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ABSTRACT 

The reproductive ecology and resource requirements of the Lilac-crowned Parrot 

(Amazon finschi) were studied in the tropical dry forest of the Chamela-Cuixmala 

Biosphere Reserve, western Mexico. Food resource availability was determined by 

monthly phenology transects in deciduous and semi-deciduous forest. Resource 

utilisation by parrots was evaluated through observations of diet, habitat use, and crop 

samples of nestlings. Reproductive ecology was determined through studies of 

breeding behaviour, nest success, reproductive output, and nestling growth rates. 

There was significant temporal and spatial variability in food resource abundance, 

with semi-deciduous forest providing greater food resources for parrots during the 

dry season, while food resource abundance increased in deciduous forest during the 

rainy season. A critical period of food resource scarcity occurred in May - June at the 

end of the dry season. Lilac-crowned Parrots were pre-dispersal seed predators, 

exhibiting high variability in diet and habitat use, which corresponded with 

fluctuations in food resource availability. 

Nesting behaviour of the Lilac-crowned Parrot was distinct from most psittacines in 

the high synchrony of nest initiation, low nest site fidelity, infrequent feeding visits, 

and short nest attendance. High nest predation resulted in a low 40% nest success, 

with a reproductive output of 1.0 fledglings per egg-laying female. Third-hatched 

nestlings exhibited slower growth rates than older siblings, though this did not result 
in mortality. Finally, there was significant variation between years in the size and 

growth rates of nestlings, which corresponded with annual fluctuations in food 

resource abundance. 

Many of the distinct aspects of Lilac-crowned Parrot reproductive ecology may be 

related to food resource availability and predation risks. The results demonstrated the 

potential influence of environmental factors on parrot reproduction, with 
fragmentation of semi-deciduous forest impacting parrot populations through food 

limitation during the dry season, and high rates of nest predation. 
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CHAPTER I 

INTRODUCTION 

1.1. CONSERVATION STATUS OF PARROTS IN MEXICO 

The parrot family (Psittacidae) contains more endangered species than any other 

major bird family, and significantly more threatened species than expected for the 

family size (Collar & Andrew 1988; Bennett & Owens 1997). More than one third of 

the 142 species of parrot in the Neotropics (tropical America) are threatened or at risk 

of extinction (Collar & Juniper 1992). Of the 21 species of Psittacidae in Mexico, 7 

are considered endangered while a further 8 species are regarded as threatened 

(NOM-059-ECOL-1994). Among these is the Lilac-crowned Parrot (Amazon 

finschi) which is endemic to the Pacific Coast of Mexico from Sonora to Oaxaca 

(Forshaw 1989). 

The principal threats to wild parrot populations are capture for the pet trade and 

habitat destruction (Roet et al. 1981; Collar & Juniper 1992; Mulliken et al. 1992; 

Thomsen & Mulliken 1992). Psittacines are the second largest bird group in 

international trade, even though almost all psittacine species are included in either 

Appendix I or II of CITES which limits such trade (Mulliken et at. 1992). Central 

and South America is also the second largest export region for wild birds in trade, 

with the majority of birds from this region being psittacines (Mulliken et at. 1992). In 

1982 - 1988 a minimum of 1.8 million Neotropical psittacines were exported by 

mainland Neotropical countries, 43% of a total 4.2 million psittacines traded world- 

wide (Thomsen & Brautigam 1991; Thomsen & Mulliken 1992). 

In Mexico, pressure for commercial trade has been most severe along the Pacific 

Coast, with 86.2% of reported trade during 1982 - 1983 occurring in this region 

(Ingo-Elias & Ramos 1991). In 1983, the main capture areas for parrots in Mexico 

were Sinaloa, Nayarit, Jalisco, and Oaxaca (Ingo-Elias & Ramos 1991). During this 

period, 17,260 Lilac-crowned Parrots were captured, making it the third most traded 
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species in Mexico (Im-go-Elias & Ramos 1991). International trade of Lilac-crowned 

Parrots diminished after a government ban in 1982, however this did not control 

capture for domestic trade (Im-Elias & Ramos 1991). 

In addition to pressures from international trade, deforestation in Mexico and 

conversion of land for food production is proceeding at a rapid rate (Dirzo & Garcia 

1992; Maass 1995). Tropical dry deciduous forest in particular is considered one of 

the most threatened forest types, and a priority for conservation (Beissinger et al. 

1996). Janzen (1988) estimates that less than 2% of the original extent of tropical dry 

forest now remains in a relatively intact state, with only 0.09% (480 km) having 

official conservation status. In Mexico, tropical dry forests cover extensive areas of 

the Pacific lowlands from south Sonora to Chiapas (Rzedowski 1994). Masera et al. 

(1992,1996) estimate that tropical deciduous forest in Mexico is being deforested at a 

rate of 1.9% per year (306,000 hectares/year), which is almost equal to that for 

tropical humid rainforest (2.0% per year). Along the coast of Jalisco in particular, 

deforestation of tropical forests has proceeded at a rate of 1.48% per year since 1973 

(Miranda 1998). 

The Lilac-crowned Parrot has therefore experienced severe pressure from both 

wildlife trade and habitat destruction throughout its range. Hence, there is a need for 

conservation strategies based on biological knowledge if viable populations of this 

threatened endemic species are to be maintained in the region. 

1.2. BACKGROUND STUDIES ON AMAZON PARROTS 

Despite their popularity and long association with human societies, very little is 

known of the ecology of parrot populations in the wild (Snyder et al. 1992). Initial 

studies consisted mainly of surveys on the status and distribution of parrots (Ridgely 

1981). Ecological studies were primarily conducted on Amazona species of the 

Caribbean islands (Snyder et at. 1987; Gnam & Rockwell 1991; Lindsey et al. 1991, 

1994; Wilson et at. 1995), as these were considered most threatened due to limited 

2 



distribution, habitat availability, and the pressures of wildlife trade. Hence, the 

majority of studies of have been conducted on island species, and little is known of 

how this compares with the ecology of Amazon parrots on the continent of Central 

and South America (Enkerlin-Hoeflich 1995). Moreover, no studies have been 

conducted on the Lilac-crowned Parrot, though Enkerlin-Hoeflich (1995) has 

conducted research on the breeding ecology of the closely related Red-crowned 

Parrot (Amazon viridigenalis) in north-eastern Mexico. 

1.3. DEALING WITH A VARIABLE ENVIRONMENT 

Though apparently homogeneous and stable, tropical environments are in fact 

spatially and temporally variable (Karr 1976; Karr & Freemark 1985). Most tropical 

forests exhibit seasonal variation in plant energy production with a decline in plant 

food resources during part of the year (Daubenmire 1972; Frankie et al. 1974; Foster 

1982a; Leigh & Windsor 1982; Lieberman 1982; Rathcke & Lacey 1985; Terborgh 

1986a; Fleming et al. 1987; Primack 1987; Bullock & Solis-Magallanes 1990; Janson 

& Emmons 1990; Guevara et al. 1992; Lugo & Frangi 1993; Murali & Sukumar 

1994; Peres 1994; White 1994). Furthermore, heterogeneity in the availability of 

plant resources between different areas and habitats creates environmental patchiness 

(Foster 1980) which results in a dynamic process of habitat selection in tropical bird 

communities (Karr & Freemark 1985). This variability and patchiness is however 

seasonally predictable (Colwell 1974; Karr & Freemark 1985), and animals should 

exhibit life histories adaptive to this. 

Strategies employed by the animal community to deal with environmental variability in 

food resources may include dietary switching, seasonal breeding, changes in range 

use, or migration (Wiens 1976,1985; Leighton & Leighton 1983; Terborgh 1986b; 

Fleming 1992; van Schaik et al. 1993). In general, where there is high temporal or 

spatial variability in resource abundance, animals should track resources closely and 

exhibit a more seasonal and less sedentary life (Wiens 1976,1985; Fleming 1992). 
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Energetically costly activities such as reproduction usually coincide with periods of relative 

food abundance (Perrin 1970; Fogden 1972; Martin 1987; Fleming 1992). Though birds 

may be genetically constrained to breed at specific times of the year, variability in the food 

resource may influence egg production, nest initiation, clutch size, and energetic 

limitations on parents and young (Perrins 1970; Martin 1987; Godfray et al. 1991). 

Animal populations may also exhibit daily or seasonal foraging movements consisting 

of habitat shifts, altitudinal or latitudinal migrations, or nomadic wanderings, which 

result in temporal variations in animal abundance correlated with fluctuations in plant 

resources (Wiens 1976,1985; Fleming 1992; van Schaik et al. 1993). The 

distribution and defendability of resources will also influence social organisation with 

territorial defence of concentrated, reliable resources, and nomadic flocks arising 

where there are widely spaced, patchy or unpredictable resources (Wiens 1976,1985; 

Fleming 1992). However, the response of animal communities to environmental 

patchiness is poorly understood for most species and tropical habitats (Wiens 1976). 

1.4. BIRD COMMUNITIES AND RESOURCE VARIABILITY 

Studies have demonstrated seasonal variations in the abundance and composition of 

tropical bird communities (Fogden 1972; Karr 1976; Karr et al. 1982). However, 

little is known of how these population fluctuations are linked to food resources (Karr 

& Freemark 1985). Bird species in tropical forests appear to distinguish between 

vertical foraging levels, with the result that some species forage predominantly in the 

understorey of the forest, while other species forage in the canopy (Pearson 1971). 

Spatial and temporal variation in understorey frugivorous bird populations have been 

correlated with fluctuations in food resource abundance between habitats and 

elevations indicating that bird populations track food resources (Levey 1988; Blake & 

Loiselle 1991; Loiselle & Blake 1991; Poulin et al. 1993). However, most studies on 

the relation of tropical bird populations to resource availability have been conducted 

on understorey bird communities (Fogden 1972; Karr 1976; Levey 1988; Blake & 

Loiselle 1991; Loiselle & Blake 1991; Poulin et al. 1992,1993), though canopy bird 
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species comprise 40 - 50% of all tropical forest bird species (Karr 1990; Robinson & 

Terborgh 1990). Canopy trees have greater seasonality and exhibit different fruiting 

and flowering peaks to trees in the understorey (Frankie et al. 1974; Opler et al. 

1980). Hence, birds of the canopy may experience greater environmental patchiness 

in the availability of food resources, and are predicted to be more seasonal than 

understorey bird species (Pearson 1971; Karr 1976). 

C 

Few studies have investigated the relation of canopy bird populations to food 

resources, however canopy populations have been found to. exhibit temporal 

variations in abundance (Greenberg 1981; Loiselle 1988), and canopy bird flocks have 

territories four times larger than those for understorey flocks (Munn 1985; Terborgh 

et al. 1990). 

1.5. VARIABILITY IN PSITTACINE POPULATIONS 

Parrots dominate canopy bird communities, and constitute the highest biomass of 

canopy granivores in tropical forests (Loiselle 1988; Terborgh et al. 1990). Little 

information exists on the relation of parrot populations to food resources, though 

evidence of temporal variability in parrot diet, movements, and social organisation has 

been obtained. 

Cockatoos in Australia form seasonal nomadic flocks, and make latitudinal migrations 

to feeding areas, particularly when food resources may be limited (Saunders 1980; 

Rowley & Chapman 1991; Smith & Moore 1992). The Major Mitchell Cockatoo 

(Cacalua leadbeateri) forms nomadic flocks which range over an area of 300 km2 to 

exploit patchy food resources along the western Australian wheatbelt (Rowley & 

Chapman 1991). Movements of hundreds of kilometres were recorded for re- 
introduced Thick-billed Parrots (Rhynchopsitta pachyrhyncha) in Arizona (Snyder et 

al. 1994). Seasonal variations in diet have also been noted for some parrot species 
(Galetti 1993; Wermundsen 1997). Finally, temporal variations in the abundance of 
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parrot populations encountered in surveys may be related to seasonal variations in 

food resource availability (Loiselle 1988; Renton 1994; Enkerlin-Hoeflich 1995). 

Snyder et al. (1987) suggested that the Puerto Rican Parrot (Amazona viltata) may 

exhibit seasonal variations in diet and make altitudinal migrations to track food 

resources. Lugo and Frangi (1993) demonstrated temporal and spatial variation in the 

availability of food resources for the Puerto Rican Parrot, though no studies on this 

species have investigated the impact of this environmental variability on the wild 

parrot population. In general, few studies of psittacines have incorporated 

information on the phenology of food plants, and no studies have analysed the relation 

between parrot populations and food resources, or how parrots deal with 

environmental variability. 

Though parrots are principally seed predators, the behaviour of granivores in response 

to food availability is similar to that of frugivores (Poulin et al. 1994a). Indeed, 

granivores may be more mobile and variable than frugivores due to the high 

synchrony in seed production employed by plants to avoid predation (tanzen 1969, 

1971; Augspurger 1981; van Schaik et al. 1993). Parrots are principally wide ranging 

species whose numbers tend to fluctuate greatly (Terborgh et al. 1990). Hence, it 

may be expected that seed predators such as parrots will track food resources more 

closely in order to exploit temporal and spatial abundances in plant seed production. 

1.6. CONSERVATION IMPORTANCE 

Low fecundity is one of the main factors making bird species vulnerable to decline 

(Bennett & Owens 1997). Hence, data on fecundity and the reproductive output of 

parrots are of particular importance to determine the ability of wild populations to 

withstand pressures from trade (Thomsen & Brautigam 1991), or evaluate the 

harvesting potential of species (Beissinger & Bucher 1992a, b). Information on 

growth rates also enables evaluation of the condition of nestlings and their chances of 

survival, and may be used as an index of habitat quality and the viability of wild 
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populations (Saunders 1986). Knowledge of the factors which limit reproduction may 

enable assessment of the capacity for increase of parrot populations, and the potential 
impact of environmental factors on threatened populations. 

Understanding the relationship of parrot populations to food resources is central to 

conservation as this determines the key resources, habitats, and areas required to 

maintain healthy parrot populations throughout the year. Food resource availability 

may be critical to the viability of wild parrot populations, particularly during the 

breeding season when food supply may affect breeding success (Saunders 1986). For 

example, food resource limitation may have been responsible for the poor growth of 

White-tailed Black Cockatoo chicks in agricultural areas of Australia (Saunders 

1986), eventually resulting in extirpation of the population which was unable to locate 

dispersed fragments of native forest (Saunders 1990). 

Moreover, as seed predators, parrots may have an important impact on forest 

ecosystems, particularly in fragmented or disturbed habitats (Galetti 1993). With 

current rates of deforestation, the habitat available for parrots is increasingly reduced 

to forest remnants within a mosaic of agricultural land. It is therefore, important to 

conserve sufficient areas and habitats for parrots, and to predict the impact of 

fragmentation on parrot populations (Saunders 1986,1990,1991; Galetti 1993). 

Patch dynamics have practical significance when related to the management of 

populations or habitats. Species may use different habitats during stressful periods, 

therefore the entire habitat range of a species needs to be known for effective 

conservation (Karr -& Freemark 1985). Understanding population responses to 

environmental patchiness may also help predict the impact of habitat fragmentation on 

different species of animals (Wiens 1985). Hence, basic knowledge is required on 

how patch dynamics are expressed in nature, and how populations and organisms 

respond to them (Wiens 1976,1985). 

7 



1.7. AIMS AND OBJECTIVES 

The study aims to investigate the relationship between parrot populations and food 

resources, and to analyse how parrots deal with environmental variability. The 

relation of parrot populations to food resources will be examined in Chapter 3, 

particularly with regard to determining whether parrot populations track temporal and 

spatial variations in food resource availability. The reproductive ecology of the Lilac- 

crowned Parrot will be addressed in Chapters 4 to 6, and compared with that of other 

parrot species. Chapter 4 describes the breeding behaviour of the Lilac-crowned 

Parrot, as compared with other island and mainland Amazon species. Chapter 5 

determines the fecundity and reproductive output of the Lilac-crowned Parrot 

population, and discusses the potential limiting factors on parrot reproduction. 

Chapter 6 describes nestling growth rates for a Neotropical parrot, and evaluates the 

influence of hatching order and annual fluctuations in environmental conditions on 

nestling size and growth. The implications of the study for the conservation of parrot 

populations will be considered in Chapter 7, particularly with respect to the potential 

impacts of habitat fragmentation on wild populations, and implications for the design 

of protected areas. 

Hence, the study examines the relation between temporal and spatial variations in 

food resource availability, and parrot diet, habitat use, and reproduction, in order to 

determine whether parrots track food resources, and evaluate the impact of 

environmental variability on reproduction. The principal aims of the research are: 

1. Test whether there is temporal and spatial variability in food resource availability 

for parrots, both between habitats and seasons, creating environmental patchiness. 

2. Test for temporal variations in parrot diets and food niche breadths between 

seasons and years, and whether this is related to resource availability. 

3. Determine whether there is temporal and spatial variability in habitat use by parrots, 

and whether this is related to spatial variations in resource availability. 

S 



4. Describe the breeding behaviour of the Lilac-crowned Parrot, and compare this 

with that observed for mainland and island Amazon species. 

S. Evaluate the fecundity and reproductive output of the Lilac-crowned Parrot 

population, and the factors limiting reproduction. 

6. Determine nestling growth rates, and test for the influence of hatching order and 

annual fluctuations in environmental conditions on nestling growth. 
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CHAPTER 2 

STUDY SITE, SPECIES, AND GENERAL METHODS 

2.1 STUDY SITE 

2.1.1. LOCATION 

The study was conducted at the 13,142 hectare Chamela-Cuixmala Biosphere Reserve 

(19°22'N 104°56'W to 19°35'N 105°03'W), in the state of Jalisco on the Pacific 

Coast of Mexico (Appendix 1). The reserve is situated between Puerto Vallarta, 180 

km to the north, and Manzanillo, 125 km to the south. The southern border of the 

reserve is bounded by the Rio Cuitzmala, with the northern border falling south-east 

of Salinas Chamela. Federal Highway 200 Barra de Navidad-Puerto Vallarta runs 

along the western edge of the reserve, less than 2 km from the Pacific Ocean, while 

the eastern edge is bounded by the main tributary of the Arroyo Caiman. The 

Cuixmala Ecological Foundation has a field station within the reserve at km 45 of 

Federal Highway 200 (19°25'N 104°58'W). The Chamela Biological Station of the 

National Autonomous University of Mexico (UNAM) is located at the north-western 

edge of the reserve at km 59 of Federal Highway 200 (19°33'N 105°05'W). 

2.1.2. HISTORICAL BACKGROUND AND HUMAN IMPACTS 

The National Autonomous University of Mexico (UNAM) first established the 

Chamela Biological Station in 1971, and has been conducting biological research in 

the area for the past 26 years. In the early 1970s, construction was completed of 

Federal Highway 200 along the Pacific coast between Puerto Vallarta and Manzanillo, 

and of a dam in the Tomatlan region. 

Such development resulted in extensive clearing of forested areas which has increased 

rapidly over recent years, with deforestation along the coast of Jalisco occurring at a 
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rate of 2.2% per year between 1986 - 1992 (Miranda 1998). In addition, although semi- 

deciduous forest comprises less than 10% of the land area along the coast of Jalisco, this 

forest type has been deforested at twice the rate of deciduous forest, due to the fact that 

semi-deciduous forest occurs in flat, humid areas near water-courses (Miranda 1998). 

The advent of the highway and beach resort tourism along the coast also had an 

impact on wild parrot populations in the area of the reserve. Local informants report 

that during the late 1960s to 1970s there was intensive trapping of wild adult parrots, 

as well as poaching of nestlings, for sale to tourists along the resort beaches (H. 

Rangel pers. comm. ). The Military Macaw (Ara militaris), which previously was 

frequently encountered in the region (H. Rangel pers. comm. ), was last observed in 

the Chamela-Cuixmala area in 1983 (A. Miranda pers. comm. ). Populations of 

military macaws persist in more remote areas of the region, but are highly vulnerable 

to poaching of nestlings (pers. obs. ). The Yellow-headed Parrot (Amazona oratrix) 

has also dramatically declined in numbers with only a few last individuals remaining in 

the reserve (pers. obs. ). 

In October 1986, the Cuixmala and Teopa beaches were established as sanctuaries for 

the protection of marine turtles, and in 1988 the Cuixmala Ecological Foundation 

began collaboration with UNAM to create a reserve. The Chamela-Cuixmala 

Biosphere Reserve was established by presidential decree on 30 December 1993. 

2.1.3. CLIMATE 

Climate data for the study site collected at the Chamela Biological Station from 1977 

to 1988 are'provided by Bullock (1986,1988). Additional climate data for 1990 to 

1997 were recorded at the Cuixmala Ecological Foundation's station (19°25'N 

104°58'W), located 12 km south of the Chamela Biological Station. Annual rainfall 
data from 1990 to 1997 are presented in Table 1, while eight year monthly averages 
for temperature and rainfall at the Cuixmala station are presented in Table 2. 
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Table 1: Rainfall totals (mm) for the Cuixmala Ecological Foundation Station at the 

Chamela-Cuixmala Biosphere Reserve from 1990 to 1997 

Month 1990 1991 1992 1993 1994 1995 1996 1997 

January 0 0 534 70 0 0 0 12.5 

February 0 0 15 0 0 0 0 0 

March 0 0 0 0 0 0 0 21 

April 0 0 0 0 0 0 0 13.5 

May 1 0 38 0 0 0 0 0 

June 361.5 129 52.5 267.5 87.5 67 175.5 25 

July 63.5 40.5 127.5 237 125 113 152 193.5 

August 168.5 120 70 285 37.5 258.5 377 31.5 

September 113 172.5 175 305.5 65 332.5 12 112.5 

October 105 32.5 17.5 87.5 215 0 308 216.5 

November 0 7.5 0 110 0 2 27.5 61 

December 0 17.5 95 0 0 7 0 14 

Annual Total 812.5 519.5 1124.5 1362.5 530 780 1052 701 

Total days 54 45 61 51 44 SO 53 40 

>I mm rain 

Rainfall Year (June-May) 

Total 811.5 1106.5 607.5 1292.5 530 780 1099 654 

June-Nov 811.5 502 442.5 1292.5 530 773 1052 640 

Dec-May 0 604.5 165 0 0 7 47 14 
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Table 2: Monthly climactic summary for the Cuixmala Ecological Foundation Station 

at the Chamela-Cuixmala Biosphere Reserve, from 1990 to 1997. Eight year 'means 

presented with standard deviations. 

Month Mean minimum 

temperature 

CC) 

Mean maximum 

temperature 
CC) 

Mean total 

rainfall (mm) 

Mean days with 

>lmm rain 

Jan. 15.3±2.71 32.4±3.85 77.1±186.2 2.0±3.78 

Feb. 15.1 ± 2.65 32.4 ± 3.64 1.9 ± 5.3 0.38 ± 1.06 

March 14.8±2.98 31.9±3.68 2.6±7.4 0.25±0.71 

April 16.2±2.49 31.6±3.60 1.7±4.8 0.5± 1.41 

May 19.3±2.57 32.1±3.19 4.9±13.4 0.38±0.52 

June 22.5 ± 2.20 33.5 ± 3.06 145.7 f 116.7 7.13 t 3.27 

July 23.5±1.07 34.2±2.86 131.5±64.0 8.5±2.0 

Aug. 23.2±1.23 34.0±3.19 188.1±123.6 11.7±1.38 

Sept. 23.3 ± 1.12 34.0 ± 3.62 167.9 118.3 10.57±3.21 

Oct. 22.5±1.62 33.8±2.97 109.4± 113.6 7.0±4.0 

Nov. 20.6±2.04 33.5 ±3.63 21.0 ±40.5 1.86± 1.77 

Dec. 18.1 ±2.64 32.6±3.51 17.1 ±34.98 0.86± 1.57 
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The study site has a dry tropical climate exhibiting a marked seasonality in 

precipitation, and a prolonged annual drought (Table 1). Average annual rainfall at 

the Cuixmala station from 1990 to 1997 was 883 ± 313.4 mm (range 519.5 - 1362.5 

mm, n= 7), with a mean of 51 ± 5.76 days per year (range 44 - 61 days, n= 7) of at 

least 1 mm of rain. This is similar to the average annual rainfall of 706.6 ± 143.4 mm, 

with 53 ±6 days per year of rain from 1978 to 1988 recorded at the Chamela 

Biological Station (Bullock 1988). 

Bullock (1986) defined the rainy season as commencing from the first 10 mm of 

rainfall in May or June through to the last day with at least 10 mm of rainfall in 

October or November. For 1990 to 1997 this gives a mean duration of the rainy 

season from 16 June t 7.9 days (range 1- 23 June, n= 7) through to 15 October ± 

15.3 days (range 21 September -4 November, n= 7), with 85% of the total annual 

rainfall occurring in June to October. Monthly rainfall averages for 1990 to 1997 

exceeded 50 mm and 5 days of rain in June to October, with August and September 

being the months of maximum average rainfall (Table 2), corresponding with the 

monthly averages recorded from 1977 to 1988 at the Chamela Biological Station 

(Bullock 1988). 

During most years some rainfall also occurs between December to February, however 

the sum of rainfall in these three months only exceeded 50 mm in two of the eight 

years from 1990 to 1997, and only 4 of the past 19 years (Table 1; Bullock 1988). 

Rainfall during this period is generally associated with occasional tropical cyclones 

which hit the area, and may heavily bias estimates of mean monthly rainfall. The 

exceptional rainfall of January and February 1992 resulted from four storms which hit 

the area during the 1991 - 1992 El Nino weather phenomena in the Pacific Ocean, 

while the rainfall in January 1993 resulted from one storm. In general, there is a 

prolonged drought over the four months from mid-February to late May. Most 

notably, rainfall in March has only occurred twice in the past 20 years, while 1997 

was the only year since 1977 in which rainfall was recorded for the month of April. 

