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1. INTRODUCTION

In 1901 Issai Schur proved a fundamental result, which in modern language reads as
follows: Let k = C be the field of complex numbers, n and r integers, 3, the symmetric
group on r letters, G = GL, (k) the general linear group of invertible n by n matrices,
and Pol, the category of polynomial representations of G that are homogeneous of
degree r over C. Then Pol, is equivalent to the subcategory of CX,-mod of modules
having composition factors indexed by partitions of 7 into not more than n parts. In
particular, if n > r then Pol, is equivalent to CX,-mod.

What happens if we replace k by an algebraically closed field of prime characteristic? In
this case, Schur’s result appears to be completely wrong. Not only is Schur’s functor far
away from being an equivalence. Even worse, the category Pol, always has finite global
dimension, while £3,-mod and its relevant subcategories usually have cohomology in
infinitely many degrees. Thus no exact categorical equivalence is possible. However,
modular representation theory suggests considering a more sophisticated setup when
trying to extend Schur’s theorem. Indeed, the simple representations in characteristic
zero of either G' or X, have integral versions. These lattices can be reduced to prime
characteristic, providing (in general non-simple) modular analogues of the characteristic
zero simples. Well-known analogues are the Weyl modules A(A) in the case of the
general linear group, and the cell modules S(\) in the case of the symmetric group
(here taken to be the dual Specht modules); in either case, the indices A are partitions.
Hence the modular reduction process suggests considering a relative version of Schur’s
result: F(A) ~ F(S) - an equivalence between a category of G-modules with a Weyl
filtration and a category of k¥,-modules with a cell filtration. This, however, is still
wrong, as shown by small examples such as ¥, with r = 2,3 in characteristic two or
three.

It came as a major surprise when Hemmer and Nakano [13] recently proved, using re-
sults on cohomology of symmetric groups, that in prime characteristic Schur’s theorem
is almost relatively true. That is, the above relative version F(A) ~ F(S) of Schur’s
result is true provided one excludes characteristic two or three. In other words, the
category of cell filtered representations of symmetric groups behaves (mostly) like a sub-
category of a highest weight category in algebraic Lie theory. In more technical terms,
this means there is a partial order on the indices A such that Hom(S(X), S(u)) # 0 im-
plies A < g and Ext!(S(\), S(i)) # 0 even implies A < p, which is rather unexpected
from the point of view of representations of finite groups. The result by Hemmer and
1
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Nakano exhibits a new phenomenon, which is however not isolated. Indeed a recent re-
sult |12] by Hartmann and Paget establishes the same phenomenon for Brauer algebras
— with a similar set of cases to be excluded.

We are going to establish the Hemmer-Nakano phenomenon for a large class of algebras.
We mostly work with an axiomatically defined class of algebras, see Definition 2.1. The
main feature of this definition is, however, that it includes many known classes of so-
called diagram algebras, which have been used extensively in knot theory, C*-algebras,
mathematical physics or representation theory for various reasons. In particular, we
will cover Brauer algebras (thus reproving results of [12]|), Birman-Wenzl-Murakami
(BMW) algebras and partition algebras. In all cases we will find almost relatively true
versions of Schur’s theorem, see Theorem 10.2 and Corollary 10.3.

While diagram algebras are usually defined in combinatorial terms, the main tech-
niques employed here are of a categorical and cohomological nature. In particular, we
will provide stratifications of derived module categories of the algebras we study, see
Proposition 7.2 and Theorem 7.3. We will relate these stratifications to the cellular
structures of our algebras, which in our examples are so-called iterated inflations of
various symmetric groups or their Hecke algebras. On a technical level, we actually
will find two kinds of stratifications. One of them is on the level of derived categories,
and this stratification is a new feature of our algebras, not visible for group algebras of
symmetric groups. The second (relative) stratification is the analogue of the Hemmer-
Nakano result.

Apart from the results mentioned above, the methods employed also yield a variety of
new results on the diagram algebras studied, and the methods and results are likely
to carry over to other diagram algebras too. On a numerical level we will identify
many unknown decomposition numbers of the algebras studied with known or un-
known decomposition numbers of symmetric groups, see Proposition 6.2. Moreover,
cell filtration multiplicities are well-defined, see Theorem 10.2 (b). On a structural
level, we get comparisons of cohomology which for instance allow us to apply known
results of the cohomology of symmetric groups to diagram algebras. Moreover, there
are several vanishing results for extensions between cell modules, see Sections 7 and 8.
Furthermore, we will verify the finitistic dimension conjecture for the algebras studied,
which is known to imply various other conjectures, see Corollary 7.6. Algebras such as
the Brauer algebra occur in representation theory of symplectic or orthogonal groups.
Thus, all of these comparisons, on a numerical or structural level, have the feature of
relating types B or C with type A (symmetric groups).

In a wider context, the results of this article also have the following features: The
algebras we are going to study are cellular and usually not quasi-hereditary, thus they
do not fall into the customary setup of algebraic Lie theory. However, our methods
yield the existence of Schur algebras for our algebras, and these Schur algebras have the
usual features known for Schur algebras of classical groups or blocks of the Bernstein-
Gelfand-Gelfand category of a semisimple complex Lie algebra. In particular, these
new and yet to be studied Schur algebras are quasi-hereditary, that is, their module
categories are highest weight categories. These new Schur algebras are in Schur-Weyl
duality with the diagram algebras studied in this article, see Theorem 13.1. We also
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can keep various features of symmetric groups such as the existence of Young modules,
which in the case of the symmetric groups are direct summands of permutation modules.
Results such as Theorem 13.1 can be seen as providing a hidden algebraic Lie theory
for the diagram algebras we are studying.

As mentioned, the diagram algebras we are studying are cellular algebras, but usually
not quasi-hereditary. Cellular algebras keep some of the numerical features of quasi-
hereditary algebras, while structural features are usually lost when passing from quasi-
hereditary to cellular algebras. Another generalization of quasi-hereditary algebras,
stratified algebras, has been defined and studied with the aim of keeping structural
properties such as stratifications of derived categories. All three classes of algebras
are defined by the existence of certain chains of ideals. Formally, a cell ideal that is
stratifying must be heredity and a stratifying ideal that is cell must be heredity, too.
That is, in a formal sense, the intersection of cellular and stratified is quasi-hereditary.
However, the diagram algebras studied here, and the axiomatically defined class of cel-
lularly stratified algebras we are going to study, combine cellular and stratified features
in a new way. This new generalization of quasi-hereditary algebras appears to preserve
or to extend naturally the fundamental properties of quasi-hereditary algebras, and to
connect the two theories of cellular and stratified algebras and their rather different
sets of methods.

This article is organized as follows: In Section 2 we give an axiomatic definition, phrased
in combinatorial terms, of the abstract class of algebras to be studied, and then we verify
that three classes of examples fit into this setup: Brauer algebras, BMW algebras and
partition algebras. One feature of our algebra A is to have a chain of ideals whose
subquotients (layers) are related to other algebras B, which in the examples are group
algebras of symmetric groups or deformations of those. Section 3 sets up the categorical
technology to compare the module categories of A and B. Three crucial ring theoretical
and homological conditions are identified and verified, which provide the basis of the
main results. In particular, this structure gives an induction functor whose properties
are studied in Section 4. In Section 5 we show that our algebras can be characterised
by these structural properties, this yields an alternative definiton. In Section 6, we
relate some decomposition numbers of the algebra A with decomposition numbers of
the smaller algebras B. Section 7 investigates the whole chain of ideals, which turns out
to yield a stratification of the derived category of A. Section 8 strengthens these results
by proving further vanishing results for homomorphism and extension spaces. Section
9 gives a detailed example. Finally, Sections 10 to 13 use the results of Sections 3, 7
and 8 to achieve the main results, summarized in Theorems 10.2 and 13.1, including
the Hemmer-Nakano phenomenon, the existence of Schur algebras, and Schur-Weyl
duality.

Acknowledgement. The authors would like to thank the referee for all their very
detailed comments.
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2. CELLULARLY STRATIFIED ALGEBRAS — DEFINITION AND EXAMPLES

The main objects studied in this article are certain cellular algebras. Cellular algebras
were introduced in |9] and, subsequently, an equivalent definition was given in [17]. It
was shown in [18] that every cellular algebra can be constructed by iterated inflations of
smaller cellular algebras. In this section we provide an axiomatic definition of the class
of cellular algebras to be studied in this article, so called cellularly stratified algebras.
We then give three classes of diagram algebras which are cellularly stratified.

2.1. Cellularly stratified algebras. Let A be an algebra (with identity) which can
be realized as an iterated inflation of cellular algebras B; along vector spaces V; for
l=1,...,n. By [18, Section 3.1], this implies that as a vector space

n
(1) A=PB VeV,

=1
and A is cellular with a chain of two-sided ideals {0} = Jy C J; C ... C J, = A, which
can be refined to a cell chain, and each subquotient J;/J;—1 equals B; ® V; ® V; as an
algebra without unit. The involution i of A, an anti-automorphism with > = id, is
defined through the involutions j; of the cellular algebras B; where

(2) ib@uev)=7b)veu

for any b € B; and u,v € V. Recall that the multiplication rule of a layer B; @ V; ® V;
is dictated by the axioms of inflation and given by

(3) brey) o' ey) = (bo(y,2)V @x®y')+ lower terms,
for b0 € By, z,2',y,y € V, where ¢ is the bilinear form coming with the inflation
data. Here lower terms refers to elements in lower layers By, @ V), @ Vj, for h < [. For

more details on inflations see [18| and also the examples below. Let 1p, be the unit
element of the algebra B;. We define:

Definition 2.1. A finite dimensional associative algebra A over a field k is called cel-
lularly stratified with stratification data (By,V4,..., By, V,,) if and only if the following
conditions are satisfied:

(C) The algebra A is an iterated inflation of cellular algebras B; along vector spaces
Viforl=1,...,n.
(E) For each [ =1,...,n there exist non-zero elements u;, v; € V; such that

e = 1p, ®u @

is an idempotent.
(I) If I > m, then ee,, = €, = eney.

Condition (C) implies that A is cellular, see [18, Proposition 3.5]. The name ‘stratified’
will be justified in Section 7, when we will show that cellularly stratified algebras are
stratified in the sense of [3].

Remark. (a) By the definition of an iterated inflation (see assumption 3.4 in [18]),
the top layer satisfies V,, = k, and hence e,, = 1. Again by the definition of iterated
inflation, the algebra B,, is a quotient algebra of A.
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(b) Let u,v € V; be any elements such that 1 ® u ® v is an idempotent. We claim that
then ¢(v,u) =1 = ¢(u,v): By the multiplication in A, see Equation (3), we have

(4) 1Ieuekv)(leu®v)=p,u) @u®uv + lower terms.

Since 1®u®w is an idempotent, it follows that there are no lower terms and p(v,u) = 1.
Using the involution, we have 15, = j;(1p,) and hence i(1p, ® u® v) = 1, Qv ® u.
Doing the same calculation as in (4) for i(1p, ® u ®v), it also follows that ¢(u,v) = 1.

Lemma 2.2. Let A be cellularly stratified and 1 <1 <mn. The following holds:

(1) The ideal J; is generated by e, that is, J, = Ae;A.
(2) The algebra A/J; is cellularly stratified.

PROOF. Assume we are in the lowest layer, that is [ = 1. Then for any z,y € V; and
b € By we have

brzv)(1uv)(1uy) =0z (10U QY) =Rz Y

as there are no lower terms and as ¢(v1,u;) = 1 by the above remark. Hence the lowest
layer J; = Aej A is generated by e;. Assume next that the ideal J;_; is generated by
the element e; 1. Since e;_1e; = ¢;_1 by assumption (I), all elements in J;_; can be
generated by e;. Moreover, in layer [ we have for any ¢ € B; and z,y € V:

(crz@v) 1wy o) (1w y)=c®r®y + lower terms.

