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Abstract

This thesis is concerned with assessing the spatial variability in animal populations.

Chapter 1 is a short general introduction. Chapter 2 contains a discussion of the

design of a large field experiment on the effect on the local ecology of the proximity of

arable crops (winter barley in this case), semi-natural habitat and mature hedgerow.

The counts of the large polyphagous beetle Pterostichus Melanarius recovered from

an array of wet pitfall traps from the above experiment is then discussed. New tests

for overdispersion and spatial aggregation are given in Chapter 3. This extends the

work of (Perry and Hewitt, 1991) based on the amount of effort it takes to smooth out

counts data so that they are acceptably variable (variance=mean), half as variable

as before, or completely smooth (variance=0). In Chapter 4 we proceed to devise

indices from Chapter 3's measures so the amount of pattern in different data sets can

be compared. In Chapter 5 these indices are applied to the counts of P. melanarius
7

from the experiment at Long Ashton that was discussed in Chapter 2, with each

month analysed separately. A generalised linear model is also fitted to the data. In

Chapter 6 we look at use of a general host-parasite model by Pacala et al. (1991)

to fit a large group of data sets. Some problems related to parameter estimation are

considered. A slightly simpler model is then described and shown to be equivalent

to a generalised linear model. Finally the distribution of movement distance and

survival rates from ring-recovery data on blackbirds is discussed in Chapter 7
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Chapter 1

Introduction

And Moses stretched forth his rod over the land of Egypt, and the LORD

brought an east wind upon the land all that day, and all the night;

and when it was morning the east wind brought the locusts.

Exodus Chapter 10 Verse 13

The uncontrolled movement of animals birds and insects has caused problems to

mankind throughout the ages. Some measure of control started around 9000 B.C.

with the domestication of sheep and goats, some 2000 years before the start of arable

farming (Starr, 1991). It is much more difficult to control smaller, more mobile,

species such as birds and insects. Virgil, in book IV of the Georgics (37-29 BC),

described suitable positions for hives of bees so as to maximise the yield of honey. He

also noted that weather affects movement rates with fair weather encouraging long

foraging journeys and the threat of rain restricting the range.

The assessment of spatial stratification and movement in response to heterogeneity

in the environment is the subject of this thesis.

The design of a large experiment to study the effects of habitat diversity on arable

1



CHAPTER 1. INTRODUCTION 	 7

crops and the local ecosystem is discussed in chapter 2. A review of the biology of a

large carabid beetle Pterostichus melanarius is given, along with an overview of the

use of pitfall trap data to assess carabid populations. The chapter then continues to

analyse the changes in the mean catch of P. melanarius from the experiment over

time and looks at the effect of habitat diversity on the catch rate, using a generalized

linear model.

Chapter 3 is concerned with the development of new tests for overdispersion and

spatial aggregation in counts data. A pattern is defined as overdispersed if it has

more variability than would be expected if it came from the Poisson distribution. A

pattern is (spatially) aggregated if the high and low counts are spatially clustered.

These tests, which follow on from the work of Perry and Hewitt (1991), are based on

the amount of effort required to reposition the individuals so that the sample variance

has some desired property. This effort is defined as the total distance moved by all

the individuals.

Chapter 4 develops these further by looking at indices of pattern based on these

tests.

Chapter 5 combines the previous three chapters in order to assess the extent of

heterogeneity in the field experiment. First the field is divikled into blocks and the

GLM from chapter 2 extended by adding the block effect. The extent of pattern is

then analysed for each month using both the indices of chapter 4 and a GLM based

on blocks.

Chapter 6 looks at the estimation of rates of parasitism in hosts and describes a

hierarchy of models, including that from (Pacala et al., 1991) that take into account

possible heterogeneity in the parasitism rates. The implementation of the Pacala

and Hassell model is discussed and a slightly simpler model using a GLM fitted. The
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chapter concludes with a look at the possible use of Generalized Linear Mixed Models

(Engel and Buist, 1993) to provide a coherent framework for host-parasite models.

Chapter 7 looks at the distribution of dispersal distances and survival rates for ring

recovery data using the Weibull distribution. Data for the blackbird turdus tnerula

in the U.K. and the common grackle Quiscalus quiscula in North America are both

analysed. (Manly and Chatterjee, 1992)'s use of least squares estimation and fitting

by maximum likelihood techniques are both considered.

1.1 A note on notation

In order to describe complex models with many main effects and two- or even three-

way interactions the following notation, used by both the Genstat and GUM sta-

tistical packages, has been used throughout. Main effects are given by the name of

the regressor and two-way interactions not including the main effects by both names

separated by an "." . So sex.age indicates the sex age interaction (but not the main

effects). Similarly three way interactions, excluding subsidiary two-way interactions

and main effect are denoted by by two dots. For example sex.age.area. A short form

for including main effects and subsidiary interactions involves replacing the "." by

an asterisk. So age*sex is equivalent to age-Fsex-1-age.sex, and the three way effect

sex*age*area to sex+age-Faread-sex.age-Fsex.area+age.aread-sex.age.area.

As a short method of indicating the statistical significance of results in tables the

following convention is used. If a result is significant at 5% then it is marked with

a single asterisk, two asterisks represent a result significant at 1% and three a result

significant at 0.1%.

Data which are missing are represented in both figures and tables with a question

mark.



Chapter 2

Patch-crop experiment

2.1 Introduction to a large farmland ecology ex-

periment

In this chapter we consider the motivation for and design of a large experiment on

farmland ecology, run concurrently at Long Ashton Research Station (LARS) and

Rothamsted Experimental Station (RES) in section 2.2. The biology of an important

carabid beetle, Pterostichus Melanarius, is discussed in section 2.3. The monthly

catches of P. mclanarius from the experiment are described an the mean catch rates

for the summer months (June to September) quantified using a generalized linear

model (McCullagh and Nelder, 1989) in section 2.4. The proportion of males caught

in the experiment, and how this changes with time and habitat, is discussed in section

2.5. Assessment of spatial clustering and possible trends across the data are left until

chapter 5, after the development of suitable analytical techniques in Chapters 3 and 4.

4



CHAPTER 2. PATCH-CROP EXPERIMENT 	 5

2.2 A Large Field Experiment with Fragmented

Habitats

With the recent changes in farming techniques and the effects of government and

European Community subsidies for policies such as set-aside there has been an in-

creasing interest in habitat fragmentation and the effect on the environment of having

different habitats in close proximity.

In order to study the effect of having areas of arable land next to unfarmed areas

on the local ecology it was decided to conduct an experiment at RES and LARS on

environmental heterogeneity.

Designing this experiment posed a set of problems not usually considered in ex-

perimental design. Latin Square designs consider blocking up an experimental area

by rows and columns to minimise the variance. Spatial considerations are not usually

taken into account beyond this level, although there are designs such as nearest-

neighbour designs (Freeman, 1979) where there is an attempt to balance out how

often treatments occur near to one another. This doesn't really help if we wish to

design an experiment where the spatial correlation is of interest in itself.

In order to have a variety of sizes of habitat patch, and to,see what the effect of

a nearby mature piece of hedgerow would be on plant and invertebrate populations,

the design in figure 1 was selected.

This design, which is duplicated at both RES and LARS, consists of a field where

most of the area was sown with winter barley which was treated in the usual way

(harrowing, herbicide treatments etc.) to give a crop. Five 27m square patches and

four grids of nine 9m square patches were sown with a mixture of four grasses and

four broad-leaved herbaceous plants at the start of the experiment and then left to
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develop, apart from being mown once a year. There is a hedge running along one side

of the field. This design was used because it gave an approximately constant ratio of

crop to patch and could be used to study the effect of the hedgerow on the catches.

The design was constrained by the need to plough the crop area, as well as sow and

harvest the crop.

There is a possible problem with this design in that the grids of nine small patches

are all in the corners of the experiment whereas the five large patches are nearer to

the centre. It might have been better to have switched the small patches with the

large patches surrounding the central patch, as in figure 2. However this alternative

design would make movement between patches of the same size much more difficult

than the design actually used.

In order to assess the insect populations of the patches, the hedgerow and the

arable area, 152 wet pitfall traps were laid out each month in the positions marked

with large dots. Because there is some confounding in this design between trap density

and the patch density extra traps were placed, from 14/05/91 to 08/07/91 inclusive

at RES and 14/05/91 to 9/12/91 inclusive at LARS. These extra pots are marked in

figure 1 with circles. The pots were half-filled with a mixture of water and detergent

and left without tops for one week. The pots were then removed from the field and

the contents examined in the laboratory. For each pot the individuals were examined

and the family, species and, if possible, sex and instar recorded. Sometimes it was not

possible to identify individuals down to this level, in which case they were identified

as far as possible. There were 313 different species categories identified.

The reported catches for the beetle P. melanarius in June 1990 at LARS are given

in figure 3 as an example.

The first set of pitfall trap data was collected in September 1989 and trapping has
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Figure 1: Patch experiment design with standard and extra sampling points
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Figure 2: Alternative layout for patch crop experiment
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Figure 3: Patch experiment recoveries for P. melanarius, June 1990,LARS
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continued ever since. It was occasionally impossible to set out a full set of 152 traps

due either to farming activities or the weather. Sometimes the traps dried out or had

sufficient leaf litter in them to allow substantial number of individuals to escape.

Full details of these events are given in tables 1 and 2.

One problem with this design is that if the presence of pitfall traps affects the

population in the area surrounding it then there is a partial confounding, for pots in

the crop, of the effect of the numbers of traps with the presence of patches.

A more serious problem with this design is the lack of randomisation and bal-

ance. The layouts at Rothamsted and Long Ashton were identical and systematic.

This results in some serious confounding of major parameters of interest. However

a randomisation of the design could well have left something that was impossible to

manage from the point of view of ploughing and harvesting the crop and getting to

the sampling pots without a large degree of disturbance to the experimental area.

It may, with hindsight, have been better to have run a slightly smaller experiment

which was properly randomised in order to avoid these problems, or at least to have

had different designs at the two sites.

2.3 A review of work on P. melanaritts

One of the most common species of beetle caught in the patch experiments at both

LARS and RES was Pterostichus melanarius. This is a large polyphagous beetle that

is very common in cereal fields across Northern Europe. It is an autumn breeding

species (Wallin, 1985) that usually overwinters as a larva, although some individuals

manage to overwinter as adults (Barlow, 1970).

In a study of the effect of pesticides and hunger, Chiverton (1984) described an

experiment conducted in 1981 on P. melanarius in spring barley in the Netherlands.
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Table 1: Void and unusual pitfall trap data at LARS
Date	 Problem

04/10/89 )
11/10/89 ) No traps put out in crop (crop not sown)
13/11/89 ) LARS data not available
11/12/89 )

13/08/90 Void traps due to clever magpies

10/09/90 No traps put out in crop (crop not sown)

11/02/90 Small catches due to very cold weather

14/05/91 12 extra traps put out in crop
to	 All appear on one standard form (e.g. C/C.57)
09/12/91
inclusive

28/10/91 Sample late due to drilling difficulties

10/02/92 Trap G.58 is missing for carabids only

10/08/92 No traps in crop

08/09/92 No traps in crop

/12/92	 Traps put out 1 week later at LARS than at RES
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Table 2: Void and unusual pitfall trap data at RES
Date	 Problem

25/09/89 No traps put out in crop (crop not sown)

02/10/89 No traps put out in crop (crop not sown)

16/10/89 No traps put out in crop (crop not sown)

13/08/90 No traps put out in crop (crop not sown)
Traps dried out due to weather conditions.
Increased numbers of unidentifiable spiders caused
by drying out and predation by larger beetles.

05/10/90 8 crop traps were opened in the stubble (F.44, P.44, F.56,
P.56, K.45, K.55, F.50, P.50)

10/09/90 No traps put out in crop (crop not sown)

18/02/91 Traps left open for two weeks due to weather conditions,
i.e. snow on the ground, so unable to locate traps.

14/05/91
to	 12 extra traps put out in crop
08/07/91 All appear on one standard form
inclusive

12/08/91 Leaf debris in traps may have allowed insects to
escape causing lower counts

12/08/91 No traps put out in crop (crop not sown)

09/09/91 No traps put out in crop (crop not sown)

28/10/91 Sample late due to drilling difficulties
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Three large (4.3ha) plots within a field of spring barley were marked out and either

left untreated or sprayed with a pesticide. Both Fenitrothion and Sumicidin were

used. This experiment was repeated in a different field in 1982. In each plot five

pitfall traps were half filled with a mixture of water and detergent and left out in the

plots for a week at a time. At the end of each week they were brought in and the

contents examined. In the treated plots the numbers caught dropped immediately

after the application of pesticide but then increased to levels greater than in the

untreated plots. The proportion of females caught in the treated plots was higher

than in the untreated plots although the difference was only significant at the 5% level

for Sumicidin in 1982 and Fenitrothion in 1981. The gut contents of the individuals

recovered were examined to see if there were any systematic differences between the

sexes and treatments. The proportion of males with solid food in their guts was not

significantly affected by the treatment but both gravid (i.e. with fertilised eggs), and

to a lesser extent non-gravid, females showed lower gut contents in those plots sprayed

with pesticide than the untreated ones. This implies that the gravid females were

affected by food shortages caused by spraying which affected the non-gravid females

to a lesser extent and the males very little.

Wallin (1985) studied the effect of field size and neighbguring habitat on the

catches of P. melanarius in fields containing spring barley. This crop is planted in

May, harvested in August and the field ploughed again in September. Barrier pitfall

traps were placed in two rows of seven in fields of 2 and 6 hectares in 1981 and then in

single rows of seven in three larger fields of sizes 4, 10 and 20 hectares in 1982. These

rows consisted of three traps in the middle of the field, two on the edge and two in

the neighbouring habitat. They were emptied each week and the contents studied. It

was found that the mean catch of P. melanarius increased with increasing field size
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Table 3: Total monthly catches of P. melanarius in winter wheat (Jones.1979)
Year May June July	 August September	 October
1971 7 90 118 197 4 0
1972 7 9 55 73 3 8
1973 9 12 83 26 36 6
1974 5 19 74 65 ? ?
1975 0 13 22 17 44 33
1976 5 36 153 157 61 12
1977 2 71 118 251 83 1

although the effect is to some extent confounded with the year of study. Temporally

the count of P. melanarius showed an early peak in late May and then a longer period

of sustained activity in July and August. The activity in May was at approximately

the same level in the nearby areas as in the crop, although later on the crop catches

are dominant. In order to see when the peak of activity of P. melanarius in arable

fields occurs, the results of an experiment conduct by Jones (1979) were analysed. In

that experiment, conducted over seven years, weekly samples were taken in a field of

winter wheat at RES using 12 dry pitfall traps. The numbers of several species of

carabid beetles caught each month were given, and are repeated for P. melanarius in

table 3.

The total catch in July is compared to that in August in each year using the
•

number of individuals captured in each month. The normal approximation to the

binomial distribution was used, with results given in table 4.

The catch rate was higher in July than August for 1971 and 1976, which were

also the years which showed the highest counts. In 1973 and 1975, when the counts

were much lower there were significantly higher catch rates in July than August

and a similar effect may have occurred in 1974 although the result in 1974 was not

significant. This implies there may be a link between overall catch rates and periods
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Table 4: Tests to see if peak catch rate occurs in July or August for P. .melanari its
in winter wheat

Year	 July	 August
Catch	 No. of days Catch	 No. of days Most abundant month (at 5%)

1971 118 31 197 24 August
1972 55 31 73 31 NS
1973 83 31 26 17 July
1974 74 31 65 31 NS
1975 22 18 17 31 July
1976 153 29 157 21 August

of peak activity, although more work would be needed to confirm this. A full analysis

of this data would involve plotting the mean weekly catch against time, instead of

amalgamating the catches into months, and looking at the activity peak from this

graph.

The possibility of overdispersion in the counts and the effects of the weather in

each week would also need to be considered and make the validity of using a simple

binomial test (which implicitly assumes the data are not overdispersed) doubtful.

Chiverton (1984), in his experiment, also found a similar effect, though with a,

slight drop in the counts in the middle of the summer of 1981. As there were only

five pitfall traps in the plot that was not treated with any insecticide it is difficult,

especially if overdispersion is present in the data, to attach to much statistical sig-

nificance to this. The 1982 sampling only started in mid-June, so it is impossible to

tell if the population was lower then than in May. However Wallin (1985) also found

this effect and attributed it to the emergence in the spring of individuals that have

hibernated as adults over the winter. Such hibernation has been observed by Jorum

(1980).
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2.4 P. melanarius counts from the farmland ecol-

ogy experiment

P. melanarius was more common at LARS than RES. In order to get an overall view

of the patterns of catches for this species the mean monthly catch was calculated

for each month for all three habitats (Hedge, Crop and patch), with the patch data

further subdivided by patch size (large and small). These values were plotted against

time for both sites. The plots are given in figures 4 and 5 and the numbers caught

are given in tables 5 and 6.

The largest catches from the crop part of the experiment always occur in July at

both sites, although for 1992 at LARS and both 1990 and 1991 at RES no pots were

placed in the crop for either August or September. In each year, and at both sites,

the small and large patches have very similar patterns. The peak catches again occur

during July, except for 1990 at LARS, when July represented a slight lull in activity

between June and August, and 1992 at RES, when only 11 individuals were caught in

the patches all year. In the hedge the peaks occurs either in August (1991 and 1992

at LARS, 1990 at RES) or in July, although for RES the total catch from the hedge

in 1991 was only 12 and in 1992 only two individuals were captured in the hedge.

The overall catches, certainly from the hedge and patches, show a decline from

year to year at both sites. For the crop this is much more difficult to judge due to

the months when there were no pots placed, although even here there does seem to

be a gradual drop.

The early emergence of some individuals in March and April may be due to beetles

emerging that had overwintered as adults (Wallin, 1985).

The plots for the male and female populations separately show very little difference



.....	 \... ....
....................... ...

........
..............................................

••

...............

0,

.............

............... ...	 •,„,........ ..:b..... .....
."::::....... ........' ..........'.... .110.":" .... 

111nIZZZn1711n1;rar

....... ••••	
0,0• IOW

•Se.".°1 •••• • amm a n•• • nIn • mm• ft m.1. . •n• a •nn• •

8
	

9
	

£
	

0

.......

CHAPTER 2. PATCH-CROP EXPERIMENT
	

17

Figure 4: Mean catch of P. melanarius at LARS over time
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Figure 5: Mean catch of P. melanarius at RES over time
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Table 5: Total catch of P. melanarius from Patch Experiment at RES 1989-1992
Number of pots laid out each month is given in parentheses
Month
1989

Hedge Crop Small Patch	 Large Patch

September 10 (11) ( 0) 20 (35) 11 (43)
October05 2 (11) ( 0) 4 (36) 6 (45)
October16 1 (11) ( 0) 1 (36) 1 (41)
November 2 (11) 1 (59) 0 (36) 0 (44)

1990
March 0 (11) 0 (60) 0 (36) 1 (45)
April 0 (11) 0 (60) 0 (36) 0 (45)
May 2 (11) 15 (60) 4 (36) 3 (45)
June 6 (11) 145 (60) 106 (36) 85 (45)
July 11 (11) 224 (60) 180 (36) 113 (45)
August 18 (11) ( 0) 455 (36) 317 (45)
September 2 (11) ( 0) 216 (36) 195 (44)
October 8 (11) 6 ( 8) 28 (36) 19 (45)
November 0 (11) 1 (58) 1 (36) 0 (41)

1991
March 0 (11) 0 (60) 0 (36) 0 (45)
April 0 (11) 4 (60) 0 (36) 0 (45)
May 0 (11) 5 (72) 0 (36) 0 (45)
June 1 (11) 7 (72) 1 (36) 2 (45)
July 10 (11) 343 (72) 20 (36) 39 (45)
August 1 (11) ( 0) 0 (36) 2 (5)
September 0 (11) ( 0) 1 (36) 4 (5)
October 0 (11) 1 (60) 1 (36) 1 (45)
November 0 (11) 0 (60) 0 (36) 0 (45)

1992
March 0 (11) 0 (60) 0 (36) 0 (45)
April 0 (11) 0 (60) 0 (36) 0 (45)
May 0 (11) 0 (60) 0 (36) 0 (45)
June 0 (11) 14 (60) 0 (36) 3 (45)
July 2 (11) 262 (60) 1 (36) 1 (45)
August 0 (11) 56 (60) 3 (36) 1 (45)
September 0 (11) 16 (60) 2 (36) 1 (45)
October 0 (11) 0 (60) 0 (36) 0 (45)
November 0 (11) 1 (59) 0 (35) 0 (45)
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Table 6: Total catch of P. melanarius from Patch Experiment at LARS 1990-1992
Number of pots laid out each month is given in parentheses
Month Hedge Crop Small Patch Large Patch
1990
February 1 (11) 0 (43) 0 (32) 0 (42)
March 1 (11) 0 (60) 0 (36) 0 (45)
April 0 (11) 0 (58) 0 (36) 0 (42)
May 1 (11) 2 (60) 2 (36) 1 (45)
June 45 (10) 563 (59) 830 (35) 631 (45)
July 86 (11) 2998 (60) 382 (36) 261 (45)
August 58 (10) 1114 (44) 542 (35) 271 (43)
September 12 (11) ( 0) 152 (36) 99 (45)
October 12 ( 9) 32 (60) 32 (36) 20 (42)
November 2 (11) 0 (59) 1 (35) 0 (43)
1991
February 0 (11) 0 (58) 0 (36) 0 (45)
March 3 (11) 1 (59) 1 (36) 0 (45)
April 1 (11) 0 (56) 0 (36) 0 (44)
May 0 (11) 6 (72) 1 (35) 3 (45)
June 0 (11) 89 (70) 12 (36) 10 (44)
July 21 (11) 2212 (72) 82 (36) 224 (45)
August 72 (11) 1477 (72) 92 (36) 82 (45)
September 5 (11) 638 (69) 84 (35) 41 (45)
October 0 (11) 7 (58) 1 (36) 2 (45)
November 0 (11) 2 (69) 0 (36) 0 (45)
1992
February 0 (10) 0 (72) 0 (36) 0 (45)
March 0 (11) 0 (72) 0 (36) 1 (45)
April 0 (11) 2 (72) 2 (36) 1 (45)
May 1 (11) 4 (72) 0 (36) 0 (45)
June 5 (11) 584 (71) 119 (35) 99 (45)
July 23 (11) 2429 (70) 170 (35) 162 (45)
August 37 (11) ( 0) 36 (35) 33 (44)
September 16 (11) ( 0) 35 (35) 22 (45)
October 4 (11) ( 0) 7 (36) 1 (45)
November 2 (11) 0 (65) 1 (35) 1 (45)
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from those for the overall population.

2.4.1 Model Selection

This experiment raises serious problems when it comes to deciding upon a statistical

model to analyse the data. The design was not randomised in any way and the two

replicates, at Rothamsted Experimental Station and Long Ashton Research Station

are on different types of soil. Any differences in the local ecosystems will be con-

founded with different weather conditions and treatments of neighbouring fields. In

the event for this species the counts in 1991 and 1992 were so low at Rothamsted that

it would have required a presence-absence model to analyse the results. In any event

the low catches do not justify the fitting of a model with sufficiently many parameters

to provide a clear description.

The experiment could be analysed as a repeated measures experiment with the

sampling pots being treated as units and then analysing the effect of time and position

on the catches in the units. This is sensible if there are significant differences between

the environments for pots in apparently similar positions but not if the areas are

approximately homogeneous. Any systematic differences between the sampling units

would appear as patterns in the residuals from a fit for a model, where the repeated

measures effect was ignored. This is discussed further in section 5.3.1.

2.4.2 Model Fitting

It is of interest to find out if the patterns that appear to be present on a first analysis

of the data are statistically significant. It would also be useful to be able to estimate

the numbers of beetles that might have been caught if the pots had been laid out in

the crop every month. In order to do this a Generalized Linear Model (McCullagh
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and Nelder, 1989) was fitted to the data. This was done using the Genstat package

(Payne et al., 1987). Because the totals are counts data the Poisson error model was

used. The canonical log link was assumed and, due to a large degree of overdispersion

in the data revealed by this analysis, the dispersion factor was estimated from the

data.

Only the data from the period July to September for 1990 to 1992 inclusive from

LARS were analysed. This was because the mean catch rate from LARS outside this

period was low and the catch rate at RES was very low, especially in the patches for

the whole of 1991 and 1992.

The effect of changes in time was accounted for by a year factor with 3 levels

(1990, 1991, 1992) and a month factor with 4 levels (June, July, Aug and Sept). The

effect of ground cover had a three level factor habitat with values Hedge, Crop and

Patch. In order to differentiate between the small and the large patches an additional

factor, patch size, was also fitted to the data. This factor had four levels, three of

which were aliased with the habitat factor, so only one value needed estimating. The

fourth level represents the difference between small and large patches.

Initially a model with the factors year, month and habitat was fitted. Then the

effect of interactions between these factors, and the effect of patch,size were considered

by fitting each in turn, and including the most significant one. The significance of

each effect as is it added can be measured by comparing the deviance ratio to the

appropriate F-distribution. The deviances and significance are given in table 7.

If we use the deviance ratios as crude measures of the importance of each effect

then the interactions and extra parameter can be divided into three groups, with

month.habitat, year.habitat and patchsize all being extremely important, year.month

having an intermediate effect and the last pair of interactions year.month.habitat and
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Table 7: Deviance ratios for regression on mean catch of P. melanarius at LARS
Regressor Degrees of freedom	 Deviance Ratio Significance
Year+month+habitat 7 242.96 0.1%
+month.habitat 6 46.03 0.1%
+year.habitat 4 36.47 0.1%
+patchsize 1 38.35 0.1%
+year.month 6 23.15 0.1%
+year.month.habitat 9 5.48 0.1%
+year.patchsize 2 5.02 1%

Overall regression 35 91.14 0.1%
Residual 1642 6.539

year.patchsize being not as important in their effects on the predicted means but still

extremely significant statistically.

The overall residual deviance ratio of 6.54 indicates that this model is nowhere

near to providing a complete explanation of all the overdispersion present in the data.

A table of the regression coefficients, along with standard errors and t-statistics

of deviation from 0 is given in table 8. The values are compared to a baseline of June

1990 in the crop. Some of the parameters, such as the September 1991 patch effect

are not estimable because there were no pots placed in the crop at this time due to

farming activities.

It was thought that the variability of the habitat parameter with month might

in part be due to the change in the microclimate of the crop area that occurs when

harvesting is done. Therefore the month parameter was replaced in the above model

with a harvest parameter at two levels, pre-harvest (June and July) and post-harvest

(August and September) and the model refitted. This resulted in a significant wors-

ening of the model. When the effect of the monthly changes was brought back into

the model by adding first the month parameter and then the interactions with year
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model for mean catch of P. inelanarius at LARS
Estimate Standard error t-statistic

Table 8: Parameter estimates for
Regressor
Constant
1991
1992
JUL
AUG
SEP
Hedge
Patch
Time-habitat interactions

2.256
-2.016
-0.149
1.656
0.976
-1.531
-0.752
0.316

0.108
0.291
0.151
0.117
0.132
0.679
0.396
0.138

20.95
-6.91
-0.98
14.10
7.39
-2.26
-1.90
2.28

JUL
JUL
AUG
AUG
SEP
SEP
1991
1991
1992
1992

Hedge
Patch
Hedge
Patch
Hedge
Patch
Hedge
Patch
Hedge
Patch

-1.103	 0.485	 -2.28
-2.493	 0.168	 -14.80
-0.721	 0.519	 -1.39
-1.544	 0.173	 -8.92
0.11	 1.07	 0.11
-0.247	 0.656	 -0.38
-4.18	 4.91	 -0.85
-1.824	 0.629	 -2.90
-2.14	 1.20	 -1.79
-1.604	 0.267	 -6.02

month.year interactions
1991	 JUL
1991	 AUG
1991	 SEP
1992	 JUL
1992	 AUG
1992	 SEP
year.month.habitat interaction
1991	 JUL	 Hedge	 '3.26
1991	 JUL	 Patch	 1.928
1991	 AUG Hedge	 4.51
1991	 AUG Patch	 0.818
1991	 SEP	 Hedge	 1.81
1992	 JUL	 Hedge	 1.19
1992	 JUL	 Patch	 1.475
1992	 AUG Hedge	 2.32
1992	 SEP	 Hedge	 2.14
Patch size
Small	 0.6440
1991	 Small	 -0.695
1992	 Small	 -0.265

1.529	 0.300	 5.09
1.805	 0.309	 5.85
3.515	 0.614	 5.72
-0.216	 0.166	 -1.30
-0.572	 0.369	 -1.55
0.437	 0.418	 1.04
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and habitat all these interactions proved significant. Therefore this attempted sim-

plification of the model proved a failure.

If the model was an adequate fit to the data then the mean deviance would be

approximately 1. As this is clearly not the case then either there are significant re-

gressors which have not been taken into account or there is variability due to sampling

method or random variation. There may well be a biological effect where individu-

als are attracted to each other and so pots which already contain individuals will

catch individuals at a higher rate. Alternatively there may be strong local short-term

variability in the population densities. A combination of these two effects is also

likely.

The model was then used to predict the numbers of individuals that were recovered

in each month for each habitat type. This was done using the Genstat PREDICT

directive and the resulting values given in table 9. The values predicted are identical

to the actual data for the hedge and the crop in months where samples were taken in

these habitats, because of the fitting of the three way year-month-habitat interaction.

In the patches there is little difference between the predicted catches for the large

and small patches for 1991, with a large difference predicted for 1990, and a smaller

one for 1992. To see this more clearly the effect of the month /and then patchsize

was fitted using the same generalized linear model to the data for the patches only

and for each year separately. The significance of adding the patchsize effect after the

month effect, together with parameter estimates and confidence intervals, is given in

table 10.

From this we can see that there is a very big difference in 1990, with a mean catch

rate almost twice as large in the small patches as in the large ones. In 1991 there is

no significant difference and in 1992 the difference, although still significant, is only
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Table 9: Predicted mean catch of P. melanarius at LARS
Crop

Pred.	 s.e.
Hedge

Pred.	 s.e.
Small Patches

Actual	 Pred.	 s.e.
Large Patches

Actual	 Pred.	 s.e.

1990
JUN 9.54 (1.02) 4.50 (1.71) 23.71 24.91 (1.90) 14.02 13.08 (1.13)
JUL 49.96 (2.33) 7.81 (2.15) 10.61 10.78 (1.15) 5.80 5.66 (0.63)

AUG 25.31 (1.93) 5.80 (1.89) 15.49 14.11 (1.36) 6.30 7.41 (0.78)
SEP 2.061. (1.41) 1.09 (0.80) 4.22 4.20 (0.69) 2.20 2.21 (0.37)
1991
JUN 1.27 (0.34) 0.00 (0.04) 0.33 0.26 (0.14) 0.23 0.28 (0.15)

JUL 30.72 (1.67) 1.90 (1.05) 2.28 3.67 (0.68) 4.98 3.86 (0.65)

AUG 20.51 (1.36) 6.54 (1.96) 2.56 2.08 (0.47) 1.82 2.19 (0.46)

SEP 9.24 (0.93) 0.45 (0.51) 2.40 1.51 (0.38) 0.91 1.39 (0.39)

1992
JUN 8.22 (0.87) 0.45 (0.51) 3.40 3.31 (0.64) 2.20 2.26 (0.43)

JUL 34.70 (1.80) 2.09 (1.11) 4.86 5.04 (0.83) 3.60 3.45 (0.59)

AUG 12.31t (5.00) 3.36 (1.41) 1.03 1.05 (0.33) 0.75 0.72 (0.23)

SEP 2.75t (2.10) 1.45 (0.92) 1.00 0.86 (0.36) 0.49 0.59 (0.20)

Crop and hedge predictions identical to catch where sample taken
Months without sample in the crop area marked with t

Table 10: Annual effect of patch size on P.melanarius catch at LARS
Year Parameter estimate (s.e.) Significance	 Difference in mean 95% c.i.

1990 0.664 (0.096) 0.1% 190% [157%,231%]

1991 -0.051 (0.143) NS 95% [ 79%,126%]

1992 0.379 (0.150) 5% 146% [108%,197%]

Catch in small patches is given as a percentage of that in large patches
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half of what it was in 1990 with about half as many again caught per pot in the

small patches compared to the large ones. The statistical significance of this result

relies on the catches within each large patch and each grid of ninetsmall patches being

uncorrelated. This is discussed further in section 5.6.

One of the motives behind the experiment is to discover the effect of proximity of

different habitat types on the local biology.

In order to discover the effect on the crop counts of patches of semi-natural habitat

a new continuous variate was defined for the crop data. This variate, patch density, is

a weighted measure of the number of nearby plots that are covered in grass. Each edge

neighbour that is grassed over contributes 1 and each corner plot gives 0.5. Thus the

plot F44, which is sandwiched between two small patches, has a patch density of 2.0,

plot 144 has a patch density of 1.5 and a plot away from the patches such as K47 has

a value of 0. A generalized linear model, with Poisson errors and overdispersion was

again fitted to the data, with both the patch and hedge data excluded. After fitting a

mean activity level for every month the patch density variate was included. This was

highly significant (F-statistic of 23.0 on 1 degree of freedom) and when the month-

patch density interaction was added this was also a significant addition to the model

(F-statistic 4.59, P < 5%). Neither the two way interaction of patch density and

year nor the three way month-year-patch density (implying different slopes in every

month) proved significant. This implies that the effect of patch density varies with

the time of year but is approximately the same each year. The parameter estimate

was strongly negative, implying a decrease in catch in areas of high patch density.

Estimates of the change in catch rate for increasing patch density are given in

table 11, along with significance levels. The September data are the only ones which

do not give a significant result. The other parameter estimates do not appear to
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Table 11: Effect of Patch density on catch rates in the crop of P. melanarius at LARS
Month Years data Parameter (s.e.) Sig. level Patch density effect

collected estimate Estimate 95% c.i.

June 1990,1991,1992 -0.273 0.085 1% 68% [41%,81%]
July 1990,1991,1992 -0.150 0.058 5% 74% [59%,94%]
Aug 1990,1991 -0.369 0.098 0.1% 47% [32%,71%]
Sept 1991 0.219 0.173 NS 155% [77%,309%]

Predicted drop in catch for crop areas with two neighbouring patch squares compared
to open field

differ significantly from one another. This could be the result of a different pattern

occurring in September from the rest of the period, although this is difficult to confirm

as there is only one year (1991) when pots were placed in the crop in September. The

patch density parameter is closely related to the number of neighbouring pots laid

out, so there is the possibility of confounding between the effect of patch density and

pot density. When this possible effect was investigated it appeared that the effect of

adding pot density to the above model did not significantly improve the fit, whereas

adding patch density to the model with pot density did. Thus there is no evidence

here of an effect of placing large numbers of sampling pots on the numbers caught.

