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1. Introdu
tionIn 1901 Issai S
hur proved a fundamental result, whi
h in modern language reads asfollows: Let k = C be the �eld of 
omplex numbers, n and r integers, Σr the symmetri
group on r letters, G = GLn(k) the general linear group of invertible n by n matri
es,and Polr the 
ategory of polynomial representations of G that are homogeneous ofdegree r over C. Then Polr is equivalent to the sub
ategory of CΣr-mod of moduleshaving 
omposition fa
tors indexed by partitions of r into not more than n parts. Inparti
ular, if n ≥ r then Polr is equivalent to CΣr-mod.What happens if we repla
e k by an algebrai
ally 
losed �eld of prime 
hara
teristi
? Inthis 
ase, S
hur's result appears to be 
ompletely wrong. Not only is S
hur's fun
tor faraway from being an equivalen
e. Even worse, the 
ategory Polr always has �nite globaldimension, while kΣr-mod and its relevant sub
ategories usually have 
ohomology inin�nitely many degrees. Thus no exa
t 
ategori
al equivalen
e is possible. However,modular representation theory suggests 
onsidering a more sophisti
ated setup whentrying to extend S
hur's theorem. Indeed, the simple representations in 
hara
teristi
zero of either G or Σr have integral versions. These latti
es 
an be redu
ed to prime
hara
teristi
, providing (in general non-simple) modular analogues of the 
hara
teristi
zero simples. Well-known analogues are the Weyl modules ∆(λ) in the 
ase of thegeneral linear group, and the 
ell modules S(λ) in the 
ase of the symmetri
 group(here taken to be the dual Spe
ht modules); in either 
ase, the indi
es λ are partitions.Hen
e the modular redu
tion pro
ess suggests 
onsidering a relative version of S
hur'sresult: F(∆) ≃ F(S) - an equivalen
e between a 
ategory of G-modules with a Weyl�ltration and a 
ategory of kΣr-modules with a 
ell �ltration. This, however, is stillwrong, as shown by small examples su
h as Σr with r = 2, 3 in 
hara
teristi
 two orthree.It 
ame as a major surprise when Hemmer and Nakano [13℄ re
ently proved, using re-sults on 
ohomology of symmetri
 groups, that in prime 
hara
teristi
 S
hur's theoremis almost relatively true. That is, the above relative version F(∆) ≃ F(S) of S
hur'sresult is true provided one ex
ludes 
hara
teristi
 two or three. In other words, the
ategory of 
ell �ltered representations of symmetri
 groups behaves (mostly) like a sub-
ategory of a highest weight 
ategory in algebrai
 Lie theory. In more te
hni
al terms,this means there is a partial order on the indi
es λ su
h that Hom(S(λ), S(µ)) 6= 0 im-plies λ ≤ µ and Ext1(S(λ), S(µ)) 6= 0 even implies λ < µ, whi
h is rather unexpe
tedfrom the point of view of representations of �nite groups. The result by Hemmer and1



2 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETNakano exhibits a new phenomenon, whi
h is however not isolated. Indeed a re
ent re-sult [12℄ by Hartmann and Paget establishes the same phenomenon for Brauer algebras� with a similar set of 
ases to be ex
luded.We are going to establish the Hemmer-Nakano phenomenon for a large 
lass of algebras.We mostly work with an axiomati
ally de�ned 
lass of algebras, see De�nition 2.1. Themain feature of this de�nition is, however, that it in
ludes many known 
lasses of so-
alled diagram algebras, whi
h have been used extensively in knot theory, C∗-algebras,mathemati
al physi
s or representation theory for various reasons. In parti
ular, wewill 
over Brauer algebras (thus reproving results of [12℄), Birman-Wenzl-Murakami(BMW) algebras and partition algebras. In all 
ases we will �nd almost relatively trueversions of S
hur's theorem, see Theorem 10.2 and Corollary 10.3.While diagram algebras are usually de�ned in 
ombinatorial terms, the main te
h-niques employed here are of a 
ategori
al and 
ohomologi
al nature. In parti
ular, wewill provide strati�
ations of derived module 
ategories of the algebras we study, seeProposition 7.2 and Theorem 7.3. We will relate these strati�
ations to the 
ellularstru
tures of our algebras, whi
h in our examples are so-
alled iterated in�ations ofvarious symmetri
 groups or their He
ke algebras. On a te
hni
al level, we a
tuallywill �nd two kinds of strati�
ations. One of them is on the level of derived 
ategories,and this strati�
ation is a new feature of our algebras, not visible for group algebras ofsymmetri
 groups. The se
ond (relative) strati�
ation is the analogue of the Hemmer-Nakano result.Apart from the results mentioned above, the methods employed also yield a variety ofnew results on the diagram algebras studied, and the methods and results are likelyto 
arry over to other diagram algebras too. On a numeri
al level we will identifymany unknown de
omposition numbers of the algebras studied with known or un-known de
omposition numbers of symmetri
 groups, see Proposition 6.2. Moreover,
ell �ltration multipli
ities are well-de�ned, see Theorem 10.2 (b). On a stru
turallevel, we get 
omparisons of 
ohomology whi
h for instan
e allow us to apply knownresults of the 
ohomology of symmetri
 groups to diagram algebras. Moreover, thereare several vanishing results for extensions between 
ell modules, see Se
tions 7 and 8.Furthermore, we will verify the �nitisti
 dimension 
onje
ture for the algebras studied,whi
h is known to imply various other 
onje
tures, see Corollary 7.6. Algebras su
h asthe Brauer algebra o

ur in representation theory of symple
ti
 or orthogonal groups.Thus, all of these 
omparisons, on a numeri
al or stru
tural level, have the feature ofrelating types B or C with type A (symmetri
 groups).In a wider 
ontext, the results of this arti
le also have the following features: Thealgebras we are going to study are 
ellular and usually not quasi-hereditary, thus theydo not fall into the 
ustomary setup of algebrai
 Lie theory. However, our methodsyield the existen
e of S
hur algebras for our algebras, and these S
hur algebras have theusual features known for S
hur algebras of 
lassi
al groups or blo
ks of the Bernstein-Gelfand-Gelfand 
ategory of a semisimple 
omplex Lie algebra. In parti
ular, thesenew � and yet to be studied � S
hur algebras are quasi-hereditary, that is, their module
ategories are highest weight 
ategories. These new S
hur algebras are in S
hur-Weylduality with the diagram algebras studied in this arti
le, see Theorem 13.1. We also
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an keep various features of symmetri
 groups su
h as the existen
e of Young modules,whi
h in the 
ase of the symmetri
 groups are dire
t summands of permutation modules.Results su
h as Theorem 13.1 
an be seen as providing a hidden algebrai
 Lie theoryfor the diagram algebras we are studying.As mentioned, the diagram algebras we are studying are 
ellular algebras, but usuallynot quasi-hereditary. Cellular algebras keep some of the numeri
al features of quasi-hereditary algebras, while stru
tural features are usually lost when passing from quasi-hereditary to 
ellular algebras. Another generalization of quasi-hereditary algebras,strati�ed algebras, has been de�ned and studied with the aim of keeping stru
turalproperties su
h as strati�
ations of derived 
ategories. All three 
lasses of algebrasare de�ned by the existen
e of 
ertain 
hains of ideals. Formally, a 
ell ideal that isstratifying must be heredity and a stratifying ideal that is 
ell must be heredity, too.That is, in a formal sense, the interse
tion of 
ellular and strati�ed is quasi-hereditary.However, the diagram algebras studied here, and the axiomati
ally de�ned 
lass of 
el-lularly strati�ed algebras we are going to study, 
ombine 
ellular and strati�ed featuresin a new way. This new generalization of quasi-hereditary algebras appears to preserveor to extend naturally the fundamental properties of quasi-hereditary algebras, and to
onne
t the two theories of 
ellular and strati�ed algebras and their rather di�erentsets of methods.This arti
le is organized as follows: In Se
tion 2 we give an axiomati
 de�nition, phrasedin 
ombinatorial terms, of the abstra
t 
lass of algebras to be studied, and then we verifythat three 
lasses of examples �t into this setup: Brauer algebras, BMW algebras andpartition algebras. One feature of our algebra A is to have a 
hain of ideals whosesubquotients (layers) are related to other algebras B, whi
h in the examples are groupalgebras of symmetri
 groups or deformations of those. Se
tion 3 sets up the 
ategori
alte
hnology to 
ompare the module 
ategories of A and B. Three 
ru
ial ring theoreti
aland homologi
al 
onditions are identi�ed and veri�ed, whi
h provide the basis of themain results. In parti
ular, this stru
ture gives an indu
tion fun
tor whose propertiesare studied in Se
tion 4. In Se
tion 5 we show that our algebras 
an be 
hara
terisedby these stru
tural properties, this yields an alternative de�niton. In Se
tion 6, werelate some de
omposition numbers of the algebra A with de
omposition numbers ofthe smaller algebras B. Se
tion 7 investigates the whole 
hain of ideals, whi
h turns outto yield a strati�
ation of the derived 
ategory of A. Se
tion 8 strengthens these resultsby proving further vanishing results for homomorphism and extension spa
es. Se
tion9 gives a detailed example. Finally, Se
tions 10 to 13 use the results of Se
tions 3, 7and 8 to a
hieve the main results, summarized in Theorems 10.2 and 13.1, in
ludingthe Hemmer-Nakano phenomenon, the existen
e of S
hur algebras, and S
hur-Weylduality.A
knowledgement. The authors would like to thank the referee for all their verydetailed 
omments.



4 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGET2. Cellularly stratified algebras � definition and examplesThe main obje
ts studied in this arti
le are 
ertain 
ellular algebras. Cellular algebraswere introdu
ed in [9℄ and, subsequently, an equivalent de�nition was given in [17℄. Itwas shown in [18℄ that every 
ellular algebra 
an be 
onstru
ted by iterated in�ations ofsmaller 
ellular algebras. In this se
tion we provide an axiomati
 de�nition of the 
lassof 
ellular algebras to be studied in this arti
le, so 
alled 
ellularly strati�ed algebras.We then give three 
lasses of diagram algebras whi
h are 
ellularly strati�ed.2.1. Cellularly strati�ed algebras. Let A be an algebra (with identity) whi
h 
anbe realized as an iterated in�ation of 
ellular algebras Bl along ve
tor spa
es Vl for
l = 1, . . . , n. By [18, Se
tion 3.1℄, this implies that as a ve
tor spa
e

A =
n⊕

l=1

Bl ⊗ Vl ⊗ Vl,(1)and A is 
ellular with a 
hain of two-sided ideals {0} = J0 ⊆ J1 ⊆ . . . ⊆ Jn = A, whi
h
an be re�ned to a 
ell 
hain, and ea
h subquotient Jl/Jl−1 equals Bl ⊗ Vl ⊗ Vl as analgebra without unit. The involution i of A, an anti-automorphism with i2 = id, isde�ned through the involutions jl of the 
ellular algebras Bl where
i(b⊗ u⊗ v) = jl(b)⊗ v ⊗ u(2)for any b ∈ Bl and u, v ∈ Vl. Re
all that the multipli
ation rule of a layer Bl ⊗ Vl ⊗ Vlis di
tated by the axioms of in�ation and given by

(b⊗ x⊗ y) · (b′ ⊗ x′ ⊗ y′) = (bϕ(y, x′)b′ ⊗ x⊗ y′) + lower terms,(3)for b, b′ ∈ Bl, x, x′, y, y′ ∈ V , where ϕ is the bilinear form 
oming with the in�ationdata. Here lower terms refers to elements in lower layers Bh ⊗ Vh ⊗ Vh for h < l. Formore details on in�ations see [18℄ and also the examples below. Let 1Bl
be the unitelement of the algebra Bl. We de�ne:De�nition 2.1. A �nite dimensional asso
iative algebra A over a �eld k is 
alled 
el-lularly strati�ed with strati�
ation data (B1, V1, . . . , Bn, Vn) if and only if the following
onditions are satis�ed:(C) The algebra A is an iterated in�ation of 
ellular algebras Bl along ve
tor spa
es

Vl for l = 1, . . . , n.(E) For ea
h l = 1, . . . , n there exist non-zero elements ul, vl ∈ Vl su
h that
el := 1Bl

⊗ ul ⊗ vlis an idempotent.(I) If l > m, then elem = em = emel.Condition (C) implies that A is 
ellular, see [18, Proposition 3.5℄. The name `strati�ed'will be justi�ed in Se
tion 7, when we will show that 
ellularly strati�ed algebras arestrati�ed in the sense of [3℄.Remark. (a) By the de�nition of an iterated in�ation (see assumption 3.4 in [18℄),the top layer satis�es Vn = k, and hen
e en = 1. Again by the de�nition of iteratedin�ation, the algebra Bn is a quotient algebra of A.
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h that 1⊗ u⊗ v is an idempotent. We 
laim thatthen ϕ(v, u) = 1 = ϕ(u, v): By the multipli
ation in A, see Equation (3), we have
(1⊗ u⊗ v)(1⊗ u⊗ v) = ϕ(v, u) ⊗ u⊗ v + lower terms.(4)Sin
e 1⊗u⊗v is an idempotent, it follows that there are no lower terms and ϕ(v, u) = 1.Using the involution, we have 1Bl

= jl(1Bl
) and hen
e i(1Bl

⊗ u ⊗ v) = 1Bl
⊗ v ⊗ u.Doing the same 
al
ulation as in (4) for i(1Bl

⊗ u⊗ v), it also follows that ϕ(u, v) = 1.Lemma 2.2. Let A be 
ellularly strati�ed and 1 ≤ l ≤ n. The following holds:(1) The ideal Jl is generated by el, that is, Jl = AelA.(2) The algebra A/Jl is 
ellularly strati�ed.Proof. Assume we are in the lowest layer, that is l = 1. Then for any x, y ∈ V1 and
b ∈ B1 we have