By the above, the lower terms can be generated by e;. Hence c® xz ®y can be generated
by e;, and the first claim follows. The second claim follows from the definition of
cellularly stratified. m

Lemma 2.3. Let A be cellularly stratified. With the set-up as in Definition 2.1, there
is an algebra isomorphism By ~ e;Ae;/e;Ji—1e; with 1p, mapped to e;.

PROOF. Since the index [ is fixed, it will be omitted. We will denote J;_; by J'.
As algebras, ede/eJ'e ~ (e + J)(A)J)(e + J) ~ (e + J)(J/J)(e + J). Using
the multiplication in A, we see that (e + J')(J/J')(e + J') is spanned by elements
b@u®v+ J, where b € B. Using the fact that ¢(v,u) = 1, all such elements lie in
(e+J)(J/J")(e+ J) since

buev+J =1uev+J) (bouev+J)(1ouev+J).
The map B — (e + J')(J/J")(e + J') given by b — b®@u ® v+ J' is then bijective. It

is a homomorphism since

bRuev+J) 0 @uev+J)=bpv,u)l uav+J = Quev+J.

Next we will give examples of cellularly stratified algebras. All examples given are
‘diagram algebras’, meaning that they have a basis which can be represented by certain
diagrams. Instead of writing down the elements wu;, v; in the following, we will give the
idempotents e;. Note that the labelling of the ideal chains is different from the one in
Definition 2.1.
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2.2. Brauer algebras. Recall that for » € N and 0 € k, the Brauer algebra By/(r,0)
has k-basis the set of diagrams of the following form: a diagram has 2r vertices arranged
in two rows of r vertices, and r edges such that each vertex is incident to precisely one
edge. To multiply two diagrams, the diagrams are concatenated and any closed loops
appearing are removed. If ¢ closed loops are removed from the concatenation to give
another diagram d then the product is defined to be §¢-d. More details and an example
of the multiplication can be found, for example, in [21].

Graham and Lehrer [9] showed that By(r,0) is a cellular algebra, with the involution ¢
given by reflecting diagrams in the horizontal line cutting diagrams into an upper and
a lower half. In [21], a different proof of the cellularity has been given, by showing that
Brauer algebras are iterated inflations of group algebras of symmetric groups. Let us
recall some details of this. We define J; to be the subspace of By(r,0) with basis all
diagrams with at most [ ‘through strings’, that is, edges joining a vertex in the top row
of the diagram to a vertex in the bottom row. Then J; is a two-sided ideal of By(r, )
and we obtain a filtration of the Brauer algebra:

OQJtQJHQQ...QJT_QQJ :Bk(’l”,(S)

where ¢ is 0 or 1 depending on whether r is even or odd. The subquotient J;/J;_5 is
isomorphic to an inflation k¥; ® V; @ V} of kX; along a vector space V; as given in |21,
Lemma 5.3]. Here we define Jy/J_o = Jy and Jy/J_; = Ji. This realizes By(r,0) as
an iterated inflation of group algebras of symmetric groups, see [21, Theorem 5.6]. As
a free K module

By(r,0) = k%, @ (kX 2@V, 0@ Vi o) ® (kX4 @ Vs @ Via) ® ...,

and the iterated inflation starts with k3, inflates it along k¥, 9 ® V._o ® V,._9 and
so on, ending with an inflation of k = kX or k = kX as bottom layer, depending on
whether r is odd or even. We shall see that By(r,d) is cellularly stratified in the cases
where § # 0 or 6 = 0 and r is odd. By |21, Theorem 5.6] assumption (C) is satisfied,
since group algebras of symmetric groups are cellular |9, (1.2)]. For § # 0 and for
l=r,r—2,...,t, we choose ¢; to be

1 ° ° o o o o

€ =

r—1

5T ) o o [ [ ) [ ]

where this diagram has [ through strings. If § = 0 and r is odd then we define ¢; to be
the following diagram with [ through strings:

° ° ° J ° ° °
€ = ‘
° ° ° ° ° ° °

In each case the element ¢; is an idempotent of By(r,d), so (E) holds. It easily is checked
that (I) is satisfied. Observe that the condition § # 0 when r is even is necessary since
otherwise the non-zero ideal Jy is nilpotent, and hence not generated by an idempotent.
We have proved:

Proposition 2.4. Let k be any field, r an integer and § € k. If r is even, suppose
d # 0. Then the Brauer algebra By(r,d) is cellularly stratified.
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Note that e; By (r,0)e; C By(r,0) is isomorphic to By(l,d) and has a subalgebra isomor-
phic to k.

Using the results of Hemmer and Nakano [13], it has been shown in [12] that, in the
above cases, the cell modules of By(r, ) form a standard system (see Section 10) if and
only if the characteristic of k is neither two nor three, and it was then deduced that
filtration multiplicities are well-defined for By(r,d)-modules with a cell filtration (|12,
Thm 2]). Results on decomposition numbers were also obtained in [12, Prop 2 and 6].
We will derive these statements again from the general set-up in this article.

2.3. Birman-Murakami-Wenzl algebras (BMW algebras). The BMW algebras
are deformations of Brauer algebras. Xi [25] showed that BMW algebras are cellular,
and moreover they are iterated inflations of Hecke algebras H of symmetric groups ([25,
Section 3]). For r € N, A, A7, ¢, ¢ 1,6 € k satisfying A™' — X = (¢ — ¢~ 1)(6 — 1), the
BMW algebra

BMW, := BMW,(r,\,q —q *,9)

can be defined by generators and relations (see [25]). But instead we use the equiv-
alent definition which displays BMW, as a diagram algebra, with a basis of certain
r-tangles, subject to certain relations. Given a Brauer diagram d on 2r vertices, one
can define an r-tangle T,; by a rule which specifies which strings of d should cross
over and which cross under. For details we refer the reader to [25, Section 2.2]. Then
{Ty : d a Brauer diagram} is a k-basis for BMW,. Xi goes on to define J; to be the
k-module generated by elements T,; where d is a Brauer diagram with at most [ through
strings. Then:

0CJC---CJrg CJp =BMW,

is a chain of two-sided ideals where ¢ is 1 or 0 depending on whether r is odd or even,
and

D/ Ji—a = Hi(g2) @ Vi@V
for some vector space V; (see [25], 3.5), and where H;(¢2) is a Hecke algebra. Thus

BMW, satisfies assumption (C). If § # 0 we define for each | = r,r — 2,... the
idempotent e; by

1 ° ° o o o o

€ = —/—
5Ul...i.......

where the diagram is an r-tangle with [ vertical lines. If § = 0 and r is odd we define
for each [ = r,r —2,...,1 the idempotent ¢; by

a=| |
® - e o o - [ ] e o

Then it is clear from the definitions that ¢ BMW,e; ~ BMW),. We find that all the
assumptions are satisfied, and we obtain that BM W, is cellularly stratified.

Proposition 2.5. Let k be any field, r an integer and 6 € k. If r is even, suppose
§ # 0. Then the BMW algebra BMWy,(r,\,q — q~1,0) is cellularly stratified.
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Note that here B; ~ H;(q~?) is in general not a subalgebra of e;BMW,e; — in contrast
to the situation for Brauer algebras.

2.4. Partition algebras. The third family of examples are the partition algebras, in-
troduced by Martin [22]. Like Brauer algebras, partition algebras are iterated inflations
of group algebras of symmetric groups (see Xi [24]). For » € N and ¢ € k, the partition
algebra Py (r,d) has k-basis the set of all partitions of 2r points. Such a partition may
be drawn as a diagram with 27 points arranged in two equal rows, and edges between
points so that a pair of points is joined by a path of edges if and only if they lie in
the same block of the partition. Note that different diagrams can represent the same
partition. Multiplication is given by concatenation of diagrams, and any block of the
concatenated diagram that does not contain a point from either the top or bottom row
is replaced by . This is independent of the diagrams chosen to represent the partitions.
For more details see [6, 22]. Xi defines J; to be the subspace of Py(r,d) spanned by all
partitions whose diagrams have at most [ blocks containing a point from both top and
bottom rows. In this way he obtains a chain of two-sided ideals:

0CJpC S C---CJpoy CJp = Py(r,9)
which realizes Py(r,d) as an iterated inflation, in particular:
Jl/Jl,1 ~ kX VeV

for some vector space Vj, see |24, Section 4| for details. If § = 0 then Py(r,d) is not
cellularly stratified since JZ = 0, and so condition (E) cannot be satisfied. However if
0 # 0 we choose idempotents:

o—@— - - - e 9 —0—0
€y — 5_1
°o—o— —eo—0—o
and for [ € {1,2,...,r}
[} [ ] *o—— —e
e =| |
[ ] LI [ o—- .- [P—Y

with [ vertical edges. We readily see that Py (r,d) is cellularly stratified. Note that the
algebra e; Py (r, d)e; is isomorphic to Pg(l,d) of which k¥ is a subalgebra.

Proposition 2.6. Let k be any field, r an integer and 6 € k. Suppose § # 0. Then the
partition algebra Py(r,0) is cellularly stratified.

3. CORNER SPLIT QUOTIENTS FOR CELLULARLY STRATIFIED ALGEBRAS

We assume the set-up as in Definition 2.1. In this section, we will set up functors
G; : Bj — mod — A — mod, following the ‘split pairs’ approach developed in [4]. As
background, we first recall some definitions. Let C and D be two module categories.
Let F, G be additive functors with /': C — D and G: D — C.

Definition 3.1. The pair of functors (F, G) is a split pair of functors if the composition
F o (G is an autoequivalence of the category D. If the two functors are exact then we
say (F,Q) is an ezact split pair of functors.
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It is shown in [4] that all exact split pairs are compositions of so-called corner split
quotients with Morita equivalences. Next we recall the definition of a corner split
quotient. Let C and D be rings. We call D a split quotient of C' if D is a subring
of (', via an embedding ¢ sending the unit of D to that of C, and also there exists a
surjective homomorphism 7: C' — D, such that the composition 7 o ¢ is the identity
on D. The homomorphisms 7 and e respectively induce two exact functors

between the categories C-mod and D-mod, namely restriction and inflation. The com-

position F o G is the identity on D-mod, and hence (F,G) is a split pair of functors.

Definition 3.2. Let C' be a ring, e an idempotent, and D a split quotient of eCe
viewed as a subring of eCe. Then we call D a corner split quotient of C' with respect to
e if there is a left C- and right eCe-module S, which is projective as a right D-module
via the embedding of D into eCe, and which satisfies eS ~ D as left D-modules.

Note that every D-module is an eCe-module via the quotient map. Thus, in the
definition, we may equivalently require S just to be a right D-module. If D is a corner
split quotient of C' with respect to e, then the functors

F =resceC®c— : C-mod — eCe-mod — D-mod, G =S®p—: D-mod — C-mod
form an exact split pair (see [4, Lemma 3.2]).

Definition 3.3. Let A be cellularly stratified. For each | = 1,...,n, define S; =

Ae; ®¢,4¢, Bi. We will refer to the functors Gy := S} ®¢,4¢, — : Bi-mod — A-mod as
induction functors.

Note for each Bj-module X, we have B; ®p, X ~ Bj ®¢,4¢, X, where e;Ae; acts on X
and B; by the quotient map e¢;Ae; — Bj.

Lemma 3.4. With the notation as above, S; is an A-Bj-bimodule, and as such is
isomorphic to (A/Jj_1)e;, which gets its right Bj-module structure via the isomorphism
in Lemma 2.3. In particular, the left A-module structure on S; factors through the
quotient map A — A/J;_1.

Proof. Recall that by Lemma 2.3 and Lemma 2.2, B; ~ ¢(A/J_1)e; and J;_1 =
Ae;_1 A with ej_1¢; = ¢j_1 = eje;—1. Hence
(5) Ji—1€61 @ejae, Bl = Aei(ej—1€14e;) ®e e, By

= Ae; Q¢ a¢, e1-1(erAer)(er(A/ J1-1)er)

= Ae; @ ae, e1-1(erAer/erJi_1e1) = 0.
This implies the following isomorphism of A-Bj-bimodules:
Sy~ (A)J1-1)ei®@ene, By = (A] Ji-1)e1®eya)5, 1) Br = (A) Ji-1)ei®@p, By =~ (A Ji-1)e;.

