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U.

Abstract 

The thesis begins with an examination of what was understood by the

term 'physics' in France circa. 1850. The development of the centralised

state educational system and the physics research which was produced

within this system in Paris and the provinces, is then considered.

Although all the relevant institutions, where some form of physics or

physical science was taught, have been examined,the Ecole Polytech-

nique,and the Ecole Normale Superieure have a particular importance in

the early period of this study. As time passed and as a result of reforms

put in hand by the republican regime which came out of the defeat of the

Franco-Prussian war of 1870-71, the universite system grew in importance,

while the role of the Polytechnique declined. The Ecole Normale, the

Paris Faculty and the provincial faculties form part of the universite

system and participated in its growth.

A knowledge of the objectives of the physics courses in these

institutions helps in the understanding of the characteristics of physics

in France in this period. The central objective was, largely, to produce

either science teachers, or (in the case of the Polytechnique), a type

of elite 'technocrat', for the state, i.e. men who could communicate

clearly, or technically utilise knowledge, which was already established

on a firm theoretical basis. This is not to say that research had no

place in the institutions of higher education, on the contrary, and this

research, carried out by both teachers and students, is examined here to

try to relate its form and content to the particular institution in which

it was carried out.

The role of national organisations like the Societe' de physique and

the Association Francaise pour l'avancement des sciences in the develop-

ment of physics in France is also considered, as is the role of the

Academie des sciences. The predominantly experimental nature of physics

research in France is related to the interests of these organisations,

to the requirements of the licence programme, and to the increasingly

fierce competition for membership of the physics section of the Academie.
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1. INTRODUCTORY PERSPECTIVE; 'PHYSICS' IN ITS CONTEMPORARY FRENCH 

CONTEXT

When the period of this thesis opens, in the middle of the nine-

teenth century, the subject known as la physique had already been

established as an academic discipline in some Parisian institutions of

higher education for half a century, and from as early as 1785 a

separate section in the Academy of Sciences was devoted to it. This is

not to say that each institution which taught the subject had precisely

the same idea of the content of physics, for this would be modified by

the concrete objectives of the educational programme of the particular

institution, but there was general agreement as to what constituted the

core of the subject. In order to understand what physics meant to the

teachers and research workers of mid-nineteenth century France, and to

appreciate the changing boundaries of the subject as new knowledge

acquired later was accomodated within it, it is necessary to take a

synoptic view of the evolution of physics, within France and outside

it, in the previous century.

'Physics', (from the Greek physis), originally the study of nature

and the natural world, had acquired a more specific meaning in Europe

by the end of the eighteenth century. In the EncycloAie of Denis

Diderot, published between 1751 and 1772, la Physique was split into

two separate branches; physique geengrale, which dealt with the proper-

ties, including movement, common to all bodies, and physique particu-

lire which dealt with the properties which distinguished one body from

another, like hardness, elasticity or fluidity. 1 Robert Silliman

*. The noun, la physique is, throughout this thesis, translated as

physics, as, for example when it appears in Societe de Physique. Where

the French word appears as an adjective, e.g. sciences physiques it is

translated as 'physical'.
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has made the point that physique generale was quantitative, coherent

and mathematically sophisticated, and had at its core the mechanics of

Newton as expounded in his Principia of 1687, while physique particu- 

lire was much more hypothetical and experimental and dealt with a

range of topics, whose subject matter roughly corresponded with the

'Queries' of Newton's Opticks. 2 Within physique particuliere was to be

found the study of sound, heat, light, electricity and magnetism, as

well as, originally chemistry and natural history. Thomas Kuhn, refer-

ring to earlier work by I.B. Cohen , also traces two separate strands

of physical science in the eighteenth century, both influenced by

Newtonian thought. He calls the two strands, 'classical' and 'Baconian'

respectively, commenting that while the Principia is squarely within

the tradition of classical science ,the Opticks is much less unequivo-

cally in the 'Baconian'.
3 By 'classical, Kuhn meant that tradition

which came from the Greeks in such works as those of Archimedes,

Ptolemy, and Euclid for example, which shared a mathematical tradition

and were inaccessible to the layman, and by 'Baconian', he meant those

sciences based predominantly on observation and experiment which lacked

a theoretical base.

Thus the phrase 'Baconian' physical science corresponds quite

closely to the term physique particuliere, or to the term which tended

to replace it, in France, as the eighteenth century drew to a close,

physique experimentale. This latter term had been explained by Jean

D'Alembert in the Encyclopedie, who said that its object was to study;

'..phenamena where reasoning can help us little., where it is

not possible to see the links between phenomena.

He placed in this category , the study of electricity and

magnetism, as well as chemistry.

The emergence of physics as a separate autonamous discipline in

the nineteenth century went through a process which involved both
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meticulous experimental work utilising precise measurement on the one

hand, and the application, to the studies of heat, light , and elec-

tricity, of a powerful body of mathematical theory on the other. In

this way was a bridge built between the two separate strands, the

'Baconian' and the 'classical', between physique experimentale and

physique ggngrale. This is not to say that the process of unification

only began in the nineteenth century, for by the time the Encyclopgdie 

was published in the mid-eighteenth century, Dutch experimentalists

like Boerhaave, Mussenchenbroek and s'Gravesande had already began to

put physique particuliere on a firmer empirical basis, and their work

translated into French in mid-century, reinforced the native tradition

as represented by such men as Dufay and Nollet, who were pursuing an

experimental study of electricity. But their experiments, in common

with many experiments of the time, as Hankins has pointed out, were

designed to create rather than measure phenomena, for 'measurement had

to wait until qualitative theory had specified what it was important to

measure'.
5
 Possibly as a result of this lack of an adequate theoreti-

cal base, interest in experimental physics, which had grown rapidly

around the middle of the century, later began to show signs of decline

in France.
6

However, it might be argued that this decline owed more to insti-

tutional factors than theoretical ones within experimental physics.

Antoine Lavoisier, writing in 1775, lamented that the reform of the

Academy in 1716 had made a mistake in not setting up a section for phy-

sique expgrimentale , which he claimed ; 'was making at that time,

rapid progress in England, Holland and Italy'. 7 It was for this reason)

according to Lavoisier that;

'..experimental physics ,to which academicians had, at first,

applied themselves with zeal, has been practically abandoned1.8

Lavoisier led the reform to bring about the establishment of a section
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devoted to physique expe'rimentale, but the new section when it was

formed in 1785, was called the section of physique g4ngrale and was

placed in the division of sciences mathematiques along with geometry,

astronomy and mechanics, rather than in the division of the more

manipulative sciences physiques, which contained anatomy, botany and

agriculture, and natural history and mineralogy.
9
 Chemistry, now

associated with metallurgy, was also placed in this section, and this

probably had the effect of accelerating its separation from physics.1°

After the revolution and the reconstitution of the Academy in 1795 as

the First Class of the Institute, the section was renamed physique 

e
experimentale but in 1803 reverted to physique Onerale, a title which

it retained throughout the nineteenth century. The change in title to

physique g4ngra1e, the term used to denote the more mathematical,

deductive, part of physical science, possibly signalled the intention

of the Academy to strengthen this aspect of the science at the expense

of the purely experimental.

This is certainly the point which R.W. Home made in his analysis

of the circumstances surrounding Poisson's election to the physics

section of the Academy in 1812.
11

Home stressed that Poisson was known

to be hopelessly lacking in experimental skills, and his election on

the basis of a mathematical analysis of the distribution of charge over

the surface of a conductor was an acknowledgement by the leaders of the

community (in particular, Laplace), that mathematics would henceforth

play a central role in a discipline, which had hitherto been based

almost wholly on experiment.12

Thus it would appear that in the first quarter of the nineteenth

century, the Academy as the major regulatory body of French science,

wished to strengthen the bonds between la physique and the other mathe-

matical sciences; astronomy, mathematics, mechanics, and geography and

navigation. It is no accident that this was the period in which French



5

mathematicians, astronomers and engineers, began to provide a mathe-

matical and theoretical basis to physique experimentale, as apparently

firm as that which Newton had provided for mechanics. 13 For example,

the research programffe of Laplace and his pupils began to bring some

order to the study of light, heat and electricity, by applying the prin-

ciple of action at a distance on a molecular scale. If this was not

entirely successful, and explanations later moved away from the con-

sideration of material particles, and the corpuscular theory of light

and the caloric theory of heat gave way to theories based on the idea

of the vibrations in an elastic solid ether, these theories too, were

very much the production of French savants. Apart from the work of

Fresnel on the wave theory of light, there was that of Poisson on

elasticity, Fourier on heat conduction (using an analytical technique

which ventured no hypothesis about the nature of heat), and Ampere's

two fluid mechanical theory of electricity. Thus by 1830, French

savants had done much to mathematise those subjects which had pre-

viously been categorised under the heading of physique exp4rimentale,

and the gap between it and physique gen4rale was, for practical pur-

poses, eliminated. From this time on, the practitioner of physics, what-

ever his manipulative and experimental skills, would have to possess

the basic mathematical skills which could normally only be acquired

from academic study in higher education. There are one or two notable

exceptions to this rule, which will be examined, but in general it can

be said that the contribution of the mechanic or the instrument maker,

so important to the development of physique experimentale in the eigh-

teenth century, would be minimal to the later development of physics.

This is not to say that the burst of mathematisation of physics,

which owed so much to the influence of Laplace in the first quarter of

the century, was sustained after his death in 1827. It would appear

that the pendulum had partially swung back towards a greater emphasis
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on experimentation by mid-century, even though it was now experimen-

tation based firmly on the theoretical foundations laid down in the era

of Laplace, and carried out by men who were well versed in the advanced

mathematical techniques taught at the grandes ecoles. Perhaps the

influence of Arago, the permanent secretary of the mathematical

sciences section of the Academy, played some role in this, as did the

authority of Gay-Lussac who was a member of the physics section from

1816 until his death in 1850. Gay-Lussac was predominantly an experi-

mental physical scientist, whose research interests ranged widely on

either side of the physique/chimie interface, while Arago was an

astronomer, with an astronomer's interest in qptical phenomena. The

election to the physics section of A.0 Becquerel in 1829, Pouillet in

1837, Babinet (meteorologist of the Paris Observatory)in 1840, and

Despretz (once the laboratory assistant of Gay Lussac) in the following

year, strengthened the experimentalists weight in the section. By 1850,

the only mathematical physicist in the section was Duhamel, who had

begun his career as an assistant to Fourier.

But we can also say that by 1850 all the members of the physics

section were men trained in, and earning a living in the educational

and research institutions of Paris. Such a training had become a vir-

tual necessity for a career in science and the period under examination

here is one which saw a considerable development of science courses in

different institutions. Most of those who took science courses would

themselves become teachers of the subject, communicating an already

acquired body of knowledge and demonstrating accepted experimental

techniques, to new generations of students some of whom, in turn,

would enter the same profession. A growth in such courses went hand in

hand with the growth of publication of text-books, and it is 	 an

examination of these books in the first half of the nineteenth century,

which can give us an idea of what the term physique signified when this
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thesis begins its study. At least such a study can illuminate the

content and boundaries of the subject as it was communicated to

students, although as there is a necessary delay before new knowledge

finds its way into the pages of a text-book, it may not be much help in

deciding what precisely constituted physics in the area of research.

This latter question can only be decided;

a. By reference to the classification the research work

received in the scientific journals of the time.

b. The prizes it might have received.

c. The section of the Academy to which its originator

might eventually be elected.

d. The chairs or positions in higher education he held (or was to

hold later) on the basis of this research.

Physics had been an academic discipline at the Ecole Polytechnique

since Hassenfratz had taught it (apparently very badly) 14 at the begin-

ning of the century. Then it had been a two year course covering the

general properties of bodies, heat, meteorology, electricity and

magnetism in the first year, and light and sound and the 'system of the

world' in the second. 15
 When the Paris Faculty opened its doors in

1808, Gay-Lussac was made its professor of physics, although Blot, the

professor of astronomy, taught certain sections of the syllabus of

special interest to him, like light and electricity. Biot wrote several

textbooks of physics while Gay-Lussac's physics lectures were collected

and published in a pirated edition of Lecons de Physique in 1828. 16 To

Gay-Lussac, physics was basically the study of what he called the

agents of nature, of which the most powerful were, heat, electricity,

magnetism, light and gravitation.
17
 This Faculty physics course

contained no mathematics and its level was only a little Above that

taught in the lycges.

By the time Gabriel Lam was teaching the subject in the 1840's,
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the subject had acquired (using his Cours de physique de l'Ecole 

Polytechnique as a source) the following content;

Book 1. General properties of bodies; the physical theory of heat.

Book 2. Acoustics (vibrations of bodies, properties of sounds,

musical instruments), optics (photometry, dispersion,

polarisation, diffraction and interference.)

Book 3. Electricity (its effects and sources, laws of electric

currents, electrochemistry), calorific and chemical

radiation.
18

Lame explained in his forward that the objective of the Polytech-

nique physics course was not only to prepare the student for his speci-

fic engineering studies, but (like all the courses at the school) to

elevate his capacity for reasoning. Physics was considered particularly

important because a study of its different branches, in different

stages of development, gave an example (which Lame had possibly taken

from Comte's classification of the sciences) of the successive states

through which a science had to pass. 	 In his first lesson Lame set

out to explain to his students what could be understood by the term la

physique. After giving an explanation of the origin of the term and its

meaning in antiquity he went on to say;

'Finally, la physique, restricted to the study of inorganic and

terrestrial phenomena, is again subdivided into three partial

sciences; geology, including mineralogy, which is concerned with

classifying the inert bodies of which the globe is camposed;

chemistry, in some ways a kind of inorganic anatomy, which decom-

poses (these inert bodies) and studies the laws of their combina-

tion; and properly called (proprement dite) physics, the particu-

lar science with which we are concerned, which deals especially

with the general properties of bodies and phenomena that do not

entail permanent changes in the inner composition (of these

19
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bodies) and appear to depend on several universal agents whose

definition and laws must be investigated.' 20

Thus in this scheme, geology and mineralogy are purely classi-

ficatory sciences, whereas chemistry is more than classification

because it seeks the laws by which inorganic substances combine.

Physics is here differentiated from chemistry in that, while the two

sciences were investigating laws, those which fell within the domain of

physics dealt with general properties of solid bodies, (density, hard-

ness, and elasticity, for example), of liquids, (compressibility, capil-

lary and osmotic action) and gases (compressibility, elasticity,

diffusion, etc.), but not with actions which permanently altered the

internal composition of the body. It cannot be assumed that all French

teachers of the period employed exactly the same definition of physics

as that which was used by Lame and so (without claiming to have made an

exhaustive study of all contemporary textbooks) some other sources have

been consulted.

Appearing later in the 1840's than Lame's textbook was that of

J.C.E. Peclet. P4clet, a normalien by training and an ex-lycee teacher,

held the chair of physique generale from 1829 to 1836, and the chair of

physique industrielle from 1829 to his death in 1857, at the Ecole

Centrale des Arts et Manufactures. Like the Polytechnique, the Ecole

Centrale (originally a private venture), was concerned with the

training of engineers, but whereas the former trained young men as

military engineers and for the prestigious state corps of civil engi-

neers, the Centrale aspired to train a new breed of engineer, who would

be capable of transforming technologically1 France's industry. Peclet's

book, published in two volumes, had the following content;

Vol. 1. The general properties of solid bodies, liquids and

gases. Acoustics.

Vol. 2. Prqperties of heat, magnetism, electricity and light.21
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In defining the limits of physics and delineating the subject from

chemistry, Peclet advances the following argument;

'The phenomena, which are the province of physics, are character-

ised by this circumstance; that they do not result from molecular

actions which change the nature of bodies. It is in this respect

that they differ from those (phenomena) which make up the domain

of chemistry.'
22

Thus both books deal with topics such as acoustics, heat,

magnetism and electricity, optics and general properties of bodies,

topics which in an earlier period would have been classified first

under the heading physique particuliare and later under physique 

experimentale. They are different in their characterisation of physics

in that PgClet resorts to molecular hypotheses and Lain g does not, but

there seems to be a general agreement that the phenomena of physics 'do

not result from actions which change the nature of the bodies'

(Peclet), or Which entail 'permanent changes in the inner composition'

of the body (Lam). It has not been possible to consult other physics

textbooks of the period, like the Paris Faculty professor C. Despretz's

Trait 	 de physique (Paris 1832), or the Conservatoire 

National des Arts et Metiers C.S.M. Pcuillet's Ele'ments de physique 

expgrimentale et de mgtgorologie, Paris 1840. Pouillet held the chair

in physics applied to the crafts at the Conservatoire National des Arts

et Metiers. As there was a lively debate between Peclet and Pouillet

in the Academy in 1845, when Pgclet accused Pouillet of plagiarising

his text book to write his own,
23
 one can assume that the content of

the two showed marked similarities.

Textbooks are not the only source of information about the contem-

porary view of physics, although they have a particular importance in

that they give a record of ideas which were accepted by the scientific

community and communicated to those who aspired to be members of this

community. On the other hand a work such as Auguste Comte's Cours de
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philosophie positive published in 1838, which dealt with scientific

questions, was probably not read by the majority of science teachers

and researchers of the time. Comte's poor mathematics teaching at the

Ecole Polytechnique and his attack on the administration of the school

did his own scientific standing little good at al1, 24 and therefore it

should not be assumed that his classification of the sciences into a

hierarchy in which physics is dealt with as separate from and superior

to chemistry, found widespread support among savants. Comte saw the two

sciences as being similar only in that they both sought knowledge of

the general laws of the inorganic world, but his attempts to demarcate

them would have seemed somewhat idiosyncratic, even to his colleagues

and contemporaries at the Ecole Polytechnique.

But the period of this thesis opens some twenty years after the

first appearance of the Cours de philosophie positive, as the newly

proclaimed Second Empire began a period of expansion of secondary and

higher education, and in which several textbooks for students preparing

for the baccalaureat and the licence in the sciences was published. The

most popular in the field of physics was the Traite elAentaire de

physique experimentale et applique et de meteorologie by A. Ganot,

which reached its fifteenth edition in 1872. The first task which

Ganot set himself, on the first page of his book, was to differentiate

physics from chemistry in the following way;

'1. The objective of physics. Physics has for its aim, the study

of phenomena to which bodies give rise while not undergoing

a change in their composition.

Chemistry, on the other hand, deals particularly with

phenomena which modify, to a greater or lesser extent, the

nature of the body.' 25

Two pages Later he attempted to define What is meant by 'physical

Phenomena' by saying;

'Anything Which is accomplished by matter without an alteration
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in its composition is a physical phenamenon. A body which

falls, a sound which is produced, some water which freezes,

are such phenomena.'
26

He also subdivided physics into four categories;

'1. The general prqperties of matter, including universal

attraction, hydrostatics, pneumatics and the vibration of

elastic bodies, or acoustics.

2. Heat.

3. Light.

4. Electricity, of which magnetism is only a particular case..'
27

In relation to the concept of energy, Ganot (in the 1872 edition)

discussed the dynamical theory of heat, giving a little historical

resume of its development, and explaining that the phenomena of heat

have a single cause, movement, and are thus submitted to the ordinary

laws of mechanics,'of which the most general one is that of the

conservation of force vive'. 28 In relation to the old physique 

. 0
generale/physique particuliere dichotomy, physique geb4rale, the study

of motion and of force, and the resolution of forces, occupied only

some ten pages in a book of over nine hundred pages. But the text-book

does claim to be a treatise of experimental physics, and while giving

some simple mathematical treatment, obviously sees its function as

showing to students, the apparatus, instruments and the experimental

procedures of the science. Students would use the book to help them

prepare for the science baccalaureat in the lycees, or for the licence 

in sciences physiques (physical science) at the faculties of science,

neither of which required much mathematics.

But if we can use physics text-books of the period to give an idea

of the content and limits of the science as it was taught, they cannot

tell us where the new knowledge acquired by research would be accommo-
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dated as the frontier moved. Only by seeing how contemporary scientific

journals classified research papers, how the researcher viewed his own

work, and how (most important of all) the Academy of Sciences viewed

it, will it be possible to include a piece of research work within the

boundaries of physics.

What made the Academy of Sciences so important throughout the

entire period of this thesis was its role as the central, state spon-

sored, regulatory body for all sciences in France. It could distribute

funds in the form of prizes and grants, it could recommend appointments

to the most prestigious teaching and research posts in the country, and

it could direct (or at least attempt to direct), research effort in the

direction which it considered to be important, by means of prize

competitions.

Moreover, election to the Academy represented the peak of

savant's career as it signified his acceptance into the ranks of the

highest elite of France's scientific community. Although in the early

years of the century it might have been possible to gain election, as

Arago did, on the basis of brilliant promise, generally a body of

scientific research which the Academy judged to be both weighty and

sound, was later required of successful candidates. As the century

wore on, the age of savants achieving membership increased, for the

scientific community grew larger but the number of positions in the

Academy remained static at around sixty. But for those who were

fortunate or talented enough to attain membership, the rewards vele
many. The honorarium of 1500 fr. a year may have been very little, but

membership made possible entry into the highest teaching and research

posts in the most prestigious Parisian institutions; the grandes eColes,

the Paris Faculty, the College de France,the Museum, and the Bureau des

Longitudes .

But if we considered the Academy as simply a club for a
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scientific elite, which awed its membership to work already done, it

would have had little influence on the development of science in France

in the nineteenth century. It is true that the Academy itself had no

research laboratories and its members were only expected to attend it

for two hours each Monday afternoon, but in a number of ways it shaped,

directed and stimulated French scientific research. Those savants who

lived in the provinces could never become members if they were not

prepared to move to Paris, for residence in the capital was a condition

of membership, but they could aspire to become corresponding members.

This position had none of the rights or privileges of a full member,

but was a focus of ambition for the provincial faculty teacher, the

director of a provincial observatory or a talented scientific amateur

or state engineer content to stay outside the capital. lib will

encounter, in this thesis, several provincial researchers, whose work

earned them the position of corresponding member of the physics section

of the Academy.

The practice of the Academy to publish reports and memoirs in its

weekly Comptes rendus, was a stimulus to scientific work at lower

levels in the scientific community. A provincial lycge teacher for

example, would derive enormous satisfaction from seeing his memoir or

note published in the journal of the Academy and commented on - perhaps

even commended - by one of the great figures of French science. Having

said this, however, it is also true to say, as Fox points out, that

scientists and teachers who were content to remain in the provinces,

often published most of their research work in regional and provincial

scientific journals,
29
 but for those who aspired to move back to Paris

research published in the Comptes rendus was an absolute necessity.

As mentioned above, the Academy could shape and direct the French

research effort by awarding prizes through competitions in areas and

topics which it specified. This practice had a long history in the



15

ancien regime and was revived in 1796. During the nineteenth century,

the Academy had more and more funds from private bequests to distri-

bute, and the method by which it did this, changed as time went on. It

gradually passed from awarding money for work already done and subse-

quently judged by the Academy, to giving financial assistance to

research projects of which it approved.
30 It should be emphasised again

here that the research areas considered in this thesis (i.e. optics,

electricity, heat, acoustics, etc. ) were regarded by the Academy as

mathematical sciences, and were eligible for prize campetitions in this

category. Later in the century there were other bodies which also awar-

ded prizes and grants, but the Academy remained pre-eminent in this

respect.

But, important though it was, the Academy was not the only

influence shaping physics as the period of this thesis opens. There was

also the national centralised system, the Universit‘ de France,

established in the days of the First Empire. lib will see that this

system was expanded in both its lycge and its faculty sectors during

the Imperial regime, improving career prospects and providing more

research facilities for science teachers. In 1852 there were faculties

of science in eleven French cities including Paris, and four more weere

added in 1854. In addition to the faculties, there were the other

prestigious teaching and reseach institutions in the capital, whose

roots went back to the ancien regime or to the post-thermidorian

revolutionary period. There was also the Ecole Centrale des Arts et

Manufactures, set up in 1829 and taken into state ownership and put

under the control of the Ministry of Commerce in 1858. The origin and

histories of these institutions have already been fully described

elsewhere,31 and so for the moment they are simply listed in Table 1

(overleaf), 32 together with their founding dates, responsible

ministries, and senior physics staff.

In most cases the physics chairs were founded when the institut-
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Table 1. physics , posts in higher education in Paris in 1852, when the

period of this thesis opens. 

Institution Founding date Ministry Senior physics staff, 1852

Ecole Normale 1795/1808 Education E. Verdet.

•Superieure

Ecole Poly- 1795 War A. Bravais.

J. Jamin.technique

Coll&ge 1503/1793 Education J.B. Biot (maths. phys.)

H.V. Regnault.de France

Museum d'hist- 1620/1793 Education A.C. Becquerel.

oire naturelle

Formerly Jardin

du Roi

Conservatoire 1794 Commerce E. Becquerel.

des Arts et

Metiers

Ecole Centrale 1829 Commerce
n

E. Peclet.

des Arts et

Manufactures
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ions themselves were established (or in the case of the Collage,

refounded) except in the case of the Conservatoire, whose chair in

'physics applied to the crafts' was established in 1831, and for the

Museum, whose post 'physics applied to the natural sciences' dates from

1838. The Collage did not have a regular student body studying for an

examination and for this reason its staff were freer to investigate

subjects which did not form part of the national programm of study for

the licence. There were no professorships in the Ecole Normale 

Supgrieure, presumably because it was originally a type of teachers'

A
training college, but its senior teaching position, the maitre de

confgrence had the same prestige as a professorship by the middle of

the century. There were also more junior posts in the Parisian

institutions; the repetiteur or tutor, and (in the Ecole Normale ) the

agrege-preparateur, a post which permitted a few of the most able

students to work full-time at the school for their doctorates, while

assisting the research of senior staff. In this way the previously

obligatory spell teaching in a lyceelubile working for a doctorate was

avoided. The institutions listed in this table remained throughout the

period of this thesis, the pinnacle of the French educational system,

giving their staff the best facilities for research.

Men trained in the mathematical sciences might also have found

employment in the Paris Observatory in the period of this thesis, but

after Arago's death in 1853, it no longer played the same role in

optical research that it had in the past, although a post of physicien,

(which translates as 'physicist') was established during the Second

Empire. But the major source of employment for men holding the licence 

would have been the teaching posts in physical sciences in the

expanding state lycee system. There there were 24 science posts and 41

in mathematics in Paris, and 116 science and 190 mathematics posts in

the provinces by 1857. 	 following the Falloux law of 1850,

which broke the Universitg monopoly of secondary education and
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permitted the religious orders to establish their own schools, some

Catholic licencies found employment in this sector. 34 Higher education

remained in the hands of the state, whose moncpoly in this sector was

only broken some twenty years later in the new republican regime, when

Catholic institutes for higher education were set up to train young men

for the licence without running the moral risks of attending the

secular favities. The physics research carried cut in these institut-

ions will also be considered later in this thesis.

So it was above all the growth of the secondary school system,

both state and private, and the inclusion within its curriculum of phy-

sics as part of a more general physical science prcgramme, which was to

bring about the expansion of physics instruction in the faculties which

prepared students for the teaching qualification, the licence. The

French licence dates from 1808, when Napoleon founded the Universitg de

France, and although, by the middle of the century all the faculties in

the country were preparing students for this examination, in practice

only the Paris Faculty had a regular and serious student body.
35

Initially the same physics content appeared in the curriculum of

the licence for mathematics which contained also calculus, astronomy,

and mathematics and that of science, which embraced physics, chemistry,

mineralogy, geology, botany, zoology and physiology.
36
 By mid-century

the situation had changed slightly. There was now the licence es

sciences mathgmatigues, which, apart frcm its purely mathematical

content, contained some Newtonian mechanics and astronomy, and the

licence es sciences physiques containing some physics but being more

heavily weighted towards chemistry and mineralogy.
37
 However, the con-

tent of the licence was only a little higher than that which had been

taught in the lycees to prepare students for the baccalaureat, and the

teachers and research workers, who were to make the most successful

careers in physics, were the ones who had not received the totality of

their scientific education frcm the faculties, but who had attended
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either the Ecole Polytechnique or the Ecole Normale. Those who rose to

the summits of the French academic establishment were normally the ones

who had studied at the Normale and been highly placed in the national

competitive agrggation, which normaliens dominated, although polytech-

niciens could often cambine a successful career in one of the state

corps with teaching at the Polytechnique, or the Ecole des Mines, or

the Ecole des Ponts et Chaussges.

So in this study of physics in France, we will be looking at the

work of teachers in the context of the institution in which they taught

and possibly, but not necessarily, did their research. As a teacher at

the top of his profession would often work in more than one Parisian

institution (the French practice of cumul) it is often difficult to

associate a particular piece of research with one particular insti-

tution. This in turn tends to blur any distinction which might other-

wise be made between institutional research styles; what emerges much

more clearly in such cases, is a personal research style, which asserts

itself in whatever institution the individual is working. Nevertheless,

the attempt is made in this thesis to identify, as far as is possible,

what the term 'physics' meant to, respectively a polytechnicien, nor-

malien, centralien, or to someone who had taken his licence es sciences 

physiques at the Paris Faculty, for example, and to see how the meaning

of the term changed with time to encompass new discoveries.

Silliman and Kuhn have argued cogently that physics had already

established itself, through the work of Laplace, Poisson, Fourier,

Fresnel and others, (which had formed a bridge between the old categories

of physique gen4rale and physique particuliere), as an autonamous well

defined discipline by about the third decade of the century.
38
 Certain-

ly it had long been recognised as having a different content to

chemistry, as testified by the title of the journal, Annales de chimie

et de physique, established in 1816 with Arago appointed as the editor

of the physics articles and Gay-Lussac the editor of the chemistry ones.
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Although originally within the category physique particuliere, chemistry

had defined itself more precisely through the work of Lavoisier in the

eighteenth century, while physics was slower to establish both its

content boundaries and an internal coherence. Where the actual boundary

lay between the two sciences, was interpreted differently by different

institutions. The fact that the Academy placed physics in its mathe-

matical sciences section, while the Faculty included the study of

physics not within its mathematical sciences licence programme, but in

the physical science licence, demonstrates that the definition of the

discipline was still not as clear as Silliman and Kuhn suggest. By

examining, a), the content of the teaching and the research done by men

who held physics chairs, b), research submitted to the Academy for

physics prizes, and c), research presented to the Socigtede Physique 

and the physics section of the Association Francaise pour l'avancement 

des sciences, throughout the period of this thesis, the process of

continuing definition of the discipline will be charted.
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2. PHYSICS TEACHING AND RESEARCH DURING THE SECOND EMPIRE.

a.  Introduction. 

The Second Empire, which was proclaimed in December 1852, was to

be a period of relatively dynamic economic and industrial growth in

France. In fact, not until the early twentieth century were the annual

growth rates achieved in the best years of the Second Empire, surpassed

by the republican regime which succeeded it. This economic success was

due to several factors, both national and international. As Landes has

shown, 1850 to 1873 was a period of unprecendented growth for continen-

tal Europe, especially Belgium, France and Germany, with railway

mileage, coal consumption and production, and pig iron production all

rising strongly) ThatThat other index of industrial development, the con-

sumption of raw cotton also rose sharply until textile manufacturers

were hit hard by the American Civil War in the 1860's.

In France, Louis Napoleon's regime offered industrialists and

financiers the prospect of social and political stability, which is

what they required above all else before embarking on long term pro-

jects involving large amounts of capital. Moreover, Napoleon and his

Saint Simonian advisers, held firmly to the conviction that the state

must play a pre-eminent role in liberating the productive power of

industry. And there can be no doubt that the state in this period,

facilitated the massive investment in railway building. In 1852 France

possessed no more than 3,000 kilometres of track, discontinuous, frag-

mented and divided into many companies. In the Second Empire, lines

which had been proposed nearly ten years previously but held up by

local interests and the slowness of the parliamentary discussion in the•
July Monarchy, were put in hand. By the time the Empire collapsed in

1870, some 20,000 kilometres of track in a adherent national system

with connections to foreign networks, had been constructed.
2

The shortage of coal, and particularly certain grades of coking
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coal for metallurgical processes, remained a problem for France in this

period, in spite of the discovery of new coal deposits in the Pas de

Calais. In fact she would continue to have to import around 35% of her

coal needs until the twentieth century, but the new deposits and the

lowering of transport costs during the Second Empire, stimulated the

growth of other sectors of the economy. The adoption of the Bessemer

process in six great ironworks, including Le Creusot, almost halved

the cost of steel railway lines between 1860 and 1867. Although, to

keep this achievement in perspective, it must be said that costs fell

in Britain during a similar period by a considerably greater amount.

However, by 1869 the production of iron and steel, not all of it

produced by the Bessemer process, peaked at 1.3 million metric tons a

year.
3 This amount, slightly more than that produced by Germany, was

not to be surpassed for more than ten years in a France, which lost her

industrialised regions of Alsace/Lorraine to Germany as a result of the

defeat of 1871.

The shortage of coal resources also hampered the utilisation of

the steam engine in France, although it must not be forgotten that

hydraulic machines continued to make a larger contribution to the total

energy requirement than anywhere else in Europe, with some water

turbines producing more than 200 H.P..
4
 Although statistics on the use

of steam power in Europe in the mid-nineteenth century are approximate

and figures vary according to the sources consulted,
5
 there is fair

agreement on the growth rates if not on the absolute figures. It would

seem that the power derived from steam engines, both fixed and motile,

increased by a factor of six between 1850 and 1870 in France, but again

to keep this figure in perspective, it should also be said that in

Germany the figure increased by a factor of nine in the same time. More

significantly, by 1870, France had been ousted from the second place

she held in Europe in 1850 in the production of steam power, to third
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place behind Germany. Britain of course was far in the lead, although

the gap was beginning to close by 1870.

Electricity was not yet playing a significant role in the in-

dustrial process, although arc lighting and electro-plating had been

introduced. However, the telegraph system which had a national exten-

sion and was joined by submarine cable to England in 1851 and to the

developing colony of Algeria in 1857, was raising the demand for con-

ductors and insulating materials, transmitting and receiving apparatus,

and reliable electric cells. A new corps established in 1846, L'Admini-

stration des lignes telegraphiques, directed by polytechniciens,

ensured that this new means of communication was firmly in the hands of

the state.

All this econamic and technical advance put new demands on the

educational system, and successive administrations tried to find

adequate responses to it. The point should be made that dissatis-

faction had long been been expressed in France about the position of

science in the school curriculum. As long ago as 1833, Guizot had

attempted to introduce a more technical curriculum through the

establishment of ecoles primaires superieures, but they had failed

because the Lamers, clerks, and teachers, who could afford to send

their sons to post-elementary education, preferred the social status

which the word 'secondary' brought with it and continued to patronise

the lycees and colleges. Fourtoul's bifurcation reform of 1852 intro-

duced a new scientific baccalaureat, which aimed to prepare its

students 'for the battles of production' rather than the pacific

contemplation of literature and the classics. 6 A decade later, Victor

Duruy the Minister of Education from 1863 to 1869, had become

convinced, while acting as an inspector of education, that while the

classical education of the lycees was excellent for those who intended

to became doctors or lawyers ,it would be much better;
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'..to give to the future employees of industry, commerce

and agriculture, the special knowledge demanded for their

professions.'
7

Duruy's law of 1865 attempted to graft this 'special' education

onto the lycee curriculum. And as there were to be 'special' subjects

taught in the secondary schools, there would have to be teachers for

these subjects. In 1866 the Ecole Normale Speciale was set up in Cluny

for this purpose, and a special agregation 	 established for its

teachers. As with the Ecole Normale Superieure in Paris, the objective

of the Cluny school was to train science and technologgy teachers, not

to teach science for its an sake. In its first eleven years of exist-

ence it supplied 119 teachers to the lycges and 186 to the col1eges.8

But the teachers it produced net with some hostility in the schools in

which they taught, from colleagues who were reluctant to accept them as

equals, and the school lost its administrative autonamy in 1872 and was

closed in 1891.
9

In 1855 the Ministry of Education instituted a new type of school

in some of those centres which did not have a faculty of science or

letters. This type of school, the Ecole preparatoire a l'enseignement 
superieur des sciences provided its students with a two year course,

practical in orientation, suitable for young men entering industrial

and commercial careers. Physics was taught as a discipline separate

from chemistry, whereas in the lycees a single combined science,

sciences physique, chimiques et naturelles was taught. Initially four

of these new institutions, financed by the local authority, were set

up; in Rouen, Nantes, Angers and Mulhouse. In the following year, one

was formally established in Moulins but never staffed, and then came

two more; in Chambery (1861) and in Algiers (1880).1°

But although the increase in importance given to science in the

schools, signified a greater demand for science teachers and
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therefore operated to the advantage of the science section of the Ecole

Normale and the faculties of science, the political climate of the time

put strict limits on what should be taught there. Fourtoul in 1851 had

insisted on the need for the religious and political conformity of the

Ecole Normale, insisting on its role as an institution for the training

of teachers,not for the pursuit of original knowledge. Another contem-

porary commentator was to write that;

'The proper mission of the university is to teach the

most undisputed parts of human knowledge,it is not to

encourage the inventive spirit nor to propagate

discoveries which are not fully verified.'
11

So the Ecole Normale was to be a centre which prepared its

students for the modest and laborious duty of teaching and the

faculties would communicate knowledge which had already been esta-

blished on a firm theoretical basis. Moreover, the provincial faculties

of science in the Second Empire and early part of the Third Republic,

as several modern historical analyses agree,
12
 found few serious stu-

dents to communicate knowledge to anyway, and taught at a level little

higher than that of the lycees. Provincial faculties gave employment,

as professors of physics, to those men who had gained a doctorate in a

suitable area of research from the Paris Faculty, and it then afforded

them a salary (less than they would have gained in Paris), time and

very limited facilities for research.

In France, only at the Ecole Normale where teaching took place in

something like seminars, the conference, were teachers able to have any

personal influence on their students. In all other institutions

teaching took place in lectures, in which the highest attributes of the

teacher were considered to be a fine oratorical style and clarity of

explanation. This was particularly true of the provincial faculties,

whose staff members saw few students for the licence and sometimes
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tried to find a role for themselves by giving popular and uplifting

science lectures to the local bourgeoisie. It should be remembered

that, although it was necessary to register at the faculty to take the

licence, attendance at lectures was not compulsory and many students

prepared for it by private study. The major function of faculty staff

in the first half of the century was the grading of baccalauret 

candidates, although some taught in local lyces, and a few found the

enthusiasm and the necessary equipment to do research.

Although recent studies like those of Nye, 13 have tended to

re-assess the traditional centre-periphery model in the analysis of

French nineteenth century science, in mid-century at least it can be

said that there were no geographically dispersed competing centres of

excellence in France, as in Britain and Germany. Paris was virtually

the only producer of new knowledge in physics, and it was not until the

end of the century that it could be said that there was any challenge

to this domination. Even then, and in the years leading up to the Great

War, by far the most research in the revolutionary areas of physics,

was being done in the capital.

The most important reform of higher education in the Second Empire

was that of the establishment of the Ecole Pratique des Hautes Etudes 

in 1868. Coming after a conference between the Emperor and four of

France's most eminent scientists, it responded to the growing anxiety

over the relative strengths of German and French research facilities.

Pasteur had been waging a campaign for increased funding for French

science, and in an article published in February 1868, graphically

described the hardships under which scientists laboured in their miser-

ably ill-equipped laboratories. 14 Pasteur's campaign won the support,

first of the liberal Minister of Education, Victor Duruy (1811-1894)

and then of the Emperor himself. Duruy had come to recognise that it

was particularly necessary in the provinces;
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'.. to give to our professors, genuine students, instead of a

floating, continuously changing audience.'
15

But the reforms when they were made, benefitted only the Paris

institutions; Pasteur was to get a new laboratory in the Ecole Normale 

and Claude Bernard one in the Museum. Of more importance, certainly

for the history of physics, was the establishment of the Ecole Pratique 

des Hautes Etudes. This was not, as the name might suggest, a new

school of experimental studies, but a new mechanism of awarding grants

to the existing Parisian institutions of higher education, permitting

more students of high calibre to stay on to undertake research. While

making no significant difference to the number of posts for physics

teachers, it provided more money for teaching laboratories and also

provided more agrege preParateur (research assistant ) posts. This

would allow more normaliens to avoid the previous pattern of starting

their career by teaching in lycees, giving them,instead, a grant and a

place at one of the Paris institutions of higher education to work

directly for their doctorates. Most of the physicists who came to

prominence in the last two decades of the century and after, began

their careers as research assistants in Paris, in this way. The

measure also accentuated the centralisation of French science (one of

its merits in the view of Duruy) by making this new grant structure

only available to institutions of the capital.

As we shall see, most of the research in physics in the Second

Empire was the work of members of staff from the higher education

institutions of Paris, particularly the Ecole Polytechnique and the

Ecole Normale. It must not be forgotten that these were institutions

with specific vocational objectives; in the case of the Polytechnique,

to train young men for both the military and the civil engineering

corps of the state, and in the case of the Normale, to produce science

teachers for the Universite system, which in practice meant lycee 
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teachers. These objectives determined both the science which was

taught and the pedagogic methods employed, which in turn determined

the special traits of Polytechnicien and Normalien scientists.

b.The Ecole Polytechnique.

Let us look first at the Ecole Polytechnique. The recent analysis

of the school by Shinn, has brought out very clearly the elite and

privileged character of the majority of polytechnique student. 16 High

fees for tuition and residence, stiff entrance qualifications which

required a year or more of extra tuition in mathematics after the

baccalaureat, put the school well beyond the purses of all but the sons

of the most wealthy of French citizens. Throughout the nineteenth

century, the school accepted around 200 students each year, most of

whom were destined to enter the army as engineers or artillery offi-

cers. But the ones who performed best in the school's final examina-

tion would go on to the Eco/e des Mines, or the Ecole des Ponts et

Chaussees in order to train for a further year to become engineers of

these corps. Around 12% of the students passed to the state corps; 2%

to the Corps des Mines, 8% to the Corps des Ponts et Chaussges, and the

other 2% to Manufactures de L'Etat, or Telegraphes.
17 Usually the best

individuals (no more than about five or six students) would go into the

Corps des Mines, and the next twenty or so into Ponts et Chaussees.

The debt which science owes to the early nineteenth French en-

gineers trained in the mathematical rigours of the Ecole Polytechnique 

has already been well documented. Almost all the great contributions

to mathematical physics of the beginning of the century came from men

associated with the Ecole Polytechnique either as teachers or students,

or both. But it was an establishment under the control of the Ministry

of War, with a highly disciplined regime, and one not suited to the

formation of independent, creative scientific minds. Physics never had

a particularly great weight in the syllabus, accounting for about 10%
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in a time-table heavily biased towards the study of mathematics and

mechanics, 18 and the lack of space in the new premises which the school

moved into in the early nineteenth century, meant that practical

instruction in physics was severely limited)-9 Certainly the students

learnt highly advanced and abstract mathematics, tut they learnt it

through the memorising of theorems and the continued repetition of many

similar examples.
20
 Polytechniciens were formed with a sharp sense of

social responsability, and a Saint-Simonian conception of the utility

of science for the development of society. They acquired, by a rather

backward form of pedagogy, knowledge of a complete, well organised,

finished set of principles and laws. Starting as a social elite, the

student body was formed by the school into a technological elite, with

a reputation for objectivity and infallibility.
21

The school had already came under attack before 1850 because of

the mediocrity of its graduates and its declining contribution to the

training of physical and mathematical scientists (in which it had been

pre-eminent), but successive efforts of reform did little to improve

it. Only at the end of the century, when the teachers of the faculties

of science had grown in number and self confidence, did their criticism

of the inability of polytechniciens to tackle the increasingly complex

problems thrown up by technological advance, especially in electricity,

begin to effect significant changes at the school. Members of the Corps 

des Mines, were cast as the villains in the story of the slow develop-

ment of new iron ore deposits discovered in LongwyBriey in the 1890's,

and Polytechniciens were blamed for the general inefficiency of the

French telephone system in the early 20th century, by which time the

faculty professors were arguing that the general programme of study of

the Ecole Polytechnique, could just as well, if not better, be taught

in the courses of the faculties of science.
22 But apart from its defi-

ciencies in technological matters, what interests us here is its role
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in the training of men who did research, which was independent of and

separate frcm their function as a state engineer and which they and

their peers would have called physics. In 1850, five of the six

members of the physics section of the Academy were polytechniciens, but

this number dropped to one in 1880, although recovering to three in

1900. After mid-century the most prominent polytechnicien physicists

were Cornu, Potier and Henri Becquerel, and (even though he was

chiefly a pure mathematician), Henri Poincare. Nothing illustrates

better the elite nature of the Corps des Mines than to say that Cornu,

Potier and Poincare were members of it. Becquerel was an engineer of

Ponts et Chaussees. It is clear that even by the end of the century,

polytechniciens occupied positions in the highest level of French

physics, disproportionate to the number produced by the school. This

might be better explained by the continued existence of networks of

power and influence, rather than by the quality of instruction at the

school.

In the first half of the nineteenth century, the Polytechnique had

a strong tradition of physics teaching, even though (as has been said)

the subject did not have the same prestige as astronomy, geodesy, mathe-

matics or mechanics at the school. By 1850, when our period opens, the

influence of the mathematical physicist Gabriel Lame (1795-1870), who

had held the physics chair in the 1830's was still strong, and his text-

books were still used and regarded as models by both teachers and

students alike.

But the chair had passed to someone of a very different mould by

1850; Auguste Bravais (1811-1863). Bravais was something of a scientist

in the 'Humboldtian' tradition; an ex-naval lieutenant and explorer,

who had worked in no fewer than 13 different fields of study including

oceanography, geology and botany, and he had been one of the founders

of the French meteorological society. His doctorate, defended in 18371
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was appropriately enough on the equilibrium of floating bodies, but he

is best remembered today as a mineralogist through his work on crystal

structure. After a short spell in the Faculty of Lyons, during which

time he continued research in meteorology and the geology of the Alps,

he was unanimously chosen to occupy the chair in physics at the Ecole

Polytechnique. It is possible that his military background and his own

Polytechnique origins compensated for his lack of specialisation and

his interest in botany, geology and mineralogy, all of which had their

awn discipline groups in the sciences physiques section of the Academy.

Physics, on the other hand, was in the sciences math‘matiques section.

Having accepted the post, Bravais declared his intention 'to devote

myself exclusively to the study of physics', 23 although this did not

prevent his competing successfully for a place in the geography and

navigation section of the Academy in 1854, on the basis of his previous

naval experience. His research in the 1850's, although now more

specialised than before, continued to range over many fields; physique 

du globe, electricity, the velocity of sound, polarisation and double

refraction. In 1851 he was responsible for the design of a new type of

polariscope. 24 In the notice to further his application to the

Academy, he stressed that most of his work had a practical motive and

that he had unjustly been accused of being a mathematician.
24

Bravais was the physics incumbent during the 1850 commission of

enquiry, which was set up to investigate the school and its programmes of

study. The commission, headed by the astronomer and parliamentary deputy

Urbain Leverrier, who had resigned as repgtiteur in geodesy at the school

in order to lead the commision was very critical of the syllabus and of

the director of studies, the mathematical physicist Duhamel, who was

forced to resign. An historian of the Ecole Polytechnique,

Mercadier,(professionally a telegraph engineer who later taught physics

at the school), writing at the end of the century was not at all
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which led to the extension of an already overburdened curriculum. For

apart from a recommendation that there should be practical work ( manip-

ulations), in physics the content of this course was left unchanged.26

But the other recommendation relating to physics, the establishment of a

second chair,was important, at the very least, for the career prospects

of physics teachers.

Since succeeding to the physics chair, Bravais had instituted

changes in the syllabus inherited from Lame. Lame's teaching methods

had been described as 'more profound than clear' 27 and Bravais had

suppressed some of the most difficult parts, added some points of his

own of clarification, and orientated the course towards a more experi-

mental approach. He also instituted a study of natural phenomena. The

enquiry commission had made it clear that it wanted an experimentalist

to occupy the second chair and its choice fell on Jules Jamin (1818-

1886). Jamin had left the Ecole Normale in the early 1840's, ranking

first in the agregation, and earned his doctorate with a thesis submit-

ted to the Paris Faculty while teaching in Paris lycees, before being

appointed to the new Polytechnique chair in 1852. His research in-

terests, at least in this stage of his life, always related to optics

and interferametry, and although it would be too strong to refer to him

as a protege, he undoubtedly received encouragement and material sup-

port in the early part of his career, from Arago who shared these

interests 
28

Jamin was to have an enormously successful career, adding the phy-

sics chair of the Paris Faculty to his Polytechnique one, as well as

becoming permanent secretary of the mathematical sciences section of the

Academy. There is,however,little evidence that he had much influence as

a teacher. Mercadier,possibly not very sympathetic to Jamin,as a normalien 

intruder into the Polytechnique, described him as an 'orator who gave
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the illusion of clarity'.
29
 Jamin taught at the school for over 30

years, pushing the mathematical approach of Larr‘ into the background.

He maintained the content of the physics course virtually unchanged

throughout this period, and in 1881, passed on to his successor,

Potier, a teaching programme of some antiquity.

In the 1850's, Jamin continued his work on reflection from me-

tallic surfaces (the subject of his doctoral thesis of 1847) and in

1852 published a memoir on the coloured rings produced between a curved

lens and a reflective surface, employing polarised light.
30

The experi-

ment provided verification for the mathematical treatment of the

question Which Cauchy had made in 1836. Four years later Jamin con-

31 .
structed the refractometer, with Which he carried out extremely pre-

cise experiments to determine the refractive index of water at diffe-

rent pressures, and the refractive indices of a number of different

gases, finding surprisingly good agreement with the non-interferometric

studies which Arago and Biot had made, half a century before. 32 He did

not forget the astronomical applications of his work and in 1857 used

the refractometer to measure the effect of water vapour on the re-

fractive index of air.
33
 The value used by astronomers in calculating

the true positions of observed celestial bodies close to the hori-

zon,was 1.000 292 and Jamin concluded that the presence of water

vapour affected only the seventh decimal place of this number,and thus

could be neglected.

A particularly precise experiment was carried out by Jamin in

1856, on the variation of the refractive index of water with tempera-

ture. This had originally been of interest to Fresnel who had construc-

ted some apparatus to do the experiment,and on his death this apparatus

had been bequeathed to Arago. In 1850 Arago passed it on to Jamin with

the recommendation that he should try to to carry out the experiment,

but Jamin after 'months of fruitless attempts'
34

, gave up the work
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because the apparatus was unsuitable. Now, six years later, he had his

own refractometer, an instrument precise enough to measure the very

small changes in the refractive index of water expanding or contracting

as the consequence of temperature changes. What made the experiment so

interesting to Arago in 1850, was that it could be considered 'crucial'

in the sense of refuting one of the last unrefuted consequence of the

emission theory; the independence of the refractive power of a medium,

of its density. Refractive power, given by the formula (n
2
-1)/d , where

n is the refractive index of the material and d its density, should

remain constant as the material of the medium expands or contracts,

according to the emission theory.
35 By observing the changes of ref rac-

tive index of water around its maximum density at 4 0C to a very high

order of accuracy, Jamin established that the refractive power did not

remain constant. Thus the emission theory of light was 'falsified' for

the second time. One must presume that the result held considerably

less interest in 1856, than it did earlier, for by this time the first

'crucial' experiment which had pronounced in favour of the wave theory,

(Foucault's demonstration that light travelled faster in air than in

water) was already six years in the past.

Jamin's work at the Paris Faculty, to which he was appointed in

1863, will be considered later in the appropriate section; here we will

return to Bravais and the other Polytechnique physics chair. Bravais

was stricken with illness in the early 1850's and much of his teaching

/
was done by repetiteurs, until in 1856 he was succeeded by another

mineralogist, H.D. De Senarmont (1801-1862). De Senarmont had also been

a student at the Polytechnique and had gone into the elite Corps des

Mines. From 1847 he held the chair in mineralogy at the Ecole des Mines

and had published some 35 research papers by the time he took up his

post at the school but published little afterwards. An able experi-

mentalist and mathematician, De Senarmont had built his career upon
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his work on double refraction of crystals and their thermal con-

ductivities in different directions. Described as a brilliant teacher

with an interest in 'lofty theoretical conceptions'
36
 and much admired

and respected by his pupils, his influence on future generations of

French engineers and research workers might have been profound had he

not died suddenly in 1862. His successor, Emile Verdet (1828-1866),

held the chair for less than four years, and as his influence was more

marked at the Ecole Normale where he worked for 18 years until his

death,we will leave the consideration of his work to the section on

that school.

Verdet's successor was the precocious M.A. Cornu (1841-1902) whose

career spanned the remaining years of the century. An orbituary to him

which appeared in the Revue Generale of 1903 and which concentrated ,

not unnaturally on his original scientific research, had this to say

about his teaching;

'The students admired the clarity of his teaching and

the elegance of his experimental demonstrations.'
37

Not given to theoretical speculation, Cornu also never showed any

particular liking for the new theories which came to the fore in the

final years of the century, although he did hold assumptions about the

ultimate reality of the physical world being no more than matter in

motion, and he did defend atomism against the attacks of Ostwald.

Cornu's earliest research papers were joint ones with the poly-

technician telegraph engineer, E.J.Mercadier (1830-1911) on musical

scales, but his career was built on the research into the velocity of

light, using the toothed wheel apparatus of Hippolyte Fizeau (1819-

1896) which he had presented to the school. Cornu's research, which

occupied him through the 1870's, will be considered in a later chap-

ter. Fizeau had not been a student at the Polytechnique, but he is

said to have educated himself from the lecture notes of the school, and
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after being elected to the physics section of the Academy in 1860, he

became an examiner there. His scientific education also came from the

optics lectures of H.V. Regnault at the College de France, and above

all from Arago's popular astronomy lectures at the Observatory.
38
 He

was also one of the many research workers whose early careers had been

assisted by Arago, having been invited to work in the Observatory with

the technician Breguet on the experiment to compare the speed of light

in air and water. Because of these connections, and because he un-

doubtedly had a profound influence on the type of research which Cornu

was to undertake, we will briefly examine his work in this section on

the Polytechnique.