(b⊗ x⊗ v1)(1⊗ u1 ⊗ v1)(1 ⊗ u1 ⊗ y) = (b⊗ x⊗ v1)(1⊗ u1 ⊗ y) = b⊗ x⊗ yas there are no lower terms and as ϕ(v1, u1) = 1 by the above remark. Hen
e the lowestlayer J1 = Ae1A is generated by e1. Assume next that the ideal Jl−1 is generated bythe element el−1. Sin
e el−1el = el−1 by assumption (I), all elements in Jl−1 
an begenerated by el. Moreover, in layer l we have for any c ∈ Bl and x, y ∈ Vl:
(c⊗ x⊗ vl)(1⊗ ul ⊗ vl)(1 ⊗ ul ⊗ y) = c⊗ x⊗ y + lower terms.By the above, the lower terms 
an be generated by el. Hen
e c⊗x⊗y 
an be generatedby el, and the �rst 
laim follows. The se
ond 
laim follows from the de�nition of
ellularly strati�ed.Lemma 2.3. Let A be 
ellularly strati�ed. With the set-up as in De�nition 2.1, thereis an algebra isomorphism Bl ≃ elAel/elJl−1el with 1Bl

mapped to el.Proof. Sin
e the index l is �xed, it will be omitted. We will denote Jl−1 by J ′.As algebras, eAe/eJ ′e ≃ (e + J ′)(A/J ′)(e + J ′) ≃ (e + J ′)(J/J ′)(e + J ′). Usingthe multipli
ation in A, we see that (e + J ′)(J/J ′)(e + J ′) is spanned by elements
b ⊗ u ⊗ v + J ′, where b ∈ B. Using the fa
t that ϕ(v, u) = 1, all su
h elements lie in
(e + J ′)(J/J ′)(e + J ′) sin
e

b⊗ u⊗ v + J ′ = (1⊗ u⊗ v + J ′)(b⊗ u⊗ v + J ′)(1⊗ u⊗ v + J ′).The map B → (e + J ′)(J/J ′)(e + J ′) given by b 7→ b⊗ u⊗ v + J ′ is then bije
tive. Itis a homomorphism sin
e
(b⊗ u⊗ v + J ′)(b′ ⊗ u⊗ v + J ′) = bϕ(v, u)b′ ⊗ u⊗ v + J ′ = bb′ ⊗ u⊗ v + J ′.Next we will give examples of 
ellularly strati�ed algebras. All examples given are`diagram algebras', meaning that they have a basis whi
h 
an be represented by 
ertaindiagrams. Instead of writing down the elements ul, vl in the following, we will give theidempotents el. Note that the labelling of the ideal 
hains is di�erent from the one inDe�nition 2.1.
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all that for r ∈ N and δ ∈ k, the Brauer algebra Bk(r, δ)has k-basis the set of diagrams of the following form: a diagram has 2r verti
es arrangedin two rows of r verti
es, and r edges su
h that ea
h vertex is in
ident to pre
isely oneedge. To multiply two diagrams, the diagrams are 
on
atenated and any 
losed loopsappearing are removed. If c 
losed loops are removed from the 
on
atenation to giveanother diagram d then the produ
t is de�ned to be δc ·d. More details and an exampleof the multipli
ation 
an be found, for example, in [21℄.Graham and Lehrer [9℄ showed that Bk(r, δ) is a 
ellular algebra, with the involution igiven by re�e
ting diagrams in the horizontal line 
utting diagrams into an upper anda lower half. In [21℄, a di�erent proof of the 
ellularity has been given, by showing thatBrauer algebras are iterated in�ations of group algebras of symmetri
 groups. Let usre
all some details of this. We de�ne Jl to be the subspa
e of Bk(r, δ) with basis alldiagrams with at most l `through strings', that is, edges joining a vertex in the top rowof the diagram to a vertex in the bottom row. Then Jl is a two-sided ideal of Bk(r, δ)and we obtain a �ltration of the Brauer algebra:
0 ⊆ Jt ⊆ Jt+2 ⊆ . . . ⊆ Jr−2 ⊆ Jr = Bk(r, δ)where t is 0 or 1 depending on whether r is even or odd. The subquotient Jl/Jl−2 isisomorphi
 to an in�ation kΣl ⊗ Vl ⊗ Vl of kΣl along a ve
tor spa
e Vl as given in [21,Lemma 5.3℄. Here we de�ne J0/J−2 = J0 and J1/J−1 = J1. This realizes Bk(r, δ) asan iterated in�ation of group algebras of symmetri
 groups, see [21, Theorem 5.6℄. Asa free k�module

Bk(r, δ) = kΣr ⊕ (kΣr−2 ⊗ Vr−2 ⊗ Vr−2)⊕ (kΣr−4 ⊗ Vr−4 ⊗ Vr−4)⊕ . . . ,and the iterated in�ation starts with kΣr, in�ates it along kΣr−2 ⊗ Vr−2 ⊗ Vr−2 andso on, ending with an in�ation of k = kΣ1 or k = kΣ0 as bottom layer, depending onwhether r is odd or even. We shall see that Bk(r, δ) is 
ellularly strati�ed in the 
aseswhere δ 6= 0 or δ = 0 and r is odd. By [21, Theorem 5.6℄ assumption (C) is satis�ed,sin
e group algebras of symmetri
 groups are 
ellular [9, (1.2)℄. For δ 6= 0 and for
l = r, r − 2, . . . , t, we 
hoose el to be

el =
1

δ
r−l
2

·
• · · · • • • · · · • •

• · · · • • • · · · • •where this diagram has l through strings. If δ = 0 and r is odd then we de�ne el to bethe following diagram with l through strings:
el =

• · · · • •

XXXXXXXXXXXXXXXXXXXXXXXXX • • · · · • •

• · · · • • • · · · • • •In ea
h 
ase the element el is an idempotent of Bk(r, δ), so (E) holds. It easily is 
he
kedthat (I) is satis�ed. Observe that the 
ondition δ 6= 0 when r is even is ne
essary sin
eotherwise the non-zero ideal J0 is nilpotent, and hen
e not generated by an idempotent.We have proved:Proposition 2.4. Let k be any �eld, r an integer and δ ∈ k. If r is even, suppose
δ 6= 0. Then the Brauer algebra Bk(r, δ) is 
ellularly strati�ed.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 7Note that elBk(r, δ)el ⊆ Bk(r, δ) is isomorphi
 to Bk(l, δ) and has a subalgebra isomor-phi
 to kΣl.Using the results of Hemmer and Nakano [13℄, it has been shown in [12℄ that, in theabove 
ases, the 
ell modules of Bk(r, δ) form a standard system (see Se
tion 10) if andonly if the 
hara
teristi
 of k is neither two nor three, and it was then dedu
ed that�ltration multipli
ities are well-de�ned for Bk(r, δ)-modules with a 
ell �ltration ([12,Thm 2℄). Results on de
omposition numbers were also obtained in [12, Prop 2 and 6℄.We will derive these statements again from the general set-up in this arti
le.2.3. Birman-Murakami-Wenzl algebras (BMW algebras). The BMW algebrasare deformations of Brauer algebras. Xi [25℄ showed that BMW algebras are 
ellular,and moreover they are iterated in�ations of He
ke algebras H of symmetri
 groups ([25,Se
tion 3℄). For r ∈ N, λ, λ−1, q, q−1, δ ∈ k satisfying λ−1 − λ = (q − q−1)(δ − 1), theBMW algebra
BMWr := BMWk(r, λ, q − q−1, δ)
an be de�ned by generators and relations (see [25℄). But instead we use the equiv-alent de�nition whi
h displays BMWr as a diagram algebra, with a basis of 
ertain

r-tangles, subje
t to 
ertain relations. Given a Brauer diagram d on 2r verti
es, one
an de�ne an r-tangle Td by a rule whi
h spe
i�es whi
h strings of d should 
rossover and whi
h 
ross under. For details we refer the reader to [25, Se
tion 2.2℄. Then
{Td : d a Brauer diagram} is a k-basis for BMWr. Xi goes on to de�ne Jl to be the
k-module generated by elements Td where d is a Brauer diagram with at most l throughstrings. Then:

0 ⊆ Jt ⊆ · · · ⊆ Jr−2 ⊆ Jr = BMWris a 
hain of two-sided ideals where t is 1 or 0 depending on whether r is odd or even,and
Jl/Jl−2 ≃ Hl(q

−2)⊗ Vl ⊗ Vlfor some ve
tor spa
e Vl (see [25℄, 3.5), and where Hl(q
−2) is a He
ke algebra. Thus

BMWr satis�es assumption (C). If δ 6= 0 we de�ne for ea
h l = r, r − 2, . . . theidempotent el by
el =

1

δ
r−l
2

·
• · · · • • • · · · • •

• · · · • • • · · · • •where the diagram is an r-tangle with l verti
al lines. If δ = 0 and r is odd we de�nefor ea
h l = r, r − 2, . . . , 1 the idempotent el by
el =

• · · · • •

VVVVVVVVVVVVVVVVVVV • • · · · • •

• · · · • • • · · · • • •Then it is 
lear from the de�nitions that elBMWrel ≃ BMWl. We �nd that all theassumptions are satis�ed, and we obtain that BMWr is 
ellularly strati�ed.Proposition 2.5. Let k be any �eld, r an integer and δ ∈ k. If r is even, suppose
δ 6= 0. Then the BMW algebra BMWk(r, λ, q − q−1, δ) is 
ellularly strati�ed.



8 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETNote that here Bl ≃ Hl(q
−2) is in general not a subalgebra of elBMWrel � in 
ontrastto the situation for Brauer algebras.2.4. Partition algebras. The third family of examples are the partition algebras, in-trodu
ed by Martin [22℄. Like Brauer algebras, partition algebras are iterated in�ationsof group algebras of symmetri
 groups (see Xi [24℄). For r ∈ N and δ ∈ k, the partitionalgebra Pk(r, δ) has k-basis the set of all partitions of 2r points. Su
h a partition maybe drawn as a diagram with 2r points arranged in two equal rows, and edges betweenpoints so that a pair of points is joined by a path of edges if and only if they lie inthe same blo
k of the partition. Note that di�erent diagrams 
an represent the samepartition. Multipli
ation is given by 
on
atenation of diagrams, and any blo
k of the
on
atenated diagram that does not 
ontain a point from either the top or bottom rowis repla
ed by δ. This is independent of the diagrams 
hosen to represent the partitions.For more details see [6, 22℄. Xi de�nes Jl to be the subspa
e of Pk(r, δ) spanned by allpartitions whose diagrams have at most l blo
ks 
ontaining a point from both top andbottom rows. In this way he obtains a 
hain of two-sided ideals:

0 ( J0 ⊆ J1 ⊆ · · · ⊆ Jr−1 ⊆ Jr = Pk(r, δ)whi
h realizes Pk(r, δ) as an iterated in�ation, in parti
ular:
Jl/Jl−1 ≃ kΣl ⊗ Vl ⊗ Vlfor some ve
tor spa
e Vl, see [24, Se
tion 4℄ for details. If δ = 0 then Pk(r, δ) is not
ellularly strati�ed sin
e J2

0 = 0, and so 
ondition (E) 
annot be satis�ed. However if
δ 6= 0 we 
hoose idempotents:

e0 = δ−1 ·
• • · · · · · · • • •

• • · · · · · · • • •and for l ∈ {1, 2, . . . , r}:
el =

• · · · • • · · · · · · •

• · · · • • · · · · · · •with l verti
al edges. We readily see that Pk(r, δ) is 
ellularly strati�ed. Note that thealgebra elPk(r, δ)el is isomorphi
 to Pk(l, δ) of whi
h kΣl is a subalgebra.Proposition 2.6. Let k be any �eld, r an integer and δ ∈ k. Suppose δ 6= 0. Then thepartition algebra Pk(r, δ) is 
ellularly strati�ed.3. Corner split quotients for 
ellularly stratified algebrasWe assume the set-up as in De�nition 2.1. In this se
tion, we will set up fun
tors
Gl : Bl − mod → A − mod, following the `split pairs' approa
h developed in [4℄. Asba
kground, we �rst re
all some de�nitions. Let C and D be two module 
ategories.Let F,G be additive fun
tors with F : C → D and G : D → C.De�nition 3.1. The pair of fun
tors (F,G) is a split pair of fun
tors if the 
omposition
F ◦ G is an autoequivalen
e of the 
ategory D. If the two fun
tors are exa
t then wesay (F,G) is an exa
t split pair of fun
tors.
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t split pairs are 
ompositions of so-
alled 
orner splitquotients with Morita equivalen
es. Next we re
all the de�nition of a 
orner splitquotient. Let C and D be rings. We 
all D a split quotient of C if D is a subringof C, via an embedding ε sending the unit of D to that of C, and also there exists asurje
tive homomorphism π : C ։ D, su
h that the 
omposition π ◦ ε is the identityon D. The homomorphisms π and ε respe
tively indu
e two exa
t fun
tors
F = DC ⊗C − and G = CD ⊗D −between the 
ategories C-mod and D-mod, namely restri
tion and in�ation. The 
om-position F ◦G is the identity on D-mod, and hen
e (F,G) is a split pair of fun
tors.De�nition 3.2. Let C be a ring, e an idempotent, and D a split quotient of eCeviewed as a subring of eCe. Then we 
all D a 
orner split quotient of C with respe
t to

e if there is a left C- and right eCe-module S, whi
h is proje
tive as a right D-modulevia the embedding of D into eCe, and whi
h satis�es eS ≃ D as left D-modules.Note that every D-module is an eCe-module via the quotient map. Thus, in thede�nition, we may equivalently require S just to be a right D-module. If D is a 
ornersplit quotient of C with respe
t to e, then the fun
tors
F = res◦eC⊗C− : C-mod→ eCe-mod→ D-mod, G = S⊗D− : D-mod→ C-modform an exa
t split pair (see [4, Lemma 3.2℄).De�nition 3.3. Let A be 
ellularly strati�ed. For ea
h l = 1, . . . , n, de�ne Sl =
Ael ⊗elAel

Bl. We will refer to the fun
tors Gl := Sl ⊗elAel
− : Bl-mod → A-mod asindu
tion fun
tors.Note for ea
h Bl-module X, we have Bl ⊗Bl

X ≃ Bl ⊗elAel
X, where elAel a
ts on Xand Bl by the quotient map elAel → Bl.Lemma 3.4. With the notation as above, Sl is an A-Bl-bimodule, and as su
h isisomorphi
 to (A/Jl−1)el, whi
h gets its right Bl-module stru
ture via the isomorphismin Lemma 2.3. In parti
ular, the left A-module stru
ture on Sl fa
tors through thequotient map A→ A/Jl−1.Proof. Re
all that by Lemma 2.3 and Lemma 2.2, Bl ≃ el(A/Jl−1)el and Jl−1 =

Ael−1A with el−1el = el−1 = elel−1. Hen
e
Jl−1el ⊗elAel

Bl = Ael(el−1elAel)⊗elAel
Bl(5)

= Ael ⊗elAel
el−1(elAel)(el(A/Jl−1)el)

= Ael ⊗elAel
el−1(elAel/elJl−1el) = 0.This implies the following isomorphism of A-Bl-bimodules:

Sl ≃ (A/Jl−1)el⊗elAel
Bl ≃ (A/Jl−1)el⊗el(A/Jl−1)el

Bl ≃ (A/Jl−1)el⊗Bl
Bl ≃ (A/Jl−1)el.