O

Proposition 3.5. Let A be cellularly stratified. For each | = 1,...,n, the right B;-

module Sy is free of rank dimV;. The algebra By is a corner split quotient of A/J;_1
with respect to e;, realized by S;. Hence there is an exact split pair situation relating

A/Ji—1 and By via the A/J;_1-Bj-bimodule Sj.
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PROOF. Assume [ = 1, that is we consider the lowest layer of A. For convenience we
will omit the subindices 1, that is, we use B = B1,V = Vj,u = u1,v = v; and e = e3.
Then we have an isomorphism B — ede = B® u® v, mapping b€ Btob® u® v, in
particular mapping the unit of B to e. So B is a split quotient of ede. Let S denote
the A — eAe-bimodule Ae. Certainly as left B-modules, we have eS ~ B. Thus to
show that B is a corner split quotient of A, it remains to prove that S is a projective
right B-module. We will do so by showing that S is free as a right B-module.

As aright B-module, S = Ae is isomorphic to B®& V ®v, with the right action of b € B
given by multiplication with b ® u ® v. Take a basis {z;} of V. Then for each basis
element x; we have

(c®z;®v)- bRuev)=(c-b®z; V).

This says that B®x; ®wv is isomorphic as a right B-module to the regular representation
Bp,and so S = B®V ®wv is a direct sum of dim(V') many copies of Bg. This shows
the claim for [ = 1.

Now, for [ = 1,...,n, A/J;_1 is cellularly stratified by Lemma 2.2. Hence we obtain
from the above that B; is a corner split quotient of A/J;_; with respect to e; realized
by the A/J;_1 — Bi-bimodule S; = (A/J;_1)e;. n

Remark. (a) We remarked in Section 2.1 that for a cellularly stratified algebra A the
quotient A/J; is again cellularly stratified. The induction functors associated to one
fixed layer of A and to the corresponding layer of A/.J; are the same. More precisely,
for [ = 1 and the idempotent es € Jy we have the associated induction functor Gy :
By-mod — A-mod. Similarly, for the cellularly stratified quotient A/.J;, we have
without shifting the labels — a functor G : By-mod — A/J;-mod. The functor Gy is
given by tensoring with Aey ®e,4¢, B2. By the proof of Lemma 3.4, this is the same
as tensoring with (Aea/J1€2) ®cy ey /6010, B2 Hence the following diagram commutes,
and we will no longer distinguish G5 and G in our notation:

Bg—mod&A/Jymod

(6) X l

A-mod

(b) If A is cellularly stratified and, in addition, Bj is a subalgebra of e;Ae; then the
algebra Bj is a corner split quotient of A with respect to e;, realized by the bimodule
Ae; @e,4¢; Bi- This may be seen by slightly adapting the proof of Proposition 3.5.
Hence, in this case, there is an exact split pair situation relating A and B;. This is the
case in the examples of the Brauer algebra and the partition algebra. In particular,
this gives a functor F; = ¢gA ®4 — : A-mod — Bj-mod. However, in general, B; is
not necessarily a corner split quotient of A, since our axioms do not require B; to be a
subalgebra of e;Ae;. Indeed, this does not hold in the example of the BMW algebra.
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4. PROPERTIES OF THE INDUCTION FUNCTOR G

Next we collect some first properties of the induction functor G;. We will see throughout
this paper that G, transfers the structure of the small cellular algebras B; to the inflated
algebra A. In this section we will see in particular that the functor GG; sends cell modules
to cell modules, and each cell module of the cellularly stratified algebra A is obtained
in this way. In the case of A being a Brauer algebra, the functor G; defined here does
precisely the same as the combinatorial induction process used in [12, Section 5| to
produce cell modules for Brauer algebras from Specht modules of symmetric groups.
Continuing the notation of the previous section, we omit subindices.

Proposition 4.1. The induction functor G has the following properties:

(1) The functor G is exact.
(2) Let X be any B-module. Then G(X) = X ® V as a vector space.

PROOF. Exactness of the functor G is implied by S being projective, see Proposition
3.5. Next, let X be a left B-module. Using Lemma 2.3, X is an eAe-module by inflation
and moreover eJ'e - X = 0. Then:
G(X) = Ae®cae BopX

= Ae®cae X

= (de/J'e) ®ene X by Equation (5)
(Ae/J'e) @p X
(BYmVYy®p X by Proposition 3.5,
~ XImV o X e,V

12

as vector spaces. [

Let us fix some notation here that will be valid throughout the article. Any cellular
algebra A comes equipped with a set of cell modules © 4(\) with A in some index
set A4. Then a complete set of simple A-modules is given by the modules L4(\) for

NS Ajmp]e C A 4. If there is no doubt about the algebra concerned, we will just write
O(A) or L(A).

The next result assumes A to be cellularly stratified and then explains how the induction
functor G relates the given cellular structures of A and B; (for each ).

Proposition 4.2. Suppose A is cellularly stratified. Then the functor G sends the cell
modules of B to cell modules of A, and each cell module of A is obtained in this way.
In particular, taking disjoint sets Ap, to label the sets of cell modules for the cellular
algebras By, the labels of the cell modules of A are the elements of Ay = J;_, Ap,-

PROOF. (a) The cell filtration of the layer J/J' is produced from that of B, see the
description of the inflation technique in [18]. More precisely: By analogy with the
functor G = S ®p — : B-mod — A-mod, we define the functor G’ = — @5 9’ :
mod-B — mod-A with 8" = B ®c. ¢A. Then G and G’ are exact by Proposition 4.1.
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Let {0} =1y CI; C ... C I; = B be a cell chain of B. This means there exist left
B/I;_1-modules Op(t) such that the subquotients are given by the B/I;_i-bimodule
Ii/I-1 =~ Op(t) ®i(Op(1))
where ¢ is the involution of the cellular algebra B. We tensor from the left with S and

from the right with S” and get the chain of A-A-bimodules
Seply@pS' CSe®pliopS C...CS@pl,@pS =S®pBeps ~J/J

where the last isomorphism is explained in (i) below. The subquotients of this ideal
chain are given by the A/J’-bimodules

(7) S®@p (It/Ii—1) ®5 S' ~ (S @p Op(t) @ i(S ©p Op(t))

which we show in (ii) below. This provides filtrations for all layers B; ® V; ® V; with
1 <[ < n, and hence this provides a cell chain of A. This implies that the cell modules
of A are given by G(Op(t)).
(i) By Equation (3), we have (J/J')e = B®V ®v, and similarly, e(J/J') = BQux V.
By Equation (5), S®@p B®p S’ ~ (J/J')e®p e(J/J'). Define
o:(J/Tewpe(J/J)— J/J
to be the map given by multiplication. This map is surjective since J = JeJ. Moreover,
(J/J")e and e(J/J'), as right and left B-modules respectively, are free of rank dimV/,
see the proof of Proposition 3.5. Hence
dim((J/J Ve @p e(J/J'")) = dim(B4™V)*) = dimB®@ V @ V = dim J/J,
and so ¢ is an isomorphism. This shows that S®p B®p S’ ~J/J =BV V.
(ii)) We show that the subquotients have the form claimed in Equation (7). Recall
that the involution 7 of the algebra A operates as follows in the layer B®@ V @ V:
i(b®z®y) =1i(b) ® y ® x where i(b) denotes the operation of the involution of B on
element be B. Let d®z®v € Op(t) @ V®@v. Then i(d® z ®v) =i(d) ® v® z, and
hence
i(©p(t) @V ev)=i(Op1) ®veV ~i(Os(t) ©uaV,

as right modules over A/.J". [

We finish this section by comparing homomorphism spaces.

Proposition 4.3. For all B-modules X andY, Homp(X,Y) = Homa(GX, GY") where
G is the functor S ®p — for S = Ae ®cpe B. In particular, GX is indecomposable if
and only if X 1is so.

PROOF. Indeed, using the adjointness of the Hom functor and the tensor functor, we
have

Homy(GX,GY) = Homy(Ae ®epe BRp X, Ae Repe BRpBY)
= Homg(Ae ®cae X, A€ Rcae Y)
~ Hom, (X, Hom 4 (Ae, Ae @c4.Y))
= Homepe (X, eAe @cac Y)
= Homea.(X,Y) = Homp(X,Y).
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Here the last equality holds as X and Y are B-modules, and eAe-modules via inflation.
[

Remark. Split pairs do not in general produce equalities of Ext!-groups: For instance,
assume A is not semisimple, and B is its maximal semisimple quotient which occurs
in A as subalgebra. Then A and B form a split pair. The induction functor G in this
situation is just inflation. Choose simple B-modules S, T such that there exist a non-
split extension between G(S) and G(T). Then 0 = Exth(S,T) # Ext!(G(S),G(T)).
Thus in order to compare Ext!-groups, we need to use some stronger properties, for
example the special choice of S and of the idempotent e. Indeed, in this case we then
can identify extension groups in all degrees, see Section 7.

5. A STRUCTURAL CHARACTERIZATION OF CELLULARLY STRATIFIED ALGEBRAS

Diagram algebras are defined in a combinatorial way. Their cellular structure has typ-
ically been identified by writing them as iterated inflations of known cellular algebras.
The definition of a cellularly stratified algebra naturally enhances the definition of an
iterated inflation. In this section we discuss how the combinatorial setup of Defini-
tion 2.1 is reflected by structural properties. We define a set of properties, (G), (J)
and (F). The structure theory of cellularly stratified algebras described in this article
is really based on this new set of properties. We will see in the first section, that
under the (mild) assumption of the involution i fixing the given idempotents, the new
set of properties characterizes cellularly stratified algebras (see Proposition 5.1). This
covers all generic cases (that is § # 0) among the examples given in Section 2. This
characterization is then improved to full generality in the following two sections (see
Proposition 5.2), including the non-generic cases, modifying properties (J) and (F).

5.1. Generic case. We define the following structural properties:

(G) Let A be a finite dimensional algebra over a field & with an involutory anti-
isomorphism i : A — A. Suppose there is a set of idempotents {¢; : [ = 1,...,n}
for some natural number n, such that e, = 1 and eje,, = e,,, = empey if [ > m.

(J) For each I = 1,...,n, let J; := Ae;A and B; := e;Ae;/e;Ji_1€;. Suppose ¢ =
i(er), and the algebra By is cellular with respect to the involution i. Moreover,
suppose that, as a vector space, .J; has a decomposition J; = J;_1 & X for some
subspace X; =i(X;) for [ =2,...,n.

(F) For each I = 1,...,n, define the A-B;-bimodule S; := Ae;/J;_1€;. Assume that
for each [ = 1,...,n, module S; is free of finite rank over B; and multiplication
induces an isomorphism of A-A-bimodules

Ael/Jl,lel QB elA/elJl,l ~ AelA/Ael,lA = Jl/Jlfl.

Proposition 5.1. (a) Assume that A is a cellularly stratified algebra withi(e;) = ¢
forl=1,...,n. Then A satisfies properties (G), (J) and (F).
(b) Suppose algebra A satisfies properties (G), (J) and (F). Then A is cellularly
stratified with respect to the given algebras B; and idempotents e;.
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Proof. (a) Let A be cellularly stratified and assume moreover that the involution i fixes
all idempotents e;. The general assumption (G) is satisfied by definition. Assume that
I is an ideal in the cell chain of A. Then, by the definition of cellularity, there exists
a vector space Y such that A =1@Y with {(Y) =Y. By Lemma 2.2, all J; occur as
ideals in a cell chain of A. By Lemma 2.3, it follows that assumption (J) is satisfied.
By Proposition 3.5, S; is a free right B;-module of finite rank, and the isomorphism in
property (F) has been shown in the proof of Proposition 4.2, part (i).