The 1850's and 1860's were Fizeau's most productive period, and

produced such experiments as his confirmation of the Fresnel ether drag

coefficient through a column of flowing water, and his attempts, which

he cautiously considered to have been successful, to do the same for a

solid transparent body. These experiments were carried out in his own
Olt

private laboratory and largely at his own expense. The experiment to

confirm the hypothesis of ether drag in a moving liquid, was reported

to the Academy in l851. 	 two parallel glass tubes of about 1.5

metres in length and about 5mm diameter, he connected them together and

passed water through them, so that it moved in opposite directions in

the two tubes. Two coherent beams of light were passed down the centre

of each tube and brought to a focus so that interference fringes could

be observed. When the water was sent flowing through the apparatus, a

small fringe shift was observed, and the shift increased as the velo-

city of the water flow was increased. The fringe shift showed that

there was a change in wavelength (and hence of velocity) of the two

beams of light; it was increased for the light travelling with the

flow, and lowered for the light going against the flaw. Fizeau made

many observations at the maximum water flow which he could achieve,
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7.06 metres per second, and found an average fringe shift of 0.23

fringes. Calculations from Fresnel's ether drag coefficient found a

value of 0.2022 fringes which was in fairly good agreement with

Fizeau's result. Furthermore, Fizeau was able to reason that the water

in the centre of the tube was probably flowing faster, due to the

effect of viscosity, than the mean value of 7.06 m/s., which would

reduce the discrepancy between the two values still more. He also

tried the experiment with air flowing through the tubes, but could ob-

tain no visible fringe shift due to the low value of the absolute

refractive index of air. His result in water was confirmed by

Michelson and Morley in 1886.

In 1859, Fizeau carried out an experiment to try to verify the

drag coefficient for a solid transparent medium, as an earlier poly-

technicien, Babinet had tried, unsuccessfully, to do more than a decade

before. Clearly the method used for fluids cannot be used in this

case, and Fizeau's ingenious solution involved the use of polarisation

techniques. The velocity of light through glass was to be found by

measuring the rotation of the plane of polarisation of a beam of

polarised light passing through a pile of glass plates, set at an angle

to the incident ray. The measurement of this angle would yield

information about the refractive index of the glass, which in turn

could be related to the velocity of the light travelling through it.

The rapid movement of the glass plates through space would be provided

by the rotation and translation of the earth itself through space, a

velocity which would vary with the period of the year annd the time of

day. In the words of Fizeau himself;

'In the period of the solstice for example, the direction of

movement is found to be horizontal and from west to east at

midday: so that in these circumstances, a plate of glass,

receiving a ray of light from the west must really be considered
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to be moving with a speed of 31,000 m/s, in a sense contrary

to that of the propagation of light.40

Fizeau was convinced that the observed effect was real and caused

by the dragging along of the ether in the moving pile of plates, but he

realised that the apparatus was crude. He announced in this paper that

he was going to continue the experiment with more suitable equipment,

but there is no record that he ever did, and towards the end of his

life in 1894 he wrote that he no longer considered the experiment to be

decisive. H.A. Lorentz (1853-1928) writing in the following year,
41

declared his suspicion that the data were the result of experimental

error, or at least did not correspond to the theoretical considerations

on which the experiment was based. Later in the century, as we shall

see in a later chapter, E. Mascart (1837-1908) repeated Fizeau's

experiment but could obtain no alteration in refractive index.

It can be said that these optical projects of Fizeau lie very much

on the inter-face between physics and astronomy. An earlier insight of

his linked the spectrum of a heavenly body with its motion. In a paper

read to the Philomatic Society in 1848, Fizeau argued that the dark

lines in the spectrum of the sun (lines which were by this time called

after their discoverer, Fraunhofer) would be shifted towards the red

end of the spectrum if the body was moving away from an observer on the

earth and towards the blue if it was moving towards the observer.
42

This was a similar, but more refined idea to the one put forward

by the Prague mathematics professor Christian Doppler. Doppler who had

argued from the analogy with sound, thought that the light of a body

would appear red or blue depending on whether it was moving away from

or towards the observer, neglecting the fact that the invisible rays at

each extremity of the spectrum would be made visible by such movement,

and the overall coloured appearance of the body would remain unchanged.

Fizeau, who does not mention, and perhaps had not heard of Doppler's
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work, insisted that the continuous spectrum would remain unchanged but

that there would be a displacement of the spectral lines. Fizeau's

conclusions were not published until 1870, after a communication to the

Academy by the director of the Observatory of the Roman College,

Secchi, brought attention to the fact that the characteristic sodium C

line in the solar spectrum was very slightly displaced towards the

violet end of the spectrum at one extremity of the solar equator, and

displaced towards the red at the other extremity. The observed affect

was very small and Fizeau cautiously concluded, in a memoir read to

the Academy in 1870, that it was probably caused by a rotation of the

43
sun.

So there is evidence to show that the staff of the Polytechnique 

continued in the tradition, which had been established from the time

when Arago viewed the school as the pepiniere,the nursery, of young

talent destined to make their career in the Observatory.

It is not easy to find students of the Polytechnique, who without

going on to make an academic career, used their scientific and

mathematical training acquired at the school, to do, (independent of

and separate from their prcfessional duties) research which could be

described as physics. Clearly, without a laboratory at ones disposal,

physics research is virtually impossible, and in any case the

Polytechnique graduate was likely to be fully employed (perhaps even

peripatically) in his professional work as a state engineer. But there

are two interesting cases, which could be said to meet this descrip-

tion, which we will consider here.

The first is that of the mining engineer H.F. L. Peslin (b. 1836)

who was able to use published data from the Paris Observatory and frcm

scientific journals, to deduce mathematical relations between physical

variables. Peslin's first piece of research related to meteorology,

and combined the pressure gradient force and the deflecting force
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caused by the rotation of the earth, to derive what was later called

the geostrophic wind equation. The deflecting force due to the earth's

rotation had been demonstrated by Foucault with his pendulum and gyro-

scope experiments and the phenomenon had been much discussed in the

late 1850's in the Academy with Babinet demonstrating that it operated

on air and water masses moving in any direction on the earth's surface.

Peslin's paper was submitted to the Academy in 1869 and considered by

a commission containing the astronomers Leverrier and Faye, and the

geologist of the Museum, Daubree. Daubree presented the paper to the

Academy but it was published in the Comptes rendus only in a very

abbreviated form without any of the mathematical reasoning.44

It should be remembered that Leverrier was head of the meteoro-

logical service, and probably did not take kindly to a mining engineer

intruding into his scientific sphere of responsability. However, the

paper was published fully, three years later in the Bulletin m4teoro-

logique international, a journal published by the meteorological

Observatory of Montsouris, and edited by its director, Marie-Davy.

Peslin's later paper on spectroscopy will be left for consideration

until later, but it can be seen that his research interests continued

in those topics which were related to astronomy and the work of the

Observatory.

The other ex-student of the Polytechnique, who carried out

research in physics in the middle years of the century, is a rather

different case; J. Gaugain (1810-1880). Information on him is sparse

but it would seem that after some initial employment he had no paid

post and only very limited personal means. All his research was in the

area of electricity, and it seems that the laboratory study of the

factors affecting the velocity of telegraph signals, was i during this

period, exclusively in his hands. Gaugain, who was assisted by his son

in the construction of experimental apparatus, received some financial
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form of the Tremont prize) by the Academy.

Gaugain was one of the most prolific contributors to the Comptes 

rendus on the subject of electricity in this period. He carried out

experiments to verify whether Ohm's law held good for poor conductors,

including liquids and from about 1859 he began to concentrate his

attention on the study of the ability of certain arrangements of con-

ductors and insulators to store electricity in a manner similar to a

Leyden jar. The contemporary term was the ability of the system to

condense' electricity, from which came the word condenser, for the

device which today is called a capacitor. Beginning with a considera-

tion of the condensing properties of telegraph cables under water,
45

 he

later developed theories for the storage of charge in plane and

spherical condensers.
46
 In the early 1860's Gaugain worked on the

problem relating to the time it took for a cable to reach a permanent

state of charge. He did not work with telegraph cables but with

lengths of poorly conducting materials, like cotton threads, and then

later extended these ideas to telegraph cables. 47 He realised that a

submarine cable with a central conductor, insulated by gutta-percha, tiP,

surrounded by the conducting sea water, acted as a giant capacitor, and

that therefore the time to charge it up (or reach a permanent state of

tension to use his terminology) would be increased and the velocity of

the signal along it dacreased. 48 Gaugain experimentally derived a

formula for the time of charging and discharging a cable, which showed

it depended on the square of the length of the cable. A similar

expression had been put forward in the late 1850's in Britain by

William Thomson in the discussion over the transatlantic cable, but

Gaugain appears to have reached his conclusion independently of

Thomson. In fact Thomson's work on telegraph cables seems to have been

unknown in France in the Second Empire, despite its being published in
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British scientific journals of national importance. In the obituary to

Guagain in the Annie scientifique et industrielle it does say of him

that he;

'..could not triumph over the indifference of the public and

the cammunity of savants.'
49

Thus it would seem that Gaugain's electrical research evinced

little interest in the scientific community of the time, even though

the telegraph system, linking France with her North African colonies by

1857 and with the New World by 1869, was the technological wonder of

the period. As the Polytechnique provided the scientific training for

the members of the new state corps of telegraph engineers, which was

established in 1846, it is not surprising that those who did research

in this field, were products of the school. Apart from Gaugain's

laboratory work, polytechniciens like Gounelle, Burnouf and Gullemin,

as well as Fizeau, measured the speed of of telegraph signals over

long distances along the line, finding that it travelled faster along

copper than along iron and that the applied voltage made no difference

to the speed. 50 Telegraphy, and then telephony and wireless telegraphy

were particular areas of interest of the Polytechnique in the later

years of the century.

c.The Ecole Normale 

The student intake to the Ecole Normale, as to the Polytechnique 

was selected by means of a national examination, and only about twelve

to twenty students entered the school each year for the science course

after special preparation classes in certain elite lyce'es. It was

overshadowed in the first half of the century by the Polytechnique, but

in the second half, benefitting from the directorship of Pasteur, the

inauguration of the publication of the Annales de L iEcole Normale, and

/
the founding of the position of research assistant (agrege pre-
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parateur),it became the premier institution for the training of scien-

tific research worker.
51

The school did not award degrees, but its students took the

licence awarded by the Paris Faculty, and the national agregation, an

award which opened to its holders the very best positions in lycee 

A
teaching. In 1850 ) the maitre de conference at the school was Emile

Verdet, and he held the position until his tragically early death. In

the last years of his life he also held positions at the Paris Faculty,

and (as we have seen),at the Polytechnique. He also participated in

the publication of the Annales de chimie et de physique, translating

the latest papers from German and English and following, with parti-

cular interest, the developments which were taking place in thermo-

dynamics, a subject which was somewhat neglected by French resear-

chers. His own research began with the examination of effects in

electrical induction and went on to investigate magneto-optical

rotation. His heavy teaching duties, the consequence of the French

practice of cumul, probably prevented his making a more significant

con tribution to the production of new knowledge in physics, but there

is little doubt that he was an excellent teacher. A later normalien 

teacher, Violle, writing in the cammemorative volume to mark the 100th

anniversary of the school, said of his lectures that;

'Each was a harmonious whole,ncthing needed to be added

and nothing taken away'.
52

After his death, some of his students, Violle among them, collec-

ted his lectures and published them. But although Violle expresses an

enormous respect for his teacher, there is little in his article to

indicate the precise way in which Verdet influenced Violle's own work.

He says of Verdet that he had a preference for philosophical questions

but does not elaborate further. The dominant strand in Verdet's own

research, appears to be a generally positivistic one, but one cannot
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identify a common philosophical standpoint among his students.

Verdet was twenty eight when the Second Empire was proclaimed,

already with some research published, highly ranked in the agregation,

his doctorate awarded, and already teaching in the capital. Because of

his interest in so many aspects of science, his work of scientific

journalism (every volume of the Annales de chimie et de physique 

between 1852 and 1864 contained at least one article, synopsis,or

translation by Verdet), his extensive academic duties, his short life

and poor eyesight, Verdet was not responsible for a large quantity of

research work. His earlier interest had been on electrical research but

in the early 1850's he turned towards optical questions.

Verdet's most orginal work was on the influence of magnetism on

the optical properties of transparent bodies, published in four memoirs

53
in 1854, 1855, 1858/and 1863.	 This work, continued the research of

Faraday, who had already shown in 1845 that the plane of polarisation

of a beam of polarised light is rotated as it travels parallel to the

lines of magnetic flux, in a powerful magnetic field. Verdet's

contribution was to deduce two quantitative laws for this effect. The

first stated that the magnetic rotative power of the field varies

proportionally to its intensity, and secondly that the rotation was

proportional to the cosine of the angle between the direction of the

rays and the lines of magnetic flux. In his third memoir he dealt with

the effect of dissolved salts in the water through which the light

passed, and in the fourth he sought to link the phenamenon of magnetic

rotatory polarisation with the nature of the light rays themselves.

Biot had shown that in substances which naturally rotated the plane of

polarisation, the rotation was inversely proportional to the square of

the wavelength, and Verdet wished to see if the same was true for

materials which produced magnetic rotation. In experiments with

carbon disulphide he showed that this relationship was only approxi-
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mately true. Verdet died in 1866 at the age of forty two. He had not

sought election to the Academy, although positions in the physics

section became vacant in 1860 and 1863, because according to his

biographer, De La Rive,
54
 he did not want to apply while his friend

Foucault was excluded. Foucault, in spite of the apposition of

Leverrier, did gain admission to the mechanics section of the Academy

in 1865.

Verdet's succesor was P.A. Bertin-Mourot (1818-1884), whose

teaching career at the Normale had more influence in the Third

Republic, and so we will leave consideration of it to a later chapter.

Also his own research was mainly carried out while he was at the

Faculty of Science at Strasbourg and will be examined in the section on

the provincial faculties.

As many of the graduates of the Normale went on to make succesful

academic careers, their research will be examined when the institution

in which they held the physics chair is considered, but it would be

appropriate here to look at the doctoral research carried out by E.E.N.

Mascart when he was working as an agrege-pr4parateur at the school in

the 1860's. Mascart entered the school after having worked for a time

as an assistant teacher at the lycee in Lille, and after his agregation 

worked for his doctorate in the chemistry laboratory of St. Claire

Deville. This research was in the field of spectroscopy, and although

of course, spectroscopy was being used as a valuable tool of analysis

by chemists, (and presumably this is why he found the necessary

equipment there) Mascart's spectroscopic research related more to the

astronomical application of the technique.

* BertinMourot is frequently called Bertin in contemporary literature

and so will be referred to by this shortened form in this thesis.



Mascart's work began in 1863 with the determination of the

wavelength of the 'A' ray in the near infra-red portion of the solar

spectrum, for which, in the following year) he was awarded his

doctorate. rking with potassium chloride in a gas and oxygen flame,

and using a diffraction grating, he obtained a value of 7.68 x 1O

as against the previously accepted value of 7.5 x 10
-7

 m.
55
 Later in

the same year, using a photographic plate as a detector, and a

spectrometer with quartz lenses, he determined the wavelength of a

number of principal lines in the solar spectrum. In 1867 he received

the Bordin prize for the 'determination in a very precise way of the

wavelength of some rays of light, .
56 

He had determined the wavelengths

of a number of Fraunhofer lines going from the ultra-violet region to

the long, already mentioned, 'A' ray. He employed six different

diffraction gratings (as a check on the accuracy of the wavelengths

obtained) which had been made for the Ecole Normale  by the intrument

maker, Norbert. In 1869 Mascart continued his research into the UV

region of the spectrum, using a spectrometer with cptical components of

Iceland Spar, purchased with funds provided by Leverrier's Association 

Scientifique.

In his next paper, later in the same year, Mascart permitted

himself some theoretical speculation about the relationship between the

observed spectral lines, in the following question:

'Is it not natural to admit that these groups of similar

rays are the harmonics which the gas has, through its

molecular constitution? Without doubt it will be

necessary to make a many more analagous observations

to discover the law which governs the harmonics.57

It was this statement, pointing towards an analogy between the

observed frequencies of light in the spectrum of a material, and the

number of related frequencies in the note emitted by a vibrating body,

which influenced the work of later spectroscopists.
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d. The Paris Faculty 

The Second Empire saw an expansion of the Universitg. In 1854, new

faculties of science were established in Marseille, Clermont, Lille,

Nancy and Potiers, giving the basic structure of French secondary and

higher education, which was to last into the twentieth century. The

number of lydee positions for a man trained in the physical sciences,

doubled during the period of the Empire, and a similar growth took

place in the lower status colle:ges communaux. Thus the employment

market for holders of the licence grew, and that in turn swelled the

numbers taking that examination. Moreover, as the best positions, i.e.

the lycees, rather than the colleges communaux, or the Parisian rather

than provincial lycees, were ppen only to the holders of the agrega-

tion, the importance of this examination grew as well. Although this

was originally, essentially an exam to further the internal advancement

of already serving teachers, 
58 

it had long been dominated by students

of the Ecole Normale and would continue to be so.

As was mentioned in the previous chapter, physics was not taught

as a separate subject in the lyces, but as a part of a combined

physical, chemical and natural sciences programme. Faculties of science

employed physics professors, who taught the subject as a component of

the licence in the physical sciences. The level of the licence was

little higher than that of the baccaleaurgat taught in the lycees , and

both the teaching programme for it, and the position for which it pre-

pared the holder (ie. teaching science in a lyo4e or college) tended to

make it a non-mathematical, descriptive, and experimental science,

rather than a mathematical one. Thus the Paris Faculty/ (as on a much

more reduced scale the provincial faculties), produced secondary school

teachers in the physical sciences. So did the Ecole Normale, but gave

its students a higher level of scientific preparation, for the

agrggation. Only if students went on to do a doctorate, with the
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subject matter unequivocally physics, and if they went on to gain a

physics chair in higher education, will they be described as physicists

here.

When the period of this study opens, the two professors of physics

at the Paris Faculty were C.M. Despretz (1791-1863) and J.M.C. Duhamel

(1797-1'672). Both men were then in their fifties, both had a substan-

tial amounts of published research behind them, and both were members

of the physics section of the Academy. We have already encountered

Duhamel when the Polytechnique was considered, and where, in spite of

the criticisms of the Leverrier commission which resulted in his being

removed as director of studies, he continued to be the professor of

analysis. Although his principal interest was in the mathematical,

rather than the experimental aspects of physics, he did experimental

work on the analysis of sounds, and his i vibrascope', a rotating

cylinder on which was traced a line produced by a thin bristle attached

to the prong of a tuning fork, is to be found in physics textbooks of

the later nineteenth century.

By the 1850's, Duhamel's experimental research in physics had came

to an end but he continued to publish on mathematical and theoretical

aspects. Continuing the work of Fourier, with whom he had worked

earlier in the century, he had also published treatments of the

conduction of heat through solids, but in the 1860's he turned his

attention to a re-examination of the formula for the velocity of sound

in air. In the first of these memoirs, published in the Comptes 

rendus of the summer of 1862,
59
 Duhamel, starting from the equations

given by Poisson for waves in solids, derived an expression for the

velocity of sound in air, almost numerically identical to the one nor-

mally in use (containing Laplace's correction), but not supposing any

elevation in the temperature of the gas. In Duhamel's isothermal treat-

ment it was necessary to multiply Newton's value by the constant 7/5
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while in the Poisson/Laplace adiabatic treatment, Newton's value must

be multiplied by the square root of the ratio of the principal specific

heats of the gas. As the ratio C /C for air is very close to 1.40, one
p v

sees that the two answers gave the same result, although starting from

very different theoretical bases.

Unfortunately for Duhamel, and to his great embarrassment, he had

to report to another meeting of the Aademy later in the year, that he

had made a fundemental error in his calculations because he had used

the wrcng formula of Poisson.60 This error had already been spotted by

a number of foreign savants, including Clausius, and they communicated

their corrections to the Academy. While accepting the correction,

Duhamel returned to the question, again using Poisson's solid body

treatment, but this time accepting adiabatic changes in the gas, and

arrived at an expression for the velocity of sound, different from the

one in general use.
61

Taking the velocity of sound as 330 m/s at 0° C, Duhamel's formula

gave a value of C /C of 1.684, as against Laplace's value of 1.42.p
Thus there had to be a flaw in the reasoning of Duhamel because the

value of C /C had been calculated as being close to 1.4 in the studies
v p

of Regnault as well as in the much earlier ones of Clement and

Desormes. Duhamel was, of course, aware of this discrepancy, but he had

confidence in his an method and left it to later physicists to,

'decide which (value) is closer to the truth'. 
62 

This work by one of

France's most eminent mathematical physicists gives the impression of a

certain eccentricity, a certain obstinacy in the face of experimental

refutation. Certainly it contributed little to contemporary understand-

ing of the problem, and may even have damaged the reputation of French

science abroad.

The other physics professor, Despretz, who had once been the

assistant of Gay-Lussac, was almost at the end of his creative life by



53

the 1850's, with an extensive body of published work behind him. He had

worked on the thermal conductivity of water and had determined in a

very precise way, the variation of density of water with temperature,

finding that it had its maximum density at 4°C. But in the later

1840's, he turned his attention to electrical research. Around the

middle of the century he thoroughly investigated the performance of

the two liquid cell, and his results were published in nine papers in

the Comptes rendus. Much of this work appears to verify, confirm, or

supply extra experimental evidence for earlier ideas. It is true,

however, that there was still considerable confusion about electric

cells, their electro-motive force (a term introduced by Ohm earlier in

the century), and their internal resistance, and the new two liquid

cells, of Daniel, Grove, Bunsen and others, had never been

systematically studied before.

Despretz, in the sixth memoir on the cells, examined the spectra of

electric sparks obtained by putting together a very large number (100

to 600) of electric cell elements, and compared these spectra with

those produced by electro-static and electro-magnetic machines.
63

In the final one,
64

 he sought to verify more rigorously than had been

done previously, the earlier laws of Ohm and Pouillet, which were being

contested by various researchers. The formula which he set out to

confirm, was the following:

i=nE

nR+L	 n was the number of cells

R the internal resistance

L the external load resistance

E the electromotive force of the cells

From his research, Despretz was able to say that the internal

resistance was not a constant, but varied with the length of wire in

the external circuit. He gave the reason for this as being the build
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up of a paste of zinc sulphate on the zinc plate.

Although it might be said that the electrical work of Despretz did

not contribute anything particularly new to the science of electricity,

it established, by the rigour of its experimental method and the

authority of the Academy, certain norms and imposed a certain order in

a sector of physics still beset by vague, imprecise conceptions and

lacking a uniformly agreed set of standards and units. For it must be

stressed that research into different aspects of electricity was well

established by the middle years of the century. Taking the index of the

Comptes rendus, 1851-65, as a guide to the popularity of this field, it

can be seen that it consistently, year after year, attracted more

contributions than any other branch of physics research. It should be

said, of course, that electricity presented a broad field, offering

many research topics, in electro-chemistry, electrolysis, electro-

magnetism as well as in the design of instruments,electric motors,and

generators etc. It is also possible that electricity improved the

possibilities of research for the amateur, the instrument maker, and

the lyce teacher with only limited means, because even though the cost

of producing electricity for industrial purposes, was prohibitively

high using cells, they could cheaply provide the small amounts of

current needed for many types of laboratory experiment. Equipped with

a cell, various lengths of wire of different material and diameter

(which he would probably have to insulate himself with varnish or

cotton), a compass needle, a few magnets, and some chemical solutions,

a whole field of electrical, thermo-electric, electro-magnetic, and

electro-chemical research was open to the enterprising man with a

modest laboratory and a smattering of theory. This would go some way

to explain, not only the very large number of electrical papers

submitted to the Comptes rendus, but also the very high proportion of

papers, whose reception was noted by the Academy, but which never



55

appeared in print. Members of the Academy may well have felt that they

had to guard, jealously, the integrity of science against a flood of

papers, many of which may have been inexact experimentally, excessively

speculative, or based on incorrect theoretical foundations.

Electrical research work rested firmly on old established bases.

In France these foundations were provided by the much earlier research

of Coulomb in electrostatics, Ampere's explanation of magnetism as the

result of molecular electric currents, and Biot and Savart's research

on the magnetic effect of a current flowing in a straight wire; work

which was over 30 years old by mid-century. Other French savants had

made contributions to the field in the intervening period; Arago's

chance discovery of eddy currents, Pouillet's invention of the tangent

galvanometer, or A.C. Becquerel's work on cells o are a few examples. The

most prolific researchers by Ear in the field, were Th. DuMoncel

(1821-1884), who had no formal education in the subject,and the pre-

viously considered polytechnicien, Gaugain, who between them, contri-

buted nearly 15% of the 500 or so papers on electricity which appeared

in the index of the Comptes rendus in this period, although not all of

them were published.

In the early 1850's Duhamel was replaced by Q.P. Desains (1817-

1882), while the chair of Despretz passed on his death in 1863, first

to Verdet and then in 1866, to Jamin. Desains and Jamin saw the Faculty

through the upheaval of the Franco-Prussian war and the Commune into

the Third Republic. The loss to French science caused by the death of

Verdet must again be stressed here. He was one of the few French

physicists who was keeping abreast of foreign developments in the new

areas of physics, particularly thermodynamics, and he incorporated this

new knowledge into his lectures at the Faculty.

Desains, on the other hand, showed no such interest in the new

ideas relating to the dynamic theory of heat. His own research had been
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centred around the study of 'radiant heat'; what would now be called

infra-red radiation. This work was carried out in collaboration with

a fellow lycee teacher, F.H.de la Provostaye (1817-1864), during the

1840's. By the end of the decade, both men had gained their doctorates

after leaving the Ecole Normale, and after considerable work together

had been able to conclude that 'The laws of radiated heat are precisely

those of light' 
65 

In 1851 they continued their work together with an

investigation of the degree of polarisation of heat and light emitted

from incandescent platinum using a method similar to that which had

been developed many years previously by Arago.
66 

Polarisation was

achieved by the refraction of the beam by a pile of mica plates set at

an angle to the incident radiation. In the following year they pub-

lished a memoir on the diffuse reflection of heat from a number of matt

and granular surfaces.
67
 Later in the same year they published a note

on the quality of the heat emitted by different bodies at the same tem-

perature, concluding that different bodies emit very different kinds

of'obscure heat' at the same temperature.
68

This work was in the tradition of the research instituted in

France in the 1830's by the Italian emigre ' Macedonio Melloni, although

in the 1850's certain differences of interpretation surfaced between

the older savant, now with a state scientific post in Naples, and the

French researchers. The argument between them continued with increasing

acerbity throughout 1853, and only ended in the following year with

Melloni's death.

The following year also saw the end of the period of fruitful col-

laboration between Provostaye and Desains which had lasted more than a

decade. Provostaye, in the hope of improving his failing health, left

Paris to become Inspector General of higher education in Algeria, and

died there in 1864.
69 Desains did no original research in the latter

part of this decade, probably as a result of taking up employment in
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the Paris Observatory, as well as teaching at the Paris Faculty. He

only began to publish the results of research again after he had re-

signed from the Observatory in 1862, returning to his study of radiant

heat. Now he investigated the rotation of the plane of polarised heat

when it was passed through quartz, using the observations to determine

the wavelength of the heat.

In the same memoir Desains reported that using a diffraction

grating and a very sensitive thermopile developed by the Paris instru-

ment maker, Ruhmkorff, he had found no heat in the dark Fraunhofer

lines of the solar spectrum. In the following year, 1867, he carried

out experiments on the absorption of obscure heat by chloroform,

benzene, and glycerine, finding the first two of these substances, very

permeable.
70 In the last few years of the Second Empire, Desains, with

his assistant Edouard Branly (whose career in the Catholic Institute of

Paris in the Third Republic will be considered later) began a different

line of research, measuring and comparing the intensity of solar

radiation at different altitudes, and investigating the effect of water

vapour in the air.71

We have already looked at Jamin's extensive optical research when

we considered the Ecole Polytechnique. In the 1860's his interests

began to turn towards other areas, but his research continued to be

extensive, and the papers he published in the Comptes rendus,

prolific. Even in the late 1870's, when he was in his sixties, he

published some 30 papers on a variety of topics; magnetism predom-

inated, but there were also some on liquefaction of gases and critical

temperature phenamena. Jamin was elected to the physics section of the

Academy in 1868, taking the place left vacant by Pouillet, and later

served as the Permanent Secretary of the Mathematical Sciences section

of the Academy. Desains had to wait until the death of Babinet in 1872

before he found a seat in the physics section. Desains published more
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slowly than Jamin and never strayed from his first love, radiant heat,

and on his death in 1885 it was said of him that 'there was not a

corner of the relation between heat and light which he had not explored

with success'.
72

Unfortunately for his students and for French science, Desains'

love of radiant heat appeared to make him blind to all the other

developments in physics. For example, Fox in a recent study, reported

that Desains expressed amazement on hearing of Kirchhoff's two laws of

electrical circuits, even though they had been published in the Annalen 

de physik thirty five years before. 73 Students who attended Jamin's

and Desains' lectures for the licence criticised both their form and

content, and it is clear that during the 15 or more years that both men

remained at the Faculty, the theoretical content of their lectures

remained virtually unchanged.

On the other hand they have been praised for the work which they

did in organising the laboratories of the Paris Faculty following the

establishment of the Ecole Pratique des Hautes Etudes. Desains was

responsible for the teaching laboratory which was in operation by

December 1868. A French writer of the early twentieth century says of

the laboratory that;

' Under the remarkable direction of Desains, the laboratory

quickly acquired a great fame. Its reputation can

only be campared to that which Regnault's enjoyed thirty

years before at the Colle'ge de France.
74

Desains supervised some forty students, who watched certain

experiments being carried out, repeated them to familiarise themselves

with equipment and its use, but did no specialised research.
75

 As we

have seen, Branly did research in Desains laboratory, but he was not a

student, but chef de travaux. Post licence students working for their

doctorate, of Which there were very few, would have done their research
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in Jamin's laboratory.

It is interesting to note that the laboratories of Jamin and

Desains came into being within the period 1866-1873, a period during

which it has been pointed out, eight laboratories for teaching and

research were established in British scientific education.
76
 Thus the

French reforms may perhaps best be seen as part of a more general

European process, where the importance of the practical, manipulative,

aspect of physics for teachers of science, was beginning to be

recognised.

But it cannot be said that Jamin played much of a role in

stimulating and guiding young research talent; there is nothing which

remotely resembles a research school associated with him. One can find

some joint papers which both of these teachers published with

co-authors, who presumably were their students. In the 1870's, Jamin

published papers with five collaborators, none of whom attained any

distinction in physics and only one of them, Gustave Roger (b.1843)-

presented research for a doctorate. Roger was Jamin's most productive

collaborator and together they published five papers on magneto-

electric machines and electrical induction. Roger's doctoral thesis,

defended in 1872 'The study of interrupted currents' was clearly

related to the work he was doing with Jamin, and so we can assume some

kind of supervision, guidance and communication from the teacher to the

student here. Paul makes the point that the Paris 'Faculty was turning

out an average of one physicist a year in the 1870's' 77, presumably

meaning that by this that one doctoral candidate in a subject area

which was described as physics, successfully defended his thesis each

year.

We will leave the consideration of doctorates at the Paris Faculty

in the 1870's to a later chapter, below are two tables 2(i) and

2 (ii) which relate to the Second Empire. They are taken from the
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catalogue of theses of the period,
78
 and their classification into

categories has been done by the writer of this thesis. The categories

signify; light, heat, electricity and magnetism, vibrations and waves,

and general physics. These categories are then combined in the physics

total column. The other columns are for ; astronomy, mathematics,

meteorology and physique du globe, natural, chemical and medical

science theses. The final two columns show the total number of theses

presented in that year and the total number of candidates, the two

figures not always being the same as some candidates would present two

theses and some (increasingly as time went on) only one. The purpose of

the tables is to show the popularity of physics topics relative to

other branches of science, and to indicate what were the most popular

topics within the physics discipline. Physics has the content it had in

the textbooks of Lame and Peclet in the 1840's and also in the more

modern (i.e. 1860's textbook of Ganot).
79
 It is true that some theses

in the 'meteorology and physique du globe' section might happily be

accommodated in the 'physics' total, but others were more descriptive;

as of geological strata, for example.

It will be seen that the percentage of physics theses fell

slightly from about 26% in the first decade, to about 21% in the

second. The second period also shows the growing specialisation in the

optical and electrical area, these areas increasing from 56% of the

total physics contribution, to 73%. It would seem that the possibility

of original research in acoustics, was considered to have been

exahausted by the latter period.

There were, however, two normaliens who made successful careers as

physics professors in provincial faculties on the basis of doctorates

Tables 2(i) and 2 (ii) overleaf.
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Doctoral theses submitted to the Paris Faculty
of Sciences

Table 2C).

Doctoral theses submitted in the decade 1850-1859.

Category Total
Year Lght Ht El

mag
Vibs.
and
Waves

Gen.
Phys.

Phys
Total

Ast Maths Met
Phs
Globe

Nat
Chem
Med

The-
ses

Men

1850 1 1 1 3 5 •• 4

1851 0 2 4 63
1852 4 2 6 3 4 1 6 20 10
1853 112 1 5 2 2 4 138
1854 2 1 1 3 7 1 5 1 2 16 10
1855 1 1 1 3 4 4 1 6 18 11
1856 1 1 2 1 5 2 10 7
1857 1 1 2 2 2 4 11 8
1858 1 1 1 3 5 1 3 128
1859 1 1 2 1 4 3 10 7

.1'

Total 10 3 8 3 8 32 14 33 6 39 124 76

Physics papers as percentage of total	 25.8%

Of the Physics theses,31% light, 25% electricity,
25% general physics, 9% heat,
9% vibrations and waves.

Table Z ( L )-	 Theses submitted in the eleven year period
1860-1870

Category
Maths Met

Phs
Globe

Total
' Nat	 The-
Chem ses

Med

menYear Lght Ht El
mag

Vibs.
and
Waves

Gen.
Phys.

Phys
Total

Ast

-1860 12 3 1 3 77
1861 2 2 4 4 1 3 12 9
1862 1 1 2 2 4 9 7
1863 1 1 1 3 5 5

1864 3 3 5 2 7 17 13
1865 0 1 3 9 13 12
1866 1 1 2 2 1 3 87
1867 3 1 1 2 7 2 2 1 12 11
1868 0 2 5 1 5 13 11
1869 1 1 2 1 2 8 13 11
1870 1 2 3 3 10 16 11

Total 10 3 9 0 4 26 6 27 10 56 125 104

Physics papers as percentage of total; 20.8%

Of the physics papers; 38% light, 35% electricity,
15% general physics, 11% heat,
0% vibrations and waves.



62.

and later research on acoustics; J.A. Lissajous (1822-1880), who

defended his thesis on the position of nodes in a transversally

vibrating plate at the Paris Faculty in 1850, and Alfred Terquem

(1831-1887), whose thesis on longitudinal waves in plates was defended

nine years later in Paris. Most of the career of Lissajous was spent in

Besancon, and that of Terquem in Lille, and both eventually became

corresponding members of the Academy.

The work for which Lissajous is remembered, the displacement

pattern traced out by a body impressed by two vibrations acting at

right angles to each other,'Lissajous figures', was completed in

8	 .1857. 0 Lissajous obtained these patterns by attaching small mirrors

to the prongs of two tuning forks whose axes were perpendicular, and by

directing a narrow beam of light onto one mirror, so that it was

reflected from there to the mirror of the second fork. The beam,

having undergone two reflections, was then displayed as a spot of light

on a screen, and the spot described circular, or elliptical or more

complex patterns, depending upon the frequency of one fork relative to

the other. It is an excellent demonstration technique for a science

teacher, for the resulting light pattern, displayed on a screen, can

clarify to students a phenomenon which otherwise would be difficult to

explain.

It is obviously not possible to examine in detail all the work

done for the physics doctorate during the Second Empire. Mascart's

thesis has already been considered; his line of spectroscopic research

using diffraction gratings was to win him Academy prizes and lead to

his becoming Regnault's assistant at the Collage de France in 1868, and

to the chair of physics there when Regnault retired in 1872. Another

example of a doctoral thesis which was considered of sufficient merit

to be published in the Comptes rendus, was that on
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the measurement of electro-motive forces (forces electromotrices) of

cells by Jules Regnauld (1820-1895), who later became a professor at

the Ecole de Pharmacie in Paris.
81
 This work, for which he was to earn

his doctorate in 1855, campared the EMFs of cells by a method which

today would be called a potentiometer null deflection method. He

explained that two cells connected in opposition would give a current I

given by the formula

e-e'

Thus if e was equal to e' no current would flow whatever the value of r

and r'.

With a number of cells this expression would become

Using a sensitive galvanometer, Regnauld could easily see when the

EMFs of the cells he was employing balanced each other; the galvano-

meter would read zero. Regnauld compared the EMF's of several cells,

balancing each one separately against a thermopile of 60 thermocouples

in boiling water, and by adding or subtracting a thermocouple he could

vary the comparison EMF by a small amount. So as not to have to employ

an excessively large number of thermocouples, Regnauld made himself a

zinc-cadmium cell which was equivalent to 55 bismuth and copper thermo-

couples with their hot junction in boiling water. Using this method

Regnauld found that;

A Daniel cell was equivalent to 165 couples.

A Grove cell was equivalent to 310 couples.

A Zinc amalgam/lead peroxide cell was equivalent to 466 couples.

It must be remembered that there was as yet no unit for electromotive

force, but Regnauld's method allowed for the first time, the precise

measurement of EMF in the necessary condition that no current is
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drawn from the cell.

The last doctoral thesis of this period which we shall consider is

the one submitted by Jules Violle (1841-1923) in 1870. Violle was a

normalien, who passed his agr4gation in 1868, and after his doctorate;

worked in the faculties of Grenoble and Lyons before returning to Paris

A
in the 1880's to become a maitre de conference at the Normale, and a

member of the physics section of the Academy. It is interesting because

it was the first doctoral thesis to be concerned with the mechanical

equivalent of heat, the precise numerical value of which, had been

disputed by some French scientists in the 1850's, but which by 1870 was

settling at a value close to 425 kilogrammetres per calorie. The

kilogrammetre was defined as the work done when one kilogram falls

through one metre.

Violle rotated a copper disc between the poles of an electro-

magnet, and measured calorimetrically the heat generated by eddy

currents ('Foucault currents' as they were known in France) set up in

.	 82
the disc.	 The disc is rapidly rotated using a hand operated system

working through a train of gears. The copper disc is attached to its

steel axle by a rubber mounting for thermal insulation. When an obser-

vation of the heat gained by the copper disc was to be taken, it was

removed quickly from its mounting and plunged into a calorimeter of we-

ter, and the temperature rise of the mixture read with a thermometer

which could read to 1/200 of a celsius degree. Correction was made for

the cooling which would inevitably take pace as the disc spun at its

high speed. To give an example of Violle's data; turning the handle at

8 revolutionsper minute, which produced a rotation of 1224.2 revs, per

minute of the copper disc, gave an uncorrected temperature rise of

1.22° C in 15 minutes, and after applying the cooling correction this
0

rose to 1.269 C. Then, Violle wrapped a fine thread around the axle of

the machine and rotated the disc using a falling weight. Thus the
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amount of mechanical power needed to achieve different constant rates

of rotation of the disc was determined. From the description of the

experiment, one feels a little surprised at the accuracy of the final

result, for Violle obtained 435.2 kilogrammetres per calorie.

It is a good example of the doctoral thesis in physics of this

period; those charged with judging its accuracy could do so by

reference to the value of the equivalence, which by 1870 has been

determined by many experimenters. The thesis contained nothing

speculative, and its originality lay in its linking of two phenomena,

eddy currents and temperature rise, which hitherto had not been

investigated.

e. Physics in the provincial faculties.

Fran what has already been said about the role of the provincial

faculties in the first half of the century, it would not be expected

that they would make any significant contribution to new knowledge in

physics during the Second Empire. In general this is true; the picture

of the lycee teacher who does some research for his doctorate in order

to win the prize of a faculty chair, and then spends the rest of his

career grading baccalaureat candidates, still applied in the 1850's and

1860's as it did thirty years before. But it was no longer universally

true and it would become progressively less true as time went on.

Although there would be no other geographical centre which would se-

riously challenge Paris, no competing centres of scientific excellence

as in Germany or Britain, the faculties in certain provincial cities

would begin to make significant contributions to physics, and their pro-

fessors would attain the limited distinction of becoming corresponding

members of the Academy of Sciences.

An examination of the list of provincial faculties in the Almanach 

Imperial of 1857, shows that there were fifteen professors of physics

in that year. Identifying the scientific work which they did up to the
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end of the Second Empire from the index volumes of the Comptes rendus,

we find that five never published anything (at least in this journal ,

they might have published in local scientific journals), five submitted

less than five papers, while the remaining five submitted between five

and nineteen papers. Of these professors, one, J.J.B. Abria (1811-1892)

of Bordeaux, published twelve papers on meteorology and optics up to

1865, and four afterwards, before being elected as a corresponding

member of the physics section of the Academy in 1880. F.Bernard (1816-

1866) of Clermont, published seven papers on optical and spectroscopic

questions and became a corresponding member of the mechanics section in

1866. Bertin-Mourot , who we have already encountered as a teacher in

the Ecole Normale, published eight papers on optics and magnetic

optical rotation while he was at the Faculty of Strasbourg. The fourth

academic, J.E.A. Morren (1804-1870), at Marseille submitted nineteen

papers to the Academy on a variety of topics ranging from astronomy,

through phosphorescence, and pneumatic machines to the 'absorption of

azote by animalcules and algae'. 83 The fifth individual, H.S. Viard

(1821-1858) from Montpellier, contributed five papers.

We can also see from this survey that the conception of what

constituted physics research was broader in the provinces, the work

less specialised in general. Certainly a provincial physics teacher

would be unlikely to have the expensive, precise, apparatus which

Parisian savants might be employing for optical and magneto-optical

research, for example, and he would therefore have to find other,

cheaper fields of research. Moreover, a physics teacher who was

content to stay in the provinces, would often prefer to publish

locally, and because of this would tend to write on accessible topics.

This was certainly the case with Abria who had many more papers

published in the Ivimoires de L'Acade-mie des Sciences de Bordeaux than

in Parisian journals.
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An indicator of the role which the provincial faculties played in

the production of new knowledge, is the number of doctorates they

awarded. It is a very imperfect indicator to be sure, because it may

well be that many of the doctoral theses had little real value, and

even if they had, the role of the staff of the local faculty could have

been minimal in their production. But nevertheless, if a faculty has

been awarding doctorates regularly, year after year, even on a modest

scale, it gives the impression that there is, in the faculty, staff who

are encouraging a research spirit among the local lycee teachers, state

engineers, pharmacists, and others who have both the time and the

money to spend on research. In the table below, the number of

doctorates awarded from the date of establishment of the faculty, to

1851, is compared with the numbers awarded within the life of the

Second Empire (1852-1870). As we are here concerned particularly with

physics, the table on the next page, (table 2 iii), shows both the total

number of doctorates and those which fall (sometimes not very easily)

within the area of physics.

The first point to be made from the information of the table

relates to the small proportion of physics doctorates awarded. This is

to be expected when the growing expense and complexity of physics

apparatus is considered; a mathematician or mathematical astronomer

would not have this problem and nor would a scientist researching local

geological strata, or distribution of flora and fauna. Nevertheless,

the three most productive provincial faculties in all doctorates up to

1851, Strasbourg, Montpellier,and Toulouse, are also the most

productive in physics, although Montpellier shows a much higher

proportion of physics doctorates. In the Second Empire there is no

upsurge of productivity; Strasbourg and Montpellier continue in a way

similar to before, while Toulouse declines quite markedly. Lyons

becomes considerably more productive, but the most striking aspect
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Table 2(iii).

Table of doctoral theses presented at provincial faculties of

science 2E to and including 1870.84

Faculty Foundation

date

Doctoral candidates

Until 1851	 1852-1870

Total	 Physics	 Total	 Physics

Besancon 1808 2 1 4 1
*

and 1845

Bordeaux 1838 1 0 3 1

Caen 1808 3 1 2 1

Clermont 1854 - - 1 1

Dijon 1808 7 2 2 2

Grenoble 1811 9 2 0 0

Lille 1854 - - 2 0

Lyons 1808 3 1 6 0
*

and 1833

Marseille 1854 - - 2 0

Montpellier 1808 20 6 8 2

Nancy 1854 - - 7 2

Poitiers 1854 - - 1 0

Rennes 1840 1 0 0 0

Strasbourg 1809 37 7 15 1

Toulouse 1808 10 3 3 0

*These two faculties were closed in 1815 and later reopened.

The figures refer to doctoral candidates not doctoral theses. Some

of the candidates would submit two theses.
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is the vitality of one of the new faculties, Nancy, while the other

four, Marseille, Poitiers, Lille, and Clermont Ferrand, show very

little activity. It is not possible to draw firm conclusions about any

rise or decline in productivity from these figures because they are so

small anyway.

Few of those who book their doctorates in provincial faculties

rose to positions of great eminence in French science; such positions

were the prerogative of those who had studied in the grandes ecoles and

submitted their doctoral theses to the Paris Faculty. Even fewer were

those, who pursuing academic careers, ever succeeded in obtaining a

position in higher education in Paris on the strength of their provin-

cial doctorates: Bravais the polytechnicien, was awarded his doctorate

by the Lyons faculty, and returned to Paris, as we have seen, to teach

physics at his old school. A normalien, E.H. Mari-Davy (1820-1897)

who gained both doctorates in medicine and in physics in Montpellier,

left a faculty position there to go to teach in a Paris lycee, and went

on to organise the French storm warning system in the Paris Observatory

under Leverrier. Maria-Davy carried out research on electric motors in

1861, deriving a mathematical expression for the self-induction of a

motor coil moving in a magnetic field,
85
 as well as producing a type of

two-liquid cell which was employed in the French telegraph service for

many years before it was replaced by the Leclanche cell. But a man

who gained a doctorate from a provincial faculty , was unlikely to gain

a chair in Paris, the best he could hope for was to become a professor

at that faculty, like A.P.P. Crova (1833-1907) at Montpellier, whose

work we will examine later, but even these positions were usually

filled by those whose doctorates had been awarded in Paris.

We will pay more attention to the provincial faculties when we go

on to the Third Republic, as, benefitting from the founding of the

Societe- de Physique and the Association Francais pour l'avancement des
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and the generosity of local industries, they began to make a

bigger contribution to scientific research in the country.

f. The College de France and the Museum d'Histoire Naturelle 

These two institutions, whose origins could be traced Ear

back into the ancien regime, had very high prestige in the French

academic system. The College awarded no degrees or diplomas and

its lectures were free and open to the general public, although,

at the beginning of the century, this did not prevent these

lectures being more advanced than those given at the Paris

Faculty. The College had both a chair in experimental physics and

one in mathematical physics, the former being held by H.V.

Regnault (1810-1878) and the latter by J.B. Blot (1774-1862), when

the period under consideration here, opens.

Regnault was a polytechnicien and a member of the elite

Corps des Mines. After some professional work with the corps and

study abroad with Liebig at Giessen, and then a junior post at

the faculty of Lyons, he succeeded Gay-Lussac to the chemistry

chair at the Polytechnique in 1840. In the following year, he

also became professor of experimental physics at the College,

where the precision of his experimental research achieved such

distinction that foreign scientists like the young William Thomson

(contd. overleaf)
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came to his laboratory to learn experimental physics in this decade. By

the time the Second Empire came into being, much of the physics work

for which Regnault is remembered, the precise determination of the

expansion coefficient of gases, the deviations from Boyles law, and

the demonstration of the approximate nature of Dulong and Petit's law

of 1819 on the constancy of the product of the specific heat and atomic

weight of a substance, had already been campleted. As the Imperial

regime appointed him director of the porcelain factory at Sevres in

1854, on top of his other duties, it is not surprising that his

research activity slackened in the late 1850's and 60's.

But we can take one research project of his, later in the period

as a kind of case study to show the type of research at which Regnault

excelled. This was the experiment to determine the velocity of sound

in air whose results were published in 1868 and for which Regnault had

the benefit of the use of new gas conduits and sewage pipes being laid

under a Paris undergoing major reconstruction to make it worthy of its

status as an Imperial capital.
86
 Regnault's objective in carrying out

the experiments, was to check the validity of the mathematical theory,

which as he pointed out, applied only to a perfect gas. In fact a

number of important conclusions emerged from the experiments. Pipes of

three different diameters were used; the gas conduit of Ivry with a

diameter of 0.108 metres, a conduit presumably for water, with a

diameter of 0.30 metres, and the St Michel sewer, whose diameter was

1.10 metres. Regnault first of all found the distance, in each of the

tubes, over which it was possible to detect a sound produced by the

same source, a pistol charged with 1 gram of powder. He sealed up the

distant extremity of each tube with pieces of sheet iron, and detected

with a membrane, the return of the wave after a number of reflections

up and down the pipe. He found that a wave produced by 1 gram of

powder impressed its last mark on the membrane when it had run;
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4056 metres in the 0

11430 metres in the 0

19851 metres in the 1 .100 m. conduit.
87

Beginning with the smallest pipe, Regnault found that the speed of

the wave diminished steadily as it was timed over a longer and longer

distance. For example over 566.74 metres it was 330.99 iris, falling to

327.52 m/s over a distance of 2,833.70 metres, and the same was true

with the larger pipes but to a lesser extent. A greater charge of

powder produced a wave which, over the initial stages at least,

travelled faster than that produced by a smaller charge. Thus Regnault

could conclude firstly, that the walls of the pipe exerted an influence

on the wave inside it, which slowed down due to the friction with the

wall, and secondly, that a strong wave (what would now be called a

shock wave) has a higher velocity of propagation, at least in the first

part of its passage. The mean value of propagation, taken in the

largest diameter tube, gave a value of 330.6 m/s which agreed well with

that which Le Roux of the Conservatoire had obtained in the previous

year with a much smaller pipe.

But Regnault had not yet exhausted the possibilities of the

underground conduits of Paris. Using the pipe of 0.108 metres diameter

he filled its length (around 600 metres) with, successively, hydrogen,

carbon dioxide, and the gas used for lighting (town gas). In a second

series of experiments he used another pipe of the same section but only

about 70 metres in length, which was in the College de France, filling

this pipe with, in turn, hydrogen, carbon dioxide, ammonia, and nitrous

oxide. He determined the velocity of sound through these different

gases in order to verify another theoretical formula relating to

perfect gases; that the velocity of sound in a gas is inversely propor-

tional to the square root of its density.

Regnault was justifiably pleased with the agreement between the
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velocities and the values of the density. The coincidence he said was;

'Quite remarkable; the difference would have been smaller

if it had been possible to operate with very pure gases,

but this is difficult with conduits of such large capacity' 
88

This series of experiments still remain today the model of

experimental technique for the velocity of sound. It is very much in

the tradition of Regnault's work on the specific heat capacity of

materials; precise, painstaking and rigorous, but firmly grounded on

earlier established theory. In fact Regnault claimed that his princi-

pal interest in taking up the study, was because of its relation to the

mechanical theory of heat. Although he believed he would be able to

derive some important consequences for the theory from this work, he

had no space to develop the ideas in his memoir, and does not seem to

have came back to it later.
89

Regnault was assisted by Mascart from 1868,who succeeded to his

chair when Regnault retired in 1872. Mascart's research has already

been referred to and will be examined again in the chapter on the Third

Republic. Towards the end of the century The Collage was to become much

more important in the formation of new research workers in physics as

the reforms of the Ecole Pratique des hautes etudes, allowed more young

normaliens to take up positions of agreg4a-preParateurs and do reseach

for their doctorate.

In relation to the research work of the other chairholder of the

Collage, Biot, we can say that it was virtually at an end by the

beginning of our period. Biot had had an enormously productive

research career, which it is not possible to give justice to in a few

lines. As a prot4 of Laplace in the First Empire he had been a

partisan of the emission theory of light and had later adopted an

agnostic position in relation to the wave theory. In 1820 he experi-

mentally determined (with his assistant at the Collage, F.Savart) the
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factors affecting the magnetic field around a current carrying con-

ductor. His later work investigated the ability of certain organic

solutions to rotate the plane of polarised light, and in this he

became the mentor of Pasteur. Nearly eighty years of age by 1850 he

intervened in discussions in the Academy on the work of other scien-

tists and served on Academy commissions to advise the government on

scientific matters, as in the discussion over the establishment of

meteorological stations in Algeria . Biot's successor, J. Bertrand

(1822-1900) gained a reputation during hs lifetime as a teacher and a

writer of textbooks on electromagnetism, thermodynamics and mathematics

which were published later in the century.