This gives monthly rainfall averages of 1.21 ± 4.63 mm for March, and 0.64 ± 2.95 

mm for April since 1977 (Bullock 1986,1988; Table 1). 
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Tropical cyclones and hurricanes make landfall more frequently in some areas of the 

Mexican Pacific coast than others (Bullock 1986). The Chamela-Cuixmala Biosphere 

Reserve may be considered an area of low hurricane frequency, however the adjacent 

125 km stretch of coast from Rio Cuitzmala to Rio Armeria is an area of high 

hurricane frequency (Bullock 1986). On 23 - 27 October 1959 an hurricane hit the 

coast approximately 82 km from the study site, and on 31 August 1971 Hurricane Lily 

hit along the stretch of coast between San Patricio and Tomatlan either side of the 

study site (Bullock 1986). Hence, there is a possibility of infrequent hurricanes along 

the coast, which may affect tropical forest structure and composition. The periodic 

weather phenomena of elevated sea surface temperatures in the Pacific Ocean known 

as ̀ El Nino', and the associated phenomena `La Nina', can also impact the area, either 

through prolonged droughts or severe winter storms, as with the 1991 - 1992 El 

Nino. 

The annual mean temperature from 1990 to 1997 was 26.3°C, similar to the yearly 

mean of 24.9°C from 1977 to 1984 (Bullock 1986). Average minimum temperatures 

were low during January to March, but were above 22°C from June to October (Table 

2). The lowest minimum temperature recorded from 1990 to 1997 was 9°C, while the 

highest maximum temperature was 42°C. Mean maximum temperatures varied by only 

2.60 between months (range 31.6°C - 34.2°C), however, there was a greater 

fluctuation of 8.7° (range 14.8°C - 23.5°C) in mean minimum temperatures (Table 2). 

Bullock (1986) demonstrated a significant variation in mean minimum temperatures 

between months which marked distinct breaks between the seasons. Figure 1 

illustrates the pattern of monthly rainfall and mean monthly temperatures during the 

study years of 1995 to 1997. 
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2.1.4. TOPOGRAPHY AND VEGETATION 

The reserve has a hilly topography varying in elevation from 20 m to 520 m above sea 

level. Slope gradients below 6° are infrequent, while gradients above 21° are common 

(Bullock 1986). Many small drainages form between the hills and ridges, and are 

known locally as `arroyos'. In general, these drainages only have running water 

during a few months of the year in the rainy season. During the dry season, ground 

water is only available in a few water-holes in the dry arroyos, and is absent from the 

hills. The only permanent river within the reserve is the Rio Cuitzmala on the southern 

boundary. 

The dominant vegetation type on the slopes is tropical dry deciduous forest, classified 

as `bosque tropical caducifolio' by Rzedowski (1994). Tropical deciduous forest 

usually has a canopy height of between 8- 12 m with a dense forest undergrowth, 

while many tree species have short, ramified trunks not exceeding 50 cm in diameter 

(Rzedowski 1994). However, the main characteristic of this forest type is that the 

majority of trees drop their leaves for 5-8 months of the year (Rzedowski 1994). 

Species composition of the forest is diverse (Lott et al. 1987), and varies depending 

on aspect, soil, exposure, and local factors (Lott 1993). Common tree species in 

tropical deciduous forest are Amphipterygium adstringens, Bursera instabilis, 

Caesalpinia spp., Ceiba aesculifolia, Cordia spp., Crescentia alata, Croton 

pseudoniveus, Ficus cotinifolia, Jatropha spp., Lonchocarpus spp., Lysiloma 

microphyllum, Plumera rubra, Spondiaspurpurea, and Trichilia trifolia (Lott 1993). 

By comparison, small areas of semi-deciduous forest occur in the larger arroyos and 

more humid valleys. Termed ̀ bosque tropical subcaducifolio' by Rzedowski (1994) 

the main characteristic of this forest type is that a large number of the tree species 

retain their leaves throughout the year, or drop leaves for only 1-3 months of the 

year. Structural features of this forest type are a canopy height of between 15 - 30 m, 

with tree species having thick, straight trunks of between 30 - 80 cm diameter and up 

to 1-3m diameter (Rzedowski 1994). Species diversity in semi-deciduous forest is 

also high, though species composition is distinct to that in deciduous forest (Lott et at. 
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1987). Tree species characteristic of semi-deciduous forest are Astronium 

graveolens, Brosimum alicastrum, Bursera arborea, Couepia polyandra, Cynometra 

oaxacana, Enterolobium spp., Ficus insipida, Hura polyandra, Sciadodendron 

excelsum, Sideroxylon capiri, Tabebuia donnell-smithii, Tabebuia rosea, 

Thouinidium decandrum, and Vitex hemsleyi (Lott 1993). 

Another distinctive forest-type in the reserve is the monodominant forest of 

Celaenodendron mexicanum, which occurs as discontinuous patches within the 

tropical deciduous forest mosaic. Celaenodendron forests are found only along the 

Pacific coast from Mazatlan (23°14'N) to Manzanillo (19°N), and occur at low 

elevations within 10 km of the coast (Martijena & Bullock 1994). In contrast with the 

high diversity of other forest types, this forest is dominated by a single species of 

canopy tree at most size classes of trunk diameter (Martijena & Bullock 1994). 

The lower portion of the reserve close to the ocean also comprises coastal dune 

vegetation, and wetland communities. Aquatic vegetation dominated by Typha 

domingensis occurs in freshwater lagoons at the mouth of the Rio Cuitzmala. Near to 

the coast, the lagoons grade into mangrove swamps of Laguncularia racemosa, and 

Rhizophora mangle. Riparian areas in the lower floodplain of the Rio Cuitzmala 

experience seasonally destructive flooding, and comprise species such as Astianthus 

viminalis, Hippomane mancinella, and Salix gooddingii (Lott 1993). 

2.2. STUDY SPECIES 

2.2.1. SPECIES DESCRIPTION AND DISTRIBUTION 

The Lilac-crowned Parrot (Amazonafinschi) has predominantly green plumage, with 

violet blue primary feathers on the wing, and a red speculum at the base of the first 

five secondary wing feathers. This gives the appearance of a red and blue band on the 

upper wing when the parrots are in flight. The species is characterised by a red fore- 

head, green cheeks, and mauve or lilac hind-crown and neck (Forshaw 1989). The 
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Lilac-crowned Parrot is very similar in appearance to the closely related Red-crowned 

Parrot (Amazons viridigenalis), which is endemic to north-eastern Mexico (Forshaw 

1989). The Lilac-crowned Parrot is endemic to the Pacific Coast of Mexico, and is 

restricted in distribution from south-eastern Sonora to Oaxaca (Forshaw 1989). The 

species tends to occur in forested areas from sea-level to 1,720 in, and does not 

appear to occur above 2,000 in elevation (E. Santana pers. com. ). 

2.2.2. SPECIES BACKGROUND 

No studies have been conducted on the ecology and reproductive biology of the Lilac- 

crowned Parrot in the wild. Previous information from the mid 1940s to the late 

1970s consists principally of notes on abundance and distribution, in which large 

flocks of hundreds of individuals were frequently recorded outside of the breeding 

season (Forshaw 1989). Anecdotal reports on captive breeding of the Lilac-crowned 

Parrot give an incubation period of 28 days for the eggs, with the young chick leaving 

the nest after 60 days (Mann & Mann 1978). 

Up to the late 1970s, the species was considered fairly common and widespread 

throughout its range, with abundant habitat still available (Ridgely 1981). However, 

Ridgely (1981) noted that capture of wild Lilac-crowned Parrots was increasing 

dramatically as parrot dealers turned their attention to this species. During 1982-1983 

along the Pacific Coast, 17,260 Lilac-crowned parrots were captured for trade, 

making this the third most captured species in Mexico (Inigo-Elias & Ramos 1991). 

The exportation of Mexican wildlife was banned by the Mexican government in 1982, 

which limited international trade but did not control domestic trade (Ingo-Elias & 

Ramos 1991). The Lilac-crowned Parrot is now regarded in Mexico as a threatened 

endemic species (NOM-059-ECOL-1994), however, poaching of wild nestlings for 

local trade is still common and widespread (pers. obs. ). 
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2.3. GENERAL METHODS FOR NEST STUDIES 

2.3.1 NEST SITE LOCATION 

The breeding biology and reproductive success of the Lilac-crowned Parrot was 

determined by studies of nests at the Chamela-Cuixmala Biosphere Reserve. Nest 

searches were conducted in January to February 1996 and 1997 during the nest 

prospecting and early incubation phases of the parrot nesting cycle. No additional 

nests were located later in the nesting cycle due to the secretive behaviour of breeding 

pairs which made detection of nest sites difficult. Preliminary observations in 

February to March 1995 had determined the peak activity period for parrots to be in 

the early morning and late afternoon. Therefore, nest searches were conducted during 

the first four hours following sunrise and the last four hours prior to sunset. A cavity 

was considered a potential nest site if one or both of the adult parrots were observed 

entering the cavity. The cavity was considered an active nest site if one of the adult 

parrots remained within the cavity for longer than 20 mins. Nest site fidelity was 

determined from the incidence of re-use of nest cavities between successive years 

The map location of each nest site, and where possible the tree where food transfer 

from the male to the female occurred, were obtained using a geographic positioning 

system (GPS) giving X and Y co-ordinates in the UTM format. The distance between 

active nests, and from the nest to the food transfer tree, was calculated using the 

equation: 

Distance (m) =ý (X1 - X2)2 + (Yj - Y2)2 

where: X1, X2 =X co-ordinates of two different points 

Y1, Y2 =Y co-ordinates of two different points 
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2.3.2. ACCESS TO NEST CAVITIES 

Access to nest cavities was achieved using single-rope ascending techniques (SRT) 

with a 25 m caving rope, climbing harness, and ascenders as outlined by Perry (1978), 

Perry & Williams (1981), and Wheelock (1988). In addition, a tree bole-climbing 

technique was employed using webbing slings and an etrier as described by Donahue 

& Wood (1995). Both SRT and bole-climbing techniques are now considered 

standard low-tech methods for canopy research (Dial & Tobin 1994, Moffet & 

Lowman 1995; Lowman & Wittman 1996). However appropriate training and 

awareness of safety are essential before applying such techniques in field research 

(Whitacre 1981). 

2.3.3. HANDLING OF NESTLINGS 

The determination of reproductive output, nestling growth rates, and nestling diet, 

required regular inspection of parrot nests, and handling of nestlings. At each nest 

inspection, standardised measurements were taken of the nestlings, and a sample of 

the crop contents was collected to evaluate nestling diet. All measurements were 

conducted at the nest entrance to minimise handling time and potential stress for the 

nestlings. Disposable gloves and a face mask were also used when handling nestlings 

to avoid potential disease transmission between nestlings and researcher. The 

procedures used for data collection and the handling of nestlings conformed to the 

Ornithological Council guidelines for the use of wild birds in research (Guant et al. 

1997). 
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CHAPTER 3 

RESOURCE AVAILABILITY AND UTILISATION 

3.1. ABSTRACT 

The pattern of food resource abundance and utilisation by Lilac-crowned Parrots was 

evaluated in the tropical dry deciduous and semi-deciduous forests of the Chamela- 

Cuixmala Biosphere Reserve, western Mexico. Monthly fruiting phenology transects 

were conducted in different forest types to determine temporal and spatial variability 

in resource abundance. Resource utilisation by parrots was evaluated through 

observations of diet, habitat use, and crop samples of nestlings. There was significant 

temporal and spatial variability in food resource abundance, with semi-deciduous 

forest providing greater food resources for parrots during the dry season, while food 

resource abundance increased in deciduous forest during the rainy season. The 

critical period of food resource scarcity occurred during May - June at the end of the 

long dry season drought. Lilac-crowned Parrots were predominantly pre-dispersal 

seed predators, and exhibited high flexibility in diet, incorporating dietary switching, 

as well as niche breadth contraction and expansion, which corresponded with 

temporal variations in food resource availability. There was low overlap in parrot 

diets between seasons and years, with parrots exhibiting a narrow food niche breadth 

during the late dry season when resource availability declined. Parrots also 

demonstrated spatial variation in habitat use, corresponding to fluctuations in the 

availability of food resources in different habitats. Finally, Lilac-crowned Parrots 

made long-distance seasonal altitudinal migrations during the period of greatest food 

resource scarcity at the end of the dry season. This flexibility in diet, spatial scales, 

and mobility, enables parrots to closely track and exploit seed resources,, which exhibit 

high temporal and spatial variability in abundance. 
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3.2 INTRODUCTION 

3.2.1. FRUITING PHENOLOGY AND RESOURCE AVAILABILITY 

Studies on the periodicity of leaf production, flowering and fruiting in tropical forests 

were stimulated after Janzen (1967) high-lighted the synchrony in reproductive 

activity of trees in tropical deciduous forest, with most species flowering and fruiting 

during the dry season. Further studies in tropical deciduous forests have 

demonstrated marked seasonality in plant productivity, with leaf flush occurring 

during the brief rainy season, while flowering and fruiting activity are concentrated 

during the dry season (Daubenmire 1972; Frankie et al. 1974; Lieberman 1982; 

Bullock & Solis-Magallanes 1990; Guevara et al. 1992; Murali & Sukumar 1994). 

Tropical deciduous forests may be expected to exhibit periodicity in plant production, 

due to the marked seasonality in rainfall which is restricted to only a few months of 

the year, and the extended dry season occurring in such forests (Bullock 1986,1988). 

Comparative phenology studies in wetter lowland forests also demonstrate seasonal 

variation in plant energy production, though this is less marked than in dry deciduous 

forests, with slight peaks in fruit production during the rainy season, and a decline in 

plant food resources during the dry season (Frankie et al. 1974; Terborgh 1986a; 

Janson & Emmons 1990; Peres 1994; White 1994). Tropical forest on Barro 

Colorado Island exhibits a double peak in flowering and fruiting activity (Smythe 

1970a; Foster 1982a), which may correspond with its status as intermediate between 

dry and wet forests (Hartshorn 1983). 

In general, fleshy fruits tend to be produced during the rainy season, while dehiscent 

or wind-dispersed fruits tend to ripen during the dry season (Daubenmire 1972; 

Lieberman 1982; Guevara et al. 1992). The predominance of dehiscent or wind- 
dispersed plant species in tropical deciduous forest may account for the marked 

seasonality of fruiting during the dry season of such forests (Janzen 1967; Daubenmire 

1972). Furthermore, plant species which do not rely on animal vectors for dispersal 

0 
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may evolve high synchrony in fruit production as a strategy to avoid predation by 

satiating potential seed predators (Janzen 1969,1971; Augspurger 1981). 

Such fluctuations in the availability of plant resources, even in forests with less 

marked seasonality in rainfall, has consequences for the animal community. Variation 

in soil types, habitats, and micro-climates in tropical forests result in heterogeneity in 

the availability of plant resources between different areas, creating environmental 

patchiness (Foster 1980). This variability is however seasonally predictable (Colwell 

1974; Karr & Freemark 1985), and animals should exhibit life histories adaptive to 

this. 

3.2.2. VARIABILITY IN DIET AND RESOURCE UTILISATION 

Animal communities may employ a variety of strategies to deal with environmental 

variability in food resources, including dietary switching, concentrating on a few key 

resources, seasonal breeding, habitat shifts or migration, and social organisation 

(Wiens 1976,1985; Leighton & Leighton 1983; Terborgh 1986a, b; Fleming 1992; 

van Schaik et al. 1993; Peres 1994). Early studies demonstrated that tropical bird 

communities exhibit marked seasonal variations in abundance and composition 

(Fogden 1972; Karr 1976; Karr et al. 1982; Karr & Freemark 1985). This temporal 

variation is greater in frugivore and nectarivore bird communities, as opposed to 

insectivore communities which are essentially stable (Martin & Karr 1986; Poulin et 

al. 1994a). 

Temporal and spatial variation in understorey frugivorous bird communities is 

associated with corresponding variations in food resource abundance, indicating that 

bird communities may track food resources within habitats, across altitudinal 

elevations, and between successional stages of forest habitat (Levey 1988; Blake & 

Loiselle 1991; Loiselle & Blake 1991,1992,1994; Poulin et al. 1993). More direct 

evidence of the ability of frugivores to track variations in food resource abundance 

was provided by Rey (1995), demonstrating that the most abundant frugivores in 
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Mediterranean olive orchards were able to track the rapid changes in food resource 

abundance created by harvesting rotas. 

Most studies on the relationship of bird communities to resource variability have been 

conducted on frugivore communities. However, the behaviour of granivores in 

response to food availability is similar to that of frugivores (Poulin et al. 1994a). In 

fact, granivores may need to be more mobile and variable than frugivores in order to 

exploit highly variable and synchronised seed crops (Janzen 1969,1971; Smythe 

1970a; Augspurger 1981; van Schaik et al. 1993). High variability in diet shifts, 

diversity, and finch abundance has been demonstrated for granivorous ground finches 

on the Galapagos, and related to the abundance and distribution of seed resources 

(Smith et al. 1978; Grant & Grant 1980; Schluter 1982a, b; Boag & Grant 1984; Price 

1987). In general, finch diets became less varied and more specialised as resource 

abundance declined, with bird species frequently switching to consume alternate food 

items at different times of the year (Smith et al. 1978; Schluter 1982a, b). This diet 

switching may arise due to the marked temporal variations in resource availability 

which occur in complex environments, with some resources only being available at 

certain times of the year (Smith et al. 1978; Schluter 1981,1982a). 

Tropical bird species are frequently opportunistic in diet, and may take advantage of 

additional food types across feeding guilds (Poulin et al. 1994b). However, though 

birds may consume a variety of food items, the bulk of the diet is usually comprised 

by only a small proportion of these (Lack 1954; Ward 1965; Newton 1967; Banbura 

et al. 1994; Bancroft & Bowman 1994; Kleintjes & Dahlsten 1994). Bird diets may 

vary in diversity and the specific items consumed in response to seasonal variations in 

the abundance and availability of food resources (Smith et al. 1978; Calver & Wooller 

1981; Schluter 1982a, b; Boag & Grant 1984; Price 1987). Analysis of nestling diets 

has demonstrated temporal variability in the items comprising the major proportion of 

the diet, both within a year (Ward 1965; Barba & Gil-Delgado 1990; Banbura et al. 

1994; Bancroft & Bowman 1994), and between years (Banbura et al. 1994; Bancroft 

& Bowman 1994). These studies suggest that the predominance of certain items in 

nestling diets may be related to availability. However, the relationship between 
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consumption and resource availability is likely to be complex (van Home & Bader 

1990), and some food items may be preferred even when they are scarce due to their 

protein or mineral contents (Sakai & Carpenter 1990). 

Canopy bird species comprise 40 - 50% of all tropical forest bird species (Karr 1990; 

Robinson & Terborgh 1990), and may experience high variability in food resources 

due to the greater seasonality of canopy trees compared to the understorey (Frankie et 

al. 1974; Opler et al. 1980). However, few studies have investigated the relation of 

canopy bird populations to food resources, though canopy populations exhibit 

temporal variations in abundance (Greenberg 1981; Loiselle 1988), and canopy flocks 

have territories four times larger than understorey flocks (Munn 1985; Terborgh et al. 

1990). Furthermore, fluctuations in the abundance of Hornbills were correlated with 

fruit abundance, suggesting that these canopy frugivores may track the availability of 

fruit resources (Kinnaird et al. 1996; Whitney & Smith 1998). 

Large-bodied frugivores and parrots dominate canopy bird communities (Loiselle 

1988; Terborgh et al. 1990). Most parrot species are primarily granivorous in nature, 

with seeds forming a major component of the diet (Saunders 1980; Beeton 1985; 

Rowley 1990; Rowley & Chapman 1991; Galetti 1993; Gilardi 1996; Enkerlin- 

Hoeflich & Hogan 1997), though some parrot species may be frugivorous (Snyder et 

al. 1987; Wennundsen 1997), or consume a large proportion of invertebrates 

(O'Donnell & Dilks 1994). However, little is known of the relation of parrots to food 

resources, though there is evidence of high temporal variability in parrot diet, 

movements, and social organisation. 

Seasonal variations in diet, with switching of the main items consumed, have been 

noted for many Australian parrots (Saunders 1980; Beeton 1985; Rowley 1990; 

Rowley & Chapman 1991; O'Donnell & Dilks 1994), and some Neotropical parrot 

species (Snyder et al. 1987; Galetti 1993; Wermundsen 1997). Temporal variations in 

the abundance of parrot populations encountered in surveys may be related to 

seasonal variations in food resource availability (Loiselle 1988; Renton 1994; 

Enkerlin-Hoeflich 1995). Australian parrots also exhibit large scale seasonal 
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movements, frequently forming nomadic flocks outside of the breeding season, and 

making latitudinal migrations of over 100 km between feeding areas (Saunders 1980; 

Rowley & Chapman 1991; Smith & Moore 1992). 

However, few studies of psittacines have incorporated information on the phenology 

of food plants, and no studies have examined the relationship between parrot 

populations and food resources, even though most parrot species rely on food types 

(i. e., seeds and fruits) which may demonstrate high temporal and spatial variability in 

abundance. It may be predicted that seed predators such as parrots will track food 

resources closely in order to exploit temporal and spatial abundances in plant seed 

production. 

Understanding the relationship of parrot populations to food resources enables 

determination of the key resources, habitats, and areas required to maintain healthy 

parrot populations throughout the year. In particular, food resource availability may 

be critical to the viability of wild parrot populations during the breeding season, when 

food supply may affect breeding success (Saunders 1986). With current rates of 

deforestation, the habitat available for parrots is increasingly reduced to forest 

remnants within a mosaic of agricultural land. It is therefore, important to conserve 

sufficient areas and habitats for parrots, and to predict the impact of fragmentation on 

parrot populations (Saunders 1986,1990,1991; Galetti 1993). 

An ability to closely track resource availability may enable some species to survive in 

heavily cultivated landscapes (Rey 1995). This may be the case for some Australian 

parrots which have adapted to exploit agricultural crops along the Australian 

wheatbelt (Saunders 1980; Beeton 1985; Rowley 1990; Rowley & Chapman 1991), 

while populations of other cockatoo species declined as a result of increasing 

cultivation (Saunders 1986,1990,1991). Hence, basic knowledge is required on how 

patch dynamics are expressed in nature, and how populations and organisms respond 

to them (Wiens 1976,1985). 
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3.3 METHODS 

I 

The study was conducted at the Chamela-Cuixmala Biosphere Reserve (19°22'N 

104°56'W to 19°35'N 105°03'W), in Jalisco on the Pacific Coast of Mexico. 

Resource availability in different forest types throughout the year was determined by 

monthly phenology transects, while Lilac-crowned Parrot resource utilisation was 

determined through observations of feeding birds, and crop samples of nestlings. 

3.3.1. FRUITING PHENOLOGY TRANSECTS 

Various methods may be used to evaluate food resource abundance including fruit 

traps, fruit trails and phenology transects. Fruit traps have many limitations in 

determining resource availability for the animal community, and results from fruit 

traps do not correlate with results from fruit trails and phenology transects (Chapman 

et al. 1994). It was decided to employ phenology transects in the present study as this 

method enables evaluation of habitat variation in resource availability (Chapman et al. 

1994). 

Habitat selection 

Phenology transects were placed in three habitat types of deciduous forest, semi- 
deciduous forest, and along watercourses (known locally as `arroyos'). Areas of 

semi-deciduous forest between the Arroyo Chamela and the Rio Cuitzmala were 

identified from aerial photographs of the region taken during the dry season (INEGI 

1973). As semi-deciduous forest retains leaf cover during the dry season, this forest 

type could be easily distinguished as darker shaded areas in the photographs. 

Deciduous forest is the dominant vegetation type at the study site, however, the area 

which could be surveyed was limited to some extent by the feasibility of access along 

existing road or trail systems. In addition, deciduous forest is not homogenous, with 

many species exhibiting a clumped distribution (Hubbell 1979; Thorington et al. 
1982). Hence phenology transects were dispersed as widely as possible within the 
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study area, and were constructed off from main road or trail systems to avoid 

recording edge species. Transects were also varied with respect to aspect, and 

included placement on a south-east slope (n = 3), south-west slope (ii = 2), north-east 

slope (n = 3), north-west slope (n = 2), along a ridge top (n = 3), and in deciduous 

forest at the base of a slope (n = 2). The aim was to spread transects within the study 

site to obtain an overall impression of resource availability in deciduous forest. 

Watercourses within the study site comprised predominantly vegetation characteristic 

of deciduous forest, but with some mixture of semi-deciduous species due to a slightly 

higher soil humidity than on the slopes. Hence, watercourses were included as a third 

habitat type in the phenology study. Transects were established along four main 

watercourses in the study site: Arroyo Caiman, Arroyo Carayes, Arroyo Cajones, and 

Arroyo Limbo. Placement of transects along thesewatercourses was determined by 

dividing the main watercourses and their tributaries on the map into 500 m numbered 

sections, which were then randomly selected. Each 200 m transect was established 

within the 15 selected 500 m sections, locating the selected point in the field using a 

geographical positioning system (GPS). As watercourses may be 2-5m wide, 

fruiting species were recorded within 3m of either edge of the watercourse. 