(b) Assume the structural properties (G), (J) and (F) are satisfied. We now construct
a cell chain of A as in the proof of Proposition 4.2. By property (F), S; = e;A/e;J;—1
is free as right B;-module, and since i(e;) = e, this implies i(S;) = e¢;A/e;J;—1 is free
as left Bj-module. Fix a cell chain {0} = [p C I} C ... C Iy = B; = B. Denote by
Op(t) the cell modules of B. Then we obtain for all ¢ the isomorphism

S1®p (I1/1i-1) @B i(S;) ~ (S ®p Op(t)) @4 i(S; ®p Op(1)).
By (F), multiplication provides an isomorphism
Si®@p B®pi(S;) = Ae;/Ji—1e; @ B®p eAfeiJi—1 ~ AegAJAej1 A= J;/Ji_1.

Hence this constructs a cell chain of A. We next see that A is an iterated inflation of
the algebras B;: By (F), we can write
m
Si=Ev;B =View B
j=1
as right Bj-module where V; is an m-dimensional vector space. Applying i gives a
similar decomposition,

i(S1) = €P Bii(v)) = B @y Vi,
7=1

Hence S; ®@p B®pi(S) =V, ®; B ®, V; and so A is an iterated inflation of cellular
algebras B; along V. The condition ¢; = 1p, ® w; ® v; is implied by (F) as follows. We
can choose v; = ¢;, then under the isomorphism

Jl/Jl,1 ~ Sl ®Bl Bl ®Bl Z(Sl)

the element ¢; is mapped to ¢, ® 1, ® ¢, = v1 ® 15, ® v1 as required. So A is cellularly
stratified. O

Hence the above structural assumptions may be taken as an alternative, slightly less
general, starting point of the theory of cellularly stratified algebras, avoiding the explicit
use of iterated inflations. The examples given in Section 2 show that the assumption
i(e;) = ey is not satisfied in some exceptional cases, namely where the parameter § = 0.
We discuss these cases in the following subsections.

5.2. Modifying property (J). In the examples in Section 2, assumption (J) is almost
always satisfied. In the exceptional cases when the parameter § = 0, the idempotents
e; are not fixed under the involution 4. These cases fit into the following setup:

Let A be an algebra with idempotent e and involutory anti-automorphism 4 such that e
and i(e) are equivalent. The equivalence of idempotents implies that there are elements
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p,q € A such that e = pqg and i(e) = gp. Applying i also gives i(e) = i(q)i(p) and
e = i(p)i(q). Assume that p is fixed under i. Then there is an algebra isomorphism
p ri(e)i(A)i(e) — ei(A)e = ele, sending = to pxq, that is i(e)i(a)i(e) = gpi(a)gp to
papi(a)gpq = epi(a)ge. The inverse of ¢ multiplies by ¢ from the left and by p from
the right. Now define j := ¢ o (ilepe) : eAe — eAe. Then j is an anti-automorphism
with

7% (x) = o(i(pi(z)q)) = ¢(i(q)xi(p)) = pi(q)wi(p)q = i(p)i(q)rpg = exe = x
for any x € eAe. Hence j is an involution on eAe. We now iterate this construction.
Assume that A is a finite dimensional algebra over k satisfying property (G) such
that the idempotents e; and i(e;) are equivalent for all [. Let J,_; = Ae;_1 A, define
A = A/J;_1 and define e to be the image of ¢; in A. The equivalence of the idempotents
e;—1 and i(e;_1) in A implies that the ideal J;_; is fixed under 7. So i is defined on
A. Then e and i(e) are equivalent in A. This in turn implies that there are elements
p,q € A such that e = pq and i(e) = gp. Now we assume that p is fixed under i, and
B; = eAe is cellular with respect to j; = j. We modify property (J) accordingly:

(J') For each I = 1,...,n, let J; := Ae;A and By := e;Ae;/e;Ji_1€;. Suppose, for
each [ = 1,...,n, that there exist elements p;,q; € A such that ¢, = pq,
i(e;) = qpy modulo J;_1, and that i(p;) = p;, and that B; is cellular with
respect to j; = ¢ o (i|p,). Moreover, suppose that, as a vector space, J; has
a decomposition J; = J;_1 @& X; for some subspace X; which is fixed by the
involution i, for [ = 2,...,n.

Note (J) implies (J') by choosing p = ¢ = e, but the two properties are not equivalent.

Remark. Suppose we are given elements p,q € A as above with i(p) = p and e = pq
and i(e) = gp modulo lower layers. Calculating modulo lower layers,

i(gpg) = i(pq)i(q) = qpi(q) = qi(p)i(q) = qi(qp) = qpq.

Assume in addition that gpg = ce for some scalar ¢ € k*. Then ce = qpq = i(qpq) =
i(ce) = ci(e) modulo lower layers, and hence e = i(e) modulo lower layers.

Ezxamples. We return to the examples in Section 2 and illustrate the modified property
(J') in the exceptional cases. Consider the Brauer algebra with parameter 6 = 0 when
r is odd. Then

[ ] [ ) [ ) [ ) [ ] [ ] [ ]
A —
e = | ,
N PR
[ ] [ ) [ ) [ ) [ ] [ ] [ ]
and we can choose
[ ] [ ) [ ) [ ] [ ] [ ] [ ]
S S
p= |
TN TN
[ ] [ ) [ ) [ ] [ ] [ ] [ ]
and
[ ] [ ) [ ] [ ] [ ] [ ) [ )
S S
q =
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These choices are not unique, alternatively one can take p as above and

N =

The corresponding case of the BMW algebras is handled in precisely the same way.
So all exceptional cases from the examples in Section 2 are covered by the modified

property (J').

Remark. In general, if A is cellularly stratified, then by property (E), ¢, = 15, ®@u®uvy is
an idempotent and hence by the remark after Definition 2.1, @(v;,u;) = 1 = @(uy, v;).
Define p = 1 ® uy ® u; and ¢ = 1 ® v; ® v;. Then by the multiplication, given in
Equation (3), pg = e+ lower terms and ¢gp = i(e)+ lower terms. Moreover, by Equation
(2), i(p) = p and i(q) = q. So, modulo lower layers, we have e = pq, i(e) = ¢p with
p=1i(p) and ¢ = i(q). Hence cellularly stratified algebras satisfy property (J') as well.

5.3. Modifying property (F). Assuming properties (G), (F) and (J’) for an algebra
A will not be sufficient for A to be cellularly stratified with respect to the chosen
idempotents e;, as we will see in an example at the end of this chapter. The only
obstacle is to show that the idempotents are of the form ¢, = 1 ® u; ® v; for some
ug,v; € Vi. We will now describe how to strengthen property (F) to really obtain an
equivalence in this general situation:

(F’) For each I = 1,...,n, define the A-B;-bimodule S; := Ae;/J;_1e;. Assume that
S is free of finite rank over B; for each [ = 1,...,n, and there exists a direct
sum decomposition of S; in which e; and ¢e; generate free summands such
that q;e; = ce; for some ¢ € k* if the summands coincide. Assume moreover
multiplication induces an isomorphism of A-A-bimodules

Ael/Jl,lel (293 €lA/€lJl—1 ~ AelA/Ael,lA = Jl/Jlfl.

Note that (F') implies (F), and in case e; = i(e;), we can choose ¢ = p; = q; =

1 ® u; ® u; for some u; € Vi, so (F') is just the same as (F). Now we can state the
structural characterization of cellularly stratified algebras in the general case:

Proposition 5.2. An algebra A is cellularly stratified if and only if it satisfies properties
(G), (') and (F') as stated above.

PROOF. (a) Let A be cellularly stratified. Then (G) holds. Assume ¢; = 1p, ® u; ® v,
and define ¢ = 1, ® vy ® v; and p; = 1, ® u; ® 4;. Then by the remark at the end of
Section 5.2, property (J’) holds. Moreover, calculating modulo lower layers,

alede/ei—ie) = q- (Bi@uey)=DB®vuu,

which is a free direct summand of B; ® V; ® v;. We distinguish two cases. If v; = Au; for
some scalar A, then B;Qu;®v; = B;®u;®v; with ¢; = Ae;, and hence g;e; = Ae; for some
scalar A. If the vectors {u;, v;} are linearly independent, then B;®@u;®@u;NB;@u;@v; = 0.
Hence property (F’) holds.
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(b) We assume that the algebra A satisfies properties (G), (J') and (F’). For simplicity,
we will restrict ourselves here to the lowest layer and suppress indices. Thus J = AeA,
B = eAe and the idempotent e is of the form e = pg with i(e) = gp, where i(p) = p.
For preparation, note that eA = pi(e)A and epAge = eAe. For example since pA C A,
we obtain pgpA C pgA = eA. Similarly, ¢A C A implies that eA = pgpqA C pgpA.
Hence we can write eA = pi(e)A. By a similar argument we obtain epAge = eAe.

By property (F') we can write

m
S = Ae = @vj(eAe)
j=1
as right eAe-modules for some vy,...,v,, € Ae. Applying i, we get a corresponding
decomposition
m
i(e)A = i(Ae) = @ i(e)Ai(e)i(v))
j=1

as left i(e)Ai(e)-modules. Note that pi(e)Ai(e) = epAgep = eAep. Since eA = pi(e)A,
we obtain the following decomposition of eA as a left eAe-module:

m m
eA = @pi(e)Ai(e)i(vj) = @ eAe - pi(vj),
Jj=1 J=1
and so eA is a free left eAe-module with basis pi(v;) for j =1,...,m. It follows from

(F’), that we have an isomorphism

J = AeA ~ Ae ®qpe €Al Qppe €A

m m

~ @vj ceAe Repe €A Reae @ eAe - pi(vj)
=1 j=1

~ VepB®pV

where V is a vector space of dimension m. Hence A is an iterated inflation of cellular
algebras B;. The above isomorphism sends aeb to ae ® e ® eb. In particular, e € J is
mapped to e®e®e = e®1p®e. By (F’), we can choose the basis elements v; such that
v; = e. Recall the remark after the definition of property (J'). If ge = ce for some scalar
¢ € k*, then e =i(e), and hence e € J is mapped to v; ® 1p ® v1. If e and ge generate
different free direct summands of Ae, then choose vy = ge = gpq = i(qpq) = i(v2).
Then e € J is mapped to v; ® 1 @ pi(vy). Hence e is always of the required form, and
A is indeed cellularly stratified. [

5.4. Examples. We end this chapter by discussing the above properties on two exam-
ples. In the first example, we consider an algebra with a set of idempotents satisfying
properties (G), (J/) and (F) where property (J) and (F’) do not hold. This algebra is
not cellularly stratified with respect to the chosen stratification data. This shows that
property (F’) is necessary. However the algebra considered is cellularly stratified with
respect to a differently chosen stratification data. In the second example we give an
algebra that is cellularly stratified with respect to a particular iterated inflation, but
not cellularly stratified with respect to isomorphic inflation data.



18 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGET

(1) We consider the two-dimensional algebra B with basis a, b, where a? = a, b> = b
and ab = ba = 0, which is cellular with respect to the identity involution i. We take
V to be a three-dimensional vector space, with basis v, v9,v3, and set J to be the
inflation B ® V ® V with multiplication given by:

(Cl vy @ Uj1)(c2 Q Vi, @ Uj2) = (Clgp(vjwvzé)c? ® vy ® Uj2)v

where ¢(v3,v3) = @(vi,v2) = @(v2,v1) = 1 and @(v;,v;) = 0 otherwise. This is
compatible with the usual involution ¢ of an inflation. The algebra A which we consider
is obtained by adjoining a unit element to J, A = J @ kl4. We define

e=(a®v3Rv3)+ (b® v ® ve),

which is an idempotent. Then i(e) = (a ® v3 @ v3) + (bR va @ v1) # e. We set eg = 14
and e; = e. Property (G) is seen to hold. Now we turn to property (J'). We see that
Aej A = AeA = J and eAe = span{a ® v3 @ v3, bR v; ® va} ~ B. We let

p=(1pRus®v3)+ (lp®@v1 ®v;) and ¢ = (a @ v3 ® v3) + (b ® V2 ® Va).

