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Abstract

Non-orthogonal multiple access (NOMA) can improve the spectrum efficiency

and enable massive connectivity in future wireless communications systems by

multiplexing multiple users in a non-orthogonal manner. Many previous works in

power-domain NOMA addressed research problems from the perspective of the

channel capacity, assumed perfect successive interference cancellation (SIC) and

considered the pairing of users with very distinct channel conditions. This can

yield inefficient power allocations in terms of sum-rate. Further, the assumption

of perfect SIC is not realistic in practical systems, where SIC error propagation

greatly impacts the achievable bit error rate (BER) at the receivers.

By applying NOMA to multicarrier-based schemes, the capabilities of both

can be enhanced through resource allocation, i.e. the assignment of radio re-

sources to users under an optimization objective. However, resource allocation

in multicarrier NOMA systems may lead to a nondeterministic polynomial time

(NP)-hard problem requiring exhaustive search, which has prohibitive compu-

tational complexity. Instead, efficient algorithms that provide a good trade-off

between system performance and implementation practicality are needed.

The contributions presented in this thesis are two-fold. First, new performance

bounds on the BER of NOMA systems are provided. And second, a novel resource

allocation scheme is presented, which can achieve a performance close to optimal

with low computational complexity. The contributions are summarized as follows.
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First, theoretical BER expressions are presented for multi-layer, multi-level

quadrature amplitude modulation (QAM) in NOMA. To the best of the author’s

knowledge, this work represents the first attempt in developing such expressions.

The optimal value of the power allocation factor in terms of BER is analytically

derived. Further, the theoretical BER expressions are used for calculating the ra-

tios of users’ channel gains that maximize the sum-rate. Unlike previous research

in NOMA, it is demonstrated that, in NOMA systems with QAM, the channel

gains of two NOMA users must be of approximately the same order of magni-

tude in order to guarantee that inter-user interference can be overcome at the

receivers. Additionally, accurate BER approximations are presented in the form

of exponential functions. These are used for finding numerical boundaries for the

values of the channel gain ratios of NOMA users that fulfill the BER constraints.

Second, the contributions on BER boundaries are applied to develop of a novel

resource allocation scheme for multicarrier NOMA. A user pairing algorithm of

quasi-linear complexity with respect to the number of users is proposed, based on

the findings about NOMA optimal channel gain ratios and channel gain gaps. In

contrast, the complexity of exhaustive search is of the order of the squared num-

ber of users. The problem of power and data rate allocation is solved by applying

a Lagrangian optimization method based on the previously derived BER expo-

nential approximations. The optimization result is applied to propose a novel

iterative resource allocation (IRA)-data rate selection (DRS) algorithm. Unlike

existing works, continuous power levels and discrete modulation schemes are con-

sidered. Numerical simulations demonstrate that IRA-DRS yields a sum-rate

performance close to optimal, providing an excellent trade-off between computa-

tional complexity and performance. IRA-DRS benefits from multi-user diversity

in terms of achievable sum-rate, number of iterations required for convergence,

and degrees of freedom in choosing different combinations of modulation levels.
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1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . 12

1.1 Motivation

Over the last few years, the evolution of wireless networks has been driven by

the need for the fifth generation (5G) of cellular systems to provide a 1000-fold

increase in capacity with respect to fourth generation (4G) long-term evolution

(LTE) networks [4, 5]. While the deployment of 5G cellular systems is ongoing,

considerable research efforts are already being directed to beyond-5G wireless

networks [6–8].
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Chapter 1. Introduction

Beyond-5G wireless networks should support the intelligent information soci-

ety of 2030, including the mobile Internet and the Internet of Everything (IoE)

[9, 10]. These will be two major drivers for beyond-5G wireless networks that

will enhance 5G vertical applications and enable pervasive computing scenarios.

The information society of 2030 will be highly digitized, intelligence inspired, and

globally data driven [1]. Meanwhile, an unprecedented proliferation of new IoE

services, devices and connections is already occurring. Some examples of IoE

applications include extended reality services, telemedicine, flying vehicles and

connected autonomous systems [11].

It is envisioned that, among other requirements, beyond-5G systems in the

2030s will have to provide ten times the connectivity density of 5G, reaching

up to 107 devices/km2, with an area traffic capacity of up to 1 Gb/s/m2, along

with up to a 100-fold increase in network energy efficiency and a 10-fold increase

in spectrum efficiency [1], as illustrated in Figure 1.1. Massive machine-type

communications networks will be occupied by the traffic of billions of devices,

posing a major challenge in the design of beyond-5G networks [12].