It has already been shown that there is an effect of patch size on the catch rate

of P. melanarius. It was decided to see if there was an effect of relative positions of

pots within a large patch on the catch rate. This was done by fitting a variate patch

density to the data set restricted to the large patches only. This variate was defined

in the same way as patch density for the crop. However it did not have a significant

effect on the goodness of fit of the model when it was applied to the data. Thus

we can tentatively conclude that there does not appear to be a systematic difference

between the catches in the corners, on the edges or in the middle of the large patches.
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There did not appear to be any difference between the catches for pots in the blocks

of small patches, on the edges or in the middle either. The difference might have to

be quite large between the central pot and the others to be picked up as there are

only 5 central pots for the large patches and 4 for the small ones.

2.5 The sex ratio in catches of P. melanarius from

the patch experiment at LARS

When the catches from the pitfall traps were analysed individuals of selected species

were, where possible, sexed. This leads to the possibility of analysing whether the

sex ratio for these species varies between years, months or habitat, and describing

these effects if they do. We will now go on to analyse and discuss the sex ratio of P.

melanarius recovered in the pitfall traps at LARS.

In order to get a general idea of the variability in the sex ratio over time, and to

see what the effect of habitat type might be, a logit transformation of the proportion

of males caught in each habitat for each month at LARS was made and the results

plotted against time for each habitat (figure 6). There does not appear to be any

coherent trend in 1991 but in 1992 the large and small patches'seem to follow the

same pattern.

In order to describe the changes in the sex ratio over time and with habitat in

a more coherent fashion, and to pick out the effects that appear to be important, a

Generalized Linear Model (McCullagh and Nelder, 1989) was fitted to the proportion

of males recovered from each pot. This was done using the Genstat package (Payne

et al., 1987) and the canonical logit link function.

Significant variability in the sex ratio, apparent from the plot, is provided when
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Figure 6: Logit transformation of proportion of males caught at LARS over time
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Table 12: Deviance ratios for model for sex ratio of P. melanarius at LARS
Regressor Degrees of freedom	 Deviance Ratio Significance

Year 2 38.6 0.1%
Month 5 8.7 0.1%
logct 1 32.0 0.1%
year.month 10 7.2 0.1%
month.logct 5 3.7 0.1%

Overall regression 23 16.39 0.1%
Residual 1305 1.46

a simple model consisting of just the mean proportion of males recovered was fitted

to the data. It appears that the month,.year and habitat are all important effects.

As there were not many recoveries during the period November to May in each year,

these were all grouped together as winter data, with the November and December

data classified as being from the New Year. In order to see if there was an effect on

the sex ratio in a pot of the total numbers caught in that pot, a new variable log ct was

created. The level of this variate was the log of the total number of P. melanarius

caught in the sampling pot that month, including those individuals that had not been

sexed.

The model was then fitted to the data, adding main effects and interactions (if all

the relevant main effects were already present) in the order of the largest deviance

ratios at each point. The order of fitting, together with the deviance ratios and

significance levels for all these effects, is given in table 12, and parameter estimates

related to the effect of the pot catch on the overall catch are given in table 13.

It seemed at this point to be strange that the habitat had no effect on the sex

ratio of beetles caught. In order to make sure no important effects or interactions

had been left out a long series of models was fitted to the data in turn and the Akaike
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Table 13: Selected parameter estimates, for model for sex ratio of P. melanarius at
LARS

Regressor Estimate	 Standard Error t-statistic
logct -0.0381 0.0648 -0.59
logct	 Jul 0.0879 0.0729 1.21
logct	 Aug 0.2803 0.0802 3.49
logct	 Sep 0.244 0.113 2.16
logct	 Oct 0.584 0.405 1.44
logct	 Win -0.26 1.89 -0.14

Table 14: Analysis of deviance for optimal month,year,habitat,logct fit to
P.melanarius sex ratio at LARS

Model : Year*Month Habitat*Month Logct
deviance

d.f.	 deviance deviance ratio
Regression
Residual
Total

30
1298
1328

425.
1858.
2284.

14.183
1.432
1.720

9.91

information criterion (AIC) (Akaike, 1969) used to determine the most parsimonious.

A value of 2 for the selection criterion was used in order to get the predictions with

the lowest estimated standard error (Mallows, 1973). All models up to the complexity

level of three two way interactions between the effects month, habitat, year and logct

were fitted. The most parsimonious of the models, both when the October and winter

data were left out and included, was that the habitat effect and year effect vary with

month and the effect of pot catch (logct) is constant over time and habitat. The

apparent time dependence of the effect of pot count is now shown to be an effect

of not fitting the habitat effect. The analysis of deviance for the model for all the

months is given in table 14 and the parameter estimates in table 15.

In order to determine if the functional form of the relationship between pot catch

and the sex ratio could be better described by a different transformation of the pot
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Table 15: Parameter estimates for month-habitat interaction for model of
P.melanarius sex ratio at LARS

estimate s.e.	 t
Hedge
Patch
Jul
Jul

Aug
Aug

Sep
Sep

Oct
Oct

Win
Win

logct

.Hedge

.Patch

.Hedge

.Patch

.Hedge

.Patch

.Hedge

.Patch

.Hedge

.Patch

0.1338

0.561
0.268
0.095
0.011

-1.092
-0.428

-1.481
-0.770

0.071
-1.469

0.15
0.411

0.0295

0.357
0.099
0.417
0.131

0.410
0.141

0.647
0.260

0.850
0.580

1.10
0.933

4.54

1.57
2.70
0.23
0.09

-2.66
-3.02

-2.29
-2.96

0.08
-2.53

0.14
0.44

7
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catch, the log transformation was replaced by the identity and square root transfor-

mations in turn. Both of these led to a worsening of the fit implying that effect is

better described by a multiplicative model than an additive one. The possibility of

different sex ratios in the small and large patches was also investigated but the suspi-

cion from figure 6 that the proportion did not differ between them was confirmed by

the lack of a significant change when either the patch size alone was added, or patch

size varying with month or year.

When the parameter estimates are examined it appears that there is a very close

similarity between the estimates for the month-habitat interaction for the two months

preceding the harvest (June and July) and for the two months after it (August and

September). This was investigated by replacing interaction between the month and

the habitat type with an interaction between a two level factor , Harvest, and habitat

type. The harvest factor had one level for June and July, before the harvest, and

another level for August and September, after the harvest. The small reduction in

the overall deviance from doing this justified the fitting of this factor, but all of the

other interactions were statistically significant.

Parameter estimates for this slightly simpler and now optimal model are given

in table 16 and estimated proportions of males caught in potA with 1, 3 and 20

individuals are given in table 17 for 1990 and 1991 and table 18 for 1992.

The lack of any interaction between month and habitat after the harvest-habitat

interaction has been taken into account and the lack of a year-habitat interaction

implies the effect of ground cover on the sex ratio does not change over time.

From these tables we can also see that the predicted proportion of males rises

with increasing catch, an effect which is constant over time and between habitats. In

each month before harvest the proportion of males caught at any given catch rate is
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Table 16: Parameter estimates for optimal model for sex ratio of P. melanarius at
LARS

Parameter estimate	 s.e. t
Constant -0.420	 0.123 -3.42
Hedge 0.633	 0.192 3.30
Patch 0.2780	 0.0644 4.32
logct 0.1352	 0.0280 4.83
Jul -0.3453	 0.0742 -4.66
Aug 0.698	 0.183 3.81
Harvest -0.538	 0.201 -2.68
1991 0.458	 0.251 1.82
1992 0.206	 0.109 1.89
Interactions
Hedge.Harvest -1.197	 0.268 -4.47
Patch.Harvest -0.482	 0.107 -4.53

1991.Harvest 0.318	 0.321 0.99
1992.Harvest 1.600	 0.361 4.43

Jul.1991 -0.450	 0.255 -1.76	 7
Jul.1992 0.488	 0.123 3.98
Aug.1991 -0.738	 0.209 -3.53
Aug.1992 -1.715	 0.423 -4.05
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Table 17: P. melanarius, predicted proportions of males at LARS by pot count (1990
and 1991)

1990

1991

Month	 Habitat
Before harvest
Jun	 Crop

Hedge
Patch

Jul	 Crop
Hedge
Patch

After harvest
Aug	 Crop

Hedge
Patch

Sep	 Crop
Hedge
Patch

Before harvest
Jun	 Crop

Hedge
Patch

Jul	 Crop
Hedge
Patch

After harvest
Aug	 Crop

Hedge
Patch

Sep	 Crop
Hedge
Patch

Pot count 1

0.396	 (0.029)
0.553	 (0.049)
0.464	 (0.023)

0.317	 (0.025)
0.466	 (0.048)
0.380	 (0.025)

0.435	 (0.030)
0.304	 (0.044)
0.385	 (0.025)

0.277	 (0.040)
0.179	 (0.037)
0.238	 (0.031)

0.509	 (0.058)
0.661	 (0.066)
0.578	 (0.057)

0.319	 (0.024)
0.469	 (0.049)
0.382	 (0.024)

0.444	 (0.026)
0.312	 (0.043)
0.395	 (0.027)

0.454	 (0.028)
0.321	 (0.046)
0.404	 (0.029)

Pot count 3

0.432	 (0.024)
0.589	 (0.046)
0.501	 (0.018)

0.350	 (0.020)
0.503	 (0.047)
0.415	 (0.020)

0.471	 (0.024)
0.336	 (0.044)
0.421	 (0.021)

0.305	 (0.040)
0.199	 (0.040)
0.263	 (0.032)

0.543	 (0.057)
0.691	 (0.064)
0.610	 (0.056)

0.349	 (0.019)
0.502	 (0.047)
0.414	 (0.020)

0.478	 (0.021)
0.342	 (0.043)
0.427	 (0.025)

0.488	 (0.024)
0.351	 (0.047)
0.437	 (0.028)

Pot count 20

0.496	 (0.018)
0.649	 (0.044)
0.565	 (0.014)

0.411	 (0.012)
0.567	 (0.046)
0.479	 (0.016)

0.536	 (0.017)
0.396	 (0.045)
0.485	 (0.019)

0.365	 (0.043)
0.246	 (0.046)
0.319	 (0.037)

0.609	 (0.056)
0.745	 (0.059)
0.672	 (0.055)

0.413	 (0.012)
'0.569	 (0.047)
0.481	 (0.017)

0.545	 (0.014)
0.405	 (0.046)
0.494	 (0.025)

0.555	 (0.022)
0.415	 (0.050)
0.504	 (0.030)
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Table 18: P. melanarius, predicted proportions of males at LARS by pot count (1992)
Year
1992

Month	 Habitat
Before harvest
Jun	 Crop

Hedge
Patch

Jul	 Crop
Hedge
Patch

After harvest
Aug	 Crop

Hedge
Patch

Sep	 Crop
Hedge
Patch

Pot count 1

0.446	 (0.027)
0.603	 (0.048)
0.516	 (0.026)

0.482	 (0.028)
0.636	 (0.045)
0.551	 (0.025)

0.457	 (0.065)
0.324	 (0.059)
0.407	 (0.060)

0.700	 (0.066)
0.570	 (0.082)
0.655	 (0.068)

Pot count 3

0.483	 (0.023)
0.637	 (0.046)
0.552	 (0.023)

0.519	 (0.021)
0.670	 (0.042)
0.587	 (0.020)

0.494	 (0.064)
0.357	 (0.061)
0.443	 (0.060)

0.730	 (0.061)
0.606	 (0.080)
0.687	 (0.065)

Pot count 20

0.547	 (0.021)
0.695	 (0.044)
0.615	 (0.024)

0.582	 (0.012)
0.724	 (0.038)
0.648	 (0.016)

0.558	 (0.063)
0.418	 (0.066)
0.508	 (0.062)

0.777	 (0.054)
0.665	 (0.075)
0.740	 (0.059)

greatest in the hedge and smallest in the crop. After harvest this situation is reversed,

with proportionally more males in. the crop and fewer in the hedge. The predicted

difference between the hedge and patch areas at any given catch rate is never more

than twice the standard error for the hedge, although this value is quite large.

If we take a difference of more than two standard errors as representing a signif-

icant difference in predicted proportions, then before harvest the patch areas have a

significantly greater proportion of males than the crop (although the result for June

1991 based on just 22 individuals in the patches was not significant). After the harvest

the situation is reversed with significantly more males in the stubble in each August

when a sample was taken, and a nearly significant result for the one year, 1991, when

a sample was taken in the crop in September. There does not seem to be any general

seasonal trend in the sex ratio, an impression which is reinforced by considering the

size of the parameter estimates and standard errors for the year, month, year-harvest
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Table 19: Actual and predicted proportions of males in P. melanarius catches at

LARS
Month	 Crop	 Hedge	 Patches

Actual Pred. (s.e.)	 Actual Pred. (s.e.)	 Actual Pred. (s.e.)
1990
June 0.513 0.518 (0.017) 0.577 0.618 (0.045) 0.558 0.557 (0.014)

July 0.440 0.443 (0.010) 0.581 0.544 (0.046) 0.486 0.482 (0.015)

Aug 0.559 0.561 (0.016) 0.534 0.397 (0.045) 0.468 0.475 (0.018)

Sep ? 0.355 (0.043) 0.250 0.220 (0.043) 0.278 0.280 (0.033)

1991
June 0.550 0.541 (0.058) ? 0.639 (0.068) 0.545 0.580 (0.058)

July 0.430 0.431 (0.012) 0.571 0.533 (0.047) 0.477 0.470 (0.017)
Aug 0.549 0.553 (0.014) 0.319 0.388 (0.045) 0.528 0.466 (0.024)

Sep 0.554 0.541 (0.022) 0.200 0.377 (0.048) 0.392 0.454 (0.028)

1992
June 0.503 0.309 (0.084) 0.800 0.402 (0.105) 0.633 0.344 (0.089)
July 0.615 0.529 (0.021) 0.565 0.628 (0.047) 0.569 0.568 (0.023)
Aug ? 0.538 (0.064) 0.324 0.374 (0.063) 0.478 0.451 (0.061)
Sep ? 0.745 (0.060) 0.562 0.600 (0.081) 0.684 0.673 (0.067)

Months with no crop recoveries denoted by a?

and year-month interactions given in table 16.

In order to obtain a simpler table, which could be used to compare predicted and

actual proportions of males caught, the logct parameter was deleted from the previous

model and then the model refitted. From this, predicted proportions of males and

standard errors are obtained and are given, together with the proportions of males

caught in each habitat in the field, in table 19.

There are large discrepancies between predicted and actual proportions of males

caught in June 1992 for all the habitats and August and September 1991 in the

crop areas. Apart from this the predicted and actual proportions caught seem to

be modelled quite accurately. It may be that these few months are contributing



CHAPTER 2. PATCH-CROP EXPERIMENT	 39

considerably towards the higher than expected residual deviance for the model given

in table 16.

Pots with high catches had more males, as a percentage of the catch in the pot,

than pots with low counts. This effect, which appeared to be constant over time and

between habitats, implies that the trapping mechanism itself is introducing biases

into the study. One effect of this is that the catches for the males display a higher

degree of overdispersion than they do for the females, with the model from section 2.4

having a higher residual mean deviance when applied to the males (4.98) compared

to the females (3.42). When the Index of Dispersion was calculated for each occasion

when the mean catch in either the small patches, the large patches or the farmed area

was greater than 2.0 for both the males and the females, it was greater for the males

on 11 out of 13 occasions (P < 1%). A paired t-test for similarity of values also gave

a significant difference (P < 2.5%).

2.6 Conclusion and further work on the farmland

ecology experiment

From the plots of the mean catch rate for the different habitats and the model fitted

to the data of mean catch rates there appear to be changes in the pattern of catches

in each year. The temporal patterns for the two sites are not similar. The catch rates

at Rothamsted Experimental station in 1991 and 1992 were so low that it is difficult

to make inferences about the patterns at these times.

In general the mean catch rate was highest in the crop, with the patches and hedge

having about the same activity levels. For the patches at Long Ashton there was a

strong relationship in the catch rates for the small and large patches. In 1990 and
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1992 there were around 70% more beetles caught in the small patches than the large

ones. In 1991 the difference between the two patch sizes was not significant. In the

only year when the catches at Rothamsted were large enough to give a clear picture,

1990, there was also an approximately constant difference between the patch sizes

with, again, the small patches having larger catches. This may be due to individuals

moving a short distance from the crop areas into the field and then returning to the

field. If this was the case there would be a far higher density of these temporary

inhabitants in the small patches than in the large patches, as there is more boundary

in the small patches. This effect may also explain why the catches decrease in the

crop near to the patches when compared to crop areas which are a long way from the

patches.

Inference about trends in the crop is more difficult due to the missing data for

September 1990 and both August and September 1992. The mean trap rate for P.

melanarius at LARS shows a different pattern in each year, and the relationship

between the populations in the habitats also seems to change. However the difference

between the catches in small and large patches is fairly stable within each year. The

catches in the crop were usually lower in the pots near to the patches than in those

,further away.

The effects of season on catch rates are very difficult to measure in a coherent

fashion because there was only one week in each month when samples were taken.

If the week when the samples were taken was particularly favourable then the count

will be higher than it would have been had that week's weather been unfavourable.

Thus any temporal analysis on important biological questions, such as whether the

annual amount of activity for members of a given species is approximately constant, is

difficult to undertake with data of this type. This is the penalty for having sufficient
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information to be able to assess spatial pattern. Laying out the pots in every week

would have resulted in an experiment that was too large for the resources available.

The sex ratio varied significantly over time and no clear overall pattern as to the

overall proportions of males and females active emerged. However the effect of the

harvest on the relative proportions of males and females in the crop and surrounding

areas was considerable. Before harvesting more males than females were caught in

traps in the patches and more females were caught in the crop but, after harvesting,

the position was reversed.

An experiment that could be run to assess the effect of total catch on the propor-

tions would be to manipulate the contents of the pots. If some pots were replaced

more often than others, say emptying one group daily and leaving the rest out for the

entire week, then the catches from the two sets of pots could be compared. Alterna-

tively some pots could be baited with freshly killed (and marked) individuals and the

results compared with ordinary traps. If the baited traps had a higher proportion of

males than the unbaited traps then this would imply that males are more attracted to

full pots than females. This might explain the difference in the overdispersion rates

between the sexes overdispersion observed the end of section 2.5.

As to further work, there are a large number of species from the farmland ecology

experiment whose records have not been analysed. Apart from repeating the same

analytical techniques shown here it would be possible to look at pairs of species using

the methods proposed by Arditi and Dacorogna (1988). Interactions between several

species, which have not been considered here, are likely to require a multivariate

approach.



Chapter 3

New tests for non-randomness

3.1 Introduction

This chapter deals with some new statistical tests that have been devised to assess the

degree of non-randomness occurring in counts data that were collected simultaneously

from points in the plane. These tests can be used to gauge the extent of the deviation

from the Poisson distribution and the importance of the spatial pattern in the data.

Two types of non-randomness are considered in depth in this thesis, overdispersion

and spatial aggregation.

If the counts have the property that the variance of the catches is greater then the

mean then they are usually described as overdispersed. If the counts have the property

than there is positive correlation between neighbouring points then the pattern is

described as spatially aggregated. These two properties are not mutually exclusive.

Spatial aggregation can either be on a relatively small scale or on a scale with large

clusters, or even to be part of an overall spatial trend. If the cluster size is so large

that the experimental area consists of a cluster of high counts and a cluster of low

42
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Figure 7: Myzus Persicae counts from a 3 x 5 grid

8 6 5 9 10

3 3 10 15 7

10 10 4 8 3

counts, then this is indistinguishable in practice from the situation of a trend. If the

underlying distribution of the points is a thought to be a Poisson distribution but

there is a spatial pattern such as a trend then it may be possible to estimate this

trend using a model and then see if the residuals from the fit, once they have been

standardised by dividing by the expected catch at each point, are consistent with

coming from a Poisson distribution. If this is the case then we can describe the data

as having a spatial pattern but not being overdispersed.

Underdispersion (Variance<<mean) is very rare in animal counts. Complex pat-

terns, such as periodicity in the data, would require a more model-based approach

than that taken in this chapter. Neither of these are considered further.

As an example data set we shall initially consider counts of the aphid Myzus

Persicae collected by Harrington and Taylor (1990). The counts are from an equally

spaced 3 x 5 grid and are given in figure 7. 	 7

The most common measure for overdispersion is the Index of Dispersion (Fisher

et al., 1922) which is the ratio of the sample variance to the mean which has, asymp-

totically, under the null hypothesis of an underlying Poisson distribution, a X 2 distri-

bution with degrees of freedom one less than the number of sampling points.

There are several other indices of overdispersion, e.g. Morisita's index (Morisita,

1962), Iwao's mean crowding (Iwao, 1968) and the negative binomial parameter k

(Taylor et al., 1979) which are simple functions of the data, usually just involving
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the variance and the mean, and which do not take into account the spatial context

from which the data arise. These measures describe the extent of deviation from the

Poisson distribution but do not attempt to look at spatial pattern.

If we consider the two artificial 4x4 grids below, grid A shows significant overdis-

persion (Index of Dispersion 2.133, P = 0.65%) but no spatial aggregation, whereas

grid B appears to have a spatial pattern but no overdispersion (Index of Dispersion

1.07, P > 10%).

A

12 4 4 4 10 10 6 4

4 4 12 4 10 10 6 4

4 4 4 12 6 6 4 4

4 12 4 4 4 4 4 4

Thus the Index of Dispersion would describe the first pattern as over-dispersed,

but not reject the hypothesis that the data come from the Poisson distribution for

the second data set even though it appears to be spatially aggregated.

The tests that will be described here are suitable as alternatives to the above tests

but are also able to illustrate the degree of spatial pattern among the observations.

The measures all involve rearranging the individuals that make up the samples so

that the variance has some desired property. The value of each measure is the total

distance moved by all the individuals so the variance reaches its required value. There

are four proposed measures, the first two of which were devised by Perry and Hewitt

(1991), and the latter pair by myself. Moves to Randomness (Mrand) is defined as the

number of moves needed to reduce the sample variance to less than the mean. Moves
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to Crowding (-1V-Icrowd) is the number of moves required to maximise the variance.

This occurs when all the individuals are at one sampling point. Moves to Regularity

(Mreg) is the amount of effort required to reduce the variance to 0. This occurs when

all the counts are the same. Moves to Reduction (M„d) is a less extreme version of

M„g , where moving stops after the initial variance has been halved. The statistical

significance of these measures is assessed using simulation studies.

In section 3.2 we look at the initial work of (Perry and Hewitt, 1991), where

Mrand and M„owd were calculated using moves along the vertices of a lattice and then

used to create an index to detect overdispersion. The methods used are discussed

and some improvements to the algorithms suggested. In section 3.3 algorithms for

calculating all four measures for points on a plane are given and methods for the

detection of aggregation as well as overdispersion given. Section 3.4 briefly discusses

calculating these measures when there is no spatial information available. Section 3.5

discusses possible extensions to the above measures to look at correlations between

counts and point patterns. The chapter ends with a short conclusion in section 3.7.

A full discussion of which measure should be used in practice is given in section 4.6.

3.2 Overdispersion on a lattice

In this section the problem of calculating Mrand and Mcrowd within a spatial context is

considered. Within this framework the cost of moving an individual from one point to

another is assumed equal to the distance between the points. Finding the minimum

cost in order to reach any of the above four requirements requires the distance between

the points to be taken into account. The Perry and Hewitt (1991) approach, where

points are considered to be on a regular two-dimensional lattice and movement is only

allowed between neighbouring points, will now be considered.
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As a novel alternative to the Index of Dispersion, and similar tests based on the

moments of the sample, Perry and Hewitt (1991) suggested the following. Individuals

should be moved from points with large counts (donors) to neighbouring points with

smaller counts (receivers) until the variance is equal to the mean, which is its expected

value under the null hypothesis of the Poisson distribution. The number of such moves

signifies how far the data set is from randomness. The full algorithm, which applies

only to a regular grid, is as follows.

1. For all pairs of points (d, r), with counts x d and xr respectively, that are neigh-

bours, with x d < xr , calculate Diifid,r) = xd — xr and choose the pair with the

maximum difference.

2. If more then one pair could be chosen, choose the one with the smallest receiver.

3. If there is still a choice, choose the receiver with the smallest average count

among its neighbours.

4. If there is still no choice pick one at random.

5. If the variance of the new values is greater then the mean, return to (1), other-

wise stop.

If we consider the data in figure 7, and compare all pairs of points then the first

move is from the 15 to the 7 as shown below
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8 6 5 9 10

3 3 10 15 7—

10 10 4 8 3

After another five moves the pattern becomes

8 6	 5 9 10

4 5	 9 13 8

1
9 9	 4 8

Double arrow represents 2 moves

It appears that after choosing the largest gap between points, the decision of

whether to use the counts around the donor or receiver as a method of breaking ties

is essentially arbitrary, as the situation is symmetric about the mean. Perry and

Hewitt (1991) did not give any proof that their algorithm was optimal and indeed the

algorithm is non-optimal under some circumstances. However the counterexamples

are fairly extreme and involve patterns which are clearly spatially aggregated anyway,

so this does not appear to be a major problem.

In order to scale the value of M.—rand) Perry and Hewitt (1991) developed the

concept of Moves to Crowding ( Mcrowd)• This they defined as the amount of effort
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to reach the pattern at which the variance reaches its maximal value, when all the

individuals are situated at a single point. In a similar fashion to Mrand moves are

only allowed along the vertices of a regular lattice and the value is calculated by using

the cheapest route. The only major problem lies in deciding which point to crowd

to. Perry and Hewitt (1991) calculated M„0„d for every point on the grid and then

chose the crowding point with lowest cost. We shall now show that there is a much

simpler algorithm.

Firstly, define Mcrrowd as the number of moves along rows required to reach crowd-

ing and Mecrowd as the number of moves along columns. Thus:

Mcrowd = M:rowd M:rowd

To calculate Mcrrowd we can collapse the grid along the columns (effectively assum-

ing all the column moves were made first). Then all that remains to be done is to

calculate Mcrrowd from a line of points. For the data from figure 7 the pattern is

21	 19	 19	 32	 20

Similarly Mccrowd can be calculated after collapsing thp grid along the columns.

A/crowd along a line is just the mean absolute deviation (calculated per individual

and not per sampling point) multiplied by the number of individuals and the crowding

point is the median. To see this label the points along the line 1, 	 n with counts

x 1 ,... , x r, then the cost of crowding to the pth position is

Mcrowd(P) = E X ilP
i=1
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The change in the cost associated with moving the crowding position from p to p 1

is

Change = E x i lp + 1 — — ExilP -
i=i

= iE=1. Xi(IP+ — —	 il)

1Xj (IP + 1 	- il) E xi(IP + - - 173 - il)
i=1	 i=p+1

E xi - E Xi
i=1	 i=p+1

Thus for the figure 7 data M:rowd is 73 and M:rowd is 133. The value of Mcrowd is

206, with the crowding point being the centre of the grid.

In order to turn these two measures into an index so that the level of overdispersion

could be assessed and the significance of the result considered, Perry and Hewitt

(1991) defined the Index of Crowding (icrowd) as Mrandi(Mrand Mcrowd) . In order to

assess the statistical significance of the value of this index for any given data set, Perry

and Hewitt (1991) suggested using simulation studies. In their algorithm the catch at

each point was replaced by a realisation of a Poisson random variable independently

for all the points and then Mrand) Mcrowd and 'crowd calculated. They found that

'crowd was a more powerful method of differentiating between a Poisson distributed

data and that drawn using a Perry-Mead mosaic than Mrand on its own.

Unfortunately this method of simulating the data contains within it an unneces-

sary source of variability. The mean count varies between the simulations because

the simulations are of independent Poisson random variables. When the simulations

were performed, using the multinomial distribution, effectively conditioning on the

total overall catch, the advantage of using 'crowd rather than Mrand evaporated.

The restriction of movement to the vertices of the pattern, although simplifying
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the calculations, artificially separates out the dimensions of the experimental area. A

more serious problem is the inability to deal with patterns other than simple grids.

These difficulties are considered in the next section.

3.3 Overdispersion and Aggregation without a lat-

tice

If we try to apply the algorithm from section 3.2 to the data. from the crop patch

experiment looking only at the data from the crop parts of the experiment, then we

have a pattern like figure 8. The example given consists of the counts of P. melanarius

from the sown part of the field patch experiment for June 1990.

This pattern, although based on a grid, has so many holes in it that some points

have no nearest neighbours 9m distant, so any algorithm must allow longer moves.

Moves will now be allowed between any pair of points.

In order to develop a sensible algorithm for choosing moves it is necessary to know

the cost of each possible move (which is simply the distance) and the benefit, which

is measured by the possible fall in variance which would result. If we consider a move

from a point with count xi to one with catch xi and denote trhe counts before moving

as x k and after as x'k the change in variance, given there are n points with a mean of

is

1 
E(Xk .±) 2	

1

n — 1	 — 1k=1	 k=1
1 [{(xi	 ±)2 + ( xi	 )2}.	 {(x	 )2	 (xi/ 	 -)211

n —1
1

n — 1
[{(xi — ±) 2 + (xi — - ) 2 } — {(xi —1— -±) 2 (xj + 1 — ±)21]
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Figure 8: Crop data for Pterostichus at LARS, June 1990
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Figure 9: Harrington data, first move to randomness using new algorithm

8 6 5 9 10

3 3 10 14

10 10 4 8 4

2
n — 1

This can be done by first noting that the reduction in variance caused by a move

from i to j (with counts x i and xi) is proportional to (x i — xi — 1). Therefore

if the distance between them is Dij then we can define the gradient of the move as

(xi — xj -1)/Dii , which represents the rate of drop in variance for increase in distance.

As we wish to minimise the total distance moved while reducing the variance a simple

algorithm is to pick out the move with the highest gradient at each stage. If we

consider the Harrington data, the first move is from the position (4, 2) which has a

count of 15 to the corner point (5,3) which has a count of 3. The cost of this move

is 1.414. This gives the pattern in figure 9.

The next move is a repeat of the first one, but now the gradient for making a

third move across that gap is 4.95, which is less than the gradient of 6.0 from one of

the 10's on the bottom row to a 3 directly above. These three moves therefore leave

the pattern in figure 10.

Now the variance is less than the mean, so no more moves are required and the

total cost is 4.824 compared to 5 from the algorithm in section 3.2.



8 6	 5 9

4 4	 10 13
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9 9	 4 8
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Double arrow represents 2 moves
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Figure 10: Harrington data, all Mrand using new algorithm

Although it is easy to show that this algorithm has some problems with picking

the right move at each stage, it has the advantage of being quick to run and easy to

program. It runs into difficulties when trying to choose the last move to be made, as

it can overshoot the required value of variance, making an unnecessarily long move

towards the end of the algorithm. It is difficult to see any step-by-step algorithm that

will not run into trouble at this point. This is therefore the algorithm that is used in

all the examples, and as we are only using this value as a comparison with values also

calculated by this slightly inefficient algorithm it does not appear to matter that all

the solutions are non-optimal. It is however possible to devise an optimal algorithm

using Operational Research techniques. Unfortunately this algorithm means throwing

away the use of integer moves and utilises fractional moves instead. See Appendix A

for details of this approach.

If the pattern starts off with variance < mean then Mrand is not applicable. Making

backwards moves until variance > mean is not a reasonable thing to do. This is because

the best first move is one that goes up the steepest gradient. This means the best

second move, providing the donor point has not run out of individuals, is a repeat of

the first one. This is likely to lead to one receiver draining all the individuals off from

around itself until variance > mean, which does not give an overall measure.
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For the calculation of Mcrowd the easiest approach, once possible crowding points

have been restricted to places where samples were taken, is to calculate 11/1„,,,d using

each sampling point as the crowding point in turn and the choose the smallest.

The algorithm for reducing the variance can also be applied when a different

stopping point other than variance=mean is considered. One alternative to the mean

is to use the upper 95th percentile of the appropriate x 2 distribution, as has also

been suggested by Luis Afonso (personal communication). Unfortunately, as he also

recognised, this lumps together all samples which are not considered aggregated using

the Index of Dispersion test as having no moves, making this a poor approach.

However a more fruitful approach is to consider how many moves it takes to

remove half of the variance. The same algorithm as for _Afrand is applied but, instead

of stopping when the variance reaches the mean, moves cease when the variance

reaches half of its initial value. This is M„d. This could be particularly appropriate

when testing for spatial pattern (as against overdispersion), when the variance starts

off at several times greater than the mean. In some circumstances this appears to be

a more powerful test. See section 4.3 for more details.

In order to calculate M„g it is necessary to adjust the data so all the counts are

equal to the mean. To do this the mean count is subtracted froth the data set, which

is then divided up into donors, which have a positive count, and receivers, which now

have a negative count. An example, from the data in figure 7, is given in figure 11.

Moving the excess from the donors to the receivers is a straightforward exercise in

linear programming, which is best solved using the transportation algorithm described

by Taha (1976), page 138.

The cost for the Mreg from this position is 28.0284 obtained by using the trans-

portation algorithm.
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Figure 11: Harrington data with means subtracted

0.6 -1.4 -2.4 1.6 2.6

-4.4 -4.4 2.6 7.6 -0.4

2.6 2.6 -3.4 0.6 -4.4

Table 20: Significance of non-randomness in Harrington data
M-rand Mr eg Mred

Moves 4.824 28.024 7.242

Poisson 7.67% 18.55% 8.42%

Permutation 40.81% 53.13% 28.44

The null distributions of the moves measures have not been calculated, so to

test the hypothesis the counts are drawn from a Poisson distribution, multinomial

simulations are done and, if the measure from the data is greater than that from 95%

of the simulations then overdispersion has been detected (at the 5% level). To detect

aggregation a similar procedure is undertaken but now random permutations of the

observed values are made. For the data from figure 7 10,000 simulations were made

for both the overdispersion and aggregation tests, with results in table 20.

From these results it appears that there is no significant deviation from the Poisson

distribution either in terms of overdispersion or spatial aggregation for this data set.
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3.4 Non-Spatial Tests

Perry and Hewitt (1991) also considered the situation where no spatial information

was available. In this case the discrete metric (where the distance between each pair

if distinct points is 1) is the only sensible choice. This makes calculating Mcro„,d.

Mrandl Mreg and Mred much easier.

Mcrowd can be calculated by subtracting the largest count from the total number

of individuals observed. This is because the obvious place to crowd to is the point

with the largest initial count. If we consider the data of figure 7 then the obvious

point to move to is the one with a count of 15, and the Mcrowd is therefore 100.

Mrand can be calculated by always making moves from the largest to the smallest

count until the variance equals the mean. Mred can be calculated using the same

algorithm except that it stops when the variance has been halved.