Then e = pqg and i(e) = gp and i(p) = p. The induced involution we obtain on eAe ~ B
is again the identity. The top layer presents no problems and property (J') is satisfied.
For property (F), we consider the A-eAe-bimodule S; = Ae. As a right eAe-module:

Ae = span{a®@v;, ®v3,b@v; @ vy : i =1,2,3},
= <a®vg®v3,b®vl®v2>@(b®vg®v2,a®v1®vg>
@D(a®@ vy ®v3, b® vy ® va)

The first summand is eAe ~ B and the second and third are each isomorphic to eAe
as right eAe-modules, thus S; is free of rank three as a right eAe-module. The top
layer again poses no problems and property (F) holds. Property (F’) is, however, not
satisfied and the idempotent e; = e is not of the form specified in property (E) of
Definition 2.1.

The algebra A is in fact cellularly stratified though: one must simply make a different
choice of idempotents. Starting with the idempotents 1p ® v3 ® vs and 14, the three
properties of Definition 2.1 are readily seen to hold.

(2) The next example shows that the definition of a cellularly stratified algebra depends
on the choice of the inflation data.

(a) Let J be the inflation of the group algebra of the symmetric group ¥ = (o : 02 = ¢)
by the two-dimensional vector space V with basis vy,ve. The multiplication in J is
governed by the bilinear form ¢, where p(v;,v;) = o if i # j and zero otherwise. We
form the algebra A by adjoining an identity element to J. So A is a nine-dimensional
algebra. We define an involution i by i(A-14+b®@u®@w) =A-14+b®w®u for A € k,
b € kX5 and u,w € V. Note that this involution is compatible with the chosen bilinear
form . Let B = kYo. Assume that e = 1p ® u ® w is an idempotent in J. Then

=1uew)(l®u®w)=pw,u)@uw.
Let u = avy + Pve and w = Avy + pvg for some «, 5, A\, u € k. Then
p(w,u) = (ap+ BN) -0 € k- 0.
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Hence ¢(w,u) # 1p. So there are no idempotents in .J of the form 15, ® u® w, so A
does not satisfy Definition 2.1 of a cellularly stratified algebra with stratification data
(X9, V, k, k).

(b) We will verify that there is actually another inflation data that constructs an
isomorphic copy of the algebra A. As before, let J be the inflation of the group
algebra of the symmetric group ¥o = (o0 : 02 = ¢) by the two-dimensional vector
space V with basis v1,v9, and form A by adjoining an identity element. This time
we chose ¢p(v;,vj) = € if i # j and zero otherwise. This choice of bilinear form is
conjugate to ¢ chosen in part (a), and hence we obtain an algebra structure on A
which is isomorphic via a change of basis to the algebra structure considered in part
(a). We define e = e; = e® vy @ vy and es = 14. Then property (G) is seen
to hold. We find AeA = J and ede = span,{e ® v; ® v2, 0 ® v ® va}. We let
p=(e®v1®v;) and ¢ = (€e®v2 ®vy). Then e = pg and i(e) = gp and i(p) = p and the
induced involution we obtain on eAe is again the identity, so property (J') is satisfied.
Finally we consider Ae as a right eAe-module:

Ae = (e @11 Qua, 0 Qv Qu2) B (€R vy @2, TR Vg ® Va).

The first summand is eAe and the second is geAe, but both are isomorphic to eAe as
right eAe-modules and their intersection is trivial, thus property (F’) is satisfied too.
By Proposition 5.2, A is a cellularly stratified algebra.

6. COMPARING DECOMPOSITION NUMBERS

Decomposition numbers of cellular algebras are by definition the multiplicities of simple
modules L as composition factors of cell modules ©. Given a cellular algebra C', denote
its decomposition matrix by Dc = ([Oc(X) @ Lo(p)])a,, with cell modules ©¢ and
simple modules Lo and labels A € Ag and p € Agmple.

Proposition 6.1. Let A be cellular and e € A be an idempotent. If the idempotent e
18 fixed by the involution i, then eAe is also cellular, and D, ae is a diagonal submatriz
of Da. If I is in the cell chain of A then A/I is again cellular, and D 4,1 is a diagonal
submatriz of D 4.

PROOF. The claim follows from the definition of cellular algebras by cell chains (see
[9, 17, 18] for instance), and from general theory as in Green [10, Section 6.2|: Assume
the cell modules of A are indexed by the elements in A4. Then, as i(e) = e, eAe is
cellular and the cell chain of eAe is obtained from that of A by multiplying the cell
chain of A by e from the left and the right. Modules of A become eAe-modules by
multiplying with e from the left but some of these A-modules may become zero. In
particular, multiplication by e sends cell modules to cell modules or zero, and simples
to simples or zero. That is, the cell modules and simple modules are

Ocae(A) = €O 4(N) with A € Apae C€ Ay,
LBAB(M) - eLA(M) With M G AseiXep]e g Ajn]p]e'

Hence D4, is a diagonal submatrix of D 4. Similarly, if I = I; is an ideal in the cell
chain of A, say
A=15;21;12...2 1y = {0},
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then the cell chain of A/I is given by
A/l =1)I D1, 1/ID>...2I;/1 ={0},
and the cell modules and simple modules of the quotient algebra are
©4/1(A) =04(A)  with A€ Ay r C Ay,

LA/I(,U) = LA(:U) with n e Air;;)]e - Aiilmp]e.

Hence D4y is a diagonal submatrix of Dy. ]

Corollary 6.2. Let A be cellularly stratified and assume that for each | the idempo-
tent e = e; is fized by the involution i. Then the decomposition matrixz of A contains
on its diagonal precisely the decomposition matrices Dp, for | = 1,...,n. Moreover
the decomposition matrices Dea. are submaitrices of the right-hand bottom corner, the
decomposition matrices D 4,5, are submatrices of the left-hand top corner as in the
following picture:

Dy,
DA/Jl—l

Dp
Dy =

DelAel
De, 1 ae, 4

PROOF. Note since i(e) = e this implies u = v. Observe that e(A/J;_1)e ~ BQuRu ~
B, and then the result follows from Proposition 6.1. [

Remark. For our main examples in this article — Brauer algebras, BMW algebras and
partition algebras — in the case where the parameter § # 0 we have idempotents ¢;
of the form X\ - (1 ® u ® u) where X is a scalar, clearly satisfying i(e;) = ¢;. Hence
the last corollary implies equalities between certain decomposition numbers of these
algebras and decomposition numbers of group algebras of symmetric groups or their
Hecke algebras (which are the algebras B; in these examples). In addition, since each
eAe is isomorphic to a smaller diagram algebra of the same type we see, for example,
that the decomposition matrix of By(r —2,8) (respectively BMWy(r —2,\,q¢ —q~ 1, 9)
or Py(r —1,9)) is included in that of By(r,§) (respectively BM Wy (r,\,q — q~1,6), or
Py (Tv 5))

However the idempotents ¢; for a cellularly stratified algebra may be of the form 1Qu®wv
with u # v, and then i(e;) # ¢;. In certain such cases we still obtain the above
results relating decomposition numbers. Under the additional assumption that the
idempotents e; and i(e;) are orthogonal, & = e; + i(e;) is an idempotent of A and we
may replace e¢; by €, = ¢; + i(e;) in the proof of the corollary. Then é&(A/J_1)é is
the inflation B ® span {u,v} ® span {u,v}, of B, and since the bilinear form for this
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inflation is non-singular, the decomposition matrices of é(A/J;_1)é; and of B coincide,
see |21, Corollary 3.4]. Such a situation occurs for the Brauer and BMW algebras when
r is odd and ¢ = 0.

7. CELLULARLY STRATIFIED ALGEBRAS ARE STRATIFIED

One of our aims is to extend the phenomenon discovered by Hemmer and Nakano [13]
to certain diagram algebras. This phenomenon identifies homomorphism spaces and
it identifies first extension groups (for the case of symmetric groups and their quan-
tizations, see [13|, Theorem 3.7.1 and Corollary 3.9.1). However, it identifies higher
extensions only with higher relative extensions. For cellularly stratified algebras there
is another homological structure. In this section we provide a stratification of the de-
rived module category of any cellularly stratified algebra, independent of the Hemmer-
Nakano phenomenon. We start by recalling what stratified algebras are. There are
various, in fact non-equivalent, definitions of stratified algebras. Here we follow the
most general of these definitions, due to Cline, Parshall, Scott [3, 2.1.1].

Definition 7.1. An algebra A is stratified if there exists a chain of ideals {0} = Jy C
J1 C ... C Jp1 € J, = A such that each subquotient J;/J;_1 is a stratifying ideal
in the quotient algebra A/J;_;. Here an ideal J in an algebra A is called a stratifying
ideal provided that the following conditions hold:

(1) There is an idempotent e € A such that J = AeA.
(2) Multiplication provides an A-bimodule isomorphism Ae ®c4. €A — J.
(3) Toré4¢(Ae,eA) = 0 for all n > 0.

Remark. An equivalent way to phrase conditions (1) to (3) is to require that the derived
functor D*(A/J-mod) — D*(A-mod) induced by the full embedding A/J — mod —
A —mod is a full embedding, see [3, 2.1.2].

Assume from now on that A is cellularly stratified. Next we show that the lowest layer
in the chain of ideals provided by condition (C) is a stratifying ideal. As a consequence
cellularly stratified algebras are stratified.

Proposition 7.2. Suppose the algebra A is cellularly stratified, with notation as above.
Then A is stratified with a stratification provided by the ideals J;.

PRrROOF. We have to show that J; is a stratifying ideal in A, Jy/.J; is a stratifying ideal
in A/Jy, and so on. We do this by induction on the layers. Write e = ey, B = By and
V = V1. By the assumptions on A, the lowest layer is the ideal J = AeA =BV RV,
and B ~ eAe.

By Proposition 3.5, the right module Ae = B® V ® v and similarly the left module
eA=B®u®V isa free B-module of rank dimg V. Hence Ae is flat, and the third
condition for a stratifying ideal holds: Toré¢(Ae,eA) = 0 for all n > 0. The map

Ae RepeeA — J =BV eV
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given by multiplication is an isomorphism of vector spaces (see Equation (3) from
Section 2). This shows that J is a stratifying ideal in A. The claim now follows by
induction on the layers. [

Remark. In the case of the Brauer algebra By(r,d) with 6 = 0 and r even, the ideal
spanned by totally horizontal diagrams is not a stratifying ideal. However in this case,
the previous proposition is true for the quotient of the Brauer algebra obtained by
factoring out this ideal.

In general, a stratifying ideal induces only partial recollement diagrams, see [3, Section
2.1.2] and [16], where definitions of recollements can also be found. Here we obtain
more:

Theorem 7.3. Assume that A is cellularly stratified.

(a) Then there is a full recollement of bounded derived categories

e i
Db(A/J; — mod) i D(A — mod) 5 DP(By — mod)
¢ -

(b) The derived category of A has a stratification (iterated recollements) by the
derived categories of the algebras Bj.

PROOF. (a) We write e = e, J = J; and B = By, and so by Lemma 2.3, B ~ eAe. It is
clear that Hom 4 (AeA, A/J) = 0, and that AeA ~ @ Ae is projective as an A-module.
So we can apply [16, Corollary 12| and obtain a full recollement for D~ as above. We
can replace End4(AeA) by eAe ~ B, since, as a left A-module AeA is just a sum of
copies of the projective A-module Ae, so that the two algebras are Morita equivalent.
Now [16, Lemma 2| implies that this recollement restricts to a right recollement for
the bounded derived categories, that is, the bottom four functors take complexes with
bounded homology to complexes with bounded homology. It is left to show that the
upper two functors do that as well. Note that all the six occurring functors are induced
by functors on the corresponding module categories (denoted by the same symbols),
namely

iv =1y = A(A)J) @ay5 —: A/J-mod — A-mod,
i*=A/J®s—:  A-mod — A/J-mod,

i' == Homs(A/J,—):  A-mod — A/J-mod,

= imeA®y — A-mod — eAe-mod,

Jri= Ae ®cpe — - eAe-mod — A-mod,

Jx = Homeae(eA, —) : eAe-mod — A-mod.