Since multiple access techniques allow multiple users to share communication

resources, their importance is paramount in the design of wireless communications

networks. From the first generation (1G) of cellular systems to 5G, diverse ortho-

gonal multiple access (OMA) techniques have been utilized, namely frequency di-

vision multiple access (FDMA) [13], time division multiple access (TDMA) [14],

code division multiple access (CDMA) [15] and orthogonal frequency division

multiple access (OFDMA) [16]. However, the use of OMA schemes introduces

additional challenges to wireless systems with a massive number of devices, given

that the available orthogonal resources may not be sufficient to support this huge

number of devices. Many of these connections only require sporadic transmissions

with very diverse data rate and latency requirements. Therefore, allocating re-

2
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Requirements Technologies Applications

Reliability: 99.9999%

Data rate: 1 Tbps

Latency < 1ms

Mobility: 1000 km/h

Frequency: 1 THz

Massive scale 

connectivity

mmWave and THz 

communications

Metasurfaces

Tactile internet

Optical wireless 

communications

Backscatter 

communications

Drone-based 

communications

Artificial intelligence

Wearables

Smart cities

eHealth

Smart transportation

Tracking

... ... ...

Beyond-5G  

wireless systems

Figure 1.1: Typical scenarios and capabilities of beyond-5G wireless networks
[1, 2].

source blocks to each one of these connections in an orthogonal manner is neither

feasible nor efficient [17]. In contrast, non-orthogonal multiple access (NOMA)

systems possess the ability to serve multiple devices in one resource block, thus

addressing the large explosion of connected users forecast in the massive machine-

type communications and IoE paradigms of beyond-5G networks. In particular,

3



Chapter 1. Introduction

NOMA introduces the following attractive advantages for beyond-5G networks

in comparison with OMA schemes [18]:

• Improved spectral efficiency and energy efficiency [19–21], given that the

same bandwidth can be shared among multiple users.

• Improved user fairness [19], since multiple users can be accommodated in

the same resource block with guaranteed minimum data rate requirements.

• Low transmission latency [22], as NOMA allows for more flexible user

scheduling schemes as well as grant-free transmissions.

• Higher cell-edge throughput, by flexibly changing the fraction of power

allocated to cell-edge users [23] and/or by applying a cooperative relaying

scheme [24] in order to support a certain quality of service.

One of the major benefits of NOMA is that it can be easily combined with

other existing and emerging technologies [25]. This can contribute to further in-

creasing the scalability, spectral efficiency and energy efficiency of future wireless

communication networks. In [26], the authors provided an interesting survey on

the combination of NOMA with emerging technologies such as massive multiple-

input multiple-output and millimeter wave communications [27–31], cooperative

communications [32], cognitive communications [33], physical layer security [34],

energy harvesting [35], visible light communications [36] and mobile edge comput-

ing [37]. Moreover, NOMA can be realized in the downlink and the uplink [38],

and in various domains such as power, code [39–41], space [42] or combinations

of them [43–45]. Figure 1.2 presents a simple classification of NOMA techniques.

Power-domain NOMA has been regarded as the most promising NOMA scheme

[46, 47], and therefore it is the focus of the work in this thesis. In power-domain

NOMA, multiple access is achieved in a non-orthogonal manner by using super-

position coding (SC) at the transmitter and successive interference cancellation
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Figure 1.2: Classification of NOMA techniques [3].

(SIC) at the receiver [48]. Resource blocks can be allocated to multiple users

in the same time slot through power-domain multiplexing. Hence, NOMA can

provide service to a greater number of users than other OMA technologies. Fur-

ther, compared to OMA, NOMA is able to offer a higher system throughput and

accommodate more devices in major scenarios of beyond-5G wireless networks,

such as massive machine-type communications, enhanced mobile broadband and

ultra-reliable low latency communications [49].

1.2 Challenges

For the variety of reasons stated in Section 1.1, NOMA has received considerable

attention as a potential multiple access technique for 5G systems over the last

few years. However, up to this date, the relative performance gain of NOMA over

OMA is still smaller than the cost of its implementation complexity. Although

NOMA was considered as a study item in the 3rd generation partnership project

(3GPP) for 5G new radio, it was decided not to continue with it as a work item.
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Instead, it was decided to leave it for beyond-5G systems, where the proliferation

of new use cases with an ultra-dense number of devices may be motivating for

the use of NOMA [50].

Therefore, in order for NOMA to fulfill the challenges of beyond-5G scenarios

with ultra dense devices, it is necessary to address some further research cha-

llenges. Previous works demonstrated that, in terms of achievable sum-rate, it

is preferable to pair two NOMA users with very distinct channel conditions [51].

This result has since been applied to numerous researches. However, the appli-

cation of this theoretical result might turn unrealistic in scenarios where some

users have a very poor channel link. In a NOMA setting, these users would

have to be assigned most of the NOMA power share in order to enable success-

ful decoding at the receiver. Such power allocations are inefficient in terms of

the sum-rate because most of the power is allocated to a user with a very weak

channel condition.

Previous works such as [3,51] also assume perfect SIC at the receivers. How-

ever, in practical wireless communications systems, the use of SIC can result in

error propagation as successive layers of information are removed at the receivers.

This results in decoding errors being carried over from one decoding stage to the

next, greatly impacting the achievable BERs at the receivers. This can, in turn,

make the application of NOMA unfeasible. Therefore, it is of paramount impor-

tance to understand the impact of performance optimization parameters, such as

the transmit power and the power allocation factor, on the achievable BER in

NOMA. Based on the need for considering more realistic scenarios in NOMA and

on the impact of imperfect SIC on the system performance in terms of BER, new

performance bounds on the BER of NOMA systems are presented in this thesis.