Mreg is the value of the total absolute deviation from the mean. This average ab-

solute deviation from the mean, or mean deviation, has been studied by Ramasubban

(1958) and its moments have been calculated for several distributions.

3.5 Extending the scope of Moves measures

The decision in the use of the measure Mred to use the stopping point at 50% was

arbitrary. This value means that several moves will probably have to be made to

reach the required state but that there will still be some variability left. Further work,

including appropriate power tests, may well lead to a different stopping percentage

being chosen.

A different sort of stopping criterion would be to stop moving when the next move

that would have been made has a low gradient. This means that local heterogeneity
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would have been smoothed out but that overall trends might still remain. The num-

ber of moves made would then be a measure of local variability and the remaining

variability would measure the large scale pattern in the data.

Previously we have looked at the situation where the positions where the obser-

vations arose were fixed by an experimental design. We now consider the situation

where individuals are observed at random positions in an experimental area and the

question of interest is whether the positions are all independent. An example would

be the positions of trees in a forest.

If we simulate another data set with the same number of observations as the first

one but with a uniform distribution across the area, and assign each of the original

points a count of 1 and the simulated points a count of 0 then we can calculate Mreg as

before. If a distribution of these moves measures is built up by using a large number

of random simulations then we can compare it to the values obtained for moving

between two grids with uniform density. The transportation algorithm could be used

to calculate the moves in each case but it is computationally more efficient to use the

assignment model of (Taha, 1976, page 181) to exploit the fact that each point will

only donate or receive one individual.

If there areas of high and low density, due to some external factor, e.g. soil type,

the total number of individuals in each of the types of area caln be constrained to

remain constant between the original pattern and simulations of it. If there is a

continuous model fitted to the density, such as a trend, then the underlying density

of the target pattern can be simulated based on this rather than on the uniform

distribution.

If we have a data set consisting of two variables for each sample point, such as

numbers of males and females of a species caught in a series of traps or catches on
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two separate occasions, then the difference between the two sets can be calculated

in order to give a measure of correlation. This is done by standardising the sets so

they have the same mean catch, subtracting one from the other, and then calculating

Mreg •

The resulting value reflects the degree of difference between the patterns. In order

to assess the significance of this relationship, it is necessary to simulate the two data

sets in some way.

If both sets of data are simulated by independent symmetric multinomial distri-

butions the value of Mreg measures the degree of difference between them. If it is felt

that the values are not from the Poisson distribution but instead from some other

distribution, and we are not particularly interested in which one, then it seems rea-

sonable to take the approach that was used for detecting spatial pattern and permute

the observations. If the data sets are significantly correlated, then the value for the

moves for the data will be significantly higher than for the simulations of them. If

one data set is spatially aggregated and we are interested in finding out if the other

one is correlated with it, then permuting the positions of the counts for the second

one and comparing this value to that for the original data set would measure their

degree of correlation.

If the value for the number of moves between the data sets is high compared to

that after a joint permutation then this implies, for observations taken at different

times, that there is local movement within the data set but little movement at a larger

scale.

3.6 An alternative test for Spatial Aggregation

Greig-Smith (1952) looked at assessing the scale of spatial pattern in quadrat counts
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by successively dividing a pattern of size 2" by 2"/ into halves, quarters, eighths etc.

until each block only contained two sample points. Then he compared the sums of

squares for each block with those in the next block size up. If the difference was

significant then there would be evidence to conclude that there was a natural scale

of aggregation at the lower block size. This method does not seem to be applicable

to grids which have odd sizes. There is no natural way of amending the test to cope

with this.

Although it is mathematically convenient to be able to split a square grid of side

2n into equal sized pieces there is no biological reason to split the data like this. The

area that is being studied is assumed to be physically homogeneous. If it is not, then

describing this homogeneity should be done before attempting a statistical analysis.

If the area does not split into neat equal-sized blocks then the analysis becomes

much more difficult. An experimental layout consisting of an 7 x 9 array is not easily

amenable to this analysis method. Another problem is that results are not invariant

under a rotation. If the sampling scheme were to be rotated through 45 degrees then

the splitting into four separate blocks would follow a different pattern than that for

the original scheme. This is also true, to a lesser extent, for the other results in this

section.

The method is not applicable if the data are known to be overdispersed. This

overdispersion can either occur due to some artifact of the counting process, or be

due to spatial pattern at a smaller scale than the inter-sample point distance. Also,

once we have evidence for statistical pattern at one scale, the tests for patterns at

greater scales become invalid.

The work was extended to transects by Kershaw (1957), and this transect work

was placed in a non-parametric framework by Mead (1974). The nonparametric test
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relies on splitting the data down into groups of four sampling values. Each set of four

values on the transect is then split into two pairs. If the first pair contain the two

smallest values or the two largest values then the arrangement is given a score of 2.

If the largest and third largest of the four counts are in the same half the score is 1.

Finally if the largest and smallest are in the same half the score is 0. These values

are summed over all sets of 4 observations and the value obtained compared to that

expected from the null hypothesis of no spatial pattern. The test is repeated at several

scales by considering the total of each pair as a single observation, then combining

pairs into quadruples and so on until the number of observations is a multiple of four

but not of eight.

This approach cannot be directly used for two-dimensional data however. At

first sight it looks as though the method could be used for looking at the 7 transects

running through the field ecology experiment. However 6 of the transects are through

non-homogeneous habitat. For instance, if the central horizontal transect through row

L is split into 4 lengths of 5 pots, each piece has a different number of crop pots in

it. This means that any test would have to take this heterogeneity into account, thus

making life much more complicated. With such short transects any methodology

would be ad-hoc. The only transect through a homogeneous area, consisting of the

hedge pots, has only 11 pots. This is insufficient to give data to enable the null

hypothesis of no spatial pattern to be rejected at the 5% level if Mead's test is

applied.

However it is possible to amend Mead's methodology so that it applies to data

from a two-dimensional area. This is done by splitting the data down into a series of

2 x2 tables. For each table, if the largest and smallest counts are on the same diagonal

then this implies the strongest possible spatial pattern and this is given a score of
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two. If the largest and second largest are on the same diagonal then this is closest to

no spatial pattern and the arrangement is given a score of —2. If the largest and third

largest are on the same diagonal then there is a score of 0. The expected score if there

is no spatial pattern is 0 as all three arrangements are equally likely. Ties are dealt

with by taking the mean score based on both adding and subtracting a small amount

to one of the two tied scores. Two pairs are dealt with in a similar fashion. If three or

four counts are identical then no spatial pattern is possible. Another way of looking

at this method is to see the table as a pairs of ordered pairs first in the horizontal

direction and then in the vertical direction. Each pair of pairs are concordant if either

the first member of each pair is larger than the second or the larger one always comes

second. A pair is discordant if the orders are different.

Thus for table

57
18

the horizontal pairings (5,7) and (1,8) are concordant, whereas the vertical pairings

(5,1) and (7,8) are discordant.

Under the null hypothesis of no spatial pattern concordant and discordant pairings

both have probability of 0.5 independently in each direction. 'Scoring 1 for each

concordant pair and —1 for each discordant pair, the expected score for each square

is 0, with variance of 1. Therefore the score for the above square is 0. Clearly the

concordant/discordant pairs approach and the diagonal approach are equivalent.

This is illustrated using counts of Popilla Japonica given by Bliss(1941) where the

data collection points formed an regular 8x8 grid. An alternative analysis of this

data, along with a fuller description is given in chapter 4.

As the squares are independent under the null hypothesis of no spatial pattern
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Table 21: Popilla japonica counts
9 5 9 18 13 13 11 17

17 12 16 5 11 13 10 17
9 19 14 8 13 14 15 13

14 19 14 6 9 18 21 19

28 28 21 25 23 16 18 31
30 34 25 31 22 14 18 24
29 23 30 20 16 19 20 18
24 30 30 27 21 21 17 14

the variance of the total is the sum of the variances for each square. Furthermore,

this test can be applied to any grid where the number of rows and the number of

columns are both even, without the need to arbitrarily split the dimensions up. If

the outermost row and column are removed from the pattern, another grid of even

dimensions appears. This can also be tested for spatial pattern, and the result will be

independent of the test for the entire grid because the values in each new 2 x 2 square

come from 4 different old squares. Thus, for the data in table 21, the new square in

the top left hand corner is

12 16

19 14
7

When applied to the data in table 21, there were 16 2 x2 squares and the total value

of the statistic was 13. The standard deviation was 5.888, so applying a continuity

correction, this gives a Z-score of 2.123, and an associated p-value for the one-sided

test of 0.017. Stripping off the outermost layer to give a 6 x 6 table, the statistic for

this table is 8, with a standard deviation of 4.83. Although this will give a p-value,

again after the continuity correction, of 0.061, which is not significant, adding the two

test statistics will give a combined total of 21, with a standard deviation of 7.616.
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Table 22: Popilla japonica counts, amalgamated
43 48 59 55
61 42 54 68

120 102 75 91
106 97 77 69

The Z-score for the combined test is 2.692, giving a p-value of 0.0036. This implies

there is a strong spatial pattern in the data.

The interpretation of this result is that the values across a diagonal are less

strongly correlated than nearest neighbours. Thus this is evidence for some local

pattern within the data.

In looking for spatial pattern at a larger scale, there are two methods that can be

applied. Either the table can be collapsed to a 4x4 arrangement by amalgamating

adjacent rows, or four separate tables can be created by eliminating every even (odd)

numbered row and column. We consider these methods in turn.

Creating a 4x4 table by amalgamation yields table 22. This gives 4 2 x 2 tables

and the additional central 2x2 table. The overall test statistic is —4, which is not

significant. With a standard deviation of 3.651, the statistics would have needed to

be 8 or 10 (given that there were no tied values) to give a significant result. This

illustrates a severe loss of power that occurs when the grid is quite small. The accuracy

of the p-value could be improved by enumerating all the possible test values, but it

is clearly not a worthwhile exercise in this case.

The other method consist of dividing the area up into 4 4 x 4 grids, with each grid

consisting of every other row and every other column of the original pattern. Thus

the first grid is given in table 23.

The top-left 2 x2 square gives a value of 0, as there are three identical values. The

overall statistic for the square is —3. For all 4 squares combined the test statistic
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Table 23: Popilla japonica counts, first quartered grid
9 9 13 11
9 14 13 15

28 21 23 18
29 30 16 20

is —5, both with and without including the central 2 x 2 square in each block. The

standard deviation is 6.055 if the 4 central squares in each block are not considered

and 7.326 if they are. This implies that there has been no spatial pattern detected

at this scale.

The interpretation of these results is that the counts at a gap of 1 are closer than

the counts at a gap of 1.414. There does not appear to be a spatial pattern at a

large scale within the data. This is a surprising result in the light of the apparent

difference between the top and bottom halves of the grid. It would have been difficult

to interpret the results had there been a spatial pattern picked up by this test at

a larger scale than 1.414. As it stands, it is not possible to tell if the result at the

smallest spatial scale is due to a positive correlation at lag 1, a negative correlation

at a distance of 1.414 or a combination of the two. There is no evidence of spatial

pattern at a larger scale. We can take this procedure one step further by considering

the patterns with a lag of 4 in each direction, giving 16 independent two by two grids.

The test statistic in these circumstances is 6, with a standard deviation of 6.481. This

is clearly not going to be significant.

If we consider the two grids in table 24, and attempt to assess the degree of spatial

correlation at lag 2 compared to a distance of 2.818 (looking across the diagonals), this

can be done by breaking the data down into 4 2 x2 grids. The values in each of these

grids will all have the same subscript. Because the smallest and largest values are

always separated across the diagonal the value of the test statistic will always be at
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Table 24: Four by four grids, assessing spatial pattern at lag 2
ao al bo b1	a() c1 bo al
a 2 a3 b2 b3	d2 b3 c2 d3
Co C1 do d1	 Co d1 do b1

C2 C3 d2 d3	 b2 a3 a2 C3

For each subscript i = 1...4, a i > bi > c > di holds for both grids

its maximal value, in this case 8. However the first pattern is clearly more aggregated

than the second as the top-left hand corner always has the largest of the 4 values

and the bottom right the smallest of the 4 for each letter. However the relationship

between the values for different letters makes no difference to the test statistic. It

would seem sensible to devise a scoring system that took the similarity in the patterns

between the sub-groups into account so that these two patterns could be distinguished.

This would considerably increase the power, and ease the interpretation of, the test.

This would require considerable further work and the resulting test statistic would

be unlikely to be computable by hand.

3.7 Conclusion

These moves measures provide a method of assessing the degree of overdispersion

and spatial pattern in a data set. In the detection of spatial pattern they have

the advantage, over more conventional techniques, of taking into account the spatial

context from which the data are taken.

In the detection of spatial pattern, these methods do not require any degree of

symmetry in the positioning of the sampling points. Nor is there any assumption

about the underlying pattern, in particular there is no need to assume radial symme-

try. This implies advantages over the use of spatial autocorrelation, although a full
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comparative study has not been attempted.

These measures still need to be scaled, and their power relative to each other and

more conventional approaches needs to be looked at. This is the subject of the next

chapter.



Chapter 4

Indices of Aggregation

4.1 Introduction

The values of the measures in chapter 3 change with mean count, the number of

sampling points, the inter-sample point distance and the layout of the sampling points.

Thus the values cannot be compared between different experiments, or even counts

of different species from the same experiment.

This chapter extends the work of chapter 3 in two ways. In section 4.2 we will look

at the use of indices to scale measures of non-randomness from counts data so the

degree of overdispersion and aggregation from different data sets can be compared.

The statistical power of these tests are compared to each other and the Index of

Dispersion for a variety of patterns in section 4.3. In section 4.4 the measures, and

associated indices, are extended to the case where the data can, a priori, be divided

into discrete sets. Possible extensions to the indices are considered in section 4.5, and

the chapter is concluded with a general discussion in section 4.6.

67
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4.2 Measuring aggregation

In order to be able to compare values of aggregation between different data sets with

varying numbers of individuals captured, numbers of sampling positions and spatial

layouts of the sampling positions it is useful to be able to form an index of aggregation.

Green (1966), Leflcovitch (1966) and Taylor (1984) have proposed several criteria for

any such index in order for it to have useful application for field biologists.

4.2.1 Requirements of an Index

1. Real and continuous values for the complete range of spatial distributions.

(Green)

2. Uninfluenced by the number of sample units, size of units sampled and number

of individuals. (Green)

3. Easy to calculate. (Green)

4. The index should have a central value for some appropriate distribution. (Lefkovitch)

5. Tests of significance of difference between 2 or more variables should be avail-
7

able. (Lefkovitch)

6. The descriptive function should be clearly separated in application and inter-

pretation from the theoretical justification.(Taylor)

The first property is clearly one that is necessary if the index is to be widely

applicable, although Green did not specify what the range of distributions was to be.

It has been assumed here that the range of interest is of those distributions of counts

data that show some form of overdispersion, as there is little interest in the detection
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of underdispersion in counts data as this rarely appears when dealing with animal

counts. Indeed M—rand does not have any application if the variance of the data is less

than the mean, although it is possible to amend it so that it does apply by reducing

the value of variance after which no more moves are made. Mreg and Mr ed can both

be applied to any distribution of counts, only giving a value of zero for data that all

have identical values, in which case no serious analysis is possible anyway.

The second requirement is more difficult to satisfy as an increase in the sample

size, either by increasing the number of sampling points or the average count at these

points, will lead to higher precision in the estimates and more certainty about the

data due to the increase in the amount of information available. Nevertheless it is

clear that any index which fails to meet this criterion will have serious drawbacks.

Related to this is the property that the index is not altered if the relative positions of

the sampling points are changed but the underlying pattern remains the same. This

would be a useful property because it would mean the results were not dependent

on the layout of the sampling points and so data from different designs can be easily

compared. This may be difficult to achieve.

Ease of calculation is something which is only possible for simple indices. If the

index is required to take into account spatial positions then it unlikely that an

index will be simple enough to calculate by hand.

The requirement of a fixed value of the index corresponding to an appropriate null

distribution begs the question of what this distribution is to be. The obvious choice

if overdispersion in counts data is being investigated is the Poisson distribution. If

we are interested in examining spatial pattern and the non-spatial distribution of the

counts is not of interest per se then it seems reasonable to have a central value that

corresponds to the expected catch at each point being independent of position, and
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uncorrelated with the catches nearby.

The existence of tests of significance to distinguish between patterns is a useful

although complex concept, which has not been developed further here.

The differentiation between the descriptive function and the theoretical justifica-

tion is something which is difficult to achieve for any index which is based on an

intuitive idea, and not based directly on any biological model. If the index is based

on a biological model then the descriptive qualities of the index which flow from the

model are not applicable if the model does not accurately describe what is happening

with the data. An index which does not relate to a basic model, or only describes

the degree of deviation from the model, such as Mrand describing deviation from the

Poisson distribution or Mreg describing deviation from evenness, can be used to test

the 'goodness-of-fit' of the model, but it is doubtful whether the value of the degree

of deviation from the model (measured by Mrand and Mreg) can be directly related

to any biological model.

We now discuss the merits and drawbacks of 13 indices of aggregation and overdis-

persion, divided up into 4 general categories.

4.2.2 Indices based on Crowding

Perry and Hewitt (1991), suggest using the value of

-12Zd1 = Air 
Mrand 

A 'A rand + Mcrowd

The analogous indices for regularity and variance reduction are

jrcerowdg

jrcroiwde

IVIreg

Mreg Mcrowd

Mred

Mred Mcrowd
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One of the problems with these indices is that as the grid becomes larger with

increasing number of sample points the mean distance to the centre of the grid in-

creases, so Mcrowd will increase at a faster rate than Mreg and Mrand• The index will

take a smaller value for larger grids with the same basic underlying pattern. Therefore

the value of the index cannot be compared for data sets where the number of data

points is different, and if a large experiment is split into smaller pieces, the individual

parts should all give smaller values for the index than the data set as a whole. This

makes the index worthless for comparing differing spatial layouts or even lattices of

different sizes.

Also crowM d is affected by the shape of the grid, being larger for long thin grids—

than for square ones with the same number of sampling points. The shape of the

experiment also affects the value of the index.

As Mcrowd is typically much greater than Mreg and Mrand, the typical value of the

index is close to 0. Because of this, and the problems noted above, there is no value

for the index that corresponds to a suitable null distribution. This means that no

meaningful interpretation can be given to the absolute value for the index.

More serious difficulties arise when trying to interpret the results of the value of

Mcrowd for any given pattern. If the number of sample points is large and there is

no strong trend across the data then the crowding point will be positioned near the

centre of the sampling area. This means that Mcrowd mainly depends on the mean

distance to the centre of the sampling area from the sample points and the number of

individuals. This means that the value is strongly affected by the shape and size of

the grid, with long narrow grids having more moves than square ones with the same

number of sample points. If the size of a sampling area is quadrupled by doubling

both the length and the breadth, then provided the areas have about the same mean
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and variance and there is no large-scale spatial pattern, we might expect Alrand to

increase by approximately a factor of 4. However 111„0„,d would increase by a factor

of eight (4 times as many individuals moving on average twice as far). This would

halve the value of the index even though the pattern in each of the areas was similar.

Also if we consider the patterns which lead to extreme values of Mcrowd, then the

value is zero if all the individuals are at a single point in the grid and a maximum

when the population is split equally between the two most widely separated points.

The second pattern is almost as badly crowded as the first, but has a high value of

M„o tvd, with the value for a pattern where all the counts are identical somewhere in

the middle.

4.2.3 Indices Based on the Poisson Distribution

Instead of using M„owd as a method of finding a divisor for an index, we can use

the expected value for the number of moves under the hypothesis of Poisson data

to calculate an index of aggregation. Because there has not been any progress on

the extremely difficult problem of calculating the expected values of Mreg, Mred and

Mrand analytically, the value is estimated using simulation studies. Using the same

approach as that given at the end of section 3.2, the value of krand is calculated for

a set of multinomial simulations of the data, and the mean of these values used to

estimate E(Mrand). Conditioning on the total numbers observed eliminates unwanted

variability, which would reduce the accuracy of the estimation. The indices are

/P°i8	
Mrand

rand

	

	 77, AT	 7-) .
1"rand Eqlvirandir-ozsson)

•is
I	 =	

Mreg po
reg

Aireg E(11/IreglPois3on)
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IPr:d" —
Mred

IVIred E(MredlPoisson)

These indices are effectively a method of scaling the number of moves given the

mean count and the number and layout of the sampling points. A value of 1/2

represents the expected value for data from the Poisson distribution, and a value of

more than that implies a degree of overdispersion and/or spatial pattern. A value of

less than 1/2 implies that the data are less variable than might be expected for the

Poisson distribution.

4.2.4 Indices Based on Permutations

If the data have such a high variance that it is no longer of interest how far they

diverge from the Poisson distribution, but there is a desire to detect the extent of

spatial pattern in the sample, then we can condition on the observed variability in the

sample. We can also do this if the interest is solely in the spatial effects. It is possible

to simulate the distribution using, say, a negative binomial distribution where the

shape parameter k is estimated from the data, but it is easier, and more sensible if

we are not interested in the enon-spatial) distribution of the sampling points, to use

the counts observed and permute them in order to get the Morlte-Carlo simulations

of the data before calculating the moves. This gives a non-parametric measure of the

degree of pattern.

Mreg

Mreg E(MregICOUntS)

Perm—	
Mrand

rand —
Avi rand E(grand 'counts)

Tperm = 	 Mred

Tperm
reg

Mred E(Vred I COUntS)
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The expected value for the indices, given that there is no spatial pattern, is ap-

proximately 1/2. This is not affected by changing the numbers of individuals, sample

points or the sampling layout, and the value of the index should be fairly immune to

the influence of these parameters.

4.2.5 Other Indices

To assess the degree of spatial pattern there are several other candidates for the

indices. One of these is based on a rough guess of what the value of Mreg is likely to

be.

Tdist = 	 Mreg 
reg	 mreg nDevab,

Devab8 represents the mean absolute deviation between the counts and the sam-

ple mean. Thus nDevabs represents the Moves to Regularity if all the points were

equidistant from each other. It is an attempt to measure the mean distance travelled

by each individual in the Mreg and so measures the scale at which the aggregation

can be supposed to be occurring. If the value is not much greater than 1/2 then

the mean distance travelled is low, implying that the pattern has little large scale

spatial pattern. However this index is affected by the scale of the grid (increasing the

separation increases the index). Because nDevabs is, like E(Mra;), constant between

different permutations, the index has an identical significance level to /rPer for any

given pattern.

The analogous index, replacing Mreg with Mred, 1S

Aired
A red
Tdist

Mred nDevabs
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4.2.6 Assessing the significance of an index

In order to assess the significance of a result it is necessary to find its distribution

under the null hypothesis that we are using. As no results have been found for the

distribution of any of the move measures, Monte-Carlo simulations have been used.

Two types of simulation have been employed, multinomial simulations in order to test

for overdispersion and permutations of the counts in order to test for spatial pattern.

4.3 Statistical Power

In order to assess the statistical power of these tests in the detection of deviation from

the Poisson distribution and spatial pattern, it is necessary to devise null and alterna-

tive hypotheses to reflect these two requirements. The overall number of individuals

is regarded as fixed. If it is desired to assess the power of the test for the detection of

deviation from the Poisson distribution then the null hypothesis is always the sym-

metric multinomial, because this represents independent and identically distributed

Poisson random variables, conditioned on the overall mean. If the detection of spatial

pattern, rather than testing the Poisson hypothesis, is of interest, and the existence

of overdispersion is a nuisance factor then the null hypothesis ou4ht to have the same

non-spatial distribution as the alternative. This is achieved by simulating data sets

for both null and alternative hypotheses in the same way, but then permuting the

values for the null hypothesis before calculating the spatial moves required for each

of the conditions.

The two alternative hypotheses that have been considered so far are patchiness,

represented by a Perry-Mead mosaic (Perry and Mead, 1979), and trend.

A Perry-Mead mosaic consists of a grid of squares of unit side. Each square is
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either dense with a probability p or sparse independently of all the other squares.

Superimposed on this grid is an array of sampling circles. Each non-overlapping circle

has radius r and the centres of the circles are a distance d apart. There will be spatial

aggregation if the intersample point distance d is less than 1, and the cluster size will

increase with decreasing d. The density for each sampling circle is the mean density

of the circle on which it sits. Thus a circle entirely within a dense square has density

dense, whereas one which is half in a sparse square and half in a dense one has

dense+spar se density 2

Trend is modelled by having the expected number of individuals observed increase

in a linear fashion the further a point is away from one side of the grid with expected

value sparse at one side and dense at the other.

Actual numbers of individuals observed are then simulated by an asymmetric

multinomial distribution based on the relative densities at each of the sampling points

and the total number of individuals observed.

For the power tests, the usual values chosen are a mean density of 10.0, a ratio

between dense and sparse of 1.5 and a grid size of 8 x 5. For each hypothesis there

are 5000 Monte-Carlo simulations. In order to make comparison between the patterns

easier the mean density and ratio dense : sparse squares are given rather then the

actual values for dense and sparse. For the mosaic pattern the probability of a dense

square is 0.5, each square being independently either dense or sparse, and the distance

between neighbouring sample points is 0.4. For the trend, the trend runs down the

longer side of the grid. The power of the Index of Dispersion test and the mean

absolute deviation are not considered for the test for spatial pattern as they do not

take into account the spatial information. The power of indices based on expected

values (for either of the multinomial simulations) under the Poisson hypothesis are
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Table 25: Percentage Power to Detect difference Between Mosaic and Poisson.
Dense: Sparse
Ratio 1.2 1.3 1.4 1.5 1.6 2.0 3.0

Mreg 10.6 17.8 27.4 36.5 47.7 82.0 97.3
Mrand 10.3 14.7 24.2 37.6 50.4 89.7 98.3
Mcrowd 7.6 9.0 10.0 11.3 12.8 17.2 22.0
Mred 12.1 19.2 31.2 44.6 56.8 89.2 98.3

Devab, 7.1 11.4 19.0 31.0 41.9 86.5 97.6
Var 10.4 14.5 22.8 36.1 48.1 87.3 98.1

crowd
rand 10.7 16.2 26.4 39.3 52.7 89.7 98.4

i,c.tervd 11.1 18.0 26.5 36.4 46.2 81.4 97.3
.Terd

irdeistg

12.1

8.2

19.6

10.4

31.4

17.0

44.4

19.2

58.5

23.2

89.9

46.7

98.4

46.7
Tdist
'red 8.8 12.2 15.9 15.9 26.2 52.1 52.1

not given as these should have the same value as the use of the measures which do

not use expectations.

In the accompanying tables one of the parameters is varied while the others are

kept constant.

When the difference between the dense and sparse areas is,changed by altering

the ratio, the power of the tests increase against both the Poisson hypothesis (table

25) and the overdispersed but non-spatial null hypothesis (table 26). The power

results are given for both a Perry-Mead mosaic and a trend across the data.

For this range of values it appears that the indices I ei gS t and Irdel perform as

poorly as Mc„„„,d in the detection of a mosaic when faced with the Poisson alternative.

The other measures are all of similar power, with M„d performing best. This is

particularly noticeable when the ratio is around 1.5. The indices based on crowding
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Table 26: Percentage power to detect spatial element of Mosaic.
Effect of varying dense:sparse ratio

Dense: Sparse
Ratio 1.2 1.3 1.4 1.5 1.6 2.0 3.0

Mreg 9.08 13.04 16.06 21.00 24.68 39.20 47.74
Mrand 5.04 6.56 6.68 7.06 8.72 18.18 35.32
Mcrowd 6.30 7.86 7.12 8.38 9.50 12.60 13.84
Mred 9.02 11.66 14.16 19.36 23.12 37.42 51.24

IZ721Lid 5.24 6.42 7.10 7.74 8.86 18.46 35.40
Izgowd

j crowd

irdeistg

8.94
8.96

8.92

12.80
12.38

12.84

15.60
14.80

16.14

20.72
20.38

21.30

24.38
22.84

25.10

38.30
37.84

40.74

46.32
48.46

52.06
Tdist
Ared 9.24 13.42 17.74 24.32 28.74 56.06 70.20

are slightly more powerful than the the measures on which they are based.

When attempting to detect the spatial element of a spatial mosaic pattern (table

26), it appears that power of the measures is generally less than for the detection of

non-randomness, except for the indices /4igst and /rdeil. These do much better than

any of the other tests proposed, especially at the higher ratios. In particular the

index /4Y is considerably more powerful than any of the other 'proposed measures.

The indices based on crowding do not appear to have the slight advantage over their

respective moves measures that they had when the null hypothesis was a Poisson

distribution.

In detecting a trend, M„g and the associated indices do far better than any of

the other measures. It appears that the value I' does slightly less well than Ircerrd

and M„g but is more powerful than Mrand . The reason for this difference may be

because calculating Mreg involves moving individuals all the way across the grid from
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Table 27: Percentage power to detect trend against Poisson.
Dense:Sparse
Ratio 1.2 1.3 1.4 1.5 1.6 2.0 3.0

Mreg 20.32 37.50 55.64 69.92 82.94 99.22 100.00
Mrand 8.16 9.58 15.56 20.14 29.60 68.18 99.08
Mcrowd 3.66 2.78 1.94 1.06 0.74 0.22 0.0
Mred 11.70 17.88 29.58 40.14 55.46 90.70 99.96

Devab. 5.10 7.10 11.04 14.22 19.94 56.80 95.64
Var 7.54 9.14 13.66 18.30 25.26 59.04 97.14

/-1=d 8.38 10.68 17.44 22.24 32.48 68.68 99.18
IZrd
rcrowd

rdei.;t

21.00
11.66

18.86

37.78
19.96

35.08

55.34
31.44

53.88

70.52
42.20

66.94

83.14
59.50

79.68

99.28
92.24

98.58

100.00
99.98

100.00
Tdist
'red 10.52 16.98 24.46 33.52 45.06 80.56 99.44

the dense end to the sparse end in order to end up with the same count at every

point so the value of Mreg is particularly high. The value ofMred _Si also likely to be

affected by this factor, although to a lesser extent.

When looking for the spatial element in a trend (table 28) Mrand and MZrid

perform poorly here compared to the other indices and Mred is still weaker than

Mreg. However the index I;tt does better than any of the other measures, especially

at the higher densities and the power for this measure is approximately the same as

for the detection of non-randomness.

In order to investigate the effect of increasing the mean density while keeping all

the other parameters constant the ratio between dense and sparse was fixed as 1.5

and the mean density on the grid varied. The results are given in tables 29, 30, 31

and 32. At low densities all of these measures perform poorly.
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Table 28: Percentage power to detect spatial component in trend.
Dense:Sparse
Ratio 1.2 1.3 1.4 1.5 1.6 2.0 3.0

M„g 17.96 34.38 48.34 59.98 73.46 95.32 100.00
Mrand 4.98 6.42 7.20 7.82 10.14 20.62 66.72
Mcrowd 3.44 2.56 1.28 0.86 0.62 0.10 0.0
Mred 8.60 15.20 21.54 28.06 38.62 68.96 97.22

IZnudd 5.52 6.70 7.54 8.56 10.60 22.16 69.02
IZrd 18.20 34.36 48.42 60.54 73.56 95.66 100.00
IMwd

idei gst

9.42

19.20

15.32

35.20

23.38

54.16

30.04

67.10

41.18

80.00

71.82

98.60

98.08

100.00
Tdist

A red 9.14 17.30 26.46 35.42 47.20 84.02 99.66

Table 29: Percentage power, mosaic pattern against Poisson.
Mean Density 1 3 7 10 15 25 45

Mreg 7.98 14.04 26.68 37.92 56.34 77.30 94.38
Mrand 7.42 11.50 27.72 42.62 59.86 85.78 97.42
Mcrowd 5.14 7.56 10.08 10.60 14.34 17.08 20.52
Mred 5.00 12.70 30.38 43.62 64.10 87.28

,
97.34

DeVabs 3.10 9.18 19.42 30.28 51.36 80.24 96.10
Var 7.04 10.92 25.86 38.44 55.20 82.58 97.02

j;:::/c1 7.68 12.18 28.00 42.84 60.90 85.84 97.54
j;zwd 8.20 13.56 26.10 36.56 55.60 76.92 94.38
.1;TeTiwd

irdei stg

7.14

6.92

13.14

11.32

31.44

15.84

44.18

20.86

64.50

28.64

87.38

36.48

97.34

45.68
Tdist

-z red 4.46 9.36 14.52 22.34 29.64 44.52 56.28
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Table 30: Percentage power to detect spatial element of Mosaic.
Mean Density 1 3 7 10 15 25 45
Mreg 7.88 10.42 16.76 21.40 28.70 33.58 44.60
Mrand 5.10 5.84 6.90 8.98 10.08 15.68 27.74
Mcrotvd 5.54 6.40 8.28 9.34 10.52 13.08 14.20
Mred 6.28 8.78 15.60 21.62 26.64 36.66 46.12

Ircaronwid 5.68 6.26 7.38 9.04 10.12 15.84 27.64

ircergowd 7.58 10.48 16.52 21.24 28.44 33.56 44.28
ircercoiwd

rd gSt

7.74

7.22

9.14

10.20

16.24

15.84

21.38

21.10

26.82

27.54

36.70

37.76

46.50

48.64
TdiSt 5.66 10.04 18.20 26.36 34.90 49.74 64.66'L red

In the detection of a mosaic the indices Idi" and Idist both perform poorly whenreg	 red

compared to the other measures. The value Mred seems to be the most powerful

measure that is available at the medium densities.

In the test for a mosaic pattern at various densities, Mrand performs poorly, even

at the higher densities, implying that most of the moves that are made to reach

randomness are not affected by the mosaic pattern with this size of square. The

index .41.,i2 again outperforms all the other indices and measures once the mean count

exceeds 10 and the power gets above 20%. However the index Irdeigst does not show the

same power difference with Mreg as /rdei:it does with Mred•

Again Mreg appears to be the most powerful test for non-randomness when there

is a trend across the data. All of the tests not based on Mreg perform poorly, with

the Index of Dispersion being the poorest.

/rdeigat is the most powerful test for the detection of a trend at all the densities

shown. M-rand is again a very poor detector of a trend pattern when compared with

the other measures. Mred seems to lie between the two extremes.

