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Abstract

In this thesis, we provide a unified treatment of the topic of parameter estimation

using integral transforms, such as the characteristic function and moment gener-

ating function. This topic encompasses a wealth of methods, which typically vary

from each other in relation to the type of weight function and choice of integral

transform that is being employed.

We show that the integrated squared error method dominates alternative trans-

form methods, particularly in terms of robustness. We present a convenient and

flexible approach to dealing with the difficulty here surrounding the necessary

weight function, and illustrate the success of this approach on the mixture of two

normal distributions. Furthermore, we show that the integrated squared error

method also outperforms the maximum likelihood method for this distribution,

particularly with samples with outliers or a small number of observations.

ii



Acknowledgements

I am indebted to Professor Byron J. T. Morgan and Dr. Qiwei Yao for their skillful

supervision, and the Institute of Mathematics and Statistics for its co-operative

climate and facilities.

I am grateful to the EPSRC for their financial support and to my family to

whom lowe a great deal and more.

I would also like to thank Alastair Duncombe for helpful discussions concerning

the presentation of this thesis.

iii



Contents

Abstract ii

Acknowledgements iii

1 Estimation based on transforms

1.1 The problem ........... .....

1.2 Motivation for transform-based inference

1.3 The empirical transform ..

1.4 Minimum distance methods

1.5 The empirical characteristic function

1.5.1 Graphical investigation .

1.5.2 Theoretical investigation

1.6 The integrated squared error method

1.11 The family of stable laws . . . . . .

1

1

2

4

5

7

7

9

11

12
13

16
19
20

20

21
22

24

25

1.6.1 Regularity conditions .....

1.6.2 Properties of the integrated squared error estimator

1.7 Application to the normal distribution

1.8 Selecting a value for A .. . . .

1.8.1 The automatic approach

1.8.2 The precision approach .

1.8.3 The robustness approach

1.9 A note on standardising the data

1.10 Location and scale invariance of iJ .

iv



1.12 The Cauchy distribution .

1.13 Estimation in the Cauchy distribution

1.13.1 Maximum likelihood inference .

1.13.2 Integrated squared error inference

27

28

29

29

1.14 Integrated distance estimation based on moment generating functions 37

2 Density representation

2.1 Scope of this chapter .

2.2 Density representation of the ISE function

2.3 Kernel density estimation .

2.4 Properties of the integrated squared error estimator

2.5 The mean integrated squared error criterion

2.6 The asymptotic MISE approximation

2.7 Optimum M I SE weight function

2.8 Theoretical difficulties .. . . . .

2.9 Application to the negative exponential distribution

2.10 Optimum weight function theory

2.10.1 Practical issues

2.10.2 The basic idea.

2.10.3 A further indication

2.11 Choice of value for the parameter >.
2.11.1 Theoretical selection of >. .
2.11.2 Practical selection of >. . .

2.12 Application to the negative exponential mixture

2.13 Conclusions .

40

40

41

43

45

48
49

50

52

53

56

56

58

61

63

63

64
68
73

3 Mixtures of normal distributions

3.1 Introduction.........

3.2 Finite mixture distributions

3.3 Mathematical aspects of mixtures

3.3.1 Identifiability . . . . . . .

14

74

75
76

77

v



3.3.2 Information .

3.4 Mixtures of two normal distributions

3.5 Estimation in the mixture of two normal distributions.

3.5.1 The method of moments

3.5.2 Graphical methods . . .

3.5.3 The method of maximum likelihood.

77

78

80

81

83

83

3.5.4 The Bayesian approach . . . . . . . . 86

3.6 Robust estimation in the mixture of two normal distributions. 87

3.6.1 Minimum distance estimation based on distribution functions 87

3.6.2 Minimum distance estimation based on integral transforms 88

3.7 The method of integrated squared error. . . . 90
3.7.1

3.7.2

3.7.3

3.7.4

3.7.5

The integrated squared error estimator

The robustness properties of the estimator

The asymptotic properties of the estimator .

Appropriate values for A .

The density representation of the ISE function .

90
94
100

102

102

104

106

109
110
112
114

3.8

3.7.6 Links with density estimation ..

3.7.7 The MISE and AMISE criteria

3.7.8 The smoothed cross-validation selector

Estimation in the mixture of k normal distributions

3.8.1 The method of integrated squared error.

3.9 Concluding remarks .

4 Sampling experiments

4.1 Introduction ...

4.2 Comparison tools

4.3 Asymptotic theory

4.4 Simulation details .

4.5 Random variate generation.

4.6 Starting values .

115

115

116
117

119
121

122

vi



4.7 Optimisation using simulated annealing .

4.8 Hybrid algorithm . . .

4.9 Computational details

123

125

127

4.10 Comparison of two selectors for A 128

4.11 Simulation results. . . . . . . . . 131

4.11.1 Experiment 1 (p = 0.5,IL1 = -2,0"1 = 1,IL2 = 2,0"2 = 1) 131

4.11. 2 Experiment 2 (p = 0.5, ILl = -1,0"1 = V3, IL2 = 1,0"2 = 1) 135

4.11.3 Experiment 3 (p = 0.5, ILl = 0,0"1 = V3, IL2 = 3,0"2 = 1) 140

4.11.4 Experiments 4-7 and evaluation. . . . . . . . . . . . . 143

4.12 Simulation results when the true parameter values were used to

start the recursions . . . . . . . . . 152

5 Least-squares transform estimation 155

5.1 Introduction . . . . . . . . . . . . . 155

5.2 Motivation for step weight functions. 156

5.3 The moment generating function estimator . 158

5.3.1 Regularity conditions . . . . . . . . . 160

5.3.2 Properties of the moment generating function estimator . 160

5.3.3 Selecting a value for t ..... 162

5.4 Application to the normal distribution 163

5.5 Limiting forms of the moment generating function estimator 169

5.6 Insights into the moment generating function method 171

5.7 The preferred moment generating function method 172

5.7.1 Properties of the preferred moment generating function es-

timator .................... 174

5.8 The modified moment generating function method . 177

5.8.1 Properties of the modified moment generating function es-

timator 178

5.9 The q-L method . 181

5.9.1 Regularity conditions. 183

vii



5.9.2 Properties of the q-L estimator

5.10 Estimation in the Cauchy distribution

5.10.1 Estimation using a single point

5.10.2 Estimation using q > 1 points

184

186

186

192

1975.11 Concluding remarks .....

6 Conclusions and future work

6.1 Conclusions

6.2 Future work

6.2.1 Application to kernel density estimation

6.2.2 Multivariate random variables

6.2.3 Indexed random variables ..

199

199

200

200

201

205

References 213

viii



Chapter 1

Estimation based on transforms

1.1 The problem

One of the oldest problems in statistical literature is that of making inferences

about a parent population on the basis of information provided by a random

sample. The conclusion drawn depends not only on the data, i.e., on what is

being observed, but also on background knowledge of the situation. The latter is

formalised in the assumptions under which the analysis is undertaken. We shall

distinguish between two principal lines of approach:

1. the non-parametric approach;

2. the parametric approach.

In the non-parametric approach, the observations are analysed on their own terms,

essentially without extraneous assumptions. The principal aim of the analysis is

to describe the data in ways that reveal its underlying structure.

In the parametric approach, however, the observations are presumed to be the

values taken on by random variables which follow a distribution function, F{x),

belonging to some known family F. Frequently, the distribution is indexed by

parameters, 8, taking values in a space, e, so that

F = {F{x;8): 8 E e}. (1.1)

1
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The objective of the analysis is then to specify a plausible value for 8 (point

estimation), or at least to determine a subspace of El of which we can assert that

it does, or does not, contain 8 (hypothesis testing).

Although both approaches are equally useful, the parametric approach is more

often considered. The aim in writing this chapter is to introduce a parametric

method of model-fitting that is based on integral transforms of the distribution

function. The work herein focuses on the case of independent and identically

distributed (i.i.d.) random variables. The chapter begins with the motivation for

transform-based inference, with the necessary theoretical background being cov-

ered in Sections 1.3-1.5. The integrated squared error method is then introduced,

and subsequently applied to the estimation of the parameters of the normal dis-

tribution. With the integrated squared error method there is an accompanying

parameter, which is open to choice. Section 1.8 provides several approaches to se-

lecting this parameter, with two arising practical issues considered in the following

two sections. We introduce the family of stable laws in Section 1.11, before we pay

particular attention on a member of this family, namely the Cauchy distribution.

Finally, we consider the real-variable formulation of the integrated squared error

method.

1.2 Motivation-for transform-based inference

The estimation problem described in the previous section imposes a family of

distribution functions, F, and requires determination of an element, F(x; 8) in F,

which is in some sense optimal. To make this requirement precise, it is necessary

to specify a definition of optimality.

There is typically no unique definition of optimality (see, for example, Lehmann,

1983, p. 2). An intuitively appealing concept is that of uniformly minimum vari-

ance unbiased (UMVU) estimation, but this tends to be very restrictive in practice.

A theory of much wider applicability is obtained by adopting a large-sample ap-

proach. The resulting definition is referred to as asymptotic optimality and, in
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view of its relation with maximum likelihood, determination of F(x; 8) by this

method is preferred in theory as well as in practice.

There are, however, some difficulties with this traditional approach to paramet-

ric estimation. First, the optimality of the maximum likelihood method depends

rather heavily on the precise nature of the assumed distribution family F. Since

the imposition of F often rests on rather weak assumptions, it becomes important

to consider the performance of the maximum likelihood method under departures

from the conjectured model (robustness). In general, the lack of robustness of the

maximum likelihood method is easily demonstrated.

Secondly, there exist several probability distributions which are only conve-

niently represented by integral transforms, such as the characteristic function or

moment generating function. The absence of closed form expressions for the rele-

vant densities complicates the implementation of the maximum likelihood method.

A representative example is the stable laws, the class of limit distributions of sums

of independent identically distributed random variables, which are often used to

model such noisy processes as common-stock returns.

Thirdly, there is a variety of probability distributions in which integral trans-

forms of the distribution function are of simpler form than the distribution func-

tion itself. These distributions often arise as convolutions of independent random

variables, and are inconvenient to fit by maximum likelihood. A typical example

is the lagged-normal distribution, the convolution of normal and gamma random

variables, which is often used to model dilution curves.

One way of overcoming all of these difficulties is to use a method based on

integral transforms. This is the approach we have adopted. The resulting method

can be employed for parameter estimation in any distribution family. However, it

may be argued that using transforms for parameter estimation does not generally

result in a simple method.
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1.3 The empirical transform

Let Xl, X2, ..• , Xn be a set of independent, identically distributed random vari-

ables with distribution function

F(x; (J) = Pr(Xl ::;x),

and suppose that (J E e is a p x 1vector of unknown parameters. The empirical

distri bu tion function of Xl, X 2, ... , X n is defined by

n

Fn(x) = n-1L Ix(Xi),
i=l

where Ix(X) is the function

Ix(X) ~ {~
if X ::; x,

otherwise.

Many standard methods of statistical inference rely on the empirical distribution

function, and the integral transform method is no exception.

The method is based on a possibly complex-valued function g(t, x) such that

G(t; 9) = I:g(t, x) dF(x; 9) (1.2)

exists and is finite for all 9 E e and t E T ~ lR. An empirical version of this

transform may be defined as

It turns out that the transform functions g(t, x) that are potentially of interest

are numerous. Feueruerqer and McDunnough (1984) indicate that the following

choices are typical:
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1. Take g(t, x) = exp(tx). Then G(t; 6) and Gn(t) coincide with the moment

generating function (mgf) M(t; 6) = f exp(tx) dF(x; 6), when it exists, and

the empirical mgf Mn(t) = n-1 2::7=1 exp(tXj) respectively.

2. Take g(t, x) = exp(itx). Now G(t; 6) and Gn(t) coincide with the char-

acteristic function (cf) ¢(t; 6) = f exp(itx) dF(x; 6) and the empirical cf

¢n(t) = n-1 2::7=1 exp(itXj) respectively.

Focusing on the empirical transform Gn(t), it follows from the Strong Law of

Large Numbers that, for any fixed t E T,

almost surely as n ~ 00. Furthermore, by the Central Limit Theorem, the

stochastic process {n1/2[Gn(t) - G(t; 6)] : t E T} will, asymptotically, converge to

a Gaussian process. These properties suggest a variety of inferential procedures

for study.

1.4 Minimum distance methods

Minimum distance estimation was first subjected to comprehensive study in a

series of papers culminating in WolJowitz (1957), and has since been considered

as a method for deriving robust estimators. The basic philosophy of minimum

distance estimation is to match the empirical distribution function Fn(x) to an

element, F(x; 8), of the family {F(x; 6) : 6 E 8} as closely as possible.

This methodology suggests a broadening of the class of estimators. Ifwe define

the random functions

A[Gn( .), G(. ;6)], (1.3)

which are distance functions measuring the discrepancy between the transforms

Gn(t) and G(t; 6) then, for a suitably chosen distance function A, a minimum
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distance estimator, 8, for (J is a value of (J which satisfies

~[Gn( . ), G(. ;8)] = inf ~[Gn(.), G(.; (J)].
8Ee

(1.4)

It is clear at the outset that some distance functions will produce estimates

with better properties than others. In particular, a distance function measuring

a "supremum-type" discrepancy, such as the Kolmogorov discrepancy

~[Gn(.), G(.; (J)] = sup IGn(t) - G(t; (J)I,
tET

would be an unwise choice, for then the corresponding asymptotic theory is typi-

cally not normal (see, for example, Parr and Schucany, 1982). A more propitious

choice for ~ would measure an "integral-type" discrepancy. The function leading

to the greatest degree of mathematical tractability is

~[Gn(.), G(.; (J)] = iIGn(t) - G(t; (J)12 dW(t), (1.5)

which we shall use throughout this work.

The function W(t) is referred to as the weight function and is open to choice.

The weight functions that have been adopted in the literature can be divided into

two basic types:

1. monotonic non-decreasing step functions;

2. monotonic non-decreasing continuous functions.

The use of the former type of weight function appears to have been initiated by

Press {1972}, while the latter was introduced by Paulson, Holcomb and Leitch

{1975}.

The performances of the resulting estimators in terms of (i) efficiency, (ii)

robustness, and (iii) computational feasibility will be examined in this thesis. We

shall start with a method which is known as the integrated squared error method.

This is a particularly important member of the general class of integrated distance
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methods, so we shall pay special attention to it. In this method, the weight

function is a continuous function and the choice of transform is the characteristic

function. First then, we shall review some properties of the empirical characteristic

function.

1.5 The empirical characteristic function

Let Xl, X2, •.• , Xn be a set of independent, identically distributed random vari-

ables with distribution function F(x; 8), and suppose that

<p(t; 8) =I:eitx dF(x; 8) = U(t; 8) + i V(t; 8) (1.6)

is the characteristic function corresponding to F(x; 8). As noted in Section 1.3, the

characteristic function can be estimated by the empirical characteristic function

n

<Pn(t) = n-1 LeitXj = Un(t) + i Vn(t).
j=1

(1.7)

The empirical characteristic function seems to appear for the first time in

Cramer (1946, p. 342) where it plays only an auxiliary role. It appears for the

second time in Parzen {1962} in the context of non-parametric density estima-

tion. In its own right, the empirical characteristic function entered into statistical

literature in Press {1972}. He realised that the estimation of the parameters of

stable distributions can be based on <Pn(t). Since then, the empirical characteris-

tic function has been applied to a very wide range of problems, as cited by Epps

(1993).

1.5.1 Graphical investigation

A plot of the empirical characteristic function, as a function of t, can be helpful for

indicating how adequately one might expect it to estimate the theoretical char-

acteristic function. For example, if Xl, X2, ..• , Xn are independent, identically
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distributed random variables with characteristic function

(1.8)

where 8 = (191,192,(93)T belongs to the parameter space

then it may be useful to replace the left hand side of (1.8) by cPn(t) and examine

the resulting plots.

Figure 1.1 shows four realisations of Un(t) based on simulated samples from

a population whose characteristic function is given by (1.8) with 191= 5, 192= 2,

together with

1. 193= 1 and n = 20;

2. 193= 1 and n = 50;

3. 193= 2 and n = 20;

4. 193= 2 and n = 50.

The values 193= 1 and 193= 2, which give rise to the Cauchy and normal distri-

butions, respectively, were chosen to make the necessary simulation procedures

as simple as possible. Nevertheless, the results should hold for all 8. To attach

insight to these graphs, the corresponding U{t; 8) is also included.

As anticipated, there is a good overall agreement between Un{t) and U(t; 8).

It is clear that increasing n increases the agreement between the two transforms,

and this is as expected. On the other hand, less expectedly, Un{t) is more accurate

for small than for moderate t. Another important question which is raised but

cannot be answered from the figure, is how the variability present in Un{t) varies

with 8.

A similar pattern emerged for Vn(t) so we have omitted the corresponding

plots. It appears, therefore, that the empirical characteristic function may have
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Figure 1.1: The real part of the characteristic function (1.8) (solid line) overlaid
with the real part of the empirical characteristic function (dotted line) in four
different contexts. The contexts are (reading from left-right, top-bottom): (1)
{)3 = 1,n = 20; (2) (h = 1,n = 50; (3) {)3 = 2,n = 20; and (4) {)3 = 2,n = 50. In
each case, ()1 = 5 and f)2 = 2.

good properties as an estimator of the characteristic function (1.8), and is likely

to retain these properties in different settings. We investigate this issue in detail

in the next section.

1.5.2 Theoretical investigation

The asymptotic properties of the empirical characteristic function have been thor-

oughly investigated by Feueruerqer and Mureika {1977} and Csorgo {1981}.

For any fixed t, ¢n(t) is an average of bounded independent identically dis-

tributed random variables having mean ¢(t; 9). It follows from the Strong Law

of Large Numbers that ¢n(t) converges almost surely to ¢(t; 9). Furthermore, we
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have:

Theorem 1.1 (Feuerverger and Mureika, 1977). For fixed T < 00,

Pr (lim sup l4>n(t) - 4>(t;6)1 = 0) = 1.
n-too Itl~T

Theorem 1.1 proves the uniform almost sure convergence of 4>n(t) to 4>(t;6)

on It I ::; T. This uniform convergence cannot in general take place on the whole

real line since ¢n(t) is almost periodic and must approach its supremum value,

¢n(O) = 1, arbitrarily often. On the other hand, when F(x; 6) is absolutely

continuous, ¢(t; 6) ~ 0 as It I ~ 00 (see Lukacs, 1970, p. 19).

A second important result concerns the properties of the real-valued time pro-

cesses Un(t) and Vn(t). Feueruerqer and Mureika (1977) showed that

[EUn(t) , E Vn(t)] = [U(t; 6), V(t; 6)], (1.9)

while

2n COV[Un(tl), Un (t2)] = U(tl + t2; 8) + U(tl - t2; 8) - 2U(tl; 8)U(t2; 8)

2n Cov[Un(td, Vn(t2)] = V(tl + t2; 8) - V(tl - t2; 8) - 2U(tl; 8)V(t2; 8) (1.10)

2n Cov[Vn(td, Vn(t2)] = Uti; - t2; 8) - U(tl + t2; 8) - 2V(h; 8)V(t2; 8).

The behaviour of Un (t) and Vn (t) has been investigated by K outrouvelis (1980).

He showed, from equations (1.9)-(1.10), that as It I ~ 00

while as It I ~ 0

[E Un{t) , E Vn(t)] ~ (1, 0) and [Var Un(t), Var Vn(t)] ~ (O, 0).

These relations indicate that the tails of Un(t) and Vn(t) are completely "noise"
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around zero means, while [Un(t), Vn(t)] estimates [U(t; 8), V(t; 8)] with increas-

ing accuracy as t -t O.

The convergence properties of the processes Un(t) and Vn(t) have been studied

through the empirical characteristic process

(1.11)

Feuerverger and Mureika {1977} showed that

1. E[Yn(t; 9)] = 0,

and proved that Yn(t) converges (both weakly and in distribution) to a complex-

valued Gaussian process having zero mean and the same covariance structure as

Yn(t). The weak convergence of Yn(t) is also treated by Csorgo {1981}.

The results of this section demonstrate that the empirical characteristic func-

tion has good properties as an estimator of the theoretical characteristic function,

and the remainder of this chapter is concerned with how we might exploit these.

1.6 The integrated squared error method

Let W(t) be a monotonically non-decreasing continuous function, and consider

the estimator iJ which minimises

Ll[<Pn{. ), <p{.; 9)] = I: l<Pn{t) - <p{t; 9) 12dW{t) (1.12)

with respect to 8. It appears that Press {1972} was the first to propose this

estimator to estimate the parameters in a stable distribution. It was first studied,

again, as applied to stable distributions, by Paulson, Holcomb and Leitch {1975},

with the specific weight function W(t) = r; e-y2 dy.

In general, the weight function will be open to choice. The simplest choice

is, of course, W(t) = t, but this may only be used if F(x; 8) is discrete. In fact,



CHAPTER 1. ESTIMATION BASED ON TRANSFORMS 12

the role of the weight function can be related to the geometrical behaviour of the

empirical characteristic function. We have seen that the characteristic function

of an absolutely continuous distribution approaches zero as It I --t 00, whereas the

empirical characteristic function is periodic. One purpose of W(t) is, therefore, to

assure convergence of the integral in (1.12). Another is to give the discrepancies

I¢>n(t) - ¢>(t; 8) 12 high influence at values of t where ¢>n(t) has high precision.

Regardless of purpose, we shall make the weight function depend on a parameter.

There are definite advantages to such a course of action, which will be discussed

in a later section. For our purposes then, 6 will be defined as follows:

Definition 1.1. The integrated squared error (ISE) estimator, 6, for 8 is the

value of 8 which minimises

/(8; A) = I: I¢>n(t) - ¢>(t;8)12 dW(t; A), (1.13)

where W(t; A) is a suitably selected weight function depending on a positive pa-

rameter A.

The asymptotic properties of this estimator were investigated by Thornton

and Paulson {1977}. The same was done independently, and under much less

restrictive conditions by Heathcote {1977}. He called 6 the integrated squared

error estimator, and in the present note we shall rely upon Heathcote's regularity

conditions for the consistency and asymptotic normality of 6.

1.6.1 Regularity conditions

Consider the family of characteristic functions

:F = {¢>(t; 8) : 8 E e ~]RP}, p ~ 1,

where ¢>(t; 8) = U(t; 8) + iV(t; 8). The following conditions constitute what

Heathcote {1977} calls the regular case.
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1. For i = 1,2, ... ,p, (8j80i)U(t; 6) and (8j80i)V(t; 8) exist for all t E R,

and are uniformly bounded by functions that are integrable with respect to

W(t; -\).

2. For i,j = 1,2, ... .p, (82j80i80j)U(t;6) and (82j80i80j)V(t;8) exist for all

t E R, and are uniformly bounded by functions that are integrable with

respect to W(t; x),

3. For i,j = 1,2, ... ,p, U(t; 8), V(t; 6), (8j80i)U(t; 6), (8j80i)V(t; 6),

(82 j80i80j)U(t; 8), and (82 j80i80j)V(t; 8) are all jointly continuous in t E R

and 6 E 80, where 80 is the closure of some neighbourhood of the true

parameter value.

It should be pointed out that these conditions are not very stringent on ¢(t; 6).

Furthermore, the first two can be regarded as (mild) restrictions on the choice of

the weight function W (t; -\).

1.6.2 Properties of the integrated squared error estimator

Let 60 E 8 be the true parameter value we seek to estimate. We have:

Theorem 1.2 (Heathcote, 1977). Under the three above regularity conditions,

the integrated squared error estimator, e. for 80 E 8~]RP is strongly consistent

and

where

(1.14)

In this expression, K(6) is the p x p symmetric matrix whose (i,j)th element is

..(6) = 100 [8U(t; 6) 8U(t; 6) 8V(t; 6) 8V(t; 6) 1 dW(t. -\)
Kz} 80. 80· + 8()' 8()· "

-00 I } I }
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and 0(9) is the p x p covariance matrix of the random variables

r 100,. aU(t; 9)
Ti(X1; 9) = -00{[cos(tXd - U(t; 9)] aOi

. aV(t; 9)+ [sm(tXd - V(t; 9)] aO
i

} dW(t; A), i = 1,2, ... ,p.

In Theorem 1.2, ~ denotes convergence in distribution and N(O, E) is the

p-variate normal distribution with mean vector zero and covariance matrix E.

While the precision of an estimator is a very important aspect to consider,

it is not the only one. We may also consider how contamination influences a

given estimator. For example, how is the effect on the estimator related to the

magnitude of the contaminants? What is the worst possible effect that a single

contaminant can have? Is this effect bounded or not? Aspects such as these

require a powerful array of tools based on the influence function. The approach

is due to Hampel (1971); see also Hampel (1974).

The viewpoint of the influence function is very easily described. Given a

random sample Xl, X2, ... ,Xn from a distribution F(x; 9), we seek to measure

the effect of adding an observation ~ to the sample on the given estimator for 9.

In the context of integrated squared error estimation, the influence function was

first subjected to study by Paulson and Nicklin (1983) and Bryant and Paulson

(1983). More recently, Campbell (1993) contributed the following theorem:

Theorem 1.3 (Campbell, 1993). Under regularity conditions (1), (2) and (3),

the integrated squared error estimator, 6, for 90 E e ~RP has joint influence

function

(1.15)

where K(9) is the p x p symmetric matrix whose (i,j)th element is

..(6) = 100 [aU(t; 6) aU(t; 6) aV(t; 6) aV(t; 6)] dW(t· A)
K,'J !:lO. ao . + ao· ao . "-00 u, J I J
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and 7"(~; lJ) is the p x 1 vector whose ith element is

100 aU(t; 6) aV(t; 6)
Ti(~; 6) = -00 {I F[~; Un(t)] a()i + IF[~; Vn(t)] a()i } dW(t; ,x),

where

I F[~; Un(t)] = cos(t~) - U(t; lJ)

I F[~; Vn(t)] = sin(t€) - V(t; lJ).

The influence function is, of course, only one measure of robustness. However,

we need only emphasise the influence function here because other measures of

robustness such as gross-error sensitivity, local-shift sensitivity, rejection point,

and breakdown point (see, for example, Barnett and Lewis, 1994, p. 72) can be

obtained once influence functions have been provided. In addition, an important

property of the influence function (see, for example, Huber, 1981, p. 14) is that

if we regard the argument ~ as a random quantity distributed according to the

underlying model, then its expectation with respect to ~,

J I F(~; 0) dF(~; lJ),

is zero, while its mean squared error,

J I F(~; 0) I F(~; 0) T dF(~; 6), (1.16)

is equal to the asymptotic variance of O. Thus we have a direct connection between

Theorems 1.2 and 1.3.

Since the statistical properties of the integrated squared error estimator depend

on the weight function W(t; ,x), it is in principle possible to define an optimal

W(t; ,x). However, the complicated dependence of either efficiency or robustness

on W(t;,X) suggests that the optimal W(t; ,x), in either sense, will be difficult

to obtain. Consequently, present practice regarding the choice of W(t;,X) is a

combination of common-sense and convenience. As we shall see in Chapter 2, a
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frequency-domain analysis of (1.13) can yield a great amount of insight into the

choice of the weight function. Meantime, we shall illustrate how the integrated

squared error method may be used in practice.

1.7 Application to the normal distribution

Let Xl, X2, ... , Xn be independent, identically distributed random variables from

a normal distribution with mean IL and variance a2, and suppose that 9 = (IL, a2) T

is unknown. Since the characteristic function of Xl is

¢(t; 9) = exp(itIL - a2t2/2),

the integrated squared error estimator, 8, for 9 is the value of 0 which minimises

(1.17)

for some non-decreasing weight function W(t; A). In practice, one might not con-

template using integral transform-based inference to estimate 0, since maximum

likelihood can be readily implemented. Nevertheless, the integrated squared er-

ror estimator was considered by Thornton and Paulson (1977), with the specific

weight function W(t) = J~ooe-y2 dy. This weight function can be regarded as a

special case of W(t; A) = J~ooe->.2y2 dy, which results in

(1.18)

It is reasonable to expect that the integrated squared error estimator will be

less efficient but more robust than the maximum likelihood estimator. We find,

from Theorem 1.2, that n1/2(8 - 0) is asymptotically normally distributed with
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mean vector zero and covariance matrix E(9), where the elements of E(9) are

0"2(J\2 + 0"2)3
0"11(9) = (J\4 + 2J\20"2 + ~0"4)3/2

0"12(9) = 0

_ 16 (,,\2 + 0"2)5(J\4 + 2J\20"2 + ~0"4) _ 16 2 0"2 2
0"22(9) - 9 (,,\4 + 2,,\20"2 + ~0"4)5/2 9 (,,\ + ).

The Fisher information matrix for a single observation is given by

(

1/0"2
I(9) = (1.19)

so that, for example, the asymptotic efficiency of fl is

(1.20)

Figure 1.2 shows that the efficiency of fl varies from 0.65 to 1.00 as ,,\ and 0" vary

from 0 to 3 and 0 to 4 respectively. Clearly, the integrated squared error estimator

can perform adequately in these terms.

The robustness properties of 9 may be examined through the behaviour of its

influence function. If we define

then, from Theorem 1.3, we obtain

(1.21)

It is interesting to evaluate this influence function at the standard normal

distribution, as the standard normal is a familiar point of reference. Figure 1.3

gives the individual influence functions for iJ with A = 1,2,3. As observed in
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Cl

Figure 1.2: Perspective view of the asymptotic efficiency of fl. Note that e.ff(p,) is
independent of u.

the figure, the individual influence functions are bounded in ~, and decline as

I~I-+ 00. This implies that outlying observations have little effect on O. Such

estimators are said to perform robustly in the presence of outliers.

In contrast, the joint influence function for the maximum likelihood estimator,

(J, may be shown to be

The individual influence functions for iJ are unbounded in ~, so that a single ad-

ditional observation can completely change the value of the parameter estimates.
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Figure 1.3: Individual influence functions for the integrated squared error estima-
tor iJ = (il, a-2 f with A = 1 (solid line), A = 2 (dotted line), and A = 3 (dashed
line). In each case the influence functions are evaluated at the standard normal
distribution.

Thus, the maximum likelihood estimator does not perform robustly in the pres-

ence of outliers.

In summary, the integrated squared error method can provide a flexible esti-

mator for the parameters of a normal distribution. This is because the resulting

estimator can attain arbitrarily high efficiency on the one hand, but can also be

made increasingly robust on the other. However, the statistical properties of this

estimator depend on A, and we now investigate its choice.

1.8 Selecting a value for A

Practical implementation of the integrated squared error estimator requires a value

for the parameter A. This choice is very important, as was shown graphically in
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Section 1.7. In this section, we provide several approaches to selecting A.

1.8.1 The automatic approach

One reasonable approach is to include A E A as an additional parameter to be

estimated. The integrated squared error method can be applied as in the previous

sections, but with 8 now satisfying

1(8;).) = inf 1(0; A).
9xA

While this type of approach appears to be useful, it gives rise to two serious

difficulties: first, it adds an extra dimension to what may already be a high-

dimensional search; and second, it is not in general possible to estimate 0 by this

approach. For example, consider again the integrated squared error function

(1.22)

which was applied in Section 1.7 to the normal distribution. Since

I¢n(t) - ¢(t; 0)1 ~ 2

by the triangle inequality, it follows that

tends to its infimum (zero) as A tends to infinity. Due to possible non-uniqueness

of the value 8 achieving this infimum, external criteria for selecting A must be

considered.

1.8.2 The precision approach

The problems entailed in the automatic approach may be avoided if A is selected

by considering the mean squared error of the estimator. In particular, if 8 is to



CHAPTER 1. ESTIMATION BASED ON TRANSFORMS 21

estimate 8 using a sample of size n, one possibility would be to choose ,\ so as to

minimise the determinant of the mean squared error

E[(O - 8) (0 - 8)T]. (1.23)

More often the calculation of (1.23), other than by simulation, is difficult or in-

tractable. A criterion of much wider applicability is obtained by adopting a large-

sample approach. In this case, (1.23) would be replaced by its asymptotic version

~(8), as stated in (1.14).

This approach may be criticised in two ways: first, it is based on asymptotic

variances whereas finite-sample variances are the appropriate ones to use; and sec-

ond, the optimum ,\ will depend on the unknown parameter values. Nevertheless,

the precision approach has been exercised, for example, by Bryant and Paulson

(1983) and Paulson and Nicklin (1983).

