ases, the termination
ag is omitted inthe implementation (see Se
tion 4.4). We keep it in the theory for the sake of a uniformpresentation.Example 4.1 Consider the examples in Se
tion 3.2 (see also Figure 6 on page 31).DInt = fIntA(Ter); IntA(Open); Bot; Anyg:The following examples illustrate that De�nition 4.1 is \parametri
".DList(Int) = fListA(i; Ter) j i 2 DIntg [fListA(Any; Open); Bot; AnygDList(String) = fListA(i; Ter) j i 2 DStringg [fListA(Any; Open); Bot; AnygDList(u) = fListA(i; Ter) j i 2 Dug [fListA(Any; Open); Bot; Anyg:Some further examples are, assuming that u � Balan
e � String:DBalan
e = fBalan
eA(Ter); Balan
eA(Open); Bot; AnygDString = fStringA(Ter); StringA(Open); Bot; AnygDTable(Int) = fTableA(i; b; s; Ter) j i 2 DInt; b 2 DBalan
e; s 2 DStringg[fTableA(Any; Any; Any; Open); Bot; AnygDNest(Int) = fNestA(i; Ter) j i 2 DIntg [fNestA(Any; Open); Bot; Anyg: /We now de�ne an order on abstra
t terms whi
h has the usual interpretation that\smaller" stands for \more pre
ise". Sin
e the least upper and greatest lower bound oftwo abstra
t terms with respe
t to this order always exist, it follows that ea
h abstra
tdomain is a latti
e.De�nition 4.2 [order < on abstra
t terms℄ For the termination
ags de�ne Ter <Open. For abstra
t terms, < is de�ned as follows:Bot < b if b 6= Bot,b < Any if b 6= Any,CA(b1; : : : ; bm;
) � CA(b01; : : : ; b0m;
0) if
 �
0 and bj � b0j , j 2 f1; : : : ;mg:For a set S of abstra
t terms, let tS denote the least upper bound of S with respe
tto the order <. /We now de�ne the abstra
tion fun
tion for terms. This de�nition needs an abstra
tionof truth values as an auxiliary
onstru
tion. The abstra
tion fun
tion formalises therelationship between
on
rete and abstra
t terms, so that the results of a mode analysis
an be interpreted. The abstra
tion fun
tion is never a
tually
omputed during theanalysis.

42 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISDe�nition 4.3 [abstra
tion fun
tion � for terms℄ Let � = C(�u) and let N (�) =h�1; : : : ; �mi. For the truth values de�ne �(true) = Ter and �(false) = Open. If S is aset of terms, de�ne �(S) = tf�(t) j t 2 Sg;where �(t) is de�ned as:Any if t is a variable,CA(�(E�1(t; �)); : : : ; �(E�m (t; �)); �(Z(t; �))) if t = fh�1:::�n;�i(t1; : : : ; tn). /Note that this de�nition is based on the fa
t that �(;) = Bot. From this it follows thatthe abstra
tion of a
onstant t = fh�i is CA(Bot; : : : ; Bot; Ter).The least upper bound of a set of abstra
t terms gives a safe approximation forthe instantiation of all
orresponding
on
rete terms. Safe means that ea
h
on
reteterm is at least as instantiated as indi
ated by the least upper bound. As we will see inSe
tion 4.3, our mode analysis
an only give approximations of the instantiation of termsin this sense. It
an never infer that a term is de�nitely free, that is, an uninstantiatedvariable. Inferring that a term is de�nitely free requires di�erent te
hniques [BDB+96℄.Example 4.2 We illustrate De�nition 4.3.�(7) = IntA(Ter) (� = Int;m = 0; n = 0)�(Nil) (� = List(u);N (�) = hui; n = 0)= ListA(�(;); �(Z(Nil; �)))= ListA(Bot; Ter)�(Cons(7; Nil)) (� = List(u);N (�) = hui; n = 2)= ListA(tf�(7)g; �(Z(Cons(7; Nil); �)))= ListA(IntA(Ter); Ter):Table 1 gives some further examples. Note that there is no term of type Int whoseabstra
tion is IntA(Open). /The following is an auxiliary lemma needed for the proof of Lemma 4.2.Lemma 4.1 Let t� be a term. Every subterm of t� is either a re
ursive subterm of t� ,or a subterm of a term in E�(t; �), for some � 2 N (�).Proof. The proof is by indu
tion on the depth of subterms of t� . For the base
aseobserve that t� is a re
ursive subterm of itself.Now suppose the result holds for all subterms of t� up to depth i. Let r� be a subtermof t� at depth i and w! / r�. If r� is not a re
ursive subterm of t� , then r� is a subtermof a term in E�(t; �) for some � 2 N (�), and thus w! is also a subterm of a term inE�(t; �). If r� is a re
ursive subterm of t� , then sin
e � ./ � and ! / �, by De�nition 3.3either ! ./ � or ! // � . Thus either w! is a re
ursive subterm of t� or w 2 E!(t; �). 2The following lemma shows that the abstra
tion
aptures groundness.

4.1. ABSTRACTION OF TERMS 43Table 1: Some terms, their types, and abstra
tionsterm type abstra
tionx u Any[7,x℄ List(Int) ListA(Any; Ter)[7|x℄ List(Int) ListA(Any; Open)E(7) Nest(Int) NestA(IntA(Ter); Ter)[E(7)℄ List(Nest(Int)) ListA(NestA(IntA(Ter); Ter); Ter)N([E(7)℄) Nest(Int) NestA(IntA(Ter); Ter)N([E(7),x℄) Nest(Int) NestA(Any; Open)N([E(7)|x℄) Nest(Int) NestA(Any; Open)Lemma 4.2 Let S be a set of terms having the same type. Then a variable o

urs inan element of S (that is S is non-ground) if and only if Any or Open o

urs in �(S).Proof. There are three
ases depending on whether S is empty,
ontains a variable,or neither.Case 1: S is empty. Then �(S) = Bot.Case 2: x 2 S for some variable x. Then �(x) = Any and thus �(S) = Any.Case 3: S
ontains no variables but
ontains a non-variable term. Then the type ofterms in S is of the form � for some type substitution and simple type � = C(�u).Suppose that N (�) = h�1; : : : ; �mi for some m � 0. Then there are abstra
t termsb1; : : : ; bm and a termination
ag b su
h that�(S) = CA(b1; : : : ; bm; b):There are two sub
ases.Case 3a: For some t 2 S and variable x, x� is a re
ursive subterm of t� . ThenZ(t; �) = Open. Hen
e b = Open and�(S) = CA(b1; : : : ; bm; Open):Case 3b: No term in S has a re
ursive subterm that is a variable. Then Z(t; �) = Terfor ea
h t 2 S. Hen
e, by De�nition 4.2, b = Ter. The proof for this
ase is by indu
tionon the length of the longest // -sequen
e (see Lemma 3.3) for � . The base
ase is whenm = 0. Then by Lemma 4.1, every term in S is ground and �(S) = CA(Ter).Now suppose m > 0. By Lemma 4.1, S
ontains a non-ground term if and only ifE�j (t; �)
ontains a non-ground term for some t 2 S and j 2 f1; : : : ;mg. By De�ni-tion 4.3 �(S) = tfCA(�(E�1(t; �)); : : : ; �(E�m (t; �)); Ter) j t� 2 Sg:Thus, by De�nitions 4.2 and 4.3, for ea
h j 2 f1; : : : ;mg, we have bj = �(E�j (S; �)). Letj 2 f1; : : : ;mg. If E�j (S; �) is empty, by Case 1 above, �(E�j (S; �)) = Bot: If E�j (S; �)

44 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS
ontains a variable, by Case 2 above, �(E�j (S; �)) = Any: Otherwise, E�j (S; �)
ontainsa non-variable term and the terms in E�j (S; �) have type �j , for whi
h, by indu
tionhypothesis, the result holds. Hen
e bj has an o

urren
e of Any or Open if and only ifE�j (S; �)
ontains a non-ground term. It follows that �(S) has an o

urren
e of Any orOpen if and only if S
ontains a non-ground term. 24.2 Traversing Abstra
t TermsIn order to de�ne abstra
t uni�
ation and, in parti
ular, the abstra
tion of an equationin a program, we require an abstra
t termination fun
tion and abstra
t extra
tors sim-ilar to those already de�ned for
on
rete terms. The type supers
ript annotation for
on
rete terms is also useful for abstra
t terms.De�nition 4.4 [abstra
t termination fun
tion and extra
tor for �℄ Let � and � = C(�u)be simple types su
h that � ./ � for some , and N (�) = h�1; : : : ; �mi. Let b be anabstra
t term for an instan
e of � .1. Abstra
t termination fun
tion.AZ(b� ; �) = Open if b = AnyAZ(b� ; �) = Ter if b = BotAZ(b� ; �) =
 ^ ^�j ./�AZ(b�j j ; �) if b = CA(b1; : : : ; bm;
):2. Abstra
t extra
tor for �. Let � 2 N (�).AE�(b� ; �) = Any if b = AnyAE�(b� ; �) = Bot if b = BotAE�(b� ; �) = t(fbj j �j = �g[fAE�(b�j j ; �) j �j ./ �g) if b = CA(b1; : : : ; bm;
): /As for the
on
rete termination fun
tions and extra
tors, we omit the supers
ript � inthe expressions AZ(b� ; �) and AE�(b� ; �) whenever � = � and is the identity. Inthis (very
ommon)
ase, the abstra
t termination fun
tion is merely a proje
tion ontothe termination
ag of an abstra
t term (or Open if the abstra
t term is Any). Similarly,the abstra
t extra
tor for � is merely a proje
tion onto the jth argument of an abstra
tterm, where � = �j. Note the similarity between the above de�nition and Lemma 3.4.Example 4.3AZ(ListA(Any; Ter)List(Nest(v)) ; Nest(v)) = Ter ^AZ(Any; Nest(v)) = Open:AEv(ListA(Any; Ter)List(Nest(v)) ; Nest(v)) = Any:AZ(ListA(NestA(IntA(Ter); Ter); Ter)List(Nest(v)) ; Nest(v)) =Ter ^AZ(NestA(IntA(Ter); Ter); Nest(v)) = Ter:AEv(ListA(NestA(IntA(Ter); Ter); Ter)List(Nest(v)) ; Nest(v)) =AEv(NestA(IntA(Ter); Ter); Nest(v)) = IntA(Ter):

4.2. TRAVERSING ABSTRACT TERMS 45/The following theorem states the fundamental relationship between
on
rete and ab-stra
t termination fun
tions and extra
tors.Theorem 4.3 Let � and � = C(�u) be simple types su
h that � ./ � for some , and� 2 N (�). Let t� be a term. Then�(Z(t� ; �)) = AZ(�(t)� ; �) (1)�(E�(t� ; �)) = AE�(�(t)� ; �) (2)Proof. The proof is by indu
tion on the stru
ture of t. First assume t is a variable xor a
onstant d. Here we omit the type supers
ripts be
ause they are irrelevant.�(Z(x; �)) = �(false) = Open = AZ(Any; �) = AZ(�(x); �):�(E�(x; �)) = tf�(x)g = Any = AE�(Any; �) = AE�(�(x); �):�(Z(d; �)) = �(true) = Ter = AZ(CA(Bot; : : : ; Bot; Ter); �) = AZ(�(d); �):�(E�(d; �)) = t ; = Bot = AE�(CA(Bot; : : : ; Bot; Ter); �) = AE�(�(d); �):Now assume t is a
ompound term. Let N (�) = h�1; : : : ; �mi. In the following sequen
esof equations, � marks steps whi
h use straightforward manipulations su
h as rearrangingleast upper bounds or appli
ations of � to sets. We show (1) working from right to left.AZ(�(t)� ; �) = (De�nition 4.3)AZ(CA(�(E�1(t; �)); : : : ; �(E�m (t; �)); �(Z(t; �)))� ; �) = (De�nition 4.4)�(Z(t; �)) ^ ^�j ./�AZ(�(E�j (t; �))�j ; �) = (� and hypothesis)�(Z(t; �)) ^ ^�j ./��(Z(E�j (t; �)�j ; �)) = (� and Lemma 3.7)�(Z(t� ; �)):We show (2), also working from right to left.AE�(�(t)� ; �) = (De�nition 4.3)AE�(CA(�(E�1 (t; �)); : : : ; �(E�m (t; �)); �(Z(t; �)))� ; �) = (De�nition 4.4)t(f�(E�j (t; �)) j �j = �g [fAE�(�(E�j (t; �))�j ; �) j �j ./ �g) =(� and hypothesis)t([�j =�f�(E�j (t; �))g [[�j ./�f�(E�(E�j (t; �)�j ; �))g) = (� and Lemma 3.7)�(E�(t� ; �)): 2Example 4.4 This illustrates Theorem 4.3 for � = � = List(u) and � = u.�(Z([7℄; List(u))) = Ter = AZ(ListA(IntA(Ter); Ter); List(u))�(Eu([7℄; List(u))) = IntA(Ter) = AEu(ListA(IntA(Ter); Ter); List(u)):

46 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS/4.3 Abstra
t CompilationWe now show how the abstra
t domains
an be used in the
ontext of abstra
t
ompi-lation. We de�ne an abstra
t program and show that it is a safe approximation of the
on
rete program with respe
t to the usual operational semanti
s.In a (normal form) program, ea
h uni�
ation is made expli
it by an equation. Wenow de�ne an abstra
tion of su
h an equation. Thus we de�ne for ea
h f 2 �f , apredi
ate whi
h expresses the dependen
y between �(f(t1; : : : ; tn)) and �(t1); : : : ; �(tn).De�nition 4.5 [abstra
t dependen
y fdep℄ Let fh�1:::�n;�i 2 �f where � = C(�u) andN (�) = h�1; : : : ; �mi. Then fdep(CA(a1; : : : ; am;
); b1; : : : ; bn) holds ifaj = t (fbi j �i = �jg [fAE�j (b�ii ; �) j �i ./ �g) for all j 2 f1; : : : ;mg (1)
 = ^�i./� AZ(b�ii ; �) (2)/Example 4.5 To give an idea of how De�nition 4.5 translates into
ode,
onsider Cons.Assuming that Lub(a; b;
) holds if and only if
 = tfa; bg, one
lause for Consdep mightbe:Cons_dep(List_a(
,Ter),b,List_a(a,Ter)) <-Lub(a,b,
).The �rst argument of Consdep stands for a list, and the other arguments for the headand tail of this list. Note however that the
ode is slightly simpli�ed. The reason isthat unless the type of a, b, and
 is spe
i�ed, there are in�nitely many answers forLub(a,b,
), whi
h
auses a termination problem. Therefore, in the implementation,this
lause is parametrised with the type of a, b, and
. /Lemma 4.4 If t = f(t1; : : : ; tn) then fdep(�(t); �(t1); : : : ; �(tn)) holds.Proof. Suppose N (�) = h�1; : : : ; �mi and � = C(�u). By De�nition 4.3�(t) = CA(�(E�1(t; �)); : : : ; �(E�m (t; �)); �(Z(t; �))):We must show (1) and (2) in De�nition 4.5. First, we prove (1). For ea
h �j 2 N (�),�(E�j (t; �))= �(fti j �i = �jg [[�i./� E�j (t�ii ; �)) (Lemma 3.4)= t (f�(ti) j �i = �jg [f�(E�j (t�ii ; �)) j �i ./ �g) (moving � inwards)= t (f�(ti) j �i = �jg [fAE�j (�(ti)�i ; �) j �i ./ �g) (Theorem 4.3).

4.3. ABSTRACT COMPILATION 47Equation (2) is proven in a similar way:�(Z(t; �))= �(^�i./� Z(t�ii ; �)) (Lemma 3.4)= ^�i./� �(Z(t�ii ; �)) (moving � inwards)= ^�i./� AZ(�(ti)�i ; �) (Theorem 4.3). 2De�nition 4.6 [abstra
tion � of a program℄ For a normal form equation e de�ne�(e) = (e if e is of the form x = yfdep(x; y1; : : : ; yn) if e is of the form x = f(y1; : : : ; yn):For a normal form atom a and
lause K = h g1 ^ : : : ^ gl de�ne�(a) = a�(K) = �(h) �(g1) ^ : : : ^ �(gl):For a program P = hL; Si de�ne�(P) = f�(K) j K 2 Sg [ffdep(a; a1; : : : ; an) j fdep(a; a1; : : : ; an) holdsg: /Example 4.6 In the following we give the usual re
ursive
lause for Append in normalform and its abstra
tion.%
on
rete
lause %abstra
t
lauseAppend(xs,ys,zs) <- Append(xs,ys,zs) <-xs = [x|x1s℄ & Cons_dep(xs,x,x1s) &zs = [x|z1s℄ & Cons_dep(zs,x,z1s) &Append(x1s,ys,z1s). Append(x1s,ys,z1s). /We now de�ne the operational semanti
s of
on
rete and abstra
t programs. We assumea �xed language L and program P = hL; Si, and a left-to-right
omputation rule. Aprogram state is a tuple hG; �i where G is a query and � a substitution. It is an initialstate if � is empty. We write C 2� S if C is a renamed variant of a
lause in S.De�nition 4.7 [redu
es to℄ The relation P; (\redu
es to") between states is de�nedby the following rules:hh1 : : : : : hl; �i P; hh2 : : : : : hl; ��0i if h1 is `x = t' and x��0 = t��0 (1)hh1 : : : : : hl; �i P;hG : h2 : : : : : hl; ��0i if h G 2� S and h��0 = h1��0 (2)

48 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISMoreover, P; j for j � 0 and P;� are de�ned in the usual way. If for an initial query G,hG; ;i P;� hp(x1; : : : ; xn) : H; �i P;� hH; �0i;we
all p(x1; : : : ; xn)� a
all pattern and p(x1; : : : ; xn)�0 an answer pattern for p. /Note that it is
ommon to require that �0 is the most general uni�er, but nevertheless,our notion of \redu
es" with arbitrary uni�er has been
onsidered by Lloyd [Llo87℄.Theorem 4.5 Let H;H 0 be queries, � a substitution and j � 0. If hH; ;i P; j hH 0; �i,then h�(H); ;i �(P); j h�(H 0); ��i, where �� = fx=�(x�) j x 2 dom(�)g.Proof. By De�nition 4.7, hH; ;i P; j hH 0; �i if and only if hH; �i P; j hH 0; �i, andlikewise for �(P). Therefore it is enough to show that for all j � 0hH; �i P; j hH 0; �i implies h�(H); ��i �(P); j h�(H 0); ��i: (3)The proof is by indu
tion on j. The base
ase j = 0 holds sin
eh�(H); ��i �(P); 0 h�(H); ��i:For the indu
tion step, assume (3) holds for some j � 0. We show that for every queryH 00 hH; �i P; j+1 hH 00; �i implies h�(H); ��i �(P); j+1 h�(H 00); ��i:If hH; �i P; j+1 hH 00; �i does not hold, the result is trivial. If hH; �i P; j+1 hH 00; �i, thenhH; �i P; j hH 0; �i P; hH 00; �i for some query H 0, andh�(H); ��i �(P); j h�(H 0); ��i by hypothesis.It only remains to be shown that h�(H 0); ��i �(P); h�(H 00); ��i. We distinguish two
ases depending on whether Rule (1) or (2) of De�nition 4.7 was used for the stephH 0; �i P;hH 00; �i.Case 1: Rule (1) was used. H 0 = h1 : : : : : hl where h1 is `x = t', and t = yor t = f(x1; : : : ; xn). In the �rst
ase �(h1) = h1. Sin
e x� = y�, it follows thatfx=�(x�); y=�(x�)g � �� and therefore x�� = y��. Thus h�(H 0); ��i �(P); h�(H 00); ��iby Rule (1). In the se
ond
ase �(h1) = fdep(x; x1; : : : ; xn). Sin
e x� = f(x1�; : : : ; xn�),fx=�(f(x1�; : : : ; xn�)); x1=�(x1�); : : : ; xn=�(xn�)g � ��:Hen
e, by Lemma 4.4, fdep(x; x1; : : : ; xn) �� holds so that fdep(x; x1; : : : ; xn) �� 2 �(P)by De�nition 4.6. Thus h�(H 0); ��i �(P); h�(H 00); ��i by Rule (2).Case 2: Rule (2) was used. H 0 = h1 : : : : : hl where h G 2� S and h� = h1�. ByDe�nition 4.6, �(h1 G) 2� �(P). Furthermore �(h) has the form Q(�x), and �(h1)has the form Q(�y). Sin
e �x� = �y� it follows that Q(�x) �� = Q(�y) ��. 2

4.4. IMPLEMENTATION AND RESULTS 494.4 Implementation and ResultsFrom now on we refer to the abstra
t domains de�ned in this
hapter as typed domains.We have implemented the mode analysis for obje
t programs in G�odel. This imple-mentation naturally falls into two stages: in the �rst stage, the language de
larationsare analysed in order to
onstru
t the typed domains, and the program
lauses are ab-stra
ted. In the se
ond stage, the abstra
t program is evaluated using standard abstra
t
ompilation te
hniques.We have implemented the �rst stage in G�odel, using the G�odel meta-programmingfa
ilities. The analysed program may
onsist of several (system or user-de�ned) modules,but its abstra
tion will always be a one-module program. Sin
e virtually all G�odelprograms use G�odel system modules1, these are treated spe
ially in our implementationin order to avoid analysing and abstra
ting them anew ea
h time.G�odel meta-programming is slow, but this �rst stage s
ales well, as the time forabstra
ting the
lauses of a program is linear in their number. Analysing the typede
larations is not a problem in pra
ti
e. We have analysed
ontrived programs withextremely
omplex type de
larations within a
ouple of se
onds.The se
ond stage was implemented in Prolog, so that an existing analyser
ouldbe used. Abstra
t programs produ
ed by the �rst stage were transformed into Prolog.All
all and answer patterns, whi
h may arise in a derivation of an abstra
t programfor a given query, are
omputed by the analyser. By Theorem 4.5, these patterns
orrespond to patterns in the derivation of the
on
rete program. For example a
allp(Any; IntA(Ter)) in a derivation of the abstra
t program indi
ates that there may bea
all p(x,7) in a derivation of the
on
rete program.In Table 2, the pre
ision of the typed domain for Table(Int) (Example 4.1) is
om-pared with a domain that
an only distinguish between ground and non-ground terms.The latter domain has been shown by Codish and Demoen [CD95℄ to be equivalent tothe well-known Pos domain [MS93℄. The arguments of the predi
ate Insert represent:a table t, a key k, a value v, and a table obtained from t by inserting the node whosekey is k and whose value is v. Table 2 shows some initial
all patterns and the answerpattern that is inferred for ea
h
all pattern. For readability, we use some abbreviationsand omit the termination
ag for types Integer, Balan
e and String.Clearly, inserting a ground node into a ground table gives a ground table. This
ould be inferred with the ground/non-ground domain (1) as well as the typed domains(3). Now
onsider the insertion of a node with an uninstantiated value into a groundtable. With typed domains, it is inferred that the result is still a table but whose valuesmay be uninstantiated (4). This
annot be inferred with a ground/non-ground domain(2). In fa
t, (2) only says that the answer pattern is no less instantiated than the
allpattern, whi
h is trivial.We used a modi�ed form of the analyser of Heaton et al. [HHK97℄ running on aSun SPARC Ultra 170. The analysis times for Tables were: (1) 0.09 se
onds, (2)1.57 se
onds, (3) 0.81 se
onds, (4) 2.03 se
onds. Apart from Tables, we also analysedsome small programs, namely Append, Reverse, Flatten (from the Nests module),1In G�odel, all built-ins ex
ept the equality predi
ate are provided via system modules.

50 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISTable 2: Some
all and answer patterns for InsertGround/non-ground domain:Insert(ground; ground; ground; any) leads to answer pattern (1)Insert(ground; ground; ground; ground):Insert(ground; ground; any; any) leads to answer pattern (2)Insert(ground; ground; any; any):Typed domain:Insert(TabA(IntA; BalA; StrA; Ter); StrA; IntA; Any) leads to answer pattern (3)Insert(TabA(IntA; BalA; StrA; Ter); StrA; IntA; TabA(IntA; BalA; StrA; Ter)):Insert(TabA(IntA; BalA; StrA; Ter); StrA; Any; Any) leads to answer pattern (4)Insert(TabA(IntA; BalA; StrA; Ter); StrA; Any; TabA(Any; BalA; StrA; Ter)):TreeToList, Qui
ksort, and Nqueens. For these, all analysis times were below 0.03se
onds and thus too small to be very meaningful. For most of these, the typed domainsresulted in more pre
ise analyses, similarly as explained for Tables.Our experien
e is that the domain operations, namely to
ompute the least upperbound of two abstra
t terms, are indeed the bottlene
k of the analysis. Thereforeit is
ru
ial to avoid performing these
omputations unne
essarily. Also one might
ompromise some of the pre
ision of the analysis by
onsidering widenings [CC92℄ forthe sake of eÆ
ien
y. More work
ould be done on the embedding of the typed domainsin the analysis. In order to
ondu
t more experiments, one would need a suite of biggertyped logi
 programs. A formal
omparison between analyses for typed logi
 programsand untyped ones is of
ourse diÆ
ult.4.5 Dis
ussion and Related WorkWe have presented a general domain
onstru
tion for mode analysis of typed logi
programs. For
ommon examples (lists, binary trees), our formalism is simple andyields abstra
t domains that are
omparable to the domains designed by Codish andDemoen [CD94℄. In their formalism, however, an abstra
t domain for obtaining thisdegree of pre
ision for, say, the types in the Tables module, would have to be hand-
rafted. In
ontrast, our work des
ribes this
onstru
tion for arbitrary types.The fundamental
on
epts of this work are re
ursive type and non-re
ursive sub-term type, whi
h are generalisations of ideas presented previously for lists [CD94℄. Theresulting abstra
t domains are entirely in the spirit of previous work by Codish and oth-ers [CD94, CL96℄ and we believe that they provide the highest degree of pre
ision thata generi
 domain
onstru
tion should provide. Even if type de
larations that requirethe full generality of our formalism are rare, this work is an important
ontributionbe
ause it helps to understand other, more ad-ho
 and pragmati
 domain
onstru
tionsas instan
es of a general theory. One
ould always simplify or prune down our abstra
tdomains for the sake of eÆ
ien
y.

4.5. DISCUSSION AND RELATED WORK 51In its full generality the formalism is, admittedly, rather
omplex. This is pri-marily due to fun
tion de
larations where the range type o

urs again as a propersub\term" of an argument type, su
h as the de
laration of N in the Nests module (Ex-ample 3.2). If types were as widespread in logi
 programming as they are in fun
tionalprogramming, su
h de
larations would probably not seem very unusual. They are usedin the de
larations for rose trees, that is, trees where the number of
hildren of ea
hnode is not �xed [Mee88℄. One should also note that while the theory whi
h allowsfor a domain
onstru
tion for, say, Nest(Int) is
on
eptually
omplex, the
omputa-tional
omplexity of the a
tual domain operations for Nest(Int) is lower than for, say,List(List(List(Int))). In short, the
omplexity of the abstra
t domains dependson the inherent
omplexity of the type de
larations, as illustrated by the type graphs(Figure 6).We have built on ideas presented previously for untyped languages [CL96℄. Notablythe title of that work says that type, not mode, dependen
ies are derived. Even in anuntyped language su
h as Prolog, one
an de�ne types as sets of terms given by somekind of \de
laration", just as in a typed language [AL94℄. In this
ase type analysis(inferring that an argument is instantiated to a term of a
ertain type) is inseparablefrom mode analysis. The analysis must a

ount for \in
orre
tly" typed terms su
h as[3j17℄. As it
annot be assumed that, say, [3jy℄ will eventually be bound to a list, it isabstra
ted as any, thus not
apturing that it is at least partially instantiated. In typedlanguages, this problem does not arise. It seems that Codish and Lagoon [CL96℄ providea straightforward domain
onstru
tion for arbitrary types, but this is not the
ase. Itis not spe
i�ed what kind of \de
larations" are implied, but the examples and theorysuggest that all types are essentially lists and trees. The Tables and Nests examplesgiven in Se
tion 3.2 are not
aptured.Re
ursive modes [TL97℄
hara
terise that the left spine, right spine, or both, of aterm are instantiated. The authors admit that this may be
onsidered an ad-ho

hoi
e,but on the other hand, they present good experimental results. They do not assume atyped language and thus
annot exploit type de
larations in order to provide a moregeneri

on
ept of re
ursive modes, as we have done by the
on
ept of termination. Also,the degree of instantiation that we would express by, say, ListA(TableA(Any; Ter); Ter),
annot be
hara
terised.A
omplex system for type analysis of Prolog has been presented by Van Hentenry
ket al. [VCL95℄. As far as we
an see, this system is not in a formal sense stronger orweaker than our mode analysis. The domain Pat(Type) used there is in�nite, so thatwidenings have to be introdu
ed to ensure �niteness, and \the design of widening opera-tors is experimental in nature" [VCL95℄. In
ontrast, we exploit the type de
larations to
onstru
t domains that are inherently �nite and whose size is di
tated by the
omplexityof the type de
larations. Similarly, in a paper by Janssens and Bruynooghe [JB92℄, the�niteness of abstra
t domains and terms is ensured by imposing an ad-ho
 bound onthe number of symbols.Barbuti and Gia
obazzi have presented a polymorphi
 type inferen
e for (untyped)logi
 programs [BG92℄. It is assumed that type de
larations are given to de�ne alanguage of \well-typed" terms, similarly as in typed logi
 programming languages.However, the types of the predi
ate symbols are not de
lared, but rather inferred. In

52 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISparti
ular, it might be inferred that some arguments of a predi
ate are not \well-typed".Su
h information
an be useful for debugging programs.Gallagher et al. have shown that the domain
onstru
tion of any (stati
) pro-gram analysis
an be
ast in terms of pre-interpretations [GBS95℄. Traditionally, pre-interpretations are used in predi
ate logi
 to assign a semanti
 value to a term, forexample the number `2' to the term 1+1 or 2. However, they
an also be used tospe
ify a program analysis, by
hoosing an appropriate domain on whi
h these pre-interpretations operate. The mode analysis we have presented here
an without doubtalso be expressed in these terms, by
hoosing as domains the abstra
t domains wepropose here.Mer
ury [SHC96℄ has a mode system based on instantiation states. These are asser-tions of how instantiated a term is. An instantiation state is similar to an abstra
t term.Indeed, given some type de
larations, it is possible to de�ne an instantiation state inMer
ury syntax whi
h, while not being exa
tly the same, is
omparable in pre
ision toan abstra
t term in our formalism. In Mer
ury, it is the user who has to spe
ify a setof instantiation states by de
laring the mode, and this mode is
he
ked and enfor
ed bythe
ompiler. In
ontrast, we have des
ribed how the abstra
t terms and their values
an be inferred automati
ally.The Mer
ury
ompiler also does some mode inferen
e. It is hard to assess whetheror not the
ompiler
an a
tually
onstru
t instantiation states without any help bymode de
larations be
ause the relevant literature [Hen92, Som87℄ only refers to simpleexamples and does not spe
ify the mode inferen
e pre
isely.It has been noted by Henderson [Hen92℄ that instantiation states loosely
orrespondto abstra
t interpretation, used for mode analysis in a language su
h as G�odel, whi
hdoes not enfor
e modes. In this part of the thesis we developed this argument. Ourdomain
onstru
tion
an be regarded as inferring automati
ally, from a set of typede
larations, what the interesting instantiation states are.The mode system in Mer
ury is based on work by Somogyi [Som87℄, where theSimple Range Condition and the Re
exive Condition that we impose are not expli
itlyrequired. However, Somogyi does not de�ne the type system pre
isely, instead referringto My
roft and O'Keefe [MO84℄, whose formal results have been shown to be in
orre
t,namely in ignoring the transparen
y
ondition [Hil93, HT92℄. It is therefore diÆ
ult toassess whether that approa
h would work for programs whi
h violate these
onditions.We know of no real G�odel programs that violate either of the Simple Range or Re
exiveConditions. We have found that violating the Re
exive Condition raises fundamentalquestions about de
idability in typed languages, whi
h seem to be related to the
on
eptof polymorphi
 re
ursion [Kah96, KTU93℄. It would be interesting to investigate thesequestions further.We believe that, sin
e our abstra
t terms
an
hara
terise the instantiation of aterm with what might be
alled a \reasonable" degree of pre
ision, they
ould providea good basis for two further appli
ations: de
laring modes and de
laring
onditions fordelaying.Con
erning the �rst appli
ation, note that the present Mer
ury implementation doesnot support instantiation states in their full generality, and it is hard to imagine that thiswould ever be needed. Thus one might
onsider a language where modes are de
lared

4.5. DISCUSSION AND RELATED WORK 53using our abstra
t terms.In G�odel, the delay de
larations whi
h state that a predi
ate is delayed until anargument (or a subterm of the argument) is ground or non-variable,
annot des
ribethe behaviour of the G�odel system predi
ates pre
isely. We have observed that, typi
ally,the degree of instantiation for a G�odel system predi
ate to run safely without delaying
ould be spe
i�ed by an abstra
t term in our typed domains. For example, the predi
ateAppend=3 will run safely if the �rst argument is a nil-terminated list.Our approa
h may also be appli
able to untyped languages, if we have informationat hand that is similar to type de
larations. Su
h information might be obtained byinferring de
larations [Chr97℄ or from de
larations as
omments [SG95b℄. Certainly ouranalysis would then regain aspe
ts of type rather than mode inferen
e, whi
h it had lostby transferring the approa
h to typed languages.

Part IIINon-Standard Derivations

54

Chapter 5Corre
tness Properties ofProgramsIn this
hapter, the need for non-standard derivations is motivated. Then several
or-re
tness properties for programs
on
erning the modes and types are introdu
ed. Theseproperties will be used throughout Part III.5.1 Why Non-Standard Derivations?The paradigm of logi
 programming is based on giving a
omputational interpretationto a
ertain fragment of �rst order logi
. Kowalski [Kow79℄ advo
ates the separation ofthe logi
 and
ontrol aspe
ts of a logi
 program and has
oined the famous formulaAlgorithm = Logi
 + Control.The programmer should be responsible for the logi
 part, and hen
e a logi
 programshould be a (�rst order logi
) spe
i�
ation. The
ontrol should be taken
are of by thelogi
 programming system.In reality, logi
 programming is far from this ideal. Without the programmer beingaware of the
ontrol and writing programs a

ordingly, logi
 programs would usually behopelessly ineÆ
ient or even non-terminating.One aspe
t of
ontrol in logi
 programs is the sele
tion rule. This is a rule statingwhi
h atom in a query is sele
ted in ea
h derivation step. The standard sele
tion rule isthe LD sele
tion rule: in ea
h derivation step, the leftmost atom in a query is sele
tedfor resolution. This sele
tion rule is based on the assumption that programs are writtenin su
h a way that the data
ow within a query or
lause body is from left to right.Example 5.1 Consider the program in Figure 9 and the following derivation, wherethe sele
ted atom is underlined in ea
h query:1permute([1℄; As);permute([℄; Z0); delete(1; As; Z0);delete(1; As; [℄); 2:1In examples, we use ; to denote derivation steps.56

5.1. WHY NON-STANDARD DERIVATIONS? 57permute([℄,[℄).permute([U|X℄,Y) :-permute(X,Z),delete(U,Y,Z). delete(X,[X|Z℄,Z).delete(X,[U|Y℄,[U|Z℄) :-delete(X,Y,Z).Figure 9: The permute programappend([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).Figure 10: The append programIn the se
ond line, Z0 is an output argument of permute([℄; Z0). The pro
ess of resolvingthis atom instantiates Z0 to [℄, whi
h is used by the atom delete(1; As; Z0) as input.Hen
e the data
ow is from left to right. /Observe that the notion of data
ow is based on the idea that some argument positionsserve as input positions and others as output positions. In the above example, the �rstargument of permute is input and the se
ond is output.The LD sele
tion rule ensures for this example that atoms are only sele
ted whenthey have a
ertain degree of instantiation. The following example shows that this is
ru
ial in order to ensure essential properties, in parti
ular termination.Example 5.2 Consider the usual append program given in Figure 10 and the followingderivation where the rightmost atom is always sele
ted:append([1℄; [℄; As); append(As; [℄; Bs);append([1℄; [℄; [X0jAs0℄); append(As0; [℄; Bs0);append([1℄; [℄; [X0; X00jAs00℄); append(As00; [℄; Bs00); : : :The derivation is in�nite although there are only �nitely many answers to the query. Forthis example, the natural data
ow would be from left to right. In fa
t, all derivationsterminate if the LD sele
tion rule is assumed. /The LD sele
tion rule is so established in logi
 programming that we have to justifywhy we
onsider other sele
tion rules. There are at least four purposes for whi
h othersele
tion rules are useful: using predi
ates in multiple modes, parallel exe
ution [AL95℄,the test-and-generate paradigm [Nai92℄, and some programs using a

umulators [EG99℄.For motivation, we give an example of the �rst purpose.Example 5.3 Consider again the permute program (Figure 9). In the following deriva-tion, the rightmost atom is sele
ted in ea
h step. The data
ow is from right to left.