�Proposition 3.5. Let A be 
ellularly strati�ed. For ea
h l = 1, . . . , n, the right Bl-module Sl is free of rank dimVl. The algebra Bl is a 
orner split quotient of A/Jl−1with respe
t to el, realized by Sl. Hen
e there is an exa
t split pair situation relating
A/Jl−1 and Bl via the A/Jl−1-Bl-bimodule Sl.



10 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETProof. Assume l = 1, that is we 
onsider the lowest layer of A. For 
onvenien
e wewill omit the subindi
es 1, that is, we use B = B1, V = V1, u = u1, v = v1 and e = e1.Then we have an isomorphism B → eAe = B ⊗ u⊗ v, mapping b ∈ B to b⊗ u⊗ v, inparti
ular mapping the unit of B to e. So B is a split quotient of eAe. Let S denotethe A − eAe-bimodule Ae. Certainly as left B-modules, we have eS ≃ B. Thus toshow that B is a 
orner split quotient of A, it remains to prove that S is a proje
tiveright B-module. We will do so by showing that S is free as a right B-module.As a right B-module, S = Ae is isomorphi
 to B⊗V ⊗v, with the right a
tion of b ∈ Bgiven by multipli
ation with b ⊗ u ⊗ v. Take a basis {xi} of V . Then for ea
h basiselement xi we have
(c⊗ xi ⊗ v) · (b⊗ u⊗ v) = (c · b⊗ xi ⊗ v).This says that B⊗xi⊗v is isomorphi
 as a right B-module to the regular representation

BB, and so S = B ⊗ V ⊗ v is a dire
t sum of dim(V ) many 
opies of BB . This showsthe 
laim for l = 1.Now, for l = 1, . . . , n, A/Jl−1 is 
ellularly strati�ed by Lemma 2.2. Hen
e we obtainfrom the above that Bl is a 
orner split quotient of A/Jl−1 with respe
t to el realizedby the A/Jl−1 −Bl-bimodule Sl = (A/Jl−1)el.Remark. (a) We remarked in Se
tion 2.1 that for a 
ellularly strati�ed algebra A thequotient A/Jl is again 
ellularly strati�ed. The indu
tion fun
tors asso
iated to one�xed layer of A and to the 
orresponding layer of A/Jl are the same. More pre
isely,for l = 1 and the idempotent e2 ∈ J2 we have the asso
iated indu
tion fun
tor G2 :
B2-mod → A-mod. Similarly, for the 
ellularly strati�ed quotient A/J1, we have �without shifting the labels � a fun
tor Ḡ2 : B2-mod → A/J1-mod. The fun
tor G2 isgiven by tensoring with Ae2 ⊗e2Ae2

B2. By the proof of Lemma 3.4, this is the sameas tensoring with (Ae2/J1e2)⊗e2Ae2/e2J1e2
B2. Hen
e the following diagram 
ommutes,and we will no longer distinguish G2 and Ḡ2 in our notation:

B2-mod Ḡ2
//

G2 &&NNNNNNNNNNN
A/J1-modin�ation

��

A-mod(6)
(b) If A is 
ellularly strati�ed and, in addition, Bl is a subalgebra of elAel then thealgebra Bl is a 
orner split quotient of A with respe
t to el, realized by the bimodule
Ael ⊗elAel

Bl. This may be seen by slightly adapting the proof of Proposition 3.5.Hen
e, in this 
ase, there is an exa
t split pair situation relating A and Bl. This is the
ase in the examples of the Brauer algebra and the partition algebra. In parti
ular,this gives a fun
tor Fl = elA ⊗A − : A-mod → Bl-mod. However, in general, Bl isnot ne
essarily a 
orner split quotient of A, sin
e our axioms do not require Bl to be asubalgebra of elAel. Indeed, this does not hold in the example of the BMW algebra.
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tion fun
tor GNext we 
olle
t some �rst properties of the indu
tion fun
tor Gl. We will see throughoutthis paper that Gl transfers the stru
ture of the small 
ellular algebras Bl to the in�atedalgebra A. In this se
tion we will see in parti
ular that the fun
tor Gl sends 
ell modulesto 
ell modules, and ea
h 
ell module of the 
ellularly strati�ed algebra A is obtainedin this way. In the 
ase of A being a Brauer algebra, the fun
tor Gl de�ned here doespre
isely the same as the 
ombinatorial indu
tion pro
ess used in [12, Se
tion 5℄ toprodu
e 
ell modules for Brauer algebras from Spe
ht modules of symmetri
 groups.Continuing the notation of the previous se
tion, we omit subindi
es.Proposition 4.1. The indu
tion fun
tor G has the following properties:(1) The fun
tor G is exa
t.(2) Let X be any B-module. Then G(X) = X ⊗k V as a ve
tor spa
e.Proof. Exa
tness of the fun
tor G is implied by S being proje
tive, see Proposition3.5. Next, let X be a left B-module. Using Lemma 2.3, X is an eAe-module by in�ationand moreover eJ ′e ·X = 0. Then:
G(X) = Ae⊗eAe B ⊗B X

= Ae⊗eAe X

= (Ae/J ′e)⊗eAe X by Equation (5)
= (Ae/J ′e)⊗B X

≃ (BdimV )⊗B X by Proposition 3.5,
≃ Xdim V ≃ X ⊗k Vas ve
tor spa
es.Let us �x some notation here that will be valid throughout the arti
le. Any 
ellularalgebra A 
omes equipped with a set of 
ell modules ΘA(λ) with λ in some indexset ΛA. Then a 
omplete set of simple A-modules is given by the modules LA(λ) for

λ ∈ Λsimple
A ⊆ ΛA. If there is no doubt about the algebra 
on
erned, we will just write

Θ(λ) or L(λ).The next result assumes A to be 
ellularly strati�ed and then explains how the indu
tionfun
tor G relates the given 
ellular stru
tures of A and Bl (for ea
h l).Proposition 4.2. Suppose A is 
ellularly strati�ed. Then the fun
tor G sends the 
ellmodules of B to 
ell modules of A, and ea
h 
ell module of A is obtained in this way.In parti
ular, taking disjoint sets ΛBl
to label the sets of 
ell modules for the 
ellularalgebras Bl, the labels of the 
ell modules of A are the elements of ΛA =

⋃n
l=1 ΛBl

.Proof. (a) The 
ell �ltration of the layer J/J ′ is produ
ed from that of B, see thedes
ription of the in�ation te
hnique in [18℄. More pre
isely: By analogy with thefun
tor G = S ⊗B − : B-mod → A-mod, we de�ne the fun
tor G′ = − ⊗B S′ :mod-B → mod-A with S′ = B ⊗eAe eA. Then G and G′ are exa
t by Proposition 4.1.



12 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETLet {0} = I0 ⊆ I1 ⊆ . . . ⊆ Is = B be a 
ell 
hain of B. This means there exist left
B/It−1-modules ΘB(t) su
h that the subquotients are given by the B/It−1-bimodule

It/It−1 ≃ ΘB(t)⊗ i(ΘB(t))where i is the involution of the 
ellular algebra B. We tensor from the left with S andfrom the right with S′ and get the 
hain of A-A-bimodules
S ⊗B I0 ⊗B S′ ⊆ S ⊗B I1 ⊗B S′ ⊆ . . . ⊆ S ⊗B Is ⊗B S′ = S ⊗B B ⊗B S′ ≃ J/J ′where the last isomorphism is explained in (i) below. The subquotients of this ideal
hain are given by the A/J ′-bimodules

S ⊗B (It/It−1)⊗B S′ ≃ (S ⊗B ΘB(t))⊗k i(S ⊗B ΘB(t))(7)whi
h we show in (ii) below. This provides �ltrations for all layers Bl ⊗ Vl ⊗ Vl with
1 ≤ l ≤ n, and hen
e this provides a 
ell 
hain of A. This implies that the 
ell modulesof A are given by G(ΘB(t)).(i) By Equation (3), we have (J/J ′)e = B⊗V ⊗ v, and similarly, e(J/J ′) = B⊗u⊗V .By Equation (5), S ⊗B B ⊗B S′ ≃ (J/J ′)e⊗B e(J/J ′). De�ne

ϕ : (J/J ′)e⊗B e(J/J ′)→ J/J ′to be the map given by multipli
ation. This map is surje
tive sin
e J = JeJ . Moreover,
(J/J ′)e and e(J/J ′), as right and left B-modules respe
tively, are free of rank dim V ,see the proof of Proposition 3.5. Hen
e

dim((J/J ′)e⊗B e(J/J ′)) = dim(B(dim V )2) = dimB ⊗ V ⊗ V = dimJ/J ′,and so ϕ is an isomorphism. This shows that S ⊗B B ⊗B S′ ≃ J/J ′ = B ⊗ V ⊗ V .(ii) We show that the subquotients have the form 
laimed in Equation (7). Re
allthat the involution i of the algebra A operates as follows in the layer B ⊗ V ⊗ V :
i(b⊗ x⊗ y) = i(b) ⊗ y ⊗ x where i(b) denotes the operation of the involution of B onelement b ∈ B. Let d⊗ x⊗ v ∈ ΘB(t)⊗ V ⊗ v. Then i(d⊗ x⊗ v) = i(d)⊗ v ⊗ x, andhen
e

i(ΘB(t)⊗ V ⊗ v) = i(ΘB(t))⊗ v ⊗ V ≃ i(ΘB(t))⊗ u⊗ V,as right modules over A/J ′.We �nish this se
tion by 
omparing homomorphism spa
es.Proposition 4.3. For all B-modules X and Y , HomB(X,Y ) = HomA(GX,GY ) where
G is the fun
tor S ⊗B − for S = Ae ⊗eAe B. In parti
ular, GX is inde
omposable ifand only if X is so.Proof. Indeed, using the adjointness of the Hom fun
tor and the tensor fun
tor, wehave

HomA(GX,GY ) = HomA(Ae⊗eAe B ⊗B X,Ae ⊗eAe B ⊗B Y )

= HomA(Ae⊗eAe X,Ae⊗eAe Y )

≃ HomeAe(X,HomA(Ae,Ae ⊗eAe Y ))

= HomeAe(X, eAe ⊗eAe Y )

= HomeAe(X,Y ) = HomB(X,Y ).



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 13Here the last equality holds as X and Y are B-modules, and eAe-modules via in�ation.Remark. Split pairs do not in general produ
e equalities of Ext1-groups: For instan
e,assume A is not semisimple, and B is its maximal semisimple quotient whi
h o

ursin A as subalgebra. Then A and B form a split pair. The indu
tion fun
tor G in thissituation is just in�ation. Choose simple B-modules S, T su
h that there exist a non-split extension between G(S) and G(T ). Then 0 = Ext1B(S, T ) 6= Ext1A(G(S), G(T )).Thus in order to 
ompare Ext1-groups, we need to use some stronger properties, forexample the spe
ial 
hoi
e of S and of the idempotent e. Indeed, in this 
ase we then
an identify extension groups in all degrees, see Se
tion 7.5. A stru
tural 
hara
terization of 
ellularly stratified algebrasDiagram algebras are de�ned in a 
ombinatorial way. Their 
ellular stru
ture has typ-i
ally been identi�ed by writing them as iterated in�ations of known 
ellular algebras.The de�nition of a 
ellularly strati�ed algebra naturally enhan
es the de�nition of aniterated in�ation. In this se
tion we dis
uss how the 
ombinatorial setup of De�ni-tion 2.1 is re�e
ted by stru
tural properties. We de�ne a set of properties, (G), (J)and (F). The stru
ture theory of 
ellularly strati�ed algebras des
ribed in this arti
leis really based on this new set of properties. We will see in the �rst se
tion, thatunder the (mild) assumption of the involution i �xing the given idempotents, the newset of properties 
hara
terizes 
ellularly strati�ed algebras (see Proposition 5.1). This
overs all generi
 
ases (that is δ 6= 0) among the examples given in Se
tion 2. This
hara
terization is then improved to full generality in the following two se
tions (seeProposition 5.2), in
luding the non-generi
 
ases, modifying properties (J) and (F).5.1. Generi
 
ase. We de�ne the following stru
tural properties:(G) Let A be a �nite dimensional algebra over a �eld k with an involutory anti-isomorphism i : A→ A. Suppose there is a set of idempotents {el : l = 1, . . . , n}for some natural number n, su
h that en = 1 and elem = em = emel if l > m.(J) For ea
h l = 1, . . . , n, let Jl := AelA and Bl := elAel/elJl−1el. Suppose el =
i(el), and the algebra Bl is 
ellular with respe
t to the involution i. Moreover,suppose that, as a ve
tor spa
e, Jl has a de
omposition Jl = Jl−1⊕Xl for somesubspa
e Xl = i(Xl) for l = 2, . . . , n.(F) For ea
h l = 1, . . . , n, de�ne the A-Bl-bimodule Sl := Ael/Jl−1el. Assume thatfor ea
h l = 1, . . . , n, module Sl is free of �nite rank over Bl and multipli
ationindu
es an isomorphism of A-A-bimodules