7
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Table 31: Percentage power to detect trend against Poisson.
Mean Density 1 3 7 10 15 25 45
Mreg 11.96 27.48 53.62 71.92 88.36 98.12 100.00
Mrand 5.86 8.00 16.48 24.62 36.46 63.16 91.66
Mcrowd 3.88 3.02 1.94 0.98 0.70 0.22 0.04
Mred 5.50 12.94 27.44 41.58 61.94 87.92 99.42

Devab8 2.28 6.44 10.72 14.46 27.80 47.62 83.92
Var 5.08 7.86 14.78 20.96 30.76 52.02 85.66

1cro:cuid 6.14 8.80 16.98 25.50 37.68 63.82 92.14
1Z7vd 11.60 27.52 53.06 71.80 88.36 98.24 100.00
/Z.,rd 7.42 14.36 29.92 44.06 64.44 89.02 99.50

idreir 11.16 26.80 51.46 69.82 85.46 97.70 100.00
/drei ait 5.50 11.82 21.38 35.92 51.56 77.28 96.74

Table 32: Percentage power to detect trend as a spatial pattern.
Mean Density 1 3 7 10 15 25 45
Mreg 11.14 24.34 49.54 62.14 77.54 94.62 99.40
Mrand 3.84 4.90 7.36 8.16 12.90 1.06 43.14
Mcrowd 4.16 2.68 1.68 0.94 0.54 0.06 0.0
Mred 6.76 11.34 20.04 27.52 42.52 64.62 87.88

1-;7;ic;:dl 4.88 6.02 8.12 8.94 13.46 18.90 44.02
.4terd

zcziw d

reg

11.12
7.80

11.74

23.92
12.96

25.90

49.74
21.32

54.58

62.12
30.50

68.94

77.16
45.36

84.54

94.68
66.32

97.94

99.44
88.84

99.98
Tdist
'red 6.12 11.82 24.42 36.42 55.46 80.96 97.02
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These results imply that, when testing for departure from the Poisson distribution,

the measures M„,,d ,M„g and M„d provide tests that are slightly more more powerful

than tests based on the variance such as the Index of Dispersion for all the measures

considered here. If the interest is in the detection of spatial pattern then indices such

as .1.,`.1ei for a trend and /rda for a mosaic type pattern should be used. In order to get

as full a picture as possible of the data set it is probably best to do all the tests in

order to get a good description of the pattern.

The difference in power between some of these measures, and their variation with

the scale of the pattern implies that it may be possible to construct indices based on

combining two or more of the measures proposed here to assess the scale of spatial

pattern, but that is beyond the scope of this thesis.

Further work could be done on comparing the power of these tests with more

conventional techniques for detecting pattern such as the autocorrelation function

and fitting a quadratic surface.

4.4 More Complex Data

We have previously assumed that all the sampling points were equivalent. Sometimes

the variability in the count between different sampling points can be partly ascribed to

some external factor, such as local environment, chemical treatment or soil type. We

therefore need to take such effects into account if experiments with several different

treatments are to be analysed. An example data set is taken from part of the patch-

crop experiment that was analysed in chapter 2. The counts are of the catch of

Pterostichus Melanarius in July 1991 at LARS and consists of the top-left corner of

the field. The boxes represent areas of semi-natural habitat and the rest of the area

shown was sown with barley.
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Catches of P. melanarius in July 1991 in top-left corner
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1 8 7

32

In order to be able to combine these values to estimate the overall level of deviation

from the Poisson Distribution, and to see if there is significant spatial pattern, it is

necessary to standardise the variance between the two treatments. This is done by

dividing the catch in each group by its standard deviation, so the two sets have the

same variance. This is then multiplied by the weighted mean variance for the two

treatments. This is calculated as

1 
W	 E	 (Num obs with treatment — 1) * stelev(treatment)

total df all treatments

The result is that the counts are now fractional. The values of the moves can then

be calculated as before. One advantage of this technique over dividing the data set

into separate pieces and then analysing them separately is that that would entail a

loss of power due to fewer catches being analysed in each set. Another is that the

spatial relationship between pots in different areas is taken into account.

In order to assess the statistical significance of the values obtained for regularity

and randomness above, the approach taken is analogous to that for the simple one
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set case. The degree of departure from the Poisson distribution can be assessed by

simulating the Poisson distribution, conditional on the total numbers observed for

each subset separately and then combining these observations to give a simulation of

the original data set. For the above example a Poisson simulation is shown below

Multinomial simulation of original data

9

8

21

10

20

13 8

5 2 4

7 12

9 10 6

15

6 3 6

19

The degree of spatial pattern can be similarly assessed by randomly permuting

the observations within each subset.
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Table 33: Indices of pattern for a combination data set
Total Pots I„g 'rand 'red

Permutation 193 20 0.545 0.503 0.483
Multinomial 193 20 0.690*** 0.858** 0.624*

Crop
Permutation 142 11 0.532 0.528 0.486
Multinomial 142 11 0.740*** 0.962*** 0.680**

Patches
Permutation 51 9 0.497 0.438 0.478
Multinomial 51 9 0.629* 0.846* 0.584

Permutation of original data

5

4

11

13

4

24 6

2 8 3

14 11

7 7 1

32

14 3 6

18

a

The values for Ireg ) 'rand, and 'red for both Poisson and permutation tests, along

with their statistical significance, based on 10000 Monte-Carlo simulations, are shown

in table 33.

The extremely high values for the test against the Poisson alternative, both for

the data as a whole and for the patch data alone, reflect the very high variance in the

patch data when compared to the mean. The results for the permutation for both

regularity and randomness imply that there is little or no spatial correlation in the



CHAPTER 4. INDICES OF AGGREGATION 	 87

counts data. However this is only a small number of observation points so this may

not be too surprising.

Another example of an experiment on insects where the spatial layout of the

recoveries was given is provided by Bliss (1941). The catches of the larvae of the

Japanese beetle Popilla japonica, from an experiment where the layout was an 8 x

grid were given and are given here in table 21.

Perry and Hewitt (1991) pointed out that there appears to be a difference in the

data between the upper and lower halves. They calculated the Index of Dispersion

for each half separately as well as ./-zd based on vertices. For the top half they

found that the Index of Dispersion did not give grounds for rejection of the Poisson

hypothesis (P = 0.08) but 177,:id did (S=0.00849, P=0.0336). For the bottom half of

the data, the Index of Dispersion again failed to reject the null hypothesis of Poisson

distributed data, but ./TM'd did (S= 0.00725, P=0.0199). They did not look at the

data at any other scale.

Greig-Smith (1952) suggested, for grids of size 2771 X 2n , that the scale of spatial

pattern can be assessed by splitting the experimental area in half and comparing

the sums of squares within the halves to the overall sum of squares. If there is

spatial pattern at a scale 2rn-k X 2n-1 but not at 2m-k-1 x 2"-1 then there will be

a significant difference in the sums of squares. This method ha's the problem that

it cannot easily be generalised to awkward sized grids such as 11 x 13 and that

there may be a difference between the effects of splitting square grids vertically and

horizontally. More seriously the method depends on the clusters in the data, of either

large or small counts, not being split into separate blocks. For instance if the S x 8

grid considered here had had a central 4 x 4 block with a cluster of high counts and

the rest of the data having similar low counts there would be no evidence of spatial
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Table 34: Popilla japonica pattern evaluation(Poisson hypothesis)

AreaCdiss	Index of Dispersion
All same
Two halves
top
Bottom

Quartered
All together

Top
Bottom

Top left
Top right
Bottom left
Bottom right

pattern until the stage of eight 4 x 2 blocks.

In order to take this division idea further and to investigate the probability of

further spatial patterns in the data, the data set was divided into four blocks of 4 x

4. The new indices, based both on the Poisson hypotheses and the permutation test,

were calculated. This was done for all the quarters separately, both halves separately,

and for the data set as a whole. The results from these tests are 'given in table 34 for

the test for overdispersion and table 35 for the aggregation test. Again all these were

based on 10,000 simulations.

The Index of Dispersion was calculated for each set of data and is given with the

indices based on the Poisson Distribution. A two sample t-test for identity of means

between each of the pairs of data (top versus bottom, top-left versus top-right and

bottom left versus bottom right) was also calculated and the estimated difference in

mean, together with significance level, is given with the permutation tests.

0.802*** 0.985*** 0.806*** 175.4***
0.547 0.627 0.606
0.601* 0.838* 0.602* 43.34*
0.733*** 0.846* 0.711*** 41.60

0.608 0.780* 0.668*

0.682* 0.851* 0.675*
0.616 0.639 0.649

0.610* 0.884** 0.625* 29.93*
0.548 0.000 0.540 12.16
0.398 0.000 0.431 6.32
0.521 0.000 0.551 14.03
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Table 35: Popilla japonica pattern evaluation(Aggregation)
Area

All same

Two halves
Joint
Top
Bottom

Four Quarters
All together
Top
Bottom
Top left
Top right
Bottom left
Bottom right

perm
reg

0.707***

0.541*
0.558
0.698***

0.511
0.520
0.512
0.513
0.567*
0.464
0.530

perm
rand

0.726***

0.590***
0.559*
0.600***

0.548*
0.537
0.563
0.523
0.000
0.000
0.000

perm
red

0.710***

0.607***
0.554
0.663***

0.556*
0.537
0.548
0.523
0.552
0.488
0.577

10.18***

Diff in Mean

10.18***

2.06
7.69***

In fact, when two sample t-tests were performed on the data, the only subsets

that appeared to have similar means were the top-left and top right quarters.

The top half appears to be different from the bottom half, and the bottom two

quarters seem to differ. The significant values at the 5% level for /rPeanr7 and IrPeedrm

implies there may be still some small scale pattern left in the data. There still

appears to be variability in the in the top-left corner of the dat-'a set. The bottom

left hand corner seems to have underdispersed data when compared to the Poisson

distribution.

In order to see if there was spatial pattern at a smaller scale the data were divided

into eight factors and the procedure above repeated. This division was done in two

ways. Pattern 1 was obtained by splitting each quarter vertically in half, and pattern

2 by splitting horizontally as shown in the diagram.
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Pattern 1

1 5 2 6

3 7 4 8

Pattern 2

1 2

3 4

5 6

7 8

The moves measures and associated indices were calculated, based on just 1000

simulations, and the results are given for the permutation in table 36 and in table 37

for the multinomial alternative.

The significant result for 41;m and Ir. e.„rnd' for the overall pattern for pattern 2 but

not pattern 1 implies that there is a slight overall difference between the left and

right hand sides of each block but that this is not a very significant occurrence, as

judged by the indices. The other two results, significant at 5% for the permutations,

are no more than would be expected from 48 tests. However these results are based

on permuting only eight blocks per test.

For the multinomial simulations there is strong evidence of departure from the

Poisson distribution in the top left hand corner with block 1 pattern 1 having a

significantly high value and also the two blocks from pattern 2 that intersect it show

some pattern. For the single block Mrand is zero for 5 out of eight blocks for both

patterns.

Thus we can conclude for this data set that the two 4 x 4 blocks in the bottom

half of the pattern have different mean values from each other and from the top half,

which was more homogeneous. Once the data was divided up into these four groups,

apart from some evidence of overdispersion (but not spatial aggregation) in the top
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Table 36: Popilla japonica pattern evaluation(Aggregation test), 8 blocks
Area	 /rPe°gi" jPozs JFZSS Index of Dispersion
Pattern 1
All	 0.506	 0.525	 0.530
Block 1	 0.570	 0.584	 0.593*
Block 2	 0.441	 0.000 0.404
Block 3	 0.448 0.000 0.440
Block 4	 0.475	 0.000 0.484
Block 5	 0.473	 0.456	 0.469
Block 6	 0.560	 0.000	 0.574
Block 7	 0.500	 0.000	 0.524
Block 8	 0.593* 0.522	 0.556
Pattern 2
All	 0.508* 0.521* 0.527
Block 1	 0.471	 0.486 0.483
Block 2	 0.537 0.000 0.472
Block 3	 0.501	 0.000	 0.534
Block 4	 0.532	 0.549	 0.543
Block 5	 0.548	 0.558	 0.552
Block 6	 0.544	 0.000	 0.583
Block 7	 0.461	 0.000	 0.478
Block 8	 0.530	 0.000	 0.520
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Table 37: Popilla japonica pattern evaluation(Overdispersion test), 8 blocks
Area	 4/Zi" JPOiS JPiss	 Index of Dispersion
Pattern 1
All
Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7
Block 8
Pattern 2
All
Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7
Block 8

0.572 0.655 0.619
0.664* 0.863* 0.675**
0.341 0.000 0.333
0.355 0.000 0.355
0.420 0.000 0.464
0.584 0.811 0.574
0.569 0.000 0.592
0.465 0.000 0.507
0.638* 0.673 0.575

0.608 0.685 0.641
0.584 0.841* 0.589
0.466 0.000 0.433
0.440 0.000 0.471
0.587 0.725 0.577
0.631* 0.828* 0.638*
0.563 0.000 0.594
0.402 0.000 0.427
0.406 0.000 0.428



CHAPTER 4. INDICES OF AGGREGATION 	 93

left block there was little evidence of deviation from the Poisson distribution.

4.5 Further work on indices

If it has been determined that there is spatial aggregation occurring in the data then

the next task is to attempt to describe what form the aggregation appears to take.

One way of describing this is to decide at what scale the aggregation occurs. A

possible method of doing this is to compare Mranch or Mred with M„g , in order to

find out how much extra effort is required to remove the last half of the variance. If

the value of _M„d/M„g is quite high this implies it is not very difficult to remove the

last half of the variance so there is no suggestion of a pattern such as a trend across

the grid. If however the value is low, this implies that there is possibly pattern on the

scale of the area such as a spatial trend. This idea has not been pursued any further.

There may well be scope for plotting the number of moves against the percentage

change in the sample variance for, not only halving the sample variance as in 'red,

but also removing other proportions of the original variance. This plot could then be

used to identify the amount of pattern occuring at various scales. This would require

considerable further work, however.

If the data have been fitted with a trend or similar model where the expectation at

each point is different and the degree of residual pattern remaining is to be assessed

then the same approach of using the expected value from the model can be used as

for the fit of a model consisting of discrete variables. Unfortunately it is no longer

valid to permute the observations because each one has a different expectation. As

an alternative it might be reasonable to simplify the fitted model by partitioning the

data set up into a sets depending on the range of the fitted values. This would then

bring the situation back to the one in section 4.4.
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4.6 Conclusion

There are a wide choice of indices available to measure overdispersion. There are far

fewer possibilities if the interest is in the detection and quantification of aggregation.

The decision of which index or indices to use in a particular case must be directed

by the sort of pattern which is suspected to exist in the data. If there is no initial

reason to expect one type of pattern more than another it is best to calculate all the

indices and then go on from there.

If there is an interest in whether the data come from a Poisson distribution and

there is no reason to expect any sort of spatial correlation between neighbouring

counts then the Index of Dispersion is the obvious choice. When there is a suspicion

that there may be a spatial pattern in the data then the indices outlined in this chapter

will take into account the spatial information in ways none of the other indices looked

at do. In the detection of overdispersion where there is thought to be some spatial

component then the best index to choose is Irani': if the pattern is on a fairly small

scale, but if there is large scale structure in the data then Ir.:gi" is the best choice.

If the indices for overdispersion indicate that there is overdispersion within the data

then the extent to which this is due to spatial pattern needs to be addressed. Thus

it is then necessary to calculate the indices of spatial pattern.

For the detection of local clusters either the index C7 or / rPeedrm are appropriate.

When the pattern is on a large scale, such as a trend, then 1f. e7m should be employed.

A large value of oror /redrm implies that there is a strong local clustering within the

data. On the other hand 417 is much more effective at highlighting larger clusters

or overall trends within the data than at picking out local clusters. One intuitive

problem with 47= is that, if the interest is in the spatial pattern rather than the

distribution of the counts as such, there seem to be little reason for stopping the moves
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when the variance reaches the mean, the expected value under the Poisson hypothesis.

This measure automatically has value 0 if the counts start out with variance less than

the mean. Thus its use is not recommended.

The indices based on crowding are much more difficult to interpret than those

based on Poisson simulations and permutations of the data. The power advantage of

the original measure index proposed by Perry and Hewitt over moves to randomness

was due to variability in the total catch when independent Poisson simulations were

used to assess significance. When this problem was removed by using multinomial

simulations the power advantage evaporated. The indices based on crowding are very

dependent on the number of sampling points and their layout. Thus these indices

cannot be cámpared for results from different experiments. For these reasons their

use is not recommended.



Chapter 5

Spatial pattern in the Patch-crop

experiment

5.1 Introduction

In chapter 2 we discussed changes in the mean catch of P. melanarius over time,

without directly taking into account the relative positions of the pots. In this chapter

we will investigate extent of spatial pattern in the catches of P. melanarius from

LARS. In order to do this the experimental area was divided up into 9 areas (see

figure 12). This division was chosen because it resulted in every block having the

same number of pots from patches and approximately the same number from the

farmed area (of the pots in the transects) in each block.

This allows us to see of there are spatial patterns on a scale of around 50 metres

(the size of the blocks) and to see if these patterns are constant over time, both within

years and between them, or if they vary.

The pattern that is detected by this method is on quite a large scale. Each block

96
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Figure 12: Patch experiment design showing blocking factor
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is approximately 56 metres squared and typically contains around 17 sampling points.

A preliminary study is given in section 5.2 and an extension of the model from

section 2.4 incorporating the areas is given in section 5.3. As the results from this

section indicate changes in the pattern over time, the data for each month are analysed

for pattern in section 5.5, using both the the model from section 5.3 applied to each

month separately and the techniques of chapters 3 and 4.

The hedge data are excluded from the analyses throughout this chapter because

they lay on the outside of the experiment and showed a generally low mean catch.

On some of the later tables the names of the blocks have been abbreviated to just

two letters for the sake of brevity. Thus the Top-Right block is shortened to TR.

5.2 A preliminary assessment of spatial pattern

In order to get an overview of the amount of spatial heterogeneity that might be

present in the data, the monthly catch of P. melanarius from Long Ashton was

calculated for each habitat and within each habitat for each block. The mean catch

for each habitat and block was scaled by dividing by the overall mean catch for that

habitat in that month, taking into account the differences between small and large
7

patches. These values were then plotted against time for those months (June to

October) when there were enough individuals to make this worthwhile. The plots

are given in figure 13 for the crop data and figures 15 and 14 for the large and small

patches.

Some of the results for October, particularly in 1991 and 1992, show extreme levels

of pattern but this is because in those months there were very few recoveries so some

of the blocks had no individuals recovered in them that month.

In the farmed areas there does not appear to be any consistent trend as to which
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Figure 13: Variability in the mean catch rate in the crop by block for P. melanarius
at LARS
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Figure 14: Variability in the mean catch rate in the small patches by block for P.
melanarius at LARS
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Figure 15: Variability in the mean catch rate in the large patches by block for P.
melanarius at LARS
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blocks have the highest and lowest counts in any year nor does the the same block

have the most extreme value for the same month in all three years. However the

Bottom-Centre block has either the largest or nearly the largest mean catch from

August 1990 to August 1991 inclusive.

In the small patches there seems to be a greater consistency in the results between

the blocks than was the case for the farmed area, with the Bottom-Right area having

the lowest catch for August to October 1990, the Top-Left block having the lowest

catch for June to August 1991 the Top-Right block having the lowest catch for July

and August 1992. The block with the highest mean catch is less consistent in 1990

and 1991, although for 1992 the Bottom-Right block dominates from June to August.

For the large patches the Centre-Left patch has the lowest catch rate from June

1990 through to July 1991, with the sole exception of August 1990 when the catches

were much lower than at any other time. After July 1991 the Top-Centre patch has

either the lowest, or nearly the lowest catch rate until the end of the study. The

highest catch rate is in the Central patch from August 1990 to June 1992, with the

marginal exception of June 1991 when two individuals were recovered from eight

traps as against three each from the nine traps in the Top-Centre and Bottom-Centre

patches and September 1991 when the Centre-Left patch had more recoveries (24)

than the other patches combined. In 1992 the Bottom-Centre patch had a higher

catch rate in July and August than any other patch but in September it came second

to the Centre-Centre patch

5.3 An overall spatial model

In order to determine whether the differences between areas were constant or varying

in time a more extensive Generalized linear model than that obtained in section 2.4
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was fitted to the data. This was done by extending the final model obtained in section

2.4 by adding a factor block which was the same as that used in figures 13, 14 and

15.

The model was chosen by fitting regressors using the generalised Akaike Informa-

tion Criterion (AICa ) (Akaike, 1969) with a = 4. The value of 4 was picked because,

approximately, this represents the level at which a single regressor would be included

using an F-ratio statistic at the 5% level (McCullagh and Nelder, 1989).

The interactions of block with year, habitat, harvest and month were considered.

The block factor alone had an F-ratio of 4.12, and then the habitat-block interaction

had an F-ratio of 11.15, with the next significant value being the harvest-block inter-

action with an F-ratio of 8.15. In habitat factor, the patches are described as Fallow.

There were no other significant interactions at this level. The parameter estimates,

together with standard errors and t-test values, are given in table 38 for the non-

spatial parameters and table 39 for the spatial parameters. The actual and predicted

counts (together with standard errors) for this model are given in table 40 (for the

farmed area) and tables 41 and 42 for the small and large patches respectively.

The absence of interactions between the spatial effects of Block and the month

and year components from this model implies that the major differences between the

areas are the same in June and July (before the harvest) and also approximately equal

in the two months after it (August and September). When the parameter estimates

are examined it appears that the large patch in the Centre-Left block has a very low

count when compared with the surrounding crop.

For the farmed area the Top-Left block has the lowest predicted catch rates be-

fore the harvest and the Top-Right block the highest predicted catch although the

differences between the blocks are not very large. After the harvest the predicted
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Table 38: Non-spatial parameter estimates for fit of block effect P. melanarius at
LARS

estimate s.e.
Constant 2.363 0.123 19.23
1991 -1.992 0.283 -7.04
1992 -0.128 0.146 -0.88
Postharv -0.977 0.400 -2.44
JUL 1.657 0.114 14.55
AUG 1.700 0.361 4.72
Fallow 0.645 0.171 3.78
1991 . Postharv 2.727 0.454 6.01
1992 . Postharv 0.456 0.406 1.12
1991 . Fallow -1.839 0.608 -3.02
1992 . Fallow -1.660 0.258 -6.44
Postharv . Fallow -1.000 0.356 -2.81
1991 . Postharv . Fallow 0.839 0.644 1.30

1991 . JUL 1.523 0.291 5.23
1991 . AUG -0.903 0.341 -2.65

1992 . JUL -0.216 0.161 -1.34
1992.  AUG -1.027 0.478 -2.15

Fallow. JUL -2.491 0.163 -15.24
Fallow. AUG -0.482 0.313 -1.54

1991 . Fallow . JUL 1.925 0.629 3.06
1992 . Fallow . JUL 1.478 0.293 5.04

Small 0.563 0.178 3.17

1991 Small -0.739 0.220 -3.35

1992 Small -0.209 0.211 -0.99
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Table 39: Area parameter estimates for fit of block effect P. melanarius at LARS
estimate s.e.

CL -0.191 0.121 -1.59
CR -0.035 0.115 -0.30
BC 0.118 0.108 1.09
TC 0.064 0.110 0.59
BL -0.1193 0.0973 -1.23
TL -0.434 0.104 -4.17
BR 0.0286 0.0945 0.30
TR -0.400 0.103 -3.86

Postharv CL 0.690 0.197 3.51
Postharv CR -0.654 0.251 -2.61
Postharv BC 0.079 0.195 0.40
Postharv TC 0.150 0.197 0.76
Postharv BL 0.307 0.168 1.83
Postharv TL 0.672 0.168 3.99
Postharv BR -0.106 0.175 -0.60
Postharv TR 0.432 0.172 2.51

Fallow CL -1.471 0.256 -5.75
Fallow CR -0.298 0.202 -1.48
Fallow BC -0.213 0.182 -1.17
Fallow TC -0.543 0.195 -2.79
Fallow BL -0.440 0.169 -2.60
Fallow TL -0.133 0.166 -0.80
Fallow BR -0.178 0.160 -1.11
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Table 40: Actual and predicted mean catch rates by block,P. melanarius in the crop
at LARS

1990 June July August September
Data	 Pred. s.e. Data Pred. s.e. Data	 Pred. s.e. Data Pred. s.e.

CC 13.00	 10.62 1.30 65.75 55.72 4.41 20.83	 21.90 2.90 ? 1.72 1.17
CL 9.25	 8.77 1.23 51.40 46.02 4.77 36.80	 36.05 4.68 ? 2.84 1.92
CR 10.00	 10.26 1.38 55.20 53.82 5.19 4.00	 11.00 2.46 ? 0.86 0.60
BC 4.00	 11.95 1.55 56.40 62.70 5.59 34.00	 26.66 4.21 ? 2.10 1.43
TC 15.40	 11.33 1.48 46.00 59.43 5.44 29.33	 27.14 4.15 ? 2.14 1.45
BL 9.13	 9.43 1.14 56.63 49.45 3.81 19.63	 26.43 2.99 ? 2.08 1.40
TL 8.88	 6.88 0.87 41.88 36.11 3.09 28.00	 27.79 3.14 ? 2.19 1.47
BR 6.00	 10.93 1.30 52.00 57.34 4.20 9.00	 20.27 2.72 ? 1.60 1.07
TB. 10.38	 7.12 0.90 27.88 37.36 3.17 36.00	 22.62 2.74 ? 1.78 1.20
1991
CC 2.25	 1.44 0.39 22.63 34.83 2.96 21.88	 18.50 2.38 3.25 8.33 1.23
CL 1.20	 1.19 0.33 26.20 28.76 3.11 26.80	 30.46 3.99 12.80 13.72 2.05
CR 2.00	 1.40 0.38 32.60 33.64 3.40 9.00	 9.29 2.02 8.60 4.18 0.96
BC 2.00	 1.63 0.44 57.60 39.19 3.69 25.00	 22.53 3.37 9.20 10.15 1.69
TC 1.50	 1.54 0.42 43.80 37.15 3.58 21.40	 22.93 3.38 17.60 10.32 1.70
BL 0.82	 1.28 0.34 34.55 30.91 2.48 26.36	 22.33 2.42 6.80 10.06 1.32
TL 0.18	 0.93 0.25 13.45 22.57 2.00 21.91	 23.48 2.50 12.91 10.57 1.36
BR 1.50	 1.49 0.40 36.64 35.84 2.75 22.27	 17.13 2.11 8.45 7.71 1.10
TR 1.18	 0.97 0.26 27.18 23.35 2.05 10.45	 19.11 2.20 7.56 8.61 1.19
1992
CC 12.50	 9.34 1.14 37.33 39.49 3.36 ?	 10.88 4.44 ? 2.40 1.80
CL 9.80	 7.72 1.07 31.20 32.61 3.48 ?	 17.91 7.31 ? 3.95 2.96
CR 8.60	 9.02 1.21 36.60 38.14 3.81 ?	 5.46 2.44 ? 1.20 0.93
BC 7.00	 10.51 1.35 39.00 44.43 4.12 ?	 13.25 5.53 ? 2.92 2.20
TC 7.40	 9.97 1.30 40.40 42.12 4.00 ?	 13.48 5.61 ? 2.97 2.24
BL 5.09	 8.29 0.98 34.00 35.05 2.75 ?	 13.13 5.30 ? 2.89 2.16
TL 5.36	 6.05 0.75 29.64 25.59 2.23 ?	 13.80 5.57 ? 3.04 2.27
BR 12.30	 9.61 1.12 43.09 40.63 3.04 ?	 10.07 4.13 ? 2.22 1.66
TR 7.45	 6.26 0.78 26.82 26.48 2.28 ?	 11.23 4.56 ? 2.47 1.85
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Table 41: Actual and predicted mean catch rates by small patches,P. melanarins at
LARS

1990 June July August September
Data	 Pred. s.e. Data Pred. s.e. Data	 Pred. s.e. Data Pred. s.e.

BL 17.88	 20.32 2.62 7.56 8.82 1.29 16.67	 12.94 1.91 3.44 3.82 0.75
TL 29.44	 20.17 2.50 3.78 8.75 1.26 14.11	 18.49 2.48 6.78 5.46 1.02

BR 28.67	 30.62 3.38 12.33 13.29 1.76 11.67	 12.90 1.90 2.22 3.81 0.75
TR 18.22	 23.85 2.83 18.78 10.35 1.44 20.00	 17.20 2.42 4.44 5.08 0.97
1991
BL 0.11	 0.21 0.11 2.11 2.87 0.61 2.67	 1.92 0.47 1.67 1.40 0.38
TL 0.11	 0.20 0.11 0.11 2.84 0.60 0.67	 2.74 0.65 5.67 2.00 0.53
BR 0.44	 0.31 0.17 4.33 4.32 0.88 3.22	 1.91 0.46 0.89 1.39 0.38
TR 0.67	 0.24 0.13 2.56 3.36 0.70 3.67	 2.55 0.61 1.25 1.86 0.50
1992
BL 4.00	 2.75 0.59 2.67 4.22 0.81 1.11	 0.99 0.32 1.11 0.81 0.29
TL 1.44	 2.73 0.58 5.11 4.19 0.79 1.00	 1.41 0.45 2.00 1.17 0.41
BR 4.22	 4.15 0.86 11.88 6.37 1.16 1.50	 0.98 0.32 0.22 0.81 0.29
TR 4.00	 3.23 0.68 0.56 4.96 0.92 0.56	 1.31 0.42 0.63 1.08 0.38

differences between seven of the patches are quite low but the Centre-Left block has

a very high predicted catch and the Centre-Right patch a very low predicted catch.

In the small patches before the harvest the Bottom-Right block has the highest

predicted catch rate with all the other blocks having about the same predicted rate.

After the harvest the Top-Left and Top-Right blocks have predicted catch rates that

area about half as great again as those for the Bottom-Left and Bottom-Right areas.

In the large patches, the Centre-Left patch has by far the lowest predicted catch

rate before harvest, with all the other patches having rates within about two standard

errors of each other. After the harvest it is the Centre-Right and Centre-Left patches

that have predicted catch rates that are much smaller than than the rest of the patches

with the largest values being in the Centre-Centre and Top-Centre patches.

Thus there does not seem to be any association between the counts in the patches

and the immediately surrounding crop. If the AIC,„ is used with a = 2, then the
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Table 42: Actual and predicted mean catch rates by large patches,P. melanarius at
LARS

1990 June July August September
Data	 Pred. s.e. Data Pred. s.e. Data	 Pred. s.e. Data Pred. s.e.

CC 16.44	 35.56 5.27 6.22 15.43 2.55 10.25	 16.65 3.01 4.22 4.92 1.09
CL 3.56	 6.74 1.93 0.11 2.92 0.86 2.67	 6.29 1.82 2.33 1.86 0.59
CR 12.11	 25.50 5.76 13.00 11.07 2.62 4.56	 6.21 1.79 0.33 1.83 0.5g
BC 15.78	 32.34 6.93 7.44 14.04 3.17 8.63	 16.39 3.89 1.22 4.84 1.30
TC 22.22	 22.03 4.99 2.22 9.56 2.27 6.11	 11.98 2.95 2.89 3.54 0.98
1991
CC 0.25	 0.36 0.20 12.11 5.02 1.13 5.67	 2.47 0.65 0.22 1.80 0.52
CL 0.00	 0.06 0.04 0.67 0.95 0.31 0.78	 0.93 0.32 2.67 0.68 0.25
CR 0.22	 0.26 0.15 2.44 3.60 1.01 0.67	 0.92 0.32 0.33 0.67 0.24
BC 0.33	 0.33 0.19 6.22 4.56 1.24 1.89	 2.43 0.74 1.00 1.77 0.58
TC 0.33	 0.22 0.13 3.44 3.11 0.88 0.11	 1.78 0.55 0.33 1.29 0.43
1992
CC 3.22	 4.82 1.10 3.56 7.39 1.53 0.00	 1.27 0.43 1.00 1.05 0.39
CL 0.89	 0.91 0.30 1.00 1.40 0.44 0.56	 0.48 0.19 0.33 0.39 0.17
CR 3.33	 3.46 0.99 1.22 5.30 1.42 0.25	 0.47 0.19 0.22 0.39 0.17
BC 1.67	 4.38 1.21 11.11 6.72 1.73 2.89	 1.25 0.47 0.56 1.03 0.41
TC 1.89	 2.98 0.85 1.11 4.58 1.23 0.00	 0.91 0.35 0.33 0.75 0.30

model is extended by adding the year-block interaction, the month-block interaction

and the three way interaction. Now it is no longer possible to give a simple summary

of the results. In particular it is not possible to see, from this model, if the mean

catches in the blocks are correlated over time. If the parameter estimates for the

block effect from the generalized linear model fitted to each month ih turn were to be

examined for correlation then a rough estimate of the degree of correlation over time

would be available. The Pearson correlation coefficients could be calculated, rather

than the less powerful non-parametric versions, because of the asymptotic normality

of the parameter estimates.
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5.3.1 Residual correlation

The model for the mean catch rate does not explain all the variability in the catch

rates for the data. One reason for this could be that there is an effect on the catches

for each individual sampling pot with some pots having higher catch rates than nearby

pots with apparently similar environments.

The standardised residuals from the fit for the above model were calculated and

the correlation between these residuals calculated for each pair of consecutive months,

with residuals in each September being compared with those in the following June.

None of these correlation coefficients were significant at the 5% level implying that

the excess variability in the data, when compared to the Poisson distribution, cannot

be assigned to a sample pot factor. However when the correlations were calculated

when the gap was one year then there were significant positive correlation between

the catches in 1991 and 1992 in June, July and September, but not in August. This

implies that there may be an effect of local environment around the sampling pots

that affects the catches in the same way in each year, but this effect only started in

the second year. The most obvious candidate for such an effect would be changes

in the structure of the vegetation. Thus a correlated error structure, as used in a

repeated measures analysis, would be appropriate but, in this case,, the effect of the

error would have to be variable with month and year. The data from following years

would also have to be analysed in order to see if these effects are a temporary effect of

the maturing of the ecosystem that eventually disappear or if they continue onwards.
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5.4 Spatial analysis of a single months data

As an example data set, I chose to look at the counts of Pterostichus Melanarius from

the wet pitfall traps on the patch experiment at RES for July 1990. The reason for

choosing this data set was that the mean count was fairly large, and the pots were

placed out in the crop as well as the patches, so a comparison of the two could be

made. An initial data analysis revealed that by far the most important factor was,

unsurprisingly, the habitat type. After further exploratory analysis based on factors

within each habitat type, and an attempt to fit models more complex than that of

just the habitat type, it was decided to use habitat type as the only factor in the

analysis.

The indices from chapter 4 were calculated for this month's data. This was done

considering large and small patches to have the same mean counts, and then assuming

they had different mean count rates.

The results show that the hypothesis that the counts are independent Poisson

random variables can be rejected by a wide margin, but that the permutations of the

data do not reveal any pattern of clustering of high or low counts. This result can

be considered in the light of the Index of Dispersion test for each of the variables

separately, which shows that the data are overdispersed (p < 0.05%) for all factors.

The result for the permutation test, when looking at the data after the habitat type

residuals after a habitat model had been fitted, showed a slight negative correlation

between adjoining rows, but otherwise no pattern. This implies that the data do not

show any overall clustering, or that the size of the clusters is less than the interpoint

distance.