58 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS
permute(As; [1℄);permute(X0; Z0); delete(U0; [1℄; Z0);permute(X0; [℄) ; 2:In this example, the se
ond argument of permute is input and the �rst is output. /To allow for permute to be used in both modes, we need a sele
tion rule whi
h ismore
exible than just stating that the leftmost or rightmost atom should be sele
tedin ea
h step. Several logi
 programming languages provide delay de
larations for thispurpose [HL94, SIC98, SHC96℄. Using delay de
larations, the user
an spe
ify a degreeto whi
h an atom must be instantiated in order to be sele
ted.Note that while delay de
larations give the programmer some
ontrol, they do notspe
ify pre
isely whi
h atom is sele
ted in ea
h step, sin
e there
ould be more thanone atom whi
h is suÆ
iently instantiated to be sele
ted.In the literature, the need for suÆ
ient instantiation of the sele
ted atom and hen
ethe purpose of delay de
larations is usually explained as \ensuring termination" and\preventing runtime errors related to built-in predi
ates" [AL95, L�ut93, MT95, MK97,Nai92℄. Taking a more abstra
t viewpoint, one
an
hara
terise the minimal and mostimportant purpose of delay de
larations as follows:Delay de
larations should ensure that in ea
h derivation step, the inputarguments of the sele
ted atom
annot be
ome instantiated.In other words, an atom in a query
an only be sele
ted when it is suÆ
iently instan-tiated so that the most general uni�er (MGU) with the
lause head does not bind theinput arguments of the atom. We
all derivations whi
h meet this requirement input-
onsuming.Input-
onsuming derivations re
e
t the natural meaning of \input". The
on
eptis useful be
ause it abstra
ts from the te
hni
al details of parti
ular delay
onstru
ts.Wherever possible we formulate results in terms of input-
onsuming derivations ratherthan in terms of delay de
larations.Note that for the query in Example 5.2, all derivations are input-
onsuming if the LDsele
tion rule is assumed. In this and the following
hapter, we do not worry about howinput-
onsuming derivations
an be a
hieved in existing implementations. In Chapter 7,we show how input-
onsuming derivations
an be a
hieved using delay de
larations.This
hapter is organised as follows. The next se
tion de�nes some notation andterminology. Se
tion 5.3 introdu
es a formalism
onsisting of a permutation for ea
h
lause in a program, whi
h indi
ates the dire
tion of data
ow in this
lause. Se
tion 5.4introdu
es permutation ni
ely moded programs. Se
tion 5.5 introdu
es permutation wellmoded programs. Se
tion 5.6 introdu
es permutation well typed programs. Se
tion 5.7de�nes a property
alled type
onsisten
y.

5.2. NOTATION AND TERMINOLOGY 595.2 Notation and TerminologyWe use standard notations of logi
 programming [Apt97, Llo87℄. Our spe
ial notationsrelated to modes and types follow Etalle et al. [EBC99℄ and Apt and Luitjes [AL95℄.For the examples we use Prolog syntax. We re
all some important notions.The set of variables in a synta
ti
 obje
t o is denoted as vars(o). A synta
ti
 obje
tis linear if every variable o

urs in it at most on
e. A substitution is idempotent if�� = �. Throughout Part III, we only
onsider idempotent substitutions. The domainof a substitution � is dom(�) = fx j x� 6= xg. The range of a substitution � isran(�) = fx� j x 2 dom(�)g.We say that a term u o

urs dire
tly in a ve
tor of terms t, or equivalently, u �llsa position in t, if u is one of the terms of t. (For example, a o

urs dire
tly in (a; b)but not in (f(a); b).) A
at term is a variable or a term f(x1; : : : ; xn), where n � 0 andthe xi are distin
t variables.For a predi
ate p=n, a mode is an atom p(m1; : : : ;mn), where mi 2 fI ;Og fori 2 f1; : : : ; ng. Positions with I are
alled input positions, and positions with O are
alled output positions of p. To simplify the notation, an atom written as p(s; t)means: s is the ve
tor of terms �lling the input positions, and t is the ve
tor of terms�lling the output positions. An atom p(s; t) is input-linear if s is linear. A mode ofa program is a set of modes, one mode for ea
h of its predi
ates.2 A program
an haveseveral modes, so whenever we refer to the input and output positions, this is alwayswith respe
t to one parti
ular mode whi
h is
lear from the
ontext.A type is a set of terms
losed under instantiation. A non-variable type is atype that does not
ontain variables. The variable type is the type that
ontainsvariables and hen
e, as it is instantiation
losed, all terms. A ground type is a typethat
ontains only ground terms. A
onstant type is a ground type that
ontainsonly (possibly in�nitely many)
onstants. In the examples, we use the following types:any is the variable type, all ground the type
ontaining all ground terms, list the non-variable type of (nil-terminated) lists, int the
onstant type of integers, il the groundtype of integer lists, num the
onstant type of numbers, nl the ground type of numberlists, and �nally, tree is the non-variable type de�ned by the
ontext-free grammarftree! leaf; tree! node(tree; any; tree)g. These types are also shown in Table 3.We write t : T for \t is in type T". We use S, T to denote ve
tors of types, andwrite j= s : S) t : T if for all substitutions �, s� : S implies t� : T. It is assumedthat ea
h argument position of ea
h predi
ate p=n has a type asso
iated with it. Thesetypes are indi
ated by writing the atom p(T1; : : : ; Tn) where T1; : : : ; Tn are types. Thetype of a program P is a set of su
h atoms, one for ea
h predi
ate de�ned in P . Anatom (query) is
orre
tly typed if ea
h argument position is �lled with a term of thetype of that position. A term t is type-
onsistent [DM98℄ with respe
t to T if thereis a substitution � su
h that t� : T . A term t o

urring in an atom in some position istype-
onsistent if it is type-
onsistent with respe
t to the type of that position.A query is a �nite sequen
e of atoms. Atoms are denoted by a, b, h, queries byB, F , H, Q, R. We write a 2 B if a is an atom in B. Sometimes we say \atom"2We dis
uss a more general notion of mode in Se
tion 10.3.

60 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSTable 3: Some
ommon typesName Des
ription Propertyany variable type variableall ground all ground terms groundlist (nil-terminated) lists non-variableint integers groundil integer lists groundnum numbers groundnl number lists groundtree ftree! leaf; tree! node(tree; any; tree)g non-variableinstead of \query
onsisting of an atom". If a1; : : : ; an is a query, then ai1 ; : : : ; aim ,where 1 � i1 < : : : < im � n, is a subquery of a1; : : : ; an.A derivation step for a program P is a pair hQ; �i; hR; ��i, where Q =Q1; p(s; t); Q2 and R = Q1; B;Q2 are queries; � is a substitution; p(v;u) B a re-named variant of a
lause in P ; and � the MGU3 of p(s; t)� and p(v;u). We
allp(s; t)� (or p(s; t))4 the sele
ted atom and R�� the resolvent of Q� and h B. We
all R�� an LD-resolvent if Q1 is empty. A derivation step is input-
onsuming ifdom(�) \ vars(s�) = ;.A derivation � for a program P is a sequen
e hQ0; �0i; hQ1; �1i; : : : where ea
h pairhQi; �ii; hQi+1; �i+1i in � is a derivation step.5 Alternatively, we also say that � is aderivation of P [fQ0�0g. We sometimes denote a derivation as Q0�0;Q1�1; : : :. AnLD-derivation is a derivation where the sele
ted atom is always the leftmost atom in aquery. An input-
onsuming derivation is a derivation
onsisting of input-
onsumingderivation steps.A sele
tion rule R is a set of derivations
losed under pre�xes, that is, if � 2 R,then for any pre�x �0 of �, we have �0 2 R. If � 2 R, we say that � is an R-derivation.6If (F; a;H); (F;B;H)� is a step in a derivation, then ea
h atom in B� (or B)4 is adire
t des
endant of a, and for all b 2 F;H, we say b� (or b)4 is a dire
t des
endantof b. We say b is a des
endant of a if (b; a) is in the re
exive, transitive
losure ofthe relation is a dire
t des
endant. The des
endants of a set of atoms are de�ned in theobvious way. Consider a derivation Q0; : : : ;Qi; : : : ;Qj ;Qj+1; : : :. We
all Qj ;Qj+1 ana-step if a 2 Qi and the sele
ted atom in Qj;Qj+1 is a des
endant of a.3The MGU is not unique. It is however unique up to renaming [Llo87℄, whi
h is why we simply speakof the MGU. We assume that whenever possible, an MGU is
hosen whi
h does not bind s.4Whether or not the substitution has been applied is always
lear from the
ontext.5This de�nition follows Lloyd [Llo87℄. Apt requires that the sequen
e is maximal [Apt97℄.6This de�nition is more general than the de�nitions by Lloyd [Llo87℄ and Apt [Apt97℄. See alsoSubse
tion 11.1.13.

5.3. MODES AND PERMUTATIONS 615.3 Modes and PermutationsApt and Luitjes [AL95℄
onsider four
orre
tness properties for programs: ni
ely moded,well moded, well typed, and simply moded. Ni
ely-modedness is used to show that theo

ur-
he
k
an be safely omitted. Well-modedness and well-typedness are used to showthat derivations do not
ounder. Finally, simply-modedness is a spe
ial
ase of ni
ely-modedness and is used to show that a program is free from errors related to built-ins.Other authors have also used these or similar
orre
tness properties, for example to showthat programs are uni�
ation free [AE93℄, su

essful [BC99℄, and terminating [EBC99℄.In Example 1.5, we have given a
avour of these
orre
tness properties.In this part of the thesis, we make extensive use of these
orre
tness properties andalso de�ne two new ones. In Se
tion 7.5, we will give an overview summarising therelationships between them.In order to be useful for veri�
ation of programs assuming non-standard derivations,these properties must be generalised. We now dis
uss the basis of this generalisation.5.3.1 The Order of the Atoms in a QueryIn a query (
lause body) one
an
onsider three di�erent orderings among the atoms.First, there is the textual order. This does not need any explanation.Se
ondly, there is the produ
er-
onsumer relation [KKS91℄ between atoms. A pair ofatoms (a; b) is in the produ
er-
onsumer relation if a has a variable in an output positionwhi
h b has in an input position. The
orre
tness properties we de�ne will ensure thatthe transitive
losure of this relation is anti-symmetri
. We shall refer to any order <su
h that (a; b) is in the produ
er-
onsumer relation only if a < b as produ
er-
onsumerorder. Note that we negle
t the fa
t that this order is not ne
essarily unique, sin
e anyprodu
er-
onsumer order will do for our purposes.Thirdly, there is the exe
ution order, whi
h depends on the sele
tion rule.In the
ase of LD-derivations, all of these orders are usually identi
al. The de�nitionsof the above
orre
tness properties as they are used in most works [AE93, BC99, EBC99℄are based on this assumption. Otherwise, these orders may di�er.Example 5.4 Consider append(I ; I ;O) (Figure 10 on page 57) and the following der-ivation, where we annotate the atoms with supers
ripts so that we
an refer to them:append(As; [℄; Bs)1:1; append([1℄; [℄; As)2:1 ;append([1jAs0℄; [℄; Bs)1:1; append([℄; [℄; As0)2:2 ;append(As0; [℄; Bs0)1:2; append([℄; [℄; As0)2:2 ;append([℄; [℄; Bs0)1:2 ; 2:In ea
h query, the produ
er-
onsumer order is the
onverse of the textual order. Con-
erning the exe
ution order, note that atom 2:1 is sele
ted for resolution before atom1:1, but then atom 1:1 is sele
ted, even before atom 2:1 is resolved away
ompletely,that is, before all des
endants of atom 2:1 are resolved. We say that the
omputationsfor the two atoms interleave or
oroutine. /

62 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSTo formalise the produ
er-
onsumer order, we asso
iate, with ea
h query and ea
h
lausein a program, a permutation � of the (body) atoms, whi
h gives the produ
er-
onsumerorder. That is, if (ai; aj) is in the produ
er-
onsumer relation, then �(i) < �(j). Thispermutation depends on the mode. For di�erent modes, the permutations are di�erent.This formalism has been proposed previously by Boye [Boy96℄. Hoarau and Mesnardhave developed a similar formalism for the purpose of reordering atoms in
lause bodiesautomati
ally to ensure termination [HM99℄.5.3.2 Are those Permutations Really Ne
essary?The previous subse
tion raises two questions:1. Could the textual order not be identi
al to the produ
er-
onsumer order?2. Could we not pretend that the textual order is identi
al to the produ
er-
onsumerorder, to simplify the notation?Judging from the literature [AL95, Nai92℄ but also from personal
ommuni
ation webelieve that it is not widely re
ognised that these question must be distinguished.To answer the �rst question,
ompare the derivations for permute in Examples 5.1and 5.3. Here we have a single program whi
h
an be used in two distin
t modes.Depending on the mode, the produ
er-
onsumer order in ea
h query (
lause body) isdi�erent, whereas the textual order is always the same. Therefore, it is impossiblethat the textual order is always identi
al to the produ
er-
onsumer order. It has beenproposed to solve this problem by generating a spe
ialised version of a program for ea
hmode, su
h that for ea
h version, the textual order is always identi
al to the produ
er-
onsumer order [SHC96℄. However, doing so implies a stri
t loss of generality, in thesense that we are not
onsidering one single program running in several modes.Although other authors [AL95, Nai92℄, in the
ontext of delay de
larations, have notexpli
itly assumed multiple modes, they mainly give examples where delay de
larationsare
learly used for that purpose (see page 133). Whether allowing multiple modes is agood approa
h or whether it is better to generate multiple versions of ea
h predi
ate isan ongoing dis
ussion [Hil98℄.Even without assuming multiple modes, the textual order
annot always be identi
alto the produ
er-
onsumer order. For example, programs that use the test-and-generateparadigm rely on the atom whi
h tests (\
onsumes") o

urring to the left of the atomwhi
h generates (\produ
es"). We will see su
h a program in Figure 22 on page 106.So the answer to the �rst question is: no, the textual order
annot always be identi
alto the produ
er-
onsumer order.The answer to the se
ond question is less
lear
ut. It depends on what kind ofsele
tion rule we
onsider.Some authors have studied derivations where the textual order is irrelevant for thesele
tion of an atom and hen
e for the exe
ution order [AL95, L�ut93, MT95℄. Therefore,one may assume for the sake of notational
onvenien
e that in fa
t the textual order isidenti
al to the produ
er-
onsumer order. Although not expli
itly stated, the de�nitionsof the above
orre
tness properties as they are used by Apt and Luitjes [AL95℄ are based

5.3. MODES AND PERMUTATIONS 63on this assumption. More pre
isely, any result stated there
an be generalised triviallyto programs where the atoms in the
lause bodies are permuted in an arbitrary way.The same holds for many of the results presented in this thesis, and we will thereforealso sometimes adopt this simplifying assumption, in parti
ular in Chapter 6. Also inthis
hapter, we
onsider results for whi
h the textual order of atoms is irrelevant.Nevertheless, we maintain the permutations to make the results easily appli
able inother parts of the thesis.Whenever we
onsider derivations where the textual order of atoms is irrelevant, wedo not have to treat multiple modes expli
itly. We
an pretend that there is a renamedversion of ea
h predi
ate for ea
h mode, su
h that in all
lauses, the textual order isidenti
al to the produ
er-
onsumer order. This is not a loss of generality, but merelya notational
onvenien
e. In the a
tual
ode, there is still only one version of ea
hpredi
ate.Of
ourse, when we
onsider input-
onsuming derivations, the sele
tion rule must\know" what mode is assumed in a parti
ular exe
ution of the program, sin
e otherwiseit would not be de�ned what an input-
onsuming derivation is. This
an be realisedwith delay de
larations, as we will see in Chapter 7.In Chapter 8, we will study left-based derivations, for whi
h the textual order isrelevant for the exe
ution order. For left-based derivations, the textual order has to betaken into a

ount as it is. It is not
orre
t to make a simplifying assumption about it.5.3.3 Uniqueness of Derived PermutationsAs explained in Subse
tion 5.3.1, we asso
iate, with ea
h query and ea
h
lause ina program, a permutation of the (body) atoms, whi
h gives the produ
er-
onsumerorder. We will later de�ne
orre
tness properties whi
h are parametrised by thesepermutations. However, some statements only depend on the permutations themselvesand not on the
orre
tness property
onsidered. To avoid repeating virtually identi
alstatements, we formulate these statements here in a general way.In this subse
tion, we assume a program P where a permutation is asso
iated withea
h
lause, and an initial query Q that also has a permutation asso
iated with it. We
all Q or a
lause in P �-ordered if the permutation asso
iated with it is �. Later,�-ordered will be repla
ed with �-ni
ely moded, �-well typed et
. The � is omittedwhenever � is the identity.Let � be a permutation on f1; : : : ; ng. For notational
onvenien
e we extend thedomain of � by de�ning �(i) = i whenever i =2 f1; : : : ; ng. In examples, � is written ash�(1); : : : ; �(n)i. Also, we write �(o1; : : : ; on) for the sequen
e obtained by applying �to the sequen
e o1; : : : ; on, that is o��1(1); : : : ; o��1(n). For example, if Q = a1; a2; a3; a4is a query and � = h4; 3; 1; 2i, then �(Q) = a3; a4; a2; a1. Note that if n � 1, then apermutation on f1; : : : ; ng is ne
essarily the identity.We now de�ne the permutation asso
iated with any query o

urring in a derivationof P [fQg. This is de�ned indu
tively. Given a �-ordered query and a �-ordered
lause,the permutation asso
iated with the resolvent is derived from � and � in a natural way.De�nition 5.1 [derived permutation℄ Let Q0 = a1; : : : ; an be a �-ordered query andC = h b1; : : : ; bm be a �-ordered
lause. Suppose for some k 2 f1; : : : ; ng, h and

64 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSa1 a2 a3 a4a3 a4 a2 a1PPPPPPPP��������� ������ b1 b2b2 b1 a1 b1 b2 a3 a4resolve- a3 a4 b2 b1 a1XXXXXXXXXXX�������� ��������Figure 11: The derived permutation Der(�; �; k)ak are uni�able. Then we say that the resolvent of Q0 and C with sele
ted atom ak is%-ordered, where % is a permutation on f1; : : : ; n+m� 1g de�ned by%(i) = 8>>>>>><>>>>>>: �(i) if i < k; �(i) < �(k)�(i) +m� 1 if i < k; �(i) > �(k)�(k) + �(i� k + 1)� 1 if k � i < k +m�(i�m+ 1) if k +m � i < n+m; �(i�m+ 1) < �(k)�(i�m+ 1) +m� 1 if k +m � i < n+m; �(i�m+ 1) > �(k):We
all % the derived permutation and write Der(�; �; k) = %. /Figure 11 illustrates the derived permutation when n = 4 , � = h4; 3; 1; 2i , m = 2 ,� = h2; 1i , and k = 2. By De�nition 5.1, we have Der(�; �; k) = h5; 4; 3; 1; 2i, sin
eDer(�; �; k)(1) = �(1) + 2� 1 = 5 (2nd line)Der(�; �; k)(2) = �(2) + �(2� 2 + 1)� 1 = 4 (3rd line)Der(�; �; k)(3) = �(2) + �(3� 2 + 1)� 1 = 3 (3rd line)Der(�; �; k)(4) = �(4� 2 + 1) = 1 (4th line)Der(�; �; k)(5) = �(5� 2 + 1) = 2 (4th line).Observe also that in the trivial
ase that � and � are the identity, Der(�; �; k) is alsothe identity, for all k 2 f1; : : : ; ng.Throughout Part III, we will frequently
onsider a derivation Q1; : : : ;Qn su
h thatQ1 is �1-ordered and Qn is �n-ordered, where \ordered" is repla
ed with \ni
ely moded",\well typed", et
. Whenever we do this, we imply that �n is uniquely determined. Morepre
isely, we imply that there are indi
es k1; : : : ; kn and permutations �1; : : : ; �n and�1; : : : ; �n�1 su
h that for ea
h i 2 f1; : : : ; n� 1g� Qi is �i-ordered,� the kith atom in Qi is sele
ted in the step Qi;Qi+1,� the
lause used in the step Qi;Qi+1 is �i-ordered,� �i+1 = Der(�i; �i; ki).This is important to stress be
ause the uniqueness of the permutation �n will notne
essarily follow from the de�nitions of the
orre
tness properties. However, as statedin Subse
tion 5.3.1, it is no loss of generality to assume that the produ
er-
onsumerorder is unique.

5.4. PERMUTATION NICELY MODED PROGRAMS 65At ea
h step of a derivation, the relative order of atoms given by the derived per-mutation is preserved. The following lemma formalises this.Lemma 5.1 Let Q; : : : ;R be a derivation for P , where Q = a1; : : : ; an is �-ordered andR = b1; : : : ; bm is �-ordered.a. Let i; j 2 f1; : : : ; ng su
h that �(i) < �(j). Then for all k; l 2 f1; : : : ;mg su
hthat bk is a des
endant of ai and bl is a des
endant of aj, we have �(k) < �(l).b. Let k; l 2 f1; : : : ;mg su
h that �(k) < �(l), and let i; j 2 f1; : : : ; ng su
h that bkis a des
endant of ai and bl is a des
endant of aj (note that i and j exist and areunique). Then �(i) � �(j).Proof. Inspe
tion of the derived permutation in De�nition 5.1 shows that the re-sult holds for derivations of length 1. The general result follows by a straightforwardindu
tion on the length. 2In the trivial
ase that all permutations are the identity, the above lemma merely statesthat resolution preserves the textual order of atoms in a query.5.4 Permutation Ni
ely Moded ProgramsApt and Luitjes de�ne ni
ely moded queries [AL95℄. In a ni
ely moded query, a variableo

urring in an input position does not o

ur later in an output position, and ea
hvariable in an output position o

urs only on
e. We generalise this to permutationni
ely moded.De�nition 5.2 [permutation ni
ely moded℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be aquery and � a permutation on f1; : : : ; ng. Then Q is �-ni
ely moded if t1; : : : ; tn is alinear ve
tor of terms and for all i 2 f1; : : : ; ngvars(si) \ [�(i)��(j)�n vars(tj) = ;:The query �(Q) is a ni
ely moded query
orresponding to Q.The
lause C = p(t0; sn+1) Q is �-ni
ely moded if Q is �-ni
ely moded andvars(t0) \ n[j=1 vars(tj) = ;:The
lause p(t0; sn+1) �(Q) is a ni
ely moded
lause
orresponding to C.A query (
lause) is permutation ni
ely moded if it is �-ni
ely moded for some�. A program P is permutation ni
ely moded if all of its
lauses are. A ni
elymoded program
orresponding to P is a program obtained from P by repla
ingea
h
lause C in P with a ni
ely moded
lause
orresponding to C. /

66 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSNote that in the
lause head, the letter t is used for input and s is used for output,whereas in the body atoms it is vi
e versa. This
onvention is used throughout be
auseit allows for a su

in
t notation, in parti
ular in De�nitions 5.4, 5.5 and 7.4.Note also that a one-atom query p(s; t) is (permutation) ni
ely moded if and onlyif vars(s) \ vars(t) = ; and t is linear.For many results it is ne
essary to require that ea
h
lause head is input-linear.De�nition 5.3 [input-linear
lause/program℄ A
lause C = p(t; s) Q is input-linear if t is input-linear. A program is input-linear if all of its
lauses are input-linearand it
ontains no uses of =(I ; I). /Note that in the above de�nition, uses of the built-in equality predi
ate are takeninto a

ount. Con
eptually, the equality predi
ate is de�ned as \X = X.". Therefore,an input-linear program must not use the equality predi
ate in mode =(I ; I), sin
ethe
lause \X = X." is not input-linear for this mode. This is dis
ussed further inSe
tion 10.2.Example 5.5 Consider the permute program (Figure 9 on page 57). For the modefpermute(I ;O); delete(I ;O ; I)g, this program is ni
ely moded and input-linear.In mode fpermute(O ; I); delete(O ; I ;O)g, it is permutation ni
ely moded andinput-linear. The se
ond
lause for permute is h2; 1i-ni
ely moded, and the other
lausesare ni
ely moded.In \test mode", that is, fpermute(I ; I); delete(I ; I ;O)g, it is permutation ni
elymoded, but not input-linear, be
ause the �rst
lause for delete is not input-linear.The se
ond
lause for permute is h2; 1i-ni
ely moded, and the other
lauses are ni
elymoded. /The problem of �nding a mode for a program so that it is ni
ely moded has been
onsidered by Chadha and Plaisted [CP91℄.We quote the following persisten
e property for ni
ely-modedness.Lemma 5.2 [AL95, Lemma 11℄ Let Q be a ni
ely moded query and C be a ni
elymoded, input-linear
lause where vars(Q) \ vars(C) = ;. Then every resolvent of Qand C is ni
ely moded.We generalise this result to permutation ni
ely-modedness.Lemma 5.3 Let Q = a1; : : : ; an be a �-ni
ely moded query and C = h b1; : : : ; bm bea �-ni
ely moded, input-linear
lause where vars(Q) \ vars(C) = ;. Suppose for somek 2 f1; : : : ; ng, h and ak are uni�able. Then the resolvent of Q and C with sele
tedatom ak is Der(�; �; k)-ni
ely moded.Proof. Let � be the MGU of h and ak. By De�nition 5.2, a��1(1); : : : ; a��1(n) isni
ely moded and h b��1(1); : : : ; b��1(m) is ni
ely moded and input-linear. Thus byLemma 5.2,(a��1(1); : : : ; a��1(�(k)�1); b��1(1); : : : ; b��1(m); a��1(�(k)+1); : : : ; a��1(n)) �

5.4. PERMUTATION NICELY MODED PROGRAMS 67is ni
ely moded, and so (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an) � is Der(�; �; k)-ni
elymoded. 2The requirement that the
lause must be input-linear
an be dropped if the derivationstep is input-
onsuming. It is assumed that the sele
ted atom is suÆ
iently instantiated,so that a multiple o

urren
e of the same variable in the input arguments of the
lausehead
annot
ause any bindings to the query.Lemma 5.4 Let Q = a1; : : : ; an be a �-ni
ely moded query and C = p(v;u) b1; : : : ; bm be a �-ni
ely moded
lause where vars(Q) \ vars(C) = ;. Suppose forsome k 2 f1; : : : ; ng, p(v;u) and ak = p(s; t) are uni�able with MGU �, and dom(�) \vars(s) = ;. Then the resolvent of Q and C with sele
ted atom ak is Der(�; �; k)-ni
elymoded.Proof. Let C 0 = p(v0;u) b1; : : : ; bm be an input-linear
lause su
h that1. vars(v) � vars(v0) and vars(v0) \ vars(Q) = ;,2. there exists a substitution � su
h that C 0� = C and dom(�) = vars(v0)nvars(v).Intuitively, v0 is obtained from v by renaming, for ea
h variable o

urring several times,all but one o

urren
es apart using fresh variables.Sin
e dom(�) \ vars(s) = ;, it follows that � = �1�2, where �1 is an MGU of v and s,and v�1 = s, and �2 is an MGU of u�1 and t�1.By (2) and sin
e v�1 = s, we have v0��1 = s. Moreover by (1), (2) and sin
e dom(�1) �vars(v), we have dom(��1) � vars(v0), and hen
e ��1 is an MGU of v0 and s.By (2), u� = u and t� = t. Therefore �2 is an MGU of u��1 and t��1.So we have that ��1 is an MGU of v0 and s, and �2 is an MGU of u��1 and t��1.Therefore ��1�2 = �� is an MGU of p(v0;u) and p(s; t) [Apt97, Lemma 2.24℄. Hen
eby Lemma 5.3 and sin
e C 0 is input-linear, (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)�� isa Der(�; �; k)-ni
ely moded resolvent of C 0 and Q. However, by (1) and (2),(a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� = (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)��;and so (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� is Der(�; �; k)-ni
ely moded. 2For a permutation ni
ely moded program and query, it is guaranteed that every input-
onsuming derivation step only instantiates other atoms in the query that o

ur \later"than the sele
ted atom, a

ording to the produ
er-
onsumer order.Lemma 5.5 Make the same assumptions as in Lemma 5.4. Then for all i with �(i) <�(k), dom(�) \ vars(ai) = ;.Proof. Let ak = p(s; t). Sin
e the derivation step is input-
onsuming, dom(�) \vars(Q) � vars(t). Thus sin
e Q is �-ni
ely moded, dom(�) \ vars(ai) = ; for all iwith �(i) < �(k). 2

68 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSThe above lemma will be used in Chapter 6, where the permutation � is always theidentity. For better readability, we restate the lemma for this
ase.Lemma 5.6 Let Q = Q1; a;Q2 be a ni
ely moded query and C = h B a ni
elymoded
lause where vars(Q) \ vars(C) = ;. Let hQ; ;i; hQ1;B;Q2; �i be an input-
onsuming derivation step using C. Then dom(�) \ vars(Q1) = ;.5.5 Permutation Well Moded ProgramsWell-modedness has been introdu
ed by Dembinski and Ma luszy�nski [DM85℄ and widelyused for veri�
ation sin
e [AL95, AP94b, EBC99℄. When we assume LD-derivations,well-modedness ensures that the input arguments of an atom are ground when the atomis sele
ted. In the programming language Mer
ury it is even mandatory that programsare well moded8, whi
h is one of the reasons for its remarkable performan
e [SHC96℄.De�nition 5.4 [permutation well moded℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a queryand � a permutation on f1; : : : ; ng. Then Q is �-well moded if for all i 2 f1; : : : ; ngand L = 1 vars(si) � [L��(j)<�(i) vars(tj) (1)The
lause p(t0; sn+1) Q is �-well moded if (1) holds for all i 2 f1; : : : ; n+ 1g andL = 0.A permutation well moded query (
lause, program) and a well moded query(
lause, program)
orresponding to a query (
lause, program) are de�ned in analogyto De�nition 5.2. /Note that a one-atom query p(s; t) is (permutation) well moded if and only if s is ground.Example 5.6 Consider the permute program (Figure 9 on page 57) It is well modedfor mode fpermute(I ;O), delete(I ;O ; I)g, and permutation well moded for modefpermute(O ; I); delete(O ; I ;O)g, with the same permutations as Example 5.5. /We quote a persisten
e result for well-modedness whi
h has been shown previously forLD-resolvents [AP94b℄ and arbitrary resolvents [AL95℄.Lemma 5.7 [AL95, Lemma 16℄ Let Q be a well moded query and C be a well moded
lause where vars(Q) \ vars(C) = ;. Then every resolvent of Q and C is well moded.We generalise this result to permutation well-modedness.Lemma 5.8 Let Q = a1; : : : ; an be a �-well moded query and C = h b1; : : : ; bm be a�-well moded
lause where vars(Q) \ vars(C) = ;. Suppose for some k 2 f1; : : : ; ng, hand ak are uni�able. Then the resolvent ofQ andC with sele
ted atom ak isDer(�; �; k)-well moded.Proof. Analogous to Lemma 5.3, but using Lemma 5.7 instead of Lemma 5.2. 28To be pre
ise:
an be made well moded by reordering of atoms.

5.6. PERMUTATION WELL TYPED PROGRAMS 695.6 Permutation Well Typed ProgramsThe disadvantage of (permutation) well-modedness is that it is not possible to rea-son about programs that operate on non-ground data stru
tures. For example, thequery append([A; B℄; [C℄; Zs) is not (permutation) well moded for mode append(I ; I ;O)sin
e the input is not ground. Therefore well-modedness has been generalised to well-typedness [AL95, AP94b, BLR92℄.In a well typed query, the �rst atom is
orre
tly typed in its input positions. Further-more, given a well typed query Q; a;Q0 and assuming LD-derivations, if Q is resolvedaway, then a be
omes
orre
tly typed in its input positions. We generalise this to per-mutation well typed. As with the modes, we assume that the types of all argumentpositions are given. In the examples, they will be the obvious ones.De�nition 5.5 [permutation well typed℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a query,where pi(Si;Ti) is the type of pi for ea
h i 2 f1; : : : ; ng. Let � be a permutation onf1; : : : ; ng. Then Q is �-well typed if for all i 2 f1; : : : ; ng and L = 1j= (^L��(j)<�(i) tj : Tj)) si : Si: (2)The
lause p(t0; sn+1) Q, where p(T0;Sn+1) is the type of p, is �-well typed if (2)holds for all i 2 f1; : : : ; n+ 1g and L = 0.A permutation well typed query (
lause, program) and a well typed query(
lause, program)
orresponding to a query (
lause, program) are de�ned in analogyto De�nition 5.2. /Note that a one-atom query p(s; t) is (permutation) well typed if and only if s is
orre
tlytyped.Example 5.7 Consider the permute program (Figure 9 on page 57) where the type isfpermute(list; list), delete(any; list; list)g. It is well typed for mode fpermute(I ;O),delete(I ;O ; I)g, and permutation well typed for fpermute(O ; I); delete(O ; I ;O)g,with the same permutations as Example 5.5. The same holds when we assume typefpermute(nl; nl), delete(num;nl; nl)g. /As before, we quote a persisten
e property for well-typedness.Lemma 5.9 [AL95, Lemma 23℄ Let Q be a well typed query and C be a well typed
lause where vars(Q) \ vars(C) = ;. Then every resolvent of Q and C is well typed.We now generalise this result to permutation well-typedness.Lemma 5.10 Let Q = a1; : : : ; an be a �-well typed query and C = h b1; : : : ; bm bea �-well typed
lause where vars(Q)\ vars(C) = ;. Suppose for some k 2 f1; : : : ; ng, hand ak are uni�able. Then the resolvent ofQ and C with sele
ted atom ak isDer(�; �; k)-well typed.Proof. Analogous to Lemma 5.3, but using Lemma 5.9 instead of Lemma 5.2. 2

70 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSThe following two statements are needed for the proof of Theorem 8.5. The �rst saysthat for a �-well typed queryQ, every pre�x of �(Q) is well typed. It follows immediatelyfrom De�nition 5.5.Proposition 5.11 Let Q = a1; : : : ; an be a �-well typed query. For all i 2 f1; : : : ; ng,the subquery of Q
ontaining all aj su
h that �(j) � �(i) is permutation well typed.The se
ond statement says that if all atoms in �(Q) before an atom a are resolved away,then a be
omes
orre
tly typed in its input positions.Lemma 5.12 Let P be a permutation well typed program and Q = a1; : : : ; an a �-welltyped query. For all j 2 f1; : : : ; ng, if Q; : : : ; (F; aj ;H)� is a derivation of P [fQg andfor all i with �(i) < �(j), (F; aj ;H)�
ontains no des
endants of ai, then aj� is
orre
tlytyped in its input positions.Proof. Suppose (F; aj ;H)�
onsists of m atoms and is �-well typed, and aj isthe lth atom in F; aj ;H. We show that �(l) = 1. Thus assume, for the purpose ofderiving a
ontradi
tion, that there is a k 2 f1; : : : ;mg su
h that �(k) < �(l). Then byLemma 5.1 (b), the kth atom in (F; aj ;H)� is either a des
endant of aj , or a des
endantof some atom ai su
h that �(i) < �(j). The �rst
ase is impossible sin
e aj has not yetbeen resolved in (F; aj ;H)� and thus the only des
endant of aj is aj�. The se
ond
aseis impossible by the assumption that for all i with �(i) < �(j), (F; aj ;H)�
ontains nodes
endants of ai.Thus there is no k 2 f1; : : : ;mg su
h that �(k) < �(l), and so �(l) = 1. Therefore itfollows by De�nition 5.5 that aj� is
orre
tly typed in its input positions. 2It follows from the de�nitions that permutation well-typedness is a generalisation ofpermutation well-modedness. In the following proposition, re
all that all ground is thetype
ontaining all ground terms.Proposition 5.13 Every permutation well moded program is permutation well typed,assuming all argument positions are of type all ground.Every permutation well typed program, where all argument positions have a groundtype, is permutation well moded.In Chapter 6, our formal results assume (permutation) well typed programs. These re-sults are automati
ally appli
able to all (permutation) well moded programs, sin
e theseare (permutation) well typed, assuming all argument positions are of type all ground.5.7 Type-Consistent ProgramsPermutation well-typedness is
losely linked to the modes of a program: the type
or-re
tness of
ertain output positions implies type
orre
tness of
ertain input positions.This notion is quite di�erent from the
on
ept of well typed programs as it is used intyped logi
 programming languages su
h as Mer
ury [SHC96℄ or G�odel [HL94℄, and alsoin other
ontexts, as we have dis
ussed in Se
tion 2.2.

5.7. TYPE-CONSISTENT PROGRAMS 71In typed logi
 programming languages, every argument position in a program hasa type. The type-
he
king of the program allows to guarantee at
ompile time that noin
orre
tly typed term
an ever o

ur in an argument position during a derivation forthe program. This has been turned into the following slogan [Mil78, MO84℄:Well-typed programs
annot go wrong.This is
learly a desirable property, sin
e the o

urren
e of an in
orre
tly typed term inan argument position nearly always reveals a programming error [HL94, page 5℄. Theproperty is also desirable for veri�
ation purposes, as we will see in the next
hapter.Unfortunately, our notion of permutation well typed programs does not allow for su
ha guarantee.Example 5.8 Consider append(I ; I ;O) (Figure 10 on page 57). The queryappend([℄; [℄; foo); append(foo; [℄; Zs)is well typed sin
e trivially j= foo : list) foo : list. That is, sin
e the output ofthe �rst atom is wrongly typed, we
an say that
orre
tly typed output of the �rstimplies
orre
tly typed input for the se
ond atom. We will
onsider this problem againin Subse
tion 9.4.1. Boye has given a similar example and has argued that su
h queries(or programs) are pathologi
al [Boy96℄. /The question therefore is: given a permutation well typed program and a sele
tion ruleR, do all R-derivations for a permutation well typed query
onsist of queries that
anbe instantiated so that all arguments are
orre
tly typed? We strongly suspe
t that thisquestion is unde
idable. Nevertheless, we will de�ne
lasses of programs for whi
h thisquestion
an be answered positively. We now give su
h programs a name.De�nition 5.6 [type-
onsistent℄ Let P be permutation well typed program and R asele
tion rule.A query is type-
onsistent if it is permutation well typed and has a
orre
tly typedinstan
e. The program P is type-
onsistent with respe
t to R if for all all type-
onsistent queries Q, all R-derivations of P [fQg
onsist of type-
onsistent queries./In a slight abuse of terminology, we shall often say that a program is type-
onsistentwith respe
t to LD-derivations, input-
onsuming derivations et
.Obviously every query has a ground instan
e. This implies that for permutationwell moded programs, we
an immediately state the following proposition.Proposition 5.14 Let P be a permutation well moded program, or equivalently (byProposition 5.13), a permutation well typed program, where the type of all positions isall ground. Then P is type-
onsistent with respe
t to any sele
tion rule.