Ael/Jl−1el ⊗Bl
elA/elJl−1 ≃ AelA/Ael−1A = Jl/Jl−1.Proposition 5.1. (a) Assume that A is a 
ellularly strati�ed algebra with i(el) = elfor l = 1, . . . , n. Then A satis�es properties (G), (J) and (F).(b) Suppose algebra A satis�es properties (G), (J) and (F). Then A is 
ellularlystrati�ed with respe
t to the given algebras Bl and idempotents el.
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ellularly strati�ed and assume moreover that the involution i �xesall idempotents el. The general assumption (G) is satis�ed by de�nition. Assume that
I is an ideal in the 
ell 
hain of A. Then, by the de�nition of 
ellularity, there existsa ve
tor spa
e Y su
h that A = I ⊕ Y with i(Y ) = Y . By Lemma 2.2, all Jl o

ur asideals in a 
ell 
hain of A. By Lemma 2.3, it follows that assumption (J) is satis�ed.By Proposition 3.5, Sl is a free right Bl-module of �nite rank, and the isomorphism inproperty (F) has been shown in the proof of Proposition 4.2, part (i).(b) Assume the stru
tural properties (G), (J) and (F) are satis�ed. We now 
onstru
ta 
ell 
hain of A as in the proof of Proposition 4.2. By property (F), Sl = elA/elJl−1is free as right Bl-module, and sin
e i(el) = el, this implies i(Sl) = elA/elJl−1 is freeas left Bl-module. Fix a 
ell 
hain {0} = I0 ⊆ I1 ⊆ . . . ⊆ Is = Bl = B. Denote by
ΘB(t) the 
ell modules of B. Then we obtain for all t the isomorphism

Sl ⊗B (It/It−1)⊗B i(Sl) ≃ (Sl ⊗B ΘB(t))⊗k i(Sl ⊗B ΘB(t)).By (F), multipli
ation provides an isomorphism
Sl ⊗B B ⊗B i(Sl) = Ael/Jl−1el ⊗B B ⊗B elA/elJl−1 ≃ AelA/Ael−1A = Jl/Jl−1.Hen
e this 
onstru
ts a 
ell 
hain of A. We next see that A is an iterated in�ation ofthe algebras Bl: By (F), we 
an write

Sl =

m⊕

j=1

vjBl = Vl ⊗k Blas right Bl-module where Vl is an m-dimensional ve
tor spa
e. Applying i gives asimilar de
omposition,
i(Sl) =

m⊕

j=1

Bli(vj) = Bl ⊗k Vl.Hen
e Sl ⊗B B ⊗B i(S) = Vl ⊗k B ⊗k Vl and so A is an iterated in�ation of 
ellularalgebras Bl along Vl. The 
ondition el = 1Bl
⊗ ul ⊗ vl is implied by (F) as follows. We
an 
hoose v1 = el, then under the isomorphism

Jl/Jl−1 ≃ Sl ⊗Bl
Bl ⊗Bl

i(Sl)the element el is mapped to el⊗ 1Bl
⊗ el = v1⊗ 1Bl

⊗ v1 as required. So A is 
ellularlystrati�ed. �Hen
e the above stru
tural assumptions may be taken as an alternative, slightly lessgeneral, starting point of the theory of 
ellularly strati�ed algebras, avoiding the expli
ituse of iterated in�ations. The examples given in Se
tion 2 show that the assumption
i(el) = el is not satis�ed in some ex
eptional 
ases, namely where the parameter δ = 0.We dis
uss these 
ases in the following subse
tions.5.2. Modifying property (J). In the examples in Se
tion 2, assumption (J) is almostalways satis�ed. In the ex
eptional 
ases when the parameter δ = 0, the idempotents
el are not �xed under the involution i. These 
ases �t into the following setup:Let Λ be an algebra with idempotent e and involutory anti-automorphism i su
h that eand i(e) are equivalent. The equivalen
e of idempotents implies that there are elements
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p, q ∈ Λ su
h that e = pq and i(e) = qp. Applying i also gives i(e) = i(q)i(p) and
e = i(p)i(q). Assume that p is �xed under i. Then there is an algebra isomorphism
ϕ : i(e)i(Λ)i(e) → ei(Λ)e = eΛe, sending x to pxq, that is i(e)i(a)i(e) = qpi(a)qp to
pqpi(a)qpq = epi(a)qe. The inverse of ϕ multiplies by q from the left and by p fromthe right. Now de�ne j := ϕ ◦ (i|eΛe) : eΛe → eΛe. Then j is an anti-automorphismwith

j2(x) = ϕ(i(pi(x)q)) = ϕ(i(q)xi(p)) = pi(q)xi(p)q = i(p)i(q)xpq = exe = xfor any x ∈ eΛe. Hen
e j is an involution on eΛe. We now iterate this 
onstru
tion.Assume that A is a �nite dimensional algebra over k satisfying property (G) su
hthat the idempotents el and i(el) are equivalent for all l. Let Jl−1 = Ael−1A, de�ne
Λ = A/Jl−1 and de�ne e to be the image of el in Λ. The equivalen
e of the idempotents
el−1 and i(el−1) in A implies that the ideal Jl−1 is �xed under i. So i is de�ned on
Λ. Then e and i(e) are equivalent in Λ. This in turn implies that there are elements
p, q ∈ Λ su
h that e = pq and i(e) = qp. Now we assume that p is �xed under i, and
Bl = eΛe is 
ellular with respe
t to jl = j. We modify property (J) a

ordingly:(J′) For ea
h l = 1, . . . , n, let Jl := AelA and Bl := elAel/elJl−1el. Suppose, forea
h l = 1, . . . , n, that there exist elements pl, ql ∈ A su
h that el = plql,

i(el) = qlpl modulo Jl−1, and that i(pl) = pl, and that Bl is 
ellular withrespe
t to jl = ϕ ◦ (i|Bl
). Moreover, suppose that, as a ve
tor spa
e, Jl hasa de
omposition Jl = Jl−1 ⊕ Xl for some subspa
e Xl whi
h is �xed by theinvolution i, for l = 2, . . . , n.Note (J) implies (J′) by 
hoosing p = q = e, but the two properties are not equivalent.Remark. Suppose we are given elements p, q ∈ A as above with i(p) = p and e = pqand i(e) = qp modulo lower layers. Cal
ulating modulo lower layers,

i(qpq) = i(pq)i(q) = qpi(q) = qi(p)i(q) = qi(qp) = qpq.Assume in addition that qpq = ce for some s
alar c ∈ k×. Then ce = qpq = i(qpq) =
i(ce) = ci(e) modulo lower layers, and hen
e e = i(e) modulo lower layers.Examples. We return to the examples in Se
tion 2 and illustrate the modi�ed property(J′) in the ex
eptional 
ases. Consider the Brauer algebra with parameter δ = 0 when
r is odd. Then

e =
• · · · • •

XXXXXXXXXXXXXXXXXXXXXXXXX • • · · · • •

• · · · • • • · · · • • •
,and we 
an 
hoose

p =
• · · · • • • • · · · • •

• · · · • • • • · · · • •and
q =

• · · · • • • · · · • • •

• · · · • • • · · · • • •
.
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hoi
es are not unique, alternatively one 
an take p as above and
q =

• · · · • •

VVVVVVVVVVVVVVVVVV •

NNNNNNNNNN · · · •

pppppppppp •

hhhhhhhhhhhhhhhhhh

• · · · • • • · · · • •
.The 
orresponding 
ase of the BMW algebras is handled in pre
isely the same way.So all ex
eptional 
ases from the examples in Se
tion 2 are 
overed by the modi�edproperty (J′).Remark. In general, if A is 
ellularly strati�ed, then by property (E), el = 1Bl

⊗ul⊗vl isan idempotent and hen
e by the remark after De�nition 2.1, ϕ(vl, ul) = 1 = ϕ(ul, vl).De�ne p = 1 ⊗ ul ⊗ ul and q = 1 ⊗ vl ⊗ vl. Then by the multipli
ation, given inEquation (3), pq = e+ lower terms and qp = i(e)+ lower terms. Moreover, by Equation(2), i(p) = p and i(q) = q. So, modulo lower layers, we have e = pq, i(e) = qp with
p = i(p) and q = i(q). Hen
e 
ellularly strati�ed algebras satisfy property (J′) as well.5.3. Modifying property (F). Assuming properties (G), (F) and (J′) for an algebra
A will not be su�
ient for A to be 
ellularly strati�ed with respe
t to the 
hosenidempotents el, as we will see in an example at the end of this 
hapter. The onlyobsta
le is to show that the idempotents are of the form el = 1 ⊗ ul ⊗ vl for some
ul, vl ∈ Vl. We will now des
ribe how to strengthen property (F) to really obtain anequivalen
e in this general situation:(F′) For ea
h l = 1, . . . , n, de�ne the A-Bl-bimodule Sl := Ael/Jl−1el. Assume that

Sl is free of �nite rank over Bl for ea
h l = 1, . . . , n, and there exists a dire
tsum de
omposition of Sl in whi
h el and qlel generate free summands su
hthat qlel = cel for some c ∈ k× if the summands 
oin
ide. Assume moreovermultipli
ation indu
es an isomorphism of A-A-bimodules
Ael/Jl−1el ⊗Bl

elA/elJl−1 ≃ AelA/Ael−1A = Jl/Jl−1.Note that (F′) implies (F), and in 
ase el = i(el), we 
an 
hoose el = pl = ql =
1B ⊗ ul ⊗ ul for some ul ∈ Vl, so (F′) is just the same as (F). Now we 
an state thestru
tural 
hara
terization of 
ellularly strati�ed algebras in the general 
ase:Proposition 5.2. An algebra A is 
ellularly strati�ed if and only if it satis�es properties(G), (J′) and (F′) as stated above.Proof. (a) Let A be 
ellularly strati�ed. Then (G) holds. Assume el = 1Bl

⊗ ul ⊗ vl,and de�ne ql = 1Bl
⊗ vl ⊗ vl and pl = 1Bl

⊗ ul ⊗ ul. Then by the remark at the end ofSe
tion 5.2, property (J′) holds. Moreover, 
al
ulating modulo lower layers,
ql(elAel/elJl−1el) = ql · (Bl ⊗ ul ⊗ vl) = Bl ⊗ vl ⊗ vl,whi
h is a free dire
t summand of Bl⊗Vl⊗vl. We distinguish two 
ases. If vl = λul forsome s
alar λ, then Bl⊗ul⊗vl = Bl⊗vl⊗vl with ql = λel, and hen
e qlel = λel for somes
alar λ. If the ve
tors {ul, vl} are linearly independent, then Bl⊗ul⊗vl∩Bl⊗vl⊗vl = 0.Hen
e property (F′) holds.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 17(b) We assume that the algebra A satis�es properties (G), (J′) and (F′). For simpli
ity,we will restri
t ourselves here to the lowest layer and suppress indi
es. Thus J = AeA,
B = eAe and the idempotent e is of the form e = pq with i(e) = qp, where i(p) = p.For preparation, note that eA = pi(e)A and epAqe = eAe. For example sin
e pA ⊆ A,we obtain pqpA ⊆ pqA = eA. Similarly, qA ⊆ A implies that eA = pqpqA ⊆ pqpA.Hen
e we 
an write eA = pi(e)A. By a similar argument we obtain epAqe = eAe.By property (F′) we 
an write

S = Ae =
m⊕

j=1

vj(eAe)as right eAe-modules for some v1, . . . , vm ∈ Ae. Applying i, we get a 
orrespondingde
omposition
i(e)A = i(Ae) =

m⊕

j=1

i(e)Ai(e)i(vj )as left i(e)Ai(e)-modules. Note that pi(e)Ai(e) = epAqep = eAep. Sin
e eA = pi(e)A,we obtain the following de
omposition of eA as a left eAe-module:
eA =

m⊕

j=1

pi(e)Ai(e)i(vj ) =

m⊕

j=1

eAe · pi(vj),and so eA is a free left eAe-module with basis pi(vj) for j = 1, . . . ,m. It follows from(F′), that we have an isomorphism
J = AeA ≃ Ae⊗eAe eAe⊗eAe eA

≃

m⊕

j=1

vj · eAe⊗eAe eAe⊗eAe

m⊕

j=1

eAe · pi(vj)

≃ V ⊗B B ⊗B Vwhere V is a ve
tor spa
e of dimension m. Hen
e A is an iterated in�ation of 
ellularalgebras Bl. The above isomorphism sends aeb to ae ⊗ e ⊗ eb. In parti
ular, e ∈ J ismapped to e⊗e⊗e = e⊗1B⊗e. By (F′), we 
an 
hoose the basis elements vj su
h that
v1 = e. Re
all the remark after the de�nition of property (J′). If qe = ce for some s
alar
c ∈ k×, then e = i(e), and hen
e e ∈ J is mapped to v1⊗ 1B ⊗ v1. If e and qe generatedi�erent free dire
t summands of Ae, then 
hoose v2 = qe = qpq = i(qpq) = i(v2).Then e ∈ J is mapped to v1⊗ 1B ⊗ pi(v2). Hen
e e is always of the required form, and
A is indeed 
ellularly strati�ed.5.4. Examples. We end this 
hapter by dis
ussing the above properties on two exam-ples. In the �rst example, we 
onsider an algebra with a set of idempotents satisfyingproperties (G), (J′) and (F) where property (J) and (F′) do not hold. This algebra isnot 
ellularly strati�ed with respe
t to the 
hosen strati�
ation data. This shows thatproperty (F′) is ne
essary. However the algebra 
onsidered is 
ellularly strati�ed withrespe
t to a di�erently 
hosen strati�
ation data. In the se
ond example we give analgebra that is 
ellularly strati�ed with respe
t to a parti
ular iterated in�ation, butnot 
ellularly strati�ed with respe
t to isomorphi
 in�ation data.