However when the two level factor grassed is used instead of the three level factor

habitat, the hypothesis of aggregation is only just rejected at the 5% level, implying
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that a failure to take account of relevant factors may produce false results, in a similar

way to that pointed out by Mardia and Marshall (1984) for correlation of residuals.

Thus there does not appear to be any spatial pattern for the data from RES for

this month. We will now go on to look at the pattern of counts of P. melanarius from

LARS.

5.5 Applying Indices of Spatial Pattern to P. mela-

narius catches from LARS

In order to assess how important the degree of spatial pattern was for each month,

the values of three indices from chapter 4 based on permutations ( Prleegr irPaenr nd2 and

Cm ) were calculated for all the recoveries of P. melanarius (excluding the hedge),

from months where at least 50 individuals were recovered and pots were laid in all

the areas. These values, along with their significance levels, are given in table 43.

The values were based on 1000 simulations. This was done assuming that the crop,

small patches and large patches all had different mean catch rates.

The indices based on the Poisson distribution (1 -1.t 8 , /rPLisd and P) were not

calculated because the high level of overdispersion in the data as illustrated in chapter

2, made the Poisson hypothesis completely untenable. It is of little interest to look

at hypotheses based on the Poisson distribution when the data are overdispersed and

even neighbouring counts have cery large differences. Because of the problem with

the indices based on crowding ( frcerrd , ./.,.7„1,1'id and /rcerrd), as pointed out in section

4.2.2, these indices were not calculated either.

The data for each month were also fitted using a generalized linear model with

Poisson errors. Again the differences between the habitats and patch sizes were taken
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Table 43: Overall indices of pattern for P. melanarius at LARS
Month Total Pots /r.eegrm Tperm

"-rand
yperm
1red DR DRI

1990
June 2034 140 0.577* 0.573** 0.529 2.84** 1.76
July 3641 141 0.634*** 0.632*** 0.579*** 1.77 4.89***
Aug 1927 122 0.525 0.526 0.525 1.40 1.27
Sept No crop
Oct 84 138 0.465 0.458 0.460

1991
June 111 150 0.606** 0.435 0.525 3.72*** 0.69
July 2518 153 0.693*** 0.696*** 0.580*** 5.12*** 3.73***
Aug 1651 153 0.568* 0.580*** 0.530* 2.63** 2.81**
Sept 763 149 0.649*** 0.606*** 0 507 4.38*** 1.63

1992
June 802 151 0.627*** 0.560** 0.524 2.43* 0.89
July 2761 150 0.609*** 0.579*** 0.508 1.92 3.40***

into account, this time by fitting the habitat and patch size parameters. The spatial

pattern was then measured by fitting a nine level block parameter, with deviance ratio

given in the column labelled DR. The deviance ratio for the Block-habitat interaction

is given in column DRI (Deviance Ratio Interaction). This second value measures the

difference of the effect of area between the crop and patch areas. For DR there were

eight degrees of freedom but for DRI there were only seven, as one had been lost due

to estimating the difference between small and large patches.

The information from table 43 is repeated in the plot of indices versus time in

figure 16. In order to get the significance of the Deviance from the Generalized linear

model onto a 0-1 scale two new measures, IDR = DR/(1 + DR) and IDRI =

DRI/(1+DRI) were created. This enables the values of all the indices to be plotted

on the same graph. Although not meant as indices in the sense of chapter 4 they still,
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Figure 16: Indices of pattern for all data on P. melanarius at LARS
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to some extent, measure spatial variability.

From this table we can see the amount of spatial pattern in July is highly sig-

nificant for all three years, with this month giving the highest annual values in 1990

and 1992 for all the measures apart from 1990, when the value of the deviance ratio

was greatest in June. However the overall level of pattern combining DR and DRI

is much greater in July than June. There appears to be little aggregation in August

and October 1990, but in 1991 the aggregation (as well as the overall mean catch)

stay quite high.

As the form of spatial pattern seems to vary between the habitats, as shown

by the high level of the IDRI index, the data from each habitat was then analysed

separately. The results for the crop are given in table 45. The same was done for the

patches, this time including months without pots in the crop, with results given in

table 44. For the patches the difference between small and large patches is indicated

the column patch size. The spatial effect (as measured by the deviance ratio for the

block parameter) is in the column labelled DRI. A selection of these indices is plotted

against time in figure 17.

The relative lack of variability between the blocks for the farmed area that is ap-

parent in figure 13 is confirmed here with, apart from for July 1991, only one result

significant at 1%. July 1990 shows a reasonable amount of aggregation, but, despite

the high mean catches in many months, the overall impression is of little aggregation.

This could be due to higher mobility or, overall, a more uniform environment. The

lack of spatial pattern in the farmed areas after harvest is very noticeable, especially

when compared to the variability in the patches, even though the mean catches there

were lower. This coincides with the changes in the sex-ratio (table 17) where the pro-

portion of males in the crop increases after harvest when compared to the proportion
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Table 44: Indices of pattern for P. melanarius at LARS in all patches
Month Total Pots If.:72 Ir.:7 Patch size DR DRI

1990
Jun 1471 81 0.610** 0.665*** 0.633*** 12.62*** 4.50*'
Jul 643 81 0.694*** 0.737*** 0.652*** 6.45* 7.28***

Aug 813 78 0.493 0.518 0.544* 18.82*** 1.28

Sep 251 81 0.636** 0.623*** 0.601*** 8.89** 4.02*"
Oct 52 78 0.494 0.500 0.517

1991
Jun 22 80 0.553 0.497 0.501 0.98 2.12*
Jul 306 81 0.641*** 0.671*** 0.631*** 8.59** 10.32***

Aug 174 81 0.579* 0.652*** 0.625*** 1.32 6.11***
Sep 125 80 0.657*** 0.692*** 0.669*** 11.05*** 7.44***

1992
Jun 218 80 0.605** 0.579** 0.513 3.64 1.94
Jul 332 80 0.606** 0.627*** 0.528 0.83 6.74***

Aug 69 79 0.595* 0.558 0.508 0.74 5.95***
Sep 57 80 0.575* 0.495 0.567 5.36* 2.84**
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Table 45: Indices of pattern for P. melanarius at LARS in crop areas
Month Total Pots I r.:; rn

rperm
1-71"1 DR

1990
Jun 563 59 0.478 0.453 0.443 0.89
Jul 2998 60 0.591* 0.594* 0.598 — 1.51

Aug 1114 44 0.549 0.551 0.516 1.05

Sep 32 60 0.389 0.401 0.394

1991
Jun 89 70 0.587* 0.571 0.540 2.19*
Jul 2212 72 0.648*** 0.672*** 0.646*** 3.28***

Aug 1477 72 0.594* 0.595* 0.538 1.81
Sep 638 69 0.526 0.516 0.499 1.93

1992
Jun 584 71 0.584* 0.576* 0.551 1.49
Jul 2429 70 0.558 0.517 0.523 0.69

in the patches. Even so, there is little evidence of spatial regularity in the data, with

values for the indices based on moves being greater than 0.5 in all months with a

mean catch of greater than 1, apart from June 1990 and, very marginally, September

1991.

Table 44 presents a mass of highly significant results. If in discount June 1991,

when only 22 individuals were recovered from the patches, IF.7 and gave

results before the harvest that were significant at 1%, although this is also the period

when the catches were highest. After the harvest the results are less consistent, with

September giving a high level of aggregation (taking into account the low catch in

September 1992) and August having a high Deviance Ratio for the fit of area in 1991

and 1992 but a very low value in 1990. In general 1991 (after the low catch in June) is

the year with the highest level of aggregation, showing higher values of all the indices
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Table 46: Difference in aggregation level between crop and patches,P. melanarius at
LARS

Measure Number Mean	 St. Dev. S.E. mean t-statistic P-value
Obs.	 difference

/r. :grin 10 0.0428 0.0709 0.0224 1.91 0.089
17.'7 10 0.0692 0.0944 0.0299 2.32 0.046
/Mr' 10 0.0565 0.0835 0.0264 2.14 0.061

Total Index 30 0.0561 0.0152 3.68 >0.001

Dev. Rat. 9 3.64 2.77 0.92 3.96 0.0D4

after harvest than either of the other years, although the peak indices for July occur

in 1990.

In order to compare the levels of aggregation in the farmed area and the patches

paired t-tests were performed between the values of the three indices /f.,7 71 , /,.'„en": and

irPeedrm and for the Deviance ratio, with results given in table 46. The value for the

mean difference for all three indices was also given in line Total Index.

These values imply that there is significantly more aggregation in the patches

than in the crop, although the significance level of the difference in the deviance ratio

should be treated with caution, as the F-statistic is not normally distributed and the

blocking factor, although a natural one for the patches, does not follow any natural

demarcation lines for the crop.

From figure 17 we can see that the Deviance ratio for the patches is considerably

higher than it is for the crop in every month except June 1991. isis greater for the

crop than the patches in June 1991, approximately equal in August 1990,July 1991

and June 1992 and considerably less in all the other months. I,P.7 for patches starts

off as greater than that for the crop in June and July 1990, and is then slightly smaller

from August 1990 through to August 1991, after which the value for the patches is
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Figure 17: Indices of pattern for crop and patch data on P. melanarius at LARS
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Table 47: Indices of pattern for P. melanarius at LARS in small patches
Month Total Pots I f	 /Tim DR

1990
Jun
Jul

Aug
Sep
Oct

1991
Jun
Jul

Aug
Sep

1992
Jun
Jul

Aug
Sep

the greater.

As there may be differences in the amount of spatial aggregation between the large

and small patches the data from the patches were split by patch size, and the indices

and mean deviation from the fit of the block parameter calculated for each patch size.

The results of these calculations are given in tables 47 and 48 for the large and small

patches respectively, with some of the indices plotted against time in figure 18. The

values of the index were undefined in October 1990 and June 1991 for the large

patches because the Mrand for the data was zero.

For the small patches there were no significant results in 1990 nor in either June

or August in any other year. This may be due, in part, to a decrease in the power of

the tests with a decreasing number of observations being considered. The Deviance

Ratio was significant in each July and September, except for September 1990, when

840 36 0.565 0.587 0.541 1.57
382 36 0.583 0.643* 0.607* 4.33"
542 35 0.491 0.481 0.518 0.76
152 36 0.582 0.624* 0.568* 2.44
32 36 0.482 0.486 0.470

12 36 0.555 0.500 0.515 2.58
82 36 0.665*** 0.699*** 0.640** 7.02***
92 36 0.545 0.536 0.561 2.25
84 35 0.649** 0.686** 0.669** 8.29***

119 35 0.562 0.569 0.516 1.54
170 35 0.556 0.578 0.502 5.64***

36 35 0.473 0.540 0.553 0.66
35 35 0.639** 0.470 0.632 4.26**
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Table 48: Indices of pattern for P. melanarius at LARS in large patches
Month Total Pots 'pe; me Tperm 

i rand Fr):crt m DR
1990
Jun 631 45 0.659** 0.767*** 0.723*** 11.16***
Jul 261 45 0.720*** 0.802*** 0.742*** 12.71***

Aug 271 43 0.485 0.545 0.562 1.79
Sep 99 45 0.615* 0.587 0.569 6.51'
Oct 20 42 0.525 ? 0.623**

1991
Jun 10 44 0.484 ? 0.499 1.73
Jul 224 45 0.622* 0.739* * * 0.756*** 12.14***

Aug 82 45 0.587 0.742*** 0.767' 11.49***
Sep 41 45 0.649** 0.726** 0.707* 6.58***

1992
Jun 99 45 0.597* 0.602* 0.620 2.53*
Jul 162 45 0.613*** 0.677*** 0.553* 8.04***

Aug 33 44 0.646** 0.777*** 0.707** 12.10***
Sep 22 45 0.491 0.500 0.493 1.54

both /rP:drm and /rPearirndi were significant at 5%. Apart from in 1992, at least two of the

three indices were significant in both July and September.

For the large patches (table 48) the values of the indices and the number of

significant results are far higher than for any other habitat. This could be due to

each large patch being treated by the beetles as an area of habitat, whereas the small

patches are too small to be treated as a different sort of habitat. Also the pots in the

large patches are much closer together than either in the crop or the small patches.

If we ignore the results from when there were less than 25 individuals recovered then

there is significant aggregation in every month indicated by at least one index and

the Deviance Ratio in every month except August 1990. The only month when only

one index gave a significant result was September 1990. In July 1990 the amount of

pattern reached its highest point, with /1),,e7 = 0.72 and /rPaen": = 0.802.
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Table 49: Difference in aggregation level between small and large patches,P. mela-
narius at LARS

Measure Number Mean	 St. Dev. S.E. mean t-statistic P-value
Ohs.	 difference

/ii?eegrm 13 0.0266 0.0848 0.0235 1.13 0.280

IrZndi 11 0.0955 0.0874 0.0263 3.63 0.005
gzrn 13 0.0792 0.0954 0.0265 2.99 0.011

Dev. Rat. 12 3.92 4.82 1.39 2.81 0.017

A formal test of whether the overall spatial aggregation is greater for large patches

than small ones was performed using paired t-tests on the indices, with results in

table 49.

From figure 18 we can see that /rP:„r7 is always greater for the large patches than

the small ones, apart from September 1990, when the result was significant at 5%

for the small patches and not significant at all for the large ones. /rP:7 for the large

patches is approximately equal to the value for the small patches in August 1990 and

September 1991, smaller in June and July 1991 and greater in all the other months.

However fewer of the values for /r7;172 were significant than for /rP:nrrnd

The level of spatial aggregation in the small patches appears, from the values of

the indices, to be slightly greater than that for the crop. There are more significant

results for the small patches, even though the number of sampling points is fewer.

Some of these aspects are dealt with further in the conclusion.
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Figure 18: Indices of pattern for large and small patch data on P. melanarius at
LARS
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5.6 Conclusion and further work on spatial pat-

tern

The spatial pattern in the field, as measured by the block effect in the fit of a Gen-

eralised linear model to the data, was different in each month and also varied with

the habitat. The fit for AICa with a = 2 led to a model with where a different

mean catch level was fitted for each block in each month. There was no evidence

of correlation between counts in patches and those in the immediately surrounding

crop. The results on the indices of spatial pattern imply that the spatial pattern

was important in some months and habitats white at clthet: times tLe co\mts

relatively homogeneous, after differences between habitats were taken into account.

When the data for each month were considered separately there was a statistically

significant amount of pattern in every month (at the 5% level) between June and

September when pots were laid in the crop except for August 1991. However, when

the data are broken down into crop, small patches and large patches it immediately

becomes apparent that the crop is relatively homogeneous, as are the small patches

but that there are large differences between the catches in different large patches.

The reasons for this may be due to the small separation between, the sampling points

in the large patches when compared to the separation for sampling points in the crop

and the small patches. The pattern may also be due to the beetles treating each large

patch as a distinct piece of habitat and considering some patches as more desirable

to inhabit than others. For the small patches each patch has a single sampling point

so it is impossible to tell if it is being treated as a distinct piece of habitat or if it

is too small to merit the distinction. The crop areas cannot be neatly split up in

this fashion. In general it appears, from the values of the indices, that the patterns
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consist of local clusters of high and low counts rather than significant trend or other

large scale pattern.

The problem of assessing whether the small patches are being treated, as the large

patches seem to be being treated, as distinct pieces of habitat, with slightly different

populations, rather than as part of the general area, cannot be addressed unless there

is more than one observation at a time from each of the small patches. The only way

of assessing the spatial effect of the small patches is to put more than one sampling

pot in each patch. If four pots were placed in each of the nine patches in one corner of

the experiment then it would be possible to assess the correlation between the counts

in the same patch and thus find out if there really is a "small patch effect". The extra

effort entailed in doing this could be compensated for by not placing any pots out in

any of the other 27 small patches. There may be a slight problem with interference

between the four pots in each of the small patches, but this should be minimized by

placing the pots further apart.

As it stands, because of the correlation between the catches for the large patches,

there are effectively only 5, rather than 45, estimates of the activity levels in the large

patches. This is insufficient to give an overall test of whether the activity levels are

greater in the large patches than in the small ones.
,

The presence of these spatial effects imply that small scale studies, with only a few

closely spaced sampling points, may not be reliable guides to overall population levels.

This has important consequences for the design and analysis of field experiments

intended to measure activity rates. Not only must the number of sampling pots

placed be sufficient to get accurate estimates despite the overdispersion in the data,

but they must be sufficiently widely spread out to make sure that the activity levels

over the entire area of interest can be estimated, and the spatial variability in the
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amount of activity measured.

If, as is often the case in the literature, only the mean catch rate is cited and then

analyses based on the assumption that the data come from a Poisson distribution

are performed, such as using the binomial distribution to compare activity rates at

different times, then the validity of the p-values and confidence intervals rests crucially

on the assumption of no overdispersion.

A Generalized Linear Mixed model (Engel and Keen, 1993) could be fitted to

the catch data. This type of model, described more fully in section 6.7, allows the

correlated error structure used in Linear Mixed models to be added to to a generalized

linear model. If an error term stratified by block is added to the model for the patch

data then the significance of the difference between the catches in the large and

small patches could be assessed. It may also be possible to assess how consistent the

differences between the patches are over time. This could be done by fitting an error

term for block and then examining the effect of adding block-habitat, block-month

and block-year (and possibly higher order interactions) as error terms.

A very similar approach to that of Engel and Keen (1993) is given by Morton

(1987) who developed a log-linear model based on quasi-likelihood with multiplicative

errors and overdispersion.

The overall biological conclusions from the model are that the large patches seem

to be being treated as distinct pieces of habitat, and differ between each other in terms

of the mean number of P. melanarius caught in each of the patches. It is impossible

to take this inference for the small patches because there is only one sampling point

in each pot in each month. It is also difficult to compare overall mean activity levels

between the large and the small patches because the catches within each large patch

are known to be correlated. The crop areas seem to be far more homogeneous than



CHAPTER 5. SPATIAL PATTERN IN THE PATCH-CROP EXPERIMENT 126

the either the large patches or the small patches.

As far as the experimental design goes the lack of randomisation and the substan-

tial differences in the insect populations at the two sites, which effectively negates the

replication, make overall inferences very difficult to substantiate. This is exacerbated

by the loss of crop data in the months when harvesting activities are going on.

Apart from the result that mean catch rates varying between blocks in an appar-

ently haphazard manner over time, the most useful inference is probably that from

chapter 2 about the catch rate in the crop decreasing near the patches. It is comfort-

ing to see that this is an effect which is fairly constant between the years, although

it varies between the months.



Chapter 6

Hosts and parasites

6.1 Introduction

This chapter starts with a look at the biological motivation for studying host-parasitoid

systems, briefly describes the literature and introduces the terminology to be used.

Section 6.3 describes the model of Pacala et al. (1991) and its application to a large

group of data sets. Some problems with their model, along with a possible solution,

are given in section 6.4. A look at the effect of introducing extra variability is given

in section 6.5. The important issue of stability is briefly discussed in section 6.6.

Possible further work, both biological and statistical, is considered in section 6.7 and

overall conclusions drawn in section 6.8.

Farmers often face serious problems from unwanted biological agents (animals,

fungi, viruses etc.) either spoiling or consuming their crops before they can be har-

vested. This is a particular problem if plants and animals have been introduced into

new areas without their natural enemies. Historically there has been a lot of inter-

est in methods of getting rid of these agents, or at least reducing their effects to

127
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economically insignificant levels.

Direct methods, such as shooting or trapping, can only be applied to larger crea-

tures such as mammals and birds. Pesticides have been used widely in agriculture

to control invertebrate pests but there are major problems associated with their use.

These poisons are often indiscriminate, killing or reducing the activity levels (Chiver-

ton, 1984) of predator species that were eating the pests. They may also introduce

long-lived poisons into the environment, affecting fish and higher life forms. Another

method of control is to introduce a predator species to eat the pest. Unfortunately

these may eat some of the native creatures instead, so upsetting the natural balance.

A more attractive proposition is to go back to the original native area and look for

species-specific parasites that were effective there in keeping the population of the

pest down.

An example of the effect of introducing parasites of a pest population is given

by Murdoch et al. (1984). They examined the effect of the introduction of first

one parasite Aphytis paramculicornis and then a second Coccophyoides utilis on the

populations of Olive Scales Paralatoria oleae in California. They found that the first

parasitoid was not very effective in reducing the levels of scale found but that when

the second one was introduced the population of the host dropped considerably, from

a peak of around 50 scales per twig to around one or two per 50 twigs.

In the study of host-parasite interactions it is convenient, and often biologically

sound, to divide the habitat into discrete patches and then look at the parasitism

rates and host densities on each patch separately. These patches could be individual

leaves, twigs or plants. They could also be quadrats chosen by an experimenter

from an overall experimental area. The populations of hosts and parasites are also,

often, divided up into separate generations, with no overlap between the generations
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and identical generation lengths for both host and parasite. In species in temperate

regions with one or two generations per year this is a reasonable thing to do. Even

in areas without much seasonal variability some host parasite systems show cyclic

variability with a period of about one generation (Gordon et al., 1991).

The parasites that are considered here are assumed to have the following life-cycle.

The female parasite first looks for a patch of hosts. Upon finding a patch she then

searches it for suitable hosts to parasitise. Having found a host she then lays one or

more eggs or larvae upon the host's body. These then grow, feeding upon the body

of the host, and eventually kill it. The parasites then emerge to mate and parasitise

new hosts.

The usual method of experimentation is to sample several patches to find out

what the host density is on each patch, and then to see how many of the hosts were

parasitised. Whether a host has been parasitised can be found either from dissection

or by waiting to see if any parasites emerge from it. This is usually done for all the

hosts unless there are too many of them, in which case a random sample is taken. It

would be nice to estimate the local female parasite density at this point as well, but

unfortunately this is very difficult to do in the field (Rosenheim et al., 1991).

In the study of host-parasite systems it is often of primary importance to know7

if the system is stable, or if outbreaks or extinction of the host population are likely

to occur. May (1978) and Hassell (1982) emphasised the importance of how the

reaction of the parasites to changes in host density could affect the stability of a

system. There is said to be direct density dependence if the parasitism rate increases

with host density among the patches, inverse density dependence if it decreases with

host density, and the relationship is host density independent if it does neither. Pacala

et al. (1991) called variability in the parasitism rate that can be ascribed to changes
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Table 50: Symbols used for host parasite models
Fixed parameters and observed values
N The mean host density
Q The number of discrete patches
C Number of age categories
ni Host density in the ith patch
Yi Number of hosts tested for parasitism in the ith patch
Xi How many Yi are parasitised
P The overall mean searching female parasite density
pi Effective searching density of searching female parasitoids in the ith patch
ci Multiplicative error term for ith patch mean 1
bk Risk of parasitism in kth age category if found by parasite

in the host density as Host Density Dependent heterogeneity (HDD) and that which

is independent of the host density as Host Density Independent heterogeneity (HDI).

6.2 A unifying notation for some host-parasite

models

We will now develop a unifying notation for the models in the rest of this chapter.

This is done in the same spirit as the notations for queueing models developed by

Kendal (1953).

Each model is described by three letters and is in the form X/Y/Z. The first letter

represents the way in which the searching parasite density depends on the host density

for each patch, the second one represents the effect of the developmental stage of the

host alters its chance of being parasitised and the third one, the variability in the

risk of becoming parasitised between hosts in the same patch. There is some overlap

between the second and third parts of the models.

The risk factor has been assumed to follow a beta distribution for each age group.



Host risk of being parasitised if found
Age effects

(Same)
A
	

(Age)
No age effects
Risk varies with age group
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Table 51: Notation for Host-Parasite models
Model part Symbol	 Formula Description

Parasite density
(Same)
(Error)
(Deterministic)

H.	 (Regression)
(Fixed)

Same across all patches
Random variation in pi

Fixed function of host density
E and D multiplied together
Estimated from parasitism rate

Distribution of risk factor (with age)
(Same)	 1
(Uniform)	 bk
(Error)
(Half)

V	 (Variable)
General symbol

Any

All fixed at 1
Risk has uniform distribution on [0, 1]
Fixed variance ,Expectation varies
Expectation fixed at 0.5 variance changes
Both expectation and variance change

All models appropriate

It represents the probability of being parasitised if found by a searching parasite,

assuming all hosts of in the patch are equally easy to find. Some models for estimating

the parameters for the distributions of p i and bk including restrictions that could

improve the interpretation of the models are given in table 51

Thus I/I/I represents a model where the probability of a host being found by a

parasites, p, is independent of age category and patch, and the probability of being

parasitised once found is 1. R/A/I is a model where the searching parasite density pi

(and the chance of a host being found) is related to, but not a deterministic function

of, the host density in each patch, and each host has a chance bk of avoiding parasitism

each time it is found, where bk depends on the age category but is the same for all
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hosts in that age category. ?/I/I gives all the models where all the hosts in any given

patch run the same risk of being parasitised.

6.3 Pacala and Hassell model

Pacala et al. (1991) and Pacala and Hassell (1991) considered a model for a host

parasite system where the amount of host density dependent and host density inde-

pendent variability in the density of searching parasitoids could be set to any required

value. In a system with Q patches overall, they assumed that the mean density over

all patches of searching female parasitoids was P and that the mean host density was

N.

In order to have a functional form for the parasitism rate that could be related

to the density in each patch, they described the expected density of female searching

parasitoids in the ith patch with host density n i as

Tt i )E(Pi) = cP (-N-

where c is a constant.

If the value of i is positive then thete is direct density depende-n.ce, it is m.egatiNe

the density dependence is inverse and if it is zero then the searching parasitoid density

is independent of host density. This functional form was chosen because it would

represent the change from direct to inverse density dependence better than a linear

model.

The actual searching density of the parasitoids in the ith patch was assumed to

be
n•)

pi =-- cP	 E
N

where Ei is an error term. This is an R/I/I model.
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The variable E was chosen to have a Gamma density with unit mean and variance

cr 2 . This was chosen because Griffiths (1969) and Griffiths and Holling (1969) have

observed that the number of attacks per host has an approximately negative binomial

distribution. If the parasites search randomly and independently within a patch and

all hosts in it are equally vulnerable to parasitism then the probability of a host in

the ith patch escaping parasitism is exp(—ap i ) where a is the per capita searching

efficiency of the parasites and pi the local searching parasite density. This is the zero

term of a Poisson distribution representing the number of times a randomly selected

host is found by the searching parasites.

If we bring all this together then the probability of a host not being parasitised

in the ith patch is

P(avoiding parasitismIE, n i ) = exp [—acP (—ni
) 

l

If we substitute b = acP/(No ) then

P(avoiding parasitismle, n i ) = exp (—b4ei )	 (1)

If there are Yi individuals tested for parasitism from this patch and Xi are para-

sitised then Xi has a binomial distribution.

P(Xi lYi , ei , ni ) =I	 I exp	 [1— exp(bnlifi)]'

In order to remove the conditioning with respect to the parameter E this expression

is multiplied by the gamma density -y(c) and then integrated with respect to E. The

log-likelihood is taken over all Q patches.

1. E log(f P(XilYi, ni )-y(E)dE)	 (2)
ID
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This was expanded out and integrated with respect to E as follows

= E log lc° -y(E)	 fexp(—bne)1Y'x1 {1 — exp(—bn€)} x  tic

°

(XiE log 1°° -y(e)	 E	 exp(—bn(Yi — Xi )) {— exp(—bn'iVi
xi

i=1	 °	 i=0	 j

log [(	 (-1)j 10° -y(e)exp{—bn(—	 + j)} d6
oi=i	 Xi I i=0	 j

log (_ni {1 +	 —	 + .i)}-1/cr2
1=1 Xi	 3=0 j

This can be expressed in a slightly shorter form as

Q (Xi )

	

	
-*

j
1 E	 E(-1)i	 (1+	 — + j))	 (3)

i=1	 i=o

If o- 2 = 0 and IL 0 0 then we have a Pure Regression (PR) model (Chesson and

Murdoch, 1986) , denoted here as D/I/I). If it = 0 and ci2 > ()then we have a Pure

Error model (PE) (or E/I/I). If they are both zero then the area is being treated as

a single large patch (an I/I/I model).

Pacala and Hassell went on to obtain maximum likelihood estimates ( 71'2 , 1) and

by numerically maximising the above likelihood for 32 example data sets. This

proved difficult numerically for equation 3 when there were more than 20 patches, so

they used equation 2 and integrated numerically in those cases.

There was still a problem with the estimation of (72 because occasionally the

routine had numerical overflows when the estimate betame too small. Therefore the



CHAPTER 6. HOSTS AND PARASITES	 135

constraint o- 2 > 0.05 was introduced. The maximum likelihood estimates for o- 2 are

constrained at this value for 13 of the 32 data sets. When 95% confidence intervals for

the parameter estimates were calculated, the lower estimate of o- 2 was constrained at

0.05 for a further 6 data sets. There was no obvious reason for choosing 0.05 except

possible numerical convenience. An attempt to get around this problem is discussed

in section 6.4.

6.4 Setting o- 2 to zero

It seems sensible in the light of the constraint on o-2 in section 6.3 to consider the

case where 0- 2 = 0 separately. This represents the situation where the density of the

searching parasitoids is a deterministic function of the host population density. If this

is the case then the random variable 6 can be replaced by unity in equation 1 and

then we can proceed as before without the need to integrate. This is very similar to

model II of Hassell (1982). The density of the searching parasite population is now

acP
 (n•

-1)

The log-likelihood in this case is

1 = E log P(Xillzhni)
i=1

exp( bn'ii ) Yi -xi {1 — exp(—b4)}xi

E

Q	 (yi	 xi ( )
log	 exp(—bnnYi-xi E

i=1	 j=0	
lexp(—b4)}i
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Q	 (	 .
E log I	 ( —1)'[exp{ —	 — Xi j
=i	 kXjJi=o	 j

This can be maximised as in the previous case.

However it is possible to express this model in the framework of a generalized

linear model using a complementary log-log link based on the probability of being

parasitised. The probability of being parasitised, 7r, is 1 — exp(—bn bit ). The link

function gives a linear predictor of

g(r) = log{— log{1 — (1 — e-brifL)}]
	

(4)

= log(b)	 log(n)
	

(5)

All that needs to be done is to regress the proportion parasitised against the log of

the host density. Thus the model can be fitted using any computer package that allows

a generalized linear model to be fitted to binomial data using the complementary log-

log link. Here the GEM package (Payne, 1986) has been used to fit the models

(Aitkin et al., 1989). We now consider an example of a host-parasite study.

6.4.1 A Study of a Host-parasite system

Thorarinsson (1990) conducted an experiment to attempt to determine the extent

of density dependence in a host-parasite system. The involved evaluation of the

parasitism rate of the cottony cushion scale Icerya purchasi by the parasitic fly Cryp-

tochaetum iceryae (Cryptochaetidae), which in conjunction with the vedalia beetle

Rodolia cardinalis has controlled the level of the scale in California for a number of

years. This data was subsequently analysed as data sets 29 to 32 by Pacala and

Hassell (1991).
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The experimental area was a hedge of mock orange Pittosporurn tobira which

measured approximately 5m by 20m with a height of about 160cm. In each experiment

a vial containing a number of crawling C iceryae was fixed to a shoot and the shoot

and vial were covered with a fine mesh to protect them from natural enemies. After

about 6 weeks the mesh was removed and 11 to 15 days after that the shoots were

removed from the site and refrigerated ready for further analysis.

On each leaf of each shoot the number of scales present was recorded. The stage

of development (1st instar, 2nd instar, 3rd instar and adult) was recorded by looking

at the morphology of the antennae. The insects were then dissected and the remains

studied for signs of parasitism. This method only reveals parasites that are more than

3 to 4 days old as it is difficult to spot eggs and first stage larvae of the parasites.

Three separate experiments were conducted with varying host densities.

In experiment 1 a row of three blocks was set up. Each block consisted of a. 3

x 3 grid of shoots, with the shoots separated by about 50-70cm. The blocks were

approximately 2m apart. The first block was exposed earlier than the others for

monitoring purposes and the results for this block were not given. In the other

two blocks the hosts, which were placed during 4-8 April 1986, were exposed on 5

June for a period of 15 days to natural enemies. The shoots were then brought in.

Unfortunately 3 of the shoots had been damaged prior to exposure and so only 15

shoots remained for analysis. The initial numbers exposed and the scale sizes were

not recorded.

The second experiment consisted of an identical pair of 4 x 4 grids of shoots (data

sets 2A and 2B), with four different levels of initial scale densities arranged in a latin

square. The four levels of density were 11-17 individuals, 23-28, 36-65 and 72-132.

The shoots were again 50 to 70 cm apart and the two blocks were separated by about



Table 52: Recoveries from Thorarinsson experiments
Total ParasitisedExperiment Patches Hosts recovered Parasitism rate

1	 15	 423	 252	 59.5%

2A	 16	 180	 94	 52.2%

2B	 16	 212	 142	 67.0%

3	 22	 385	 251	 65.2%
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2m. These colonies were put out during 10-12 May 1986 and exposed on 23 June.

The scales were recovered 11 days after they were exposed.

In the third experiment a single block of twenty five shoots was set up in a 5 x

5 grid with each shoot separated form its neighbour by about 15-20 cm. Five of the

shoots received between 117 and 156 scales each and the rest between 14 and 19 scales

each. The shoots with high densities were chosen so that there was one in each row

and column of the grid. The vials were placed during the 4-8 August 1987, exposed

on the 13 September and recovered 13 days later.

The number of patches from which hosts were recovered, the total number of hosts

recovered and mean parasitism rate for each experiment are given in table 52 .

No evidence was found of density dependence in the rates of parasitism at either

the scale of the colonies or of individual leaves for any of these experiments once the

effect of host size was taken into account.
	 7

The data in the paper were published in the form of a series of dot-plots of

percentage parasitism against colony size. This was converted to the form of colony

size and numbers parasitised using an automatic reader. This appeared to introduce

some errors into the data due to the size of the dots compared to the scale. The data

in these plots were not broken down by size of scale.

In order to estimate the values of the parameters b and it when the value of (72

was zero, the generalized linear model detailed above was fitted to each of the four
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data sets. The chance that it = 0 (I/I/I) was looked at by fitting the model with

0 as well. The results of these fits together with the original parameter estimates

and the correlation between tt and log acP for the density dependent deterministic

model, are shown in table 53.

The standard errors for the estimate of the overall parasite density log(acP) are

greater for the Generalized Linear Model that includes it than for the Pacala model

but, apart from for set 31, the estimate of IL is more precise. In none of these models

does the estimate of it vary significantly from 0, implying there is no overall evidence

of host density dependent heterogeneity in the parasitism rate. When the parameter

ft was set to zero, the scaled deviance did not significantly increase, and the standard

errors of the estimate of the mean parasitism rate dropped considerably. This could

be because of the high negative correlation between it and log(acP) given in table

53. For all the replicates, the 95% confidence interval for log(acP) from the Pacala

and density dependent deterministic model include the value from the simple fit. If

the x2 approximation for the scaled deviance holds then all the models appear to fit

apart from the third one.