Chapter 6Termination of Input-ConsumingDerivationsIn this
hapter, we identify a
lass of programs for whi
h all input-
onsuming deriva-tions terminate. To this end, we will make use of the
orre
tness properties de�ned inChapter 5.6.1 Termination and the Sele
tion RuleTermination of logi
 programs has been widely studied for LD-derivations [Apt97, AP90,DD94, DVB92, DD93, DD98, EBC99, LS97℄. All of these works are based on thefollowing idea: at the time when an atom a in a query is sele
ted, it is possible to pindown the size of a. The te
hni
al meaning of \pinning down the size" di�ers amongdi�erent methods (see Subse
tion 11.1.1). What is important here is that this size
annot
hange via further instantiation. It is then shown that for the atoms introdu
edin this derivation step, it is again possible to pin down their size when eventually theyare sele
ted, and that these atoms are smaller than a.This idea has also been applied to arbitrary derivations [Bez93℄. Programs whi
hterminate for arbitrary derivations are
alled strongly terminating. Sin
e no restri
tionis imposed as to when an atom
an be sele
ted, it is required that for ea
h query ina derivation, the size of ea
h of its atoms is always bounded. The
lass of stronglyterminating programs is very small: it
ontains hardly any \real" non-trivial programs.For most programs, to ensure termination, it is ne
essary to require a
ertain degreeof instantiation of an atom before it
an be sele
ted. This
an be a
hieved using delayde
larations [AL95, L�ut93, MT95, MK97, Nai92, SHK99b, SHK98℄. The problem isthat, depending on what kinds of delay de
larations and sele
tion rules are used, it maynot be possible to pin down the size of the sele
ted atom, sin
e this size may dependon the resolution of other atoms in the query that are not yet resolved. Nevertheless,the approa
hes by Mar
hiori and Teusink [MT95℄ and Martin and King [MK97℄, andto a limited extent L�uttringhaus-Kappel [L�ut93℄ are based on the idea des
ribed above.Others avoid any expli
it mention of \size" and instead try to redu
e the problem toshowing termination for LD-derivations [Nai92℄.The approa
h taken in this
hapter falls between the two extremes of making no72

6.1. TERMINATION AND THE SELECTION RULE 73assumptions about the sele
tion rule on the one hand and making very spe
i�
 assump-tions on the other. We identify predi
ates for whi
h all input-
onsuming derivationsare �nite. Other works in this area have usually made spe
i�
 assumptions about thesele
tion rule and the delay de
larations, for example lo
al sele
tion rules [MT95℄, delayde
larations that test arguments for groundness or rigidness [L�ut93, MK97℄, or the de-fault left-to-right sele
tion rule of most Prolog implementations [Nai92℄. In
ontrast, weshow how previous results about LD-derivations
an be generalised, the only assumptionabout the sele
tion rule being that derivations are input-
onsuming.We exploit the fa
t that under
ertain
onditions, it is enough to rely on a relativede
rease in the size of the sele
ted atom, even though this size
annot be pinned down.Example 6.1 Consider append(I ; I ;O) (Figure 10 on page 57) and the following input-
onsuming derivation. Note that the derivation is the same as in Example 5.4 ex
eptfor the textual order of the atoms.append([1℄; [℄; As); append(As; [℄; Bs);append([℄; [℄; As0); append([1jAs0℄; [℄; Bs);append([℄; [℄; As0); append(As0; [℄; Bs0);append([℄; [℄; Bs0); 2:When append([1jAs0℄; [℄; Bs) is sele
ted, it is not possible to pin down its size in anymeaningful way. In fa
t, nothing
an be said about the length of the (input-
onsuming)derivation asso
iated with append([1jAs0℄; [℄; Bs) without knowing about other atomsthat might instantiate As0. However, the derivation
ould be in�nite only if the deriva-tion asso
iated with append([℄; [℄; As0) was in�nite. Our method is based on su
h adependen
y between the atoms of a query. /The
lass of programs for whi
h all input-
onsuming derivations are �nite is obviouslylarger than the
lass of strongly terminating programs. Nevertheless, the
lass is stillquite limited. We now give an example of a program whi
h is not in the
lass.Example 6.2 For the permute program (Figure 9 on page 57) in mode fpermute(O ; I);delete(O ; I ;O)g, we have the following in�nite input-
onsuming derivation:permute(W; [1℄);permute(X0; Z0); delete(U0; [1℄; Z0);permute(X0; [1jZ00℄); delete(U0; [℄; Z00);permute(X00; Z000); delete(U00; [1jZ00℄; Z000); delete(U0; [℄; Z00);permute(X00; [1jZ0000℄); delete(U00; Z00; Z0000); delete(U0; [℄; Z00); : : : /To ensure termination even for programs like the one above, most authors have madestronger assumptions about the sele
tion rule, thereby negle
ting the important
lassfor whi
h assuming input-
onsuming derivations is suÆ
ient. We will show in Chapter 8that if we
an identify predi
ates in this
lass, then this information
an be embeddedinto a more
omprehensive method for showing termination. We have attempted toformulate our results as generally as possible to make them widely appli
able.

74 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSIn this
hapter, we
onsider derivations where the textual position of an atom withina query is irrelevant for its sele
tion. As we have explained on page 63, we
an thereforeassume without loss of generality that the textual order of atoms within a query is iden-ti
al to the produ
er-
onsumer order. That is, whenever we use one of the
orre
tnessproperties introdu
ed in Chapter 5, we
an assume that the permutation is the identityand that ea
h predi
ate has a �xed mode. This simpli�es the notation.This
hapter is organised as follows. Se
tion 6.2 explains why the order of
lausesin a program is irrelevant for the termination problem we
onsider. Se
tion 6.3 showsthat for well typed and ni
ely moded programs, it is suÆ
ient to prove terminationfor one-atom queries. Se
tion 6.4 then shows how one-atom queries
an be proven toterminate. In Se
tion 6.5 we sket
h how the method presented here
ould be applied.Se
tion 6.6 dis
usses the results and some related work.6.2 Existential vs. Universal TerminationApart from the sele
tion of an atom in ea
h derivation step, there is also another aspe
tof
ontrol in logi
 programs: the
hoi
e of the
lause used to resolve the atom. Di�erent
hoi
es result in di�erent derivations, some of whi
h
ould be in�nite. In most logi
programming systems, the
lauses are tried in order of textual o

urren
e. It is possiblefor a system �rst to
ompute one �nite derivation but then on ba
ktra
king
omputean in�nite one, and hen
e not terminate. This situation is referred to as existentialtermination [DD94℄, sin
e (at least) one �nite derivation is
omputed. Whether or nota program existentially terminates for a query may depend on the textual order of
lauses in the program.As dis
ussed by De S
hreye and De
orte [DD94℄, most approa
hes to the terminationproblem are interested in universal termination, that is, �niteness of all derivations. Thisis also true for this thesis, and therefore, for the termination problems we
onsider, the
lause order in a program is irrelevant. De S
hreye and De
orte also remark that provingexistential termination is a very hard problem, but nevertheless, it has been addressedby a few authors [Bau92, CT77, FGKP85, Mar96℄.6.3 Controlled CoroutiningIn this se
tion we de�ne atom-terminating predi
ates. A predi
ate p is atom-terminat-ing if (under
ertain
onditions) all input-
onsuming derivations of a query p(s; t) are�nite. Like Etalle et al. [EBC99℄, we then show that termination for one-atom queriesimplies termination for arbitrary queries.For LD-derivations, it is almost obvious that it is suÆ
ient to show termination forone-atom queries, and it only requires that programs and queries are well moded, butnot ni
ely moded [EBC99, Lemma 4.2℄. Given an LD-derivation � for a query a1; : : : ; an,the sub-derivations for ea
h ai do not interleave, and therefore �
an be regarded as aderivation for a1 followed by a derivation for a2 and so forth. The following exampleillustrates that in the
ontext of interleaving sub-derivations (
oroutining), this is notat all obvious.

6.3. CONTROLLED COROUTINING 75Example 6.3 Consider append(I ; I ;O) (Figure 10 on page 57) and the queryappend([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As):This query is well moded but not ni
ely moded. Then we have the following in�niteinput-
onsuming derivation:append([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As);append([℄; [℄; As); append(As; [℄; Bs0); append([1jBs0℄; [℄; As) ;append([℄; [℄; [1jAs0℄); append([1jAs0℄; [℄; Bs0); append(Bs0; [℄; As0); : : :This well-known termination problem of programs with
oroutining has been identi�edas
ir
ular modes [Nai92℄. /To avoid the problem, we require programs and queries to be ni
ely moded. We do notrequire programs to be well moded. However, we require them to be well typed andtype-
onsistent with respe
t to input-
onsuming derivations. By Proposition 5.14, wellmoded programs are one
lass of programs meeting this requirement.Re
all that a one-atom query p(s; t) is well typed and ni
ely moded if and only if sis
orre
tly typed, vars(s) \ vars(t) = ; and t is linear.De�nition 6.1 [atom-terminating predi
ate/atom℄ Let P be a well typed and ni
elymoded program whi
h is type-
onsistent with respe
t to input-
onsuming derivations.A predi
ate p in P is atom-terminating if for ea
h well typed, type-
onsistent andni
ely moded query p(s; t), all input-
onsuming derivations of P [fp(s; t)g are �nite.An atom is atom-terminating if its predi
ate is atom-terminating. /We need the following simple auxiliary lemma to prove Lemma 6.2.Lemma 6.1 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a well typed, type-
onsistent andni
ely moded query. Then there exists a substitution � su
h that dom(�) =vars(t1; : : : ; tn�1), and pn(sn; tn)� is well typed, type-
onsistent and ni
ely moded.Proof. Sin
eQ is type-
onsistent and types are
losed under instantiation, there existsa (minimal) substitution � su
h that dom(�) = vars(t1; : : : ; tn�1) and (t1; : : : ; tn�1)�is ground and
orre
tly typed. Note that vars(ran(�)) = ;.By De�nition 5.5, pn(sn; tn)� is well typed. Sin
e Q is ni
ely moded, it follows thatdom(�) \ vars(tn) = ; and hen
e pn(sn; tn)� is type-
onsistent. Moreover, vars(sn) \vars(tn) = ; and vars(ran(�)) = ;, and hen
e vars(sn�) \ vars(tn�) = ;. Thereforeby De�nition 5.2, pn(sn; tn)� is ni
ely moded. 2The following lemma says that an atom-terminating atom
annot pro
eed inde�nitelyunless it is repeatedly fed by some other atom.Lemma 6.2 Let P be a well typed and ni
ely moded program whi
h is type-
onsistentwith respe
t to input-
onsuming derivations. Let F; b;H be a well typed, type-
onsistentand ni
ely moded query where b is an atom-terminating atom. An input-
onsuming

76 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSderivation of P [fF; b;Hg
an have in�nitely many b-steps only if it has in�nitely manya-steps, for some a 2 F .Proof. In this proof, by an F -step we mean an a-step, for some a 2 F ; likewisewe de�ne an H-step. By Lemma 5.6, no H-step
an instantiate any des
endant of b.Thus the H-steps
an be disregarded, and without loss of generality, we assume that His empty. Suppose � is an input-
onsuming derivation for P [fF; bg
ontaining �nitelymany F -steps. We
an write � = hF;b; ;i; : : : ; hQ0; �0i; ~�where hQ0; �0i; ~�
ontains no F -steps. Sin
e by Lemma 5.6, no b-step
an instantiateany des
endant of F , there exists an input-
onsuming derivation�2 = hF;b; ;i; : : : ; hR; �i; : : : ; hQ0; �0i; ~�su
h that hF;b; ;i; : : : ; hR; �i
ontains only F -steps and hR; �i; : : : ; hQ0; �0i; ~�
ontainsonly b-steps (that is, the F -steps are moved forward using the Swit
hing Lemma [Llo87,Lemma 9.1℄). Sin
e R = R0; b for some R0, there exists an input-
onsuming derivation�3 = hb; �i; : : : ; hI0; �0i; ~�3obtained from hR; �i; : : : ; hQ0; �0i; ~� by removing the pre�x R0 in ea
h query.By Lemmas 5.10 and 5.4, R� is well typed and ni
ely moded, and sin
e P is type-
onsistent with respe
t to input-
onsuming derivations, R� is type-
onsistent. Thus byLemma 6.1, there is a substitution � su
h that b�� is well typed, type-
onsistent andni
ely moded. Moreover dom(�) = V , where V is the set of variables in the outputpositions of R0�.By Lemma 5.6, no b-step in �2, and hen
e no derivation step in �3,
an instantiatea variable in V . Sin
e dom(�) = V , it thus follows that we
an
onstru
t an input-
onsuming derivation �4 = hb; ��i; : : : ; hI0; �0�i; ~�3�by applying � to ea
h query in �3.Sin
e b�� is a well typed, type-
onsistent and ni
ely moded query and b is atom-termi-nating, �4 is �nite. Therefore �3, �2, and �nally � are �nite. 2The following theorem is a
onsequen
e and states that atom-terminating atoms ontheir own
annot produ
e an in�nite derivation.Theorem 6.3 Let P be a well typed and ni
ely moded program whi
h is type-
onsistentwith respe
t to input-
onsuming derivations, and Q a well typed, type-
onsistent andni
ely moded query. An input-
onsuming derivation of P [fQg
an be in�nite only ifthere are in�nitely many steps where an atom is resolved that is not atom-terminating.Proof. We �rst show:

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 77(�) For any well typed, type-
onsistent and ni
ely moded query Q0, an input-
onsum-ing derivation of P [fQ0g
an be in�nite only if it
ontains at least one step wherean atom is resolved that is not atom-terminating.So let �0 be an in�nite input-
onsuming derivation of P [fQ0g. Then it follows byLemma 6.2 that �0
ontains in�nitely many a-steps, for some a 2 Q0 that is not atom-terminating. Hen
e the �rst a-step in �0 is a step where an atom is resolved that is notatom-terminating. This implies (�).Now let � be an in�nite input-
onsuming derivation of P [fQg. Assume, for the purposeof deriving a
ontradi
tion, that �
ontains only �nitely many steps where an atom isresolved that is not atom-terminating. Let ~� be a suÆx of �
ontaining no steps wherean atom is resolved that is not atom-terminating. By Lemmas 5.10 and 5.4, the �rstquery of ~� is well typed and ni
ely moded. Moreover, ~� is in�nite, and so we have a
ontradi
tion to (�). Thus it follows that �
ontains in�nitely many steps where anatom is resolved that is not atom-terminating, whi
h
ompletes the proof. 2Theorem 6.3 provides us with the formal justi�
ation for restri
ting our attention toone-atom queries.6.4 Showing that a Predi
ate is Atom-TerminatingAll approa
hes to termination mentioned earlier more or less expli
itly rely on measuringthe size of the input in a query [Apt97, AP90, DD94, DVB92, DD93, DD98, EBC99,LS97℄. We agree with Etalle et al. [EBC99℄ that it is reasonable to make this dependen
yexpli
it. This gives rise to the notion of moded level mapping, whi
h is an instan
e oflevel mapping introdu
ed by Bezem [Bez93℄ and Cavedon [Cav89℄. Sin
e we use welltyped programs instead of well moded ones, we have to generalise the
on
ept further.In the following de�nition, BP denotes the set of ground atoms using predi
ateso

urring in P .De�nition 6.2 [moded typed level mapping℄ Let P be a program. The fun
tion j:j isa moded typed level mapping if1. it is a level mapping, that is a fun
tion j:j : BP ! IN,2. for any ground s, t and u, jp(s; t)j = jp(s;u)j.3. if p(s; t) is
orre
tly typed in its input positions, then jp(s; t)�1j = jp(s; t)�2j forall substitutions �i su
h that p(s; t)�i is ground (i = 1; 2).For a 2 BP , jaj is the level of a. /Thus the level of an atom only depends on the terms in the input positions. Moreover,the level of an atom is �xed on
e its input arguments are
orre
tly typed; this is whereour
on
ept di�ers from moded level mappings. As Proposition 5.13 shows, the
on
epts
oin
ide if the only type is all ground, that is, if we only
onsider well moded programs.The following
on
ept, adopted from Apt [Apt97℄, is useful for proving terminationfor a whole program in
rementally, by proving it for one predi
ate at a time.

78 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSDe�nition 6.3 [depends on℄ Let p; q be predi
ates in a program P . We say that prefers to q if there is a
lause in P with p in its head and q in its body, and p dependson q (written p w q) if (p; q) is in the re
exive, transitive
losure of refers to. We writep A q if p w q and q 6w p, and p � q if p w q and q w p. /Abusing notation, we shall also use the above symbols for atoms, where p(s; t) w q(u;v)stands for p w q, and likewise for A and �. Furthermore, we denote the equivalen
e
lass of a predi
ate p with respe
t to � as [p℄�.The following de�nition provides us with a
riterion for proving that a predi
ate isatom-terminating.De�nition 6.4 [ICD-a

eptable℄ Let P be a program and j:j a moded typed levelmapping. A
lause C = h B is a

eptable for input-
onsuming derivations(with respe
t to j:j) if for every substitution � su
h that C� is ground, and for every ain B su
h that a � h, we have jh�j > ja�j. We abbreviate a

eptable for input-
onsumingderivations by ICD-a

eptable.A program (set of
lauses) is ICD-a

eptable with respe
t to j:j if ea
h
lauseis ICD-a

eptable with respe
t to j:j. /Let us
ompare this
on
ept to some similar
on
epts in the literature: re
urrent [Bez93℄,well-a

eptable [EBC99℄ and a

eptable [AP94a, DD98℄ programs.Like De
orte and De S
hreye [DD98℄ and Etalle et al. [EBC99℄ but unlike Apt andPedres
hi [AP94a℄ and Bezem [Bez93℄, we require jh�j > ja�j only for atoms a wherea � h. This is
onsistent with the idea that termination should be proven in
rementally:to show termination for a predi
ate p, it is assumed that all predi
ates q with p A qhave already been shown to terminate. Therefore we
an restri
t our attention to thepredi
ates q where q � p.Like Bezem but unlike Apt and Pedres
hi, De
orte and De S
hreye and Etalle et al.,our de�nition does not involve models or
omputed answer substitutions. Traditionally,the de�nition of a

eptable programs is based on a model M of the program, andfor a
lause h a1; : : : ; an, jh�j > jai�j is only required if M j= (a1; : : : ; ai�1)�.The reason is that for LD-derivations, a1; : : : ; ai�1 must be
ompletely resolved beforeai is sele
ted. By the
orre
tness of LD-resolution [Llo87℄ and well-modedness, thea

umulated answer substitution �, just before ai is sele
ted, is su
h that (a1; : : : ; ai�1)�is ground and M j= (a1; : : : ; ai�1)�.Su
h
onsiderations
ount for little when derivations are merely required to be input-
onsuming. This is illustrated in Example 6.2. In the third line of the derivation,permute(X0; [1jZ00℄) is sele
ted, although there is no instan
e of delete(U0; [℄; Z00) in themodel of the program. This problem has been des
ribed by saying that delete makesa spe
ulative output binding [Nai92℄. Programs that do not make spe
ulative outputbindings are
onsidered in Subse
tion 8.3.2.Theorem 6.4 Let P be a well typed and ni
ely moded program whi
h is type-
onsistentwith respe
t to input-
onsuming derivations, and let p be a predi
ate in P . Suppose allpredi
ates q with p A q are atom-terminating, and all
lauses de�ning predi
ates q 2 [p℄�are ICD-a

eptable. Then p, and hen
e every predi
ate in [p℄�, is atom-terminating.

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 79Proof. Suppose the set of
lauses de�ning the predi
ates q 2 [p℄� is ICD-a

eptablewith respe
t to the moded typed level mapping j:j. For an atom a using a predi
atein [p℄�, we de�ne jjajj = sup(fja�j j a� is groundg), if the set fja�j j a� is groundg isbounded. Otherwise jjajj is unde�ned. Observe thatif jjajj is de�ned for an atom a, then jja�jj � jjajj for all �. (�)To measure the size of a query, we use the multiset
ontaining the level of ea
h atomwhose predi
ate is in [p℄�. The multiset is formalised as a fun
tion Size, whi
h takesas arguments a query and a natural number:Size(Q)(n) = #fq(u;v) j q(u;v) 2 Q; q � p and jjq(u;v)jj = ng:Note that if a query
ontains several identi
al atoms, ea
h o

urren
e must be
ounted.We de�ne Size(Q) < Size(R) if and only if there is a number l su
h that Size(Q)(l) <Size(R)(l) and Size(Q)(l0) = Size(R)(l0) for all l0 > l. Intuitively, a de
rease withrespe
t to < is obtained when an atom in a query is repla
ed with a �nite number ofsmaller atoms. By K�onig's Lemma [Fit96℄ or Dershowitz [Der87℄, all des
ending
hainswith respe
t to < are �nite.Let Q0 = p(s; t) be a well typed, type-
onsistent and ni
ely moded query. Then s is
orre
tly typed and thus jjQ0jj is de�ned. Let � = Q0;Q1;Q2 : : : be an input-
onsumingderivation of P [fQ0g.Sin
e all predi
ates q with p A q are atom-terminating, it follows by Theorem 6.3 thatthere
annot be an in�nite suÆx of � without any steps where an atom q(u;v) su
h thatq � p is resolved. We show that for all i � 0, if the sele
ted atom in Qi;Qi+1 is q(u;v)and q � p, then Size(Qi+1) < Size(Qi), and otherwise Size(Qi+1) � Size(Qi). Thisimplies that � is �nite, and, as the
hoi
e of the initial query Q0 = p(s; t) was arbitrary,p is atom-terminating.Consider i � 0 and let C = q(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) be the
lause,q(u;v) the sele
ted atom and � the MGU used in Qi;Qi+1.If p A q, then p A qj for all j 2 f1; : : : ;mg and hen
e by (�) it follows that Size(Qi+1) �Size(Qi).Now
onsider q � p. Sin
e C is ICD-a

eptable, it follows that jjq(v0;um+1)�jj >jjqj(uj ;vj)�jj for all j with qj � p. This together with (�) implies Size(Qi+1) <Size(Qi). 2Example 6.4 We now give a few examples of atom-terminating predi
ates. For allpredi
ates, we assume that all argument positions have type all ground. We denote theterm size of a term t, that is the number of fun
tion and
onstant symbols that o

urin t, as TSize(t).The program for append(I ; I ;O) (Figure 10 on page 57) is ICD-a

eptable, wherejappend(s1; s2; t)j = TSize(s1). Thus append(I ; I ;O) is atom-terminating. The sameholds for append(O ;O ; I), de�ning jappend(t1; t2; s)j = TSize(s).

80 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSnqueens(N,Sol) :-sequen
e(N,Seq),permute(Sol,Seq),safe(Sol).safe([℄).safe([N|Ns℄) :-safe_aux(Ns,1,N),safe(Ns).
safe_aux([℄,_,_).safe_aux([M|Ms℄,Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.Figure 12: Fragment of a program for n-queensThe
lauses de�ning delete(O ; I ;O) (Figure 9 on page 57) are ICD-a

eptable,where jdelete(t1; s; t2)j = TSize(s). Thus delete(O ; I ;O) is atom-terminating. Thesame holds for delete(I ;O ; I), de�ning jdelete(s1; t; s2)j = TSize(s2).In a similar way, we
an show that permute(I ;O) is atom-terminating. However,permute(O ; I) is not atom-terminating, as seen in Example 6.2.The book on the G�odel language [HL94, page 81℄ shows a program that
ontains a
lause, whi
h in Prolog would be written asslowsort(X,Y) :-permute(Y,X),sorted(Y).The mode is fslowsort(I ;O); permute(O ; I); sorted(I)g, and there are delay de
la-rations to ensure that derivations are input-
onsuming. The predi
ate slowsort isnot atom-terminating. However it
an easily be made atom-terminating by repla
ingpermute(Y,X) with permute(X,Y), so that permute is used in the mode in whi
h it isatom-terminating.1Note that a

ording to the G�odel spe
i�
ation, no guarantees are given about thesele
tion rule that go beyond ensuring that derivations for the above program are input-
onsuming. Hen
e the program is not guaranteed to terminate even for a \well-behaved"query su
h as slowsort([1; 2℄; Y). Even though Hill and Lloyd do not
laim that theprogram terminates, one would still expe
t it to do so. In
ontrast, we
an modify theprogram as stated above, and guarantee that the modi�ed program terminates.Figure 12 shows a fragment from a program for the n-queens problem. The mode isfnqueens(I ;O); sequen
e(I ;O); safe(I); permute(O ; I); is(O ; I); safe aux(I ; I ; I);no diag(I ; I ; I); =\=(I ; I)g. Again using as level mapping the term size of one of thearguments, one
an see that the
lauses de�ning fno diag; safe aux; safeg are ICD-a

eptable and thus these predi
ates are atom-terminating. Note that for eÆ
ien
yreasons, this program relies on input-
onsuming derivations where atoms using safeare sele
ted as early as possible. This will be dis
ussed in Chapter 8.1This example had to be adapted be
ause the argument order in the de�nition of permute given inthe G�odel book is the reverse of the order in Figure 9. It is the
ase though that slowsort, as given inthe G�odel book, is not atom-terminating.

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 81plus_one(X) :-minus_two(su

(X)).minus_two(su

(X)) :-minus_one(X).minus_two(0).
minus_one(su

(X)) :-plus_one(X).minus_one(0).

Figure 13: An example requiring a
omplex level mappingAs a more
omplex example,
onsider the program in Figure 13, whose mode isfplus one(I); minus two(I); minus one(I)g. De�ningjplus one(s)j = 3 � TSize(s) + 4jminus two(s)j = 3 � TSize(s)jminus one(s)j = 3 � TSize(s) + 2;the
lauses are ICD-a

eptable and thus the predi
ates are atom-terminating. /We see from these examples that whenever in some argument position of a
lause head,there is a
ompound term of some re
ursive data stru
ture, su
h as [XjXs℄, and allre
ursive
alls in the body of the
lause have a stri
t subterm of that term, su
h asXs, in the same position | then the
lause is ICD-a

eptable using as level mappingthe term size of that argument position. Sin
e this situation o

urs very often, it
an be expe
ted that an average program
ontains many atom-terminating predi
ates.However, it is unlikely that in any real program, all predi
ates are atom-terminating.The example in Figure 13 shows that more
omplex s
enarios than the one des
ribedabove are possible, but we doubt that they would often o

ur in pra
ti
e. Thereforelevel mappings su
h as the one used for this program will rarely be needed.Consider again De�nition 6.4. Given a
lause h a1; : : : ; an and an atom ai � h,we require jh�j > jai�j for all grounding substitutions �, rather than only for � su
h that(a1; : : : ; ai�1)� is in a
ertain model of the program. This is of
ourse a severe restri
tion.For example, if we
onsider permute(O ; I) (Figure 9 on page 57), there
annot be amoded typed level mapping su
h that jpermute([UjX℄; Y)�j > jpermute(X; Z)�j for all �.That however is not surprising sin
e permute(O ; I) is not atom-terminating.With a similar argument, we
an show that there
annot be a moded typed levelmapping su
h that the usual re
ursive
lause for qui
ksort(I ;O) (a modi�ed versionof it is shown in Figure 14 on page 87) is ICD-a

eptable, although we
onje
ture thatqui
ksort(I ;O) is atom-terminating. This shows a limitation of the method presentedhere. It might be possible to relax De�nition 6.4 to allow more programs, but the fa
tremains that many predi
ates are not atom-terminating.Our method of showing that a predi
ate p is atom-terminating is based on assumingthat all predi
ates q with p A q have already been shown to be atom-terminating. Thusif p
an be shown to be atom-terminating using Theorem 6.4, then all predi
ates q withp A q are atom-terminating. This does not mean that if p is atom-terminating, then

82 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSall predi
ates q with p A q are atom-terminating. This is demonstrated in the followingexample.Example 6.5 Consider the following program with mode fp(I); q(I)g and type fp(int);q(int)g.p(0) :- q(0). q(0).q(1) :- q(1).The predi
ate p is atom-terminating, but our method fails to show this, sin
e q is notatom-terminating. Of
ourse this program is
ontrived, and we do not expe
t thisproblem to o

ur in \real" programs. /6.5 Applying the MethodThe requirement of input-
onsuming derivations merely re
e
ts the very meaning of in-put: an atom must only
onsume its own input, not produ
e it. Thus if one a

epts that(appropriately
hosen) modes are useful for veri�
ation and re
e
t the programmer'sintentions, then one should also a

ept this requirement and regard any violation of itas pathologi
al.2The requirement of input-
onsuming derivations is trivially met for LD-derivationsof a well moded query and program, sin
e the leftmost atom in a well moded queryis ground in its input positions. It
an also be ensured by using delay de
larations asin G�odel [HL94℄ that require the input arguments of an atom to be ground before thisatom
an be sele
ted. In the next
hapter we shall see how input-
onsuming derivations
an be ensured using blo
k de
larations.As we have said in the introdu
tion of this
hapter, the
lass of programs for whi
hall input-
onsuming derivations terminate is quite limited. For the predi
ates that arenot atom-terminating, stronger assumptions about the sele
tion rule are ne
essary. InChapter 8, we show one way of in
orporating the method of this
hapter into a more
omprehensive method for proving termination. We now brie
y sket
h two other ways.First, we
ould build on a te
hnique developed by Martin and King [MK97℄. They
onsider
oroutining derivations, but impose a bound on the depth of ea
h sub-derivationby introdu
ing auxiliary predi
ates with an additional argument that serves as depth
ounter. Applying the results of this
hapter, we only have to impose this depth boundfor the predi
ates that are not atom-terminating. For the atom-terminating predi
ates,we
an save the overheads involved in this te
hnique.Se
ondly, we
ould use delay de
larations as they are provided for example inG�odel [HL94℄. For the atom-terminating predi
ates, it is suÆ
ient to ensure input-
onsuming derivations, by
he
king for partial instantiation of the input positions usinga DELAY : : : UNTIL NONVAR : : : de
laration. For the other predi
ates, it must be ensuredthat the input positions are ground using a DELAY : : : UNTIL GROUND : : : de
laration. Note2An ex
eption,
on
erning programs we
annot verify using the methods of this thesis, is dis
ussedin Subse
tion 11.1.9.

6.6. DISCUSSION 83that a

ording to its spe
i�
ation, G�odel does not guarantee a (default) left-to-right se-le
tion rule, and therefore delay de
larations are
ru
ial for termination. Note also thata groundness test is usually more expensive than a test for partial instantiation. To thebest of our knowledge, there has never been a systemati
 treatment of the question ofwhen GROUND de
larations are needed, and when NONVAR de
larations are suÆ
ient.6.6 Dis
ussionWe have identi�ed the
lass of programs for whi
h all input-
onsuming derivations are�nite. Predi
ates
an be shown to be in that
lass using the notions of level mappingand a

eptable
lause in a very similar way to methods for LD-derivations [DD94, DD98,EBC99℄.We have
onsidered input-
onsuming derivations rather than, say, a parti
ular kindof delay
onstru
t. This abstra
t view should make it possible to in
orporate the resultsof this
hapter into various more
omprehensive methods for proving termination. Oneadvantage is that in this
hapter, we do not impose the restri
tion that programs mustbe input-linear. This restri
tion, as we will see in the next
hapter, is ne
essary so thatblo
k de
larations
an ensure input-
onsuming derivations. Hen
e if input-
onsumingderivations
an be ensured without imposing this restri
tion, say by using guards as in(F)GHC [Ued86℄, then the results of this
hapter
ould be applied to show termination.Note also that the method presented in this
hapter
an be used to show terminationof parallel exe
utions [CC94, Ti
91℄. In formalisations of parallel exe
utions, one impor-tant question is whi
h atoms should be allowed to be sele
ted in parallel. This questionhas several aspe
ts, one of whi
h is termination. Con
erning this aspe
t, we
an statethat performing input-
onsuming derivation steps in parallel, rather than
onse
utively,does not a�e
t the termination behaviour of a program.This
hapter
losely follows Etalle et al. [EBC99℄. They have a statement analogousto Theorem 6.4, but they also show a
onverse statement. It says that if for a predi
atep, all LD-derivations for a well moded query p(s; t) terminate, then there is a levelmapping su
h that the
lauses de�ning p are well-a

eptable. It would be interestingto show a similar result for arbitrary input-
onsuming derivations, but presumably thismust be diÆ
ult, sin
e our de�nition of a

eptability is mu
h more restri
tive.Unlike most other approa
hes to termination [AP94a, Bez93, DVB92, DD98, EBC99,LS97, MK97℄, we do not rely on the idea that the size of an atom
an be pinned downwhen the atom is sele
ted. We show that under
ertain
onditions, it is enough to relyon a relative de
rease in the size of the sele
ted atom, even though this size
annotbe pinned down. More pre
isely, we exploit the fa
t that an atom in a query
annotpro
eed inde�nitely unless it is repeatedly fed by some other atom o

urring earlier inthe query. This implies that every derivation for the query is �nite.

Chapter 7Ensuring Input-ConsumingDerivationsIn this
hapter, we show how blo
k de
larations
an be used to ensure that derivationsare input-
onsuming. To this end, we must introdu
e further
orre
tness properties inthe style of the properties introdu
ed in Chapter 5.7.1 The Simpli
ity of blo
k De
larationsThe blo
k de
larations de
lare that
ertain arguments of an atom must be non-variablebefore that atom
an be sele
ted. InsuÆ
iently instantiated atoms are delayed. Asdemonstrated in SICStus Prolog [SIC98℄, blo
k de
larations
an be eÆ
iently imple-mented: the test whether arguments are non-variable has a negligible impa
t on perfor-man
e. Therefore blo
k de
larations or similar
onstru
ts are widely used.It is a distin
tive feature of this work that we
onsider blo
k de
larations, as op-posed to delay de
larations whi
h
an
he
k for the instantiation of a subterm of anargument [HL94℄, or delay de
larations that
he
k for groundness.One would expe
t that blo
k de
larations are suÆ
iently powerful to ensure thatderivations are input-
onsuming. Consider the
lause head append([X|Xs℄,Ys,[X|Zs℄)(Figure 10 on page 57) and assume that the mode is append(I ; I ;O). If we want toresolve an atom append(s; t; u) in a query, then we should
he
k �rst whether s is non-variable, be
ause otherwise the derivation step would not be input-
onsuming. However,we will see that the te
hni
al details are quite subtle.As mentioned on page 58, we believe that the most important purpose of delayde
larations is to ensure input-
onsuming derivations. Most works about delay de
lara-tions do not expli
itly state what their purpose is [AL95, L�ut93, MT95, MK97, Nai92℄.Moreover, at least L�uttringhaus-Kappel [L�ut93℄
onsiders delay de
larations that areused for a purpose that goes far beyond ensuring that derivations are input-
onsuming.Namely, they are used to ensure that an atom is only sele
ted when it is bounded withrespe
t to some norm (this is done to ensure termination).This
hapter is organised as follows. The next se
tion introdu
es some terminol-ogy related to blo
k de
larations. Se
tion 7.3 introdu
es permutation simply typed84

7.2. TERMINOLOGY RELATED TO BLOCK DECLARATIONS 85programs, whi
h are a
lass of programs for whi
h blo
k de
larations
an ensure input-
onsuming derivations. Se
tion 7.4 introdu
es permutation robustly typed programs,whi
h are an extension of the previous
lass for whi
h blo
k de
larations
an still ensureinput-
onsuming derivations. Se
tion 7.5 gives a summary and
omparison of all the
orre
tness properties for programs introdu
ed in this thesis.7.2 Terminology Related to blo
k De
larationsA blo
k de
laration [SIC98℄ for a predi
ate p=n is a (possibly empty) set of atoms ea
hof whi
h has the form p(b1; : : : ; bn), where bi 2 f?; -g for i 2 f1; : : : ; ng. A program
onsists of a set of
lauses and a set of blo
k de
larations, one for ea
h predi
ate de�nedby the
lauses. If P is a program, then an atom p(t1; : : : ; tn) is sele
table in P if forea
h atom p(b1; : : : ; bn) in the blo
k de
laration for p, there is some i 2 f1; : : : ; ng su
hthat ti is non-variable and bi = -.A delay-respe
ting derivation for a program P is a derivation where the sele
tedatom is always sele
table in P . We say that it
ounders if it ends with a non-emptyquery where no atom is sele
table.7.3 Permutation Simply Typed ProgramsTo ensure that derivations are input-
onsuming, one would expe
t that there should beblo
k de
larations su
h that an atom
an only be sele
ted when its input argumentsare non-variable. The following example however shows that this is not suÆ
ient.Example 7.1 Consider the following version of delete(O ; I ;O).:- blo
k delete(?,-,-).delete(X,[X|Z℄,Z).delete(X,[U|[H|T℄℄,[U|Z℄) :- delete(X,[H|T℄,Z).Then we have the following delay-respe
ting but not input-
onsuming derivationdelete(A; [1jL℄; R); delete(A; [H0jL0℄; R0); delete(A; [H00jL00℄; R00); : : :Note that although delete(A; [1jL℄; R) is not a well typed query, it may o

ur in a welltyped query, say delete(B; [2℄; L); delete(A; [1jL℄; R). This version of delete is part ofthe most spe
i�
 program [MNL90℄
orresponding to the program in Figure 9 on page 57,proposed [Nai92℄ to prevent looping for permute(O ; I). However, it does not work. Thequery permute(A; [1℄) indeed terminates, but permute(A; [1; 2℄) still loops. /Thus to ensure that derivations are input-
onsuming, we will require that ea
h inputargument in ea
h
lause head is
at. This
ondition is violated by the
lause headdelete(X,[U|[H|T℄℄,[U|Z℄), but it is met for the program in Figure 9 on page 57.The next example shows however that requiring
at terms in
lause heads is stillnot enough.