The Musgum d'Histoire Naturelle was, in the early part of the

nineteenth century, the 'internationally recognised centre for research

in natural history'.
90
 In 1832 it had thirteen Chairs, including one

in general chemistry, one in applied chemistry and one in mineralogy,

and in 1838 another chair was added, that of physics applied to the

natural sciences. This chair was held by A. C. Becquerel (1788-1878),

and remained in the Becquerel family throughout the period of this

study. A.C. Becquerel had received his scientific training in the Ecole

Polytechnique, had been elected to the physics section of the Academy

in 1829, and by mid-century had published close to one hundred research

papers. The founding of the chair was part of a process in the period

1837-38, in which five new chairs were founded, each in an experimental

field rather than in descriptive natural history.
91

A brief examination of two reports which Becquerel made to the

Academy in 1851 and 1860 will give some impression of the particular

type of research he carried out for the Museum. Not unnaturally he was

interested in meteorology and the phenomena associated with atmospheric

electricity, because of their influence on the growing conditions of

plants, and he developed instruments for measuring atmospheric
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variables. Becquerel's 1851 paper classified by the editors as electro-

physiologie described experiments employing a very sensitive current

measuring device, which he had constructed himself and which he called

an electro-magnetic balance, to measure the current flowing between two

platinum needles inserted in the root, tuber and fruit tissue of

various plants. Such experiments had considerable interest at the time

because they seemed to point the way to clarifying the mysteries of

life and growth, linking electrical activity to living processes.

Becquerel would have none of this, making the point that;

'..;the electrical effects appear to be due, at least in the

majority of cases, to simple chemical reactions'. 92

The chemical reactions take place between the different fluids

which are to be found in the tissues and the alterations they undergo

when coming into contact with the air or with the platinum needle, and

this 'is the principal cause for the liberation of electricity'.
93

His paper of 1860, classified as physique vegetale, examined the

temperature inside the trunk of a thick pine tree compared to the

outside temperature. The experimental work had been done by others and

Becquerel worked on the published results. The fact that the tempera-

ture in the pine x lagged behind the outside temperature was not simply a

question of the thermal conductivity of the wood, argued Becquerel,

because a dead pine gave a lower mean temperature than a living one. It

could be explained by the roots drawing up water from the subsoil where

the mean temperature is higher than the air in winter, and because of

chemical processes going on in vegetable tissues.
94

Becquerel's research for the Museum must be viewed in the context

of the attempts to raise the status of botany, seen as a low status

science with a basis in classification and description, to one which

was dedicated to experiment.
95
 Thus the work of the physics chair-

holder at the Museum was peripheral to the central preoccupations of
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the other academic physicists of the capital. The Museum, offering no

degrees, giving lectures to a lay public and therefore having no

regular student body, never imprinted any particular traits on a later

generation of research workers. It will figure again in this study at

the end of the century when Henri Becquerel (1852-1908) using the

mineral collection of the Museum with which he had been working on the

study of phosphorescence, made the Chance discovery of radioactivity.

g.The institutions of the Ministry of Commerce.

There is no doubt that the need was felt in France to try to

bridge the gap between theory and practice, to allow the intelligent

artisan the qpportunity to learn, without the pressure of examinations

or high tutition costs. An institution, under the control of the

Ministry of Commerce, the Conservatoire National des Arts et Metiers,

which had begun life as a museum of industrial techniques was

reorganised in 1817 to provide a type of technical instruction. In 1831

a chair in 'Physics applied to the crafts' was established with C.S.M

Pcuillet (1790-1868) as professor. When he was di g: missed on refusing

to take the oath of allegiance to Napoleon III, his place was taken by

A.E. Becquerel (1820-1891), the son of the Museum professor, who held

the position until the 1880's. Examination of the lectures on

electricity given by Becquerel during the Second Empire,
96
 shows that

he gave his students a grounding in static electricity, different types

of voltaic cell, quantity of, and tension of electricity, and instrum-

ents to measure these quantities, resistance of conductors and the

effect on intensity, and the chemical effect of a current. As the

lectures were related to industry (arts et metiers) Becquerel spent a

lot of time on electro-plating and on galvanoplastie, a process in

which metal was deposited on a non-metallic base. It is interesting

that he compared the cost of obtaining heat from decomposing zinc in a

voltaic pile,and burning coal, finding the zinc about 150 times more
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expensive. This is an example of the general interest at the time, of

energy conversion processes, as well as a preoccupation with economy.

The classes were non-mathematical, but did touch on theoretical pro-

blems; electricity was referred to in Amperean terms as a fluid, and

water was said to be decomposed by passing electricity through it,

into;

two molecules of hydrogen which in the negative pole,

and one molecule of oxygen which goes to the positive

pole.

At this time Edmond Becquerel was working on the mechanism of

cells and their electrolytes, and the results of his research frequent-

ly appeared in the Comptes rendus. One piece of research published in

1855, showed that it was possible to obtain a 'voltaic couple' from a

cell using electrodes of the same material, provided that they were

in motion relative to the electrolyte, (or what amounts to the same

thing)/ the electrolyte in motion relative to the electrades. 98 A

metallic cylinder, functioning as the negative electrode, augmented the

value of the current when it was set rotating about its axis.

Becquerel did not think that he had produced a practical cell in this

way, he merely used it as an illustration to show that it was necessary

to invoke other principles than those usually employed, when describing

the mechanism of the cell.

In another paper the following year, Becquerel went on to make a

study of 'polarisation' i the build up of a gaseous layer at one of the

electrodes, which reduces the ability of the cell to supply a cur-

rent.
99
 As a part of this research, Becquerel set out to measure

accurately the electromotive force of the cell. The method which he

used for this, involved using what we would now call a current balance.

This device, the electro-magnetic balance invented by his Lather,

depended upon the magnetic effect of the current, and allowed the
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current to be measured in units of gravitational force, weight. Thus

it shows that the terminology of electricity was still far from stan-

dardised, for as we have already examined with the work of Regnauld,

electromotive forces can only be measured when no current is being

drawn from the cell, a condition satisfied by Regnauld's 'null-

deflection' method, but not by Becquerel's. Certainly, as Becquerel

pointed out, his method is very precise over a wide range; it 'can

compare directly the action exerted by a thermopile, and that produced

o*
by a Bunsen battery with 50 to 60 elements'.	 But nonethless, it is a

sensitive current measuring device, not an instrument tonmsure E.M.F.

Edmond Becquerel continued to be the foremost research worker in

the more theoretical, less applied aspects of electricity. For

example, in 1853 he examined the conducting properties of different

gases in conditions of high temperature and reduced pressure.
101 At low

temperatures he found that;

'there was no appreciable difference between a

rarified gas and one at ordinary pressure; neither

one nor the other, conduct electric currents'.
102

At high temperature, however, the low pressure gas always

conducted better. Becquerel considered that his results were very

strange, considered in the terms of contemporary molecular physics. He

wondered how it was, that even though electricity was regarded as

being conducted by material particles, the conductivity of the hot gas

attained its maximum values at the lowest pressures which the vacuum

pumps of the time could achieve. The possibility that charge carriers

were being emitted from the red hot electrodes did not occur to him at

this stage. Six years later, however, in another paper on conduction

through gases, using much higher voltages, he posed the question that

perhaps the electricity was being transmitted by particles which

detached themselves from the electrodes.
103 But he seems to have given
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his later research.

Edmond Becquerel's preparateur at the Conservatoire , R.L.G.

Plante (1834-1889) who was working on the action of depolarising agents

in cells, published a number of papers on this subject, and in 1860

presented to the Academy, a cell which had the characteristics of what

was later, with the advent of practical generators, to become the

rechargeable accumulator. At this time, however,the principal

importance of Plante's cell, was its very low internal resistance.

One can see at the Conservatoire that there is a link between

some of the research carried out there by Becquerel, and the objectives

of the course being taught. Electricity was being used in industry in

the main for electroplating, and the efficiency of cells and the cost

of the electrical power derived from them was of the outmost interest

to the artisans and small workshop owners who would be attending the

Conservatoire lectures.

The Conservatoire was the only institution in Paris in which

research into the mechanical equivalent of heat was being carried out.

Perhaps it is not surprising that interest was more marked here than

elsewhere, because the Conservatoire had something of a tradition in

this area, with its association with Nicholas Clement (d. 1841) and

through him, with Sadi Carnot (1796-1832). 104 The work was carried out

by two members of staff, C. Laboulaye (1813-1886) editor of the Annales 

of the Conservatoire, and H. Tresca (1814-1885), who held the mechanics

chair there and was later to become a member of the mechanics section

of the Academy in 1872. Their work, which they reported to the Academy

in 1863, 105
 

and which was reviewed in another longer memoir by the Aca-

demician and director of the Conservatoire, A.J.Morin (1795- 1880), 106
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seems to be very much in the style of French physics of the period;

thorough, precise, painstaking, tut theoretically unadventurous. It has

its counterpart in the laboratory determinations of specific heat by

Regnault or the optical work of Fizeau and Foucault.

The two research workers, obviously with considerable funds to

support their efforts, used a much bigger version of the apparatus

first used by Clement and Desormes in their unsuccessful attempt to win

the Academy's 1812 competition on the determination of the specific

heat of gases. Such apparatus, later in the hands of Gay-Lussac and

Welter, was used to determine the ratio of the specific heats of a gas;

C /C . The vessel used by Clement and Desormes in 1812 had a capacityp v

of ten litres, while the one used by the Conservatoire team was no less

than 3,000 litres, but apart from this, and the fact that the pressure

was recorded automatically on smoked glass, the two experiments were

the same. Air was first compressed in the containing vessel and left to

take up the temperature of the surroundings. Then, some of the air was

allowed to escape through a tap; the tap was then closed and the air

was left to again return to ambient temperature. Three pressures were

taken; Po at the start of the experiment, P1 at the end of the

expansion (while the tap was open), and finally P2 , when the gas had

come back to rcom temperature.

The mechanical equivalent of heat was then calculated in the same

way as in Meyer's original experiment. After a large number of trials,

repeating the same operation each time with the gas escaping for

intervals of between three and five seconds, pressure finally fell to

atmospheric. A mean of all their results, still however, only gave

approximate agreement with the value of Joule. Laboulaye and Tresca

quoted a value of 433 kilogrametres per calorie as against Joule's

value of 425. The reason for this 2% error, in the view of the two

experimenters, must lie in the imprecision of the constants used. There
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is no mention of the fact that some internal work is done in expansion,

work against the internal attractive forces of the molecules, as Joule

and Thomson had demonstrated.

It might be argued that as this research was done by a professor

of mechanics, while the physics professor of the same institution, A.E.

Becquerel never showed any interest in it, that it was not even

considered at the time, to be physics research. This seems to be

confirmed by the fact that the few people around France who worked in

this area, were engineers, like Ferdinand Reech of the Naval school o-r

the Alsatian, Gustave Him , mathematicians like A.Dupr4 of the Faculty

of Rennes, or chemists like P.A. Favre of the Marseille Faculty. But

on the other hand it was Verdet, the physics professor who translated

the foreign papers on the dynamic theory of heat for the Annales de

chimie et de physique and incorporated these new ideas into his physics

lectures at the Faculty. Moreover, Favre put himself forward, albeit

unsuccessfully, for a vacant place in the physics section in 1868,

presenting his work as falling within the domain of physics. 107 Lastly

it must be said that papers to the Comptes rendus, were classified as

'physique' until the more specific title 'thermodynamique' began to

appear in the late 1860's.

The other institution in Paris under the responsability of the

Ministry of Commerce, which it acquired in 1857, was the Ecole Centrale 

des Arts et Manufactures. This school, set up as a private venture in

1829, sought to give its students a solid basis of theoretical science

and its application to industry. The school's curriculum integrated

theory and practice; twelve hours a week were spent in lectures and the

rest of the time in the laboratory, making engineering drawings, dis-

cussing with the professors and laboratory staff and studying indivi-

dually. The course was a three year one, and both physique gengrale 

and physique industrielle were taught. The school's aim was to train
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directors of workshops and industries, civil and construction engin-

eers, not scientists. Hence the course of study of the first year

gave the students a theoretical knowledge of the four sciences the

founder of the school, Theodore Olivier, thought important (geometry,

mechanics, physics and chemistrO l but with the theory taught with

regard to its industrial applications. 108 It has been argued, however,

that as the school directed itself towards the sons of the most

affluent families, it tended to stress those elements of the curriculum

which in France were closely linked to social status; i.e. mathe-
.109matics.	 As a result of this, the curriculum began to resemble that

of the Ecole Polytechnique so closely that an applicant needed two

years of extra study after the lycee in order to pass the entrance

exam. The quality of its graduates was very high, many of them winning

design awards in International exhibitions. In 1868, the Centralien, G.

Leclanche working as an engineer for the Eastern railway produced his

two liquid cell which used manganese dioxide as a depolarising agent,

and became the standard cell in several national telegraph systems.

Later examples of its graduates were Gustave Eiffel and Louis Bleriot.

J.C.E. gclet (1793-1857), one of the founders of the school, held

both physics chairs at first but relinquished the general physics one

in 1836, continuing to teach industrial physics until his death in

1857. Regnault held the general physics chair for two years from 1839

tO 1841, but when our period opens the incumbent was A. Masson (1806-

1860). Masson was a normalien, who completed his physics thesis for the

doctorate, then went to work as an assistant professor of physics in a

lyc‘e. in Caen, returning to Paris to complete his chemistry thesis

under Dumas at the Ecole Centrale. After Masson's death in 1860, the

chair passed to the centralien, M. Daniel who held it until 1881.

Masson's research work ranged over a number of topics, but about

half of his 30 contributions to the Comptes rendus related to electric
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light, heating effect of a current, electrical induction, and electri-

cal photometry. He carried out a series of experiments between 1850 and

1855, observing the spectra of iron, copper, tin, lead, antimony, bis-

muth, zinc, cadmium and carbon, and showing that some lines were common

to several metals. The results were published in the Annales de chimie

et de physique, and included drawings of the spectra obtained. Using

the metals under test as the electrodes of a spark gap, Masson did not

realise that the spectra obtained were the result of the combination of

the spectra of the metal and the gas through which the spark passed.

This was subsequently pointed out by Angstrom.
110

 It would appear that

the scientific community did not judge Masson's research to be of the

highest importance; his two attempts to gain election to the physics

section of the Academy failed in 1851 and 1859.

Masson's successor, Daniel, did not produce much research, but

there is a paper of his in the Comptes rendus of 1870, which continued

a line of research of Masson. Masson had discharged a Ruhmkorff coil;

(an induction coil producing a unidirectional voltage) through a gas at

very low pressure in a glass tube,(called, after its original con-

structor, a Geissler tube). Daniel sent two separate currents through

the Geissler tube ; first in the same direction, then in opposite

directions and finally at right angles to each other, and observing the

effect which an externally applied magnetic field had on the luminous

columns of gas.
111 Daniel observed that when the currents were going in

opposite directions,the magnet attracted one and repelled the other,

and if they passed in the same sense the effect of the magnet on them,

was the same. It was not a question of the magnetic or diamagnetic

properties of the gas in the tube because oxygen and hydrogen responed

in exactly the same way. There seems to be an observational error on

Daniel's part because the magnets would have deflected the luminous

columns in different senses, but would not have attracted or repelled



84

them. But the Ecole Centrale did not give much importance to research

in 'pure' physics, and Daniel does not appear to have continued with

this work.

h.The Paris Observatory and the Association Scientifique de France.

The Paris Observatory had never solely occupied itself with

routine positional astronomy, and its premises were always used for

research in the days when Arago was director. This tradition was to

continue under Leverrier. In 1854 E. Liais (1826-1900) was recruited

specifically to carry on the collection of geomagnetic data, and he

designed three continuously recording instruments which used an optical

system in which a light mirror carried on a compass needle or magnetic

balance lever, deflected a spot of light across a photographic

plate.112 Liais left in 1858 to become director of the Observatory of

Rio-de-Janeiro, and his place was taken first by Desains and then by

Marie-Davy. Three years earlier, in the decree of February 1855, the

Imperial regime established the post of physicien with a very specific

job description. The tasks of the physicist would be to supervise the

construction of large lenses, supervise the telegraph apparatus,

develop photographic methods for the observation of the sun and the

stars, develop remotely and automatically operated instruments, measure

the velocity of light, demonstrate the rotation of the earth, and

develop ultra sensitive apparatus for the measuring of force.
113

 As

this list of tasks reads like the curriculum vitae of J.B.L. Foucault

(1820-1868), it comes as no surprise that the decree ends with the

recommendation to the Emperor that Foucault should be appointed to the

post.

Considering the work which Foucault had already accomplished, the

contribution which he made to the Observatory was disappointingly
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small, and to Leverrier, annoyingly so. He did, however, improve his

rotating mirror apparatus so that its angular velocity could be held at

a known constant value, and used it in 18E2 to determine the velocity

of light avoiding the very long path lengths which Fizeau had been

obliged to use. 114 Foucault obtained a rather lower value than Fizeau

had done, but with a higher accuracy and his figure was used by

astronomers to revise the value of the solar distance, diminishing it

by some four million miles.

Other research, which might be described as lying on the

inter-face between physics and astronomy also went on in the

Observatory. The work of C.J.A. Wolf (1827-1918) and G.A.P. Rayet

(1839-1906) on the spectral analysis of starlight is in this category.

Observing a newly discovered star in 1866 through a direct viewing

spectroscope attached to the eyepiece of the telescope, they observed;

'..a complete and very pale spectrum , on which a number of

brilliant lines stood out'. 115

The observed spectrum was seen to have its brightest band in the

yellow/green region, but there were also less bright bands present and

Wolf and Rayet concluded that the star owed its brightness to the

incandescent vapours surrounding it. This type of star, of which some

300 have been observed to the present time, has a temperature of 80,000

K and its spectra is due mainly to hydrogen and helium. They are still

known today as Wolf-Rayet stars.

The Observatory will not be considered in later chapters because

under Admiral Mouchez, Leverrier's successor in 1878, no research which

could be described as physics went on there.

Apart from his role as director of the Paris Observatory,

Leverrier was president of the Association Scientifique de France .

From the foundation of the Association in 1864, to Leverrier's dis-

missal from the Observatory in January 1870, the Association could call
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upon the material, the personnel, and the premises of the Observatory.

Indeed, one of the criticisms made of Leverrier was that too much of

the Observatory's budget was going to sustain the Association. At its

first annual general meeting held in April 1865 it could already claim

a membership of 3,500 people.

The aim of the Association was to encourage what it called the

physical sciences, although its major preoccupations would have come

under the Academy classification of mathematical sciences,i.e. physics,

astronomy and meteorology. From 1867 it extended its field of interest

to encompass all pure and applied science, and anybody who agreed to

pay the modest subscription of 10 francs annually, was entitled to

join. Considerable emphasis was placed on the benefits it would bring

to the development of science in the provinces, although it must be

said that 80% of its founding membership came from the Paris region.

Foreign scientists were also welcome to join.

The organising and ruling body of the Association was the conseil,

made up of sixty members, of which, one third was renewed each year.

The day to day administration was in the hands of the eleven man

bureau, whose president was Urbain Leverrier, while the vice-president

was Belgrand, a chief engineer in the corps of Pont et Chaussees. The

bureau also contained a distinguished mathematician, Serret, another

member of the Paris Observatory, Gaillot,the secretary of the French

meteorological society, Renou, and Barral the director of the Journal 

d'agriculturepriatique. There were five non-scientists on the bureau,

bankers, senators and deputies of the National Assembly. Of the six

scientists, four at least were products of the Polytechnique, and only

one, Serret, came from the Normale. Normaliens were better represented

in the first elected conseil, for there were several professors from

provincial faculties, Abria of Bordeaux, Lereboullet of Strasbourg,

Morren of Marseille as well as other Parisian savants like Marik:-Davy
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and Wolf, meteorologist and astronomer respectively at the Paris

Observatory, and Puiseux, mathematics professor at the Paris Faculty.

Leon Foucault also served on the conseil, as did three	 members of

the Academy, including its permanent secretary/ Elie d6 Beaumont.

There was also a number of high ranking military and civilian state

employees, the director of the state telegraph administration/ as well

as a representitive of the Education Ministry. Clearly the Association 

found favour at the highest levels of both the academic establishment

and the state.

In March 1865, the publication began, of a small bulletin entitled

the Bulletin de L'Association scientifique de France which carried

scientific news and reports of the monthly meetings. It is this Bulle-

tin which has been the major source of information about the work and

membership of the Association. The Association planned to distribute

21,000 francs each year, divided equally between meteorology, astronomy

and physics, the money caning from its annual subscription income of

around 35,000 francs.
116

 In fact, in its first year it did not distri-

bute the full amount but kept back 7,000 francs towards the cost of the

construction of a large astronomical instrument to be set up in a

provincial town. For meteorology, a large sum was put aside for a prize

competition calling for an explanation of the mechanism of the general

movement of the atmosphere, and various smaller sums were distributed

to sea captains, both French and foreign ,for their observation of

weather at sea. Admiral E.B. Mouchez (1821-1892), who had been a colla-

borator in meteorological work with the English Admiral, Fitzroy in the

early years of the decade before being sent on a hydrographic surveying

voyage to the coast of Brazil, won the Association's gold medal and 300

francs for his weather observations. Mouchez was to succeed Leverrier

as director of the Paris Observatory after the latter's death in 1877.
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The Versailles lycee teacher, A. Cazin (1832-1877), was one of the

first to benefit from the fund, receiving 1,000 francs (a not

inconsiderable sum campared to the lycee teacher's salary of around

4,000 fr), to help in his work on the properties of vapours. Some of

his research will be examined later. D. Gernez (1834-1910), at this

time a preparateur at the Normale received 300 francs for a

spectroscope and 200 francs for a collection of prisms and crystals, 117

setting him along the road of a successful teaching and research career

which, passing through stages which took him to positions in the Paris

Observatory, prestigious Paris lycees, a chair at the Ecole Centrale,

A
and maitre de conference at the Normale , culminated in his succeeding

to Pierre Curie's place in the Academy in the twentieth century. Most

of his research was in the area of optics. Another very successful

physicist of the later nineteenth century, Mascart (whose doctoral

iwork we have already considered), at this time working in a lycee in

Metz, also benefitted from the Association, receiving 500 francs,which

allowed him to buy a spectroscope, some prisms and lenses made of

Iceland spar, and a diffraction grating with 600 lines per mm. Among

others researchers who benefitted from the generosity of the

Association were Terquem of the faculty of Lille, and the poverty

stricken electrical researcher, Gaugain.

Later in 1865, meetings were held in Marseille and Strasbourg, as

well as in the Paris Observatory. In that year there were reports from

the recipients of funds from the Association, Terquem and Cazin, on the

work they were doing. There was a also a report of some important

foreign research, the spectral analysis of the sun which Bunsen and

Kirchhoff had just completed 118 , and a report by Pasteur on the

deposits which form in wine.119 Important technological advances like

the laying of the trans-Atlantic telegraph cable, or the one from

Sicily to Algeria, also found a place in the meetings. In the follow,-
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ing year, 1866, the Association developed rapidly. Its regular monthly

meetings were now held in a bigger auditorium in the Conservatoire des

Arts et Metiers, while in the provinces, meetings were held in Metz,

Bordeaux and Marseille, While Elbeuf, Mulhouse and Cherbourg announced

their intention to organise meetings at a later date.
120

 Cazin con-

tinued to be the most active reporter to the Paris meetings, and he and

Terquem continued to receive financial support. Cazin also reported on

the joint research on superheated steam which he undertook with the

Alsatian engineer, Gustave Him. In 1867 two more physics teachers,

Bertin who we have already encountered as the teacher of physics at the

Normale, and A.P.P. Crova of the faculty of Montpellier, together with

three others, also benefitted from its research grants. Its major prize

competition in meteorology 'on the general movement of the atmosphere'

attracted nine entries but none was deemed to have sufficient merit to

earn the prize.
121

 In the middle of 1867 it was decided to publish the

bulletin with at least eight pages every week, and the following year

it was appearing regularly each week with sixteen pages. But now the

publishing capacity of the Association exceeded the scientific material

it was generating, and in spite of reports from recipients of grants,

meteorological reports from the Paris Observatory, and numerous reports

of the sighting of new minor planets, much of the bulletin material

consisted of extracts and summaries from other scientific journals.

The number of articles devoted to medical, agricultural, geological and

natural history topics increased Easter than those devoted to physics.

The funds distributed to physics projects were still, however, quite

generous; J.B. Bailie (b.1841) of the Polytechnique received 500 francs

to aid his proposed work on induction currents, and J.F.L.St. Loup

(b.1831) of Strasbourg, 500 francs for his magnetic research. 122 The

principal beneficiary of the Assoociation continued to be Cain, who in

this year was awarded 1200 francs to assist his work on the compression



90

and expansion of vapours. 123

The Association appeared, at least from the bulletin, to continue

in good health in 1869, although as it did not publish either infor-

mation about its membership, or a detailed breakdown of its finances,

it is difficult to measure its real development. Physicists like

Bertin and Terquem, who had benefitted from its generosity, continued

to play an active part in its affairs. These two, and J.A. Lissajous

were elected to the directing council in 1869. The sixteen page

bulletin continuing to appear each week, published very little original

work in physics now. There was a report of the work of L.P. Cailletet

(1832-1913) on the campressibilty of gases at high temperatures,124

and a summary of the contribution of the Peslin to the debate on the

laws of the general movement of the atmosphere. 125

But whatever the state of the Association in 1869, it is certainly

true to say that criticism of its president, Leverrier and his adminis-

tration of the Paris Observatory, was growing and the Association was

involved in this criticism. The astronomer Charles Delaunay (1816-

1872), went so far as to accuse Leverrier of neglecting observational

astronomy, and of only spending 10% of the Observatory's budget on

astronomy, while squandering the rest on his 'parasite' organisations,

the meteorological service and the Association Scientifique. 126 After

the mass resignation of Observatory staff in December 1869, and an

attack in the Senate on the Minister of Educationby Leverrier, the

ministry had no other alternative but to remove Leverrier from office.

Early in 1870 he was replaced as director by his arch-enemy, Delaunay,

and although the meteorological service continued to function from the

Observatory, the administration and finances of the Association were

removed.

Although the Association continued to function after the Franco-

Prussian, war we will not trace its fortunes in the Third Republic. The



91

roots of the organisation were in the Second Empire, its leaders

Catholic and politically conservative, and it would make little more

contribution to the development of science in France. Besides, there

would be other organisations like the Association Francaise pour 

l'avancement des sciences and the Socigt4 . de physique which would play

a much more important role.

i.Conclusions on physics research in the Second Empire. 

Can it be argued that the different institutions were teaching,

and its staff pursuing research in, different types and styles of

physics, in the period of the Second Empire ? There can be little

doubt that the vocational objectives of the institution played some

role here. For example the Polytechnique communicated abstruse truths

to engineers who acquired authority by their facility in handling them,

and much of the research carried out by its staff continued along the

well-trodden path of research based on well established theoretical

foundations, more often than not,in optics. The Ecole Normale,

conscious of its duty to produce good science teachers, stressed the

ability to explain and to make clear to students Iby the facile use of

apparatus, effects which otherwise would remain complicated and

obscure. Of the faculties of science both in the capital and in the

provinces,in this period, little can be said; the level of science was

low, and outside Paris, the number of serious students few. As for the

institutions of the Ministry of Commerce, it was their function to

communicate the industrial applications of physics, not to train a new

generation of research workers, but one can see in the work of A.E.

Becquerel at the Conservatoire, a concern with the efficient

application of electricity to industrial processes.

For those who went on to do research, and these were usually the

graduates of the Normale or Polytechnique, there were potent factors
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inhibiting them from straying too Ear from the well trodden path of

non-controversial physics. Wanting to attract the attention of some

established member of the community who could serve as a patron to help

their career advancement ,(although it is probably true to say that the

role of the patron was no longer as important as it was earlier in the

century ), they would tend to adopt lines of research, which were of

interest to their prospective patrons and even a continuation of the

work which they had been doing. And, of course, a considerable body of

published research was required for successful competition in the

contest for the most prestigious posts in the educational system. Such

a competition had become especially fierce, as a larger physics com-

munity competed for a number of top positions which had remained

virtually unchanged over three or four decades.

In the immediately previous period, the third and fourth decades

of the century, many young physicists were set on the way to a success-

ful career by Arago, the director of the Paris Observatory. The best

graduates of the Ecole Polytechnique, were taken into the Observatory

as pupil astronomers, but others like Jamin, Foucault, Fizeau, and

Edmond Becquerel were helped with Ideas, equipment, and the use of the

Observatory as a laboratory. Their choice of research project, there-

fore naturally tended to reflect the interests of Arago himself. This

tended to mean that those people reaching the top positions, and being

elected to the physics section of the Academy in the Second Empire, had

specialised in the gptical tradition of Arago and the Paris Observa-

tory. Such people as Fizeau, Jamin, and (at least in the Second

Empire) the astronomer Leverrier, ensured as patrons that this optical

tradition would continue. Leverrier, as president of the Association 

Scientifique de France and as director of the Paris Observatory, could

distribute funds and make the Observatory available for research

purposes to those who lacked facilities. Thus young research workers
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like, Mascart, Cazin, Gaugain, and Gernez, received funds, as did the

rather older Him. More posts in the Observatory, in geomagnetism,

meteorology and physical astronomy were founded. Fizeau, too, was to

provide apparatus to the next generation of research workers,

providing the toothed wheel apparatus on which Cornu was to build his

career, thus assuring the continuity of interest in optical research.

It might also be said that the particular political traits of the

Second Empire had some effects on the sciences practiced in its in-

stitutions. It has been argued that the early authoritarianism of the

Second Empire and its close association with the Catholic Church

(modified, certainly in its later, more liberal phase) gave it a

definite aversion to scientific ideas which could open the doors to a

godless materialism which in turn could be subversive of public

order.
12to

 Although this argument refers to the Pasteur-Pouchet debate

over the question of spontaneous generation and is therefore within the

realm of biology, the argument can perhaps be extended to physics as

well. Achille Cazin, writing the preface to his succesful popular

treatise on heat, La Chaleur in 1866, is at pains to point out that the

study of the mechanical theory of heat does not lead to materialism.

e
Quoting frcm his collaborator and fellow protege of Leverrier, Gustave

Him, he says;

'One of our most distinguished savants, Gustave Hirn

has even demonstrated in his Exposition de la theOrie

mecanique de la chaleur, that the experimental principles

on which it is based, have as a rational consequence,

neither materialism nor pantheism, but the purest religious

feeling (spiritualisme). 121

Why the mechanical theory of heat could lead to materialism is not

explained by Cazin, but it could have been related to the use of the
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model of randomly moving atoms, a model used by the Greek philosopher

Lucretius and some of his predecessors which had been widely discussed

and often vilified since the mid-seventeenth century, as being

atheistic in all but name.

An example of an accusation of atheism in science came in the

journal Revue Europ4ene of 1860, where Alfred Sudre had attacked

Pouchet as being the unwitting promoter of atheism, and had attacked

scientists in general on the grounds that ;

'..nearly always their observations and experiments are guided

by preconceived opinions, systems or philosphical

tendencies'. 12S

Thus scientists of the Second Empire felt the need to defend

themselves against such accusations of godlessness by insisting that

their scientific work was independent of, and separate from their

beliefs. The astronomer Faye, presenting to the Academy the book of

Gustave Him on the mechanical theory of heat in 1868, stressed that

scientists;

'..left ffetaphysics outside the door of the laboratory

12.1when they experimented.'

Pasteur, even though defending the conventional Catholic position

on the origin of life, also was at pains to stress that his experiments

on spontaneous generation, were executed without any preconcieved

notion as to their outcome.

This very defensiveness shows that there were some areas of

research in which the savant might feel uncomfortable, and an able and

ambitious young physicist, seeking to make his career in a centralised

educational system controlled by the state, clearly took this into

account in his choice of research topics. Wb have already noted that

thermodynamics was a neglected area in France inspite of Verdet's

attempts to educate the scientific community with his continuous stream
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of translations on the subject which appeared in the Annales de chimie

et de physique. Electricity and above all qptics remained the surest

path to success in physics research.

It might also be said that the Second Empire saw the growth of

positivistic tendencies in French science which affected physics. By

positivism is meant (put very briefly) the rejection of metaphysics,

the eschewing of speculation about underlying causes or mechanisms, and

the limiting of scientific activity to the establishment of mathe-

matical relations between phenomena. Positivism also contended that

science was the ideal form of knowledge, and this strand of positivism

later grew stronger in the secular, anti-clerical Third Republic.

But in the Second Empire, the scientific community still needed to

present itself to society as a group which dealt with problems dif-

ferent from those which were rightly the preserve of the church or the

state. It also wanted to demonstrate that it dealt with these problems

with techniques and methods which were specific to the scientist and

hard won through study and practice. Its methods were first and fore-

most experimental ones as it wrested information from nature in the

laboratory, but also mathematical in its treatment of experimental

data, seeking to find mathematical relations between phenomena. The

scientist claimed to separate values and beliefs, and by eschewing

metaphysics, delineating his area of activity, he sought to avoid

clashes with the church and state. By emphasing the primacy of his

methodology he ensured that those not trained in scientific methods of

measurement, experiment and mathematical analysis, were effectively

excluded from membership of the scientific community.

Notes overleaf.
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3.DEFEAT AND REVOLUTION 1870-1871 

The period from the end of September 1870 to the end of January

1871, a period of extreme hardship, hunger, and cold for the people of

Paris, did not bring an end to physics research in the capital or the

provinces. Naturally in Paris, scientific attention was mainly direc-

ted towards finding the means to overcome the siege of the Prussians,

but the Academy of Sciences continued to hold its weekly meetings and

publications like the Annales de chimie et de physique continued to

appear. The role of science in the defence of Paris has already been

well chronicled and very little of originality can be added here.1

Sub-committees of the Academy vetted the flood of ideas, most of

them impractical, Which the people of Paris contributed for the defence

of the city. Some physicists turned away from their long term research

projects and tackled problems which could bring immediate benefit to

the war effort. Desains and his assistant Bourbouze, worked to esta-

blish communication with the outside world using the Seine as a con-

ductor. The lyc‘e teacher D'Almeida (1822-1880) escaped from the

capital in a balloon, as did the physical astronomer, Janssen. Charles

Delaunay, Leverrier's successor at the Paris Observatory, continued .

with a reduced staff to maintain the work there, although Marie-Davy,

the head of the meteorological service, left Paris with the government

which established itself first at Tours and then in Bordeaux.

From Bordeaux, Marid-Davy maintained the International Meteor-

ological service, and each day received dispatches from Sweden, Norway,

the Netherlands, Belgium, England, Spain, Portugal, Italy and Austria,

and each day produced a bulletin which contained an isobaric chart on

which a forecast was based. The regularity of this bulletin, in condi-

tions so difficult for France, earned considerable respect abroad.
2

But France was to suffer the humiliation of defeat, the loss of

her most industrialised provinces of Alsace and Lorraine, and the
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loss of one of her most active provincial faculties, Strasbourg. After

defeat came revolution in Paris followed by the sanguinary repression

of the Commune by government forces. The birth and early days of the

Third Republic were far from auspicious.

But before all these events, before the siege and capitulation,

when the news of the French defeat at Sedan arrived in Paris, the

writer and philospher Ernest Renan, dining with a group of friends

which included the chemist Marcelin Berthelot and the novelist Edmond

de Goncourt, expounded in despair, on the reasons for the victory of

Prussia. It was an expression, Renan asserted intemperately, of the

superiority of the Germans whose Protestantism had developed their

mental qualities, over the French 'cretinised' by Catholicism.
3
 Al-

though twenty years later, when part of Goncourt's journal on the

events of 1870 was published, an embarrassed Renan was to declare that'

he had never given voice to a single unpatriotic opinion' 4 , his view

that Germany had won the war through superior organisation based on

superior education, was one which many scientists and academics shared

in France. Perhaps it would be more true to say that, whether they

shared this view or not, they used the supposed fact of the superiority

of German education, particularly at the university level, to press

forward a discussion on questions of greater government support to

science, and on improvements in the quality of scientific and technical

education. It would be wrong of course, to suppose that there had

never been any disquiet expressed before about the state of French

science. Even such a supporter of the Imperial regime as Pasteur, had

made his worries public about the poverty of research facilities, and

some limited reforms like the establishment of the Ecole Rratique des

Hautes Etudes in 1868, had been made.
5
 But now the defeat at the hands

of the Prussians, gave the critics powerful arguments in their campaign

for more fundamental reforms.
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Renan himself was to put forward criticisms more considered than

his original outburst, in a book published in 1871, La Reforme 

intellectuelle et morale de la France.
6
 While making a critical review

of all aspect of French education, his most urgent appeals for reform

related to higher education.

'The special schools set up by the revolution,the puny

faculties created by the Empire in no way replace the

great system of autonomous rival universities; a system

which Paris created in the middle ages and which Europe,

except for France, has kept'
7

.'

France, said Renan, must return to the old system and create five

or six universities, independent of each other other, of Paris, of the

town in which they were established, and of course independent of the

clergy. Schools such as the Ecole Normale or the Ecole Polytechnique,

which creamed off the best students, would have no place, if a good

university system existed, and should be abolished. And to the con-

servatives who were still haunted by the memories of the commune, to

those who feared that university reform would be a dangerously

democratic exercise, Renan addressed himself reassuringly, saying ;

'Young men educated to a sense of their own superiority

will revolt if they count for no more than anyone else.

The universities will therefore be be nurseries of

aristocrats' .
8

He also attacked the whole concept of centralised authority for

public education, as well as reasserting his anti-clericalism by

declaring that 'Catholic nations which do not reform themselves, will

be beaten by Protestant nations'.
9

In these few lines of Renan, Who was to become one of the

ideologues of the Third Republic, one can see some of the determining

features of the state which emerged from the events of 1870-71.The
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Republic not only had to respond to the deep desire for revenge and the

recovery of the lost provinces, but it also had to combat the impla-

cable hostility of the legitimist and clerical opposition, and reform

the educational system both to satisfy its own political allies and to

prepare the conditions for a later struggle against Germany. Shinn has

made the point that the new political elites of the Republic required

political allies, and the pre-1870 power structure was associated with

the grandes Scoles, particularly the Ecole Polytechnique. Thus the call

to strengthen the university system at the expense of the grandes

ecoles, was one which struck a chord as a means of neutralising the old

elites and creating new ones.
10
 Genuinely interested in social reform

and material advancement, successive republican governments developed

primary schools (primary education was free,compulsory and secular by

1882) and the secondary school system, as well as expanding and moder-

nising the faculties. On the other hand, during this period, the Ecole

Polytechnique whose 'courses and their content remained relatively con-

stant from 1830 to 1880'
11

, found it difficult to adapt to new scien-

tific prcgramnes and technologies and came increasingly under attack

frcm teachers in the university sector. And this sector expanded under

reforms made in 1877 and 1885, which doubled the teaching personnel and

awarded scholarships and grants to students. 12

Also in the 1880's and 1890's new technical institutions like the

Ecole Municipale de physique et de chimie industrielle in which Pierre

Curie was to work for twenty years, was set up by the city of Paris in

the old buildings of the College Rollin in 1882, and the Ecole

Superieure d'Electricite' established by the Societe Internationales des

Electriciens in 1894. The first of these institutions was to acquire

a national importance through the work of the Curies on radioactivity,

but in its early days at least it had little social status in the

hierarchy of French educational establishments, by virtue of both the
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type of practical and technological knowledge it disseminated and its

position outside the state system.

The 1870's was also to see the establishment of another sector of

French higher education which came to compete with the state university

system and contribute to the diversity of the picture of science

education in late nineteenth century France. In the bill of December

1874, the minister of Education, Cumont, proposed to allow any social or

religious group with the means to do so (in practice this only meant the

Catholic Church) to set up universities. The Republican opposition

directed its fire on the right of these institutions to award degrees;

they argued that the examinations should be organised by the professors

of the local state faculties. 13 After a compromise in which it was

agreed that the examining bodies would be mixed, i.e. personnel from

both the state and the Catholic universities, the bill became law in

1875. The church quickly set up five universities; in Paris, Lille,

Angers, Lyons, and Toulouse, and although the increasing anti-cleri-

calism of the last years of the decade meant that their right to call

themselves 'universities', was revoked, the Catholic 'Institutes' (as

they became) continued as a competitor of the state system. Probably

the most significant names in physics to be associated with the Catholic

Institutes in the late 19th century are those of Edouard Branly, (1844-

1940) and Emile Amagat (1841-1915), whose work we will examine later.

In those towns where state university and Catholic Institute existed

side by side, it was rare for there to be much contact. It is reported

for example, that Duhem in Lille shocked many people by his organisation

of meetings and discussions between the staff of the two institutions,
14

and many ambitious academics in the state system would not have wanted

to jeopardize their career by publicly fraternising with clerics and lay

catholic teachers. The mutual suspicion between church and state was an

essential feature of the first twenty years of the Republic. Relations
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became better after 1892 when Pope Leo X111 called on French Catholics

to give generous support to the Republican government. This policy of

ralliement, a policy which the devout Duhem found it impossible to

accept,
15
 marked the end of the Church's support for Legitimism, and

permitted her in the following years to establish many religious

schools. One can say that such a policy came in part at least as a

result of the growth of anarchism, which appeared to threaten the

stability of the French State, whose downfall would inevitably also

entrain the destruction of the Church.

Just as the official ideology of the Second Empire was Catholic, so

the Third Republic espoused a philosophy which was militantly anti-

Catholic, or at least anti-clerical. This philosophy which came to be

called 'scientism' was underpinned by the positivist notion that science

constituted the Ideal form of knowledge, that value free scientific

concepts can be applied to all aspects of humanity and society. As one

of the Third Republic's favourite scientists, Berthelot, put it ;

'in modern civilisation every social utility derives from

science because modern science embraces the entire domain

of the human mind: the intellectualll, moral, political,

and artistic domain as well as the practical and

6
industrial'. 1

Thus the Republic saw science as a weapon in its struggle against

the church; ultimately science would explain everything and organise

everything, even as its chief ideologue, Renan was to say 'Science would

organise God. 
,17 

This 'scientism' was an essential part of the

Republic's educational system, and to make a successful university

career a young research worker would have to ensure that his republican

virtues and his republican philosophy were apparent to his superiors and

to the functionaries of the Ministry of Education. This is not to say

that the researchers who made their name during the Third Republic, men
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such as Perrin, Curie, or Langevin, shared its Ideology simply for

careerist motives, for 'scientism' had a powerful and seductively

optimistic message, and it afforded to scientists a position of high

esteem. They were not to know that 'scientism's' essentially

nineteenth-century view of constant progress, of science and technology

overcoming all abscurantist obstacles and leading mankind to a better

and more rational future, would crumbled to dust in the carnage of the

First World War.

Scientists were able to take advantage from the defeat at the hands

of the Prussians by arguing that the French had failed to employ science

either adequately or in time. The first few years of the Third Republic

saw not only government intervention to improve science facilities in

the universities and grandes ecoles, but the process of self organi-

sation of the scientists themselves. In 1872, the Association Francaise 

pour l'avancement des sciences, AFas) modelled on the British Asso-

ciation was set up, and proposed to hold its annual meeting in a dif-

ferent provincial city every year. There was already a national scien-

tific association in the form of Leverrier's Association scientifique,

and this would continue to function for a time, but it was dominated by

Parisians and its early enthusiasm for provincial meetings had already

evaporated by 1870. The AFas was to offer the members of the older

organisation, free and complete participation in the new. However, this

was not to mean the immediate demise of the Association scientifique 

which continued in separate existence until well after Leverrier's death

in 1877, but the roots of the organisation, as the poltical allegiance

of its founder, were firmly in the Second Empire and it never thrived in

the republican regime.

It is not surprising, given the circumstances, that the model for

the organisation of science following the disasters of 1870-71, should

have been a thoroughly military one. The zoologist, Quatrefages, the
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president of the first congress of the AFas in Bordeaux in 1872,

presented the scientist in the role of a soldier who 'knows the ardours

of struggle, the intoxication of victory.'
18 The greatness of states

was not to be measured solely by territorial size or the number of

inhabitants, and struggles between states did not take place only on

the battle field, argued Quatrefages, but in the domain of intelligence

and of science, and it was on this terrain that France should first

find her revenge. 19

But apart from this patriotic appeal for France to 'assemble under

the banner of militant science', Quatrefages had something critical to

say about the general level of science in the country. Rejecting

German assertions that the role of France in the realm of scientific

knowledge was at an end, Quatrefages admitted that even though France

could match any of the great names of foreign science with some of her

own sons, who were no in no way inferior;

'We must recognise on the other hand, that the general

scientific level is much more elevated among several of our

neighbours, than among ourselves'
20

Thus the prime task of the AFas was seen by Qua trefages and other

leading members, as being that of bringing science to a much wider

stratum of the population, above all in the provinces, to whom it was

still quite foreign. This according to Quatrefages, was what the BAAS

had been able to do with startling success in Britain;

'Thanks to it,(the BAAS) a part of the population has been

transformed. The sons of fox-hunters,who, to refresh

themselves after their rough past-times, only enjoyed other

equally violent and material pleasures, are today botan-

ists, geologists, physicists, and archeologists. A banker

directs the Institute of Anthropology and a brewer presides

over the section of astronomy, while towns vie with



114

each other for the honour of staging its meetings'20

Following the speech of welcome by the mayor of Bordeaux, the

General Secretary of the Association, Cornu, welcomed foreign delegates

and explained why he had not, although animated 'by a spirit of

conciliation and appeasement'
21
 invited any scientists from across the

Rhine. The most bitter thing about the war said Cornu, had been the

anti-French statements 'coldly elaborated by profesors of German

Universities' 23 , when the least they could have done,in his view, was

to have remained impartial. So no Germans were invited, and this was

'not prompted by any sentiment of hatred or wounded self-pride; we

simply thought that in this state of spirit, our national work could

not expect any support from German science'.
23

Thus the war was to have profound consequences for French science.

Science became a national patriotic task, a form of warfare in itself,

and the scientist would regard himself as a soldier in this situation.

New scientific organisations were formed, including the Societe de

Physique (which we shall consider in the next chapter), while the

Faculty system was enlarged and improved to meet the competition of the

grandes ecoles and the Catholic Institutes. Scientists enjoyed the

highest prestige since the days of their defence of the First Republic,

and as in that time, some were called to the highest offices of the

state.
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4. THE ORGANISATION OF/ AND RESEARCH IN PHYSICS, DURING THE

FIRST TWO DECADES OF THE THIRD REPUBLIC.

a. Introduction 

The opening years of the Third Republic saw the implementation of

measures which the national humiliation at the hands of Germany had

raised in a particularly acute way. Whether or not the real reasons for

defeat lay in the superiority of German education or German science was

really immaterial, it was stated to be so and the statement found

support. University reform, the encouragement of science in the provin-

ces, the application of science in industry, the formation of discipli-

nary societies, were seen to be patriotic duties which no true French-

man could qppose. The reforms carried out to the university system, the

formation of the Societe de Physique and the AFas will be considered in

this chapter, together with the development of physics until the last

decade of the century.

The growth of the physics community and the quantity of research

being undertaken, raises more and more sharply the question of the

criteria adopted for the inclusion of material in this thesis. That

research which was, as far as can be determined, considered to be of

some importance at the time, has been included. However, much of the

work done by the growing army of scientific instrument makers and elec-

triciens, who were involved particularly in the development of electro-

technology in the remaining years of the century, a work which effec-

tively was the application of the principles of physics, will be

excluded as engineering. Some, however, will be considered in the

appropriate section because engineers and instrument makers made a

powerful contribution to the early years of the Socift4 de physique.

The 1881 Congres International des Electriciens, in which the units of

electricity were standarised and agreed upon by the international
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scientific community, and the establishment of both a society and a

journal (edited by Du Moncel) for electrical engineers in the same

year, marked the separation of this discipline from physics. Thus,

after 1881, the work of the electriciens will figure less and less

prominently in this survey.

But French researchers still found plenty of work to do within the

confines of the discipline of physics. Thermodynamics, a term which was

first used in the subject index of the Comptes rendus in 1866, genera-

ted a considerable amount of experimental work. After being a little

slow in accepting the mechanical view of heat, French savants began to

consider it as almost a French creation by the 1870's, recalling the

work of Carnot, Marc Seguin and Babinet, for example. But most of the

workers in this area in the 1870's onwards, people like the Alsatian

engineer Him, or Ledieu, professor of hydrography at the naval school

of Brest were not associated with the institutions studied in this

survey and therefore their research is not examined here. On the other

hand there was no shortage of scientists in the university system,who

found that the optical paradigms of Fresnel and Cauchy could still

provide them with experimental research programmes on which to base a

successful career. There is little evidence that the conceptual revo-

lution which had already been signalled in the study of light, by James

Clerk Maxwell's model of the ether, which was able to unite static

electricity, current electricity and electro-magnetic induction, was

widely known in France before the 1880's. It is true that after

Hertz's successful demonstration of the existence of electro-magnetic

waves in 1886, Maxwell's Ideas did enter France but even then only in

the particular form which Helmholtz had given them. Pierre Duhem,

writing at the end of the century, stressed that Maxwell's work

provoked among French savants a certain stupefaction on encountering;

the same absence of order and method, the same lack of
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concern for logic, not only in the collection of

mechanical models but in a series of algebraic theories'. '

Henri Poincare too, commented that Maxwell's work provoked both

admiration and distrust among French scientists.
2
 So in the two

decades covered by this chapter we will not encounter many scientists

who show evidence of being influenced by Maxwell's ideas, although

there were some.

From now on there will be certain institutions which will play an

ever increasing role in the production of new knowledge in La physique,

while others will decline. In part this is due to the greater emphasis

placed on research following the reforms of the Ecole Pratique des

Hautes Etudes, partly to the development and better funding of the

provincial faculties, and partly to the development of such national

organisations as the Socilte Francaise de physique and the Association 

Francaise pour l'Avancement des Sciences (AFas). Lycee teachers will

from now on produce much less research than in the past, not only

because it has became much more expensive, but because the most able

normaliens (who in the past had frequently worked for their doctorates

while teaching in secondary schools) would now become agrege prepara-

teurs in Paris institutions of higher education, complete their docto-

ral research there and go on to teach in the faculties. The teachers of

physics at the institutions of the Ministry of Commerce, the Conserva-

toire and the Ecole Centrale, will also play a much smaller role in

research than previously and so these institutions will not be consi-

dered further. For the same reason Leverrier's Association Scientifique 

de France plays no further part in this thesis. It continued to exist,

continued to hold meetings in Paris where a passive audience came to

admire the scholarship of some of the great names of French science,

and it continued to distribute funds, but by the time it was amal-

gamated into the AFas in 1886 it had long ceased to play a role of
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organising or stimulating the practice of science.

On the other hand, the staff of the provincial faculties will now

begin to produce much more research than hitherto, even though much of

it will be by young lecturers whose ambitions are centred on Paris and

who will remain in the provinces for only a short period. Some physics

professors will, however, be content to stay in the provinces and they

and their faculties will acquire national reputations. In this category

will be, among others, Blondlot of the Faculty of Nancy, Mac de

Lepinay of Marseilles, and Gouy of Lyons.

b. The founding of the Societe Franpaise de Physique 

Although founded in the second year of the Third republic, the

Societg Francaise de Physique had its origins in the informal meetings,

organised by a group of physicists from the teaching institutions of
3

the capital, held in the Ecole Normale in the last year of the Empire.

Prominent in this group were six individuals; Bertin, deputy director

of the Ecole Normale, Cornu, professor of physics at the Ecole Poly-

technique, Mascart who had succeeded to Regnault's physics chair at

the Collage de France, and the physical science teachers in Paris

lycges, D'Almeida, Gernez and Lissajous. We have encountered all these

individuals in previous chapters as they began their careers in the

Second Empire. This group, with the exception of Lissajous, who was

appointed to a provincial chair in 1874, formed the intellectual and

organisational nucleus of the society for its first five years of

existence,and all, with the exception of Cornu, were products of the

Ecole Normale. 

Although there was no formal connection between it and the Socigt‘

de Physique, the founding of the Journal de physique thgorique et

applique in 1872 was a part of the same process of prcfessionalisation

of the physics community. Its founder and editor was Charles
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D'Almeida, one of the founders and the first general secretary of the

Societe de physique, and in the first edition of the journal, he

outlined its objectives. It was to give a new impetus to the study of

physics, to expound its most recent and least known theories and the

experiments on which they are based, and to explain the easiest way of

repeating these experiments. It addressed itself particularly to the

teachers of physics, isolated in the provinces, deprived of resources,

who did not know where they could most profitably devote their ener-

gies. But, at the same time its addressed itself to all those who had a

'scientific profession', industrialists, engineers, doctors and others,

above all the young, who wanted to contribute to the intellectual deve-

lopment of France. 4 The journal and the society, born at the same time

and out of the same conditions, sharing the same ideals and directing

personnel, would continue to maintain close relations throughout the

rest of the period of this thesis.

The founding conference of the society took place on 20 December

1872, in the Ecole Normale, with the attendance of around 70 people.

The academician Fizeau, by this time probably the most eminent of

French physicists and with an international reputation, was elected to

be its first president. By the end of its first year of existence the

membership had grown to about 200 (see table4.i. overleaf) of whom

120 came from the Paris region, 77 from the provinces and four from

abroad.

The names of ten Academicians appear on the membership list

and although most of them played only a minor and chiefly ornamental

role, one, Jamin was to contribute a number of papers in the early

years. No formal qualification in physics was necessary for member-

ship, only an interest in the subject and the recommendation of two

existing members. Those who lived in the Paris region paid an annual

subscription of 20 francs, those from the provinces or abroad, 10
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francs. Life membership could be achieved by paying a single sum of

200 francs, or four payments of 50 francs. This inclusivity, neither

excluding aspirants on the basis of academic achievement in the sub-

ject, nor by a high subscription, probably made it less attractive to

the already successful physicist.
5
 He could see little advantage in

explaining his latest research to an audience, who on the one hand

could probably not understand it, and on the other could not offer any

financial and social patronage to the speaker. But to the young

researcher and above all to the unqualified instrument maker or

electrician,it was a useful and valuable forum.