The relationship between the parasitism rate and the host density is illustrated

by the plots of the percentage parasitism against the log of the host density in figures

19, 20, 21 and 22.

The assumptions on which this model are based are dubious for this system. In

particular Thorarinsson (1990) points out that the rate of parasitism in the third

instar and adults is higher than the first and second instars. Therefore the data

ought to be split up by age category before any analysis is attempted (as in section

6.5.3). If this age difference is taken into account, the parasitism rates in the colonies

are approximately the same. This can either be explained by a lack of spatial density
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Table 53: Parameter estimates, Confidence intervals and correlations for Thorrarin-
son's data

Parameter

Set 1

u2

Pacala estimates
Estimate	 95% c.i.

0.05	 [0.05 , 0.179]

Density dependence
Estimate	 s.e.

Dens. Indep.
Estimate	 s.e.

Ii 0.008 [-0.215 , 0.245] -0.050 0.098 0*
acP 1.109 [0.920 , 1.331]

log acP 0.103 [-0.08 , 0.286] 0.125 0.367 -0.060 0.064
Deviance 44.6 44.9

Correlation -0.98

Set 2A

U 2 0.05 [0.05 , 0.200]
p 0.047 [-0.231 , 0.336] 0.035 0.130 0*

acP 0.735 [0.573 , 0.941]
log acP

Deviance
-0.308 [-0.557, -0.061] -0.404

16.8
0.387 -0.303

16.8
0.105

Correlation -0.96

Set 2B

a- 2

p

acP
log acP

Deviance

0.299
0.254
1.418
0.349

[0.108
[-0.752
[1.007
[0.007 ,

, 0.807]
, 0.256]
, 2.028]

0.707]

-0.253

0.810
57.8

0.126

0.365

0*

0.089
61.7

0.088

Correlation -0.97

Set 3

0.2

p

acP
log acP

Deviance

0.05
-0.014
1.109
0.103

[0.05 ,
[-0.162 ,
[0.920 ,

[-0.083 ,

0.192]
0.140]
1.342]
0.294]

-0.044

0.213
28.10

0.062

0.234

0*

0.054
28.6

0.066

Correlation -0.95
* p fixed at 0 in density independent model
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Figure 19: Percentage parasitism plot for set 1
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Figure 21: Percentage parasitism plot for set 2B

10'
Host density

Figure 22: Percentage parasitism plot for set 3

149

1 )(	 )1(

3K

)1(
0.8

w

)1(

)ie

3K

3K

3K
7

A 0.6
w
ci
win_
co

-

)i(

w

3K

3K

"-E
c0.4o

-

6:

0.2
_

3E

0 	 0
10 10'

Host density



CHAPTER 6. HOSTS AND PARASITES 	 143

dependence or, more simply, by assuming the parasites treat the entire experimental

area as a single patch. This implies it may have been better to perform the experiment

on a larger spatial scale in order to assess this.

6.4.2 Numerical considerations

We shall now consider the effect of assuming that the searching parasite density is a

deterministic function of the host density within a patch when there is a random error

component within the effect. In particular consider the effect on the previous model

of introducing a gamma distributed random error term e i to the parasite density. The

probability of an individual in the ith patch being parasitised is now 1 — exp(—bn,ci)

If we fit use a complementary log-log link function then the link gives

g(7ri) = log{ — log(

log(b)	 log(n) log(fi)

If expectations are now taken of each side in order to remove the error term c i we

get

f.
[log(b) -I- log(ni) log(E)] 

r(a) _l
ec1EE(g(ri))

a"

log(b)	 log(n) I log(6) 
r(a)
—
aa	

l e €cl€

The integral part of this expression can be solved using the expression given by

Gradshteyn and Ryzhik (1980) equation 4.352(1) by substituting 1/a = cr2

a"
1:(log(e))6"-le'de = —

T(a)
(ili(a) + logo)

This gives the expression

E(g(ri)) = log(b)	 log(n) T(a) — log(a)
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The function can be approximated using the asymptotic expansion given by

Abramowitz and Stegun (1965), equation 6.3.18.

1	 1	 1	 1 
W(a)	 — —

2a 12a 2 120a4 252a6

Using this substitution now gives expression

1	
—
14	 18	 1

E(g(7r2 )) = log(b)	 log(ni)	
J.2

— v-h — 77_
a + 120 a + 252 a

12

There is only a small error provided that o- 2 is small. McCullagh and Nelder

(1989), page 108 mention that the log-log link (g(70 = — log{ — log(70}) is unsuitable

when r < 1/2. As the two links are related by

Mr) —g2( 1 —

where gi and g2 are the complementary log-log and log-log links respectively (although

the formula works the other way round as well), this implies that the complementary

log-log link may not be suitable for systems where there is a high rate of parasitism.

6.5 Variable host vulnerability

In the usual host-parasitoid models it is assumed that every time a searching para-

sitoid finds a host that is free from parasitism then the host becomes parasitised. The

number of hosts parasitised within any given patch follows a binomial distribution,

with the probability of any one host being parasitised as a deterministic function of

the searching parasitoid density.

If however we allow each host a probability of avoiding parasitism each time it is

found by a searching parasitoid, and allow this probability to be a random variable

with a suitable distribution, then this introduces a new source of variability.



CHAPTER 6. HOSTS AND PARASITES 	 145

6.5.1 Initial starting point

Initially, assume that the effective local searching density of the parasitoids in the

patch that we are studying is w. If the individuals search randomly and independently

within the patch then the number of attacks per host follows a Poisson distribution

with mean w. The probability of k attacks upon a randomly selected host is therefore

e-wwk
p(k) = ki

If the probability of an individual not becoming parasitised after the first k attacks

upon it is Sk then the overall probability of that host escaping parasitism is

cwwk

lc ! Qkk=0

6.5.2 All hosts equally vulnerable

If each host has a fixed probability r of avoiding being parasitised on the kth attack if it

has not been parasitised earlier, then the probability of avoiding becoming parasitised

after k attacks is rk . Thus the overall probability of becoming parasitised is

(6)

p(Siw)
coE	 rk

k=0

e
_ 	 (Wr)k E

k=0

_w (i _r) t° e-wr(wr)k

k=0
= 6-w(1-r)

Thus the effect of introducing a fixed resistance parameter r for each host is

identical to reducing the per capita searching efficiency of the parasites by a factor of
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1 — r. This case is thus indistinguishable from the case where all attacks by parasites

that have found a host automatically succeed.

6.5.3 Host Classification

We shall now look at the effect on the R/I/I model of host-parasite systems of sub-

dividing the host population in each patch into several categories, assuming that the

hosts in different categories have differing susceptibilities to parasitism. This will give

model R/A/I.

Suppose that the host population can be divided without error into C discrete

categories. For each host in the kth category, let the probability of escaping parasitism

if it is found by a searching parasite be bk. Let b = (b1,...,bc) be the vector

form of this. Let there be Q patches and in the ith patch let the number of hosts

tested for parasitism be Y i = (Yii, 17+2, • • , Yic) and number actually parasitised be

Xi = (X11, Xi2) • • • , XiC) where Ilk is the number of hosts tested in the kth category

and Xik is the number of these that are parasitised.

If we take the approach of Pacala and Hassell then the probability of escaping

parasitism for an individual in the ith patch and the kth category is exp(—bkn)

where ei has a gamma distribution with unit mean.

If we assume that the hosts search randomly and independently within a patch

then

P(Xik lYik, ni, fi) = 
	

lexp(—bicei E inYik-Xik {1 - exp(—bkncillx'k
Xik

The likelihood for the vector Xi given Yand ei is therefore

c	 yik
P(XilYi, ni, Ei) =	 {exp(—bkei Ei )} Yik-Xik {1 — exp(—bkn i ciP )}Xik

k=1 Xik



Xik

•
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Removing the conditioning on e i by multiplying by its density and then integrating

with respect to E gives

P(Xi lYi ,ni ) =
Too

H
[

Yik
{exp(—bkqenYik-xik {1 — exp(—bkqe)}xik 7(E) dexik

k=1

This gives the log-likelihood for the observed data set as

C	 Yik
1 = E log (I H	 {exp(—bk4e)}ik-xik {1 — exp(—b knfen xik -y(e) de

k=1[( Xik1=1

In order to simplify this expression we can perform the substitutions

Ai = E(Yik — Xik ) bk = (Y1 — Xi)Tb
k=1

Q	 IC	 yik
F = E logri

1=1	 k=1 Xik

Notice that F is a function of the data but not the parameters and so can be left

out of the process of maximising the likelihood if required.

The log-likelihood is now

Xik

C r ki

F E log (
cof {exp(—A4E)} H E

1=1	 k10 	 = j=0

E	

r

1	

ik

F	 log (	
C

.1 lexp(—Ain'iie)} H
=1 	 0 	 k=1 j=0

1
{— exp( — bkqE)} j -y(E) de

1
(-1)j exp(—ibkniil E) 'y(e) c/E)

In order to interchange the summation and product signs on the right hand side

of the above expression it helps to introduce some new notation. Let {V i } be the set

of vectors of length C indexed by 1 E L i such that
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Vil = { Will 7 W112 7 • • • Wilc}

Wilk E {0, 1, • • • , Xik

and {Vi } contains all possible permutations of the Wilk.

It is useful at this point to introduce the following substitution

C (X ik

Bil =	 — 1 ) kc. wiik

k=1	 Viik

The form of the log-likelihood is

Q

1 = F + E log f: {exp(—Ainf`c)} E
:=1•	 1EL,

This now gives

[Ba expf— (E bk Vilk) n 2 E)-] 7 (c) dE)

1 = F + E log I {exp(—Ainfi e)} E exp(VD346)-y(c)
C1

i=1	 /EL;

F + E log (E Bit f exP{ — ( A1 Vlb)n}-y(E) de)
00

00	 a a-1 —CreE	 C
F + E log (E Bit	 exp {—(A.; + VT/ b)74€} 	 dc

r(a)
1=1	 1ELi

F + E log (E	 lac/	 1°3 exp	 [{(A1 +	 + a] el ca --1 dE)

1=1	 F(a) o

The form of the integrand is that of a Gamma density.

1
x v e -Px dx = —r(v) u > 0 v> 0

[1'

i= 1 	 1ELi

fo
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Then after performing the following substitutions

= Tit = {(Ai +Wib)n} + a

ii = a

The form of the log-likelihood is

	 r (a)}
1 = F + E log E aa

1=1	 1EL,	 r ( a) 71=1

F + Qalog(a) + slog E (—,TB,i')
1=1	 IEL,	 11

If there is assumed to be no host-density independent parasitism, then we can

proceed as in the the case where a-2 =0 except that the scalar b is replaced by the vector

b, where bk is the relative rate of parasitism for the kth category (Model D/A/I). We

can again express this in terms of a generalized linear model by replacing b with bk

in equation 4. Therefore the form of the estimating equation for the parasitism rate

for the kth category in the ith patch is now

g(74) = log[— log{1 — (1 — e-bknf)}1
	

(7)

= log(bk ) + plog(ni)
	

(8)

Thus the model can be fitted using the GUM package by fitting a binomial model

with a log-log link, regressing the parasitism rate against the log of the host density

and the class of the host. The statistical significance of the age catches can be assessed

by looking at the change in the deviance that occurs when bk is replaced by b.

In the Pacala and Hassell approach the effective host density is estimated by the

number of hosts recovered from each patch. This is fine if all patches are the same size
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and all hosts equally vulnerable. If however the rate of parasitism among different

groupings of the host within a patch varies then the estimate of the host density ought

to take this factor into account. A possible method of doing this is to consider the

mean parasitism rate for each category k taken over all the patches i. Let this be Rk

If the host density for the kth category in the ith patch is n ik then the effective host

density in that patch is the weighted average	 nikRk•

6.5.4 Uniform Vulnerability

Now consider the simple case where the probability of a host resisting an attack is r

where r is drawn from the uniform distribution independently for each host and is the

same for all the attacks upon that host (Models Rh/U, D/I/U, E/I/U and I/I/U).

If there are k attacks then the probability of surviving all k attacks given r is r'. If

we integrate with respect to r then the probability of surviving all k attacks is

1
8k = rk dr . 	

Jo k + 1

The overall probability of not being parasitised is thus

P(S1w) =
e -w Wk 1

k! k + 1k=0
oo	 wk

=0 
e

k	
-w (k +1)!

1 00 e-wwk+1

W L'd (k +1)!k=o
1-
w

[ 1 - e-w]

One advantage of this approach is that there are no extra parameters that need

estimating. The corresponding disadvantage is that it is inflexib.'e, with no method
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of estimating the degree of heterogeneity in the host population. This is dealt with

in the next section.

6.5.5 Beta Distribution

If a more flexible approach is required then it can be assumed that the resistance

r of each individual is drawn from a Beta distribution with parameters al and a2.

This gives the models ?/?/E, ?/?/H and ?/?/V. Then the probability of surviving k

attacks is

Sk	
krai-10. rr12-
	 dr

Be(ai,a2)

101 	 _0.2-1
	 d

	

Be(ai,a2)	
r

Be(ai k,a2) 
1 rai+k-i (1 _

	

Be(ai , a2 ) Jo	 Be(ai	 cv2)

Be(ai k, a2)

Be(ai,a2)

Thus the probability of not being parasitised is

" e-wwi Be(ai j, a2)

3 Bo	 e(ai,a2).i=
wjBe(ai j, a) 

Be(ai , a2) ;=.0

A problem with this approach occurs if al and a2 become large. In this case

there is little heterogeneity among the hosts and the situation is very close to that in

section 6.5.2. The ratio cei /(ai a2 ) is highly correlated with w, possibly leading to

problems of parameter estimation in the model. This can be solved if the restriction

a = al	a2 is introduced. In this case the degree of heterogeneity in the host
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population with a high value of a can be estimated by 1/a with a = oo corresponding

to a homogeneous population. The expected probability of a host being parasitised

on the first attack is 1/2, so the estimate of effective searching density of the parasites

will be greater in this model when compared to that from models where all attacks

automatically succeed.

This approach can be combined with the approach of categorising the data in

section 6.5.3 with different al and a2 for each group, but with w being common. If

this gives too many parameters to be estimated accurately, or numerical problems

arise, then some restrictions could be placed on the values of a in order to reduce the

dimensionality of the problem.

If the only interest is in the relationship between parasitism rate and age category

then we could add a vector parameter F to take account of the searching parasite

density in each patch and then look at the relationship between the parasitism rates

for age groups within each patch. (Models F/A/I, F/A/U, F/A/E etc.)

6.6 Stability considerations

An important consideration for a system is whether or not it is stable. Instability

implies there may be outbreaks of the host population, or local extinction of both

host and parasite. If the parasite disappears locally then the host population from

either the original population or immigrants can cause an unchecked outbreak.

In order to study stability Hassell et al. (1991) looked at the following simple

general model model of a discrete generation host-parasite system.

Nt+1 = ANtF(Nt, -13t)Pt+1 = w Art[1 — F (Nt, Pr)]
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where Nt is the host and Pt the parasite density in the tth generation, F(Nr, Pt)

is the fraction of hosts NT that escape parasitism, A is the rate of population increase

of the host in the absence of parasitism and w the mean number of female parasitoids

emerging from each parasitised host which was assumed to be 1 for all of the models. If

there is a single patch containing all the hosts and the parasites search independently

and randomly within it then this is a Nicholson-Bailey system (Nicholson and Bailey,

1935) and the system gives rise to unstable oscillations.

This model has a point of local equilibrium (N*, P*) when

1/A = F(N* , P*)

P* = N* (1 — 1/A)

Necessary and sufficient conditions for local stability are

A 2 [aF(N;', Pni
< 1

A — 1 
P* 	

apt

A — 1 (  —8F(N*, Pi) > OF(N*, P*)

A	 aPt	 aNt

They went on to discuss when these stability criteria were met for a variety of

models. In these models the host has been assumed to occupy discrete patches within

each generation and in the first four models there was complete redistribution of
7

both hosts and parasites between generations. The coefficient of variation (CV2 ) of

searching parasitoid density per host was found to be an approximate guide to the

behaviour of the system, with a value CV 2 > 1 indicating stability in the population

dynamics of a variety of host-parasite models.

When the parameter estimates from the cottony-cushion scale system are exam-

ined, the system appears, from the CV 2 > 1 criterion, to be highly unstable, with

neither host density dependent effects, as measured by it, nor host density indepen-

dent effects, as measured by cr2 , contributing significantly to the coefficient of variation
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CV2 . This system in the wild also appears to be unstable, with experimenters (Tho-

rarinsson, 1990) finding patches containing only the remains of hosts where 100%

parasitism has occurred.

There may be other stabilising influences in the system due to the differential rate

of parasitism with host age and the possibility of density dependence at a larger scale.

In any case the assumptions underlying the Nicholson-Bailey equations do not hold

in this case because the parasitism rate varies with host age and the generation time

of the parasite is only one third of that of the host (Quezada, 1969). Also the number

of parasitoids emerging from each parasitised host varies with usually one parasitoid

emerging from a first or second instar and up to 18 emerging from an adult. There is

also a possible stabilising effect from the presence of the rarer parasite R. cardinalis.

Therefore if the Nicholson-Bailey model is not a fair description of the population

dynamics, criteria for stability based on it might not be a good guide to the stability

of the system in nature.

Even if the dynamics are locally unstable, the movement of the host could lead

to large scale stability even if there are local extinctions. In this case the outbreaks

of the host appear to be at a very low level and not to have any major economic

importance.	 7

Murdoch et al. (1987) found that for a continuous time model with two age

classes (juvenile and adult) and overlapping generations for both host and parasitoid

the introduction of an invulnerable age class for either juvenile or adult hosts could

stabilise the population dynamics. Presumably partial invulnerability, as suggested

by models of the form ?/A/? could result in a slightly smaller stabilising effect than

complete invulnerability.

Murdoch and Stewart-Oaten (1989) have challenged the emphasis in the literature
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on the discrete-time models and the effect of aggregation as a stabilising influence on

population dynamics. They concluded that for their continuous-time discrete space

model, parasite aggregation independent of host density had no stabilising effect on

the model, and that direct density dependence of parasitism rates on host density

was a destabilising influence. Godfray and Pacala (1992) criticised their model on

the grounds that they did not have true spatial element in the movement of either

the hosts or the parasites. The assumption that parasitoids respond instantaneously

to changes in the host population without any attempt to specify rules for this be-

haviour leads to a biologically untenable model. Models that have realistic criteria

for movement tend to lead to systems of equations that are too complicated to be

useful in this field.

6.7 Further work on host-parasite systems

A problem when deciding to set up an experiment such as a host-parasite study

is deciding what spatial scale to use. If the area chosen for the experiment is too

large then it may become difficult to manage, whereas if it is too small then the

searching parasites may regard the entire experimental area as a single patch. If this
7

is the case then the rate of parasitism across the experiment, once factors such as

the age of the hosts in each patch are taken into consideration, is uniform. This

can be tested by the standard techniques of assessing the goodness of fit of a simple

binomial model. If the perceived patch size is larger than the gap between the patches

as laid out by the experimenter but smaller than the overall experimental area then

the analysis of the experiment becomes more difficult, as the correlation between the

rates of parasitism needs to be taken into account. It may be possible to detect the

presence of this effect by looking for correlations between the residuals after a fit
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has been made to the model. Attempting to model this effect would be considerably

more difficult, especially if a non normal model is used. If the data are transformed

to a Gaussian distribution then approaches such as Watkins (1990) can be used.

It may be possible to minimise this effect by choosing a more suitable design for an

experiment, such as a balanced nearest neighbour latin square rather than an ordinary

latin square (Freeman, 1979). The perceived patch size could also be affected by the

local vegetation with a piece of monoculture hedge being seen as a single patch but

a set of separated trees over the same area being viewed as different patches. Indeed

the dynamics of the population within a small patch such as a single tree could be

different from those occurring within a large hedge.

It may be possible to break down the extra variability in the Pacala and Hassell

model that is compensated for by the extra variable c72 into components using a

generalized linear mixed model (Anderson and Hinde (1988), Preisler (1988), Im and

Gianola (1988), Jansen (1990)) These combine the extension of the distribution of the

response variable to the exponential family of generalized linear models (McCullagh

and Nelder, 1989) with the correlated error structure of a linear mixed model (Rao,

1972). In linear models the response variable y = (y i , . . . , yn) is assumed to have a

systematic component, which is a linear function of the known design matrix X and
7

the parameter matrix 13 and an error component e = (e i ,..., en) with the 45 being

independently and identically distributed normal random variables mean 0. That is

y=XTP-Fe

In a LMM there is an extra error component u = (u i ,..., up) and an error design

matrix z so that

y =xTp+zTu+e

An example would be split-plot experiment where z; represents the jth whole plot
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and u the error from the jth whole plot. In a generalized linear model y i can be

distributed according to any member of the exponential family, such as the binomial

or Poisson distributions. The expected value of y is related to the design matrix X

by a link function g so that

g(it) = = xTO

and the variance of y by a known function V of iL so

var(y) = OV(p)

Overdispersion or underdispersion can be taken into account by multiplying 0 by

an overdispersion parameter cr 2 In a generalized linear mixed model (GLMM) the

LMM and GLM are combined as follows. The linear predictor 77 now has an error

component zTu added where z is known and u is an error term with mean 0. Thus

the linear predictor is now

g(P) = Ti = XTO zTu

If we assume each component of u has a normal distribution then the maximum

likelihood estimates u can be obtained by numerical integration. Unfortunately this

can involve cumbersome high-dimensional numerical integration which, even for two

crossed random effects, is impracticable. Engel and Keen (1993) suggested using

methods without the full distributional assumptions about u, in which case Quasi-

likelihood (Wedderburn, 1974) and MINQUE (Minimum Norm Quadratic Unbiased

Estimation) (Rao, 1973) were combined.

The threshold model developed by Engel and Buist (1993) for binary data may be

particularly useful. In this model we assume there is an underlying random variable

r such that y = 1 when r> 0 and 0 otherwise. 0 is a threshold value which we can
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conveniently fix at 0. If E(r1u) = 77 and the residual e = r — ii, which has distribution

F independent of u then

r = ii + 6 ___= xT 0 + zTu + 6

The link function is g(g) = —F -1 (1 — //). This is a subject specific model (Zeger

et al., 1988).

If the parasitism rate was thought to vary with host age and there was more than

one patch then u; might represent the (unknown) error in parasite density associated

with the jth patch. Another application could be for series of samples from sets of

patches where one error could be included for each patch and another for variation in

mean parasite density over time. This could also be extended into space by looking

at, say, parasitism rates on high and low branches or twigs on the same plant and

considering between-plant variability as an error.

This method has the advantage over incorporating large numbers of extra param-

eters into the systematic part of the model that, instead of estimating the parameters

(as part of 3), they are integrated out. They should not be included in the overdis-

persion effect because the errors are correlated.

A full investigation of the stability of a host-parasite system in the field would

require a study over several generations. One problem with this approach is that if

large numbers of hosts are repeatedly removed from each patch then this is likely

to upset the dynamics of the system. A method of getting around this might be to

replace these individuals with approximately equal numbers of laboratory hosts of

whom a known proportion have already been parasitised.
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6.8 Conclusion

The results from section 6.4 show that for three of the data sets there seemed to a

constant level of parasite activity in all the patches with neither systematic variability

with host density, as measured by it, nor extra random variability, as measured by

cr 2 . Only in data set 2B did the data indicate significant deviation from a simple

binomial model of uniform parasitism rates. Even in this case it appeared that the

variability in the parasitism rates was not related to the host density.

In all of the models presented here it has been assumed that searching parasite

behaviour is related to the relative, not absolute, host density. It seems more reason-

able, particularly if the host population tends to fluctuate, to try to relate parasite

behaviour to the absolute host density. Also the parasitism rate in each patch is a

function of the searching female parasitoid density, but not of the host density. This

model assumes that the handling time for each attack is negligible and that the para-

sites never run out of eggs. If the number of available hosts per parasite is high then

this could affect parasite behaviour, with individuals becoming more choosy when the

remaining egg supply is low. If the parasitism rate among hosts encountered by the

parasite is high then it could, in order to avoid superparasitism (Daley and Maindon-
,

ald, 1989), leave the patch. This would tend to even out the parasitism rates among

the patches.



Chapter 7

Mark-recapture

7.1 Introduction

This chapter deals with the use of ring-recovery data to estimate survival rates and

parameters for dispersal models. There has been much interest in using the data

from mark-recapture experiments to estimate total populations, survival probabilities

and rates of movement. Much of this work has involved splitting the data up into

geographic strata. Transition probabilities between strata are then estimated, along

with survival rates, which may vary with the area as well as other variables such as

age, sex and weather. See, for example, Nichols et al. (1992), Darroch (1961) and

Brownie et al. (1993). There has been considerably less interest in models where the

model has not been stratified but the distance between mark and recapture point has

been taken into account explicitly, although Kareiva (1983) and Manly and Chatterjee

(1992) have done some work in this area.

A good reason for wishing to measure rates of movement, and associated parame-

ters, is that the stability of an animal population is affected by the rate of movement

160
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of animals from one area to another. Thus the population can be unstable in each

area taken individually but the overall populations may be stable if the fluctuations

in the different areas are not correlated with one another.

Another motive for studying rates of movement lies in the estimation of genetic

drift in populations. In this case the effect of a few individuals that breed far from

their original area may have a disproportionate effect on the rate of movement of genes

through the population. Because of this effect it is necessary to estimate not only

the mean dispersal distances for each generation but also to measure the amount of

extreme dispersal going on. This is because even a small number of individuals in the

population that disperse a long way can prevent differentiation between populations.

Numbers down to one individual every other generation may be enough to prevent

populations in different areas becoming genetically incompatible (Wright, 1931).

Therefore if a model based on simple diffusion is used to model genetic change

within a sample population then it is necessary to check whether or not the assumption

of a simple random walk for the individuals under study is a reasonable one. If it

is not then it is the degree of deviation from a simple diffusion model that must be

estimated and this factor taken into account in the modelling of the gene pool.

This could be mathematically very awkward as models for genetic drift in two

dimensions, even those based on a simple diffusion model, are difficult to analyse

mathematically (Slatkin, 1985).

In section 7.2 a ring-recovery data set for the blackbird (turdus merula) in the

UK is described. A survival model is fitted to this data in section 7.3. The fitting

of a model combining survival with a Weibull distribution for dispersal distances by

Manly and Chatterjee (1992) using least squares is discussed in section 7.4 along

with the fit of a Weibull distribution for movement, conditioning on survival. Section
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7.5 fits this model to dispersal distances of the common grackle (Quiscalus quiscula).

Sections 7.6 and 7.7 introduce new models for dispersal distances. The estimation

of the distribution of dispersion distances by Kareiva (1983) is discussed in section

7.8. The chapter concludes with a discussion of further work required in section 7.9.

Some technical details are given in Appendix B.

7.2 Blackbird ring recoveries in the UK, 1953-

1975

Greenwood and Harvey (1976) extracted from the files of the British Trust for Or-

nithology (BTO) the records of ringing and recovery for blackbirds where both the

ringing and recovery positions were known. Only birds that were sexed and banded

as nestlings during the breeding season (March-July) (Myers, 1955) and recovered

during a subsequent breeding season were considered for analysis. Both ringing and

recovery positions were given to the nearest minute of latitude and longitude. This

approximates the positions by boxes measuring approximately 1.1km east-west and

1.8km north-south.

When the raw data were examined two obvious outliers an'd five transcription

errors were noticed and these are shown in table 54.

The first two birds that had been ringed in mainland Britain were recovered in

western Ireland. They were deleted from the data set for three reasons. Firstly it

seems unlikely that members of a terrestrial species would normally move across a

large body of water such as the Irish Sea. This implies that they were probably blown

across during a storm. Also there were no reports of birds that had been ringed in

the Republic of Ireland being recovered at any point. Including birds recovered in
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Table 54: Observations deleted from Blackbird data set
Ringing Recovery Ringing Recovery

Sex Day	 Year Day	 Year	 Long. Lat. Long. Lat.
Male 193 1969 93 1970 54.34 3.25W 54.04 8.28W
Fem. 170 1958 78 1960 55.38 2.05W 52.50 8.59W

Male 210 1966 70 1968 54.22 0.58E 54.21 0.53E
Male 165 1966 83 1969 53.24 2.54E 53.24 2.54E

Male 210 1955 210 1955 55.53 3.09W 55.53 3.09W
Male 151 1971 88 1977 53.46 0.22W 53.46 0.22W
Male 172 1971 120 1922 52.39 1.25E 52.39 1.25E

the Republic of Ireland when there were no reports of any being ringed there would

bias the data set. Also the recovery rate in the Republic of Ireland may not be the

same as in the UK. The next pair of observations were deleted because they were

recovered from locations in the North Sea, probably oil rigs. The other three deleted

observations had transcription errors in either the ringing or recovery dates.

All seven observations were deleted before the final maps of the ringing and re-

covery positions were drawn and before any analysis was done.

There were also discrepancies between the raw data, the tabulation given by

Greenwood and Harvey (1976) and the tabulation given by Manly and Chatterjee

(1992). The work here is based on the the raw data given by Greenwood and Harvey

(1976).

In order to get a picture of the spread of the blackbird population across the

United Kingdom the ringing positions of the birds were plotted in figure 23.

It appears from these maps, as well as from the maps of the recovery positions

that neither ringing nor recovery positions are uniformly distributed. This is discussed

more fully in section 7.9.

The recovery positions are shown in figure 24. In addition to this the tracks of
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Figure 23: Ringing positions for blackbirds in UK 1953-1974
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the dispersions were plotted for all dispersion distances exceeding 3 kilometres (figure

25).

In order to estimate the distances moved from the latitude and longitude data the

individuals were all assumed to have been ringed in the centre of the ringing box and

recovered from the centre of the recovery box. This approximation, which is used

throughout this chapter is a quick and easy approach to the problem of the discrete

nature of the data. A more complex approach is briefly described in section 7.9.

Individuals were classified as dispersed if the ringing and recovery boxes were

different. The dispersed individuals were further categorised as short distance (moved

less than 3km) or long distance (more than 3km) birds. In order to see if area of

ringing was important the data set was divided up into Northern birds (ringed at 51

degrees 48 minutes or more north and southern birds ringed further south. This line

was chosen because it was the median ringing latitude.

In order to find out if there was a significant difference in the dispersion distances

of dispersed birds (excluding the non-movers for the moment) for males and females

a Mann-Whitney test for similarity of distribution of the dispersion distance was

performed. The P-value from the test,which was performed using the MINITAB

package, was 0.48, which indicates no significant difference between the groups.

Similarly the Mann-Whitney test was performed to see if there was any significant

difference between the dispersion distances for first year birds and older birds and

between the Northern and Southern birds. No difference was detected for the age

classes (P=0.18) but there was a significant difference between the north and the

south (P=0.03) with the median dispersion being greater in the north (3.86km) than

the south (2.18km).

In order to initially explore the data set and to get a feel for the factors and
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Figure 24: Recovery positions for blackbirds in UK 1954-1975



w
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Figure 25: Moves over 3km recorded for blackbirds, 1953-1975
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Table 55: Summary table for dispersion of blackbirds
1st year 2nd year Older All

Sex M F All M F All M F All M F All

Area Dist
North

Not 24 20 44 13 6 19 41 16 57 78 42 120
Short 3 3 6 2 3 5 4 4 8 9 10 19
Long 6 5 11 3 3 6 4 5 9 13 13 26

ALL 33 28 61 18 12 30 49 25 74 100 65 165

South
Not 25 13 38 14 4 18 24 17 41 63 34 97

Short 4 6 10 6 3 9 12 5 17 22 14 36
Long 8 3 11 3 1 4 1 3 4 12 7 19

ALL 37 22 59 23 8 31 37 25 62 97 55 152

All
Not 49 33 82 27 10 37 65 33 98 141 76 217

Short 7 9 16 8 6 14 16 9 25 31 24 55
Long 14 8 22 6 4 10 5 8 13 25 20 45

ALL 70 50 120 41 20 61 86 50 133 197 120 317

interactions that were likely to be important a contingency tagle was constructed.

The data were divided up by sex, age on recovery, distance dispersed and geographical

location.

To see if the proportion of birds dispersing was affected by any of the above

three factors 2 by 2 contingency tables of the numbers dispersing compared with area

(north/south),age(lst years and older) and sex were formed. It was found that none

of these factors had a significant effect on the numbers dispersing. Thus, apart from

the increased dispersal distance for northern birds that are dispersed, it seems that
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survival and distance dispersed are independent of each other, sex and area.

The possibility of similarity between siblings hatched in the same year is not a

problem for this data set because no pairs with the same ringing dates and locations

occurred.

7.3 Survival rates for blackbirds

In this section the use of the blackbird recovery data for the estimation of survival

rates is discussed. A model for estimating survival rates in the presence of censoring

is developed, fitted and the fit assessed.

The numbers of individuals ringed and recovered by year of ringing and age on

recovery are given in table 56, with the numbers by year of recovery and age given in

table 57.