86 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONSExample 7.2 Consider the following program in mode p(I ;O).:- blo
k p(-,?).p(g(Y),Y).Then p(g(X); 3) ; 2 is a delay-respe
ting but not input-
onsuming derivation, sin
e Xbe
omes instantiated to 3. /The easiest solution is to require that the output positions in a query are always �lledwith variables. In mode p(I ;O), the query p(g(X),3) should not arise, sin
e its outputis already instantiated. We will now present this solution, although it has
ertainlimitations. In Se
tion 7.4, we will see how these limitations
an partly be over
ome.We �rst de�ne permutation simply-modedness, whi
h is a generalisation of simply-modedness [AE93, AL95℄, just as for the other
orre
tness properties. In a permutationsimply moded query, the output positions are �lled with variables.De�nition 7.1 [permutation simply moded℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be aquery and � a permutation on f1; : : : ; ng. Then Q is �-simply moded if it is �-ni
elymoded and t1; : : : ; tn is a ve
tor of variables. The
lause p(t0; sn+1) Q is �-simplymoded if it is �-ni
ely moded and t1; : : : ; tn is a ve
tor of variables.A permutation simply moded query (
lause, program) and a simply modedquery (
lause, program)
orresponding to a query (
lause, program) are de�ned inanalogy to De�nition 5.2. /We quote the following persisten
e property for simply-modedness.Lemma 7.1 [AE93, Lemma 27℄ Let Q be a simply moded query and C a simply moded
lause where vars(Q) \ vars(C) = ;. Then every LD-resolvent of Q and C is simplymoded.We
ombine permutation simply-modedness with permutation well-typedness, addingan extra
ondition
on
erning the
lause heads.De�nition 7.2 [permutation simply typed℄ A query is �-simply typed if it is�-simply moded and �-well typed. A
lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is�-simply typed if it is �-simply moded and �-well typed, and t0 has a variable in ea
hposition of variable type and a
at type-
onsistent term in ea
h position of non-variabletype.A permutation simply typed query (
lause, program) and a simply typed query(
lause, program)
orresponding to a query (
lause, program) are de�ned in analogyto De�nition 5.2. /Note that sin
e the ve
tor of output arguments of a permutation simply typed query isa linear ve
tor of variables, permutation simply typed queries are type-
onsistent.Example 7.3 The permute program (Figure 9 on page 57), for any of the types in Ex-ample 5.7, is simply typed for mode fpermute(I ;O); delete(I ;O ; I)g, and permutationsimply typed for mode fpermute(O ; I), delete(O ; I ;O)g. /

7.3. PERMUTATION SIMPLY TYPED PROGRAMS 87:- blo
k qui
ksort(-,-).qui
ksort([℄,[℄).qui
ksort([X|Xs℄,Ys) :-append(As2,[X|Bs2℄,Ys),part(Xs,X,As,Bs),qui
ksort(As,As2),qui
ksort(Bs,Bs2).:- blo
k append(-,?,-).append([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).
:- blo
k part(?,-,?,?),part(-,?,-,?),part(-,?,?,-).part([℄,_,[℄,[℄).part([X|Xs℄,C,[X|As℄,Bs):-leq(X,C),part(Xs,C,As,Bs).part([X|Xs℄,C,As,[X|Bs℄):-grt(X,C),part(Xs,C,As,Bs).:- blo
k leq(?,-), leq(-,?).leq(A,B) :- A =< B.:- blo
k grt(?,-), grt(-,?).grt(A,B) :- A > B.Figure 14: The qui
ksort programExample 7.4 Figure 14 shows a version of qui
ksort. Assume thetype fqui
ksort(nl; nl), append(nl; nl; nl), leq(num;num), grt(num;num);part(nl; num; nl; nl)g. The program is permutation simply typed for modefqui
ksort(I ;O); append(I ; I ;O); leq(I ; I); grt(I ; I); part(I ; I ;O ;O)g. It isnot permutation simply typed for mode fqui
ksort(O ; I); append(O ;O ; I); leq(I ; I);grt(I ; I); part(O ; I ; I ; I)g, be
ause of the non-variable term [X|Bs2℄ in an outputposition.As an aside, note that this program uses auxiliary predi
ates leq and grt to realiseblo
k de
larations on the built-ins =< and >. Built-ins will be dis
ussed in Se
tions 9.4and 10.1. /Example 7.5 Figure 15 shows a program that
onverts binary trees into lists or vi
eversa. The type of the program is ftreeList(tree; list), append(list; list; list)g. It ispermutation simply typed for mode ftreeList(I ;O); append(I ; I ;O)g. However it isnot permutation simply typed for mode ftreeList(O ; I); append(O ;O ; I)g, be
ause ofthe non-variable term [Label|RList℄ in an output position. /The persisten
e properties stated in Lemmas 5.3 and 5.10 are independent of the se-le
tion rule. We show a similar persisten
e property for permutation simply typedprograms. However this property only holds if the derivation step is input-
onsuming,sin
e otherwise output positions of the resolvent might be
ome non-variable. In thefollowing lemma, it is not a
tually assumed that the derivation step is input-
onsuming.It is only assumed that the input arguments of the sele
ted atom are an instan
e of theinput arguments of the
lause head. While this is trivially ne
essary for a derivationstep to be input-
onsuming, point (d) of the lemma states that it is also suÆ
ient.

88 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS:- blo
k treeList(-,-).treeList(leaf,[℄).treeList(node(L,Label,R),List) :-append(LList,[Label|RList℄,List),treeList(L,LList),treeList(R,RList).
:- blo
k append(-,?,-).append([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).Figure 15: Converting trees to lists or vi
e versaLemma 7.2 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-simply typed query and C =pk(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) a �-simply typed, input-linear
lause wherevars(C) \ vars(Q) = ;. Suppose for some k 2 f1; : : : ; ng, pk(sk; tk) and pk(v0;um+1)are uni�able and sk is an instan
e of v0. Then there is an MGU � = �1�2 of pk(sk; tk)and pk(v0;um+1) su
h thata. v0�1 = sk and dom(�1) � vars(v0),b. tk�2 = um+1�1 and dom(�2) � vars(tk),
. dom(�) � vars(tk) [vars(v0),d. dom(�) \ vars(sk) = ;, that is, the derivation step is input-
onsuming,e. dom(�) \ vars(t1; : : : ; tk�1;v1; : : : ;vm; tk+1; : : : ; tn) = ;,f. the resolvent of Q and C with sele
ted atom pk(sk; tk) isDer(�; �; k)-simply typed.Proof. Claim (a) follows from the assumption that sk is an instan
e of v0.Sin
e tk is a linear ve
tor of variables, there is a substitution �2 su
h that dom(�2) �vars(tk) and tk�2 = um+1�1, whi
h shows (b).Sin
e Q is �-ni
ely moded, we have vars(tk) \ vars(sk) = ;, and therefore vars(tk) \vars(v0�1) = ;. Thus it follows by (b) that � = �1�2 is an MGU of pk(sk; tk) andpk(v0;um+1). Claim (
) follows from (a) and (b). Claim (d) follows from (
) be-
ause vars(tk) \ vars(sk) = ;. Claim (e) follows from (
) be
ause of the linearity of(t1; : : : ; tn;v0; : : : ;vm).By Lemmas 5.3 and 5.10, the resolvent is Der(�; �; k)-ni
ely moded and Der(�; �; k)-well typed. By (e), the ve
tor of the output arguments of the resolvent is a linear ve
torof variables, and hen
e (f) follows. 2The following lemma states a persisten
e property similar to Lemma 7.2 (f) but forLD-resolvents only. Note that in this
ase, it is not ne
essary to require an input-linear
lause. However, be
ause of this weaker assumption, the lemma is not a
tually a
orollary of Lemma 7.2.Lemma 7.3 Every LD-resolvent of a simply typed query Q and a simply typed
lauseC, where vars(C) \ vars(Q) = ;, is simply typed.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 89Proof. By Lemma 7.1, the resolvent is simply moded. By Lemma 5.10, the resolventis well typed. Therefore the resolvent is simply typed. 2The next lemma says that in an input-
onsuming derivation for a permutation simplytyped program and query, it
an be assumed without loss of generality that the outputpositions in ea
h query are �lled with variables that o

ur in the initial query or in some
lause body used in the derivation. This is used to prove Theorem 8.3.Lemma 7.4 Let P be a permutation simply typed, input-linear program, and Q0 apermutation simply typed query. Let �0 = ; and � = hQ0; �0i; hQ1; �1i; : : : be an input-
onsuming derivation of P [fQ0g. Then for all i � 0, if x is a variable o

urring in anoutput position in Qi, then x�i = x.Proof. The proof is by indu
tion on the position i in the derivation. The base
asei = 0 is trivial sin
e �0 = ;. Now suppose the result holds for some i and Qi+1 exists.By Lemma 7.2 (f), Qi�i is permutation simply typed. Thus the result follows for i + 1by Lemma 7.2 (e) and the indu
tive hypothesis. 2For permutation simply typed programs, blo
k de
larations
an be used to ensure input-
onsuming derivations. However, before we show this, we �rst introdu
e a generalisationof permutation simply typed programs.7.4 Permutation Robustly Typed ProgramsExamples 7.4 and 7.5 suggest that De�nition 7.2 is sometimes too restri
tive. Bothprograms have an atom using append in a
lause body where the se
ond argument ofthat atom is non-variable. This means that these programs are not permutation simplytyped when append is used in mode append(O ;O ; I).It has been a
knowledged previously by Apt and Etalle [AE93℄ that it is diÆ
ult toreason about queries where non-variable terms in output positions are allowed, but onthe other hand, there are natural programs where this o

urs. These authors assumethat output positions in a query are always �lled with variables, but
onsider allowingfor non-variable terms as a dire
tion for future work.We de�ne permutation robustly-typedness, whi
h is a
arefully
rafted extension ofpermutation simply-typedness, allowing for non-variable but
at terms in
ertain outputpositions. The de�nition is more
ompli
ated than the de�nitions of previous
orre
tnessproperties. The diÆ
ulty in designing su
h a
on
ept is in ensuring that a persisten
eproperty analogous to Lemmas 5.3, 5.8, 5.10 and 7.2 holds. In parti
ular, the de�nitionis su
h that permutation robustly typed queries are type-
onsistent, whi
h is importantso that we
an apply the results of Chapter 6.In the sequel, we asso
iate a label free or bound with ea
h argument position ofea
h predi
ate. The intuition behind these labels is as follows: an atom should besele
table only when it is non-variable in its bound input positions. Moreover, a querymay
ontain a non-variable term in an output position only if the position is bound.De�nition 7.3 [free-bound-labelling℄ Let P be a permutation well typed program. Afree-bound-labelling is a fun
tion assigning a label free or bound to ea
h argumentposition of ea
h predi
ate p, su
h that

90 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS� all positions of variable type are free,� if there is a
lause in P de�ning p whose head has a non-variable term in an inputposition, then this input position is bound.We denote the proje
tion of a ve
tor of arguments r onto its free positions as rf , andonto its bound positions as rb. /We assume that a free-bound-labelling is asso
iated with ea
h program, without makingthis expli
it. As with assigning the mode and the type to a predi
ate, we do not proposea method of de
iding whi
h positions should be free or bound. In all our exampleshowever, the
hoi
e is simple:� an input position of p is bound if and only if there is some
lause de�ning p whosehead has a non-variable term in that position,� an output position of p is bound if and only if there is some
lause body
ontainingan atom using p, whi
h has a non-variable term in that position.Note in parti
ular that the
onditions of the above de�nition
an only be met if ea
h
lause head has a variable in ea
h input position of variable type. By De�nition 7.2,this requirement is
learly met by permutation simply typed programs.De�nition 7.4 [permutation robustly typed℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be aquery and � a permutation on f1; : : : ; ng. Then Q is �-robustly typed if it is �-ni
elymoded and �-well typed, tf1; : : : ; tfn is a ve
tor of variables, and tb1; : : : ; tbn is a ve
tor of
at type-
onsistent terms.The
lause p(t0; sn+1) Q is �-robustly typed if it is �-ni
ely moded and �-welltyped, and1. tf0; : : : ; tfn is a ve
tor of variables, and tb0; : : : ; tbn is a ve
tor of
at type-
onsistentterms,2. if a position in sbn+1 of type � is �lled with a variable x, then x also �lls a positionof type � in tb0; : : : ; tbn.A permutation robustly typed query (
lause, program) and a robustly typedquery (
lause, program)
orresponding to a query (
lause, program) are de�ned inanalogy to De�nition 5.2. /Permutation robustly typed programs are an extension of permutation simply typedprograms. Consequently, De�nition 7.2
oin
ides with De�nition 7.4 in the
ase thatall output positions are free, and all input positions of variable type are free. Note thata permutation simply typed program is also permutation robustly typed with respe
tto a free-bound-labelling where the input positions are labelled as explained just afterDe�nition 7.3.Example 7.6 Re
all that we assume for all examples that an input position of a pred-i
ate p is bound if and only if there is some
lause de�ning p whose head has a non-variable term in that position.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 91Consider again Example 7.3. The permute program (Figure 9 on page 57) is per-mutation simply typed in both modes and hen
e permutation robustly typed, assumingthat all output positions are free.Consider the qui
ksort program (Figure 14 on page 87) with the type given inExample 7.4. This program is permutation robustly typed in mode fqui
ksort(O ; I);append(O ;O ; I); leq(I ; I); grt(I ; I); part(O ; I ; I ; I)g, assuming the se
ond positionof append is the only bound output position. Note in parti
ular that Condition 2of De�nition 7.4 is met for the re
ursive
lause of append: the variable Ys �lls anoutput position of the head and also an output position of the body. The program isalso permutation robustly typed in mode fqui
ksort(I ;O); append(I ; I ;O); leq(I ; I);grt(I ; I); part(I ; I ;O ;O)g, assuming that all output positions are free.Similarly, the treeList program (Figure 15 on page 88) is permutation robustlytyped in mode ftreeList(O ; I); append(O ;O ; I)g assuming the se
ond position ofappend is the only bound output position. It is also permutation robustly typed inmode ftreeList(I ;O); append(I ; I ;O)g assuming that all output positions are free./In Lemma 7.2, we showed a persisten
e property of permutation simply-typedness.There we did not a
tually assume that the derivation step is input-
onsuming, but onlythat the input arguments of the sele
ted atom are an instan
e of the input arguments ofthe
lause head. The following example shows that for permutation robustly-typedness,this is not suÆ
ient.Example 7.7 Consider append(I ; I ;O) (Figure 10 on page 57) and assume that allpositions are bound. Then the queryappend([℄; [℄; Bs); append([℄; Bs; [CjCs℄)is (permutation) robustly typed. Suppose we want to resolve the se
ond atom using the�rst
lause for append. The ve
tor ([℄; Bs) is an instan
e of ([℄; Y), and yet the MGUof append([℄; Bs; [CjCs℄) and append([℄; Y; Y) binds Bs to [CjCs℄, and hen
e the derivationstep would not be input-
onsuming. /We now state a simple proposition whi
h is illustrated in Figure 16. If we read p(s; t)as a sele
ted atom and p(v;u) as a
lause head, the proposition states a ne
essary
ondition for a derivation step to be input-
onsuming.Proposition 7.5 Let p(s; t) and p(v;u) be two atoms that are uni�able with MGU �,and suppose that dom(�) \ vars(s) = ;. If in some position, u is �lled with a variablex and t is �lled with a non-variable term, and x also has a dire
t o

urren
e in v inposition i, then s is non-variable in position i.The following lemma shows a persisten
e property of permutation robustly-typedness.Lemma 7.6 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-robustly typed query, let k 2f1; : : : ; ng, and C = pk(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) a �-robustly typed,input-linear
lause where vars(Q) \ vars(C) = ;. Suppose that pk(sk; tk) andpk(v0;um+1) are uni�able and

92 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS
p(sz }| {: : : ; f(: : :); : : :; tz }| {: : : ; f(: : :); : : :)p(: : : ; x ; : : :| {z }v ; : : : ; x ; : : :| {z }u)Figure 16: Illustrating Proposition 7.5

C : pk(v0; um+1) :- q1(u1;v1) � � � qm(um;vm)
Q : p1(s1; t1) : : : pk(sk; tk) : : : pn(sn; tn)..jStage 1 ...3Stage 2 (f+)...� Stage 3 (b�)

Figure 17: Data
ow in the uni�
ation1. sk is an instan
e of v0, and2. if a variable x �lls positions i in vb0 and j in ubm+1, and position j in tbk is non-variable, then position i in sbk is also non-variable.Then there is an MGU � of pk(sk; tk) and pk(v0;um+1) su
h thata. dom(�) \ vars(sk) = ;, that is, the derivation step is input-
onsuming,b. the resolvent of Q and C with sele
ted atom pk(sk; tk) is Der(�; �; k)-robustlytyped.Proof. We show how � is
omputed, where we
onsider three stages. In the �rst, skand v0 are uni�ed. In the se
ond, the output positions are uni�ed where the bindingsgo from C to Q. In the third, the output positions are uni�ed where the bindings gofrom Q to C. Figure 17 illustrates whi
h variables are bound in ea
h stage. The �rstthree parts of the proof
orrespond to the three stages of the uni�
ation.Part 1: (unifying sk and v0). Sin
e by assumption 1, sk is an instan
e of v0, there is a(minimal) substitution �1 su
h that v0�1 = sk. We show that the following statementshold:S1a dom(�1) \ vars(sk) = ;.S1b dom(�1) \ vars(v1; : : : ;vm; t1; : : : ; tn) = ;.S1
 Let x be a variable o

urring dire
tly in a position of type � in ubm+1�1, su
hthat tbk is non-variable in this position. Then x =2 vars(sk). Moreover, x
an onlyo

ur in v1; : : : ;vm; t1; : : : ; tn in a bound position of type � , and the o

urren
emust be dire
t.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 93S1d vars(um+1�1) \ vars(tk) = ;.S1a holds by the
onstru
tion of �1.S1b holds sin
e by De�nition 7.4 and the assumption that C is input-linear, we havethat v0; : : : ;vm; t1; : : : ; tn is linear.Let x be a variable o

urring dire
tly in a position of type � in ubm+1�1, su
h that tbkis non-variable in this position. Let y be the variable in the same position in ubm+1.Suppose that y 2 vars(v0). Then by De�nition 7.4, y o

urs dire
tly in vb0 , say inposition i, and by assumption 2, sbk is non-variable in position i. Thus y�1 is not avariable, whi
h is a
ontradi
tion. Therefore y 62 vars(v0). Hen
e y 62 dom(�1) andthus x = y and x =2 vars(sk). Furthermore it follows by De�nition 7.4 that x
an onlyo

ur in v1; : : : ;vm; t1; : : : ; tn in a bound position of type � , and the o

urren
e mustbe dire
t. Thus S1
 holds.Sin
e Q is permutation ni
ely moded, vars(sk)\vars(tk) = ; and hen
e vars(ran(�1))\vars(tk) = ;. Thus S1d holds.Part 2: (unifying tk and um+1�1 in ea
h position where either the argument in tk isa variable, or the arguments in tk and um+1�1 are both non-variable). Note that thisin
ludes all positions in tfk and ufm+1�1, but may also in
lude positions in tbk and ubm+1�1.Sin
e, by S1b, tk�1 = tk, Part 2
overs pre
isely the output positions where the binding\goes from um+1�1 to tk�1" (see Figure 17). We denote by tf+k the proje
tion of tk ontothe positions where the argument in tk is a variable, or the arguments in tk and um+1�1are both non-variable, and by tb�k the proje
tion onto all other positions, and likewisefor um+1�1.By S1d, vars(uf+m+1�1) \ vars(tf+k) = ;. Thus there is a minimal substitution �0 su
hthat tf+k �0 = uf+m+1�1. Let �2 = �1�0. Then by S1b and S1d, tf+k �2 = uf+m+1�2. We showthe following statements:S2a dom(�2) \ vars(sk) = ;.S2b dom(�2) \ vars(v1; : : : ;vm; t1; : : : ; tk�1; tb�k ; tk+1; : : : ; tn) = ;.S2
 Let x be a variable o

urring dire
tly in a position of type � in ub�m+1�2.1 Thenx =2 vars(sk), and x
an only o

ur in v1; : : : ;vm; t1; : : : ; tk�1; tb�k ; tk+1; : : : ; tn ina bound position of type � , and the o

urren
e must be dire
t.S2d vars(um+1�2) \ vars(tb�k) = ;.Sin
e vars(sk) \ vars(tk) = ;, we have dom(�0) \ vars(sk) = ;. This and S1a implyS2a.S2b holds be
ause S1b holds and (v1; : : : ;vm; t1; : : : ; tn) is linear.1By de�nition of the supers
ript notation b� we have that tb�k is non-variable in this position.

94 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONSBy S1d, dom(�0)\vars(ub�m+1�1) = ;. This together with S1
 implies S2
. Furthermore,be
ause of the linearity of tk, S2d follows.Part 3: (unifying tb�k and ub�m+1�2). By S1d, dom(�0) \ vars(ub�m+1�1) = ;, and thusub�m+1�2 = ub�m+1�1. Therefore, by the de�nition of the supers
ript b� in Part 2, ub�m+1�2is a ve
tor of variables. By S2d, vars(ub�m+1�2) \ vars(tb�k) = ;, so that there is aminimal substitution �00 su
h that ub�m+1�2�00 = tb�k . Let �3 = �2�00. Then, by S2b, wehave ub�m+1�3 = tb�k �3. We show the following statements:S3a dom(�3) \ vars(sk) = ;.S3b (v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn)�3 is linear and has
at type-
onsistentterms in all bound positions and variables in all free positions.By S2
, dom(�00) \ vars(sk) = ;. This and S2a imply S3a.Suppose x is a variable in ub�m+1�2 o

urring in a position i of type � , and x also o

urs in(v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn). By S2
, the latter o

urren
e of x is in a boundposition of type � , and the only o

urren
e of x in (v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn).Let I be the set of positions where x o

urs in ub�m+1�2, and let T be the set of termso

urring in tb�k in positions in I. Then T is a set of variable-disjoint,
at terms.Therefore their most general
ommon instan
e x�00 is a
at term and x�00 is type-
onsistent with respe
t to � . Moreover, sin
e (v1; : : : ;vm; t1; : : : ; tk�1; tb�k ; tk+1; : : : ; tn)is linear, vars(x�00)\vars(v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn) = ; and hen
e it followsthat (v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn)�00 is linear and type-
onsistent. This and S2bimply S3b.Part 4: De�ning � = �3 it follows that pk(sk; tk)� = pk(v0;um+1)�. By S3a, sk� = sk,whi
h shows (a). By S3b and Lemmas 5.3 and 5.10, the resolvent of Q and C isDer(�; �; k)-robustly typed, whi
h shows (b). 2From Lemma 7.6, we
an
on
lude that permutation robustly typed programs are type-
onsistent with respe
t to input-
onsuming derivations. Of
ourse, this holds in parti
-ular for permutation simply typed programs.Lemma 7.7 Every permutation robustly typed program is type-
onsistent with respe
tto input-
onsuming derivations.Proof. Let P be a permutation robustly typed program and Q a permutation robustlytyped query. Trivially, assumption 1 in Lemma 7.6 is ne
essary for a derivation step tobe input-
onsuming. By Proposition 7.5, assumption 2 in Lemma 7.6 is also ne
essaryfor a derivation step to be input-
onsuming. Hen
e by Lemma 7.6 (b), any input-
onsuming derivation of P [fQg
ontains only permutation robustly typed queries. ByDe�nition 7.4, every permutation robustly typed query is type-
onsistent, and hen
e Pis type-
onsistent with respe
t to input-
onsuming derivations. 2We de�ne input sele
tability. We will see that in a program with input sele
tability, anatom is sele
table only if it meets assumptions 1 and 2 in Lemma 7.6.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 95:- blo
k permute(-,-).permute([℄,[℄).permute([U|X℄,Y) :-permute(X,Z),delete(U,Y,Z). :- blo
k delete(?,-,-).delete(X,[X|Z℄,Z).delete(X,[U|Y℄,[U|Z℄) :-delete(X,Y,Z).Figure 18: The permute program with blo
k de
larationsDe�nition 7.5 [input sele
tability℄ Let P be a permutation robustly typed program.P has input sele
tability if for every permutation robustly typed query Q, an atomin Q is sele
table in P if and only if it is non-variable in all bound input positions. /Input sele
tability is similar to the
ondition that \the delay de
larations imply mat
h-ing" [AL95℄.For a program to have input sele
tability, the blo
k de
larations must be su
h thatan atom whose free output positions are all variable is sele
table if and only if all boundinput positions are non-variable.Example 7.8 Figure 18 shows the permute program of Figure 9 on page 57, withblo
k de
larations added. Here we only
onsider delete. Let us �rst assume modedelete(I ;O ; I), with a free-bound-labelling delete(free; free; bound) as explained onpage 90. Then the blo
k de
larations ensure input sele
tability. Now assume modedelete(O ; I ;O) with a free-bound-labelling delete(free; bound; free). For this mode,the blo
k de
larations also ensure input sele
tability. Hen
e the blo
k de
larationsensure input sele
tability with respe
t to two di�erent modes. /The following proposition states that input sele
tability ensures that every sele
tableatom meets assumptions 1 and 2 in Lemma 7.6.Proposition 7.8 Let P be a permutation robustly typed, input-linear program withinput sele
tability, Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-robustly typed query, k 2f1; : : : ; ng, and C = pk(v0;um+1) B a
lause in P . Suppose that pk(sk; tk) issele
table and pk(sk; tk) and pk(v0;um+1) are uni�able. Then assumptions 1 and 2 inLemma 7.6 are ful�lled.Proof. Sin
e p(sk; tk) is sele
table in P , it follows that sk is non-variable in all boundpositions. By De�nition 7.4, v0 is a linear ve
tor having
at terms in all bound positions,and variables in all other positions. Thus assumption 1 is ful�lled. Assumption 2 isful�lled sin
e sk is non-variable in all bound positions. 2The following theorem is a
onsequen
e of Proposition 7.8 and Lemma 7.6.Theorem 7.9 Let P be a permutation robustly typed, input-linear program with inputsele
tability, and Q a permutation robustly typed query. Then every delay-respe
tingderivation of P [fQg is input-
onsuming.

96 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONSNote that the
onverse is not true. There
ould be input-
onsuming derivation stepswhi
h are not delay-respe
ting.The following example illustrates why it is an advantage that the sele
ted atom onlyhas to be non-variable in the bound input positions.Example 7.9 Consider the blo
k de
laration for append in Figure 15 (page 88). Giventhat the usual modes for append are append(I ; I ;O) and append(O ;O ; I), one mightexpe
t a general theory to say that an atom using append should be sele
table if eitherthe �rst two arguments or the third argument are non-variable. This would
orrespondto the blo
k de
laration:- blo
k append(-,?,-), append(?,-,-).However, the simpler blo
k de
laration is justi�ed sin
e by De�nition 7.3, we mayassume that for the mode append(I ; I ;O), the se
ond position is free. The simplerblo
k de
laration is the one usually given [HL94, L�ut93, MT95℄, but to the best of ourknowledge, its adequa
y has never been explained on su
h an abstra
t level. /The next example illustrates why in De�nition 7.5, input sele
tability is de�ned withrespe
t to atoms in permutation robustly typed queries.Example 7.10 Consider append(O ;O ; I) where the se
ond position is the only boundoutput position, as in qui
ksort(O ; I) (Figure 14 on page 87) or treeList(O ; I)(Figure 15 on page 88). The program for append has input sele
tability. Q =append(A,[B|Bs℄,[1℄) is a permutation robustly typed query, and its atom is se-le
table. The atom append([℄,[℄,C) is also sele
table, although its input position isvariable. This does not
ontradi
t De�nition 7.5, sin
e the �rst position is free, and thusthis atom
annot o

ur in a permutation robustly typed query with respe
t to modeappend(O ;O ; I). /Looking at De�nition 7.4, one is tempted to think that it is best to asso
iate the labelbound with all output positions, be
ause that would make the de�nition less restri
-tive. However, we require a program to have input sele
tability in ea
h of its modes.Sin
e input sele
tability is de�ned with respe
t to atoms in permutation robustly typedqueries, and permutation robustly typed queries are de�ned with respe
t to given freeand bound positions, it turns out that the
hoi
e of free and bound positions
onstrainsthe possible set of modes. This is illustrated in the following example.Example 7.11 Consider append(O ;O ; I), where both output positions are bound, andthe blo
k de
laration is as in Figure 15 (page 88). Note that this blo
k de
laration isintended to allow for the
urrent mode append(O ;O ; I), but also alternatively for modeappend(I ; I ;O). Now
onsider the queryappend(Cs; Ds; [1; 2; 3℄); append([AjAs℄; [BjBs℄; Cs)This query is robustly typed with respe
t to the
urrent mode append(O ;O ; I). These
ond atom is sele
table although it is variable in its only bound input position. There-fore the program does not have input sele
tability. This
ould be re
ti�ed by repla
ingthe blo
k de
laration with

7.5. SUMMARY OF THE CORRECTNESS PROPERTIES 97

�-ni
ely modedDef. 5.2 (page 65)o

ur-
he
k freedom �-well typedDef. 5.5 (page 69)non-
oundering
�-simply modedDef. 7.1 (page 86)| �-robustly typedDef. 7.4 (page 90)termination �-well modedDef. 5.4 (page 68)|

�-simply typedDef. 7.2 (page 86)termination,error-freedom,uni�
ation-freedom
�����R �����	 �����R �����	

�����	 �����R
1 2 3

4 6
5

Figure 19: The
orre
tness properties:- blo
k append(?,?,-).but then the program
ould not be used in mode append(I ; I ;O) anymore. However,we have not en
ountered a
ase where a \natural" mode of a program was ruled outbe
ause of this problem. /7.5 Summary of the Corre
tness PropertiesWe now give an overview of the
orre
tness properties for programs and queries that areused in this thesis. Figure 19 shows all the properties. An arrow stands for impli
ation.In ea
h box, we quote the de�nition of the property and state the main purpose forwhi
h it is used, apart from the obvious purpose of de�ning other properties.The arrows 1{4
orrespond to impli
ations by de�nition. As stated in Proposi-tion 5.13, permutation well-modedness is permutation well-typedness for the spe
ial
ase that the only type is the type all ground. Moreover, permutation simply-typednessis permutation robustly-typedness for the spe
ial
ase that all output positions, and ex-a
tly the input positions of variable type, are free.

Chapter 8Termination and blo
kDe
larationsIn this
hapter, we
onsider termination of logi
 programs with blo
k de
larations.In Se
tion 6.5, we said that often, assuming input-
onsuming derivations is not suf-�
ient to ensure termination. We now make an additional assumption, namely thatderivations are left-based. These are derivations where (allowing for some ex
eptionsexplained in the next se
tion) the leftmost sele
table atom is sele
ted in ea
h step. Thisis intended to model derivations in the
ommon implementations of Prolog with blo
kde
larations [SIC98℄. Sin
e \leftmost" obviously refers to the textual order of atoms ina query, we
annot make the simplifying assumption in this
hapter that the textual or-der is always identi
al to the produ
er-
onsumer order, as dis
ussed in Subse
tion 5.3.2.That is, whenever we use one of the
orre
tness properties su
h as permutation ni
ely-modedness, we
annot assume that the permutations are always the identity.8.1 Two Approa
hes to the Termination ProblemOur �rst approa
h to the termination problem is fo
used on spe
ulative output bind-ings [Nai92℄, that is, output bindings made before it is known that a solution exists.This is a well-known sour
e of non-termination asso
iated with delay de
larations. Wepresent two
omplementing methods for dealing with this problem and thus proving (orensuring) termination. Whi
h method must be applied depends on the program andon the mode being
onsidered. The �rst method exploits the fa
t that a program doesnot use any spe
ulative bindings, by ensuring that no atom ever delays for all left-basedderivations. The se
ond method exploits the fa
t that a program does not make anyspe
ulative bindings. This approa
h builds on previous heuristi
s [Nai85, Nai92℄ andrelies on
onditions whi
h are easy to
he
k. However, it is quite limited.The se
ond approa
h to the termination problem builds on Chapter 6 but assumesthat derivations are not only input-
onsuming, but also left-based. The question is:what shall we do about predi
ates that are not atom-terminating? A good intuitiveexplanation for the problem these predi
ates pose is that they may loop when
alled withinsuÆ
ient input. For example,
onsider the permute program as shown in Figure 20.For permute(O ; I) the query permute(A,[1|B℄) has insuÆ
ient input and may loop.98

8.2. LEFT-BASED DERIVATIONS 99:- blo
k permute(-,-).permute([℄,[℄).permute([U|X℄,Y) :-delete(U,Y,Z),permute(X,Z). :- blo
k delete(?,-,-).delete(X,[X|Z℄,Z).delete(X,[U|Y℄,[U|Z℄) :-delete(X,Y,Z).Figure 20: Pla
ing re
ursive
alls last for permuteHowever, the query permute(A,[1,2℄) has suÆ
ient input and terminates. The ideafor proving termination is that, for su
h predi
ates,
alls with insuÆ
ient input mustnever arise. This
an be ensured by appropriate ordering of atoms in the
lause bodies,as demonstrated in Figure 20 (in
ontrast to Figure 18 on page 95). This may a
tuallywork in several modes, provided not too many predi
ates have this undesirable property.Both approa
hes impli
itly rely on termination of LD-derivations, in that they trans-late the termination problem for a program with delay de
larations to the same problemfor a
orresponding program exe
uted left-to-right. It is assumed that, for the
orre-sponding program, termination
an be shown using some existing te
hnique [Apt97,AP90, DD94, DVB92, DD93, DD98, EBC99, LS96, LS97℄. For the example programswe give, ex
ept for the program in Figure 13 on page 81, Lindenstrauss has
on�rmedto us that the TermiLog system [LSS97℄
an automati
ally prove termination for the
orresponding programs assuming LD-derivations.This
hapter is organised as follows. The next se
tion de�nes left-based deriva-tions. Se
tion 8.3 presents the �rst approa
h. Se
tion 8.4 presents the se
ond approa
h.Se
tion 8.5 dis
usses the results of this
hapter and
ompares the two approa
hes.8.2 Left-Based DerivationsWe now attempt to formalise derivations in most existing Prolog implementations. Someauthors have
onsidered a sele
tion rule stating that in ea
h derivation step, the leftmostsele
table atom is sele
ted. Boye
laims that several modern Prolog implementationsand even G�odel [HL94℄ use this sele
tion rule [Boy96, page 123℄. Apt and Luitjes [AL95℄have interpreted Naish's [Nai86, Nai92℄ notion of a \default left-to-right" sele
tion rulein this way. Naish has not spe
i�ed pre
isely what a default left-to-right sele
tion ruleis, but he is aware of the fa
t that the sele
tion rule of most Prolog implementationsdoes not state that the leftmost sele
table atom is always sele
ted.1As an aside, Apt and Luitjes also
laim that L�uttringhaus-Kappel [L�ut93℄ has
on-sidered this sele
tion rule, but this is de�nitely not the
ase, sin
e L�uttringhaus-Kappel
onsiders arbitrary delay-respe
ting derivations.Prolog implementations do not usually guarantee the order in whi
h two simultane-ously woken atoms are sele
ted. In the following, we de�ne waiting atoms, whi
h arethe atoms that were previously delayed, together with all their des
endants. We spe
ifythat waiting atoms are always preferred over other atoms, but we do not spe
ify therelative sele
tion order of two waiting atoms.1Personal
ommuni
ation.