1.8.3 The robustness approach

Alternatively, we can select ,\ by considering the robustness properties of the

estimator. In this case, the value of ,\ leading to the best possible performance

in relation to some measure of robustness would be selected. There are several

measures of robustness to consider; one of those mentioned in Section 1.6 was

gross-error sensitivity. This is defined for an estimator {j as the supremum of the

absolute value of its influence function,

(1.24)

In words, the gross error sensitivity measures the worst possible effect a fixed

amount of contamination can have on the estimator. If it is used as measure of

robustness in the robustness approach, then one would select ,\ so as the effect of

contamination is made as small as possible.

This approach may be criticised in the following ways: first, the measure of
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robustness is open to choice; second, the optimum A will depend on the unknown

parameter values; and third, it is possible to obtain different optimal values of A

for different components of (J.

In summary, we can regard the integrated squared error method as both an

efficient as well as a robust method. As an efficient method, it can be made

increasingly efficient by selecting A by the precision approach. As a robust method,

it becomes increasingly robust as A is selected by the robustness approach. This

feature is not enjoyed by other estimation methods such as, for example, maximum

likelihood or method of moments.

1.9 A note on standardising the data

Let X be a random variable taking on values in a sample space X according to a

distribution F(x; (J), which is known to belong to a family F. In this section, we

shall consider one-to-one transformations 9 of the sample space onto itself so that,

for each (J, the distribution of Z = g(X), denoted F(z; (J'), is again a member of

F.

The study of this type of transformations has mainly been motivated by nu-

merical considerations. For example, some numerical difficulties can be eliminated

by standardising the data prior to estimation. This is effected by transforming

the realisations Xl, X2, ... ,Xn of X to

Zj = (Xj - J-l)/a, j = 1,2, ... ,n, (1.25)

where J-l E lR and a > 0 are appropriate constants. The standardised values

Zl, Z2, ... ,Zn may be regarded as realisations of the random variable Z with dis-

tribution F(z; (J').

In the context of integrated squared error estimation, the process of stan-

dardisation was first employed by Paulson, Holcomb and Leitch (1975), but later
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Paulson and Delehanty (1984) argued that it is not necessary. This view is consis-

tent with our results from a wide variety of simulation trials. In addition, we have

been successful in creating instances where the integrated squared error function

was flatter when it was based on the standardised data than when based on the

original data. One such instance is depicted in Figure 1.4.
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Figure 1.4: Perspective plot and contour-level plot (top) of the integrated squared
error function (1.18) based on a sample of size n = 50 from a normal distribu-
tion with mean J..l = 1 and standard deviation a = 0.5. Also included are the
perspective plot and contour-level plot (bottom) of (1.18) based on the same but
standardised sample. In either case, we have used A = 3/4.

Perhaps of more importance, however, was the result that integrated squared

error estimation was not invariant with respect to standardisations. This issue is

examined in the next section.
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1.10
"-

Location and scale invariance of (J

As indicated in the previous section, integrated squared error estimation has the

disadvantage of not being invariant with respect to standardisations. In this

section, we shall provide a mild restriction on the weight function W{t; A), which

will then ensure that this invariance property is satisfied.

Let Xl, X2, ... ,Xn be realisations of a random variable X with characteris-

tic function cP(t; 0), and suppose, without loss of generality, that W{t; A) =
t':w(y; A) dy. The integrated squared error estimator, 6, for 0 is the value

of 0 which minimises

where w(t; Ax) is an appropriately selected weight function depending on Ax > O.

Suppose now that Xl, X2, ... ,Xn are standardised by (1.25) prior to estimation.

By definition, the characteristic function of Z is cP(t/a; 0) exp( -itp,/a), so the

integrated squared error estimator, 0, for 0 minimises

= i:In-1t e;t(xj-")/. - 4>(t/<7; 9) e-;<"I'I' w(t; AZ) dt

= i:In-1t e;('I,)xj - 4>(t/<7; 9)1' w(t; AZ) dt

= aI(O; AX)

if and only if

w(at; Az) = w(tj AX). (1.26)

When (1.26) holds, integrated squared error estimation will be invariant with
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respect to standardisations, since the problems of estimating 8 on the basis of

XI, X2, ... ,Xn and on the basis of ZI, Z2, ... ,Zn are formally identical. The class

of weight functions satisfying (1.26) is particularly rich. In general, any weight

function of the form w(t;).) = WI ().QtfJ), for some function WI (x) and Q, (3 E lR,

can be shown to satisfy (1.26) by taking

(1.27)

In view of (1.27), the parameter A ensures that integrated squared error es-

timation is invariant with respect to standardisations. This provides a novel in-

terpretation of this parameter and illustrates that its value should depend on the

actual sample to hand.

We have reached a point where the theory that has been presented can be

illustrated on more complicated distributions than the normal distribution. We

shall take this opportunity to focus on a particular element of the family of stable

laws, namely the Cauchy law. In the next section we introduce this important

family of distributions and subsequently concentrate on the Cauchy law.

1.11 The family of stable laws

The family of stable laws has considerable importance in probability theory,

though statistical applications appear to be rather limited. Nevertheless, Paul-

son, Holcomb and Leitch (1975) and Leitch and Paulson (1975) have applied

stable laws to stock market data; see also Koutrouvelis (1980). In order for a

random variable X to be stably distributed, it is necessary and sufficient that

its characteristic function 4>(t; 8) be representable in the form (see, for example,

Lukaks, 1970, p. 136):

4>(t; 8) = exp{ i15t - Ictla[l + i.e 1:1w(t, Q)]}, (1.28)



CHAPTER 1. ESTIMATION BASED ON TRANSFORMS 26

where 9 = (a,,8, e, 6f, tlltl - 0 at t = 0, and

{

tan(7ra) ifa=/=1,
w(t, a) = 2 2

:; log(ltl) if a = 1.

The parameter space e is given by

e = {O < a ~ 2, 1,81 ~ 1, c> 0, 161 < oo},

where a is the characteristic exponent of the distribution, ,8 is the skewness pa-

rameter, c (or sometimes 'Y = c") is the scale parameter, and 6 is the location

parameter.

Stable laws are important largely because they are the only possible limiting

laws for sums of independent and identically distributed random variables. All

but one of the laws have infinite variance and this has negative implications for

standard statistical methods. However, this has enabled stable laws to be con-

sidered as possible models for the distribution of noisy processes which typically

arise in business and economics. A mathematical discussion of the properties of

the stable laws may be found in Gnedenko and Kolmogorov (1954, Chapter 1) and

Lukacs (1970, Chapter 5).

Let F(x; 9) and f(x; 9) be the distribution and density function corresponding

to (1.28) respectively. An integral expression for F(x; 9) may be found in, for

example, Leitch and Paulson (1975). A series representation for f(x; 9) may

be found in Johnson, Kotz and Balakrishnan (1994, p. 51). In general, simple

expressions for the density do not exist except in the cases

1. a = 1/2, f3 = 1 (Levy law);

2. a = 1, ,8 = 0 (Cauchy law);

3. a = 2 (normal law).

It is precisely for this reason that inference problems in the stable laws are more
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naturally approached through the characteristic function. Paulson, Holcomb and

Leitch (1975) provide a computationally attractive method for estimating (J which

is essentially based on the integrated squared error function. At the time of writ-

ing, we are not aware of any published application of the integrated squared error

method specific to the Cauchy law. In addition, the Cauchy law will allow the the-

oretical performance of integrated squared error estimation relative to maximum

likelihood estimation to be evaluated. This is lacking from Paulson, Holcomb and

Leitch (1975). As such, we shall now consider the Cauchy law in greater detail.

1.12 The Cauchy distribution

Let us consider the family of all stable laws with parameters a = 1 and {3 = O.

This sub-family is commonly referred to as the Cauchy family of distributions,

and has been studied in the mathematical world for over three centuries. An

excellent account of the Cauchy distribution has been prepared by Johnson, Katz

and Balakrishnan (1994, Chapter 16).

The characteristic function of the Cauchy distribution is given by

if>(t; (J) = exp(i8t - cltl), (1.29)

where (J = (c, 8)T belongs to the parameter space

9 = {c > 0, 181 < oo}.

The Cauchy distribution can be alternatively represented by its probability

density function which, as previously indicated, can be expressed in simple terms.

In particular, the probability density function corresponding to (1.29) is

c
f(x; (J) = 7r[c2 + (x _ t5)2]' x E 1R. (1.30)

The most notable difference between the Cauchy and normal distributions is
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Figure 1.5: The Cauchy distribution and density function (solid lines) overlaid
with the normal distribution and density function (dotted lines). The Cauchy
distribution is in standard form, obtained by putting 6 = 0, C = 1; the normal
distribution has mean zero and standard deviation (0.67445)-1. The two distri-
butions have the same median (x = 0) and upper and lower quartiles (x = ±1).

in the longer and flatter tails of the former. This difference is illustrated in Figure

1.5, and implies in the Cauchy distribution a greater frequency of both smaller

and larger observations than would be expected under conditions of normality.

1.13 Estimation in the Cauchy distribution

Let Xl, X2, ... .K; be independent, identically distributed random variables from

a Cauchy distribution, and suppose that (J = (c, 6)T is unknown. The estimation

of (J has been investigated by numerous methods. Johnson, Katz and Balakrish-

nan (1994, Chapter 16) discuss various methods including those based on order

statistics, maximum likelihood, and Bayes theorem.



CHAPTER 1. ESTIMATION BASED ON TRANSFORMS 29

1.13.1 Maximum likelihood inference

The method of maximum likelihood is often regarded as the standard classical

method of estimating parameters. In the Cauchy distribution, the maximum

likelihood estimator, iJ, for 8 maximises the likelihood function

n

L(8) = D{rr[c2 + (~j - 8)2]} (1.31)

with respect to 8.

For the problem of estimating 8 when c is known, the likelihood function is

occasionally multi-modal. In fact, for a sufficiently small c, it will have n local

maxima-one close to each of the n observations. In contrast, the two-parameter

case is easier to handle in that even simple iterative schemes, such as the method

of steepest ascent, will converge to provide the maximum likelihood estimates of

8 and c (Morgan, 1997, personal communication).

An interesting property of the Cauchy distribution is that it does not possess

a finite mean or variance. This implies that observations of very large magnitude

can be expected. As such, we seek to examine the robustness of the maximum

likelihood estimator. The customary way of investigating the robustness of an

estimator is through the behaviour of its influence function. The joint influence

function for iJ is given by (see, for example, Campbell, 1992)

so that the maximum likelihood estimator is robust against outliers.

1.13.2 Integrated squared error inference

It is straightforward to use the integrated squared error method to obtain param-

eter estimates for 8. In particular, the integrated squared error estimator, iJ, for
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() is the value of () which minimises

(1.32)

for some appropriately selected weight function W (t; A). The function leading

to the greatest degree of mathematical tractability is W(t; A) = r.,e->'lv1dy.
This weight function will be adopted for this work. The integrated squared error

function (1.32) becomes

I(()' A) _ ~ {-.. {-.. 2 _ ~ {-.. 4(A + c)
, - n2 f=;_ ~ A2 + (Xj - Xk)2 ti f=;_ (A + C)2 + (Xj - 6)2

2
(1.33)

+ A + 2c'

and is illustrated in Figure 1.6 for a particular sample. Also depicted, in Figure

1.7, is the contour-level plot of this integrated squared error function.

Figure 1.6: Perspective view of the integrated squared error function (1.33) based
on a sample of size ti = 50 from a Cauchy distribution with 6 = 0, c = 1. We have
used A = 1.
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Figure 1.7: Contour-level plot of the integrated squared error function shown in
Figure 1.6.

A system of integrated squared error equations can be formed by differentiating

(1.33) with respect to {},and setting the resulting expressions equal to zero. This

results in

01 _ ~ n 4[(.\ + C)2 - (Xj - 8)2] _ 4 _ 0
oc - n ~ [(.\+ C)2 + (Xj - 8)2F (.\ + 2C)2 -

01 1 n 8(.\ + c)(Xj - 8)
08 = -;, ~ [(.\+ c)2 + (Xj - 6)2]2 = O.

(1.34)

Explicit solution of these equations is, of course, impossible; however, it has been

possible to express them in a form amenable to an iterative solution. It is conve-

nient for this purpose to introduce the notation

(1.35)

Then, if J(m) and c(m) represent the parameter estimates at the mth iteration of

the iterative algorithm, the equations (1.34) may be manipulated to suggest the
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updating procedure

n

j=1 k=1

(1.36)
j=1

n n

J(m+l) =Lg(Xj)Xj/ Lg(Xk),

where the right hand side of (1.36) is evaluated at the mth values of the parame-

ters.

It has not been possible to prove that this scheme must converge or yield

unique solutions, but the algorithm has consistently produced reasonable param-

eter estimates when applied to simulated data. Furthermore, it appears from

(1.36) that the integrated squared error estimator may be robust against outliers.

Consider for example the relationship

n

J =L a(Xj)Xj,
j=1

which follows from (1.36) if the iteration converges, with J(m) ~ J as m ~ 00.

In this expression, a(Xj) = g(Xj)/ Lk g(Xk) and it it is clear from (1.35) that

the weights a(Xj) are smallest for those Xj which are most removed from 6. The

estimator 6 is thus robust against outliers. This can be formally examined, for

both 6 and c, by Theorem 1.3 and some straightforward but tedious computations.

We find that the joint influence function for iJ is given by

(1.37)

so that the integrated squared error estimator is indeed robust against outlying

observations.

The asymptotic distribution of iJ is readily obtained from Theorem 1.2. We

find that n1/2 (iJ - 8) is asymptotically normally distributed with mean vector zero
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and covariance matrix

( )
_ C (A + 2C)2 (5A2 + 14Ac + 10c2) I

E fJ - 16 (A + C)3 2,
(1.38)

where h is the 2 x 2 identity matrix. The Fisher information matrix for a single

observation is
1

I(fJ) = 2c2 h

so that, for example, the asymptotic efficiency of J is given by

e J = 32c(A+C)3
:ff() (A + 2C)2 (5A2 + 14Ac + 10c2)· (1.39)

Note that the efficiency of J is independent of 6, and that it also happens to

coincide with the efficiency of c. Figures 1.8 and 1.9 show that this efficiency is

very high for most values of A.
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Figure 1.8: Perspective view of the asymptotic efficiency of J.
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Figure 1.9: Contour-level plot of the efficiency of J as shown in Figure 1.8. The
plot illustrates that J can attain efficiencies of over 98%.

We now address the selection of A. This parameter determines the covariance

matrix (1.38), and presumably should be selected so that it is made (in some

sense) as small as possible. The precision approach of Section 1.8 suggested min-

imising its determinant. Accordingly, we find A = 1.0315c at the optimum. A

difficulty with this choice is that it depends on the unknown parameter c, and

this will be discussed later in this section. Meantime, we can calculate the asymp-

totic efficiency of the integrated squared error estimator without difficulty. The

asymptotic efficiency of iJ relative to iJ is given by

A det[I-l(O)]
eff(O) = det[~(O)l '

which is equal to 96.22% at A = 1.0315c.

We have found it instructive to compare the individual influence functions

for the integrated squared error estimator with A = 1.0315c and the individual

influence functions for the maximum likelihood estimator. These are depicted in

Figure 1.10 for the Cauchy distribution with <5 = 0 and c = 1. As observed in the
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figure, the estimators display similar influence behaviour. However, the individual

influence functions for the integrated squared error estimator decline much earlier

than the individual influence functions for the maximum likelihood estimator. It

appears that an exchange between efficiency and robustness has taken place.

N

~,

.....

-10 -5 o
xi

5 10 -10 10-5 o
xi

5

Figure 1.10: Individual influence functions for the integrated squared error esti-
mator with), = 1.0315 (solid lines) overlaid with individual influence functions
for the maximum likelihood estimator (dotted lines). The influence functions are
evaluated at the Cauchy distribution with 6 = 0, c = 1.

Alternatively, since the parameter). also determines the joint influence func-

tion (1.37), it could be selected by optimising some measure of robustness of the

estimators. The robustness approach of Section 1.8 suggests the gross-error sen-

sitivity (1.24), which we shall now consider. The gross-error sensitivity for c may
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be shown to be

,1 1 (A + 2C)3
')'(c) = 2(A + 2c) + 16 (A + C)2 ' (1.40)

which is minimised over the positive real axis as A ---+ O. This value for A leads

to an asymptotic efficiency of about 64%. On the other hand, the gross-error

sensitivity for 6 may be shown to be

(6) = 3V3 (A + 2C)3
')' 16 (A+C)2' (1.41)

which is minimised at ). = c. This value of ). is in close agreement with the value

from the precision approach, and so leads to an asymptotic efficiency of about

96%.

Table 1.1 gives a short listing of the efficiencies and gross-error sensitivities

for iJ associated with these choices of A. It appears that the choice A = 1.0315c

provides an ideal efficient and robust estimator.

Table 1.1: Optimum efficiency and gross-error sensitivities for iJ

Value of A
0 c 1.03e

ejJ(iJ) 0.64 0.96 0.96
')'(c) 1.50c 1.92e 1.94e
')'(8) 2.60c 2.1ge 2.1ge

Finally, we must discuss the problem which arises from the optimal choice of

). depending on the true parameter value e. Some proposals have been made in

the context of generalised moment estimation by Ball and Milne (1996). In the

context of integrated squared error estimation, this concept can be employed as

follows. Denote the integrated squared error estimator by iJ(A) to emphasise its

dependence on A. Then, in a similar fashion to Ball and Milne (1996), choose A(O)

arbitrarily and let iJ(O)= iJ(A(O»); next, for m = 1,2, ... let A(m) = A(iJ(m-l») and
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oem) = O(A(m)); finally, if this iteration converges, with A(m) --* AA as m --* 00,

then 0 may be estimated by the adaptive estimator O(AA).

In the present context, the adaptive estimator was found to be very effective

in a wide variety of computer simulations.

In summary, we can outline the results of this section as follows. The in-

tegrated squared error estimator for the Cauchy parameters is developed. The

asymptotic variance and influence function of the estimator playa double role in

our analysis: first, they provide a basis for the theoretical evaluation of the esti-

mator; and second, they prove useful in selecting A. A difficulty which remains is

that considering different aspects of the estimators leads to different values of A.

This problem will be dealt with in Chapter 2.

1.14 Integrated distance estimation based on mo-

ment generating functions

The range of problems to which the integrated squared error method is appro-

priate appears to be very wide. This is because the characteristic function is in

one-to-one correspondence with the distribution function while behaving simply

under shifts and scale changes. In addition, it allows an easy characterisation of

independence and of symmetry. This statement is not to deny, however, that there

exist other functionals with similar properties. The moment generating function

is one obvious alternative which leads to the special case

J(O) = h[Mn(t) - M(t; 8)]2 dW{t) (1.42)

of (1.5). The integrated distance estimator based on (1.42) can be regarded as a

generalised moment estimator, and was first proposed by Leslie {1970}.

In analogy with the integrated squared error method, the weight function W(t)

is open to choice. Nevertheless, the consistency and asymptotic normality of this

estimator have been investigated by Quandt and Ramsey {1978} when W{t) is a
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step function, and Leslie and Khalique (1980) when W(t) is a continuous function.

In this section, we shall restrict attention to continuous weight functions in order

to compare the resulting method with the integrated squared error method.

Integrated distance estimation based on moment generating functions appears

to be easier to deal with algebraically because:

1. it does not contain complex numbers;

2. empirical moment generating functions are much smoother than empirical

characteristic functions (see Kumar, Nicklin and Paulson, 1979).

While this is a plausible argument on the surface, there can be serious difficulties

associated with the use of the moment generating function. For example, consider

the distance

as an alternative to distance (1.17). Setting W(t; >.)= r; e-
A2y2 dy results in

for >.> a. In this case, the integrated squared error method is favoured because:

1. numerical problems with large exponential terms do not occur;

2. numerical results show greater stability;

3. the admissible range of values for>. is not curtailed.

All these features result from the uniform boundedness of the characteristic func-

tion, and do not, of course, depend on the underlying distribution being normal.

In addition, the integrated squared error method is superior to the method based

on moment generating functions because:
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4. it can be used when no moments exist;

5. the practical range of choice of W( . ) will be wider (see Clarke and Heathcote,

1978).

In conclusion, the form of the integrated squared error function might be more

complicated, but it is analytically sounder. In light of this result, we do not

recommend the use of integrated distance methods based on moment generating

functions. Accordingly, for the most part, we shall concentrate on the integrated

squared error method.



Chapter 2

Density representation of the ISE

function

2.1 Scope of this chapter

In view of the one-to-one correspondence between probability density functions

and characteristic functions, their Fourier transforms, models of distributions can

be represented equivalently by either function. In practice, the density function is

the usual representation, because it is the more intuitive concept and because the

method of maximum likelihood relies on it. On the other hand, the characteristic

function is the canonical representation of some useful distributions whose density

functions cannot be expressed in closed form. The difficulty of applying maximum

likelihood to these models led to the advent of methods based on characteristic

functions. The integrated squared error method of Chapter 1 is a paradigm of

this approach, which has received significant attention in the literature. In some

situations, such as the stable laws, it may be argued that it is the best method

available. However, it is safe to say that the integrated squared error method is

not yet widely used by applied statisticians.

A factor that has possibly limited the use of the integrated squared error

method is the difficulty behind the choice of the weight function W(tj >.). In the

general case, it is not clear how one might select a suitable weight function. This

40
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is partly a consequence of the complicated dependence of the integrated squared

error estimators on W (t; ,x).

This chapter uses an alternative representation of the integrated squared error

function to make three innovative contributions: first, it provides a viable way

of selecting the weight function; second, it demonstrates that the choice of the

weight function is not particularly important but the choice of its scaling is; and

third, it describes how this scaling can be selected in practice.

2.2 Density representation of the ISE function

Let {F(x; 6) : 6 E E>} be a family of distribution functions indexed by the pa-

rameter vector 6 = (191,192,... , 19p)T, and suppose that Xl, X2, ... , Xn is a random

sample from some population whose distribution function is a member of this

family with parameter vector 60, In Chapter 1 we considered parameter estima-

tion based on the empirical characteristic function 4>n(t) = n-1 Ej=l eitXj, which

involved minimising the integrated squared error function

/(6;,x) =I: l4>n(t) - 4>(tj 6)12 dW(tj,x)

with respect to 6. The integrated squared error function may be regarded as a

measure of the deviation between 4>n(t) and the characteristic function 4>(t; 6) =

I~oo eitx dF(x; 6), which corresponds to F(xj 6). The weight function W(tj,x) was

a monotonic non-decreasing continuous function, which we shall now assume to

be given by

for some function w(Yj A), There is no loss of generality in so doing, since the

choice of the weight function is arbitrary. As a result, the integrated squared

error function becomes

/(6j,x) = f_: l'Pn(tj,x) - <p(tj 8, ,x)12dt, (2.1)
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where

'Pn(t; A) = <Pn(t)w(t; A)

cp(t; 6, A) = <p(t;6)w(t; A).

(2.2)

(2.3)

If we could determine that 'Pn{t; A) and cp{t; 6, A) are characteristic functions,

then Parseval's theorem (see, for example, Priestley, 1981, p. 201) allows an

expression of 1(6; A) in terms of densities. It turns out that if w(t; A) is a charac-

teristic function, then so are (2.2) and (2.3). In this case, we may re-write (2.1)

as

(2.4)

where f'Pn (x; A) and f'P(x; 6, A) are the densities corresponding to the characteristic

functions CPn(t; A) and cp(t; 6, A) respectively. These densities may be expressed in

terms of the convolutions

f'Pn (x; A) = flPn (x) * fw(x; A)

f'P{x; 6, A) = f{x; 6) * fw{x; A),

(2.5)

(2.6)

where I»; (x) and fw(x; A) are the probability mass and density functions, respec-

tively, corresponding to the characteristic functions <Pn{t) and w{t; A).

The density representation of the integrated squared error function, as stated in

(2.4), has been noted by a number of authors, including Heathcote (1977), Paulson

and Nicklin (1983), and Bryant and Paulson (1983). The practical utilities of

density and characteristic function representations will depend on the underlying

model distribution. However, (2.4) demonstrates that the integrated squared error

method conforms to the more common formulation of minimum distance methods,

in which the distance is based on density functions. This aspect is important to

our work for two reasons:

1. it readily shows that the integrated squared error method possesses good
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robustness properties (see, for example, Parr and Schucany, 1980);

2. it leads to the interpretation of the weight function w{t; A) in terms of a

smoothing or randomising density fw{x; A) (see Heathcote, 197'1).

Heathcote {1977} observed that the smoothing by fw{x; A) operation results in

certain desirable properties, and suggested that a sufficiently smooth and tractable

weight function should be selected. He also recognised that the optimum (in some

sense) weight function will generally depend on F(x; 6), but otherwise the choice of

W(t; A) remains unsupported by the literature. As a consequence, the important

mathematical properties of the normal distribution have resulted in the choice

(2.7)

or, equivalently,

(2.8)

being extensively used in applications.

However, it is not difficult to think of applications where other choices of

w{t; A) may be used more effectively than (2.7). One such example is the Cauchy

distribution discussed in Chapter 1 (Section 1.12), where the weight function

w(t; A) = exp( -Altl/2) was used. Consequently, there is considerable scope for

investigating the problem of obtaining the optimum (in some sense) weight func-

tion. In the following sections we shall exploit the density representation of the

integrated squared error function in order to obtain a satisfactory solution to this

problem.

2.3 Kernel density estimation

As demonstrated in the previous section, the integrated squared error function

can admit a density representation provided that the weight function is chosen
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as a characteristic function. In fact, it is through this density representation that

we encounter a link between the methods of integrated squared error and kernel

density estimation. We can see this explicitly by writing (2.5) in the form

(2.9)

where FcpJy) is the distribution function of fCPn (y). Since FcpJy) is the empirical

distribution function of Xl, X2, ... ,Xnl (2.9) becomes

n

f'Pn (x; A) = n-l 2: fw(x - x., A).
j=l

(2.10)

By writing (2.5) in the form (2.10) we are immediately made aware that fIPn (x; A)

is a kernel density estimator employing the density fw(x; A) which is called the

kernel, and a positive number A which is called the bandwidth.

Kernel density estimators have been around since the seminal papers of Rosen-

blatt (1956) and Parzen (1962). To date articles written about kernel density

estimators number in the thousands. This chapter makes no endeavour to sur-

vey the field of kernel density estimation; such a review can be found in, for

example, Wand and Jones (1995). Instead, our goal is to present the aspects

of kernel density estimation which we see as being relevant to integrated squared

error estimation. In particular, we intend to use developments from kernel density

estimation since:

1. the weight function employed in the integrated squared error estimation of

80 corresponds to the kernel employed in the kernel density estimation of

f(x; 80);

2. the scaling of the weight function in the above integrated squared error

problem corresponds to the bandwidth employed in the above kernel density

estimation problem.

On this basis, we conjecture that the problem of selecting the weight function
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in integrated squared error estimation is in some respects similar to the problem

of selecting the kernel in kernel density estimation; the methods employed here

are inspired by the methods used in the treatment of the latter problem. Likewise,

the methods used to select the scaling of the weight function in integrated squared

error estimation are inspired by the techniques used in selecting the bandwidth in

kernel density estimation.

This discussion suggests that the density representation of the integrated

squared error function will be of substantial theoretical utility. We have, there-

fore, found it useful to reiterate the statistical properties of the estimators from

this perspective. As we shall see, there are advantages to such a course of action.

2.4 Properties of the integrated squared error

estimator

As usual, let {F(x; 9) : 9 E e} be a family of distribution functions indexed

by 9 = (fh,(}2'''',(}p)T, and suppose that X1,X2, ... ,Xn is a random sample

from some population whose distribution function is a member of this family

with parameter vector 90, Furthermore, suppose that w(t; A) is a characteristic

function with corresponding density fw(x; A). In this case, we have:

Theorem 2.1. Under the regularity conditions of Section 1.6.1, the integrated

squared error estimator, iJ, for 90 has joint influence function

where K(9) is the p x p symmetric matrix whose (i,j)th element is
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and T(~; 8) is the p x 1 vector whose ith element is

To prove Theorem 2.1 we need the following results which may be proved by

standard arguments (see, for example, Campbell, 1993):

Result 2.4.1. Given a distribution function F(x), we may define a functional

T = T(F) by

T(F) =!t(x) dF(x).

This functional may then be estimated by Tn = T(Fn), where Fn(x) is the empir-

ical distribution function based on a random sample Xl, X2, ••. , Xn from F(x).

In this case,

1. JF(~; Tn) = t(~) - T.

2. If hn = h(Tn), where h is a differentiable function, then

3. If T = (TI' T2, .•• , Tp)T in the second result above, then

JF(~; hn) = L:f=l (8h/aTi) J F(~; Tin).

4. If hn = J T(Fn; s)ds, then

JF(~;hn) = J JF(~;Tn(s))ds.

Proof (Theorem 2.1). The integrated squared estimator iJ is found in practice as

the solution of
oJ(9;.-\) .

OOi = 0, Z = 1,2, ... ,p,

which, from expression (2.4), may be written as

100ofcp(x; 9,.-\) [ (.) (. )] _
-00 OOi fcpn X,.-\ - fcp x, 9,.-\ dx - 0, i = 1,2, ... ,po

Applying first (4) and then (3) of Result 2.4.1 to the ith (i = 1,2, ... ,p) equation
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of this system, we find the ith influence equation

Re-arranging we obtain

lOO af,p(x;8,)..) IF[c.f (')..)]d = 100 af<p(x;8,)..) f.. af<p(x;8,)..) IF(C'{).)d
ae. <, , <pnx, x ae. 6 ae . <, 'J x,

-00 t -00 t j=1 J

or, equivalently,
p

Ti((; 0) =L K,ij(O)IF((; OJ),
j=1

since I F[(; f<pJx; ,X)] = fw(x - (;'x) - f<p(x; O,'x) by (1) of Result 2.4.1 and

f<p(x; O,'x) is given by (2.6). Bringing these p influence equations together, we

may form the single matrix equation

o

As noted in Chapter 1, influence functions do not only convey information re-

garding robustness, they also provide a convenient method for calculating asymp-

totic variances. On this basis, the density representation of Theorem 1.2 follows.

Theorem 2.2. Under the regularity conditions of Section 1.6.1, the integrated

squared error estimator, e. for 00 is strongly consistent and

where
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In this expression, K (8) is the p x p symmetric matrix whose (i, j) th element is

..(8) -100 Bf(x;8)*fw(x;),,) Bf(x;8)*fw(x;)..) d
/'l,ZJ - Br). B(J. x,

-00 Z J

and n(8) is the covariance matrix of the p random variables

Proof. The consistency and asymptotic normality of iJ follow from Theorem 1.2,

while the form of the asymptotic covariance matrix follows immediately from

Theorem 2.1 and expression (1.16). D

2.5 The mean integrated squared error criterion

As suggested in Section 2.3, we intend to bring in developments from kernel den-

sity estimation to integrated squared error estimation. In the former context,

estimators are compared with reference to various error criteria. This is perhaps

the most critical stage in the entire undertaking. In this section we present one

such error criterion, which we shall use extensively later.

Let Xl, X2, .•• ,Xn be independent, identically distributed random variables

with density f(x; (0), and suppose that

n

fn(x; h) = (nhtl L K[(x - Xj)/h]
i=l

(2.11)

is a kernel estimator of this density, with kernel K(x) and bandwidth h. A slightly

more convenient formula for the kernel estimator can be obtained by introducing

the rescaling notation K(x; h) = h-l K(x/h). This allows us to write

n

fn(x; h) = n-lLK(x - Xi; h),
i=l

(2.12)

which is the notation used in (2.10). The analysis of the performance of the
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kernel density estimator requires the specification of appropriate error criteria for

measuring the error when estimating the density at a single point as well as the

error when estimating the density over the whole real line.

When estimating the density at a fixed point x, it is common to measure the

performance of the kernel estimator by the size of the mean squared error (MS E)

MSE[Jn(x; h)] = E[fn(x; h) - f(x; 8o)f

The M SE is rarely referred to in the context of density estimation because it is

usually desirable to estimate the density over the entire real line. In this case

it is more appropriate to consider an error criterion that globally measures the

distance between the density and its kernel estimator. One such criterion is the

mean integrated squared error (M I S E) defined by

(2.13)

The mean integrated squared error may be recognised as the global counterpart

of the mean squared error, since MISE(fn) = J MSE(fn). The decision to work

with the mean integrated squared error is largely because of its mathematical

simplicity. There are also good reasons for working with other criteria, such as the

weighted mean integrated squared error (see, for example, Fryer, 1976), and the

mean integrated absolute error (see, for example, Devroye and Gyorji, 1985, p. 1),

but the analysis of these quantities is substantially more complicated.