Here Ae is a projective right eAe-module, hence flat, therefore Tor?Ae(Ae,—) =0
for 5 > 1. So the derived functor of j, takes complexes with bounded homology to
complexes with bounded homology. In D?(A), the module A/.J is isomorphic to the
complex Y :=(--+ -0 — AeA — A — 0 — ...) of projective (hence flat) A-modules.
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Let X € D’(A — mod). The homology of i*(X) is just the homology of the total
complex T of the double complex Y ® 4 X, which vanishes in high degrees, since the
homology of X is zero for high degrees, and tensoring with flat modules is exact. Hence
i*(X) € D*(A/J — mod), as required.

(b) Replacing A/J;_1 by A/J; and e = ¢; by the idempotent ¢;11 in the next layer and
iterating the above argument, we obtain a sequence of recollement diagrams, each of
them having the derived category of the respective B;-mod on the right hand side. In
the last step, we have A/J,_1 on the left hand side, which is isomorphic to the algebra
B,, since e,, = 1. The claim follows. n

The last theorem has various consequences. In particular, using [3, Section 2.1.2|, we
obtain a comparison of Ext-groups:

Corollary 7.4. Let A be cellularly stratified. Let M, N be any A/J;-modules and X,Y
any Bj-modules. Then for any i > 0 and any 7 > 0 we have:

Ext)y(M,N) =~ Exty,;(M,N),
Extggl(X, Y) ~ Ext))(Gi(X),G(Y)).

PROOF. The first isomorphism follows from [3, Section 2.1.2]. The case j = 0 of the
second isomorphism has been obtained in Proposition 4.3. In the case j > 0, we apply
the first isomorphism to obtain

Ext/, (Gy(X), Gy(Y)) ~ Ext/

ALd (G1(X),Gi(Y)).

Using the definition of the functors G; (see Section 3), this equals
EXtil/Jl,l((A/Jlfl)el Qey(A)i—1)er X, (A)Jim1)e Qey(A)Ji—1)er Y).

Since ¢ is in the lowest layer of A/J;_q, it follows that e;(A/J;—1)e; ~ B;. We now
apply Theorem 7.3 to the cellularly stratified algebra A/J;_1. Then

Ext)(G1(X), Gi(Y)) = Bxt?, , (1(X),7(Y)).
Since jy : D*(B; —mod) — DY(A/J;_1 —mod) is a full embedding, it follows that
Ext/ (Gy(X), Gy(Y)) ~ Extl; (X,Y).

Let A be any algebra. Recall that the projective dimension of an A-module M is the
length of a minimal projective resolution of M. The global dimension of the algebra A
is then the maximum of the projective dimensions of the A-modules. For many algebras
this number will not be finite. In those cases one also considers the finitistic dimension.
The finitistic dimension of an algebra A is the maximum of the projective dimensions of
all those A-modules which have a finite projective resolution. It has been conjectured
that the finitistic dimension is always finite. A positive answer to this conjecture for
finite dimensional algebras would imply validity of various other conjectures such as
the Nakayama conjecture. For more information see the surveys given in [8, 26, 27|. In
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the case of cellularly stratified algebras A, we can reduce the question of finiteness of
the finitistic dimension to the same question for the smaller algebras B;:

Corollary 7.5. Let A be cellularly stratified by the algebras By, ..., B,. Then the global
dimension of A is finite if and only if all the algebras B; have finite global dimensions.
The finitistic dimension of A is finite if and only if all the algebras B; have finite
finitistic dimensions.

PROOF. The first claim follows from Theorem 7.3 together with [16, Corollary 5|. The
second claim follows from Theorem 7.3 together with [11, Theorem 2|. (]

Corollary 7.6. The finitistic dimension conjecture holds for Brauer algebras (with
0 # 0 if r is even), BMW-algebras (with § # 0 if r is even) and partition algebras (with
d#0).

PROOF. Here the algebras B; are group algebras of symmetric group or their Hecke
algebras which are self-injective algebras. Self-injective algebras are easily seen to have
finitistic dimension zero: Assume that a finite projective resolution of a non-projective
module M is given. In a self-injective algebra projective modules are injective. Hence
the finite exact sequence of the projective resolution of M splits in the leftmost term,
a contradiction. This implies that a module for any self-injective algebra is either pro-
jective or has no finite projective resolution. The statement now follows from Corollary
7.5. |

Remark. Working in a more general context, Frisk proved several results on when
the finitistic dimension of a standardly stratified algebra is finite. He also gives an
upper bound for the finitistic dimension, depending on the finitistic dimension of the
endomorphism algebras of standard modules, see for example [7, Theorem 24].

8. HOMOMORPHISMS AND EXTENSIONS BETWEEN LAYERS

We have seen in Proposition 4.3 and Corollary 7.4 that homomorphisms and extensions
of cell modules of A inside the [th layer behave like those of the small algebra B;. In this
section we will study homomorphisms and extensions between cell modules of different
layers. We will see that homomorphisms and extensions between cell modules can
happen either in the same layer or from a higher to a lower layer, but not the other
way round.

Proposition 8.1. Let | < m, and let X be a B,,-module and Y a B;-module. Then
HomA(Ael Re,Ae; B X B, Y, Aen, QemAem Bm @B, X) = 0.

In particular, if ©(X\) and ©(u) are cell modules, with ©(X) in the layer of e; and O(u)
in the layer of e, with | < m, then Hom4(©(X),0O(n)) = 0.

PROOF. Using Proposition 4.2, we can write O(u) = Ae,, ®e,, Ae,, Bm @B,, X, where
X is a cell module for B, and similarly, O(\) = Ae; ®¢,4¢, B ®p, Y where Y is a cell
module for B;. Hence it suffices to prove the first claim.
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Using the adjointness of the Hom-functor and the tensor functor, and using assumption
(I), we then have:

Hom 4 (Ae; ®¢, ¢, B1 @B, Y, Aem ®e,, Aeyn Bm @B, X)
= HomA(Ael Re; Ae; Y, Ae,, QemAem X)
~ Homg, 4, (Y, Hom g (Ae;, Aey, ®e,, Aern X))
= Home, ac, (Y, e1Aern, ®e,, Ac,, X)
= Homg, 4, (Y, e X) = Home, 4¢,(Y,0) = 0.

Note that X is a B,,-module, and as e,, Ae,, surjects onto B,,, it is also an e,, Ae,,-
module with e, 1€, - X = 0. So in particular ¢, X = 0. n

Similarly, extensions between cell modules can happen either in the same layer or from
a higher to a lower layer but not the other way round; this resembles the situation for
quasi-hereditary algebras where each layer has just one index and one simple module.

Proposition 8.2. Let | < m, and let X be a Bj-module and Y a B,,-module. Then
forall i >1,

Ext’y(Ae; ®e,ae, Bi @5, Y, Aey Qe Acr, Bm @5, X) = 0.

In particular, if ©(\) and ©(p) are cell modules, with ©(X) in the layer of e; and ©(u)
in the layer of ey, with I < m, then Ext% (©(X),0(u)) =0 for all i > 1.

PROOF. As before, it suffices to prove the more general first claim. For the B,,-
module X and Bj-module Y, we have G,,,(X) = Aey, ®e,, Ae,, Bm @B, X and G(Y) =
Ae; ®e,ae, Bi ®p, Y. Since J; - G, (X) =0 and as ¢; € J, this implies

(8) Homu(Aeg, Gn(X)) = € - Gu(X) = 0.

Consider the lowest layer, that is B; = By. Here we have e;Ae; ~ B; and Ae; is a
projective right e; Ae;-module (see Proposition 3.5). The induction functor G sends B
to the projective A-module Ae;. The functor G is exact by Proposition 4.1, hence it
sends a Bj-projective resolution of Y to an A-projective resolution of G;(Y'), say

(9) .= P> P —G((Y)—0

where Py, Pp,... are direct summands of € Ae;. But by Equation (8), it follows that
Hom 4 (P;, Gy, (X)) = 0 for all 4, so by the definition of Ext’, this shows the claim in the
lowest layer. For layers [ and m with [ < m consider A/.J;_;. By (6), the A/J;_1-module
Gi(Y), viewed as an A-module, is isomorphic to Gy(Y'). Thus Ext} (Gi(Y), G (X)) ~
Ethﬁl/Jl,l(Gl(Y)’ Gm (X)) = 0 by the above, using Corollary 7.4. ]

9. COMPARING CELLULAR AND STRATIFIED ALGEBRAS ON EXAMPLES

Cellular algebras have often been considered as a combinatorial generalization of quasi-
hereditary algebras while stratified algebras have been considered as a homological one.
We have seen in Section 7 that there are cellular algebras which are stratified. In this
section, we illustrate by an example that the Ext-comparison (see Corollary 7.4) and
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Ext-vanishing properties (see Proposition 8.2) of stratified algebras do not hold for
cellular algebras in general. We consider the algebra A = kQ/R given by the quiver

!
CR S—
with relations R = (afa,faf). Then A is a six dimensional algebra with basis

{a,b,a, B, af, Ba}. Define a map i with
(@) =6 i)=a ia)=a, i(b)=b

and extend it anti-multiplicatively. Then the algebra A is cellular with involution ¢ and
cell chain A= J3 D Jy 2O J; D Jy = {0} where the ideals are given as follows:

Jy = AaA = spang{a, o, 8, af, fa}, J1 = (af) = spang{af}.

Then the quotient algebras A/J; for 1 < ¢ < 3 have the following decompositions into
projective indecomposable modules:

a b b
A=b @ a, Ali=y ® a  and A/l =b.
a b b

Here a and b denote the two simple one-dimensional A-modules. The cell modules are
@1 = a, @2 = @3 =b.

Here, for instance, Ji as a left A-module equals a and Jj is isomorphic to ©1 ® i(01)
via multiplication so J; = Ji/Jp is a cell ideal in A = A/Jy. As there are uniserial
A-modules [a,b] and [b, a], we have non-split extensions of the cell module ©; with O3
and vice versa, and hence Proposition 8.2 does not hold for A.

A minimal projective resolution of the A-module « is given by the following complex
which is periodic of length four:

a b b a
-—»b—»a—»a—»b—»a—»o_
NS ENS NN
a a b b

b a

The same complex can be used to read off the minimal projective resolution of b over
A. As an A/Jij-module a minimal projective resolution of a is given by the following
finite complex, which also can be used to read off the minimal projective resolution of

b: b a

0—>Z—>a—>b
0N
a b
b

—>a—>0_

Applying Hom4(—, a) and Hom 4, 5, (—, @) respectively to these complexes, we can cal-
culate the extension groups. For instance, we obtain that Ethf/Jl(a, a) = 0 for all
m > 3, but Ext¥(a,a) = Ext¥"?(a,a) = k for t > 0. So, for A a general cellular
algebra, we cannot identify higher extension groups for A with those for A/J.
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Using a different ideal chain that avoids nilpotent layers does not improve the situation:
The ideal J; is nilpotent, and there are no simple A-modules corresponding to nilpotent
layers of the cell chain of A. Thus we now try the ideal chain A D Jy D {0} which
also refines to the cell chain of A given above. Then neither J, as an ideal of A nor
A/Jy as an ideal of itself are nilpotent ideals. However, this is still not enough to
obtain a stratification, the ideal .J5 fails to be stratifying. As one easily calculates, the
first two conditions of Definition 7.1 hold, but the third one does not. To see this,
note that the algebra C' := aAa is two-dimensional, it has one simple module a and C
is the unique indecomposable projective. The (right) C-module Aa ~ a & C has the
projective resolution

> (C—-C—-CpC—apC—0

and tensoring with aA ~ a®C (from the right) gives a complex with non-zero homology
in all degrees, hence Torg(Aa, aA) # 0 for all n. So the absence of nilpotent ideals in
the chain is not enough, we need cellularity and the idempotents, as in Definition 2.1.