18 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGET(1) We 
onsider the two-dimensional algebra B with basis a, b, where a2 = a, b2 = band ab = ba = 0, whi
h is 
ellular with respe
t to the identity involution i. We take
V to be a three-dimensional ve
tor spa
e, with basis v1, v2, v3, and set J to be thein�ation B ⊗ V ⊗ V with multipli
ation given by:

(c1 ⊗ vi1 ⊗ vj1)(c2 ⊗ vi2 ⊗ vj2) = (c1ϕ(vj1 , vi2)c2 ⊗ vi1 ⊗ vj2),where ϕ(v3, v3) = ϕ(v1, v2) = ϕ(v2, v1) = 1 and ϕ(vi, vj) = 0 otherwise. This is
ompatible with the usual involution i of an in�ation. The algebra A whi
h we 
onsideris obtained by adjoining a unit element to J , A = J ⊕ k1A. We de�ne
e = (a⊗ v3 ⊗ v3) + (b⊗ v1 ⊗ v2),whi
h is an idempotent. Then i(e) = (a⊗ v3 ⊗ v3) + (b⊗ v2 ⊗ v1) 6= e. We set e2 = 1Aand e1 = e. Property (G) is seen to hold. Now we turn to property (J′). We see that

Ae1A = AeA = J and eAe = spank{a⊗ v3 ⊗ v3, b⊗ v1 ⊗ v2} ≃ B. We let
p = (1B ⊗ v3 ⊗ v3) + (1B ⊗ v1 ⊗ v1) and q = (a⊗ v3 ⊗ v3) + (b⊗ v2 ⊗ v2).Then e = pq and i(e) = qp and i(p) = p. The indu
ed involution we obtain on eAe ≃ Bis again the identity. The top layer presents no problems and property (J′) is satis�ed.For property (F), we 
onsider the A-eAe-bimodule S1 = Ae. As a right eAe-module:

Ae = spank{a⊗ vi ⊗ v3, b⊗ vi ⊗ v2 : i = 1, 2, 3},

= 〈a⊗ v3 ⊗ v3, b⊗ v1 ⊗ v2〉 ⊕ 〈b⊗ v3 ⊗ v2, a⊗ v1 ⊗ v3〉

⊕〈a⊗ v2 ⊗ v3, b⊗ v2 ⊗ v2〉The �rst summand is eAe ≃ B and the se
ond and third are ea
h isomorphi
 to eAeas right eAe-modules, thus S1 is free of rank three as a right eAe-module. The toplayer again poses no problems and property (F) holds. Property (F′) is, however, notsatis�ed and the idempotent e1 = e is not of the form spe
i�ed in property (E) ofDe�nition 2.1.The algebra A is in fa
t 
ellularly strati�ed though: one must simply make a di�erent
hoi
e of idempotents. Starting with the idempotents 1B ⊗ v3 ⊗ v3 and 1A, the threeproperties of De�nition 2.1 are readily seen to hold.(2) The next example shows that the de�nition of a 
ellularly strati�ed algebra dependson the 
hoi
e of the in�ation data.(a) Let J be the in�ation of the group algebra of the symmetri
 group Σ2 = 〈σ : σ2 = ǫ〉by the two-dimensional ve
tor spa
e V with basis v1, v2. The multipli
ation in J isgoverned by the bilinear form ϕ, where ϕ(vi, vj) = σ if i 6= j and zero otherwise. Weform the algebra A by adjoining an identity element to J . So A is a nine-dimensionalalgebra. We de�ne an involution i by i(λ ·1A + b⊗u⊗w) = λ ·1A + b⊗w⊗u for λ ∈ k,
b ∈ kΣ2 and u,w ∈ V . Note that this involution is 
ompatible with the 
hosen bilinearform ϕ. Let B = kΣ2. Assume that e = 1B ⊗ u⊗ w is an idempotent in J . Then

e2 = (1⊗ u⊗ w)(1 ⊗ u⊗ w) = ϕ(w, u) ⊗ u⊗ w.Let u = αv1 + βv2 and w = λv1 + µv2 for some α, β, λ, µ ∈ k. Then
ϕ(w, u) = (αµ + βλ) · σ ∈ k · σ.
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e ϕ(w, u) 6= 1B . So there are no idempotents in J of the form 1kΣ2
⊗ u⊗w, so Adoes not satisfy De�nition 2.1 of a 
ellularly strati�ed algebra with strati�
ation data

(kΣ2, V, k, k).(b) We will verify that there is a
tually another in�ation data that 
onstru
ts anisomorphi
 
opy of the algebra A. As before, let J be the in�ation of the groupalgebra of the symmetri
 group Σ2 = 〈σ : σ2 = ǫ〉 by the two-dimensional ve
torspa
e V with basis v1, v2, and form A by adjoining an identity element. This timewe 
hose ϕ(vi, vj) = ǫ if i 6= j and zero otherwise. This 
hoi
e of bilinear form is
onjugate to ϕ 
hosen in part (a), and hen
e we obtain an algebra stru
ture on Awhi
h is isomorphi
 via a 
hange of basis to the algebra stru
ture 
onsidered in part(a). We de�ne e = e1 = ǫ ⊗ v1 ⊗ v2 and e2 = 1A. Then property (G) is seento hold. We �nd AeA = J and eAe = spank{ǫ ⊗ v1 ⊗ v2, σ ⊗ v1 ⊗ v2}. We let
p = (ǫ⊗ v1⊗ v1) and q = (ǫ⊗ v2⊗ v2). Then e = pq and i(e) = qp and i(p) = p and theindu
ed involution we obtain on eAe is again the identity, so property (J′) is satis�ed.Finally we 
onsider Ae as a right eAe-module:

Ae = 〈ǫ⊗ v1 ⊗ v2, σ ⊗ v1 ⊗ v2〉 ⊕ 〈ǫ⊗ v2 ⊗ v2, σ ⊗ v2 ⊗ v2〉.The �rst summand is eAe and the se
ond is qeAe, but both are isomorphi
 to eAe asright eAe-modules and their interse
tion is trivial, thus property (F′) is satis�ed too.By Proposition 5.2, A is a 
ellularly strati�ed algebra.6. Comparing de
omposition numbersDe
omposition numbers of 
ellular algebras are by de�nition the multipli
ities of simplemodules L as 
omposition fa
tors of 
ell modules Θ. Given a 
ellular algebra C, denoteits de
omposition matrix by DC = ([ΘC(λ) : LC(µ)])λ,µ with 
ell modules ΘC andsimple modules LC and labels λ ∈ ΛC and µ ∈ Λsimple
C .Proposition 6.1. Let A be 
ellular and e ∈ A be an idempotent. If the idempotent eis �xed by the involution i, then eAe is also 
ellular, and DeAe is a diagonal submatrixof DA. If I is in the 
ell 
hain of A then A/I is again 
ellular, and DA/I is a diagonalsubmatrix of DA.Proof. The 
laim follows from the de�nition of 
ellular algebras by 
ell 
hains (see[9, 17, 18℄ for instan
e), and from general theory as in Green [10, Se
tion 6.2℄: Assumethe 
ell modules of A are indexed by the elements in ΛA. Then, as i(e) = e, eAe is
ellular and the 
ell 
hain of eAe is obtained from that of A by multiplying the 
ell
hain of A by e from the left and the right. Modules of A be
ome eAe-modules bymultiplying with e from the left but some of these A-modules may be
ome zero. Inparti
ular, multipli
ation by e sends 
ell modules to 
ell modules or zero, and simplesto simples or zero. That is, the 
ell modules and simple modules are

ΘeAe(λ) = eΘA(λ) with λ ∈ ΛeAe ⊆ ΛA,

LeAe(µ) = eLA(µ) with µ ∈ Λsimple
eAe ⊆ Λsimple

A .Hen
e DeAe is a diagonal submatrix of DA. Similarly, if I = Il is an ideal in the 
ell
hain of A, say
A = It ⊇ It−1 ⊇ . . . ⊇ I0 = {0},
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ell 
hain of A/I is given by
A/I = It/I ⊇ It−1/I ⊇ . . . ⊇ Il/I = {0},and the 
ell modules and simple modules of the quotient algebra are

ΘA/I(λ) = ΘA(λ) with λ ∈ ΛA/I ⊆ ΛA,

LA/I(µ) = LA(µ) with µ ∈ Λsimple
A/I ⊆ Λsimple

A .Hen
e DA/I is a diagonal submatrix of DA.Corollary 6.2. Let A be 
ellularly strati�ed and assume that for ea
h l the idempo-tent e = el is �xed by the involution i. Then the de
omposition matrix of A 
ontainson its diagonal pre
isely the de
omposition matri
es DBl
for l = 1, . . . , n. Moreoverthe de
omposition matri
es DeAe are submatri
es of the right-hand bottom 
orner, thede
omposition matri
es DA/Jl

are submatri
es of the left-hand top 
orner as in thefollowing pi
ture:
DA =

DBl

DA/Jl

Del−1Ael−1

DA/Jl−1

DelAel

Proof. Note sin
e i(e) = e this implies u = v. Observe that e(A/Jl−1)e ≃ B⊗u⊗u ≃
B, and then the result follows from Proposition 6.1.Remark. For our main examples in this arti
le � Brauer algebras, BMW algebras andpartition algebras � in the 
ase where the parameter δ 6= 0 we have idempotents elof the form λ · (1 ⊗ u ⊗ u) where λ is a s
alar, 
learly satisfying i(el) = el. Hen
ethe last 
orollary implies equalities between 
ertain de
omposition numbers of thesealgebras and de
omposition numbers of group algebras of symmetri
 groups or theirHe
ke algebras (whi
h are the algebras Bl in these examples). In addition, sin
e ea
h
eAe is isomorphi
 to a smaller diagram algebra of the same type we see, for example,that the de
omposition matrix of Bk(r− 2, δ) (respe
tively BMWk(r− 2, λ, q− q−1, δ)or Pk(r − 1, δ)) is in
luded in that of Bk(r, δ) (respe
tively BMWk(r, λ, q − q−1, δ), or
Pk(r, δ)).However the idempotents el for a 
ellularly strati�ed algebra may be of the form 1⊗u⊗vwith u 6= v, and then i(el) 6= el. In 
ertain su
h 
ases we still obtain the aboveresults relating de
omposition numbers. Under the additional assumption that theidempotents el and i(el) are orthogonal, ẽl = el + i(el) is an idempotent of A and wemay repla
e el by ẽl = el + i(el) in the proof of the 
orollary. Then ẽl(A/Jl−1)ẽl isthe in�ation B ⊗ span {u, v} ⊗ span {u, v}, of B, and sin
e the bilinear form for this
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omposition matri
es of ẽl(A/Jl−1)ẽl and of B 
oin
ide,see [21, Corollary 3.4℄. Su
h a situation o

urs for the Brauer and BMW algebras when
r is odd and δ = 0.7. Cellularly stratified algebras are stratifiedOne of our aims is to extend the phenomenon dis
overed by Hemmer and Nakano [13℄to 
ertain diagram algebras. This phenomenon identi�es homomorphism spa
es andit identi�es �rst extension groups (for the 
ase of symmetri
 groups and their quan-tizations, see [13℄, Theorem 3.7.1 and Corollary 3.9.1). However, it identi�es higherextensions only with higher relative extensions. For 
ellularly strati�ed algebras thereis another homologi
al stru
ture. In this se
tion we provide a strati�
ation of the de-rived module 
ategory of any 
ellularly strati�ed algebra, independent of the Hemmer-Nakano phenomenon. We start by re
alling what strati�ed algebras are. There arevarious, in fa
t non-equivalent, de�nitions of strati�ed algebras. Here we follow themost general of these de�nitions, due to Cline, Parshall, S
ott [3, 2.1.1℄.De�nition 7.1. An algebra A is strati�ed if there exists a 
hain of ideals {0} = J0 ⊆
J1 ⊆ . . . ⊆ Jn−1 ⊆ Jn = A su
h that ea
h subquotient Ji/Ji−1 is a stratifying idealin the quotient algebra A/Ji−1. Here an ideal J in an algebra A is 
alled a stratifyingideal provided that the following 
onditions hold:(1) There is an idempotent e ∈ A su
h that J = AeA.(2) Multipli
ation provides an A-bimodule isomorphism Ae⊗eAe eA→ J .(3) ToreAe

n (Ae, eA) = 0 for all n > 0.Remark. An equivalent way to phrase 
onditions (1) to (3) is to require that the derivedfun
tor D+(A/J-mod) → D+(A-mod) indu
ed by the full embedding A/J − mod →
A−mod is a full embedding, see [3, 2.1.2℄.Assume from now on that A is 
ellularly strati�ed. Next we show that the lowest layerin the 
hain of ideals provided by 
ondition (C) is a stratifying ideal. As a 
onsequen
e
ellularly strati�ed algebras are strati�ed.Proposition 7.2. Suppose the algebra A is 
ellularly strati�ed, with notation as above.Then A is strati�ed with a strati�
ation provided by the ideals Jl.Proof. We have to show that J1 is a stratifying ideal in A, J2/J1 is a stratifying idealin A/J1, and so on. We do this by indu
tion on the layers. Write e = e1, B = B1 and
V = V1. By the assumptions on A, the lowest layer is the ideal J = AeA = B⊗V ⊗V ,and B ≃ eAe.By Proposition 3.5, the right module Ae = B ⊗ V ⊗ v � and similarly the left module
eA = B ⊗ u⊗ V � is a free B-module of rank dimk V . Hen
e Ae is �at, and the third
ondition for a stratifying ideal holds: ToreAe

n (Ae, eA) = 0 for all n > 0. The map
Ae⊗eAe eA→ J = B ⊗ V ⊗ V
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ation is an isomorphism of ve
tor spa
es (see Equation (3) fromSe
tion 2). This shows that J is a stratifying ideal in A. The 
laim now follows byindu
tion on the layers.Remark. In the 
ase of the Brauer algebra Bk(r, δ) with δ = 0 and r even, the idealspanned by totally horizontal diagrams is not a stratifying ideal. However in this 
ase,the previous proposition is true for the quotient of the Brauer algebra obtained byfa
toring out this ideal.In general, a stratifying ideal indu
es only partial re
ollement diagrams, see [3, Se
tion2.1.2℄ and [16℄, where de�nitions of re
ollements 
an also be found. Here we obtainmore:Theorem 7.3. Assume that A is 
ellularly strati�ed.(a) Then there is a full re
ollement of bounded derived 
ategories
i∗
←

j!←

Db(A/J1 −mod) i∗=i!→ Db(A−mod) j∗=j!