The meetings of the society were held every two weeks, except for

a long summer break,in the Salle Gerson, a hall conveniently close to

the Ecole Normale, the Faculty of Sciences and several lycges and

workshops. It was also large enough to accomodate a large audience and

permit demonstrations and experimental work.In the early years, experi-

ments and demonstrations took place at most meetings, while the Easter

meeting was used to repeat the most successful and interesting ones for

the benefit of provincial members visiting Paris during the holidays.

As we shall see later, the contribution of the provincial members to

the intellectual life of the society through the submission of papers,

was always meagre, never exceeding more than about 10% of the papers

given at a meeting. After a period of steady growth during the 1870's

the society was recognised as an etablissement d'utilitgpublique in an

official decree of 1881.

Although it has been said that the founding nucleus of the society

was made up of science teachers and research workers from the Paris in-

stitutions, and although these sectors were always well represented, it

must be stressed that a large proportion of the membership, particular-

ly in Paris, were not teachers of science either in lycges or the facul-

ties. There were in Paris some research workers from the obser-
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vatories, 6 a few from the Bureau Centrale Meteorologique (after its

foundation in 1878) and some from the International Bureau of weights

and measures at Sevres. But the majority of meMbers whose occupations

were listed, were engineeers of the State Corps (mainly Ponts et

Chaussees and Mines with the occasional one from Manufactures d'Etat

and Administration des Lignes Telegraphiques, and electrical engineers

and electricians associated with the growing electrical industry,

constructors of precision instruments and apparatus, or military

engineers. In fact the dynamic growth of the society in its early

years in Paris, came from the expansion of these technological sectors,

while the number of lycee and higher education teachers remained nearly

constant up to 1880. The situation in the provinces was a little

different, for there the number and the proportion of engineer members

was much smaller. Given that it was the Parisian ffembers who gave most

of the papers and, given the weight of the engineering sector of the

capital ,the technological character of much of the early proceedings of

the society is not so surprising as it might first appear. It is to be

expected that many of the electrical engineers and instruments makers

would have used the meetings to demonstrate their new optical and

electrical apparatus to academics with funds to spend on apparatus,

while others would have been looking for new avenues for the commercial

exploitation of their inventions. Moreover, there was a certain social

status to be acquired by belonging to the society and associating, at

least for two hours every fortnight, with the most eminent figures of

French science, and such status was very desirable to self-made

engineering workshop owners wishing to differentiate themselves from

the workmen they employed. But when the rate of growth of the Societe

de Physique slowed down in the late 1880's, it was probably due to the

founding of the Societe International des Electriciens in 1883, as the

electrical engineers began to see that their professional interests
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were better served by the new organisation.

In fact this near stagnation in growth began to cause a certain

disquiet in the society, so much so that in the 1888 conference, the

outgoing president, the astronomer Charles Wolf, appealed to every

person present to recruit a new member before the next conference. He

also commented upon the changing character of the meetings, which was

becoming more 'academic and formal', and the lively debates which

followed the papers of earlier years, were now more and more replaced

by the silence of members 'who were afraid of saying something

stupid' .7

The growing reserve of members might simply be explained by the

fact that the meetings were becoming larger, but is more likely an

indication of the more theoretical and mathematical content of the

contributions in the later years. Certainly, by 1890, the days had

long gone when meetings were enlivened by demonstrations of elastic

powered aeroplanes and birds, or voice recordings on primitive

phonographs. Such an evolution was clearly not to everybody's liking,

for the number of non-renewed subscriptions increased, and if by 1890

there was still a small rate of growth, it was largely the result of

the continuing interest of foreign scientists in joining the society.

See table (4.i, ) page 122 .

Table (4.i.) also shows the occupations of the members of the

society from its foundation until 1890. The analysis has been made

yearly until 1880, the period in which the growth was most rapid,

sometimes reaching 15% a year,and then for the years 1885 and 1890.The

annual growth rate between the last two dates is only 2.5%. The table

also illustrates the continuing interest in the society by foreign

scientists, who, by the year 1890, made up about 15% of the membership.

Table (4.ii.) p.126 1 makes a finer grained analysis of the year

1890, to try to give more information about the engineer members who
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appear undifferentiated in the 'other' category of table (4.i.). There

were also, by 1890, more post lycee educational establishments, which

previously were included in the faculty and grandes gcoles category,

and these too have been separated in table ( 44.ii.). In the post lycee

category, are included the Faculty of Medicine, the School of Pharmacy

and the Ecole de Physique et de Chimie Industrielles de la Ville de

Paris,in which Pierre Curie worked for many years.

Table (4.ii.) shows that the society in 1890, even after a certain

expansion of higher education in the capital and the competing

attractions of the Societe Internationale des Electriciens, was still

numerically at least,still dominated by the technological sector. On

the other hand , in the provinces, the society was very much an organi-

sation of teachers. In the first years of the society,the engineers of

Paris were well represented among the people giving papers at the

meetings, but increasingly after 1880, and particularly in the years

from 1885 to 1890, contributions came increasingly from the staff of

the Paris institutions of higher education and research. This is well

demonstrated in table (4.iii.) p.128, which makes a comparison between

an earlier year chosen at random (1879) and 1890. These two years show

an increasing predominance of Parisian academics, and therefore

normaliens in the intellectual life of the society.

Table (4.iv) p.129, shows an analysis of the content of the papers

presented to the society in the years from 1873-1885. This has been

taken from an analysis published in the 1885 edition of the proceedings

of the society, so it therefore uses the categorisation of topics made

by the society itself. It can be seen that the two areas, 'electricity

and magnetism', and 'optics' make up the bulk (more than 75%) of the

papers. Most of the optical papers were 'pure' science contributions

made by such academics as Cornu and Bertin, although the instrument

maker Laurent has ten papers to his credit, mainly of a practical
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Table Adv.
Papers presented to the Societe de Physique 1873-1885 

Year,Mech/-
anics, ics

Heat,AcoustiElectricity:Optics,Meteor/.
Magnetism ology.

Total

1873 2 2 2 7 4 0 17
1874 3 0 2 5 7 0 17
1875 5 2 1 14 8 1 31
1876 4 7 2 11 12 0 36
1877 4 3 1 9 12 1 30
1878 1 8 5 22 9 2 47
1879 3 1 3 21 17 1 46
1880 4 1 1 20 11 0 37
1881 8 3 0 24 11 3 49
1882 2 3 0 15 13 0 33
1883 3 2 0 10 11 1 27
1884 2 5 1 14 6 0 28
1885 1 7 1 26 10 1 46

Total 42 44 19 198 131 10 444
% 9 10 4 45 30 2 100

'rc1.51...E.
The most productive members of the 4 .V.

Societe de Physique 1873-1885.

Name Career in period
1873-1885

No. of
papers

Topic areas

M.A. Cornu
1841-1902

Chief Eng. Mines
Phys.prof.E.P.
Phys.Academy 1878

19 Optical	 16 papers
Waves	 1	 •t
Mechanics	 1

E.E.N.

Mascart
1837-1908

Phys.prcf.College
Dir.B.C.M. 1878
Phys.Academy 1884

18 Electrical 10 papers
Optical	 3	 4
Met.	 2	 e.

G.Lippmann
1845-1921

Phys.prof.
Paris Fac.
Phys.Academy 1886

17 Electrical 16 papers
Optical	 1

D.Gernez
1834-1910

Lyce‘e
Descartes	 1873
M.de C. E.N. 1885
Phys.Academy 1906

16 Heat	 9 papers
Optical	 1	 't
Electrical	 1	 .1	 •1

Phys/chem	 4	 ,.

E.M.L.
Bouty
1846-1922

Lycee
Louis-Le-Grand
Prof.Phys.
Paris Fac. 1885
Phys. Academy 1908

11 Electrical 11 papers

1

L. Laurent Instrument
maker

10 Optical	 10 papers

E.Mercadier
1830-1911

Inspector telegr.
Prof.E.P.

10 Vibrations	 5 papers
Electrical	 5	 II q

P.A.Bertin
1818-1884

Deputy Dir.
Ec.Normalel

10 Optical	 5 papers
Electrical	 5	 H	 „

E.J.Marey College de
France

10 Mech and
physiology 10 papers

SooR.c...6	 S .5 . F.	 . igg
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instrumental character; e.g. the projection lantern, the polarimeter,

the saccharimeter. On the other hand, of the large number of

electrical papers, a high proportion come from engineers, on such

problems as the generation of electricity and its transmission, the

efficiency of electric motors and their control, the electric light,

the telephone and phonograph,etc. For example, in 1881, a report on

the functioning of Paris's first telephone exchange was given, as well

as an account of the experiment to produce electrical amplification of

speech and song at the Paris Opera house. Several of the engineer

members of the society won themselves considerable reputations ; Marcel

Deprez for his work on electrical generation and transmission, Antoine

Breguet for his work on telephones, Dubosq for his arc-lamps, and

Jablochkoff for similar work on electrical lighting.

In relation to the more 'pure science' type of paper given by the

teaching staff of the Paris institutions, these were almost invariably

restatements or resumes of work already presented to the Academy, and

already published in the Comptes rendus. Contemporary foreign research

was frequently considered to be important enough to be presented to the

society's meetings by their authors. Andrews' work on the isothermals

of carbon dioxide and Crookes' research on the discharge effects

through gases at very low pressures, were discussed during this period,

as was Crookes' radiometer which provoked several papers from French

members, attempting to give an explanation of its rotation. There were

no papers from Germany before 1885 as the result of the lingering

chauvinism produced by the defeat of 1870-71.

The most productive members of the society up to 1885 are listed

in table (5.v) p.129. Apart from well established people like Cornu,

Mascart and Bertin, who we have already encountered in the Second

Empire, there appear now the names of men whose careers are going to

span the whole period until the outbreak of the First World War. Of the
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nine individuals listed, Gabriel Lippmann (1845-1921), and E.M.L. Bouty

(1846-1922), who were both professors of physics at the Paris Faculty,

probably played the most influential role in French physics, more as a

result of their teaching than through their own research.

There were also a few meteorological papers in this period both

from abroad and from the staff of the Bureau Centrale Metebrologique 

(hereafter referred to as the BCM ). The opening of the Eiffel tower in

1889 gave the opportunity for collecting data at different altitudes

and this was reported to the society in that year by a member of the

BCM, Angot. The BCM was well represented in the Societe. de Physique;

apart from its director, Mascart, there was E.Fron (1836-1911), a

veteran from the early days of the storm warning service in the Paris

Observatory, and the younger members Angot, Teisserenc du Sort, and

Perier. These men, all highly trained in the Paris institutions of

higher education, helped change meteorology from a descriptive science

carried out by devoted amateurs, into a mathematical science with a

basis in hydrodynamics and thermodynamics.

c.The Association Franaise pour l'Avancement des Sciences

from its foundation until 1890.

The establishment of the AFas has already been referred to in an

earlier chapter. It was one of the responses to the crushing defeat

suffered at the hands of the Prussians, and the conclusion drawn that

such a defeat owed much to the inferior organisation of science and

technology in France. In particular the need was felt to raise the

general level of science in the country, bringing up the provinces to

the level of Paris, whose illustrious savants were considered, of

course,the peers of any in the world. Given the situation in France in

1872, when the AFas was founded, it is not surprising that the emphasis

in the association should have been on science as an element in the
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moral regeneration of France. Science was both a patriotic duty, as

well as a prerequisite for the rebuilding of national prestige, and for

the construction of a more dynamic industrial and military machine.

Thus, in the general sessions which opened each annual meeting and set

their tone, nationally respected scientists would share the platform

with local industrialists, politicians and military men, to expound on

such topics as 'The services which modern science can render to the art

of war' s', or the 'Relation between science and industry'. 9 The AFas

received large sums of money from industrial interests, particularly

the railways, and its lavish annual meetings with excursions to local

beauty spots, cultural events, museums, schools, hospitals and

factories, attracted a large provincial following. For example 712

people attended its 1880 meeting at Rheims out of a total membership of

3,156. 10This represents about 22% of the national membership.

What the contribution of the AFas was to the development of

physics in France generally and in the provinces in particular, is

very difficult to assess, but one is inclined to think it was not very

great. Certainly, if the journal of the annual meetings is a reliable

guide, physics did not figure very prominently in the association. The

number of pages devoted to the fifth section (the section for physics)

of the mathematical sciences group of the association, was only a small

fraction of that devoted to sections within the natural sciences group;

anthropology or medicine, for example. Moreover, sometimes the fifth

group was amalgamated with the seventh (meteorology and earth sciences)

because the contributions to both were so meagre. Perhaps the paucity

of the physics contribution is hardly surprising considering the

increasing difficulty of physics concepts and theories on the one hand,

and its dbpendence on more and more expensive equipment on the other.

Specialised knowledge and specialised equipment, made physics more and

more the preserve of the trained professional, and the faculty profess-
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ional at that. There might still be a place for the gifted amateur in

astronomy or meteorology, making observations with fairly modest

equipment, or even, if he had a thorough grounding in the subject, in

mathematics, but both intellectual and material factors militated

against the continuing role of the amateur in physics. On the other

hand, in the natural sciences group, collectors, classifiers, and

country doctors, would still find much they could comprehend and

discuss and plenty to interest them in meetings of the association.

Physics professors from the capital always played some role in the

meetings, and gave a large proportion of the papers (table (4.vi) p. 134

but they were always summaries and popularisations for a lay audience,

of work which had been published before. This was also true of the

foreign contributions, and even some of the provincial faculty members

had published their contributions previously in national or local

journals. Again this is to be expected; no scientist would report

original research to a meeting of people he did not consider to be his

peers, especially as he would have to wait many months before he saw

his work in print. Those savants who did continue to contribute, at

least the Parisian ones like Cornu or Janssen, were perhaps motivated,

at least partly, by a sense of duty, fired by the patriotic ideals of

the association.

It would be wrong to think that young ambitious scientists played

a role in the Association merely for crude careerist motives,

attempting to win the approval of the Ministry of Education by

performing public patriotic actions. They genuinely shared the Assoc-

iation's patriotic and republican ideology. Although this allegiance

to the Association tended to cut across the boundaries of the different

educational institutions,it was Polytechniciens like Cornu, or J.B.

Bailie (b.1841), or the Parisian telegraph engineer, E.J.Mercadier

(1830-1911) and Marcel Deprez (1843-1910) the electrical engineer, who
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table 4,vi.

Contributors to the Conferences of the AFAS 1872-1890

I

Year	 Cornu
Place

Merc-
-adier

Gariel Deprez Jans-
-sen

Baille

...

Other
Parisians

3	 .

3	 _

0.	 ..	 _

4

3	 ._	 .

2
____

1_. 6

3

3
. .	 _	 .	 .

3

4	 _

1

--
Total

7

6

. 6

7

6

14

8

7

11

6

6

3

9

3

1872
Bordeaux	 2
1873
Lyons	 '	 2

1

1

1_ .

1

1

-1874 - -- "—
Lille	 ,	 2 1 1

________

.	 __ _

1

. 2

1
__.	 _.

1

1875
Nantes	 ,	 2
1876	 ;	

,

C'Ferrand 2  _

1877
Le Havre	 1

_

1878
Paris	 1
1879
M'pellier 2
1880	

1Rheims	 1
1881
Algiers'
1882	 .	 .
La R i chle 2
1883
Rouen
1884–

'Blois	 3

1885 1

G'oble 	.
1886 [
Nancy

2

1

.	 2

1

 .

1

1

.

1

2

1

_

1

2
_ ..

_.

_	 2

2

.
i

1

1

7

5

,

8
1887
Toulouse 6
1888
Oran_
1889
Paris

.

._

1

1	 2
_	 .

1	 10T. _ ..._..— _ _

1	 I 4

1	

10	 176

_	 3

1	 11

8

135

1890
Limoges	 2

Total	 122	 ' 9
	  1-	

5 8 6

In this period Crcva from
Lallemand from
Merget from

Montpellier submitted 11 papers
Poitiers	 submitted 8 papers
Lyons	 submitted 9 papers

Total no.
Total no.
Total no.
Total no.

of papers from Paris = 135
of papers from provinces = 78
of papers from foreigners= 49
pf unknown source	 = 33

Grand total = 295

SOU R CE C•	 CA. . S

Papers from Parisians as % of total= 46
Papers from Provincials as % of total= 26
Papers from Foreigners as % of total= 17
Papers of unknown source as % of total= 11
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were the most regular Parisian contributors. On the other hand ) estab-

lished Academicians of the physics section like Desains, Jamin, or

Edmond Becquerel, for example, played little or no part in its affairs.

The three most regular contributors from outside Paris, were the

provincial faculty physics professors, A.P.P.Crova (1833-1907) of

Montpellier, E.A. Lallemand (1816-1886) at Poitiers at this time, and

A. Merget (b.1819) of Lyons. Lallemand was elected a corresponding

member of the physics section of the Academy in 1882, and when he died

in 1886, Crova was elected to his place. Their participation in the

Association probably helped them to gain a national reputation and

brought them to the attention of physicists from the capital. Crova,

whose research work tended to concentrate in the area of solar

radiation and its absorption by the atmosphere, submitted six papers to

the five meetings of the AFas, after he was elected to the Academy, so

his participation cannot be seen merely as a careerist manoeuvre.

But although it might be expected that most papers came from the

faculty sector,it is also true to say that there were some contri-

butions from local members working in lycges,in industrial enterprises

and other areas. In the 1873 meeting in Lyons for example, most of the

local contributions came from the previously mentioned Merget, but

there were others. Frequently, the local contributions, at least from

outside the faculty sector, would probably have appeared to the

Parisian savant as being peripheral, if not actually eccentric. For

example, at the Lyons meeting, a certain Beekensteiner expounded on the

problem of the build up of static electricity on pens, a build up which

resulted in the premature fatigue of the user? 1 This type of paper,

lacking any mathematical basis or even a systematic experimental

component, would probably have elicited considerable interest in an aud-

ience lacking formal training in physics, but it was also the type of

rather eccentric contribution which the organisers would have preferred
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to exclude. But it would be wrong to imagine that the local contri-

butions were always so eccentric. A more common characteristic was the

rather utilitarian nature of the local contribution relating to the

scientific and technical problems of the industry of the region. For

example when the Association net in the shipbulding city of Nantes, two

local teachers spoke on the problem of the preservation of iron

ships, 12 and later when the meeting was in the champagne region of

Rheims, a mechanic explained his system of taps and valves for a wine

13
storage system.

The quality of the local intervention depended very largely on the

quality of the personnel of the local faculty, and if the meeting was

held in a town or region where there was no faculty, as for example in

Le Havre or Algiers, then it would not be unusual for there to be no

physics papers from inhabitants of the host region. On the other hand

where a faculty existed, it was natural that most of the local papers

would came from there. Merget gave four of the six papers which came

from Lyons in 1872, Crcva two of the three fram Montpellier in 1879,

and of the five local papers which were given in Lille in 1874, three

came came from men associated with the faculty; Terquem, Boussinesq,

and Trannin. The first two were professors in the faculty, the third,

Trannin is listed simply as being a Licencie of Lille Faculty. Terquem

had already won prizes and achieved a national reputation for his

acoustical work, while Boussinesq was to become professor of mathe-

matical physics at the Paris Faculty,and a member of the mechanics

section of the Academy in 1886.

Although the AFas is associated with the Third Republic and the

anti-clericalism of its early years, this did not exclude the partici-

pation of lay or clerical Catholic scientists. Presumably it was for

them to judge whether participation would give more authority and

prestige to their faith, or to the scientific institution of a state
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which showed itself hostile to their religion. In the 1876 conference

which took place in Clermont Ferrand, there were seven local papers,

one from a faculty member, one from a chemist of the town, and five

from a certain Abb‘ Lavaud de Lestrade, professor of physics at the se-

minary of Clermont. These five papers ranged over the whole spectrum

of physics, but the editor of the journal saw fit to publish no more

than a summary of a few lines of each one. This may have been an objec-

tive contemporary judgement on their value, but it may also have been

simply the action of an anticlerical functionary who perhaps was

interested in minimising the importance of the Catholic contribution.

The 1878 meeting was given in Paris, but even this did nothing to

increase the participation of the highest echelons of French physics.

It is true that the 'regulars' like Cornu, Mercadier,and Deprez gave

one paper each, and there were five others which could be identified as

coming from Paris. But the Parisian contribution made up only about a

quarter of the total number of papers presented,and tends to show that

not only the famous were reluctant to present their work at its meet-

ings, but also many young researchers employed in the institutions of

the capital, saw little point in contributing. One must also say that

this was not a particularly fruitful period in French physics anyway;

the kinetic theory of gases and Maxwell's electro- magnetic theory of

light, were only slowly being assimilated, while the wave theory of

light which had provided such a rich research programffe for French

physicists since the time of Fresnel, and was still being relentlessly

pursued by Cornu, was no longer attracting new research workers.

Clearly the importance of the AFas cannot be sought merely in the

quality of the papers presented at its meetings; its purpose was not to

be an organisation in which the country's foremost research workers

exchanged ideas. Its objective was to stimulate local initiatives,and

it appears to have succeeded in this. It distributed considerable
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quantities of money which helped both private and faculty based

research, particularly in the purchase of equipment. 14 The membership

of the AFas peaked at around 3,300 in 1883 and this gave it an income

of 66,000 francs l of which it distributed as grants some 11,000 francs.

Even though its membership and income continued to decrease up to the

First World War (35,820 francs in 1914) it continued to disburse at

least 15,000 francs each year, and occasionally gave out twice this

amount. 15 Physicists saw very little of this money, although Crova

received 1,500 francs in both 1886 and 1887, for his work on

actinometry, but the sum of a few hundred francs was a more normal

order of grant for a physics project. In addition to its role as a

distributor of funds, the Afas was important because its decisions were

listened to by successive ministries of education and because it was

supported by scientists as a vehicle for those reforms in science which

they considered necessary. The reform of the French meteorological

service and its separation from astronomy was one of the causes which

the Afas campaigned for in the mid-1870's. The 1876 meeting set up a

commission to look into the problem more deeply and make representation

to the government. lb In the following year, Leverrier, the director of

the Observatory, died, and the way was opened, not without opposition

from some members of the Academy, for the establishment of an

independent meteorological service. The Bureau Centrale Metebrologique 

under the directorship of Mascart, came into being in 1878. The AFas

could thus claim the credit for first giving a national platform to the

discussion of reform of the organisation of this particular branch of

the sciences.

In 1881 the AFas held its annual meeting in Algiers but only a

very few physicists from metropolitan France contributed. Janssen gave

two papers on solar photography, and the young Marcel Brillouin

(1854-1948) from the Faculty of Nancy spoke on electrical induction.



139

Foreign scientists, including three from Britain, the most eminent of

whom was J.H.Gladstone F.R.S., gave five papers, but the programme was

a very limited one and there was no contribution from French Algerian

residents. It should be remembered that there was as yet no faculty of

sciences in Algeria (it was not established until 1909) and the most

advanced science education took place in the Ecole preparatoire 

l'enseignemente superieure des sciences, established in the previous

year. Brillouin was to contribute another paper in the following year

at La Rochelle, but then several years went by before he intervened

again. The Rouen meeting of 1883 was exceptional in that it was the

first to hear a contribution by a woman, Clemence Royer, who discussed

theoretical questions about the molecular structure of materials.
17

 Two

local men, a colour-chemist and a teacher, presented the results of

their trials on the effect of sunlight and electric light on a wide

range of dyestuffs. 11 The problem of a search for fast dyes which would

not fade under the effect of light, was one which was of particular

importance to the textile industry of Rouen. The following years saw

little of interest from a physics point of view, and the meeting of

1885 in Lyons, saw only ten papers in the physics section.

The meeting in Nancy in 1886 stands out in a generally desolate

period. The number of physics papers nearly doubled to nineteen, they

tended to be more original, and the weighty intervention of the local

faculty gave an indication of the vitality of the scientific life of

the region. The two major local contributors were the faculty members

Ernest Bichat and Reng Blondlot (1849-1930). It should be emphasised

that the position of Nancy in the French faculty system was an

exceptionally privileged one. It had profited from the transfer of

faculty members from Strasbourg after the loss of the region in the

Franco-Prussian war. The Ministry of Education wanted to build it up

as a competitor of the German Institutes on the other side of the
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Rhine, it was a centre of new technological industry, and it benefitted

from the generosity of local industrialsts and municipal councils which

poured money into its Eacu1ties.19 Bichat and Blondlot's speciality,

electrical physics, was expressed in the content of their papers to the

meetings. Four years later Bichat was made director of the Institut 

Electrotechnique financed largely by the Belgian industrialist Ernest

Solvay. Blondlot was, after a distinguished research career, to earn

national and international notoriety some twenty years later with his

'discovery',of the spurious N rays.

The meeting in the following year in Toulouse was of no particular

interest; no foreign members gave papers, and there were no contribu-

tions from the local faculty members. Crova spoke on the solar

radiation work for which he had received funds from the Association, at

this meeting and at the following year's meeting in Oran. Brillouin

now promoted to a post in the Ecole Normale, also contributed.

The year 1889, being the centenary of the French Revolution, gave

a pretext for the meeting to be held, for the second time in the short

life of the AFas, in the capital. Not surprisingly as a result, the

number of physics papers was a little higher than normal, but even here

the great names of French physics were absent. Less important figures

from the capital like Bailie, or Charles Fery (d.1935) of the Ecole

Centrale , contributed, as did Crave from the provinces. Madame Royer,

after an absence of six years, tried out her ideas on the molecular

constitution of water on a Parisian audience.The only Parisian

Academician to contribute, and he seems to have strayed into the wrong

section, was the explorer and geographer Antoine Abbadie, who reported

on a meteorological phenomenon known as the 'Quobar', a dark overcast

atmosphere which sometimes occurs in desert regions in certain

20
conditions of temperature and calm winds.

The following year's meeting, while otherwise unremarkable, was
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interesting in hearing a paper frcm a member of the administrative

staff of the Ecole Polytechnique, Roches, on what had come to be known

as "odic forces".
21
 Odic forces were a part of that area of research

which became popular in the late nineteenth century ,in which

telepathy, spiritualism, and pSychic phenomena became candidates for

physical experimentation and research. Odic forces were thought to be

emitted by the body and could be transmitted along iron wires,and can

probably be classified along with Lebon's 'black light' and Blondlot's

'N' rays, as some species of 'auto-suggestive' phenomenon. It is an

indication of the rather popular character of the AFo.$ meetings, that

'odic' forces could be discussed here, and presented by a man only

obliquely connection to physics. There were no such papers presented

to the meetings of the Soci6t‘ de Physique.

Thus by the time the last decade of the century opened, the Afas

had become a well established organisation with a membership of around

3000. It never was to play a role as important as that played by the

British Association, but it did give encouragement, once a year, to the

provincial doctor, teacher, pharmacist, to the worthy republicans who

saw themselves as fighters of the good fight to vanquish obscurantism

and to make science and rationalism triumph in every distant corner of

France.

d.The Ecole Polytechnique.

The two physics professors of the Ecole Polytechnique who had been

appointed in the Second Empire, Jamin and Cornu, continued in their

posts in the republican regime. Jamin's reputation was already made,

and with other responsabilities in the Paris Faculty and the Academy,

his research ouput slackened, but Cornu's career was still in its early

stages. From 1871 onwards he was to concentrate on a research project

which would continue the optical research traditions of the Polytech-

nique, would strike a patriotic chord in a country which had suffered



142

a national humiliation at the hands of Germany, and would gain him

powerful patrons. This optical research project, which continued

throughout the 1870's, was the re-determination of the velocity of

light using Fizeau's toothed wheel apparatus. Cornu had begun this work

in 1871, sending the light over a comparatively short distance (2.5 Km)

from the school to the tower of the state telegraph building, but it

was in the following year that the work won the backing of the leaders

of the Paris physics and astronomy community.

In July 1872, Leverrier discussed in the Academy the question of

determining with greater precision than hitherto, the value for solar

parallax; the angle subtended by the earth's diameter at the centre of

the sun.
22
 If this angle is known with precision, the earth-sun dis-

tance can be calculated, and then from Keplers 2nd law, all the other

distances of the solar system can be found. Laplace had obtained an

angle of 8.813 seconds from observations on the transit of Venus, Encke

8.578 seconds, while in 1862, Foucault's terrestrial determination of

the speed of light, was used to find the diameter of the earth's orbit

frcm Roemer's method, and yielded a result of 8.86 seconds, a result

which also agreed with the astronomical determination of Struve.

Leverrier had no official position in an observatory at this time,

although he was to succeed to the directorship of the Paris Observatory

for a second term after the death of Delaunay in August 1872, so he was

in no position to institute a new programne, he could only appeal to

those astronomers who had observing facilities. Following his appeal,

Fizeau intervened to suggest that it was now time to make another

terrestrial determination of the velocity of light, considering his own

toothed wheel experiment of 1849 and that of Foucault with a revolving

mirror in 1862, to be simply the first trials which could easily be

improved upon.
23

 Another contributor to the discussion was the geo-

grapher, Abbadie, who expressed the hope that the method used to find
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the velocity of light would be the toothed wheel method and not the

revolving mirror, because the first, having a much greater path,

permittted a greater accuracy. 24 This was something of a nonsense, as

subsequent experiments by Michelson using a type of rotating mirror,

were to show, for the toothed wheel method itself had some very severe

weaknesses. Still, the architect of the toothed wheel experiment,

Fizeau, was present at the meeting, while Foucault, never a happy

collaborator of Leverrier when he was physicist at the Observatory, had

been dead for some six years. He was defended , however, by his friend

Lissajous who wrote frcm Besancon to say that the error in Foucault's

apparatus was only one part in 500, (not indeterminate as Cornu had

claimed), and that Foucault had been working to improve this figure at

the time of his death.
2S

But as Cornu had already begun experiments with the toothed wheel,

which Fizeau had donated to the Ecole Polytechnique, it was almost

inevitable in the circumstances that this piece of apparatus should

have been preferred to the revolving mirror, and employing it, Cornu

knew he would have the full support of the Observatory and the Academy.

He continued with Fizeau's original apparatus, made by the instrument

maker Frament, but introduced some modifications. The velocity of rota-

tion was measured by connecting the toothed wheel electrically to a

chronograph which recorded every 100 revolutions, while a clock mecha-

nism measured seconds and tenths of seconds. He made the speed

increase and decrease in a slow regular way whose period was known, and

the observer noted the appearance and disappearance of the reflected

light beam in the telescope. This enabled him to calculate the exact

velocity of rotation and tended to overcome the main problem which

Fizeau had encountered with the apparatus; the uncertainty in deciding

when the reflected beam was eclipsed. The intensity of the reflected

ray is very reduced, and it is rendered less distinct by extraneous
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light reflected back from the toothed wheel. Thus it was very difficult

to say exactly when the image had reached its maximum or its minimum

brightness.

In 1873 Cornu reported that he had carried out a series of experi-

ments over a distance of 10.31 km. and that a mean of a large number

of observations gave a value of 298,400 km/sec., which meant a velocity

in vacuo (taking the refractive index of air as being 1.0003)
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298,500 Km/sec. This was a value rather lower than Fizeau had found,

but quite similar to that of Foucault's. It gave a value for the solar

parallax of 8.86 sec.
26

In the following year the distance was increased to around 23

kms.; the wheel was now capable of turning in excess of 1600 turns per

second, and the Chronograph and electric recorder constructed by

Breguet could measure to an accuracy of a thousandth of a second. 27 -

The path was now from the terrace of the Observatory to the tower of

Montlhery, the two stations Which had been used by the Bureau des

Longitudes for the determination of the velocity of sound at the

beginning of the century and was thus 'linked to the most glorious

memories of the history of French science'. 	 The mean result obtained

from this series of experiments was rather higher than the previous

one; 300,400Km/sec. in vacuo, with an accuracy probably less than one

part in a thousand . It yielded a value for solar parallax of 8.878

seconds and was considered the definitive value until Michelson's

determination, some ten years later.

Cornu's work won him powerful patrons like Fizeau and Leverrier,

and allowed him to be one of the youngest men elected to the physics

section of the Academy for many years. When he took up the experiment

at the begining of the decade he was just about thirty years of age,

with litle published work. By 1878, when he was elected to the Academy

at the age of thirty seven, his corpus of work was principally the
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velocity of light experiments, which with technical improvements and

modifications continued from 1871 to 1874, and won him the Lacaze prize

in 1877.

Cornu's competitor for the Academy place in 1878, was the

normalien, Mascart, also a recipient of the Lacaze prize two years

previously for his work in optics and electricity, as well as the

Grand Prix des sciences matheMatiques for his ether drift experiments,

and some four years older than Cornu. It is therefore clear that there

was some peculiarity of Cornu's work or training which particularly

favoured his career. Perhaps it was his position as a polytechnicien 

which worked to his advantage, at a time when normaliens were beginning

to occupy most of the leading positions in the mathematical sciences,

but where many of the older Academicians were products of the Ecole

Polytechnique. But more probably it was due to the fact that Cornu's

work struck a patriotic chord at a time when France felt humiliated

after the defeat by Germany, and felt, moreover that scientific leader-

ship was passing out of her hands. Her educated public, as well as her

savants, could see in the work of Cornu, the continuation of a research

programme, in which the Paris Observatory had traditionally been the

leader; they could still feel that the velocity of light was still,

exclusively, the province of France. Cornu presented his work to the

Academy as a heroic national triumph of central importance to the

progress of physics and astronomy; and the Academy responded to this

patriotic sentiment. Cornu introduced his 1873 memoir to the Academy

in the following manner;

'It is to be desired, for the honour of French Science, that

the great work relating to the velocity of light, begun by

Roemer at the Paris Observatory, simplified and continued

by French savants, should be achieved in France with all

the necessary precision Which its importance demands.
2S0
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Given his interest in the question of the propagation of light, it

is not surprising that at the end of the 1880's the discovery of

electro-magnetic waves by Hertz, should have provoked some response

from Cornu. Hertz's experiments, confirming the theoretical ideas of

Maxwell, were carried cut in 1887 and 1888 as part of a prize competi-

tion set by the Berlin Academy of Sciences at the suggestion of

Helmholtz. The French Academy reacted promptly and generously to

Hertz's discovery, awarding him the La Caze prize in 1889, after his

e
results had been confirmed before both the Societe de Physique and the

Congres des Electriciens, by a young French researcher, Joubert. But

doubts remained in France, about the soundness of Hertz's experiment as

much as about the rigour of Maxwell's theory. Henri Poincare'pointed

out that Hertz had made an error in his calculation of the period of

the transmitting spark, employing the formula for a plane capacitor

when in fact he had used not parallel plates, but two spheres. Using

the value of periodic time so derived, the velocity of the waves would

have to be increased by a factor of root two. Poincare commented out

that Hertz's results were so grossly approximate anyway, that there

were insufficient grounds to say whether or not light and electro -

magnetic waves travelled at different velocities."

The conclusions of Hertz's experiment rested on the fundamental

hypothesis that the spark of the transmitter oscillated at a fixed

frequency, determined only by the components of the exciter circuit,

and that this spark induced electrical oscillations of the same

frequency in the receiving wire. Likening the receiving wire to a

vibrating elastic column, Hertz found the position of nodes and anti-

nodes in it by means of an auxiliary piece of apparatus, an electric

resonator. The period T of the exciter being known, the wavelength of

the received wave could be found by measuring the distance between

antinodes or nodes, and the velocity calculated from V= 3YT.
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Two Swiss research workers, Sarasin and De la Rive, had found ,

however, that the period of the receiving wire was not invariable but

was affected by the electric resonator which explored it. They did not

find this surprising, but simply put it down to the fact that the spark

transmitted multiple frequencies and the resonator simply selected the

one which corresponded to its own frequency?
1
 A note by Cornu,

following the communication of the Swiss, took rather boo enthusia-

stically the view that their results were;

'Extremely serious for the theory of M. Hertz; in effect

the only fixed and incontestable experimental element

appeared to be the value of the wavelength of the

electrical propagation compared to a well defined

period of the exciter.

Wt now learn today that this wavelength varies with the

apparatus of observation; the theory of Hertz is thus

caught in the dilemma in which two terms are equally

troublesome (facheuse); the experiment shows that S) =VT is

variable so that either it is the period T which is not

fixed and unique, or it is the factor V which varies with

the explorer, an absurd consequence as V represents the

velocity of propagation of the electrical induction,-
32

Cornu concluded that the 'curious experimental method' thought up

by Hertz should be studied much more carefully before one could con-

sider it as a demonstration of the identity of electricity and light.33

Whether any other French research workers book the doubts of

Cornu very seriously it is impossible to say, although there does not

seem to have been much work in this field in the years immediately

after Hertz's discovery. The notable exception, of course, was the

professor at the Catholic Institute in Paris, Edouard Branly

(1844-1940), whose work will be considered in the appropriate section.
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It was the Ecole Polytechnique which could claim the credit for

introducing Maxwell's electro-magntic ideas into France, even if it was

to give them, as Paul has noted, 'a quasi-Gallic guise'.
34

 The school's

prcfessors i Cornu, Potier and Sarrau and its graduate Seligman-Lui, were

responsible for the translation and publication of the second edition

(1881) of Maxwell's treatise on magnetism and electricity which

appeared in tido volumes, in 1885 and 1889. The translation was made by

a young telegraph engineer, Seligman-Lui, and there were annotations to

the text by the others. Presenting the translation to the Academy, the

mathematician Sarrau, while praising Maxwell's treatise with its many

original insights, judged it to be less than perfect as a text book.

Cornu therefore annotated the French version to make it clearer for

teaching, and Potier clarified some of the particularly difficult

concepts. Sarrau himself contributed the appendix on quarternions.

Almost apologising for being associated with the book, for he began by

asserting that France already had an excellent treatise on electricity

by Mascart and Joubert, Sarrau nevertheless thought it useful for

physicists and electrical engineers who needed to study the original

work of the 'Illustrious Englishman'. 35 The Mascart and Joubert

treatise on electricity,(which contained some ideas from the first

edition (1873) of Maxwell's work) was compared favourably by Sarrau

with Maxwell's, but it is also the one which was so roundly condemned

later in the century by Duhem's student, March is, when he said it

consisted of quantities of material taken without comprehension and

assembled without any order, from contemporary foreign textbooks. 36

In referring to the translation of Maxwell's treatise we have

introduced the name of another physics professor of the Ecole

Polytechnique, Alfred Potier (1840-1905). Potier, who succeeded to

Jamin's chair in 1881, was like Cornu, an engineer of the Corps des

Mines. His theoretical interests were concerned with electricity and
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with ether drift, although he maintained a more practical concern for

mining and geology. For example, he gave a speech to the 1877 meeting

of the AFas on the geological problems associated with the construction

of the channel tunnel. 37 In his view the enterprise presented no major

geological difficulties. Potier was elected to the physics section of

the Academy in 1891 and continued to teach at the Polytechnique until

1895 when he was succeeded by Henri Becquerel (1852-1908). Following an

exhaustive series of experiments by Mascart to detect ether drift in

the early 1870's, Potier applied Fresnel's ether drag hypothesis in

conjunction with Fermat's principle of least time, to demonstrate that

no experimental arrangement of the type employed by Mascart (which we

will look at in the section on Mascart's work), could ever reveal the

existence of an ether wind. Moreover he reasoned that the wind can

never manifest itself optically except by an effect of the order given

by u
2
/c2 where u is the velocity of translation of the system and c is

the velocity of the light. 38 All the types of experiment employed up

to that time, had measured what is called the first order effect: u/c.

Thus the result of the efforts of Potier (and others including the

Frenchman Boussinesq and the German Veltmann) was to bring about an

abandonment of the search for first order effects and to redirect

effort towards second order determinations, of which the celebrated

Michelson-Morley experiment was the unique example in the nineteenth

century.

Michelson and Morley's experiment in 1886, once more drew the

attention of the French scientific community back to the ether drift

problem, and the results of their experiment were discussed in the

Academy. Cornu reported on the experiment in a rather patronising

fashion, saying that it was 'executed with the powerful experimental

means which the savants of the USA like to deploy in great scientific

questions 1 , 39 It also gave him the opportunity to express, as befitted
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someone whose meteoric career had owed so much to the patronage of

Fizeau, his admiration for the great experimenter who was present at

the meeting. Fizeau also spoke briefly, expressing his own continuing

interest in the nature and prcperties of the ether, and announcing that

he had plans to use the variations in the force of magnets, (a

variation which seemed to him to have a relation to the direction of

motion of the earth in space), to yield information on 'the immobility

of the ether and the its relation with ponderable matter'. 40 There is

however, no record that Fizeau, in his late 60's by now, was ever able

to put his ideas into experimental practice.

Although Fizeau was never able to accomplish his ether drift

experiment using magnetic techniques, at least he was to report the

Academy in 1887 on some ideas he had formulated on the possibiltiy of

employing a telescope, an inclined mirror, and a terrestrial light

source to detect motion through the ether. The method depended on the

proposition that the angle of incidence and angle of reflection of the

light on the mirror, passing frcm source to telescope, would not be

equal as they would be for a stationary mirror. In the words of

Fizeau;

'When the mirror retreats before the incident ray,

the reflected ray is closer to the surface (of the

mirror) and when the mirror advances towards the ray,

the ray goes further away from the surface after

reflection' 
41

It is unlikely that Fizeau's proposals evinced much interest, even

in France. Mascart's experiments of fifteen years before had convincd

many scientists interested in this problem that it was impossible to

measure absolute velocities, and Potier had given a theoretical

explanation for the impossibility of measuring it with the type of

apparatus Mascart had employed. Although Fizeau was still connected
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with the Polytechnique as an examiner, the fact that he was not a

teacher there had probably distanced him from the theoretical develop-

ments in the ether drift problem. On the other hand, a teacher at the

school like Potier, confronting an elite student body which expected to

receive from its teachers a complete and coherent body of knowledge,

had felt the need to try to find a convincing explanation for the

failure to detect an ether wind.

But ether-drift and the velocity of light were not the only

research projects which interested Polytechnique staff and graduates.

Cornu was interested in the role which spectroscopy could play in astro,

natty and clashed with the physical astronomer, Janssen over the inter-

pretation of certain laboratory experiments. Cornu viewed very intense

sparks through a number of different metallic vapours, thus producing

their absorption spectra, and believed that he had created in this way,

a 'veritable reproduction of the constitution of the sun' 
,42 

an analysis

which was soon firmly rejected by the astronomer, Janssen as being too

simplistic.43 Later in the period, as we shall consider, Cornu

supervised research, which Deslandres carried out at the Polytechnique.

Two Polytechnique graduates, both members of the corps des mines 1

L.P. Cailletet (1832-1913) and Peslin, who we encountered in the Second

Empire, also worked in spectroscopy. Cailletet, having his own

laboratory was able to take an experimental approach to the subject,

while Peslin applied his mathematical skills to finding relationships

between spectral lines whose wavelengths had been published in the

scientifiic literature. Cailletet examined the spectrum of a gas at

very high pressures, and saw that as the pressure was increased, the

brightness of the spark which passed between the platinum electrodes

through the compressed gas, rose to a great intensity, and then was ex-

tinguished.
44
 But he made no attempt to explain either the process of

conduction through the gas, nor the observed spectral lines.
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Apart from the amateuri Lecoq de Boisbaudran, no French spectro-

scopist hazarded any hypothesis about the mechanism which caused a

heated gas to emit specific frequencies of radiation. Some mechanism

of vibration, rotation or translation of particles was involved, and

this in turn would set the ether in vibration to produce the observed

frequencies; this much was generally agreed. However,the method of

analogy was widely used in spectroscopic research; the rapid movement

of the particles of gas being compared in some way to the acoustical

vibration of a string or some other more complicated geometrical shape,

and the frequency of the lines emitted were considered to be harmonics

of some basic frequency. But such analogies usually broke down when

systematically compared with actual observations.

But the other Polytechnique graduate, Peslin, tried an apparently

more successful approach when he compared the squares of the wave-

lengths of the principal rays of the solar spectrum. For example,

using the sodium D line as his starting point, Peslin proposed the

following relationships;45
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L is the wavelength of the observed ray.

Taking a mean value of 589.6 x10
-9

 metres for the length of the

sodium D ray, Peslin obtained values for the A, E, and G rays, which

were very close to the observed values, although the difference was

becoming larger for the G ray.

Peslin used the analogy of sound to justify his relation between

the different wavelengths but it was not the simple picture of a

stretched string which had led earlier researchers to look for

harmonics i.e. integral multiples of a fundemental frequency. Such a
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situation, argued Peslin, only held good for transverse or longitudinal

waves in strings or in the air columns of wind instruments.

'But (elastic theory) shows that this law ceases

to be true when the molecular displacements do not

have a constant direction in the vibrating body; and

what replaces it for the general case, for example

the vibration of an elastic prism submitted to any

internal displacement whatever,is that it is the

square of the elementary vibrations...which are in

a simple relationship.'
46

In this work of Peslin, completed in 1872, he uses a mechanical

analogy to justify the mathematical relationship he has found. It is

also interesting to note that he was an amateur in this field, just as

was Balmer the Swiss shoolteacher, who in 1884 was to formulate the

spectral series formula which bears his name. Balmer, however, did not

feel the need to make any mechanical justification for the vibrations;

to him it was purely a problem of mathematical proportions, not of

describing physical reality. 47 Spectral analysis lent itself easily to

a study by mathematically trained amateurs; the results were pdblished

and anyone could apply themselves to solving the puzzle. Peslin, a

Polytechnicien, had already (as we examined in the chapter on the

Second Empire) beaten the professional meteorologists of the Paris

Observatory in developing a mathematical relationship, incorporating

the Coriolis force, between isobar spacing and wind velocity.

Not much work in spectroscopy was done in the remainder of the

1870's and it was only in the following decade that researchers of the

Ecole Polytechnique began to add anything to the body of knowledge on

the subject. In 1886, Cornu announced that the American physicist,

Henry Rowlands had presented the School with an example of his concave

diffraction grating. This instrument which could bring a spectrum of
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very high resolution to a sharp focus without additional lenses, was to

be put to very good use by the research assistant working under Cornu,

Henri Deslandres (1853-1948). But first we must consider the warning

which Cornu was to give in 1885, against carrying the analogy of

acoustical vibrations too far in spectroscopic research. He agreed

that the analogy was a very seductive one, but that any numerical

relationship based on successive terms of a series of whole numbers,

always broke down when compared with actual observational data.

Appararently unaware that Peslin had come to the same conclusion more

than ten years before, Cornu appealed to investigators to get rid of

the preconceived idea that there existed a simple law like that of

musical harmonics.

'..This law of whole numbers only applies to a very

particular form of sounding body whose type is the

cylindrical column whose length is very great compared

to its section. If the form of the vibrating body differs

from this special type,the relation between the numbers

becomes very complex'.
48

Prom this we can see that Cornu is not against the acoustical

analogy as such, he simply considered it 'puerile'to look for very

simple laws, for this would be to attribute ;

'to the structure of incandescent molecules,a mechanical

constitution which the whole of chemical and physical

phenomena hardly justify'.49

So this is not a positivist rejection of molecules and atoms but

simply a caution against the imposition of preconceived mathematical

ideas, and an exhortation to investigators to find some more complex

law to connect the regularities of spectral lines. And as Cornu was to

supervise the research of Deslandres in spectroscopy in the following

years of the decade, it is not surprising that his student tried to
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spectral lines.

Deslandres made his mark with two papers published in the Comptes 

rendus in 1886 and 1887 on the investigation of the band spectra of

molecules. In his first paper he examined the relationship between the

successive lines in the bands emitted by nitrogen. A discharge was

passed through the gas at nearly normal pressures and the glow around

the negative terminal examined spectroscopically. The first general

conclusion which Deslandres arrived at was expressed as a simple

mathematical law;

'The intervals frcm one ray to the next, expressed

in numbers of vibrations or as the inverse of the

the wavelength, are practically in an arithmetical

progression'. 50

While he continued to use the acoustical analogy to give some

physical meaning to his mathematical law, he consigned this to a long

footnote. He compared the intervals between the rays in a band and the

edge ray, which he said were in the ratio of the square of whole num-

bers, to the modes of vibrations of a rod which is vibrating trans-

versally, while the relationship between successive edge rays was com-

pared with successive harmonics of the rod vibrating in longitudinal

mode. It was prudent to separate the mathematical relationship from the

hypothetical physical explanation, so that the former would stand even

if the the latter was rejected as being metaphysical or unverifiable.

In the following year he extended his work to include the relation-

ship between bands, and his doctoral thesis of 1888 enunciated a

general law relating both to successive bands and to lines in a band.

These laws were found to be generally valid, were useful in the classi-

fication of molecular spectra, and came to find an explanation in quan-

tum theory in the twentieth century. After being awarded his doctorate
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in 1888, Deslandres left the Polytechnique to go to the Paris Obser-

vatory where the director, Admiral Mouchez wished to strengthen the

astrophysical work. Around the turn of the century Deslandres moved to

Meudon to work with Janssen and after the latter's death, became the

director of that establishment. Thus Deslandres was very much in the

Polytechnique astronomer/physicist tradition, only concerning himself

with different aspects of optical research.

But it would be wrong to think that the graduates of the Ecole

Polytechnique only worked in the field of optics even though this was

certainly the predominant one. lAit have already encountered Gaugain in a

previous chapter working on the 'condensing' properties of various

materials, and there would be several other polytechniciens producing

research in other aspects of electricity in the remaining years of the

century. Most of these would be engineers and some of the work was of

an applied electrical engineering nature, by men responsible for the

state's telegraph and telephone system, for example. It should be empha-

sised that there were few polytechniciens working in the universit‘

system, either in the faculties, where of course most research went on,

or in the lycees. Thus we would not expect them to be responsible for

much 'pure' research, and in general this is the case, although there

is the unusual example of Jules Moutier, the teacher of Pierre Duhem at

the College Stanislas.

Moutier published research in the Comptes rendus in the 1870's in

which he dealt with the force between two current carrying conductors

from a mechanical point of view, regarding electricity as being caused

by the vibratory motion of the ether. Taking the ether as a fluid to

which it is possible to apply the laws of Bernouilli, and making

assumptions about the pressure and velocity of the ether, Moutier

succeeded in arriving at known formulae.
51
 This is a continuation of

work begun in the latter part of the Second Empire when Moutier put
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forward the hypothesis that the electrostatic charge on a body is a

measure of the velocity of ether in that body. In a neutral body the

ether has a certain velocity, and accordingly as to whether the body is

electrified positively or negatively, this velocity of the ether is

either increased or decreased. Moutier used this hypothesis to explain

electrification by friction.
52

Duhem, who as a result of Moutier's teaching left the College

Stanislas as a 'convinced partisan of mechanism', said of him that;

' He saw the ideal of physics in an explanation of the material

universe constructed in the manner of the atomists and the

Cartesians'. 53

It is, however, probably an indication that Moutier's ideas did

not find much favour in the highest levels of French science, that

although a prolific producer of scientific papers , some 150 in all,

most of them were published, not in the Comptes rendus but the Bulletin 

de la Societ  Philomatique.

But, as we have said, few graduates of the school were teachers,

the best directed themselves towards careers as state engineers, and

probably the most successful of these in this period was Marcel Deprez

(1843-1918). After graduating from the Ecole des Mines in the 1860's

he had worked on steam engine design, improving locomotive valve gear,

but during the 1870's he turned to the design and manufacture of

current meters and small electric motors. In 1886 in an experiment

financed by the Rothschilds, he transmitted electrical power from Creil

to Paris, a distance of some 60 kilometres.
54
 A steam locomotive in

Creil, developing about 110 H.P., operated a gramffe dynamo, and the

power generated was transmitted to Paris at about 6000 volts through a

bronze, partially insulated wire of 5mm diameter. At the Paris end

another gramme machine acting as a motor, converted the electrical
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energy to mechanical work. The overall efficiency of the system was

about 44%. The trials took place under the eyes of a commission of the

Academy (all of whom were products of the Ecole Polytechnique )

presided over by the mathematician Bertrand, and with the participation

of Becquerel,Cornu and Levy. In spite of some windy weather conditions,

which caused the suspended transmission cable to come into contact with

some telegraph lines, burning out two telegraph machines in the office

at St Denis, the trials were considered to be something of a success,

although an overall efficiency of 50% had been hoped for. 55 Six years

later Deprez reported to the Academy on his experiments transporting

power from a hydroelectric station to the town of Bourganeuf,14

kilometres away,employing, as he had before,a D.C. generating system.56

Deprez, who was elected to the mechanics section of the Academy in

1886, became an early partisan of high voltage AC power transmission.

As Polytechniciens were responsible for the state's telegraph and

telephone systems, it is to be expected that they would make some

contribution to the discussion of the technical problems which emerged

in the 1880's in relation to the transmission of the human voice over

telephone lines. The requirements of the telephone line, (its need to

reproduce intelligible speech) were quite different from those of the

telegraph line which needed only to maintain the separation of a

succession of simple pulses. Papers on this subject came mainly from

two telegraph engineers working together, Mercadier and Vaschy, and it

is clear that at least by 1889 they were aware of the need to increase

the self inductance of the wire, a question which had split the practi-

cal men and the Maxwellian theorists in Britain. 57 Earlier work by

Vaschy in the decade had referred to Maxwell's Treatise on electricity

and magnetism and he too, like Maxwell, turned his attention to the

role of the medium in the transmission of ' electrostatic action'.