100 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONSDe�nition 8.1 [waiting atom, left-based derivation℄ Let P be a program and letQ0; : : : ;Qi : : : be a delay-respe
ting derivation, where Qi = R1; R2, and R1
ontainsno atom that is sele
table in P . Then every des
endant of every atom in R1 is waiting.A delay-respe
ting derivation Q0;Q1 : : : is left-based if in ea
h Qi, an atom whi
h isnot waiting is sele
ted only if there is no sele
table atom to the left of it in Qi. /Example 8.1 Consider the following program::- blo
k a(-). :- blo
k b(-)a(1). b(X) :- b2(X).
(1). b2(1). d.The following is a left-based derivation. Waiting atoms are overlined. The sele
tedatom in ea
h step is underlined, as in previous examples.a(X); b(X);
(X); d ; a(1); b(1); d ; a(1); b2(1); d ; a(1); d ; d ; 2:Note that b(1) and b2(1) are waiting and sele
table, and therefore they
an be sele
tedalthough there is the sele
table atom a(1) to the left. In
ontrast, d is never waitingand
an only be sele
ted in the last step. The following is another left-based derivation.Here, the leftmost sele
table atom is sele
ted in ea
h step.a(X); b(X);
(X); d ; a(1); b(1); d ; b(1); d ; b2(1); d ; d ; 2: /We do not believe that it would be useful or pra
ti
al to try to spe
ify the sele
tionrule of existing Prolog implementations more pre
isely. Our experiments suggest thatit depends on the order in whi
h variables are bound when two terms are uni�ed, whi
his
learly an artefa
t of the implementation. We are
on�dent however that derivationsin most Prolog implementations are left-based. To the best of our knowledge, thishas not been formalised previously, although Naish has
onsidered su
h derivationsinformally [Nai86, Nai92℄.We
an state the following simple lemma about left-based derivations.Lemma 8.1 Let P be a program and � a left-based derivation su
h that in ea
h queryin �, the leftmost atom is sele
table in P . Then � is an LD-derivation.Proof. Let � = Q0;Q1; : : :. We show by indu
tion that for all i � 0, Qi
ontains nowaiting atom, and the leftmost atom in Qi is sele
ted in the step Qi;Qi+1.In Q0, no atom is waiting, and hen
e the leftmost atom is sele
ted. Now suppose thatfor some i > 0, Qi
ontains no waiting atom. Then, sin
e the leftmost atom of Qi issele
table, it is sele
ted. Moreover, no atom in Qi+1 is waiting. 28.3 Termination and Spe
ulative BindingsIn this se
tion, we present two
omplementing methods for showing termination. Theseare explained in the following example.

8.3. TERMINATION AND SPECULATIVE BINDINGS 101Example 8.2 Consider the permute program (Figure 18 on page 95). The derivationin Example 6.2 loops be
ause delete produ
es a spe
ulative output binding [Nai92℄: Theoutput variable Z0 is bound before it is known that this binding will never have to beundone. Assuming left-based derivations, termination in both modes
an be ensured byswapping the two body atoms of the re
ursive
lause for permute. The modi�ed programis shown in Figure 20 on page 99. This te
hnique has been des
ribed as pla
ing re
ursive
alls last [Nai92℄. To explain why the program terminates, we have to apply a di�erentreasoning for the di�erent modes.In mode permute(O ; I), the atom that produ
es the spe
ulative output o

urs tex-tually before the atom that
onsumes it. This means that the
onsumer waits untilthe produ
er has
ompleted, that is, undone the spe
ulative binding. The programdoes not use spe
ulative bindings. In mode permute(I ;O), delete is used in modedelete(I ;O ; I), and in this mode it does not make spe
ulative bindings.Observe that in mode permute(O ; I), termination for this example depends onderivations being left-based, and therefore any method whi
h abstra
ts from the textualorder must fail. /The methods presented in this se
tion
an be used to prove termination for permute(Figure 20 on page 99), treeList (Figure 15 on page 88), plus one (Figure 13 onpage 81), and delete as de�ned in Example 7.1. However, they do not work forqui
ksort (Figure 14 on page 87) and nqueens (whi
h will be shown in Figure 22on page 106).8.3.1 Termination by not Using Spe
ulative BindingsIn LD-derivations, spe
ulative bindings are never used [Nai92℄. By Lemma 8.1, a left-based derivation is an LD-derivation, provided the leftmost atom in ea
h query in thederivation is always sele
table. Moreover, by De�nition 5.5, the leftmost atom in a welltyped query is always non-variable in its input positions of non-variable type. Thisimplies the following theorem.Theorem 8.2 Let Q be a well typed query and P a well typed program su
h thatan atom is sele
table in P whenever its input positions of non-variable type are non-variable. Then every left-based derivation of P [fQg is an LD-derivation.We now give two examples of programs where by Theorem 8.2, we
an use any methodfor LD-derivations [DD94℄ to show termination for any well typed query.Example 8.3 Consider permute(O ; I) (Figure 20 on page 99) with either of the typesgiven in Example 5.7. This program is well typed. /Example 8.4 Consider the delete program in Example 7.1. Assuming either of thetypes given in Example 5.7, this program is well typed. Moreover, this is a program forwhi
h Se
tion 8.4 is not appli
able, be
ause the program is not permutation robustlytyped. /

102 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS8.3.2 Termination by not Making Spe
ulative BindingsSome programs and queries have the property that there
annot be any failing deriva-tions [PR99℄. Bossi and Co

o [BC99℄ have de�ned a
lass of su
h programs
allednoFD, assuming LD-derivations. We de�ne non-spe
ulative programs, whi
h is a simi-lar
on
ept. The de�nition is based on permutation simply typed programs.De�nition 8.2 [non-spe
ulative℄ A program P is non-spe
ulative if it is permutationsimply typed, input-linear, and every simply typed atom using a predi
ate in P isuni�able with some
lause head in P . /Note that unlike noFD programs, non-spe
ulative programs must be input-linear. Thusin parti
ular, they must not use the equality predi
ate in mode =(I ; I), that is, theymust not use equality tests.Example 8.5 We give some examples of non-spe
ulative programs. Both versions ofthe permute program (Figure 18 on page 95 and Figure 20 on page 99), assumingeither of the types given in Example 5.7, are non-spe
ulative in mode fpermute(I ;O);delete(I ;O ; I)g. Every simply typed atom is uni�able with at least one
lause head.Both versions are not non-spe
ulative in mode fpermute(O ; I); delete(O ; I ;O)g,be
ause delete(A,[℄,B) is a simply typed atom whi
h is not uni�able with any
lausehead.The program treeList (Figure 15 on page 88) is non-spe
ulative in the modeftreeList(I ;O); append(I ; I ;O)g. It is not non-spe
ulative in mode ftreeList(O ; I);append(O ;O ; I)g be
ause it is not permutation simply typed (see Example 7.5).Now
onsider the plus one program (Figure 13 on page 81) and suppose all argu-ments have type f0; su

(0); su

(su

(0)); : : :g. Then the program is non-spe
ulative.We will see later that this gives us an alternative way of proving termination for thisprogram. /A delay-respe
ting derivation for a non-spe
ulative program P with input sele
tabilityand a permutation simply typed query
annot fail.2 However it
ould still be in�nite.The following theorem says that this
an only happen if the simply typed program
orresponding to P has an in�nite LD-derivation for this query.Theorem 8.3 Let P be a non-spe
ulative program with input sele
tability and P 0 asimply typed program
orresponding to P . Let Q be a permutation simply typed queryand Q0 a simply typed query
orresponding to Q. If there is an in�nite delay-respe
tingderivation of P [fQg, then there is an in�nite LD-derivation of P 0 [fQ0g.Proof. For simpli
ity assume that Q and ea
h
lause body in P do not
ontain twoidenti
al atoms. Let Q0 = Q, �0 = ; and� = hQ0; �0i; hQ1; �1i; : : :2It
an also not
ounder, as we will see in Se
tion 9.3.

8.3. TERMINATION AND SPECULATIVE BINDINGS 103be a delay-respe
ting derivation of P [fQg. The idea is to
onstru
t an LD-derivation�0 of P 0 [fQ0g su
h that whenever � uses a
lause C, then �0 uses the
orresponding
lause C 0 in P 0. It will then turn out that if �0 is �nite, � must also be �nite.We
all an atom a resolved in � at i if a o

urs in Qi but not in Qi+1. We
all aresolved in � if for some i, a is resolved in � at i. Let Q00 = Q0 and �00 = ;. We
onstru
t an LD-derivation �0 = hQ00; �00i; hQ01; �01i; : : :of P 0 [fQ0g showing that for ea
h i � 0 the following hold:S1(i) If q(u;v) is an atom in Q0i that is not resolved in �, then vars(v�0i)\ dom(�j) = ;for all j � 0.S2(i) Let x be a variable su
h that, for some j � 0, x�j = f(: : :). Then x�0i is either avariable or x�0i = f(: : :).We �rst show S1(0) and S2(0). Let q(u;v) be an atom in Q00 that is not resolved in �.Sin
e �00 = ;, it follows that v�00 = v. Furthermore, by Lemmas 7.3 and 7.4 and sin
eq(u;v) is not resolved in �, we have v�j = v for all j. Thus S1(0) holds. S2(0) holdsbe
ause �00 = ;.Now assume that for some i, hQ0i; �0ii is de�ned, Q0i is not empty, and S1(i) and S2(i) hold.Let p(s; t) be the leftmost atom of Q0i. We de�ne a derivation step hQ0i; �0ii; hQ0i+1; �0i+1iwith p(s; t) as the sele
ted atom, and show that S1(i+ 1) and S2(i+ 1) hold.Case 1: p(s; t) is resolved in � at l for some l. Consider the simply typed
lauseC 0 = h B0
orresponding to the uniquely renamed
lause (using the same renaming)used in � to resolve p(s; t). Sin
e p(s; t) is resolved in � at l, and � is delay-respe
tingand P has input sele
tability, it follows that p(s; t)�l is non-variable in all bound inputpositions. Thus ea
h bound input position of p(s; t) must be �lled by a non-variableterm or a variable x su
h that x�l = f(: : :) for some f . Moreover, p(s; t)�0i must havenon-variable terms in all bound input positions sin
e Q0i�0i is well typed. Thus it followsby S2(i) that in ea
h bound input position, p(s; t)�0i has the same top-level fun
tor asp(s; t)�l, and sin
e h has
at terms in the bound input positions, there is an MGU �0iof p(s; t)�0i and h. We use C 0 for the step hQ0i; �0ii; hQ0i+1; �0i+1i.We must show S1(i + 1) and S2(i + 1). Consider an atom q(u;v) in Q0i other thanp(s; t). By Lemma 7.2 (e), vars(v�0i) \ dom(�0i) = ;. Thus for the atoms in Q0i+1 thato

ur already in Q0i, S1 is maintained. Now
onsider an atom q(u;v) in B0 whi
h is notresolved in �. By Lemma 7.4, v�0i+1 = v. Sin
e q(u;v) is not resolved in �, for all j > lwe have that q(u;v) o

urs in Qj and thus by Lemma 7.4, v�j = v. Thus S1(i + 1)follows. S2(i + 1) holds be
ause of S2(i) and sin
e p(s; t) is resolved using the same
lause head as in �.Case 2: p(s; t) is not resolved in �. Sin
e P 0 is non-spe
ulative, there is a (uniquelyrenamed)
lause C 0 = h B0 in P 0 su
h that h and p(s; t)�0i have an MGU �0i. We useC 0 for the step hQ0i; �0ii; hQ0i+1; �0i+1i.

104 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONSWe must show S1(i+1) and S2(i+1). Consider an atom q(u;v) in Q0i other than p(s; t).By Lemma 7.2 (e), vars(v�0i) \ dom(�0i) = ;. Thus for the atoms in Q0i+1 that o

uralready in Q0i, S1 is maintained. Now
onsider an atom q(u;v) in B0. Clearly q(u;v) isnot resolved in �, sin
e it does not even o

ur in �. Sin
e vars(C 0)\ vars(Qj�j) = ; forall j and sin
e by Lemma 7.4, we have v�0i+1 = v, S1(i+ 1) follows.By S1(i), we have vars(t�0i) \ dom(�j) = ; for all j. By Lemma 7.2 (
), we havedom(�0i) � vars(t�0i) [vars(C 0). Thus we have dom(�0i) \ dom(�j) = ; for all j.Moreover, S2(i) holds, and so S2(i+ 1) follows.Sin
e this
onstru
tion
an only terminate when the query is empty, either Q0n is emptyfor some n, or �0 is in�nite.Thus we show that if �0 is �nite, then every atom resolved in � is also resolved in �0. Solet �0 be �nite of length n. Assume for the sake of deriving a
ontradi
tion that j is thesmallest number su
h that the atom a sele
ted in hQj ; �ji; hQj+1; �j+1i is never sele
tedin �0. Then j 6= 0 sin
e Q0 and Q00 are permutations of ea
h other and all atoms in Q00 areeventually sele
ted in �0. Thus there must be a k < j su
h that a does not o

ur in Qkbut does o

ur in Qk+1. Consider the atom b sele
ted in hQk; �ki; hQk+1; �k+1i. Then bythe assumption that j was minimal, b must be the sele
ted atom in hQ0i; �0ii; hQ0i+1; �0i+1ifor some i � n. Hen
e a must o

ur in Q0i+1, sin
e the
lause used to resolve b in �0 isa simply typed
lause
orresponding to the
lause used to resolve b in �. Thus a musto

ur in Q0n,
ontradi
ting that �0 terminates with the empty query.Thus if �0 is �nite, then � is also �nite, or equivalently, if � is in�nite, then �0 is alsoin�nite. 2As stated on page 99, for permute(I ;O) (Figure 20 on page 99), treeList(I ;O) (Fig-ure 15 on page 88) and plus one(I) (Figure 13 on page 81), the
orresponding simplytyped programs terminate for simply typed queries, assuming LD derivations. By The-orem 8.3 it follows that the former programs terminate for permutation simply typedqueries, assuming delay-respe
ting derivations.3All of these examples
an also be shown to terminate using Chapter 6. We now givea program for whi
h this is not the
ase.Example 8.6 Consider the program in Figure 21, where the mode is fis list(I);equal list(I ;O)g and the type is fis list(list); equal list(list; list)g. The pro-gram is permutation simply typed (the se
ond
lause is h2; 1i-simply typed) and non-spe
ulative, and all LD-derivations for the
orresponding simply typed program ter-minate. Hen
e it follows that all delay-respe
ting derivations of a permutation simplytyped query and this program terminate. While we
onje
ture that is list is alsoatom-terminating, the method of Chapter 6
annot show this (
ompare this to thedis
ussion about qui
ksort(I ;O) on page 81).This example is
learly a
ontrived one, whi
h is partly be
ause it has been designedto be as simple as possible. We are not aware of a more natural example, but thisexample suggests that the method presented in this subse
tion might be useful wheneverthe method of Chapter 6 fails to prove that a predi
ate is atom-terminating. /3In the
ase of plus one, we would have to add blo
k de
larations to ensure input sele
tability.

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 105:- blo
k is_list(-).is_list([℄).is_list([X|Xs℄):-is_list(Ys),equal_list(Xs,Ys). :- blo
k equal_list(-,?).equal_list([℄,[℄).equal_list([X|Xs℄,[X|Ys℄):-equal_list(Xs,Ys).Figure 21: The is list programNote that any program that uses tests
annot be non-spe
ulative. In the qui
ksortprogram (Figure 14 on page 87), the atoms leq(X,C) and grt(X,C) are tests. Thesetests are exhaustive, that is, at least one of them su

eeds [BC99℄. We are
on�dentthat the result of this subse
tion
ould be generalised to allow for su
h tests. We havenot attempted this generalisation be
ause on the whole, the method presented in thenext se
tion seems more useful. Pedres
hi and Ruggieri however
onsider a more generalnotion of \non-failure", whi
h allows for programs su
h as qui
ksort [PR99℄.8.4 Termination and Atom-Terminating Predi
atesWe now present an alternative method for showing termination whi
h over
omes someof the limitations of the methods presented in the previous se
tion. In parti
ular, themethod
an be used for qui
ksort (Figure 14 on page 87) and nqueens (Figure 22)as well as permute (Figure 20 on page 99) and treeList (Figure 15 on page 88). Weexpe
t the method presented here to be more useful, although, as Examples 8.4 and 8.6show, it does not subsume the methods of the previous se
tion.In this se
tion, two te
hniques are
ombined. On the one hand, we use Chapter 6to show that
ertain predi
ates are atom-terminating. On the other hand, we redu
ethe problem of proving termination for a program with blo
k de
larations to the sameproblem for a
orresponding program without blo
k de
larations, as in the previousse
tion. It is assumed that termination for the
orresponding program has been shownusing some existing method for LD-derivations [DD94℄.Let us now illustrate the limitations of the previous se
tion. For permute(O ; I)(Figure 20 on page 99), termination
ould be ensured by applying the heuristi
 ofpla
ing re
ursive
alls last [Nai92℄. The following example however shows that even thisversion of permute(O ; I)
an
ause a loop depending on how it is
alled within someother program.Example 8.7 Figure 22 shows a program for the n-queens problem. Here blo
k de
-larations are used to implement the test-and-generate paradigm. We have already seena fragment of this program in Figure 12 on page 80, however with a di�erent order ofatoms in the �rst
lause.Assuming mode fnqueens(I ;O); sequen
e(I ;O); safe(I); permute(O ; I); <(I ; I),is(O ; I); safe aux(I ; I ; I); no diag(I ; I ; I); =\=(I ; I)g and type fnqueens(int; il);sequen
e(int; il); safe(il); permute(il; il); <(int; int); is(int; int);

106 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS:- blo
k nqueens(-,?).nqueens(N,Sol) :-sequen
e(N,Seq),safe(Sol),permute(Sol,Seq).:- blo
k sequen
e(-,?).sequen
e(0,[℄).sequen
e(N,[N|Seq℄):-0 < N,N1 is N-1,sequen
e(N1,Seq).:- blo
k safe(-).safe([℄).safe([N|Ns℄) :-safe_aux(Ns,1,N),safe(Ns).

:- blo
k safe_aux(-,?,?), safe_aux(?,-,?),safe_aux(?,?,-).safe_aux([℄,_,_).safe_aux([M|Ms℄,Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).:- blo
k no_diag(-,?,?), no_diag(?,-,?),no_diag(?,?,-).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.:- blo
k permute(-,-).permute([℄,[℄).permute([U|X℄,Y) :-delete(U,Y,Z),permute(X,Z).:- blo
k delete(?,-,-).delete(X,[X|Z℄,Z).delete(X,[U|Y℄,[U|Z℄) :-delete(X,Y,Z).Figure 22: A program for n-queenssafe aux(il; int; int); no diag(int; int; int); =\=(int; int)g, the �rst
lause is h1; 3; 2i-robustly typed. Moreover, the query nqueens(4,Sol) terminates.If however in the �rst
lause, the atom order is
hanged by moving sequen
e(N,Seq)to the end, then nqueens(4,Sol) loops. This is be
ause resolving sequen
e(4,Seq)with the se
ond
lause for sequen
e makes a binding (whi
h is not spe
ulative) whi
htriggers the
all permute(Sol,[4|T℄). This
all results in a loop sin
e permute(O ; I) isnot atom-terminating. Note that [4|T℄, although non-variable, is insuÆ
iently instan-tiated for permute(Sol,[4|T℄) to be
orre
tly typed in its input position: permute is
alled with insuÆ
ient input.Note that in this example, unlike in the qui
ksort program (Figure 14 on page 87),there are no blo
k de
larations for the built-ins <, is and =/=. In Se
tion 10.1, we willsee why it is not ne
essary to have blo
k de
larations here. /To ensure termination, atoms in a
lause body that loop when
alled with insuÆ
ientinput should be pla
ed so that all atoms whi
h produ
e the input for these atomso

ur textually earlier. Note that this explains in parti
ular why in the se
ond
lausefor permute in the above example, the re
ursive
all to permute must be pla
ed last.In Chapter 6, we have seen that atom-terminating predi
ates do not loop for input-
onsuming derivations, whi
h means in parti
ular, they do not loop when
alled with

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 107insuÆ
ient input.This se
tion assumes permutation robustly typed programs. By Theorem 7.9, delay-respe
ting derivations for permutation robustly typed, input-linear programs with inputsele
tability are input-
onsuming.A query is
alled well fed if ea
h atom is atom-terminating or o

urs in su
h aposition that all atoms whi
h \feed" the atom o

ur earlier.De�nition 8.3 [well fed℄ Let P be a permutation robustly typed program. For a�-robustly typed query p1(s1; t1); : : : ; pn(sn; tn), an atom pi(si; ti) is well fed if allpredi
ates q with pi w q are atom-terminating, or �(j) < �(i) implies j < i for all j. A�-robustly typed query (
lause) is well fed if all of its (body) atoms are well fed. P iswell fed if all of its
lauses are well fed. /Of
ourse, sin
e it is unde
idable whether a predi
ate is atom-terminating, we mustassume it to be not atom-terminating if it has not been shown to be atom-terminat-ing. In Example 6.5, we have seen the situation that a predi
ate p is atom-terminatingbut some predi
ate q with p A q is not atom-terminating. To simplify the proof ofTheorem 8.5, we want to ex
lude this pathologi
al situation. This is re
e
ted in theabove de�nition by the requirement \all predi
ates q with pi w q are atom-terminating",rather than just \pi is atom-terminating".Example 8.8 The programs mentioned in Example 7.6 are well fed in the given modes.The nqueens program (Figure 22 on page 106) is well fed in the mode given in Exam-ple 8.7. The program is not well fed in mode fnqueens(O ; I); sequen
e(O ; I); safe(I);permute(I ;O); <(I ; I), is(O ; I); safe aux(I ; I ; I); no diag(I ; I ; I); =\=(I ; I)g, be
auseit is not permutation ni
ely moded in this mode: in the se
ond
lause for sequen
e, N1o

urs twi
e in an output position. /The property of being well fed is persistent under resolution.Lemma 8.4 Every resolvent of a well fed query Q and an input-linear well fed
lauseC, where vars(Q)\vars(C) = ; and the derivation step is input-
onsuming, is well fed.Proof. By Lemma 7.6 (b), the resolvent is permutation robustly typed. The
onditionon the permutation in De�nition 8.3
an be
he
ked by inspe
ting De�nition 5.1. 2The following theorem redu
es the problem of showing termination of left-based deriva-tions for a well fed program to showing termination of LD-derivations for a
orrespondingrobustly typed program.Theorem 8.5 Let P be an input-linear, well fed program with input sele
tability, andQ a well fed query. Let P 0 and Q0 be a robustly typed program and query
orrespondingto P and Q, respe
tively. If every LD-derivation of P 0 [fQ0g is �nite, then every left-based derivation of P [fQg is �nite.Proof. In this proof,
all an atom p(s; t)
riti
al if it is not the
ase that all predi
atesq with p w q are atom-terminating. Let Q0 = Q, �0 = ; and� = hQ0; �0i; : : : ; hR1; �1i; hQ1; �1i; : : : ; hR2; �2i; hQ2; �2i : : :

108 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONSbe a left-based derivation, where R1; R2; : : : are the queries in � where a
riti
al atomis sele
ted.Part 1: We show for ea
h i � 0: If Ri exists, then in ea
h query in hQ0; �0i; : : : ; hRi; �ii,the
riti
al atoms are not waiting, and for ea
h l � i, the leftmost
riti
al atom in Rl issele
ted in the step hRl; �li; hQl; �li. The proof is by indu
tion on i.Case 1: Base
ase. The
ase i = 0 is trivial sin
e R0 does not exist.Case 2: Indu
tive step. Suppose the statement holds for some i � 0.Case 2a: If Ri+1 does not exist, the statement follows trivially for i+ 1.Case 2b: Now suppose that Ri+1 exists. Let Qi = a1; : : : ; an and suppose Qi�i is�-robustly typed, and k is the smallest number su
h that ak is
riti
al.Let (F; ak) be the subquery of Qi
ontaining all aj with �(j) � �(k). By Lemma 8.4,Qi�i is well fed, and thus j � k for all aj in (F; ak). By Proposition 5.11(F; ak)�i is permutation well typed. (1)Consider an arbitrary h ~Q; ~�i in hQi; �ii; : : : ; hRi+1; �i+1i and assume that no
riti
alatom in the query pre
eding h ~Q; ~�i in � is waiting. Note that sin
e ~Q
ontains ak, itfollows that ~Q
ontains at least one des
endant of (F; ak). By (1) and Lemma 5.10, ~Q
ontains, in parti
ular, at least one des
endant a of (F; ak) su
h that a~� is sele
table,and moreover, either a = ak or a o

urs to the left of ak in ~Q. Therefore no
riti
alatom in h ~Q; ~�i is waiting.Suppose that Ri+1�i+1
ontains a des
endant a of (F; ak) su
h that a�i+1 is sele
table,and a 6= ak. Then, sin
e by the previous paragraph, ak is not waiting in Ri+1, it followsthat ak
annot be sele
ted in hRi+1; �i+1i; hQi+1; �i+1i, whi
h
ontradi
ts the de�nitionof Ri+1. Thus it follows thatRi+1
ontains no des
endant of F , (2)and so ak�i+1 is sele
table. Moreover, no
riti
al atom in Ri+1�i+1 is waiting, and sothe sele
ted atom in hRi+1; �i+1i; hQi+1; �i+1i is ak.Part 2: For all i > 0 su
h that Ri exists, let Ci be the uniquely renamed
lause usedin the step hRi; �ii; hQi; �ii, and let C 0i be a robustly typed
lause
orresponding to Ci(using the same renaming). Let Q00 = Q0 and �00 = ;. We
onstru
t an LD-derivation�0 = hQ00; �00i; : : : ; hR01; �01i; hQ01; �01i; : : : ; hR02; �02i; hQ02; �02i : : : ;where R01; R02; : : : are the queries in �0 where a
riti
al atom is sele
ted, su
h that forall i > 1, C 0i is the
lause used in hR0i; �0ii; hQ0i; �0ii. Sin
e �0 is �nite by assumption, thisimplies that � is �nite. We show the following statements for all i � 0 su
h that Qiexists:S1(i) The
riti
al atoms of Qi and Q0i are identi
al and o

ur in the same order.

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 109S2(i) �i = �0i�i for some substitution �i.S3(i) Let Qi = a1; : : : ; an and assume that Qi�i is �-robustly typed, and let ak be a
riti
al atom (k 2 f1; : : : ; ng). By S1(i) we
an write Q0i = (F 0; ak; I 0) for some F 0and I 0. For every a in F 0, for every aj (j 2 f1; : : : ; ng) that is a des
endant of ain �, we have �(j) < �(k).The proof is by indu
tion on i.Case 1: Base
ase. S1(0) follows from De�nition 8.3. S2(0) holds sin
e �0 = �00 = ;.For S3(0), note that Q00 = �(Q0) and hen
e F 0
ontains exa
tly the atoms aj with�(j) < �(k).Case 2: We now assume that S1(i){S3(i) hold for some i � 0 and that Qi+1 exists, and
onstru
t hQ0i; �0ii; : : : ; hR0i+1; �0i+1i; hQ0i+1; �0i+1iso that S1(i+ 1){S3(i + 1) hold.As in Part 1, let Qi = a1; : : : ; an, suppose that Qi�i is �-robustly typed, let k be thesmallest number su
h that ak is
riti
al, and (F; ak) be the subquery of Qi
ontaining allaj with �(j) � �(k). By S1(i), Q0i = (F 0; ak; I 0) for some F 0 and I 0, where F 0
ontainsonly atom-terminating atoms. By S3(i), for every a in F 0, for every aj (j 2 f1; : : : ; ng)that is a des
endant of a in �, we have �(j) < �(k), and therefore aj is in F . Thus itfollows by (2) in Part 1 thatRi+1
ontains no des
endants of F 0. (3)Let R0i+1 = ak; I 0. By (3) and sin
e by S2(i), �0i is more general than �i, it is possibleto
onstru
t an LD-derivation hQ0i; �0ii; : : : ; hR0i+1; �0i+1i, su
h that if ~C is the uniquelyrenamed
lause used to resolve an atom in �, then a robustly typed
lause ~C 0
orrespond-ing to ~C (using the same renaming) is used in hQ0i; �0ii; : : : ; hR0i+1; �0i+1i. Furthermore�0i+1 is more general than �i+1. Hen
e C 0i+1
an be used in hR0i+1; �0i+1i; hQ0i+1; �0i+1i.Sin
e in the
lause body of C 0i+1, the
riti
al atoms o

ur in the same order as in Ci+1,S1(i+1) holds. Sin
e �0i+1 is more general than �i+1, it follows that �0i+1 is more generalthan �i+1, so S2(i + 1) holds. For the
riti
al atoms in Qi+1 whi
h o

ur in the
lausebody of C 0i+1, S3(i+1) follows from De�nition 8.3. For the
riti
al atoms in Qi+1 whi
ho

ur already in Ri+1, S3(i+ 1) follows from S3(i).By De�nition 7.4, Q is permutation well typed, type-
onsistent and permutation ni
elymoded. By Lemma 7.7, P is type-
onsistent with respe
t to input-
onsuming deriva-tions. By Theorem 7.9, � is input-
onsuming. Hen
e by Theorem 6.3, �
ould be in�niteonly if there are in�nitely many steps where a
riti
al atom is resolved.4 Sin
e �0 is �-nite, �
annot have in�nitely many steps where a
riti
al atom is resolved, and thus �is �nite. 24Re
all that as dis
ussed on page 63, Theorem 6.3 generalises to permutation well typed and permu-tation ni
ely moded programs and queries.

110 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONSExample 8.9 Consider the qui
ksort program (Figure 14 on page 87) with the typegiven in Example 7.4. As stated in Example 8.8, this program is well fed in modefqui
ksort(I ;O); append(I ; I ;O); leq(I ; I); grt(I ; I); part(I ; I ;O ;O)g. In parti
u-lar, the append atom in the body of the re
ursive
lause for qui
ksort is well fed sin
eit is atom-terminating (see Example 6.4). All other body atoms in the program are wellfed be
ause of their textual position.As stated on page 99, the robustly typed program
orresponding to this programterminates for all robustly typed queries, assuming LD-derivations. By Theorem 8.5it follows that the qui
ksort program of Figure 14 terminates for all well fed queries,assuming left-based derivations.Now
onsider the mode fqui
ksort(O ; I); append(O ;O ; I); leq(I ; I); grt(I ; I);part(O ; I ; I ; I)g. The qui
ksort program is also well fed with respe
t to this mode.The two re
ursive
alls in the se
ond
lause for qui
ksort are well fed be
ause oftheir textual position. All other atoms are well fed be
ause they are atom-terminating.For part, this
an be shown using Theorem 6.4, where the level mapping of an atompart(l;
; s; b) is de�ned as the sum of the list lengths of s and b. As for the �rst mode,we
an
on
lude that the program terminates for all well fed queries, assuming left-basedderivations. /Example 8.10 Consider the nqueens program (Figure 22 on page 106). We have seenin Example 6.4 that no diag, safe aux and safe are atom-terminating.The
lause de�ning nqueens is h1; 3; 2i-robustly typed. The se
ond atom is well fedsin
e it is atom-terminating. The �rst atom is well fed sin
e for � = h1; 3; 2i, �(j) < �(1)implies j < 1 for all j. The third atom is well fed sin
e �(j) < �(3) implies j < 3 forall j.As stated on page 99, the robustly typed program
orresponding to this programterminates for all robustly typed queries, assuming LD-derivations. By Theorem 8.5it follows that the nqueens program of Figure 22 terminates for all well fed queries,assuming left-based derivations.A

ording to the produ
er-
onsumer order, safe(Sol) o

urs textually too early.However, this is the idea of the test-and-generate paradigm: the test safe(Sol)
omesbefore the generator permute(Sol,Seq). This way, safe(Sol) is always sele
ted asearly as possible and therefore \non-solutions" to the n-queens problem are dete
tedearly.Our method
an only show termination for the mode given in Example 8.7, butnot for the mode nqueens(O ; I), although the program a
tually terminates for thatmode (provided the blo
k de
larations are modi�ed to allow for both modes). Thereason that our method fails is not some insigni�
ant detail of our de�nitions that
ouldeasily be re
ti�ed. One
an de�nitely say that the modes in this program \go wrong":every
all to sequen
e(O ; I) triggers
alls to sequen
e(I ;O). The
onsequen
e is thatnqueens(O ; I) runs in exponential time although it
ould run in quadrati
 time.To the best of our knowledge, no method previously proposed
an prove terminationfor this program, whi
h is a
lassi
al example of a program using
oroutining. /Similarly, we
an show termination for permute (Figure 20 on page 99) and treeList(Figure 15 on page 88). We are assuming here that all built-ins have input sele
tability.

8.5. DISCUSSION 111Built-ins will be dis
ussed in Se
tion 9.4. In Se
tion 10.1, we will see why in some
ases,it is not ne
essary to have blo
k de
larations for the built-ins.8.5 Dis
ussionIn this
hapter, we have presented two approa
hes to proving termination for programswith blo
k de
larations.The �rst approa
h is fo
used on spe
ulative output bindings, whi
h have long beenre
ognised as a sour
e of non-termination in programs with delay de
larations [Nai92℄.The approa
h
onsists of two
omplementing methods based on not using and notmaking spe
ulative bindings, respe
tively. For permute (Figure 20 on page 99) andtreeList (Figure 15 on page 88), it turns out that in one mode, the �rst methodapplies, and in the other mode, the se
ond method applies. This approa
h is simpleto understand and to apply, and it represents the �rst work on termination we havepublished [SHK99b℄.The se
ond approa
h builds on Chapter 6. We require programs to be permutationrobustly typed, a property whi
h ensures that derivations are input-
onsuming. In thenext step, we identify predi
ates that are atom-terminating. Atom-terminating atoms
an be pla
ed in
lause bodies anywhere. The other atoms must be pla
ed suÆ
ientlylate, so that their input is suÆ
iently instantiated when they are
alled. Provided thatthe
orresponding robustly typed program terminates for all LD-derivations, this thenimplies that the original program terminates for all left-based derivations.On the whole, the se
ond approa
h is more useful. It
an be used to show termi-nation for qui
ksort (Figure 14 on page 87) and nqueens (Figure 22 on page 106),where the �rst approa
h fails. In the original paper where this approa
h was �rstpresented [SHK98℄, it was not yet based on the results of Chapter 6 in their presentgeneral form. In this thesis, the approa
h follows the idea that one should abstra
tfrom the details of parti
ular delay
onstru
ts wherever possible, and instead
onsiderinput-
onsuming derivations.On the other hand, as Examples 8.4 and 8.6 show, the se
ond approa
h does notformally subsume the �rst. Example 8.6 suggests in parti
ular that the method ofSubse
tion 8.3.2 might be useful whenever the method of Chapter 6 fails to prove thata predi
ate is atom-terminating, although it a
tually is. Of
ourse, it would ultimatelybe desirable to have a more powerful method for proving that a predi
ate is atom-terminating, but we
onsider this to be a diÆ
ult problem.

Chapter 9
Further Aspe
ts of Veri�
ation
So far, we have studied termination of non-standard derivations. Following work by Aptand others [AE93, AL95℄, we now investigate four other aspe
ts of veri�
ation: programsshould only require mat
hing instead of the full uni�
ation pro
edure wherever possible;the omission of the o

ur-
he
k should be safe; programs should not
ounder; and thereshould be no type or instantiation errors with the use of built-ins.Our results on uni�
ation freedom, o

ur-
he
k freedom and
ounder freedom aregeneralisations of previous work [AE93, AL95℄. Our work on built-ins is aimed mainlyat arithmeti
 built-ins. We exploit the fa
t that for numbers, being non-variable impliesbeing ground, and show how to prevent instantiation and type errors.This
hapter is organised as follows. Se
tion 9.1 shows when programs are uni�
a-tion free. Se
tion 9.2 shows when the o

ur-
he
k
an safely be omitted. Se
tion 9.3shows when programs do not
ounder. Se
tion 9.4 is about errors related to built-ins.Se
tion 9.5
on
ludes.
9.1 Uni�
ation Free ProgramsA program is uni�
ation free if uni�
ation
an be repla
ed by mat
hing. Knowing thata program has this property
an improve the eÆ
ien
y of the
ompiled
ode. Apt andEtalle [AE93℄ show uni�
ation freedom for LD-derivations. They assume simply modedand well typed programs and rely on the sele
ted atom always being
orre
tly typed inits input positions. 112

9.1. UNIFICATION FREE PROGRAMS 113When we generalise these results to arbitrary input-
onsuming derivations, we musttake into a

ount that the sele
ted atom may not be suÆ
iently instantiated to be
orre
tly typed in its input positions. Nevertheless, we will now see that permutationsimply typed programs are uni�
ation free. We �rst re
all some de�nitions [AE93℄.De�nition 9.1 [mat
h, left-right disjoint℄ Given two ve
tors of terms s = s1; : : : ; snand t = t1; : : : ; tn we use fs = tg as abbreviation for the set of equations fs1 =t1; : : : ; sn = tng. Consider a set of equations E = fs = tg. A substitution � su
h thatdom(�) � vars(s) and s� = t, or dom(�) � vars(t) and t� = s, is a mat
h for E.Furthermore, E is left-right disjoint if vars(s) \ vars(t) = ;. /The following is a spe
ial
ase of iterated mat
hing [AE93℄.De�nition 9.2 [double mat
hing℄ Let E be a left-right disjoint set of equations. E issolvable by double mat
hing if the following holds: if E is uni�able, then there aresets of equations E1 and E2 and substitutions �1 and �2 su
h that� E = E1 [E2,� E2�1 is left-right disjoint, and� �1 is a mat
h for E1 and �2 is a mat
h for E2�1. /We now de�ne programs that are uni�
ation free for input-
onsuming derivations, asopposed to LD-derivations as assumed by Apt and Etalle [AE93℄.De�nition 9.3 [uni�
ation free for input-
onsuming derivations℄ Let � be a derivation.Let p(s)1 be a sele
ted atom in � and p(t) the head of the
lause used to resolve p(s).Then the set of equations s = t is su

essfully
onsidered in �.Let P be a program and Q a query. Suppose that all sets of equations su

ess-fully
onsidered in all input-
onsuming derivations of P [fQg are solvable by doublemat
hing. Then P [fQg is uni�
ation free for input-
onsuming derivations. /Note that unlike Apt and Etalle, we say that a set of equations is su

essfully
onsid-ered, rather than just
onsidered. This is be
ause an atom
an only be resolved if theuni�
ation with the
lause head is su

essful. In our notion of derivation, there is nosu
h thing as \trying" to unify an atom with a
lause head unsu

essfully.In the sequel, sin
e we only
onsider input-
onsuming derivations, we will simplysay \uni�
ation free" instead of \uni�
ation free for input-
onsuming derivations".Apt and Etalle [AE93℄ exploit the fa
t that many programs have generi
 expressionsin their input positions. A generi
 expression for a type T is a term t su
h that if s isa term of type T and s is uni�able with t, then s is an instan
e of t. In a permutationsimply typed program, the input positions of ea
h
lause head are �lled with generi
expressions, sin
e they are �lled with variables in positions of variable type and
attype-
onsistent terms in positions of non-variable type.1Note that s is a ve
tor of terms. We do not
are about input or output positions at this point.