Phenology transects 

A total of 45 phenology transects of 200 mx6m were established, with 15 transects 

in each of the three habitat types. Transects were monitored by the same observer 

during the second and third weeks of each month from January 1996 through to July 

1997 (with the exception of December 1996). All fruit or seed bearing trees greater 

than 10 cm diameter at breast height (DBH) were recorded when detected within a3 

m band on either side of the transect line. The size category of 10 cm DBH was 

chosen for the lower limit of tree size as the intention of the study was to evaluate 

canopy variation in food resource abundance, and this was the lower tree size limit 

established in previous phenology studies (Bullock & Solis-Magallenes 1990; 

Chapman et al. 1994). Where a tree occurred on the boundary of the 3m transect 

width, the tree was included if the mid-point of the trunk was rooted within the 

transect area (Gentry 1982). 
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For each fruiting tree encountered, the distance along the transect was recorded, as 

well as the distance of the tree from the transect line. Tree species were identified in 

the field, and by comparison with samples in the University of Mexico herbarium at 

the Chamela Biological Station. The DBH of each fruiting tree was measured, while 

fruit abundance was visually assessed using 10x40 binoculars, and an estimate of fruit 

abundance made by counting. Visual estimation of the number of fruit on the tree 

involved a greater potential bias, as counting was more difficult for taller tree species 

of dense foliage, or species which produced large numbers of small fruit. Hence, the 

DBH of fruit or seed bearing trees was preferred as an estimate of abundance as this 

variable is the most accurate predictor of fruit crop biomass and number, and is highly 

correlated with rank values from visual estimation (Chapman et al. 1992,1994). 

Where the trunk was branched below breast height (@1.3 m), the DBH of each trunk 

branch was measured and summed to give a total DBH for that tree. This was more 

frequent in deciduous forest, and tree species were included in the transects if the sum 

of the branched trunks was greater than 10 cm diameter. Finally, the colour and stage 

of ripeness of fruit or seed crops were also recorded. 

Determination of the resource 

Wiens (1976) states that ecological studies need to evaluate the environment as 

perceived by the study animal, and hence the resource under investigation should be 

organism-defined. Therefore, when evaluating food resource abundance for Lilac- 

crowned Parrots, fruit or seed crops of tree species in the transects were included in 

the analysis at the stage of ripeness when they are consumed by parrots. Furthermore, 

certain plant species, such as many Lonchocarpus species, may be excluded as 

potential food resources for parrots due to a high level of toxicity in the seeds (Janzen 

1969; Janzen et al. 1990). Other species, such as Crescentia alata, Guazuma 

ulmifolia, and Hura polyandra, may not be available as a food resource to Lilac- 

crowned Parrots due to the size and durability of the shell which many herbivores are 

unable to open (Janzen 1982; Janzen & Martin 1982). Finally, species such as 
Bursera arborea, Bursera instabilis, Heliocarpus pallidus, Jacaratia mexicana, 
Jacquinia pungens, and Tabebuia species, do not appear to be recognised as a food 
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resource by Lilac-crowned Parrots, for despite being common at the study site, Lilac- 

crowned Parrots were never observed to feed on the fruits or seeds of these species. 

Hence for the purpose of analysis, general fruiting phenology was evaluated including 

all plant species recorded in the phenology transects, while food resource abundance 

was evaluated by incorporating only actual or potential Lilac-crowned Parrot food 

plant species. Where there was no clear reason for excluding a particular species as a 
food item for Lilac-crowned Parrots, the plant species was included in the analysis as 

a potential food resource. 

Data analysis 
The total number of fruiting trees, and their DBH was summed over all transects in 

each of the three habitat types in order to obtain habitat-wide estimates of resource 

abundance in each month. For the purpose of the phenology study, June was included 

as a dry season month as in both 1996 and 1997 the first rains did not commence until 

the end of June, after phenology transects for that month had been completed. 

Preliminary analysis determined that the data did not deviate significantly from the 

normal distribution required for parametric analysis (Zar 1996). Hence, seasonal 

variation in overall fruiting phenology and food resource abundance was analysed by 

two-way ANOVA on the number of trees and sum of DBH of fruiting trees in each 
habitat type during the dry and rainy season. The general linear model was used to 

account for missing values for the month of December. Between year differences in 

food resource abundance were also tested by two-way ANOVA on the number of 

trees and sum of DBH of fruiting trees for each habitat type during the dry season of 

1996 and 1997. Finally, between year differences in the number of food species 

available during the dry season were tested by one-way ANOVA. 
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3.3.2. PARROT DIET OBSERVATIONS 

The diet of Lilac-crowned Parrots throughout the year was determined by 

observations of feeding activity. During each month of the year, trails were regularly 

walked in deciduous, and semi-deciduous forest, and along watercourses during the 

first four hours of the morning and the last three hours of the afternoon when parrots 

conduct the majority of foraging activity. When feeding parrots were encountered the 

date, time, location, food species and habitat type were all noted, as well as the 

number of parrots observed feeding on each food resources, and the plant part eaten 

i. e., fruit pulp, seed, or flower. A feeding bout was recorded as one observation of 

one or more parrots feeding on one food source. If the parrots changed to another 

food source during the period of observation, this was recorded as a second feeding 

bout (Galetti 1993). 
. 

Diet observations were analysed using the number of individuals observed feeding on 

a particular resource, and the number of feeding bouts. Levins' and Hurlbert's 

standardised niche breadths were calculated for parrot diets during different periods of 

the year. Diet overlap between the dry and rainy season was evaluated using a variety 

of similarity and niche overlap measures. Levins' standardised niche breadth indice 

was also calculated from observations of Lilac-crowned Parrot diets during four 

periods of the year corresponding to the early dry season (January - March), the late 

dry season (April - June), early rainy season (July - September), and the late rainy 

season or rainy-dry transition (October - December). These niche breadth indices 

were then correlated with the number of food species available during each three 

month period as determined by the phenology transects. Finally, chi-square 

contingency analysis was conducted to test for differences in the number of feeding 

bouts recorded in each of the three habitat types during the four periods of the year. 
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3.3.3. NESTLING DIETS 

Collection of crop samples 
At each nest inspection, samples of the crop contents were taken from nestlings 

following the procedure developed by Enkerlin-Hoeflich et al. (in press). Crop 

samples were taken from 12 nestlings in 5 nests during 13 April - 14 May in 1996, 

and from 9 nestlings in 4 nests during 30 March - 21 May in 1997. All crop samples 

were taken using the plastic cylinder of an open-ended 3 nil syringe which was 

inserted down the parrot gullet to the crop. The crop was then gently massaged to 

manoeuvre the food contents into the cylinder of the syringe, thereby extracting a 

sample of the crop contents. The sample was then transferred from the syringe to a 

zip-lock plastic food storage bag, which was labelled with the date, nest, and chick 

number. Crop samples were not taken until the nestlings were more than 20 days of 

age as recommended by E. Enkerlin-Hoeflich (pers. comm. ). In addition, samples 

were not taken if there was little food in the crop, as determined by visual inspection 

of crop expansion. 

Preparation of samples 

Prior to weighing, samples were placed on absorbent paper for 15 mins to drain any 

excess water. For each crop sample, the date, nest, and chick number were recorded. 
The number of different food items in each sample was noted, and the total sample 

weight taken with a portable electronic balance of 0.01 g precision. Individual food 

items were then separated out and differentiated by type, size, shape, and colour. 

Food items were then identified to species by comparison with samples collected from 

the field. Where a food item could not be identified to species it was assigned a 

number. 

For seed items, the number of seeds of each species were counted, and weighed on a 

portable electronic balance (200 g capacity, 0.01 g precision). The biomass of each 

seed food item in the crop sample was then determined as a proportion of the total 

sample weight. Fruit pulp could not be reliably weighed therefore, fruit items in the 

diet were noted on a presence-absence basis only. 
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Data analysis 
Dietary variety was determined as the number of different food items in each crop 

sample, while composition of the diet was evaluated both by the frequency of 

occurrence and proportional biomass of each food item in the crop samples. One-way 

ANOVAs were conducted to test for differences between siblings and between nests 
in the number of different food items, and the frequency of occurrence of each food 

item in the crop samples. Annual variation in dietary variety was also tested by one- 

way ANOVA on the number of food items in crop samples between 1996 and 1997. 

Niche breadth indices and similarity measures described below were also applied to 

evaluate overlap in diets between 1996 and 1997. 

3.3.4. FOOD NICHE BREADTH AND SIMILARITY ANALYSES 

Niche breadth 

Food niche breadth and diet overlap were estimated both for nestling diets between 

1996 and 1997, and for observations of adult diets between different seasons of the 

year. Niche breadth was evaluated using the Levins' and Hurlbert's niche breadth 

indices as detailed below: 

Levins' niche breadth indice B was standardised on a scale of 0-1 (Levins 1968; 

Colwell & Futuyma 1971): 

B=1/[nEp; ] 

Where B= Levins' standardised niche breadth indice, p; = the proportion of 

individuals using resource state i, and n= the number of resource states. 

Hurlbert's niche breadth (Hurlbert 1978) was also calculated for parrot diets over the 

dry season and the rainy season, incorporating a measure of the proportional 

abundance of resources in each season, and standardised on a scale of 0-1: 
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B' -F 1/ E(pjg1)1-amin 

1-Q, n; n 

Where: B' = Hurlbert's standardised niche breadth, p; = proportion of individuals 

using resource i, al = proportional availability of resource i, and am;,, = proportion of 

least abundant resource. 

For both niche breadth indices, a value close to 0 indicates dietary specialisation, 

while a value close to 1 indicates a broad niche width (Colwell & Futuyma 1971; 

Hurlbert 1978). 

Similarity measures 

Similarity or overlap in nestling diets between years, and in adult diets between 

seasons, was evaluated using a variety of similarity measures. Shared species in the 

diet between the two years and seasons was evaluated using the coefficient of 

Jaccard: 

S= a 
a+b+c 

Where S= Jaccard's similarity coefficient, a= the number of species in both sample A 

and B, b= the number of species occurring only in sample B, c= the number of 

species occurring only in sample A. 

The percent similarity in diet between years and seasons was also determined using 

the Renkonen index: 

P=E minimum (pi p2, ) 

Where P= percent similarity between samples 1 and 2, p1, = percent of species i in 

sample 1, and p2, = percent of species i in sample 2. 
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Finally, the Morisita index of similarity was calculated for quantitative data on 

occurrence of food items in the diet between years and seasons: 

(, ' =2Y Dlp, k 

E' pf[(ný- 1)/(NJ- 1)]+E" pik[(n, k- 1)/(Nk- 1)] 

Where C= Morisita index of similarity, pg Pik = proportion of resource i in sample j 

and sample k, ny nk = frequency of resource i in samples j and k, and Nj Nk = total 

number of individuals in sample j and sample k. 
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3.4. RESULTS 

3.4.1. FRUITING PHENOLOGY AND RESOURCE AVAILABILITY 

Seasonal variation in food resources 

A total of 56 species of tree were recorded in the phenology transects, 36 of which 

were incorporated in the analysis as actual or potential food resources for Lilac- 

crowned Parrots (Table 3). A further 20 species were excluded from the analysis as 

parrot food resources (Table 4), but were included in the analysis of general fruiting 

phenology. Overall, monthly phenology transects demonstrated a sharp decline in 

resource abundance by number of trees, number of species, and the sum of DBH of 

fruiting trees during the late dry season in May and June, gradually rising again in July 

with the start of the rainy season. This was true both when considering only potential 

parrot food species (Figs 4& 5), and including all species recorded in the transects 

(Figs 2& 3). Interestingly there was a peak in resource abundance during the dry 

season months of March and April (Figs 2- 5), mainly due to the fruiting of 

Astronium graveolens, Caesalpinia eriostachys, Comocladia engleriana, and 

Spondius purpurea. 

Habitat variability in food resources 

The pattern of fruiting phenology by habitat type is illustrated both for all species 

recorded in transects (Fig 6& 7), and for potential Lilac-crowned Parrot food 

resources only (Figs 8& 9). In general, food resource abundance for Lilac-crowned 

Parrots was greater in semi-deciduous forest during the early dry season months of 

January - February due mainly to fruiting of Brosimum alicastrum (Fig 10). The peak 

in deciduous forest, and along watercourses, during March and April was due to 

fruiting of Comocladia engleriana, Spondius purpurea, Caesalpinia eriostachys, and 

Ficus cotinifolia (Fig 10). The sharp April peak in semi-deciduous forest, and to a 

lesser extent along watercourses, arose from mass fruiting of Astronium graveolens 

(Fig 10). All habitat types began to decline in resource abundance during the late dry 

season in May - June, however, semi-deciduous forest maintained some food resource 
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abundance during this period due to fruiting of Astronium graveolens, Guarea 

glabra, and Ficus species (Fig 10). 

There was a slight peak in resource abundance along watercourses during July 

following ripening of Sciadodendron excelsum fruit (Fig 11), and the onset of fruiting 

of deciduous forest species such as Celaenodendron mexicanum, Crataeva tapia, 

Jatropha species, and Caesalpinia species, which commenced fruiting slightly earlier 

along watercourses than on the slopes, possibly due to a greater soil humidity. The 

overall increase in resource abundance in deciduous forest, as well as along 

watercourses, during the latter part of the rainy season was due to fruiting of many 

deciduous forest species including: Acacia species, Caesalpinia species, 

Celaenodendron mexicanum, Crataeva tapia, Esenbeckia nesiotica, Jatropha 

species, Lysiloma microphyllum, Pithecellobium species, and Plumeria rubra (Fig 

11). 

This general pattern was similar when considering overall fruiting phenology including 

all species recorded in transects (Figs 6& 7), as opposed to Lilac-crowned Parrot 

food resources only (Figs 8& 9). However, the difference between habitats was less 

marked for fruiting phenology during the early to mid dry season (Figs 6& 7) due 

principally to an abundance of Heliocarpus pallidus, and other tree species in 

deciduous forest, which retained ripe seeds over a long period of time. However, 

Lilac-crowned Parrots were never observed to feed on Heliocarpus seeds, possibly 

due to the extremely small size of seeds (@3mm diameter), and parrots tended to 

consume immature seeds rather than mature seeds. 

Seasons and habitats did not differ significantly in food resource abundance over the 

course of a year. However, habitats did differ in their response to seasons. Semi- 

deciduous forest had greater resource abundance for Lilac-crowned Parrots during 

the dry season, which declined during the rainy season (Figs 8& 9). Conversely, 

deciduous forest had lowest resource abundance during the dry season, which 

increased during the rainy season to gradually overtake semi-deciduous forest (Figs 8 

& 9). This interaction between seasons and habitats in food resource abundance was 
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significant both for number of food trees (Table 7), and sum of DBH of food trees 
(Table 8). There was a similar interaction between habitats and seasons with regard 

to general fruiting phenology (Tables 5& 6), however, this was only significant with 

respect to the sum of DBH of fruiting trees (Table 6) 
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Table 3: Species included as parrot food items in analysis of phenology transects. 

Family Species Period Phase recorded 

recorded 
Anacardiaceae Astronium graveolens April - June unripe + ripe seed 

Anacardiaceae Comocladia engleriana March - May unripe + ripe seed 
Anacardiaceae Spondiuspurpurea March - May unripe seed 
Apocynaceae Plumeria rubra Sept - March unripe seed 
Araliaceae Sciadodendron excelsum July - Aug ripe fruit 

Bombacaceae Ceiba aesculifolia Feb - April ripe seed 
Burseraceae Unidentified Bursera spp. Nov ripe seed 
Capparaceae Crataeva tapia Sept - April unripe seed 
Euphorbiaceae Celaenodendron mexicanum July - Feb unripe + ripe seed 
Euphorbiaceae Cnidoscolus spinosus July - Aug unripe seed 

Euphorbiaceae Jatropha chamelensis July - Aug unripe seed 
Euphorbiaceae Jatropha malacophylla July unripe seed 
Euphorbiaceae Jatropha standleyi Aug - Sept unripe seed 
Leguminosae Unidentified Acacia spp. Nov - Dec unripe seed 
Leguminosae Albizia spp. Sept - Oct unripe seed 
Leguminosae Bauhinia ungulata Jan - Feb unripe seed 
Leguminosae Caesalpinia eriostachys Jan - March unripe seed 
Leguminosae Caesalpinia platyloba July - Oct unripe seed 

Leguminosae Ceasalpinia pulcherrima Nov - Dec unripe seed 
Leguminosae Caesalpinia sclerocarpa Sept - Nov unripe seed 
Leguminosae Erythrina lanata April - May unripe + ripe seed 
Leguminosae Lysiloma microphyllum Oct - March unripe seed 
Leguminosae Pithecellohium mangense Nov - Jan unripe seed 
Leguminosae Pithecellobium lanceolatum Sept - Oct unripe seed 
Leguminosae Unidentified legume spp. 1 June - July unripe seed 
Leguminosae Unidentified legume spp. 2 April/July unripe seed 
Meliaceae Guarea glabra April - June ripe seed 
Moraceae Brosimum alicastrum Jan - March unripe + ripe seed 
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Moraceae Ficus cotinifolia throughout ripe fruit 

Moraceae Ficus insipida throughout ripe fruit 

Myrtaceae Psidium sarlorianum March - May ripe seed 
Nyctaginaceae Guapira macrocarpa May/July ripe fruit 

Polygonaceae Coccoloba barbadensis Sept - Nov unripe seed 

Polygonaceae Coccoloba liebmannii Nov - March unripe seed 

Rutaceae Esenbeckia nesiotica Aug - Oct unripe seed 
Sapotaceae Sideroxylon capiri March - June unripe seed 

Table 4: Species recorded in phenology transects but excluded as food items. 

Family Species Unripe fruit Ripe fruit 

Apocynaceae Thevetia ovata Sept - Oct Oct - Nov 

Bignoniaceae Crescentia alata July - Nov Dec - April 

Bignoniaceae Tabebuia rosea April - May Dehiscent 

Burseraceae Bursera arborea June - Nov Nov - April 

Burseraceae Bursera excelsa July - Oct Oct - Feb 

Burseraceae Bursera heteresthes July - Aug Sept - Oct 

Burseraceae Bursera instabilis June - Oct Nov - Feb 

Caricaceae Jacaratia mexicana April - June May - June 

Cochlospermaceae Cochlospermum vitifolium April - June Kapok 

Euphorbiaceae Hura polyandra Feb - April April - May 

Julianaceae Amphipterygium adstringens July - Aug Sept - Jan 

Leguminosae Lonchocarpus eriocarinalis Aug - Oct Nov - Jan 

Leguminosae Lonchocarpus lanceolatus Oct - Nov Nov - Jan 

Leguminosae Lonchocarpus spp. Sept - Oct Nov 

Leguminosae Pterocarpus orbiculatus April - May June 
Simaroubaceae Recchia mexicana Jan - March March - May 

Sterculiaceae Guazuma ulmifolia Feb - March April 

Theophrastaceae Jacquinia pungens Jan - June Jan - June 

Tiliaceae Heliocarpus pallidus Nov - Dec Jan - May 

Zygophyllaceae Guaiacum coulteri April - June 
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Figure 2: Total number of trees and species in monthly phenology transects (1996). 
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Figure 3: Number and sum of diameter at breast height (DBH) of all fruiting trees in 

monthly phenology transects (1996). 
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Figure 4: Number of Lilac-crowned Parrot food trees and species available over all 

monthly phenology transects (1996). 

1 Trees -0- Species 

90 

80 

70 

60 
V 

50 
Q 

w 
N 

40 

30 
20 

10 

0 

14 

12 

10 
aý 
U 
G) 

ga 
w 0 
w 

6ö 
E 
z 4 

2 

0 

Figure 5: Number and sum of diameter at breast height (DBH) of Lilac-crowned 

Parrot food trees over all monthly phenology transects (1996). 
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Figure 6: Mean number of fruiting trees of all species per transect by habitat (1996). 
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Figure 7: Sum of diameter at breast height (DBH) of fruiting trees of all species in 

monthly phenology transects by habitat type (1996). 
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Figure 8: Mean number of food trees per phenology transect by habitat type (1996). 
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Figure 9: Sum of diameter at breast height (DBH) of Lilac-crowned Parrot food 

trees in monthly phenology transects by habitat type (1996). 
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Figure 10: Availability of key food plant species during the dry season of 1996 (dark 

bars) and 1997 (light bars). Phenology transects were not continued after July 1997. 
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Figure 11: Availability of key food plant species during the rainy season of 1996 (dark 

bars) and 1997 (light bars). Phenology transects were not continued after July 1997. 
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Table 5: Two-way ANOVA using the general linear model on number of trees of all 

species from phenology transects in three habitat types during the dry season and 

rainy season (1996). 

Source df Seq SS Adj SS Adj MS Fvalue Significance level 

Season 1 8.0 8.0 8.0 0.03 P=0.862 

Habitat 2 89.0 158.1 79.0 0.30 P=0.741 

Season*Habitat 2 1345.0 1345.0 672.5 2.58 P=0.094 

Error 27 7035.9 7035.9 260.6 

Total 32 8477.9 

Table 6: Two-way ANOVA using the general linear model on the sum of diameter at 

breast height (DBH) of all species from phenology transects in three habitat types 

during the dry season and rainy season of 1996. 

Source df Seq SS Adj SS Adj MS F value Significance level 

Season 1 272061 272061 272061 1.78 P=0.193 

Habitat 2 1080430 868402 434201 2.84 P=0.076 

Season*Habitat 2 1295986 1295986 647993 4.24 P=0.025 

Error 27 4125763 4125763 152806 

Total 32 6774241 
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Table 7: Two-way ANOVA using the general linear model on number of food trees 

from phenology transects in three habitat types during the dry season and rainy season 

of 1996. 

Source df Seq SS Adj SS Adj MS Fvalue Significance level 

Season 1 390.79 390.79 390.79 5.48 P=0.027 

Habitat 2 80.79 40.34 20.17 0.28 P=0.756 

Season*Habitat 2 829.19 829.19 414.59 5.81 P=0.008 

Error 27 1926.20 1926.2 71.34 

Total 32 3226.97 

Table 8: Two-way ANOVA using the general linear model on the sum of diameter at 

breast height (DBH) of food trees from phenology transects in three habitat types 

during the dry season and rainy season of 1996. 

Source df Seq SS Adj SS Adj MS F value Significance level 

Season 1 30884 30884 30884 0.49 P=0.491 

Habitat 2 787335 654156 327078 5.17 P=0.013 

Season*Habitat 2 697164 697164 348582 5.51 P=0.010 

Error 27 1708012 1708012 63260 

Total 32 3223396 
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Between year variation 
More fruiting trees and species were recorded during the dry season of 1997 

compared to the dry season of 1996 (Fig 12, Table 9). Analysis by two-way ANOVA 

demonstrated a significant difference between the years both for number of trees 

(Table 10), and sum of DBH of fruiting trees (Table 11). Habitats also differed 

significantly within the dry season both for number of trees (Table 10), and sum of 

DBH of fruiting trees (Table 11), with semi-deciduous forest demonstrating greater 

food resource abundance during the dry season than deciduous forest (Figs 8& 9). 

Finally, significantly more species of food trees were available during the dry season 

of 1997 compared to 1996 (one-way ANOVA: F1, lo = 7.34, P=0.022; Table 9). 

Hence, there was a greater abundance of food resources during the dry season of 

1997 compared to 1996, with all habitat types demonstrating a similar increase in 

abundance. 

Figure 12: Total number of food trees and sum of diameter at breast height (DBH) 

during the dry season in 1996 and 1997. 
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Table 9: Number of potential food species available over all phenology transects 
during the dry season months of January to June in 1996 and 1997. Mean number of 

species per month are presented with standard deviations. 

Month 1996 1997 

January 7 11 

February 8 11 

March 10 11 

April 9 12 

May 5 10 

June 67 

Species/month 7.5 t 1.87 10.33 ± 1.75 

Table 10: Two-way ANOVA on the number of food trees from phenology transects 

in three habitat types during the dry season of 1996 and 1997. 

Source df SS MS Fvalue Significance level 

Year 1 802.78 802.78 15.74 P<0.0001 

Habitat 2 773.39 386.69 7.58 P=0.002 

Year*Habitat 2 39.06 19.53 0.38 P= 0.685 

Error 
. 
30 1530.00 51.00 

Total 35 3145.22 

Table 11: Two-way ANOVA on the sum of diameter at breast height of food trees 

from phenology transects in three habitat types during the dry season of 1996 and 

1997. 

Source df SS MS Fvalue Significance level 

Year 

Habitat 

Year*Habitat 

Error 

1 862505 862505 

2 3292468 1646234 

2 50399 25199, 

13.14 P=0.001 

25.09 P<0.0001 

0.38 P=0.684 

Total 

30 1968529 65618 

35 6173902 
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3.4.2. SEASONALITY IN PARROT DIETS 

Lilac-crowned Parrots were observed to consume 30 food items throughout the year, 

with an additional 3 food species identified from crop samples of nestling parrots 

(Table 12). The overall composition of parrot diets throughout the year was 

predominantly unripe seeds (Fig 13), making Lilac-crowned Parrots primarily pre- 

dispersal seed predators. 

Parrot diet also varied considerably between the dry season and the rainy season (Figs 

14 & 15), with little overlap or similarity in food items between the seasons (Table 

17). The main food items during the dry season were seeds of Astronium graveolens 

(38.1% of observations), Brosimum alicastrum (18.8%), Celaenodendron mexicanum 

(10.3%), Guarea glabra (8.5%), and Comocladia engleriana (7.6%). However, 

during the rainy season, the diet comprised mainly seeds of Celaenodendron 

mexicanum and fruits of Sciadodendron excelsum (16.7% of observations each), 

along with seeds of Jatropha standleyi (14.4%), Jatropha malacophyllum (14%), 

Caesalpiniapulcherrima (13%), and Esenbeckia nesiotica (9.7%). 
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Figure 13: Composition of food types observed in the diet of Lilac-crowned Parrots 

throughout the year. 
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Table 12: Summary of diet observations for the Lilac-crowned Parrot at the 

Chamela-Cuixmala Biosphere Reserve between 1996 - 1997. 