Vaschy used a different, much simpler treatment than Maxwell's and
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arrived at Identical expressions for the tension and pressure in the

medium between two electrified conductors.
58

This work of Vaschy and Deprez would probably not have been

considered physics at all. Both men were state engineers and Vaschy was

very much associated with the Societe Internationale des electriciens,

and the majority of his research papers were published in the journal,

Lumiere Electrique. But their research is worth mentioning here because

underpinning it was the physics training of the Ecole Polytechnique,

where it was recognised that the progress of electricity at the end of

the century made the study of physics more important for engineers and

officers.
59
 So, whereas in the first half of the century the school

was the pepiniere of the Paris Observatory, and the study of optics and

its application to astronomy ranked high in prestige within the physics

programme, the unification of light and electricity by Maxwell (whose

ideas entered France through the medium of Polytechnicien translators

and annotators), together with the growth of electrical technology

which the state engineers needed to dominate, put a similar importance

on electricity from the 1870's onwards.

e.The Ecole  Normale.

The Ecole Normale would continue in the Third Republic to train

science teachers for the secondary school system. To be able to clarify

difficult concepts and to illustrate them confidently by practical

demonstration, was considered the highest attribute of the teacher, by

Bertin, by this time the deputy director of the school. Bertin was, at

least by the account of one of his students, Brillouin, a warm, lively

man with a passion for whist, beer and operettas. 60 He saw his role at

the school as being that of an educator of science teachers, not as

someone who should encourage a research spirit among his students.

This approach did not entirely satisfy Brillouin, although he did not
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criticise his teacher for it, because to him, teaching was simply the

means of undertaking scientific research. Brillouin, in a way similar

to Duhem, recalls with affection, Bertin's 'jesting scepticism'a

towards mechanical theories. Bertin disliked works of mathematical

physics and although, Brillouin tells us, he bought them for the

school's library, he did not encourage his students to read them. In

this way he obtained Maxwell's Traite de l'electricit4 and his other
works on kinetic theory of gases, but would warn his students in a

joking manner, not to let themselves be carried away by their study.

Bertin preferred his students to read books ;

'..of easy theory and difficult experimentation,which

he would point out to us in each lecture'
62

When students left the school they had obtained virtually all

their knowledge of physics from Bertin. Brillouin does explain that

they attended some lectures at the Paris Faculty, but found that Jamin

dealt with questions they had mostly covered in the lycee, while

Desains commented on, rather than explained',
63 the optical experiments

he had undertaken. Students also attended some lectures of Briot and

Bertrand on theoretical physics at the Paris faculty, and some by Levy

and Mascart at the College de France, but Bertin was by far the

greatest formative influence.

On the sudden death of Bertin in 1884, his place was taken by

Jules Violle (1841-1923), and another physics post was created and held

briefly for about a year by E.M.L. Bouty, who in turn was succeeded by

M.L. Brillouin (1854-1948). The research of Violle and Brillouin will

be considered in a later chapter, here we will simply make the point

that in the period around the turn of the century, when physics under-

went rapid transformations in its theoretical foundations, the Ecole

A
Normale had, as its maitres de conferences two very able physicists,

who unlike Verdet and Bertin before them, were still actively engaged
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in original work. Of the two, Brillouin was the more influential, both

as a research worker himself, and as a teacher who comes closer to

creating something of a research school in physics. Interested in the

history and philosophy of science, and a partisan of the kinetic and

atomic theories, he played an important role in the formation of a new

generation of physicists who came to maturity in the years around the

end the century. This new generation, prominent among which were Perrin

and Langevin, was to play a significant part in the new work which was

done in radioactivity, ionisation, cathode rays and X rays, etc.,

around 1900. Much of this work was to be carried out in the labora-

tories of the Ecole Normale, testimony to the tact that by the end of

the century the school was not simply training science teachers, but

forming 'savants' with a spirit of original research.

But in the 1870's and early 1880's, while Bertin was responsible

for physics at the Ecole Normale , there was little research done at

the school, although Bertin himself, an active member of the Societ‘ de

physique , contributed ten research papers to it in the period 1873 -

1885. His research tended to continue earlier work on polarisation and

magnetic polarisation, and some of his contributions were joint papers

with the instrument maker Dubosq. Most normalien students on the other

hand still had to wait until they had left the school before they began

their research. The research of these normaliens, in all levels of the

universit4 system, will be considered when their particular insti-

tutions are examined.

Uhen Violle came to the school in 1884 from the Faculty of

Grenoble, to replace Bertin, he had been working on the determination

of the velocity of sound, using the water pipes of that town. Although

now based in Paris, he continued this work in collaboration with

Theodore Vautier (b. 1852), of the Grenoble Faculty and in 1890 a brief

note from the two experimenters was presented to the Academy by
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Mascart. The principal conclusion of their paper was that there were no

dispersion effects in the motion of sound through air; i.e. all fre-

quencies travel at the same speed. It also concluded that the sharp

pulse of sound produced by a pistol shot, although initially travelling

faster, progressively slowed down until it travelled at the normal

speed of a sound wave.64 This research field was to occupy Violle for

the next twenty years and he was to report on it at the 1900 Inter-

national Congress of physics.

Although in this period there were young agreg‘ preParateurs 

working for their doctorates using the laboratory facilities of the

school, their contribution to new knowledge in physics would only

become influential in the last years of the century, and will be

considered later.

i.The Paris Faculty

The two physics professors, Jamin and Desains, continued in their

posts until the 1880's, Jamin also directing the physics research

laboratory and Desains the physics teaching laboratory. In the decade

up to 1880, it can be seen from table 4.vii,(overleaf) that the number

of doctoral theses in topics which could be described as physics and

were defended at the Paris Faculty, showed no significant increase over

previous decades, despite the establishment of the physics research

laboratory. In the following decade,(1881-1890), however, the increase

is quite marked, particularly after Jamin's death in 1886 when the

chair was taken over by Gabriel Lippmann (1845-1921). Lippmann, born in

Luxembourg, spoke fluent German and had worked with Bertin on the

Annales de chimie et de physique abstracting German articles for the

journal. He worked for a period in the laboratory of Kirchhoff on the

subject of electrocapillarity (the variation of surface tension at the

meniscus between two liquids when a potential difference is applied

across the interface), research for which he gained his doctorate at



Doctoral theses submitted to the Paris Faculty
of Sciences.

Table 4 vii.
Doctoral theses submitted in the decade 1871-1880.

Category Total
year ght Vi s.

and
waves

Gen.
Phys.

P ys
Total

As .a Me
Phs

Nat
Che

Men

1871 1 2 1 4 4
1872 1 2 4 1 8 13 12
1873 1 4 6 10 8
1874 1 1 4 1 6 11 10
1875 2 5 7 7
1876 1 3 5 1 8 18 15
1877 2 2 5 1 10 19 15
1878 1 4 2 8 17* 14
1879 2 1 4 6 1 11 24 22
1880 1 1 4 6 12 23 22

Tota 9 3 4 30 27 6 75 146 129

Physics papers as percentage of total 20.5%
Of the physics theses; 30% light,40% electricity,

13% general physics, 7% heat,
10% vibrations and waves.

Theses submitted in the decade 1881-1890
Category

Phys
Total

VA-a- Maths Met
Phs
Globe

Nat
Chem
Med

Total
rhe-
ses

Menyear lght ht El
mag

Vibs.
and
Waves

Gen.
Phys

1881 1 2 3 1 2 11 17 16
1882 1 1 1 1 4 1 5 1 13 24 24
1883 0 3 1 6 10 9
1884 1 1 2 1 1 1 15 20 20
1885 1 1 2 5 2 18 28* 28
18861 23 6 2 4 1 19 32 31
1887 2 2 2 3 2 17 26 26
1888 3 1 4 2 10 3 2 22 37 37
1889 1 1 3 1 6 2 2 23 33 33
1890 2 1 3 2 8 4 4 23 39 38

Total 11 9 17 6 43 6 31 18 167 266 262

Physics papers as percentage of total 16.2%
Of the physics papers; 26% light, 40% electricity,

14% general physics, 21% heat,
0% vibrations and waves.

* Indicates that a thesis on a proposition given by the
faculty was submitted.

S ouve...e_	 M AtaE (11.ote 79 CIL 2).
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the Paris Faculty in 1875. 65 Fran the 1890's onwards he tended to

concentrate on work employing interferametric methods in the

production of colour photographs, work for which he was to win the

Nobel prize in the twentieth century. Both from Bertin and from

Kirchhoff he assimilated a generally positivist approach towards

science, and he was above all an experimentalist who appeared to be

unmoved by the ferment of ideas generated in physics at the end of the

century.

The other chairholder, Desains, as we saw in a previous chapter,

worked with a number of collaborators, including Edouard Branly and

Pierre Curie. Branly was first Desain's chef de travaux , and then his

deputy director in the teaching laboratory until he left to make his

career in the Catholic Institute in Paris, after a personal disagree-

ment. Branly's place was taken by another normalien, J.L Mouton (1844-

-1895) who had been awarded his doctorate in 1876 for his research on

oscillatory circuits.

In 1885, E.M.L Bouty (1846-1922) succeeded to Desain's chair.

Bouty's career follows the old-fashioned pattern of the normalien who

has to spend his early years as a lycee teacher, begining in the

provinces. It had already become rather unusual for someone to spend

some 15 or more years of his career in secondary education before gain-

ing a faculty post. Bouty taught first in Montauban and then in Rheims,

and during this time he worked for his doctorate which he gained in

1874. From 1876 to 1883 he taught at the prestigious Parisian lycee of

St. Louis and continued to do research there in magnetism and various

different aspects associated with electrolysis, and was a frequent con-

tributor to the meetings of the Societe de physique. Electrolysis was

possibly his favoured area because it was fairly inexpensive and

because, being on the borders between physics and chemistry, it fitted

best his role as a teacher of physical science. All of Bouty's research
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was in the fields of magnetism, electricity and electro- magnetism, and

he was to gain the Lacaze prize in 1895 and was elected to the physics

section of the Academy in 1908.

In the early part of this period, Jamin and some of his students

worked on electrical calorimetry, constant flow methods for finding the

specific heat of gases and liquids, and electrical methods to determine

latent heat. Jamin's interest in electricity; (it was he who introduced

the ring armature generator of Zenobe Gramme to the Academy in 187166),

obviously influenced the research direction of doctoral candidates in

this period, and electricity became the most popular field of investi-

gation. We can say that in most of the very extensive research into

the various aspects of electricity and magnetism, the French were

looking for laws not causes, and this is particularly true of doctoral

theses. The examiners of the Faculty expected to judge theses which

were well executed experimentally, and firmly based on existing

paradigms, not ones which speculated and hypothesised excessively about

underlying causes. Doctoral theses measured relationships between

observable phenomena, and if possible linked them by mathematical laws;

the causes of these phenamena were not their concern. This positivist

tradition is very clearly illustrated in the work of J.M.R. Benoit

(1844-1922) who presented his doctoral thesis in 1873, and who later

went on to became the director of the Bureau Interational des Poids et

Mesures. The title of Benoit's doctoral thesis was 'Etudes experimr

entales sur la resistance electriques des metaux et sa variation sous

l'influence de la temperature', and a summary of the conclusions of the

thesis was published in the Comptes rendus in the same year. 67 Benoit

found the resistance of various metals over a temperature range zero

Celsius to 860 C, using as his fixed points;

1.Boiling point of water 	 100 C

0
2.'	 II	 1 1 mercury 360 C
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0

3.'
I I I
	

I I sulphur 440 C

4.' ly	 1 1 cadmium 860°C

Representing the curve of resistance against temperature by the

formula,

R
t
=R

0 (1+ at + bt
2

)

Benoit plotted a curve for each metal using the method of least

squares, and found the value of the coefficients a and b. It was work

which, without being particularly imaginative, helped the establishment

of electrical science on a solid empirical basis. Benoit, carrying on

the French tradition of precise measurement, determined the resistance/

temperature relationship to the highest levels of accuracy possible at

the time.

Doctoral candidates did not necessarily use the laboratories of

the Paris Faculty but used the facilities of the insitution in which

they were employed. L. M. Brillouin an agrege preparateur at the

College de France, having found in Maxwell's treatise on electricity

and magnetism;

'..a succint indication of a method of camparison of

the coefficient of induction of coils, I undertook

to study the conditions in which these methods are

correct and exact.'
68

This research, carried out in the College, was probably more

influenced by its physics professor, Mascart, who had included some of

Maxwell's ideas in his textbook on electricity, rather than by the

Faculty staff. Brillouin successfully defended his thesis in 1882, and

reported on this research to the AFas meeting of the same year.

But there was research going on throughout this period in the

teaching laboratory of the Faculty. Pierre Curie (1859-1906) had gained

the licence in physical science in 1877 and in the following year was

appointed Desains' assistant in the teaching laboratory. After some
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collaborative papers with Desains, Curie embarked on a programme of

research on the physics of crystals, carried out with his elder brother

Paul-Jacques (b. 1856), under the direction of the mineralogist

Friedel. Paul was to gain his doctorate in 1888 and become professor of

mineralogy at the Faculty of Montpellier.

The first joint publications of the brothers in the Comptes 

rendus, had appeared in August 1880, and was followed in early 1881 by

a paper which summarised all their findings, and gave general laws for

what was to become known as the piezo-electric effect. This effect, the

exhibiting by certain unsymmetrical crystals, of a potential difference

across their faces when subject to pressure, was discovered by the

brothers when they were investigating at Friedel's suggestion, an older

known effect of crystals. This other effect, known as pyro-electri-

city, relates to the appearance of electric charges across the faces of

the crystal when it is heated. In a paper published in 1881 ,the laws

governing piezo-electric E.M.F. appear for the first time. 69 These

laws can be summarised by saying that the E.M.F. produced when a tourma-

line crystal is compressed is proportional to the variation in pressure

and independent of the dimensions of the crystal. This work was

presented to a meeting of the Societe de Physique later in the decade.

In 1882 Pierre Curie moved to the Ecole Municipale de Physique et

de Chimie Industrielles where he was first appointed to be the director

of laboratory work and then in 1894, professor of physics. His later

researches, first on magnetism and then on radioactivity, which will be

considered in the next chapter, were carried out at the school.

But it was not only in Friedel's laboroatory in the Faculty, that

research was undertaken. A young Russian, Stoletow, working in the

physics teaching laboratory began,in the late 1880's to work in a new

research field which had been opened up by Hertz's experiments on
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electro-mgnetic waves. In the course of his experiments Hertz had

found that a spark crossed a gap more readily if the gap was illumi-

nated with ultra-violet light. While Hertz and others had used

induction coils to produce potental differences across the gap of many

thousands of volts, Stoletow investigated the effect using only low

voltages. He connected one electrode of a cell to a metal disc which

was separated by a thin layer of air from a metal grid which was con-

nected to the other electrode of the cell through a Thomson galvano-

meter. If the metal disc was connected to the negative pole of the

cell and illuminated with ultra violet light, a current was seen to

flow through the galvanometer. If the disc was made positive there was

only a very small deviation in the galvanometer. Stoletow concluded

that the 'illuminated air acquires a sort of unipolar conductivity' •
70

Cleaning the face of the metal disc increased the effect, as did

increasing the intensity of the source of ultra-violet. Stoletow tried

a number of different metals for his illuminated disc; but aluminium

was the most effective, then zinc and lead, which made the researcher

think that the those metals whose spectrum was richest in ultra-violet

gave rise to bigger currents. He also observed that they were the most

positive metals in Volta's (i.e the electrochemical) series.

It is an index of a new receptivity to foreign research in France

that a doctoral student could adopt for a research project, work which

was very much on the moving frontier of science, although of course the

majority of doctoral research tended to be, like that of Benoit, on

more firmly established theoretical bases. Wb will see later that

research students of the Paris Faculty were to be very prominent in the

new revolutionary areas of physics which opened up at the end of the

century.

Before leaving the Paris Faculty,the research of the preparateur
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Louis-George Gouy (1854-1926),who worked under both Jamin and Desains,

will be examined. Gouy obtained his doctorate in 1879, with a thesis

presented to the Paris Faculty on the photometric analysis of coloured

flames. After a period of work under Jamin, which terminated after a

disagreement over the interpretation of the 'black spot' observed in a

soap film just before it breaks, Gouy became a preparateur in the Paris

Faculty laboratory of Paul Desains.

Gouy was both a theoretician and an able experimentalist with an

interest in some of the more obscure and neglected aspects of optical

research, and in 1880 he addressed himself to the question of the

velocity of light through a dispersive medium. In a dispersive medium,

and air must be considered as feebly dispersive, the different wave-

lengths which constitute white light will travel at different velo-

cities. Thus there is the question of what really is observed, when one

talks of the 'velocity of light'. Roemer's observations on the moons of

Jupiter, and the much more recent velocity determinations first of

Fizeau and then Cornu, observed intermittent pulses of light. Gouy

argued that;

'..if the milieu is endowed with dispersive properties

the amplitude is transported with a velocity which

is not that of the waves...(this would not take

place)..if the medium lacked dispersive properties,

but this example is enough to show the necessity of

not being restricted to such media, and to treat the

problem from a more general point of view'.71

This treatment first of all encountered the qpposition of Cornu,

who perhaps felt that his own determination of the velocity of light

was under attack, and then a few years later its originality was

questioned by the English physicist, Lord Rayleigh. In a note to the

Academy in 1883, Rayeigh claimed that his 1877 book Theory of sound had
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first carried the mathematical expression for the velocity of a pulse,

which Rayleigh called the 'group velocity' to distinguish it from the

wave velocity. But in his book, Rayleigh, although applying his

analysis to a number of cases, had not applied it to light, because,

as he explained; 'nobody had supposed that the velocity varied with

wavelength' •72 Later, the experiment of Young and Forbes in England,

in 1882, showed that it did so vary. Not surprisingly, Gouy rejected

Rayleigh's priority claim, insisting that he knew nothing of his work

on sound, and that in any case the treatment applied there could be

applied to light only after a considerable amount of research and

investigation into the properties of a light pulse, had been made. The

problem was quite a different one from that dealt with by Rayleigh

originally, and he had only extended it to light after the Young and

Forbes experiment, which of course, appeared after Gouy's 1880 paper. 73

Gouy continued his work in this area for the next few years,

extending his treatment to deal with the method employed by Foucault to

find the velocity of light; the turning mirror. He showed that his

'group velocity' conclusion was valid here as well, and then used a

spinning mirror type of apparatus to show the difference between the

velocity of red and blue light in carbon disulphide. This substance

was used because of its known high dispersive power. Michelson had

already shown with white light travelling through carbon disulphide,

that Gouy's expression for the velocity of a pulse in a dispersive

medium gave better agreement with experimental results, than the

previous, more simple treatment of wave velocity.74

Gouy moved to the Faculty of Lyons in 1888 and remained there for

the rest of his life. In the same year he published in the Journal de

Physique, a short article on Brownian motion, the random motion of

pollen particles in water viewed through a microscope, which had first

been observed in 1827 by the English botanist Robert Brown.
75

 Although
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it cannot be said that this insight of Gouy owed its genesis to the

Paris Faculty, and is independent of any particular institution, it

appears to have been formulated while he was still working there and is

therefore included in this section.	 Gouy was of the cpinion that the

phenomenon of Brownian motion had not been sufficiently studied by

physicists, and that it raised many important and interesting questions

in thermodynamics. Gouy realised that the observed motion was not

caused by convection currents or vibrations of the particles them-

selves, but that they were being agitated, jostled one might say, by

the internal agitation of the liquid. Not that such an idea was new,

for Maxwell, addressing a BAAS meeting in 1873, pointed out to his

audience that Lucretius explained that the random motion of the motes

in a sunbeam;

'..is tut a result of the Ear more complicated motion of the

the invisible atoms which knock the motes about. '76

Gouy's conclusion on the movement of the pollen particles, echoes

that of Maxwell fifteen years previously;

'Brownian motion shows us, therefore, certainly not the

movements of the molecules, but something which is

very close to this, and furnishes us with direct and

visible proof of the correctness of present hypotheses

on the nature of heat. If one adopts these views, then

this phenomenon, the study of which is far from being

finished, most certainly takes on an importance

of the first order for molecular physics.' 77

Whether he had heard of Maxwell's speech, or knew the specific

reference to Lucretius, ones does not know, but it is certain that it

was Gouy's article which was to influence later French experiments. It

would not be, however, until more than fifteen years later that an

experimentalist (apart from Gouy himself) took up this idea, when Jean
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Perrin began his series of experiments which were to provide direct

evidence for the real existence of molecules.

S—The provincial facultieo.

The striking feature of this period is the growth of research from

the provincial faculties and although some of it was done by young

'birds of passage' whose ambitions were focussed on Paris, there is

much which is the work of men who were content to remain in the

provinces. Indeed, in this period, some provincial faculties were

begining to attain national recognition of their supremacy in parti-

cular areas of expertise. On the other hand it must be said that the

prestige of the provincial doctorate remained low, and those who wanted

to make a career in the Faculty system, still required a doctorate from

the Paris Faculty. For this reason the number of doctorates awarded by

the provincial faculties remained very low (35 in the period fram 1871

to 1890 of which only three were in the area of physics) 78

If we were to judge the importance of a faculty within the system,

by the number of doctorates it awarded in this period, Montpellier with

ten, would be the leader. From the point of view of research published

in national journals and presented to national meetings we have to look

elsewhere, and the Faculty of Nancy, already referred to in the section

on the AFas, would rank very highly. It was in the 1880's that its

professor of physics, Blondlot, began the research which was to enhance

the prestige of Nancy and lead him to be elected a corresponding member

of the physics section of the Academy in 1894, and to win the

prestigious Lacaze prize in the early twentieth century. In 1888,

Blondlot and his colleague Bichat, following research by Hertz in

Germany, began research on the effect of light on the conductivity of

the air gap between two charged conductors. However, instead of

irradiating a metal plate they used a vertical layer or 'curtain' of
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water. They found that whether the water was connected to the positive

or the negative terminal of a cell, whether the water was in motion or

stationary, there was no effect. If they used a metal disc and

employed their curtain of water simply as a screen between the source

and the disc, a current was seen to flow:
9
 The conclusion drawn was

that ;

"The transparency of water for the effective rays

is perfect, 80

The further conclusion that, therefore, the rays which caused the

effect were not 'calorific rays' (infra-red), contributed little new to

a discussion in which Hertz, Wiedemann, Ebert and Hallwachs in Germany

had already published that it was the other extreme of the spectrum

which affected the metal surface.

Blondlot was a fairly prolific research worker at this time with

many of his papers finding their way into the Comptes rendus, and some

into the Annales de chimie et de physique. But if it must be said that

his experimental arrangements were often ingenious, his choice of

subject was sometimes conservative, simply submitting to new experi-

mental test, questions which had long been settled. His experiment to

show the conductivity of heated air for example, was concerned with

defending an accepted corpus of knowledge; the conclusions which Edmond

Becquerel had arrived at (see chapter 2) some twenty five years before.

When Blondlot makes the claim that his experiment put the work of

Becquerel beyond all doubt, one cannot avoid the feeling that this was

directed more towards securing the good-will of a figure already well

established in the French scientific community, rather than advancing

new knowledge. Certainly Blondlot made no new conjectures concerning

the hypothesis of conduction in the heated gas, not even re-examining

the suggestion which Becquerel had advanced (and rejected) that the

heated cathode itself emits chargecarriers.
81
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In this decade Blondlot also did some work on dielectric double

refraction; the rotation of the plane of polarisation of polarised

light when passing though certain dielectric media in a powerful

electric field. Blondlot's experiment, to see if the optical rotation

took place simultaneously with the applied field, added little to the

knowledge of the phenomenon which had first been discovered by Dr. Kerr

in 1875.
82
 Working with his colleague, Bichat, and using the skills of

a Nancy instrument maker he developed a new type of electrometer which

could measure very high voltages, but it does not seem to have gained

much popularity. It was in the following decade that Blondlot made the

Nancy Faculty the leading centre in France for the study of 'Hertzian'

radiation.

In this period another provincial faculty, that of Marseilles,

became the centre for the precise measurement of length, based on

interferametric methods, through the work of its physics professor Mace

de Lepinay (b.1851). The polytechnicien, Charles Fabry (1867-1945),

was also to work there from 1894, devising with Alfred Perot, the inter-

ferameter which bears their names and which was used for the deter-

mination of a series of wavelengths of light which were used as inter-

national standards.83 De Lepinay, having successfully defended his

doctoral thesis on double refraction in 1879, began to work, using

inteferametric techniques which were already known but which he applied

in new ways, to measure very small lengths with greater precision than

ever before. For example in 1885 he measured the thickness of a thin

sheet of quartz using a method based on the observation of Talbot's

fringes. Same half century before, the Englishman H.F. Talbot had

observed that if a spectrum is viewed though a hole , one half of which

is covered by an extremely thin sheet of glass or mica, the spectrum

will appear covered along its entire length with fine parallel dark

bands. The wavelength corresponding to the centre of each of these
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dark bands is related to the thickness of the sheet and the refractive

index of the material for the corresponding wavelength. Using this

technique, de Lepinay measured the thickness of a piece of quartz, of

about 4 mm thickness to an accuracy of plus or minus 0.000 001 cm. 84

These results were presented to the Academy in the form of a short

note, by Mascart.

Mascart presented another note to the Academy on a similar line

of research, for de Lepinay in the following year. Having shown that he

could neasure thickness to an extraordinary degree of accuracy, de

Lepinay went on to use a modification of the same nethod to measure the

wavelength of a particular wavelength of light. A number of resear-

chers, including Mascart, had measured the wavelength of the sodium D2

line using diffraction gratings, but there was a small but significant

difference between the results obtained by different experimenters. The

discrepancies came frcm the difficulty in constructing diffraction

gratings, and so cb Lepinay devised a method which could dispense with

this piece of apparatus. His previous paper had shown how he had used

Talbot's fringes to measure length and he now used the same method to

construct, or rather to employ a precision glass worker to construct

for him, a cube of glass of about 1cm
8
, the dimensions of whose sides

he knew exactly in terms of an integral number of wavelengths of sodium

D
2
 light.84 Thus the volume of the cube could be found in terms of the

wavelength. Next, de Lepinay weighed the cube in air and then in

distilled water, the loss of weight being the weight of the displaced

water and hence the volume of the cube could be found, by the relation-

ship between the milli-litre and the gramme. In this way the wave-

length of sodium D2 light was found to an accuracy of five significant

figures. De Lepinay had the cooperation of members of the International

Bureau of Weights and Measures in measuring this weight loss very

accurately.
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While the importance of precise measurement in the development of

physics should not be underestimated, and the French were the masters

of this science, it does seem to be work which lacks imagination. It

is true that the work of De Lepinay , and later Fabry and Perot, was

very ingenious, but its seems to indicate a feeling , on their part,

that physics was complete and that all that remained was to increase

the accuracy of already measured parameters.

Other faculties also began to establish for themselves, special

areas of research and expertise. Among these we could mention Lille,

which through the work of its physics professor Terquem, specialised

in acoustics research, or Montpellier where Crova specialised on work

on solar radiation. The prize competitions set by the Academy had a

certain influence on the direction of the research effort of phsyics

staff in the provinces. lib have already seen that one of the Academy's

prize campetitions in the Second Empire directed attention towards the

mechanical theory of heat. Another prize, the Bordin prize for the

mathematical sciences, was set in 1874 for a problem relating to heat

which was closer to the traditions and interests of French physicists,

for it dealt with radiant heat. This competition required of the

contestants that they carry out new calorimetric observations and

discuss and possibly incorporate old ones, in order to try to find

86
the true temperature of the sun's surface. 	 There were two separate

problems involved in the solution of the question; the first was to

measure the quantity of heat falling each second on unit area of the

earth's surface, and the second was to relate this quantity to the

temperature of the sun's surface.

In 1838 Pouillet had submitted a memoir to the Academy, in which

he described a new experiment to measure the rate at which heat

arrives at the earth's surface (known as the solar constant), using an

instrument which he had devised and called a 'pyrheliometer'. Pouillet
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computed the amount of heat arriving at the earth's surface, made some

correction for the amount which had been lost traversing the earth's

atmosphere, and then by simple geometry, calculated the rate at which

heat was being lost per unit area of the sun's surface. 87 Similar

measurements had been made in Britain in the first half of the century

by Forbes and John Herschel 
•88 

To relate the rate of heat lost from

the sun's surface to its temperature, Pouillet had two empirical

formulas to choose from; the older was Newton's law of cooling, which

connected the rate of heat lost to the excess temperature of the

body,and the second was the exponential law of Dulong and Petit which

they had submitted to an Academy competition in the early years of the

century. Choosing the law of Dulong and Petit, because they had shown

in their research that Newton's law does not hold good for large

temperature differences, Pouillet arrived at a temperature for the

sun's surface of between, 1471 C and 1761 C. But later researchers

had insisted that this must be too low because a burning glass was

known to be able to melt platinum, and the sun surface could not be at

a temperature lower than it produced on the surface of the earth.

Thus, in the second part of the century, the problem still remained to

be solved, and in addition the validity of Dulong and Petit's

exponential law of cooling was also at stake.

In fact there was only one candidate for the competition; Jules

Violle, at this stage of his career teaching at the Grenoble Faculty,

and his work, while not meriting the whole prize, won 2,000 francs.

Two other provincial research workers, who had not entered the

competition but had made contributions in the field, Cra y-a, of

Montpellier and a regular participant in the AFas and J.M.Vicaire

(b.1839), at this period professor of chemistry and metallurgy at the

Ecoles des mines in St. Etienne, were both given prizes of 1,000

Francs each.89 Violle and Crova had both done some new experimental
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work on measuring the solar constant; Violle with a colleague had made

simultaneous measurements using blackened thermometers, at different

altitudes on Mt. Blanc, while Crcva, working at a single level, had

employed almost identical apparatus to that used by Pouillet, thirty

years previously. Both arrived at empirical formulae for relating the

thickness of the air layer to the absorption of the incoming heat.

Crave did not attempt to link his value of two calories per minute per

square metre arriving at the limits of the atmosphere, to the sun's

temperature, and the report on Violle's work, said little about this

question except that Violle 'could not escape the uncertainties

inherent in the very principles on which he had to be based'.9° The

chemistry professor, Vicaire, did no experimental work on the subject,

but made a mathematical treatment employing Dulong and Petit's law.

Starting with Pcuillet's value of 1.75 calories per min. per square

metre, he arrived at a value of 1300% for the sun surface tempera-

ture, a value which he knew to be too low.

Although it might be said that none of the three provincials had

been able to contribute anything new to the discussion, the Academy had

directed their attention to a problem which had been neglected over the

previous thirty years, (and still seemed to evince no interest in the

capital) and which it considered was important to solve. Both Violle

and Crava were able to take advantage of their geographical locations

and collect data with camparitively inexpensive apparatus, but both

lacked an adequate theoretical relationship between the temperature of

an emitting surface and the rate at which its radiates energy. One can

infer that it was this lack of a relationship between the rate of

energy radiated and temperature (or at least one which could arrive at

a value for the sun's surface temperature which was not clearly in

error) which made the subject unattractive for most research



179

scientists. Even after the enunciation of the fourth power law by

Stefan in 1879, which was shown to give better agreement with the

earlier data of Provostaye, Desains and Despretz than could be achieved

using Dulong and Petit's law, little interest in this field of research

was shown in France.

K. The College de France and the Museum

As we considered in a previous chapter, Regnault at the College

had carried out a series of extremely precise experiments on the

velocity of sound. His successor, Mascart, began in the last years of

the Second Empire an equally painstaking programme of research to try

to detect the presence of the 'ether-wind'. This question of the

measurement of ether wind, was of the highest importance to the French

scientific community. It was of astronomical interest, affecting the

question of stellar aberration, it allowed the French to employ their

considerable skill in precise measurement using interferometric

techniques, and it could furnish further corroboration for the Fresnel

wave programme. Experiments by Arago and Babinet, earlier in the

century failed to detect any ether wind, and the experiment by Fizeau

was inconclusive. In 1870, the Academy was to direct the attention of

its physics community towards the solution of this problem by the

setting of one of its most prestigious prize competions; the Grand prix 

des sciences mathematiques. TO be judged by the mathematicians,

Liouville and Bertrand, and the physicists, Jamin, Fizeau and Edmond

Becquerel, the competition sought to examine experimentally how the

motion of source and observer modified the properties and mode of

propagation of light. 91

No prize was awarded during the period of the Second Empire,

although Mascart was given an encouragement of 2500 francs. Two years
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later,there being no other entries, and Mascart's researches being of a

very high order of precision, he was awarded the prize. The results of

his work were published ,in full in two issues of the Annales 

'•scientifiques de L'Ecole Normale Superieure, those of 1872 and 1874. 92

Mascart's articles began with an historical treatment of all the the

past unsucobssful attempts to measure an ether wind, and some of these

were repeated and new ones attempted. Fizeau's experiment on the

rotation of the plane of polarised light through a pile of plates,

measured at different times of the day and the year (see chapter 3.)

was repeated using a quartz crystal, with negative results. Mascart

also repeated the experiment of the Dutchman, Martin Hoek, using a very

precise piece of interferential apparatus; the refractometer developed

by Jamin. Again the results were negative.

In this experiment a light beam was split into two, and one beam

was sent through a tube of stationary water in one direction, and then

after two internal reflections by a prism, the beam of light came back

through air on a parallel path to the observing telescope. The other

beam traversed exactly the same path but in the opposite direction

before entering the telescope. So if there is an ether wind carried

along by the water, one beam traverses it in the same sense as the

'wind' and the other beam against it. If the ether wind produces a path

difference, rotating the whole instrument will produce a fringe shift,

but Mascart could never observe any movement even as small as one tenth

of a fringe.93 The results of all his painstaking experimental work

led Mascart to what was a rather disturbing conclusion for the theory

of the luminiferous ether;

'The general conclusion of this memoir will therefore

be (if one leaves out the experiment of Fizeau on the

rotation of the plane of polarisation by a stack of

glass plates) that the movement of the earth does not
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have any appreciable influence on optical phenomena

produced with a terrestrial source or with solar light.

These phenomena do not give us the way to demonstrate

the absolute movement of a body, and the only ones that

we can make evident, are relative movements. 94

The tradition of research at the College , the tradition of Biot

and Regnault, was thus ably continued by Mascart. However, his research

activity slackened after he was appointed director of the Bureau

Centrale Meteorologique in 1878, and the role of the Colfege as a

generator of new knowledge declined in this period. As for an

explanation of Mascart's results we have seen in the section on the

Ecole Polytechnique that Potier gave a theoretical explanation for the

failure of this type of experiment to detect an ether wind, as did the

Lille Faculty professor V.J. Boussinesq (1842-1929) using different

reasoning.

Research at the Museum continued to be in the hands of the

Becquerels. Although the work of Antoine-Cesar was at an end by this

time, his son Alexandre-Edmond was still active, and the third

generation Becquerel, Henri (1852-1908), began research around 1875.

Henri had been trained at the Ecole Polytechnique and entered the Corps 

des Ponts et Chaussees and worked very much in the tradition of re-

search established by his father and grandfather; rotation of the plane

of polarisation in magnetic fields, and phosphorescence and lumine-

scence. He obtained his doctorate in 1888 and in the following year

was elected to the physics section of the Academy. By the end of this

decade, with teaching posts at the Ecole Polytechnique and the Museum,

(aide naturaliste), and as an ingenieur de premiere classe in the

Corps de Ponts et Chaussees, and with a body of research behind him

which appeared important in the judgement of the leaders of the French
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scientific community, Becquerel effectively abandoned research. By the

early years of the 1890's Becquerel had succeeded to his father's

physics chairs at the Museum and at the Conservatoire, and by 1895 had

succeeded Potier to the physics teaching chair at the Polytechnique .

Thus his heavy administrative and teaching duties seemed to preclude

any further original research until his chance discovery of radio-

activity in 1895 stimulated a new burst of creative activity.

i.The Catholic Institutes.

In a nutber of works, Harry Paul has studied the Catholic Insti-

tutes, 95 and all that will be added in this thesis is a closer examina-

tion of some of the reseacrh in physics which was carried out in them.

Established in 1875, at the cost of great sacrifice by the Catholic

population of France, the primary aim of the Catholic Institutes was to

produce licencies to provide teaching staff for the Catholic secondary

schools. Their importance should not be over- emphasised; the over-

whelming majority of parents and even many devout Catholic ones,

continued to prefer to send their sons to the State faculties. In the

first ten years of their existence the Catholic Institutes produced

only 128 licencies in the sciences, and more than half of these came

from the Paris Institute. 96

What concerns us here is that the Institutes gave employment and

restricted research facilities to a small number of talented scientists

who work in the field of physics. At the Lille Institute the physics

professor was the A. Witz, a centralien engineer by training, who did

some work on steam and gas engines and wrote an influential treatise on

thermodynamics which went through four editions between 1872 and

97	 .
1924.	 Lille was the most important Institute after Paris and its

dean of the sciences Faculty was J. Chautard (1826-1901) who had spent

many years in the state system, most of them in Nancy. By the time he
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went to Lille he had a respectable body of research behind him, mostly

in electricity, including some work on the conduction of electricity

through low pressure gases. But the two most Important physicists

associated with the Catholic Institutes were without doubt, Branly

working in Paris and Amagat in Lyons.

Both of these men had already been working in the state sector,

and both, for differennt resons were pleased to have the opportunity to

leave it. Branly had been working under Desains at the Paris Faculty ,

but left after a personal disagreement and was offered 80,000 francs to

establish a physics laboratory and organise the teaching in the

Catholic Institute of Paris. He worked there for nearly fifteen years ,

doing fairly undistinguished research before the discovery of electro-

magnetic waves by Hertz redirected his research activity and led in

1890 to the discovery of the 'coherer' on which his reputation rests.

This device consisted of a glass tube containing metal filings whose

resistance fell from some high value (perhaps millions of ohms) to a

few thousand ohms or less when affected by a nearby spark. 98 In his

first paper on the subject, Branly reported that the effect occurred

when the spark was 20m. away and when spark and 'coherer' were in

different roams, although the full significance of the device as a

sensitive detector of electro-magnetic waves was not at this moment

appreciated. All of Branly's subsequent career was spent at the Paris

Institute working in an under-funded laboratory which had been declared

temporary when he joined it in 1875. In competition with Marie Curie

for a place in the physics section of the Academy in 1911, his scien-

tific credentials were considered superior and he won the election.

The other distinguished physicist in the Catholic Institutes,

Amagat, had been working at the normal school at Cluny, but he

accepted the offer of a physics post at the newly established Institute

of Lyons which brought him 50,000 francs to establish the physics
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laboratory and the services of the Lyons crafstman, Benevolo as chef de

travaux. 99 It was Benevolo who was responsible for the precision

engineering of Amagat's apparatus, which allowed him to extend the

investigation into the behaviour of gases up to extremely high

pressures.

Before arriving at Lyons, Amagat had maintained a constant stream

of research papers to the Comptes rendus examining the gas laws in

regions of ever higher pressure and temperature. He had redetermined

the value of the ratio of the specific heats of a gas using Clement and

Desormes method, employing some corrections which Cazin had proposed.

With this method he arrived at a value of 1.397, from which he calcu-

lated the mechanical equivalent of heat to be 434 kilogram-meters per

calorie. 
100 He achieved high pressures by screwing a piston into a

water filled cylinder, the method used by Andrews in 1860, and measured

these pressures by means of mercury manometers of enormous length.

While at Lyons, he mounted apparatus made by Benevolo in a mine-

shaft, 300 m. deep, and after an accident there transferred it to a

cliff side where the military fort of St. Just was situated above the

river Saone. 101 The apparatus, made up of many jointed sections, was

able to withstand pressures of up to 550 atmospheres without leaking.

Amagat also investigated departures from Boyle's law at very low

pressures (6.5 mm. to 10.5 mm.) and at different temperatures.

In none of his communications to the Academy did Amagat ever

hazard any explanation of a mechanism for the behaviour of the gas

under test; he was simply content to observe the phenomena over as wide

a range as possible and with the greatest possible precision. In this

respect he displays a positivist attitude; for him, precise experiment

leading to mathematical expressions linking the observations, repre-

sented the limit of legitimate scientific enquiry. Amagat left the

Lyons Institute in 1892, and went to teach in the Ecole Polytechnique,



185

and although Branly continued with some work on the propagation of

radio waves, the modest role of the Catholic Institutes in the pro-

duction of new knowledge in physics came virtually to an end.

It would be tempting to believe that those men who had Toted to

teach in the Catholic Institutes , and whose chance of ever making the

transition back into the state sector of higher education was remote,

might have felt less constraint in their choice of research topics, and

might have gone outside the well trodden paths so beloved by those

intent on making their career inside it. There is hardly enough

evidence to justify this Idea, however, because while both Branly and

Amagat pursued research which was somewhat peripheral to the principal

interests of France's oammunity of physicists, Amagat had begun his

within the state sector, and the elctro-magnetic research of Branly was

also being carried out by other French scientists, notably by Blondlot

of the Faculty of Nancy.

j. Physics at the end of the 1880's

Before going on to examine the work in physics during the last

decade of the century, a decade which would be both enormously fruitful

and, at the same time, destructive of much of the accumulated body of

physics knowledge, it would be useful to pause and take stock of the

situation in the science, and the state of mind of its practictioners

at the end of the 1880's. Is the feeling that physics was running out

of steam, that its paradigms were reaching exhaustion, simply an

imposition by a researcher caning to the field a century later and

making a judgement based on contemporary knowledge ? Was there a

feeling, in the French scientific community, that there was little new

to discover, that physics was now to be simply an activity of improving

the accuracy of constants and relations already found ? It has been

argued by Laurence Badash, 102
 
that the 1880's saw the growth of a
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pessimistic sentiment of 'completeness', among, not only physicists,

but astronomers and other natural scientists, in Britain and the USA,

although this position has been disputed by others ,particularly

Stephen Brush. 103

There is very little evidence of this sentiment in France, at

least in relation to any feeling of gloom or pessimism. Much of the

physics community had always found it more congenial or prudent to

describe phenomena and to measure relations between them, rather than

to seek causes or explanations. For these physicists, the ever increa-

sing precision of this description, without discussion of mechanisms,

was the very essence of scientific activity. Thus one would not expect

any gloom in France at the prospect of 'completeness' especially as

science as a 'next decimal place' activity, could never be repugnant to

a community which revered the exquisite precision of its Regnaults,

Foucaults, and Jamins for example. What else but a 'next decimal

place' activity, was the continuing work of Cornu on the velocity of

light, or Violle on the velocity of sound, or de Lepinay's interfero-

metric measurement of length ?

That most French physicists expressed themselves with a

positivist-sounding rhetoric is not in doubt, but this is not to say

that they lacked a scientific world view, lacked any beliefs about the

ultimate nature of the physical world, it is just that they did not

usually discuss them or even admit them. As Lucien Poincare was to say

of his compatriot physicists in the early years of the twentieth oent-

ury,'they did admit certain axioms which they did not discuss but which

are, properly speaking, metaphysical conceptions' ,they believed that

'physics must someday re-enter the domain of mechanics l and mechanics

was accepted without discussing its legitimacy. ,104 Poincare quoted

statements of Verdet, Jamin, Cornu and Violle over a span of half a

century to show that they believed that physics was coming under the
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laws of rational mechanics. In the 1870's there was also the spirited

defence of the reality of atoms by Yvon Villarceau (1813-1883) 1 an

astronomer at the Paris Observatory, whose career had begaun in the

days of Arago. Villarceau had ventured from his normal sphere of

astrcnamy into thermodynamics and had derived expressions for

Clausius's 'virial' theorem, and for the ratio of the principal

specific heats of a gasin the most simple possible case/ that is for

the situation;

'In which each molecule contains only a single atom'
105

His value of 5/3 did not correspond to any of the experimental

determinations which had been made, but two years later, the Germans

Kundt and Warburg measured the velocity of sound in mercury vapour, and

from this value found the ratio of the specific heats to be 1.67;

Villarceau' s 5/3. 106 Villarceau reported this German work to the

Academy and ended his note by denouncing the scepticism towards atoms,

manifested by Berthelot, and claiming that it would indefinitely retard

the progress of science if scientists waited until they could study

atoms under the microscope like bacilli before accepting their

reality.107 He also concluded;

'The generalisation and extension of hypotheses,. provide

us with a powerful means of investigation, on condition

that we campare these with observation'.
108

But there was also the belief among physicists that they had

banished metaphysics from their work, that their experiments were the

only way to arrive at the truth, and that their methods were the model

for the search for truth in other branches of human activity. They

admired themselves and fondly Imagined that other sectors of society

admired them too.

The speech of Romilly, the outgoing president of the Societe de

Physique in 1889 gives us some idea of the self-image of physicists at
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the time, and is worth quoting at some length.

'We find devoted friends on all sides because they know

that the physicist is bent upon an arduous labour which

will not bring him any monetary reward. They know that the

measurement of weight, the analysis of the sun's rays, the

researches on the Hall effect, have never enriched anyone..

At this time when we see the crowd throwing itself into

the struggle for position and fortune, the physicist, calm

and alone in his laboratory, meditates, experiments and

calculates. For the furiously ambitious there is the

struggle to live, one against the other, for the physicist

it is the struggle against nature for the truth. Truth is

the only objective of our society, and it is this disinter-

ested,this sublime goal, which inspires everyone around

us to sympathise with us and respect us.
109

Clearly, Hominy, an instrument maker rather than a savant , felt

enormous pride at being associated with the physics community, a

community endowed with a high status in the secular republic,and

moreover a cammunity which was beginning to regard itself as the

cultural, intellectual and even moral leadership of society. It felt

itself superior because it believed that science could explain

everything, could give the basis for a moral existence without God and

believed it could supplant the clergy whose authority stemmed from a

set of unproven, unprovable, beliefs.

Certainly it is true to say that those who were carrying out

research in physics gave no sign of being dissatisfied with their work,

and there was little sign that students were turning away from the

natural sciences and electing courses in new areas like social science

for example. Nevertheless when one examines the research in the decade

from 1880, one cannot escape the feeling that much of it is a sort of
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'mopping-up' operation. The work in sound for example, firmly based on

mechanical reasoning, gave only the possibility of more and more

accurate determination of parameters whose values had been approxi-

mately known for half a century. Similarly the optical problems, so

beloved by the French, seemed to be caning to an 'impasse'. It is true

that aptical instrumentation based on interfercmetry found practical

applications in the field of metrology ,the precise measurement of

length in which the French always excelled, and Cornu was able to build

a career based on the determination of the speed of light using a

modified version of Fizeau's apparatus, but no important theoretical

conclusions emerged from any of the work. Spectroscopy as a sub-

division of optics, was of course proving to be a powerful tool in

giving information about the basic constitution of matter, tut this

does not seem to have been such a favoured area of research as it was

in Germany and Britain.

It has been observed by Fox ,110 that the early meetings of the

Societe de Physique were dominated by demonstrations of technical and

electrical gadgetry, and only at the end of the century did it play

much of a role in the development of theory in physics. This was due to

the large proportion of engineers and instrument makers in the society,

it is true, but also because, at this stage, the most exciting develop-

merits were in the practical applications of physics, principally in

electrical engineering; the telegraph and telephone, the phonograph,

the generator and systems for the distribution of electrical energy.

later was to came the upheaval in many research areas, tut the late

1870's and the following decade was a barren period for physics in

France.

It is also true to say that in this period a new generation of

research workers were maturing, who were to be active participants in

the revolutionary transformations in science around the end of the
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century. But in the 1880's, French physics seemed in several areas,

backward in comparison with Germany and Britain. The experimental

demonstration of the existence of Maxwell's electro-magnetic waves by

Hertz in 1887, did not stimulate new research programmes in the Paris

institutions of research. Significant early advances in this field

were to be made by Branly in the relatively poorly funded Catholic

Institute in Paris, and by Blondlot in Nancy, while the eminent Cornu

showed himself to be decidely unimpressed by Hertz's experiment. There

seemed to be a certain reluctance to embrace new theoretical ideas, or

to admit that a revolutionary change in theory had occurred and a

tendency to continue to try to organise new phenomena using well

established French theories.
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5. PHYSICS IN THE LAST DECADE OF THE CENTURY

a. Introduction 

In examining the physics research of the last ten years of the

Nineteenth Century, it might be considered appropriate to divide the

decade about the year 1895. 1895, the year of R&ltgen's discovery of X

rays, seems to be something of a watershed between the gradual accumula-

tion of knowledge on the basis of old well established paradigms, and

the avalanche of new discoveries whose interpretation was to prove

corrosive of those very paradigms. In fact, although such a simpli-

fication has some truth in it, it is basically misleading, because

prior to 1895, the work on Hertzian waves with its attendant research

into certain predictions of Maxwell's theory, and the research into

photo-electric emission and cathode rays, prepared the conditions for

the revolution in physics as surely as did Rontgen's discovery and the

radioactivity research which followed it. For this reason, the whole of

the decade will be considered in this chapter.

If there were physicists in the previous decade who thought that

their science was reaching completion, the 1890's was going to surprise

them. Lucien Poincare., making in 1897 a review of physics, stressed

that the discovery of X rays had made physicists more modest, less

confident in the mechanical hypotheses which had seemed so easily to

explain many physical phenamena. 1 The last decade of the century,

together with the early years of the next, was a period which saw 'a

.work more of demolition than of definitive building' 2 in physics, a

period of anarchy with no theory universally accepted by researchers.

As we shall see, not only did the mechanical view of nature came under

attack, but the very legitimacy of science was called into question.

Scientists in general, and physicists in particular (for they were the

ones who raised the most fundamental questions about nature and the

physical world), had both to respond to the destruction of their old
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theories, and to defend their methods and the legitimacy of the

knowledge they gained by these methods. In this chapter we will look,

first of all, at the two national scientific organisations and the

institutions where physicists taught, and did their research, and

lastly look at what repercussions (if any) the upheaval in physics and

the attack on science in general, provoked in the self confidence of

physicists.

b.The SociA4 de Physique in the last decade of the century.

In the ten years from 1891 to 1900, the society continued to

increase its membership at the rate of around 2% a year, considerably

less than in its early years. But as there was no great expansion of

the faculty or lyce system in this period (although it did continue to

expand), and no great development of physics based industry, the popu-

lation of those who had a professional interest in physics would have

remained fairly static. It should be added that the industrial and

economic development of France in the last years of the century was

considerably slower than in the days of the Second Empire, but the loss

of the most industrialised provinces to Germany after the Franco-

Prussian war, the burden of war reparation payments and the decimation

by execution and exile of the skilled working class of Paris after the

Commune, hampered the industrial recovery of the Third Republic. Eco-

ncmic development only began to quicken after 1900, based partly on new

technology and partly on the exploitation of the newly discovered iron

ore deposits of Lorraine. 3
 In spite of the early French work in elec-

trical transmission, generation, and power, a substantial electrical

industry did not develop in France, and there was no great expansion

in employment qpportunities for physicists in industry. So the society

appeared to accept its slow growth rate as inevitable, regarding the

high recruitment rate of the past as something which belonged to its

immature youth, and now it measured its health and vigour by the sound-
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ness of its finances, the attendance at its meetings and the scientific

reputation it was acquiring at home and abroad. An indication of the

last was the continued and growing membership (normally of a fairly

passive nature) of distinguished foreign scientists and members of the

French Academy of Sciences. A recruitment drive in the mid-1890's did,

however, bring in 83 new members.
4

In 1899 the Society realised the first part of a project which it

had put in hand some ten years previously; it published the first of

three volumes of physical constants which it was expected would become,

both through their accuracy and their completeness, the definitive

standards for industry, research and teaching. The second volume was

published in the following year. 1900 also saw the organisation by the

Society, of the Congres international de Physique, with the partici-

pation of some thousand scientists from France and abroad. Because of

the importance of this meeting it will be considered separately in the

next chapter.

There was not a great change in the composition of the membership

over this period. Members from the Paris region continued to constitute

just less than 50% of the membership, although not surprisingly they

played a disproportionate role in the presentation of papers to the

fortnightly meetings. Also as to be expected, most of the papers came

from the teachers of the higher educational and research establishments

of the capital, while the contributions by the 1yc4e teachers was much

less than in the past, and also the contribution by engineers and

instrument makers fell away. But an interesting change appears in the

authorship of papers around 1896 with the explosive development of the

new 'ray physics', the study of cathode rays, X rays and radio-activity.

With the exception of Becquerel, none of the established leaders of the

Parisian community, men like Lippmann or Bouty at the Faculty, Cornu at

the Polytechnique, Violle or Brillouin at the Ecole Normale, or Mascart
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at the College de France, worked in the new field and research papers

began to appear from the more junior levels of the academic institu-

n
tions. The papers came from such people as Jean Perrin, agrege 

preparateur at the Ecole Normale , Paul Langevin and Georges Sagnac,

preparateurs at the Paris Faculty, Benoist (b.1856) teacher at the

lycee Henri IV, and Raveau rePetiteur at the Institut Agronomique 

Nationale. Perhaps it does say something about a certain intellectual

'liberalism' in the French higher education system,that junior members

could undertake research in areas in which the senior staff of their

laboratories did not participate. This would appear to be quite

different from the situation which obtained in Germany, where students

were, at least according to Heilbron, et al., obliged to follow lines

of research which continued the interest of their superiors. 5
 The work

of Langevin was in fact, presented in the Academy by Violle, and that of

Benoist and Sagnac by Lippmann, before the authors themselves presented

their work to the meeting of the Physics Society. One of the factors

which probably increased the popularity of 'ray physics' was that it

was ccmparatively cheap, at least in the early stages. Some of the

necessary equipment like the meters, the induction coils, and switches

etc. though expensive, would already have been found in the labora-

tories, and only the special Crookes tube would have entailed extra and

fairly minor expense for the laboratory director. 6 And if it can be

said that most of the important work in radioactivity and other fields

was presented to the Academy before it came to the Society, it is also

true to say that the Society heard none of LeBon's chimerical papers on

'black light'. LeBon was a member of the Society but probably felt less

at home here than in the Academy where he had a number of personal

friends. Certainly he never presented any papers to the Society.