114 CHAPTER 9. FURTHER ASPECTS OF VERIFICATIONTheorem 9.1 Let P be a permutation simply typed, input-linear program and Q apermutation simply typed query. Then P [fQg is uni�
ation free.Proof. Consider a derivation step R;R0 in an input-
onsuming derivation of P [fQg,where p(s; t) is the sele
ted atom, p(v;u) is the head of the
lause used in this step and� is the MGU. By Lemma 7.2 (f), R is permutation simply typed. Let E1 = fs = vgand E2 = ft = ug so that E1 [E2 is the set of equations su

essfully
onsidered at thisstep. By Lemma 7.2 (a, b), � = �1�2 where �1 is a mat
h for E1, dom(�1) � vars(v),vars(ran(�1)) � vars(s) and �2 is a mat
h for ft = u�1g. Sin
e dom(�1) � vars(v)and vars(v) \ vars(t) = ;, we have E2�1 = ft = u�1g. Therefore �2 is a mat
h forE2�1. Sin
e R is permutation simply typed, vars(s) \ vars(t) = ; so that E2�1 is left-right disjoint. Therefore E1 [E2 is solvable by double mat
hing and hen
e P [fQg isuni�
ation free. 2Most programs we have seen are permutation simply typed and input-linear, and hen
euni�
ation free. However, qui
ksort(O ; I) (Figure 14 on page 87) and treeList(O ; I)(Figure 15 on page 88) are not permutation simply typed. The following exampleillustrates why the reasoning of the above theorem does not work for those programs,even though they may well be uni�
ation free. This diÆ
ulty has been a
knowledgedpreviously by Apt and Etalle [AE93℄.Example 9.1 Consider the following two derivations for treeList(O ; I) (Figure 15 onpage 88). Here the �rst
lause for append is used:treeList(A; [1℄);append(LList; [LabeljRList℄; [1℄); treeList(L; LList); treeList(R; RList);treeList(L; [℄); treeList(R; [℄)and here the se
ond
lause is used:treeList(A; [1℄);append(LList; [LabeljRList℄; [1℄); treeList(L; LList); treeList(R; RList);append(Xs; [LabeljRList℄; [℄); treeList(L; [1jXs℄); treeList(R; RList):In both derivations, the last step is solvable by double mat
hing. In the �rst
ase, thepartitioning of the set of equations isE1 = f[1℄ = Yg; E2 = f[LabeljRList℄ = Y; LList = [℄g:In the se
ond
ase, it isE1 = f[1℄ = [XjZs℄; [LabeljRList℄ = Ysg; E2 = fLList = [XjXs℄g:Note that the se
ond argument position of append is in a di�erent set of the partitiondepending on the
lause whi
h is used. It is not possible to �x a partitioning into theinput and output positions, whi
h is the idea underlying Theorem 9.1. /

9.2. OCCUR-CHECK FREEDOM 1159.2 O

ur-Che
k FreedomA derivation is o

ur-
he
k free if for every set of equations
onsidered in this derivation,the o

ur-
he
k
an safely be omitted. We must �rst de�ne what it means for a setof equations to be
onsidered. This builds on De�nition 9.3. The
on
ept has beenpreviously de�ned by Apt and Luitjes [AL95℄. However, their de�nition is impre
ise inthat it depends on a
on
ept of a derivation whi
h may end with a failed attempt tounify a sele
ted atom with a
lause, without a
tually de�ning this
on
ept formally.De�nition 9.4 [
onsidered℄ Let P be a program and � a derivation. A set of equationss = t is
onsidered in � if it is either su

essfully
onsidered in �, or there is an atomp(s) in the last query of � and a
lause in P whose head is p(t). /In the above de�nition, no assumptions are made about the degree of instantiation ofthe \sele
ted atom" p(s). This is be
ause our result on o

ur-
he
k freedom holds forarbitrary derivations. It would of
ourse be possible to take into a

ount that � is say,delay-respe
ting or left-based, and impose a restri
tion su
h as \p(s) must be sele
table".It would however not be meaningful to take into a

ount that � is input-
onsuming. Weillustrate this with an example.Example 9.2 Consider the programp(A,B).p(A,A).where the mode is p(I ; I), and
onsider the query p(X; f(X)). Suppose we require thatderivations are input-
onsuming. Then we
an perform a derivation step using the �rst
lause. We
annot perform a derivation step using the se
ond
lause, be
ause p(X; f(X))and p(A; A) are not uni�able. It is therefore meaningless to reason about whether thisderivation step would have been input-
onsuming. The notion of input-
onsuming isonly meaningful for a
tual derivation steps, not for attempted ones. /De�nition 9.5 [o

ur-
he
k free℄ A derivation is o

ur-
he
k free [AL95, AP94b℄if no exe
ution of the Martelli-Montanari uni�
ation algorithm [MM82℄ for a set ofequations
onsidered in this derivation ends with a set of equations in
luding an equationx = t, where x is not t, but x o

urs in t. /We quote the following theorem.Theorem 9.2 [AL95, Theorem 13℄ Let P be a ni
ely moded, input-linear programand Q a ni
ely moded query. Then all derivations of P [fQg are o

ur-
he
k free.The next theorem is a trivial
onsequen
e of this and Lemma 5.3.Theorem 9.3 [o

ur
he
k℄ Let P be a permutation ni
ely moded, input-linear pro-gram and Q a permutation ni
ely moded query. Then all derivations of P [fQg areo

ur-
he
k free.Most programs
onsidered in this thesis are permutation ni
ely moded and input-linear,and hen
e o

ur-
he
k free.

116 CHAPTER 9. FURTHER ASPECTS OF VERIFICATION9.3 FlounderingFreedom from
oundering is an important aspe
t of veri�
ation mainly be
ause of itsrelationship to termination. As Apt and Luitjes [AL95℄ put it[. . . ℄ the \stronger" the delay de
larations are the bigger the
han
e that adeadlo
k arises, but the smaller the
han
e that divergen
e [non-termination℄
an result. So deadlo
k freedom and termination seem to form two bound-aries within whi
h lie the \
orre
t" delay de
larations.In other words, one
an always trivially ensure termination by having delay de
larationssu
h that no atom is ever sele
table. That way, every derivation immediately
oundersand hen
e terminates. Likewise, one
an trivially ensure non-
oundering by de
laringthat every atom is always sele
table.2 That way, no derivation
an ever
ounder butpossibly at the
ost of non-termination.Therefore, for every approa
h to the termination problem of programs with delayde
larations, one must ask
riti
ally: Does the method \buy" termination with
ounder-ing? For the automati
ally generated delay de
larations of L�uttringhaus-Kappel [L�ut93℄,the answer
ould sometimes be \yes". This is dis
ussed in Subse
tion 11.1.5.Compared to termination however, non-
oundering is an easy problem. Under thereasonable assumption that programs and queries are permutation well typed, it
anbe shown that no derivation
ounders. The assumption is reasonable be
ause mostprograms are permutation well typed.3 On the other hand, it is usually unreasonableto expe
t non-
oundering for a query that is not instantiated enough to be permuta-tion well typed. We have argued in Subse
tion 1.2.2 that ensuring input-
onsumingderivations is paramount. Usually,
oundering is the only way to ensure this for insuf-�
iently instantiated queries. As an example,
onsider the query append([1jXs℄; [℄; Zs)(see Figure 10 on page 57).The following theorem generalises [AL95, Theorem 26℄ to permutation well typedprograms. Note that permutation robustly typed programs with input sele
tability(De�nition 7.5) ful�ll the
ondition that an atom is sele
table if it is non-variable in allinput positions of non-variable type.Theorem 9.4 Let P be a permutation well typed program and Q be a permutationwell typed query. Assume that an atom is sele
table if it is non-variable in all inputpositions of non-variable type. Then no delay-respe
ting derivation of P[fQg
ounders.Proof. Let Q0 = Q and � = Q0;Q1; : : : be a delay-respe
ting derivation of P [fQg.Consider an arbitrary Qi = a1; : : : ; an where n � 1. By Lemma 5.10, Qi is �-well typedfor some �. By De�nition 5.5, the atom a��1(1) is
orre
tly typed in its input positions,and thus non-variable in its input positions of non-variable type. Therefore a��1(1) issele
table. Thus every non-empty query in �
ontains a sele
table atom, and so � doesnot
ounder. 22Te
hni
ally, this is a
hieved simply by having no delay de
larations at all.3Etalle and others [AE93, EBC99℄ even
laim that most programs are well typed and simply moded.

9.4. ERRORS RELATED TO BUILT-INS 117The above theorem
an be used to show freedom from
oundering for all programs withblo
k de
larations we have introdu
ed.9.4 Errors Related to Built-insBuilt-in predi
ates (built-ins)
an be a sour
e of exe
ution errors. Some built-ins produ
ean error if
ertain arguments have a wrong type or are insuÆ
iently instantiated. Forexample, X is foo results in a type error and X is V results in an instantiationerror.Not surprisingly, delay de
larations are useful to prevent instantiation errors, sin
ethey test for suÆ
ient instantiation. The relationship between delay de
larations andtype errors will be explained in the next subse
tion.One problem with built-ins is that their implementation may not be written inProlog, or whatever logi
 programming language we
onsider. Thus we assume thatea
h built-in is
on
eptually de�ned by possibly in�nitely many (fa
t)
lauses. TheISO standard for Prolog [ISO95℄ does not de�ne the built-in predi
ates as
on
eptual
lauses, but it is nevertheless so pre
ise that it should generally be possible to verifywhether su
h a de�nition is
orre
t.To prove that a program is free from errors related to built-ins, we require it to meet
ertain
orre
tness properties (see Se
tion 7.5). These properties have to be satis�ed bythe
on
eptual
lauses for the built-ins as well as by the user-de�ned
lauses.For example, there
ould be fa
ts \0 is 0+0.", \1 is 0+1.", and so forth. Aparti
ularly interesting example is \X = X." whi
h is the de�nition of the built-in =.This is why in an input-linear program, the mode =(I ; I) is forbidden, sin
e the
lauseis not input-linear for that mode.In this se
tion, we �rst explain why type errors are related to delay de
larations.We then present two approa
hes to ensuring freedom from instantiation and type errorsfor programs with delay de
larations. For di�erent programs and built-ins, di�erentapproa
hes may be appli
able.9.4.1 The Conne
tion between Delay De
larations and Type ErrorsAt �rst sight, it seems that delay de
larations, or more generally, non-standard sele
tionrules, do not a�e
t the problem of type errors, be it positively or negatively. Delayde
larations
annot enfor
e arguments to be
orre
tly typed. Also, one would not expe
tthat a non-standard sele
tion rule
ould be the
ause of wrongly typed arguments.This is probably true in pra
ti
e, but in theory, there is the problem of type
on-sisten
y, whi
h is parti
ularly relevant for non-standard derivations (see Se
tion 5.7).Consider the program
onsisting of the fa
t
lause \two(2)." and the built-in is, withtype ftwo(int), is(int; int)g and mode ftwo(O); is(O ; I)g. Suppose an atom using isis sele
table only when its input is non-variable. The queryX is foo; two(foo)is h2; 1i-well typed sin
e trivially j= foo : int) foo : int. It results in a type error.

118 CHAPTER 9. FURTHER ASPECTS OF VERIFICATIONFor LD-derivations this problem does not arise. The well typed query
orrespondingto the above query is two(foo); X is foo. Sin
e the type of two is int and the programis well typed, the atom two(foo)
an never be resolved, and therefore the derivationfails without ever rea
hing X is foo.9.4.2 Exploiting Constant TypesThe approa
h des
ribed in this subse
tion aims at preventing instantiation and type er-rors for built-ins, for example arithmeti
 built-ins, that require arguments to be ground.It has been proposed by Apt and Luitjes [AL95℄ to equip these predi
ates with de-lay de
larations so that they are only exe
uted when the input is ground. This hasthe advantage that one
an reason about arbitrary arithmeti
 expressions, as in, say,qui
ksort([1+1,3-8℄,M). The disadvantage is that blo
k de
larations
annot be used.In
ontrast, we assume that the type of arithmeti
 built-ins is the
onstant type num.Then we show that blo
k de
larations are suÆ
ient. The following lemma is similar toand based on [AL95, Lemma 27℄.Lemma 9.5 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-well typed query, where pi(Si;Ti)is the type of pi for ea
h i 2 f1; : : : ; ng. Suppose, for some k 2 f1; : : : ; ng, that sk hasa non-variable term s o

urring dire
tly in a position of
onstant type S, and there is asubstitution � su
h that tj� : Tj for all j with �(j) < �(k). Then s : S (and thus s isground).Proof. By De�nition 5.5, sk� : Sk, and thus s� : S and so s� is a
onstant. Sin
e sis already non-variable, it follows that s is a
onstant and thus s� = s. Therefore s : S.2By De�nition 7.2, for every permutation simply typed query Q, there is a � su
h that Q�is
orre
tly typed in its output positions. Thus by Lemma 9.5, if the arithmeti
 built-inshave type num in all input positions, then it is enough to have blo
k de
larations su
hthat these built-ins are only sele
ted when the input positions are non-variable.Note that in the following theorem, we do not mention instantiation or type errors,as we have not de�ned formally what an error \is". From a formal point of view, allthat matters is that an atom sele
ted when its input arguments are
orre
tly typed doesnot produ
e an error.Theorem 9.6 Let P be a permutation simply typed, input-linear program with inputsele
tability and Q be a permutation simply typed query. Then in any delay-respe
tingderivation � of P [fQg, an atom will be sele
ted only when it is
orre
tly typed in itsinput positions of
onstant type.Proof. By Lemma 7.2 (f) and Theorem 7.9, �
onsists of permutation simply typedqueries. The result thus follows from Lemma 9.5. 2Example 9.3 Consider qui
ksort(I ;O) (Figure 14 on page 87) with the type givenin Example 7.4. No delay-respe
ting derivation for a permutation simply typed queryand this program
an result in an instantiation or type error related to the arithmeti
built-ins. /

9.4. ERRORS RELATED TO BUILT-INS 119:- blo
k length(-,-).length(L,N) :-len_aux(L,0,N).:- blo
k less(?,-), less(-,?).less(A,B) :-A < B.
:- blo
k len_aux(?,-,?), len_aux(-,?,-).len_aux([℄,N,N).len_aux([_|Xs℄,M,N) :-less(M,N),M2 is M + 1,len_aux(Xs,M2,N).Figure 23: The length program9.4.3 Atomi
 PositionsSometimes, when the above method does not work be
ause a program is not permutationsimply typed, it is still possible to show absen
e of instantiation errors for arithmeti
built-ins. We observe that these built-ins have argument positions of type num or intwhi
h are
onstant types. Thus, the idea is to de
lare
ertain argument positions in apredi
ate, in
luding the above argument positions of the built-ins, to be atomi
. Thismeans that they
an only be ground or free but not partially instantiated. Then thereneed to be blo
k de
larations su
h that an atom is only sele
ted when the argumentsin these positions are non-variable, and hen
e ground. Just as with types and modes,we assume that the positions whi
h are atomi
 are already known.De�nition 9.6 [respe
ts atomi
 positions℄ A query (
lause) respe
ts atomi
 posi-tions if ea
h term in an atomi
 position is ground or a variable whi
h only o

urs inatomi
 positions. A program respe
ts atomi
 positions if ea
h of its
lauses does. /A program need not be permutation ni
ely moded or permutation well typed in orderto respe
t atomi
 positions.Example 9.4 The program in Figure 23
omputes the length of a list. In this example,we are regarding the atom M2 is M + 1 as an atom with three arguments M2, M, and 1.The program then respe
ts atomi
 positions, assuming that all argument positions areatomi
, ex
ept the �rst argument position of length and len aux, respe
tively. Theblo
k de
laration on the built-in < is realised with an auxiliary predi
ate less. /The property of respe
ting atomi
 positions is persistent under resolution.Lemma 9.7 Let C be a
lause and Q a query whi
h respe
t atomi
 positions, wherevars(C) \ vars(Q) = ;. Then a resolvent of C and Q also respe
ts atomi
 positions.Proof. Let Q = a1; : : : ; an be the query and C = h b1; : : : ; bm be the
lause. Letak be the sele
ted atom and assume it is uni�able with h using MGU �. We must showthat Q0 = (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)�respe
ts atomi
 positions.

120 CHAPTER 9. FURTHER ASPECTS OF VERIFICATIONLet x be a variable whi
h �lls an atomi
 position in ak or h. Sin
e Q and C respe
tatomi
 positions, x� is either a variable whi
h only o

urs in atomi
 positions in Q0, ora ground term.Consider a term s �lling an atomi
 position in a1; : : : ; ai�1; ai+1; : : : ; an or b1; : : : ; bm.If s is a ground term, then s� is also a ground term. Suppose that s is a variable. Ifs 62 dom(�), then s� is also a variable. If s 2 dom(�) then s must �ll an atomi
 positionin ak or h. By the previous paragraph, s� is either a variable whi
h only o

urs inatomi
 positions in Q0, or a ground term. 2By the following theorem, instantiation errors
an be prevented by having blo
k de
-larations su
h that an atom using a built-in is only
alled when it is non-variable in itsatomi
 positions. The theorem is a
onsequen
e of the above lemma.Theorem 9.8 Let P be a program and Q be a query whi
h respe
t atomi
 positions.Let p be a predi
ate su
h that an atom using p is sele
table in P only if it is non-variablein its atomi
 positions. Then in any delay-respe
ting derivation of P [fQg, an atomusing p is sele
ted only when it is ground in its atomi
 positions.Using Theorem 9.8 we
an show freedom from instantiation errors for programs wherethe arithmeti
 arguments are variable-disjoint from any other arguments, su
h as theprogram in Figure 23. Note that type errors
annot be ruled out using the theorem.Note also that for this example, we
an only rule out instantiation errors
aused by<, sin
e the auxiliary predi
ate less realises a blo
k de
laration for <. We
annot ruleout instantiation errors
aused by is. In Se
tion 10.1, it will be justi�ed that there isno blo
k de
laration for is.9.5 Dis
ussionIn this
hapter, we have presented veri�
ation methods
on
erning four aspe
ts of veri-�
ation: freedom from uni�
ation, o

ur-
he
k,
oundering, and errors related to built-ins. These methods build on and improve previous work in this area [AE93, AL95℄.We have shown that permutation simply typed programs are uni�
ation free forarbitrary input-
onsuming derivations. This result is more general than the
orre-sponding one by Apt and Etalle [AE93℄ sin
e they only
onsider (input-
onsuming)LD-derivations. However, we require that all
lause heads are input-linear and have
atterms in their input positions.Our results on o

ur-
he
k freedom and non-
oundering are straightforward vari-ations of previous results [AL95℄. They are based on the observation that when we
onsider derivations where the textual order of atoms in a query is irrelevant for thesele
tion of an atom, any result for ni
ely moded or well typed programs trivially gen-eralises to permutation ni
ely moded or permutation well typed programs. Note thatour result on o

ur-
he
k freedom holds for all derivations.We have shown that for (arithmeti
) built-ins, blo
k de
larations are often suÆ-
ient to ensure freedom from instantiation and type errors. This improves previousresults [AL95℄ in that those assume delay de
larations that test for groundness. In thenext
hapter, we will show that sometimes, no delay de
larations are needed at all.

Chapter 10Weakening Some ConditionsIn this
hapter, we
onsider ways of weakening some
onditions imposed on the programsfor veri�
ation purposes. We have postponed these
onsiderations so far to avoid makingthe main arguments of Part III unne
essarily
ompli
ated.In Se
tion 10.1, we give
onditions so that
ertain blo
k de
larations
an be omittedwithout a�e
ting the runtime behaviour. In Se
tion 10.2, we study ways of weakeningthe requirement that
lause heads must be input-linear. Se
tion 10.3 shows that we
aneasily generalise the notion of mode of a program. Se
tion 10.4 is a dis
ussion.10.1 Simplifying the blo
k De
larationsEven for programs
ontaining blo
k de
larations, it is rare that all predi
ates haveblo
k de
larations. In parti
ular, blo
k de
larations for built-ins are awkward be
ausethey
an only be realised (at least in SICStus [SIC98℄) by introdu
ing an auxiliary pred-i
ate (see Figure 14 on page 87). This makes previous methods for veri�
ation [AL95℄but also the methods we introdu
ed in Chapter 9 somewhat impra
ti
al. The nqueensprogram (Figure 22 on page 106), whi
h is a standard example of a program using blo
kde
larations, does not have any blo
k de
larations for the built-ins.Even for user-de�ned predi
ates, it is desirable to omit the blo
k de
larations ifpossible, sin
e runtime testing for instantiation has an overhead, albeit small.In this se
tion, we show how, using information about the initial query, it
an beensured that some of the instantiation tests always su

eed so that they a
tually be
omeredundant. This justi�es the omission of blo
k de
larations.An additional bene�t is that in some
ases, we
an even ensure that arguments areground, rather than just non-variable. We will see in Se
tion 10.2 that this is useful inorder to weaken the restri
tion that every
lause head must be input-linear.10.1.1 Permutation Simply Typed Programs Using Constant TypesIn the program in Figure 22 on page 106, there are no blo
k de
larations and hen
eno auxiliary predi
ates for <, is and =\=. This is justi�ed be
ause the input for thosepredi
ates is always provided by the
lause heads. For example, it is not ne
essary tohave a blo
k de
laration for < be
ause when an atom using sequen
e is
alled, the �rstargument of this atom is already ground. 121

122 CHAPTER 10. WEAKENING SOME CONDITIONSWe show here how this intuition
an be formalised for permutation simply typedprograms. In the following de�nition, we
onsider a set B
ontaining the predi
ates forwhi
h we want to omit the blo
k de
larations.De�nition 10.1 [B-ground℄ Let P be a permutation simply typed program and B aset of predi
ates whose input positions are all of
onstant type.A query is B-ground if it is permutation simply typed and ea
h atom using apredi
ate in B has ground terms in its input positions.An argument position k of a predi
ate p in P is a B-position if there is a
lausep(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) in P su
h that for some i where pi 2 B, somevariable in si also o

urs in position k in p(t0; sn+1).The program P is B-ground if every B-position of every predi
ate in P is an inputposition of
onstant type, and an atom p(s; t), where p 62 B, is sele
table only if it isnon-variable in the B-positions of p. /As the following example shows, the requirement on sele
tability in the above de�nitionis not automati
ally met by programs with input sele
tability.Example 10.1 The nqueens program (Figure 22 on page 106) is B-ground, whereB = f<; is; =\=g. The �rst position of sequen
e, the se
ond position of safe aux, andall positions of no diag are B-positions.Does input sele
tability guarantee for this example that an atom p(s; t), where p 62 B,is sele
table only if it is non-variable in the B-positions of p? A

ording to De�nition 7.3,the se
ond position of safe aux and all positions of no diag might be free positions.Therefore the answer is no. However, the blo
k de
larations given in Figure 22 doguarantee this requirement. /The following theorem says that for B-ground programs, the input of all atoms usingpredi
ates in B is always ground.Theorem 10.1 Let P be a B-ground, input-linear program and Q a B-ground query,and � an input-
onsuming, delay-respe
ting derivation of P [fQg. Then ea
h query in� is B-ground.Proof. The proof is by indu
tion on the length of �. Let Q0 = Q and � = Q0;Q1; : : :.The base
ase holds by the assumption that Q0 is B-ground.Now
onsider some Qj where j � 0 and Qj+1 exists. By Lemmas 7.2 (f) and 7.7, Qjand Qj+1 are permutation simply typed and type-
onsistent. The indu
tion hypothesisis that Qj is B-ground.Let p(u;v) be the sele
ted atom, C = p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) be the
lause and � the MGU used in the step Qj;Qj+1. Consider an arbitrary i 2 f1; : : : ; ngsu
h that pi 2 B.If p 62 B, then by the
ondition on sele
tability in De�nition 10.1, p(u;v) is non-variablein the B-positions of p, and hen
e, sin
e the B-positions are of
onstant type, p(u;v) isground in the B-positions of p. If p 2 B, then p(u;v) is ground in all input positions bythe indu
tion hypothesis, and hen
e p(u;v) is a fortiori ground in all B-positions of p.

10.1. SIMPLIFYING THE BLOCK DECLARATIONS 123Thus it follows that si� is ground. Sin
e the
hoi
e of i was arbitrary and be
ause ofthe indu
tion hypothesis, it follows that Qj+1 is B-ground. 2In Se
tion 7.4, we have seen that input-
onsuming derivations
an be ensured withblo
k de
larations so that programs have input sele
tability (Theorem 7.9). Now bythe above theorem, we
an drop the requirement of input sele
tability for the predi
atesin B. Regardless of sele
tability, atoms using predi
ates in B are only sele
ted when theirinput is ground, simply be
ause their input is ground at all times during the exe
ution.Theorems 7.9 and 9.6 are appli
able for programs where only the predi
ates not in Bmeet the requirement of input sele
tability. On the other hand, for those predi
ates,the requirements on the blo
k de
larations may a
tually go beyond input sele
tability.Example 10.2 In the nqueens program (Figure 22 on page 106), there are no blo
kde
larations, and hen
e no auxiliaries, for the o

urren
es of is, < and =\=, but there areblo
k de
larations on safe aux and no diag that ensure the
ondition on sele
tabilityin De�nition 10.1. Theorems 7.9 and 9.6 are appli
able for the nqueens program. /10.1.2 Programs that Respe
t Atomi
 PositionsThe idea used in the previous subse
tion
an also be applied to programs whi
h are notpermutation simply typed but whi
h respe
t atomi
 positions. However there are somesmall te
hni
al di�eren
es. The example we use for illustration here is the program inFigure 23 on page 119.Note that in the following de�nition, we asso
iate a mode (or possibly several alter-native modes) with a program, although De�nition 9.6 is independent of modes.De�nition 10.2 [B-ground�℄ Let P be a program whi
h respe
ts atomi
 positions andB a set of predi
ates whose input positions are all atomi
.A query is B-ground� if it respe
ts atomi
 positions and ea
h atom using a predi
atein B has ground terms in its input positions.An argument position k of a predi
ate p in P is a B-position� if there is a
lausep(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) in P su
h that for some i where pi 2 B, somevariable in si also o

urs in position k in p(t0; sn+1).The program P is B-ground� if every B-position� of every predi
ate in P is anatomi
 input position, and an atom p(s; t), where p 62 B, is sele
table only if it isnon-variable in the B-positions� of p. /Example 10.3 Consider the program in Figure 23 on page 119 with atomi
 positionsde�ned as in Example 9.4. This program is fisg-ground�, and the se
ond position oflen aux is an fisg-position�. /The following theorem is analogous to Theorem 10.1.Theorem 10.2 Let P and Q be a B-ground� program and query, and � be a delay-respe
ting derivation of P [fQg. Then ea
h query in � is B-ground�.Proof. The proof is by indu
tion on the length of �. Let Q0 = Q and � = Q0;Q1; : : :.The base
ase holds by the assumption that Q0 is B-ground�.

124 CHAPTER 10. WEAKENING SOME CONDITIONSNow
onsider some Qj where j � 0 and Qj+1 exists. By Lemma 9.7, Qj and Qj+1respe
t atomi
 positions. The indu
tion hypothesis is that Qj is B-ground�.Let p(u;v) be the sele
ted atom, C = p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) be the
lause and � the MGU used in the step Qj;Qj+1. Consider an arbitrary i 2 f1; : : : ; ngsu
h that pi 2 B.If p 62 B, then by the
ondition on sele
tability in De�nition 10.2, p(u;v) is non-variablein the B-positions� of p, and hen
e, sin
e Qj respe
ts atomi
 positions, p(u;v) is groundin the B-positions� of p. If p 2 B, then p(u;v) is ground in all input positions by theindu
tion hypothesis, and hen
e p(u;v) is a fortiori ground in all B-positions of p.Thus it follows that si� is ground. Sin
e the
hoi
e of i was arbitrary and be
ause ofthe indu
tion hypothesis, it follows that Qj+1 is B-ground�. 2By Theorem 10.2, it is justi�ed that there is no blo
k de
laration for is in the programin Figure 23 on page 119. More pre
isely, any delay-respe
ting derivation for thisprogram and an fisg-ground� query is also a derivation for the same program ex
eptthat is is only sele
table when its input is non-variable. Therefore by Theorem 9.8,there are no instantiation errors.10.1.3 Exploiting the Fa
t that Derivations Are Left-BasedWe now show that if derivations are left-based, the blo
k de
larations
an be omittedin even more
ases.De�nition 10.3 [well pla
ed℄ Let P be a permutation well typed program and Q =p1(s1; t1); : : : ; pn(sn; tn) a �-well typed query. An atom pi(si; ti) is well pla
ed in Qif for all j 2 f1; : : : ; ng, �(j) < �(i) implies j < i. For the
lause C = p(t0; sn+1) Q,an atom is well pla
ed in C if it is well pla
ed in Q. /Not surprisingly, well pla
ed atoms stay well pla
ed throughout a derivation. Thisproposition
an be veri�ed by inspe
ting De�nition 5.1.Proposition 10.3 Let C and Q be a permutation well typed
lause and query and letQ0 be a resolvent of C and Q. Then ea
h well pla
ed atom in Q, other than the sele
tedatom, is also well pla
ed in Q0. Moreover, if the sele
ted atom is well pla
ed in Q, thenea
h well pla
ed atom in C is also well pla
ed in Q0.The following theorem says that in a left-based derivation, a well pla
ed atom is notsele
ted before it is
orre
tly typed in its input positions, sin
e the atoms that \feed"it will always be preferred. Therefore, if it
an be ensured that atoms using a predi
atep are always well pla
ed, then it is not ne
essary to
he
k the input positions of atomsusing p with blo
k de
larations.Theorem 10.4 Let P be a permutation well typed program where an atom is sele
tablein P if all input positions of non-variable type are non-variable, and let Q be a permu-tation well typed query. Let p be a predi
ate and W = fq j q w pg, and suppose in

10.1. SIMPLIFYING THE BLOCK DECLARATIONS 125Q and all
lauses of P , all atoms using predi
ates in W are well pla
ed. Then in anyleft-based derivation of P [fQg, all atoms using predi
ates inW are sele
ted only whenthey are
orre
tly typed in their input positions.Proof. Let � be a left-based derivation of P [fQg. We show that atoms usingpredi
ates inW whi
h are eventually sele
ted never be
ome waiting (see De�nition 8.1)in �.1 In parti
ular, we look at one arbitrary but �xed atom using a predi
ate in Wwhi
h is eventually sele
ted in �. We show that if it is not waiting at some query in�, then it will never be
ome waiting. When it is eventually sele
ted, then any dire
tdes
endants of this atom that use a predi
ate in W are not waiting either. Sin
e in theinitial query, no atoms are waiting, it follows by an obvious indu
tive argument thatatoms using predi
ates in W whi
h are eventually sele
ted never be
ome waiting in �.Let Q0 = a1; : : : ; an be a �-well typed query in � where for some i 2 f1; : : : ; ng, ai is anatom using a predi
ate in W whi
h is eventually sele
ted in �. Assume that ai is notwaiting. By Proposition 10.3, ai is well pla
ed in Q0. Sin
e ai is eventually sele
ted, we
an write � as � = Q; : : : ;Q0; : : : ; (F; ai;H)�; (F;B;H)� : : :Consider an arbitrary query (~F ; ai; ~H)~� in Q0; : : : ; (F; ai;H;)� (that is, a query in �before ai is sele
ted).If (~F ; ai; ~H)~�
ontains any des
endents of atoms aj su
h that �(j) < �(i), then sin
e aiis well pla
ed in Q0, it follows that these des
endants o

ur in ~F ~�. Sin
e (~F ; ai; ~H)~� ispermutation well typed, it follows by Lemma 5.1 (a) that there is at least one sele
tableatom in ~F ~�, and therefore ai does not be
ome waiting in the derivation step following(~F ; ai; ~H)~�.If however, (~F ; ai; ~H)~�
ontains no des
endant of an atom aj su
h that �(j) < �(i),then by Lemma 5.12, ai~� is
orre
tly typed in its input positions and hen
e sele
table.Therefore ai does not be
ome waiting in the derivation step following (~F ; ai; ~H)~�.Sin
e ai is never waiting, it follows by the de�nition of left-based derivations that ai
an only be sele
ted if there is no sele
table atom to the left of ai. That is, F�
ontainsno sele
table atom. Therefore, sin
e ai is well-pla
ed in Q0, it follows that (F; ai;H)�
ontains no des
endant of an atom aj su
h that �(j) < �(i), and thus by Lemma 5.12,ai� is
orre
tly typed in its input positions.Moreover, sin
e ai is not waiting when it is sele
ted, it follows that the dire
t des
endantsof ai that use a predi
ate in W are not waiting either. 2Note that permutation robustly typed programs with input sele
tability (De�nition 7.5)ful�ll the
ondition that an atom is sele
table if it is non-variable in all input positionsof non-variable type.In a similar way as in Subse
tion 10.1.1, the above theorem justi�es dropping therequirement of input sele
tability for the predi
ates inW. Theorem 7.9 is appli
able forprograms where only the predi
ates not inW meet the requirement of input sele
tability.1They also never be
ome waiting if they are never sele
ted, but we are not interested in su
h atoms.

126 CHAPTER 10. WEAKENING SOME CONDITIONSExample 10.4 In the nqueens program (Figure 22 on page 106 and Figure 20 onpage 99), the blo
k de
laration for permute
an be omitted. Note however that thisrequires that any
all to nqueens is well pla
ed in the query where it o

urs. More-over, the version of permute without blo
k de
larations
an only be used in modepermute(O ; I). /10.2 Weakening Input-Linearity of Clause HeadsFor most of our results, it is assumed that programs are input-linear. Building on theprevious se
tion, we now dis
uss ways of weakening this rather severe restri
tion.The requirement that
lause heads are input-linear is needed to show the persisten
eof permutation ni
ely-modedness (Lemma 5.3). This is analogous to the same state-ment restri
ted to ni
ely-modedness (Lemma 5.2, [AL95, Lemma 11℄). However, the
lause head does not have to be input-linear when the statement is further restri
ted toLD-resolvents [AP94b, Lemma 5.3℄. The following example by Apt (personal
ommu-ni
ation) demonstrates this di�eren
e.Example 10.5 Consider the programeq(A,A).q(A).r(1).where the mode is fq(I); r(O); eq(I ; I)g. The queryq(X); r(Y); eq(X; Y)is ni
ely moded. The query q(X); r(X) is a resolvent of the above query, and it is notni
ely moded. Sin
e eq=2 is equivalent to the built-in ==2, the example illustrates whyinput-linear programs must not
ontain uses of =(I ; I). /Requiring input-linear
lause heads is undoubtedly a severe restri
tion. It means thatit is not possible to test two input arguments for equality. However, this also indi
ateswhy in the above example, resolving eq(X,Y) is harmful: eq is intended to be a test,
learly indi
ated by its mode eq(I ; I), but in the given derivation step, it is a
tually nota test, sin
e it binds variables.By Lemma 5.4, the requirement of input-linear heads
an be dropped if derivationsteps are input-
onsuming. This means that an atom using =(I ; I) must be only sele
tedwhen both arguments are ground.The mode =(I ; I)
ould be realised with an equality test, say eq test(s; t), whoseoperational semanti
s is as follows: if s and t are identi
al, it su

eeds; if s and t are notuni�able, it fails; otherwise, the test is delayed until s or t be
ome further instantiated.Su
h a test is used in the guards of
lauses in
on
urrent (
onstraint) logi
 languagessu
h as (F)GHC [Ued86℄, but in ordinary logi
 programming languages, it is usually notprovided.Alternatively, the mode =(I ; I)
an be realised with a delay de
laration su
h thatan atom s=t is sele
ted only when s and t are ground. In SICStus, this
an be done

10.2. WEAKENING INPUT-LINEARITY OF CLAUSE HEADS 127using the built-in when [SIC98℄. However we do not follow this line be
ause we fo
us onblo
k de
larations, and be
ause it would
ommit a parti
ular o

urren
e of s=t to be atest in all modes in whi
h the program is used.Nevertheless, even using blo
k de
larations, there are situations when
lause headsthat are not input-linear
an be allowed. E�e
tively, we have to show that ea
h deriva-tion step using a non input-linear
lause
ould be repla
ed with a derivation step usingan input-linear
lause.We �rst need to de�ne formally what it means for an atom to have a subterm \in a
ertain pla
e", and what a non-linear pla
e is.De�nition 10.4 [to have in a pla
e℄ Let a = p(t1; : : : ; tn) be an atom. Then for ea
hi 2 f1; : : : ; ng, a has ti in pla
e pi. Moreover, if a has a term f(s1; : : : ; sm) in pla
e �,then for ea
h i 2 f1; : : : ;mg, a has si in pla
e �:f i. A pla
e � is an input pla
e of aif � = pi:� 0 and i is an input position of p. /Example 10.6 The atom p(f(g(X)); h(Y)) has X in pla
e p1:f1:g1 and Y in pla
e p2:h1.The atom p(f(g(Z)); h(7)) has 7 in the same pla
e where p(f(g(X)); h(Y)) has Y. /De�nition 10.5 [non-linear pla
e℄ Let p(v;u) B be
lause. A pla
e � is a non-linear pla
e of p(v;u) if it is an input pla
e and p(v;u) has a variable in � whi
ho

urs more than on
e in v. /Example 10.7 Let p(f(g(X)); h(X)) : : : be a
lause where the mode is p(I ; I). Thenp1:f1:g1 and p2:h1 are non-linear pla
es of p(f(g(X)); h(X)). Moreover, p(f(g(Z)); h(7))has the terms Z and 7 in the non-linear pla
es of p(f(g(X)); h(X)). /The following lemma states that if a sele
ted atom is ground in all non-linear pla
esof the
lause head, and the sele
ted atom is uni�able with the
lause head, then this
lause
an be repla
ed by a
ertain input-linear
lause without a�e
ting the resolvent.Note the similarity between the following lemma and Lemma 5.4.Lemma 10.5 Let Q = a1; : : : ; an be a query and C = p(v;u) b1; : : : ; bm a
lausewhere vars(Q) \ vars(C) = ;. Suppose that for some k 2 f1; : : : ; ng, p(v;u) andak = p(s; t) are uni�able with MGU �, and p(s; t) is ground in all non-linear pla
es ofp(v;u).