10. CELLULARLY STRATIFIED ATLGEBRAS AND STANDARD SYSTEMS

Using the technology set up in the previous sections, we are now ready to state the
Hemmer-Nakano phenomenon for cellularly stratified algebras, exhibiting the algebraic
Lie theory hidden in the diagram algebras studied here. Recall the notion of a stan-
dardizable set by Dlab and Ringel [5, Section 3] — here called a standard system — of
objects in an abelian category, given here for a module category:

Definition 10.1. Let C be any algebra, and suppose we are given a finite set © of
non-isomorphic C-modules O(j), indexed by j € I, where I is endowed with a partial
order <. Then the modules ©(j) are said to form a standard system if the following
three conditions hold:

(i) For all j € I, Endc(©(j)) is a division ring.
(ii) For all m,n € I, if Homg(O(m),0(n)) # 0 then m > n.
(iii) For all m,n € I, if Ext}(©(m), O(n)) # 0 then m > n.

Remarks.

(1) In our examples of cellularly stratified algebras A with algebras B; being group
algebras of symmetric groups, if k is a field of characteristic not equal to two
then the Specht modules have one-dimensional endomorphism rings [15, Corol-
lary 13.17], and then Propositions 4.2 and 4.3 imply condition (i) for the set of
cell modules.

(2) In a standard system, condition (i) implies that all ©(j) are indecomposable,
a property that is not in general shared by the cell modules of an arbitrary
cellular algebra.

(3) The partial order used above can be refined, for example into a total order, and
trivially (i)-(iii) hold for the refined order.

(4) If the cell modules of a cellular algebra form a standard system then the dual
cell modules also form a standard system with respect to the dual order.
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It is well known that A-filtration multiplicities of modules over quasi-hereditary al-
gebras are well-defined (see [2]). More precisely, let A be a quasi-hereditary algebra.
Denote by F(A) the category of modules with a standard filtration (A-filtration), and
let X € F(A). Then the number of times a particular module A(j) occurs as a sub-
quotient in a A-filtration of X is independent of the filtration chosen. We sketch an
argument for this: Let X € F(A). Denote costandard modules, which occur in the
filtrations of injective modules, by V(j). Take a A-filtration of the module X, say

0=X,CX;C...CX; =X,

and denote by [X : A(j)] the multiplicity of A(j) occurring in this filtration of X.
We inductively determine [X/X; : A(j)] for i = ¢t,t —1,...,0. Apply the functor
Homu(—, V(7)) to the short exact sequences

0— Xi-l—l/Xi — X/Xz — X/Xi+1 — 0

with 0 < ¢ < t — 2. Note that Homa(—,V(j)) is exact on F(A) since
Ext% (A(1),V(j)) =0 for j,l € I, i > 1. Hence

[(X/ X5+ AG)] = [Xiga/Xi  AQG)] + [X/ X1+ AQ)]
for every i. Moreover, Hom4(A(l), V(j)) = 0 unless [ = j, in which case the Hom
space is free of rank one over End4(A(j)) = Enda(V(j)) = Enda(L(j)). This implies
that

dim Hom4 (X, V(5))/ dim End4(L(j)) = [X : A(j)].
Hence [X : A(j)] is independent of the chosen filtration of X.

Assume an algebra C has a standard system ©. Denote by F(©) the category of C-
modules with a ©-filtration. Then by [5, Theorem 2|, there exists a quasi-hereditary
algebra S(C') with index set (I, <) and standard modules A such that F(A) ~ F(O)
(as exact categories). Here F(A) denotes the category of S(C)-modules with a A-
filtration. The equivalence sends the standard module A(j) to ©(j), and hence modules
with a standard filtration to modules with a cell filtration. Using the equivalence
F(A) ~ F(O), this implies that any module X € F(©) has well-defined O-filtration
multiplicities.

Theorem 10.2. Let A be cellularly stratified.

(a) Then the cell modules of A form a standard system if and only if for each [ the
cell modules of B; form a standard system.

(b) Assume that for each | the cell modules of By form a standard system. Then an
A-module with a cell filtration has well-defined filtration multiplicities.

ProOOF. Combine Proposition 4.3 and Corollary 7.4 with Propositions 8.1 and 8.2. =

Hemmer and Nakano have shown in [13, 4.2.1 and 4.4.1] that in case of k£ having
characteristic different from two or three, the Specht modules (with the dominance
order) form a standard system for the group algebra of the symmetric group. Similarly,
they show that for e > 4, where e is least such that 14+ ¢ 24+ ¢ %4 ---+¢72¢ =0, the
Hecke algebra H;(¢~2) has a standard system composed of Specht modules. We can
combine Theorem 10.2 with the results in [13] to say that if A is cellularly stratified with



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 29

the cellular algebras B; being group algebras of symmetric groups (or Hecke algebras
respectively) and the characteristic of k is different from two and three (or e > 4
respectively), then A has well-defined cell filtration multiplicities. Under some mild

assumptions this is the case for the three main examples of this article:

Corollary 10.3. (a) Consider a Brauer algebra — with § # 0 in the case of r even
or a partition algebra — with § # 0. Then its cell modules form a standard system

if char(k) # 2,3. In this case, modules with cell filtrations have well-defined filtration

multiplicities.

(b) The cell modules of the BMW algebra — with 6 # 0 in the case of r even  form a

standard system if e > 4. In this case, modules with cell filtrations have well-defined

filtration multiplicities.

Remark. Note that Propositions 8.1 and 8.2 need no assumptions, apart from A being
cellularly stratified. Thus, the assumptions needed in these corollaries are only used
within the layers, not in between layers.

11. THE EQUIVALENCE F(©) — F(A) FOR CELLULAR ALGEBRAS

The results of Dlab and Ringel [5, Section 3| are for a standard system © in any
abelian category. Here we apply this theory, and provide additional detail, in the case
of a cellular algebra whose cell modules form a standard system. So let A be cellular
with cell modules ©(A) for A in the index set (A, <). Assume the cell modules of A
form a standard system. As mentioned in the previous section, by [5, Theorem 2|, there
exists a quasi-hereditary algebra S(A) with index set (A, <) and standard modules A
such that F(A) ~ F(©) (as exact categories). The equivalence sends the standard
module A(X) to ©(X).

Remark. It is known for a quasi-hereditary algebra that the full subcategory of modules
filtered by the standard modules of the algebra is closed under taking direct summands.
Hence [5, Theorem 2| implies that F(©) is closed under taking direct summands. By
the definition of cellular algebras, A is filtered by cell modules, and so A, and all its
direct summands that is, all projective A-modules lie in F(O).

Example 11.1 (see Proposition 7.1 of [17]). For a cellular algebra with cell modules
O, the category F(0©) is in general not closed under taking direct summands. To obtain
an example, take an algebra B which is cellular with involution 7 and let X be some
B-module. Define M = X ®i(X). Define C' to be the vector space B@® M as a vector
space and identify C with the set of 2 x 2 matrices

{(aij) | as) = 0,a11 = agy € B and a1o € M}

and define a multiplication on C via matrix multiplication. Then C'is a cellular algebra
with M a cell ideal in C' and X a cell module of C. Choosing a decomposable module
X whose direct summands are not cell modules of B, provides examples of cellular
algebras C' with F(©) not closed under taking direct summands. For example, take as
the algebra B the algebra A/.J; appearing in Section 9, and let X be the B-module
X =a @ a. In this case C' has the cell modules

O1 = [a, b, Oy =0b and Os3=aDa
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with ©1, ©9 uniserial. Here F(0O) does not contain the direct summand a of ©3.

Definition 11.2. Let Y and M be left A-modules filtered by cell modules. We say Y
is relative projective in F(0) if Exty (Y, N) = 0 for any module N € F(0). Moreover,
we say Y is the relative projective cover of M if

(1) Y is relative projective;

(2) there is a surjection € : Y — M with ker(e) € F(O);

(3) for any other relative projective Y’ € F(©) and any surjection ¢ : Y — M
with ker(¢’) € F(O), there exists a map f:Y’ — Y such that € =eo f

Remark. The property of being a relative projective cover is preserved under exact
equivalences.

Construction of the algebra S(A). By |5, Section 3|, the elements of the standard system
{O©(A\)} are in one-to-one correspondence with the indecomposable relative projective
A-modules in the category F(0) of ©-filtered A-modules. Let {Y,.(\)} be the relative
projective cover of ©(A); here Y,.()) is constructed using iterated universal extensions,
for details see [5, Section 3].

Take Y = @Y, (A\)* where the sum runs through all indices A € A and where ay is
chosen to equal the dimension of L(\) if such a simple A-module exists, or equals 1
otherwise. Then the quasi-hereditary algebra S(A), defined in [5], corresponding to the
cellularly stratified algebra A is given by

S(A) = Endu(Y).

The functors realizing the equivalence F(©) — F(A). The equivalence of categories
F(O©) — F(A) established in [5, Section 3| is provided by the (covariant) functor
F :=Hom4(Y, —) and the standard modules of the quasi-hereditary algebra S(A) are
A(N) = Homa(Y,©()\)). Since Y is relative projective, F' is an exact functor on F(0),
sending left A-modules to left S(A)-modules.

The (indecomposable) projective A-modules are a subset of the (indecomposable) rel-
ative projective A-modules. By the above choice of the multiplicities ay, A is iso-
morphic to a direct summand of Y, say ¥ = A & D for some left A-module D.
Let f be the projection from Y onto A, and consider f as an element of S(A).
Since fS(A)f = fHoma(Y,Y)f = Homa(Yf,Yf) = Homy(A,A) ~ A, the func-
tor H = f - —, the multiplication by f from the left, is an exact functor from the
category of left S(A)-modules to left A-modules.

Lemma 11.3. If M € F(O©), then H (F(M)) ~ M. In particular, H(A(i)) = ©(i) and
H : F(A) — F(O) is an equivalence of categories.
Proor. If M € F(©), then:

H(F(M)) = f-Homu(Y,M) =Homa(Yf, M) =Homa(A, M) ~ M.

So, in particular, f - A(i) = O(i). Since F' : F(©) — F(A) is an equivalence of
categories, H : F(A) — F(O) is the inverse equivalence. ]
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The following statement is well-known for quasi-hereditary algebras with respect to
the standard modules. Using the equivalence F(0) ~ F(A), or arguing directly from
the definition of a standard system, it translates to algebras with a standard system.
Without loss of generality we assume A = {1,2,... ,m} with 1 <2< ... <m.

Lemma 11.4. Let A be a cellular algebra such that the cell modules © indexed by
A ={1,2,...,m} form a standard system. Let M be an A-module which has a cell
filtration. Then there exists a cell filtration

M =M 2>M_12...2M; 2 My={0}
and indices 0 < 11 < ig < ... < 1y, =t such that for 1 <u<m:

M;, /M, ~ P O(u).
r=1

A module filtration M = M; D M; , DO ... 2 M; O M;, = {0} which is obtained
by the process described in the above Lemma is called the cell chain of M. Unlike cell
filtrations, the cell chain is physically unique.

The quasi-hereditary structure of S(A). As above, Dlab and Ringel construct the
relative projective module Y which is filtered by cell modules. Let us relate the cell
chain of Y to the quasi-hereditary structure of S(A): Take the cell chain Y = X,,, D
Xm-12...2 X1 2 Xp={0}. An element a € S(A) is amap a: Y — Y. Consider
all maps a: Y — Y with im(a) C X7, the lowest cell layer of Y. This defines an ideal
I in S(A). Next, consider all maps o : Y — Y with im(a) C X5, the two lowest cell
layers of Y. This defines an ideal I3 in S(A). Continue this process to obtain a chain
of two-sided ideals S(A) = I,, O I,—1 2 ... 2 I} D Iy = {0}. By [5] this chain is a
heredity chain of S(A) = End4(Y).