Species Habitat' Part 

eaten 

No. of 

Parrots 

Feeding 

bouts 

Months 

ANACARDIACEAE 
Astronium graveolens S, W unrp seed 207 24 May-June 
Comocladia engleriana D unrp seed 41 3 March-April 
Spondius purpurea D unrp seed NA NA April-May 

APOCYNACEAE 
Plumeria rubra D unrp seed 12 6 Feb, Sept, 

Oct 
ARALIACEAE 

Sciadodendron excelsum w ripe fruit 72 7 July 

BOMBACACEAE 
Ceiba aesculifolia w rp seed 2 1 March 

BROMELIACEAE 
Bromelia spp. D, S, W phylum 8 4 July-Sept 

BURSERACEAE 
Bursera spp. D ripe seed 30 1 Nov 

CAPPARACEAE 
Crataeva tapia W, S unrp seed 2 1 April 

EUPHORBIACEAE 
Celaenodendron mexicanum W, S unrp seed 122 16 Feb, March, 

Jul; 
Jatropha malacophylla D unrp seed 60 1 July 
Jatropha standleyi D unrp seed 62 4 July 
Sebastiana spp. seed NA NA April-May 

HOMOPTERA 
Leaf gall larvae ofA. S, W insect 18 9 April-July 
graveolens larvae 

LEGUMINOSAE 
Acaciafarnesiana w unrp seed 2 1 March 
Bauhinia ungulata D unrp seed 37 8 Feb-March 
Caesalpinia eriostachys D, W unrp seed 1 1 Feb 
Caesalpiniapulcherrima D unrp seed 56 12 Nov 
Erythrina lanata D unrp seed 2 1 May 
Lysiloma microphyllum D unrp seed 8 1 March 
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Pithecellobium dulce S sd + pulp 2 1 April 
Pithecellobium lanceolatum D unrp seed 8 2 Sept-Oct 
Unid. Vine 1 D unrp seed 8 1 Oct 
Unident legume spp. 1 W unrp seed 2 1 July 
Unidentified legume spp. 2 W unrp seed 3 1 March 

MELIACEAE 
Guarea glabra S ripe seed 46 2 May-June 

MORACEAE 
Brosimum alicastrum S sd + pulp 102 14 Jan-April 
Ficus cotinifolia D, W fruit 6 3 Jan-March 
Ficus insipida S fruit 10 1 May 

NYCTAGINACEAE 
Guapira macrocarpa D ripe fruit NA NA April-May 

RUTACEAE 
Esenbeckia nesiotica D unrp seed 41 7 Sept, Oct 
Unident spp. 3 D unrp seed 8 1 Jan 

SAPOTACEAE 
Sideroxylon capiri w unrp seed 10 1 June 

* Additional items in diet identified from crop samples 
1D= deciduous forest, S= semi-deciduous forest, W= watercourse 
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3.4.3. ANNUAL VARIATION IN NESTLING DIET 

Dietary composition , 
A total of 14 food plant species were consumed by nestlings in 1996 (Table 15), 

compared with 29 food plant species in 1997 (Table 16), with a total of 32 different 

species recorded in nestling diets over the two years. As for observations of parrot 

diets throughout the year, composition of nestling diet was predominantly immature 

seeds, with some fruit, and plant material (Fig 16). The principal seed items in 

nestling diets during 1996 were Astronium graveolens, Comocladia engleriana, 

Guarea glabra, and Crataeva tapia, while in 1997 the principal seed items in the diet 

were Comocladia engleriana, Sebastiana spp., Carica papaya, Guarea glabra, and 

two unidentified seed species (Figs 17 - 20). The main fruit items consumed by 

parrots were Ficus species and Guapira macrocarpa. In 1997, parrots also 

consumed the fruit pulp of Carica papaya, and Pithecellobium dulce, which are two 

cultivated species. 

Small arthropods occurred very infrequently in the diet, and it is likely that these were 
ingested incidentally with some fruit or seed food items. Small pieces of wood also 

occurred in almost all crop samples, and indications are that these were intentionally 

ingested by parrots. The wood items resembled pieces of small twigs rather than 

wood from the inside walls of the nest cavity. In addition, nesting pairs were 

occasionally observed biting off small pieces from the end twigs of branches prior to 

entering the nest cavity to feed the young. The role of wood pieces in the diet is 

unclear, however, they may help to remove the remains of old food items from the 

crop, as skins of digested fruits were frequently found wrapped around pieces of 

wood in the crop samples. The consumption of pieces of wood may also provide 

additional chemical or nutrient value in the diet, however, this needs to be determined 

by chemical analysis. 

58 



Figure 16: Composition of food types in the diet of Lilac-crowned Parrot nestlings 

as determined from crop samples. 
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Dietary variety 

No significant differences were found between crop samples of sibling nestlings for 

each sample instance. Therefore, crop samples of siblings taken at the same time 

were pooled to provide a sample for each nest day, representing items fed to nestlings 

by parent birds per feeding instance at each nest. Analysis by one-way ANOVA also 
found no significant difference in dietary variety between nests in the same year, 

indicating that parent birds did not vary individually in diet. However, variety of 
items in nestling diets differed significantly between years (Table 14), with nestling 
diets being more varied in 1997 compared to 1996 (Table 13). 

Table 13: Mean number of different items in crop samples of Lilac-crowned Parrot 

nestlings in 1996 and 1997. 

Year Number of Mean number of Variance 

samples items 

1996 24 3.89 1.766 

1997 35 5.97 2.852 

Table 14: One way ANOVA on the number of different items in crop samples of 
Lilac-crowned Parrot nestlings between 1996 and 1997. 

Source of Variation df SS MS F value Significance level 

Year 1 62.57 62.57 25.92 P<0.0001 

Error 57 137.6 2.414 

Total 58 200.17 
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3.4.4. NICHE BREADTH AND SUvnARITY 

Nestling diets between years 

There was a low degree of similarity and overlap in nestling diets between the two 

years (Table 17). However, Levins' standardised niche breadth for nestling diets 

varied little between the years, with B=0.406 in 1996, and B=0.386 in 1997. 

Hence, although Lilac-crowned Parrots consumed different food items in the two 

years, there was still the tendency to concentrate on a few specific resources. The 

number of frequently used resources at a 5% cut-off level was the same in both years, 

with 7 most frequently used resources by occurrence, and 4 most frequently used 

resources by biomass in the diet (Tables 15 & 16). However, the actual food items 

were different with seeds of Astronium graveolens being the most frequently used 

resource in 1996 (Table 15), while seeds of Comocladia engleriana were 

predominant in the diet in 1997 (Table 16). This is due to the fact that Astronium 

graveolens fruited later in June in 1997, and was not available during the nestling 

period of March to April (Fig 10). 

Seasonal diets 

As noted in Table 18, Levins' niche breadth was narrower in the dry season being 

below 0.3 compared to the rainy season, and declined most sharply in the late dry 

season (April - June). Figure 21 illustrates that changes in the food niche breadth of 

Lilac-crowned Parrots during each period of the year, were strongly correlated with 

the number of potential food species fruiting over each three month period, as 

determined by phenology transects (Pearson's r=0.963, df = 2, P<0.05). This 

suggests that food niche breadth of Lilac-crowned Parrots tracks resource abundance, 

with niche breadth being narrowest when least resources are available. Hurlbert's 

niche breadth which weights resource use by an estimate of abundance, gave a 

broader niche value for the dry season in comparison with the rainy season (Table 18). 

As fewer resources are available in the dry season, parrots may be exploiting those 

resources which are most abundant. A greater variety of resources are available 

during the rainy season, hence although parrot diet may broaden in comparison to the 
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dry season, this may be partly due to a greater range of resource availability, with 

parrots in effect maintaining selectivity in the food resources utilised. 

Table 15: Composition of nestling diets in 1996 by percent of overall occurrence and 

biomass (unidentified food items labelled by species number). 

Food item Percent by relative 

frequency 

Percent by relative 

biomass 

Astronium graveolens 27.6 57.1 

wood pieces 23 4.8 

Guarea glabra 9.6 10 

Ficus species 7.7 NA 

Comocladia engleriana 6.4 13.2 

Guapira macrocarpa 6.4 NA 

Caesalpinia eriostachys 5.8 4.1 

Crataeva tapia 4.5 7.1 

plant material 1.9 0.93 

Species 11 1.9 0 

Plumeria rubra 1.9 1.1 

Species 7 1.3 1.1 

Species 9 1.3 0.53 

Species 12 0.64 0.13 
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Table 16: Composition of nestling diets in 1997 by percent of overall occurrence and 
biomass (unidentified food items labelled by species number). 

Food item Percent by frequency Percent by biomass 

Comocladia engleriana 16.9 46.0 

wood pieces 16.7 4.2 
Sebastiana species 8.6 10.5 

Species 13 7.5 10 

Species 16 5.8 6.2 
Carl ca papaya 5.8 4.4 

Ficus species 5 NA 

Guapira macrocarpa 4.7 NA 

Erythrina lanata 3.9 3.3 

Bauhinia ungulata 3.1 0.73 

Acaciafarnesiana 2.5 1.6 

Spondiuspurpurea 2.5 0.16 

plant material 2.2 0.39 

Species 25 1.9 0.65 

Guarea glabra 1.7 4.0 

Plumeria rubra 1.7 0.71 

Brosimum alicastrum 1.4 2.9 

Pithecellobium dulce 1.4 0.78 

Species 15 1.4 0.52 

Species 27 1.1 1.4 

Curculionidae snout beetle 0.83 NA 

Species 11 0.83 0.11 

Species 21 0.56 0.13 

Species 23 0.56 0.26 

Astronium graveolens 0.28 0.46 

Caesalpinia eriostachys 0.28 0.13 

Species 12 0.28 0.065 

Species 24 0.28 0.26 

Species 26 0.28 0.065 
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Table 17: Similarity measures for comparison of nestling diets between years, and 

observations on adult diet between the dry and rainy season. 

Similarity measure Between years Between years Between seasons 
(inc. veg & wood) (excl. veg & wood)' 

Percent similarity 40.8% 29.5% 13.6% 

Coefficient of Jaccard 0.313 0.267 0.16 

Morisita Index 0.544 0.283 0.109 

' Similarity measures were recalculated excluding plant material and wood pieces 

occurring in crop samples, as these may not represent actual food items. 

Table 18: Niche breadth analysis for Lilac-crowned Parrot diets throughout the year. 

Period of year Levins' standardised Hurlbert's niche breadth B' 

niche breadth (B) By trees By DBH 

Early dry season (Jan - March) 0.302 NA NA 

Late dry season (April - June) 0.100 NA NA 

Peak rainy season (July - Sept) 0.427 NA NA 

Transition rain to dry (Oct - Dec) 0.354 NA NA 

Dry season (Jan - June) 0.221 0.618 0.322 

Rainy season (July - Dec) 0.552 0.207 0.136 

Overall (Jan - Dec) 0.345 NA NA 
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Resource utilisation and availability 
Analysis of niche breadth, similarity measures, and composition of the diet all indicate 

that Lilac-crowned Parrots may adjust food resource use in response to temporal 

variations in resource abundance. Chi-square contingency analysis also demonstrated 

a significant difference in the frequency of feeding bouts in different forest types 

between four periods of year (x2 = 74.4, df = 5, P<0.0001). Lilac-crowned Parrots 

concentrated foraging activity in semi-deciduous forest at the end of the dry season, 
but switched to deciduous forest following the onset of the rainy season (Fig 22). 

This corresponds to the pattern of food resource availability in each forest type at 

different times of the year, with most resources available in semi-deciduous forest at 

the end of the dry season, while resource abundance increases in deciduous forest 

following the onset of the rainy season (Figs 8& 9). 
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Figure 21: Levins' niche breadth for parrot diets compared with number of food 

species in phenology transects during four periods of the year. Pearson's r=0.963, 

df=2, P<0.05. 
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Figure 22: Frequency of feeding bouts by Lilac-crowned Parrots in three habitat 

types during four periods of the year. X2 = 74.4, df = 5, f' < 0.0001. 

30 

25 

0 
to 20 

0 
U 

10 
0 

5 

C) 

Q scmi-decidtuýiu 
  deciduous 

Q watcra, ur, c 

70 

Jan-March April - June July - Sept Oct - Dec 

Jan-March April-June July-Sept Oct-Dec 



3.5. DISCUSSION 

3.5.1. FRUITING PHENOLOGY AND RESOURCE AVAILABILITY 

Fruiting phenology at the study site demonstrated fluctuations in abundance similar to 

the seasonality observed in other tropical forests (Janzen 1967; Smythe 1970a; 

Daubenmire 1972; Frankie et al. 1974; Opler et al. 1980; Foster 1982a; Lieberman 

1982; Terborgh 1986a; Bullock & Solis-Magallanes 1990; Janson & Emmons 1990; 

Guevara et al. 1992; Lugo & Frangi 1993; Murali & Sukumar 1994; Peres 1994; 

White 1994). The general pattern of fruiting phenology determined in the study 

corresponds to that observed by Bullock & Solis-Magallenes (1990) for deciduous 

forest in Chamela. The lowest period of fruit or seed production occurred during the 

months of May to June at the end of the long dry season, indicating that this is the 

most critical period in terms of food resource abundance for Lilac-crowned Parrots. 

The sharp rise in both overall fruiting phenology and food resource abundance during 

the months of October to December occurred as a response to the rainy season, and 

corresponds to a similar peak in fruiting phenology in deciduous forest recorded by 

Bullock & Solis-Magallenes (1990). 

However, phenology transects in semi-deciduous forest demonstrated variability in 

the pattern of fruiting phenology between the two forest types, which was greater 

when considering only the availability of unripe seeds that may provide food resources 

for Lilac-crowned Parrots. In general, fruiting phonology was less seasonally marked 

in semi-deciduous forest than in deciduous forest. However, semi-deciduous forest 

produced greater food resource abundance in the early to mid dry season than in the 

rainy season. Other studies have demonstrated that wetter forests tend to have less 

marked seasonality (Daubenmire 1972; Frankie et al. 1974), but still exhibit annual 

peaks and declines in fruit availability (Terborgh 1986a; Janson & Emmons 1990; 

Peres 1994). It should be noted however, that semi-deciduous forest at the study site 

experiences the same annual rainfall as deciduous forest, hence differences in fruiting 

phonology between the two forest types are likely to be due to variations in soil type 

or humidity (Foster 1980). 
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Habitat types showed less variation in fruiting phenology when considering all species 

recorded in transects, due to the persistence of ripe fruits on many deciduous forest 

trees during the early to mid dry season. This pattern corresponded to the extended 

fruiting period in deciduous forest recorded by Bullock & Solis-Magallenes (1990), 

and arises as many deciduous forest species commence fruiting during the rainy 

season, with fruits ripening during the early to mid dry season. However, when 

considering only food resource abundance for Lilac-crowned Parrots, there was a 

marked seasonal difference between the two forest types with deciduous forest having 

significantly lower availability of unripe seeds during the dry season. Hence from the 

perspective of Lilac-crowned Parrots, semi-deciduous forest is an important source of 

food during the dry season, which is also the parrot breeding season. In particular, 

semi-deciduous forest provides essential food resources during the late dry season 

months of May to June, and may be a key habitat type at this critical time of the year. 

Certain tree species may also provide key resources for the animal community due to 

their characteristic of fruiting in May/June, at the end of the long dry season. These 

include Jacaratia mexicana and Spondius purpurea which produce ripe fruit during 

the dry season. Figs may also provide important food resources throughout the year 

due to the asynchronous fruiting of individual trees. However, such fruit resources 

may be of limited value to parrots which are principally granivorous in nature. Tree 

species such as Astronium graveolens may provide essential seed resources, as this 

species appears to fruit en masse towards the end of the long dry season drought. 

The habit of Astronium graveolens of setting seed during the driest part of year, may 

mean that this species provides a mainstay food resource for Lilac-crowned Parrots 

during a critical period of resource scarcity. 

In addition to within year variation in fruiting phenology, there was significant 

variation between years with greater resource abundance during the dry season of 

1997 compared to 1996. This may be related to the high rainfall during the preceding 

rainy season of 1996, and the atypical dry season with rains in March and April of 

1997 for the first time in 20 years of recording at the study site (Bullock 1986,1988; 

Chapter 2). Foster (1982b) suggests that annual fruiting rhythms of tropical forests 
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may be seriously disrupted only once every 10 years, with mild disruptions occurring 

once every 5 years. On Barro Colorado Island, excessive rain during the dry season 

resulted in a crash in fruit production during the second half of the rainy season, with 

such fluctuations in climate being beneficial to some species of the animal community, 

but detrimental to others (Foster 1982b). Increased rainfall and fruiting phenology in 

deciduous forest during the dry season may be of benefit to animal communities 

during a severe period of the year, though it is unknown what effect this may have on 
fruit production in deciduous forest during the ensuing rainy season. It is clear 
however, that annual variations in rainfall in such a markedly seasonal environment 

may have dramatic impacts on the availability of plant resources, with consequences 

for the animal community. 

Hence, there is significant temporal and spatial variation in fruiting phenology and 

food resource abundance at the study site. Overall, the critical period of lowest 

resource abundance occurs during the months of May to June at the end of the long 

dry season drought. Spatial variation in resource abundance is also demonstrated 

with greater resource abundance in semi-deciduous forest during the dry season, later 

increasing in deciduous forest during the rainy season. 

The fact that Leguminosae is the largest plant family in the Chamela-Cuixmala forest 

(Lott 1993), may contribute to the pronounced seasonality of fruiting observed at the 

study site. Both the Leguminosae and Bombacaceae families contain predominantly 

dehiscent species, and hence require dry air conditions for dispersal of ripe fruits, 

leading to a concentration of fruiting activity during the dry season (Janzen 1967). 

However, in contrast with the tropical dry forest of Costa Rica which exhibits peak 

fruiting activity at the end of the dry season (Frankie et al. 1974), fruiting in the 

Chamela dry forest begins in the late rainy season and peaks in the early dry season. 

The dramatic decline in fruiting activity in the Chamela deciduous forest at the end of 

the dry season may be due to the extent and strength of the drought at the study site. 

The marked seasonality in leaf flush, flowering and fruiting of deciduous forest in 

Chamela (Bullock & Solis-Magallenes 1990), means that adjacent semi-deciduous 
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forest in low lying areas and larger valleys may form key habitat patches for the 

animal community during the late dry season. Another important habitat type at the 

study site may be that of monodominant Celaenodendron mexicanum forest 

(Martijena & Bullock 1994), which was not included in phenology transects due to 

logistical constraints. However, some areas of Celaenodendron mexicanum forest did 

occur in transects along watercourses in the study site, and contributed to the rise in 

fruit abundance for watercourses during the rainy season. It is therefore predicted 

that Celaenodendron forest may provide abundant food resources for Lilac-crowned 

Parrots during the fruiting period of July/August to January. 

Foster (1980) suggested that adjacent vegetation types may respond differently to 

climatic variation, creating environmental patchiness in the availability of plant 

resources. It is to be expected that animal communities -will track these temporal and 

spatial variations in plant resource abundance either by dietary switching, 

concentrating on a few key resources, or migrating between forest types (Wiens 1976; 

Fleming 1992; van Schaik et al. 1993). The present study demonstrates the differential 

fruiting phenology of semi-deciduous and deciduous forest, and the potential value of 

semi-deciduous forest to animal communities at the study site during the dry season. 

3.5.2. PARROT DIET AND RESOURCE UTILISATION 

Observations on the diet of the Lilac-crowned Parrot demonstrate that fruit formed 

only 10 - 12% of the diet, while immature seeds in particular formed 68% of the diet. 

In fact, seeds form a major component of the diet for many parrot species (Galetti 

1993; Gilardi 1996; Enkerlin-Hoeflich & Hogan 1997), though some parrot species 

may be primarily frugivorous (Snyder et at. 1987; Wermundsen 1997). Seeds also 

form a major component of the diet for many Australian parrot species, which have 

adapted to exploit agricultural crops along the Australian wheatbelt (Saunders 1980; 

Beeton 1985; Rowley 1990; Rowley & Chapman 1991). Seeds are the most 

nutritious part of the plant resource being high in protein, minerals, and lipid content, 

while fruits such as figs are high in calcium and fibre (Gilardi 1996). 
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The consumption of insect larvae may provide additional protein or fat in the diet, 

though it did not form a major component of the diet of Lilac-crowned Parrots. 

Scarlet Macaws in Belize also feed on the leaf gall larvae of Astronium graveolens 

(pers. obs. ), while Maroon-bellied Conures have been observed feeding on the gall 

larvae of Persea pyrifolia (Martuscelli 1994). Insect larvae are fairly common in the 

diet of Australian parrots (Saunders 1980; Rowley 1990; Rowley & Chapman 1991; 

Smith & Moore 1991), but only occasionally reported for Neotropical parrots 

(Martuscelli 1994; Gilardi 1996; Enkerlin-Hoeflich & Hogan 1997). 

Notably, Lilac-crowned Parrots were not observed consuming flowers. However, 

flowers are not widely available in deciduous forest during most of the year, with 

flowering peaks being concentrated at the start of the rainy season between late June 

to early July (Bullock & Solis-Magallenes 1990). Most other parrot species also 

consume flowers very infrequently (Snyder et al. 1987; Gilardi 1996; Wermundsen 

1997), although flowers formed the second main food item for Scaly-headed Parrots 

in Brazil (Galetti 1993). 

Dry season diets varied slightly when compiled from field observations compared to 

crop samples, illustrating the potential limitations of field observations. Some food 

plant species may be eaten in such relatively small proportions that the probability of 

observing parrots feeding on the resource item may be fairly low. Alternatively, it 

may be more difficult to observe parrots feeding on some food items than others. An 

example is Comocladia engleriana, which was relatively frequent in nestling diets, but 

for which there were few observations of parrots feeding on this item. Parrots may be 

more wary or secretive when feeding on certain food items, particularly where there 

may be a greater risk of predation in smaller trees which are closer to the ground. 

Hence, field observations may be limited by inherent biases, however, observations 

are the only means by which to determine parrot diets throughout the year. Potential 

bias in field studies of diet should be reduced by conducting regular observations 

along transects in each habitat type. 
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A predominantly seed diet means that Lilac-crowned Parrots may need to adjust 

rapidly to changes in seed availability. Plants may have evolved high synchrony in 

seed production as a strategy to avoid predation (Janzen 1969,1971; Augspurger 

1981). Hence, pre-dispersal seed predators such as parrots need to be highly mobile 

and flexible in order to exploit each food resource as it becomes available. This 

flexibility and adaptability in diet was demonstrated by the between year variations in 

nestling diets, and the high seasonality in parrot diets within a year. 

Nestling diets were more varied in 1997, corresponding with the greater number of 

fruiting species recorded in phenology transects. However, nestling diets varied little 

in niche breadth between 1996 and 1997, as there was still the tendency to 

concentrate on a few main items in the diet. Hence, although Lilac-crowned Parrot 

nestlings may be fed a variety of food items, only a few of these form a large 

proportion of the diet. This predominance of a few food items in nestling diets is 

similar to that observed for other bird species (Lack 1954; Ward 1965; Newton 1967; 

Banbura et al. 1994; Bancroft & Bowman 1994; Kleintjes & Dahlsten 1994). 

However, there was low overlap and similarity in nestling diets between years as the 

actual food items and proportions consumed varied. The principal variation lay in the 

switch from Astronium graveolens seeds as the main food item for Lilac-crowned 

Parrot nestlings in 1996, to Comocladia engleriana seeds as the main food item in 

1997. This switch in nestling diet corresponded with annual variations in the 

availability of each food species. Furthermore, the fact that there was no significant 

difference in nestling diet between Lilac-crowned Parrot nests in a given year indicates 

that changes in diet were general across all nesting pairs. 

Dietary switching also occurred within a year, as indicated by the low overlap in diets 

between the dry and rainy season. This is due to fact that specific food items were 

only available at certain times of the year. Seasonal variations in diet have been noted 

for Australian parrots (Saunders 1980; Beeton 1985; Rowley & Chapman 1991), and 

some Neotropical parrots (Snyder et al. 1987; Galetti 1993; Wermundsen 1997). 

Seasonal diet switching was also recorded for seed-eating Galapagos finches (Smith et 
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al. 1978; Grant & Grant 1980; Schluter 1982a, b; Boag & Grant 1984; Price 1987), 

and may occur in response to environmental heterogeneity (Schluter 1981). 

The positive correlation between niche breadth value and food species abundance 

indicates that Lilac-crowned Parrots may exhibit narrower dry season diets in 

response to resource availability. Hurlburt's indice further demonstrated that while 

parrots may exhibit a narrower diet during periods of low resource abundance, this is 

due to the fact that many plant resources are not present throughout the year. Hence 

the animal community may be restricted to exploiting those few resources which are 

available. 

The present study demonstrates the high flexibility in parrot. diets, incorporating 

dietary switching, as well as niche breadth expansion and contraction, which was 

closely related to temporal variations in food resource availability. Lilac-crowned 

Parrots also demonstrated spatial variation in habitat use corresponding to 

fluctuations in the availability of food resources in different habitat types throughout 

the year. Finally, an ongoing telemetry study has demonstrated that Lilac-crowned 

Parrots at the study site make seasonal altitudinal migrations of over 50 km to the 

mountains during the severe period of resource scarcity in May and June, returning 

again in July with the start of the rainy season (Renton unpubl. data). 

The pattern of resource availability and utilisation by parrots demonstrates the 

importance of semi-deciduous forest in providing essential food resources during the 

critical period of resource scarcity in the late dry season. Semi-deciduous forest may 

be of importance to other animal species at the study site, particularly those which are 

not equipped to make large-scale movements. However, the dynamics of patch use 

by the animal community in the tropical dry forest of Chamela is relatively unknown, 

and requires further investigation to evaluate the impact of habitat fragmentation. 

Lilac-crowned Parrots employed all of the strategies proposed for frugivores and 

nectarivores (Wiens 1976,1985; Fleming 1992; van Schaik et al. 1993), in order to 

closely track a seed resource base which exhibited high temporal and spatial variability 
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in abundance. Granivory is relatively uncommon among bird feeding guilds (Poulin et 

al. 1994a, b), and appears to require high flexibility in diet, spatial scales, and mobility 

in order to exploit such ephemeral and highly variable resources. However, most 

parrot species are primarily canopy seed-eaters. The present study indicates that 

parrot populations may be highly adapted to track food resources, and suggests a 

close evolutionary relation between parrot seed predators and plant seed resources. 