→ Db(B1 −mod)
i!
←

j∗
←(b) The derived 
ategory of A has a strati�
ation (iterated re
ollements) by thederived 
ategories of the algebras Bl.Proof. (a) We write e = e1, J = J1 and B = B1, and so by Lemma 2.3, B ≃ eAe. It is
lear that HomA(AeA,A/J) = 0, and that AeA ≃

⊕
Ae is proje
tive as an A-module.So we 
an apply [16, Corollary 12℄ and obtain a full re
ollement for D− as above. We
an repla
e EndA(AeA) by eAe ≃ B, sin
e, as a left A-module AeA is just a sum of
opies of the proje
tive A-module Ae, so that the two algebras are Morita equivalent.Now [16, Lemma 2℄ implies that this re
ollement restri
ts to a right re
ollement forthe bounded derived 
ategories, that is, the bottom four fun
tors take 
omplexes withbounded homology to 
omplexes with bounded homology. It is left to show that theupper two fun
tors do that as well. Note that all the six o

urring fun
tors are indu
edby fun
tors on the 
orresponding module 
ategories (denoted by the same symbols),namely

i∗ = i! := A(A/J) ⊗A/J − : A/J-mod→ A-mod,

i∗ := A/J ⊗A − : A-mod→ A/J-mod,

i! := HomA(A/J,−) : A-mod→ A/J-mod,

j∗ = j! := eA⊗A − : A-mod→ eAe-mod,

j! := Ae⊗eAe − : eAe-mod→ A-mod,

j∗ := HomeAe(eA,−) : eAe-mod→ A-mod.Here Ae is a proje
tive right eAe-module, hen
e �at, therefore ToreAe
j (Ae,−) = 0for j ≥ 1. So the derived fun
tor of j!, takes 
omplexes with bounded homology to
omplexes with bounded homology. In Db(A), the module A/J is isomorphi
 to the
omplex Y := (· · · → 0→ AeA→ A→ 0→ . . . ) of proje
tive (hen
e �at) A-modules.



COHOMOLOGICAL STRATIFICATION OF DIAGRAM ALGEBRAS 23Let X ∈ Db(A − mod). The homology of i∗(X) is just the homology of the total
omplex T of the double 
omplex Y ⊗A X, whi
h vanishes in high degrees, sin
e thehomology of X is zero for high degrees, and tensoring with �at modules is exa
t. Hen
e
i∗(X) ∈ Db(A/J −mod), as required.(b) Repla
ing A/Jl−1 by A/Jl and e = el by the idempotent el+1 in the next layer anditerating the above argument, we obtain a sequen
e of re
ollement diagrams, ea
h ofthem having the derived 
ategory of the respe
tive Bl-mod on the right hand side. Inthe last step, we have A/Jn−1 on the left hand side, whi
h is isomorphi
 to the algebra
Bn sin
e en = 1. The 
laim follows.The last theorem has various 
onsequen
es. In parti
ular, using [3, Se
tion 2.1.2℄, weobtain a 
omparison of Ext-groups:Corollary 7.4. Let A be 
ellularly strati�ed. Let M,N be any A/Jl-modules and X,Yany Bl-modules. Then for any i > 0 and any j ≥ 0 we have:

ExtiA(M,N) ≃ ExtiA/Jl
(M,N),

ExtjBl
(X,Y ) ≃ ExtjA(Gl(X), Gl(Y )).Proof. The �rst isomorphism follows from [3, Se
tion 2.1.2℄. The 
ase j = 0 of these
ond isomorphism has been obtained in Proposition 4.3. In the 
ase j > 0, we applythe �rst isomorphism to obtain

ExtjA(Gl(X), Gl(Y )) ≃ ExtjA/Jl−1
(Gl(X), Gl(Y )).Using the de�nition of the fun
tors Gl (see Se
tion 3), this equals

ExtjA/Jl−1
((A/Jl−1)el ⊗el(A/Jl−1)el

X, (A/Jl−1)el ⊗el(A/Jl−1)el
Y ).Sin
e el is in the lowest layer of A/Jl−1, it follows that el(A/Jl−1)el ≃ Bl. We nowapply Theorem 7.3 to the 
ellularly strati�ed algebra A/Jl−1. Then

ExtjA(Gl(X), Gl(Y )) ≃ Extj
A/Jl−1

(j!(X), j!(Y )).Sin
e j! : Db(Bl −mod)→ Db(A/Jl−1 −mod) is a full embedding, it follows that
Extj

A(Gl(X), Gl(Y )) ≃ ExtjBl
(X,Y ).Let A be any algebra. Re
all that the proje
tive dimension of an A-module M is thelength of a minimal proje
tive resolution of M . The global dimension of the algebra Ais then the maximum of the proje
tive dimensions of the A-modules. For many algebrasthis number will not be �nite. In those 
ases one also 
onsiders the �nitisti
 dimension.The �nitisti
 dimension of an algebra A is the maximum of the proje
tive dimensions ofall those A-modules whi
h have a �nite proje
tive resolution. It has been 
onje
turedthat the �nitisti
 dimension is always �nite. A positive answer to this 
onje
ture for�nite dimensional algebras would imply validity of various other 
onje
tures su
h asthe Nakayama 
onje
ture. For more information see the surveys given in [8, 26, 27℄. In
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ase of 
ellularly strati�ed algebras A, we 
an redu
e the question of �niteness ofthe �nitisti
 dimension to the same question for the smaller algebras Bl:Corollary 7.5. Let A be 
ellularly strati�ed by the algebras B1, . . . , Bn. Then the globaldimension of A is �nite if and only if all the algebras Bl have �nite global dimensions.The �nitisti
 dimension of A is �nite if and only if all the algebras Bl have �nite�nitisti
 dimensions.Proof. The �rst 
laim follows from Theorem 7.3 together with [16, Corollary 5℄. These
ond 
laim follows from Theorem 7.3 together with [11, Theorem 2℄.Corollary 7.6. The �nitisti
 dimension 
onje
ture holds for Brauer algebras (with
δ 6= 0 if r is even), BMW-algebras (with δ 6= 0 if r is even) and partition algebras (with
δ 6= 0).Proof. Here the algebras Bl are group algebras of symmetri
 group or their He
kealgebras whi
h are self-inje
tive algebras. Self-inje
tive algebras are easily seen to have�nitisti
 dimension zero: Assume that a �nite proje
tive resolution of a non-proje
tivemodule M is given. In a self-inje
tive algebra proje
tive modules are inje
tive. Hen
ethe �nite exa
t sequen
e of the proje
tive resolution of M splits in the leftmost term,a 
ontradi
tion. This implies that a module for any self-inje
tive algebra is either pro-je
tive or has no �nite proje
tive resolution. The statement now follows from Corollary7.5.Remark. Working in a more general 
ontext, Frisk proved several results on whenthe �nitisti
 dimension of a standardly strati�ed algebra is �nite. He also gives anupper bound for the �nitisti
 dimension, depending on the �nitisti
 dimension of theendomorphism algebras of standard modules, see for example [7, Theorem 24℄.8. Homomorphisms and extensions between layersWe have seen in Proposition 4.3 and Corollary 7.4 that homomorphisms and extensionsof 
ell modules of A inside the lth layer behave like those of the small algebra Bl. In thisse
tion we will study homomorphisms and extensions between 
ell modules of di�erentlayers. We will see that homomorphisms and extensions between 
ell modules 
anhappen either in the same layer or from a higher to a lower layer, but not the otherway round.Proposition 8.1. Let l < m, and let X be a Bm-module and Y a Bl-module. Then

HomA(Ael ⊗elAel
Bl ⊗Bl

Y,Aem ⊗emAem Bm ⊗Bm X) = 0.In parti
ular, if Θ(λ) and Θ(µ) are 
ell modules, with Θ(λ) in the layer of el and Θ(µ)in the layer of em with l < m, then HomA(Θ(λ),Θ(µ)) = 0.Proof. Using Proposition 4.2, we 
an write Θ(µ) = Aem ⊗emAem Bm ⊗Bm X, where
X is a 
ell module for Bm and similarly, Θ(λ) = Ael ⊗elAel

Bl ⊗Bl
Y where Y is a 
ellmodule for Bl. Hen
e it su�
es to prove the �rst 
laim.
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tor and the tensor fun
tor, and using assumption(I), we then have:
HomA(Ael ⊗elAel

Bl ⊗Bl
Y,Aem ⊗emAem Bm ⊗Bm X)

= HomA(Ael ⊗elAel
Y,Aem ⊗emAem X)

≃ HomelAel
(Y,HomA(Ael, Aem ⊗emAem X))

= HomelAel
(Y, elAem ⊗emAem X)

= HomelAel
(Y, elX) = HomelAel

(Y, 0) = 0.Note that X is a Bm-module, and as emAem surje
ts onto Bm, it is also an emAem-module with emJm−1em ·X = 0. So in parti
ular elX = 0.Similarly, extensions between 
ell modules 
an happen either in the same layer or froma higher to a lower layer but not the other way round; this resembles the situation forquasi-hereditary algebras where ea
h layer has just one index and one simple module.Proposition 8.2. Let l < m, and let X be a Bl-module and Y a Bm-module. Thenfor all i ≥ 1,
Exti

A(Ael ⊗elAel
Bl ⊗Bl

Y,Aem ⊗emAem Bm ⊗Bm X) = 0.In parti
ular, if Θ(λ) and Θ(µ) are 
ell modules, with Θ(λ) in the layer of el and Θ(µ)in the layer of em with l < m, then ExtiA(Θ(λ),Θ(µ)) = 0 for all i ≥ 1.Proof. As before, it su�
es to prove the more general �rst 
laim. For the Bm-module X and Bl-module Y , we have Gm(X) = Aem⊗emAem Bm⊗Bm X and Gl(Y ) =
Ael ⊗elAel

Bl ⊗Bl
Y . Sin
e Jl ·Gm(X) = 0 and as el ∈ Jl, this implies

HomA(Ael, Gm(X)) = el ·Gm(X) = 0.(8)Consider the lowest layer, that is Bl = B1. Here we have elAel ≃ Bl and Ael is aproje
tive right elAel-module (see Proposition 3.5). The indu
tion fun
tor G sends Blto the proje
tive A-module Ael. The fun
tor G is exa
t by Proposition 4.1, hen
e itsends a Bl-proje
tive resolution of Y to an A-proje
tive resolution of Gl(Y ), say
. . .→ P1 → P0 → Gl(Y )→ 0(9)where P0, P1, . . . are dire
t summands of ⊕

Ael. But by Equation (8), it follows that
HomA(Pi, Gm(X)) = 0 for all i, so by the de�nition of Exti, this shows the 
laim in thelowest layer. For layers l and m with l < m 
onsider A/Jl−1. By (6), the A/Jl−1-module
Ḡl(Y ), viewed as an A-module, is isomorphi
 to Gl(Y ). Thus ExtiA(Gl(Y ), Gm(X)) ≃
Exti

A/Jl−1
(Gl(Y ), Gm(X)) = 0 by the above, using Corollary 7.4.9. Comparing 
ellular and stratified algebras on examplesCellular algebras have often been 
onsidered as a 
ombinatorial generalization of quasi-hereditary algebras while strati�ed algebras have been 
onsidered as a homologi
al one.We have seen in Se
tion 7 that there are 
ellular algebras whi
h are strati�ed. In thisse
tion, we illustrate by an example that the Ext-
omparison (see Corollary 7.4) and



26 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETExt-vanishing properties (see Proposition 8.2) of strati�ed algebras do not hold for
ellular algebras in general. We 
onsider the algebra A = kQ/R given by the quiver
Q :

a bα

β
• •q
iwith relations R = 〈αβα, βαβ〉. Then A is a six dimensional algebra with basis

{a, b, α, β, αβ, βα}. De�ne a map i with
i(α) = β, i(β) = α, i(a) = a, i(b) = b,and extend it anti-multipli
atively. Then the algebra A is 
ellular with involution i and
ell 
hain A = J3 ⊇ J2 ⊇ J1 ⊇ J0 = {0} where the ideals are given as follows:

J2 = AaA = spank{a, α, β, αβ, βα}, J1 = 〈αβ〉 = spank{αβ}.Then the quotient algebras A/Ji for 1 ≤ i ≤ 3 have the following de
ompositions intoproje
tive inde
omposable modules:
A =

a
b
a
⊕

b
a
b

, A/J1 =
a
b
⊕

b
a
b

and A/J2 = b.Here a and b denote the two simple one-dimensional A-modules. The 
ell modules are
Θ1 = a, Θ2 =

a
b

, Θ3 = b.Here, for instan
e, J1 as a left A-module equals a and J1 is isomorphi
 to Θ1 ⊗k i(Θ1)via multipli
ation so J1 = J1/J0 is a 
ell ideal in A = A/J0. As there are uniserial
A-modules [a, b] and [b, a], we have non-split extensions of the 
ell module Θ1 with Θ3and vi
e versa, and hen
e Proposition 8.2 does not hold for A.A minimal proje
tive resolution of the A-module a is given by the following 
omplexwhi
h is periodi
 of length four:

· · · -
a
b
a

- b
a
b

- b
a
b

-
a
b
a

- a - 0.
b
a

�R
b
�R

a
b

�R
a
�RThe same 
omplex 
an be used to read o� the minimal proje
tive resolution of b over

A. As an A/J1-module a minimal proje
tive resolution of a is given by the following�nite 
omplex, whi
h also 
an be used to read o� the minimal proje
tive resolution of
b:

0 - a
b

- b
a
b

- a
b

- a - 0.
b
�R

a
b

�RApplying HomA(−, a) and HomA/J1
(−, a) respe
tively to these 
omplexes, we 
an 
al-
ulate the extension groups. For instan
e, we obtain that Extm

A/J1
(a, a) = 0 for all

m ≥ 3, but Ext4t
A (a, a) = Ext4t+3

A (a, a) = k for t ≥ 0. So, for A a general 
ellularalgebra, we 
annot identify higher extension groups for A with those for A/J .
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hain that avoids nilpotent layers does not improve the situation:The ideal J1 is nilpotent, and there are no simple A-modules 
orresponding to nilpotentlayers of the 
ell 
hain of A. Thus we now try the ideal 
hain A ⊃ J2 ⊃ {0} whi
halso re�nes to the 
ell 
hain of A given above. Then neither J2 as an ideal of A nor
A/J2 as an ideal of itself are nilpotent ideals. However, this is still not enough toobtain a strati�
ation, the ideal J2 fails to be stratifying. As one easily 
al
ulates, the�rst two 
onditions of De�nition 7.1 hold, but the third one does not. To see this,note that the algebra C := aAa is two-dimensional, it has one simple module a and Cis the unique inde
omposable proje
tive. The (right) C-module Aa ≃ a ⊕ C has theproje
tive resolution