2.6 The asymptotic MISE approximation

A problem which arises with the MISE is that it involves several integrals which,

in general, would need to be evaluated by Monte Carlo methods. One way of

overcoming this problem involves the derivation of its large sample approxima-

tion. This approximation admits a very simple expression and allows a deeper

appreciation of the role of the bandwidth. It can also be used to obtain the rate
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of convergence of the kernel estimator.

The assumptions for the asymptotic approximation of the M/SE are (see, for

example, Wand and Jones, 1995, pp. 19-20):

1. the density f(x; 0) is such that its second derivative J"(x; 0) is continuous,

square integrable and ultimately monotone;

2. the kernel K(x) is a bounded probability density function having finite

fourth moment and symmetry about the origin;

3. the bandwidth h = ti« is a non-random sequence of positive numbers which

approaches zero at a rate slower than n-1.

In this case, Rosenblatt (1956) defined the asymptotic mean integrated squared

error (AM/SE)

where jj2(K) = f x2 K(x)dx.

The AMISE is a much simpler quantity to comprehend than the MISE.

Silverman (1986, p. 40) noted that it gives the MISE as the sum of the asymp-

totic integrated variance and the asymptotic integrated squared bias of the kernel

density estimator. The asymptotic integrated variance is proportional to h-1, so

for this quantity to decrease one needs to take h to be large. However, taking

h large means an increase in the asymptotic integrated squared bias, since this

quantity is proportional to h4. This is known as the variance-bias trade-off and is

a mathematical quantification for the role of the bandwidth. Another advantage

of the AM/SE over the M I S E will become apparent as we proceed.

2.7 Optimum MISE weight function

We have already emphasised the reasons for selecting the weight function as a

characteristic function. This section is concerned with how we might select a
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suitable weight function, which would enable us to exploit the integrated squared

error method. As indicated, this problem is in some respects similar to the problem

of selecting a suitable kernel in kernel density estimation.

The latter problem has been extensively studied by a number of authors, in-

cluding Watson and Leadbetter (1963). These authors showed how to derive the

kernel that is optimal in the MISE sense for a given density f(x) and sample

size n. In particular, they considered the complex variable version of the M I SE,

(2.15)

(2.16)

and showed that it is minimised with respect to the kernel K(x; h) by taking

(2.17)

where the notation ¢g(t) denotes the characteristic function of 9(X).

In the context of kernel density estimation, there are two serious problems

associated with the use of (2.17). These are:

1. the integral involved in the Fourier inversion of (2.17) is not always easy to

evaluate (see Abdous, 1993);

2. the optimum kernel depends on the underlying distribution, which is in

theory unknown.

Consequently, (2.17) has made only a limited impact in this field.

However, in the context of integrated squared error estimation, (2.17) need

not be inverted. Furthermore, there is a priori knowledge of the underlying dis-

tribution and so the difficulties above are not a problem. Consequently, we can

rewrite the information conveyed by (2.17) in terms of the weight function itself.

Proposition 2.1. Let 1(8) be the integrated squared error junction for a distri-

bution with characteristic function ¢(t; 8), and suppose that Xl, X2, ••. , Xn is a
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random sample Jrom this distribution with parameter vector 00, Then the optimum

(in MI SE sense) weight Junction is such that

(2.18)

in which case, the minimum M I S E value is given by

infMISE(f (.)] = 2_f 14>(t;00)1
2
[1-14>(t;00)12] dt.

'Pn 271" 1 + (n - 1)14>(t; (0)12
(2.19)

2.8 Theoretical difficulties

The approach of Section 2.7 uses the M I SEas a criterion to derive the optimum

weight function for the integrated squared error method. In general, the success

of this approach will depend on:

1. the availability of a good omnibus numerical optimisation package, since

closed form solutions will be relatively rare;

2. knowledge of the true parameter value 00, which is an impossible situation.

Since point (1) above is nowadays not a major problem, this section is devoted to

how we might overcome the second difficulty.

One possibility is to regard WM1SE(t) as a function of t and 8, denoted WM1SE (t, 8),

and minimise the integral

(2.20)

with respect to O. In this case, however, we will no longer optimise the integrated

squared error function but some other more complicated criterion.

Alternatively, we may designate the solutions for 8 from the equations

1008 l4>n(t) - 4>(t; 0)121 (t 8)12 dt = 0
8(). WMISE , ,

-00 J
j = 1,2, ... ,p,
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namely the equations which result from differentiation of (2.20) with respect to ()

while holding the weight function out of the differentiation process. The motiva-

tion for this approach revolves partly on the notion of X2 minimum procedures.

In X2 minimum estimation, one subdivides lR into cells RI, R2"'" Rm and seeks

a choice of parameters which minimises

(2.21)

or, more conveniently, which solves the system of equations

k = 1,2, ... ,p,

obtained from (2.21) by holding the denominator out of the differentiation process

(see Cramer, 1946, pp. 424-428). In these expressions, Nj and Ej(8) are, respec-

tively, the observed and expected number of observations in Rj (j = 1,2, ... ,m).

Minimising different distance functions will lead to estimators with generally

different properties. We shall not conduct a detailed comparative study here since,

as we shall see, point (2) above will not be a problem once additional developments

from kernel density estimation have been adopted. First, we have found it useful

to apply Proposition 2.1 to an example. We have chosen the negative exponential

distribution which, while analytically simple, is believed to illustrate the concepts

clearly. In addition the negative exponential will motivate further research. As

such, this is a very important example.

2.9 Application to the negative exponential dis-

tribution

Let Xl, X2, ••. ,Xn be independent, identically distributed random variables from

a negative exponential distribution, with probability density function

f(x;O) = Oexp(-Ox), x > 0,0> 0, (2.22)
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and suppose that 00 is the true but unknown parameter value. The characteristic

function corresponding to (2.22) is

¢(t; 0) = 0/(0 - it), 0> 0, (2.23)

and so the integrated squared error estimator, (j, for 00 minimises

1(0) = I: In-1 ~ edKj - 4>(t; O)I'lw(t)I' dz (2.24)

with respect to o. As usual, the weight function w(t) is open to choice. In the

absence of an obvious choice, it is commonplace to select the normal characteristic

function. This was shown to be equivalent to selecting the normal kernel in

the kernel estimation of the underlying density. However, Fryer {1977} refers

to the inadequacy of the normal kernel for the kernel estimation of the negative

exponential density. On these grounds, we may concern ourselves with finding an

alternative weight function.

The optimum (in M I S E sense) weight function may be obtained from Propo-

sition 2.1 and some straightforward computations; we find

(2.25)

This weight function corresponds to the special case of

(2.26)

in which A = (n(5)-1/2.

Comparison of (2.26) with the normal weight function (2.7) is not a clear-cut

problem since the form of w{t; -\) is coupled with the parameter A. However, we

can compare corresponding densities since parameters often have clear geometrical

interpretations in this context. The integral involved in the Fourier inversion of
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(2.26) may be evaluated analytically to give

55

fw(x;)..) = (2)..)-1 exp( -Ixl/ )..), x E JR, ).. > O. (2.27)

This is the double exponential or Laplace density (see, for example, Johnson, K otz

and Balakrishnan, 1995, Chapter 24) with mean zero and variance 2)..2. Figure 2.1

compares the double exponential distribution with the normal distribution with

the same mean and variance.
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Figure 2.1: The double exponential distribution and density function (solid line)
overlaid with the normal distribution and density function (dotted line). The two
distributions have the same mean, namely zero, and variance, namely 2.

The most notable difference between the double exponential and normal den-

sity functions depicted in the figure is in the dramatic peak of the former. However,

this difference is the product of the two distributions having equal variances and

could be made comparatively smaller if the variances were allowed to vary. Of
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course, this would increase the discrepancy in the tails, but it may be that, at a

certain point, a better overall agreement would be obtained. At that point, the

agreement between the corresponding characteristic functions would be analogous

and so the performances of (2.26) and (2.7) in integrated squared error estimation

would be more comparable. This issue will be examined in the following section.

2.10 Optimum weight function theory

Much of the work thus far has been concerned with how we might select a suitable

weight function for the integrated squared error method. While Proposition 2.1

has hinted at a solution to this issue, a multitude of questions surrounding the

weight function remain. Some examples are:

1. What effect does the choice of the weight function have?

2. What effect does the scaling of the weight function have?

3. How can this scaling be chosen in practice?

All these questions are valid areas of research, and are most likely to prove in-

teresting. The purpose of this section is to examine the effect the choice of the

weight function has in integrated squared error estimation. This can be done by

quantifying how well different weight functions perform relative to the optimum

weight function. This particular question is important since complicated weight

functions often lead to complicated integrated squared error functions.

To answer this question we will first derive a useful representation of the M I S E
that allows a more direct application of this criterion in the context of integrated

squared error estimation.

2.10.1 Practical issues

As indicated above, we intend to use the MISE to judge between weight func-

tions in the same way as the M I S E is used to judge between kernel density
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estimators. One possible problem with this approach is that the M I S E depends

on the underlying density function which, in our context, either may not exist or

may be prohibitively complex in form. In this section we make a suggestion for

overcoming this problem.

The motivation necessary for this comes from expanding (2.13) to obtain

M ISE[Jn(. ; h)] = E j fn(x; h? dx - 2 E j fn(x; h)f(x; (Jo) dx

+ j f(x; (JO)2dx.

We may then apply Parseval's theorem, giving

MISE[Jn(.;h)] = 2~[E jl¢fn(t;h)12dt-2E j ¢fn(t;h)¢(t;(Jo)dt

+ f I¢(t; (JO)12dt],
(2.28)

where ¢(t; (J) is the complex conjugate of ¢(t; (J). Suppose now that the kernel in

fn(x; h) is symmetric about the origin. This is a reasonable and desirable assump-

tion to make in practice, as shown by Rosenblatt (1956). Under this assumption,

the characteristic function of the kernel is real-valued. Consequently, changing

the order of integration in (2.28) and using (see, for example, K outrouvelis, 1980)

results in

M ISE[fn(' ; h)] = __!_{f[(1 - n-1 )¢K(t; h? - 2 ¢K(t; h) + 1]1¢(t; (Jo) 12 dt2n
+ f n-1¢K(t; h? dt}.

(2.29)

The MISE as stated in (2.29) does not explicitly depend on f(x; (J), and so

the difficulty above has been overcome. In addition, (2.29) is often much simpler
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to apply than (2.13) when dealing with integrated squared error estimation. In

this context, we can rewrite the information conveyed by (2.29) in terms of the

weight function itself.

Proposition 2.2. Let I(B; A) be the integrated squared error function for a dis-

tribution with characteristic function ¢(t; B), and suppose that w(t; A) is a real-

valued characteristic function. Then the MI SE of the kernel density estimator,

f'Pn(x; A), in the density representation of I(B; A) is such that

M ISE[f'Pn ( . ;A)] = 2~ {J [(1 - n-1 )w(t; A)2 - 2 w(t; A) + l]I¢(t; Bo)12 dt

+ J n-1w(t; A)2 dt},
(2.30)

where n and BD are the sample size and true parameter value respectively.

2.10.2 The basic idea

We can investigate the effect of the choice of the weight function in the following

intuitive way. Given a weight function w(t; ,x), we can measure how well it per-

forms relative to the optimum (in M I S E sense) weight function by comparing

corresponding MISE values. In particular, our judgement will be based on the

difference between the two values.

A simple illustration of this idea is provided by the negative exponential distri-

bution of Section 2.9. The optimum (in MISE sense) weight function was given

by (2.25). The minimum MISE value, corresponding to (2.25), may be shown to

be

(2.31)

where n and OD are the sample size and true parameter value respectively.

Suppose now that the normal weight function (2.7) was employed instead. The
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M I S E corresponding to the normal weight function may be shown to be

111I S E[J 'Pn ( . ; A) 1 = (2J7fnAt1 + ~(1 - n -1) 00 exp( A20~) [1 - erf( AOo)1
(2.32)

where erf (x) denotes the error function

2 rerf(x) = .j7r la exp( _t2) dt.

Figure 2.2 depicts (2.31) and (2.32) plotted against A for n = 25 and 00 = l.
As observed in the figure, the normal weight function can lead to a range of MISE

performance. However, in the region of A where good performance is obtained,

namely A ~ 0.2, there is a very good agreement between (2.32) and (2.31).
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Figure 2.2: The mean integrated squared error associated with the normal weight
function (solid line) overlaid with the minimum M I S E value (dotted line) for the
negative exponential density with 00 = 1, n = 25.
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We conjecture that in this region of ). the performances of the integrated

squared error estimators based on (2.25) and (2.7) will be comparable. A sim-

ple way to examine this is by comparing the performances of the kernel density

estimators in the corresponding integrated squared error functions. This is permis-

sible for two reasons. First, the sample information is processed in the estimation

procedure only through the kernel density estimator (2.10). Secondly, if for two

different weight functions the left hand sides of (2.10) are comparable, then so

are the weight functions and hence the resulting parameter estimates. Figure 2.3

shows the corresponding kernel estimates of j(x) = exp( -x), x > 0 based on a

sample of size ti = 1000. The true density is also shown for comparison.
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Figure 2.3: The negative exponential density with 00 = 1 (solid line) overlaid with
kernel density estimates based on a sample of size ti = 1000 using the normal kernel
(dotted line) and the optimum kernel (dashed line). The bandwidth leading to
the smallest possible value of (2.32) was used for the normal kernel.

There are two important issues that are apparent from the figure. The first
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issue is that neither estimator performs adequately near the origin. This is due to

kernel estimator having to find a compromise between estimating the two distinct

values of the density on either side of zero. As noted by Silverman (1986, pp.

29-32) and Wand and Jones (1995, pp. 46-49), many modifications have been

proposed and studied to improve kernel estimation of densities with bounded

domains. However, these modifications are not relevant to integrated squared error

estimation and hence are not discussed in this thesis. The second issue, which

has importance in integrated squared error estimation, is that of the closeness of

the two density estimates. This result is consistent with the general view (see, for

example, Wand and Jones, 1995, pp. 28-31) that the choice of the kernel in kernel

density estimation is not particularly important. On this basis, we conjecture

that the choice of the weight function in integrated squared error estimation is

not particularly important.

2.10.3 A further indication

It was suggested in the previous section that the choice of the weight function

may not be particularly important. On the other hand, it appears from Figure

2.2 that the choice of A, the parameter which determines the scaling of the weight

function, may be very important. The present section will further endorse this

theory.

Let Xl, X2, •.• .X; be independent, identically distributed random variables

from a normal distribution with mean 110 and variance O'~, and suppose that

Bo = (110,0'5) T is unknown. If parameter estimation is to proceed by the integrated

squared error method, a weight function must be selected. The optimum (in

M I SE sense) weight function is given by

(2.33)

In view of (2.33), the optimum weight function may be criticised in two ways: first,

it depends on the unknown parameter O'~; and second, it gives rise to an integrated
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squared error function that can not be evaluated explicitly. Consequently, we may

want to investigate alternative choices of weight function. Some possibilities are:

1. the normal characteristic function (2.7);

2. the double exponential characteristic function (2.26);

3. the uniform characteristic function w(t; >.)= sin(>.t)/(>.t);

4. the triangular characteristic function w(t; >.)= 2[1 - cos(>.t)JI(>.t)2.

In Chapter 1 (Section 1.7) we have seen the application of choice (1) above.

We can now examine how this choice compares to the above alternatives. A simple

way to do this is by comparing their MISE performance. Table 2.1 presents the

minimum MISE value,

1 J _a2t2 (1 -a2t2)e 0 - e 0

infMISE[!cpn(·)] = -2 () _ 22 dt,
7r 1+ n - 1 e aot

(2.34)

and the smallest possible M I S E value for estimating the normal density using

the kernels corresponding to the above characteristic functions. The minimising

values for>. are also included. The results are based on a sample of size n = 25

from the normal distribution with mean J-LoER and variances a5 = 1,4.

Table 2.1: Minimum MISE and smallest MISE values for several kernels

Kernel
a~ = 1 a5 = 4

MISE >. MISE x
Optimum MISE 0.0117 - 0.0059 -

Normal 0.0137 0.6094 0.0069 1.2188
Double exponential 0.0164 0.5081 0.0082 1.0162

Uniform 0.0149 1.0131 0.0075 2.0261

Triangular 0.0134 1.4488 0.0067 2.8969

As anticipated, the smallest possible M I S E values are relatively similar, but

on the other hand, the minimising values for>. are very different. This result is
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consistent with the general view (see, for example, Wand and Jones, 1995, Chap-

ter 3) that the choice of the bandwidth in kernel density estimation is particularly

important. On this basis, we conjecture that the scaling of the weight function in

integrated squared error estimation is also important.

2.11 Choice of value for the parameter .A

It appears from Section 2.10 that the increased flexibility due to the inclusion of

the parameter A allows for considerable freedom of choice in the selection of the

weight function. However, this increased flexibility has its costs and leads to new

questions. Of these, the most important is how to select a suitable value for this

parameter, an issue which is studied below.

2.11.1 Theoretical selection of A

The approach of Section 2.7 in deriving the optimum weight function was based

on minimising the M I SE. Since the M I S E also depends on A, then A could be

selected so that the MISE is made as small as possible. However, the resulting

selector, denoted AM1SE' may be criticised in three ways:

1. the M I S E may not be of closed form;

2. an explicit solution for AM1SE will be relatively rare;

3. the value for AM1SE will depend on the unknown parameters 80.

The idea of the AM I S E approach is to remove the first two of these difficulties.

This approach is based on the formula for the asymptotic MISE, which is very

easy to compute. Further, if hAMISE is the quantity minimising the AMISE with

respect to h, then (see, for example, Wand and Jones, 1995, p. 22)

(2.35)
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The analogue of (2.35) for integrated squared error estimation is

where f:V{x) = A fw{AX; A) permits the "decoupling" of fw{x; A) and A. Thus,

AAMISE has a closed form expression and so the first two criticisms above have

been overcome. The third criticism remains, however, and without knowledge

of OD, the optimum A cannot be determined. Some of the suggestions proposed

in practice are discussed in the following section. The topic under study then

coincides with that of bandwidth selection.

2.11.2 Practical selection of A

There is currently a vast literature on bandwidth selection and any attempt to

present this topic is necessarily of limited scope. This section is no exception. In

our selection, we were motivated by the need to have a simple selector that requires

very little calculation and a sophisticated selector that aims to give reasonable

results each time. Our exposition of this topic is far from exhaustive and is based

on Wand and Jones (1995, Chapter 3).

One strategy in kernel density estimation is to choose the bandwidth subjec-

tively by eye. This would involve looking at several density estimates and selecting

the estimate that is the most suitable in some sense. Although this approach has

its advantages, there is much to be said for choosing the bandwidth automati-

cally. This way, its value will not be allowed to depend on x, and ideally it will

not depend on the parameters that have to be estimated.

Normal scale bandwidth selector

First and foremost among all bandwidth selectors is the normal scale selector hNs'

The normal scale selector evaluates hAMISE at the normal distribution. This yields
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the simple formula

h = [811"1/2 J K(x)dXJ1/5 A

NS 3n J..L2(K)2 a, (2.36)

where a is a robust estimate of the standard deviation (see, for example, Sil-

verman, 1986, p. 41). Furthermore, if a normal kernel is being used, then the

bandwidth obtained from (2.36) would be

h = (_i_)1/5 A

NS a.3n

Clearly, the assumption of an underlying normal distribution is potentially

dangerous but it may be that, for unimodal distributions at least, hNS gives a

useful choice of smoothing parameter, which requires very little calculation. How-

ever, for departures from normality such as multi-modality, normal scale selectors

will tend to over-smooth and mask important features in the data. As such, the

normal scale selector can not be recommended for general use.

Within the past few years, considerable strides have been made in the de-

velopment of more sophisticated selectors. Most sophisticated selectors fall into

one of two categories: the first category houses all the selectors which estimate

either the MISE or the AMISE from the data and then locate its minimum; the

second category groups the selectors which minimise either criterion theoretically

and then estimate this minimising value directly.

These two categories contain a variety of data-driven selectors and this variety

can be bewildering. Some insight into the relative merits of competing selectors

can be obtained through asymptotic arguments. However, the main tool for the

comparison of bandwidth selectors is simulation. In particular, simulation sug-

gests that selectors from the second category are often subject to less variability.

The approach we present below takes this issue into account and results in a class

of selectors which have been shown by Sheather and Jones (1991) to excel in

practice.
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Plug-in bandwidth selection

Since the earliest days of density estimation, iterative procedures have been pro-

posed in which an estimate of the unknown J f"{x; 9o)dx is "plugged-in" the

formula for the optimum AM I S E bandwidth

h = [ J K{x)2dx ]1/5
AMJSE n J..l2{K)2 J J"{x; 9o)2dx .

Scott, Tapia and Thompson (1977) provided an early example of this approach.

Since then, a number of improvements have been made. In particular, Sheather

and Jones (1991), extending work of Park and Marron (1990), described a se-

lection procedure with excellent properties. This is based on a clever method

for estimation of J f"(x; 9o)dx, using a kernel-driven functional. Unfortunately,

another selection problem now arises, namely, how do we choose the bandwidth

of the auxiliary kernel estimator? This choice can be made using (2.35), although

this would lead to yet another selection problem. The usual strategy for overcom-

ing this problem is to use, at some stage, a quick a simple estimate, such as the

normal scale selector (2.36). This means that we have a family of plug-in selectors

that depend on the number of stages before a quick a simple estimate is used. At

times, we shall refer to any of these selectors as hpJ'

The plug-in selector hpJ is relatively easy to implement and has been recom-

mended by a number of comparative studies, including that of Jones, Marron and

Sheather (1996). However, it should be remembered that hpJ is based on AM I SE,

which is only a large sample approximation to M I SE. In many circumstances

the minimiser of AMISE is a good approximation to the minimiser of MISE,

but sometimes it is not, as indicated by Marron and Wand (1992). The following

bandwidth selector takes this issue into account.

Smoothed cross-validation bandwidth selection

The smoothed cross-validation approach is similar to the plug-in approach in that

it estimates unknown quantities in the criterion which is being optimised. The
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difference is that smoothed cross-validation is based on the M [SE rather than

the AM [S E. This has the intuitively appealing feature of having less dependence

on asymptotic approximations. On the other hand, the smoothed cross-validation

selector is not as easy to implement and somewhat more difficult to analyse.

The essential idea is to estimate the unknown f{x; Bo) in (2.13) by a kernel

estimator using a kernel L(x) and a bandwidth g. The resulting objective function

may be shown to be (see, for example, Wand and Jones, 1995, p. 76)

SCV(h) = (nh)-1 !K(x)2 dx + n-2 t t iix. - Xj; g, h),
i=1 j=1

(2.37)

where

In this expression Kh(X) = h-1 K(x/h), Lg{x) = g-IL{x/g), and the asterisk

represents the operation of convolution between the indicated densities.

Unfortunately, the bandwidth minimising (2.37) is not fully automatic, since

it depends on the auxiliary kernel L{x) and its bandwidth g. The choice of

L{x) is not critical and may be based on grounds of computational convenience.

However, the choice of 9 is, and considerable theory has been devoted to it. This

involves precisely the same considerations as were necessary for the selection of the

auxiliary bandwidth in hp]. This means that we also have a family of smoothed

cross-validation selectors. At times, we shall refer to any of these selectors as

Concluding remarks

Any attempt at drawing conclusions or giving decisive recommendations for the

choice of bandwidth selector seems destined for failure. Clearly one's choice must

depend to a large extent on the application at hand. Taking Wand and Jones's

comments as a basis however, my recommendation is to use a version of hscv'
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unless of course the smoothed cross-validation objective function is inconvenient

to apply. If such a case arises, then a version of hpJ would constitute a good

alternative choice.

2.12 Application to the negative exponential mix-

ture

The integrated squared error method has thus far been applied to a number of

rather straightforward examples. These examples were specifically selected in

order to motivate and illustrate the theory of integrated squared error estimation

without any unnecessary complications. On the other hand, the simplicity of these

examples is self-defeating, since maximum likelihood can be readily implemented.

However, there exist more complicated examples for which maximum likelihood

cannot be easily implemented. One such example is the finite mixture of normal

distributions.

The formal introduction to the family of mixture distributions will be reserved

for Chapter 3, where the mixture of two normal distributions will be extensively

studied. In this section, attention is concentrated on the mixture of two negative

exponential distributions. Such mixtures arise in industrial applications, notably

in the analysis of failure time data, and have important mathematical properties.

The probability density function of a mixture of two negative exponential

distributions is given by

(2.38)

where () = (p'(h, (2) T belongs to the parameter space

El = {O ~ P < 1, rh > 0, 82 > O}.
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The characteristic function corresponding to (2.38) is

(2.39)

which, based on a random sample Xl, X2, •.. , Xn from (2.38), may be estimated

by the empirical characteristic function cPn(t).
With a parametric formulation of the negative exponential mixture, a matter

of initial concern is the estimation of the parameters. If estimation is to proceed

by the integrated squared error method, then a weight function must be selected.

The optimum (in M IS E sense) weight function is a function of

(2.40)

evaluated at the true parameter value Bo. Since (2.40) has a complicated form, it

follows that the optimum weight function may be impractical. A more convenient

choice is the normal weight function (2.7) but there is also something to be said

for choosing the double exponential weight function (2.26). This was the optimum

(in M I S E sense) weight function for the single exponential density, which may be

regarded as the special case of the mixture exponential density with either ()l = ()2

or p = 1. This weight function will be adopted for this work.

Before we continue with the resulting integrated squared error function, we

may want to examine how the double exponential weight function compares to

the optimum weight function. A simple way to do this is by comparing the

MISE's of the corresponding kernel density estimators. The minimum MISE

value, corresponding to the optimum weight function, is given by

. fMISE(j ( )]= (2 )-11 !cP(t;Bo)!2[1-!cP(t;Bo)!2] dt
m 'Pn • 1f 1+(n-1)!cP(t;Bo)!2'

(2.41)

The integral which appears in the right hand side of (2.41) can be explicitly inte-

grated but the result is too complicated to give here. The M I S E corresponding
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to the double exponential weight function is, from Proposition (2.2), given by

where p = (p,l - pf, and Mk (k = 0,1,2) are the 2 x 2 matrices having (i,j)

elements equal to

mljij = 2(Bi + Bj)(Bi).. + I) (Bj).. + 1)
BiBj[(Bi).. + 2)(Bj).. + 1)2 + (Bj).. + 2)(Bi).. + 1)2]

m2jij = 4(Bi + Bj)(Bi).. + 1)2(Bj).. + 1)2

BJ}j
mOjij = Bi + OJ

()i()j[(Oi + Bj) .. + 2]

The right hand side of (2.42) is evaluated at (J = (Jo.

Figure 2.4 depicts (2.41) and (2.42) plotted against X for p = 0.5 and: (1)

Bt/B2 = 0.01, n = 25; (2) Bt/()2 = 1, n = 25; (3) Bt/02 = 0.01, n = 50; and (4)

Bt/B2 = 1, n = 50.

As anticipated, the double exponential weight function (2.26) can lead to a

range of MISE performance. However, in the region of Xwhere good performance

is obtained, the optimum weight function gains very little. The performance of the

double exponential weight function improves as Bt/02 -t 1, and this is reasonable.

The same can be said as p -t 1, but this is not shown here. This illustrates that

the double exponential weight function can be used profitably in the integrated

squared error estimation of the parameters relating to the mixture of two negative

exponential distributions.

We shall therefore proceed to estimate the parameters from consideration of

(2.43)

or, equivalently,

J{6;)') = 27r 1:ln-1~ fw{x - Xj;),) - f{x; 6) * fw{x; ),)J' dx. (2.44)
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Figure 2.4: The MISE associated with the double exponential weight function
(solid line) overlaid with the MISE associated with the optimum weight function
(dotted line) for the mixture of two exponential distributions in four different
contexts. The contexts are (reading from left-right, top-bottom): (1) ()d()2 =
0.01, n = 25; (2) ()d()2 = 1, n = 25; (3) ()d()2 = 0.01, n = 50; and (4) ()d()2 =
1,n = 50. In each case, the mixing proportion was p = 0.5.

In the latter representation, the density fw(x;'\) is given by (2.27), while the

convolution f(x; 0) * fw(x;'\) may be shown to be given by

f(x; 0) * fw(x;'\) = p g(x; ()l,'\) + (1 - p) g(x; ()2, ,\), x E ~,

where

(2.45)

()+ ()sgn(x) ()2,\ + ()sgn(x) 1
g(x; (),,\) = 2(1 _ ,\2()2) exp( -(j Ixl) - 2(1 _ ).2()2) exp( -;;-I-xl).

Thus, the density (2.45) may be regarded as a mixture of double exponential

distributions, if we slightly generalise the definition of mixtures to permit negative
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proportions; see Everitt and Hand (1981, p. 79) for this definition.

The appeal of (2.44) notwithstanding, it is more convenient to work with the

characteristic function representation (2.43). In this representation, it is helpful

to observe that

2 -1 ~ ) pO? (1 - p) O~]2l4>n(t) - 4>(t; 9)1 = [n ~ cos(tXj - 02 2 - 02 2
j=l 1 + t 2 + t

-1 ~ . p01t (1- P)02t]2+ [n ~sm(tXj) - 02 2 - 02 2 .
j=l 1 + t 2 + t

(2.46)

The use of this observation allows for a somewhat simpler derivation of the inte-

grated squared error function. In particular, the integral in (2.43) may be explic-

itly integrated to give

(2.47)

where p = (p, 1-p)T, 10 is a 2 x 2 symmetric matrix whose (i,j)th element is

I .. _ OiOj[(OiA + 2)(OjA + 1)2 + (OjA + 2)(OiA + 1)2]
Ojt] - 2(Oi + OJ)(OiA + 1)2(OjA + 1)2 '

11 is a 2 x 1 vector whose ith element is

and 12 is a 2 x 1 vector whose ith element is

A system of integrated squared error equations can be formed by differenti-

ating (2.47) with respect to p, 01, O2, and setting the resulting expressions equal

to zero. Explicit solution of these equations is, of course, impossible. It has not

been possible to prove that the integrated squared error method must yield unique
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parameter estimates, but it has consistently produced reasonable parameter esti-

mates when applied to simulated data.

The practical implementation of the integrated squared error method has re-

quired the choice of the parameter A. This choice is similar to the choice of

bandwidth in the kernel density estimation of the negative exponential mixture

density. On this basis, the normal scale selector, ANs, was deemed inappropriate.

A more propitious choice would be provided by the smoothed cross-validation

selector, Ascv. However, the smoothed cross-validation selector was not easy to

implement. For ease of calculation, the plug-in selector, API, was selected.

2.13 Conclusions

This chapter has used the density representation of the integrated squared error

function to address the choice of the weight function in the integrated squared error

method. In particular, through this density representation we encountered a link

between the methods of integrated squared error and kernel density estimation.

This has enabled us to:

1. provide the optimum (in MISE sense) weight function;

2. demonstrate that the choice of the weight function is not important, but the

choice of its scaling is;

3. describe how the scaling of the weight function can be selected in practice.

These developments have a wide-ranging applicability and have been demon-

strated by a number of examples, including the mixture of two negative exponen-

tial distributions.



Chapter 3

Mixtures of normal distributions

3.1 Introduction

Mixtures of distributions have received widespread attention in the statistical

literature. This is partly because of interest in their mathematical properties, but

mainly because of the considerable number of areas in which they are encountered.

Examples date back to the end of the last century with typical areas of application

ranging from the study of failure time distributions for electronic valves (see,

for example, Davis, 1952) to the study of length distributions for fish (see, for

example, Hosmer, 1973). Applications to other examples in fishery studies, as

well as in genetics, medicine, chemistry, psychology and other fields, can be found

in Everitt and Hand {1981} and Titierinqton, Smith and Makov {1985}.

The problem of estimating the parameters in mixture distributions has also

been the subject of a large, diverse body of literature. This problem has generally

proved not to be straightforward, for two main reasons. First, explicit param-

eter estimators generally do not exist, so that numerical methods are required.

Secondly, practical difficulties which arise in certain aspects of the analysis reveal

some "non-standard" theoretical problems .. As a result, parameter estimation

in mixture distributions requires more than just a straightforward application of

conventional methods.