In the early part of the decade, research papers on magnetism and

electricity were most numerous in the meetings, followed by optics, but
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technological topics still figured prominently. 7 For example, members

came to hear of the Laval steam turbine, the Panhard and Levassor

petrol engine, new refinements to an ever more complex telegraph and

telephone system, and a new type of meter to measure the quantity of

electrical energy consumed, during this period. New vacuum pumps and

high voltage equipment, essential to the advance of experimental

physics also figured in the meetings. Work on cathode rays was presen-

ted to the meetings in 1894 and 1895 but after ROntgen's discovery of X

rays, the number of papers devoted to 'ray physics' increased sharply

to make up about a third of all contributions in 1896 and then declined

steadily to less than 20% in 1900. To ensure priority in relation to

discoveries, and to ensure rapid publication and wide distribution of

research results, as well as to submit new work to the consideration of

the leaders of the scientific community, it is not surprising that most

important research was first submitted to the Academy before it came to

the Society. For this reason, most of the research presented to the

meetings of the Society will be considered when the institution in

which it was generated is dealt with, and so will be only be referred

to here in relation to the discussions which took place around it, or

to the conclusions drawn from it. The discussions, controversies and

resumes of the research being undertaken were frequently the most

interesting and illuminating aspect of the Society's meetings.

Before considering the new 'ray physics' work in the decade, it

would be interesting to take a synoptic view of the research into what

Bouty called in 1897, 'our old and dear areas of study' 8 which of course

still made up the majority of the work. Violle returned to his study

of the rays from incandescent bodies, and at the end of the decade

found him self with a competitor in the shape of the polytechnicien,

Henri Le Chatelier. Henri Becquerel continued the family study of phos-

phorescence, presenting his work on the laws of the decay of emitted
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light from phosphorescent bodies to the Society in 1891. Branly

reported on the invention of the radioconducteur, his device to detect

electro-magnetic or Hertzian waves, and Blondlot on his experiments to

measure the velocity of these waves.

Hertz ian waves were being transmitted and received over a distance

of some 5 Km by the Russian, Popoff, in the early years of the decade,

and by the mid 1890's Marconi was sending and receiving them at a

distance of around 20km. In 1898 the Paris instrument maker, Ducretet

demonstrated his automatic wireless telegraph to the Society. This

apparatus needed no operator at the receiver but punched out the

received message in the dots and dashes of the Morse code, onto a paper

tape. The changes in resistance in the receiving circuit caused abrupt

changes in current, which operated a type of electro-magnetic relay,

which in turn controlled the current to the paper tape punch. Ducretet

proposed to show the Society at a later date, other examples of the

operation of apparatus at a distance by Hertzian waves; the switching

on and off of an electric motor, the operation of an electromagnet and

the switching on and off of an electric light. He ended his paper by

expressing his pleasure at being able to show that French scientific

industry was in no way lagging behind industrial developments abroad,

and drew attention to the fact that he had excluded all foreign

expressions from his paper, saying that 'our French language is rich

enough to find in it all that we need'.9 One can only conclude from

this excessive defensiveness, that along with the new electrical tech-

nology being imported from Germany and the USA, German and English

terms associated with it, were finding their way into the French

language. 10 But one French physicist, Blondel, of the Ecole des Ponts

et Chaussees, considered that Branly and Ducretet were playing down the

contribution of foreigners to the development of wireless telegraphy,

citing the work of Popoff, Lodge and Marconi, thus showing that some
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French physicists were following much closer than in the past, progress

being made outside France. 11 Branly continued his research on Hertzian

waves, and in 1900 reported his experiments on the absorption of the

waves through different thicknesses of different liquids, to the society. 12

Although in the second half of the decade, many young physicists

turned their attention to the new 'ray physics', this area of work

seemed to remain outside the range of interest of the most established

and eminent researchers. As for the work which had led up to the dis-

covery of cathode rays, the conduction of electricity through gases at

low pressure, this was a neglected area in France, apart from some work in

the 1870's by Chautard of Nancy a d Daniel of the Ecole Centrale. In the

early 1890's, the principal worker iin the field was the German, Lenard,

and his work had been communicated to the Societe de Physique by Charles

Guilaume (1861-1938) of the International Bureau of Weights and Measures

at Sevres. 13

Lenard 's research and later work on What had came to be known as

'cathode rays' raised the question of whether the rays 'were a sort of

current or a sort of light' 14, and Curie speculated that they were basi-

cally a type of light, although possessing a certain dissymmetry which

allowed them to be affected by magnetic fields. Curie often used the

method of analogy in his scientific work (see his comparison of magneti-

sation curves with the pressure against volume graph of a gas near its

critical temperature later in his Chapter), and here he is presumably

thinking of his earlier work in piezo-electricity. The work on cathode

rays, by Jean Perrin, which showed that they conveyed a negative

charge, was not presented to the society by him, for Perrin was not a

member in 1895, but in the following year he did join and reported on

his work on X rays.

As was said earlier, the most important function of the meetings

of the Societe, was probably the discussions of the new work, the
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summaries of the current theoretical positions in new areas of physics)

and the consideration of foreign work. One should not make too much of

the Idea of a struggle between generations, but inevitably in this

period of rapid advance, it was through the contribution of the younger

researchers in the meetings of the Society, that something of the

excitement and intellectual ferment of the new physics was expressed.

Intellectual debate was less restrained here than in the Academy. In

the meetings of the Society, the younger members were not submitting

research for the approval of their elders, in areas in which the elders

were already authorities; there were no authorities in ray physics in

France. Thus the revolution in physics served, in a sense, to

'democratise' the science, and the meetings of the 	 Societ4

expressed this democratisation.

Those who had the facilities to do so, plunged into the new re-

search; Perrin, Langevin, Benoist, Hurmuzescu, Sagnac and Villard were

prominent among the young research workers of the capital. Inevitably,

research would overlap, and priority disputes would break out, as in

the meeting of the Society in 1896, when Perrin and Benoist argued over

the discovery of certain X ray properties. Even those who had not done

any experimental work could still participate in the great debate. For

example, Raveau reviewed the experiments done by others and speculated

that X rays were very short ultra-violet rays. This was fairly orthodox

but he went further, arguing that as they were diffused by passing

through solids, their wavelengths must be similar to the distances

between the molecules of those solids. 15 At the large Easter meeting

of 1896, Perrin made a summary of all the work on cathode rays and X

rays done in France and abroad. France lagged a little behind Germany

and Britain on the question of the ultimate nature of the rays. This

lag may have been due to a positivistic reluctance in France to specu-

late about the reality behind the phenomena, but it might simply have
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been that France had taken up the experimental study of cathode rays

(and to a lesser extent X rays) later than Germany and Britain.

Certainly Perrin was in the position of surveying and judging between

two different hypotheses on the nature of cathode rays. It would not be

extravangant to call them national hypotheses, for the one which saw

cathode rays as a modification of the ether, a kind of light of very

short wavelength was held by the Germans Goldstein, Wbidermann, Ebert

and Lenard, and it had been Hertz's position until his death, while the

one which saw them as material particles had the adherence of the

British, Crookes, Varley, J.J. Thomson and Kelvin. Perrin tended

towards the material hypothesis of the British but asserted that it

made the phenomenon of fluorescence more difficult to explain. X rays

were less controversial, everyone agreed that they were light of very

short wavelength, although ROntgen also though that they were probably

longitudinal waves. 16 In the following year, 1897, Sagnac showed that

some materials bombarded by X rays emitted other X rays of a lower

frequency. In that same year, J.J. Thomson in Cambridge succeeded in

measuring the ratio of the mass to the charge of cathode rays, which

seemed to put their material character beyond doubt, but reports of

this experiment were not discussed in a meeting of the society until

two years later.

Other research, which, though revolutionary in implication, seemed

to be closer to the French tradition lgave the opportunity for the in-

tervention of more experitn:ced members of the cammunity. For example,

in 1897, Cornu reported on Peter Zeeman's experiment in Holland, in

which the light from a discharge tube was passed through a powerful mag-

netic field causing the spectral lines to broaden and become circularly

polarised. This work provoked much interest in France because it was in

the tradition of aptical-magnetic polarisation carried out earlier in

the century by Verdet, Bertin and Cornu himself. 17 It did not however
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unleash a flood of research, probably because of its enormous expense;

the high resolution diffraction gratings, spectrcmeters and powerful

electro-magnets were the most expensive items of research of the time.

Research by Rubens and Nichols in Germany on very long wave infra-red

radiation, also came to the notice of the Socigtg in 1897, when

Guillaume, the assiduous reader of foreign scientific publications,

gave a report on it. 18 So the Societe de physique was playing an impor-

tant role in educating French scientists on research going on abroad.

The society also followed very closely the discovery, at the end

of February 1896, that certain uranium salts emitted invisible rays. In

March 1896 Henri Becquerel was asked by the society's president to

give an account of his first experiments, and he explained how the rays

cculd penetrate black paper, and a capper or an aluminium sheet to

discharge an electroscope. 19 In the next meeting he gave an experimen-

tal demonstration of this. In a meeting in November he wondered about

the source of the energy of the radioactive uranium, commenting that

though it had been kept in darkness since May it had lost none of its

activity. After a short intervention in early 1897, Becquerel gave up

his research in this field (see later in the chapter when Beccimrel's

work is considered in a little more detail) and did not return to it

until 1899 when he reported to the society on his research on the rays

frcm the radium sample which the Curie's had given him. At this meeting

Pierre Curie ccmmented that the rays appeared to have some of the

properties of X rays and some of cathode rays. 20 In the following year,

1900, there were more radioactivity papers presented to meetings of the

society; frcm Becquerel, frcm Villard, and frcm the Curies (although

Marie was not yet a member), who cutlined their physico-chemical

techniques which were already being put into ccmmercial operation by a

Paris chemical ccmpany, La Societe centrale de produits chimiques to

produce radium, polonium and a third, as yet unnamed highly radioactive
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element. 21 Paul Villard of the Ecole Normale reported that radium

emitted some rays Which could not be deflected by electrical and

22
magnetic fields and Which he thought were a kind of X ray. 	Thus it

can be said that the society was acting as an instrument for the rapid

dissemination of the latest research into radioactivity, which was and

remained, essentially an activity of the Paris institutions.

Paul Langevin gave his first paper to the  Societe in the Easter

meeting of 1900, and one can see in it the continuing interest in the

research on atomic phenomena which was going on abroad. Referring to

the work of C.T.R. Wilson and J.J. Thomson, (under whom he had worked

in Cambridge) Langevin compared the mass of a negative ion as observed

in cathode ray experiments, or by the deflection in magnetic fields of

some of the rays of radium, with the mass of the hydrogen Lon found in

electrolysis. This work was beginning to give insights into the

staid:mt.& the atom, for as Langevin asserted;

'The mass of the negative ion is only a thousandth part of

that of the hydrogen atom. The much heavier positive ion

would constitute, according to Thomson, the rest of the

atom' .23

c.Physics in the AFas

The first year of the decade saw the annual meeting of the AFas in

Marseille, a city with a long established Faculty of Science and an

Observatory with a long history and considerable prestige. Thirty two

papers, the highest ever, were presented to this meeting, and as with

Nancy five years previously, the local contribution made up about one

third of the total. Contributions came not only from the Faculty of

Science, but from the Medical School, the Faculty of Medicine in Nice,

and from the Observatory. Lucien Poincare who was to make a succesfu/

career as an inspector of higher education and as a commentator and

reviewer of contemporary physics, and who at this time was teaching in
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a lyc  iee in the city, submitted a paper on the potential difference

developed between electrodes in an electro1yte. 241 Charles Fabry gave a

paper on the speciality of the Marseille faculty, interferametry,

reporting on research which had already been published the previous

autumn, in the Comptes rendus of the Academy.

In the following three years, the meetings were held successively

in Pau, Besancon and Caen. At the first of these meetings there was a

high proportion of Parisian savants present (perhaps because it was an

attractive holiday area), ard one of them,the Parisian engineer Marcel

Deprez gave a paper on the transmission of electrical power using A.C..

In the field of electro-technology, a controversy over the relative

merits of A.C. as opposed to D.C. had broken out among the engineering

community and Deprez was an early partisan of the former method. At

the Besancon meeting, Cornu gave two papers on optical topics, Janssen

reported on the work of the Observatory of Mont-Blanc and the meteoro-

logist of the Bureau Centrale, Teisserenc de Bort, reported on new

research into the relationship between wind speed and atmospheric

pressure gradient. There were other papers but this was probably the

weakest of the meetings considered. The following year, in Caen, the

meeting heard a number of papers on aptical and acoustical questions

which could only have been of interest to lycee teachers, as experi-

ments for pedagogical purposes, for they went over ground which had

already been thoroughly worked.

The Association's meeting of 1895, was held for the second time

in its history, in Bordeaux. Thirty three papers were presented, inclu-

ding one from Pierre Duhem who had been working in the Faculty since

1893, after periods in Lille and Rennes. It is possible that Duhem

regarded the AFas with somewhat mixed feelings; while supporting its

patriotic aims and seeing it as a vehicle for bringing about needed

reforms in the organisation of science in France, he would also have
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seen it as a part of the anti-clerical, anti-monarchist, ideological

superstructure of the Third Republic. It is clear too, that the organi-

sers of the AFas regarded Duhem with a similar suspicion, and in the

publication of the proceedings of the Bordeaux meeting they dealt him

two studied slights. The first was to neglect to print that he was a

member of the Faculty, printing simply 'P. Duhem of Bordeaux', and the

second was to publish no more than the title of his paper 'On the theo-

retical interpretation of Hertzian wave experiments.'
21r

 This must have

been the most original and theoretical paper of the whole meeting;

possibly it was considered by the organisers to be inappropriately

theoretical. As if to underline the insult to Duhem, the officers of

the Association published in full a quite unremarkable paper by the now

obscure Morisot, on a new type of electric cell. Moreover they did not

neglect to give him his title as 'professor of the Bordeaux Faculty'. A

paper of more popular, if rather morbid interest from the Bordeaux

meeting, was the one, published in full, by the Parisian doctor, Darin,

on the effects of electricity on the human body.
26 In this paper,

Darin, compared the effect of A.C. and D.C. on the body, his interest

in the subject kindled by the adoption of electrocution by the State of

New York.

In the winter of 1897, at a meeting organised in Paris, Gariel

gave the first communication to a meeting of the AFas, on X rays. This

was not a research paper, but a fairly popular exposition of the deve-

lopment of X ray photography, accentuating its usefulness in many appli-

cations. Gariel finished by making a statement on the importance of

funding theoretical research which would later bring material advan-

tages, and he also expressed his regret that French scientific estab-

lishments were so poorly endowed with X ray apparatus.
27

This first report on X rays was followed by several more in the

1898 meeting at Nantes, together with others on cathode rays and
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Hertzian waves. The meeting was more fully endowed than usual with

savants from the capital, who were making, or were soon to make, their

reputation through work in these new areas. It is true to say,

however, that the majority of papers given at the meeting still

concentrated on the traditional themes of French science, or on the

utilitarian application of science. The most striking example of this

latter was the paper (published in full) by two Lyons teachers, one

from the military school, the other from the Faculty, on the thermal

conductivity, (in both dry and damp conditions) of the materials used

in army uniforms.
2C3

 Physics was seen to be accomplishing both its

patriotic and its utilitarian mission in this research at least.

But there were also three papers on wireless telegraphy, from

Blondel and Broca, three on X rays, including one from the Rumanian

working in Paris, Hurmuzescu, and three on cathode ryas, of which two

came from P. Villard. Blondel also explained the principles of his

'oscillographe', a type of galvanometer with a very small inertia,

capable of tracing out the curve of an alternating electric current.

It should, however, be emphasised that this work had all been reported

before, and had appeared in other journals.

The meeting of 1899 held in Boulogne is of particular interest

because of its cooperation with the meeting of the BAAS being held at

the same time in Dover. There were trips across the Channel from both

directions for joint fraternal functions, and wireless communication

between the two meetings was established. Blondel was to give five

papers on electrical subjects, while A. Turpain, a junior member of the

Bordeaux faculty and student of Duhem, gave three. One of Turpains's

papers was a very theoretical one entitled 'On the propagation of

electric oscillations in dieletric media' in which he compared two

theories of electromagnetic propagation, one by Maxwell and the other

by Helmholtz and modified by Duhem.
29
 Duhem always displayed a marked
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suspicion of the work of Maxwell and considered that in France his

'equations were accepted without discussion, as though they were a

revealed dogma', 
30 

to the detriment of electromagnetic theory. Duhem

supported the theories of Helmholtz against those of Maxwell arguing

that;

'Helmholtz gave an electromagnetic theory Which proceeds

very logically from the best-establihed principles of

electrical science,and their formulation in equations is

exempt from the paradoxes arising boo frequently in

Maxwell's work'.

Turpain develops this Idea in the introduction to his paper, saying

that the theory;

'..built by Helmholtz and completed by Duhem, offers the

advantage of linking the interpretation of Hertz ian

wave experiments to the classical doctrines of

electricity' .31

The essential feature of the Helmholtz/Duhem theory is the

existence not simply of a 'flux of transverse displacement'but also one

of longitudinal displacement. Only the transverse flux is admitted in

the theory of Maxwell. Turpain refers to discrepancies between

experiments made by Blondlot and those of Aran and Rubens, and Cohn and

Zeemann, discrepancies which as a result of his awn experiments, he

declares to be more apparent than real, if the Helmholtz/Duhem theory

is accepted. It was certainly unusual for meetings of the AFas to hear

reports of an experimentum crucis and it is probably not uncharitable

to suppose that for most of the assembled members, the paper would have

been rather difficult to follow. Turpain's second paper was on the

other hand, much more accessible, for he analised the possibilities of

telegraphy by Hertz ian waves, the so-called wireless telegraphy and

came to some cautious if not downright pessimistic conclusions.
33
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Excessively high aerials would be needed for transmissions over long

distances, the rays would not be parallel and therefore would lose

intensity with distance, the air would absorb them as it does light;

these were the objections which Ttrpain put forward. Marconi was

criticised for his extravagant hopes and claims, which;

'Far from serving the scope of this application of hertzian

waves, he risks, in this way, compromising the useful

effects, by vainly concentrating costly efforts in the

research of a problem whose solution truly passes the

limits of what can legitimately achieved by the employment

of electrical oscillations'. 34

With hindsight, this is a rather unfortunate prediction by

Turpain, but it must be remembered that a large part of the scientific

cocmmunity, not just in France, considered Marconi as something of a

crass commercial adventurer who used apparatus developed by others;

Righi's oscillator, Branly's coherer, Popoff's aerials for example, in

his experimental work.

The last meeting of this period, the one in Paris in 1900, was a

very disappointing one in spite of its being held in the capital.

Turpain, despite his previously expressed caution regarding the

possibilities of Hertzian waves, continued his research in this field,

developing new types of coherers and resonators. But there were no

reports on the ray research which was exercising and exciting the new

generation of workers, and so it must be said that the Association's

meetings seemed only to reflect in a fairly distant way, the ferment of

ideas and experiment, which found an expression in the meetings of the

Socie't‘ de Physique. Funds continued to flow from the AFas into

projects of publication and research, and Turpain was one of the

recipients of these funds, but both the proportion and the actual sums

coming to physics remained very small.
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One interesting paradox about the Association is that, despite its

utilitarian emphasis, it provided, through the intermediary of Timpain,

the only national plat. form for the theoretical ideas of Duhem on

electromagnetism. So an organisation which was avowedly republican and

dedicated to the application o; science, in a scientific community

which had long favoured experimental physics at the expense of theory,

found itself the unlikely mouthpiece of the advanced mathematical

theories of the clerical, anti-republican Duhem.

d.The Ecole Municipale de physique et de chimie industrielles. 

The Ecole Municipale de physique et de chimie industrielles 

which was founded in 1882 to provide an essentially practical type of

education to young men who had studied at the 4Coles primaires 

superieures , will be considered before the other more prestigious

institutions in this section, because of its importance in the produc-

tion of new knowledge at the end of the century. Established in the old

buildings of the College Rollin, the objective of the school was to

train engineers and chemists for employment in private industry, and

the three year course of study comprised in the first year, physics and

mechanics, theoretical and practical chemistry, and mathematics. In the

second year the students specialised in either physics or chemistry,

and in the third year they spent most of their time in workshops and

laboratories, the physics students working on the fabrication of

instruments and the chemists on the preparation of dyes etc •
3S 

Entrance

to the school was by examination and the successful 30 students who

were admitted received a grant of 50 francs a month. The social

origins of the student intake, and their intellectual level would have

been much lower than that of lycee students, and this, together with

the emphasis on practical tuition and the municipal status of the

school, made it an institution without much prestige in the French
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academic system. Shinn has stressed, however, that the school was

unprecendented in the French educational system and significant for

French industry because it alone;

'.. stood, on the one hand, between the low level empirical

knowledge of the skilled worker coming out of the ecoles d'arts

et mftiers, and on the other, the abstruse mathematical content

of the courses of the Ecole Centrale and Ecole Polytechnique
,36

It is clear that at such an establishment, little importance would

be placed on the research of its teachers. Research would be an acti-

vity peripheral to the central objectives of the school, and in any

case the heavy load of teaching and practical supervision which fell to

its teachers, left them little time for research. It is considered here

because it provided employment for Pierre Curie from 1882 onwards, and

in the final decade of the century was the centre for his research and

that of his wife Marie Sklodowska (1867-1934) in radioactivity.

Pierre Curie, during the 1880's had worked alone at the Ecole

Municipale on the symmetry of crystals, continuing the research he had

carried out with his brother, Jacques, in Friedel's laboratory in the

Faculty. In the 1890's he turned to research on magnetism and success-

fully defended his thesis on this topic at the Paris Faculty in 1895.

As this was work for the doctorate it will be considered in the section

on the Paris Faculty and compared with doctoral work which was sdbmittd

by candidates from more prestigious establishments.

Pierre Curie, although he had gained an international reputation

for his work on piezo-electricity and magnetism, by the end of the

century, had none of the qualifications which really mattered in the

French educational system. He had not even attended a lycee, being

educated at home by his father, let alone one of the grandes ecoles. He

is the first physical scientist of this survey, whose scientific for-

mation comes only from the preparation for the licence Lit
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physical sciences at the Paris Faculty. 37 He never took the competitive

.
agregation, which would have allowed him to teach in the lycees, and it

was not until 1895, eighteen years after his licence, that he bothered

to submit his research for the award of the doctorate. Although his

relations with the original director of the Municipal school of

industrial physics and chemistry, Schutzenburger, were extremely

cordial, those with Schutzenburger's successor, the physicist and Poly-

technicien C.M. Gariel (1841-1924) were often very difficult.

Fortunately, Gariel only stayed at the school for about a year, but in

that time he showed little interest, and was sometimes obstructive,

.towards the radioactive studies of Curie and his wife. 3i3 While carrying

on these studies in the last few years of the nineteenth century,

Pierre Curie, was receiving a salary from the school of only 6,000

francs a year, and struggling with a very heavy load of teaching and

practical supervision. It was not, however, until October 1904, that he

was finally made professor of physics at the Paris Faculty, and found

better facilities, but not much more time, for his research.

The story of his wife, Marie Sklodowska, is well known and so only

a few relevant remarks will be made here. She had studied at the Paris

faculty and passed both the licence in physical science and the one in

mathematics, in 1893 and 1894 respectively. In 1896 she was placed

first in the womens' agregation in physics,39 and after Becquerel's

discovery of the same year, that uranium salts spontaneously emitted

rays with properties similar to X rays, began a series of experiments

to determine whether there were other elements which emitted radiation.

Before the discovery of polonium and radium by the Curies in the latter

part of 1898, work for which Marie Curie received the Gegner prize of

4000 francs from the Academy,
40

 it cannot be said that the French

scientific camunity had much interest in the investigation of

what had become known as 'Becquerel rays'. It was left to Marie Curie,
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a women and a foreigner, working with her husband in the primitive

laboratory facilities of the Ecole Municipale, to see if there were

other materials which emitted the rays. Madame Curie investigated

dozens of different minerals (made available to her by Henri

Becquerel fram the extensive collection of the Museum), together with

many metals and their salts and oxides, concluding that only compounds

of uranium and thorium were 'radioactive'. Curie was the first to use

the term 'radioactivity', rejecting the name 'hyper-phosphorescence'

which was employed by S.P. Thompson among others, as 'giving a false

idea of the nature' of the rays.41

Madame Curie pulverised the material and spread it as a thin layer

on a metal plate; another plate situated above and close to the first,

was maintained at a potential of 100 volts and the current flowing

between the plates measured by a sensitive piezo-electric electrometer

developed by her husband and his brother, Jacques, in their earlier

joint work on piezo-electricity. In practice, the current through the

electrameter was balanced by the output from the stressed piece of

piezo-electric quartz. (See diagram below )41
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Let it not be thought that Marie Curie was simply a painstaking

experimentalist, or that her research was a species of 'womens
1
 work' in

science. Meticulous it certainly was, but at the same time she was not

content only to measure. She put forward a hypothesis to explain what

she had observed;

'To interpret the spontaneous rays of uranium and

thorium one could imagine that all space is traversed

by rays analagous to ROntgen rays but more

penetrating, which can only be absorbed by elements

of high atomic weight,like uranium or thorium'. 41*.

Thus, argued Madame Curie, these elements of high atomic weight

absorbed the free radiation of space, and re-radiated it, in the same

way as Georges Sagnac had shown that some metals absorbed X rays of one

frequency and re-radiated other X rays of a lower frequency. She says

nothing about the nature of the emitted rays, but her hypothesis

suggests that she was still confused by Becquerel's original

conclusion that they were a form of e.m. radiation.

As a result of these experiments, Madame Curie found that pitch-

blende, an ore containing uranium oxide, was more radioactive than

metallic uranium. She first found that pitchblende formed, by subli-

mation in a vacuum, a product thirty times more radioactive than

uranium. With the help of another member of the school, Bemont, she

began a laborious process of isolating the active products of pitct-

blende. By July she had found a material somewhat similar to bismuth

and 400 times more radioactive than uranium, whose discovery she

announced in the statement;.

'If the existence of this metal is confirmed, we propose to

call it Polonium, from the name of the homeland of one of us'.4 41-

But the spectroscopist Eugene Demarcay, working in the Ecole

Normale, could discover no new spectral lines in the sample given to
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him to examine. It was clear that more of the material would have to

be prepared, and following the intervention of the Vienna professor

Eduard Suess, the Austrian government made 100 Kg. of pitchblende

available to the Curies. By the end of December 1898, a second new

element, still more radioactive and with chemical properties similar to

barium, was isolated and named radium. 4 With this material, Demarcay

could find new spectral lines.

By the beginning of 1900, the Ecole Municipale was still the

principal centre for radioactive studies. By this time the Curies were

working there with materials 100,000 times more active than the

original uranium salts, although nap' the chemist, Debierne, working in

the Paris Faculty, isolated a third radioactive material which was

named, actinium. In January, Marie Curie reported that the rays which

were deviated by a magnetic field were more penetrating and travelled

further in air than did those which were not deviated, while a study by

her husband on the 'non-deviable' rays showed that the more material

they passed through, the more absorbable they became." It was noticed

that their range in air stopped abruptly, and they were likened to a

projectile which lost kinetic energy after passing through material.

After this, the Curies collaborated to show that the deviable rays,

like cathode rays, did convey a negative charge. 47

So by the end of the century the Ecole Municipale, through the

work of the Curies, had become a centre for experimental studies (both

physical and chemical) in radioactivity. But this was work which was in-

dependent of the main function of the school, and unlikely to have beem

incorporated or utilised in Pierre Curie's lectures there.
45

 For this

reason there is no question of a research school being formed at the

Ecole Municipale; the level of the courses was too low, the students,

who could enter the school at fourteen, too young. It is true that a

few years earlier Paul Langevin (1872-1946), had passed through the
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school and was later to make a distinguished career as both a resear-

cher and teacher in physics, but his theoretical formation came from

his studies at the Paris Faculty for the licence, and at the Ecole

Normale.

e.The higher education institutions of the capital. 

The excitement caused by the discovery of hertzian waves at the

end of the previous decade, did not provoke any shift of direction in

the research programmes of staff of the Paris institutions of higher

education. The research into electro-magnetic radiation was largely

left to Blondlot of the Nancy Faculty, and Branly of the Catholic

Institute of Paris. Mascart at the College de France was no longer

doing research, and there was little coming from the staff of the Ecole

Polytechnique. Lippmann at the Paris Faculty had turned his attention

to colour photography using interferometry (work which would gain him

the Nobel prize in 1908), while his colleague, Bouty, was much more

productive and won the Lacaze prize in 1895, for all his work on

magnetism and electrical conduction though gases. At the Ecole Normale,

Violle's research work had diminished by the early 1890's. As he had

also been made professor of physics at the Conservatoire des Arts et

hAiers in 1892, this may have been caused, at least partly by a heavy

/.•teaching load. The other maitre de conference in physics at the the

Ecole Normale, Brillouin, was also concentrating on his teaching, which

was to have a great influence on the next generation of French physi-

cists, but his research pdblications were less prolific than in his

youth. When there came the explosion of research spurred by ROntgen's

discovery of X rays in 1895, it would not be these senior academics who

took up the new work, but preParateurs, working under their super,-

vision.
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The theses presented for the doctorate at the Paris Faculty began

by the end of the century to deal with the new research areas which

were qpening up. The first one to deal with the question of electro-

magnetic waves after Hertz's experiment was the doctoral thesis of the

lycge teacher H.A. Abraham (b.1869). The work was carried out in the

laboratories of the Ecole Normale Suprieure, and published in the

Annales de chimie et de physique in 1892.49 Abraham's research sought

to determine with greater precision than before, the relationship

between the absolute units of electricity defined on the electrostatic

scale with those defined on the electro-magnetic scale. This question

was discussed in the Congras des Electriciens of 1881, where after some

debate, it was decided to adopt the electromagnetic system of C.G.S.

units. In the electrostatic system, k (the permittivity of air) is made

equal to unity; in the case of the electromagnetic system, the

magnetic permeability of air is made equal to unity. The ratio 1) is

the number of electrostatic units of charge contained in the electro,

magnetic unit. Its importance from the point of view of Maxwell's

theory, canes from the fact that it must also be the velocity of

electromagnetic waves and also (light being simply a particular range

of e.m. waves) of light in a vacuum.

Abraham began his paper with an historical review of all the

experiments which had been attempted to determine) / since Weber and

Kohlrausch in 1856 had found a value giving fairly good agreement with

the velocity of light measured, separately, by Fizeau and Foucault.

Seventeen research workers over a period of 35 years had found values

of varying from 2.71x10 	 to 3.07x10 	 while

successively more and more precise determinations of the velocity of

light were settling around the figure of 2.99x10
10
 cm/sec. It was the

ambition of Abraham, in which he seems to have succeeded, to bring a

new higher order of precision to the value of V , an accuracy of better



222

than one part in a thousand. If this work seems to bear the hallmarks

of French physics of the period, exquisite precision and absence of

theoretical speculation, it must not be forgotten that it was a

doctoral thesis. As such, it would have to be a topic approved by the

Paris Faculty staff, and its originality would lie predominantly, if

not exclusively, in its experimental ingenuity.

Abraham's lengthy discussion of past experiments, was not dUe to

any abstract attachment to the history of the subject, but was done to

weigh the strength and weakness of each method, and to select the best

techniques from them. Thus, even the experimental methods cannot be

said to be campletely original, although Abraham used the best con-

temporary scientific techniques to improve their accuracy. For example,

he determined the spacing of the capacitor plates using interferametric

methods, while the speed of rotation of the commutator used to charge

and discharge the caapacitor, was measured using a type of stroboscope

devised by Lippmann. In five days of experiment in April and May 1892

Abraham made 14 determinations of V , whose values ranged from a

minimum of 299.04 x10
8
 cm/sec. to 299.44x10

8
 cm/sec. with a mean value

So
of 299.2x10

8
 cm/sec.	 Certainly, this determination of V, which

Abraham claimed was exact to one part in a thousand, remained the

definitive one for a number of years, and was considered of sufficient

importance to be presented by Abraham, in abbreviated form, to the

Physics Congress held in Paris in 1900.

If Abraham's thesis seems a little conservative in its subject

matter, taking an old problem and simply using improved techniques to

achieve a higher precision, the same cannot be said about Pierre

Curie's thesis of 1895. Curie defended his doctoral thesis on

'Magnetic properties of materials at different temperatures'in March

1895, and it was published in the Annales de chimie et de physique,in

July of the same year.	 He investigated diamagnetic, paramagnetic,
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(Curie called these feebly magnetic substances) and ferromagnetic

materials, to see if there could be transitions between these groups or

whether they were absolutely separate in all conditions. This question

had previously preoccupied Faraday, who had observed that although iron

lost much of its magnetic properties when it was red hot, they were not

completely obliterated and thus iron had become similar to a para-

magnetic substance. Thus it appeared that a material might succes-

sively belong to different groups. To resolve the problem, Curie set

out to study the magnetic properties of different materials over a wide

a range as possible of temperature, pressure and magnetic field. His

temperatures were to range from ambient to 1370°C, and his materials

ranged from the diamagnetic ones like water, potasssium sulphate,

sulphur and selenium; paramagnetic materials like oxygen and palladium,

and ferramagnetic ones like iron, cast iron and nickel.

Curie's magnetic experiments showed the same attention to

precision and detail which were later to be the hall-mark of his

radioactivity research. They involved accurate Chemical techniques to

ensure that samples of material to be tested did not contain traces of

impurities, for a paramagnetic substance containing a small percentage

of a ferramagnetic one, would have its own intrinsic properties masked

by the impurity. He also developed a precise torsion balance to measure

the small forces that his paramagnetic and diamagnetic samples would be

subjected to, in a magnetic field. A third problem which he had to

overcame was that of convection currents in the furnace, currents which

could easily disturb the measurements of force. To solve this problem,

Curie was able to borrow a device from Blondlot (once a colleague of

his at the Paris Faculty), who had developed it when he was doing his

research on the conductivity of hot air. 52

The conclusions of Curie's magnetic research were that para-

magnetism was inversely proportional to absolute pressure, 53
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that the coefficient of specific magnetisation of diamagnetic

substances was independent of the strength of the magnetic field and

generally independent of temperature,
54

 and that a ferromagnetic

material is gradually transformed as it is heated, into a material

displaying paramagnetic properties. While Curie never put forward any

theory to explain the phenomenon of magnetism, he did conclude that;

'..these results favour theories which attribute magnetism

(here he includes ferramagnetism and paramagnetism) and

diamagnetism to causes of a different nature'.
55

Today it would be said that diamagnetism, which Curie found to be

independent of the physical state or allotrcpic modification of the

material, is a specific property of atoms, while paramagnetism and

ferromagnetism are prcperties of combinations of atoms. Curie also made

an interesting analogy between the way in which the intensity of

magnetisation of a magnetic body varies with temperature and field, and

the way in which the density of a fluid varies under the influence of

temperature and pressure.
56
 Curie compared the shape of his curves for

the magnetic prcperties of iron, with those which Amagat had found for

the density of carbon dioxide at different temperatures and pressures.

Such an analogy was interesting, argued Curie, because it suggested new

experiments. For example, with 00 2 below the critical temperature, one

sees sudden changes and the phencnenon of liquefaction. Similarly the

intensity of magnetisation increases more sharply as the temperature

decreases when the applied field is more feeble, suggesting that if the

field were sufficiently weak, the increase in magnetisation would

became similarly abrupt, making it possible to think of a kind of

critical point in relation to magnetic phenomena.
57

It is interesting to compare the doctoral thesis of Abraham / the

normalien, with that of Curie. Abraham's research went down a well

trodden path, simply bringing to an old problem, a new order of
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precision, while Curie explored a neglected area (also with great

precision) and if he did not propose any new theoretical insights to

explain the phenomena, he did use the method of analogy as a heuristic

device. As we shall see, it was Curie's willingness to work outside

the main lines of traditional research which was to prove so fruitful

at the end of the century. Thus, Curie shows a certain independece of

spirit in his choice of research topic, probdbly because, net being a

product of the grandes ecoles, and therefore knowing that certain

career paths were not open to him, he was not looking for the approval

of the 'notables' of the physics cammunity.

But later in the second half of this decade, the new ray physics,

the examination of cathode rays, X rays and what were called Becquerel

rays, was to provide the material for doctoral theses by several young

research workers, who were to make their name in this area. Jean Perrin

(1870-1942), while working for his doctorate as an agrege-preparateur

in the Ecole Normale showed in 1895, by mounting a Faraday cage inside

a Crookes tube, that cathode rays convey a negative charge. As a

consequence of this research he concluded that;

'..this is difficult to reconcile with the theory of undulations

but it agrees well with that of emission.'58

In his doctoral thesis on cathode rays and X rays, which was pub-

lished in the Annales de chimie et de physique in 1897, Perrin, follow-

ing a line of reasoning already advanced by J.J.Thomson, suggested an

experimental method whereby the ratio of the charge to the mass e/m

cculd be determined.59 Perrin, like his contemporary, Langevin, was a

pupil of Marcel Brillouin, the champion in France of the ideas of

Boltzmann on statistical mechanics and an opponent of the 'energetics'

of Ostwald, at the Ecole Normale, and both were influenced by

Brillouin's ideas.
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Consideration of Perrin's doctoral thesis has taken us to 1897,

and we must go back two years to consider the reaction to the news of

Rontgen's discovery of X rays in France. Rontgen, working in WUrzburg,

experimenting with a Crookes' tube, noticed that certain materials

outside and at a distance from the tube, were made to fluoresce. The

mysterious rays which caused this fluorescence were found to be very

penetrating, and with their aid, Rontgen was able to make a photograph

of the bone structure of his own hand. Rontgen rays, or X rays as they

soon came to be called, captured the popular imagination as no previous

scientific discovery had done, and information about them , often

sketchy and imprecise, reached foreign scientists almost immediately

through the daily press. There was a veritable explosion of X ray

research throughout the European scientific community; the apparatus to

produce them was camparitively cheap and already in place in many

laboratories which had been working on cathode rays.

Such a laboratory was the one at the Ecole Normale, where Jean

Perrin had been investigating the properties of cathode rays, and now ,

working on the basis of 'quite vague scraps of information, drawn from

the daily press, and which I still do not know are really his

(Rontgen's) experiments' 
,60 

Perrin rqpeated Rontgen's experiments.

Perrin's work used photographic plates wrapped in black paper to demon-

strate the transparency to the X rays of various materials, like paper,

wood, paraffin and different metals. He then arranged his materials in

a series of increasing opacity, headed by lead. He also employed all

the usual techniques to make evident the wave properties of the X rays,

but without success. He tried to reflect the rays, first using a

metallic mirror and then a flint plate. He also sought to refract them

using a prism of paraffin, and to obtain diffraction fringes, but all

with negative results. Perrin did not conclude, from these negative

results, that X rays were not waves, simply that if they were, they had
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a period very much less than that of visible light. Finally,

collaborating with physiologists of the Ecole Ncrmale and the Musgum

d'Histoire Naturelle, Perrin made some X ray pictures of the bone

structure of a frog. Perrin's paper, presented to the Academy in

February 1896, and bearing the marks of being rather hurried, was the

first on the subject, by a physical scientist, in France.

Rontgen's discovery provoked a sharp peak in the number of papers

on X rays and cathode rays submitted to the Academy. There were 160 in

this category of the index of the Comptes rendus in 1896, falling

sharply to fifty four in the following year. In this category were also

included the papers of Becquerel (one in 1896 and two in 1897) and

those of Gustave le Bon (b.1841) on his 'black light' (one in 1897).

As the research into cathode rays and X rays was principally in

n
the hands of agreges-preparateurs and as there were no such posts at

the Ecole Polytechnique, this explains, in part, the absence of the

Polytechnique from the excited burst of activity which produced so much

new knowledge in the mid 1890's. It is not true to say that poly-

techniciens played no part in this process of research and discovery

because of course it was the mathematician Henri Poincare, both a

product and a professor of the Polytechnique, who had the insight that

perhaps fluorescent materials might also emit X rays at the same time

as they emitted light, it was this Idea, which was to redirect the

research of Henri Becquerel, physics professor at the Polytechnique and

at the Musgum. Becquerel, working in the Mus gum, and continuing what

had been his personal line of research for many years, set out to see

if a fluorescent salt emitted X rays when irradiated with light.

Becquerel 's experiment used a fluorescent salt, which he exposed to

strong sunlight then left in close proximity to a photographic plate

wrapped in black paper. His happy chance was to use uranium potassium

sulphate, and then to develop his plates even though he had been able
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able to expose his sample to very weak diffuse sunlight. Expecting weak

images, he found images of great intensity. The circumstances of this

discovery, in which chance played a role, has already been dealt with

by Badash, 61 and so it will not be considered in detail here.

Becquerel, having found that uranium salts emit invisible rays,

proceeded later in the year to ccmpare their properties with cathode

and X rays. 62 Apart from the photographic techniques which he used

previously, he now began to employ a special type of electroscope

developed in Paris by the Romanian, Hurmuzescu. This was esentially a

type of gold leaf electroscope in which the divergence of the leaves

could be read from a vertically mounted protractor. The rate at which

the divergence of the leaves decreased, measured in seconds of arc per

second of time, gave a measure of the intensity of the invisible

radiation causing the electroscope to discharge. For example, a phial

of double sulphate of uranium placed below the leaves, dissipated their

charge at the rate of 22.5 seconds of arc each second. When a 5 mm.

thick sheet of quartz was placed between the salt and the leaves, the

rate of discharge fell to 5.43 seconds/ second. The ratio of the rates

of discharge was 4.15:1. He then measured the effect which rays,

emitted from a Crookes tube through an aluminium foil 0.15 mm thick,

had on the electroscope. They discharged it at the rate of 1 degree in

1.4 seconds, or 2571.4 seconds/second. When the sheet of quartz was

interposed, the rate fell to 163.63 seconds/sec.; 15.7 times smaller.
6

Becquerel cammented that the weakening effect of the quartz was about

four times greater for the rays from the Crookes tube than for the

invisible rays emitted by the uranium,which he observed could be due to

the difference in wavelength of the two radiations. It is important to

mention here, that Becquerel does not use the term 'cathode rays' ,and

in his description of the experiment,it is not clear whether he thought

he was employing cathode rays , orX rays emanating from the
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phosphorescent glass of the tube.

He also used this apparatus to campare the intensity of the

uranium salt/in two very different conditions. Firstly he used a phial

of uranium salt which had been kept for eleven days in darkness, and

then tested the same sample immediately it had been illuminated by the

intense light of burning magnesium. The rate of fall of the leaves of

the electroscope was 20.69 in the first case, and 23.08 in the second

case •64 Becquerel made no comment on this result; he did the experiment

because he thought the radiation mechanism was similar to phosphore-

scence; i.e. that the invisible radiation was a different form of the

energy which the salt had previously absorbed as light and then slowly

emitted. But his experiment did not confirm this hypothesis although

the radiation did seem slightly more intense after the magnesium light.

In the same paper Becqtnrel reported on his experiments with different

uranium salts, some of which were neither phosphorescent or fluore-

scent, tut all emitted invisible radiation with similar intensities. He

also made a qualitative study of the absorption of the rays by diffe-

rent materials; finding rather curiously, that blue glass was more

opaque to the rays than either aluminium or tin.65

An experiment to show whether or not the rays were refracted

through a crown glass prism, appeared to give a positive result, but

the image on the photographic plate was so diffuse that Becquerel was

unable to make any measurements of refractive index. Attempts to show

the phenomena of polarisation and double refraction using crystals of

Iceland spar and quartz, also produced images on the photographic

plate, too weak to give any reliable information. On the other hand,

however, Becquerel could say definitely, that other fluorescent mater-

ials, those not containing uranium, did not produce the invisible rays.

This reversed the conclusion of an earlier paper in which Becquerel had

reported that calcium sulphate gave results of the same order as that
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given by uranium salts.
66

Whatever the later significance of Becquerel's discovery, it would

be wrong to Imagine that it triggered off an avalanche of research in

the field. On the contrary it was seen as a secondary, subsidiary

phenamenon associated with X rays, and as such, evinced little interest

in France and less outside it. Even Becquerel himself gave up the work

in 1897 to return to research on opticsl questions like anomalous

dispersion and the Zeeman effect, and only returned to it after the

discovery by the Curies of the new radioactive elements, radium and

polonium in 1898. In 1896 for example, Becquerel had nine papers

pdblished in the Comptes rendus relating to the invisible rays from

uranium,while in 1897 he produced only two papers, and one of these was

a refutation of the work of LeBon on 'black light'. Much more popular

topics in 1896 and 1897 were cathode ray and X ray research, although

these too fell sharply from a peak of around 150 in 1896 to only nine

in 1899. Work in these two fields was mainly in the hands of George

Sagnac (1869-1928) working in the laboratory of Bouty in the Paris

Faculty and Paul Villard (1860-1934) whose work was done in the

chemistry laboratory of the Ecole Normale. Sagnac concentrated on X ray

research, demonstrating that a metal surface irradiated with X rays,

emitted what he called secondary X rays, X rays with a lower pene-

trating power than those which produced them. Villard i s work was with

cathode rays, and on the properties of fluorescent screens.

A brief mention has been made above, to the work of LeBon on

"black light". The scientific and philosophical roots of LeBon i s work

67
have been very well dealt with in the paper of Mary Joe Nye	 and so

we will not repeat this analysis here. It is worth saying however, that

the anti-rationalist, anti-materialist ideas of Bergson, which gained

ground in the last decade of the nineteenth century in France, and

which influenced LeBon, played little role in shaping the thinking of
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the academic physics community. LeBon clearly was influenced, but he

was a medical doctor not a trained physical scientist, and although he

dined regularly with PoincarLand exchanged ideas with him and several

other scientists, there was no working collaboration between LeBon and

anyone working in this field. In 1899 he did work with the Catholic

physicist, Branly, in research on the absorbing effect of blocks of

cement and stone on wireless waves,
68

but this is the only example,

and in any case Branly was himself something of a outsider. LeBon's

work on black light in 1896, had negligible impact on the physics

community and was camprehensively demolished by Becquerel in 1897.
69

After a period of nearly two years Becquerel returned to the field

of radioactive studies, with a paper given to the Academy in March

1899, which corrected some of his earlier conclusions. He admitted that

the phenomena wescrruch more complicated than he had previously thought,

but insisted on three fundemental aspects which he had discovered and

which later researchers had confirmed;

'..the spontaneity of the radiation, its permanence,

and its property of rendering gases capable of

conducting electricity' •70

Apart from making a re-analysis of some hundreds of photographs

which he had made over the past three years, Becquerel began a series

of experiments with samples of radium and polonium which the Curies had

made available to him. Still using the same photographic methods,he

investigated the reflexion, refraction and absorption of the rays from

the two materials. It seemed to him that the rays from radium were

much more penetrating than those from polonium, and this was the;

'..only indication Which would permit one to characterise
71

the two rays as being of a different nature'.:

Becquerel still tended to think that the rays were similar to

Rontgen rays, and that emission was a process analagous to Sagnac's
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secondary emission. That the emitting substance must possess a store

of energy, which did not seem to diminish with time, was axiomatic for

Becquerel, and he still tried to find an explanation for this using

ideas frcm his studies on phosphorescence.

Later in the same year Becquerel reported to the Academy in a

short note, some more profound conclusions about the properties of the

radiation frcm materials supplied to him by the Curies:7
2

Using a powerful electro-magnet he investigated the effect of a

magnetic field on the path of the rays, and found that the rays frcm

radium were deviated while those from polonium were not. The rays frcm

radium seemed to be similar in some respects to cathode rays but

without all their properties.

If the rays had exactly the same prcperties as cathode rays they

would convey a negative charge, and therefore would be deviated by an

electric field. But neither the Curies nor Becquerel himself had been

able to demonstrate any deviation of the rays by an electric field.

On the other hand, Becqterel could calculate an approximate value for

the velocity of the rays and this appeared to be of the same order as

that of cathode rays. For this calculation he used the hypothesis

which he had formed in his work on magnetic rotatory polarisation;

that the magnetic field could be compared to an etherial medium

endowed with giratory movement, like a whirlpool.

During the first half of 1900, the work on radioactivity using

radium predominated over all other radiation studies. In the Comptes 

rendus for the first half of the year (vol.130) there were thirteen

entries under radium, one under uranium, nine under X rays and four

under cathode rays. Becquerel was responsible for six of the radium

studies and the single piece of research using uranium. The Curies

produced three of the radium papers, and Pierre Curie, with Georges

Sagnac of the Paris Faculty produced one on X rays. Cathode ray work
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was mainly centred in the Ecole Normale with Paul Villard. The only

provincial faculties to be engaged in this new work were Dijon, where

Bernard Brunhes was doing work on the velocity of X rays employing the

Kerr effect, and Lyons where Gouy was attempting to measure the

wavelength of X rays.

In this final year of the century, Becquerel, although continuing

to use photographic plates as detectors, pushed the knowledge of the

radiation further forward by showing that an electric field could

deflect the deviable rays. Now the value of the ratio e/m for the

rays was calculated, together with the electrical energy radiated per

second, the number of particles emitted per second and hence the mass

loss per second.
73
 Becquerel's figure of lmg. in a million years,

was of course grossly in error, and it was only after Einstein's

special relativity theory that the true mass loss could be calculated.

Also in this year, Curie and Sagnac together showed that X rays

convey no charge, and Villard concluded in his work on the radiation

from radium, at the Ecole Normale, that the non-deviable rays

consisted of two components, one of which was very penetrating. Later

the same year he called the rays a type of X ray, and showed that they

were more penetrating than the deviable rays.
74
 Although the modern

nomenclature of alpha, beta and gamma rays had not yet appeared in the

literature, Villard is today credited with the discovery of gamma

rays, the very penetrating radiation which he identified with X rays.

In fact, the electro-magnetic nature of these rays was not established

beyond doubt until 1914.

These final years of the century eere exciting ones in which a

completely new field of study came into existence, and they were years

in which the French could truly regard themselves as world leaders in

the field. What may have seemed disturbing to the proponents of de-

centralisation, however, was that despite years of efforts to raise
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the status of the provincial faculties, this work was still almost the

exclusive preserve of Parisians. The humble Ecole Municipale was now

competing with the Parisian centres of scientific excellence in the

new radiation studies, while the Ecole Polytechnique, once a centre of

innovation in teaching and research, was playing no institutional role

in radioactivity. It is true that Becquerel was a physics professor

there, but it can be said that the school played no role because its

facilities, laboratories, and junior staff members were not involved

in the research as they were at the Ecole Normale and the Paris

Faculty.

f.The provincial faculties 

The research of some provincial faculty staff has already been

mentioned when the work reported to the Societe de Physique and the

AFas was considered. Some faculties had, by this last decade of the

century, become specialised in some restricted field of physics and had

gained a national reputation for their work. Although the Faculty of

Nancy was not quite in this position by the opening of the decade, the

discovery by Hertz of electro-magnetic waves in the last years of the

previous decade had opened up a new research area, and this was

exploited by the Nancy Faculty physics professor, Rene Blondlot. One

must say that he had few competitors in France when he began his work,

in fact only Branly of the Catholic Institute in Paris concernd

himself with this field, although later in the decade A. Turpain of

Bordeaux was a regular contributor to the meetings of the AFas on the

propagation of electro-magnetic waves.

Apart from the work in this field in Germany, and by Lodge in

England, the Swiss, Sarasin and de la Rive were investigating the pro-

perties of electromagnetic waves and their research was very accessible

to the French, being as it was, published in French in the Archives des
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sciences physiques et naturelles of Geneva. Blondlot appears to have

followed very closely the research in electromagnetic waves which was

being undertaken in Germany and Switzerland, and in the early 1890's

there was a steady stream of papers on this subject from him, often of

great experimental ingenuity, and aimed at testing some of the, as yet

untried, predictions of Maxwell's theory. Blondlot very quickly earned

a high reputation and won powerful friends in Paris, in particular his

fellow Nanceian, Henri Poincare, who was to be one of his allies in

the later controversy over the existence of 'N' rays. Unlike most

French savants, Blondlot, had no ambition to succeed to a Paris chair;

his roots were in Lorraine and the Faculty of Nancy. And it should be

remembered that Nancy, so close to Germany, was especially favoured in

the question of funds, benefitting from both local industrialists and a

particular generosity of the Ministry of Education. Blondlot's first

piece of research in this field took one of the predictions of Maxwell

and subjected it to experimental test. Electromagnetic theory

predicted that the refractive index of a dielectric material was equal

to the square root of its specific inductive capacity, or what would

now be called its relative permittivity. J.J. Thomson had already

reported to the Royal Society in 1889, that when glass is used in a

capacitor and charged and discharged 25x106 times in a second, it had a

relative permittivity which was the square of its refractive index,

but that this relationship did not hold good for lower frequencies.

Another research worker, Lecher, reached exactly the opposite

conclusions to Thomson about the way relative permittivity changed with

frequency, concluding that it increased rapidly.

To decide between the two competing conclusions,Blondlot employed

a method which used e.m waves but did not use the usual formula for an

oscillatory circuit;

T=211 FC
Blondlot had a preference for experimental methods which were
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independent of any formulae, and the method Which he used, in this

case, camparing the relative permittivity of glass and sulphur,was the

first to use e.m. waves.75

The diagram of his apparatus together with an abbreviated

description is given below.

It consisted of large rectangular

plate AA' and a smaller plate BB'

which together formed a capacitor.

This could be charged from an

induction coil and discharged

through the balls a and b.