128 CHAPTER 10. WEAKENING SOME CONDITIONSLet C 0 = p(v0;u) b1; : : : ; bm be an input-linear
lause su
h that1. vars(v) � vars(v0) and vars(v0) \ vars(Q) = ;,2. there exists a substitution � su
h that C 0� = C and dom(�) = vars(v0)nvars(v).Then (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� is also a resolvent of Q and C 0.Proof. Consider an arbitrary variable x that o

urs more than on
e in v, and letX � dom(�) be the set of variables x0 su
h that x0� = x. Sin
e p(s; t) is ground inall pla
es where p(v;u) has x, it follows that s has the same ground term, say t, inall pla
es where v has x. Therefore it follows that any uni�er of p(v0;u) and p(s; t)binds ea
h variable in X to t. This means that �� is an MGU of p(v0;u) and p(s; t).Moreover, by assumptions 1 and 2,(a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� = (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)��;and so (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� is not only a resolvent of C and Q, butalso a resolvent of C 0 and Q. 2Lemma 10.5 should not be interpreted as suggesting a program transformation, namelyto repla
e
lauses with
orresponding input-linear
lauses. Su
h a transformation mightmake a
lause head uni�able with a potential sele
ted atom where it was not uni�ablebefore, whi
h would a�e
t the semanti
s of the program. It is only in the
ase thatp(s; t) and p(v;u) are already uni�able that we
an,
on
eptually, repla
e C with C 0.Lemma 10.5 is appli
able whenever we
an guarantee that the sele
ted atom is alwaysground in the non-linear pla
es of the
lause head. We now outline two ways in whi
hthis
an be ensured.First, one
an exploit the fa
t that atoms are well pla
ed. Consider a permutationwell typed program where an atom is sele
table in P if all input positions of non-variabletype are non-variable. We
an weaken De�nition 5.3 by allowing for
lause heads p(t; s)where a variable x o

urs in several input positions, provided that� all o

urren
es of x in t are in positions of ground type, and� in ea
h
lause of the program and in any initial query for the program, ea
h atomusing a predi
ate q w p is well pla
ed.By Theorem 10.4, it is then ensured that multiple o

urren
es of a variable in theinput of a
lause head implement an equality test between input arguments. Therefore,Lemmas 5.3, 7.2 and 7.6 hold assuming this weaker de�nition of \input-linear".Example 10.8 Consider the append program (Figure 10 on page 57) in \test mode",that is append(I ; I ; I). This program is permutation ni
ely moded but not input-linear.Nevertheless, the program
an be used in this mode provided that all arguments are ofground type and
alls to append are always well pla
ed. /Se
ondly, one
an exploit the fa
t that the arguments being tested for equality are of
onstant type. This time we have to weaken De�nition 5.3 by allowing for
lause headsp(t; s) where a variable x o

urs in several input positions, provided that

10.3. GENERALISING MODES 129� all o

urren
es of x in t are dire
t and in positions of
onstant type, and� an atom using p is sele
table only if these positions are non-variable.By Theorem 9.6, it is then ensured that when an atom p(u;v) is sele
ted, u has
onstantsin ea
h position where t has x.Example 10.9 The length program in Figure 23 on page 119
an be used in modeflength(O ; I); len aux(O ; I ; I)g in spite of that fa
t that len aux([℄; N; N) is not input-linear, using either of the two explanations above. The �rst explanation relies on allatoms using predi
ates q w len aux being well pla
ed. This is somewhat unsatisfa
torysin
e imposing su
h a restri
tion impedes modularity. Therefore, the se
ond explanationis preferable. /10.3 Generalising ModesIn Se
tion 5.2, we have de�ned a mode of a program as a set
ontaining one mode forea
h of its predi
ates. This means that we have allowed for a program to be used indi�erent modes at di�erent exe
utions, but within ea
h exe
ution, the mode of ea
hpredi
ate was �xed. For example, the queryappend([1; 2℄; [3; 4℄; Zs); append(As; Bs; Zs);where the �rst atom has mode append(I ; I ;O) and the se
ond atom has modeappend(O ;O ; I), uses the same predi
ate in di�erent modes and hen
e would not be,say, permutation ni
ely moded. This is a disadvantage as one
an easily imagine thata program might use append(I ; I ;O) is one pla
e and append(O ;O ; I) in another. Wehave de�ned modes in this way to avoid unne
essary
onfusion.It is easy to see however that the de�nition of a mode of a program
ould be gener-alised. De�ne a mode M of a program as a set of modes
ontaining at least one mode forea
h of its predi
ates. De�ne that a
lause C = p(t; s) B is, say, permutation ni
elymoded with respe
t to a mode p(m1; : : : ;mn) 2 M if it is permutation ni
ely moded,assuming that the mode p(m1; : : : ;mn) is assigned to the
lause head and some modein M is assigned to ea
h body atom in C. De�ne that a program is permutation ni
elymoded if for ea
h predi
ate p and ea
h mode p(m1; : : : ;mn) 2M , all
lauses de�ning pare permutation ni
ely moded with respe
t to p(m1; : : : ;mn).10.4 Dis
ussionIn this
hapter, we presented some methods that
an be used to improve the results ofthe earlier
hapters in two ways: omitting the blo
k de
larations for some predi
ates,and allowing for multiple o

urren
es of variables in the input of
lause heads.Omitting the blo
k de
larations is parti
ularly useful for (arithmeti
) built-ins.It aims at the way arithmeti
 built-ins are used in pra
ti
e: it is awkward havingto introdu
e auxiliary predi
ates to implement delay de
larations for built-ins. The

130 CHAPTER 10. WEAKENING SOME CONDITIONSnqueens program is a standard example of a program whi
h
ontains blo
k de
larations,but not for the built-ins. We give a formal justi�
ation for this.The requirement that
lauses must be input-linear is quite
ommon [AL95, AE93,ER98℄. However it is a rather severe restri
tion, in that it usually rules out predi
atesrunning in \test mode" (see Example 10.8). We have shown how this restri
tion
ansometimes be weakened.Finally, we have outlined a generalisation of modes allowing for predi
ates to beused in di�erent modes in di�erent pla
es in a program, even within a single exe
ution.

Chapter 11Related Work and Con
lusionIn Chapter 2, we gave an overview of the literature using modes and types. In this
hapter, we look, more spe
i�
ally, at the literature related to Part III of this thesis.We then
on
lude the thesis by highlighting the main
ontributions and novel ideas,and mentioning some open problems.11.1 Related WorkThis se
tion has several subse
tions, ea
h of whi
h is devoted to a paper or a group of
losely related papers. Subse
tion 11.1.1 is an ex
eption. It dis
usses the signi�
an
e of\pinning down the size" of an atom throughout the termination literature. We dis
ussthe papers more or less in
hronologi
al order.In Subse
tion 6.1, we observed that a distinguishing aspe
t between works on termi-nation is the assumptions they make about the sele
tion rule. This in
ludes assumptionsabout delay de
larations, as one usually thinks of the sele
tion rule as being parametrisedby the delay de
larations, if there are any. Figure 24 illustrates a variety of assumptionsabout the sele
tion rule that have been made in the literature. We will refer to this�gure as we dis
uss the di�erent approa
hes.11.1.1 The Signi�
an
e of \Pinning Down the Size" of an AtomAs explained in Se
tion 6.1, most approa
hes to termination rely on the idea that thesize of an atom
an be pinned down when the atom is sele
ted. Depending on this size,it is then possible to give an upper bound for the number of des
endants of this atom.Te
hni
ally, \pinning down the size" usually means that the atom is bounded withrespe
t to some level mapping [AP94a, Bez93, EBC99, LS97, MK97℄. However, thereare ex
eptions [DVB92, DD98℄. In those works, termination
an be shown for the query,say, append([X℄; [℄; Zs) using as level mapping the term size of the �rst argument, eventhough the term size of [X℄ is not bounded. However, the method only works for LD-derivations and relies on the fa
t that any future instantiation of X
annot a�e
t thedes
endants of append([X℄; [℄; Zs). Therefore it is e�e
tively possible to pin down thesize of append([X℄; [℄; Zs).On the whole, there seems to be a strong relu
tan
e to give up this idea, although131

132 CHAPTER 11. RELATED WORK AND CONCLUSION

LD-derivationsInput-
onsuming derivationsLo
al sele
tion rules Rigidness
he
ks Depth boundsArbitrary derivations 6
?spe
i�

general

Figure 24: Assumptions about the sele
tion ruleit is re
ognised that it must fail on some standard examples of programs using
orou-tining [Nai92℄. This is illustrated in Example 6.1. Therefore, some authors attempt tosimplify the a
tual problem by proposing program transformations or introdu
ing addi-tional assumptions about the sele
tion rule [Bez93, MT95, MK97℄. It seems that thesemodi�
ations mainly serve the purpose of making it easier to reason about termination,and not of making programs terminate that would not terminate otherwise. We willdis
uss this point further below when we look at the various approa
hes.11.1.2 Guarded Horn ClausesThe de�nition of input-
onsuming derivations has a
ertain resemblan
e with derivationsin the language of (Flat) Guarded Horn Clauses [Ued86, Ued88℄. In (F)GHC, a
lausehas the form h G jB, where G is
alled a guard. There is no ba
ktra
king, that is,the
hoi
e of a
lause to resolve an atom
annot be undone later if the derivation fails.It is therefore
ru
ial that the \
orre
t"
lause is used in ea
h step. To this end, anatom a
an be resolved using a
lause h G jB only when a is an instan
e of h andG� is entailed, where � is an MGU of a and h. The atom a
an be
ome instantiatedonly later via expli
it uni�
ations (using the built-in equality predi
ate) o

urring inthe body B.Thus whether or not an atom a is sele
table in (F)GHC depends not only on a itselfbut, at least in theory, on the
lause used to resolve a. This is similar to the
on
ept ofinput-
onsuming derivations, where whether or not a derivation step is input-
onsumingmay depend on the
lause used to resolve an atom.When we
onsider Moded FGHC [CU96, UM93, UM94℄, this resemblan
e be
omeseven
learer. Intuitively, arguments of the sele
ted atom that a�e
t the
hoi
e of the
lause are input arguments, whereas arguments that be
ome instantiated by the bodyB are output arguments. In Moded FGHC, a number of
orre
tness
onditions areimposed that formalise, among other things, this intuition.

11.1. RELATED WORK 13311.1.3 Coroutining and Terminating Logi
 ProgramsNaish studies the problem of termination of programs with
oroutining [Nai92℄. He
onsiders the when de
larations of NU-Prolog [TZ86℄, whi
h are essentially the same asblo
k de
larations. These de
larations e�e
tively ensure input-
onsuming derivations,although Naish does not use this
on
ept. The default left-to-right sele
tion rule ofProlog is assumed. This work gives good intuitive explanations why programs loopand heuristi
s to ensure termination. However, the work is not formal. It is not evenformalised what the default left-to-right sele
tion rule is.Predi
ates are assumed to have a single mode. As mentioned on page 62, Naishsuggests that alternative modes should be a
hieved by multiple versions of a predi
ate.This approa
h is quite
ommon and is also taken in Mer
ury [SHC96℄, where theseversions are generated by the
ompiler. While it is possible to take that approa
h,some authors give the impression that assuming single modes does not imply any lossof generality [AE93, AL95, EBC99℄. However, generating multiple versions implies
odedupli
ation and hen
e a loss of generality (see Subse
tion 5.3.2).Naish uses examples where under the assumption of single modes, there is no rea-son for using delay de
larations in the �rst pla
e. For example, if we only
onsiderpermute(O ; I), then the program in Figure 20 (page 99) does not loop for the plain rea-son that no atom ever delays, and thus the program is exe
uted using LD-derivations.In this
ase, the elaborate interpretation that one should \pla
e re
ursive
alls last" ismisleading. On the other hand, if we only
onsider permute(I ;O), then the version ofFigure 20 would hardly be used, on the grounds that it is mu
h less eÆ
ient than theversion of Figure 18 (page 95). In short, Naish's dis
ussion on delay de
larations la
ksmotivation when only one mode is assumed.11.1.4 Strong TerminationBezem [Bez93℄ has identi�ed the
lass of strongly terminating programs, whi
h areprograms that universally terminate under any sele
tion rule (see Figure 24 on thefa
ing page). While it is shown that every total re
ursive fun
tion
an be
omputed bya strongly terminating program, this does not
hange the fa
t that few existing programsare strongly terminating. Transformations are proposed for three example programs tomake them strongly terminating, but no general pro
edure for transforming programsis given.11.1.5 Generating Delay De
larations Automati
allyL�uttringhaus-Kappel [L�ut93℄ proposes a method for generating
ontrol (delay de
-larations) automati
ally, and has applied it su

essfully to many programs. However,rather than pursuing a formalisation of some intuitive understanding of why programsloop, and imposing appropriate restri
tions on programs, he attempts a high degree ofgenerality. This has
ertain disadvantages.First, the method only �nds a

eptable delay de
larations, ensuring that the mostgeneral sele
table atoms have �nite SLD-trees. What is required however are safe delay

134 CHAPTER 11. RELATED WORK AND CONCLUSIONde
larations, ensuring that instan
es of most general sele
table atoms have �nite SLD-trees. A safe program is a program for whi
h every a

eptable delay de
laration is safe.L�uttringhaus-Kappel states that all programs he has
onsidered are safe, but gives nohint as to how this might be shown in general. This is a missing link.Se
ondly, the delay de
larations for some programs su
h as qui
ksort require anargument to be a nil-terminated list before an atom
an be sele
ted. Su
h a list is some-times
alled rigid [MK97, MKS97℄, sin
e its length
annot
hange via further instanti-ation (see Figure 24 on page 132). As L�uttringhaus-Kappel points out, \in NU-Prolog[or SICStus℄ it is not possible to express su
h
onditions"1 [TZ86℄. Note that su
h usesof delay de
larations go far beyond ensuring that derivations are input-
onsuming. Infa
t, they ensure that the size of the sele
ted atom
an be pinned down.In a way, the need for su
h strong delay de
larations arises be
ause L�uttringhaus-Kappel assumes arbitrary delay-respe
ting derivations, rather than left-based deriva-tions. Obviously, his method
annot show termination when termination depends onderivations being left-based.Thirdly,
oundering
annot be ruled out systemati
ally, but only avoided on a heuris-ti
 basis. Thus in prin
iple, the method sometimes enfor
es termination by
oundering.This lies in the nature of the weak assumptions made, and thus is sometimes unavoid-able, but there is no notion that would allow to reason about whether for a parti
ularprogram, it was avoidable or not. In
ontrast, the notions of permutation well-typednessand input-
onsuming derivations allow to reason about whether
oundering is avoidableor not (see Se
tion 9.3).11.1.6 Veri�
ation Using Modes and TypesApt, Etalle, Luitjes and Pellegrini are among the authors who use
orre
tness prop-erties related to modes and types to verify logi
 programs [AE93, AL95, AP94b℄. These
orre
tness properties have been adopted and extended in this thesis (see Se
tion 7.5).Apt and Luitjes [AL95℄ present some methods for veri�
ation of logi
 programs withdelay de
larations. They
onsider four aspe
ts of veri�
ation: o

ur-
he
k freedom, non-
oundering, freedom from errors related to built-ins, and termination.The results on o

ur-
he
k freedom are a generalisation of work by Apt and Pel-legrini [AP94b℄ from LD-derivations to arbitrary derivations. O

ur-
he
k freedom isshown based on ni
ely-modedness. As dis
ussed in Se
tion 10.2, showing the persisten
eof ni
ely-modedness, and hen
e o

ur-
he
k freedom, for arbitrary derivations requiresthat
lause heads are input-linear.For arithmeti
 built-ins, Apt and Luitjes require delay de
larations su
h that anatom is delayed until the arguments are ground. Su
h de
larations are usually imple-mented less eÆ
iently than blo
k de
larations.Little attention is devoted to termination. Apt and Luitjes propose a method forshowing termination whi
h is limited to deterministi
 programs, that is programs wherefor ea
h sele
ted atom, there is at most one
lause head uni�able with it. Moreover,1This statement should probably be weakened. It is possible to express su
h
onditions, but only byintrodu
ing auxiliary predi
ates [MK97℄.

11.1. RELATED WORK 135Apt and Luitjes give
onditions for the termination of append, but these are ad-ho
 anddo not address the general problem.The results on uni�
ation freedom of Se
tion 9.1 are based on work by Apt andEtalle [AE93℄. These authors assume well typed programs and LD-derivations.11.1.7 Termination of LD-DerivationsThe methods for proving termination presented in Chapter 8 impli
itly rely on previouswork on termination for LD-derivations [Apt97, AP90, DVB92, DD93, DD98, EBC99℄.De S
hreye and De
orte give a survey of the termination literature [DD94℄. TheTermiLog system is a tool for proving termination automati
ally [LS96, LS97, LSS97℄.11.1.8 Termination for Lo
al Sele
tion RulesFor proving termination, Mar
hiori and Teusink [MT95℄ rely on norms and the
ov-ering relation between subqueries of a query. This is loosely related to well-typedness.However, their results are not
omparable to ours be
ause they assume a lo
al sele
tionrule, that is a rule whi
h always sele
ts an atom whi
h was introdu
ed in the mostre
ent step. No existing language using a lo
al sele
tion rule is mentioned. Assuminglo
al sele
tion rules, it
an be ensured that the size of the sele
ted atom
an always bepinned down.The authors state that programs that do not use spe
ulative bindings deserve fur-ther investigation, and that they expe
t any method for proving termination with full
oroutining either to be very
omplex, or very restri
tive in its appli
ations.11.1.9 Dire
tional TypesBoye [Boy96℄ de�nes generally well typed programs, of whi
h the permutation well typedprograms
onsidered here are a spe
ial
ase. The generalisation lies in
onsidering notjust a produ
er-
onsumer relation between atoms in a query, but rather between theindividual argument positions. This allows to reason about
ertain programs whi
hoperate on open data stru
tures.The standard example is a program whi
h takes as input a binary tree whose labelsare numbers, and returns a tree with the same stru
ture but where all labels are repla
edby the maximum label of the original tree. Although this is
on
eptually a two-passproblem, the program does only one pass over the original tree. This works by �rst
onstru
ting the output tree su
h that all labels are aliased to the same variable. Onlyafter the original tree has been passed
ompletely, and thus the maximum label is known,will this variable be instantiated.The maximum label of the original tree is a passed as an input argument to the mainpredi
ate of this program, and nevertheless, by the very nature of the algorithm, it
an-not be instantiated at the time when an atom using this predi
ate is sele
ted. Thereforeprograms using this te
hnique
annot work assuming input-
onsuming derivations. Atpresent, we
an only state that su
h programs are an ex
eption to the prin
iple thatderivations must be input-
onsuming. It would
ertainly be desirable to generalise theprin
iple so that su
h programs would also be in
luded.

136 CHAPTER 11. RELATED WORK AND CONCLUSION11.1.10 Termination by Imposing Depth BoundsMartin and King [MK97℄ ensure termination by imposing a depth bound on the SLD-tree (see Figure 24 on page 132). This is realised by a program transformation introdu
-ing additional argument positions for ea
h predi
ate whi
h are
ounters for the depthof the
omputation. As with other approa
hes, the size of the sele
ted atom
an alwaysbe pinned down: it is simply the value of the depth bound. The diÆ
ulty is of
ourseto �nd an appropriate depth bound that does not
ompromise
ompleteness.11.1.11 Beyond Su

ess and FailureEtalle and van Raamsdonk [ER98℄ study generalisations of the notions of su

essfuland failing derivations, whi
h are traditionally regarded as the
ornerstones of
ontrolin logi
 programming. They de�ne non-destru
tive programs. This
on
ept is similarto input-
onsuming derivations, although they take a di�erent viewpoint: they de�nea program property rather than a property of the sele
tion rule. A non-destru
tiveprogram is a program for whi
h all delay-respe
ting derivations are input-
onsuming.In Chapter 7, we have seen several (synta
ti
ally de�ned)
lasses of non-destru
tiveprograms.11.1.12 Termination of Well-Moded ProgramsChapter 6
losely follows Etalle et al. [EBC99℄, who study well-terminating programs,that is programs for whi
h all LD-derivations for all well moded queries terminate.Proving that a program has this property is based on moded level mappings and well-a

eptable
lauses. These
on
epts are similar to moded typed level mapping (De�-nition 6.2) and ICD-a

eptable
lause (De�nition 6.4). For simply moded programs,the paper even gives a
hara
terisation of well-termination. That is, it shows that if aprogram is well-terminating, then its
lauses are well-a

eptable. This is not a
ontra-di
tion to the unde
idability of termination, as the existen
e of a level mapping withrespe
t to whi
h a program is well-a

eptable is unde
idable.11.1.13 9-Universal TerminationBezem [Bez93℄ has de�ned strong termination, whi
h is universal termination for all se-le
tion rules. Ruggieri [Rug99℄ has de�ned a
omplementary
on
ept
alled 9-universaltermination. A program P and query Q 9-universally terminate if there exists a sele
-tion rule S su
h that all S-derivations of P [fQg are �nite. This
on
ept is importantwith regards to the separation of the logi
 and
ontrol aspe
ts of a program as advo-
ated by Kowalski [Kow79℄. If a program 9-universally terminates, then it is, at least inprin
iple, possible to asso
iate
ontrol with the program so that it a
tually terminates.If the program does not 9-universally terminate, then it does not terminate for anysele
tion rule.In this
ontext, fair sele
tion rules play a spe
ial role. A sele
tion rule is fair if ea
hatom in a query is eventually sele
ted. Ruggieri shows that a program 9-universallyterminates if and only if it terminates for all fair sele
tion rules [Rug99, Theorem 2.4.3℄.Thus from the point of view of proving termination, assuming fair sele
tion rules is the

11.2. CONCLUSION 137strongest assumption one
an make about the sele
tion rule. If a program does notterminate for a fair sele
tion rule, it does not terminate for any sele
tion rule.Note that Ruggieri follows Apt [Apt97℄ in de�ning a sele
tion rule as a fun
tion thattakes a derivation and returns an atom in the last query (the sele
ted atom). However,this de�nition is too restri
tive for our purposes. For example, it is not possible to de�nea sele
tion rule that exa
tly
orresponds to input-
onsuming derivations. A sele
tionrule as de�ned by Apt
annot be used to model the situation that no atom
an besele
ted, or that more than one atom
an be sele
ted (so that it is left open whi
h atomis a
tually sele
ted). Moreover, it
annot be used to model that whether or not an atom
an be sele
ted may depend on the
lause used to resolve this atom. This latter aspe
t
annot even be modelled using sets of sele
tion rules as de�ned by Apt. Lloyd [Llo87℄has a de�nition of sele
tion rule whi
h is even more restri
tive than that of Apt, in thatwhether or not an atom is sele
table may only depend on the present query, and not onthe whole derivation.11.1.14 Assertion-Based Debugging of (Constraint) Logi
 ProgramsPuebla et al. have developed an assertion-based debugging system for
onstraint logi
programs [PBH99℄. This has aspe
ts of program analysis as well as veri�
ation. Unlikethe veri�
ation methods we have presented here, no restri
tions (su
h as well-typedness)are imposed on the program. The system in
orporates various te
hniques involvingabstra
t interpretation and runtime
he
king. One
ould imagine that the veri�
ationte
hniques of this thesis
ould also be in
orporated into this system.11.2 Con
lusionThe main
ontribution of Part III is to provide a method for showing terminationof programs with blo
k de
larations assuming left-based derivations. That is, we areproposing a solution to the termination problem for programs with delay de
larations asthe problem was originally stated, albeit informally, by Naish [Nai92℄. This problem isa \realisti
" one, sin
e the assumptions of blo
k de
larations and left-based derivationsre
e
t the most
ommonly used implementations.To the best of our knowledge, this is the �rst formal and
omprehensive approa
h tothis problem. Other authors have either been informal [Nai92℄, or made other (usuallystronger) assumptions and hen
e studied another problem [MT95, MK97℄, or dealt withthe problem under very restri
ted
ir
umstan
es [AL95℄.We now highlight some original, distin
tive ideas and
on
epts of Part III. We thenmention some open problems. Finally we re
all the main results.11.2.1 Some Distin
tive Novel IdeasFormalising Sele
tion RulesIt is
ommonly assumed that sele
ted atoms in a derivation should be instantiated toa
ertain degree in order to ensure termination and other desirable properties [AL95℄.

138 CHAPTER 11. RELATED WORK AND CONCLUSIONIn Chapter 5, we presented the
on
ept of input-
onsuming derivation, providing a
hara
terisation of \a
ertain degree" whi
h is both abstra
t and intuitive.Without assuming input-
onsuming derivations, even predi
ates for whi
h termina-tion should be trivial do not terminate (see page 9). On the other hand, we have shownthat for many predi
ates, this assumption about the sele
tion rule, together with some
orre
tness
onditions satis�ed by the program, is suÆ
ient to ensure termination.However, there are also many predi
ates for whi
h this assumption is not suÆ
ient.One way to strengthen the assumptions about the sele
tion rule is to assume the defaultleft-to-right sele
tion rule of Prolog. Owing to subtleties involving simultaneously wokenatoms, neither software manuals nor theoreti
al works have attempted to formalise thisrule pre
isely. The notion of left-based derivation introdu
ed in this thesis (based onpreviously published work [SHK98℄) is a formalisation of default left-to-right sele
tionrules. It is relatively simple and unrestri
tive, so that we
an
laim with reasonable
on�den
e that derivations in existing Prolog systems are left-based.Termination without Pinning down the Sele
ted AtomMost methods for proving termination of logi
 programs are based on the following idea:when an atom a in a query is sele
ted, it is possible to pin down the size of a, and thenew atoms introdu
ed in this derivation step are smaller than a. These methods arebound to fail on most programs using
oroutining, su
h as the
oroutining derivationof append in Example 6.1 [Bez93, L�ut93, MT95, MK97℄. In
ontrast, we show thatunder
ertain
onditions, it is suÆ
ient to rely on a relative de
rease in the size of thesele
ted atom, even though this size
annot be pinned down. This is the key to provingtermination for programs with
oroutining.Three Orderings on AtomsIn this thesis, three di�erent orderings between the atoms of a query (or
lause body) areelaborated: the textual order, the produ
er-
onsumer order and the exe
ution order. Itis shown that for LD-derivations, all of these orders are identi
al. Moreover, for sele
tionrules where the textual position is irrelevant for the sele
tion of an atom, the textualorder and the produ
er-
onsumer order
an be assumed to be identi
al, as a matterof simpli�
ation. For sele
tion rules where the textual position of atoms matters, theprodu
er-
onsumer order
an be made expli
it using a permutation of the atoms.(Permutation) Robustly Typed ProgramsMany veri�
ation methods for logi
 programs, in
luding some in this thesis, rely on theassumption that programs are simply moded, so that a query always has variables inthe output positions [AE93, EBC99℄. In Se
tion 7.4, we de�ne (permutation) robustly-typedness, a
orre
tness property allowing for non-variable terms in
ertain outputpositions. This property is persistent under resolution and type-
onsistent with respe
tto input-
onsuming derivations.We have used this property for showing termination, but it may well have otheruses, for example to show uni�
ation freedom for a larger
lass of programs [AE93℄.

11.2. CONCLUSION 139Multiple ModesThroughout Part III, it is assumed that predi
ates may be used in multiple modes,although this assumption is not always made expli
it. We have argued that in the
on-text of programs using non-standard derivations, one should at least allow for multiplemodes, although only few predi
ates
an reasonably be used in multiple modes. In pre-vious literature, there is sometimes a la
k of motivation: for the examples given, there isno reason for using delay de
larations in the �rst pla
e, if not to enable multiple modes.blo
k De
larationsWe have argued that among the various kinds of delay de
larations, blo
k de
larations,whi
h
an only test for partial instantiation of arguments of an atom, play a spe
ialrole. They
an be more eÆ
iently implemented than more
omplex
onstru
ts su
has delay de
larations testing for groundness. Moreover, they are well suited to realiseinput-
onsuming derivations while allowing for
oroutining.11.2.2 Open ProblemsWe now dis
uss some open problems and possible extensions of this work.Weakening the Corre
tness PropertiesThe veri�
ation methods introdu
ed in this thesis are based on a number of
orre
t-ness properties that the veri�ed programs must have (see Se
tion 7.5). Etalle andGabbrielli [EG99℄ have identi�ed programs using layered modes, whi
h are a small butinteresting
lass of programs for whi
h none of the above
orre
tness properties holds,sin
e it is not possible to establish a produ
er-
onsumer relation (see Subse
tion 5.3.1)between the atoms of ea
h query. Therefore, Etalle and Gabbrielli re�ne the
on
eptof produ
er-
onsumer relation by
onsidering the individual argument positions ratherthan entire atoms, similarly to Boye [Boy96℄. It would be interesting to extend someresults of this thesis to su
h programs.Termination for Input-Consuming DerivationsAs stated previously (page 81), we
annot show that all input-
onsuming derivationsof qui
ksort(I ;O) are �nite, although we
onje
ture that they are. Ideally, one wouldlike to �nd a
hara
terisation of the programs for whi
h all input-
onsuming derivationsare �nite (see Se
tion 6.6 and Subse
tion 11.1.12).A Uniform Veri�
ation Method for Built-insFor showing that a program is free from errors related to built-ins (Se
tion 9.4), we haveintrodu
ed two methods. Whether one of these methods or even both are appli
abledepends on the program. It would be desirable to �nd one uniform approa
h whi
hwould work for a larger
lass of programs.

140 CHAPTER 11. RELATED WORK AND CONCLUSIONWeakening the blo
k De
larationsWe have dis
ussed that blo
k de
larations
an be omitted or simpli�ed when suÆ
ientinstantiation
an be guaranteed at
ompile time. This issue is related to another prob-lem, namely the rather severe restri
tion that
lause heads must be input-linear. Itwould be interesting to study this relationship further and
ome up with results thatare more general than the ones in Chapter 10.11.2.3 Summary of Part IIIIn Part III of this thesis, we have presented veri�
ation methods for logi
 programsusing non-standard derivations, that is programs not using the LD sele
tion rule.In Chapter 5, we motivated the usefulness of non-standard derivations. We thenintrodu
ed a number of
orre
tness properties
on
erning the modes of a program.Many veri�
ation methods
an be based on these properties.In Chapter 6, we introdu
ed input-
onsuming derivations as a minimal assumptionneeded to prove termination. We used level mappings to provide a method for provingthat a program (fragment) terminates for all input-
onsuming derivations.In Chapter 7, we showed how blo
k de
larations
an be used to ensure that deriva-tions are input-
onsuming. Examples were used to illustrate that this is a non-trivialproblem. We introdu
ed the
lass of permutation robustly typed programs, whi
h is
are-fully
rafted so that blo
k de
larations
an in fa
t ensure input-
onsuming derivations,without being too restri
tive.In Chapter 8, we presented a
omprehensive method for showing termination forprograms with blo
k de
larations. It is based on the insight that for some atoms, thetextual position in a query is irrelevant, whereas other atoms must be pla
ed suÆ
ientlylate in a query to ensure that they are always
alled with suÆ
ient input. This assumesleft-based derivations.In Chapter 9, we presented veri�
ation methods
on
erning some further aspe
ts ofveri�
ation. These were freedom from uni�
ation, o

ur-
he
k,
oundering, and errorsrelated to built-ins.In Chapter 10, we
onsidered ways of omitting the blo
k de
larations for somepredi
ates, and allowing for multiple o

urren
es of variables in the input of
lauseheads.