This chapter is concerned with mixtures of normal distributions. In practice,

74
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these are the most widely used mixture distributions. The chapter begins with

the parametric formulation of finite mixture distributions, with the related math-

ematical aspects of identifiability and information being discussed in Section 3.3.

The mixture of two normal distributions is then introduced and a substantial ac-

count of the currently used methods for the estimation of its parameters follows

in the next two sections. Section 3.7 provides a comprehensive account of the the-

oretical and computational issues in integrated squared error estimation of this

mixture. Finally, some consideration is also given to the mixture of k (k > 2)

normal distributions.

3.2 Finite mixture distributions

Let {F(x; 8) : 8 E E>} be a family of distribution functions indexed by the pa-

rameter vector 8, and suppose that Xl, X2, •.. , Xn is a random sample from some

population whose distribution function is a member of this family. Often it is

known or suspected that the random sample has arisen from a population II

which is a mixture of a finite number, k, of populations III, II2, ... ,Ilk in some

proportions PI, P2, ... ,Pk, respectively, where

k

Pi 2:: 0 and LPi = 1.
i=l

The probability density function corresponding to II can therefore be represented

in the finite mixture form

k

f(x; 8) = LPi9i(X; 8i),
i=l

(3.1)

where 9i(X; 8i) is the probability density function corresponding to IIi, and 8i

denotes the parameters in the adopted parametric form of this density. The

vector
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of all unknown parameters belongs to some parameter space e. Note that, since

the proportions Pi (i = 1,2, ... , k) sum to one, one of them is redundant, so we

have modified (J accordingly. We shall refer to the Pi as mixing proportions, and

the densities gi(X; (Ji) as component densities of the mixture.

It is straightforward to verify that (3.1) does, indeed, define a probability

density function. There is no requirement that the component densities should

all belong to the same parametric family, but in most applications this will be the

case. The finite mixture density function will then have the form

k

f(x; (J) = LPig(X; (Ji),
i=l

(3.2)

where g(x; (Ji) is the probability density function of the parametric family.

In what follows, all of our detailed discussion is directed towards this model.

Thus, we shall assume that Xl. X2, •.. , Xn are independent, identically distributed

random variables with probability density function (3.2). In addition, we shall

assume that there is no a priori knowledge of the population of origin of each

random variable. This should be appropriate in many situations in practice.

3.3 Mathematical aspects of mixtures

With a parametric formulation of finite mixture models, we digress to two topics

which have to do with the general well-posedness of estimation problems rather

than with any particular method of estimation. The first topic, identifiability,

addresses the theoretical question of whether it is possible to uniquely estimate a

parameter from a sample, however large. The second topic, information, relates

to the practical matter of how good one can reasonably hope for an estimate to

be. A thorough survey of these topics is far beyond the scope of this thesis; we

try however to cover those aspects of them which have a specific bearing on the

sequel.
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3.3.1 Identifiability

In general, the family of density functions {f(x; 0) : 0 E E>} is said to be iden-

tifiable if distinct values of 0 determine distinct members of the family. This

can be interpreted as follows in the case where f(x; 0) defines a family of finite

mixture densities according to (3.2). A family of finite mixtures is said to be

identifiable for 0 E E> if for any two members f(x; 0) = L:~=1Pi9(X; Oi) and

f(x; 0') = L:~~1P~9(X; O~), then

f(x; 0) = f(x; 0')

if and only if k = k' and there is a permutation 7r of (1, 2, ... , k) such that Pi = P~(i)

and, if Pi =I=- 0, Oi = O~(i) for i = 1, 2, ... , k. Here = implies equality of the densities

for almost all x relative to the underlying measure on 1Rappropriate for f(x; 0).

Titterington, Smith and Makov (1985, pp. 35-42) have given a coherent ac-

count of the concept of identifiability for finite mixtures, including theorems which

establish the identifiability for mixtures of normal, gamma, and other continuous

distributions. A second more recent reference is Sapatinas (1995).

3.3.2 Information

In general, the Fisher information matrix for an observation Xl with density

f (z: 0) is given by

a ][a TI(O) = E{[ao log f(XI; 0) ao log f(XI; 0)] },

provided that this expression exists. (In writing a/ao, we suppose that (}

(OI,02, ... ,Op)T, and we take a/ao = (a/ao1,a/a02, ... ,a/aOp)T.) The Fisher

information matrix has general significance concerning the distribution of unbiased

and asymptotically unbiased estimators. For the present purposes, the importance

of the Fisher information matrix lies in its role in determining the asymptotic

distribution of maximum likelihood estimators.



CHAPTER 3. MIXTURES OF NORMAL DISTRIBUTIONS 78

A number of authors have considered the Fisher information matrix for finite

mixture densities in a variety of contexts. Hill {1963} gave a general power series

expansion of the Fisher information about the mixing proportion in a univariate

mixture of two normal or negative exponential distributions. Behboodian {1972}

presented a method for the numerical calculation of the information matrix for a

mixture of two univariate normal distributions with arbitrary variances, while Tan

and Chang {1972} considered the equal variance case in deriving the asymptotic

relative efficiency of the moment estimator. For two univariate normal popula-

tions with no restrictions on the variances, Hosmer and Dick {1977} studied the

information matrix, where in addition to the unclassified observations, there were

also some observations of known origin.

3.4 Mixtures of two normal distributions

In practice, the most widely used finite mixture distributions are those involving

normal components. Of these, the mixture involving two components is most

commonly used.

In its most general form, the mixture of two normal distributions is defined by

the probability density function

f(x; 8) = p g(x; 8d + (1 - p) g(x; 82), X E JR, (3.3)

where g(x; 8j) = (27raJ)-1/2 exp[-(x - Jlj)2 j(2aJ)] is the density of the normal

distribution with mean J-Lj and standard deviation aj. In this case, 81 = (J-Ll, ad T,

82 = (Jl2,a2)T and 9 = (p,Jll,al,Jl2,a2)T. The parameter space associated with

the mixture of two normal distributions is given by
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The characteristic function corresponding to (3.3) is given by

cjJ(t; (J) = p'l/J(t; (Jd + (1 - p) 'l/J(t; (J2), (3.4)

where 'l/J(t; (Jj) = exp(itJ1.j - aJt2/2) is the characteristic function of the normal

distribution with mean J1.j and standard deviation aj.

The mixture of two normal distributions can provide a flexible framework for

approximating distributions which are not well-modelled by any standard para-

metric family. This flexibility is illustrated in Figure 3.1. The introduction of

more components would, of course, be expected to yield a better approximation

and, in fact, this feature is exploited in kernel density estimation .
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Figure 3.1: A number of shapes the normal mixture density (3.3) can take. The
shapes are (reading from left-right, top-bottom): (1) Gaussian; (2) kurtotic; (3)
unimodal; (4) skewed; (5) bimodal; and (6) asymmetric.

The six densities of the figure have been selected because they represent a
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variety of possible forms of (3.3). The most striking feature of the density cor-

responding to a mixture of two normal distributions is often that of bimodality.

The figure, however, illustrates that a mixture of two normals, differing in means,

can still be unimodal. The values for the parameters of these densities are given

in Table 3.1. For ease in plotting, these have been chosen so that the densities

diminish outside x E [-3, 3].

Table 3.1: Parameters for the six example density functions of Figure 3.1

Density type
(J

p J1,1 al J1,2 a2

Gaussian 1 0 1 - -
Kurtotic 0.6 0 1 0 0.1

Unimodal 0.6 0 1 1.2 0.7
Skewed 0.5 0.6 1.5 1.5 0.7

Bimodal 0.5 -1 0.7 1 0.7
Asymmetric 0.4 -0.8 0.7 1.5 0.6

3.5 Estimation in the mixture of two normal dis-

tributions

With a parametric formulation of the mixture of two normal distributions, a

matter of initial concern is the estimation of the parameters. This is one of the

oldest problems in the statistical literature, dating back to Pearson {1894}. Since

then, a remarkable variety of estimation methods have been applied.

The following is an outline summary of some of the methods which have been

considered. This summary is not intended to be exhaustive, but it is hoped that

it will provide some perspective in which to view the remainder of this chapter.

Additional details on the methods reviewed below as well as on other less well-

known methods can be found in the monographs by Everitt and Hand {1981},

Titterington, Smith and Makov (1985) and McLachlan and Basford {1988}.
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3.5.1 The method of moments

Estimation using the method of moments is often regarded as the starting point

of the analysis of mixtures. Pearson (1894) used this method in one of the earliest

studies of the mixture of two normal distributions.

The method of moments involves equating the first five sample moments given

by
n

m; = n-1 L)Xi - X)", r = 1,2, ... ,5
i=1

to their theoretical counterparts

where X = 2:7=1 Xi and J1 = E(X1). By some considerable algebraic manipula-

tion, these equations may be reduced to the famous "nonic", originally derived by

Pearson (1894). This takes the form

9

Laiyi = 0,
i=O

(3.5)

where

a6 = 36m~

a4 = 444m~k4 - 18kg

a3 = 288m~ - 108m3k4k5 + 27kl

a2 = -63m~k~ - 72m~k5

al = -96m~k4

a9 = 24

as = 0

aO= -24m~

and where k4 = m4 - 3m~ and k5 = m5 -10m2m3 are the fourth and fifth sample

cumulants respectively. If a solution to the system of moment equations exists,

then it may be obtained as follows.
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Let y be a real negative root of (3.5); then calculate

and solve the quadratic equation <52 - p<5 + y = 0, giving roots

<51 = [p _ (p2 _ 4y)1/2]/2

02 = [p + (p2 - 4y)1/2]/2.

The moment estimates of the five mixture parameters may now be computed

from

p = <52/(<52 - <5d

itj = <5j + X

O-j = [~Oj(2P - m3/Y) + m2 - 0}]1/2

(3.6)

for j = 1,2.

The most attractive feature of the method of moments is its relative ease of

application. Indeed, the method of moments was usually the method of choice

until the arrival of high-speed computing. However, this method may be criticised

in three ways:

1. it is based on the sample cumulants k4 and k5 which are not unbiased estima-

tors for the corresponding population cumulants (see, for example, Bryant

and Paulson, 1982);

2. it is based on high order sample moments which have poor sampling prop-

erties;

3. it may give rise to non-unique parameter estimates, or fail to give any at all.

These problems have led investigators to consider alternative estimation methods.
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3.5.2 Graphical methods

As speculated by Fowlkes (1979), it was probably because of the problems of

the moment estimators and the absence of modern computing technology that

attention was turned to various graphical methods. The majority of these methods

were attempts to obtain crude parameter estimates, but there was a great need

for some kind of solution, however crude.

There are two main types of plot for univariate data, depending on whether the

density function or distribution function is being depicted. In particular, of course,

the former plots include the histogram and the latter the normal quantile-quantile

or Q-Q plot. The best of these graphical methods can be found in Titterington,

Smith and Makov (1985, pp. 52-71), but nonetheless, they may still be criticised

in two ways:

1. they require relatively large sample sizes;

2. they are generally unlikely to lead to accurate parameter estimates.

Consequently investigators have not highly valued graphical methods.

3.5.3 The method of maximum likelihood

With the arrival of high-speed computing, attention was turned to the method

of maximum likelihood. The customary approach to determining a maximum

likelihood estimate is first to derive a system of equations (called the likelihood

equations) which are satisfied by the, maximum likelihood estimate, and then to

obtain the maximum likelihood estimate by solving these equations. The likeli-

hood equations are found by differentiating the logarithm of the likelihood function

with respect to the parameters, and setting the derivatives equal to zero.

In the present mixture context, the logarithm of the likelihood function is given

by
n

£(8) = Llog!(Xi;8),
i=l
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where f(x; 0) is the density function (3.3). The likelihood equations are com-

plicated in form (see, for example, Everitt and Hand, 1981, p. 36) and beyond

hope of solution by analytic means. Consequently, one must resort to seeking an

approximate solution via some iterative procedure.

There are, of course, many general iterative procedures for numerically ap-

proximating maximum likelihood estimates. Our main interest here, however, is

in a special iterative method which can be interpreted as an application of the

EM algorithm of Dempster, Laird and Rubin {1977}. This algorithm proceeds in

two steps, E for expectation and M for maximisation, and has certain desirable

theoretical properties by its very definition (see, for example, Men9 and vanDyk,

1991). The application of the EM algorithm to the present mixture context can

be described as follows.

Let

be a set of initial parameter estimates, and suppose that o(m) are the parameter

estimates at the mth iteration. At this iteration, define the weights

and compute the sums

n

n)m) = ~ wij(8(m)), j = 1,2.
i=l
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Then, the parameter estimates at iteration m + 1 may be obtained by

(m)
p(m+l) = ~

n

(m+l) __ 1_ ~ ..(o(m))x.J-Lj - (m) ~wzJ z
nj i=l

a;m+l) = [ (~)tWij(o(m))(Xi - J-L}m+l))2p/2
nj i=l

(3.7)

for j = 1,2. These iterations are continued until some suitable convergence crite-

rion has been satisfied.

However, in defining a maximum likelihood estimate in this way, we have

failed to consider two technical difficulties associated with likelihood estimation

for mixtures of normal distributions. These are:

1. the likelihood function is not bounded above in 8;

2. the likelihood equations will generally have multiple roots.

Point (1) above was perhaps first noted by Kiefer and Wolfowitz (1956), who

observed that if one of the component means coincides with a sample observation

and the corresponding variance tends to zero, then the likelihood function in-

creases without bound. However, as remarked in McLachlan and Bashford (1988,

p. 38), this is not a problem since the essential aim of likelihood estimation is to

find a sequence of roots of the likelihood equations which is consistent, and hence

efficient if the usual regularity conditions hold. Redner and Walker (1984) verified

that for a mixture of univariate normal distributions there is a sequence of roots

with the desired asymptotic properties, but there is, of course, the problem of

identifying it. This means that in many cases it will be difficult to justify choos-

ing one set of parameter estimates above another. Furthermore, the extent to

which these results hold in small samples is a contentious issue. These problems

have encouraged the development of a Bayesian approach to the problem.
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3.5.4 The Bayesian approach

The general Bayesian approach to estimating an unknown parameter vector 8 E E>

is very easily described. If f (X; 8) denotes the probability density function of the

sample X = (Xl, X2, .•• , Xn), Bayes theorem provides the mechanism whereby

beliefs about (J prior to observing X, expressed as a density p(8), are updated

into beliefs about 8 posterior to observing X, denoted by p( 8 I X) and given by

p(8)f(X;8)
p(8 I X) = fe p(8)f(X; 8) d(J'

In general, all aspects of the posterior distribution are valid quantities for in-

ference. However, in most cases quantities of interest require the evaluation of

integrals of the form is h(8)p(81 X) d(J,

where h( 8) is a function of the parameters.

In theory the Bayesian approach appears to have many advantages over the

method of maximum likelihood. In practice it presents new problems of its own.

Some of these problems are:

1. choosing a suitable prior;

2. carrying out efficient numerical integration in several dimensions.

A recent discussion of these problems, together with details of some proposed

strategies, is given in Diebolt and Robert (1994); see also Escobar and West (1995).

We shall not enter into detail here, since, once a numerical integration strategy

such as Markov chain Monte Carlo integration is invoked, a finite mixture model

is simply a special case of a Bayesian inference problem.
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3.6 Robust estimation in the mixture of two nor-

mal distributions

We shall now consider for the mixture of two normal distributions some robust

estimation methods whereby observations assessed as atypical of a component or

the mixture itself are automatically given a reduced weight in the computation of

the parameter estimates.

The problem of robust estimation in a general estimation context has been

a major concern in recent statistical literature. Minimum distance estimation

has been shown by Parr and Schucany (1980) to provide a reasonable mode of

attack for this problem. To reiterate the working definition given in Chapter 1

(Section 1.4), the basic philosophy of minimum distance estimation is to estimate

the parameters by minimising some specified distance measure over the parameter

space.

There is clearly a wide range of estimators that can derived by this method, de-

pending on the choice of the distance measure. The choice leading to the greatest

degree of mathematical tractability is

~[K(.), L(.)] =I: IK(x) - L(x)12 dW(x), (3.8)

where K(x), L(x) and W(x) are suitably selected functions. Concerning the choice

of the functions K(x) and L(x), the published literature contains references to two

major categories, namely distributions functions and integral transforms.

3.6.1 Minimum distance estimation based on distribution

functions

Minimising distance measures between distribution functions is the most common

application of minimum distance estimators. In the present mixture context, the
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vector of unknown parameters, (J, is estimated by minimising

~[Fn(')' F( . ; (J)),

the distance between the empirical distribution function Fn(x) and the mixture

distribution function F(x; (J). For a particular form of the weight function W(x),

Woodward, Parr, Schucany and Lindsey (1984) estimated the mixing proportion,

with the unknown remaining parameters being viewed as incidental parameters.

The distance used by these authors is closely related to that of Choi and Bulgren

(1968), in which a non-decreasing step weight function was used. Thus, Choi and

Bulgren (1968) approximated the integral in (3.8) by a sum.

The usefulness of this type of approximation was addressed by Everitt and

Hand (1981, p. 20). They noted that these approximations would cease to be

approximate if the data were grouped. This practice leads, of course, to a consid-

erable loss of information so minimising an approximate distance is, perhaps, not

the best approach to adopt in all cases. Consequently, there is considerable scope

for investigating alternative distance measures.

Minimising a distance between the empirical and theoretical distribution func-

tions is an intuitive concept. However, in view of the one-to-one correspondence

between the distribution function and integral transforms thereof, minimum dis-

tance estimation may also be based on the latter. This approach is taken on by

the second category of minimum distance methods.

3.6.2 Minimum distance estimation based on integral trans-

forms

Perhaps the most critical aspect of the construction of a minimum distance method

based on integral transforms is the choice of transform. There is considerable

freedom of choice, but transforms such as the characteristic function and moment

generating function are most common in practice. Early applications favoured the

algebraic simplicity of the moment generating function. For example, Quandt and
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Ramsey (1978) proposed estimating the parameters of the mixture by minimising

q n

S(6) =L)n-1 LetiXj - petLlti+lTrt~/2 - (1- p)etL2ti+lT~tU212, (3.9)
i=1 j=1

the sum of squared deviations between the empirical and theoretical moment

generating functions evaluated at points tj (j = 1,2, ... ,q). Obviously crucial in

this approach is the choice of these points. Quandt and Ramsey (1978) suggested

that very large or very small values of t should be avoided and that q should be

not less that five. Their choice in the examples they gave was q = 5 with t values

-0.2, -0.1, 0.1, 0.2, 0.3.

As in Choi and Bulqren (1968), Quandt and Ramsey {1978}used (3.8) with

a step weight function. This type of weight function gives rise to a very flexible

estimation method, which will be discussed in detail in Chapter 5. However, in

the present mixture context there are numerical complexities. We repeated the

simulation experiments performed by Quandt and Ramsey {1978}and found that

the resulting parameter estimates were extremely sensitive to:

1. the values of the points tj (j = 1,2, ... ,5);

2. the iteration starting point used in the minimisation of (3.9).

These results are consistent with the simulations of Kumar, Nicklin and Paulson

{1979}and Everitt and Hand (1981, pp. 53-56).

Nevertheless, the choice of tj (j = 1,2, ... , q) was taken up by Schmidt {1982}.

He showed that a more efficient estimator than that of Quandt and Ramsey (1978)

could be obtained by minimising a generalised, instead of a simple, sum of squares.

He also pointed out that by increasing q, one can, not surprisingly, eliminate the

role played by the particular choice of the tj (j = 1,2, ... , q). However, as q is

increased indefinitely, it was suggested in Chapter 1 (Section 1.14) that minimum

distance estimation based on moment generating functions was inferior to that

based on characteristic functions. The remainder of this chapter, therefore, will

be directed towards minimum distance methods based on characteristic functions.
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In this case, the distance in question becomes none other than the integrated

squared error function.

3.7 The method of integrated squared error

The integrated squared error estimation of the parameters in the two-component

normal mixture appears to have been neglected in the literature. Binder (1978)

and Clarke and Heathcote (1978) merely referred to it as an alternative to the

method of Quandt and Ramsey (1978). Kumar, Nicklin and Paulson (1979) pro-

vided a minimum distance method based on characteristic functions, but the

particular choice of objective function needs justification, especially with respect

to the double role played by p. Perhaps the most systematic application of the

integrated squared error method to the present mixture context may be found in

Bryant and Paulson (1983). However, as the authors admit, the problem consid-

ered therein is overly simplistic in that the component distributions are taken to

be completely specified and attention focuses only on the mixing proportion.

3.7.1 The integrated squared error estimator

In a general estimation context, the integrated squared error estimator, 6, for (J

is the value of (J which minimises

where w(t) is a suitably selected weight function. In the present mixture context,

the optimum (in MISE sense) weight function is, from Proposition 2.1, given by

(3.10)
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where n is the sample size, 80 is the true parameter value, and

11>(t; 8)12 = p2e-CTW + 2p(1 - p)e-(CTI+CTDt
2/2 COS[(Jtl - Jt2)t] + (1 _ p)2e-CT~t2.

(3.11)

Since (3.11) has a complicated form, it follows that the optimum weight func-

tion (3.10) may be impractical. An alternative choice is provided by the normal

characteristic function

(3.12)

This weight function was considered by Bryant and Paulson (1983) in the esti-

mation of the mixing proportion.

It is instructive to examine the MISE performance of (3.12) relative to that of

(3.10). The minimum MISE value, corresponding to (3.10), is, from Proposition

2.1, given by

inf MISE[f (.)] = ~ f 11>(t; (0)1
2

[1 -11>(t; (0)1
2
] dt. (3.13)

<pn 27l' 1 + (n - l)I1>(t; (0)12

The MISE corresponding to (3.12) is given by (see Marron and Wand, 1992)

where p = (p,l - p)T, and Me (£ = 0,1,2) are the 2 x 2 matrices having (i,j)
elements equal to

The right hand side of (3.14) should, of course, be evaluated at the true parameter

values 80,

Figure 3.2 depicts (3.13) and (3.14) plotted against A for the six normal mixture

densities of Figure 3.1 when n = 50.



CHAPTER 3. MIXTURES OF NORMAL DISTRIBUTIONS

l1)

o
ci

~
oci .

0.2 0.4 lamb~~ 0.8

l1)

oci

oci .
0.2 0.8

l1)

oci

~~ .
OL_ -- __ ~--~~--~----~

0.2 0.4 lamb~~ 0.8 1.0

92

l1)rr------------------------~ci
"<tci

~
ci .

1.0 0.0 0.2 0.4lambd£l6 0.8 1.0

1.0

~
0 ..

ci~~~--~~--~~--~----77
0.2 0.4 lamb~~ 0.8 1.0

l1)

oci
w

~ci

0·········_···-_ - .
ci~~~--~~--~~--~----~

0.2 0.4 lamb~~ 0.8 1.0

Figure 3.2: The MISE (3.14) (solid line) overlaid with the minimum MISE
value (3.13) (dotted line) for six normal mixture densities when n = 50. The
densities are the (reading from left-right, top-bottom): (1) Gaussian; (2) kurtotic;
(3) unimodal; (4) skewed; (5) bimodal; and (6) asymmetric densities of Figure
3.1.

As anticipated, the weight function (3.12) leads to a range of MISE perfor-

mance. However, in the region of A where good performance is obtained, the

optimum weight function gains very little. This result is relatively independent

of the parameter values and is consistent with the general view of Chapter 2. On

this basis, we proceed to estimate the normal mixture parameters by minimising

(3.15)

with respect to ().

The integral which appears in the left hand side of (3.15) may be explicitly
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integrated to give

(3.16)

where p = (p, 1 - p)T, 10 is a 2 x 2 symmetric matrix having (i,j) element equal

to

and II is a 2 x 1 vector whose ith element is

1 n
t.,= ;; I)27r(a; + 2,\2)tl/2 exp[-!(Xj - I-Li))2/(a; + 2,\2)].

j=1

If we introduce the shorthand notation

(3.17)

then the integrated squared error function (3.16) may be written as

(3.18)

A system of integrated squared error equations can be formed by differentiating

(3.18) with respect to the parameters and setting the resulting expressions equal

to zero. This gives
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for i = 1,2, where PI = P and P2 = 1 - p.

Explicit solution of these equations is, of course, impossible. Consequently,

one must resort to seeking an approximate solution via some iterative procedure.

There are many general iterative procedures which are suitable for this purpose.

We have in mind here the Newton-Raphson method, various quasi-Newton meth-

ods, and conjugate gradient methods. Alternatively, we may consider abandoning

the integrated squared equations altogether and minimising the integrated squared

error function directly. One method which is suitable for this purpose, and which

we describe in detail in Chapter 4, is simulated annealing.

3.7.2 The robustness properties of the estimator

As emphasised in the beginning of Section 3.6, we are considering a class of esti-

mation methods which possess good robustness properties. The customary way of

examining the robustness of an estimator is through the behaviour of its influence

function. In short, the influence function describes the response of the estimator

to an additional observation. An additional observation in our framework will be

denoted by~. Then, since the regularity conditions of Chapter 1 (Section 1.6.1)

are satisfied (see, for example, Heathcote, 1971), the joint influence function for

the integrated squared error estimator, 8, is, from Theorem 1.3, given by

(3.19)
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In this expression, K (8) is the 5 x 5 symmetric matrix with elements

( ) _ ( 7r 1/2 () ( 7r ) 1/2
t;;11 8 - a~ + ,X2) - 47rgl7r+I7~+2A2 /-Ll - /-L2 + a~ + ,X2 '

27rad(a? + ai + 2,X2) - (/-Ll - /-L2)2]
t;;13(8) = P (a~ + ai + 2,X2)2 gl7r+I7~+2A2(/-L1 - /-L2)

7r1/2al

95
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and T(C;; (J) is the 5 x 1 vector with elements

71 (~; (J) = 27rga2+2A2 (~ - J-l1) - 27rga2+2A2 (~ - J-l2) - p( 2 7r ,\2 )1/2
1 2 a

1
+

+ (1 - p)( 2 7r ,\2)1/2 - 2(1 - 2p)7rga2+a2+2A2(J-l1 - J-l2), (3.20)a2 + 1 2

(3.23)

The difficulty of obtaining a symbolic expression for the joint influence func-

tion (3.19) is immediately apparent; deriving (3.19) requires the inversion of the

algebraic matrix K((J). This is, of course, not an elementary calculation, and

when the structure of K(8) is also considered, the calculation becomes impracti-

cal. Nevertheless, we can investigate the influence behaviour of iJ in the following
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intuitive way.

Let K,ij(6) be the (i,j)th element of K-l(6). Then it is clear from (3.19) that

the ith (i = 1,2, ... ,5) individual influence function for the integrated squared

error estimator is given by

5

IF(~; ei) =L K,ij(6)Tj(~; 6),
j=l

(3.25)

where Tj(~; 6) has, from equations (3.20)-(3.24), the form

2

Tj(~; 6) = Aj(6) +Le-Bk(8)(~-llk)2[Cjk(6)(~ - I-lk)2 + Djk(6)(~ - I-lk) + Ejk(6)]
k=l

(3.26)

for suitably selected functions Aj(6), Bk(6), Cjk(6), Djk(6) and Ejk(6). Substi-

tuting (3.26) into (3.25) results in

2

I F(~; ei) = A;(6) +L e-Bj(8)(e-llj)2 Pij(~; 6),
j=l

(3.27)

where A;(6) is a function of 6, and Pij(~; 6) is a second-order polynomial in ~.

This implies that

(3.28)

since Bj(6) = Ha; + 2>.2)-1 > O. The integrated squared error estimator is thus

robust against outliers.

We now illustrate the robustness of the integrated squared error estimator

by evaluating (3.19) at a particular parameter set. We have selected the set

6 = (0.4, -0.8,0.7,1.5, 0.6)T, which gives rise to the asymmetric density of Figure

3.1. The individual influence functions for iJ are depicted graphically in Figures

3.3 and 3.4 below.

Figure 3.3 exhibits the influence function for p with>' = !,1,~. As expected,
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Figure 3.3: The influence function for the integrated squared error estimator p
with), = 1/2 (solid line), A = 1 (dotted line), and A = 3/2 (dashed line). The
influence function is evaluated at the asymmetric distribution of Table 3.1.

the estimator p is robust against outliers. However, the estimator becomes in-

creasingly robust as A decreases. As we shall see, this is due to the connection

between integrated squared error and kernel density estimation. Meantime, we

can explain this result as follows. If e can take values on the whole real line, then

the behaviour of the influence function for p depends critically on the functions

B, (0) and B2 (0). In particular, large values of these functions lead to influence

functions which degenerate into their asymptotes (3.28) much earlier than small

values. The aforementioned influence behaviour of p follows since the functions

B, (0) and B2 (0) are inversely proportional to A.

The argument above holds, of course, for the whole set of influence functions.

Consequently, we concentrate on a single value for A. In Figure 3.4 we plot the

influence functions for the remaining integrated squared error estimators with
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,\ = 1. The conclusions from these figures are entirely consistent with those

from Figure 3.3. This illustrates the robustness of the integrated squared error

estimator.

3.7.3 The asymptotic properties of the estimator

The asymptotic properties of the integrated squared error estimator in a general

estimation context were presented in Chapter 1 (Section 1.6). The present mixture

context is simply a special case of this. Thus, since the regularity conditions

of Chapter 1 (Section 1.6.1) are satisfied (see, for example, Section 3.7.2), the

integrated squared error estimator, e. for (J is strongly consistent and



CHAPTER 3. MIXTURES OF NORMAL DISTRIBUTIONS 101

where

(3.29)

In this expression, K(6) is the 5 x 5 symmetric matrix as stated in (3.19), and

0(6) is the covariance matrix of the random variables Ti(X1; 6), i = 1,2, ... ,5

as stated in equations (3.20)-(3.24). The derivation of ~(6) has therefore been

reduced to the calculation of

(3.30)

The expectations in (3.30) are in principle straightforward to evaluate but the

results will be very lengthy. It practice, it may be more convenient to approximate

these expectations by

n

On(6) = n-1 LT(Xi;6)T(Xi;6)T.
i=l

(3.31)

The empirical approximation to the asymptotic covariance matrix, denoted ~n (6),

is obtained by substituting (3.31) for (3.30) into (3.29).

We have found it useful to compare ~n (6) and the negative of the Hessian

matrix

which provides an estimate of the information matrix for a random sample, nI(6).

For example, for a sample of n = 1000 from the asymmetric distribution of Table

3.1, we have estimated the asymptotic efficiency of iJ using

These efficiencies are provided in Table 3.2 for selected values of A. As observed

in the table, a value of A = 0.8 produces efficiencies of about 74%. The efficiency
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declines as A deviates from this value. Clearly the choice of A is crucial.

Table 3.2: Efficiency of 6 for selected values of A

Values of A
0 .2 .4 .6 .8 1 1.2 1.4-ejj( 6) .20 .28 .49 .69 .74 .68 .60 .52

3.7.4 Appropriate values for A

Practical implementation of the integrated squared error estimator requires the

specification of the parameter >.. This parameter is open to choice, and presumably

should be chosen so that the determinant of E(9) is made as small as possible.

The potential for application of this approach is large. However, there are three

significant drawbacks to its use here. First, it is based on asymptotic variances

whereas finite-sample variances are the appropriate ones to use. Second, the

covariance matrix E(9) is difficult to compute. Third, it depends on the unknown

parameter values.

Alternatively the choice of the value >. may be based on robustness consid-

erations. In the present context, the estimator becomes increasingly robust as A

decreases from infinity. However, >. cannot be decreased indefinitely since then the

method will begin to cluster groups of observations and ultimately each observa-

tion will be regarded as a separate cluster. This property is due to the connection

between integrated squared error estimation and kernel density estimation, an

association which we shall now explore.

3.7.5 The density representation of the ISE function

The density representation of the integrated squared error function was the theme

of Chapter 2, in which it was demonstrated that for a particular form of the weight
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function, the integrated squared error method is equivalently a density estimation

method. In particular, if w(t; _A) is a characteristic function with corresponding

density fw(x; _A), then

(3.32)

(3.33)

where the asterisk denotes the operation of convolution between the indicated

densities.

The relative utilities of (3.33) as opposed to (3.32) will depend on the underly-

ing model distribution. For the present mixture model, the density representation

(3.33) has the following advantages. First, it shows that w(t; _A) = exp( _ _A2t2 /2),

or, equivalently, fw(x; _A) = (2rr _A2)-1/2 exp] -x2 /(2_A2)], provides an attractive

choice, since then the convolution f(x; 9) * fw{x; _A) is of closed form. In par-

ticular, following the notation of (3.17), we find

so that the convolution in (3.33) is again a normal mixture density.