· · · → C → C → C ⊕ C → a⊕ C → 0and tensoring with aA ≃ a⊕C (from the right) gives a 
omplex with non-zero homologyin all degrees, hen
e TorC
n (Aa, aA) 6= 0 for all n. So the absen
e of nilpotent ideals inthe 
hain is not enough, we need 
ellularity and the idempotents, as in De�nition 2.1.10. Cellularly stratified algebras and standard systemsUsing the te
hnology set up in the previous se
tions, we are now ready to state theHemmer-Nakano phenomenon for 
ellularly strati�ed algebras, exhibiting the algebrai
Lie theory hidden in the diagram algebras studied here. Re
all the notion of a stan-dardizable set by Dlab and Ringel [5, Se
tion 3℄ � here 
alled a standard system � ofobje
ts in an abelian 
ategory, given here for a module 
ategory:De�nition 10.1. Let C be any algebra, and suppose we are given a �nite set Θ ofnon-isomorphi
 C-modules Θ(j), indexed by j ∈ I, where I is endowed with a partialorder ≤. Then the modules Θ(j) are said to form a standard system if the followingthree 
onditions hold:(i) For all j ∈ I, EndC(Θ(j)) is a division ring.(ii) For all m,n ∈ I, if HomC(Θ(m),Θ(n)) 6= 0 then m ≥ n.(iii) For all m,n ∈ I, if Ext1C(Θ(m),Θ(n)) 6= 0 then m > n.Remarks.(1) In our examples of 
ellularly strati�ed algebras A with algebras Bl being groupalgebras of symmetri
 groups, if k is a �eld of 
hara
teristi
 not equal to twothen the Spe
ht modules have one-dimensional endomorphism rings [15, Corol-lary 13.17℄, and then Propositions 4.2 and 4.3 imply 
ondition (i) for the set of
ell modules.(2) In a standard system, 
ondition (i) implies that all Θ(j) are inde
omposable,a property that is not in general shared by the 
ell modules of an arbitrary
ellular algebra.(3) The partial order used above 
an be re�ned, for example into a total order, andtrivially (i)-(iii) hold for the re�ned order.(4) If the 
ell modules of a 
ellular algebra form a standard system then the dual
ell modules also form a standard system with respe
t to the dual order.



28 ROBERT HARTMANN, ANNE HENKE, STEFFEN KOENIG, ROWENA PAGETIt is well known that ∆-�ltration multipli
ities of modules over quasi-hereditary al-gebras are well-de�ned (see [2℄). More pre
isely, let A be a quasi-hereditary algebra.Denote by F(∆) the 
ategory of modules with a standard �ltration (∆-�ltration), andlet X ∈ F(∆). Then the number of times a parti
ular module ∆(j) o

urs as a sub-quotient in a ∆-�ltration of X is independent of the �ltration 
hosen. We sket
h anargument for this: Let X ∈ F(∆). Denote 
ostandard modules, whi
h o

ur in the�ltrations of inje
tive modules, by ∇(j). Take a ∆-�ltration of the module X, say
0 = X0 ⊆ X1 ⊆ . . . ⊆ Xt = X,and denote by [X : ∆(j)] the multipli
ity of ∆(j) o

urring in this �ltration of X.We indu
tively determine [X/Xi : ∆(j)] for i = t, t − 1, . . . , 0. Apply the fun
tor

HomA(−,∇(j)) to the short exa
t sequen
es
0→ Xi+1/Xi → X/Xi → X/Xi+1 → 0with 0 ≤ i ≤ t − 2. Note that HomA(−,∇(j)) is exa
t on F(∆) sin
e

ExtiA(∆(l),∇(j)) = 0 for j, l ∈ I, i ≥ 1. Hen
e
[X/Xi : ∆(j)] = [Xi+1/Xi : ∆(j)] + [X/Xi+1 : ∆(j)]for every i. Moreover, HomA(∆(l),∇(j)) = 0 unless l = j, in whi
h 
ase the Homspa
e is free of rank one over EndA(∆(j)) = EndA(∇(j)) = EndA(L(j)). This impliesthat
dimHomA(X,∇(j))/dim EndA(L(j)) = [X : ∆(j)].Hen
e [X : ∆(j)] is independent of the 
hosen �ltration of X.Assume an algebra C has a standard system Θ. Denote by F(Θ) the 
ategory of C-modules with a Θ-�ltration. Then by [5, Theorem 2℄, there exists a quasi-hereditaryalgebra S(C) with index set (I,≤) and standard modules ∆ su
h that F(∆) ≃ F(Θ)(as exa
t 
ategories). Here F(∆) denotes the 
ategory of S(C)-modules with a ∆-�ltration. The equivalen
e sends the standard module ∆(j) to Θ(j), and hen
e moduleswith a standard �ltration to modules with a 
ell �ltration. Using the equivalen
e

F(∆) ≃ F(Θ), this implies that any module X ∈ F(Θ) has well-de�ned Θ-�ltrationmultipli
ities.Theorem 10.2. Let A be 
ellularly strati�ed.(a) Then the 
ell modules of A form a standard system if and only if for ea
h l the
ell modules of Bl form a standard system.(b) Assume that for ea
h l the 
ell modules of Bl form a standard system. Then an
A-module with a 
ell �ltration has well-de�ned �ltration multipli
ities.Proof. Combine Proposition 4.3 and Corollary 7.4 with Propositions 8.1 and 8.2.Hemmer and Nakano have shown in [13, 4.2.1 and 4.4.1℄ that in 
ase of k having
hara
teristi
 di�erent from two or three, the Spe
ht modules (with the dominan
eorder) form a standard system for the group algebra of the symmetri
 group. Similarly,they show that for e ≥ 4, where e is least su
h that 1 + q−2 + q−4 + · · ·+ q−2e = 0, theHe
ke algebra Hl(q

−2) has a standard system 
omposed of Spe
ht modules. We 
an
ombine Theorem 10.2 with the results in [13℄ to say that if A is 
ellularly strati�ed with
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ellular algebras Bl being group algebras of symmetri
 groups (or He
ke algebrasrespe
tively) and the 
hara
teristi
 of k is di�erent from two and three (or e ≥ 4respe
tively), then A has well-de�ned 
ell �ltration multipli
ities. Under some mildassumptions this is the 
ase for the three main examples of this arti
le:Corollary 10.3. (a) Consider a Brauer algebra � with δ 6= 0 in the 
ase of r even� or a partition algebra � with δ 6= 0. Then its 
ell modules form a standard systemif char(k) 6= 2, 3. In this 
ase, modules with 
ell �ltrations have well-de�ned �ltrationmultipli
ities.(b) The 
ell modules of the BMW algebra � with δ 6= 0 in the 
ase of r even � form astandard system if e ≥ 4. In this 
ase, modules with 
ell �ltrations have well-de�ned�ltration multipli
ities.Remark. Note that Propositions 8.1 and 8.2 need no assumptions, apart from A being
ellularly strati�ed. Thus, the assumptions needed in these 
orollaries are only usedwithin the layers, not in between layers.11. The equivalen
e F(Θ) −→ F(∆) for 
ellular algebrasThe results of Dlab and Ringel [5, Se
tion 3℄ are for a standard system Θ in anyabelian 
ategory. Here we apply this theory, and provide additional detail, in the 
aseof a 
ellular algebra whose 
ell modules form a standard system. So let A be 
ellularwith 
ell modules Θ(λ) for λ in the index set (Λ,≤). Assume the 
ell modules of Aform a standard system. As mentioned in the previous se
tion, by [5, Theorem 2℄, thereexists a quasi-hereditary algebra S(A) with index set (Λ,≤) and standard modules ∆su
h that F(∆) ≃ F(Θ) (as exa
t 
ategories). The equivalen
e sends the standardmodule ∆(λ) to Θ(λ).Remark. It is known for a quasi-hereditary algebra that the full sub
ategory of modules�ltered by the standard modules of the algebra is 
losed under taking dire
t summands.Hen
e [5, Theorem 2℄ implies that F(Θ) is 
losed under taking dire
t summands. Bythe de�nition of 
ellular algebras, A is �ltered by 
ell modules, and so A, and all itsdire
t summands � that is, all proje
tive A-modules � lie in F(Θ).Example 11.1 (see Proposition 7.1 of [17℄). For a 
ellular algebra with 
ell modules
Θ, the 
ategory F(Θ) is in general not 
losed under taking dire
t summands. To obtainan example, take an algebra B whi
h is 
ellular with involution i and let X be some
B-module. De�ne M = X⊗k i(X). De�ne C to be the ve
tor spa
e B⊕M as a ve
torspa
e and identify C with the set of 2× 2 matri
es

{(aij) | a21 = 0, a11 = a22 ∈ B and a12 ∈M}.and de�ne a multipli
ation on C via matrix multipli
ation. Then C is a 
ellular algebrawith M a 
ell ideal in C and X a 
ell module of C. Choosing a de
omposable module
X whose dire
t summands are not 
ell modules of B, provides examples of 
ellularalgebras C with F(Θ) not 
losed under taking dire
t summands. For example, take asthe algebra B the algebra A/J1 appearing in Se
tion 9, and let X be the B-module
X = a⊕ a. In this 
ase C has the 
ell modules

Θ1 = [a, b], Θ2 = b and Θ3 = a⊕ a
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ontain the dire
t summand a of Θ3.De�nition 11.2. Let Y and M be left A-modules �ltered by 
ell modules. We say Yis relative proje
tive in F(Θ) if Ext1A(Y,N) = 0 for any module N ∈ F(Θ). Moreover,we say Y is the relative proje
tive 
over of M if(1) Y is relative proje
tive;(2) there is a surje
tion ǫ : Y →M with ker(ǫ) ∈ F(Θ);(3) for any other relative proje
tive Y ′ ∈ F(Θ) and any surje
tion ǫ′ : Y ′ → Mwith ker(ǫ′) ∈ F(Θ), there exists a map f : Y ′ → Y su
h that ǫ′ = ǫ ◦ fRemark. The property of being a relative proje
tive 
over is preserved under exa
tequivalen
es.Constru
tion of the algebra S(A). By [5, Se
tion 3℄, the elements of the standard system
{Θ(λ)} are in one-to-one 
orresponden
e with the inde
omposable relative proje
tive
A-modules in the 
ategory F(Θ) of Θ-�ltered A-modules. Let {Ypr(λ)} be the relativeproje
tive 
over of Θ(λ); here Ypr(λ) is 
onstru
ted using iterated universal extensions,for details see [5, Se
tion 3℄.Take Y =

⊕
Ypr(λ)aλ where the sum runs through all indi
es λ ∈ Λ and where aλ is
hosen to equal the dimension of L(λ) if su
h a simple A-module exists, or equals 1otherwise. Then the quasi-hereditary algebra S(A), de�ned in [5℄, 
orresponding to the
ellularly strati�ed algebra A is given by

S(A) = EndA(Y ).The fun
tors realizing the equivalen
e F(Θ) −→ F(∆). The equivalen
e of 
ategories
F(Θ) −→ F(∆) established in [5, Se
tion 3℄ is provided by the (
ovariant) fun
tor
F := HomA(Y,−) and the standard modules of the quasi-hereditary algebra S(A) are
∆(λ) = HomA(Y,Θ(λ)). Sin
e Y is relative proje
tive, F is an exa
t fun
tor on F(Θ),sending left A-modules to left S(A)-modules.The (inde
omposable) proje
tive A-modules are a subset of the (inde
omposable) rel-ative proje
tive A-modules. By the above 
hoi
e of the multipli
ities aλ, A is iso-morphi
 to a dire
t summand of Y , say Y = A ⊕ D for some left A-module D.Let f be the proje
tion from Y onto A, and 
onsider f as an element of S(A).Sin
e fS(A)f = fHomA(Y, Y )f = HomA(Y f, Y f) = HomA(A,A) ≃ A, the fun
-tor H = f · −, the multipli
ation by f from the left, is an exa
t fun
tor from the
ategory of left S(A)-modules to left A-modules.Lemma 11.3. If M ∈ F(Θ), then H (F (M)) ≃M. In parti
ular, H(∆(i)) = Θ(i) and
H : F(∆) −→ F(Θ) is an equivalen
e of 
ategories.Proof. If M ∈ F(Θ), then:

H (F (M)) = f · HomA(Y,M) = HomA(Y f,M) = HomA(A,M) ≃M.So, in parti
ular, f · ∆(i) = Θ(i). Sin
e F : F(Θ) −→ F(∆) is an equivalen
e of
ategories, H : F(∆) −→ F(Θ) is the inverse equivalen
e.
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t tothe standard modules. Using the equivalen
e F(Θ) ≃ F(∆), or arguing dire
tly fromthe de�nition of a standard system, it translates to algebras with a standard system.Without loss of generality we assume Λ = {1, 2, . . . ,m} with 1 < 2 < . . . < m.Lemma 11.4. Let A be a 
ellular algebra su
h that the 
ell modules Θ indexed by
Λ = {1, 2, . . . ,m} form a standard system. Let M be an A-module whi
h has a 
ell�ltration. Then there exists a 
ell �ltration

M = Mt ⊇Mt−1 ⊇ . . . ⊇M1 ⊇M0 = {0}and indi
es 0 < i1 < i2 < . . . < im = t su
h that for 1 ≤ u ≤ m :

Miu/Miu−1
≃

mu⊕

x=1

Θ(u).A module �ltration M = Mim ⊇ Mim−1
⊇ . . . ⊇ Mi1 ⊇ Mi0 = {0} whi
h is obtainedby the pro
ess des
ribed in the above Lemma is 
alled the 
ell 
hain of M . Unlike 
ell�ltrations, the 
ell 
hain is physi
ally unique.The quasi-hereditary stru
ture of S(A). As above, Dlab and Ringel 
onstru
t therelative proje
tive module Y whi
h is �ltered by 
ell modules. Let us relate the 
ell
hain of Y to the quasi-hereditary stru
ture of S(A): Take the 
ell 
hain Y = Xm ⊇