The total numbers of birds ringed in each year is not known so it is not possible

to estimate the recovery rate for dead individuals. There appears to be an anomaly

in the 1975 recoveries, with only six recoveries reported, as against a value of over 30

for each of the preceding six years. The last recovery for 1975 was on day 85 (out

of a possible range 60 to 213). This implies that not all the recoveries for the 1975

were available when the data set was published. Including this data while taking this

censorship into account would involve making assumptions about the reporting rate

and seasonal mortality. Therefore this data was excluded from the analysis. Another

factor which needs to be taken into account is that the recovery record for individuals

ringed towards the end of the study period is time-censored by the lack of recoveries

beyond day 85, 1975. This censorship must be taken into account if the survival rate

estimates are not to suffer from severe downward bias. The ringing date from 1973

was also excluded as all the recoveries now included from that year were from 1974.
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Table 56: Number of blackbirds recovered by age and year of ringing
Age 1 2 3 4 5 6 7 8 9 10 11 ALL

Ringing year

1953 0 1 0 0 0 0 0 0 0 0 0 1
1954 0 0 1 1 0 0 0 0 0 0 0 9
1955 1 0 2 0 0 0 0 0 0 0 0 3
1956 2 1 0 0 0 0 0 0 0 0 0 3
1957 4 1 1 0 1 0 0 0 0 0 0 7
1958 1 4 0 2 0 0 0 0 0 0 0 7
1959 3 2 1 1 0 1 1 0 0 0 0 9
1960 0 0 2 0 0 0 1 0 1 0 0 4
1961 1 1 1 1 2 1 0 1 0 0 0 8
1962 9 2 0 0 3 0 0 1 0 0 0 15
1963 7 4 1 0 3 0 1 0 0 0 1 17
1964 6 3 0 0 0 0 0 0 0 0 0 9
1965 3 0 7 3 3 0 1 0 0 0 17
1966 5 3 6 2 1 4 0 2 0 23
1967 15 7 6 12 4 2 3 1 50
1968 13 8 4 6 2 1 0 34
1969 14 6 8 7 3 0 38
1970 9 9 7 5 1 31
1971 4 5 2 0 11
1972 8 4 1 13
1973 12 0 12
1974 3 3
ALL 120 61 50 40 23 9 7 5 1 1 317
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Table 57: Numbers of blackbirds recovered in each year by age
Age 1234 5 6 7 8 9 10 11 Total

Recovery year

1955 0 1 0 0 0 0 0 0 0 0 0 1
1956 1 0 0 0 0 0 0 0 0 0 0 1
1957 2 0 1 0 0 0 0 0 0 0 0 3
1958 4 1 2 1 0 0 0 0 0 0 0 8
1959 1 1 0 0 0 0 0 0 0 0 0 2
1960 3 4 1 0 0 0 0 0 0 0 0 8
1961 0 2 0 0 0 0 0 0 0 0 0 2
1962 1 0 1 2 1 0 0 0 0 0 0 5
1963 9 1 2 1 0 0 0 0 0 0 0 13
1964 7 2 1 0 0 0 0 0 0 0 0 10
1965 6 4 0 1 0 1 0 0 0 0 0 12
1966 3 3 1 0 2 0 1 0 0 0 0 10
1967 5 0 0 0 3 1 1 0 0 0 0 10
1968 15 3 7 0 3 0 0 0 0 0 0 28
1969 13 7 6 3 0 0 0 1 1 0 0 31
1970 14 8 6 2 3 0 1 1 0 0 0 35
1971 9 6 4 12 1 0 0 0 0 0 0 32
1972 4 9 8 6 4 4 1 0 0 0,0 36
1973 8 5 7 7 2 2 0 0 0 0 0 31
1974 12 4 2 5 3 1 3 2 0 0 1 33
1975 3 0 1 0 1 0 0 1 0 0 0 6

Total 120 61 50 40 23 9 7 5 1 01 317
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We will now develop a model for survival rates involving maximum likelihood

that takes these effects into account. We start off by assuming that the probability

of an individual surviving to age t 1 given it was alive when it reached age t

is cb t , independent of the year of ringing of the individual. We therefore exclude the

possibility of the mortality varying from year to year. The probability of an individual

that dies during a year of full recoveries being included in the study (i.e. recovered

during March-July and the ring returned with the positional information) is assumed

to be s, independent of age and year.

The probability of dying and being recovered at age t, A, is therefore

t-1

A = s(1 — Ot) fJ Ok
k=1

The probability of dying before reaching the age e is

e-1	 j-1

Ce = SE(' — H cbk
j=1	 k=1

The likelihood of being recovered at age t for an individual that was recovered

despite there only being e years of the study left when it hatched is therefore

L(tle, ․ ) = —Mt =  ( 1 — 

C e	 E.ei:1(1 — (fij) nikfi chk)

We can therefore remove the conditioning on s. If there were n individuals in

the study with ages of death t = (t1 ... tn ) and corresponding years till end of study

e = ( e1 ... en ) the likelihood would be

( 1 — Ot, ) tk;i1 Ok L(tle) =
E .ei .=-11 (1 - (kJ) nic-=11 ok)

The log-likelihood is

(1 — Oti) E log
1=1	 E.; i=-11(1 — 	 raVi ok)

72	 72 t'1 j-1

E log(1 — cbt.) — E E log Cbk — log{ E (1 —	 Okl
i=1 k=11=1	 j=1	 k=1

1(tle) =
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In order to reduce the number of parameters that need estimating three variations

of this model were fitted to the data. In the first model the mortality is assumed to

be independent of age (0 = = 02 = 03 ...). In the second the mortality for all

birds over 1 year of age was assumed the same but the mortality was different for

the first years. The third variant of the model was a beta-geometric one where the

mortalility for each individual followed a beta distribution, independently of all other

individuals.

All three survival models were fitted to the data using programs written in Fortran

using the NAG library. In order to assess the possible effect of terms such as the area

of ringing, sex of ringed individual and dispersal the data set was classified by sex,

area (North and South) and dispersal distance (undispersed and dispersed) and the

model fitted to all the subsets that were possible by combining these three factors.

The model where the time censorship was also taken into account was also fitted to

the data separately for individuals ringed before 1968 and those ringed either in 1968

or later. This was done in order to see if there was a change in the survival rate over

time. The resulting deviances for both the one-rate and two-rate models, along with

model degrees of freedom, are given in table 58.

The third model proved difficult to fit to the data due to the estimates of the
7

parameters for the beta distribution having a tendency to diverge towards infinity,

implying the mortality rate has negligible variance. Although the use of reciprocals

might improve the numerical accuracy of the calculations for this model, the lack of

support for this model from the data does not justify the amount of work required.

Thus the use of a variable survival rate is not justified from the data. This implies

the survival rate appears to be constant with age of individual. When the number of

fitted parameters are taken into account it is clear the the most parsimonious model
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Table 58: Table of deviances for blackbird survival models with censorship
One Rate	 Two Rates

Model Deviance	 Resid. D.F. Deviance	 Resid. D.F.
Mean only 997.68 298 997.50 297

Sex 995.56 297 995.03 295
Area 997.36 297 997.23 295

Dispersion 997.63 297 997.38 295
Date 997.58 297 997.26 295

Sex*Area 994.70 295 993.98 291
Sex*Dispersion 995.30 295 994.10 291

Sex*Date 995.25 295 991.98 291
Area*Dispersion 997.05 295 996.40 291

Area*Date 994.02 295 993.26 291
Sex*Area*Dispersion 994.13 291 991.61 283

Sex*Area*Date 990.58 291 986.65 283

is just the constant survival rate over age, time, area and sex.

For this table we can seen that the estimate of the survival rate does not appear to

differ significantly between any of the groups. Therefore there is no need to estimate

the survival rates separately. The overall survival rate is estimated at 0.70 with a

95% confidence interval of [0.66,0.75] and a 99% confidence interval of [0.65, 0.76].

The predicted numbers recovered by age group and year of ringing are given in

table 59.

When the survival rate for the first year is calculated separately from that after

the first year the rates are estimated as 0 1 = 0.70 and 02 = 0.71 with 95% confidence

intervals of [0.65, 0.75] and [0.66, 0.76] respectively. The respective 99% confidence

intervals are [0.63,0.76] and [0.64,0.78]. The similarity between the estimates confirms

that there appears to be no difference in the survival rates with age.

The deviances for the models where censorship is ignored again point to constancy

in the survival rate over time, area and sex, giving a value for 0 of 0.62. A 95% con-

fidence interval for 0 is [0.58,0.65] and a 99% region is [0.58, 0.66]. The survival rate
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Table 59: Predicted numbers of blackbirds recovered by age and year of ringing
Age 1 2 3 4 5 6 7 8 9 10 11

Ringing year

1953 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
1954 0.6 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0
1955 0.9 0.6 0.5 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0
1956 0.9 0.6 0.5 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0
1957 2.1 1.5 1.0 0.7 0.5 0.4 0.3 0.2 0.1 0.1 0.1
1958 2.1 1.5 1.0 0.7 0.5 0.4 0.3 0.2 0.1 0.1 0.1
1959 2.7 1.9 1.3 0.9 0.7 0.5 0.3 0.2 0.2 0.1 0.1
1960 1.2 0.9 0.6 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.0
1961 2.4 1.7 1.2 0.8 0.6 0.4 0.3 0.2 0.1 0.1 0.1
1962 4.5 3.2 2.2 1.6 1.1 0.8 0.6 0.4 0.3 0.2 0.1
1963 5.1 3.6 2.5 1.8 1.3 0.9 0.6 0.4 0.3 0.2 0.2
1964 2.7 1.9 1.4 1.0 0.7 0.5 0.3 0.2 0.2 0.1
1965 5.3 3.7 2.6 1.8 1.3 0.9 0.6 0.5 0.3
1966 7.2 5.1 3.6 2.5 1.8 1.3 0.9 0.6
1967 15.9 11.2 7.9 5.5 3.9 2.7 1.9
1968 11.5 8.1 5.7 4.0 2.8 2.0 ;
1969 13.6 9.6 6.7 4.7 3.3
1970 11.8 8.3 5.8 4.1
1971 5.0 3.5 2.5
1972 7.0 5.0
1973 12.0
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estimates are smaller for this model because it fails to take account of the censorship

of the long-lived birds that were ringed towards the end of the study period. We can

compare this last set of results to those obtained by Manly and Chatterjee (1992).

They fitted a model to this data set, which included survival but ignored censorship,

by least squares. Their final estimate of the survival rate was 0.638, with a standard

error of 0.0223 which was approximately the same as that obtained in the model

considered here when censorship was ignored. Their approach is discussed more fully

in section 7.4.

In order to assess the goodness of fit of the survival model including censorship, the

number of individuals recovered each year was compared to the numbers predicted,

as shown in table 60.

When the x2 statistic was calculated based on frequency table 60 the value ob-

tained, when the recoveries for 1954 to 1957 inclusive were amalgamated, was 20.75,

with 16 degrees of freedom. This is not significantly large at the 5% level, imply-

ing that the annual mortality rate does not vary significantly from what the model

predicts.

The survival rate, estimated for the entire data set, was also used to calculate the

expected numbers dying in each age category. The expected and observed numbers in

each age group are shown in table 61. The constant survival rate between the groups

implies that it would be reasonable to assume a model where there is no change in the

proportion of individuals that are dispersed as the age of the individuals increases.

The assumptions of the model can be questioned in several ways. In particular

the rate of recovery of dead birds might not be constant over time. If there is, say,

a steady increase in the recovery rate then this will lead to an upward bias in the

survival rates. In order to check this assumption it would be necessary to know the
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Table 60: Actual and expected recoveries for each year
Year of death Expected	 Observed

1954 0.38 0
1955 1.00 1
1956 1.77 1
1957 2.24 3
1958 4.07 8
1959 5.20 2
1960 6.67 8
1961 5.65 2
1962 6.56 5
1963 9.81 13
1964 12.59 10
1965 11.24 12
1966 13.52 10
1967 17.33 10
1968 30.09 28
1969
1970

32.33
35.92

31
35 r

1971 35.60 32
1972 27.49 36
1973 24.39 31
1974 27.04 33
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Table 61: Actual and expected recoveries for each age group
Age at death	 Observed	 Expected

1 105 102.9
2 61 72.4
3 49 47.5
4 40 31.7
5 22 19.4
6 9 11.3
7 7 6.5
8 4 3.2
9 1 1.8
10 0 1.0
11 1 0.6
12 0 0.0

numbers ringed in each breeding season.

A full study of the survival rates of the blackbird would require information on the

recoveries throughout the year. This could bring problems of its own if the recovery

rate varies with the time of year.

7.4 Fitting the Weibull Distribution to Movement

Distances

One of the simplest models for movement in a two dimensional framework is the

diffusion model. This model arises from the assumption of Brownian motion which

is itself the limiting case of an uncorrelated random walk.

For an uncorrelated random walk, consider the case of an individual starting at the

origin and then a step, the size and direction of which follows a symmetric bivariate

distribution with zero mean and variance cg . If N independent steps are taken, all
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with the same variance o- 2 , then the resulting distribution of the position at the end of

the walk is bivariate normal with mean 0 and variance No-. In the limiting case where

N tends to oo, o- 2 tends to 0 and No-2 = w, the sample path of positions at times

1,2, ... , N is the sample path of a point undergoing Brownian motion. Replacing

discrete N by a continuous variable t and fixing a2 allows the model to be considered

in continuous time. Freedman (1971) gives a fuller discussion of Brownian motion

and diffusion.

The density function for a position {x, y} at time t given a start at the origin is

1	 s2+292 

XX ) Y) = 
27ro-2t

"- 2 2 t

Skellam (1973) switched this to polar co-ordinates and then integrating out the

angle to give the following density for the absolute distance between start and finish

points, r
r2

h(r;t) —
2a2t

The shape of this distribution is constant over time, and the mean distance will

increase as a linear function of

If the survival rate is 0 for each period then the probability of dying in the tth

year follows a Geometric distribution. 0'(i — 0) If the individual also moves according

to a simple random walk then the probability density function for dying in the tth

year at distance r from the origin is

2
h(r,t) = cbt (1 — 0) 0.2t exp(-0.2t)

Manly (1977) considered a generalisation of this model. In this model the dis-

persion distance follows a Weibull distribution with scale parameter o- 2 and shape

parameter a. These parameters can be interpreted as saying the observed distance
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z has the same distribution as rila where r is the displacement from the origin of

a point undergoing simple diffusion and c•2 is the variance in each dimension of the

displacement of r. The a parameter measures the kurtosis in the data with a value

of 1 indicating simple diffusion is an appropriate model, values less than 1 indicat-

ing leptokurtosis and values greater than 1 indicating platykurtosis. Thus if a is

estimated as significantly less than 1 then there is a degree of overdispersion in the

dispersal distances and a value less than 1 implies the distances vary less than would

be expected from a diffusion model.

Introducing the a parameter the density now becomes (Manly, 1977)

a f z 12a-1	 1 1 z
f(z,t) = 20 t (1 — 0)7(7)- 1 174 j	 exP I_ t T ( t )

where (r(t)) 2" = 2a2t. z has a Weibull distribution with shape parameter 2a and

scale parameter r(t). Note that at this point calculating the maximum likelihood

estimates can be done separately for the survival parameter 0 and the movement

parameters cr 2 and a. In this model the probability of dying at a distance greater

than z away from the origin at time t is

7(zt) a
F(z,t) = Ot (1 — 0) exp [

{y]
,

Thus the probability of being recovered between z1 and z2 (zi < z2 ) in the tth

year is

}1

zl.
F(z1 ,0- F(z2,t) = co.- o) (exP [{ 1-_-}

2a
l	

2,2
 — exP [{7- }1)

Manly and Chatterjee (1992) fitted this model to the data discussed in section

7.2. The frequency table that they used is repeated in table 62.

The fitting method that they employed throughout their paper was to calculate

the expected frequencies for each of the cells in the above table based on the parameter
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Table 62: Distance from ringing to recovery point for male blackbirds

Distance(km)

Age

0-3 4-7 8-20 21-55 -148 -403 -1097

1 58 11 2 2 0 1 0
2 35 5 0 0 1 0 0
3 34 1 0 0 0 0 0
4 23 0 0 0 0 0 0
5 12 1 0 0 0 0 0
6 6 0 0 0 0 0 0
7 4 2 0 0 0 0 0
8 4 0 0 0 0 0 0
9 1 0 0 0 0 0 0

10 0 0 0 0 0 0 0
11 1 0 0 0 0 0 0

estimates and from those calculate the x 2 goodness of fit statistic. The parameter

estimates that minimised the X2 statistic were those finally chosen.

As the model did not appear to fit the data very well, it was generalised by allowing

a to vary in a linear fashion with time so a(t) ao ai t. This allows the shape

of the distribution of distances to vary over time. Unfortunately this also affects the

mean dispersion distance so that it is no longer possible to consider scale and shape

separately.

This was then further extended by allowing the scale parameter r(t) to be made

more flexible by replacing cf2t with (7 20 . This form was preferred over a linear re-

lationship because there is no chance of ending up with a negative scale factor. It

is still not possible to directly estimate the changes in the scale of dispersion if the

shape parameter is changing in time however.

The goodness of fit statistics for this and the other models that they fitted, to-

gether with the parameter estimates and the standard errors for the final model are
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Table 63: Parameter Estimates for Weibull model fitted to male blackbird data using
frequency table

Model
Parameter estimates

Shape constant Shape varying	 Shape varying,# 0 1 (s.e.)

Survival 0 0.821 0.638 0.638 (0.0223)

Movement

Scale parameters,.
a2 0.615 0.292 0.432 (0.078)

P (1) (1) -0.284 (0.247)

Shape parameters
ao 0.0140 -0.0671 0.151 (0.054)
ai (0) 0.183 0.0160 (0.0294)

Goodness of fit
X2 statistic 104.46 62.13 40.4

Degrees of freedom 73 72 71

given in table 63.

The fit of the model to the female data gave similar results. When the model

was fitted for both sexes together the increase in the deviance compared to when

parameters were estimated separately was not significant (x 2 7-= 9.45 with 5 degrees

of freedom), implying the sets are similar. However parameter estimates were not

given either for the females separately or for the joint estimation.

The failure to take account of the censorship mentioned in section 7.3 results in

severely biased survival rate estimates.

Examination of these estimates shows that they each represent radically differing

descriptions of the data. When the shape parameter for the distance travelled with

time is allowed to vary, the estimate of the death rate (1 — q5 ) doubles. This is
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particularly worrying in the light of the functional form for the log-likelihood for non-

categorised data in equation 9, where survival parameters can be estimated separately

from movement parameters.

That there appears to be some dependence of the dispersion values on age at death

can be seen when we look at the mean age on recovery for the different distance classes.

The mean decreases over time, the opposite of what we would expect from a model

assuming constant survival rates and outward diffusive movement, as is the case with

the original model. However, because of the highly skewed nature of the dispersal

distances, measures such as the mean need to be treated cautiously.

When the value of ft is allowed to vary from 2 then the maximum likelihood

estimates for ao and a l do not appear, from their standard errors, to be different from

those obtained when a was constant. Together with the closeness of the estimate of

# to zero, this implies that it is reasonable to assume that the distribution of the

dispersion distance is constant with respect to age of individual upon recovery.

As was noted by Manly and Chatterjee (1992), the x' statistics are not va)id be-

cause of the large number of zeroes present in the data, and although it was stated

that x2 statistics based on amalgamating some cells so that the asymptotic assump-

tions are valid show the model did not fit well, these values were not given. If the

cells are constrained to have a minimum of three individuals then when the data are

examined there is a maximum of 13 such cells for the males data set, with only one

cell representing individuals from beyond 7 km. It then becomes very difficult to

measure the shape of the dispersal distances with any confidence.

The final )(2 statistic of 40.4 on 71 degrees of freedom represents an extremely

low test statistic compared to the A. 2 distribution with 71 degrees of freedom (P >

99.5%). This implies a high degree of overfitting to the data.
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It was assumed that the recovery rate did not depend either on age of individual

or the distance between mark and recovery points. This assumption has to be made

as it is not known either how many individuals were marked or what the true spatial

distribution of the individuals was. Testing the hypothesis of variable recovery rates

could be done using an experiment based on marking and releasing birds which were

older than juvenile. This would be more difficult that marking nestlings.

Instead of classifying the data into discrete distance classes and finding the ex-

pected number of individuals in each class, it is possible to use the distance data

directly to calculate the likelihood for each observation. This has the advantage of

more efficient use of the data and eliminates the problem of how to divide the cate-

gories so that sufficient numbers remain in each set to make the use of a x 2 test valid.

We now consider this approach in more detail.

The data from the original paper (Greenwood and Harvey, 1976) were transformed

into survival time (in years) and actual distance from ringing to recovery point. As

the ringing and recovery positions were only known to the nearest minute of longitude

and latitude, individuals that had dispersed were assumed to have been ringed and

recovered from the centres of the relevant boxes.

The form of the probability density function for the most complex model with a

varying with time and # 0 1 for the raw data is

2a(t)
0) ar((tt)) { T(Z t) } 12(t)-1 exp	 { 74; }h(z,t)....- 20(1 _

where r(t) = (20-20)1/2a(t) and a(t) = a() ai t. Thus the likelihood for observing

recovery distances z,

	

zn and ages on recovery t i ,	 , tn is

	

2a(t,)-1	 }2a(t,)]
L(z,t) =	 2ott (1	 a(ti )	 Zi	 Zi

exp —
2.1	 r(ti) r(ti)}
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Expanding out the function T(t) and taking logs to get the log-likelihood function,

we get

(9)

2a(ti)

+(2a(t i ) — 1) log(zi )	 zi	  + log(2)	 (10)
0.2e

This can be maximised with respect to 0 without taking any of the distance

parameters into account. Thus we can split the problem up into the estimation of

survival rates, as in section 7.3, and model the movement conditional on age at death.

Fortran programs have been written to calculate the maximum likelihood esti-

mates for the log-likelihood of these observations based around NAG Fortran library

procedures and to provide contour plots (figure 26) of the log-likelihood function.

Maximum likelihood estimates of the parameters for this model have been pro-

duced. The model represents a generalisation of the Weibull distribution, where

T(t) is the scale parameter and a(t) is the shape parameter. The parsimony of this

model compared to slightly simpler models has been tested by setting the parameter

al = 0, implying a constant shape, and setting p 1, implying a random walk model,

or /3 = 0, implying that the scale does not change with time.

7.4.1 Distance censorship

Individuals categorised as non-dispersed pose a problem for this approach. Apart

from other considerations, the likelihood function has a singularity at 0, so they

cannot simply be given a dispersion distance of 0. If the non-dispersed individuals

are ignored then the parameter estimates will be biased. In order to see how big

this effect is the model was still fitted, with an analysis of deviance given in table

/(Z, t) = E(t i — 1) log( 0) + log(1 — 0) + log(a(t i )) — log(a2e)



20t(1	 z }2a(t)-1 exp	 r.(zt) 12al
r(t)	 r(t)
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65 and parameter estimates in table 66. This bias, in the case of the blackbird data

where most of the individuals have not dispersed, is so large as to make this method

unreasonable.

If we take this left-censorship of the data into account then the probability density

function given the censoring distance was ro would be

h(z,t) =
p(z > ro)

If the non-dispersed individuals are ignored but the likelihood adjusted by assuming

that no dispersion of less than the size of a box are included in the data then this

problem can be sidestepped, although much of the data is then deleted. The results

for this method are given in tables 69 and 70. The third approach is to assume the

individuals have dispersed a short distance. The distance chosen here was (0.7km).

This was chosen because it approximately represented the median dispersal distance

for individuals distributed uniformly in a circle of radius 1.1km, the minimum disper-

sal distance for individuals that changed boxes. Results for this approach are given

in tables 67 and 68. A better, but more complex, approach to the entire problem of

the discretisation of the data is outlined in section 7.9.

There is also a question of whether the models for dispersal distance hold when

the distance observed is small. If searching for a nest is first done via an intensive

search around the place where the bird was hatched and then changes to a less

intensive method if this fails then the form of the dispersion distance would be a

mixture distribution, with all the birds that found a nest in the intensive search

being classified as undispersed. Another reason why the form might not hold is that

the individual may have moved temporarily in search of food during the day on which

it died, so the recorded position does not represent the position of the nest it was

inhabiting at the time of death. The bias resulting from this extra displacement may
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Table 64: Weibull model variations
Model	 a	 a/	 #	 Note

1	 a> 0	 0	 1	 Original Manly Model
2	 a> 0 None	 1	 Second Manly model
3	 a> 0	 0	 0	 Distance independent of age
4	 a> 0 None	 0	 Constant scale
5	 a> 0	 0 None	 Constant Shape
6	 a> 0 None None	 Final Manly model
7	 a = 1	 0	 0	 Simple diffusion

be large if the foraging range is not negligible compared to the distance between the

ringing and adult nesting positions. The effect of the foraging range is likely to be

negligible if the individuals have dispersed a long way to find a nest as adults.

The model fitting was done by taking a series of variations on the Weibull model

and seeing which of them would give the best fit in terms of the overall deviance

when compared to the number of parameters that would be required to estimate the

model.

The models were fitted in the order specified in table 64.

Because of the suspicion that rate of movement might be different for birds from

different areas (due to migration) or that the males and females might disperse dif-

ferently (due to males needing to hold territories) (Catchpole, 1972), the data were

classified by area (north/south) and sex. The data set was additionally classified by

age (1st years and older birds) and by date (ringed before 1968 and ringed during or

after 1968). Deviance statistics obtained for models with at least two terms not in

the optimal model are excluded.

Classifying the data by age on recovery (1st year and older birds) did not decrease

the deviance sufficiently to justify estimating the parameters separately for each age

group.



Table 68: Time independent Weibull model applied to blackbirds (both
sexes),truncation affecting likelihood

Area	 Deviance cr2 a
N	 293.83 0.387 0.142
S	 232.13 0.311 0.197

A	 537.09 0.213 0.115
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Table 65: Analysis of deviance table, with simple truncation
3=11	 16' = 0	 'd variable

a	 ao	 ao + a i t	 al)	 ao + ai t	 ao	 ao + ait

Area
Sex

Sex*area

671.5(98) 654.2(97) 630.8*(98) 630.3(97) 630.8(97) 629.6(96)
651.5(96) 611.4(94) 604.6(96) 598.8(94) 602.5(94) 598.2(92)
665.3(96) 638.1(94) 624.6(96) 621.6(94) 623.6(94) 621.2(92)
637.8(92) 601.3(88) 597.1(92) 591.6(88) 592.6(88) 588.1(82)

Table 66: Time independent Weibull model fit to blackbird data,simple truncation
Area	 Deviance cr2 a
N	 325.69 2.654 0.339
S	 278.85 2.204 0.487

A	 630.78 2.114 0.361

Table 67: Analysis of deviance table with truncated data, Likelihood adjusted for
censorship

8=11	 i &. = 01j variable
a	 ao ao + al t	 ao	ao + ait ao ao + ait

Simple 580.9 541.5 537.1* 537.1 537.0 535.8

Sex 579.1 536.6 534.8 532.9 533.4 531.7
Area 572.1 528.1 526.0 524.9 525.2 7 524.2
Age 545.9 537.3 536.4 527.1 527.3 535.7
Date 579.7 525.3 532.0 526.2 525.6 523.0
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Table 69: Analysis of deviance table, with arbitrary distance for non-dispersed data
/3=0
	

13 variable
ao

1406.0(315)
ao + ait
1372.8 1266.8	 1266.6

ao	 ao+alt ao
1266.7

ao + ait
1265.8

Area 1380.3 1318.0 1231.9*	 1222.0 1229.0 1221.7
Sex 1386.0 1335.8 1246.1	 1238.0 1243.5 1237.7

Sex*area 1345.1 1286.2 1209.7	 1197.4 1204.5 1196.7

Table 70: Time independent Weibull model with arbitrary distance for non-dispersed
Area	 Deviance	 a

2 	 a
North	 707.1	 0.861	 0.301

South	 524.8	 0.873	 0.432

All	 1266.8	 0.850	 0.335

In order to estimate the accuracy of the parameter estimates for the model 95%

and 99% confidence limits were calculated using profile likelihoods. The intervals are

all given in table 71.

From the way the parameter estimators change as the model becomes more com-

plex it was decided to look at the covariances of the parameter estimators. This was

done by computing the hessian matrix numerically or each motel (using N AG rou-

tine E05XAF ). This was then inverted to give the variance-covariance matrix which

was used to calculate the correlation matrix. The correlation matrix could have been

calculated analytically, but this approach was not taken. For the final model chosen,

the correlation between and was 0.980. This is shown graphically in figure 26.

In order to assess the degree of correlation between the parameter estimators

when the more complex model was fitted, the correlation matrix between all four

parameters was calculated at the maximum likelihood point. This was done when

the fit was done separately for the Northern and Southern groups as well as for the

=
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Table 71: Confidence intervals for Weibull models with likelihood adjusted for trun-
cation

Intervals for time independent model
Area Parameter Estimate	 95% interval	 99% interval

All	 a'	 0.214	 [0.152,0.290]	 [0.140,0.322]
a	 0.115	 [0.087,0.141]	 [0.080,0.149]

Intervals for most complex model
Area Parameter Estimate	 95% interval	 99% interval

All	 2	 0.484 [ 0.292, 0.890	 [ 0.257, 1.083
a

	

	 0.161 [ 0.113, 0.212] [ 0.100, 0.226 ]
-0.010 [-0.024,-0.007] P0.030,-0.012
-0.286 [-0.767,-0.349 ] [-0.882,-0.566 ]

Table 72: Parameter Estimator Correlation Matrix(Weibull model)
52 	 a	 al

a2	 1.00	 0.96 -0.67 -0.41
a	 0.96	 1.00 -0.63 -0.25

-0.67 -0.63	 1.00	 0.81
13 -0.41 -0.25	 0.81	 1.00

entire data set. This is shown in table 72.

Most of these correlations are quite high, implying that if the dispersion distances

had varied with time the description of that variation would have been difficult with

this parameterisation.

In order to assess the effectiveness of the optimisation feature and to see whether

the functional form of the likelihood was likely to lead to any difficulties in the opti-

misation procedure the likelihood function was plotted against the values of (7 2 and

a for the final model. This plot is given in figure 26.

The value plotted was standardised by subtracting the final deviance of the model

from that obtained for each point.



CHAPTER 7. MARK-RECAPTURE
	

191

Figure 26: Weibull model, likelihood for all Blackbirds in UK
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Table 73: Frequency table for northern birds
Interval(km) Expected Frequency Observed Frequency

Undispersed 108.7 120

[1.00,1.39] 4.5 0
[1.39,1.94] 4.5 4
[1.94,2.74] 4.5 13
[2.74,3.93] 4.5 8
[3.93,5.76] 4.5 6
[5.76,8.74] 4.5 2
[8.74,14.04] 4.5 2
[14.04,25.01] 4.5 4
[25.01,56.07] 4.5 1
56.07+ 4.5 5

The very high correlation between some of these parameter estimators, in partic-

ular that between cr 2 and ao and between al and p implies that a different parame-

terisation of the problem where the shape parameter estimator and scale parameter

estimator are uncorrelated could give parameter estimates that can be more readily

interpreted.

In order to get an overall measure of goodness of fit frequency tables 73,74 have

been constructed based on the maximum likelihood estimates of the optimal model.
,

These tables were constructed by having ten categories for the dispersed individuals

each with identical frequencies.

The x2 statistics for the dispersed individuals in these tables are 28.11 for the first

table and 45.78 for the second. These statistics imply that the model does not provide

a good guide to the distribution of the individuals. The greatest observed frequency

is in the [1.8 — 2.4] km area. This can be explained by looking at the original form of

the data. The ringing and recovery positions are not the exact points of the original

nest and the place of death but are instead approximated to the nearest degree.
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Table 74: Frequency table for southern birds
Interval(km)	 Expected Frequency	 Observed Frequency

Undispersed 106.4 97
[1.00,1.23] 5.5 7
[1.23,1.53] 5.5 0
[1.53,1.92] 5.5 7
[1.92,2.44] 5.5 19
[2.44,3.15] 5.5 3
[3.15,4.17] 5.5 8
[4.17,5.75] 5.5 1
[5.75,8.52] 5.5 7
[8.52,14.88] 5.5 0
14.88+ 5.5 3

Figure 27: Layout of recovery boxes

7

This is best illustrated using picture 27. The boxes represent the areas represented

by the original ringing point S, and the nearby recovery areas. Typical distances from

the ringing box S to the recovery boxes are given in table 75.

This categorisation of the data, which is not taken into account in the model, may

explain why it does not appear to fit the data well.

There are two immediately obvious solutions to this problem.
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Table 75: Possible Ringing-recovery distances from box S
Recovery box Distance Number of boxes

A	 1.155 km 2
B	 1.852 km 2
C	 2.183 km 4
D	 2.310 km 2

The first method is to improve the accuracy with which the positional measure-

ments are made. If the Ordnance Survey reference system is used then observations

can be made to the nearest 100m. This would considerably reduce both the prob-

lem of the discretisation of the data, as the recorded distances would now be a good

approximation of the true distances, and also enable the number of non-dispersed

individuals to be drastically reduced. The distances moved by the individuals would

include the distance from the current nest to the point of death, so the model may

need to be amended to take this into account.

The other solution to this problem would be to calculate the probability density

function for moving from the ringing to the recovery point in terms of the distance

between them and then integrate over the areas of the ringing and recovery boxes.

This would need to be done separately for each observation as the boxes get narrower
7

in the East-West direction with increasing latitude. This is discussed further in section

7.9.

7.5 The dispersal of the Common Grackle

Moore and Dolbeer (1989) considered the distribution of the distance between the

ringing and recovery points of the Common Grackle (Quiscalus quiscula) and of the

Red-winged Blackbird (Agelaius phoenicus). In order to do this they extracted from
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the records of the United States Fish and Wildlife Service (USFWS) all the records

of banding ring recovery for the two species for ringings and recoveries between 1924

and 1985.

In order to remove seasonal effects they then selected those records for which

both ringing and recovery took place in the breeding season (21st April to 20th July)

(Dolbeer, 1982) for which both ringing and recovery positions were known. Data

from band recovery stations and individuals whose date of yecoyeyy were unclear were

deleted from the set. The spatial blocking in the files is 10 minutes of longitude and

latitude, so distances are known to approximately 20km. The data as they appeared

in their paper is given in table 76.

The age was only broken down into young-of-year and adult birds, so it is not

possible on the basis of this to estimate survival rates. Any survival analysis would

have been complicated by the need to look at changes in banding methodology.

The majority of birds in each group are classed as non-dispersed and, as with

the UK blackbird data, there are a few birds who have moved much further than

the rest. In order to see whether the Weibull model might describe the data more

accurately than a simple diffusion model, and to see if the dispersion parameters for

the three groups might vary significantly, both Weibull and simple diffusion models

were fitted to the data using maximum likelihood. Because the young-of-year birds

were not classified by sex and the adult birds were not cited with age on recovery

it is not possible to fit the time-dependent models from section 7.4. The dispersion

distance was approximated by placing all the individuals at the midpoint of the band

that they were occupying. Although any error that this may give is slight for the

individuals that dispersed a long way this might have led to large errors when this

procedure was followed for the first and second bands in particular. The Weibull
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Table 76: Dispersal distances for Grackles

Distance	 Young-of-year Adult male	 Adult female
0	 20 729 1091 870

21	 40 107 65 54
41	 60 28 18 10
61	 80 19 16 8
81	 100 8 6 4

101	 120 8 11 2
121	 140 8 6 5
141	 160 4 6 1
161	 180 2 0 1
181	 200 5 3 3
201	 220 5 4 0
221	 240 0 0 4
241	 260 4 1 0
261	 280 0 1 0
281	 300 4 0 1
301	 320 2 3 1
321	 340 2 1 0
341	 360 2 1 0
361	 380 0 4 1
381	 400 2 3 1
401	 420 2 0 1
421	 440 0 0 2
441	 460 1 0 0
461	 480 2 1 0
481	 500 0 1 1

510	 520 3 0 1
521	 540 0 1 ,	 0
541	 560 0 1 0
561	 580 3 1 1
621	 640 1 0 0
661	 680 0 2 0
721	 740 0 0 1

761	 780 1 0 0
821	 840 0 1 0

861	 880 0 1 0
961	 980 0 1 0

981	 1000 0 1 0
1121	 1140 1 0 0

1201	 1220 1 0 0
1221	 1240 0 0 1
2281	 2300 0 1 0

2621	 2640 1 0 0
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Table 77: Analysis of deviance table for non-censored grackle data, 'Weibull model
Weibull model

Model
Classification Diffusion Weibull	 Censored Weibull
Base only 44486.0 26913.1 5292.0*
Age 44102.5 26838.7* 5291.4
Age+sex 43748.2 26806.9 5289.0

model was also fitted after the non-dispersed birds had been deleted from the data

set and the likelihood adjusted to cope. The analysis of deviance table for these fits

is given in table 77.