Secondly, it shows that the integrated squared error method is equivalent to

a density estimation method. The density f{xj 9) is assumed a priori, while the

estimate n-1l:j=1 fw{x - Xj; _A) is a kind of posterior estimate based on the kernel

fw{xj _A) and the data. The parameter _Aplays the role of the bandwidth in this

estimate and, as we shall see, this allows for a somewhat simpler selection of its

value.

Thirdly, it constitutes a more practical context in which the robustness of

the integrated squared error estimator can be investigated. In particular, the

ith (i = 1,2, ... ,5) individual influence function for the integrated squared error
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estimator is, from Theorem 2.1, given by

where f<l,ij(8) is the (i,j)th element of K-l(8). This influence function depends

on ~ only through

which becomes

by changing the order of integration and differentiation. This change of order

can be verified here symbolically, for example using Maple, but a more formal

justification comes from applying the dominated convergence theorem (see, for

example, Karr, 1993, pp. 108-109). Since the convolution f(x; 8) * fw(x; >.) *
fw(x; >.) is again a normal mixture density, the individual influence functions for

iJ are bounded in ~. This implies that the integrated squared error estimator is

robust against outliers.

3.7.6 Links with density estimation

As indicated in Section 3.7.4, the robustness properties of the integrated squared

error method are due to its connection with kernel density estimation. We now

illustrate and expand on this result. The basic idea of this section is to examine

the response of the density estimate in (3.33) to variation in the parameter >.. The

approach is that of Paulson and Nicklin (1983).

The twenty-five observations in Table 3.3 are taken from Everitt and Hand

(1981, p. 42), and are theoretically from a two-component normal mixture with

8 = (0.33, -2, 1, 2, 1)T. For our analysis, a choice of the value>. is required.

Somewhat arbitrarily, we have chosen>. = 1,~,~. Figure 3.5 depicts what the
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Table 3.3: Twenty-five observations from a two-component normal mixture with
p = 0.33, /11 = -2, /12 = 2,0"1 = 0"2 = 1

Observation x· Observation Xiz

1 0.608 14 2.400
2 -1.590 15 -2.499
3 0.235 16 2.608
4 3.949 17 -3.458
5 -2.249 18 0.257
6 2.704 19 2.569
7 -2.473 20 1.415
8 0.672 21 1.410
9 0.262 22 -2.653
10 1.072 23 1.396
11 -1.773 24 3.286
12 0.537 25 -0.712
13 3.240

density estimate looks like at these values of A. Incidentally, for large A the

density estimate is approximately uniform.

At A = 1 the density estimate can distinguish between two populations, while

at A = 1/2 it can distinguish between three populations. As A further decreases,

the density estimate starts distinguishing between observations and ultimately

becomes a set of Dirac delta functions located at each observation. Thus, the

reason for the increased robustness of the integrated squared error method as A

decreases has become clear.

We now examine the response of the parameter estimates to variation in A.

Table 3.4 tabulates the parameter estimates for selected values of A.

As A decreases from four to zero, the parameter estimates fluctuate apprecia-

bly. We should point out that it is possible to produce mixture data for which

variation in A can lead to dramatic changes in the parameter estimates. Since

the sample information is processed in the integrated squared error method only



CHAPTER 3. MIXTURES OF NORMAL DISTRIBUTIONS 106

L()

N
c::i
o
N
c::i

>-L()

~~CO
c3~
o
L()

~
o
oc::i ~~_x __ ~_x__xx__ x~ ~

-4 -2 o
x

L()

N
c::i
o
N
c::i

~L()

.~ ;;
c3~

c::i
L()

o
c::i
o
c::iL_ __ ~-=~--__----~~__--~

2 -4 4-2 o
x

24

L()

"!
o

.~L()
rn~c .moo

~ /',.'
c::i

-4 -2 4o 2
x

Figure 3.5: The normal mixture density (3.3) with (J = (0.33, -2, 1,2,1) T (solid
lines) overlaid with kernel density estimates based on the the twenty-five obser-
vations of Table 3.3 (dotted lines). The kernel estimates were constructed using
the normal kernel and the bandwidths (reading from left-right, top-bottom): (1)
A = 1; (2) A = 1/2; and (3) A = 1/4. Also depicted are the observation values
(crosses) .

through the kernel density estimate, we are recommending that A be selected in

the way given in the next section.

3.7.7 The MISE and AMISE criteria

The selection of A in a general estimation context was discussed in detail in Chap-

ter 2. In brief, Chapter 2 drew attention to the connection between integrated

squared error and kernel density estimation and provided a natural choice for the

parameter A. This is a very convenient approach which has not been previously

adopted.

In kernel density estimation, estimators are compared with reference to the
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Table 3.4: Sensitivity of parameter estimates to variation in A

Parameter
Values of A

4 1 1 02"
P 0.36 0.20 0.22 0.09

J-tl -1.94 -2.59 -2.47 -2.48

0"1 0.93 0.33 0.41 0.02

J-t2 1.79 1.31 1.35 1.10

0"2 1.17 1.61 1.60 2.02

M I SE. The MISE was introduced in Chapter 2 (Section 2.5) and in the present

mixture context is given by (3.14). Each of the bandwidth selectors that we discuss

in this chapter can be motivated through aiming to minimise MISE.

A much simpler criterion to comprehend than the MISE is the AMISE. The

AMISE was introduced in Chapter 2 (Section 2.6) and in the present mixture

context is given by (see Marron and Wand, 1992)

(3.34)

Here p = (p, 1 - p) T, and A is the 2 x 2 matrix having (i, j) element equal to

(3.35)

where 9~T)(X) = (d" /dxT)90(X) is the notation for the rth derivative of 9o(x), The

bandwidth aiming to minimise the AM ISE can be easily derived by differentiating

(3.34) with respect to A and setting the derivative equal to zero. This results in

the closed form expression

A very important application of the exact M I SE and AM I S E expressions is

to the problem of quantifying how well the latter approximates the former. This
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issue is especially important in practice because there is a definite price to be

paid by the MISE. This is due to the bandwidth aiming to minimise MISE

being only implicitly defined. Figure 3.6 depicts how well AM I S E approximates

M I S E for the asymmetric density of Figure 3.1 when the sample sizes are 50 and

200.
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Figure 3.6: The MISE (3.14) (solid lines) and the AMISE (3.34) (dotted lines)
for the asymmetric density of Figure 3.1 based on samples of size n = 50 (left)
and n = 200 (right). Also plotted are their respective minimisers (vertical lines).

As one would expect, the AMISE approximation to the MISE improves as

the sample size increases. On the other hand, the approximation of these curves

worsens considerably as ). grows. This pattern was found to be typical for all the

densities of Figure 3.1. In fact, this pattern seems typical for most densities since

the bias approximation in the AMISE is based on the assumption that). --+ O.

In summary, the AM I S E approximation to M I S E is quite good for small
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,x, but can be very poor for large A. One consequence of this behaviour is that

the bandwidth aiming to minimise AM I S E may not always provide a decent

approximation to the bandwidth aiming to minimise M I SE. For essentially this

reason, we consider the selector described in the following section.

3.7.8 The smoothed cross-validation selector

Substantial research has been devoted to the topic of bandwidth selection and

as a result a wide range of bandwidth selectors has emerged. Some of the more

popular selectors, including the plug-in and smoothed cross-validation selectors,

were discussed in Chapter 2. In this section we concentrate on the smoothed

cross-validation selector. As indicated in Chapter 2, an attractive feature of this

selector is that it does not work through the asymptotic AMISE but rather more

directly targets M I S E itself. On the other hand, this selector is not so easy to

implement.

The essential idea of the smoothed cross-validation selector is to estimate the

unknown density in MISE by a second kernel density estimator using an auxiliary

kernel Kh{X) and a bandwidth h. In the present mixture context, there are good

reasons for taking Kh{x) to be the normal density. It is also tempting to use

a normal scale selector to estimate h but this is is not quite good enough here.

Wand and Jones (1995, pp. 82-84) find it best to allow h to have dependence on

,x of the form

for parameters C, p and m. An optimal choice of these parameters is discussed

in Wand and Jones (1995, p. 79). The smoothed cross-validation selector that

evolves from these choices is described below.

Let the auxiliary kernel Kh{x) be the normal density 9h(X), and define

n n

~r(h) = n-2 L L gr)(Xi - Xj),
i=l j=l
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where 9f)(x) denotes the rth derivative of 9h(X) as in (3.35).

Step 1 Compute kernel estimates ~6(hd and ~1O(h2)' where

hI = 21/2 [2/ (7n )P/9 a-,
h2 = 2I/2[2/(lln)F/13a-,
and a is a robust estimate of the standard deviation.

Step 2 Compute kernel estimates ~4(h3) and ~8(h4)' where

h3 = {-6/[(27r)1/2~6(hdn]}1/7,

and

h4 = {-210/[(27r)1/2~1O(h2)nJP/1l·

Step 3 Choose >. to minimise
n n

SCV(>.) = (27r1/2n>.)-1 +n-22: 2:(92,X2+2h2 - 29,X2+2h2 + 92h2)(Xi - Xj),
i=l j=1

where

h = Cn-23/45 >.-2,
and

c = [441/(647r)j1/18(47r)-1/5~4(h3)-2/5~8(h4)-1/9.

This selector will be used extensively in Chapter 4.

3.8 Estimation in the mixture of k normal dis-

tributions

Partly as a consequence of its mathematical properties and partly as a conse-

quence of its practical importance, the mixture distribution which has received

the most attention is the mixture of two normal distributions. However, there are

circumstances in which a mixture of k (k > 2) normal distributions is more appro-

priate. This section is concerned with the problem of estimating the parameters

of this mixture.

The probability density function of a mixture of k normal distributions is given
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by

k

j(X; 0) = LPjg(x; OJ), x E JR,
j=l

(3.36)

where g(x; OJ) = (21faJ)-1/2 exp[-(x - J-Lj)2/(2aJ)] is the density of the normal

distribution with mean J-Lj and standard deviation aj' In this notation, OJ =

(ILj, aj) T and

is the vector of all unknown parameters.

The characteristic function corresponding to (3.36) is

k

¢(t;O) = LPj'IjJ(t;Oj)'
j=l

where 'IjJ(t; OJ) = exp(itILj - aJt2/2) is the characteristic function of the normal

distribution with mean ILj and standard deviation aj'

The estimation methods proposed for the mixture of two normal distributions

can be extended, with appropriate modifications, to cover the mixture of k normal

distributions. However, many new difficulties are encountered in even the simplest

k = 3 case. For example, the method of moments requires moments up to order

eight and the resulting system of equations is likely to be very difficult to solve with

any accuracy, quite apart from the poor sampling properties of such high-order

sample moments. The computation of the maximum likelihood estimators will,

obviously, be even more demanding than the k = 2 case. Nevertheless, it is clearly

desirable to have some kind of solution to the problem, however complicated. The

emphasis of this section is on the integrated squared error method. Incidentally,

Richardson and Green {1997} have developed a Bayesian method for estimating

the parameters when the number of components is considered unknown.
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3.8.1 The method of integrated squared error

The application of the integrated squared error method to the mixture of k normal

distributions requires the selection of a weight function. The optimum (in M I S E

sense) weight function is given by (3.10), where

k k

1<I>(t;0)12 = L LPiPj exp[-Ha; + aJ)t2] COS[(J-Li - J-Lj)t].
i=1 j=1

(3.37)

It follows from the degree of complexity of (3.37) that the optimum M I SE weight

function may be impractical. The weight function leading to the greatest degree

of mathematical tractability is

(3.38)

or, equivalently,

This weight function has resulted in a novel method of parameter estimation which

is presented below.

The integrated squared error function for the mixture of k normal distributions

based on (3.38) may be explicitly integrated to give

(3.39)

where p = (Pl,P2,'" ,Pk)T, 10 is a k x k symmetric matrix with (i,j) element

and II is a k x 1 vector whose ith element is

t.; = ~ t[21l'(0'; + 2,\2)tl/2 exp[-!(Xj - J-ti))2/(0'; + 2,\2)].
j=1
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A system of integrated squared error equations can be formed by differenti-

ating (3.39) with respect to the parameters and setting the resulting expressions

equal to zero. These equations are, of course, beyond hope of solution by ana-

lytic means. Consequently, one must resort to seeking an approximate solution

via some iterative procedure. Nevertheless, we can investigate the robustness of

the estimators without much difficulty. The first approach we used to find the

joint influence function for the integrated squared error estimator was based on

Theorem 1.3. However, this was not very promising due to the complexity of the

results. It is precisely for this reason that the density representation of Theorem

1.3, stated as Theorem 2.1, was developed.

In the present mixture context, the density representation of the integrated

squared error function is given by

100 n

I((J; .\) = 27l' -00 [n-1f;fw(x - Xj;.\) - f(x; (J) * fw(x; .\)]2 dx, (3.40)

where the asterisk denotes the operation of convolution between the indicated

densities. It follows from Theorem 2.1 that the ith (i = 1,2, ... , 3k -1) individual

influence function for the integrated squared error estimator, 6, has the form

( . A) _ ~ ij((J) 100 a f(x; (J)*fw(x; .\) [I ( c. ') (.) (.)]IF~'()i -f=:/'i, -00 a(J wX-<"A -fx,(J*fwx,A dx,

where /'i,ij ((J) denotes the (i, j) element ofK-1 (6). The robustness of the integrated

squared error estimator follows by employing similar arguments to the k = 2 case.

The integrated squared error method cannot be applied profitably without a

good choice for .\. In parallel to the mixture of two normal distributions, one can

select A by minimising either M I S E or AM I SE. Taking the results of Section

3.7.7 as a basis, we recommend minimising the former. The theoretical expression

for MISE is given by (see Marron and Wand, 1992)

(3.41)
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where p = (Pl,P2, ... ,Pk) T, and Me (f = 0,1,2) is the k x k matrix having (i, j)

element equal to

The practical minimisation of (3.41) may be achieved through a version of the

smoothed cross-validation selector.

3.9 Concluding remarks

The estimation of the parameters in mixture distributions is one of the oldest

problems in the statistical literature. This chapter has systematically considered

the mixture of two normal distributions. In particular, it has summarised some

of the currently used estimation methods and has also provided a comprehensive

account of the theoretical and computational issues in integrated squared error

estimation. With this latter approach, a choice must be made for the scaling

of the weight function. This choice was addressed using the developments of

Chapter 2. Finally, these results were extended to the mixture of k (k > 2)

normal distributions.



Chapter 4

Sampling experiments

4.1 Introduction

The problem of estimating the parameters of a mixture of normal distributions

was considered in Chapter 3, with emphasis on the mixture involving two compo-

nents. This particular mixture has received substantial attention in the statistical

literature, resulting in the wide variety of estimation methods seen in the chapter.

This variety of applicable methods can be bewildering. To judge rapidly between

them, it is necessary to bear in mind accuracy, robustness, and ease of calculation.

The relative importance of these factors varies with circumstance, but they should

always be taken into account. Thus, for example, graphical inference may be dis-

missed on account of accuracy, whilst the perceived computational complexity of

the Bayesian approach may still prove too daunting for many people. However, it

is not immediately apparent how to choose from among the methods of:

1. moments;

2. maximum likelihood;

3. integrated squared error.

The purpose of this chapter is to examine the performance of these methods

for estimating the parameters of a mixture of two normal distributions. The

115
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chapter begins by introducing the main tools for assessing the performance of

an estimator, with details of these in the mixture of two normal distributions

being presented in the following two sections. The problem of simulating from

this mixture is considered in Section 4.5, and the importance of starting values

for maximum likelihood and integrated squared error estimation is then discussed.

Two stochastic optimisation methods are introduced in the following two sections,

and the computational details of the simulation study that follows are presented

in Section 4.9. A comparison of two selectors for the scaling of the weight function

in integrated squared error estimation is carried out next, and the results of the

simulation study are presented in Section 4.11. Finally, we present the results

of the simulation study when the true parameter values were used to start the

recursions.

4.2 Comparison tools

In investigating the behaviour of a parameter estimator, an analysis of its finite

sampling distribution is often undertaken in statistics. This analysis involves

deriving expressions for the expectation and variability of the estimator, quantities

which can also be used to decide among estimators.

More often the derivation of finite sampling distributions is difficult or in-

tractable, particularly for estimators with complicated structure. It is precisely

for this reason that statisticians have devised two important tools to facilitate the

study of these estimators. These are asymptotic theory and simulation.

The strength of asymptotic theory is that it provides an effective means of

examining the behaviour of an estimator, through general results such as the laws

of large numbers and the central limit theorem. The weakness of asymptotic

theory is that it only describes the behaviour of the estimator in large samples.

This behaviour does not necessarily coincide with what is happening in smaller

samples.

Simulation helps in overcoming some of the problems entailed in asymptotic
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theory. In short, simulation enables one to examine the behaviour of an estimator

for any sample size. Despite this important strength, the weakness of simulation

should also be recognised. This is that the lessons are limited to only the set of

examples that can be studied. These limits are of practical importance, because

very substantial effort is required to carry out even a moderate scale simulation

study.

Clearly, asymptotic theory and simulation can be used to complement each

other and so consequently this is the approach we have adopted below. The

strength of this approach is that one can gain much more from this than when

the same effort is devoted to either simulation or to complicated theoretical work.

4.3 Asymptotic theory

As noted in the previous section, a typical asymptotic analysis is based on repeated

sampling ideas, and aims to establish the consistency and asymptotic normality of

the estimator in question. These properties are a consequence of applying, respec-

tively, the laws of large numbers and the central limit theorem to an appropriately

derived sequence of random variables.

A common characteristic of the moment, maximum likelihood and integrated

squared error estimators is their well-developed asymptotic theory. In particular,

the consistency and asymptotic normality of each estimator can be easily derived

in a wide variety of distributions. However, in the case of a mixture of two normal

distributions the asymptotic theory is not so straightforward. A brief review of

past work related to this mixture is presented below.

1. We begin with the maximum likelihood (ML) estimator since it naturally

forms a basis for our comparisons. The derivation of the asymptotic distri-

bution of the ML estimator reduces to the calculation of the Fisher infor-

mation matrix I(8). Explicit evaluation of I(8) is not possible here and

several authors, including Hill (1963), Behboodian (1972), and Dick and

Bowden (1973), have considered approximate information matrices instead.
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A common finding of these approximations is that in some sections of the

parameter space very large samples may be needed for accurate parameter

estimation.

2. In parallel to the ML estimator, the derivation of the asymptotic distribution

of the integrated squared error (ISE) estimator reduces to the calculation of

the asymptotic covariance matrix ~(O). We indicated how this matrix can

be calculated in Chapter 3 (Section 3.7.3), but an effective comparison of

~(O) and T(O) may only be carried out numerically. It is clear at the outset

that the efficiency of the ISE estimator relative to the ML estimator will be

less than unity, but Bryant and Paulson (1983) report optimistic efficiencies

for the ISE estimator of the mixing proportion.

3. Finally, calculation of the covariance matrix for the moment estimator tends

to be restricted to Taylor expansion-based approximations (see, for example,

Robertson and Fryer, 1970). However, Tan and Chang (1972) and Fryer and

Robertson (1972), amongst others, have shown that the method of moments

(MM) is generally inferior to the method of ML for this problem.

In theory, the asymptotic results of the previous paragraphs suggest that the

ML estimator should always be used. In practice, these results need to be viewed

with some caution because they do not necessarily apply to smaller samples. This

issue is highlighted in simulations by Dick and Bowden (1973), where the sample

variances of the ML estimates often exceeded the estimated asymptotic variances

by several factors. Furthermore, asymptotic results disregard certain aspects, such

as ease of calculation and feasibility, which play an important role in the selection

of an estimator in practice.

The main tool for assessing the practical performance of an estimator is sim-

ulation. In the remainder of this chapter, we shall use simulation to examine the

performance of the above methods.
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4.4 Simulation details

When a simulation study is being designed, a compromise between two contra-

dictory issues must be reached. On the one hand it is reassuring to examine a

wide variety of examples, but on the other it is practical to keep the number of

examples small.

This compromise is very important in the selection of examples that can be

considered. In this study we appreciate the need to examine examples which

provide varying degrees of difficulty in the estimation of the mixture parameters.

The degree of difficulty depends on either the separation between the component

densities or the mixing proportion. It initially appears that a very large num-

ber of experiments might be necessary. Fortunately, we can significantly reduce

the number of experiments for two reasons. First, large degrees of separation

are not likely to be of much comparative value as all methods can be expected

to perform equally well. Secondly, parameter sets in which p 2: 0.5 need only

be examined. This is due to a phenomenon called "label switching" by Red-

ner and Walker (1984), which points out that the mixture densities evaluated

at 8 = (p,lh,al,/-L2,a2)T and 8 = (1- p,/-L2,a2,/-Ll,adT are necessarily identi-

cal. Consequently, attention shall be restricted to the experiments summarised in

Table 4.1.

Table 4.1: Summary Characteristics of Experiments

Experiment
Population Parameters Sample Number oj

a2 a~ Size Samplesp /-Ll 1 /-L2
1 0.5 -2 1 2 1 50 100
2 0.5 -1 3 1 1 50 100
3 0.5 0 9 3 1 50 100
4 0.8 -2 1 2 1 50 100
5 0.8 -1 3 1 1 50 100
6 0.8 -1 9 1 1 50 100
7 0.8 0 1 0 16 50 100
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The density functions corresponding to these experiments are shown visually in

Figure 4.1. These seven densities have been carefully selected because they cover

a wide spectrum of the possible mixture problems that may occur in practice.

It is, therefore, reasonable to expect that the lessons learnt from this simulation

study will be of wider applicability than to just the parameter sets studied here.

Figure 4.1: Probabili ty density functions corresponding to (reading from left-
right, top-bottom): (1) experiment 1; (2) experiment 2; (3) experiment 3; (4)
experiment 4; (5) experiment 5; (6) experiment 6; and (7) experiment 7.

In contrast, the sample size does impose a restriction on the simulation con-

clusions. It is worth mentioning that the primary purpose of this study was to

compare the small-sample characteristics of the three methods. Although this

may seem a paradox, small-sample characteristics are often examined in the lit-

erature for sample sizes in excess of 100 observations. However, it may be argued

that such sample sizes are larger than those that typically arise in practice. On
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the other hand, it was felt that in very small samples all methods might produce

bad results and no difference would be noticed. Judiciously a compromise was

reached by taking n = 50 throughout.

4.5 Random variate generation

For each experiment in Table 4.1, one hundred random samples of size n = 50

from the corresponding mixture distribution were needed. Nowadays, computer

programmes that simulate from a variety of distributions have been written and

are available in sources such as the IMSL and NAG libraries. However, it is

unusual to encounter library subroutines that simulate from mixture distributions,

even those with normal components. The following probabilistic meaning of the

mixture distribution function might therefore prove useful for this purpose.

Suppose X is a random variable with distribution function F(x), and let TIj

(j = 1,2) be a population with distribution function Fj(x). Furthermore, suppose

that E, is the event that X comes from population TIj with Pr(Ed = p and

Pr(E2) = 1-p. Now, assuming that TIl and TI2 are mutually exclusive populations,

we have

or, equivalently,

for any real number x.

In general, this means that one can simulate from F{x) by simulating from

Fl{x) with probability p, and from F2{x) with probability I-p. In this respect, the

normal mixture samples necessary for the experiments were generated as follows.

For each sample, fifty observations from the standard normal distribution were

generated (see, for example, Morgan, 1984, pp. 78-81). Each standard normal

variate was then appropriately transformed to either component 1 or component
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2, depending on whether an independent variate, distributed uniformly over (0,1),

was less than or greater than p. This approach to sampling from a mixture

distribution can be generalised to accommodate any number of components, and

does not, of course, depend on the component distributions being normal.

Furthermore, this approach allows one to keep track of the origin of each

observation. For each sample we can thus determine the mixing proportion and

estimate each component distribution separately. This would be equivalent to the

situation in practical applications where additional information exists to classify

the data. Hosmer {1973} showed that considerable gains in efficiency are possible

in these situations but occurrences of classified data are rare in practice.

4.6 Starting values

For either the ML or the ISE estimator to be used in practice, one must provide

starting values for their optimisation procedures. Clearly, the selection of starting

values is not important when the function to be optimised does not possess local

optima. Fowlkes {1979} observed that the selection of starting values is crucial in

ML estimation, while Hosmer {1973} and Woodward, Parr, Schucany and Lindsey

(1984) indicated that starting values are not that critical. The importance of good

starting values is not known in ISE estimation.

In order to examine the susceptibility of ML and ISE estimation to starting

values, we performed a preliminary simulation study. In particular, for a series of

samples of size n = 50, the ML and ISE optimisation procedures were initiated

from several starting points. The final parameter estimates were then obtained

and compared. We found that the optimisation procedures produced substantially

different estimates for several of the starting points for some samples, although

many starting points produced essentially the same estimates. This feature was

worse in ML estimation but demonstrated that in some samples good starting

points are important for both methods.

Selecting good starting values is not easy and there is no guarantee that a
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certain value will lead to the global optimum. A global optimum can only be

ensured by an extensive search of the parameter space, which can be very time-

consuming. Alternatively, a stochastic search method could be used.

Stochastic search methods have been designed to deal with the problem of

function optimisation in the presence of local optima. There are several meth-

ods to choose from and some of the methods are very sophisticated indeed. We

based our selection on accounts of well-developed theory and ease of application.

A method that satisfied both accounts was simulated annealing. In the follow-

ing section we outline the main steps of a simulated annealing algorithm for the

optimisation of continuous functions.

4.7 Optimisation using simulated annealing

Much work has been published on the theoretical aspects of simulated annealing.

This section provides a brief overview of this theory as well as an introduction

to the practical aspects of function optimisation using this approach. Additional

references are Kirkpatrick, Gelatt and Vecchi {1983} and Ingrassia {1992}; see also

Brooks and Morgan (1995). The name of the algorithm comes from the analogy

with the physical procedure of annealing, which consists of melting and then slowly

cooling a physical substance in search of the ground state.

Let H{x) be a real-valued function defined on a compact subset D of ]Rd,

and without loss of generality suppose the context is minimisation. The simu-

lated annealing algorithm is an inhomogeneous Markov process on D depending

on a positive parameter T such that, for each value of T, the corresponding ho-

mogeneous Markov process has the Gibbs distribution as its unique equilibrium

distribution:
exp[-H{x)/T]

71"T{X) = ID exp[-H(y)/T]dy'

From the physical analogy, the function H (e) is called energy and the parameter

XED.

T is the temperature.
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As T tends to 0 from above, it can be shown that 7rr(x) converges to a prob-

ability measure which is concentrated on the set of points of global minima for

H(x). Undoubtedly the most important phase of this process concerns the cool-

ing, especially at low temperatures. This process is dependent on time, and hence

we shall write T; instead of T.

One of the main drawbacks of the algorithm concerns its slow speed of conver-

gence. Although an optimal cooling schedule has been found, it is not normally

applied in practical problems since the convergence of such an algorithm is too

slow. Instead, many non-optimal cooling schedules have been proposed as a com-

promise between the speed of convergence and the probability that the algorithm

does not get stuck in a metastable state. We recall that a cooling schedule is the

following set of parameters:

1. an initial value Xo;

2. an initial temperature To;

3. a criterion for the choice of the point for the subsequent iteration;

4. a criterion for changing the current value of the temperature in between two

subsequent Markov chains;

5. the length N of each Markov chain;

6. a stopping criterion for the algorithm.

The simulated annealing algorithm repeats the following two steps N times

for each value of the temperature Tt.

Step 1 Generate a point y E D for the subsequent iteration.

Step 2 If H(y) ~ H(x) then we accept y as the new state of the Markov

chain at temperature Tt, otherwise we take y as the new state with

probability exp{ -[H(y) - H(x)]/Tt} and x as the new state with

probability 1 - exp{ -[H(y) - H(x)]/Tt}.
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Then, if the stopping criterion is not satisfied, we decrease the temperature, ac-

cording to a fixed rule, and repeat Steps 1 and 2 again N times. The difference

with respect to any deterministic search method comes from the acceptance, with

a fixed probability law, of a point in which the function H(x) has a value greater

than the previous one. In this way we can avoid getting trapped in a local mini-

mum.

The selection of the point y = (Yl, Y2, ... , Yd) T for the subsequent iteration is

quite important. Brooks and Morgan (1995) suggested a method, in which y is

chosen by first selecting one of the Yi (i = 1,2, ... , d) variables at random, and

then randomly selecting a new value for that variable within the bounds set for it

by the problem at hand. Thus y takes the same variable values as x except for

one.

Finally, the point in which the function H (x) has reached the smallest value

during the realisation of the algorithm is given as the simulated annealing solution.

4.8 Hybrid algorithm

A characteristic of the annealing algorithm is that it always converges to within

a neighbourhood of the global minimum and, furthermore, the size of this neigh-

bourhood can be reduced by altering the parameters of the algorithm. In most

cases we would like to find the global minimum to several decimal places. It is

clear that the annealing algorithm could produce results with such accuracy, but

that the execution time would be prohibitive. On the other hand, a deterministic

search method can produce solutions to any accuracy but can have considerable

difficulty in finding the correct solution. This suggests that a hybrid algorithm

would be worth consideration. This algorithm consists of two distinct compo-

nents. The first component, an annealing algorithm, is used to produce a starting

point for the second component, a deterministic search method.

Brooks and Morgan (1995) suggested an alternative approach, in which the

annealing component is stopped prematurely, after N, temperature reductions,
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and each of the points accepted at the final temperature, together with the best

point overall, are taken as starting points. The second component is then initiated

from each starting point, and the best solution generated from these points is given

as the hybrid solution.

This algorithm has been found by Brooks and Morgan (1995) to be both fast

and reliable for a range of functions and will be adopted for this work. The first

component of this hybrid algorithm may be regarded as a very sophisticated way

of selecting starting values. The quantity and quality of these starting values

is controlled by the cooling schedule of the annealing component. The cooling

schedule here considered can be described as follows:

1. Initial solution Oo-this is randomly selected in 9.

2. Initial value of the temperature To-we have set To = 10.

3. Length of each Markov chain N-we have adopted N = 200.

4. Rule for changing the temperature between subsequent Markov chains-we

have considered the simple exponential law Tn+l = pTn with p = 0.9.

5. Temperature reductions Nt-we have adopted N, = 100.

For the second component of the hybrid algorithm we designated the expecta-

tion-maximisation (EM) algorithm for the method of ML, and the Nelder-Mead

Simplex search method for the method of ISE. The EM algorithm was described in

Chapter 3 (Section 3.5.3). The Nelder-Mead Simplex search method is described

in, for example, Everitt (1987, pp. 16-20). In short, the method works by building

a simplex, that is, a polytope of d + 1 points where d is the dimension of the

problem, and expanding and contracting the simplex according to the Nelder-

Mead algorithm to search for a local minimum.

The computational details of these hybrid algorithms, together with those of

the MM are presented in the following section.
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4.9 Computational details

As indicated in Chapter 3 (Section 3.5.1), the computation of the MM estimates

requires a negative root of the ninth degree polynomial equation (3.5). Modern

iterative procedures can effectively locate the roots of any polynomial equation,

and so the MM estimates follow without much difficulty. Unfortunately, for some

combinations of sample data:

1. the nonic may have no negative roots;

2. the nonic may have more than one negative roots;

3. the MM estimates may not be admissible, that is, one of the conditions

p < 0, p > 1, 0"1 ~ 0 or 0"2 ~ 0 may exist.

In this work, the lack of uniqueness implied by the second difficulty was resolved

by choosing the set of estimates in closest agreement between the fitted sixth-

order moment and its sample counterpart. In the occurrence of the other two

difficulties, however, the computation of the MM estimates was classified as a

failure.

On the other hand, the ML estimates of the mixture parameters were computed

as follows. Starting at a set of initial estimates

the iterative calculations of the EM algorithm were repeated, until either of the

following conditions occurred:

1. the EM algorithm converged;

2. the estimates o(m) (m = 1,2, ... ) were inadmissible, that is, the standard

deviation of one of the components went to zero.

The EM algorithm was considered to have converged when the proportionate value

of the step size dropped below 10-4• If the EM algorithm failed to converge in the
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specified number of iterations, the estimates obtained in the last iteration were

taken to be the parameter estimates. The computation of the ML estimates would

be counted as a failure only if the second condition occurred for each starting value

produced by the annealing component of the hybrid algorithm.