The period of the oscillatory

discharge is in the order of

25 x 10-6 secs.

When the plates are discharged, an e.m. wave is transmitted from

AA'and received by CD and C'D'.In Blondlot's own words;

'When the coil is functioning, no spark is observed between

E and E'; this results from the symmetry of the apparatus. If

we interpose between AA' and CD, a sheet of glass, then the

spark jumps between E and E'; this is because the induction

received by CD has been stronger than that received at 6%76

Blondlot could restore the symmetry of the system by putting into

the space between AA and C'D',a sheet of sulphur whose thickness was

adjusted until the spark between E and E' disappeared. Using a sheet

of glass of 3cm thickness, symmetry was restored when the thickness of

sulphur was 3.15 am. The dielectric constant of sulphur was found by a

method given by J. Curie to be 2.94, and by a simple ratio of the

thicknesses, the dielectric constant for glass was calculated to be

2.8. The square root of this, 1.67, gives a very rough agreement with

the refractive index of glass at 1.5. As we shall see, Blondlot was to
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return to this line of research, but employing a different experimental

arrangment, later in the decade.

Blondlot's next piece of electro-magnetic research was to verify

as Maxwell had predicted, that e.m. waves travelled at the same speed

as light. 77 Blondlot's method was to set up standing waves in two long

wires, and to move a resonating device equipped with a spark gap along

the wires, measuring the position of the nodes and antinodes in the

standing waves. Being able to calculate the frequency of the exciting

wave from the geometry and construction of the resonator, and measure

its wavelength from the distance between successive nodes or antinodes,

Blondlot could calculate the velocity of the e.m. wave from the product

of frequency and wavelength. He found quite close agreement between

the values for light and e.m. waves, a result which was favourable to

the hypothesis of the identity of the two. The frequency of the

received wave could also be altered by changing the dimensions of the

resonator. Blondlot presented a table of data for the wavelengths

which corresponded to 13 frequencies and obtained a mean value for the

velocity of these waves,of 297,620 Km/s. He was also able to conclude

that;

'..electric undulations have a unique value of

prcpagation,independent of wavelength' 78

The spread of his 13 results were within 5%, which corresponded to

the precision with which he could measure the position of the nodes.

At a node in the standing wave, the spark would be at its feeblest, and

the spark gap would have to be closed up to allow it to jump across. At

the antinodes, the spark would be strongest and would leap across the

greatest width of gap. This method of locating nodes and antinodes by

means of the length of spark gap, was the one introduced by Hertz, and

required a fine micrometer adjustment to the gap. Later it would seem,

Blondlot abandoned the measurement of spark gap length as an indication

of the strength of the received signal, and simply used the intensity
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of the spark, its brightness. It was this rather subjective

experimental method which was to lead to his later completely false

observations in relation to N rays.

Blondlot does not say where his experiments were conducted, but

one can only assume, considering the wavelengths he was using, and the

need to measure between a number of successive nodes, that his wires

were in the order of 100 m. long and that the experiment was conducted

in the open. This must also have increased the difficulty of making

precise measurements.

In the following year, Blondlot came back to continue his investi-

gation of the relationship between refractive index and dielectric

constant, but this time using the method he had employed to find the

velocity of e.m. waves.
79 

By considering the dimensions of the

equation;

T= 2'qE

Blondlot concluded that 'in a given oscillator, the wavelength of

the waves which it can emit must remain the same whatever be the

insulating medium in which the experiment is made' 
•80 

This permitted

him to make a simple theoretical verification of the relationship which

Maxwell had given between refractive index and dielectric constant;

K=n
2

Using an electric oscillator whose capacitor was filled with

castor oil, and measuring the wavelength of the e.m. waves propagated

through the oil, Blondlot found a value of 2.18 for K, which gave a

value for n of 1.476, against the value obtained by optical means of

1.4674.

Profiting from the very cold winter of 1892-3, Blondlot with a

colleague, Dufour, set out to determine the dielectric constant of ice

using electro-magnetic waves.
81 This was done by measuring the

wavelength of e.m. waves in ice, using Blondlot's usual apparatus of a



239

resonator moving along the length of two parallel wires which were

acting as transmitters of hertzian waves, and locating the position of

nodes and antinodes. This gave a value for refractive index of 1.41,

from which K for ice would be two. Unfortunately for Blondlot, two

Parisian researchers, Bouty and Perot, working in the laboratory of the

Paris faculty had found K to be 78. 82 Perhaps one is influenced by

Blondlot's later research on N rays, but it is impossible to escape the

feeling that, knowing the result he wanted to obtain, Blondlot

sometimes deceived himself that he had found it.

Perhaps the shortcomings in Maxwell's relationship K=n
2
 came to be

discussed later in the decade, but in these early years at least,

Blondlot seems to have believed that he had verified it. But in fact

the law holds good only in the case of gases, because the electrical

polarisation of the medium, which is supposed in Maxwell's theory to

follow the changes in field strength instantaneously, actually lags

more and more behind the applied field as the frequency increases. It

is only for camparatively slow vibrations that the polarisation follows

the applied field at all faithfully, so that it is not surprising that

K , found for dielectrics using high frequency e.m. waves, does not

agree with the value found by static methods, or those which involve

slow charges and discharges. But whether or not it can be said that

Blondlot had already began to deceive himself about some of his

results, it cannot be denied that he had accumulated a considerable

body of research by this time and its importance was first recognised

by the Academy in 1893 by awarding him the Plante prize, and six years

later with the more prestigious LaCaze prize.
83

Some other work by Blondlot in this period measured the velocity

of an electrical pulse of high frequency through a long length of

cable, finding very poor agreement with the value found by Fizeau and

the telegraph engineer Gounelle in the 1850's. Blondlot argued that
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the discrepancy came from the fact that in his experiment the distur-

bance travelled in the surface of the conductor, (a phenomenon Which

came to be known as the 'skin effect'), whereas in Fizeau's experiment

the lower frequency pulse travelled in the whole body of the conduc-

tor.84 More electro-magnetic work was carried out independently by

Dufour in Nancy, but it used the apparatus of Blondlot and simply

confirmed some of the earlier work of Sarasin and de la Rive in Geneva.

There was little or no research on cathode or X rays in the

provinces, partly because of the lack of the Crookes tubes which

Gariel had complained about (see the section on the AFas) , and partly

e	 e
because there ware no agrege-preparateurs in the provincial faculties.

For it was these junior faculty members who were most enthusiastically

tackling the new ray research in Paris. This is not to say that ray

research was entirely absent from the provinces; there was the work of

Gouy in Lyons and Brunhes in Dijon as was mentioned in the section on

the provincial faculties. There was also no research into Becquerel

rays in the provinces, and the study of radioactivity remained

exclusively a Parisian activity until the outbreak of the Great Wiar.

g.The intellectual climate of the last decade. 

After the establishment of the Catholic Institutes in 1875, the

next important educational reform was the measure , which in 1885,

allowed the faculties to raise what funds they could locally, from the

municipality and local industry. Between 1885 and 1900, industry,

private donors and departmental and municipal authorities contributed

more than 30 million francs (three quarters of the total employed ) for

the construction and refitting of laboratories in the local science

faculties. Some faculties inevitably did better than others from this

new funding; Nancy, Grenoble and Lille Eared best, while faculties in

smaller cities without much local industry, like Caen and Poitiers did
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less well. The Paris Faculty also benefitted from these new arrange-

ments, which nonetheless tended to weaken the previous over-centrali-

sation of the system and improved the links between theoretical science

and technologically based industry. On the debit side, the growth of

lower level instruction in applied science (which the technological

institutes attached to the faculties offered) took up more of the time

of the physics teachers.
85
 But nevertheless, already in the 1880's,

physics teachers on the geographical or institutional periphery,

Blondlot of Nancy, Gouy of Lyons, Branly and Curie in Paris, were

making contributions, which their contemporaries considered signifi-

cant, in those areas of physics which the Paris Faculty and Grandes 

Ecoles wer neglecting.

From a wider political and social point of view, the final decade

of the century promised, after the alarms of the Boulanger crisis and

the Panama scandal of the 1880's, a period of stability and tran-

quillity. The intense State/Church antagonism of the early years of

the Republic seemed to be weakening in 1892, when Pope Leo XIII

declared the policy of ralliement, in which the Church abandoned its

support for legitimism and called on French Catholics to support the

Republic. But the Third Republic continued to espouse a philosophy,

which was militantly anti-clerical, if not always anti-Catholic. This

philosophy, which came to be called scientisme, was underpinned by the

notion that science constitutes the Meal form of knowleldge, and that

value-free scientific concepts can be applied to all aspects of humani-

ty and society. A quotation of the Republic's favourite and most

successful scientist, Marcellin Berthelot, concerning the social utili-

ty of science, and extolling its role as a foundation for all aspects

of human activity has already been referred to in Chapter three.
86

Science was the republic's weapon against the Church and the

legimists; ultimately science would explain everything and organise
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everything. Berthelot served as a government minister, and in general,

scientists enjoyed a high prestige in the Republic, serving it as a

kind of lay priesthood of scientisme.

But in the middle of the decade, the smouldbring antagonism

between scientisme and religious and idealist ideas, flared up again.

The opening shot came with an attack on the underlying assumptions of

scientisme in a novel, The disciple, in which a student influenced by

Darwinist ideas of the 'survival of the fittest' commits murder. As a

response to this, the partisans of science republished Ernest Renan's

optimistic work The future of science, which had first seen the light

of day forty five years before. 87 Then, in 1894, the literary historian

and editor of the journal Revue des deux mondes, Ferdinand Brunetiere,

returning from a visit to the Pope, published his article on 'The

bankruptcy of science'. Science, avowed Brunetiere, had failed to

fulfill the axtravagant claims people like Renan and Berthelot had made

of it, and he denied that it was possible to 'draw from the laws of

physics or the results of physiology, any way of knowing anything. 88

Republican politicians saw the attack on science, not as an

esoteric philosophical dispute, but an attack on the policies of the

regime, and if some scientists saw the whole discussion as irrelevant

and misconceived, Berthelot responded by continuing to express the most

extreme formulations of scientisme; reiterating his confidence in

scientific method as the most effective way of arriving at the truth,

and expressing his confidence in a future in which science would banish

war, poverty and ignorance.

But not only were there political attacks on scientisme but more

fundamental philosophical ones on its foundation, positivism. A new

philosophical outlook which was anti-rationalist, anti-materialist (in

that it attacked the notion of the existence of an unchanging

mechanical basis to the physical world) an outlook which stressed
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intuition above reason, came to the fore associated with the name of

Bergson. Although it had been argued that Lebon was influenced

indirectly by Bergson, it is not possible to see an influence on any

professional French physicists. Probably Bergson is more Important as

being simply one part of the general reaction against science at the

end of the nineteenth century, a reaction which in turn prompted

scientists to reassess the aims and the scope of their physical

theories. As Heilbron has argued for physicists in general, although it

applies with much greater force for French physicists;

'The physicists of the fin-de-sieble sought to redefine

their professional objectives so as simultaneously to

achieve internal consensus and secure their place in the

wider society'.
89

In front of the criticism and even ridicule of a wider intellectual

society, and faced with a bewildering array of new experimental facts,

some French physicists withdrew any claim they might have previously

made, to answer the big questions. What was important and lasting, were

phenomena and the relations between them, hypotheses, models and

theories were no more than convenient and abritrary aids, to help us

grasp these relations. Certainly this was the position most syste-

matically enunciated by Poincare, and shared by many French physicists.

But what must also be examined is the discussion within the

scientific community itself in the decade, on the mechanical view of

nature. Had the French physics community been as thoroughly positivist

as some have suggested, such a discusion would have been seen by its

members as no more than a dispute between metaphysicians. It is true

that notorious anti-atomists and positivists like Berthelot, Lippmann,

and Lechatelier can be identified, but more characteristic of French

physicists of the period, was a certain consistent, if often unstated,

attachment to mechanical assumptions.
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To explore this more fully we ought to go back a little and look

at the development of the argument for and against atomism as it took

place in France in the 1890's. We have already seen that, in 1888, the

Lyons faculty professor, Leon Gouy, had alerted the French physics

community to the importance of Brownian motion as both a visible experi-

mental demonstration of the kinetic theory of matter, and a contra-

diction of Carnot's principle. In 1894 in a lecture in the Lyons

/
Faculty, later rsprinted in the Revue generale des scienceS, 90 he took

up again the question of Brownian motion, and did not shrink from;

'leaving the solid terrain of observation and experiment,

to enter into the uncertain domain of hypotheses on the

constitution of matter'.
91

He stressed that '..theoretical

speculation has been the origin of . the greatest progress

and yielded the greatest harvest of discoveries' •
92

Gouy went on to explain how the observation and measurement of the

velocity of the solid particles agitated by molecular motion, would

yield information about the velocity and the dimensions of the

molecules themselves. He ended by calling the attention of physicists

to this phenomenon, which they had previously neglected as being

unimportant and outside their sphere of study. With such a study,

ended Gouy;

'.I have the firm confidence, that thanks to their

efforts, we will penetrate more and more into the knowledge

of the intimate properties of matter, already so fruitful

and rich in promise for the scientific and industrial

development of humanity'.93

Gouy's appeal was not immediately taken up, but Jean Perrin in the

early years of the twentieth century was to use Brownian motion to show

the reality of molecules and to deduce a value for Avogadro's constant.

But this, and other successes for the atomic and kinetic view of
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nature, were to come later, and the middle years of the 1890's were

probably more notable for the attack on this view by the 'energeti-

cists' led by Ostwald. The sharpness of the debate between the two

schools of thought was exacerbated in France by a clumsy translation of

the title of Ostwald's 'Die Uberwindung des Wissenschaftlichen Materia-

lismus'in the Revue generale des sciences of 15 November 1895. It

appeared in French as 'La deroute de l'atomisme contemporain', a title

which Ostwald himself, who had not read the proofs of his article, felt

was too abrasive, preferring the more anodyne 'La reforme de la

physique generale'. 94 But even given that the title expressed the

ideas of Ostwald in a rather extreme and distorted form, the content

too was offensive to the scientific materialists of France. Cornu

found himself 'perhaps more than anyone else,wounded ' by the

article,and particularly by the phrase 7

It is a in enterprise which has failed pitifully

before all serious experience,this desire to explain all

the known physical phenomena by relation to mechanics'.
95

Moreover, Ostwald asserted that the undulatory theory of light, had

been buried by the electromagnetic theory,and;

'making an autopsy on its corpse we find that the cause of

death becomes evident; it has resulted from the failure of

its mechanical parts'.
96

By this, Ostwald meant the elastic solid ether, whose properties,

Fresnel, Cauchy, and Boussinesq in France, and Green and McCullach in

Britain, had struggled to define. Cornu defended the undulatory theory

in what he considered its essence; propagation by wave motion of

luminous or electric disturbances, and the transverse nature of the

wave. To a convinced materialist like Cornu, the gratifying thing was

to see that rational mechanics,'with such simple and restricted

elements -material points and reciprocal action- could succeed in
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rendering account of so many diverse and complicated phenomena'

And Cornu was not the only one to raise an indignant voice of

protest against the attack on principles which had shown themselves so

fruitful over three centuries, for the same issue of the Revue also

carried a short note by Marcel Brillouin. Brillouin with Cony, can be

considered as a central figure in the defence of atomism in Prance, and

his pupils were to play a central role in the development of atomic

physics in the twentieth century. In his article 'Pour la matiare',98

Brillouin makes a plea for a greater liberalism in relation to

theories, seeing Ostwald's article as an attempt to stigmatise as

backward, and to excommunicate those scientists who wanted to employ

mechanical images. He argued that science was like a doable entry

account book; representations on one side and physical facts on the

other. Some, because daily experience had familiarised them with

mechanical phenomena, and Brillouin included himself in this category,

liked to put mechanical images on one side of the account, others, he

admitted, would prefer to use numerical representations, differential

equations, but both would be representations of the facts.

One statement of Brillouin's is particularly interestimg. He made

the point that although now in 1895 he feels the need to defend matter,

to argue for its very existence, some 15 yeaxs previously as a teacher,

he felt the need to warn his students against the excessive use of

material representations, above all in electricity, where it was most

often resorted to. 99 Thus it is clear that the mechanical, material

view of nature was well entrenched in the faculties in the 1880's.

Another important point which comes out of the discussion on the

'bankruptcy of science', and in the energetics/mechanics debate, is the

heterogeneity of the philosophical positions of French physicists. It

cannot be said that the centralisation of the educational system

(weakening a little, to be sure, as a result of government reforms),
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led to a uniformity in the views of her physicists, they were as

diverse as those of their peers in Germany or Britain. Thus, philoso-

phical pluralism, the absence (natural in a time of revolutionary

change) of authorities in the new physics, combined with comparatively

inexpensive apparatus, meant that junior members of the Parisian

teaching institutions could play an unusually important role in

research into most aspects of 'ray physics'. However, the absence in

the provincial faculties of able agreges preparateurs enthusiastic to

make their name in the new physics, the attachment of senior faculty

members to their 'old and dear' lines of investigation, and the

scarcity of Crookes tubes in the provinces, ensured that the new ray

physics was almost entirely concentrated in Paris.

So it can be said that the physicists of France were engaged in an

intense debate over a number of scientific and philosophical questions

at the end of the nineteenth century. One could also add that they were

not indifferent to the no less intense political discussion. When, for

example, the underlying tension between the clerical/legitimist right

and the republican regime flared into public debate, accusation and

counter-accusation and street demonstrations, for and against the

verdict of the court martial against Dreyfus, most scientists demanded

the revision of the court's verdict of guilty. Perrin and Langevin were

particularly active in this agitation, but many others showed their

opposition to the verdict more cautiously.

It is, of course, to be expected that many scientists would feel

obliged to defend the republican regime which had given them their

education and their social status as academics in the state institu-

tions. For the younger ones, political positions which the Ministry of

Education might find dubious or disloyal could damage their career

prospects and hence their ultimate social standing. This is not to say

that Perrin, or Langevin, or the others who agitated for a revision of
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the verdict on Dreyfus, did so for cynical careerist motives, they were

convinced of the justice of his case just as they were convinced by the

optimistic message of scientisme, and this made them staunch supporters

of the Republican regime.

It might be argued that an older member of the physics community,

someone already embedded in the social and political fabric of the

Republic, would be particularly careful, in the middle of all this

conflict, not to make claims which could (in the fluid state in which

physics existed) further damage science and the Republic which was

closely associated with it. The theoretical caution of someone like

Henri Becquerel who held positions of chief engineer in the Corps des

Ponts et Chaussees, professor at both the Museum and the Conservatoire, 

and was a lecturer at the Ecole Polytechnique, can perhaps best be seen

in this light. If Rutherford advanced much more audaciously in radia-

activity research than Becquerel, if there seems a contrast between a

rough vigorous, colonial and an effete European, the contrast stems

from the difference between someone who is restrained by a feeling of

responsability towards both a scientific community and a political

structure, and someone who is not. Becquerel found it safer to

accumulate facts about radioactivity, not so much because of a positi-

vist reluctance to speculate about the reality behind the phenomena,

but because further experimental advance tomorrow might refute that

speculation, and give further comfort to the enemies of science.

Pierre Curie, from whom, both because of his early formation and

as a product of the faculty system rather than the grandes ecoles, one

would expect a strong allegiance to the Third Republic and its

scientistic goals, is a rather different case to Becquerel. He did

speculate about mechanisms, and make explanations for radio-activity,

but never made the testing of these hypotheses the central axis of his

research work. For him they were hypotheses, replaceable by others if
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need be, and secondary to the truths uncovered by experiment. On the

other hand his personal temperament was introverted and cautious

anyway, and it seems that he felt keenly that French physicists sadly

00
needed the theoretical audacity of someone like Maxwell. 1

But if the political, intellectual and scientific controversies

of the last decade forced some physicists to adopt a defensive

position, there were some among the younger generation who were both

combative politicallly, (very early on giving their active support to

Dreyfus) and audacious theoretically. Among such men were Perrin and

Langevin whose early contributions to modern physics have already been

mentioned and who would accomplish much more in the twentieth century.
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6. FROM THE OONGRES INTERNATIONAL DE PHYSIQUE TO THE OUTBREAK 

OF THE GREAT WAR.

a. Introduction. 

In continuing this survey into the early twentieth century, it

again becomes necessary to narrow the focus on the field of view. The

scientific community continued to expand and the number of research

papers which were published grew exponentially, making it impossible

for the historian to do full justice to the whole range of research.

For this reason the chapter will concentrate on the work done in ray

and atomic physics up to 1914, partly because it was the field in which

the French could justifiably claim to be in the forefront at the turn

of the century, and partly because it was a new area, breaking new

ground and provoking considerable excitement both inside and outside

the scientific community. For a young research worker, atomic and ray

physics seemed to be the areas where discoveries and reputations could

be made.

It might be said that the event which closed the old century and

began the new one for physics was the Congres International de

Physique, organised in the summer of 1900 by the Societe de Physique.

The material presented at the congress was published a few months later

by the society in a work which its editors, Charles Guillaume and

Lucien Poincare announced would serve;

'To mark the stage attained today by the human spirit in its

1
eternal voyage in search of the truth.'

The congress began its deliberations with the opening session

adressed by Cornu, and finished them a week later with a reception and

exhibition of new apparatus and experiments in the mansion of the

society's most socially distingished member, Prince Roland Bonaparte.

Some thousand people attended the congress, including delegates from
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foreign governments and scientific societies. Although Europe was

still the centre of the world of physics, and most by Ear of the

participants came from within her boundaries, there were several

prominent Americans, including the meteorologist Cleveland Abbe and the

electrical inventor Graham Bell. Asia too, was represented ; the

Japanese physicst, Nagaoka (later to gain some eminence through his

'Saturnian' model of the atom) gave a paper on magneto-striction, and

J. Chandra Bose from British India spoke on the effect of electricity

on both inorganic and living material.
2

Cornu's opening speech was brief and bold. One can find no

positivist caution here, no rejection of speculation about the reality

behind appearances. For Cornu, physics was the search for the proper,-

ties of the basic material of the universe, a search which would

ultimately unify all physical laws.

'The deeper we penetrate into the knowledge of natural

phenomena, the more does the bold Cartesian conception

of the mechanism of the universe develop and become more

exact, namely that in the world there is nothing but

matter and motion. The problem of the unity of physical

forces ...has again came to the fore after the great

discoveries of this century. The constant concern of

our modern leaders Faraday, Maxwell, Hertz....was to

define nature more accurately and to unravel the pro-

perties of this subtle matter (matiere subtile, itali-

cised by Cornu) the receptacle of world energy'.
3

After the opening session, the meeting split into seven different

sections, each one under the presidency of a prominent French physi-

cist. The sections were; general questions, units and measurements,

under the presidency of Benoit; molecular and mechanical physics

presided over by Violle; optics and thermodynamics (Lippmann);



258

electricity and magnetism (Potier); magneto-optics and rays

(Becquerel), cosmic physics (Mascart),and biological physics

(D'Arsonval). Nearly eighty papers were presented, ranging over the

whole spectrum of physics from the discussion of the basic units of

measurement to the latest experiments on the emission of 'uranic' rays.

Numerically at least, France was well represented among the speakers,

for her savants contributed thirty six out of a total of seventy nine

papers, but this is to be expected as she was the host. The question of

their quality and originality is of course rather more difficult to

assess. There can be little doubt, however, that the paper given by

Poincare, entitled 'The relations between experimental physics and

mathematical physics' remains today, a classic in the philosophy of

science. This paper came at a time when theories which had been the

cornerstones of nineteenth century science, like Fresnel's optics for

example, were being called into question and where radioactivity seemed

to cast doubt on the principle of conservation of energy. People out-

side the scientific community, seeing the impermanence of the laws and

theories of science, began to question its very rationality. Science

had failed, it was 'bankrupt' as Brunetiere had argued, now it was time

for religion to have its say.4 Poincare addressed himself to this

question of the 'bankruptcy ' of science, deriding the superficial scep-

ticism of those who did not understand that 'even the ruins ..(of a

theory) are good for something 15 and redefining the aims and re-

evaluating the validity of physical theories. This was a view of

science which without doubt represented a retreat; theories were

convenient aids to gain a better understanding of the relations between

phenomena, they were not attempts to describe, however imperfectly, the

reality behind appearances, and as such they could be taken up and

discarded according to their usefulness in any situation.

But it would be dangerous to assume that all French physicists (as
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perhaps Heilbron tends to do in his chapter 'Fin-de Siecle physics'6)

shared Poincare's philosophical sophistication. As we have seen from

Cornu's opening speech and the note by Lucien Poincare and Charles

Guillaume, for them, physics was still a search for truth, the search

for theories which could mirror reality, and they did not believe that

these theories could be taken up and discarded at will. Possibly closer

to the views of many French physicists, (although none of them acknow-

ledged any debt to Duhem and few had read him), were those ideas enun-

ciated by Duhem, when he said that the more complete a theory becomes,

'the more we apprehend that the logical order in which theory orders

experimental laws, is a reflection of an ontological order. '
7 
Such a

view would tend to put stress on the importance of continuation from

one theory to the next, would look for elements of continuity rather

than breaks. Thus for Duhem, the advantage of the Helmholtz theory of

electro-magnetism, over Maxwells's theory, was that Helmholtz's could

be logically connected to classical ideas of electro-magnetism, while

Maxwell's could not.
8

Apart from the paper of Poincare, the French were well represented

in those fields in which they traditionally excelled; metrology,

precise measurement and interferametry. Guillaume and Benoit, both

from the Bureau of Weights and Measures at Sevres, gave papers on units

of measurement and on precision in the measurement of length res-

pectively, while Mace de Lepinay of the Marseille Faculty reported on

the measurement of length using interferametric methods, methods which

were later to be developed by his student, Fabry.

The other principal French interest, optics, was represented by

the paper by Cornu on his determination of the velocity of light, and

by the paper of the Polytechnique teacher, Carvallo, on the theories

and formulae of optical dispersion, but this type of 'normal science'

would probably have had little interest for the new generation of
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physicists, both in France and abroad, who were looking for new fields

where discoveries could be made and reputations established. An area

which had been heavily researched by the French in the earlier years of

the century, radiant heat or infra-red rays, now appeared to be wholly

in the hands of the Germans. This had been an area of work of Ampere

earlier in the century, it was continued by the Italian refugee,

Melloni encouraged by Arago, and then in the middle years of the

century it became the exclusive preserve of Prcvostaye and Desains.

Desains with his assistant Pierre Curie were working in this field in

the 1880's and it was carried on by Violle. But the three papers on

infra-red radiation at the Congress came from the Germans, Rubens,

Wien, and Lummer, and though they gave an historical account of the

work, with credit going to the earlier French researchers, it was clear

that all the latest theories on the energy distribution in the spectrum

of a radiating black body, and the development of experimental work

associated with this, were now coming from the other side of the Rhine.

It also seems that the theoretical explanations of black-body radia-

tion, developed by Stefan, Kirchhoff and Wien were not widely known in

France until the early years of the twentieth century. Moreover,

Violle, who had been working in this field in the 1890's, passed on to

the less intractable problems of accurately finding the velocity of

sound, (he presented a paper on this to the Congress), leaving the

research on heat radiation to the Germans.

In the field of hertzian waves, the contribution of the French was

stronger. It is true that the major theoretical contribution on the sUb-

ject came from the Italian, Righi, but Branly reported on his work on

1 coherers' and other methods for the detection of the waves. The other

major contribution from France, on the determination of the velocity of

hertzian waves, was given by the Nancy professor, Blondlot, and his

assistant, Gutton. This was not simply a report of Blondlot's own work
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carried out eight years previously, but on all the experiments using

different techniques and methods. The results of all the experiments,

though differing slightly, one from the other, appeared to confirm the

theory of Maxwell.

The French contribution at the Congress to the ' revolutionary'

areas such as, cathode rays, radioactivity, ionisation etc, was

however, very strong indeed, with contributions from Henri Becquerel,

the Curies, and Paul Villard. In the same section there was also the

paper from Lorentz on the ' Theory of the recently discovered magneto

-optical phenomena', in which he gave an explanation of the Zeeman

effect employing his particulate theory of electricity, and one from

the Cavendish professor J.J. Thomson on the constitution of matter,

establishing the material character of cathode rays by measuring their

charge to mass ratio.9

Becquerel's paper 'On the radiation from uranium and on the

different physical properties of the radiation from radioactive

bodies',
10
 gave a summary of his and other people's work in these

fields since the discovery of radioactivity five years before.

Although he referred to some work by the Germans, Giesel and Dorn, most

of the research described was his own and that of Rutherford in

Montreal. He reported his general conclusion that radiation was not

due to any storing of light, ultra violet, or infra red energy, but was

a property of the uranium itself. He could find no weakening in the

activity of a sample over a period of four years, and no variation when

the temperature of a sample was varied between -20 C and 100 C. He

concluded that some of the emitted rays were similar to cathode rays.

Becquerel also described Rutherford's work using an ionisation

chamber, in which it was found that the rate of production of ions is

proportional to the intensity of the incident radiation, providing the

pressure is kept constant. It was Rutherford, Becquerel asserted, who
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first called the more easily absorbed rays, alpha rays and the more

feebly ionising but more penetrating rays, beta. The rays had been

deviated in magnetic and electrical fields by Giesel, who had found

from this, that their charge to mass ratio was of the same order as

that for cathode rays, while the Curies had established that they con-

veyed a negative charge. Thus, while the nature of rays had been

fairly well established by this time, the nature of the non-deviable

rays was still unknown.

The paper of the Curies 'The new radioactive substances and the

rays which they emit',
11
 repeated some of the conclusions of Becquerel,

but also introduced new apparatus and lines of research. They

speculated whether radioactivity was a general property of materials

and concluded that it was unlikely to be shown only by polonium,

radium, and actinium, but that it was an atomic property, which could

not be altered by physical state nor chemical combination. They also

reported on the work on induced radioactivity, the effect which radium

seemed to have on other materials brought close to it, causing them to

radiate for a short time. They found approximately the same results

using zinc, brass, bismuth, nickel, aluminium, and lead. Others,

namely Giesel, Rutherford, Debierne, and Villard had found similar

effects. One could probably say, that at this stage France was leading

the world in the production of new radioactive elements like polonium,

radium and actinium, but in the examination of the properties of radio-

active emissions, and in the formulation of a theory of radiactivity,

Rutherford and his team of research workers were establishing their

pre-eminence.

Paul Villard's paper entitled 'Cathode rays' 12 had much more

previous work to review, and there was litle new in it. It is rather

strange that the representation of the Germans in this section was so

weak. There were no papers on X rays, which were a German discovery,
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and nothing from Germany on photo-electric emission, which at that time

was mainly in the hands of Lenard. The major paper on photo-electric

emission entitled 'On the actino-electric phenomena produced by violet

rays'
13
 was the joint work of two provincial faculty prcfesors; Bichat

of Nancy and Swyngedauw of Lille. As in most of the papers presented

to the Congress, the authors gave a full historical account of research

in the subject, as well as a review of modern work. Swyngedauw, whose

doctoral thesis of 1897, and most of his subsequent research had been

in photo-electric emission, was the foremost researcher in this field

in France, and the joint paper carried many references to his work.

Lenard's discovery that some metal surfaces irradiated with blue light

gave off, what were essentially cathode rays, (Lenard measured their

e/m ratio and found it substantially the same as J.J. Thomson's value

for cathode rays), came just in time to be included in the paper. In

the next few years Lenard, who had not attended the Congress, became

the unquestioned leader in the experimental study of photo-electric

phenomena, whose explanation had to wait for Einstein's photon theory

in 1905.

In general one can say that the German intervention in the revolu-

tionary 'ray physics' area was very weak, probably because they had

started late in radioactivity research because they had initially shown

some scepticism about Becquerel's discovery, putting it in the same

category as Lebon's black light which enjoyed some notoriety in 1896.

As mentioned before, the most significant German intervention, came in

the field of blackbody radiation, from Lummer, Pringsheim, Rubens and

Wien. It was the discussion, essentially among these German research

workers, seeking to harmonise the experimental results with the theore-

tical law of Wien, which was to lead Planck to formulate the quantum

theory. Planck was at the Congress but did not give a paper, and

neither was his quantum explanation of black body radiation heard
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although it was formulated late in 1900.

It is to the credit of France and her Societe de Physique that the

first international congress in the discipline should have been held in

Paris. It came at a fortunate time for French physicists, because

after a period in which many new developments in the subject had tended

to leave them on one side, leaders in the new 'ray physics', Becquerel,

the Curies, Villard, to a lesser degree Swyngedauw, Branly and

Blondlot, were to be found in its ranks. But, characteristically,

these were experimental triumphs for French physics; within a few

years, theoretical formulations in radioactivity,in quantum theory and

relativity, would place the leadership in physics in the hands of

German and English speakers. Apart from the philosophical intervention

of Poincare, none of the French papers made a significant theoretical

contribution to the Congress; they were reports of experimental work.

Cornu on the velocity of light, Violle on the velocity of sound,

Blondlot on the velocity of radio waves, Abraham on the velocity

Crova on the solar constant, Guilllaume, Benoit and Mace de Lepinay, on

precise measurement, as well as the work on radioactivity, give some

examples of the experimental character of the French contribution. It

is true of course that, as in Bacon's Solomon's House, a large number

of collectors of experimental facts will keep employed a relatively

small number of theoreticians, and the vast majority of the papers

presented to the Congress from all nations was predominently experi-

mental, but, nevertheless, the absence of a French theoretical contri-

bution to match that of Lorentz, Wien, Drude, J.J. Thomson, or the aged

Lord Kelvin, is significant. It is true that Gabriel Lippmann's inter-
1.4

vention on the 'Kinetic theory and Carnot's principle' was as much in

the realms of thought as experiment, for basically it sketched out a

proposal for an experimentally realisable demonstration of the possible

conflict between kinetic theory and Carnot's principle, which Maxwell
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had pointed to in his famous 'demon' paradox. It was a brilliant little

contribution (some four printed pages in the collection of papers)

showing Lippmann's positivist scepticism towards kinetic theory, but

perhaps rather slight considering it came from an Academician and one

of France's most distinguished physicists.

Of France's six members of the physics section of the Academy,

four have already been mentioned as contributing to the Congress;

Cornu, Violle, Becquerel, and Lippmann. Of the other two, one, Mascart

made no contribution except in his function (appropriately since he was

director of the French meteorological office) as president of the

cosmic physics section, while the polytechnicien Potier spoke on a

technological subject, polyphase AC currents. 15 Two supporters of

kinetic theory in France, Marcel Brillouin and Jean Perrin, gave papers

on gas diffusion and osmosis respectively.
16

For Perrin, this marked

the start of his search for the experimental demonstration of the real

existence of molecules using techniques based on Brownian motion, a

search which would be crowned with success in 1908.

The new century which had started so gloriously for French phy-

sics, with its experimental triumphs in radioactivity and its organi-

sation of the Congres had, within a very few years, turned a little

sour, despite the award of the Nobel prize for physics to Henri

Becquerel and the Curies in 1903. The 'discovery' of the non-existent N

rays by France's most illustrious provincial physicist, Rene Blondlot

in 1903, and their subsequent rapid demolition did the international

prestige of French science no good at all. But it must not be for-

gotten that it was the French physics community, particularly its

younger members, who effected the demolition, even if the intervention

of the American, Wood, was also an important factor. This episode has

been fully chronicled by Nye and others,
17 and here we will only

/consider how it was received in the Societe de Physique and the AFas,
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and see how the physics community responded to it, using the evidence

of the survey which the Revue Scientifique made in 1904.18

The Revue Scientifique survey revealed that the split for and

against Blondlot was more on hierarchical rather than on geographical

lines, although all the Nancy scientists supported Blondlot. Of the

twenty six Parisian scientists questioned, seven, confident in the

reputation of Blondlot, thought that N rays existed. These were senior

members of the cammunity and four of them, Berthelot, Becquerel,

Poincare and D'Arsonval were members of the Academy. Another member of

the Academy, Mascart, while still in doubt at this time, was to be con-

verted later, after a visit to Nancy. Violle remained in a state of

'Cartesian doubt'. 19 Two scientists from Paris, Gariel, physics pro-

fessor at the Faculty of Medicine, and Moissan, chemistry professor at

the Sorbonne, both objected to the survey because it seemed as if its

objective was to determine scientific truth by plebiscite, but Gariel

was of the opinion that there was some evidence for the existence of

N rays. Six physical scientists; Abraham, Langevin, Janet, Sagnac,

Perrin and Debierne, had carried out experiments, with negative

results, and rejected the idea of the existence of the rays and

criticised the methods employed in Nancy. The cautious Pierre Curie

also obtained negative results, but did not entirely reject the

existence of the rays because his own experiments were not systematic;

he did camment that it would be easy to think up a suitable control

experiment.
20

In the provinces (with the exception of Nancy) out of twenty

senior scientists questioned, three were in favour of the existence of

the rays. Ten researchers had carried out experiments with negative

results, but only four would say that they did not believe in N rays,

others tended to express doubt about the accuracy of their own experi-

ments. As their results conflicted with the received knowledge which
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came to them with the endorsement of the most eminent physicists of the

country, they wavered. There was one blast of intemperate rejection

from Monoyer, a physics teacher of the medical faculty of Lyons, who

declared that ;'N rays don't exist, N' rays exist even less, they

should be relegated to the rubbish-bin of history' 
•21 But he was an

exception, most were circumspect because careers might be jeopardised

by a too definite rejection, which could later prove to be incorrect.

It goes without saying that the five Nanceans surveyed, expressed

absolute confidence in the objectivity of Blondlot and the existence of

the rays.

So the split in the scientific community over the question, was

not simply a geographical one of Nancy against the rest of France, it

was also one of hierarchical position. Those senior members of the

community, who had awarded Academy prizes to Blondlot and admitted him

to the Academy as a corresponding member, stood by him now. In doing

so they found themselves in a minority position against the most

creative and able young sector of researchers both in Paris and the

provinces, and when N rays were finally found to be imaginary, their

authority was damaged.

This period from 1904 to the outbreak of war was, in any case, to

be one in which the leadership of French physics, as represented by the

members of the physics section of the Academy was to undergo a change

as death carried off many of her most illustrious sons. Cornu had died

in 1902, while Mascart, Curie, Potier, and Henri Becquerel were all

dead by 1910, as was Henri Poincare before the outbreak of war. But

their deaths did not signify that the new generation of research

workers employed in ray physics was to take their place immediately.

First would came the fairly elderly men, sometimes of second rank,

whose creative work was often long behind them, and who seemed uncom-

fortable in the new climate of physics. Amagat was 61 years old when
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he defeated Pierre Curie in the election for Cornu's place in 1902,

/
Gernez (once a protege of Leverrier) 72 when he succeeded to Curie's

place in 1906, Bouty 62 when he succeeded to Becquerel 's place in 1908,

and Branly 67 when he defeated Madame Curie in 1911. Only Paul Villard,

48 when he was elected to Mascart's place in 1908, was engaged in

research in ray physics. Thus in the years immediately before the

outbreak of war, the physics section of the Academy was predominently

made up of men remote from the interests and preoccupations of the new

physics, and wedded to their studies of the physics of the nineteenth

century.

b-The Socia‘ de Physique 

The society grew more rapidly in the first decade of the new

century than it had for a long time. In 1902, women were admitted to

membership, when Marie Curie and five female science teachers joined,

but by 1910 the number of women members had risen to only thirty two.

Also at this time, the student population was rising sharply and this

sector, previously under-represented, began to enroll. But the most

rapid growth rate, was of foreign members, (both teachers and students

of physics) who by 1910 had come to make up nearly a third of the total

membership. Perhaps this was, as the officers of the Society liked to

think, an expression of the new prestige of French physics, particu-

larly won in the new areas like ray physics and radioactivity.
22

But

if it was a question of prestige of French physics it did not translate

itself into large numbers of foreign students wishing to study at

French universities. Most foreign students still preferred, (probably

because they found the administrative problems of taking a doctorate in

France too intractable),to complete their scientific studies in

Germany, a situation which caused some anxiety in the administration of

French higher education in this period.
23

But if more foreigners were

joining the society, so were more provincials, and by 1910, for the
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first time the provincial membership equalled the Parisian. This growth

of the society should be seen in the light of a growth of science

students from 1,278 in 1890 to 7,330 in 1914, with a similar expansion

in the awarding of science degrees and hence a much larger scientifi-

cally trained and interested population.24

The number of papers and reports on ray physics given before

meetings of the Society declined during the period up to 1914. It is

true that the founding of the journal Le Radium in 1904 gave scientists

a new vehicle for the rapid publication of research in the field of

radioactivity and ray physics which they lacked before, and this may

have diminished in their eyes, the importance of presenting research to

the meetings of the Society. But the decline must also have been

related to the fact that the first simple stage of the work, with many

physicists repeating the work of others in the field of cathode and X

rays, was coming to an end. Research into radioactivity continued to be

limited by the availability of radioactive materials, which were

usually supplied by the Curies.

In 1901 sme 15% of papers presented to the Society were devoted to

ray physics, all of them on X rays. This work examined the transparency

of various materials to the rays, the secondary emission of X rays

(lower frequency rays) and the emission of cathode rays, when X rays

fell on a surface. Research in the first of these categories was

.
reported by the Parisian lycee teacher, Benoist,

25
 while Pierre Curie

collaborated with Georges Sagnac agrege at the Paris Faculty to

investigate the cathode ray emission.26

In the following year, Pierre Curie gave a short paper which

stated that radioactive decay gave the means for the establishment of

an Absolute unit of time.
27
 But as most of the original research had

already been published in the Comptes rendus the most interesting

aspects of the meetings of the Society were the discussions and reviews



270

of the current state of the new physics. Paul Langevin's account of

the work which was going on abroad on the question of the movement of

ions in gases, 28 falls in this category. He referred to the work of

C.T.R. Wilson and J.J. Thomson in England, and expounded the hypo-

thesis, accepted in that country, that cathode rays are corpuscles

carrying a negative charge and possessing a mass very many times less

than that of the atom itself. The positive ions of the gas being much

more massive, travel much slower than cathode rays. As on previous

occasions, the review gave the impression that theory had advanced

further abroad, than in France.

In 1905, the year of Curie's election to the Academy, a summary of

a report by him on the latest work of Rutherford, Ramsey and Soddy

appeared. The experiment, performed in England, which demonstrated

that alpha particles were essentially helium nuclei, naturally figured

prominently in this report. The report stated that;

'The most true theory today is the one of disintegration

of atoms and transmutation of elements.. (a theory) accepted

by most chemists and physicists'.29

The report went on to say that 'M. and Mme. Curie had announced

this hypothesis, among others, as convenient in explaining the

phenomena, from the start of their researches', but that, confronted

with many uncertain hypotheses, they had preferred to pursue a study of

phenomena without stating precisely any hypothesis concerning the

origin of the energy.
30 Thus Curie demonstrates a 'conventionalist'

approach to theory; he may well have believed that atoms transmuted and

that the energy of radioactive decay stemmed from this atomic trans-

mutation, but he never considered it important enough to organise a

research programme around, and simply went on with his study of the

facts of radioaactivity. There were no more reports on experimental
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work on radioactivity given to the society before the end of the

decade, a deficiency which can partly be explained by the death of

Pierre Curie in 1906. There was in 1907 a brief summary of the work of

A. Moulin of the Ecole de Physique et Chimie Industrielles, on the

study of secondary cathode rays produced when a target is bombarded

with alpha rays, and in the same year, Raveau, of the Conservatoire des

Arts et Metiers, gave a long paper on 'recent researches on the trans-

formation of radioactive bodies. ,31 Once again, this was a general

history of the recent progress in the subject, quoting from the work of

Bragg, Kleeman and Rutherford as well as Mme. Curie, and in it, the

idea of half-life (called Curie's time constant) was first used. Also

by this time, Henri Becquerel had not published on radioactivity for

six years, and although his administrative work in the Academy

continued until his death in 1908, he made no further contribution to

research. France's research effort in the field of radioactivity naw

came to be, in the main, concentrated in the Paris Faculty, in the

hands of a group of young scientists supervised by Marie Curie, as we

shall see later.

In the Easter meeting of the society in 1908, the Italian

physicist, Righi, delivered a paper reviewing the current thinking on

the structure and constitution of the atom. Again, as ten years

previously with the discussion over cathode rays, there appeared to be

only two hypotheses, one emanating from Germany and the other from

Britain. According to Righi, the Germans considered the atom as a

system of electrons of two types, while the British preferred to view;

'..the positive part of the atom as a sphere with the negative

electrons moving around its centre.' 32

Thus it appeared that, once again, the French were observing a

German-British theoretical debate from the sidelines, having formulated

no position on the question, and it is true that some of her scientists
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were still reluctant to accept the real existence of atoms. But despite

their caution, they were, as Deslandres, the retiring president of the

society in 1909 was to say; 'Like a blind man with a stick', 33 being

forced by experiment to recognise the existence of;

'Particles which escape our imperfect senses and even our

most delicate apparatus, but whose intervention seems

necessary in order to explain the more and more complex

phenomena, which observations reveal.'34

Later in 1909, the society heard a lively discussion between bwo

of its members over the structure of the atom. Jean Becquerel, with all

the confidence which came from being the fourth generation of a hundred

-year old scientific dynasty and professor at the Museum d'Histoire 

Naturelle by inherited right, published the results of an experiment

which claimed to show the existence of,

'Free positive electrons analagous to the known negative

electrons or at least possessing a charge to mass ratio of the

same order of magnitude'.
35

Becquerel 's results were soon contested in a meeting of the society

by a teacher from the lycee Louis-le-Grand, A. Dufour. Dufour, who was

soon to move to the Ecole Normale also took issue with Becquerel over his

interpretation of some aspects of the Zeeman effect (which had led

Becquerel to hypothesise about the real existence of positive electrons

in atoms) carried out a series of carefully planned and executed experi-

ments in a specially designed cathode ray tube. This experiment, which

was carried out in one of the meetings of the society, showed that the

positive electrons of Becquerel were the result of drawing erroneous

conclusions from the results of slipshod experiments.
36
 Becquerel, who

was also present at the meeting, was at a loss to explain the difference

between his results and those of Dufour, and proposed that the two should

carry out some joint research on the matter, a suggestion which was
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rather curtly turned down. Dufour simply challenged Becquerel to bring

his apparatus to the meeting and demonstrate the effect he had claimed to

have found. Thus the society provided the stage for the rapid correction

of an error, which otherwise, given Becquerel's position in the

scientific community, might have damaged French scientific prestige in a

similar way to that which N rays had done.

In fact,in this section on the Societe
, 
de Physique, we have not

yet said anything about the excitement which the 'discovery' of N rays

provoked in 1903. The reason for this is that the society was almost

completely immune to this excitement. In the brief period from 1903 to

1906, some 300 papers, by about 100 scientists, were written on N rays,

and a large number of these were submitted to the Comptes rendus.. 37

e
The Societe de Physique heard no more than five.

The first of these appeared in the summer of 1903 and was an

examination by Sagnac of a paper by Blondlot (the discoverer of the

waves) in which he claimed to have refracted a beam of N rays from an

incandescent lamp using a quartz lens, and to have observed a focus at

a position which gave a refractive index of 2.93. Three subsidiary foci

corresponding to other refractive indices were also found. Sagnac

regarded the three subsidiary maxima not as normal focal images but as

intensity maxima due to diffraction effects. 38 Using the normal theory

of qptical diffraction, Sagnac calculated the wavelength of the waves

as being aound 0.2mm, which placed them between the very long infra-red

waves discovered by Rubens and the very short Hertz ian waves which the

Austrian, Lampa, had been working with. However, electro-magnetic

theory and previous experiments seemed to deny the possibility that

such long radiation could penetrate quartz. Sagnac was also worried by

the fact that theory predicted other intensity maxima at shorter

distances from the lens, corresponding to refractive indices greater

than that of the 'true' value 2.93.
39

 So this paper,which was also
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published in the Comptes rendus a few days later showed considerable

scepticism towards the existence of the rays.

A more sympathetic view was given by Broca, a supporter of

Blondlot, who suggested that a metallic grid with a wire spacing of

about 2mm to 5mm could be employed as a diffraction grating suited to

the wavelength of the waves.40

In the Easter meeting of the following year, Dr Charpentier of the

Faculty of Medicine of Nancy, gave a paper on the emission of N rays

from the human body. Starting by insisting on the objective nature of

the rays, he confidently asserted that the human body was a powerful N

ray source, and that the nervous system was the most active seat of

their propagation. He ended his rather startling report with the infor-

mation that the body also emitted N' rays. N' rays, also discovered by

Blondlot, had similar properties to N rays (they could be refracted,

diffracted, polarised,etc.) but instead of increasing the brightness of

a spark detector, they were supposed to diminish it. 41 There does not

seem to have been any dissenting voices at the meeting and indeed many

famous names, Mascart, Henri and Jean Becquerel, D'Arsonval, Henri

Poincare among them, were more or less convinced of their existence,

while others like Curie, Langevin and Perrin remained sceptical.

The final paper to appear before the Society on this question was

the one given on 16 March 1906 by Albert Turpain of the Faculty of

Sciences of Potiers, as a culmination of several years of work, and it

found against their existence.42 Using the fluorescent sulphide screen

whose brightness was supposed to increase under the effect of the rays,

Turpain used various sources which Blondlot had used, and found that

when he knew N rays were falling on the screen, its luminescence in-

creased. When he used a 'control' experiment and did not know whether

N rays were arriving or not, he found very poor agreement between

observed and predicted results. He concluded that there was a strong
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possibility of auto-suggestion, although he did not put too much stress

on it, because he did not wish to contradict such powerful figures as

Mascart, who had recently worked with Blondlot and his assistant Virtz

in Nancy, and expressed himself satisfied with the results. Turpain

also suggested that in Blondlot's experiments examining the spectrum of

N rays refracted through an aluminim prism, experiments which

superficially seemed to give evidence for the existence of the rays,

Blondlot had unconsciously remembered the setting of the apparatus, and

so was able to return to the same point, to pick out maxima when moving

a detector through the spectrum.

Making the point that Rubens had failed to verify the effect, and

recalling the successful collaboration between the American Pender and

the Frenchman Cremieux to verify the Rowland effect (the existence of

which had been denied in France) Turpain proposed that Rubens and

Blondlot should work together to settle, once and for all, the exi-

stence of N rays. In fact of course, Blondlot always refused any invi-

tation to collaborate. A number of other members at the meeting,

Villard, Raveau, Cotton, and Guebhard, also expressed their continuing

scepticism andd their failure to conform their existence. By the early

part of 1906 the failure to verify the existence of N rays by any

objective experimental method, led to a rapid collapse of interest in

the subject, and the society could congratulate itself that, in the

main, it had not allowed the authority of Blondlot to blind it to the

obvious faults in his experimental methods.

We have only surveyed here a small fraction of the work presented

at meetings of the society during the period. There were still a fair

number of technological papers, on electro-chemistry, electro-techno-

logy, telephony, and wireless telegraphy and there began to appear some

on aeroplanes and the problems of powered flight. The French tradition

of precise measurement was well represented by several papers from
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Fabry and Perot, including one which proposed to define the standard

metre in terms of a fixed number of wavelengths of cadmium red light.

The widespread acceptance of Stefan's fourth power law, linking inten-

sity of radiation to temperature, rekindled the interest in determining

the sun surface temperature, and Charles de Fery of the Ecole de Phy-

sique et de Chimie industrielles was particularly active in this area.

One last point to make about the meetings of the Society, was

that throughout this whole last period fram the mid-1890's at least,

the contribution of engineers and instrument makers, so important to

the life of the society, in the 1870's, now was negligible. Physics

research was now exclusively the preserve of academics, and ray physics

and radioactivity the more specific preserve of academics of the

institutions of Paris. On the other hand, membership of the society was

very wide, for as Deslandres stressed in the 1909 meeting;

'Evidently the brilliance of recent discoveries has attracted

to physics, people of many vocations, from the most famous to

43the youngest student'.

c.The AFas.

The Association continued to be more interested in 'applied'

rather than 'pure' science and several applied physicists from the

capital, such men as Guillaume, Fery and more especially Blondel, con-

tinued to contribute in the early part of the period, but those resear-

chers who were working on the moving frontier of physics, seldom

bothered to present their work to the annual meeting. Thus the new

areas of physics which were yielding more and more information about

the structure of matter; radioactivity, X rays and positive rays, were

subjects which only rarely appeared on the agenda of meetings of the

AFas.

There ware two papers on X rays in this period, both fran Parisian

A
savants. The first was by the lycee teacher Benoist in 1902 and the
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second by Broca in 1906, and these two, plus one from abroad, make up
4-41-

the camplete total. The reason for this absence of papers in areas

which evoked the most general interest, is not clear. One would not

really expect the results of the most recent research to find their

first presentation at the annual meeting of the AFas because of the

slowness in publication and the level of the audience, but one might

have expected more reviews of this type of research. A partial

explanation may be that fewer Parisians were presenting papers anyway,

and more contributions were coming from provincial faculties, and here

the academic staff showed less interest in the subject possibly because

their laboratories were not well endowed with either X ray apparatus or

radioactive material. But it must also have been partly due to the

fact that these areas were 'pure' physics research which had, at this

time, little practical application, and therefore did not respond to

the principal interests of the Asociation. It is true that medical

applications had already been found for both X rays and the radiations

from radium, but these were more likely to be presented to the 13 th

section in the Natural Sciences grcup, 'Electricity in medicine' which

always attracted a large number of papers.

Wireless telegraphy was one new applied area of research which

always featured prominently in the meetings of the Association. Al-

though others contributed to this study, it was mainly in the hands of

three researchers; Blondel of the Ecole des Ponts et Chaussees, Turpain

of the Faculty of Poitiers, and Tissot of the naval school at Brest.