Xm−1 ⊇ . . . ⊇ X1 ⊇ X0 = {0}. An element α ∈ S(A) is a map α : Y → Y . Considerall maps α : Y → Y with im(α) ⊆ X1, the lowest 
ell layer of Y . This de�nes an ideal
I1 in S(A). Next, 
onsider all maps α : Y → Y with im(α) ⊆ X2, the two lowest 
elllayers of Y . This de�nes an ideal I2 in S(A). Continue this pro
ess to obtain a 
hainof two-sided ideals S(A) = Im ⊇ Im−1 ⊇ . . . ⊇ I1 ⊇ I0 = {0}. By [5℄ this 
hain is aheredity 
hain of S(A) = EndA(Y ).To obtain the 
ell 
hain of the left A-module A, we multiply the 
ell 
hain of Y by f :
A = Y f = Xmf ⊇ Xm−1f ⊇ . . . ⊇ X1f ⊇ X0f = {0}. Under the equivalen
e:

F (Xlf) = HomA(Y,Xlf) ≃ HomA(Y,Xl)f = Ilf,as S(A)-A-bimodules. If A is 
ellularly strati�ed then the 
hain of ideals whi
h realizes
A as an iterated in�ation, {0} = J0 ⊆ J1 ⊆ . . . ⊆ Jn = A, viewed as a 
hain of left
A-modules, may be re�ned to give the 
ell 
hain of A. So Jl = Xilf for some il ≥ l.12. Young modules and S
hur algebras for 
ellularly stratifiedalgebrasLet A be 
ellularly strati�ed with 
ell modules Θ(λ) for λ in the index set (Λ,≤).Assume the 
ell modules of A form a standard system. We now show that the modules
Ypr(λ) de�ned in the previous se
tion (based on results by Dlab and Ringel) satisfytypi
al properties of Young modules.De�nition 12.1. Let A be 
ellularly strati�ed with 
ell modules Θ(λ) for λ in theindex set (Λ,≤). Assume the 
ell modules of A form a standard system. Then themodules Ypr(λ) de�ned above are 
alled Young modules of the algebra A, the algebra
S(A) = EndA(Y ) is 
alled the S
hur algebra 
orresponding to A.
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h depend not only on the algebra A,but also on the standard system 
hosen.(b) Re
all that in a 
ellular algebra proje
tives � and not ne
essarily inje
tives � have a
ell �ltration. Instead of 
hoosing relative proje
tive 
overs Ypr with respe
t to F(Θ),we 
ould also have 
hosen relative inje
tive hulls Yin with respe
t to F(Θ∗). In this
ase Yin(λ) = Ypr(λ)∗.The Young modules de�ned here indeed satisfy the typi
al properties of Young modulesof symmetri
 groups: we know already that they are indexed by the same set as the 
ellmodules; they are inde
omposable sin
e via the equivalen
es F or H they 
orrespondto the proje
tive inde
omposable S(A)-modules; they are isomorphi
 pre
isely whentheir labels are the same; they are �ltered by 
ell modules with the following propertytranslated from quasi-hereditary algebras through the equivalen
e F(Θ) ≃ F(∆):Proposition 12.2. The Young module Ypr(λ) is �ltered by 
ell modules where the 
ellmodule Θ(λ) o

urs pre
isely on
e and all other 
ell modules Θ(µ) o

urring in a 
ell�ltration of Ypr(λ) satisfy µ > λ.A 
ellular algebra A is quasi-hereditary if and only if the number of 
ell modules of Aequals the number of simple A-modules, see [20℄; for 
ellular algebras in general, thereare more 
ell modules (parameterized in the following by Λ) than simple or proje
tiveinde
omposable modules (parameterized in the following by Λsimple ⊆ Λ). In the 
ase ofa 
ellular algebra whose 
ell modules form a standard system, we determine the labelsfor whi
h a Young module is a proje
tive inde
omposable module.Proposition 12.3. Suppose that A is a 
ellular algebra su
h that the 
ell modules forma standard system, and assume the notation as above. Then Ypr(λ) is a proje
tive A-module if and only if λ ∈ Λsimple. In this 
ase Ypr(λ) is the proje
tive 
over of thesimple A-module LA(λ).Proof. Let S(A) be the S
hur algebra 
orresponding to A, as 
onstru
ted in Se
-tion 11. The equivalen
e f · − : F(∆) → F(Θ) sends inde
omposable proje
-tive S(A)-modules to inde
omposable, relative proje
tive A-modules in F(Θ). Write
1S(A) = f +(1−f), and de
ompose both idempotents into a sum of pairwise orthogonalprimitive idempotents

f =
∑

µ∈Λsimple fµ,

1− f =
∑

µ∈Λ\Λsimple gν .By 
onstru
tion of S(A) in Se
tion 11, fµ and gν are inequivalent. The equiva-len
e f · − sends the S(A)-proje
tive module S(A)fµ to the proje
tive A-module
fS(A)fµ = (fS(A)f)fµ = Afµ. And every inde
omposable proje
tive A-module o
-
urs as some Afµ. Hen
e fS(A)gν 
annot be proje
tive. Moreover, S(A)fµ is theproje
tive 
over of ∆(µ) and of LS(A)(µ). By exa
tness of the S
hur fun
tor f · −, themodule Afµ is the proje
tive 
over of f∆(µ) = Θ(µ) and of fLS(A)(µ) = LA(µ). Hen
e
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e provided by the S
hur fun
tor indu
es a bije
tion between the inde-
omposable proje
tive S(A)-modules asso
iated with idempotents fµ and the relativeproje
tive 
overs Ypr(µ) = Afµ of Θ(µ), for µ ∈ Λsimple.Remark. Note that we also 
ould have used the proof of 3.7(iii) in [9℄ where it hasbeen shown not only that ea
h proje
tive inde
omposable module P (λ) is �ltered by
ell modules but also that in this �ltration the top quotient is the 
ell module Θ(λ).Corollary 12.4. Let k be a �eld of 
hara
teristi
 not equal to 2 or 3. Let A be a
ellularly strati�ed k-algebra with strati�
ation data (Bl, Vl) where ea
h Bl is a groupalgebra of a symmetri
 group. Choose as 
ell modules the dual Spe
ht modules. Then aYoung module Ypr(λ) is a proje
tive A-module if and only if λ is a p-restri
ted partition.Proof. Ypr(λ) is a proje
tive A-module if and only if there is a simple module LA(λ);this exists if and only if we have a simple module LB(λ); but B is a group algebra of asymmetri
 group, hen
e the simple module LB(λ) exists if and only if λ is p-restri
ted.Remarks (a) If we 
hoose as our standard system the Spe
ht modules (instead of thedual Spe
ht modules), then the Young module Ypr(λ) is proje
tive if and only if λ is a
p-regular partition.(b) It has been shown in [14℄ that the r-fold tensor spa
e does not �t into a theory ofYoung modules for Brauer algebras, sin
e tensor spa
e in general does not have a 
ell�ltration. Here we have now seen that it is possible to �nd a bimodule Y whose dire
tsummands are the Young modules, and whose endomorphism ring de�nes the S
huralgebra and, as we will see in the next se
tion, su
h that S
hur-Weyl duality holds withrespe
t to this bimodule.(
) Let us examine the quasi-hereditary S
hur algebra S(A) in the 
ase of Braueralgebras more 
losely. In this 
ase, the de�nition of Young modules above agrees withthat in [12℄ (see De�nition 15 and the proof of Theorem 21 in [12℄). We 
an write
Y =

⊕
l Yl, where Yl is the sum of the relative proje
tive 
overs of the 
ell modules

Gl(Θ), for Θ running through the 
ell modules of Bl (with appropriate multipli
ities).We will see that the `diagonal subalgebra' EndA(Yl) of S(A) has a quotient Moritaequivalent to the 
lassi
al S
hur algebra for the group algebra Bl of the symmetri
group. In fa
t, let e = el, and let J ′ = Jl−1 be the ideal for the next lower layer, so that
Bl ≃ eAe/eJ ′e. Then, using the remarks pre
eding Proposition 14 in [12℄, we have

0→ J ′Yl → Yl → Ŷl ⊗ Vl → 0,where Ŷl denotes the sum of the Young modules Y λ for the group algebra Bl withappropriate multipli
ities. Sin
e these modules all have 
ell �ltrations and Yl is relativeproje
tive, applying HomA(Yl,−) gives
0→ HomA(Yl, J

′Yl)→ EndA(Yl)→ HomA(Yl, Ŷl ⊗ Vl)→ 0.The appli
ation of HomA(−, Ŷl⊗Vl) to the same short exa
t sequen
e yields EndA(Ŷl⊗

Vl) ≃ HomA(Yl, Ŷl ⊗ Vl), sin
e Proposition 8.1 implies the third term is zero. Now,
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(Ŷl).Hen
e we obtain that EndBl

(Ŷl) is the quotient of EndA(Yl) by HomA(Yl, J
′Yl); thisquotient is Morita equivalent to the 
lassi
al S
hur algebra.(d) The module Y is not ne
essarily self-dual, unlike in the symmetri
 group 
ase:When δ 6= 0 if r is even, then B := BC(r, δ) is quasi-hereditary (see [19℄, Thm 3.4).Then the Young modules of B are all proje
tive inde
omposable by Prop 11.3, andpre
isely all proje
tive inde
omposable modules o

ur in this way. The duals of theYoung modules are then pre
isely all the inje
tive inde
omposable modules. This set ofmodules will only be the set of Young modules if the algebra is self-inje
tive. Choose δand r (see Rui [23℄) su
h that B is not semisimple. Sin
e, an algebra that is both quasi-hereditary and self-inje
tive will be semisimple, it follows that B is not self-inje
tive.Hen
e some Young modules of B will not be self-dual.13. S
hur-Weyl duality for 
ellularly stratified algebrasSuppose A is 
ellularly strati�ed with a standard system of 
ell modules, indexed by aset Λ. We show that S
hur-Weyl duality holds between the algebras A and S(A) withrespe
t to the module Y .Remark. An algebra A is quasi-hereditary if and only if the algebra Aop is quasi-hereditary. In su
h a 
ase the standard and 
ostandard modules of A and Aop arerelated as follows: ∆A = ∇∗

Aop and ∇A = ∆∗
Aop where ∗ denotes the k-dual of amodule.Theorem 13.1. Suppose A is 
ellularly strati�ed with index set Λ and all of the algebras

Bl have standard systems of 
ell modules. Then:(1) The algebra A also has a standard system of 
ell modules, and multipli
ities in
ell �ltrations are well-de�ned.(2) There exists a quasi-hereditary algebra S(A) with the same partially orderedindex set Λ su
h that the following statements hold true:(a) The 
ategory F(Θ) of A-modules with 
ell �ltrations is equivalent, as anexa
t 
ategory, to the 
ategory of ∆-�ltered S(A)-modules.(b) The 
ategory of A-modules with 
ell �ltrations has relative proje
tive 
overs,the Young modules. The algebra S(A) is the endomorphism algebra of adire
t sum Y of a 
omplete set of relative proje
tive obje
ts in F(Θ).(
) S
hur-Weyl duality holds between A and S(A). The faithfully balan
edbimodule a�ording the double 
entralizer property between A and S(A) isthe dire
t sum Y of the Young modules.Proof. The �rst statement is 
ontained in Theorem 10.2 and the �rst two parts ofthe se
ond statement have been shown in Se
tions 10 and 11, following [5, Se
tion 3℄.This leaves only the �nal part. By de�nition, S(A) = EndA(Y ) and Y =
⊕

Ypr(λ)aλ ,where aλ is 
hosen to equal the dimension of L(λ) if su
h a simple A-module exists,or equals 1 otherwise, and where the sum runs through all indi
es λ ∈ Λ. So Y isan A-S(A)-bimodule, and half of the double 
entralizer property holds by de�nition.We show the other half: Note that the proje
tive inde
omposable A-modules are a
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tive inde
omposable A-modules. Hen
e A is isomorphi
to a dire
t summand of Y , say Y = A ⊕ D for some left A-module D. Let f be theproje
tion from Y onto A, and 
onsider f as an element of S(A). Clearly f2 = f , and
Y = HomA(A,Y ) = HomA(Y f, Y ) = fS(A) as right S(A)-modules; hen
e

A = HomA(A,A) = fS(A)f = HomS(A)(fS(A), fS(A)) = EndS(A)(Y ),and the double 
entralizer property holds.Remark. We examine the 
onne
tion between S
hur-Weyl duality and the Dlab-Ringelequivalen
e in more detail. Let A be a 
ellular algebra whose 
ell modules Θ forma standard system. Let C be any quasi-hereditary algebra with standard modules ∆and assume that there exists an exa
t equivalen
e F(Θ) ≃ F(∆). Then the relativeproje
tive C-modules with respe
t to F(∆) are pre
isely the proje
tive C-modules Pi,say 1 ≤ i ≤ t. They 
orrespond under the equivalen
e to the relative proje
tive A-modules Yi in F(Θ). Let C = ⊕t
i=1P

ni

i and set Y = ⊕t
i=1Y

ni

i . The equivalen
e impliesthat HomC(Pi, Pj) ≃ HomA(Yi, Yj) and hen
e
C = EndC(C) ≃ EndA(Y ).Sin
e A is 
ellular and its 
ell modules form a standard system, all proje
tive inde
om-posable A-modules are relative proje
tive inde
omposable modules in F(Θ). Assumethat these are Y1, . . . , Yl, for some index l ≤ t. Then A = ⊕l

i=1Y
mi

i with mi ≥ 1.Assume that mi ≤ ni for all 1 ≤ i ≤ l (otherwise one 
an repla
e C by a Moritaequivalent algebra). Then A is isomorphi
 to a dire
t summand of Y , say Y = A⊕Dfor some left A-module D. Let f be the proje
tion from Y onto A, and 
onsider
f ∈ EndA(Y ) as an element of C. Clearly f2 = f , and

Y = HomA(A,Y ) = HomA(Y f, Y ) = fHomA(Y, Y ) ≃ fCas right C-modules; hen
e
A = HomA(A,A) = HomA(Y f, Y f) = fCf = HomC(fC, fC) ≃ EndC(Y ),and the double 
entralizer property holds.Referen
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