The fact that parrots consume predominantly unripe seeds, and closely track 

variations in seed abundance, makes them potentially important pre-dispersal seed 

predators on canopy trees. The tendency for tree species in tropical dry forests to be 

clumped in distribution (Hubbell 1979; Thorington et al. 1982), and the potential for 

seed predators such as parrots to significantly impact seed production (Higgins 1979; 

Janzen 1981; Heithaus et al. 1982; Clout 1989; Galetti & Rodrigues 1992), mean that 

a highly mobile seed predator may influence forest dynamics. Studies in Central 

American forests suggest that herbivores play a regulatory role in maintaining forest 

diversity (Janzen 1970; Dirzo & Miranda 1990,1991), while Hambäck (1998) 

presents a model in which an optimally foraging herbivore in a seasonal environment 

may promote co-existence among plant species. Parrots constitute a high proportion 

of canopy granivores in tropical forests (Loiselle 1988; Terborgh et al. 1990). This 

combined with the tendency to form large feeding flocks, high mobility, and a wide 

range, means that as pre-dispersal seed predators, parrots may play an important 

regulatory role in maintaining diversity of canopy trees in tropical forests. 
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CHAPTER 4 

NESTING BEHAVIOR OF THE LILAC-CROWNED PARROT1 

4.1. ABSTRACT 

Nesting behavior of the Lilac-crowned Parrot (Amazonafinschi) was observed at 18 

nests in the tropical dry forests of the Chamela-Cuixmala Biosphere Reserve, western 
Mexico. Nest site characteristics, and the pattern of parental care throughout the 

nesting cycle are described for a mainland Amazon parrot, and compared with that 

observed for other Amazon parrot species. Nest sites were located in natural cavities 

of large mature trees of Celaenodendron mexicanum and Astronium graveolens 

characteristic of semi-deciduous forest. There was little variation between nest sites 
in tree species, tree size, cavity height, and entrance width, indicating that Lilac- 

crowned parrots may select nest sites based on these characteristics. Lilac-crowned 

Parrots exhibited a low degree of nest site fidelity regardless of success or failure of 

nests, which contrasts with the 30 - 40% nest site re-use found for other parrots. 

Lilac-crowned Parrots were distinct from most other parrot species in the high 

synchrony of nest initiation, with all eggs laid within 2 weeks at the beginning of 

February. Lilac-crowned Parrots also exhibited high nest attendance during the 

incubation phase of the nesting cycle, with the female absent from the nest for a mean 

of only 39.4 mins per day. Throughout the nesting cycle, females and nestlings were 

fed on average only twice a day, and nest attendance during feeding visits was short. 

The infrequent feeding visits and short nest attendance exhibited by Lilac-crowned 

Parrots corresponds with that found for other mainland Amazon parrots in north- 

eastern Mexico, but contrasts with the multiple feedings and longer nest attendance 

observed for island Amazon species. Many of the distinct aspects of nesting behavior 

of the Lilac-crowned Parrot may be related to environmental factors of predation rate 

and food resource availability, particularly towards the end of the extreme dry season. 

' Prepared for submission to Wilson Bulletin 
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4.2. INTRODUCTION 

The majority of studies on the ecology of Neotropical Amazon parrots have been 

conducted on species of the Caribbean Islands (Snyder et al. 1987; Gnam 1991; Gnam 

& Rockwell 1991; Wilson et al. 1995,1997). A comparative study of three species of 

mainland Amazon parrot in north-eastern Mexico found distinct variations with island 

species in some aspects of reproductive behavior and productivity (Enkerlin-Hoeflich 

1995). Females and nestlings of three mainland Amazon parrot species were fed only 

twice a day (Enkerlin-Hoeflich 1995), in comparison with the multiple feedings 

observed for Caribbean Amazons (Snyder et al. 1987; Gnam 1991; Wilson et al. 

1995) and other Neotropical parrots (Lanning 1991; Waltman & Beissinger 1992). 

Additional studies on mainland Amazon parrots are important to determine whether 

conclusions from studies on island species are applicable to mainland species. The 

Amazon parrot species of Mexico are particularly suited to comparison with the 

Amazona species of the Greater Antilles in the Caribbean due to their close 

evolutionary relation (Snyder et al. 1987; Forshaw 1989). The Lilac-crowned Parrot 

is endemic to western Mexico, and has a restricted distribution from south-eastern 

Sonora to Oaxaca (Forshaw 1989). There have been no studies on the ecology of the 

Lilac-crowned Parrot, and little is known of its breeding biology. This paper presents 

observations on the nest site requirements and nesting behavior of the Lilac-crowned 

Parrot in the wild, which is compared with observations for other island and mainland 

Amazon parrots. 
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4.3. STUDY AREA AND METHODS 

Studies on the breeding biology of the Lilac-crowned Parrot were conducted at the 

13,142 hectare Chamela-Cuixmala Biosphere Reserve (19°22'N 104°56'W to 

19°35'N 105°03'W), in the state of Jalisco on the Pacific Coast of Mexico. The study 

site has a dry tropical climate exhibiting a marked seasonality in precipitation, with 

85% of the 706.6 mm annual rainfall occurring in June to October, and a prolonged 

drought from mid-February to late May (Bullock 1986,1988). The reserve has a hilly 

topography varying in elevation from 20 m to 520 m above sea level. The dominant 

vegetation type on the slopes is tropical dry deciduous forest, with semi-deciduous 

forest in the larger drainages and more humid valleys (Lott et al. 1987; Lott 1993; 

Rzedowski 1994). Monodominant forests of Celaenodendron mexicanum also occur 

in the reserve as discontinuous patches within the tropical deciduous forest mosaic 

(Martijena & Bullock 1994). 

Observations on the nesting behavior of Lilac-crowned Parrots were conducted from 

January to June in 1996 and 1997. Nest searches were carried out in February during 

the nest prospecting and early incubation phases of the parrot breeding cycle. No 

additional nests were located later in the nesting cycle due to the secretive behavior of 

breeding pairs which made detection of nest sites difficult. Preliminary observations 

in February to March 1995 had determined the peak activity period for parrots to be 

in the early morning and late afternoon. Therefore, nest searches were conducted 

during the first four hours following sunrise and the last four hours prior to sunset. A 

cavity was considered a potential nest site if one or both of the adult parrots were 

observed entering the cavity. The cavity was considered an active nest site if one of 

the adult parrots remained within the cavity for longer than 20 mins. Nest site fidelity 

was determined from the incidence of re-use of nest cavities between successive years 

Access to nest cavities was achieved using both single-rope ascending (Perry 1978; 

Perry & Williams 1981), and tree bole-climbing techniques (Donahue & Wood 1995). 

Nesting requirements of the Lilac-crowned Parrot were determined by measurement 

of nest cavity dimensions as recommended by Saunders (1979) and Saunders et al. 
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(1982). The variables measured included: Tree species, diameter at breast height 

(DBH) of the tree; height above ground of the entrance, width and length of entrance, 

cavity depth, internal diameter, and circumference at entrance. The map location of 

each nest site, and where possible, the tree used by the nesting pair for the transfer of 
food from the male to the female, were obtained using a geographic positioning 

system (GPS) giving X and Y co-ordinates in the UTM format. The coefficient of 

variation was determined for each of the mean cavity dimensions to evaluate the 

variability of characteristics between nest sites. 

Behavior of breeding pairs was determined by observations of parrot nests from 

covered hides using 10x40 binoculars. Continuous dawn to dusk observations were 

conducted on 30 man-days over 8 nests. No activity was observed at nests during 

mid-day, therefore additional observations were restricted to the first 4 hours after 

sunrise and the last 3 hours prior to sunset giving an additional 174 hours of 

observation over 10 nests. Parental care and investment was evaluated from data on: 

the number of feeding visits to the nest; arrival time; duration of feeding visit; time 

spent in the nest cavity; and time spent in the nest area (defined as within 100 m of the 

nest cavity). All descriptive statistics were presented with means, value ranges, and 

standard deviations. 
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4.4. RESULTS 

Nest site characteristics 
A total of 23 different nest sites were located in 1995 to 1997, all of which occurred 

in natural cavities. Nest cavities were principally located in live trees of 

Celaenodendron mexicanum, local name `Guayabillo' (47.8%, n= 11), and 

Astronium graveolens, local name `Culebro' (34.8%, n= 8). Of the remaining four 

cavities, 2 were located in dead trees, 1 was located in a Tabebua species, and the 

final cavity was located in an unidentified tree species. There was little evidence of 

nest site fidelity, with only one instance when a cavity was re-used after an interval of 

one year. 

Mean cavity dimensions for 20 active nest sites are presented in Table 19 - three 

cavities could not be accessed for safety reasons. The cavity dimensions with least 

variation between nest sites were height of entrance from the ground, and width of 

entrance, indicating that parrots may select cavities based on narrow criteria for these 

two characteristics. Diameter of tree at breast height and circumference of tree at 

entrance were also relatively consistent between nest sites, and reflect the fact that 

parrot nest sites were located in large, mature trees. Greatest variability was found in 

depth of cavity, length of entrance, and distance to nearest active nest, suggesting that 

these may not be important factors in the selection of nest sites by parrots. Hence, 

Lilac-crowned Parrots utilised large, emergent trees characteristic of semi-deciduous 

forest, and may select nest sites on the basis of tree species, size, cavity height, and 

entrance width. 

4 
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TABLE 19: CAVITY DIMENSIONS FOR 20 LILAC-CROWNED PARROT NESTS 

Nest character Mean Standard Range Coefficient of 
deviation variation (s/m)*100 

Tree diameter at breast 

height (cm) 43.63 ± 13.34 27.7-81.5 30.57% 

Cavity height from 

ground (m) 9.81 ± 1.898 7.42-14.66 19.34% 

Entrance width (cm) 10.01 ± 2.26 6.4-14.0 22.5 8% 

Entrance length (cm) 17.93 f 11.85 7.5-50.0 66.08% 

Internal diameter (cm) 20.42 t 7.38 10.5-35.0 36.12% 

Cavity depth (cm) 71.03 f 56.62 25.0-260.0 79.72% 

Circumference at 

entrance (cm) 92.24 t 25.96 45.0-135.0 28.14% 

Nearest active nest (m) 943.9 t 732,86 184 - 2,419.5 77.64% 
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Egg-laying and incubation 

Timing of egg-laying was highly synchronised between nests with most pairs 

commencing incubation within 14 days of the first nest being initiated. Mean nest 

initiation date was 6 February ± 4.63 days in 1996 (range 30 Jan - 13 Feb, n= 8), and 

15 February ± 5.27 days in 1997 (range 10 Feb - 23 Feb, is = 6). 

Nest attendance by the female was high during incubation, with the female leaving the 

nest only twice a day in the morning and afternoon to be fed by the male. During this 

time the female spent a mean of only 39.4 26.54 mins per day out of the nest over 

both morning and afternoon feeding sessions (range 15 - 95 mins per day, n= 20). 

Conversely, the male was rarely observed to enter the nest, or perch on the nest rim, 

apart from at the time of initial egg-laying. Daily activity periods were consistent 

between nests with the male making an average 2.08 f 0.29 nest visits per day (range 

2-3 visits, n= 35) to feed the female. The mean arrival times for the morning and 

afternoon activity periods were respectively 08: 36 hours ± 59.54 mins (range 07: 21 - 
10: 08 hours, n= 26) and 18: 11 hours ± 40.49mins (range 17: 15 - 18: 53 hours, rn = 

25). Overall, each nest visit by the male lasted an average of 36.14 f 26.72 mins 

(range 5- 113 rains, n= 40). 

The male usually vocalised loudly on approach to the nest area, and perched in a tree 

adjacent to the nest cavity making low contact vocalisations until the female emerged. 

The nesting pair gave a characteristic take-off squawk, or bugle, as the female flew 

from the nest cavity to join the male. Food transfer from the male to the female 

usually took place in a regular perch tree located an average 361.8 ± 161.4 m (range 

106 - 661 m, n= 10) away from the nest cavity. The food transfer session was the 

only time during the incubation phase when both adults were away from the nest area, 

and was usually short in duration being an average 9.12 ± 8.62 mins (range 3- 32 

mins, n= 25) in the morning, and 12.41 ± 8.74 mins (range 2- 34 mins, n= 27) in the 

afternoon. 
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Parental Care 

Following hatching of the eggs, females continued to brood nestlings throughout the 

day until the oldest nestling was 19.6 ± 2.69 days old (range 15 - 23 days, n= 9). 

During this early nestling phase, the male continued to feed the female twice a day, 

but was not observed entering the nest to feed the young. Later in the nesting cycle 

when the chicks were larger, both parents entered the nest to feed the young. 

The behavior of nesting pairs altered once the female began to forage with the male. 

Nesting pairs became more secretive around nests, arriving and departing silently, and 

only using low, almost inaudible vocalisations when in the nest area. Pairs were 

cautious about approaching the actual nest, and would not do so if they detected the 

observer or another disturbance. The nesting pair made an average 2.6 ± 0.93 visits 

per day (range 2-4 visits, n= 25) to feed the nestlings. Average duration of feeding 

visits during the nestling phase was 55.64 ± 35.02 mins (range 12 - 143 mins, n= 14). 

However, the nesting pair spent the majority of this time perched in trees around the 

nest area. Attendance at the nest cavity was short lasting an average of 13.31 ± 10.42 

rains, range 1.67 - 27.17 mins, n= 14 (total time adult in nest cavity or at nest 

entrance), with a mean 4.8 ± 3.14 mins per visit (range 0- 10.37 mins, is = 14) 

actually spent within the nest cavity, and a mean 12.76 ± 11.88 mins (range 0- 20.55 

rains, n= 14) perched at the nest rim. This was sufficient time to feed the young, 

however there was no indication that parent birds ever spent time in the nest preening 

the young. 

Prior to fledging nestlings began to climb to the nest entrance, and were fed at the 

nest rim. During this stage, nesting pairs spent more time perched near to the nest 

entrance making low contact vocalisations to the young. Mean age at fledging of 

nestlings was 64.4 ± 2.44 days (range 60 - 68 days, n= 14). Fledging was also highly 

synchronised between nests with all nestlings fledging within 12 days in 1996 (range 6 

- 18 May, n= 8), and 17 days in 1997 (range 11 - 28 May, n= 7). 
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4.5. DISCUSSION 

The low variability between nest sites in tree species, size, cavity height, and entrance 

width suggests that the Lilac-crowned Parrot may select nest sites based on these 

characteristics. Predation rates decrease with increasing height of nest sites from the 

ground (Nilsson 1984; Wilcove 1985), while the increased size of nest entrance 

required by large birds may pose greater risks from predation, leading to specificity 

for entrance dimensions (Christman & Dhondt 1997). Hence, cavities located high 

above the ground in large, mature trees with a narrow entrance width may prevent the 

access of predators to the nest, or reduce competition with other cavity nesters. 

Specificity of nest site characteristics is demonstrated by Amazon parrots in north- 

eastern Mexico, which appear to select cavities based on tree species, cavity height, 

and entrance length (Enkerlin-Hoeflich 1995). Australian cockatoos also demonstrate 

species specific requirements related to body size for entrance dimensions and internal 

diameter of nest hollows (Saunders et al. 1982). Enkerlin-Hoeflich (1995) suggests 

that the tendency for parrots to exhibit variability in a number of cavity characteristics 

combined with narrow specificity for a few key characters may provide parrots with 

the flexibility to exploit a wide range of available cavities, while maintaining specific 

criteria to limit predation and competition threats. In addition, the lack of nest site 

fidelity demonstrated by the Lilac-crowned Parrot is contrary to the 30 - 40% cavity 

re-use observed for most other parrot species (Saunders 1982; Snyder et al. 1987; 

Rowley & Chapman 1991; Smith 1991; Enkerlin-Hoeflich 1995), and may help to 

prevent predators from learning nest site locations (Sonerud 1985,1989). 

The high synchrony of nest initiation exhibited by the Lilac-crowned Parrot is also 
distinct to that observed for other psittacines, and may be related to environmental 
factors. Most Amazona species have a3-5 week nest initiation period each breeding 

season (Snyder et al. 1987; Gnam 1991; Enkerlin-Hoeflich 1995). The Monk 

Parakeet in Argentina extends egg-laying over an average nine week period (Navarro 

et al. 1992). Australian cockatoos have a similar broad egg-laying period of 5-8 

weeks in each season, comprising a 15 week nest initiation period over all seasons 
(Saunders 1982; Smith & Saunders 1986; Rowley & Chapman 1991; Smith 1991). 
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However, the Lilac-crowned Parrot is notably different to other parrot species in the 

high synchrony in nest initiation, with all nests commencing within two weeks in each 

season, and the general nest initiation period comprising the first three weeks in 

February. In addition, there is no evidence that breeding pairs of the Lilac-crowned 

Parrot will re-lay after a nest failure, which would also lengthen the nesting period. 

The nesting season of the Lilac-crowned Parrot may be so sharply defined due to the 

extreme climatic seasonality in tropical deciduous forest, and the impact this may have 

on food resource availability. There may be a need for nesting pairs to fledge young 

prior to the end of the dry season in late May - June when conditions may be most 

severe in terms of temperature, water availability, and food resource abundance 

(Bullock & Solis-Magallenes 1990; Chapter 3). Delaying nest initiation over a longer 

period may result in breeding pairs having to conduct energetically demanding 

activities of raising young during this environmentally difficult period. 

The infrequent feeding visits to the nest per day by breeding pairs of the Lilac- 

crowned Parrot contrasts with the multiple feedings noted for island Amazon species 
(Snyder et al. 1987; Gnam 1991), but confirms the two nest visits per day observed 

for three other mainland Amazon parrots in north-eastern Mexico (Enkerlin-Hoeflich 

1995). Mean morning and afternoon arrival times for nesting pairs of the Lilac- 

crowned Parrot were also similar to the three Amazona species in north-eastern 

Mexico (Enkerlin-Hoeflich 1995), with nest visits occuring approximately one hour 

after sunrise and an hour before sunset. This infrequency of nest visits differs from 

the feeding pattern observed for most other Neotropical parrots which may be active 

at the nest throughout the day (Lanning & Shiflett 1983; Lanning 1991; Smith 1991; 

Waltman & Beissinger 1992; pers. obs. ). However, a similar pattern has been noted 

for large cockatoos in dry areas of Australia, which restrict nest visitation activity to 

the early morning and late afternoon, spending the hot, mid-day periods resting under 

the shade of leafy trees (Saunders 1982). Individual Lilac-crowned Parrots at the 

study site spent the majority of the day from 11: 00 - 17: 00 hours inactive (Renton 

unpubl. data), and demonstrate signs of heat stress during the mid-day hours of 12: 00 

- 14: 00 by holding wings away from their bodies, and panting with beaks open (pers 

obs. ). Therefore, restricting foraging and feeding activity to the early morning and 
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late afternoon may enable parrots to conserve energy during high mid-day 

temperatures, particularly in open or dry habitats. 

In addition to being infrequent, attendance at the nest by Lilac-crowned Parrots 

during feeding visits was also short in duration. Furthermore, Lilac-crowned Parrots 

conducted the majority of their activity well away from the nest area. Nesting pairs 

were never observed to forage within the vicinity of the nest, and food transfers from 

the male to the female took place an average 361 in from the nest site. This contrasts 

with the behavior observed for island Amazon parrots which may spend longer 

periods in the nest cavity preening young (Snyder et al. 1987), as well as conduct 

food transfers and foraging activities within the vicinity of the nest (Snyder et al. 

1987; Gnam 1991). These aspects of infrequent visits, short nest attendance, and 

feeding away from the nest vicinity exhibited by Lilac-crowned Parrots may all serve 

to limit the amount of activity in the nest area, and hence reduce the risk of attracting 

predators to the nest. Caribbean Amazons conduct more activity within the nest 

vicinity, but appear to be more silent and secretive in the nest area (Snyder et al. 

1987). Hence, island and mainland Amazon parrots may reduce predation risks either 

by being more silent and secretive in the nest vicinity, or by limiting the amount of 

activity conducted in the nest area. 

Breeding birds -are restricted by competing needs to maintain their own energetic 

requirements, as well as to protect and nourish the young (Martin 1987). While 

infrequent, short nest visits may reduce both mid-day energetic expenditures by 

foraging adults and the risks of nest predation, there is a cost in having to meet the 

energy demands of the young in a more limited time than adults which may spread 

energy demands through the day. Hence, the subtle variations in nesting behavior 

suggest that island and mainland Amazon parrots may be employing differing 

strategies to meet time constraints in caring for the young. 
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CHAPTER 5 

FECUNDITY AND REPRODUCTIVE OUTPUT 

5.1. ABSTRACT 

Fecundity and reproductive output was determined for the Lilac-crowned Parrot 

population in the tropical dry forests of the Chamela-Cuixmala Biosphere Reserve, 

western Mexico. Overall nest success was low, with only 40% of nests producing 

fledged young. Major losses in reproduction occurred in both the incubation (28% 

loss) and nestling (39% loss) phases, and the main cause of failure was natural 

predation of the nest contents. The high predation rate resulted in a relatively low 

reproductive output, with Lilac-crowned Parrot females producing on average 1.0 

fledglings on their initial investment of 2.5 eggs. The Lilac-crowned Parrot has one of 

the lowest nest success rates of any other Amazon parrot species, and contrasts with 

the 60 - 70% nest success rates reported for psittacines in relatively undisturbed 

habitat. The high predation rate of Lilac-crowned Parrot nests at the study site may 

be due to the concentration of potential nest predators in small areas of semi- 

deciduous forest during the dry season. Studies on the breeding biology and 

reproductive success of parrot populations in disturbed habitats demonstrate that such 

populations may in fact be reproducing at sub-optimal levels and are vulnerable to 

decline. Wild populations of the Lilac-crowned Parrot in the tropical dry forests of 

Chamela-Cuixmala did not demonstrate a reproductive rate which is able to support 

high levels of pressure for commercial trade. 
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5.2. INTRODUCTION 

Low fecundity is one of the main factors making bird species vulnerable to decline 

(Bennett & Owens 1997). Data on fecundity and the factors limiting the reproductive 

output of parrots are of particular importance to determine the ability of wild 

populations to withstand pressures from trade (Thomsen & Brautigam 1991), 

evaluate the harvesting potential of species (Beissinger & Bucher 1992a, b), and model 

population viability (Saunders 1986). 

Predation is one of the major factors affecting nest success and limiting the production 

of young in birds (Lack 1954; Ricklefs 1969; Fogden 1972; Skutch 1976; Gates & 

Gysel 1978). The need to protect eggs from predators (Bollinger et al. 1990), or to 

defend nest sites (Beissinger & Waltman 1991), as well as to maintain egg viability (Veiga 

1992; Stoleson & Beissinger 1997a), may influence the onset of incubation before egg- 

laying is complete, resulting in asynchronous hatching for many altricial birds (Clark & 

Wilson 1981; Stoleson & Beissinger 1997b). 

Predation on bird nests is greater in small forest patches than in continuous forest 

(Ambuel & Temple 1983; Loiselle & Hoppes 1983; Andren et al. 1985; Wilcove 

1985; Andren 1992; Keyser et al. 1998). Nest predation is also greater at the edges 

than the interior of forest patches, and tends to level off at 200 - 500 m from the 

forest edge (Gates & Gysel 1978; Angelstam 1986; Wilcove et al. 1986; Andren & 

Angelstarr 1988; Penske-Crawford & Niemi 1997). The increased predation on bird 

nests in small forest patches may be due to the absence of top predators which require 

large areas, leading to an increase in medium-sized nest predators (Terborgh & 

Winter 1980; Wilcove 1985; Terborgh 1988; Sieving 1992), or to edge effects of 

predators entering forest patches from surrounding areas (Angelstam 1986; Andren & 

Angelstarr 1988; Small & Hunter 1988; Andren 1992; Fenske-Crawford & Niemi 

1997). 

Cavity nests are less vulnerable to predation than open nests (Alerstam & Hogstedt 

1981; Wilcove 1985), while predation rates decrease with increasing height of nest 
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cavities from the ground (Nilsson 1984; Li & Martin 1991). Hence, cavity nesting 

birds generally have success rates exceeding 60% (Lack 1954; Skutch 1966,1976; 

Johnson & Kermott 1994). Most of the early studies on nest success were conducted 

with nest boxes which may have higher success rates than natural cavities (Nilsson 

1986). However, recent studies also provide a 50 - 60% nest success in natural 

cavities (Johnson & Kermott 1994; Purcell et al. 1997). 

The greater safety from predators also enables cavity nesting bird species to raise young 

over longer development periods than open nesting species (von Haartman 1957; Lack 

1968; Saunders et al. 1984; Martin & Li 1992). There may also be selection for exposed, 

conspicuous foragers to adopt hole-nesting due to the risks of attracting predators to 

the nest site (Alerstam & Hogstedt 1981). The drawbacks of cavity nesting are a 

potential lack of available hollows (von Haartman 1957; Raphael & White 1984; Gibbs et 

al. 1993), and possibly severe competition for nest sites (Minot & Perrins 1986; 

Gustafsson 1988; Pribil & Picman 1991). This in turn can lead to territorial defence of 

nesting areas which may limit breeding density (Krebs 1971; Saunders 1982; Village 1983; 

Gauthier & Smith 1987; Renton 1994). 

Most parrot species are secondary cavity nesters, i. e., they do not excavate their own 

cavities but are dependent on the availability of naturally occurring hollows. 