To obtain the cell chain of the left A-module A, we multiply the cell chain of Y by f:
A=Y f=X,f2Xnaf2...2X1f 2D Xof ={0}. Under the equivalence:

F(X;f) = Homu(Y,X,f) ~Homa(Y,X))f =1I,f,
as S(A)-A-bimodules. If A is cellularly stratified then the chain of ideals which realizes

A as an iterated inflation, {0} = Jy C J; C ... C J, = A, viewed as a chain of left
A-modules, may be refined to give the cell chain of A. So J; = X;, f for some 7; > .

12. YOUNG MODULES AND SCHUR ALGEBRAS FOR CELLULARIY STRATIFIED
ALGEBRAS

Let A be cellularly stratified with cell modules ©(A) for A in the index set (A, <).
Assume the cell modules of A form a standard system. We now show that the modules
Ypr(A) defined in the previous section (based on results by Dlab and Ringel) satisfy
typical properties of Young modules.

Definition 12.1. Let A be cellularly stratified with cell modules ©()) for A in the
index set (A, <). Assume the cell modules of A form a standard system. Then the
modules Y),.()\) defined above are called Young modules of the algebra A, the algebra
S(A) = End4(Y) is called the Schur algebra corresponding to A.
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Remarks. (a) We define here Young modules which depend not only on the algebra A,
but also on the standard system chosen.

(b) Recall that in a cellular algebra projectives — and not necessarily injectives — have a
cell filtration. Instead of choosing relative projective covers Y, with respect to F(0©),
we could also have chosen relative injective hulls Y;, with respect to F(©*). In this
case Yi,(A) = Yy (A"

The Young modules defined here indeed satisfy the typical properties of Young modules
of symmetric groups: we know already that they are indexed by the same set as the cell
modules; they are indecomposable since via the equivalences F' or H they correspond
to the projective indecomposable S(A)-modules; they are isomorphic precisely when
their labels are the same; they are filtered by cell modules with the following property
translated from quasi-hereditary algebras through the equivalence F(0) ~ F(A):

Proposition 12.2. The Young module Y,.(\) is filtered by cell modules where the cell
module ©(\) occurs precisely once and all other cell modules ©(u) occurring in a cell
filtration of Y. () satisfy p > .

A cellular algebra A is quasi-hereditary if and only if the number of cell modules of A
equals the number of simple A-modules, see [20]; for cellular algebras in general, there
are more cell modules (parameterized in the following by A) than simple or projective
indecomposable modules (parameterized in the following by A®™P* C A). In the case of
a cellular algebra whose cell modules form a standard system, we determine the labels
for which a Young module is a projective indecomposable module.

Proposition 12.3. Suppose that A is a cellular algebra such that the cell modules form
a standard system, and assume the notation as above. Then Yy, (X\) is a projective A-
module if and only if X € A*™P* In this case Y,.(\) is the projective cover of the
simple A-module Lg(N).

PRrROOF. Let S(A) be the Schur algebra corresponding to A, as constructed in Sec-
tion 11. The equivalence f - — : F(A) — F(O) sends indecomposable projec-
tive S(A)-modules to indecomposable, relative projective A-modules in F(©). Write
lgay = f+(1—f), and decompose both idempotents into a sum of pairwise orthogonal

primitive idempotents
= > fu

“eAsimple

1—-f = Z 9uv-

/J,GA\ASimple

By construction of S(A) in Section 11, f, and g, are inequivalent. The equiva-
lence f - — sends the S(A)-projective module S(A)f, to the projective A-module
fS(A)fu= (fS(A)f)fu = Afu. And every indecomposable projective A-module oc-
curs as some Af,. Hence fS(A)g, cannot be projective. Moreover, S(A)f, is the
projective cover of A(u) and of Lg4)(11). By exactness of the Schur functor f - —, the
module Af, is the projective cover of fA(u) = ©(u) and of fLg4)(1) = La(p). Hence
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the equivalence provided by the Schur functor induces a bijection between the inde-
composable projective S(A)-modules associated with idempotents f,, and the relative
projective covers Y, (1) = Af, of ©(p), for p € A¥mple, "

Remark. Note that we also could have used the proof of 3.7(iii) in [9] where it has
been shown not only that each projective indecomposable module P()) is filtered by
cell modules but also that in this filtration the top quotient is the cell module ©(\).

Corollary 12.4. Let k be a field of characteristic not equal to 2 or 3. Let A be a
cellularly stratified k-algebra with stratification data (By,V)) where each By is a group
algebra of a symmetric group. Choose as cell modules the dual Specht modules. Then a
Young module Yy, (\) is a projective A-module if and only if X is a p-restricted partition.

PROOF. Y}, (A) is a projective A-module if and only if there is a simple module L4());
this exists if and only if we have a simple module Lg()); but B is a group algebra of a
symmetric group, hence the simple module Lp(\) exists if and only if X is p-restricted.
]

Remarks (a) If we choose as our standard system the Specht modules (instead of the
dual Specht modules), then the Young module Y},.()) is projective if and only if A is a
p-regular partition.

(b) It has been shown in [14] that the r-fold tensor space does not fit into a theory of
Young modules for Brauer algebras, since tensor space in general does not have a cell
filtration. Here we have now seen that it is possible to find a bimodule Y whose direct
summands are the Young modules, and whose endomorphism ring defines the Schur
algebra and, as we will see in the next section, such that Schur-Weyl duality holds with
respect to this bimodule.

(c) Let us examine the quasi-hereditary Schur algebra S(A) in the case of Brauer
algebras more closely. In this case, the definition of Young modules above agrees with
that in [12] (see Definition 15 and the proof of Theorem 21 in [12]). We can write
Y = @, Y, where Y] is the sum of the relative projective covers of the cell modules
G1(0), for © running through the cell modules of B; (with appropriate multiplicities).
We will see that the ‘diagonal subalgebra’ Enda(Y;) of S(A) has a quotient Morita
equivalent to the classical Schur algebra for the group algebra B; of the symmetric
group. In fact, let e = ¢;, and let J' = J;_1 be the ideal for the next lower layer, so that
B; ~ eAe/eJ’e. Then, using the remarks preceding Proposition 14 in [12], we have

0=JY, =Y, =Y, @V, —0,

where 3/}1 denotes the sum of the Young modules Y* for the group algebra B; with
appropriate multiplicities. Since these modules all have cell filtrations and Y; is relative
projective, applying Hom 4 (Y}, —) gives

0 — Hom (Y}, J'Y;) — Enda(Y;) — Homa(Y},Y; ® V;) — 0.
The application of Hom 4 (—, 3/}1 ®V}) to the same short exact sequence yields End 4 (3/}1 ®
V) ~ Homu(Y;,Y; ® V}), since Proposition 8.1 implies the third term is zero. Now,

Y
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Propositions 4.1 and 4.3 imply that }A/l ®V = Gl(f}l) and EndA(GliA/l) ~ Endp, (}/}l)
Hence we obtain that Endp, (Y;) is the quotient of End4(Y;) by Homa (Y], J'Y}); this
quotient is Morita equivalent to the classical Schur algebra.

(d) The module Y is not necessarily self-dual, unlike in the symmetric group case:
When 6 # 0 if r is even, then B := Bg(r,d) is quasi-hereditary (see [19], Thm 3.4).
Then the Young modules of B are all projective indecomposable by Prop 11.3, and
precisely all projective indecomposable modules occur in this way. The duals of the
Young modules are then precisely all the injective indecomposable modules. This set of
modules will only be the set of Young modules if the algebra is self-injective. Choose §
and r (see Rui [23]) such that B is not semisimple. Since, an algebra that is both quasi-
hereditary and self-injective will be semisimple, it follows that B is not self-injective.
Hence some Young modules of B will not be self-dual.

13. SCHUR-WEYL DUALITY FOR CELLULARLY STRATIFIED ALGEBRAS

Suppose A is cellularly stratified with a standard system of cell modules, indexed by a
set A. We show that Schur-Weyl duality holds between the algebras A and S(A) with
respect to the module Y.

Remark. An algebra A is quasi-hereditary if and only if the algebra A° is quasi-
hereditary. In such a case the standard and costandard modules of A and AP are
related as follows: Ay = V%, and V4 = A%, where * denotes the k-dual of a
module.

Theorem 13.1. Suppose A is cellularly stratified with index set A and all of the algebras
B, have standard systems of cell modules. Then:

(1) The algebra A also has a standard system of cell modules, and multiplicities in
cell filtrations are well-defined.
(2) There exists a quasi-hereditary algebra S(A) with the same partially ordered
mdex set A such that the following statements hold true:
(a) The category F(O) of A-modules with cell filtrations is equivalent, as an
exact category, to the category of A-filtered S(A)-modules.
(b) The category of A-modules with cell filtrations has relative projective covers,
the Young modules. The algebra S(A) is the endomorphism algebra of a
direct sum'Y of a complete set of relative projective objects in F(O).
(¢) Schur-Weyl duality holds between A and S(A). The faithfully balanced
bimodule affording the double centralizer property between A and S(A) is
the direct sum Y of the Young modules.

PROOF. The first statement is contained in Theorem 10.2 and the first two parts of
the second statement have been shown in Sections 10 and 11, following [5, Section 3].
This leaves only the final part. By definition, S(A) = Enda(Y) and Y = @ Y, (A)™,
where ay is chosen to equal the dimension of L()\) if such a simple A-module exists,
or equals 1 otherwise, and where the sum runs through all indices A € A. So Y is
an A-S(A)-bimodule, and half of the double centralizer property holds by definition.
We show the other half: Note that the projective indecomposable A-modules are a
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subset of the relative projective indecomposable A-modules. Hence A is isomorphic
to a direct summand of Y, say Y = A ® D for some left A-module D. Let f be the
projection from Y onto A, and consider f as an element of S(A). Clearly f? = f, and
Y =Homu(A,Y) =Homa(Yf,Y)= fS(A) as right S(A)-modules; hence

A = Homy(4, A) = fS(A)f = Homg(4)(fS(A), [S(A)) = Endg(4)(Y),
and the double centralizer property holds. [

Remark. We examine the connection between Schur-Weyl duality and the Dlab-Ringel
equivalence in more detail. Let A be a cellular algebra whose cell modules © form
a standard system. Let C be any quasi-hereditary algebra with standard modules A
and assume that there exists an exact equivalence F(©) ~ F(A). Then the relative
projective C-modules with respect to F(A) are precisely the projective C-modules P;,
say 1 < i < t. They correspond under the equivalence to the relative projective A-
modules Y; in F(©). Let C = @!_, P and set Y = @!_,Y;"". The equivalence implies
that Home(F;, Pj) ~ Hom4(Y;,Y;) and hence

C = Endc(C) ~ Endy(Y).

Since A is cellular and its cell modules form a standard system, all projective indecom-
posable A-modules are relative projective indecomposable modules in F(©). Assume
that these are Y7,...,Y], for some index [ < t. Then A = @ézlYimi with m; > 1.

Assume that m; < n; for all 1 < i < [ (otherwise one can replace C by a Morita
equivalent algebra). Then A is isomorphic to a direct summand of Y, say Y = A$ D
for some left A-module D. Let f be the projection from Y onto A, and consider
f € Enda(Y) as an element of C. Clearly f2 = f, and

Y =Homg(A,Y) =Homu(Yf,Y)= fHomu(Y,Y) ~ fC
as right C-modules; hence
A =Homy(A,A) =Homa(Yf,Yf)= fCf =Homc(fC, fC) ~ Endc(Y),
and the double centralizer property holds.
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