Finally, the ISE estimates of the mixture parameters were computed as follows.

Starting at a set of initial estimates, the minimisation of the ISE function (3.18)

was carried out by the Nelder-Mead Simplex search method until:

1. the Simplex method converged;

2. the specified number of iterations was reached.

In either case, the estimates obtained in the last iteration were taken to be the

parameter estimates. The computation of the ISE estimates would be counted

as a failure only if inadmissible estimates were obtained from each starting point

produced by the annealing component of the hybrid algorithm.

In addition to initial parameter estimates, however, the method ofISE requires

a value for X, This parameter determines the scaling of the weight function in the

ISE function, which was shown in Chapter 2 to be quite important. Also shown

in the chapter was how this parameter could be selected in practice, and the

smoothed cross-validation selector was suggested for this purpose. The aim of the

following section is to examine the performance of the smoothed cross-validation

selector.

4.10 Comparison of two selectors for A

The smoothed cross-validation selector for ,\ was introduced in Chapter 2 (Section

2.11.2), and was discussed in detail in Chapter 3 (Section 3.7.8) within the context

of a mixture of two normal distributions. We shall now examine and contrast the

performance of this selector with that of an iterative selector.

The iterative selector proposed below is similar to the smoothed cross-validation

selector in that it minimises the mean integrated squared error (M [SE). The
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difference is that the iterative selector substitutes estimates for the unknown pa-

rameters in the M I S E rather than substitute a kernel estimator for the unknown

density. This approach is viable in the context of ISE estimation because there is

a priori knowledge of the parametric family describing the underlying population.

When the parametric family is the mixture of two normal distributions, the

M I SE is given by (3.14). In this case, the iterative selector may be described

as follows: first estimate 80 using (3.15) with a normal scale selector for '\; next,

substitute these parameter estimates into (3.14) and minimise with respect to >.;
and finally, update parameter estimates using (3.15) with the new ,\ and repeat

the cycle until convergence. If this iteration converges, then ,\ can be selected by

the iterative selector.

The comparison of the smoothed cross-validation and the iterative selectors

will be based on the simulated samples for the experiments of Table 4.1. Although

the performance of the resulting ISE estimator is the main concern, the results

of this section will be stated in terms of the selector distribution. This approach

is analogous to that of Park and Marron (1990), where the performance of the

kernel density estimator is stated in terms of the bandwidth distribution.

Figures 4.2 and 4.3 contain the results of the simulation study. For each ex-

periment, these figures depict the kernel estimates of the density of the smoothed

cross-validation and iterative selectors. The bandwidth used for these kernel esti-

mates was the normal scale selector, which seems reasonable in view of the limiting

normal distributions generally available. To attach additional insight to these es-

timates, the value for)' minimising the MISE evaluated at the true parameter

values is also depicted.

The performances of the smoothed cross-validation and the iterative selectors

were satisfactory in that they produced reasonable values for ,\ each time. How-

ever, the performance of the iterative selector was in a sense disappointing. This

selector makes use of the known distribution of Xl and was therefore expected to

produce better results than those produced by the smoothed cross-validation selec-

tor. In fact, this turned out not to be the case and the iterative selector tended to
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Figure 4.2: Kernel estimates of the density of the smoothed cross-validation se-
lector (solid lines) and the iterative selector (dotted lines) based on the samples
for (reading from left-right, top-bottom): (1) experiment 1; (2) experiment 2; (3)
experiment 3; and (4) experiment 4. The vertical lines show the values for A which
minimise the M I S E evaluated at the true parameter values.

undersmooth. On the other hand, the smoothed cross-validation selector generally

oversmoothed, but this at least has the merit of discouraging overinterpretation

of features which may be due to sampling variation. In addition the smoothed

cross-validation selector was considerably easier to apply since this selector did

not depend upon starting values.

We believe that these results (together with the practical advice of Wand and

Jones (1995, p. 86) that selectors based on the AM I S E tend to underperform

selectors based on the M I S E) warrant the use of the smoothed cross-validation

selector for the selection of A in ISE estimation. Accordingly, the smoothed cross-

validation selector will be adopted for this work.
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Figure 4.3: Kernel estimates of the density of the smoothed cross-validation se-
lector (solid lines) and the iterative selector (dotted lines) based on the samples
for (reading from left-right, top-bottom): (1) experiment 5; (2) experiment 6; and
(3) experiments 7. The vertical lines show the values for)' which minimise the
M I SE evaluated at the true parameter values.

4.11 Simulation results

The results of the simulation study on the methods of MM, ML and ISE will now

be presented, with the remainder of the section devoted to the discussion of these

results.

4.11.1 Experiment 1 (p = 0.5, J-ll = -2, al = 1, J-l2 = 2, fJ2 = 1)

The results based on the samples of experiment 1 are reported first. As indicated

in Table 4.1, one hundred samples from the corresponding distribution were gen-

erated. The estimation methods discussed in Section 4.9 were implemented in the
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aforementioned way to produce parameter estimates for each sample. Thus, the

computation of the MM estimates failed twice, whereas neither the computation

of the ML estimates nor the computation of the ISE estimates encountered any

failures.

The numerical details which are presented below have been based only on the

admissible parameter estimates. This approach is different to that of Quandt and

Ramsey (1978), in which the sample would be rejected and another sample gen-

erated if the computation of the estimates by any method failed. Their approach

however was not adopted here precisely so that we were able to investigate how

the remaining methods fared in the failure of a particular method. In Figure 4.4

we present the boxplots of the resulting parameter estimates.
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Figure 4.4: Boxplots of the method of moments (MM), maximum likelihood (ML)
and integrated squared error (ISE) estimates for the parameters p, JJI, 0"1, jJ2,

and 0"2 of experiment 1. The true parameter values were 0.5, -2, 1, 2, and 1,
respectively, and are shown in the boxplots as horizontal lines.

MM ML ISE

Lt.J

MM ML ISE



CHAPTER 4. SAMPLING EXPERIMENTS 133

As observed in the figure, the performances of the three estimators were com-

parable. For example, the means and variances of these parameter estimates

were essentially identical. As a result, there is little to choose amongst the three

methods, hence the MM may be preferred.

We have found it instructive to compare the distribution of the MM estimates

with the distributions of the ML and ISE estimates. The general shape of these

distributions can be inferred from the boxplots, but the commonly used diagnostic

technique is the histogram. Figure 4.5 depicts histograms of the estimates for the

parameters J-Ll and al obtained from each method.
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Figure 4.5: Histograms of the method of moments (left), maximum likelihood
(centre) and integrated squared error (right) estimates for the parameters J-Ll (top)
and al (bottom) of experiment 1. The true parameter values were -2 and 1,
respectively, and are shown in the histograms as vertical lines.

The shapes of the histograms are as expected. They are evidently of approxi-

mately "normal" shape and noticeably centred around the true parameter values.
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The histograms of the remaining parameters are totally analogous to those of Fig-

ure 4.5 and have been omitted. Such results provide an indication that for this

sample size and parameter set, the usual asymptotic approximations can be quite

accurate. Thus, in theory the ML method looks preferable.

Another issue we investigated was the impact the hybrid algorithm has had

on the ML and ISE parameter estimates. In order to assess this impact, the ML

and ISE optimisation procedures were initiated only once for each sample, with

the true parameters values as the starting values.

The optimisation procedures converged in a normal way for all the samples.

The convergence from the true parameter values was almost always to the same

parameter estimates obtained by means of the hybrid algorithms. In particular,

the ISE optimisation procedure (Simplex search method) converged to the same

parameter estimate in every sample; the ML optimisation procedure (EM algo-

rithm) failed to converge to the same parameter estimate twice. In both of these

cases, the EM algorithm converged to a parameter estimate which had a smaller

value of the likelihood function. This implies that the hybrid algorithm has been

very effective in this experiment.

On the other hand, we also investigated whether the hybrid algorithm was

needed for this experiment. This issue is of practical importance, because very

substantial effort is required, in terms of both programming and also CPU time,

in employing the hybrid algorithm.

In order to investigate this issue, the ML and ISE optimisation procedures

were initiated for each sample from several starting values. The final parame-

ter estimates were then obtained and compared. In general, the optimisation

procedures produced essentially the same estimates, which were identical to the

estimates previously obtained. This implies that good starting values are not that

important for this experiment, hence the longer CPU time required by the hybrid

algorithms cannot be justified.

In terms of practical performance, the main findings from experiment 1 may

be summarised as follows:
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1. the methods of moments, maximum likelihood and integrated squared error

provide comparable parameter estimates;

2. the usual asymptotic approximations can be quite accurate;

3. the choice of starting values does not appear to be crucial in maximum

likelihood and integrated squared error estimation.

4.11.2 Experiment 2 (p = O.5,j.l1 = -1,CT1 = V3,J.-l2 = 1,CT2 = 1)

At this point, we may wonder what it is about the mixture distribution of experi-

ment 1 that leads to accurate parameter estimates, and to what extent this useful

result will hold more widely. Previous work by Hosmer {1973} has given some

evidence that parameter estimation may be unreliable for sample sizes n :::;300

and values of (J such that IPI - P21 :::; 3min(0"1,0"2). The need for either large

samples or well-separated components has been noted by other authors, including

Day {1969}, Fryer and Robertson {1972}, and Hosmer and Dick {1977}.

In order to investigate the extent to which poorly separated component densi-

ties affect the performance of each method, mixture distributions involving vary-

ing degrees of separation need to be studied. We start by halving the degree

of separation (compared to Experiment 1) while keeping the mixing proportion

unchanged. Summary numerical details from fitting a mixture distribution which

fits this description can be found in Figure 4.6.

In contrast to experiment 1, a range of performance was now observed. Start-

ing from the frequency of failures, the MM experienced severe problems in this

experiment. In particular, the computation of the MM estimates failed a total of

28 times. On the contrary, neither the computation of the ML estimates nor the

computation of the ISE estimates encountered any failures. In this respect, the

hybrid algorithm has worked very well.

Turning to the values of the obtained parameter estimates, the performance of

the MM does not improve. This method performs poorly because the correspond-

ing estimates have the highest bias overall. For example, in Figure 4.6 observe
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Figure 4.6: Boxplots of the method of moments (MM), maximum likelihood (ML)
and integrated squared error (ISE) estimates for the parameters p, jl'l, 0"1, 11-2, and
0"2 of experiment 2. The true parameter values were 0.5, -1, 1.73, 1, and 1,
respectively, and are shown in the boxplots as horizontal lines.
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that the median of the MM estimates is generally further from the true parameter

value than the median of either the ML or the ISE estimates. Such results tend

to indicate that the MM is, in general, inadequate for estimating the parameters

of the present mixture distribution.

Concentrating on the performances of the ML and ISE estimators, of particular

importance were the samples in which the computation of the MM estimates failed.

In general, we found the performances of the estimators to be analogous, producing

parameter estimates which provided good fits to the sample distributions. For

example, Figure 4.7 shows a histogram of one such sample with the fitted mixture

densities superimposed. Also shown in the figure are Q-Q plots confirming the

adequacy of the fitted densities.
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Figure 4.7: Histogram (top) and Q-Q plots (bottom) based on a sample from
experiment 2 in which the computation of the MM estimates failed. The histogram
is overlaid with density functions fitted by maximum likelihood (solid line) and
integrated squared error (dotted line). The Q-Q plot on the left is for the density
fitted by maximum likelihood, and the Q-Q plot on the right is for the density
fitted by integrated squared error.

As observed in the figure, the fitted densities are in fair agreement with each

other. However, the differences between the fitted densities are considerably

smaller than the differences between the corresponding parameter estimates. In

fact, for the sample size and parameter set studied here, the variances of the

parameter estimators are so large that the parameter estimates are probably of

limited practical value, as also suggested by Leytham (1984). An indication of

the severity of this problem is provided in Figure 4.8. This figure presents the

histograms of the ML and ISE estimates for the parameters J-ll and al.

In addition to the high variability of the parameter estimates, there are two

features of the histograms that give reason for concern. The first feature regards
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their "lack of normality". This indicates a weak relationship between finite sample

and asymptotic properties. The weak relationship may be due to several reasons,

such as (1) the precision of the asymptotic approximation, (2) the smallness of

the sample size, (3) the presence of outliers amongst the estimates, or (4) the

acceptance of estimates that do not truly correspond to the global optimum.

The second feature, which is perhaps the more important of the two, regards

the number of parameter estimates in which one of the estimated standard devi-

ations was near zero (singularity). Such estimates have a long history in normal

mixture problems and have been associated with the presence of outliers, or the use

of unfavourable starting values (see, for example, Titterington, Smith and Makou,

1985, p. 94)· In order to eliminate the latter possibility, we employed a second

hybrid algorithm involving a very extensive annealing component. This annealing
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component, with parameters To, N, p, and N, set to the values 20, 500, 0.98, and

500 respectively, considered 250 000 points over the parameter space. The results

were surprising. A higher percentage of the ML estimates had converged to a

singularity, but the ISE estimates had not been adversely affected.

An insight into this performance can perhaps be obtained by regarding sin-

gularities as small but infinitely deep wells, as suggested by Brooks and Morgan

(1995). These authors noted that the annealing component will produce a sin-

gularity only if a randomly selected point falls deep within such a well, where

the algorithm cannot reasonably be expected to escape. In fact, we amend, the

annealing component will produce a singularity if a randomly selected point falls

deep within such a well, where it is improbable that the algorithm will find a better

solution. This is because at the end of the annealing component we take each of

the points accepted at the final temperature, together with the best point overall,

as starting points. Hence the probability of the annealing component producing

a singularity is much higher than what was anticipated by Brooks and Morgan

(1995), and increases considerably with the number of new points considered. We

believe this explains the performance of the second ML hybrid algorithm.

In contrast, this problem does not arise for the ISE hybrid algorithm since the

ISE function does not contain singularities. To illustrate this, consider Figure 4.9,

which displays the ISE function, as a function of al, for a particular sample from

experiment 2.

As observed in the figure, there is a well-defined minimum near al = 0.8.

However, the main message of the figure is that as al -t 0, the value of the ISE

function is not affected. This explains the performance of the second ISE hybrid

algorithm.

In terms of practical performance, the main findings from experiment 2 may

be summarised as follows:

1. the method of moments is, in general, inferior to the methods of maximum

likelihood and integrated squared error;



CHAPTER 4. SAMPLING EXPERIMENTS

~.---------------------------------------------------------.
9

o
Lt)

9

C\I
io

9

10"-7 11Y'-4 10"-3
sigma_1

1()A()11Y'-2 1IY'-11()A-6 11Y'-S

Figure 4.9: The integrated squared error function (3.18) evaluated at p = 0.5,
/11 = -1, /12 = 1, a2 = 1, and A = 0.73 for a sample from experiment 2.

2. the usual asymptotic approximations can be quite inaccurate;

3. good starting values are substantially easier to find for integrated squared

error than for maximum likelihood estimation.

4.11.3 Experiment 3 (p = 0.5,J.Ll = 0,0'1 = VS, J.L2 = 3,0'2 = 1)

The results of experiments 1 and 2 are consistent with the intuitive idea that

decreasing the separation between the component densities produces a deteriora-

tion in the results for all methods. Of course, some methods were less affected

than others and in real terms the ISE method performed best and the method

of moments worst. However, it would be presumptuous to evaluate each method

without additional empirical evidence. The numerical details which are presented

below have been obtained from experiment 3.

140
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As usual, the MM exhibited a very high failure rate. More specifically, the

computation of the MM estimates failed in 21 cases. On the contrary, neither

the ML nor the ISE hybrid algorithms produced any failures. This is a typical

characteristic of the hybrid algorithm.

In addition to the high failure rate, the MM estimates, when they existed,

were generally inferior to either the ML or the ISE estimates. This is illustrated

in Figure 4.10 below, where the MM estimates are shown to have the highest bias

overall. As commented in the previous section, such results indicate that the MM

is also inadequate for estimating the parameters of this mixture distribution.
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On the other hand, the performances of the ML and ISE estimators were com-

parable. In fact, based on the sample variances of these estimators it is difficult
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to choose one estimator rather than another. However, if ease of computation is

an issue, then the ISE estimator may be preferred since it is less dependent upon

good starting values. In particular, when the EM algorithm was initiated from

the true parameter values, the resulting ML estimates differed to the estimates

obtained by means of the hybrid algorithm in 17 cases, in all of which it was

the EM algorithm estimates that had a smaller value of the likelihood function.

The corresponding number of cases for the ISE estimates was just 9; in these

cases, the Simplex search method converged to a parameter estimate which had a

greater value of the integrated squared error function. Equivalent conclusion con-

cerning the comparison of the methods were obtained when other less favourable

parameter values were used as starting values.

This implies that (1) the hybrid algorithm was also effective for this experi-

ment, and (2) good starting values are more important in ML than in ISE esti-

mation. Since the choice of good starting values is not easy, we believe that the

latter result warrants the use of the ISE method.

Finally, we have found it instructive to compare the performances of the ML

and ISE estimators when the true parameter values were used to start the re-

cursions. Figure 4.11 presents the boxplots of the resulting parameter estimates.

As observed in the figure, the performances of the ML and ISE estimators are

still very comparable, and this is consistent with the simulation results to be

subsequently presented in Section 4.12.

In terms of practical performance the main findings from experiment 3 may

be summarised as follows:

1. the method of moments generally underperforms the methods of maximum

likelihood and integrated squared error;

2. the methods of maximum likelihood and integrated squared error provide

comparable parameter estimates;

3. the choice of starting values is more important in maximum likelihood than

in integrated squared error estimation.
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Figure 4.11: Boxplots of the maximum likelihood (ML) and integrated squared
error (ISE) estimates for the parameters p, /-tl, aI, /-t2, and a2 of experiment 3
derived by using the true parameter values. The true parameter values were 0.5,
0, 1.73,3, and 1, respectively, and are shown in the boxplots as horizontal lines.

4.11.4 Experiments 4-7 and evaluation

As indicated in Section 4.4, the difficulty in the estimation of the mixture param-

eters depends on the separation between the components and the mixing propor-

tion. Experiments 1-3 examined the performances of the methods under varying

degrees of separation between the two components. Experiments 4-7 then exam-

ine the performances of the methods under changes in both separation and mixing

proportion.

In general, the patterns found in experiments 1-3 were also present in these

experiments. For this reason we present only a limited summary of our results.

The frequency of failures in the computation of the MM estimates is given in
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Table 4.2. The table exhibits a very high failure rate for the MM. However,

it should be recognised that no method can be effective in estimating mixture

parameters every time. To put the failure rate for the MM in perspective, the

number of singularities produced by the ML method (i.e., one of the estimated

component standard deviations a1 or a2 was less than 0.1) and the number of

times a component standard deviation endpoint was approximately hit by the

ISE method (i.e., one of a1 or a2 was equal to zero to 4 or 5 significant figures)

are also included.

Table 4.2: Simulation details of experiments 1-7

Experiment
Number of

Failures (MM) aj < 0.1 (ML) aj ~ 0.0 (ISE)
1 2 0 0
2 28 22 8
3 21 1 0
4 7 1 0
5 31 26 20
6 36 14 14
7 11 6 8

These details for the methods of ML and ISE do not correspond to failures in

the computation of the parameter estimates, and hence are not totally comparable

to the MM failures. However they can be viewed as difficulties encountered by

these methods, and so Table 4.2 can be used as a basis to compare the three

methods. Based on these results, it is clear that the method of ISE had the best

overall performance and the MM the worst.

Additional information about the performance of each method is provided in

Figures 4.12-4.15. These figures present the boxplots of the MM, ML and ISE

parameter estimates obtained in experiments 4-7 respectively.
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As observed in the figures, a range of performance has emerged. Perhaps

the simplest way to relate these three methods is by counting the proportion of

cases for which estimates from one method were closer to the population value

than estimates from another method. This involved 3 pairwise comparisons per

parameter per experiment, where each comparison provided an estimate of

(4.1)

for i =f:. j. Here the subscripts i, j E {MM, ML, ISE} denote methods whilst the

subscript k E {I, 2, ... , 5} denotes an element of 8 = (p, Mb aI, M2, a2) T so that,

for example, if i = MM, j = ML, and k = 1 the proportion (4.1) becomes

In Table 4.3 we report the frequency of rankings over the 35 possible comparisons

of these proportions.

Table 4.3: Frequency of rankings for experiments 1-7

Rank
Method

1 2 3
MM 8 3 24
ML 10 16 9
ISE 17 16 2

The comparisons of Table 4.3 have been based on the samples from experiments

1-7 in which the computation of the MM estimates was successful. Although this

has lead to an overly optimistic assessment of the MM, it exhibited the worst over-

all performance. This is consistent with what has been reported in the literature

(see, for example, McLachlan and Basford, 1988, p. 4) about the performance of

the MM.

Of the ML and ISE methods, the ML method was better in only 10 of the
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35 possible comparisons. To provide insight into what affects their relative per-

formance, several individual cases were examined in detail. In most cases, the

ML and ISE estimates gave rise to densities which were of nearly equal quality, as

observed in Figure 4.7. A difference in performance unfolded when either estimate

involved a value of less than 0.1 for one of the standard deviations. A feature of

all the estimates falling in this category was that the value of the mixing propor-

tion was either very small (i.e., less than 10%) or very large (i.e., greater than

90%). A second feature exclusive to the ISE estimates was that almost all of

these very small standard deviations were actually equal to zero to 4 or 5 signifi-

cant figures. In other words, the ISE method visually fitted a "single-component"

mixture rather than a two-component mixture. This feature was not common

amongst the ML estimates for the following reason.

The ML estimator often interpreted an extreme observation as being the only

sample value from one of the populations with the remaining observations be-

longing to the other. The estimator would therefore fit a two-component mixture

with one component centred on the extreme observation and the other weighted

in favour of the remaining observations. This illustrates the lack of robustness of

the ML estimator.

Unlike the ML method, the ISE method places direct emphasis on the robust-

ness of the resulting estimator. This implies that observations assessed as atypical

are automatically given reduced weight in the computation of the parameter es-

timates. Thus, mixture distributions involving components centred on extreme

observations are rarely fitted. In addition to robustness, the ISE method is not

troubled by singularities. This was shown graphically in Figure 4.9, where we

observed that letting 0"1 ~ 0 did not affect the ISE function. This implies that a

single-component mixture would be fitted only if the parameter set minimising the

ISE function involved an approximately zero standard deviation. Visual insight

into these effects can be obtained from Figure 4.16, whereas an indication of the

frequency of singularities and single-component mixtures in experiments 1-7 was

given in Table 4.2.
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Figure 4.16 suggests that the ML estimates are likely to be more variable than

their ISE counterparts. The results of the simulation study verify that this is

indeed the case, particularly when the estimation of the parameters was difficult.

These cases account for the Table 4.3 superiority of the ISE method.

A problem common to both ML and ISE methods is that for the sample sizes

and parameter sets considered here the variances of the parameter estimators

were very large. This feature may well be due, in general, to the presence of a few

outliers among the estimates and was also observed by Leytham {1984}. In fact,

it is precisely for this reason that comparisons in termS of the proportions (4.1)

and not mean squared errors were carried out in Table 4.3.

In terms of practical performance, the main findings from this simulation study

may be summarised as follows:

1. the method of moments is, in general, inferior to the methods of maximum

likelihood and integrated squared error;
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2. for a sample size not greater than 50, the usual asymptotic approximations

can be quite inaccurate;

3. in maximum likelihood, finding a good choice of starting value is more im-

portant, yet substantially more difficult, than in integrated squared error

estimation;

4. partly as a consequence of points (2) and (3) above and partly as a conse-

quence of its robustness against outliers, the method of integrated squared

error is superior to the method of maximum likelihood.

4.12 Simulation results when the true parame-

ter values were used to start the recursions

In the preceding section, the ML and ISE estimates were obtained by means

of the hybrid algorithm, since the true parameter vales were assumed unknown.

While this is most appropriate in practice, it is also appropriate to investigate the

impact the hybrid algorithm has had on the relative performance of the ML and

ISE methods. This is a two-fold investigation consisting of the impact of

1. an extensive hybrid algorithm;

2. a limited hybrid algorithm.

Concerning the impact of (1) above, we do not feel motivated to investigate this

further since, as observed in experiment 2, an extensive hybrid algorithm generally

deteriorates the performance of the ML estimator. However the impact of (2)

would be worth investigation. This is because in many practical applications

limited hybrid algorithms may be the ones of choice for reasons of economy, in

money, time, and effort. In this respect, we decided to initiate the ML and ISE

optimisation procedures only once, with the true parameter values as the starting

values. We recognise that this is likely to lead to an overly optimistic assessment

of the performance of either estimator, but this does not matter here since we are



CHAPTER 4. SAMPLING EXPERIMENTS 153

only interested in their relative performance. The frequency of failures and some

additional details for the ML and ISE methods are presented in Table 4.4 below.

For comparative purposes, the frequency of failures for the MM is also included.

Table 4.4: Failure details of experiments 1-7 when true parameter values were
used to start the recursions

Number of
Experiment MM ML ISE

Failures Failures O-j < 0.1 Failures aj ~ 0.0
1 2 0 0 0 0
2 28 0 4 0 7

3 21 0 0 0 0
4 7 0 0 0 0
5 31 4 3 0 16
6 36 1 4 0 15
7 11 2 4 0 3

As observed in the table, the computation of the ML estimates occasionally

resulted in a failure. In addition to failures, the ML estimator was prone to

singularities despite the fact that the true parameter values were used to start the

recursions. In contrast, the computation of the ISE estimates did not result in any

failures. However the ISE estimator did fit several single-component mixtures. On

the other hand, in these cases the data may be such that a mixture of two normals

is not a plausible model and the ISE estimator is pointing this out. Nevertheless,

even if these cases are regarded as failures, the failure rate of either the ML or the

ISE method was appreciably lower than that of the MM.

From the point of view of the obtained parameter estimates, the numerical

details of this simulation study are summarised in Table 4.5. This table shows

the frequency of rankings of the mean squared errors of the MM, ML and ISE

estimates for the parameters of the mixture distributions in the seven experiments.

In parallel to Table 4.3, the comparisons of Table 4.5 have been based on the

samples in which the computation of all three estimates was successful. In fact,
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Table 4.5: Ranking details of experiments 1-7 when true parameter values were
used to start the recursions

Rank
Method

1 2 3
MM 7 3 25
ML 15 14 6
ISE 13 18 4

these were mainly the samples in which the computation of the MM estimates

was successful. Nevertheless, the performance of the MM estimator, as judged

by these comparisons, was substantially inferior to that of either the ML or ISE

estimator. These conclusions are consistent with what has already been observed

regarding the inadequacy of the MM to fit mixture data.

Concentrating on the performance of the ML and ISE estimators, the relation-

ship between them was reversed compared to the relationship observed in Section

4.11. In this case, the ML estimator exhibited a better overall mean squared error

performance than did the ISE estimator. Similar conclusions were reached by

examining the overall proportion by which the ML method produced estimates

closer to the true parameter values than the ISE method. However, the difference

between the two methods was seldom large and the superiority of the ML method

was not completely uniform. Furthermore, as indicated in Section 4.11, the ISE

method is more robust against outliers and less dependent upon good starting val-

ues than the ML method. In addition, the ISE method is considerably easier to

apply in that when good starting values are needed, they are substantially easier

to find. In practice, therefore, we recommend fitting a mixture of two normal dis-

tributions by the ISE method, particularly with samples with outliers or a small

number of observations.



Chapter 5

Least-squares transform

estimation

5.1 Introduction

A general introduction to minimum distance estimation involving integral trans-

forms was given in Chapter 1, with emphasis on the integrated squared error

method. This method was found to be an attractive alternative to maximum like-

lihood possessing appealing statistical properties. In particular, the integrated

squared error estimator was shown to be consistent, asymptotically normal, and

robust against outlying observations. However, the asymptotic efficiency of the

estimator has been shown by Heathcote {1977} to be generally less than unity

and, furthermore, the weight function W(t;'\) was open to choice. In the general

case, the efficiency of the integrated squared error estimator will be a function of

W(t; ,\), and presumably W{t;'\) should be chosen so as to maximise this. Unfor-

tunately, the complicated dependence of the efficiency on W(t;'\) suggests that

this ideal solution is not practicable. This has led to the mean integrated squared

error developments of Chapter 2.

Aside from efficiency and mean integrated squared error considerations, com-

putational complexity may be the most important factor in the choice of weight

function. The type of weight function leading to the greatest degree of numerical

155
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simplicity is a monotonic non-decreasing step function. This chapter will investi-

gate some properties of minimum distance estimators which are based on integral

transforms and step weight functions. The chapter begins with the motivation

for step weight functions, with the moment generating function method being

introduced and applied in Sections 5.3-5.4. Two practical issues in the general

application of this method are considered in the following two sections, whilst in

Sections 5.7-5.9 we introduce three extensions of the moment generating func-

tion method (the preferred moment generating function method, the modified

moment generating function method, and the q-L method). Finally, we illustrate

the performance of the q-L method for estimating the parameters of a Cauchy

distribution.

5.2 Motivation for step weight functions

In the context of minimum distance estimation involving integral transforms, it

was noted in Chapter 1 that the most commonly used weight functions divide into

two basic types:

1. monotonic non-decreasing continuous functions;

2. monotonic non-decreasing step functions.

A comprehensive account of the theoretical and practical issues in estimation

utilising the first type of weight function was presented in Chapters 1-4. In

general, continuous weight functions seem to produce sensible results.

However, there are three reasons one might want to select a step rather than

a continuous weight function. First, the numerical computation of the distance

function (1.5) is not generally straightforward when continuous weight functions

are used. Of course, one view of current statistical modelling is that intractable

distance functions, or likelihoods can be submitted to numerical analytical black-

boxes which, with the aid of sophisticated computers, will readily provide param-

eter estimates and measures of error. However, it is the experience of Morgan
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{1998, personal communication} that such black-boxes do not always work, and

this may lead to promising directions for research being abandoned.

Secondly, there could arise applications in which it is more efficient to use

a step rather than a continuous weight function. One such example is the nor-

mal distribution discussed in Chapter 1 (Section 1.7), where the weight function

W(t; A) = s: e->.2y2 dy was used. In particular, we found that the efficiency of

the resulting estimator improved with increases in A. As A increases, this weight

function approaches the shape of a step function, as illustrated in Figure 5.1 below.
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Figure 5.1: The weight function W(t; A) = r; e->.2y2 dy with (reading from left-
right, top-bottom): (1) A = 1; (2) A = 4; (3) A = 8; and (4) A = 16.

Thirdly, the attraction of being able to obtain explicit estimators might lead

one in some applications to prefer step to continuous weight functions. One such

example is the stable laws, in which a step weight function enabled Press {1972}

to obtain explicit parameter estimators.
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For these reasons it is important to consider minimum distance estimation

utilising step weight functions. This is the approach we have adopted in this

chapter.

5.3 The moment generating function estimator

Let {F(X; 8) : 0 E E>} again be a family of distribution functions indexed by

the parameter vector 0 = (Ol,02, ... ,Op)T, and suppose that X1,X2,,,,,Xn is a

random sample from some population whose distribution function is a member

of this family with parameter vector 00, In Chapter 1 we considered parameter

estimation based on the empirical transform Gn(t) = n-1L:~=l g(t, Xj), which

involved minimising the integral

~[Gn(')' G(.; 8)J = [IGn(t) - G(t; 0)12 dW(t) (5.1)

with respect to O. This integral may be regarded as a measure of the deviation be-

tween Gn(t) and the transform G(t; 0) = I~oog(t, x) dF(x; 0), which corresponds

to F(x; 8). Previously, the weight function W(t) was a monotonic non-decreasing

continuous function. However, for the rest of this section we shall assume it is a

step function with equal increments at the points tj (j = 1,2, ... ,p) in T. As a

result, the integral in (5.1) becomes

p

~[Gn(. ),G(.; 8)J ex:L IGn(tj) - G(tj; 8)12•
j=l

The range of possible functions g(t, x) is much as it was in Chapter 1 (Section

1.3). Since in this method it is customary to employ real-valued functions, a

typical choice for g(t, x) is g(t, x) = exp(tx). Then G(t; 8) and Gn(t) are the

moment generating function (mgf) M(t; 8) = J exp(tx) dF(x; 0), when it exists,

and the empirical mgf Mn(t) = n-1 E;=l exp(tXj) respectively.