Tissot, not surprisingly was interested in wireless telegraphy as a

means of communication between ships at sea and as a navigational aid.

This second application had the support of the Bureau des Longitudes ,

and gave the means of fixing the longitude at sea by comparing local

noon, as observed with a sextant on board, with a noon time signal sent

by wireless from Paris or Greenwich. Turpain's interest was turning
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towards the use of wireless in the short range forecasting of storms,

and he presented papers on this question to both the physics and the

meteorology sections. This was a question of using the electrical

disturbance associated with lighting, to actuate a recording device,

and thus to warn of the approach of heavy storms and what the Lamer

particularly feared, hail. Turpain stressed the importance of this

method for agriculture. 	 Blondel worked on the improvement and

development of the apparatus of wireless telegraphy. Electrolytic and

valve detectors were by this time much more sensitive than Branly's

original coherer, and improved aerial and tuned circuit design had very

much increased the range and the quality of wireless telegraphy by the

end of the period. The practical application of wireless telegraphy was

underlined in the 1910 meeting by a Le Havre sea captain, Faveau, who

stressed its importance in warning ships of the presence of ice-bergs

in the North Atlantic off Newfoundland. 46 This was of course,two years

before the British 'Titanic' equipped with wireless telegraph was to

founder on an iceberg with the loss of hundreds of lives.

The design and theory of the aeroplane also found its way into the

discussions of the physics section before the First world war, parti-

cularly through the contribution of the Montpellier professor, Miens.

The theory of aircraft design was very much a French development, and

they were the first to make it an academic discipline when a chair of

aeronautics was founded at the Paris Faculty in 1909, with the help of

a large grant from the arms dealer Basil Zaharoff.

While the 'discovery' of N rays in 1904 by Blondlot caused great

excitement in the French scientific community and produced many papers

to the Academy (and a few to the Societe de physique ) none were ever

heard by the Association. This was probably because N ray investigation

would best be described as 'pure' research with no practical

applications. However, Blondlot's collaborator at Nancy, Gutton, came
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to the 1905 meeting with a report on the action of magnetic fields on

the intensity of a ueak light source. Using a solenoid, Gutton observed

the effect of the magnetic field on a number of calcium sulphide dots

painted onto a screen and illuminated by a weak light source. 47 He

claimed that the intensity of the phosphorescent dots was increased by

the field if it was either changing with time or non-uniform in space.

He also claimed that the magnetic field increased visual acuity, but

proposed no control experiments, and seemed to be be content with two

different explanations for the phenomenon; the subjective and physio-

logical one that the field increased the sensitivity of the eye, and

the objective one that the dots did actually become brighter. Thus,

although dealing with a different subject, Gutton's research bore all

the hallmarks of Nanceian physics research of this period, which was

characterised by auto-suggestive experimental techniques and the

absence of adequate control experiments.

But it would be wrong to think that the contributions to the AFas

in this period were always either theoretically dubious on one hand, or

simply pedestrian examples of utilitarian applied science on the

other. Duhem, for example used the 1902 and 1904 meetings to give

himself a national platform to explain his original ideas on the action

of high frequency currents on dielectrics (1902) and electric fields in

dielectrics (1904). 48 Both these papers were highly mathematical and

probably quite inacessible to many among the audience.The 1904 meeting

also heard the Paris Faculty professor, Bouty, on the dielectric proper-

ties of air, and the Austrian, Charles Zenger, (the most prolific

foreign contributor) on 'The electro-dynamic theory of the world and

radium'.49 So pure physics, including speculative syntheses, could

sometimes find a place in the Association's meetings.

The general sessions at the beginning of each Conference, were,

from time to time, used by prominent figures of the scientific
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establishment to express apinions or voice disquiet about national

policy in relation to the sciences. Such an address was made by the

Academician Gabriel Lippmann, to the 1906 meeting in Lyons, in his

speech entitled 'Industry and the University' 
•50 This was both a

criticism of the French system of higher education, and an appeal to

industry to employ more research scientists in their enterprises.

Lippmann argued that it was necesaary, for any sort of technical

progress, that there should be;

'scientific personnel provided with research laboroatories

installed in the factories'.51

He campared the situation wih Germany, where factories employed

scientists and mathematicians with doctoral qualifications and provided

them with laboratories and libraries but still paid their shareholders

20% to 33% dividends.52

He went on to castigate the whole system of French education,

which he claimed was modelled on clerical forms from the old regime and

declared that it was urgent to 'deliver teaching from bureaucratic

pedantry and to liberate the universities from the yoke of the

executive power'. 53 He finished by expressing his support for the idea

of the autonomy of the University of Lyons.

This consideration of the work of the AFas in the twentieth

century would not be complete without a reference to the address given

by Henri Poincare on the occasion of his receiving the gold medal of

the Association at its 1909 meeting in Lille. This address entitled

On the new mechanics',
54 must have made the head of many a worthy

provincial pharmacist,teacher or doctor, spin. The polytechnician

engineers who considered that they had mastered a body of complex but

immutable knowledge laid down by the immortal Newton and developed by

Laplace, must also have felt rather disturbed. Poincare made a summary

in a popular form, without mathematics, of all the Ideas he had been
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exploring since 1895, and which he had named 'relativity' in 1902.

Here were explained the ideas which later became associated with the

name of Einstein; increase of mass of a body as its velocity approaches

that of light, decrease of length in the direction of movement under

those same conditions, as well as the most 'counter-intuitive' idea of

the relativity of time. Starting from certain Ideas of Planck and

Lorentz among others, Poincare arrived at the concepts of special rela-

tivity, but his ideas were different from those later elaborated by

Einstein, in that they admitted the existence of the ether.

His death in 1912 at the age of only fifty eight robbed France of

her most original thinker in theoretical physics. But in the French

tradition, Poincare spent most of his intellectual energy in pure

mathematics, and he is unusual because he did sometimes apply his

immense gifts to physical problems. The tremendous social prestige

given to mathematics in France was underlined later in the century by

Leon Brillouin;

'There was a glory in pure mathematics, which was so much above

applied mathematics or theoretical physics, that if someone was

able to do pure mathematics he would not condescend to do

anything else'55

It might be said that in this short statement, is contained the

key to the character of French physics during the period of this

thesis, its predominently experimental nature.

d.	 physics research carried out in the Paris institutions.

In this period up to the Great Mar a certain specialisation

of research took place in the different institutions, although several

of the fields of research overlapped. The Curies and their students in

the Paris Faculty continued to concentrate on research into radio-

active materials, their decay and the energy of their emitted

particles, while the work of the Ecole Normale ranged more widely over
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conduction through gases, positive or canal rays, spectroscopy,

ionisation effects with ultra-violet light, and photo-electricity.

Work on ionisation in gases and solids went on in the laboratories of

4
the College de France, and up to 1910 there was still some radio-

activity research going on in the laboratories of the lowly Ecole

Municipale de Physique et Chimie Industrielles. On the other hand the

Ecole Polytechnique, once a centre of innovation in both teaching and

research, played no part in physics research in this period. The work

0
of the Museum, which after the death of Henri Becquerel in 1908 was

that carried out by his son Jean, related to magneto-optics, the

Zeeman effect, and culminated in his hypothesis on the existence of

positive electrons. We have seen that the existence of these electrons

was contested by other researchers, particularly Dufour, and the

argument concerning their reality took place both in the meetings of

the Societe de Physique,
56
 and in the columns of a new journal which

appeared in July 1904, Le Radium.

We will take the work published in this new journal as an accurate

indicator of the work in ray physics being undertaken at this time.

Most of it would also appear in the Comptes rendus, although Marie

Curie after her failure to win election to the Academy in 1911, ceased

for a time to submit her research to its journal. 57 The full title of

Le Radium could be translated as Radium, Radioactivity and Radiation. 

The sciences which are allied to them and their applications, 58 and it

dealt with the discoveries and developments which had been made in the

fields of radioactivity, cathode rays, ionisation effects,the study of

the whole of the electromagnetic spectrum from Hertz ian waves to

Rontgen and X rays, as well as effects in the visible spectrum like

spectroscopy, luminescence and magneto-optical rotation. Its first

year of publication coincided with the initial period of excitement

over the supposed discovery of a new type of ray, the so-called N ray

by the Nancy professor Ren‘Blondlot, and there was a series of
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articles summarising all the research which had appeared on the

subject,59 but after 1904 nothing more was published on N rays in the

journal. The medical uses of visible light and UV (phototherapy) and of

Rontgen and radium rays (radiotherapy) to cure skin growths and

cancers, and the diagnostic use of Rontgen rays figured prominently in

the first two volumes. Published in a large format on high quality

paper with numerous photographs of technical apparatus, instruments,

and distressing medical conditions, carrying translations of important

foreign contributions in the field, together with research papers by

French scientists and reviews of new books and apparatus,it was clearly

an ambitious and prestigious project.

It could also claim to be international as well as inter-disci-

plinary. Its editorial board included Rutherford, the German, Rubens,

known internationally for his work on long wavelength Infra-red, and

the Danish physician Finsen, but their contribution to the monthly pro-

duction of the journal must have been minimal and their presence essen-

.	 60tially decorative. In the first Imo years of its existence, the

medical applications of 'ray physics' were dealt with in many articles

including several on the work of Finsen, who had won the Nobel prize

for medicine in 1903 for his work on the effect of light on biological

processes. Finsen died in 1904 but the medical representation on the

editorial board continued to be considerable, with such men as Charles

Bouchard, one of the most eminent medical academics of the Third

Republic, and the Parisian doctors, Beclere and Oudin. Oudin had been

the first to exhibit medical X ray photographs to the Academy some

eight years before, and was one of the principal workers in the field

in France. The other member of the editorial board concerned with the

medical uses of the new rays, was D'Arsonval of the physiology

laboratory of the Collage de France. The only professor frcm the

provinces on the board, was Blondlot of Nancy. Another member of the

editorial board was Charles-Edmond Guillaume of the International
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Bureau of Weights and Measures at Sevres, who, in a series of articles

in 1904-05 gave a historical review of the development of the notion of

radiation, placing the new research within the French optical wave

programne starting with Fresne1.61

By the third volume (1906) however,the medical, curative and diag-

nostic aspects of the new waves assumed much less importance in the

journal. There were now several papers from Rutherford as well as from

his students and collaborators in Montreal; Eve, Levin, Bronson and

Bragg. The principal workers in radioactivity in France, Henri

Becquerel and the Curies contributed, giving accounts of their earlier

research or reviewing contemporary work, while Villard and Langevin

reported on the investigations they were currently undertaking.

Langevin's paper was on the mechanism of spark discharge , which he

explained as being due to ionisation by the collision of 'electrified

centres in movement' . 62 In the fourth volume, the Change in direction

was formalised by a change in title to Radium, radioactivity, and

ionisation: Journal of Physics, 63 and in the following year the medical

names, Bouchard, Bouclere and Oudin, disappeared from its title page.

Madame Curie took the place of her dead husband on the editorial board,

which now came to include also Langevin, Sagnac, and Villard. There now

appeared a section in which the results of new research was published,

and in the next few years this became very much the vehicle for the

publication of the research of students and colloborators working under

Madame Curie in her laboratory in the Paris Faculty of Sciences. In

1908 for example, there were seven papers reporting on original

research from Curie's laboratory out of a total of nine emanating from

the Paris Faculty. Other Paris institutions were also quite productive

in this year; three papers came from the Ecole Normale, three from the

Ecole municipale and five from other centres in the capital, including

three from Jean Becquerel at the Museum. There were also two papers

from provincial faculties; Rennes and Nancy.
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An *portant feature of the journal was the rapidity with which

foreign papers were translated and published. The work which

Rutherford, Geiger, and Marsden were doing in Manchester in 1908 and

1909, was published in Le Radium only a month or two after it was

published in England. But it is significant to notice that, whereas

papers from Britain, Germany, and the United States came from a wide

geographical range of centres, France was almost completely dominated

by Paris. It tends to show that twenty years of attempted scientific

decentralisation in France had achieved little, at least in relation

to this new field of physics.

The 1910 issue of Le Radium published 54 original memoirs, of

which twenty came from abroad, eighteen from Madame Curie's laboratory

four from the Ecole Normale and three from the College de France. In

fact, this year marked the high point of the output from Curie's

laboratory, at least from a quantitative point of view, with Curie

herself producing two papers ,the radio-chemist Debierne one, and

several students like Kolowrat, Blanquies, Herschfinkel, and the

American, Duane responsible for most of the rest.

Justice would not be done to the research at the Paris Faculty in

this period, if the contribution of Jean Perrin to the study of mole-

cular physics, were to be omitted, although it has already been

thoroughly chronicled in Nye's, Molecular reality. 64 Perrin, already

noted for his experiments on cathode rays in the 1890's, was appointed

lecturer, (charge de cours), of the new course of physical chemistry at

the Paris Faculty at the turn of the century, and so he worked in a

different laboratory, and taught a different course, from the Curies,

in this decade. The discipline of physical chemistry was developing,

by the end of the nineteenth century, as a bridge between the two

sciences of physics and chemistry, whose separation, in Perrin's view,

came from two opposing viewpoints; the notion of discontinuity,
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fundamental in chemistry, against the notion of continuity, equally

fundamental, in physics. For Perrin, one viewpoint was not necesarily

more appropriate than the other, they could both be aspects of the same

thing.65 Perrin, in his Les Principes of 1903, set out the methods and

principles of physical chemistry, dealing with temperatures, pressures,

and volumes, the identification of pure bodies and their laws of

combination, the phase rule, and discusses the two laws of

.	 66 .thermodynamics. His coarse had no examination at the end of it, and

most of his students (who were few at first) were already in possession

of their first degree.

While he was a student at the Ecole Normale, Perrin had absorbed

some of his teacher Brillouin's sympathy for a discontinuous, material,

kinetic view of nature, and in 1906 began his series of experiments on

the Brownian motion of colloidal particles to provide experimental

evidence for the reality of molecules. He pdblished his first four

papers on Brownian motion in the Comptes rendus in 1908, and in the

/
following year reported his findings to the Societe de Physique, in a

long paper entitled, 'Brownian motion and molecular size' at the Easter

meeting.67 In this paper he paid particular attention to the 'beautiful

theoretical work', 68 of Einstein. The formula derived by Einstein

allowed the calculation of the displacement of a particle with time

when it was undergoing Brownian motion. This displacement being

experimentally veritable, could be used to calculate Avogadro's number.

The equation, however, employed the assumption that Stokes' law could

be applied for a body moving in a homogeneous viscous medium, and there

was some doubt among research workers in the field that such an assump-

tion could he applied in the case of movement on such a microscopic

scale. Doubts on its validity had been cast by the experimental work

of Victor Henri, a preparateur in physiology at the Paris Faculty, who

studied the movement of very fine particles suspended in a liquid (a



287

studied the movement of very fine particles suspended in a liquid (a

colloid) with a cine-camera which took pictures every 20 seconds.

Henri presented his work, to a meeting of the society during 1908, and

gave a mean velocity of the particles about four times that which

Einstein had calculated.
69
 Perrin however, suggested that there were

some factors in Henri's experiment which disturbed the colloid being

investigated, particularly the large amount of heat produced by the

lighting which would have affected its temperature.

Later, in 1909, with the aid of a student working for his

doctorate, Chaudesaigues, Perrin experimentally verified Einstein's

formula on the displacement of a randomly moving particle.
70

 For this

work he was awarded the Gaston Plante prize in 1909 and in the

following year was appointed to the chair in physical chemistry,

especially created for him at the Paris Faculty.

But from a quantitative point of view, the laboratory of Mme.

Curie at the Paris Faculty would continue to be by far the most

productive in papers on questions of radioactive decay,oL i p and )'

radiations, research into the 'emanation'of radium (the gas radon

produced by the decay of radium) and work with the new materials like

polonium and actinium. Same similar work was going on in other Paris

institutions but either with only very weak emitters, or with materials

generously supplied by Mme.Curie. For example, a certain Henriot at

the Ecole Normale was carrying out research on the very feeble radio-

activity exhibited by some salts of the potassium family. This had

first been discovered in Cambridge and work was being done on it at

this time in Dublin. Henriot started with photographic techniques for

detecting the radiation but soon rejected them as being too insen-

sitive, and went on to use an electrometer. Because of the weakness of

the emitters, he had to use very large surface areas of salts

(1000-1200 cm2 ) in order to produce a detectable ionisation current.71
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Henriot concluded that potassium salts did emit particles, although

its activity was only a fiftieth of that of uranium, but he could find

no activity at all in salts of sodium and lithium.

Other work at the Ecole Normale in 1910 was that carried out by

Eugene Bloch (1878-1944) on the photo-electric effect.
72
 Bloch irra-

diated many surfaces with different wavelengths of light and measured

the resultant photo-electric current; he also heated the surfaces to

see if this affected the emissions of electrons (for it was widely

accepted by this time that electrons were being emitted from the

surface) and he arrived at an estimation of the maximum energy of the

emitted electrons. He also showed that the polish and cleanliness of

the surface was very important; for contamination of the surface very

quickly led to a diminution of the rate of emitted electrons, an effect

known as 'photo-electric fatigue'. But it cannot be said that Bloch

carried the research any further than Lenard had taken it , and he

seemed to be completely unaware of Einstein's quantum explanation of

photo-electricity published five year before in the Annalen der Physik 

of 1905. This might be an indication of a certain resistance to

quantum ideas in France, or may simply show the difficulty which

Einstein (something of an outsider in physics at this time)

encountered, generally, in finding acceptance for his explanation

which broke with the classical view of the wave nature of light. It

might be expected that French physicists would show a particularly

strong allegiance to the wave theory, the theory of Fresnel, Arago and

Cauchy, and a theory which had provided a research programme for many a

successful scientific career.

In the laboratories of the College de France, T. Bialobjeski, with

radioactive material supplied by Mme. Curie, carried out a series of

experiments on the effect of radiation on a number of dielectric
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solids, namely sulphur, paraffin, amber and wax.
73
 When the substance

under test, being used as an insulator between two metal plates, was

irradiated, the current between the plates gradually increased as if

'the ions were accumulating slowly in the material under the uninter-

rupted action of the rays.'
74
 When the radioactive source was re-

moved, the surrent slowly diminished. Developing a theory of ionisa-

tion in solids, Bialobjeski, concluded that, unlike gases, solids each

have a particular characteristic; the 'phenomena of the pasage of elec-

tricity in solid dielectrics depends upon their individual struc-

tures.' 75 This work was carried out under the supervision of Langevin

who in 1909 had succeeded to Mascart's physics chair at the College.

Langevin's interest in the phenomena of ionisation had began in the

days when he had worked with Thomson in Cambridge in the 1890's, and

ionisation continued to be the principal area of research at the

Collage until the war.

For the very rich it was possible, as it had been in the past for

Foucault and Fizeau, to carry out research work in private labora-

tories. In fact, it is probable that some experiments of the new ray

physics were considerably less expensive and difficult to set up than

much of the classical work. From 1910 onwards, work on ionisation in

gases began to be carried out in the private laboratory of Maurice di-6

Broglie (1875-1960). De Broglie, a member of an old aristocratic

family had been a brilliant student at the Toulon naval academy, had

engaged in wireless wave research for the navy and then resigned and

studied for his doctorate under the supervision of Langevin, presenting

his thesis on ionic mobility in 1908. 76 In 1910 and 1911 he pdblished

the results of joint work with his old teacher from the Toulon naval

school, Brizard, in Le Radium.77

If we divide the work published in Le Radium into two general cate-

gories; work on the nucleus, and work on the orbital electrons (under
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which heading would come spectroscopy, the Zeeman effect, cathode rays

and ionisation) it can be seen that, from 1911 the first category of

work began to decline and the second to increase. The first category of

work was undertaken almost exclusively in Curie's laboratory at the

Faculty, while the second went on in many different institutions.

1912 saw a general decline in the number of original memoirs, and

a further increase in the proportion coming from abroad, but Curie's

laboratory maintained its share of around 20% of the published papers.

The following year saw this trend continuing; half of the original

memoirs came from abroad, and only six papers reported on research done

by Curie or her collaborators at the Paris Faculty. One of these was by

Curie herself on the experiment she had carried out in the cryogenics

laboratory in Leyden, Holland, with Kammerlingh-Onnes, to show that the

rate of decay of radium is unaffected by temperatures as low as that of

liquid hydrogen.
78
 In this year there was only one paper from the Ecole

Normale , on spectroscopy, but the Collage de France was represented

with three papers from Langevin and Rey on ionisation.79

During this period Le Radium was also publishing work from

Rutherford and Geiger in Manchester, Millikan in Chicago, and from

Germany, Rubens on infra-red research and Von Laue on X rays, without

making an exhaustive list. De Broglie's work on X ray diffraction by

crystals, produced after he had read of the research of Von Laue and

Bragg, appeared in Le Radium in 1913.

An indication of the role which French savants had played in the

short history of ray physics up to 1910 can perhaps be assessed through

their participation in the International Conference on Radiologie et

Electricite
/ 
 held in Brussels in 1910. The titles of the papers, and

short summaries of them, were published in Le Radium. The journal

divided the papers into four categories; 'Radiometry and standards',

'radioactivity', 'electrons,ions, atoms and molecules', and 'cosmic
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phenomena and technical matters'. The table below shows the national

origins of the papers in the first three categories (the fourth, which

was very small, is less relevant to the discussion here and is not

considered). It can be seen that numerically at least the French

contribution matched that of Britain and Germany. The surprisingly

large contribution from Romania came from one individual, Hurmuzescu,

who had studied at the Paris Faculty and been an active member of the

Societe
,
 de Physique. If his contribution is added to the French figures

one sees that the contribution of French (or French trained)

scientists was very weighty at the conference.

To .

France Britain Germany tRomania USA Others_Total

Radiometry and

standards. 2 2 3 2 0 0 9

Radioactivity. 4 7 1 2 0 4 18

Electrons, ions

atoms, molecules. 7 3 6 1 2 4 23

Total 13 12 10 5 2 8 50

% 26 24 20 10 4 16 100

e.aiRphysics in the provincial faculties.

Apart from the 'N' ray research at Nancy, research which was

repeated in a few provincial faculties in the years 1904 and 1905, ray

physics work tended to be be concentrated in the capital. This is

absolutely true as far as radioactivity is concerned, but cathode rays,

X rays, ionisation studies and photoelectricity found some practition-

ers in the provinces, as we have already seen.

The photoelectric work of Swyndgauw at Lille at the tarn of the

century does not appear to have continued there and the centre of this

research moved to the Ecole Normale with Bloch. The staff of the
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Faculty of Rennes published a number of papers in Le Radium around

1910 on ionisation. The physics chairholder at Rennes, Morreau,

carried out experiments to find the mass of the negative ions produced

in a flame. He found that they were less massive than hydrogen ions but

drew no further conclusions.
81
 One of France's most distinguished

provincial physicists, Louis Gouy, elected corresponding member of the

physics section in 1901, who had been one of the first to work on

determining the wavelength of X rays, now began to examine the motion

of cathode rays in magnetic field6.
82
 As was mentioned earlier in the

section on the AFas, Duhem's student, TUrpain, now the physics

professor at the Faculty of Potiers, was the principal provincial

researcher into wireless waves and their propagation.

Compared to the work which was going on in Paris, the above list,

taken from the index of Le Radium and from examination of the meetings

of the Soci‘te. de Physique and the AFas, is a very modest one. It tends

to confirm that in spite of years of attempted decentralisation by

successive republican educational ministries, the crushing superiority

of the Paris institutions over the provincial ones, was still a factor

of French academic life until the outbreak of the war.

f.Conclusions on the French contribution to the new 'atomic' 

and 'ray' physics.

At the begining of the twentieth century, France was the

undisputed leader, through the work of the Curie's and Becquerel, in

the study of radioactivity and radioactive materials. In spite of the

loss of her two most distinguished workers in the field, France

continued, up to the outbreak of the great war,to produce (mainly from

the Paris Faculty) a considerable quantity of radioactivity research.

But today much of this work appears to be no more than a kind of rather
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sterile empiricism, unilluminated by flashes of insight into the

processes and mechanisms behind the phenomena. But lest we open

ourselves to the charge of 'whiggism' by such a judgement, we are on

firmer ground to say, at least, that the French contribution to this

work was principaly in the realms of experiment, while the theoretical

development, the hypotheses obout the basic structure of matter were in

the main left to others.

This was certainly the impression when considering the discussions

in the Societe de Physique, where French savants appeared to be on the

sidelines when Ideas, mainly German or British, concerning the nature

of X rays, or atomic structure were discussed. But it is not entirely

true to say this; the Curies speculated about the sources of the energy

emitted in radioactive transformations, Becquerel put forward the model

of the gyratory ether to explain the Zeeman effect, and as early as

1901 Perrin had put forward the idea of the 'solar system' model of the

atom.
83
 In this lecture, given to friends and students of the Paris

Faculty, Perrin envisaged the atom as a sort of highly charged positive

sun, surrounded by much less massive negative corpuscles, circulating

like planets and held in orbit by electrostatic attraction. The sum of

the negative charges being equal to that of the positive 'sun', the

atom was electrically neutral, but sufficient electrical force could

detach a small planet which would be ejected as a cathode ray. The

further a corpuscle was from the sun, the easier it was to detach.

Although it cannot be said that this hypothesis guided Perrin's later

research it underlines his conviction about the reality of atoms which

was central to his scientific work. But even with the work of Perrin

to determine Avogadro's number we are talking about meticulous experi-

mental research, precise measurement, exactly those things which were

the principal contributions of French scientists to the new physics.
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7.	 GENERAL CONCLUSIONS 

Could it be said that the physics practiced, published and

rewarded in France in the period 1850-1914 was in some way peculiar to

France ? This thesis has attempted to bring out the essentially experi-

mental character of physics in France; physics signified the prose-

cution of a 'normal science' type of activity based largely on theore-

tical foundations laid down by French savants before mid century.

Reasons for this have been sought in the institutional structure of

French science.

Leaving aside for the moment the polytechniciens, the majority of

the individuals considerd here, whose area of study and research was

physics, earned their living either as teachers of this discipline in

higher education, or as teachers of the wider discipline, physical

science, in secondary education; they were scientific civil servants in

a centralised educational system. At the begining of the period con-

sidered, teaching was neither a highly paid nor highly regarded pro-

fession, except perhaps for the fortunate few who obtained positions in

the prestigious institutions of the capital. Teaching science in the

provincial faculties was not an attractive proposition for a young

scientist who wanted to combine research with his pedagogic duties,

because the faculties were poorly funded, saw few high quality students

and the level of the licence was scarcely above that of the bacca-

laureat. This situation changed only slowly later in the century, with

the attempts of the Third Republic to develop the provincial faculties,

allowing them some autonomy and permitting them to raise finance from

local government and industrial sources. But for most ambitious science

teachers, (and this is particularly true throughout the nineteenth

century), social status, attractive salaries, and adequate research

facilities, could only be achieved through the winning of a chair in

Paris.
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Thus we have examined here, in the main, the career of people who

were educated in the Ecole Normale, and worked for their doctorate

/
(either while teaching in Parisian lycees or while employed as agreges 

preparateurs in higher education institutions of the capital) to become

elegible for a faculty position. Usually going first to a provincial

faculty, they aspired to work their way to a position, and ultimately

to a chair, in one of the Parisian institutions of teaching and

research. And their progress through the system, even for the most

favoured ones from the Ecole Normale, who had ranked high in the Agre-

gation, depended on the yearly reports on the quality of their teach-

ing, the soundness of their political attitudes, and increasingly as

the century wore on, on the quantity and the quality (judged by the

leaders of the scientific community) of their research. French

physicists shared, as any group or community engaged in research must

share, a cammittment to established theories, tools, and methods. In

any scientific community there is a certain natural, legitimate,

conservatism which seeks to protect and preserve the hard won body of

scientific knowledge from the attacks of cranks, charlatans and shoddy

practitioners of science. The quality of research is naturally judged

by the leaders of the scientific (in this case, physics) community in

the light of existing theory.

By the time this study opens, France already possessed a substan-

tial body of physical theory, which gave the basis for research pro-

grammes in qptics, electricity, radiant heat, heat conduction,

acoustics, behaviour of gases etc. Scientific reputations were to be

gained by the meticulous, precise experimental work based on this body

of theory. It cannot be said that this in itself is particularly

different from the situation in other national scientific communities.

One is put in mind of the comment by Rayleigh when he discoverd and

published for the first time, nearly 50 years after it was written,
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Waterston's work on kinetic theory. Excusing the rejection of the paper

by the Royal Society, Rayleigh remarked that a young scientist should

establish his reputation by 'work whose scope is limited and whose

value is easily judged' i (my emphasis). Although it might be argued

that Rayleigh had a particularly aristocratic mentality, and that other

more democratic British scientists might have looked more favourably

upon precocious talent expressed through unorthodox research, Rayleigh

expresses a universal dilemna in scientific communities; how to judge

the quality of work other than by reference to accepted paradigms. In

France the value of the research undertaken by a young scientist was

judged by more experienced members of the community, and promotion and

progress depended on that report. Rayleigh suggested that only when a

young scientist had established his reputation should he then embark on

'higher flights'.
2

In France a whole lifetime spent on work which is 'easily judged'

could certainly lead to the highest ranks of the scientific establish-

ment, but would it then be possible to turn to 'higher flights',to work

of a greater scope ? Pasteur, writing in 1868, bemoaned the fact that

unlike in Germany, where a successful scientist might be offered a

research and teaching post and a well equipped laboratory in order to

continue the line of research which had brought him recognition,success

in France was rewarded - by another and perhaps yet another teaching

3	 .
post. While teaching in itself can be a benefit to a scientist, as

Duhem pointed out in relation to his work in the Faculty of Lille,

where bright and interested students forced him to clarify his own

thinking on difficult concepts, 4 the accumulation of teaching duties of

the type which fell to Pierre Curie in the early twentieth century

represented a drudgery which certainly did not improve his capacity for

creative research. This accumulation of teaching positions, often

together with administrative and political positions, was one factor
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which must have adversely affected the work of French scientists,

particularly those working in the capital.

Moreover, when we enter the period of the Third Republic, the

position of physicists, (as other scientists), becomes more closely

bound up with the state. From its establisment in 1871, up to the Great

War, the state espoused a 'scientific' ideology of varying degrees of

anti-clericalism. After 1881 its primary schools sought to inculcate

republican virtues through little lessons on morality based on

rationalism as qpposed to Catholicism,
5
 and it sought to justify the

social order by reference to science rather than to religion. The

methods of the scientist, and the value-free knowledge he acquired by

his unstinting and disinterested boil, were extolled as the model for

other branches of human activity.

Perhaps it is a result of this that French physicists, even the

most theoretically able, showed a great reluctance to abandon the old

theories, preferring always to emphasise the elements of continuity

between old and new, when, at the turn of the century, the demolition

of these old theories occurred. Moreover, after the humiliation of the

defeat by Prussia it became a patriotic duty to defend French theory

against attack by foreigners, a patriotic duty to continue lines of

research, like the velocity of light, which were traditionally French

and had brought France so much glory in the past.

But by the end of the last decade of the century, when much of the

classical theoretical edifice was in ruins and opponents of the Republic

were attacking the very rationality of science, the response of some

physicists (and their position was most coherently articulated by Henri

Poincare) was to redefine the aims of physical theory. To them, theories

were not attempts, limited and imperfect to be sure, to describe the

ultimate reality of nature , they became simply convenient devices to

predict phenomena. Thus a caution in respect to the formulation of
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new hypotheses about underlying processes and mechanisms which could

explain phenomena, tended to be replaced by an attitude of relative

indifference to the validity of these hypotheses. If one hypothesis

could be found to explain the phenomena and their relations, another

ten could equally be found. For example, writing later in the twentieth

century, Marie Curie claimed that she and her husband had been the

first to suggest that the energy from radium had come from the disin-

tegration of its atoms. 6 This may be perfectly true, but it was a hypo-

thesis to which they gave little importance, it did not suggest to them

a line of investigation and they continued with their experimental

investigation of radioactive phenomena. On the other hand, Rutherford

did give importance to the hypothesis of atomic distintegration using

it to embark on a series of experiments, which were to prove extraor-

dinarily fruitful.

But it would be a big mistake to attribute a homogeneous 'conven-

tionalist' position to all French physicists at the turn of the century,

just as it would be to attribute to them a rigorous positivist one, in

spite of a fairly universally expressed positivist rhetoric. 7 Positi-

vists like Berthelot, or Gabriel Lippmann, or Le Chatelier can be identi-

fied, but they did not establish schools or influence great currents of

scientific qpinion. Perhaps it can be said that the Ecole Normale 

physics teacher Bertin, who saw his job as being one of training modest

science teachers, and who communicated an ironic scepticism towards

mechanical theory to his students, thereby influenced later generations

of physicists. This may be true, and many of the normalien science tea-

chers trained by Bertin, became and remained, excellent lycee pedago-

gues, content to demonstrate effectd and expound on the laws which rela-

ted phenomena. But those who embarked on research wanted something more,

for they found, as Bertin's most famous pupil, Duhem, expressed it

T (that) ..the extreme demands of positivism are repugnant
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to the human mind'.8

And so Duhem, who expresses his positivism by asserting that it is

not the task of physical theory to explain experimental laws, never-

theless claims that this theory;

1 .. through its successive advances, tends to arrange experimental

laws in an order, more and more analagous to a transcendent

order..'
9

Thus the way that physical theory orders experimental laws is a

reflection of an ontological order. This is not the same as Poincare's

conventionalism, and, more important, it means that new theories should

be logically linked to the older theories they replace. Duhem insists on

this when he argues for the Helmholtz electromagnetic theory (with some

of his own modifications) in preference to that of Maxwell. The Helm-

holtz/Duhem theory can be logically connected to classical ideas of

Weber and Neumann on electromagnetism whereas Maxwell's cannot.
10
 This

way of thinking, involving a succession of logically linked theories

closer and closer approaching its limiting form 'namely that of a

natural classification',
11 

tends to favour a 'gradualist' conception of

scientific advance, rather than a 'revolutionary' one where there is

total discontinuity between theories. Although one cannot say that

Duhem, exiled to Bordeaux and permanently out of favour with the pro-

republican scientific leadership, had much influence on his contem-

poraries and his students were few, he does seem to be expressing a view

held by other French physicists of the turn of the century when he

insists on this continuity of theory. For example, Cornu writing on the

electro-magnetic theory of Maxwell, goes to great lengths to stress what

is common in that theory, with the earlier theory of Fresnel.
12

Although Cornu's over-riding interest in this question is probably to

defend French priority, he is at one with the Catholic, Duhem, in

emphasising continuity in theory. Moreover, the recent study of French
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physics between the wars by Pestre,
13
 has commented that French text-

books of the 1930's were concerned to show continuity with classical

theories, rather than revolution, when discussing quantum physics and

relativity, indicating that the tendency displayed in the period of

this thesis was continued later into the twentieth century.

If we accept Heilbron's analysis that Poincare's conventionalism

was a way of closing ranks against external attack and achieving the

maximum possible internal consensus among physicists, we are still not

much closer to understanding what philosophical beliefs French physi-

cists actually possessed at the turn of the century. Certainly none of

them admitted any debt to either Poincar4 or still less Duhem, in the

formation of their theoretical ideas. What we can say is that many

French physicists of the late nineteenth century shared, even if they

rarely mentioned them, mechanical assumptions about the world they were

investigating. That is, they reduced or tried to reduce, everything to

the basic mechanical concepts of motion and configuration of particles

of matter. This reductionism was expressed by mid nineteenth century

figures like Jamin and Verdet and later by Violle,
14 

and is an ex-

pression of the powerful molecular-mechanical tradition inherited from

Laplace, Poisson and Cauchy. Others were more forthright in their

defense of a mechanical view; Cornu at the 1900 Congres International 

de physique spoke of the modern discoveries in physics 'Which demon-

strated the triumph of the '...audacious Cartesian concept.. that there

is nothing in the physical world except matter and motion', 15 Brillouin

defended atomism and the ideas of Boltzmann against Ostwald, Gouy

argued that Brownian motion gave direct evidence of kinetic theory, and

Perrin and Langevin did much, experimentally and theoretically, in the

early twentieth century to raise the status of mechanical explanation.

This is not to deny entirely the influence of positivism. By the

end of the century there was, as previously mentioned, an easily
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identifiable positivist tendency within French physical science,

particularly concerned with the study of thermodynamics. Berthelot,

Lippmann, Le Chatelier and Duhem eschewed, as Lippmann was to say, any

reference to;

'..supplementary hypotheses and theorems which came later

and were grafted onto thermodynamics under the title of

explanations: molecular hypotheses, or mechanical theories

of gas.. 
16

Duhem could write a textbook of thermodynamics (Thermodynamique et

Chimie, 1902 ) and mention Maxwell only once in it and Boltzmann not at

all.
17
 A later writer, Bruhat, whose thermodynamics text book went

through several editions between 1926 and 1942, devoted only 18 pages

out of 400 to the kinetic theory, relegating it to the status of a

'scientific: curiosity'. 18

This thesis has also attempted to bring cut the difference in style

between the physics taught and practiced by polytechniciens and nor-

maliens. The elite character of the student body of the Ecole Polytech-

nique, its acute sense of superiority tempered by a sense of social

responsability and a St. Simonian conception of the utility of science

for the development of society, has been very well analysed by Shinn.19

What is particularly important to this thesis is that students acquired.

at the Polytechnique, knowledge of a complete, well organised, and

finished, set of principles and laws. The school transformed its

students, who were already a social elite, into a technological elite,

with a reputation for objectivity and infallibility, and whose

self-confidence was underpinned by being in possession of a body of

abstruse scentific truths inaccessible to the general population.
20

Throughout the century, the principal research interest of the

Ecole Polytechnique was optics, (as it had been since the time when

Arago had considered the school a nursery for the Paris Observatory),
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and most of its research was based on the wave theory of Fresnel and

Cauchy. Fizeau, though never a student at the school, obtained his

theoretical formation from studying its lecture notes and later became

an examiner there. Cornu, Potier, Deslandres, Henri Becquerel and

Carvallo were polytechniciens of the second half of the century who

carried on the tradition of optical research. But the advent of

Maxwell's electro-magnetic theory, introduced to France by the poly-

techniciens, Cornu, Potier, and Sarrau, (although in a form modified

to make it acceptable to the French 21 ) and the attacks by Ostwald on

the mechanical aspects of Fresnel's wave theory in the 1890's left the

polytechnicien in a vulnerable position; his infallibilty and hence his

authority was threatened, his coherent, immutable body of theory now

looked like an untidy package of outmoded scientific concepts. The

response was to stress the continuing utility of these concepts in

predicting phenomena, for it is a canon of St. Simonianism that the

scientist is useful to society and superior to ordinary men because of

his ability to predict. Moreover, once again, the common bond linking

the new theory with the old was stressed, emphasising the elements of

continuity. If we leave aside both Henri Becquerel and Henri Poincare,

who were both products of the school from a slightly earlier period, we

can say that its later students and teachers played little or no role

in the new areas of physics research which opened up around the turn of

the century.

In respect to the Ecole Normale it has already been mentioned that

its physics teacher of the 1860's and 1870's, Bertin, considered that

the highest attributes of normalien scientists (i.e. science teachers)

were clarity of expression and dexterity in experimental manipulation.

As normaliens represented the overwhelming majority of physics teachers,

and it was the membership of this profession which carried out most

of the research, normalien values permeated the community and
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gave a predominantly experimental rather than theoretical stamp to

French physics in the period considered. It is true of course that

there were scarcely any career qpportunities for theoretical physicists

in France; there was one post in the Paris Faculty, one at the College,

and one other specially created to reconcile Duhem to his continuing

exile in Bordeaux. Those who were good at mathematics preferred to do

pure mathematics, or applied advanced mathematical techniques to older

physical problems. 22 Although it is dangerous to make sweeping generali-

sations about Britain or Germany without making a full analysis of the

scientific communities of these two countries, one cannot fail to be

struck by the absence in France of theoretical physicists of the status

of Kelvin and Maxwell in Britain, or Clausius, Helmholtz or Planck in

Germany in the second half of the century. Perhaps in this question the

vocational objectives of the Ecole NOrmale, no less than those of the

Paris Faculty, militated against the formation of theoretical or mathe-

matical physicists. 23 While normaliens prepared for and dominated the na-

tional competitive agregation, they also attended the Paris Faculty for

lectures to prepare them for the licence. As physics and chemistry were

associated in the same lycee teaching post, (mathematics being separate),

aspiring teachers with an interest in physics would normally prepare for

the physical sciences licence, which contained more chemistry than phy-

sics and little mathematics. Thus the qualification itself tended to

keep physics and chemistry together (emphasising the manipulative charac-

ter of the two disciplines), while distancing them from mathematics.

But if clarity of explanation and experimental dexterity were the

hall-marks of good normalien science throughout most of the nineteenth

century, we must not neglect to give emphasis to the change which came

over the style of physics teaching when Marcel Brillouin was appointed

A
Maitre de Conference in physics in 1888. Brillouin himself obtained

doctorates in both mathematics and physics in 1881, and from 1900 held
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the chair in mathematical physics at the College de France. Although

certainly an able experimentalist, Brillouin was interested in

theoretical questions, unlike his predecessor, Bert in, and became a

brilliant defender of the ideas of Boltzmann. It was his preoccupation

with theory, which was to be so important in the formation of a new

generation of physics researchers, the most notable of whom were Perrin

and Langevin.

The role of the faculty system in the training of science teachers

and the contribution of the faculties to research have also been exa-

mined. Not until we encounter Pierre Curie in the 1870's can we find a

licenci  of the Paris Faculty who was able to make, albeit with enor-

mous difficulty, a career as successful as that made by scientists who

were products of the Grandes Ecoles. The only example of a successful

science licencie previous to Curie, was Jules Janssen the physical

astronomer, who attended the Paris Faculty in the Second Empire, was

awarded his licence in 1857 and his doctorate three years later, and

was elected to the astronomy section of the Academy in 1873. But in

over half a century these are rare successes and only in the early

twentieth century, with the rapid expansion of radioactive research,

did the Paris Faculty become a major centre both for research and for

the training of a new generation of physicists. This was particularly

so after 1907 in the laboratory of Mme. Curie, although still the most

able and sucessful of the new generation found their training in the

Ecole Normale.

The specific contribution to French physics by the provincial

faculties and the Catholic institutes has also been considered. The

Catholic Institutes provided positions for such people as Branly and

Amagat, and perhaps it can be said that their research did not follow

the well worn paths beaten out by many who made their career in the

State system. But even though the Catholic Institutes can be said to
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have provided a competitive stimulus to the faculties, their influence

should not be overestimated; the number of students who studied there

was so small campared to the state sector.

The provincial faculties were a different matter, and recently Nye

has made a reassessment of the usual centre/periphery argument.
24
 This

thesis has, however, shown that the contribution of the provincial

faculties to the production of new knowledge in physics was extremely

limited, although it was increasing as all the strategies to decentra-

lise the higher education system began to bear fruit around the turn of

the century. Some provincial faculties, like Caen, Dijon or

Montpellier for example, in centres which were badly placed to receive

any funds from local industrial concerns, never made any contribution

which was judged at the time to be significant, i.e. there was little

or no research from them published in national journals or referred to

by other scientists. One of the faculties best endowed by local indus-

try was Nancy, and this began to achieve a certain national reputation

through the research of Blondlot in the last years of the nineteenth

century, research which gained him the Gaston Plante prize in 1893, and

the prestigious Lacaze prize in the early years of the twentieth cen-

tury. But even here, where the team of researchers, Blondlot, Bichat

and Gutton, were linked by regional loyalties to influential

'Nanceians' of the capital like Poincare., the Faculty owes its fame

principally to the 'N' ray fiasco. Bordeaux appears now to have some

national importance because of its association with Duhem, but his

scientific status at the time should not be overestimated, and his work

and that of his students, March is and Turpain, seemed somewhat out of

step with the rest of France. Lyons, with the work of Gouylacquired

some national standing, as did Marseilles through the metrological work

based on interferametry carried out by Mace ' b Lepinay, while Lille

with the acoustics of Terquem, and the mathematical physics of
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Boussinesq (which was to take him to Paris) bear some mention. But most

of the work done in the provinces, which had any national resonance,

was carried out by young 'birds of passage' on their way to Paris,

although Blondlot and Gouy preferred to remain in the provinces and

became corresponding members of the Academy.

In the period of the Second Empire the research of professors at

the Ecole Centrale, the Conservatoire des Arts et MAiers, and the

Museum has been considered because it was specific to the respective

institution. However, in the Third Republic there was no physics

research caning from staff of the Centrale, and work at the Conser-

vatoire was in the hands (at different times) of Edmond and Henri

Becquerel and Violle, all of whom had chairs in other institutions. As

for the physics chair at the Mus4um, it continued to be a Becquerel

family fief. This raises particular difficulties in examining whether

there is a variety of institutional research styles in the French

experience. While it might be possible to associate certain types of

physics research with particular academic centres in Britain or

Germany, the practice of cumul, in which an individual holds a number

of posts, makes this much more difficult in France. For example, Jamin

held simultaneously the physics chairs in the Paris Faculty and the
A

Ecole Polytechnique in the 1860's, Violle was maitre de conference at

the Normale and professor at the Conservatoire, while Pierre Curie

taught and did his research at the Ecole Municipale, but was also a

repetiteur at the Polytechnique, and taught a low level science course

for medical students at the Paris Faculty. Thus we have seen the per-

sonal style and interests of the individual carried around with him

from institution to institution blurring any definite institutional

style. In the provinces of course, cumul could hardly operate,

(although some faculty professors also taught in local lycges in the

earlier part of the period), and so ittas easier for a specific faculty
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style to develop, as we have seen for Nancy or Marseilles, for example.

The influence of the three national scientific societies has been

considered although the first, Leverrier's Association scientifique de

France has no importance after the demise of the Second Empire. The

contribution of the AFas to physics has been examined, and although the

Association distributed some small research funds to provincials like

Crova and Turpain, and some work on the moving frontier of physics was

reported to its meetings, it cannot be said to have had the importance

of, for example the BAAS in Britain. As its meetings were for the

edification of the local and provincial lover of science, they tended

to be exercises in 'haute vulgarisation' and for this reason alone,

physics never played such an important part in the annual meetings as,

say, natural history, geology, rural economy or medical science. Duhem,

however tried to use the meetings of the AFas, to overcome his isola-

tion in Bordeaux and bring his theoretical ideas to a wider national

audience.

The Societe de Physique, founded like the AFas immediately

following the disaster of the Franco-Prussian war, naturally has a much

greater significance in the development of the science. The results of

a few pieces of original research first saw the light of day in its

meetings or in the columns of its journal, although in general, physi-

cists still preferred to publish first in the Comptes rendus. One rare

example of a 'first' for the Journal de Physique was Gouy's paper on

Brownian motion in 1885, which was perhaps considered too speculative

for the Academy. But whatever the objectives of the organisers of the

Societe in relation to decentralisation, its meetings were always held

in Paris and half its membership came from there. The meetings tended

to be dominated by Parisians, and at least in the 1870's and 1880's the

large number of instrument makers and engineers, made the demonstration

of	 instruments and apparatus the major preoccupation. Because there

were no scientific qualifications demanded of its members, this again
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militated against the presentation of difficult theoretical topics.

Nevertheless there was a slow process of advance in the theoretical

content of the meetings (not always to the liking of the membership)

and by the mid-1890's when there was an explosion of new research in

cathode rays, X rays, photo-electricity, and radioactivity, the Society

was able to play a very positive role in the dissemination of the new

knowledge.

This thesis has not attempted to say anything new in relation to

the question of the funding of science, except for some consideration

of the prizes and grants distributed by the Academy and and scientific

societies. Heilbron et al. have shown that around 1900 the level of

funding in France was comparable to that in Germany, taking into

account the difference in size of the two populations.
25

We know that

French physicists from the time of the Second Empire always compared

French research facilities unfavourably with those available to

scientists in Germany, and there can be no doubt that most French

provincial faculties were less well endowed than most German

universities, although by 1900, the Paris Faculty was probably the

equal, in terms of funding, to the best institutions in Germany. But,

in any case, there is not necesarily a direct relationship between

funding and creativity. At the turn of the century the example of Curie

at the Ecole Municipale de Physique et de Chimie Industrielles 

demonstrates that some of the most original work in France was coming

from the most poorly funded sector of the educational system. Moreover

it can be said that Poincare's insight which directed Becquerel to look

for X rays from fluorescing materials, or Gouy's realisation that

Brownian motion gave evidence of kinetic theory, required no expensive

apparatus. This is not to say that it cost nothing; there is the

previous investment in the training of the scientist, the current

funding which permits him time for reflection, even if he does not
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handle equipment. But nevertheless, one is tempted to think, that in

the French context, a higher level of expenditure on research might

have simply meant more apparatus to carry out yet more precise experi-

ments in the traditional research areas. It is true that when the

Ecole Polytechnique was presented with a high resolution Rowland con-

cave diffraction grating in the 1880's, Deslandres was able to put it

to good use in the study of molecular spectra, but one suspects that if

the school had received a Crookes' tube, it would have gathered dust in

a corner of the laboratory. Funding is important obviously, but what is

more important is an intellectual climate which permits and encourages

the scientist to go outside the well-trodden paths of traditional

research programmes.

In the qpening chapter an attempt was made to define the content

of the discipline of physics at the beginning of the period. Some

physics textbooks and syllabi of courses in the Third Republic have

been used to see how the subject boundaries extended to accommodate new

knowledge later in the century. New discoveries like those of hertz ian

waves or X rays were assimilated into the corpus of physics knowledge

without any difficulty; the panoply of experiments to establish their

wave nature was part of the stock-in-trade of physics teachers from

before mid-century. Certain areas of work which lay between physics and

chemistry, like electro-chemistry for example, which was and continued

to be part of some physics courses, or the study of solutions or

changes of phase, succeeded in establishing themselves as a separate

discipline (that of physical-chemistry) with its own course of study at

the Paris Faculty in 1893 and with a special academic chair by 1906.

Radioactivity research tended to blur the distinction between physics

and chemistry, although the preparation of new radioactive elements and

their classification through their properties was clearly the province

of the chemist, while the physicist concerned himself with the nature
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and properties of the radiation, and of atomic nuclei. Thermodynamics

and the concept of energy and its conservation, which had, from

mid-century played the role of a unifying concept for the apparently

disparate elements of what had once been called physique particuli;re 

and later physique experimentale, had become as much the province of

the chemist as the physicist, by the end of the century.

Different institutions showed different degrees of enthusiasm in

assimilating new areas of knowledge into the teaching and research

programme of physics. This enthusiasm depended partly on the

institutions' traditional interests and partly on the vocational

objectives of their teaching programmes. For example, in the Third

Empire it was in the Conservatoire, with its more practical courses,

that research on the mechanical equivalent of heat was carried out,

while some 30 years later it was the Ecole Polytechnique which brought

the ideas of Maxwell to France. As the educator of state engineers who

were responsible for telegraph, telephone, and (later on) wireless

telegraph communication, the staff of the school needed to acquaint

their students with Maxwellian theory, even if their own grasp of it

was not magistral. 	 The most prolific writer on the subject of tele-

phone communication in the late 1880's in France was the Polytechnique 

lecturer, Vaschy, who by 1887 was still giving a modified electrostatic

theory (i.e. without taking into account magnetic effects), of signal

transmisssion in telephone lines, and who published a clear account of

the benefits of self-induction in telephony, only after Oliver

Heaviside in England had done 53.U ButBut it must be said that even in

Britain, practical telephone engineers like Preece continued to argue

in the 1880's that the quality of telephone signals could be maintained

simply by reducing the resistance of the line, while Heaviside, well

versed in Maxwellian electrodynamics, found considerable opposition to

his ideas.27



316

While the application of science to technological processes and

industries has always been a very marked feature of French engineering

practice, (see the recent study by Kranarkis 28) the influence of

industrial technological development on French physics is much more

difficult to see. It can of course be seen at the level of the

utilisation of electrical, vacuum, or cryogenic equipment etc. in the

laboratory, but it is not possible to see, for example, any parallels

to the way in which Kelvin's grappling with the problems of signal

transmission in the Atlantic telegraph cable, helped him understand

better the role of resistance and capacitance in circuit theory. The

intrusion of the workshop and its practices into British physics, which

Duhem disliked, was not an important feature in the French experience

of this period, although it could be argued that it was, in an earlier

period, when the pure science of hydrodynamics was much influenced by

the design and operation of water wheels and turbines. This weak

interaction between technological practice and scientific theory is

partly a reflection of the greater industrial strength of Britain

compared to France throughout the nineteenth century. In spite of the

development in Paris of the first efficient motor ond generator by

Zenobe Gramme, France was slow to develop a heavy electrical industry

which soon came to be dominated by German and American companies, and

in the Congres International des Electriciens held in Paris at the end

of 1880, her scientists were able to make little contribution to the

discussion on 'Absolute' electrical units.
29

Even into the twentieth century, where it is true France had

developed new technological industries like those of car and aircraft

production, and what might be called science based industries like

liquid gas production and the manufacture of radioactive materials for

research and medicine, much of her industry remained, as Cornu was to

complain to the Association of Instrument Constructors, artisanal.
3o
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Thus we can say that industry did not play a powerful role in shaping

the Characteristics of physics in France; what was much more powerful

was the experimental tradition, the centralised educational system

which tended to reward 'normal science' based on French theoretical

work of the early part of the century, and an excessive allegiance to

this body of theory prompted in part by the humiliation of 1870-71.
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