These results from these tables imply that the diffusion model is an extremely

poor fit compared to the Weibull model. The results for the Weibull model without

censorship imply that there is a significant difference between the groups based on age

and sex, but the results from the censored data contradict this. Because the diffusion

model fitted the entire data set so poorly it was not fitted to the censored data.

However the parameter estimates for the two methods are also radically different so

this could be an effect of one model fitting poorly.

In order to assess the absolute goodness of fit of the model frequency tables were

constructed based on the expected numbers falling into each distance category for
7

each model. This resulted in large numbers of cells at the longer ranges having very

low expected values so these were amalgamated so that each cell had an expected

count of at least 5. Then x2 goodness of fit tests were performed on the data. The

parameter estimates and goodness-of-fit statistics are given in table 78. The frequency

tables are given in tables 79, 80, 81 and 82.

The diffusion model gave completely the wrong shape for the distribution, pre-

dicting too many individuals in the centre of the distributional range and too few at

either extreme. The extremely high x 2 statistics reflect this. The same fault appears



CHAPTER 7. MARK-RECAPTURE
	

198

Table 78: Parameter estimates and goodness-of-fit statistics for Grackles
Data Model a- 2 x 2 (df) Sig. level

Y-O-Y Diffusion (1) 8432.8 23206.9(13) 0.1%
Y-O-Y Weibull 0.367 5.6170 378.3(9) 0.1%
Y-O-Y Cens. Weibull 0.115 0.350 20.6(11) NS

Male Adult Diffusion (1) 5403.7 25603.4(7) 0.1%
Male Adult Weibull 0.385 5.210 544.2(7) 0.1%
Male Adult Cens. Weibull 0.151 0.710 15.1(10) NS

Female Adult Diffusion (1) 2356.4 8686.1(5) 0.1%
Female Adult Weibull 0.427 6.018 470.4(5) 0.1%
Female Adult Cens. Weibull 0.115 0.351 12.2(6) NS

All Adult Cens. Weibull 0.133 0.498 26.6(13) 5%
All Cens. Weibull 0.125 0.423 46.5(18) 0.5%

Table 79: Observed and expected frequencies for young-of-year grackles, censored
Wiebull model

Interval(km) Observed	 Censored Weibull
0 20 729 (3666.7)

20 40 107 88.1
40 60 28 38.5
60 80 19 22.1
80 100 8 14.5'

100 120 8 10.2
120 140 8 7.6
140 160 4 5.9

160 200 7 8.4
200 240 5 5.8
240 300 8 5.8
300 400 8 5.8
400 580 11 5.3
580 1120 3 5.1

1120 2600 2 2.9
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Table 80: Observed and expected frequencies for young-of-year grackles, Weibull
model

Interval(km)	 Observed	 Weibull
0 20 729 527.6

20 40 107 176.8
40 60 28 93.1
60 80 19 54.5
80 100 8 33.8

100 120 8 21.7
120 140 8 14.4
140 160 4 9.7
160 180 2 6.7

180 220 10 8.0
220 280 4 5.2
280 2600 28 3.6

Table 81: Observed and expected frequencies for adult grackles
Interval(km)	 Observed	 Predicted

20	 40	 119	 96.0
40	 60	 28	 44.3
60	 80	 24	 26.3
80	 100	 10	 17.5

100	 120	 13	 12.6
120	 140	 11	 9.5
140	 160	 7	 7.4
160	 180	 1	 5.9

180	 220	 10	 8.9
220	 260	 5	 6.3
260	 320	 6	 6.7
320	 400	 11	 5.8
400	 520	 7	 5.3
520	 740	 7	 5.0
740	 1460	 5	 5.0

1460	 2600	 1	 2.3

7
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Table 82: Observed and expected frequencies for all grackles
Interval(km) Observed Predicted

20 40 226 184.0
40 60 56 82.9
60 80 43 48.4
80 100 18 32.0

100 120 21 22.8
120 140 19 17.1
140 160 11 13.3
160 180 3 10.6
180 200 11 8.6
200 220 9 7.2
220 240 4 6.1
240 260 5 5.2

260 300 6 8.3
300 340 9 6.4
340 380 8 5.0
380 440 11 5.8
440 520 10 5.6
520 640 8 5.6
640 820 4 5.1
820 1200 5 5.1

1200 2600 4 5.9
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Table 83: Confidence intervals for optimal Weibull model
Subset
	

Parameter Estimate 95% interval 99% interval

Young-of-year

Males

Females

Adults

All data

(7 2
a

a- 2

a

a- 2

a

0.2

a

0.2

0.350
0.115

0.710
0.151

0.282
0.105

0.497
0.132

0.423

[0.308,
[0.107,

[0.611,
[0.141,

[0.234,
[0.094,

[0.442,
[0.125,

[0.387,

0.400]
0.122]

0.832]
0.161]

0.344]
0.116]

0.562]
0.140]

0.462]

[0.298,
[0.105,

[0.586,
[0.138,

[0.223,
[0.091,

[0.428,
[0.123,

[0.378,

0.416]
0.125]

0.872]
0.164]

0.365]
0.119]

0.583]
0.142]

0.474]
a 0.124 [0.119, 0.129] [0.117,0.131]

to occur with the non-censored model, although to a much smaller extent.

The model where the non-dispersed individuals are deleted displays a much better

fit to the data, with insignificant x2 statistics for all three sets when considered

separately. However when the fit is done jointly, as is implied by the value of the

deviance from the model, the )( 2 statistic is significant. This could well be the result

of the higher power of the test statistic when the number of cells it larger. The model

appears to fit the distribution in the tail quite well, with the only significant deviation

between the predicted and actual frequencies occurring in the first two bands, with

the first band again having a predicted frequency that is too low and the second band

having a predicted frequency that is too high.

The values of the parameters for the fit to the censored data, together with their

99% and 95% confidence intervals, are shown in table 83.
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7.6 Movement with Capture

Models based on diffusion usually assume that individuals move at a constant rate

with respect to time and that they are recovered while they are still moving. Thus

the period of movement is the time between marking and recovery/recapture.

If the movement stops before recovery then this assumption is false. This may well

be the case for bird movement, where individuals may nest in a single area, during

one and possibly more summers.

The models considered here all consider movement to be a short hunt for a nesting

site during, which the mortality is negligible, followed by a period of inhabiting that

one site before being recovered at death. They do not take into account the possibility

of more than one move.

Broadbent and Kendall (1953) considered a model for movement of the )arvae

of the helminth Trichostrongylus retortaeformis in two dimensions where the larvae

wandered in a random manner until they came across a blade of grass which they

would then climb. The rate of finding such sterns was conside-red constant -witia

respect to time, conditional on not having found a blade, so the overall distribution

of the searching time was exponential. They considered what the distribution of these

individuals would be after they had all found a stem to climb. They assumed that

there was no mortality during the search for a stem.

If the individuals diffuse at a rate of co, the rate of capture of individuals still

moving is A and the distance from the release point to the recapture point is r, then

for
2A

p = r\I —
co
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the probability density function for the final distribution is

Ko(p)pdp	 (11)

where Ko is a modified Bessel function, and the cumulative distribution function is

P(r <R) = Ki (p)P

This formula was then used to calculate expected numbers in concentric annuli away

from a fixed starting point. Fitting a model by least squares was then suggested.

Yasuda (1975) studied the distribution of matrimonial distances, which is defined

as the distance between the birthplaces of mates. A generalisation of the approach

taken by Broadbent and Kendall was considered. Their model was generalised by

looking at the situation that develops if the time that is spent in a random walk is

distributed as a gamma random variable instead of the exponential.

The probability density for the amount of time spent until capture, T is

c19+1 Tbe—cT

P(T) = F(b + 1)

where c is a scale parameter and b a shape parameter. The mean of this distribu-

tion is (b +1)/c and the second moment is (b + 1)/c2 . If b = D then this is the same

situation as was considered by Broadbent and Kendall. If the individuals perform in-

dependent random walks according to a simple diffusion model then the distribution

of the dispersal distance r for an individual that is captured at time T is

r	 r2
(1)(rIT) = —e

The conditioning on the unknown stopping time can be removed by integrating

the joint density of r and T with respect to T as follows.
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00

m(r) =	 O(rIT)p(T)dT
Jo

b+1	 00

wr(b + 1) fo 
Tb-1 exp (--cr dT

rc
wTj

h(rh)b+1 Kb(l'h)
2b11 (b + 1)

where Kb is a modified Bessel function of the second kind, order b, and h2 = 2clw is

a scaling parameter.

Malecot (1967) described m(r) as a K—distribution.

If b < —0.5 then the distribution is leptokurtic, otherwise it has a mode at 0. The

mean is 7- 1/2r(b 1.5)/hr(b + 1) and the second moment is 4(b 1)/h2.

Yasuda went on to use maximum likelihood scoring to fit this distribution to an

example data set. A series of intervals (rk ,rk+i ) were set up (k = 0, n) with ro = 0

and rn+1 = oo. The probability Pk of falling into the interval [rk ,rk+ i ] is

fr=rk+1
Pk =	 m(r)dr

r=rk

The number of individuals falling into each interval (f k was then used in the

following formula.

(fo + +	 fn)! f
L =	

p o	 pfn
0 4	 • • • n

fOUl ! 	fn!

Here we will use direct estimation of the log-likelihood function instead. If the

n individuals are observed at distances rii 1,... ,n from their original starting

positions then the likelihood is

= fihfrihr+1Kb(rih)

i=1	 2br(b +1)



1

Jo
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Therefore the log-likelihood is

g	
h(rih)+1Kb(rih) 

o	
)

1 = l 
2b1-1(b + 1)	 )

(b + 2) log h (b + 1) log r i + log Kb (ri h) — b log 2 — log ro + 1)

n((b + 2) log(h) — b log 2 — log I' (b 1)) +	 (b + 1) log ri + log Kb(rih)

In order to find the probability of ending up less than a given distance R away

from the point of origin, the probability density function must be integrated between

0 and R.

P(r < R)
	

JoR 
m(r)dr

R h(rh)b-"Kb(rh)dr
26r(b + 1)

h19+2

2br (b -I- 1) o	  I 1'1 rb+1 Ifi,(rh)dr

It is convenient at this point to introduce a change of variable into the integral.

Substituting Rs for r gives the equation

	

hb+2	 o(Ri
P(r < R) = 	 	 s)b+1 Kb(Rsh)Rds

2br(b + 1) 
(Rh)b+2  

f l sb-1-1 Kb(RSh) dS

2br(b + 1) o
(a)b+2

	

2bro +	
1) folsb+lIfb(as)ds

where a = Rh. Gradshteyn and Ryzhik (1980) gives the following formula for the

integral of the product of a modified Bessel function of the second kind with a power:

xP+1 1Cii (ax)dx = sP a-P-2r(p + 1) — a -1 Ki,+ 1 (a)
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If this formula is substituted into the above expression the result is

hb+2	
Rb+2 [2b (a) -b-2 r(b + 1) — (a)-1Kb+i(a)]P(r < R) —

2br(b +1)

ab4-1-Kb+1(a) 

7.7 Heterogeneity

Leptokurtosis of data from movement experiments has been assumed for the purposes

of this section to arise from heterogeneity in the population being studied. This

section considers some models for ring recovery data that explicitly take into account

this heterogeneity and attempt to model it in terms of a fitness parameter g which

has a beta distribution with parameters a l and a2 . This will also be taken to be the

survival rate for the individual which is constant over time for any individual. It is

also assumed that all movement has ceased by the time of the first recoveries.

Initially consider the case where we are not interested in movement at all and

only consider the survival probabilities. For an individual 'with survival rate g the

probability of dying in the kth year is

2010 = gk-1 ( 1 _ g)

If we now multiply this by the probability density function for g and integrate

with respect to the parameter g

1
p(k) -_-: j gk-1 ( 1 _ ogal -1 (1 — gr2 -1

0	 B (a 1 , a 2)

This simplifies to a ratio of beta functions.

= 1
2br (b + 1)

(Rh) b÷1 Kb-f-i(Rh)
= 1

2b r(b + 1)

dg
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B(a	 k — 1 , a2 + 1)
p(k) =	 B(ai, a2)

For an initial model, it is assumed that each individual moves away from its ringing

site in a straight line until it finds a suitable nesting site, at which it is recovered some

time later. Let the probability of finding a nest between distance r and r + Sr given

that the individual has not found one beforehand be Ag8t, for small St. Then the

probability density function for finding a nest at distance r is

P(reg) = Agre-Agr

The probability of dying in the kth year is

p(kg)= gk-1 (1 _ g)

The probability density for dying in the kth year at distance r is

p(r, keg) = Agre -Agrgk-1 (1 — g)

When these functions are multiplied together and then the parameter g is inte-

grated out the density becomes after some algebra (see B.1,for details).

ArB(a2	 al k ) m(k al, alp(r, k) =	 B(ai, a2)	 a2 k 1, —AO

where M is the confluent hypergeometric function.

Now consider what happens if movement takes place in two dimensions. This

time start with a passive diffusion model where all movement occurs before the first

recoveries are observed. Assume a diffusion rate 52 / g that is inversely proportional

to the fitness level. If all the individuals spend the same time t searching then we can

subsume the searching time into the scale parameter o-2
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This gives a probability density at time t for an individual with fitness g of

gr	 gr2
h(rjt, g) = — exp (---)

o- 2 t	0-2t

Again assume a discrete time model for survival with probability g of surviving

each year. If the individual dies in the kth year this leads to

p(r, kg) = g ic-1 (1 —	
P

n)gr ex — gr2i 0-2	 0.2

If this is multiplied by the density function for g and integrated with respect to g

then after some algebra ( see B.2 for details ) the joint density is

r B(a 2 + 1, a 1 + k) 
p(r, k) = 

	

	 M(1 -I- k, al + a2 + k + 1, —r2/cr2)
o- 2 B(ai, ce2)

This model was fitted to the movement distances of blackbirds in the UK. Because

there did not appear to be any effect of age on distance between ringing and recovery

point when the Weibull model was fitted, the age on recovery was conditioned upon in

the calculations. The model has not been developed to the point where it is possible

to calculate the probability of being recovered in any concentric annulus away from

the origin. Thus it is not possible, as was done with the Weibull model to exclude

the non-dispersed individuals and adjust the likelihood accordingly. Therefore they
7

were arbitrarily positioned at a distance of 0.78 km from their ringing points. This

may lead to bias in the estimates.

Because the values of al and a2 appeared to be very similar it was decided to fit

a model where they were constrained to be equal. The analysis of deviance for both

these models are given in table 84.

The table shows that there is no significant difference between the deviances when

al = a2 than when they are estimated separately. The most parsimonious model is

the simplest one, where the parameters are estimated jointly for both sexes and areas.
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Table 84: Analysis of deviance for diffusion model with variable rate
a 1 a2 DF a i = a2 DF

Simple 2561.66* 3 2566.44 2
Area 2533.36 6 2537.08 4
Sex 2553.06 6 2555.92 4
Sex*Area 2514.86 12 2519.54 8

The overall deviance is much greater than the value of 604.56 obtained when a four

parameter model was fitted to the same data set using the Weibull distribution. This

may be because the distribution of the individuals away from their ringing points is a

long way from what would be expected under a simple diffusion model. However the

models are not nested. This model provides another method of measuring departure

from a simple diffusion model.

A model which integrates the Broadbent and Kendall model with the heterogene-

ity approach is now considered.

Again assume an annual survival probability of g. Let this also be the the trapping

rate replacing A in the density function for distance (Broadbent and Kendall, 1953).

Thus the probability density function for distance to recovery point is

p( p 1 g ) = Ko(P)PdP I

where p = rOf /cr2.

If this is converted to a formula in terms of the distance r then we get

If the probability of dying in the kth year is included after some work we end up

with a joint density

p(r,k1g) --= K0 (
r pi r2g 

g
_k_ iiki _ g)

(72	 0-2 
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When the density function for g is included, and then the value of g integrated

out of the expression, the density becomes

5r B(cr2 + 1, a/ + k) 
p(r, k) =

	

	 1F2(ai k; 1, a l + a2 k + 1; v / 4)
cr 2 B(ai, a2)

Where 1 F2 is a generalised hypergeometric series and v = 2r2
0.2 •

7.8 Estimation of Kurtosis from release recovery

data

It is often the case that the simple diffusion model outlined in section 7.4 is not an

adequate description of the data. One method of quantifying the degree of discrepancy

between the expected distribution and the observed data set is to estimate the degree

of kurtosis in the underlying bivariate distribution from which the distance from mark

point to recovery/recapture point is calculated. Methods of doing this when only the

overall dispersion distance are available are given by Okubo (1980). The estimation

of the level of kurtosis from two studies is now considered.

Kareiva (1983) surveyed the ecological literature for examples of data sets that

would be suitable for the estimation of movement models. He lOoked at data sets for

herbivorous insects in order to concentrate on a set of species that fulfilled similar

ecological roles. Of the sets that he found 12 that were suitable for further analysis.

A simple diffusion model was fitted to these sets and then assessed to see whether

the model fitted adequately or if it showed significant deviation towards either lep-

tokurtosis or platykurtosis. Leptokurtosis implies that there are more than the ex-

pected number of extreme observations, which could be due to heterogeneity of move-

ment rates among individuals or heterogeneity in the environment. Platykurtosis,
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which occurs when there are fewer than the expected number of individuals with

extreme values , is due to a higher than expected homogeneity in dispersal distances.

Data from 12 experiments on different species of herbivorous insects were analysed,

4 of which gave satisfactory fits for all the data, 4 had good fits for over half the data

and the rest gave poor fits for most of the data. In general there were more data sets

showing leptokurtosis than platykurtosis.

In their article Moore and Dolbeer (1989) considered the degree of dispersion

and the kurtosis in the dispersal distances among Red-winged Blackbirds (Agelaius

phoeniceus) and the Common Grackle (Quiscalus quiscula) using data obtained from

the United States Fish and Wildlife Service.

Summaries of these data sets are shown in tables 85 and 76 .

The value of the Root Mean Square dispersal distances were calculated. In order

to estimate the kurtosis of the underlying distribution, the data about longitude were

ignored and the kurtosis of the north-south dispersion only was calculated. These

statistics were corrected for bias using jackknife calculations which were also used for

calculation of standard errors for the estimates. Confidence intervals were calculated

based on these estimated standard errors. (See table 86 for details). The proportion

of the sample with identical ringing and recovery boxes is given in' the column labelled

non-movers.

These confidence intervals are extremely large, especially for the estimate of the

kurtosis. In particular the lower bound for the estimate of kurtosis for the young of

the year female Common Grackles is less than the theoretical minimum for kurtosis

of 1. For all the other data sets the lower bound for the kurtosis was much greater

then the expected value of 3 derived from the normal distribution. Apart from for the

adult female Red-winged Blackbirds the upper 95% confidence limit was more than
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Table 85: Dispersal distances for Red-winged Blackbirds

Distance(km) Young-of-year Adult male	 Adult female

0-20 100 202 49
21-40 8 18 0
41-60 3 5 2
62-80 1 5 1

81-100 1 2 0
101-120 1 3 0
121-140 0 4 0
141-160 1 0 0
161-180 2 1 0
181-200 0 2 0
201-220 1 1 0
221-240 1 0 0
241-260 1 1 1

321-340 1 o o
501-520 o 1 i o
521-540 1 1 0
581-600 o 1 o
621-640 o o 1
681-700 1 o o
921-940 o 1 o
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Table 86: Dispersal statistics for Blackbirds and Grackles

Class Non-movers Sample Mean RMS Kurtosis
size dispersal dispersal Kurtosis

Red-winged
Blackbird

Young-of-year 81.3% 123 32.1 70.8 64.5
(22.1,42.2) (48.7,92.9) (17.9,111.0)

Adult male • 81.5% 248 26.6 67.6 131.9
(19.7,33.4) (47.0,88.1) (29.5,234.4)

Adult female 90.7% 54 22.1 76.9 130.5
(7.1,37.1) (29.7,124.1) (85.9,175.1)

Common
grackle

Young-of-year
Male 89 17.1 32.6 77.5

(11.9,22.3) (19.9,45.3) (18.6,136.4)
Female 71 29.8 50.2 23.0

(16.5,35.1) (36.8,63.5) (0.3,45.6)
All 76.3% 955 33.7 4.8 632.0

(28.8,38.7) (66.3,123.4) (57.2,1207.0)

Adult Male 87.1% 1252 21.3 76.8 749.3
(17.8,24.9) (54.7,98.9) (55.4,1443.3)

Adult Female 89.3% 974 14.8 50.0 407.2
(12.2,17.5) (37.3,62.7) (54.4,760.0)
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5 times greater than the lower limit. This implies that there is very little precision in

these estimates. The lack of accuracy in these estimates makes them of little value

other than for drawing very broad conclusions about the data.

7.9 Mark-recapture conclusions

The dispersal rates for populations have strong effects on the degree of genetic vari-

ability between populations from different areas. Small numbers of individuals moving

long distances, and then breeding with the local population, can have a dispropor-

tionate effect in preventing genetic drift and speciation. Thus any model of animal

movement that is to be used to study genetic patterns must take not only the mean

movement rates of the population into account but also the proportion of the pop-

ulation that travel long distances. A species in which large numbers of individuals

moved moderate distances but few made long treks from their original area would be

more likely to develop speciation than one in which most individuals hardly moved

from their original position but a few travelled long distances.

We can use the a parameter from the Weibull model to measure the amount of

heterogeneity in the movement distances compared to that from a simple diffusion

model.

The parameter estimators for the Weibull movement model imply a very skewed

distribution. This may be due to the individuals that have moved a long way having

a large influence. This is despite the individuals that moved to Eire being deleted

from the set. The effect of the distance censoring, which happens when the Irish

data are removed, is to reduce the degree of skewness in the data. Including the data

from Ireland would further decrease the already low estimate of a. The apparent

lack of variability of the dispersal distance with age, sex and area of ringing are quite
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surprising. The need for males to take and hold a territory might have resulted in

different distributions for the male and female dispersions but, when the data just for

dispersed birds is considered, this does not appear to be the case.

From the plots of the ringing and recovery positions for the blackbirds in section

7.2 the positions appear to be clumped with some areas having very few recoveries.

To some extent this may be due to differences in physical geography, with more

mountainous areas having a lower bird population density. The human population

density in these areas is also lower, so the chances of ringing and recovery may be less.

The same arguments also hold when looking at possible differences between urban,

suburban and rural areas. These factors may lead to some bias in the results due

to different reporting rates. A full study of these effects would require classifying all

the ringing and recovery positions by terrain type and human population density. It

would then be possible to see if these factors, which have not been directly considered

here, affect the survival and movement rates of blackbirds and whether, with changes

in farming practices, the balance between urban and rural areas is changing. This

could utilise a combination of the distance methods proposed here with the work on

migration of Schwartz et al. (1993), although their method, based on a multinomial

distribution, appeared to have low precision.

For all the data sets analysed here the exact ringing and recovery positions are

not known. However for the blackbird data the positions are known down to a box

of about 1.1km by 1.8km. However if we have a form for the pdf of the dispersion

vector in terms of the distance between ringing and recovery points and the bearing,

then given the ringing and recovery boxes, this function can be integrated to give a

probability of having moved between the boxes. A possible approach to this is given

in appendix B.4. This approach, if taken, removes at a stroke the problem of what to
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do with non-movers and individuals that moved a short distance. A full development

of this model would allow hypotheses of radial symmetry (are north-south movements

longer than east-west ones?) to be investigated.

Another area for further work is in the effect of weather conditions on dispersal. If

it is assumed that birds only move to find a new nesting point during their first year

and do not move again, as is implied by the constant dispersal with different ages of

bird evident here, it would be interesting to regress the dispersal distance against a

suitably chosen function of that year's weather to see if there was any effect. If the

relationship was thought to be more complex, depending on overall population density

and availability of food supplies as well as weather, then introducing a correlated error

structure with the same error for each year, as was done for Generalized Linear Mixed

Models in section 6.7, could well be a solution. There are too many years and not

enough information for each year to have a regressor with a factor for each year of

ringing. This could also be done, after suitable theory had been developed, for the

estimation of the survival rates.

A problem with the Weibull model for movement is that it lacks any underlying

biological motivation. Once the null hypothesis that a = 1 (implying a diffusion

model) is rejected there is no behavioural hypothesis to be tested. The models in

sections 7.6 and 7.7 were attempts to do this but,again, there was no underlying bio-

logical model. A better model would be one where both survival and movement could

be jointly and flexibly modelled with parameters that had real biological meaning.

A reparameterisation of the Weibull distribution so that the mean dispersion and

the shape parameter estimator were uncorrelated would lead to results that, at least,

were easier to interpret.



Appendix A

An optimal algorithm for Mrand

This appendix contains an algorithm for calculating M- rand that will be optimal under

all circumstances. A solution is optimal if there is no other method of arriving at

randomness with fewer moves. The algorithm is based on the properties that an

optimal solution must possess.

We assume that moves of any size, not just integer values, are allowed. We will

also assume that the distance function D between all pairs of sample points forms a

metric. The important properties of a metric that we use are

Dia > 0

with equality if and only if i = j, and the triangle inequality:

< Dik Dkj

Consider points which have initial counts x i , counts after all the moves have been

made of x i ' and positions pi . Let M be a matrix each element, Mia, of which is the

movement from pi to pa. Let Dia be the distance from p i to pa. Let T 3 = 0 if /1/i3 is

217
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zero, and 1 otherwise. The cost of solution M is the elementwise sum of MD where

the multiplication is also elementwise.

We will now show that if some point j is both a receiver and a donor then there is

a solution with no greater cost where it is not both. If j is both a receiver and donor

then there exist two points i and k such that

> Oandll/Ijk > 0

The cost of the moves between i, j and k is

MjkDjk Mikpik

If we replace M with M' which are identical apart from replacing the elements

Mjk and Mk with

= Mij — min(M13,1141m)

Arik = Mik —	 Mjk)

Mik Mik Min(Mij, Mjk)

then the final counts are identical. However the new cost is

Mi'iDii +	 M:kpik

= MijDij MjkDjk 11/likDik - 111111(Mii, Mik){Dij D jk Did

By the triangle inequality the last term is strictly non-negative so we can replace

M with M', thus eliminating either the move to j or the move from it. This can be

done for all points that both donate and receive. Thus we can partition the data set

into donors, receivers, and neutral points (which neither donate nor receive).

Define the gradient Gii between two points i,j in a solution M to the moves to

randomness problem as Gij = (xi ' — x/)/D. We now show that for any optimal
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solution M there is a fixed value Gnias such that Gij < Gr.; with equality if Mi.; > 0.

To see this, assume that there exists a solution M with two pairs of points (i, j) and

(k,1), Mij > 0 and Gij < Gkl. If, for small 8 we replace Mi.; with M — 8 and 11/Iki by

Mkt — 6. ( X if X3 1 )I( Xki X1 1 ), then the overall variance after the moves increases by a

function which is of the order 82 but the overall cost changes by SDii/Gii[Gij — Gkt]•

Therefore the original solution can only be optimal if Gij

This is a very strong condition, that we can impose if we wish to compute the

optimal cost for M.—rand, and suggests that a sensible method of computing Mrand in a

rigorous manner would be to find the value of Gmax that gives the required variance.

This would need to be done iteratively.

This second restriction on a solution can be used to break down the problem of

finding M into several smaller problems. Consider an n x n matrix K where Kij = 1

if (xi — Xj)I Dik > g and 0 otherwise. Then if rows and columns of K are rearranged

so that it is of the form

0

\	 0

0

K2

0

0

0

Kp

where K1 , K2 , , Kp_1 are non-zero matrices that cannot be further split into empty

blocks, and K,, is a block of zeroes, then because of the gradient rule above, no

movement may take place between any of the members of different blocks, so the

problem has now been broken down into finding a solution to the problem of reducing

all the gradients to g in each block separately.

For this problem, consider the block K1 , dropping the subscript for notational

convenience. If the donors in this block are d and the receivers are r with initial

counts D and R respectively, cost function C, and movement matrix M then the
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problem is now how to minimise the cost function which is the elementwise sum of

M 0 C subject to (D — MI.)(R+ M i l)' < gC element-wise, with equality if Mii > 0.



Appendix B

Derivations of mark-recapture

models

B.1 Straight line movement with heterogeneity

Assume that we have survival time measured as a discrete variable and an annual

survival probability f for each individual. If f has a beta distribution beta(cei, a2)

then the probability function for dying in the kth year, given f, is
s

P( k if) = (f)k-1 ( 1— f)

If movement is in a straight line with constant stopping rate of Af then the

probability of ending up at distance r is

p(rif). Afre-Afr

The probability density function for f is

fot1-1(1 _ f)x2-1

P(f) =	
B(ai,a2)

221
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If we combine these together and integrate out f then the joint probability density

function for r and k is

P(r, k) =	 Afre-Afr (f)k-1 (1 — f) f al 1(1 f )a2 df
B(a , ce2)

Collecting terms together this gives

Ar 	 1
p(r, k) =	 fe-Arffail-k-20. fr2 df

B(a i ,a2)

The integrand has the same form as that in a representation of the confluent

hypergeometric distribution function M given by Abramowitz and Stegun (1965)

equation 13.2.1

r(b — a)r(a) 
M (a, b, z) =	 tta-1 (1 — t)b-a-1 dt

r(b)

After the following substitutions:

a — 1 =	 +k-2

b —a-1 = O2

z = —Ar

This representation is valid if a and b are both greater then zero. Substituting for

the formula in the density function yields

Ar 	 r(a2 — 1)r(ai + k— 1) 
p(r, k) =	 	 M (al k — 	 + a2 + k, —Ar)

B(c , ce 2 )	 r(ai + a2 + k)

We can replace the Gamma functions with a beta function to get

ArB(a 2 — 1 , a / + k — il m ai,
p(r, k) --=	 ( + k — 1, ai + a2 + k, —Ar)

B((11,a2)
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B.2 Diffusion with Heterogeneity

The joint density for k and r for the case where the movement occurs by diffusion in

two dimensions is

p(r, kj f) = fk-1 (1 - f)4: exp (-40. )

If we now multiply this by the density function for f and integrate out the value

of f we get

p(r, k) = 10 1 fk-1 (1 — f) 7-.2 exp ( fur22 ) f Bc" ((al 1 , ift ))a2 df

The integral here is of the same form as the integral representation of the confluent

hypergeometric function (Abramowitz and Stegun, 1965), equation 13.2.1

r(b — ama)
r(b)

1
M (a, b, z) = I ezt ta -1 (1 — t) b-a-1 dt

0

where

a = ai - I - k

b = ai-fa2-Ek+1

Z = 
_r2/0.2

r

The probability density function is

rB(a2 + 1 	

1"'
, a 1 + k ) A A- (al + k, 1 + a2 + k + 1, -7,2/0.2)p(r, k) =	 0.2/3(ai, a2) 

B.3 Diffusion with trapping and heterogeneity

The joint density for distance moved and year of death is

) _2(rr 2f fk_i 0. f)
p(r, klf) = Ko (7'12-2
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If this is multiplied by the probability density function for the heterogeneity factor

f and then integrated with respect to f then when the value of f is integrated out

we get

P(r,k) = 10 Ko (7. 2rf k_i	 fc" l ( 1 fr2-1 df0.2 f	 ( 1	 .f)	 B(a i , a2)

After the substitution v = 2r 2 /a-2 and some tidying up this becomes

2r 	 i
p(r, k) =  

2B(ra,a2)	
Ko( \fi-f) fai+k-1 ___(1 fr2-1 df

cr	 10

This integral is given in Gradshteyn and Ryzhik (1980) Equation 6.592.2.

x A (1 - xr-lIft,(al;)

	

r(v)r( t )r +1- 1v)	 a2=	 1F2+ 1 - -1 v; 1 - v, A + 1+ - 1/2v;
r(A + 1 + - v)	 2	 4

r(-v)r (A + 1 + 1-)	 r(p)
21-v a	 1F2 (A + 1 + -

2
v; 1 v, A + 1 + ft + -1 v; a2/4)

	

r(A-1-1-1-it-qv) •	 2

Substitution from this formula yields

2r 	 5 r(a, +	 + k) 
p(r, k) =

	

	 1F2(c/i k; 1, c + a2 k 1; v/4)
cr 2 B(a 1 ,a2 ) 2 r(ai a2 k 1)

Where 1 F2 is a generalised hypergeometric series. We can simplify this a little to

5rB(a 2 + 1, a l + k)	 ,
p(r, k) = 

	

	 ir2(ai k; 1, al a2 k + 1; v/4)
cr 2 B(ai , a2)

Further simplification may be possible but this has not been attempted yet.

B.4 Integrating the movement distance

For all the data sets analysed here the exact ringing and recovery positions are not

known. For the blackbird data the positions are known down to a box of about 1.1km

1
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Figure 28: Ringing and recovery boxes

7
by 1.8km. The ringing and recovery positions have been approximated by using the

centres of the boxes. We will now remove that approximation by integrating over the

areas of the two boxes. Initially, let's look at a move between two boxes A and B as

shown in figure 28

Let the probability density function for ending up at a distance r from the ringing

point be p(r). Let the pdf (per unit area) for ending up at a randomly chosen position

at a distance r and angle 0 from the ringing point be pa (r, , 0). Note that if there is

radial symmetry then pa (r , 0) = V; . Let the area of the recovery box where recoveries
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could occur if the displacement vector were (r, 0) be A(r, 0).

We will start off by looking at the situation where the ringing and recovery boxes

are different. First we note that the set of possible recovery points for a given dis-

placement vector is a rectangle. Therefore we need only calculate the dimensions

of this rectangle to get A(r, 0). Along the x-axis the size is ([X 2 1 —	 — r cos 01).

Similarly along the the y-axis the distance is (1 Y21	 I Y1 r sin 01) Thus the area is

I(I X2i —	 — r cos 0 1)(1 Y2 1	— r sin01)1

If ringing and recovery occurred in the same box then we can restrict out attention

to moves where 0 E [0, r/2] and then multiply the result by 4.

In general these formulae can probably be simplified quite considerably, with 0

being integrated out if we assume radial symmetry. It may be possible, with a suitable

choice of p(r), to get rid of the need to integrate with respect to r as well. If this were

the case then a reliable and numerically accurate routine could be constructed with

relative ease. All of the functional forms of p(r) discussed earlier could be adapted

to this approach.
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