The resulting estimator (called by Quandt and Ramsey (1978) the moment
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generating function estimator) is defined as follows:

Definition 5.1. The moment generating function (MGF) estimator, 8, for 80 E

e ~.w, is the value of 8 which minimises

p

5(8; t) = L[Mn(tj) - M(tj; 8)]2
j=l

(5.2)

Accordingly, parameter estimation by way of (5.2) may be effected through

consideration of the normal equations

~8M(tj;8)[ () ('8)]-~ 80 Mn tj - M tj, - 0,
j=l k

k = 1,2, ... ,p, (5.3)

or, equivalently, by solving the system of equations

(5.4)

for 8, if such a solution exists. Subject to the existence and uniqueness of this

solution, (5.4) demonstrates that the moment generating function estimator es-

sentially equates the empirical and theoretical moment generating functions at

the points tj (j = 1,2, ... ,p). This has the intuitively appealing feature of a rel-

atively easy computation problem to overcome. On the other hand, the resulting

estimator suffers from arbitrariness in the choice of these points.

This discussion indicates some of the criteria involved in the choice of t. Most

importantly, the points tj (j = 1,2, ... ,p) must satisfy the requirement that the

system (5.3) should be non-singular. In addition, values of t which cause M(t; 8)

to become computationally intractable need to be avoided. Further consideration

of how to select t must be preceded by a discussion of the properties of the

resulting estimator. These properties are subject to certain regularity conditions,

and these, along with others which will be required later in this chapter are listed

below.
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5.3.1 Regularity conditions

Let {F(x; 9) : 8 E El ~ RP} be a family of distribution functions, and suppose

that the moment generating function M(t; 9), which corresponds to F(x; 8), exists

for all t E T. If, for t = (tI' t2, ... , tq)T in T" (q 2: p), we define the q x p matrix

K(8) with (i,j) element
..(9) _ aM(ti; 8)

K~J - ao. '
J

and the q x q matrix 0(6) with (i, j) element

then the properties of the moment generating function-based estimators require

the following conditions:

1. El is an open rectangle;

2. M(t; 8) is continuously differentiable (in 8) at 8 = 80;

3. if q = p then the matrix K(6) is invertible at 8 = 80;

4. the matrix K(8) T K(8) is invertible at 8 = 80;

5. the matrix 0(8) is invertible at 8 = 80;

6. the matrix K(8)TO(8)K(8) is invertible at 8 = 80,

We remark that conditions 3-6 will hold very generally provided that the points

tj (j = 1,2, ... , q) in T are non-zero and distinct.

5.3.2 Properties of the moment generating function esti-

mator

The principal asymptotic properties of an estimator are consistency and asymp-

totic normality, with a computable covariance matrix. For the moment generating

function estimator, these properties have been established by Quandt and Ramsey
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(1978). In particular, in the context of a mixture of two normal distributions (so

that conditions 1-3 are satisfied), they presented:

Theorem 5.1 (Quandt and Ramsey, 1978). Given a set of non-zero and dis-

tinct points tj (j = 1,2, ... ,p) in T, the moment generating function estimator,

8, for 00 E e ~]RP is strongly consistent and

where

(5.5)

In this expression, K (8) is the p x p matrix whose (i, j) th element is

and 0(0) is the p x p symmetric matrix whose (i, j) th element is

Theorem 5.1 demonstrates that the asymptotic covariance matrix of the mo-

ment generating function estimator is, in principle, straightforward to calculate.

This gives it an advantage over the integrated squared error estimator, whose

asymptotic covariance matrix is often intractable.

The robustness properties of an estimator are generally described through

the behaviour of its influence function, as noted in Chapter 1. This function

examines the response of the estimator to an additional observation f For the

moment generating function estimator, and under conditions 1-3, Campbell (1993)

presented the following theorem:

Theorem 5.2 (Campbell, 1993). Given a set of non-zero and distinct points

tj (j = 1,2, ... ,p) in T, the moment generating function estimator, 8, for 00 E
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E> ~ ]RP has joint influence function

(5.6)

where K (B) is the p x p matrix whose (i, j) th element is

and "T(~; B) is the p x 1 vector whose ith element is

It is clear from Theorem (5.2) that the ith (i = 1,2, ... ,p) individual influence

function for the moment generating function estimator may be expressed as

p

I F(~; Oi) =L~ij (Bo)[exp(tj~) - M(tj; BD)],
j=l

(5.7)

where ~ij(B) is the (i,j)th element of K-l(8). Since (5.7) is not bounded in ~,

the moment generating function estimator cannot be robust over the entire real

line. This is in contrast with the integrated squared error estimator.

5.3.3 Selecting a value for t

The moment generating function method requires a value for t before it can be

implemented. There seems to be no clear-cut way for selecting t, and as a result

several practical approaches have been proposed. Some of the possibilities include:

1. using cross-validation (see Laurence and Morgan, 1987a, b);

2. maximising the likelihood function subject to the constraints imposed by

(5.4) (see Laurence, Morgan and Tweedie, 1987; Laurence and Morgan,

1987a, b);
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3. minimising a measure of the asymptotic covariance matrix E( (0) (see Read,

1981; Schmidt, 1982; Ball and Milne, 1996);

4. searching only along, or close to, the "diagonal" line i, = t2 = ... = tp (see

Tweedie, Zhy and Choy, 1995; Yao and Morgan, 1999).

The four approaches above should, in theory, provide a reasonable value for

t in many situations. In practice, they may be criticised as follows. The first

approach may involve extensive numerical computations. In the second, the like-

lihood function may be difficult to produce, while the third possibility may not

be suitable for small samples. Finally, in the last approach it is not clear which

criterion is being optimised. In fact, based on extensive empirical evidence it

has been related by Yao and Morqas» (1999) to the approach of minimising the

determinant of E(6).

The moment generating function method can be employed for parameter esti-

mation in any distribution family having a closed form moment generating func-

tion, as illustrated in the following section. However, the greatest utility of the

method may be with families more complicated than simple location-scale models

(see, for example, Quandt and Ramsey, 1978).

5.4 Application to the normal distribution

Let Xl, X2, ••• ,Xn be independent, identically distributed random variables from

a normal distribution with mean f.L and variance a2, and suppose that 9 = (/-l, a2) T

is unknown. The moment generating function of Xl is

and, for given t = (tl' t2) T in ]R2, we may use the solution of

(5.8)
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to estimate O. It is straightforward to verify that if t2 1= t, and tj 1= 0, then these

equations result in the explicit estimators

(5.9)

The limits of these estimators as t2 ~ tl or tj ~ 0 (j = 1,2) can be evaluated by

l'Hopital's rule so that, for example, as t2 ~ t1 these estimators converge to

(5.10)

where M~I)(t) denotes the derivative of Mn(t).

Figure 5.2 depicts the moment generating function estimators of J.L and a2 for a

random sample of size n = 50 from a standard normal distribution. As observed

in the figure, the estimators depend upon tl and t2, and this problem will be

considered later in this section.

The asymptotic distribution of the moment generating function estimator, 8,
can be obtained from Theorem 5.1. We find that ni/2(8 - 8) is asymptotically

normally distributed with mean vector zero and covariance matrix I:(O), where

the elements of I:(O) are given by (t2 1= tI, tj 1= 0)

In parallel to the estimators, the limits of these elements as t2 ~ t1 or tj ~ 0

can be evaluated by l'Hopital's rule. We find, for example, that as t2 -+ t1 these
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Figure 5.2: Perspective view (top) and contour level-plot (bottom) of the moment
generating function estimator for fL (left) and a2 (right) based on a random sample
of size n = 50 from a standard normal distribution.

elements become

au(8) = 4t12(e0'2t~ - 1) - 3a2eu2t~ + a4tieu2ti

a12 (8) = -4t13 (e0'2ti - 1) + 4a2t11 eu2ti + 2a4tl eu2ti

a22(8) = 4t14(e0'2ti - 1) - 4a2t12e0'2ti + 4a4e0'2ti.

The Fisher information matrix for a single observation is given by (1.19) so

that, for example, the asymptotic efficiency of jl is

Note that this expression does not depend on u. Figure 5.3 then depicts the
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asymptotic efficiency of p, for a normal distribution with (J2 = 1. As observed in

the figure, the efficiency is generally very high.
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Figure 5.3: Perspective view of the asymptotic efficiency of p, when (J2 = 1.

The joint influence function for the moment generating function estimator is,

from Theorem 5.2, given by (t2 #- tl, tl #- 0, t2 =1= 0)

It is instructive to evaluate this influence function at the standard normal distri-

bution, as the standard normal has been in this work a point of reference. Figure

5.4 provides the individual influence functions for iJ with tl = 0.1, t2 == 0.2, and an

extended range of ~ values. The centre portion is most informative in comparison

with Figure 1.3. In particular, it illustrates that the moment generating function
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Figure 5.4: Influence functions for the moment generating function estimators p,
(left) and (j-2 (right) with tl = 0.1 and t2 = 0.2 over ~ E [-10,10] (top) and
~ E [-20,20] (bottom). The influence functions are evaluated at the standard
normal distribution.

estimator is less robust than the integrated squared error estimator. The outer

portions illustrate that the influence functions are not bounded in ~.

We finally consider the selection of suitable values for tl and t2' One possibility

is to use the second approach of Section 5.3.3. In this approach, the likelihood

function

is considered as a function of 8, given by (5.9), and maximised with respect to

t = (tl' t2) T. When L( 8) was maximised with respect to t, we found that the

optimum value often resulted from t ~ (0,0) T. We investigated this result further

by means of a simulation experiment. In particular, one hundred samples of sizes

25, 50 and 100 from a standard normal distribution were generated and, for each
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sample, the value t = (iI, i2)T which maximised L(8) was obtained. The results of

the experiment are summarised in Table 5.1 below. We see from this experiment

that t ~ (0,0) T in far more than a single instance, and we shall comment on this

later in Section 5.6.

Table 5.1: An illustration of the constrained maximum likelihood approach applied
to the standard normal distribution

Mean
Sample size

n = 25 n = 50 n = 100

tl 3 X 10-4 -6 X 10-5 3 X 10-4

IiI - i21 1x 10-3 6 X 10-4 9 X 10-4

Alternatively, we may use the third approach of Section 5.3.3. Here we select

t by minimising some measure, typically the determinant, of the asymptotic co-

variance matrix ~(8). In the present context, the determinant of E(8) is given

by

and is minimised with respect to t at t = (0,0) T. The result that tl = t2 at

the optimum supports the theory that "diagonal optimisation", as defined in

point (4) of Section 5.3.3, occurs as a minimum-variance criterion. This diagonal

optimisation result has been observed more generally and for other models (see,

for example, Schmidt, 1982), and implies that we can reduce a p-dimensional

search of an optimum t to a one-dimensional problem. However, it also renders

the system of normal equations (5.3) singular, and we consider this further in the

next section.
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5.5 Limiting forms of the moment generating

function estimator

The moment generating function estimator essentially equates empirical and the-

oretical moment generating functions for a set tj (j = 1,2, ... ,p) so as to give a

system of equations to solve for the parameters. Clearly, the set must satisfy the

requirement that the system is non-singular. We shall now demonstrate, for the

case p = 2, how the moment generating function estimator may be derived when

this requirement is not satisfied. This can occur in the three ways:

2. t, -+ 0;

These three cases will now be considered in turn below.

Let 6 E E> be the parameter vector, and consider initially the situation in

which t2 -+ tl. If the moment generating function estimator with tl =I=- t2 has

an explicit form, then we may use l'Hopital's rule to evaluate the limit of the

estimator as t2 -+ tl' This approach was illustrated in Section 5.4. Alternatively,

or if an explicit solution does not exist, we may evaluate this limit in the following

way. Let t2 = tl - e so that the estimation equations are, from (5.4),

Mn(td = M(tl; 6)

Mn(t1 - c) = M(tl - s; 8).

(5.11)

(5.12)

For any value of t E T, we can write down the Taylor series expansions

Mn(tl - c) = Mn(tl) - cM~l)(tl) + ~c2M~2)(tl - cd, 0 < Cl < c (5.13)

M(tl - c; 8) = M(tl; 8) - cM(I) (tl; 8) + ~c2M(2) (tl - C2;8), 0 < C2 < e,

(5.14)
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where the superscript denotes the order of differentiation with respect to t. Sub-

tracting (5.14) from (5.13) gives

Mn(t1 - c) - M(tl - s; 9) = Mn(td - M(tl; 9) - c[M~l)(td - MCl)(tl; 9)]

+ ~c2[M~2)(tl - cd - M(2)(tl - C2; 9)].

(5.15)

Substituting (5.11) and (5.12) in (5.15), and dividing through by e gives

which, in the limit, as c -+ 0, becomes

provided the second derivatives are bounded; this will certainly be the case if the

distribution has finite variance.

Next we consider the situation in which tl -+ O. Expanding Mn(O - c) =

M(O - c; 9) and using Mn(O) = M(O; 9), we find that, as tl -+ 0, (5.11) tends to

the first moment equation

Finally we examine the case where in addition t2 -+ O. Expanding Mn(0-8) =

M(O - 8; 9) as far as the third derivatives gives

Mn(O - 8) - M(O - 8; 9) = Mn(O) - M(O; 9) - 8[M~l) (0) - MCl)(0; 9)]

+ ~82[M~2)(0) - M(2)(0;9)] - ~83[M~3)(0) - M(3)(0;9)],

which implies the second moment equation

M~2) (0) = M(2) (0; 9),
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provided the third moment exists.

To summarise, we have shown that as t2 -+ tl the estimation equations become

as tl -+ 0 they become

M~l) (0) = M(l) (0; 8)

Mn(t2) = M(t2; 8),

and as both tl and t2 tend to zero, they simplify to

Although we have outlined above only the two-parameter case, these results

generalise directly to the p-parameter case.

5.6 Insights into the moment generating func-

tion method

As seen in the previous section, the moment generating function method reduces

to the method of moments when t = (0,0, ... , O)T. For arbitrary t, Kiefer {1978}

com pared these two methods using

00 tj
M(t· 8) = ~ !!:L, z: .,'

j=l J.

where J-lk is the kth moment about the origin. In particular, he observed that

the moment generating function method uses information in all the moments

to estimate 8, while the method of moments uses information in only the first

p moments. Furthermore, the moment generating function method weights the
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moments so that low-order moments can have greater weights than high-order

moments. The moment method weights all moments equally. Since we normally

expect a given sample to determine low-order moments more accurately than high-

order moments, the moment generating function method might be presumed to

be more efficient than the method of moments.

On the other hand, there exist simple cases in which the methods of moments

and maximum likelihood coincide. In one-parameter distributions Tallis and Light

{1968} have established a sufficient condition for the maximum likelihood estima-

tor to result as a moment estimator. In particular, they presented:

Lemma 5.1 (Tallis and Light, 1968). If an unbiased estimator, T(x), of some

strictly monotone, differentiable function of (), T((}), satisfying the Cramer-Rae

lower bound exists for () in some interval, then there exists a moment estimator

of (), 0, such that 0 = B, where B is the maximum likelihood estimator of ().

In fact, Tallis and Light {1968} pointed out that a necessary and sufficient

condition for the Cramer-Rae lower bound to be attained by an unbiased estimator

T(x) of some function T((}) is that f{x; (}) be of exponential form.

In multi-parameter distributions, the method of moments is generally inferior

in almost all respects to the method of maximum likelihood. Such results tend

to indicate that the choice t = (O, 0, ... ,0) T in the moment generating function

method should generally be avoided. (An exception occurs with the two-parameter

normal distribution; here moment and maximum likelihood estimators coincide

and this provides the theoretical underpinning for the results of Section 5.4.)

This is consistent with the view of Ball and Milne {1996}.

5.7 The preferred moment generating function

method

The moment generating function method is the simplest parameter estimation

method based on transforms. This simplicity gives it an advantage over, for
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example, the integrated squared error method, but it presents new problems of

its own. Of these the most important is the choice for t. In the remainder of

this chapter we shall describe some extensions of the moment generating function

method, which aim to increase its flexibility and asymptotic efficiency. On the

other hand these extensions will forfeit the simplicity of their predecessor and the

possibility of deriving explicit parameter estimators.

One extension, which was also suggested by Quandt and Ramsey (1978), is

the preferred moment generating function method. This method is similar to the

moment generating function method in that it uses essentially the same criterion

to measure the deviation between the empirical and theoretical moment generating

functions. The only difference is that the preferred moment generating function

method uses more values for t than parameters. The motivation for this comes

from the fact that by increasing the number of values for t one can, ultimately,

eliminate the role played by the particular choice of these values. The following

definition follows from the work of Quandt and Ramsey {1978}:

Definition 5.2. The preferred moment generating function (PMGF) estimator,

il, for 00 E e ~}RP, is any value of 0 which minimises

q

S(O; t) == L[Mn(tj) - M(tj; 0)]2
j=l

(5.16)

for a suitable value of t
than p.

In theory, the preferred moment generating function method has certain ad-

vantages over the moment generating function method. In practice, the complica-

tion of selecting a value for t remains. This has now become a two-fold problem

consisting of:

1. the problem of selecting q;

2. the problem of selecting, for a given q, values for the tj (j == 1,2, ... , q).
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Trade-off between computational complexity and sensitivity to the particular

choice of the tj (j = 1,2, ... ,q) is accomplished in the selection of q. For given

q, the practical approaches of Section 5.3.3 could be used to select a value for

t. The following section provides the inferential foundation for the methodology

proposed.

5.7.1 Properties of the preferredmoment generating func-

tion estimator

The asymptotic properties of the preferred moment generating function estimator

were investigated by Quandt and Ramsey {1978}. In the context of a mixture

of two normal distributions (so that conditions 1, 2 and 4 are satisfied), they

established:

Theorem 5.3 (Quandt and Ramsey, 1978). Given a set oJ non-zero and dis-

tinct points tj (j = 1,2, ... , q) in T, there exists a preferred moment generating

Junction estimator, 0, [or 80 E E> ~ }RP which is strongly consistent and [or which

where

~(8) = [K(8) TK(8)tl K(8) Tn(8)K(8)[K(8) TK(8)tl. (5.17)

Here K(8) is the q x p matrix whose (i,j)th element is

..(8) _ 8M(ti; 8)
K,'J - 8().

J

and n(8) is the q x q symmetric matrix whose (i, j) th element is
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It is clear from (5.17) that, in general, the form of ~(O) will be very compli-

cated. However, it is interesting to see what happens when q = p, that is, when

the number of values for t is equal to the number of parameters being estimated.

In this case the preferred moment generating function estimator coincides with

the moment generating function estimator. Correspondingly, when q = p, (5.17)

simplifies to (5.5).

The robustness properties of the preferred moment generating function esti-

mator do not appear to have been investigated. We thus present and prove the

following theorem, which is subject to conditions 1, 2 and 4.

Theorem 5.4. Given a set of non-zero and distinct points tj (j = 1,2, ... ,q)

in T, the (consistent) preferred moment generating function estimator, 0, for

80 E E> ~ RP has joint influence function

IF(~; 6) = [K(Oo) TK(80)t1 K(Oo) T T(~; 00), (5.18)

where K (8) is the q x p matrix whose (i, j) th element is

..(8) _ 8M(ti; 8)
K,'J - 8(}.

J

and T(~; 8) is the q x 1 vector whose ith element is

Proof. The preferred moment generating function estimator is found in practice

as the solution of
8S(8; t) = 0 k 1 2

8(}k ,=, ,... ,p,

which, from expression (5.16), may be written as

~ 8M(ti;0)[M ( ) ]L- 8(} n ti - M(ti; 8) = 0,
i=l k

k = 1,2, ... .p.
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For the kth (k = 1,2, ... ,p) equation of this system, we may write down the

influence equation

Re-arranging we obtain

~ 8M(ti; 0) I F[t. M ( .)]= ~ ~ 8M(tj; 0) 8M(ti; 0) I F(t. 0.)
~ 80 "', n t; ~ ~ 80 80. .", J ,
i=1 k i=1 j=1 k J

or, equivalently,

q q p

L Kik(O)Ti(e; 0) = L L Kik(O)Kij(O)I F(e; OJ).
i=1 i=1 j=1

Bringing these p influence equations together, we may form the single matrix

equation

thus proving the theorem. o

We may verify this result by exploiting the relationship between influence

functions and asymptotic variances, as stated in (1.16). In addition, it is straight-

forward to show that if q = p then (5.18) simplifies to (5.6), as it should. On the

other hand, if q > p then the ith (i = 1,2, ... ,p) individual influence function for

the preferred moment generating function estimator may be expressed as

q

I F(e; Oi) =LKrj(Oo)[exp(tje) - M(tj; (0)],
j=1

where Kij(O) is the (i, j)th element of [K(O) TK(O)]-l K(O) T. This implies that the

preferred moment generating function estimator is, like the moment generating

function estimator, not robust over the entire real line.
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5.8 The modified moment generating function

method

The preferred moment generating function method essentially sets up a large num-

ber of equations which, if they were consistent, could be reduced to remove de-

pendencies and, in principle, inverted. Unfortunately sampling fluctuations mean

that they will not be consistent so that, rather than trying to invert, we minimise

an error criterion as in (5.16). Schmidt (1982) pursued the observation that the

empirical moment generating function values for different t are not independent,

and have unequal variances. Thus what should be minimised is not a simple sum

of squares, but rather a generalised sum of squares. This approach is adopted by

the modified moment generating function method.

Explicitly, if we define

M(t; 6) = [M(tl; 6), M(t2; 6), ... ,M(tq; 6)]T

Mn(t) = [Mn(td, Mn(t2),"" Mn(tq)]T

then the modified moment generating function estimator is defined as follows:

Definition 5.3. The modified moment generating function (MMGF) estimator,

6, for (Jo E E> ~ RP, is any value of (J which minimises

(5.19)

for a suitable value of t = (tl' t2, ... , tq) T in T", where q is an integer greater than

p and O( (J) is the q x q symmetric matrix whose (i, j)th element is

The modified moment generating function method has been employed for pa-

rameter estimation in a variety of distribution families, including the mixture of
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normal distributions (see Schmidt, 1982) and the three parameter gamma distri-

bution (see Koutrouvelis and Canavos, 1991). In general, this method may be

criticised in three ways:

1. it is numerically complicated, particularly in view of the matrix inversion

involved.

2. it depends on the unknown parameter value 00 through the matrix 0(00);

3. it entails the selection of t, which involves precisely the same considerations

as were necessary for the selection of t in the preferred moment generating

function method.

In practice, the second difficulty could be overcome by regarding 0(00) as a func-

tion of the minimising variable 0 although such a procedure would require addi-

tional computational expense. In spite of these problems, the modified moment

generating function method has distinct advantages over the previous methods.

Insights into these can be obtained from the properties of the resulting estimator.

5.8.1 Properties of the modified moment generating func-

tion estimator

The asymptotic theory needed for the modified moment generating function method

is given by Schmidt {1982}. In the context of a mixture of two normal distributions

(so that conditions 1, 2, 5 and 6 are satisfied), he established:

Theorem 5.5 (Schmidt, 1982). Given a set of non-zero and distinct points tj

(j = 1,2, ... , q) in T, there exists a modified moment generating function estima-

tor, iJ, for OD E E> ~ !RP which is strongly consistent and for which
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where

(5.20)

In this expression, K (8) is the q x p matrix whose (i, j) th element is

..(8) = {)M(ti; 8)
K,~J {)O.

J

and O( 8) is the q x q symmetric matrix whose (i, j) th element is

With this result, Schmidt {1982} showed that the modified moment gener-

ating function estimator outperforms the preferred moment generating function

estimator in terms of asymptotic efficiency. He also showed that the asymptotic

efficiency of the modified moment generating function estimator will generally be

increased by adding one more point to a given set tj (j = 1,2, ... , q). Accord-

ingly, Schmidt {1982} conjectured that as q ~ 00 the modified moment generating

function estimator is asymptotically efficient relative to the maximum likelihood

estimator, and this was later established by Feuerverger and McDunnough {1984}.

As with the preferred moment generating function estimator, the robustness

properties of the modified moment generating function estimator do not appear to

have been investigated. We thus present and prove the following theorem, which

is subject to conditions 1, 2, 5 and 6.

Theorem 5.6. Given a set of non-zero and distinct points tj (j = 1,2, ... , q) in

T, the (consistent) modified moment generating function estimator, 8, for 80 E

E> ~ ]RP has joint influence function

(5.21)
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where K (0) is the q x p matrix whose (i, j) th element is

.. (0) = OM(ti; 0)
Kt) 8().'

)

0(8) is the q x q symmetric matrix whose (i,j)th element is

and T(~; 8) is the q x 1 vector whose ith element is

Proof. The modified moment generating function estimator is found in practice

as the solution of
88(8; t) = 0 k 1 2

O()k ' =" ... ,p,

or, equivalently,

where wij(O) is the (i,j)th element of 0-1(8). For the kth (k - 1,2, ... ,p)

equation of this system

we may write down the influence function

tt{aMa~ij8)Wij(8){IF[~jMn(tj)] - t aM~i;8) IF(~j6[)}
i=1 j=1 k [=0 [

+ {IF[~j Mn(ti)] - t aMa~ij 9) I F(~j 6l)}Wij (9) aMa~jj 9)} = O.
1=0 [ k
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Re-arranging and simplifying results in

or, equivalently,

q q q q p

L L ~ik(8)wij(8)Tj(~; 8) =L L L ~ik(8)wij(8)~jf(8)IF(~; Of).
i=1 j=1 i=1 j=1 f=O

Bringing these p equations together, we may form the single matrix equation

K(8) Tn-l(8)T(~; 8) = [K(8) Tn-1(8)K(8)JI F(~; 8).

The theorem now follows. o

Theorem 5.6 demonstrates that, in general, a symbolic expression for (5.21)

will be too complicated to be practicable. Furthermore, it shows that the ith

(i = 1,2, ... ,p) individual influence function for the modified moment generating

function estimator will be of the form

q

I F(~; Bi) =L<j(8o)[exp(tj~) - M(tj; 8)],
j=1

(5.22)

where ~rj(8) is the (i, j)th element of [K(8) Tn-1(8)K(8)]-1K(8) Tn-1(8). The

modified moment generating function estimator cannot, therefore, be robust over

the entire real line. This is a consequence of basing estimation on moment gener-

ating functions.

5.9 The q-L method

As indicated in Chapter 1 (Section 1.14), for continuous weight functions, min-

imum distance estimation based on characteristic functions can be expected to

outperform such estimation based on moment generating functions. This was due
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to a number of reasons resulting from the uniform boundedness of the charac-

teristic function. With this in mind, it would be of interest to base minimum

distance estimation involving step weight functions on characteristic functions.

This approach is adopted in the remainder of this chapter.

The switch from moment generating functions to characteristic functions seems

straightforward. For example, in the spirit outlined for the moment generating

function method, it seems reasonable to estimate the parameters by minimising

p

L l4>n(tj) - 4>(tj; 8)12
j=l

with respect to 8, where tj (j = 1,2, ... ,p) are appropriate points in lR. However

this approach has not been favoured in the literature. Feuerverger and McDun-

nough (1981a, b) discussed some alternatives, including the q-L method.

The motivation for this method comes from the asymptotic joint distribution

of [4>n(t1), 4>n(t2), ... ,4>n(tq)]. Explicitly, if we define

Z(t; 8) = [U(t1; 8), U(t2; 8), .ou; 8), V(tl; 8), V(t2; 8), ... , V(tq; 8)]T

zn(t) = [Un(tt}, Un(t2), ,Un(tq), Vn(tt}, Vn(t2), ... , Vn(tq)]T,

where U(t; 8) and V(t; 8) are the real and imaginary parts of 4>(t; 8) respectively,

and Un(t), Vn{t) are the corresponding parts of 4>n(t), then the q-L estimator is

defined as follows:

Definition 5.4. The q-L estimator, 8, for 80 E E> ~ ]RP, is any value of 8 which

minimises

(5.23)

for a suitable value of t = (tl' t2,"" tq)T in]Rq, where q is an integer not smaller

than ~P and O{8) is the 2q x 2q symmetric matrix whose (i, j)th element is {specific
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reference to 0 is omitted for convenience of printing)

15,i,j5,q,

{

l5,i5,q

q + 1 5, j 5, 2q,

~[U(ti-q - tj_q) - U(ti-q + tj_q)]- V(ti-q)V(tj-q) q + 1 5, i,j 5, 2q.

The term "q-L method" derives from the fact that the procedure is restricted

to a set of q points in JR, and is based on the likelihood of the asymptotic joint

distribution of [<Pn(tl), <Pn(t2), ... , <Pn(tq)). The smallest number of points required

by the method is r~P1+ 1, where the symbol r~p1 denotes the greatest integer less

than ~p. This is because for each point of t we have two distinct transforms of the

form (1.2) available, one with g(t, x) = cos(tx) and the other with g(t, x) = sin(tx).

We find, therefore, that when p is even and q = ~p, the q-L method essentially

solves the system

for 0, if such a solution exists. Otherwise, the method proceeds by minimising a

generalised sum of squares and would thus seem to be intimately connected with

the modified moment generating function method. Indeed, the two methods may

be criticised in similar ways. However, the q-L method has certain advantages

over the modified moment generating function method, as will become apparent

by exploring the properties of the resulting estimator. These are given in Section

5.9.2, but are subject to the regularity conditions below.

5.9.1 Regularity conditions

Feuerverger and McDunnough (1981a) presented four conditions, which together

are sufficient requirements for Theorems 5.7 and 5.8. If, for t = (tl' t2, ... , tq) T in
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JRq (q 2:: ~p), we define the 2q x p matrix K(8) with (i, j) element

1~ i s q,

q + 1 ~ i ~2q,

then these four conditions are:

1. E> is an open rectangle;

2. ¢(t; 8) is continuously differentiable (in 8) at 8 = 80;

3. the matrix 0(8) is invertible at 8 = 80;

4. the matrix K(8)TO(8)K(8) is invertible at 8 = 80,

5.9.2 Properties of the q-L estimator

The asymptotic properties of the q-L estimator were investigated by Feuerverger

and McDunnough {1981a). They established:

Theorem 5.7 (Feuerverger and McDunnough, 1981a). Given a set ofnon-

zero and distinct points tj (j = 1,2, ... , q) in JR, there exists a q-L estimator, 8,
for 80 E E> ~ }RP which is strongly consistent and for which

where

~(8) = [K(8) TO-l(8)K(8)tl. (5.24)

In this expression K (8) and 0(8) are the 2q x p and 2q x 2q matrices, respectively,

as stated in Section 5.9.1 and Definition 5.4.

In addition to consistency and asymptotic normality, Feuerverger and Me-

Dunnough (1981a) established the asymptotic efficiency of the q-L estimator. In
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particular, they showed that by increasing the number of points tj (j = 1,2, ... ,q)

in an appropriate way, the resulting estimator can attain arbitrarily high efficiency.

This result was also established for the modified moment generating function esti-

mator, and in this respect there is little to choose between them. However, it is in

the robustness properties of the two estimators where the real difference occurs.

Feuerverger and McDunnough (lg81a) have derived the influence function for a

certain continuous analogue of the q-L estimator. The influence function of the

q-L estimator itself is presented below.

Theorem 5.8. Given a set of non-zero and distinct points tj (j = 1,2, ... ,q) in

lR, the (consistent) q-L estimator, 8, for 80 E E> ~ ]RP has joint influence function

(5.25)

where K(8) and 0(8) are the 2q xp and 2q x 2q matrices, respectively, of Theorem

5.7, and T(~; 8) is the 2q x 1 vector whose ith element is

1::;i ::;q,

q + 1::;i ::;2q.

Proof. The proof of Theorem 5.8 is essentially analogous to the proof of Theorem

5.6 and is thus omitted. o

In parallel to (5.21), a symbolic expression for (5.25) will tend to be too com-

plicated to be practicable. However, it is straightforward to show that the ith

(i = 1, 2, ... ,p) individual influence function for the q-L estimator will have the

general form

q

I F(~; 8i) = L::{aij(80)[cos(tj~) - U(tj; (0)] + bij(80)[sin(tj~) - V(tj; 8o)]},
j=1

where the elements aij(8) and bij(8) are involved but do not depend on f , This

demonstrates that the q-L influence functions have periodic components in~. The
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nature of the harmonics depends partially on the closeness of the tj (j = 1,2, ... , q)

to the origin. Nevertheless, it is clear from this that the q-L estimator is robust

over the entire line for arbitrary tj (j = 1,2, ... , q). This is a consequence of

basing estimation on characteristic functions.