Bibliography[AE93℄ K. R. Apt and S. Etalle. On the uni�
ation free Prolog programs. InA. Borzyszkowski and S. Sokolowski, editors, Pro
eedings of the Conferen
eon Mathemati
al Foundations of Computer S
ien
e, LNCS, pages 1{19, Berlin,1993. Springer-Verlag.[AL94℄ A. Aiken and T. K. Lakshman. Dire
tional type
he
king of logi
 programs.In B. Le Charlier, editor, Pro
eedings of the 1st Stati
 Analysis Symposium,LNCS, pages 43{60. Springer-Verlag, 1994.[AL95℄ K. R. Apt and I. Luitjes. Veri�
ation of logi
 programs with delay de
larations.In V. S. Alagar and M. Nivat, editors, Pro
eedings of AMAST'95, LNCS,Berlin, 1995. Springer-Verlag. Invited Le
ture.[AM94℄ K. R. Apt and E. Mar
hiori. Reasoning about Prolog programs: From modesthrough types to assertions. Formal Aspe
ts of Computing, 6(6A):743{765,1994.[AMSH94℄ T. Armstrong, K. Marriott, P. S
ha
hte, and H.S�ndergaard. Boolean fun
-tions for dependen
y analysis: Algebrai
 properties and eÆ
ient representa-tion. In B. Le Charlier, editor, Pro
eedings of the 1st Stati
 Analysis Sympo-sium, LNCS, pages 266{280. Springer-Verlag, 1994.[AMSH98℄ T. Armstrong, K. Marriott, P. S
ha
hte, and H.S�ndergaard. Two
lassesof Boolean fun
tions for dependen
y analysis. S
ien
e of Computer Program-ming, 31(1):3{45, 1998.[AP90℄ K. R. Apt and D. Pedres
hi. Studies in pure Prolog: Termination. In J. W.Lloyd, editor, Pro
eedings of the Symposium in Computational Logi
, LNCS,pages 150{176. Springer-Verlag, 1990.[AP94a℄ K. R. Apt and D. Pedres
hi. Modular termination proofs for logi
 and pureProlog programs. In G. Levi, editor, Advan
es in Logi
 Programming Theory,pages 183{229. Oxford University Press, 1994.[AP94b℄ K. R. Apt and A. Pellegrini. On the o

ur-
he
k free Prolog programs. ACMTransa
tions on Programming Languages and Systems, 16(3):687{726, 1994.[Apt97℄ K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.[Bau92℄ M. Baudinet. Proving termination properties of Prolog programs: A semanti
approa
h. Journal of Logi
 Programming, 14:1{29, 1992.141

[BC99℄ A. Bossi and N. Co

o. Su

esses in logi
 programs. In P. Flener, editor,Pro
eedings of the 8th International Workshop on Logi
 Program Synthesisand Transformation, LNCS, pages 219{239. Springer-Verlag, 1999.[BCHK97℄ F. Benoy, M. Codish, A. Heaton, and A. M. King. WideningPos for EÆ
ient and S
alable Groundness Analysis. Te
hni
al Re-port 515, University of Kent at Canterbury, 1997. Available athttp://www.
s.uk
.a
.uk/pubs/1997/515/index.html.[BDB+96℄ M. Bruynooghe, B. Demoen, D. Boulanger, M. Dene
ker, and A. Mulkers. Afreeness and sharing analysis of logi
 programs based on a pre-interpretation.In R. Cousot and D. A. S
hmidt, editors, Pro
eedings of the 3rd Stati
 AnalysisSymposium, LNCS, pages 128{142. Springer-Verlag, 1996.[Bez93℄ M. Bezem. Strong termination of logi
 programs. Journal of Logi
 Program-ming, 15(1 & 2):79{97, 1993.[BG92℄ R. Barbuti and R. Gia
obazzi. A bottom-up polymorphi
 type inferen
e inlogi
 programming. S
ien
e of Computer Programming, 19:281{313, 1992.[BLR92℄ F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of dire
tionalityfor proving termination of logi
 programs. In K. R. Apt, editor, Pro
eedings ofthe 9th Joint International Conferen
e and Symposium on Logi
 Programming,pages 321{335. MIT Press, 1992.[BM95℄ J. Boye and J. Ma luszy�nski. Two aspe
ts of dire
tional types. In L. Sterling,editor, Pro
eedings of the 12th International Conferen
e on Logi
 Program-ming, pages 747{761. MIT Press, 1995.[Boy96℄ J. Boye. Dire
tional Types in Logi
 Programming. PhD thesis, Link�opingsUniversitet, 1996.[Cav89℄ L. Cavedon. Continuity,
onsisten
y and
ompleteness properties for logi
 pro-grams. In G. Levi and M. Martelli, editors, Pro
eedings of the 6th InternationalConferen
e on Logi
 Programming, pages 571{584. MIT Press, 1989.[CBGH97℄ M. Codish, M. Bruynooghe, M. Gar
��a de la Banda, and M. Hermenegildo.Exploiting goal independen
e in the analysis of logi
 programs. Journal ofLogi
 Programming, 32(3):247{261, 1997.[CC77℄ P. Cousot and R. Cousot. Abstra
t interpretation: A uni�ed latti
e model forstati
 analysis of programs by
onstru
tion or approximation of �xpoints. InPrin
iples of Programming Languages, pages 238{252. ACM Press, 1977.[CC92℄ P. Cousot and R. Cousot. Comparing the Galois
onne
tion and widen-ing/narrowing approa
hes to abstra
t interpretation. In M. Bruynoogheand M. Wirsing, editors, Pro
eedings of the 4th Symposium on ProgrammingLanguage Implementations and Logi
 Programming, LNCS, pages 269{295.Springer-Verlag, 1992. 142

[CC94℄ J. Chassin de Kergommeaux and P. Codognet. Parallel logi
 programmingsystems. ACM Computing Surveys, 26(3):295{336, 1994.[CD94℄ M. Codish and B. Demoen. Deriving polymorphi
 type dependen
ies for logi
programs using multiple in
arnations of Prop. In B. Le Charlier, editor, Pro-
eedings of the 1st Stati
 Analysis Symposium, LNCS, pages 281{296. Springer-Verlag, 1994.[CD95℄ M. Codish and B. Demoen. Analyzing logi
 programs using \PROP"-ositionallogi
 programs and a Magi
 Wand. Journal of Logi
 Programming, 25(3):249{274, 1995.[CDY94℄ M. Codish, D. Dams, and E. Yardeni. Bottom-up abstra
t interpretation oflogi
 programs. Theoreti
al Computer S
ien
e, 124(1):93{125, 1994.[CGBH94℄ M. Codish, M. Gar
��a de la Banda, M. Bruynooghe, and M. Hermenegildo.Goal dependent versus goal independent analysis of logi
 programs. In F. Pfen-ning, editor, Pro
eedings of the 5th International Conferen
e on Logi
 Pro-gramming and Automated Reasoning, LNCS, pages 305{319. Springer-Verlag,1994.[Chr97℄ H. Christiansen. Deriving de
larations from programs. Te
hni
al report,Roskilde University, P.O.Box 260, DK-4000 Roskilde, 1997.[CL96℄ M. Codish and V. Lagoon. Type dependen
ies for logi
 programs using ACI-uni�
ation. In Pro
eedings of the Israeli Symposium on Theory of Computingand Systems, pages 136{145. IEEE Press, 1996. To appear in Theoreti
alComputer S
ien
e.[Cod97℄ M. Codish. EÆ
ient goal dire
ted bottom-up evaluation of logi
 programs. InL. Naish, editor, Pro
eedings of the 14th Joint International Conferen
e andSymposium on Logi
 Programming. MIT Press, 1997. Presented as poster.[CP91℄ R. Chadha and D.A. Plaisted. Corre
tness of uni�
ation without o

ur
he
kin Prolog. Te
hni
al report, University of North Carolina, 1991.[CT77℄ K. L. Clark and S.-�A. T�arnlund. A �rst order theory of data and programs. InB. Gil
hrist, editor, Information Pro
essing, Pro
eedings of the IFIP Congress77, Toronto, pages 939{944, 1977.[CU96℄ K. Cho and K. Ueda. Diagnosing non-well-moded
on
urrent logi
 programs.In M. Maher, editor, Pro
eedings of the 13th Joint International Conferen
eand Symposium on Logi
 Programming, pages 215{229. MIT Press, 1996.[DD93℄ S. De
orte and D. De S
hreye. Automati
 inferen
e of norms: A missing linkin automati
 termination analysis. In Pro
eedings of the 10th InternationalLogi
 Programming Symposium, pages 420{436. MIT Press, 1993.[DD94℄ D. De S
hreye and S. De
orte. Termination of logi
 programs: The never-ending story. Journal of Logi
 Programming, 19/20:199{260, 1994.143

[DD98℄ S. De
orte and D. De S
hreye. Termination analysis: Some pra
ti
al propertiesof the norm and level mapping spa
e. In J. Ja�ar, editor, Pro
eedings of the15th Joint International Conferen
e and Symposium on Logi
 Programming,pages 235{249. MIT Press, 1998.[Der87℄ N. Dershowitz. Termination of rewriting. Journal of Symboli
 Computation,3(1 & 2):69{115, 1987. Corrigendum 4(3), 409{410.[DM85℄ P. Dembinski and J. Ma luszy�nski. AND-parallelism with intelligent ba
ktra
k-ing for annotated logi
 programs. In Pro
eedings of the 2nd International Logi
Programming Symposium, pages 29{38. MIT Press, 1985.[DM98℄ P. Deransart and J. Ma luszy�nski. Towards soft typing for CLP. In Fran�
oisFages, editor, JICSLP'98 Post-Conferen
e Workshop on Types for Con-straint Logi
 Programming. �E
ole Normale Sup�erieure, 1998. Available athttp://dis
ipl.inria.fr/TCLP98/.[DVB92℄ D. De S
hreye, K. Vers
haetse, and M. Bruynooghe. A framework foranalysing the termination of de�nite logi
 programs with respe
t to
all pat-terns. In Pro
eedings of FGCS, pages 481{488. ICOT Tokyo, 1992.[DW86℄ S. K. Debray and D. S. Warren. Dete
tion and optimization of fun
tional
om-putations in Prolog. In E. Shapiro, editor, Pro
eedings of the 3rd InternationalConferen
e on Logi
 Programming, LNCS, pages 490{504. Springer-Verlag,1986.[EBC99℄ S. Etalle, A. Bossi, and N. Co

o. Termination of well-moded programs.Journal of Logi
 Programming, 38(2):243{257, 1999.[EG99℄ S. Etalle and M. Gabbrielli. Layered modes. Journal of Logi
 Programming,39:225{244, 1999.[Emd81℄ M. van Emden. AVL tree insertion: A ben
hmark program biased towardsProlog. Logi
 Programming Newsletter 2, 1981.[ER98℄ S. Etalle and F. van Raamsdonk. Beyond su

ess and failure. In J. Ja�ar,editor, Pro
eedings of the 15th Joint International Conferen
e and Symposiumon Logi
 Programming, pages 190{204. MIT Press, 1998.[FGKP85℄ N. Fran
hez, O. Grumberg, S. Katz, and A. Pnueli. Proving terminationof Prolog programs. In R. Parikh, editor, Logi
s of Programs, pages 89{105.Springer-Verlag, 1985.[Fit96℄ M. Fitting. First-order Logi
 and Automated Theorem Proving. Springer-Verlag, 1996.[GBS95℄ J. Gallagher, D. Boulanger, and H. Sa�glam. Pra
ti
al model-based stati
analysis for de�nite logi
 programs. In J. W. Lloyd, editor, Pro
eedings of the12th International Logi
 Programming Symposium, pages 351{365. MIT Press,1995. 144

[GGS99℄ T. Gabri�
, K. Glynn, and H. S�ndergaard. Stri
tness analysis as �nite-domain
onstraint solving. In P. Flener, editor, Pro
eedings of the 8th In-ternational Workshop on Logi
-based Program Synthesis and Transformation,LNCS, pages 255{270. Springer-Verlag, 1999.[GL96℄ J. P. Gallagher and L. Lafave. Regular approximation of
omputation pathsin logi
 and fun
tional languages. In O. Danvy, R. Gl�u
k, and P. Thiemann,editors, Pro
eedings of the Dagstuhl Seminar on Partial Evaluation, LNCS,pages 115{136. Springer-Verlag, 1996.[GW94℄ J. P. Gallagher and A. de Waal. Fast and pre
ise regular approximations oflogi
 programs. In P. Van Hentenry
k, editor, Pro
eedings of the 11th Inter-national Conferen
e on Logi
 Programming, pages 599{613. MIT Press, 1994.[HACK00℄ A. Heaton, M. Abo-Zaed, M. Codish, and A. M. King. A simple polynomialgroundness analysis for logi
 programs. Submitted to the Journal of Logi
Programming, 2000.[Hen92℄ F. Henderson. Strong modes
an
hange the world! Honours report, Depart-ment of Computer S
ien
e, University of Melbourne, Australia, 1992.[Hen93℄ F. Henglein. Type inferen
e with polymorphi
 re
ursion. ACM Transa
tionson Programming Languages and Systems, 15(2):253{289, 1993.[HHK97℄ A. J. Heaton, P. M. Hill, and A. M. King. Analysing logi
 programs withdelay for downward-
losed properties. In N.E. Fu
hs, editor, Pro
eedings of the7th International Workshop on Logi
 Program Synthesis and Transformation,LNCS. Springer-Verlag, 1997.[Hil93℄ P. M. Hill. The
ompletion of typed logi
 programs and SLDNF-resolution.In A. Voronkov, editor, Pro
eedings of the Fourth International Conferen
eon Logi
 Programming and Automated Reasoning, LNCS, pages 182{193.Springer-Verlag, 1993.[Hil98℄ P. M. Hill, editor. ALP Newsletter, http://www-lp.do
.i
.a
.uk/alp/,February 1998. Pages 17,18.[HK97℄ P. M. Hill and A. M. King. Determina
y and determina
y analysis. Journalof Programming Languages, 5(1):135{171, 1997.[HL94℄ P. M. Hill and J. W. Lloyd. The G�odel Programming Language. MIT Press,1994.[HM99℄ S. Hoarau and F. Mesnard. Inferring and
ompiling termination for
onstraintlogi
 programs. In P. Flener, editor, Pro
eedings of the 8th International Work-shop on Logi
-based Program Synthesis and Transformation, LNCS, pages 240{254. Springer-Verlag, 1999.[HT92℄ P. M. Hill and R. W. Topor. Types in Logi
 Programming,
hapter 1, pages1{61. MIT Press, 1992. 145

[HWD92℄ M. Hermenegildo, R. Warren, and S. K. Debray. Global
ow analysis as apra
ti
al
ompilation tool. Journal of Logi
 Programming, 13(1-4):349{366,1992.[ISO95℄ International Organization for Standardization. The ISO Prolog Standard,1995. http://www.logi
-programming.org/prolog std.html.[JB92℄ G. Janssens and M. Bruynooghe. Deriving des
riptions of possible valuesof program variables by means of abstra
t interpretation. Journal of Logi
Programming, 13(2 & 3):205{258, 1992. First author name erroneously spelt\Janssen".[Kah96℄ S. Kahrs. Limits of ML-de�nability. In H. Ku
hen and S. D. Swierstra, editors,Pro
eedings of the 8th Symposium on Programming Language Implementationsand Logi
 Programming, LNCS, pages 17{31. Springer-Verlag, 1996.[KKS91℄ M. R. K. Krishna Rao, D. Kapur, and R. K. Shyamasundar. A transforma-tional methodology for proving termination of logi
 programs. In Pro
eed-ings of the 5th Conferen
e for Computer S
ien
e Logi
, LNCS, pages 213{226.Springer-Verlag, 1991.[Kow79℄ R. A. Kowalski. Algorithm = Logi
 + Control. Communi
ations of the ACM,22(7):424{436, 1979.[KSH99℄ A. M. King, J.-G. Smaus, and P. M. Hill. Quotienting share for dependen
yanalysis. In D. Swierstra, editor, Pro
eedings of the European Symposium onProgramming, 1999.[KTU93℄ A. J. Kfoury, J. Tiuryn, and P. Urzy
zyn. Type re
onstru
tion in the presen
eof polymorphi
 re
ursion. ACM Transa
tions on Programming Languages andSystems, 15(2):290{311, 1993. Title wrongly given in table of
ontents: Typere
ursion in the presen
e of polymorphi
 re
ursion.[Llo87℄ J. W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, 1987.[LS96℄ N. Lindenstrauss and Y. Sagiv. Che
king termination of queries to logi
 pro-grams. Te
hni
al report, Hebrew University of Jerusalem, 1996. Available athttp://www.
s.huji.a
.il/�naomil.[LS97℄ N. Lindenstrauss and Y. Sagiv. Automati
 termination analysis of logi
 pro-grams. In L. Naish, editor, Pro
eedings of the 14th Joint International Confer-en
e and Symposium on Logi
 Programming, pages 63{77. MIT Press, 1997.[LSS97℄ N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. TermiLog: A system for
he
k-ing termination of queries to logi
 programs. In O. Grumberg, editor, Pro
eed-ings of Computer Aided Veri�
ation, LNCS, pages 444{447. Springer-Verlag,1997.[L�ut93℄ S. L�uttringhaus-Kappel. Control generation for logi
 programs. In D. S.Warren, editor, Pro
eedings of the 10th International Conferen
e on Logi
Programming, pages 478{495. MIT Press, 1993.146

[Mar96℄ M. Mar
hiori. Proving existential termination of normal logi
 programs. InM. Wirsing and M. Nivat, editors, Pro
eedings of AMAST'96, LNCS, pages375{390. Springer-Verlag, 1996.[Mee88℄ L. Meertens. First steps towards the theory of rose trees. CWI, Amsterdam;IFIP Working Group 2.1 working paper 592 ROM-25, 1988.[Mil78℄ R. Milner. A theory of type polymorphism in programming. Journal of Com-puter and System S
ien
es, 17(3):348{375, 1978.[MK97℄ J. C. Martin and A. M. King. Generating eÆ
ient, terminating logi
 programs.In M. Bidoit and M. Dau
het, editors, Pro
eedings of TAPSOFT'97, LNCS,pages 273{284. Springer-Verlag, 1997.[MKS97℄ J. C. Martin, A. M. King, and P. Soper. Typed norms for typed logi
 programs.In J. P. Gallagher, editor, Pro
eedings of the 6th International Workshop onLogi
 Program Synthesis and Transformation, LNCS, pages 224{238. Springer-Verlag, 1997.[MM82℄ A. Martelli and U. Montanari. An eÆ
ient uni�
ation algorithm. ACM Trans-a
tions on Programming Languages and Systems, 4:258{282, 1982.[MNL90℄ K. Marriott, L. Naish, and J. L. Lassez. Most spe
i�
 logi
 programs. Annalsof mathemati
s and arti�
ial intelligen
e, 1(2), 1990. Also in pro
eedings of the5th Joint International Conferen
e and Symposium on Logi
 Programming.[MO84℄ A. My
roft and R. O'Keefe. A polymorphi
 type system for Prolog. Arti�
ialIntelligen
e, 23:295{307, 1984.[MS93℄ K. Marriott and H. S�ndergaard. Pre
ise and eÆ
ient groundness analysisfor logi
 programs. ACM Letters on Programming Languages and Systems,2(1{4):181{196, 1993.[MT95℄ E. Mar
hiori and F. Teusink. Proving termination of logi
 programs with delayde
larations. In J. W. Lloyd, editor, Pro
eedings of the 12th International Logi
Programming Symposium, pages 447{461. MIT Press, 1995.[Nai85℄ L. Naish. Automati

ontrol of logi
 programs. Journal of Logi
 Programming,2(3):167{183, 1985.[Nai86℄ L. Naish. Negation and Control in Prolog. Number 238 in LNCS. Springer-Verlag, 1986.[Nai92℄ L. Naish. Coroutining and the
onstru
tion of terminating logi
 programs.Te
hni
al Report 92/5, University of Melbourne, 1992.[Nai96℄ L. Naish. A de
larative view of modes. In M. Maher, editor, Pro
eedings of the13th Joint International Conferen
e and Symposium on Logi
 Programming,pages 185{199. MIT Press, 1996.147

[PBH99℄ G. Puebla, F. Bueno, and M. Hermenegildo. A framework for assertion-based debugging in
onstraint logi
 programming. In A. Bossi, editor, Pre-Pro
eedings of the 9th International Workshop on Logi
-based Program Synthe-sis and Transformation, pages 31{38. Universit�a C�a Fos
ari di Venezia, 1999.Extended abstra
t.[PR99℄ D. Pedres
hi and S. Ruggieri. On logi
 programs that do not fail. In S. Etalleand J.-G. Smaus, editors, Pro
eedings of the Workshop on Veri�
ation, organ-ised within ICLP'99, volume 30 of Ele
troni
 Notes in Theoreti
al ComputerS
ien
e. Elsevier, 1999.[RNP92℄ Y. Rouzaud and L. Nguyen-Phoung. Integrating modes and subtypes intoa Prolog type
he
ker. In K. R. Apt, editor, Pro
eedings of the 9th JointInternational Conferen
e and Symposium on Logi
 Programming, pages 85{97. MIT Press, 1992.[Rug99℄ S. Ruggieri. Veri�
ation and Validation of Logi
 Programs. PhD thesis, Di-partimento di Informati
a, Universit�a di Pisa, 1999.[SG95a℄ H. Sa�glam and J. P. Gallagher. Approximating
onstraint logi
 programs usingpolymorphi
 types and regular des
riptions. Te
hni
al Report CSTR-95-017,University of Bristol, 1995. Presented as a poster at the 7th Symposium onProgramming Language Implementations and Logi
 Programming.[SG95b℄ K. Stroetmann and T. Gla�. A semanti
s for types in Prolog: The typesystem of pan version 2.0. Te
hni
al report, Siemens AG, ZFE T SE 1, 81730M�un
hen, Germany, 1995.[SHC96℄ Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer-
ury, an eÆ
ient purely de
larative logi
 programming language. Journal ofLogi
 Programming, 29(1{3), 1996.[SHK98℄ J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi
 programs withblo
k de
larations running in several modes. In C. Palamidessi, editor, Pro-
eedings of the 10th Symposium on Programming Language Implementationsand Logi
 Programming, LNCS. Springer-Verlag, 1998.[SHK99a℄ J.-G. Smaus, P. M. Hill, and A. M. King. Mode analysis domains for typedlogi
 programs. In A. Bossi, editor, Pre-Pro
eedings of the 9th InternationalWorkshop on Logi
-based Program Synthesis and Transformation, pages 163{170. Universit�a C�a Fos
ari di Venezia, 1999. Extended abstra
t.[SHK99b℄ J.-G. Smaus, P. M. Hill, and A. M. King. Preventing instantiation errorsand loops for logi
 programs with multiple modes using blo
k de
larations.In P. Flener, editor, Pro
eedings of the 8th International Workshop on Logi
-based Program Synthesis and Transformation, LNCS, pages 289{307. Springer-Verlag, 1999.[SIC98℄ Intelligent Systems Laboratory, Swedish Institute of Computer S
ien
e, POBox 1263, S-164 29 Kista, Sweden. SICStus Prolog User's Manual, 1998.http://www.si
s.se/isl/si
stus/si
stus to
.html.148

[Sma99℄ J.-G. Smaus. Proving termination of input-
onsuming logi
 programs. InD. De S
hreye, editor, Pro
eedings of the 16th International Conferen
e onLogi
 Programming. MIT Press, 1999.[Som87℄ Z. Somogyi. A system of pre
ise modes for logi
 programs. In J.-L. Lassez,editor, Pro
eedings of the 4th International Conferen
e on Logi
 Programming,pages 769{787. MIT Press, 1987.[SS86℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.[Str67℄ C. Stra
hey. Fundamental
on
epts in programming languages. Notes for theInternational Summer S
hool in Computer Programming, Copenhagen, 1967.[Tho99℄ S. Thompson. Haskell: The Craft of Fun
tional Programming. Addison-Wesley, 1999. Se
ond Edition.[Ti
91℄ E. Ti
k. Parallel Logi
 Programming. MIT Press, 1991.[TL97℄ J. Tan and I. Lin. Re
ursive modes for pre
ise analysis of logi
 programs. InJ. Ma luszy�nski, editor, Pro
eedings of the 14th International Logi
 Program-ming Symposium, pages 277{290. MIT Press, 1997.[TZ86℄ J. Thom and J. Zobel. NU-Prolog Referen
e Manual, version 1.0. Departmentof Computer S
ien
e, University of Melbourne, Australia, 1986. Te
hni
alReport 86/10.[Ued86℄ K. Ueda. Guarded Horn
lauses. In E. Wada, editor, Pro
eedings of the 4thJapanese Conferen
e on Logi
 Programming, LNCS, pages 168{179. Springer-Verlag, 1986.[Ued88℄ K. Ueda. Guarded Horn Clauses, a parallel logi
 programming language withthe
on
ept of a guard. In M. Nivat and K. Fu
hi, editors, Programming ofFuture Generation Computers, pages 441{456. North Holland, Amsterdam,1988.[UM93℄ K. Ueda and M. Morita. Message-oriented parallel implementation of ModedFlat GHC. New Generation Computing, 11(3):323{341, 1993.[UM94℄ K. Ueda and M. Morita. Moded Flat GHC and its message-oriented imple-mentation te
hnique. New Generation Computing, 13(1):3{43, 1994.[VCL95℄ P. Van Hentenry
k, A. Cortesi, and B. Le Charlier. Type analysis of Prologusing type graphs. Journal of Logi
 Programming, 22(3):179{209, 1995.
149

Index-, 85<, 41B, 122, 123BP , 772, 14, 56D, 40Der, 64E�, 34I , 59O , 59R, 60�f , 28�p, 28�� , 28T (�� ; U), 28U , 28Z, 34[: : : j : : :℄, 27�, 47�, 42�, 78j:j, 77dom, 592, 59=(I ; I), 126fdep, 46h ; i, 60hL; Si, 29;, 14, 56t, 41j= s : S) t : T, 59// , 30�(o1; : : : ; on), 63p(s; t), 59�, 28ran, 59./, 30!, 21

rb, 90rf , 90A, 78w, 78[p℄�, 78/� , 29/ , 29sup, 79t : T , 59vars, 59?, 85abstra
t
ompilation, 4, 27, 46, 49abstra
t dependen
y, 46abstra
t domain, 40well-de�ned, 31abstra
t extra
tor, 44abstra
t interpretation, 15, 20, 26abstra
t term, 4, 16, 29abstra
t termination fun
tion, 44abstra
t uni�
ation, 4, 44abstra
tionof a
onstant, 42of a program, 47of a term, 42of a truth value, 42a

eptable
lause, 83a

eptable delay de
laration, 133a

eptable for input-
onsuming deriva-tions, 78a

eptable program, 78a

umulator, 7, 57ad-ho
 polymorphism, 19ad-ho
 type, 6, 18Algorithm = Logi
 + Control, 56all ground, 59alphabet, 28analysisfor groundness, 15150

annotation of type, 33answer, 57answer pattern, 14, 48, 49Any, 40any, 59any, 4Append, 27, 49abstra
tion of, 47append, 3, 57, 61, 73, 75, 79, 96blo
k de
laration, 96in test mode, 128approximationsafe, 42Apt, 59, 60, 78, 89, 112, 113, 116, 126,134, 136, 137arbitrary type, 18argument positionadditional, 135input, 57output, 57arithmeti
 built-in, 118arithmeti
 expression, 118atom, 29, 59atom-terminating, 75bounded, 72, 84, 131
riti
al, 107leftmost, 98most general, 133most re
ently introdu
ed, 135sele
table, 85sele
ted, 58, 60waiting, 100woken, 99atom-terminating, 75atomi
 position, 119auxiliary predi
ate, 87, 119AVL-tree, 28B-ground, 122B-ground�, 123B-position, 122B-position�, 123BP , 77ba
ktra
king, 26, 74, 132balan
ing, 28base, 28

Bezem, 77, 78, 133, 136bindingspe
ulative, 98, 101binding order, 100blo
k de
laration, 9, 84, 85for built-in, 87, 119overhead, 121Boolean
ag, 41Bot, 40bound, 51depth of
omputation, 135bounded atom, 72, 84, 131built-in, 18, 58, 117arithmeti
, 118implementation, 117requiring groundness, 118built-in predi
ate, see built-inbuilt-in type, 18
all safe, 22unsafe, 22
all pattern, 14, 48, 49initial, 49
ir
ular mode, 75
lause, 29a

eptable, 83
on
eptual, 117fa
t, 117input-linear, 66
lause headinput-linear, 126
lause order, 74Codish, 4{7, 16, 18, 19, 27, 49{51
on
eptual
lause, 117
on
rete semanti
s, 4
on
urrent language, 126Cons, 6, 27Consdep, 46
ons dep, 4
onsidered, 115su

essfully, 113
onstant, 28
onstant type, 59, 118
onstraint language, 126
onstru
tor151

term, 28type, 28
onsumer, 14, 62, 101
ontrol, 56, 58, 133
oroutining, 11, 61, 74
orre
tly typed, 59
orrespondingni
ely moded . . . , 65robustly typed . . . , 90simply moded . . . , 86simply typed . . . , 86well moded . . . , 68well typed . . . , 69
overing relation, 135
riti
al atom, 107D, 40Der, 64dataa
tual, 26des
ription of, 26data
ow, 56data stru
tureopen, 135re
ursive, 81De S
hreye, 72, 74, 78, 105, 131, 135deadlo
k, see
ounderingde
larationas
omment, 53delay, 72infer, 53de
larative view, 14de
lared type, 18de
laring modes, 52De
orte, 72, 74, 78, 105, 131, 135de
reaserelative, 73, 83, 138degree of instantiation, 3delay, 84delay
ondition, 52delay de
laration, 58, 72a

eptable, 133overhead, 121purpose, 58, 84safe, 133delay-respe
ting derivation, 85

in�nite, 102DELAY : : : UNTIL GROUND : : :, 82DELAY : : : UNTIL NONVAR : : :, 82delete, 56, 66, 73, 80, 85, 95Demoen, 4{7, 18, 49, 50dependen
yabstra
t, 46depends on, 78depth, 33of
omputation, 135depth bound, 51derivation, 60arbitrary, 72delay-respe
ting, 85failing, 102, 136
oundering, 85in�nite, 57, 73input-
onsuming, 8, 58, 60, 137LD, 60, 72left-based, 63, 100, 138su

essful, 136derivation step, 60a
tual, 115attempted, 115derived permutation, 63des
endant, 60dire
t, 60des
riptive mode, 15des
riptive type, 20determina
y, 26deterministi
 program, 134dire
t des
endant, 60dire
t o

urren
e, 59dire
tional type, 21disjointleft-right, 113divergen
e, 116dom, 59domainabstra
t, 40ground/non-ground, 49hand-
rafted, 50of a substitution, 29, 59typed, 49double mat
hing, 11, 113152

9-universal termination, 136E�, 34equation, 29, 35, 44, 46, 113, 115errorinstantiation, 117type, 117typographi
al, 26Etalle, 8, 59, 74, 77, 78, 83, 89, 112{114,116, 120, 134, 136, 139exe
utionparallel, 7, 57, 83exe
ution order, 61, 138exe
ution point, 3exhaustive tests, 105existential termination, 74expressionarithmeti
, 118generi
, 113meaningful, 26extra
tor, 34abstra
t, 44fdep, 46fail, 102failing derivation, 136fair sele
tion rule, 136Family, 7feed, 75FGHC, 83, 126, 132Moded, 132�ll a position, 59�rst order logi
, 56�xed mode, 74
at term, 59Flatten, 49
attening lists, 27
oundering, 11, 85, 102, 116, 134freedom from, 116vs. termination, 116forward mode, 21free term, 42free-bound-labelling, 89full uni�
ation, 112fun
tion, 28fun
tional language, 30generalised mode, 129

generate, 62generate
ontrol, 133generi
 expression, 113GHC, 83, 132glb, 41goal, 15goal-dependent, 15goal-independent, 15G�odel, 26, 27, 70meta-programming, 49system modules, 49granularity, 16greatest lower bound, 41ground, 26ground, 4ground type, 59ground/non-ground domain, 49groundness, 42groundness analysis, 15guard, 83, 126, 132Guarded Horn Clauses, 132Haskell, 30Hill, 80I , 59ICD-a

eptable, 78idempotent substitution, 59iff, 4iff and, 4in
orre
t type, 51index set, 31in�nite derivation, 57, 73initial node, 30input, 14, 59from
lause head, 121insuÆ
ient, 98, 106input position, 57input sele
tability, 95, 95, 122of built-ins, 110input-
onsuming, 8, 58, 60, 137input-linear, 126atom, 59
lause, 66program, 66instantiationdegree of, 26153

suÆ
ient, 58instantiation error, 117instantiation state, 17, 52insuÆ
ient input, 106Int, 27Integer, 6, 27IntegerList, 6interleave, 61, 74il, 59int, 59is, 117ISO standard, 117iterated mat
hing, 113key, 28King, 72, 82, 135Kowalski, 56, 136Lagoon, 6, 7, 51language
on
urrent, 126
onstraint, 126moded, 16polymorphi
 . . . , 29typed, 20latti
e, 41LD-derivation, 60, 72, 136in�nite, 102LD-resolvent, 60least upper bound, 41left-based derivation, 63, 100, 138left-right disjoint, 113leftmost atom, 98length, 119level mapping, 83moded, 136moded typed, 77linear, 59input, 59List, 6list, 27
attening, 27nil-terminated, 27open, 27rigid, 134list, 59Lists, 27

Lloyd, 60, 80, 137lo
al sele
tion rule, 73, 135logi
, 56lub, 41lub, 4L�uttringhaus-Kappel, 72, 99, 116, 133Luitjes, 59, 99, 115, 116, 118, 134Mar
hiori, 72, 135Martelli-Montanari, 115Martin, 72, 82, 135mat
h, 113mat
hing, 11double, 113iterated, 113Mer
ury, 26, 52, 68, 70meta-programming, 49MGU, 58, 60ML, 30mode, 14, 26, 59as veri�
ation tool, 15
ir
ular, 75de
lare, 52des
riptive, 15�nding a, 66�xed, 74forward, 21generalised, 129in Mer
ury, 52multiple, 7, 57, 62of a program, 59pres
riptive, 16re
ursive, 51single, 74wrong, 110mode analysis, 15mode de
laration, 16Moded FGHC, 132moded language, 16moded level mapping, 136moded typed level mapping, 77monomorphi
 type, 19most general uni�er, see MGUmost spe
i�
 program, 85multiple modes, 7, 57, 62Naish, 21, 72, 99, 100, 131{133, 137154

Nests, 27ni
ely moded, 16, 61, 65Nil, 6, 27nil-terminated, 26, 27noFD, 102non-destru
tive program, 136non-ground, 26non-ground type, 18non-linear pla
e, 127non-re
ursive subterm type, 6, 50non-spe
ulative, 102non-variable term, 10, 84non-variable type, 59normal form, 3, 29Nqueens, 50nqueens, 80, 105NU-Prolog, 133, 134num, 59, 118nl, 59O , 59o

ur-
he
k, 11o

ur-
he
k free, 115o

urren
edire
t, 59one-atom query, 74Open, 40open, 27open data stru
ture, 135open term, 34operational semanti
s, 27orderexe
ution, 61, 138of binding, 100of
lauses, 74on abstra
t terms, 41produ
er-
onsumer, 61, 74, 138textual, 61, 74, 138ordered, 63output, 14, 57, 59overloading, 19parallel exe
ution, 7, 57, 83parameter, 28parametri
 polymorphism, 19pattern, 48, 49Pat(Type), 51

Pellegrini, 134permutation, 62, 63derived, 63identity, 74permutation ni
ely moded, 65permutation robustly typed, 90permutation simply moded, 86permutation simply typed, 86permutation well moded, 68permutation well typed, 69permute, 56, 57, 66, 73, 80persisten
epermutation ni
ely moded, 66, 67permutation robustly typed, 91permutation simply typed, 88permutation well moded, 68permutation well typed, 69well fed, 107Person, 7pin down the size, 72, 83, 131, 138pla
e, 127pla
ing re
ursive
alls last, 101, 105, 133p(s; t), 59polymorphi
 type, 28polymorphi
 re
ursion, 52polymorphi
 type relationship, 33polymorphism, 19ad-ho
, 19Pos, 49positionatomi
, 119�ll a, 59input, 57, 59output, 57, 59predi
ate, 28atom-terminating, 75auxiliary, 87, 119built-in, 18, see built-inuser-de�ned, 121pres
riptive mode, 16pro
edural view, 14produ
er, 9, 14, 62, 101produ
er-
onsumer order, 61, 74, 138produ
er-
onsumer relation, 61program, 85deterministi
, 134155

in normal form, 29input-linear, 66most spe
i�
, 85non-destru
tive, 136polymorphi
 . . . , 29proje
tion, 44query, 29, 59one-atom, 74Qui
ksort, 50qui
ksort, 87R-derivation, 60van Raamsdonk, 8, 136ran, 59rangeof a substitution, 59type, 28re
urrent program, 78re
ursionpolymorphi
, 52re
ursive data stru
ture, 81re
ursive mode, 51re
ursive type, 6, 50redu
es to, 47Re
exive Condition, 29, 52regular approximation, 18regular type, 18relationprodu
er-
onsumer, 61relative de
rease, 73, 83, 138resolvent, 60respe
ts atomi
 positions, 119Reverse, 49rigidness, 73, 134robustly typed, 90rose tree, 51Ruggieri, 136safe approximation, 42safe
all, 22safe delay de
laration, 133SCC, 30sele
table atom, 85sele
ted atom, 58, 60sele
tion rule, 60default, 73

fair, 136LD, 56left-based, 98leftmost sele
table, 99lo
al, 73, 135Prolog, 73standard, 56semanti
s
on
rete, 4operational, 27set of equations, 113, 115
onsidered, 115partition, 114su

essfully
onsidered, 113SICStus, 18, 84, 121Simple Range Condition, 29, 52simple type, 29simply moded, 61, 86simply typed, 86single mode, 74size of a query, 79of a term, 79pin down, 72, 83, 131, 138SLD-tree, 135�nite, 133solvable by double mat
hing, 113Somogyi, 52spe
ulative binding, 98, 101make, 101, 102use, 101step, 60derivation, 60strong termination, 72, 133strongly
onne
ted
omponent, see SCCsubquery, 60substitutionidempotent, 59term, 29type, 29subterm, 33immediate, 35re
ursive, 33sub\term", 29, 51proper, 28subterm type, 6156

su

, 102su

ess set, 21su

essful, 15, 61su

essful derivation, 136su

essfully
onsidered, 113suÆ
ient instantiation, 58sup, 79supers
ript, 33TSize, 79tableground, 49Tables, 28, 49Ter, 40term, 28, 29abstra
t, 4, 16, 29
ompound, 81depth of, 33
at, 59free, 42non-variable, 10, 84open, 34terminated, 34tree of, 33type-
onsistent, 90term size, 79TermiLog, 99, 135terminated term, 34termination9-universal, 136existential, 74of term, 26, 34strong, 72, 133universal, 74, 133vs.
oundering, 116termination fun
tion, 34abstra
t, 44test, 62, 105test mode, 66, 128test-and-generate, 7, 10, 57, 62, 110Teusink, 72, 135textual order, 61, 74, 138Thompson, 30transparen
y
ondition, 28, 52tree AVL, 28

of term, 33rose, 51tree, 59TreeToList, 49type, 21, 28, 59ad-ho
, 6, 18annotation, 33arbitrary, 18, 50built-in, 18
onstant, 59de
lared, 18des
riptive, 20dire
tional, 21ground, 59in
orre
t, 51monomorphi
, 19non-ground, 18non-re
ursive subterm, 6, 30, 50non-variable, 59of a program, 59re
ursive, 6, 30, 50regular, 18simple, 29subterm, 6, 29variable, 59type analysis, 20type
onstru
tor, 19type de
laration
ontrived, 49type error, 18, 21, 117type graph, 18, 30, 33type variable, 28type-
onsistent, 59, 71, 90, 109, 117wrt. input-
onsuming derivations, 71wrt. LD-derivations, 71typed domain, 49typed language, 20, 70U , 28Ueda, 8, 83, 132unde
idability, 15uni�
ation, 115abstra
t, 4, 44full, 112spe
ialisation, 26uni�
ation free, 11, 15, 61, 112, 113157

9-universal termination, 136universal termination, 74unsafe
all, 22user-de�ned predi
ate, 121value, 28van Raamsdonk, 8, 136variable type, 59vars, 59waiting atom, 100well fed, 107well moded, 16, 61, 68well pla
ed, 124well typed, 61, 69well-a

eptable program, 78when, 127when de
larations, 133widening, 50, 51woken atom, 99wrong mode, 110Z, 34

158