Comprehensive, long-term studies on Australian parrots (Saunders 1982,1986; 

Rowley 1990; Rowley & Chapman 1991; Smith 1991), and the Puerto Rican Parrot, 

Amazona vittata, (Snyder et al. 1987) demonstrate that small clutches, high parental 
investment, and fledging of a few offspring is the prevailing reproductive strategy. 
Most cockatoo species in Australia support the prediction of high success rates for 

cavity nesters (Saunders 1982,1986; Rowley 1990; Rowley & Chapman 1991; Smith 

1991). However, low reproductive success was recorded for Australian parrot 

populations in extensively deforested areas (Saunders 1982,1986,1990,1991). 

By comparison, there have been few comprehensive studies of Neotropical parrots, 
though high nest success has been demonstrated for macaws in undisturbed rainforest 
(Munn 1992) and Caribbean Amazons (Snyder et al. 1987). In contrast, the Bahama 
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Parrot (Amazona leucöcephala bahamensis) exhibits a low 42% nest success, 

fledging only 0.8 young per breeding pair (Gnam & Rockwell 1991). However, this 

species is unique among Neotropical psittacines in its habit of nesting in holes in the 

ground (Gnam 1991). The high reproductive loss is attributed to predation on nests 
by feral cats, particularly during one unusual year of high cat predation (Gnam & 

Rockwell 1991). 

The majority of studies on the ecology of Neotropical Amazon parrots have been 

conducted on species of the Carribbean Islands (Snyder et al. 1987; Gnam 1991; 

Gnam & Rockwell 1991; Wilson et al. 1995,1997), while studies of mainland 

Amazon parrots have been limited to evaluations of distribution and status (Ridgely 

1981). However, a comparative study of three species of Amazon parrot in north- 

eastern Mexico, indicated that productivity and nest success was generally lower for 

the three mainland Amazons than for most Amazon species of the Caribbean Islands 

(Enkerlin-Hoeflich 1995). Further studies are required on the reproductive ecology of 

mainland Amazon parrot species in order to evaluate the limitations to wild 

populations. 

During 1979 to 1982 the Lilac-crowned Parrot was the third most captured and 

exported psittacine species in Mexico (Inigo-Elias & Ramos 1991), and one of the 15 

Neotropical parrot species most frequently imported by the United States (Roet et al. 

1981). Although Mexico banned international trade in wildlife in 1982, this did not 

control domestic trade (Ingo-Elias & Ramos 1991), and poaching of nestlings for sale 

in towns and along roadsides continues to be a widespread problem for wild 

populations (pers. obs. ). However, despite this exploitation there have been no 

studies on the ecology of the Lilac-crowned Parrot in the wild, and information on 

breeding is only available from anecdotal observations in captivity (Mann & Mann 

1978; Forshaw 1989). Hence, data on the fecundity and reproductive output of the 

Lilac-crowned Parrot are essential to evaluate the ability of the wild population to 

withstand commercial exploitation. 
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5.3 METHODS 

Reproductive output of the Lilac-crowned Parrot was determined through nest 

studies, conducted from January to June in 1996 and 1997, at the Chamela-Cuixmala 

Biosphere Reserve (19°22'N 104°56'W to 19°35'N 105°03'W) on the Pacific Coast 

of Mexico. Parrot nests were inspected at regular intervals to determine clutch and 

brood size, and the causes of nest failure. Access to nest cavities was achieved using 

both single-rope ascending (Perry 1978; Perry & Williams 1981), and tree bole- 

climbing techniques (Donahue & Wood 1995). 

5.3.1. EGGS, CLUTCH SIZE, AND FERTILITY 

Care was taken to avoid disturbance around the nest cavity during the incubation 

phase due to the potential risk of causing nest abandonment by the female. However, 

cavities were accessed once during incubation in order to determine clutch size and 

egg fertility. The number of eggs present in the cavity was recorded, and width and 
length of eggs were measured to the nearest 0.1 mm with dial callipers. Egg volume 

was calculated using Hoyt's (1979) equation: volume = 0.51 x egg length x (egg 

width)2, and egg weight was measured to the nearest 1.0 g with 100 g Pesola scales. 

Fertility of eggs was determined by an adapted candling technique in which the egg 

was placed in a thick black bag and illuminated from behind with a focused beam mini 

maglight flashlight. If the egg was fertile a darkened mass could be noted at one end, 

and veins running beneath the egg shell could also be distinguished. These were not 

noted in eggs that were infertile. Disposable gloves were used when handling eggs to 

avoid the risk of contaminating the permeable egg shell. 
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5.3.2. NESTING SUCCESS 

Daily survival rates for Lilac-crowned Parrot nests during the incubation, early 

nestling, and late nestling phases were calculated using a personal computer version of 

programme Mayfield (Krebs 1989: pp 609-611). This calculates the Mayfield (1975) 

estimator of daily survival using the Maximum Likelihood Estimate modification of 

Bart & Robson (1982) to resolve potential biases in survival estimates which arise 

when nests are inspected at irregular intervals (Johnson 1979). 

5.3.3. REPRODUCTIVE OUTPUT 

Relative productivity and loss at different stages of the nesting cycle from egg-laying 

to fledging were calculated following Rockwell et al. (1987) and Gnam & Rockwell 

(1991). Reproductive output at the major stages of the nesting cycle was determined 

by total clutch laid (TCL), clutch size at hatching (CSH), brood size at hatching 

(BSH), and brood size at fledging (BSF). For successful nests, the probability of 

complete or partial success between stages of the nesting cycle was calculated for egg 

survival (Pi = CSH/TCL); hatching success (P2= BSH/CSH), and fledging success (P3 

= BSFBSH). For unsuccessful nests, the probability of complete failure between 

phases of the nesting cycle was determined as total clutch failure (TCF), and total 

brood failure (TBF). Hence, as outlined by Gnam & Rockwell (1991), the expected 

reproductive success of egg-laying females can be expressed as: 

Expected Reproductive Success = TCL x P1 x (1 - TCF) x P2 x (1 - TBF) X P3 

Differences between the years in reproductive output were evaluated by two-sample t- 

test analyses on the productivity measures of total clutch laid, clutch size at hatching, 

brood size at hatching, and brood size at fledging. All descriptive statistics were 

presented using means, value ranges, and standard deviations. 
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5.4. RESULTS 

5.4.1. EGGS, CLUTCH SIZE, AND FERTILITY 

Average clutch size was 2.5 ± 0.52 eggs (range 2-3 eggs, n= 14 nests), and fertility 

of eggs was 92.3% (24 of 26 eggs examined were fertile). Mean egg length was 

36.78 ± 0.89 mm (range 35.8 - 38.7 mm, n= 26), and width was 28.37 ± 0.88 mm 

(range 27.5 - 30 mm, n= 26). Mean egg volume was 15,110 ± 1082.87 mm3 (range 

14,116 - 16,616 mm3, n= 26), and the mean egg weight in the final week of 

incubation was 14.01 ± 2.08 g (range 9- 16.3 g, n= 24) 

5.4.2. NESTING SUCCESS 

Finite Maximum Likelihood Estimates of nest survival rates at different phases of the 

nesting cycle are presented in Table 20. Finite survival of nests during the incubation 

phase was low at 0.74 probability of survival, although this was higher than the 

overall 0.54 probability of nest survival during the complete nestling phase of 60 days. 

However, separating the nestling stage between early and late nestling phases 

demonstrated that the period of lowest nest survival was the early nestling phase with 

an overall 0.68 probability of nest survival. Nests may be more vulnerable during the 

early nestling phase as nestlings are smaller, less developed, and the nest may be left 

unguarded when the female joins the male on foraging trips. In the late nestling 

phase, nestlings have approached asymptotic body mass, and therefore may be less 

vulnerable to predation. Overall, there was a low 40% nest success from egg-laying 

to fledging. 
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Table 20: Maximum Likelihood Estimates (MLE) of finite nest success during each 

phase of the nesting cycle. 

Nesting phase 1996 1997 Combined 

years 

Finite nest success during 0.90 0.59 0.74 

incubation (per 28 days) 

Finite nest success during early 0.67 0.83 0.68 

nestling phase (per 30 days) 

Finite nest success during late 0.68 0.81 0.74 

nestling phase (per 30 days) 

Finite nest success during total 0.46 0.67 0.54 

nestling phase (per 60 days) 

Overall: Finite nest success during 0.44 0.36 0.40 

entire nesting cycle (88 days) 

5.4.3. REPRODUCTIVE OUTPUT 

The fitness components and productivity of egg-laying females at each stage of the 

nesting cycle are shown in Table 21. Two-sample t-tests found no significant 

difference between the years in the productivity factors of total clutch laid, clutch size 

at hatching, brpod size at hatching, or brood size at fledging. Expected reproductive 

success per egg-laying female was 1.01 fledglings in 1996,0.97 fledglings in 1997, 

and 1.0 fledglings over both years combined. Hence, Lilac-crowned Parrot females 

may expect a return of 1.0 fledglings on their initial investment of 2.5 eggs, with 

major losses in reproductive output occurring in both the incubation (28% loss) and 

nestling (39% loss) phases. 

The high value of P2 (Hatching Success), at 0.89 over both years (Table 21), is related 

to fertility of the population, and indicates that egg loss due to hatching failure (11% 
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loss) was not a major factor limiting the reproductive output of Lilac-crowned Parrot 

females. The probability values of both P1 (egg survival) and P3 (nestling success) are 

1.0 survival of eggs and nestlings in all successful nests (Table 21), as there was no 
instance of partial loss of reproductive output due to differential mortality of eggs or 

nestlings in the same nest. Indeed, loss of reproductive output resulted primarily from 

total clutch or brood failure due to factors which impacted the entire nest such as 

predation or abandonment. 

t 

Table 21: Fitness components and productivity of Lilac-crowned Parrot females at 

each stage of the reproductive cycle in 1996 and 1997. Values presented as means 

with standard deviations. 

Fitness component 1996 1997 Overall 

Total clutch laid (TCL) 2.5 t 0.55 2.5 t 0.54 2.5 f 0.52 

Egg survival (PI) 1.0±0.0 1.0±0.0 1.0±0.0 

Probability of total clutch 0.25 0.3 0.275 

failure (TCF) 

Clutch size at hatching 2.5 t 0.55 2.8 t 0.45 2.64 ± 0.50 

(CSH) 

Hatching success (P2) 0.94. ± 0.14 0.83 t 0.24 0.89 ± 0.19 

Brood size at hatching 2.33 ± 0.52 2.4 f 0.89 2.36 ± 0.67 

(BSH) 

Probability of total brood 0.43 0.33 0.39 

failure (TBF) 

Nestling success (P3) 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 

Brood size at fledging (BSF) 2.67 ± 0.58 2.67 ± 0.58 2.67 ± 0.52 
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5.4.4. CAUSES OF NEST FAILURE 

During 1996 and 1997, there was complete failure of five nests during the incubation 

phase, and five nests during the nestling phase of the nesting cycle. Causes of 

complete nest failure during the incubation phase included two instances of predation, 

one of which may have involved a reptile predator such as the Indigo Snake 

(Drymarchon corais), Green Iguana (Iguana iguana), or the Beaded Lizard 

(Heloderma horridum) which are common at the study site. In the second instance, a 

body hair of the Virginia Opossum (Didelphis virginiana) was found stuck to the 

half-eaten egg shell. Another instance of total clutch failure resulted from nest 

abandonment by the incubating female, possibly due to observer disturbance. Finally, 

two nests failed during the incubation phase from unknown causes, though one was 

suspected predation. 

Causes of nest failure during the nestling phase included two instances of mammal 

predation identified by claw scratch marks at the outer lip of the nest entrance. In one 

case, two 28 and 30 day old nestlings were predated from a nest in 1996, and in the 

second case three 2-3 week old nestlings were predated from a nest in 1997. 

Potential mammal predators which are frequently encountered in the area are the 

Virginia Opossum (Didelphis virginiana), Racoon (Procyon lotor), Jaguarundi 

(Herpailurus yagouaroundi), and the White-nosed Coati (Nasua narica) which has 

been noted to take medium-sized vertebrates such as parrots (Smythe 1970b). 

The third instance of total brood failure occurred after an ant swarm was noted in the 

nest tree. On this occasion the ants did not enter the nest cavity, which was inspected 

immediately afterwards. The single nestling was still present and healthy in the nest at 
the next inspection four days after the observed ant swarm. However, two days after 

this second inspection, the 39 day old nestling had disappeared from the nest cavity. 

A few feather remains were found in the nest cavity and at the base of the tree. Three 

dead ants which had beak bite marks on the abdomen were also found within the nest 

cavity. Skutch (1976) also reports that fire ants may be potential predators on 

nestlings. In the fourth instance of brood failure, two 49 and 51 day old nestlings 
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were noted as healthy at the last nest inspection. However, when the nest was again 
inspected the following day, the second nestling was found dead within the nest cavity 

with blood around the nasal area, while the first nestling was absent from the nest 

cavity and was counted as a mortality. The exact cause of this nest failure is 

unknown, but is considered a suspected predation. The final instance of total brood 

failure was due to human poaching of the two 40 and 42 day old nestlings in 1996. 

5.4.5. COMPARISON WITH OTHER AMAZON PARROTS 

Reproductive success of the Lilac-crowned Parrot (Amazona finschi) is compared 

with that for other Amazona parrot species in Table 22. The Lilac-crowned Parrot 

had the lowest mean clutch size (2.5 eggs) of all Amazon species, and a particularly 

low clutch size and range (2 -3 eggs) for body size. The closely related Red-crowned 

Parrot (A. viridigenalis) in north-eastern Mexico has a similar body size, but a higher 

mean clutch size (3.4 eggs) and range (2 -5 eggs) than the Lilac-crowned Parrot 

(Table 22). The Lilac-crowned Parrot also had one of the lowest 40% nest success 

(42% nest success excluding human poaching) of any Amazon parrot species. This 

was principally due to predation of the entire nest contents, which was the main factor 

reducing the overall apparant success to 0.94 fledglings per nesting pair. 
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5.5. DISCUSSION 

The impact of nest predation on parrot reproduction is reflected in the finite nest 

success rates at each stage of the nesting cycle. As with other parrot species (Snyder 

et al. 1987; Gnam 1991; Waltman & Beissinger 1991; Wilson et al. 1995), Lilac- 

crowned Parrot females were absent from the nest for less than an hour per day 

during incubation, and continued to brood nestlings for the first three weeks after 

hatching (Chapter 4). However, in contrast with the Bahama Parrot (Gnam & 

Rockwell 1991) which had low incubation loss (17%) and high hatching loss (49%), 

the Lilac-crowned Parrot had low hatching loss (11%) and high incubation (28%) and 

nestling loss (39%). The 40% nest success for theLilac-crowned Parrot was also 

well below that predicted for cavity nesting species (Lack 1954; Skutch 1976; Martin 

& Li 1992; Johnson & Kermott 1994). In addition, the lower 0.58 probability of nest 

survival during the nestling phase compared to the 0.74 probability of nest survival 

during the incubation phase, may be due to the increased probability of conspicuous 

foraging adults attracting predators to the nest (Alerstam & Hogstedt 1981). 

The high failure rate of Lilac-crowned Parrot nests may be due to a high risk of 

predation at the study site. Predation of bird nests is greater in small forest patches, 

and within 200 - 500 m of the forest edge than the forest interior (Gates & Gysel 

1978; Ambuel & Temple 1983; Loiselle & Hoppes 1983; Wilcove 1985; Andren et al. 

1985; Angelstarr 1986; Wilcove et al. 1986; Andren & Angelstarr 1988; Andren 

1992; Fenske-Crawford & Niemi 1997; Keyser et al. 1998). Lilac-crowned Parrot 

nest sites were almost exclusively located in semi-deciduous forest, most of which 

occurs in narrow bands less than 200 m wide along the larger valleys at the study site. 

During the dry season water is absent from the hills, and environmental conditions can 

become harsh in the deciduous forest. Densities of small mammals are noted to 

decline in deciduous forest during the dry season (A. Miranda pers. comm. ), while 

medium-sized mammals such as the Virginia Opossum and the White-nosed Coati 

preferentially forage in semi-deciduous forest in the valleys rather than in deciduous 

forest during the dry season (Valenzuela-Galvan 1998). A general decrease in food 
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resource availability for most animal species towards the end of the dry season may 

also result in a temporal increase in predation risks at this time (Sieving 1992). 

Hence, high predation rates may be due to edge effects of predators moving into small 

patches of semi-deciduous forest from the adjacent deciduous forest during the dry 

season. This may be compounded by the high deforestation rates for semi-deciduous 

forest (Miranda 1998), resulting in increasing fragmentation of larger forest patches. 

Increased predation rates due to an influx of predators to small patches of semi- 

deciduous forest during the dry season may also limit the reproductive success of 

other bird communities in this habitat. Despite the long history of research at the 

study site, very little is known of the dynamics and ecology of vertebrate communities 

in the deciduous forest. Potentially high predation rates in semi-deciduous forest 

during the dry season is an aspect which requires further research to evaluate the 

dynamics of, bird communities in deciduous forest, and the potential impacts of habitat 

fragmentation. 

Hence, predation may be the main factor limiting reproduction of the Lilac-crowned 

Parrot population at the study site, resulting in low nest success and a reproductive 

output of 1.0 fledglings per egg-laying pair. Predation was also the major factor 

limiting output of the ground-nesting Bahama Parrot (Gnam & Rockwell 1991), and 

was a significant cause of nest loss for three Amazon parrot species in north-eastern 

Mexico (Enkerlin-Hoeflich 1995). Furthermore,. the low 40 - 42% nest success for 

the Lilac-crowned Parrot in the Chamela-Cuixmala reserve does not include human 

poaching of nests which occurs at greater frequency outside of the protected area 

(pers. obs. ). Hence, nest success and fledgling output is likely to be lower still for 

parrot populations in the vicinity of local communities. 

The low nest success reported for the Lilac-crowned Parrot contrasts with the high 

success rates of 60 - 70% reported for parrot species in relatively intact forest habitats 

(Saunders 1982; Munn 1992). Indeed, low reproductive success rates have been 

reported for most parrot species breeding in disturbed habitats (Saunders 1982,1986; 

Enkerlin-Hoeflich 1995). Conversion of forests for agriculture and ranching has 
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proceeded at a rapid rate in Mexico (Masera et al. 1992,1996; Dirzo & Garcia 1992; 

Maass 1995), and fragmentation of natural forests is an increasing feature of the 

landscape. Parrots are adaptable species and are often able to persist in areas 

modified by man giving an impression of abundant and stable populations. However, 

increased fragmentation of forest habitats may impact parrot reproduction through 

food resource limitation (Saunders 1982,1986), or increased predation pressures 

(Gnam & Rockwell 1991; Enkerlin-Hoeflich 1995). Studies on the breeding biology 

and reproductive success of parrot populations in disturbed habitats (Saunders 1982, 

1986,1990,1991; Enkerlin-Hoeflich 1995), demonstrate that such populations may in 

fact be reproducing at sub-optimal levels and are vulnerable to decline. Wild 

populations of the Lilac-crowned Parrot may have declined in recent years due to the 

dual pressures of capture for trade and destruction of semi-deciduous forest, and do 

not demonstrate a reproductive rate which is able to support high levels of pressure 

for commercial trade. 
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CHAPTER 6 

NESTLING GROWTH AND DEVELOPMENT 

6.1. ABSTRACT 

Studies were conducted on Lilac-crowned Parrot nests in the tropical dry forest of the 

Chamela-Cuixmala Biosphere Reserve in order to describe the pattern of nestling 

growth, and provide growth rate parameters for a Neotropical Amazon parrot. The 

early nestling phase was characterised by rapid weight gain and an increase in body 

size, with nestlings reaching asymptotic body mass half-way through the nestling 

phase. Development during the second half of the nestling phase consisted principally 

of feather growth. Growth rates for psittacine species followed the inverse relation 

with body mass observed for Neotropical land birds, with larger parrot species 

exhibiting slower growth rates. There was also a marked size hierarchy among Lilac- 

crowned Parrot siblings, particularly with respect to third-hatched nestlings, which 

were smaller in size and exhibited slower growth rates than first- or second-hatched 

nestlings. The differential growth rates for third-hatched nestlings may be due to the 

greater interval in hatching between second and third eggs, as compared to that 

between first and second eggs. However, this size hierarchy and differential growth 

rate did not result in mortality of later-hatched third nestlings. The length of the 

nestling period, along with food resource abundance, and parental effort, may allow 

some flexibility in growth, enabling third-hatched nestlings to acquire asymptotic sizes 

prior to fledging. Finally, there was significant variation between years in nestling 

sizes and growth rates. In general, nestlings were significantly smaller at hatching, 

and took longer to acquire asymptotic size in 1996 than in 1997. The increased size 

and growth rates of nestlings in 1997 may have been due to a greater abundance of 

food resources, and demonstrates the potential influence of environmental variability 

on parrot reproduction. It is predicted that third-hatched Lilac-crowned Parrot 

nestlings may be vulnerable to mortality in years of extreme drought and poor food 

resource availability which may occur in this habitat. 
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6.2. INTRODUCTION 

Lack (1968) suggested that nestling growth rate is a compromise between rapid 

growth to reduce predation and slower growth to reduce energy requirements of the 

young. Open-nesting birds have faster growth rates than hole-nesting species which 

may reflect a greater need to escape predation pressures (Ricklefs 1968a). However, 

Neotropical land passarines grow 23% slower than temperate passerines (Ricklefs 

1976), even though predation pressures are greater for tropical birds than temperate 

birds (Ricklefs 1969; Skutch 1976). In addition, precocial birds which may 

experience greater predation risks also develop at a slower rate than altricial birds 

(Ricklefs 1979). 

In fact, the young of altricial birds develop twice as fast as most altricial mammals 

(Case 1978). Nestlings of most birds which exhibit rapid growth rates are fed 

frequently and by both parents, while species exhibiting slow rates of growth tend to 

be self feeding or fed at infrequent intervals (Case 1978). Reduced growth rates of 

tropical birds may reflect food limitation via a reduced rate of food delivery by parents 

(Martin 1987). Hence, growth rate may be adapted to features of the environment, in 

particular the feeding requirements of the young and availability of food to the parents 

(Case 1978; Martin 1987). 

Nestlings of single broods also develop at a slower rate than nestlings in large broods, 

and it is suggested that the faster growth of nestlings in larger broods may reflect 

competition between siblings (Werschkul & Jackson 1979). However, the fact that 

nestling growth rates are not directly related to the intensity of competition in broods 

of more than one nestling does not support this hypothesis (Ricklefs 1982; Bortolotti 

1986). Instead, slower growth of single brood young may be related to food 

limitation, and reflect parental fitness, as food delivery times are longer and more 

variable for single broods (Ricklefs 1982; Bortolotti 1986) 

Asynchronous hatching is common in bird species, and frequently produces a growth 

heirarchy among the young, with later hatched nestlings being smaller than earlier 
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hatched nestlings (Hussell 1972, Bryant 1978a; Zach 1982; Bollinger 1994). 

Asynchronous hatching may be advantageous in reducing peak feeding loads for adults as 

energy demands of the young are spread out (Hussell 1972), and there is potential for 

elimination of the youngest nestling during periods of food limitation (Lack 1954). 

However, asynchronous hatching does not always lead to brood reduction as later- 

hatched young may persist in the nest with inadequate feeding, and survive to fledging 

with no negative effects on growth (Ricklefs 1976; Richter 1984). Hence, position in 

the brood may only affect survival in particularly poor years (Richter 1984). 

In fact, many of the potentially adaptive features of asynchronous hatching may be 

determined as a result of conditions during the egg-laying and incubation period. 

Early onset of incubation may arise due to the benefits this offers for the eggs, leading 

to asynchronous hatching (Clark & Wilson 1981; Bollinger et al. 1990; Stoleson & 

Beissinger 1997ab). Food limitation during the laying period may also increase the 

hatching spread, leading to a greater size hierarchy between nestlings (Bryant 1978a, 

b; Bollinger 1994). 

The influence of food availability on growth has been most easily demonstrated for 

aerial insectivores, as food supply is highly variable due to weather. Onset of laying, 

clutch size, and higher nestling growth rates correspond with high insect abundance 

(Bryant 1975; Quinney et al. 1986; Blancher & Robertson 1987), while natural 

declines in caterpillar food supply resulted in reduced nestling growth rates and 

survival for warblers (Rodenhouse & Holmes 1992). Variations in food abundance 

may have a greater impact on breeding where food resources are not already super- 

abundant in the environment (Blancher & Robertson 1987). 

Young birds may also exhibit flexible growth rates, enabling them to slow 

development in response to temporary food stress, later recovering growth as food 

supplies increase (Emlen et al. 1991; Negro et al. 1994). This retardation in growth is 

greatest in seasons of low food availability (Emlen et al. 1991), and long-term 

reduction in the food supply leads to significantly slower growth rates, though overall 

asymptotic weight may remain unchanged (Lacombe et al. 1994). 
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Breeding birds may also compensate for reductions in the food supply by increasing 

parental effort to maintain energy requirements of the young (Drent & Daan 1980). 

Experimental reduction in food supply by Adams et al. ' (1994) produced no significant 

effect on nestling growth of sparrows, but resulted in increased parental effort with 

breeding pairs in experimental plots foraging significantly further from the nest than 

birds in control areas. In studies of the Pallid Swift, chick growth was found to be 

independent of daily food availability, while parents of artificially enlarged broods lost 

more mass than controls indicating increased parental effort to maintain nestling 

growth (Cucco & Malacaren 1995,1996). A converse increase in food supply also 

influences parental effort through reduced foraging flights and shorter times between 

nestling feedings (Blancher & Robertson 1987). Supplemental feeding of nestling 

gulls resulted in decreased parental effort, with breeding pairs spending more time in 

the nest territory, and females conducting shorter foraging trips (Bukacinski et al. 

1998). Tveraa et al. (1998) also demonstrated that Antartic petrel parents adjust the 

amount of food delivered according to the needs of the young, however the ability of 

parents to respond to the chick's needs was dependent on their own body condition. 