In summary, the advantages of the q-L method over, for example, the modified

moment generating function method may be claimed to be:

1. it may be used when the moment generating function does not exist;

2. it may be used with fewer values for t than parameters;

3. it is not susceptible to numerical problems due to large exponential terms;

4. it results in estimators which possess bounded influence.

These aspects suggest that the q-L method may be preferred in practice. The

following section provides an illustration of this method.

5.10 Estimation in the Cauchy distribution

The integrated squared error estimation of the parameters belonging to the Cauchy

distribution was discussed in Chapter 1 (Section 1.13). In this section we shall

bring out the differences between integrated squared error and q-L estimation for

these parameters. In the latter case, the use of only a single point for t represents
a situation meriting special study. Later in this section, consideration is also given

to estimation using q (q > 1) points.

5.10.1 Estimation using a single point

Let Xl, X2, •.• ,Xn be independent, identically distributed random variables from

a Cauchy distribution with location 8 and scale c, and suppose that 8 = (c, 8)T is

unknown. The characteristic function of Xl is, from (1.29), given by

4>{t;8) = exp{ -cltl)[cos(t8) + i sin{t8)]
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and may be estimated by the empirical characteristic function

On this basis, the q-L estimator using a single value for t may be obtained by

solving the system of equations

Un(t) = exp( -cit!) COS(tb)}

Vn(t) = exp( -eltl) sin(tb)
(5.26)

for 6. It is straightforward to show that if t i= 0, then these equations result in

the estimators

h log[U~(t) + V;(t))
e = -21tl
h 1 Vn(t)s = t arctan[Un{t))'

(5.27)

(5.28)

The explicit form of these estimators gives them an advantage over the integrated

squared error estimators. However, there is a difficulty in the computation of J
since, essentially, it is not unique. This is a consequence of the periodicity of the

tangent function,

tan(x + k7r) = tan(x), k E Z,

which implies that (cf. (5.28))

Vn{t)
tan(t6) = Un{t) (5.29)

has an infinite number of solutions for 6. These are

where Arctan denotes the principal value of the arctangent function. A similar

problem has been reported by Koutrouoelis (1980) for a regression-type estimator
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of the location parameter of a stable law.

In practice, it is of course impossible to select one solution over another with-

out recourse to the original sample. Morgan (1997, personal communication)

suggested the following approach. Given an initial estimate of cS, we choose from

among the solutions of (5.29) the one which is nearest to this estimate. Figure

5.5 shows plots of c and the solution of (5.29) nearest to the median for a random

sample from a Cauchy distribution with zero location and unit scale.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.5: The explicit estimators c (left) and J nearest to the median (right) for
a random sample of size n = 50 from a Cauchy distribution with location 8 = 0
and scale c = 1. Since the estimators are symmetric about t = 0, there is no need
to plot negative values of t.

Despite the computational difficulty above, the asymptotic theory of the ex-

plicit estimators is quite straightforward. It follows, from Theorem 5.7, that
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n1/2 (iJ - 0) is asymptotically normal with mean vector zero and covariance ma-

trix

~(O) = exp(2cltl) - 1 I
2t2 2, (5.30)

where h denotes the 2 x 2 identity matrix. The Fisher information matrix for a

single observation is 1/ (2c2)I2 so that, for example, the asymptotic efficiency of 6
is given by

eff( 6) = 4c
2
t2 .

exp(2cltl) - 1

This also happens to be the asymptotic efficiency of c, and is depicted in Figures

5.6 and 5.7. As observed in these figures, the efficiency of 8 is low and, in fact,

never exceeds 64.76%. The corresponding efficiency of the integrated squared

error estimator was shown to be 98.09%. Thus, the explicit estimators are less

efficient than the integrated squared error estimators .

....
ci
to
ci

o

til
o

~<t
ffi ci
.~ ~
UJ 0

'"ci

Figure 5.6: Perspective view of the asymptotic efficiency of 8. Note that efJ(6) is
independent of 5.
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u '"

o

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 5.7: Contour-level plot of the efficiency of J as shown in Figure 5.6. The
plot illustrates that J may be very inefficient.

It is also straightforward to investigate the robustness properties of the explicit

estimators. We find, from Theorem 5.8, that the joint influence function for iJ is

given by

A (Itl_l{l - exp(cltl) cos[t(~ - c5)]})
JF(~; 0) = .

Cl exp(cltl) sin[t(~ - c5)]
(5.31)

It is instructive to verify this result by referring to elementary influence meth-

ods. We can do this easily here, but this will not always be the case. Thus, for

example, by rearranging (5.27) we obtain

-2ltlc = log[U~(t) + V;(t)]

yielding

-21t1J F(~' c) = U(t; O)J F[~; Un(t)] + 2V(t; O)J F[~; Vn(t)]
, U2(t; 0) + V2(t; 0)
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whence

-21t1I F{~' c) = U{t; 8)[cos{t~) - U{t; 8)] + 2V{t; 8)[sin{tO - V{t; 8)]
, U2{t; 8) + V2{t; 8)

giving the earlier result when simplified.

It is clear from (5.31) that the individual influence functions for iJ are bounded

in~. However, they do not decay as I~I---t 00, rather they oscillate infinitely.

This type of influence behaviour is less attractive than that of the integrated

squared error estimators. Thus the explicit estimators are also "less robust" than

the integrated squared error estimators. It appears that the cost of an explicit

estimator for Cauchy distributions is very high.

Nevertheless, in many practical applications explicit estimators may be the

ones of choice for reasons of economy, in money, time and effort. Practical im-

plementation of the present explicit estimators requires the selection of t. This

choice is very important as was shown graphically in Figures 5.5,5.6 and 5.7. One

approach to decide on a suitable value for t is to use constrained maximum like-

lihood, as suggested in Section 5.3.3 and illustrated in Section 5.4. Alternatively,

we may decide on a value for t by minimising the determinant of (5.30). This

approach results in

t = 0.7968/c (5.32)

at the optimum, giving the maximum efficiency of 64.76%. A difficulty with this

choice is that it depends on the unknown c, and this has been discussed in a

general context by Ball and Milne (1996).

A general solution to this problem may be described as follows. Denote the

explicit estimator for c by c(t) to emphasise its dependence on t. Then, in a similar

fashion to Ball and Milne (1996), choose teO)> 0 arbitrarily and let c(O) = c{t(O));

next, for m = 1,2, ... let tern) = 0.7968/c(rn-l) and c(rn) = c(t(rn»); finally, if this

iteration converges, with tern) ---t tA as m ---t 00, then c can be estimated by the

adaptive estimator c( tA).
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Suppose that the iteration described above converges. Then, from (5.32),

(5.33)

and substitution in (5.27) shows that tA satisfies

(5.34)

The function l¢>n(t)12 is continuous in t, equals unity at t = 0 and tends to zero

in an appropriate sense as t ~ 00 (see, for example, Koutrouvelis, 1980). This

implies that (5.34) has at least one root; it will generally have multiple roots, in

which case the smallest root should be selected. This is because ¢>n(t) estimates

¢>(t; 8) more accurately for small than large values of t, as illustrated in Chapter

1 (Section 1.5). Note that, provided (5.34) has at least one root, (5.33) produces

an estimator for c irrespective of whether the iteration above converges.

5.10.2 Estimation using q > 1 points

The q-L estimator using a single point involves solving the equation system (5.26)

and is thus easily computed. On the other hand, this estimator is not particularly

efficient or robust. Of course, the efficiency can improve as more points for tare

taken, as shown by Feuerverger and McDunnough (1981b) who, when proving the

arbitrarily high efficiency of the q-L estimator, used the Cauchy distribution as

an example. However, they only used equally spaced points: 1',21', ... , q1' (1' > 0).

Koutrouvelis {1982} also considered this problem but for general tl, t2, ..• , tq• We

shall now present his asymptotic results and investigate the robustness properties

of the resulting estimator.

The q-L estimator using q > 1 points proceeds by minimising (5.23) with

respect to 8. This estimator for 0 is not unique, as was the case when q = 1.

In practice, we essentially choose that estimate which is nearest to the starting

value used in the minimisation process. Furthermore, the q-L estimator becomes
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increasingly complicated as q increases. This is mainly a consequence of the matrix

inversion required for its computation. Nevertheless, Koutrouvelis (1982) showed

that n1/2(6 - 8) is asymptotically normal with mean vector zero and covariance

matrix

(5.35)

where 12 is the 2 x 2 identity matrix and to == O. The estimators c and J are thus

asymptotically independent and have the same asymptotic variance. They also

share the same asymptotic efficiency

(5.36)

By setting Uj = 2ctj (j = 1,2, ... , q), Koutrouvelis {1982} observed that (5.36)

coincides with the asymptotic efficiency of an estimator for the scale parameter of

an exponential distribution, which is based on q order statistics. Thus the problem

of determining the optimum points tj (j = 1,2, ... ,q) for 6 is equivalent to the

problem of determining the optimum quantiles Uj (j = 1,2,. " ,q) for this scale

estimator. The latter problem has a known solution (see, for example, Barhan,

Greenberg and Ogawa, 1963).

Table 5.2 displays the maximum asymptotic efficiency thus obtained for se-

lected values of q. As a point of comparison, the maximum efficiency of the

explicit estimator is also included.

Table 5.2: Maximum efficiency of J for selected values of q

Values of q
1 2 3 4 5 10 15

ejj(J) .6476 .8203 .8910 .9269 .9476 .9832 .9918
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As would be expected from the discussion given earlier, the maximum efficiency

is a monotonic increasing function in q. It is also apparent from the table that

it does not take very many points for t to get a high asymptotic efficiency. As a

practical matter, it appears that q = 5 would probably be sufficient in most cases.

On the other hand, at least q = 10 points are required in order to improve on the

efficiency of the integrated squared error estimator.

In contrast with the asymptotic efficiency of 6, a symbolic expression for its

influence function is difficult to produce. For example, even when q = 2, we find

that

(5.37)

where

Since the influence function (5.37) is not trivial, some checks should really be

applied. In general, simple checks are not easily constructed but, in this case, it

is straightforward to show that (5.37) tends to (5.31) as t2 -+ tb as it should. A

further interesting comparison between (5.37) and (5.31) comes from selecting ti

(i = 1,2) and t, respectively, so as to maximise efficiency. Figure 5.8 provides

plots of the individual influence functions for these estimators evaluated at the

Cauchy distribution with cS = 0 and c = 1.

As anticipated, these influence functions are bounded in~. However, they do

not decay as I~I-+ 00. The q-L influence functions with q = 1 are essentially
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Figure 5.8: Influence functions for the q-L estimators of c (left) and 8 (right)
with q = 1 (top) and q = 2 (bottom). The points for t are selected to maximise
efficiency at the Cauchy distribution with location 8 = 0 and scale c = 1.

periodic. The q-L influence functions with q = 2 are almost periodic. It is clear

that increasing q affects the periodicity of the influence functions. On the other

hand, it does not necessarily improve the robustness of the estimator, as noted

by Feuerverger and McDunnough (issi»; This is in fact related to the efficiency

of the estimator. In particular, according to the results of Feuerverger and Me-

Dunnough (19S1a), the asymptotic variance of the q-L estimator can be made

arbitrarily close to the asymptotic variance of the maximum likelihood estimator

by increasing q. Thus, from the relationship between asymptotic variances and

influence functions (see expression (1.16)), it seems reasonable to expect that it

is also possible to make the q-L influence functions arbitrarily close to those of

maximum likelihood. Note, however, that the influence functions of the latter

estimator are not necessarily bounded.
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This discussion is illustrated in Figure 5.9 below. The figure depicts the in-

dividual influence functions for the q-L estimator with q = 10. (This estimator

is of particular interest here, since it can parallel the asymptotic efficiency of the

integrated squared error estimator.) Also included in the figure are the individual

influence functions for the maximum likelihood estimator.

Figure 5.9: Individual influence functions for the q-L estimator with q = 10 (solid
lines) overlaid with individual influence functions for the maximum likelihood
estimator (dotted lines). The points for t are selected to maximise efficiency at
the Cauchy distribution with location IS = 0 and scale c = 1.

As observed in the figure, the q-L influence functions with q = 10 are much

closer to those of maximum likelihood than the q-L influence functions with, for

example, q = 1 or q = 2. The figure also illustrates that the q-L estimator with

q = 10 is more robust than the q-L estimator with, for example, q = 1 or q = 2.

However, this is a consequence of the maximum likelihood estimator being more

robust than either of these estimators; this is not a situation that can generally
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be expected. In any case, the integrated squared error estimator was found to

be more robust than the maximum likelihood estimator (see Figure 1.10) and is,

therefore, more robust than any of the q-L estimators.

Nevertheless, practical implementation of the q-L estimator requires the se-

lection of the points tj (j = 1,2, ... , q). In parallel to the moment generating

function-based estimators, this involves (i) the selection of q, and (ii) the selec-

tion of values for the points tj. In the selection of q, there is a trade-off between

computational complexity and asymptotic efficiency. The asymptotic efficiencies

given in Table 5.2 are especially helpful in dealing with this problem. In the lat-

ter problem, we may decide on suitable values for the tj by minimising (5.35),

or, equivalently, maximising (5.36). This is particularly easy here, since an accu-

rate tabulation of the optimum values for Uj = 2ctj (j = 1,2, ... , 15) is given by

Sarhan, Greenberg and Ogawa (1963). In practice, of course, this leads to another

"selection" problem, since the parameter c is unknown. However, this problem

can be overcome by following the principle used in the q = 1 case.

In summary, estimation of the location and scale parameters of a Cauchy

distribution by the q-L method is feasible. The resulting estimator can be very

efficient and quite robust. However, in comparison with the integrated squared

error estimator, the q-L estimator is more difficult to use, less robust, and at best

marginally more efficient.

5.11 Concluding remarks

This chapter has considered minimum distance transform estimation utilising step

weight functions. This involves perhaps the simplest estimation method involv-

ing integral transforms, where we equate the empirical and theoretical moment

generating functions at as many values for t as there are parameters. However,

this method required us to select suitable values for t, was not particularly robust,

and may not be especially efficient. Three extensions of the moment generating
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function method (the preferred moment generating function method, the modi-

fied moment generating function method, and the q-L method) were introduced

to help to deal with these difficulties. The latter method was shown to be the

better of the three in terms of robustness, but less robust than the integrated

squared error method, as illustrated in the Cauchy distribution.



Chapter 6

Conclusions and future work

6.1 Conclusions

The subject matter of this thesis has been parameter estimation using integral

transforms, such as characteristic functions and moment generating functions.

This type of parameter estimation has an extensive history in statistics, going

back nearly forty years. This has resulted in a variety of methods, depending

on the type of weight function and choice of integral transform, but little was

known about their relative performances. The desirability for such a comparison

provided the motivation for this thesis.

On this basis the first method we investigated was the integrated squared error

method. An important decision that then needs to be made is the mathematical

form for the weight function, but there has been very little practical work on

this in the literature. The results of this thesis have shown, however, that it is

not so much the choice of the weight function that is paramount but rather its

scaling. Accordingly, we proposed several ways of selecting the scaling parameter

in practice.

The main application of the integrated squared error method presented was to

the mixture of two normal distributions. Theory was developed, which enabled

a comparison to be made between this method and the methods of moments

199
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and maximum likelihood. We consequently recommended estimating the param-

eters of a mixture of two normal distributions using the integrated squared error

method, particularly with samples with outliers, or a small number of observa-

tions.

As indicated above, we also investigated several alternatives to the integrated

squared error method, including the moment generating function method and the

q-L method. These alternative means of parameter estimation can lead to con-

siderable computational advantages, but were shown to generally underperform

relative to the integrated squared error method. Hence, if parameter estimation

is to be based on integral transforms, then the use of the integrated squared error

method is recommended a fortiori.

6.2 Future work

The ideas that were developed in this thesis can be extended, with appropriate

modifications, to cover a variety of settings. This flexibility will be illustrated

in this section by means of three applications. Specifically, the first of these is

to kernel density estimation and involves, as previously, univariate (independent,

identically distributed) random variables. The mixture of multivariate normal

distributions provides the focus of the second application, whilst the last appli-

cation is to quantal assay models, which is a model for random variables indexed

by dose.

6.2.1 Application to kernel density estimation

Kernel density estimation has been used extensively throughout this thesis. In

essence, the kernel estimate is constructed by centring a kernel at each observation

and then summing to obtain the estimate. As indicated in Chapter 2, the choice for

the width of the kernel, called the bandwidth, is very important. Although several

different methods have been suggested to help in this respect, the choice between

them is often not clear-cut. When the kernel is the normal density, the kernel
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estimator is essentially a mixture of n normal distributions, with component means

coinciding with the observations Xl, X2, ..• ,Xn and equal mixing proportions of

lin for each component. The difficulty of the bandwidth choice now becomes

evident, since the standard deviation cannot be estimated by maximum likelihood

(the likelihood function is not bounded above in E)-see Chapter 3, Section 3.5.3).

On the other hand, this mixture representation suggests that integrated squared

error estimation could provide an alternative method of selecting the bandwidth.

This method would select the bandwidth by minimising (3.39) with respect

to h, where we set k = n, Pi = lin, J.Li = Xi, and a, = h (i = 1,2, ... , n).

A major advantage of the method is that it does not depend on asymptotic ap-

proximations but, on the other hand, it depends on the parameter >.. In fact,

from the density representation (3.40), this parameter may be regarded as the

bandwidth of an auxiliary kernel estimator. Since considerable theory has been

devoted to the choice of auxiliary bandwidths (Wand and Jones, 1995, p. 71), this

consolidates the results of Chapter 2 concerning the choice of weight function in

integrated squared error estimation. It also provides a starting point for selecting

the parameter >. in the present context. The results of this thesis suggest that

this method of bandwidth selection would be worth considering.

6.2.2 Multivariate random variables

Throughout this work the emphasis has been on estimating parameters of univari-

ate distributions. However, there are situations in which a univariate distribution

is clearly inappropriate and a multivariate distribution needs to be considered.

An important issue to contemplate in these situations is the robustness of the pa-

rameter estimators. This is both because it is more difficult to detect outliers and

because there is, loosely speaking, more space in which outliers can occur. The

results of this thesis suggest that the integrated squared error method will provide

attractive robust estimators in the multivariate case, and future work could seek

to discover if this is true. We envisage that the mixture of multivariate normal

distributions will be a particularly fertile application for this method. This follows
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from the work of Everitt and Hand (1981, p. 44), who indicated that the diffi-

culties associated with both the singularities in the likelihood function and with

the choice of suitable starting values for the EM algorithm are far more critical in

the multivariate than the univariate case. In this section we shall discuss some of

these ideas, without getting into the more theoretical issues.

Integrated squared error estimation

An attractive feature of the integrated squared error method of estimating param-

eters of univariate distributions is that it generalises directly to the multivariate

case, as outlined below.

Let F(x; 8), 8 E 8~]RP be a d-variate distribution function with character-

istic function

¢(t; 0) = ( exp(itT x) dF(x; 8),j{Rd

and suppose that X 1, X2, .•• , Xn is a random sample from a population with this

distribution function. Then, by analogy with the univariate case, the integrated

squared error method of estimating 8 is based on the empirical characteristic

function
n

¢n(t) = n-1Lexp(itT Xj)
j=1

and involves minimising the integral

/(8; A) = ( I¢n(t) - ¢(t; 8)12dW(t; A)j{Rd (6.1)

with respect to 8. As previously, W(t; A) is a weight function, but now A is a

symmetric positive definite matrix of parameters. In general, A will have d( d+ 1) /2

independent elements which, even for moderate d, can be a substantial number of

parameters to choose. Viewed from this perspective, the arguments for exploiting

the link between integrated squared error and kernel density estimation become

much stronger in the multivariate case.

The more serious problem that arises with (6.1) is that it involves multivariate



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 203

integrals which, in general, would be difficult to evaluate. However, Paulson and

Lawrence (1980) showed that (6.1) can be evaluated explicitly for the multivariate

normal distribution. Taking the univariate case as a basis, it seems reasonable

to expect that this result will also hold for the mixture of multivariate normal

distributions, and this application is considered below.

Application to the mixture of two multivariate normal distributions

Mixtures of multivariate distributions are formed in the same way as for univariate

distributions (see Chapter 3, Section 3.2). For example, in the particular case of

two d-variate normal component densities to be discussed below, the mixture is

defined by the probability density function

where

is the density function of the d-variate normal distribution with mean vector f..tj

and covariance matrix Yj. The characteristic function corresponding to (6.2) is

given by

where

) T 1 T1/J(t; I-'j' Yj = exp(it I-'j - it Vjt)

is the characteristic function of the d-variate normal distribution with mean vector

I-'j and covariance matrix Yj.

We shall henceforth suppress dependence on the parameters p, I-'i' Vi (i = 1,2)
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for notational convenience. As in the previous work, we shall assume that param-

eter estimation is based on a sequence X I, X 2, ... , X n of independent, identically

distributed random variables. Then the integrated squared error function is given

under (6.3) by

J(A) = r l4>n(t) - 4>(t)12 dW(ti A),J~d (6.4)

where W(ti A) is a weight function to be chosen. There are good computational

reasons (see below) for selecting the weight function to be of the form

W(t; A) = r exp( -y TAy) dy,
JYd

where yd = (-00, tIl x (-00, t2l x ... x (-00, tdl and A is a positive definite matrix

of constants. In this case, the integrated squared error function has, by Parseval's

theorem, the equivalent expression

J(A) = (21l')d r [In(Xi A) - f(x) * g(x; 0, A)l2 dz ,
JJRd

where the asterisk represents the operation of convolution and fn(x; A) is a d-

variate kernel density estimator with kernel g(x; 0, A) and bandwidth matrix A.

The work of Paulson and Lawrence (1980) on the d-variate normal distribu-

tion suggests that this integrated squared error function will admit an explicit

form. In addition, Wand and Jones (1995, pp. 108-109) discussed the problem of

selecting the bandwidth matrix from the data which, as previously indicated, is

of considerable practical importance in integrated squared error estimation.

We conjecture from the above that the integrated squared method for esti-

mating the parameters of a mixture of multivariate normal distributions will be

feasible. We expect that the method will have its drawbacks, just like any other

method. At the very least it could be useful in selecting good starting values for

the EM algorithm.
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6.2.3 Indexed random variables

Finally in this chapter, we note that the transform methods proposed for identi-

cally distributed random variables could also be used for indexed stochastic mod-

els. Parameter estimation using integral transforms has been applied to stochastic

models, involving indexed random variables, by a number of authors, includ-

ing Schuh. and Tweedie (1979), Feigin, Tweedie and Belyea (1983), Leedow and

Tweedie (1983), Laurence and Morgan (1987b), Tweedie, Zhu and Choy (1995),

and Yao and Morgan (1999). The original attraction for using transform meth-

ods in these models was mainly the possibility of obtaining explicit parameter

estimators. Furthermore, these methods were found to produce robust parameter

estimators, as illustrated by Paulson and Nicklin (1983) and Campbell (1993).

In fact, transform methods for indexed random variables have several points of

contact with those for identically distributed random variables. However, they

are essentially different as they employ a different kind of empirical transform. In

this section we shall discuss some of the fundamentals of transform methods in

the context of indexed stochastic models.

Transform estimation

A very general class of indexed stochastic models is of the form

lj = r{tj; 6) + fj, j = 1,2, ... , n, (6.5)

in which the fj are independent random variables with zero mean and r(tj; 6) is a

deterministic function involving the parameters we wish to estimate. Experimen-

tal data used to fit an indexed stochastic model typically consist of measurements

on lj (j = 1,2, ... , n) taken at a sequence of sampling points 0 < tl ~ t2 ~ ... ~

tn < 00. Later in this section we focus on the quantal assay model, which may be

expressed in this form.

In order to estimate the parameters of these models, we may adapt the inte-

grated squared error approach of Chapter 1. In particular, if the fj of (6.5) are
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also identically normally distributed with variance a2
, then we may estimate

by

exp{isYj)

and the parameters by minimising an integrated distance between these two trans-

forms, as described by Paulson and Nicklin (1983) for a variety of linear models

for r{t; 9). The work of this thesis suggests that this method is well worth con-

sidering. However, this approach has not been favoured in the literature.

On the other hand, the least-squares approach of Chapter 5 has been used,

even though it has presented new problems of its own. For example, in the case

of identically distributed random variables the quantity to transform was the un-

derlying distribution function. However, in the present context the quantity to

transform is often less clear. Furthermore, we must also select the type of trans-

form to employ. Given our previous influence work, the characteristic function

is the natural choice. Interestingly, the Laplace transform has been generally

employed in this area. Thus, if we decide to transform r{t; 9), then we form

L{s; 9) = 100 r{t; 9) exp{ -st) dt (6.6)

and seek to estimate the parameters by equating (6.6) to its empirical version,

which can be estimated from the data described above.

This method is analogous to the moment generating function method of Chap-

ter 5 and is independent of the error structure in (6.5). Furthermore, the asymp-

totic properties of the resulting estimator have been derived by Yao and Morgan

(1999). However, the choice of empirical transform is crucial to the performance

of this estimator and this is addressed below.
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The empirical transform

In contrast to the case of independent identically distributed random variables,

the form of the empirical transform for indexed random variables is not unique.

One form is based on a Riemann sum approximation to the integral L(8; 8) and

is given by

n

Ln(s) = 8-1 L.:Yj[exp(-8cj-d - exp(-scj)],
j=1

(6.7)

where Co = 0, Cn = 00 and Cj are constants satisfying Cj-l < tj < Cj (j

1,2, ... ,n - 1). For example, one might simply take

so that the cl's lie half-way between the design points.

This form of empirical transform was proposed by Schuh and Tweedie (1979)

and has been employed by a number of authors, including Yao and Morgan (1999).

In general, the expectation of (6.7) will not equal to (6.6) and, furthermore, a poor

approximation could result if setting Co = 0 and Cn = 00 can give undue weighting

to Y1 and Yn, respectively. The first problem arises if t1 is not close to zero.

The simplest way to overcome this problem is by a judicious translation of the

sampling points, given by

tj = tj - T, j = 1,2, ... , n (6.8)

for T to be determined.

The second problem arises from integrating beyond the range of the data. In

order to resolve this problem, an end-correction can be made by setting en = t«.

as suggested by Leedow and Tweedie (1983). However, if we set en = t« in (6.7),
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then the resulting empirical transform estimates

L(s; 8) _/.00 r(t; 8) exp( -st) dt
tn

so that parameter estimation is inconvenienced by the second term. A similar

approach could be used with respect to Co, as well as Cn, but it frequently occurs

that a translation of the sampling points is all that is necessary, as we shall see

from the following application.

Application to the quantal assay model

Finney (1971, p. 20) presented the data of Table 6.1, which document the progress

of insects sprayed with insecticide. In the jth of five experiments, nj subjects are

examined at log-dose tj and the number, Yj, of subjects which have responded is

recorded.

Table 6.1: Quantal assay data from Finney (1971, p. 20). Here t is the log, to base
10, of a dose of rotenone in mg/Iitre, and the subjects are insects, Macrosiphoniella
sanborni. Response is death, or being seriously affected.

J tj n· YjJ

1 0.41 50 6
2 0.58 48 16
3 0.71 46 24

4 0.89 49 42

5 1.01 50 44

If the insects are assumed to respond independently, we may model these data

by

Yj rv Bin(nj,p(tj;8)), j = 1,2, ... ,5

and

p(t; 8) = {I + exp[-(a + ,8t)]} -1,

where 8 = (a,,8) T denotes the parameter vector.
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Parameter estimation by the method of maximum likelihood results from the

maximisation of the likelihood function

(6.9)

with respect to 9. A numerical procedure is needed to maximise (6.9), lead-

ing to the estimates a = -4.839, /3 = 7.068 and a maximised log-likelihood of

log[L(8)] = -119.856.

Laurence, Morgan and Tweedie (1987b) note, however, that the Laplace trans-

form of [1 - p(t; 9)]-1 = 1+ eo:+{Jt has the simple form

L(8; 9) = 8-1 + (s - m-I cxp(o}, 8 > f3 (6.10)

and this is information which is not being utilised. By analogy with the moment

generating function method, if we solve the system of equations

for 9, then we would obtain the explicit estimators

As S2 -+ SI, these estimators converge to

(6.12)
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provided that L~I) (SI) < -S12; in fact, this is the solution of system of equations

Ln(SI) = L(SI; 0)

L~I)(SI) = L(I)(S; 0).

Figure 6.1 provides graphs of the explicit estimators for the data of Table 6.1.

These estimates are based on the empirical transform

(6.13)

with Co = 0, Cn = 00 and Cj = ~(tj + tj+d, j = 1,2, ... ,4.

~.....
co~
~
(\1~

ei
ie

'<1
'<2
.5'.5'/0

c9

co (()..... .....

"" ""~ ~

C\J C\J~ ~
C\J C\J
<Jl sn
0 0~ ~

00 00

co co
6 8 10 14 16 6

81
8 14 1610 12

81

Figure 6.1: Perspective view (top) and contour level-plot (bottom) of the explicit
estimator for a (left) and (3 (right) based on the set of quantal assay data of Table
6.1.

As observed in the figure, the agreement between the maximum likelihood
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and explicit estimates is generally very poor. This may be due to a number of

reasons, such as (1) the choice of 81 and 82, or (2) the poor approximation of

(6.10) by (6.13). The choice of 81 and 82 may be addressed using one of the

methods suggested in Chapter 5 (Section 5.3.3). Since the likelihood function is

readily available and the sample sizes are not sufficiently large, we have used the

method of constrained maximum likelihood. In this case, the constrained log-

likelihood was maximised at 81 = 6.389 and 82 = 6.389, resulting in & = -2.486,

~ = 3.648, and log[L(9)] = -129.195. (Recall that the unconstrained maximum

log-likelihood was log[L(6)] = -119.856, with a = -4.839 and S = 7.068.)

The Riemann sum approximation (6.13) can be improved by setting Co = tl

and en = tn. In the present application the former correction is more beneficial

than the latter and, furthermore, can be easily carried out by translating the

sampling points according to (6.8).

Table 6.2 presents details of the performance of the explicit estimators for se-

lected values of T. The criterion of performance which we use is the log-likelihood,

since the method of constrained maximum likelihood was used to provide the

choice of 81 and 82. There seem to be a number of points well worth making

about these results.

Table 6.2: Details of the performance of the explicit estimators for selected values
of T

8 9
log[L(9)]T

81 82 a f3
0 6.389 6.389 -2.486 3.648 -129.195
0.1 7.453 7.453 -2.886 4.202 -126.249
0.2 9.021 9.021 -3.421 4.961 -123.194
0.3 11.768 11.768 -4.171 6.075 -120.546
0.4 11.837 14.122 -4.839 7.068 -119.856

When T = 0,0.1,0.2,0.3, the method of constrained maximum likelihood se-

lected 81 = 82, indicating the possibility of reducing dimensionality by searching
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only along this line. On the other hand, constrained maximum likelihood did not

result in the maximum likelihood estimate in any of these cases. This is consistent

with the intuitive idea that if the Riemann sum approximation is relatively poor

for most s, then the constraints imposed by equating empirical and theoretical

transforms will exclude the maximum likelihood estimate in most cases. However,

as the Riemann sum approximation improves, the constraints have less effect and

this can result in parameter estimates close to the maximum likelihood estimate.

In fact, as the case T = 0.4 illustrates, this procedure can result in the maximum

likelihood estimate. The unfortunate part is that, in this case, the constrained

maximum likelihood was maximised nowhere near the line SI = S2.

This last result shows the existence of exceptions to the diagonal optimisation

phenomenon of Yao and Morgan (1999). An insight into the existence of excep-

tions can perhaps be obtained from the fact that constrained maximum likelihood

is essentially a reparametrisation for maximum likelihood. In particular, it yields

a mapping

s --+ 0 --+ L(O)

and seeks to maximise L( 0) by searching over s-space, ffi.k, rather than over 0-

space, ]RP. If several derivatives of L( s; 0) and Ln (s) are used, then k can be made

considerably less than p, and which then does result in computational advantages.

However, inferences cannot be invariant with respect to this reparametrisation

unless k = p.

In summary, we are convinced that a least-squares transform approach can

facilitate parameter estimation in indexed stochastic models in general. However,

this approach is not without its problems and needs to be compared with the

integrated squared error approach of Paulson and Nicklin (1983). On the basis of

the results of this thesis, we conjecture that the integrated squared error estimator

will fare much better than its least-squares transform counterpart.
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