Studies on insectivorous bird species have indicated that food resource abundance 

may influence both nestling growth and parental effort. Nestling parrots hatch 

asynchronously, are highly altricial, and exhibit slow growth, all of which may increase the 

potential for growth processes to respond to environmental conditions. Size hierarchies 

and differential growth rates relating to hatching order have been noted for some 

psittacine species (Rinke 1989; Smith 1991; Stoleson & Beissinger 1997b). Rinke 

(1989) found that first hatched young of the Red Shining Parrot (Prosopeia 

tabuensis) were significantly larger in size than second hatched young. In Australia, 

the youngest nestlings in broods of the Long-billed Corella (Cacatua pastinrator 

pastinator) frequently died from starvation within four weeks of hatching (Smith & 

Saunders 1986; Smith 1991). 

However, most studies on nestling growth rates for psittacines have been conducted on 

Australian parrots (Saunders 1982,1986; Rowley 1990; Rowley & Chapman 1991; 

Smith 1991), and very little data exists on nestling growth rates for Neotropical parrot 
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species. Later hatched young of the Green-rumped Parrotlet (Forpus passerinus) in 

Venezuela grew at significantly slower rates than earlier hatched young, and this 

effect of hatching order was greater in larger broods (Stoleson & Beissinger 1997b). 

First hatched nestlings of the Monk Parakeet (Myiopsitta monachus catita) in 

Argentina also grew at a faster rate than later hatched nestlings, though this was not 

found to be significant (Navarro & Bucher 1990). 

Little data are available on nestling growth rates for Amazon parrot species, though 

Enkerlin-Hoeflich (1995) found that the Red-crowned Parrot (Amazona viridigenalis) 

in north-eastern Mexico exhibited rapid weight gain during the first month of the 

nestling phase, attaining asymptotic size half-way through the nestling phase. No data 

on growth rates are available for island Amazon species, however, incomplete 

observations on Puerto Rican Parrot nestlings by Snyder et al. (1987) appear to 

indicate a rapid increase in body mass during the first four weeks of the nestling 

phase. 

Navarro & Bucher (1990) found that growth rates of Monk Parakeet nestlings varied 

significantly between years, while asymptotic values remained relatively constant, 

suggesting that growth rate responds to environmental factors. However, no studies 

of parrots have related variations in growth rate to food resource availability or other 

environmental conditions. Indeed, most studies relating nestling growth to food 

supply have been conducted on insectivorous passerine species (Bryant 1975,1978b; 

Quinney et al. 1986; Blancher & Robertson 1987; Emlen et al. 1991; Rodenhouse & 

Holmes 1992; Adams et al. 1994; Cucco & Malacaren 1995,1996), birds of prey 

(Lacombe et al. 1994; Negro et al. 1994), or sea birds (Bukacinski et al. 1998; Tveraa 

et al. 1998). In general, many frugivorous, nectivorous, and granivorous passerine 

species also consume invertebrates in the diet during the breeding season (Poulin et al. 
1992). However, the larger size of parrots may mean they are less likely to rely on an 
insect diet during reproduction, and may be more susceptible to fluctuations in the 

availability of fruit or seed resources. 
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The potential influence of environmental factors on reproduction and nestling growth may 

be of importance in the conservation of threatened populations of many parrot species. 

This was demonstrated for cockatoos in the wheatbelt of western Australia where 

depressed nestling growth rates indicated that breeding birds were experiencing food 

limitation as a result of extensive loss of native vegetation (Saunders 1982,1986,1990, 

1991). Hence, data on nestling development are necessary to evaluate the normal 

pattern of growth, and enable assessment of environmental quality and the viability of 

wild populations (Bryant 1978b; Saunders 1982,1986). 
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6.3. METHODS 

The growth and development of Lilac-crowned Parrot nestlings was studied in the 

tropical dry deciduous forest of the Chamela-Cuixmala Biosphere Reserve (19°22'N 

104°56'W to 19°35'N j05°03'W), in the state of Jalisco on the Pacific Coast of 

Mexico. Nest studies were carried out from January to June in 1996 and 1997. 

Access to nest cavities was achieved using single-rope ascending techniques with a 25 

m caving rope, climbing harness, and ascenders as outlined by Perry (1978), and Perry 

& Williams (1981). In addition, a tree bole-climbing technique was employed using 

webbing slings and an etrier as described by Donahue & Wood (1995). 

Nestling growth and development 

Following hatching of the eggs, nest inspections were carried out 2-3 times a week, 

during the mid-day lull in parental activity. At each inspection, growth of Lilac- 

crowned Parrot nestlings was evaluated using the variables of length of left wing, and 

culmen length which were measured to the nearest 0.1 nun with dial callipers. Body 

mass was also determined by weighing nestlings with a 100 g, 300 g, or 500 g Pesola 

balance depending on chick size. 

Body mass of nestlings is closely related to food intake, and when matched with age, 

gives a good indication of the condition of nestlings and their chances of survival 

(Saunders 1986). Growth of the wing and bill are less affected by variations in food 

intake throughout the nestling phase. Hence, wing length is the most frequently used 

variable for ageing nestlings (Saunders 1982,1986), while bill dimensions provide 

useful cross-checks to evaluate nestling growth (Rinke 1989; Rowley & Chapman 

1991). 

Measurements were taken of 14 nestlings in 1996 and 9 nestlings in 1997. All growth 

variables were measured by the same method and researcher in both years, with the 

exception that in 1996 length of open left wing was measured, while in 1997 it was 

found more convenient and reliable to measure length of folded left wing. 

Ectoparasite load of nestlings was evaluated by counting bot-fly larvae, and a visual 
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description was given of plumage development. Each nestling was marked with 

indelible ink on one foot to identify hatching order. All measurements were 

conducted at the nest entrance to minimise handling time and potential stress for the 

nestlings. Disposable gloves and a face mask were used when handling nestlings to 

avoid potential disease transmission between nestlings and researcher. 

Data analysis 
Many nestling birds exhibit a pattern of body mass recession prior to fledging due to 

the loss of water from maturing feathers (Ricklefs 1968b). Complex growth models 

such as the Richards equation are sensitive to such fluctuations, and small changes in 

data which affect parameter estimates (Zach 1988). Growth models which have only 

three parameters require fewer data and are less sensitive to fluctuations. Zach 

(1988) therefore recommends the use of these simpler growth models, as well as 

statistical analysis of observed measures to evaluate growth. 

Hence, in this study the pattern of nestling growth was described using Ricklefs 

(1967) logistic equation which has the form: 

G, =A /(l +exp (-k(age-1, ))) 

Where, A= the asymptote (normally the adult value), k= the rate of growth, and t, _ 

the inflection point of the growth curve (i. e., time to attain 50% of the asymptote). 

The time interval for growth from 10% to 90% of the asymptote was also used to 

describe growth and is defined as: 110.90 = 4.4 /k (Ricklefs 1976). It should be noted 

however, that the growth period parameter of t, o.. oo only has theoretical value when 

applied to culmen length, as the culmen of nestlings at hatching is 25% of the 

asymptote, and is close to the inflection point of the growth curve. This is not the 

case for either body mass or wing length which are only 5- 6% of the asymptote at 

hatching. Growth parameters for the logistic curve were fitted to nestling weights and 

wing and culmen lengths using the SPSS nonlinear regression procedure 

(Norusis/SPSS 1994). 
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Between year differences in nestling size and growth were also analysed by two- 

sample t-tests on observed values for the growth variables: culmen length of nestlings 

at 6 days, 40 days, and 60 days after hatching; nestling mass 6 days after hatching; 

maximum nestling mass; age to attain maximum body mass; mass loss prior to 

fledging (difference between maximum weight and weight at fledging); body mass at 

fledging; and nestling age at fledging. As wing length had been measured by slightly 

different methods in 1996 and 1997 it was not possible to conduct between year 

comparisons using this growth variable. Finally, general descriptive statistics were 

presented with means, value ranges, and standard deviations. 
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6.4. RESULTS 

6.4.1. THE PATTERN OF NESTLING GROWTH AND DEVELOPMENT 

Lilac-crowned Parrot eggs hatched asynchronously after approximately 28 days of 

incubation. The mean hatching interval between first and second eggs was 1.78 ± 

0.44 days (range 1-2 days, n= 9), and between second and third eggs was 4±1.41 

days (range 2-5 days, n= 4). Average brood size was 2.4 ± 0.67 nestlings per 

successful nest (range 1-3 nestlings, n= 11 nests). Nestlings weighed between 11 - 

19 g on hatching, and spent an average of 64.4 ± 2.44 days (range 60 - 68 days, ii = 

14) in the nest. Nestlings hatched with eye-lids fused together, and only a light 

covering of feather down. The eye-lids began to unfuse at 18 ± 2.3 days of age (range 

15 - 23, n= 15), and were not fully open until 22.5 = 2.28 days (range 18 - 26 days, n 

= 15). Nestlings underwent a rapid increase in size and body mass during the first four 

weeks of the nestling phase (Figs 23 & 24) and completed 90% of their growth in 

body mass at a mean 32.2 ± 3.94 days after hatching (range 25 - 38 days, n= 15). On 

reaching an average maximum body mass of 322.38 ± 12.43 g (range 297 - 349 g, 'r = 

16), increase in body mass leveled off, and weight recession occurred 10 - 14 days 

prior to fledging. Mean body mass of nestlings at fledging was 286.14 ± 24.14 g 

(range 254 - 325 g, n= 14), which was 11.24% less than the mean maximum body 

mass. 

Primary wing feathers erupted by 26.06 ± 1.56 days of age (range 23 - 29 days, »= 

17), and development during the second month of the nestling phase consisted 

principally of feather growth. Increase in wing length was slow during the first 2-3 

weeks after hatching, but increased linearly once the feather pins began to emerge 

(Figs 25 & 26). In contrast increase in culmen length was steady during the first 6-7 

weeks after hatching, but began to level out towards the end of the nestling phase. 

The most frequent ectoparasites found on parrot nestlings were red mites and bot fly 

larvae, though the average maximum bot fly load was low with 3.09 ± 4.2 bot fly 

larvae per nestling (range 0- 13 larvae, n= 23). 
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6.4.2. VARIATION BY HATCHING ORDER 

Ricklefs (1967) growth parameters for nestlings in 1996 and 1997 were calculated for 

body mass (Table 23), wing length (Table 24), and culmen length (Table 25). For all 

of the growth variables measured there was little difference in growth between first 

and second hatched nestlings. However, third-hatched nestlings demonstrated a 

slower growth rate (k) and a longer growth period (t, and t10-9o) for both body mass 

(Table 23, Figs 23 & 24) and wing length (Table 24, Figs 25 & 26). In both 1996 and 

1997, third-hatched nestlings were behind older siblings in body mass during the first 

four weeks of growth, but were able to attain the mass of older siblings in the latter 

month prior to fledging (Figs 23 & 24). However, while third-hatched nestlings may 

catch-up in body mass with older siblings, Figures 25 and 26 illustrate that in both 

1996 and 1997, third-hatched nestlings were consistently smaller than first- and 

second-hatched nestlings in wing length, and remained so throughout the period in the 

nest. 
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Figure 23: Body mass of Lilac-crowned Parrot nestlings by hatching order (1996). 
Error bars represent standard deviations of mean weight. 
(a) First-hatched, n=6 nestlings. 
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(b) Second-hatched, n=6 nestlings. 

360 

320 ° 0° °o 

280 0 
Ira o 

240 
N 

200 

160 

00 120 OO 

80 
40 Growth = 316 1+ exp ( -0.16 ( age - 19.0 ))) 

0 
0 10 20 30 40 50 60 70 

Age (days) 

(c) Third-hatched, n=2 nestlings. 
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Figure 24: Body mass of Lilac-crowned Parrot nestlings by hatching order (1997). 

Error bars represent standard deviations of mean weight. 
(a) First-hatched, n=4 nestlings. 
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(b) Second-hatched, n=3 nestlings. 
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(c) Third-hatched, n=2 nestlings. 
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Figure 25: Length of open left wing of Lilac-crowned Parrot nestlings in 1996. 
Error bars represent standard deviations of mean length. 
(a) First-hatched, n=6 nestlings. 
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(c) Third-hatched, n=2 nestlings. 
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Figure 26: Length of folded left wing of Lilac-crowned Parrot nestlings in 1997. 
Error bars represent standard deviations of mean length. 
(a) First-hatched, n=4 nestlings. 
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(b) Second-hatched, n=3 nestlings. 
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(c) Third-hatched, n=2 nestlings. 
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6.4.3. BETWEEN YEAR VARIATION IN GROWTH 

The growth parameters for body mass (Table 23) and culmen length (Table 25) 

demonstrate that nestling growth was more rapid in 1997 with a higher growth 

constant (k) and a shorter time to inflection of the growth curve (t, ) compared to 

1996. Wing growth could not be compared between the years due to the use of 

slightly differing methods for measuring wing length in 1996 and 1997. As illustrated 

in Figure 27, culmen lengths of nestlings were consistently shorter in 1996 than in 

1997. Body mass of nestlings was also lower in 1996 compared to 1997 during the 

first four weeks, however, nestlings in 1996 were able to make up in body mass 

during the second month of the nestling phase (Fig 28). 

Two-sample t-test analyses on nestling sizes at 6 days, 40 days, and 60 days 

demonstrated significant differences between 1996 and 1997 (Table 26). Culmen 

length of nestlings was significantly shorter in 1996 than in 1997 at both 6 days and 

40 days after hatching (Table 26). However, by 60 days after hatching there was no 

difference between the years in culmen length of nestlings, possibly as culmen length 

reaches an asymptote by the end of the nestling phase. 

This size difference was reflected in body mass of nestlings at 6 days after hatching 

which was significantly lower in 1996 than 1997. The existence of size differences 

early in the nestling period indicate that nestlings may have been significantly smaller 

at hatching in 1996 than in 1997. This may be related to differences between years in 

the nutritional condition of female parrots at the time of egg production. In addition 

while maximum body mass did not vary between the years, nestlings took significantly 

longer to attain maximum body mass in 1996 than in 1997 (Table 26, Fig 28), 

Finally, while there was no difference between the years in age of nestlings at fledging, 

there was a significant difference in both mass loss prior to fledging, and fledging 

mass. The more rapid growth of nestlings during 1997, means that feather maturation 

may have been more advanced at the time of fledging, resulting in a greater weight 

recession due to the loss of water from feather tissues than in 1996. Hence, nestlings 
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were significantly smaller at hatching, and took longer to acquire asymptotic size in 

1996 than in 1997. However, the length of the nestling period and the rapid growth 

of nestlings may allow some flexibility, enabling nestlings to acquire asymptotic sizes 

prior to fledging. 
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Figure 27: Between year variation in culmen growth of Lilac-crowned Parrot 

nestlings. Error bars represent standard deviations of mean culmen length. 
(a) Culmen growth in 1996, n= 14 nestlings. 
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Figure 28: Between year variation in growth of body mass of Lilac-crowned Parrot 

nestlings. Error bars represent standard deviations around mean body mass. 
(a) Body mass 1996, n= 14 nestlings. 
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Table 26: Comparison of nestling growth in 1996 and 1997. Results presented with 

means, standard deviation, value ranges, and two-sample t-test significance level. 

Variable 1996 1997 Significance test 
(range) (range) 

Culmen length at 8.30 10.326 9.16 f 0.616 1=2.96, df = 9, P=0.016 

6 days (mm) (7.86-8.7) (8.45 - 10.15) 

Culmen length at 20.74 ± 1.13 22.07 ± 0.642 t=2.89, df = 14, P=0.012 

40 days (mm) (19.7 - 23.2) (21.15 - 23.05) 

Culmen length at 24.99 ± 1.09 26.07 ± 0.62 1=2.15, df = 12, P=0.053 

60 days (mm) (23.1 - 26.48) (25.4 - 26.7) 

Mass at 6 days 35.29 ± 3.98 44.32 ± 8.59 1=2.63, df = 10, P=0.025 

(g) (30-40.5) (38.3 - 57.6) 

Maximum mass 323.75 ± 16.92 321 ± 6.37 t=0.43, df= 14, P=0.67 

(g) (297-349) (312-330) 

Age at max. mass 45.1 ± 3.87 41.4 ± 2.67 t=2.26, df = 14, P=0.041 

(days) (40 - 50) (39-46) 

Mass loss prior to 27: k 17.53 50.33 ± 12.93 1=2.74, df = 12, P=0.018 

fledging (g) (7-52) (37-68) 

Fledging mass (g) 298.9 125.1 272 ± 15.8 t=2.29, df = 12, P=0.041 

(270-342) (254-290) 

Age at fledging 65.1 ± 2.17 63.3±2.58 1.41, df= 12, Pa 0.18 

(days) (62-68) (60-69) 
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6.4.4. COMPARISON BETWEEN PSITTACINE SPECIES 

Ricklefs growth rate constant and asymptotic values for various psittacine species are 

summarised in Table 27. There was greater variation between parrot species in the 

growth rate constant (k) for body mass (coefficient of variation = 26.8%) than for 

wing length (coefficient of variation = 11.7%). Growth rate for body mass was also 
inversely related to adult size (r2 = 0.76, F1,6 = 19.18, P<0.005), with larger parrot 

species exhibiting slower growth rates. However, wing growth was fairly constant 

between parrot species and was not related to adult wing length 

Table 27: Comparison of Ricklefs growth rate constant (k) for psittacines. 

Variable Asymptote Growth rate Source 

constant (k) 

Body mass (Q) 

Hyacinth Macaw, captive-bred 1,500 0.11 data from Abramson 1991 

Scarlet Macaw, Belize, 1,135 0.139 Renton (unpubl. data) 

Scarlet Macaw, captive-bred 1,111 0.149 data from Abramson 1991 

Lilac-crowned Parrot 311 0.173 This study 

Red-shining Parrot 277 0.162 Rinke 1989 

Long-billed Corella 275 0.23 Smith 1991 

Monk Parakeet 103.9 0.24 Navarro & Bucher 1990 

Green-rumped Parrotlet 23.7 0.23 Waltman & IIeissinger 1992 

Length of folded left wing (mm) 

Scarlet Macaw, Belize 399 0.066 Renton (unpubl. data) 

White-tailed Black Cockatoo 366 0.074 Saunders 1982,1986 

Long-billed Corella 285 0.087 Smith 1991 

Red-shining Parrot 239.5 0.086 Rinke 1989 

Lilac-crowned Parrot 190 0.073 This study 
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6.5. DISCUSSION 

The pattern of growth exhibited by Lilac-crowned Parrot nestlings corresponds with 

that 'observed for the Red-crowned Parrot in north-eastern Mexico (Enkerlin-Hoeflich 

1995), as well as similar sized Australian parrots (Rowley & Chapman 1991; Smith 

1991), which reach asymptotic mass half-way through the nestling phase. However, 

this contrasts with the slow growth exhibited by nestlings of the White-tailed Black 

Cockatoo in Australia (Saunders 1982), which attain asymptotic body mass only in 

the last third of the nestling phase. As noted by Ricklefs (1968a), larger bird species 

tend to have slower growth rates for body mass. This inverse relation between body 

mass and growth rate is supported for psittacine species (r2 = 0.76), and is similar to 

the inverse relation obtained by Ricklefs (1976) for tropical land birds (1,2 = 0.73). 

There was a marked size hierarchy and variation in growth rate between Lilac- 

crowned Parrot siblings, as has been recorded for a few other parrot species (Rinke 

1989; Navarro & Bucher 1990; Smith 1991). However, this difference was only 

apparent with respect to third-hatched nestlings, while first- and second-hatched 

nestlings varied little in size or growth rate, regardless of whether they were in a two 

or three brood nest. The hatching interval was also longer between second and third 

eggs compared to that between first and second eggs. The delayed hatching of third 

eggs may have contributed to slower growth rates for third nestlings, which have to 

compete for food against siblings with a possible 4-6 day advantage in age. As 

hatching spread is influenced by food limitation at the time of laying (Bryant 1978a, b; 

Bollinger 1994), it is likely that the differential growth rate for third-hatched nestlings 

may be determined by environmental conditions during the egg-laying period in 

February. 

Though third-hatched nestlings were smaller in size and exhibited slower growth rates 

than earlier hatched siblings, this did not result in mortality. The lack of differential 

mortality of Lilac-crowned Parrot nestlings, contrasts with the brood reduction 

observed for Australian parrots in which later-hatched nestlings frequently died of 

starvation during the first four weeks after hatching (Saunders 1982; Smith & 
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Saunders 1986; Smith 1991). Herring gulls also exhibit a `third-chick disadvantage' 

in which last laid eggs in broods of three are significantly smaller, and result in smaller 

third chicks with slower growth rates and higher mortality (Parsons 1970,1975). 

Pierotti & Bellrose (1986) suggest that this may arise due to constraints on energy 

reserves of the female at the time of laying, and where food is abundant the third- 

chick disadvantage may be reduced or absent. 

For the Lilac-crowned Parrot, various factors such as the length of time in the nest, 

along with food resource availability during the nestling period, and parental effort, 

} may allow some flexibility in growth processes, enabling third chicks to catch-up in 

body size with earlier hatched siblings. Furthermore, asynchronous hatching and size 

hierarchies do not always lead to mortality of later-hatched young (Ricklefs 1976; 

Richter 1984). However, it is predicted from the growth rate analysis that third. 

hatched Lilac-crowned Parrot nestlings are at a disadvantage compared to earlier 

hatched siblings, and may be vulnerable to mortality in years of extreme drought and 

poor food resource availability which may occur in this habitat. 

The main period of nestling growth occurred in the mid dry season in March - April, 

with most nestlings fledging by May. In fact, the nestling period may be timed to 

coincide with a period of high food resource availability during the mid-dry season, 

and to enable fledging of young prior to the end of the dry season when there is a 

dramatic decline in food resource abundance (Chapter 3). A phase of rapid growth 

during the first month of the nestling cycle would also reduce the vulnerability of 

nestlings to predation risks which may be greater towards the end of the dry season 

(Sieving 1992). 

The influence of food resource variability on parrot reproduction is suggested by the 

difference in size and growth rates of nestlings between the 1996 and 1997 breeding 

seasons. The larger initial size and faster growth rates of nestlings in 1997 may be 

due to the greater food resource abundance (Chapter 3), as a result of the increased 

rainfall (Chapter 2). Nestling diets were also more varied in 1997 compared to 1996 

(Chapter 3). However, while the nutritional value of different food items in the diet is 
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unknown, it is most likely that Lilac-crowned Parrot nestlings simply received a 

greater quantity of food in 1997 compared to 1996, leading to increased growth rates. 

Hence, annual fluctuations in environmental factors may influence nestling condition 

and survival. This impact may be greater in years with a severe dry season, and a 

corresponding scarcity of food resources. 

The study indicates that growth rate responds to environmental fluctuations in food 

resource availability. Analysis of nestling growth may therefore serve as a useful tool 
for monitoring parrot populations, and evaluating both habitat quality and the viability 

of threatened populations. Food limitation as a result of habitat destruction may have 

been a principal factor in the poor growth and survival of cockatoo nestlings in 

agricultural areas of Australia, which eventually led to the extirpation of local 

populations (Saunders 1982,1986,1990,1991). Between year variations in the 

growth rate of Lilac-crowned Parrot nestlings corresponded with fluctuations in food 

resource abundance. Hence, the annual variations in growth rate observed for the 

Monk Parakeet (Navarro & Bucher 1990) may also be due to fluctuations in 

environmental conditions, particularly food supply. Very little data are available on 

the growth rates of Neotropical parrots, or the influence of food resource availability 

on reproduction, making this is an area which requires further investigation in order to 

understand the potential impacts of environmental variability on parrot populations. 
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CHAPTER 7 

IMPLICATIONS FOR CONSERVATION 

7.1. POTENTIAL IMPACT OF HABITAT FRAGMENTATION 

The pattern of food resource availability and utilisation by Lilac-crowned Parrots at 

the study site, demonstrates the importance of semi-deciduous forest in providing 

essential food resources during the critical period of resource scarcity at the end of 

the dry season. Hence, increased fragmentation of semi-deciduous forest could result 
in food limitation for parrots during the breeding season. Semi-deciduous forest may 

also provide essential resources for other animal communities in deciduous forest 
during the dry season. 

Breeding birds experience greater food limitation in small forest patches (Burke & 

Nol 1998), while food limitation due to habitat loss resulted in depressed nestling 
`growth, low reproductive output, and the extirpation of cockatoo populations in 

agricultural areas of Australia (Saunders 1986,1990,1991). The variation between 

years in growth of Lilac-crowned Parrot nestlings, indicates the potential influence of 
fluctuations in environmental factors on parrot reproduction. Hence, food limitation 

as a result of habitat fragmentation may impact nestling growth and reproductive 

output of the wild population, particularly in extremely dry years of poor food 

resource abundance. 

The high predation rate and low reproductive output of Lilac-crowned Parrot nests 

may be another consequence of increased fragmentation of semi-deciduous forest. 

Predation on, bird nests is greater in small forest patches (Gates & Gysel 1978; 

Ambuel & Temple 1983; Loiselle & Hoppes 1983; Wilcove 1985; Andren et al. 1985; 

Angelstam 1986; Wilcove et al. 1986; Andren & Angelstam 1988; Andren 1992; 

Fenske-Crawford & Niemi 1997; Keyser et al. 1998), while edge effects of predators 

entering forest patches from surrounding areas may also lead to increased nest 

predation (Angelstam 1986; Andren & Angelstam 1988; Small & Hunter 1988; 
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Andren 1992; Fenske-Crawford & Niemi 1997). Hence, high predation rates on 
Lilac-crowned Parrot nests may be due to the concentration of predators in small 

patches of semi-deciduous forest from the adjacent deciduous forest during the dry 

season. High rates of nest predation may also impact other bird communities at the 

study site. 

The majority of deforestation since the 1950s has occurred in semi-deciduous forest 

(A. Miranda pers. comm. ), and current rates of deforestation are twice as high in 

semi-deciduous forest than deciduous forest (Miranda 1998). Parrots are highly 

adaptable in diet, spatial scale, and mobility, and therefore may respond to increasing 

habitat fragmentation through greater flexibility in diet, utilisation of a large area, and 
long-distance movements. However, the conservative breeding strategies and low 

reproductive rates of parrots mean that the combined effects of habitat fragmentation, 

and nest poaching will heavily impact wild populations. 

Conversely, it is not known what effect the loss of parrot populations may have on 

, tropical forest dynamics. The pattern of resource utilisation by Lilac-crowned Parrots 

suggests a complex inter-action between parrot populations and seed resources. 

Decreased vegetational diversity in some Central American forests has been 

associated with the loss of large herbivores, which may play a regulatory role in 

maintaining forest diversity (Janzen 1970; Dirzo & Miranda 1990,1991). Parrots are 
large, highly mobile, pre-dispersal seed predators, with the ability to closely track and 

exploit temporal and spatial variations in seed resource abundance, and may play an 
important regulatory role in maintaining diversity of canopy trees in tropical forests. 

7.2. IMPLICATIONS FOR SPECIES CONSERVATION 

Parrot populations are frequently able to persist in areas disturbed by human activities, 

giving the impression of abundant and stable populations. However, studies of 
breeding success and reproductive output of parrot populations in disturbed areas 
indicate that such populations may be reproducing at sub-optimal levels (Saunders 
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1986; Gnam & Rockwell 1991; Enkerlin-Hoeflich 1995; Chapter 5). The low nest 

success and fluctuations in nestling growth of the Lilac-crowned Parrot, as compared 

with psittacine populations in undisturbed areas (Saunders 1982; Munn 1992), 

suggest that habitat fragmentation may already be impacting reproduction of the wild 

population. Hence, the Lilac-crowned Parrot population in the tropical dry forest of 

the Chamela-Cuixmala reserve does not exhibit a reproductive rate which is able to 

sustain heavy levels of exploitation for commercial trade. 

The temporal and spatial variations in resource utilisation by Lilac-crowned Parrots 

further demonstrate that parrots require large areas and a variety of habitat types in 

order to meet their resource needs throughout the year. Added to which, the seasonal 

altitudinal migration by Lilac-crowned Parrots indicates that parrot populations may 

depend on entirely different areas and habitat types at critical times of the year. An 

increase in the abundance of Lilac-crowned Parrots in the Chamela-Cuixmala 

Biosphere Reserve during the months of August - October (pers. obs. ), may also be 

due to a reverse migration of parrot populations from the ' mountain foothills to 

lowland deciduous forest during the rainy season. Hence, the large flocks of Lilac- 

crowned Parrots observed outside the breeding season (Forshaw 1989), may be comprised 

of seasonally migrating individuals from various lowland and mountain populations of at 

least a 50 km radius, and are misleading if taken as an indication of high population 

densities. 

Conservation of threatened populations depends on preservation of the entire habitat 

range of a species. For the Lilac-crowned Parrot, this may require conservation of 

sufficient areas of lowland deciduous and semi-deciduous forest, as well as 

corresponding areas of forest in the mountain foothills. However as a result of 

deforestation, semi-deciduous forest now comprises only 9.28% of the land area in 

the Chamela-Cuixmala region (Miranda 1998). Hence, it may no longer be the case 

that extensive habitat exists for wild populations as stated by Ridgely (1981), particularly 

in view of the dependence of parrots on semi-deciduous forest during the dry season. 
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In recent years the Military Macaw has been extirpated from the Chamela-Cuixmala 

region, and populations of the Yellow-headed Parrot have declined dramatically. The 

principal cause of this decline has been capture for commercial trade, however, the 

high rate of deforestation in the region is an additional factor. Indeed, there may no 

longer be sufficient habitat to sustain large populations of Military Macaws 

throughout the year, particularly as this species may be more dependent on semi- 

deciduous forest in low lying areas. Very little is known of the dynamics of habitat 

use within the animal community of deciduous forest, and such information is 

essential in order to develop effective strategies for conservation and management of 

threatened species. 

7.3. IMPLICATIONS FOR PROTECTED AREAS 

The complex relation between parrot populations and food resources demonstrates 

the importance of heterogeneity on a temporal and spatial scale for maintaining 

stability in natural ecosystems (Wu & Loucks 1995). A variety of habitat types may 

be required to meet the resource needs of animal communities at different times of the 

year (Foster 1980), as well as a means of maintaining connectivity between resource 

patches (Merriam 1991; Saunders et al. 1991; Taylor et al. 1993; Wiens 1994). 

The Lilac-crowned Parrot covers large areas in its daily and seasonal movements, 

requires a variety of habitat types, and is sensitive to ecological changes and human 

disturbance. Hence large parrots, such as the Lilac-crowned Parrot, may be 

considered focal species in reserve design, being both umbrella species and indicator 

species (Miller et al. in press). Incorporating the requirements of such focal species in 

the planning and management of protected areas ensures the preservation of key 

elements for a healthy ecosystem. 

Maintaining a functional ecosystem in the Chamela-Cuixmala Biosphere Reserve 

(Appendix 1) may require the conservation of sufficient areas of semi-deciduous 

forest, as well as the dominant vegetation type of deciduous forest. Increased 
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predation pressures and potential food limitation in small forest patches, further 

demonstrate the importance of preserving large areas of intact forest as opposed to 

small fragments. The on-going telemetry study has also demonstrated the importance 

of large hills, such as Cerro Maderas, Cerro Colorado, and Cerro Carayes in the 
Chamela-Cuixmala reserve, which are used as communal roost sites by Lilac-crowned 

Parrots (Renton unpubl. data). Hence, bird communities in the Chamela-Cuixmala 

forest may depend on the maintenance of a mosaic of forest types, providing temporal 

and spatial diversity in habitats and food resources. However, the high rate of loss of 

semi-deciduous forest, means that management may be required to maintain and 

restore areas of semi-deciduous forest in the Chamela-Cuixmala reserve. 

Finally, the seasonal altitudinal migration by Lilac-crowned Parrots to the Sierra 

Cacoma, adjacent to the Sierra Manantlan, indicates the importance of developing 

connectivity between the Chamela-Cuixmala Biosphere Reserve and the nearby Sierra 

Manantlan Biosphere Reserve. A potential reverse migration to lowland deciduous 

forest by parrot populations in the mountains during the rainy season, suggests that 

bird populations in the Sierra Manantlan Biosphere Reserve may also require the 

maintenance of sufficient areas of alternative lowland habitat, in order to meet their 

resource needs throughout the year. Such migratory movements by animal 

populations strengthen the case for maintaining these two protected areas as 
functional units within an altitudinal ecosystem, thereby preventing them from 

becoming isolated by increasing deforestation. 
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APPENDIX 1 

Map of the Chamela-Cuixmala Biosphere Reserve ." Jalisco 
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APPENDIX 2 

HISTORIA NATURAL DEL LORO CORONA LILA (AMAZONA FINSCHI)2 

El loro corona lila (Amazonafinschi) es una especie endemica a la costa del Pacifico 

de Mexico (Forshaw 1989), y estä considerada como una especie amenazada (NOM- 

059-ECOL-1994). Es un loro de tamaflo mediano que mide 33 cm de cabeza a cola y 

con un peso promedio de 310 g. Puede ser dificil observarlo dentro del follaje de los 

arboles por su plumaje verde, y se caracteriza por su corona de color lila que continua 

a los lados de la nuca. Las alas miden un promedio 190 mm y solo cuando se 

despliegan en vuelo se ven las. plumas primarias azules y las secundarias rojas. 

La epoca de reproduccion para los Toros es de febrero a junio y anidan principalmente 

en cavidades naturales de ärboles maduros de Celaenodendronn mexica, lum 
('Guayabillo') y Astronium graveolens ('Culebro'). Las hembras ponen dos o tres 
huevos en febrero, y los incuban por un periodo promedio de 28 dias. Los huevos 

eclosionan a principios de marzo y los pollos nacen con los ojos cerrados y sin 

plumaje. Al eclosionar los huevos, los pollos pesan un promedio de 16 gy tienen un 

tamaflo de ala de 12 mm. Durante los siguentes dos meses los pollos alcanzan su 

tamaflo maximo y desarollan su plumaje adulto antes de dejar el nido. Normalmente 

dejan el nido a los 60 dias despues de la eclosiön del huevo. 

A pesar de que parecen ser muy abundantes en la zona, los Toros corona lila en la 

region de Chamela-Cuixmala, tienen una tasa reproductiva muy baja. Solo 40% de 

los nidos tienen exito cada ano. El factor principal que limita el dxito reproductivo es 

la depredaciön sobre los huevos y pollos. Los depredadores principales incluyen 

reptiles como el tilcuate (Drymarchon corais), la iguana verde (Iguana iguana), y el 

escorpi5n (Heloderma horridum) ademäs de mamiferos como el tlacuache (Didelplris 

virginiana), y los tejones (Nasua narica). EI hombre tambien tiene un impacto 

I Book chapter submitted to'La Ecologia de Chamela'. S. Bullock, F. A. Noguera, R. 
Ayala, & A. N. Garcia (eds). 
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importante sobre el exito reproductivo de la poblaciön silvestre de Toros por el saqueo 

ilegal de los pollos en los nidos. 

Despues de que abandonan el nido, los depredadores principales de los Toros juveniles 

y adultos son los gavilanes. El periodo critico para la sobrevivencia de un polio 

juvenil o volantön es las primeras dos o tres semanas despues de dejar el nido, debido 

a que todavia el polio juvenil no vuela bien y tiene que aprender como evitar a los 

depredadores. Durante ese periodo, 25% de los volantones serän depredados por los 

gavilanes. Debido a esa alta depredaciön sobre los huevos y pollos juveniles, solo 0.7 

pollos por cada pareja que empieza a anidar Ilegan a su primer anno de edad. Los 

pollos juveniles siguen en sus grupos familiares por un minimo de tres meses despues 

de dejar el nido. Al separarse de los padres, los juveniles se mantienen juntos en 

grupos hasta que forman sus propias parejas. 

EI loro corona lila tiene la costumbre de agregarse en parvadas grandes para dormir 

en lugares conocidos como dormitorios. Por medio de la tdcnica de radio-telemetria 

se ha podido determinar que los dormitorios principales para esta especie se localizan 

en los cerros mäs altos de la reserva de Chamela-Cuixmala: el Cerro Maderas; el 
Cerro Careyes; y el Cerro Colorado. El patron normal de actividad de los loros 

durante el dia consiste en volar al amanecer de los dormitorios a las zonas de 

forrageo, principalmente por los arroyos de mayor cauce como Chamela, Careyes, 

Caiman, Colorado, y Cajones, pero tambien sobre vegetacibn subperennifolia al lado 

del rio Cuitzmala y en las zonal planas. Los Toros realizan su mayor actividad de 

forrageo durante las primeras dos o tres horas en la manaria. Apartir de las 11: 00 

horas hasta las 16: 00 horas del dia, la actividad de los Toros disminuye 

considerablemente, y se protegen del calor de medio dia escondiendose bajo la sombra 

de las hojas. Los Toros forragean un par de horas mäs por la tarde, antes de volar a 

los dormitorios comunales un poco antes del anochecer. 

La dieta del loro corona lila es muy variable y durante todo el atio se ha observado a 
los Toros comiendo semillas, frutos, y hojas de 34 diferentes especies dc plantas, 

aunque el componente principal de la dieta es semillas inmaduras, los cuales forman 
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70% de lä dieta. Tambien, la dieta cambia en relaciön al patron de la estacionalidad 

en la region, y lä fenologia de los arboles en los diferentes tipo de selva. Durante la 

epoca seca, los Toros se alimentan principalmente de semillas de arboles caracteristicas 

de la selva subperennifolia como Astronium graveolens, Brosimum alicastrum, y 

Celaenodendron mexicanum, ademas de semillas de Comocladia engleriana, y frutos 

de Ficus insipida. Durante la epoca de lluvias, los Toros se alimentan de especies de 

plantas caracteristicas del bosque tropical caducifolio como Caesalpinia pulcherrima, 

Esenbeckia nesiotica, Jatropha standleyi, y Sciadodendron excelsum. 

Con relaciön al use que hacen del habitat, se nota que la vegetaci6n subperennifolia es 

muy importante para mantener a los Toros durante el periodo seco critico en la zona. 

Como respuesta a la estacionalidad de la zona, los Toros concentran su actividad de 

forrageo en la selva subperennifolia durante la epoca seca, aunque durante las Iluvias 

los Toros tambien utilizan el bosque tropical caducifolio, que es la vegetaci6n 

dominante en la reserva de Chamela-Cuixmala. Otra respuesta a la estacionalidad que 

tienen los Toros es la de hacer una migraci6n altitudinal de aproximadamente 50 km 

hasta la Sierra Cacoma, cerca de la Sierra de Manantlän, durante los meses mäs secos 

de mayo a junio. Esto tiene implicaciones importantes para la conservaci6n de los 

Toros en la region, y para el mantenimiento de la integridad de la reserva de Chamela- 

Cuixmala como parte de un ecosistema altitudinal. 

Se estä siguiendo con la investigaciön a fondo sobre los movimientos de los loros y su 

use del habitat durante la migracion estacional, para indicar corredores biolögicos 

potenciales que podrian utilizar los Toros entre las reservas de Chamela-Cuixmala y 

Sierra de Manantlan como parte de un ecosistema altitudinal. En conjunto, se estä 

investigando la respuesta de los Toros a la estacionalidad al estudiar el cambio de 

dieta, use del habitat, y movimientos estacionales. Tambien, hay evidencia que 

muestra que las variaciones en la disponibilidad de los recursos alimenticios durante la 

epoca seca, puede impactar el crecimiento y sobrevivencia de los pollos de los Toros, y 

por ello se estän llevando a cabo investigaciones para evaluar el impacto potencial de 

las fluctuaciones en factores ambientales sobre las poblaciones silvestres de este 

especie amenazada. 
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APPENDIX 3 

THE SCARLET MACAW (ARA MACAO CYANOPTERA) 3 

f 

Common Name: Scarlet Macaw (English) 

Scientific Name: Central American sub-species: Ara macao cyanoptera 

Order: Psittaciformes 

Family: Psittacidae 

Status: Endangered in Mexico (NOM-059-ECOL-1994), Guatemala (Decree 4-89), 

Belize (Wildlife Protection Act 4-81), Honduras (Law #004-78,206-82), Nicaragua 

(Wildlife Law 1983), and Costa Rica (Wildlife Law #7317). Extinct in El Salvador. 

CITES Appendix I. IUCN category 1 (vulnerable). 

Threats: Habitat destruction, and capture for the wildlife trade were principal threats 

to the species during the 1970s - 1980s. Extensive illegal poaching of wild nestlings 

continues to be a severe problem for remaining populations in the wild. 

Habitat: Tropical humid and dry forests below 1,000 m elevation. 

Distribution: Currently restricted to small remnant populations in southern Chiapas, 

Mexico; western Peten, Guatemala; south-west Belize; north-eastern Honduras; 

eastern Nicaragua; and the Pacific coast of Costa Rica. Formerly distributed 

throughout Central America from north-eastern Mexico along the Pacific and Atlantic 

coasts to Panama. 

Description 

The Scarlet Macaw is the third largest of the 16 species of macaw in the 

Neotropics, measuring 85 cm from head to tail. Average adult weight is 1,200 g, with 

a wing length of 41 cm, and tail length of 53 cm (Forshaw 1989; Wiedenfeld 1994). 

The general plumage is bright red, with a distinctive yellow band on the wing, which 

is tipped with blue (Forshaw 1989). The Scarlet Macaw in Central America is 

considered a separate sub-species to that in South America as there is no green band 

'Renton, K. in press. The Scarlet Macaw. in Endangered Animals: Conflicting 
Issues. R. P. Reading & B. J. Miller (eds). Greenwood Press, USA. 
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separating the yellow and blue on the wing, and birds from Central America are larger 

in size than those from South America (Wiedenfeld 1994). 

Natural History 

Scarlet Macaws are generally seen in bonded pairs, or small family groups 

with 1 or 2 fledged young, though large groups of 20 - 30 individuals may flock 

together at feeding trees. The breeding season, extends from late November through 

to the end of May, and nest sites are located in cavities in tall live or dead trees 

(Marineros & Vaughan 1995; Inigo-Elias 1996). Scarlet Macaws are highly territorial 

around nest sites, and may experience pressures from nest site limitation (Iiligo-Elias 

1996). 

Nesting macaws usually lay I-3 eggs, which the female incubates for 

approximately 28 - 34 days (Ingo-Elias 1996). The chicks hatch asynchronously, 

with eyes fused shut and only a light covering of feather down. The nestlings develop 

in the nest cavity over 2-3 months, and attain adult size and plumage prior to 

fledging (Inigo-Elias 1996). Only 20% of the wild population may breed in a given 

year, with 60 - 70% of nests producing one or two young (Munn 1992; Marineros & 

Vaughan 1995; Ingo-Elias 1996). The main cause of nest failure is predation on eggs 

or young chicks by reptiles, small raptors, and medium-sized mammals, as well as 

human poachers (Marineros & Vaughan 1995; Lftigo-Elias 1996). 

The diet of Scarlet Macaws consists principally of immature seeds from a 

variety of plant species, though they also consume fruits, flowers, and leaf stems 

(Munn 1988; Marineros & Vaughan 1995). Scarlet Macaws may be highly adaptable 

in diet and range widely in search of food resources, but nothing is known of their 

movements and area requirements. 

Historic and Current Threats 

Scarlet Macaws were once widespread in the tropical humid and dry forests 

along the Pacific and Atlantic coasts of Central America from north-eastern Mexico 

through to Panama (Forshaw 1989; Wiedenfeld 1994). However in the 1970s, 

government sponsored development and recolonisation policies, such as the National 

Deforestation Program (Programa Nacional de Desmontes) in Mexico, and the Peten 
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Promotion and Development Association (FYDEP) in Guatemala, resulted in 

extensive deforestation. In Mexico, government policy aimed to promote agricultural 

expansion by donating land and financial subsidies to community groups, known as 

`ejidos'. However, in order to maintain ownership, members of the ejido had to 

demonstrate that they were developing the land. The government definition of 

development was to deforest land for agriculture, and financial subsidies were 

provided to encourage this. Added to which, border disputes with Guatemala led to 

government sponsored recolonisation programs to populate and develop tropical 

forest areas along the frontier. 

By the late 1970s, agricultural development, hard-wood extraction, and 

recolonisation had resulted in the destruction of tropical forests, and elimination of the 
Scarlet Macaw, from eastern Mexico, and the Pacific coasts of Guatemala, Honduras, 

and Nicaragua. In Costa Rica, only 20% of the original macaw habitat still exists, 

with the remaining Scarlet Macaw populations located in three main areas on the 

Pacific slope (Marineros & Vaughan 1995). Civil wars in El Salvador and Nicaragua 

also decimated forests and wildlife of those countries. Natural disasters such as 
Hurricane Hattie in 1961 and Hurricane Joan in 1988, further impacted Scarlet 

Macaw populations in Belize and Nicaragua. At present, the impact of the 1998 

Hurricane Mitch on Scarlet Macaw populations in Honduras is unknown. 

However, the principal threat to wild populations has been the commercial 

exploitation of Scarlet Macaws for the international wildlife trade. Many of the 

problems of international trade derive from the disparity between local and 

international market values, with major profits from trade going to a few middlemen. 

In Mexico, a local trapper may receive $19 for a Scarlet Macaw, while a trader in the 

country of origin may receive $450, however once in the United States, a Scarlet 

Macaw may be sold for as much as $4,000 (I igo-Elias & Ramos 1991). Hence, it is 

at the level of the US importer that the trade becomes most highly organized and 

profitable, with only four distinct companies controlling 74% of US live bird imports 

in 1988 (Swanson 1992). The enormous profits which may be made by a few highly 

organized importers is the major driving force behind international trade. 

The Scarlet Macaw was placed on Appendix I of CITES in 1986 which 

prohibited international trade, but did not control internal trade. CITES is in essence 
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a trade agreement rather than a conservation treaty, hence while CITES may limit 

legal international trade, it is ineffective against illegal or local trade. Classification of 

a species under CITES Appendix I may also raise the market value and demand for 

that species, which is then considered rare. At the local level, enforcement of wildlife 

laws is hampered by a lack of resources in wildlife departments, and a lack of 

importance attributed to wildlife laws. Hence, enforcement is frequently non-existent 

in the remote, rural, or border regions where most macaw populations occur. There 

remains an extensive and overt illegal commerce in Scarlet Macaws in Guatemala, 

Honduras, Nicaragua, and Costa Rica, even though the species is protected by 

national laws in all of these countries. In Costa Rica, traditional Scarlet Macaw nest 

trees located along roadsides have ladders built into the trunk to aid poachers 

(Marineros & Vaughan 1995). 

The Central American Scarlet Macaw has now been reduced to small, 

discontinuous populations in Mexico, Guatemala, Belize, Honduras, Nicaragua, and 

Costa Rica, estimated at a total 4,000 individuals (Wiedenfeld 1994). Conservation of 

the Scarlet Macaw in Central America therefore involves a number of countries with 

potentially differing conservation structures, national agendas, and socio-economic 

profiles, many of which have only recently resolved long-standing disputes over 

sovereignty. Role players in Scarlet Macaw conservation include various wildlife 

departments, researchers from different institutions, national and international 

conservation organisations, and economically poor rural communities around national 

parks and macaw areas. 

Captive breeding and re-introduction of Scarlet Macaws may be an option for 

conservation. However, captive breeding requires enormous logistical and financial 

investment, and has potentially detrimental impacts on wild populations through the 

spread of disease, or genetic inbreeding (Snyder et. al. 1996). In addition, captive. 

reared individuals frequently lack the behavioral skills required to locate food and 

evade predators in the wild (Snyder et. al. 1994), hence release programs have been 

most successful where captive-reared birds are able to join wild populations (Sanz & 

Grajal 1998). 

Above all, captive-breeding and re-introduction do not address the socio- 

economic problems in Scarlet Macaw conservation. There is an inherent conflict in 
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attitudes between those organisations, institutions, and individuals desiring to protect 

Scarlet Macaw populations, and poor rural communities which view the Scarlet 

Macaw as an economic resource to be exploited. Hence, the most effective 

conservation measures are likely to be those which attack the underlying problem of 

poaching through education, and work with local communities. 

Recommendations 

Effective conservation of the Scarlet Macaw must be based on ecological data 

of population trends and habitat requirements of macaws, and address socio-economic 

aspects through educational outreach programs and community based development. 

Field studies demonstrate that Scarlet Macaw populations have low reproductive rates 

making them vulnerable to decline. However, little is known of the dynamics, 

resource, and area requirements of wild populations, which is necessary to determine 

appropriate conservation strategies. 
Providing economic benefits to local communities may encourage them to 

conserve Scarlet Macaw populations. Sustainable harvesting of wild macaws has 

been proposed as a means of providing an economic incentive for conservation. 

However, this requires a comprehensive data base on population density, dynamics, 

and limiting factors (Beissinger & Bucher 1992), which is not available for any Scarlet 

Macaw population. Scarlet Macaw populations in Central America are also recorded 

to be in severe decline (Forshaw 1989; Wiedenfeld 1994; Marineros & Vaughan 

1995; Inigo-Elias 1996), rather than stable or increasing, and exhibit conservative 

breeding strategies, making them unsuitable for sustainable harvesting. Added to 

which, harvesting of macaws which are destined for international trade is not 

comparable with harvest programs for local markets, such as iguana farming. High 

commercial values in international markets drives local harvesting rates. An 

increasing scarcity in the wild further raises market values, and creates powerful 

incentives for increased harvesting of declining populations. This type of runaway 

positive feedback in international trade makes harvesting of threatened species, such 

as the Scarlet Macaw, inherently unsustainable. 

Ecotourism may be the most appropriate non-consumptive use of Scarlet 

Macaws (Munn 1992; Marineros & Vaughan 1995). Tourism is one of the largest 
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industries in the economies of Mexico, Guatemala, Belize, and Costa Rica, however 

the majority of that income frequently returns to foreign owned companies (Boo 

1990). In Costa Rica, the Carara Biological Reserve receives only 1% of the income 

generated by tourists, while rural communities around the reserve receive no benefit 

(Marineros & Vaughan 1995). 

The development of community based nature tourism may provide an 

opportunity for local people to extract economic benefit from the tourist appeal of 

Scarlet Macaws. Proposals for community based nature tourism in Costa Rica 

include tourists paying local communities to see macaw nests, and training of local 

guides (Marineros & Vaughan 1995). In Belize, a community project is also being 

developed which provides facilities for tourists to view large feeding groups of Scarlet 

Macaws. However, the success of community based nature tourism depends on 

effective organization, training, infrastructure, services, and promotion, and should 

involve all members of the community (Norris et at. 1998). Outreach programs as 

developed in the Caribbean (Butler 1992), and Belize (Coc et. al. 1998), also need to 

be implemented to educate schools, local communities, and the visiting public about 

Scarlet Macaw ecology and conservation. 

The dispersed, increasingly isolated nature of the remaining Scarlet Macaw 

populations, many of which are located close to national frontiers, raises the need for 

co-operation between different governments, institutions, conservation organisations, 

and individuals. An initiative is currently underway to develop a regional strategy for 

conservation of the Scarlet Macaw in the Selva Maya of Mexico, Guatemala, and 

Belize. However, this will require collaboration between government departments 

and agencies in each country in order to establish effective policies and procedures for 

conservation. The challenge will be to develop an integrated approach to conservation 

of the Scarlet Macaw in Central America, which addresses the socio-economic 

problems of poaching and habitat destruction, if the species is to be preserved in the 

region. 
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