Moreover, optimal user pairing in NOMA –i.e. the selection of the optimal set

of NOMA users to be multiplexed into the same radio resource– becomes specially
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challenging for systems with a large number of users, such as IoE settings, because

it requires a large channel state information acquisition and feedback overhead, as

well as hugely computationally demanding optimization algorithms [50]. There-

fore, there is a need to improve the practicality of implementation of user pairing

algorithms. Most existing user pairing schemes in the literature considered so-

lutions based on broadly classifying users according to their channel gains and

randomly selecting users from a group according to a system optimization me-

tric. Albeit of low complexity, these approaches yield a performance far from the

optimal. In this thesis, knowledge about the BER performance bounds is applied

to propose a user pairing algorithm of quasi-linear complexity.

In addition, the spectral efficiency of NOMA needs to be increased in order

to provide larger gains than its OMA counterpart. Nevertheless, the capabili-

ties of NOMA can be further extended through its combination with multicarrier

schemes. The application of NOMA to OMA-based multicarrier schemes offers a

a lower implementation complexity than purely NOMA-based systems, and there-

fore a better trade-off between performance and complexity. The key to achieve

the full potential of multicarrier NOMA is resource allocation, which carries out

an assignment of radio resources to users with a certain objective, for example

maximizing the system throughput or minimizing the transmit power. Therefore,

it is necessary to investigate how to reduce the computational complexity of re-

source allocation in multicarrier NOMA systems, while achieving a performance

close to optimal.

Resource allocation in multicarrier NOMA systems requires the joint opti-

mization of subcarrier allocation, power allocation and data rate assignment

[52–54]. However, many resource allocation problem formulations in NOMA lead

to a mixed-integer, nondeterministic polynomial-time (NP)-hard problem [55].

Hence, the optimal solution can only be found through exhaustive search, which
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is a combinatorial optimization problem. One approach to select the best user

set is to search over all possible combinations of users, then select the one that

provides the maximum sum-rate on each subcarrier [56]. However, this causes

prohibitive computational complexity. A more practical approach is to separate

the problems of subcarrier allocation and power allocation, fix one of them and

optimize the other [55], [57]. This leads to suboptimal but practical and efficient

solutions. In summary, novel resource allocation schemes are needed in NOMA

which are capable of providing a performance close to optimal in a practical and

simplified manner. In this thesis, a novel resource allocation scheme that pro-

vides a performance close to optimal with a reduced computational complexity

is proposed.

1.3 Contributions

Despite of the many potentials of NOMA, much work is still needed to further

increase its performance and reduce its implementation complexity. This can be

achieved to a certain extent through the application of NOMA to subcarrier-based

schemes. Further, it is necessary to study NOMA under more realistic assump-

tions, such as imperfect SIC receivers and their impact on the BER performance.

The contributions presented in this thesis are two-fold. First, new performance

bounds on the BER of NOMA systems are provided. And second, a novel resource

allocation scheme is presented, which can achieve a performance close to optimal

with low computational complexity. These are summarized below.

1.3.1 BER Performance Bounds in NOMA

First of all, theoretical BER expressions are presented for the BER in NOMA,

assuming multi-layer, multi-level QAM. To the best of the author’s knowledge,
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this work represents the first attempt in developing such expressions, with pre-

vious literature focusing mainly on fixed-level modulation. The analytical BER

expressions are used for deriving the optimal value of the power allocation factor

for which the BER is minimized. The optimal power allocation factor value is

also the value that minimizes the transmit power in BER-constrained NOMA. It

is proved that the optimal value of the power allocation factor is dependent on

the modulation levels assigned to each user.

The theoretical BER expressions are used for calculating the optimal channel

gain ratios for a pair of NOMA users, i.e. the ratios of channel gains that maxi-

mize the achievable sum-rate for a given BER constraint. Unlike previous research

in NOMA [51], this work demonstrates that, in NOMA systems with practical

QAM, the channel gains of two NOMA users must be of approximately the same

order of magnitude in order to guarantee that the effect of inter-user interference

can be overcome at the receivers, specially when the modulation levels assigned

to both NOMA users are similar.

However, the derived BER expressions are in terms of products of the Q-

function. These expressions are neither easily differentiable nor easily invertible

in their arguments, and it becomes complicated to apply them to developing a

resource allocation strategy. Therefore, accurate BER approximations are pre-

sented in the form of exponential functions. The BER exponential approxima-

tions are used for finding numerical boundaries for the values of the channel gain

ratios of NOMA users that fulfill BER constraints for different combinations of

modulation levels; any pair of NOMA users whose channel gain ratio falls outside

the numerical boundaries for a given modulation level cannot meet the individual

BER constraints.
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1.3.2 Resource Allocation in NOMA

In terms of the subcarrier allocation problem, the findings about optimal channel

gain ratios and channel gain gaps are applied to propose a user pairing algorithm

that achieves quasi-linear complexity with respect to the number of users. In

contrast, the complexity of exhaustive search procedures is of the order of the

squared number of users. Other sub-optimal user pairing schemes in the literature

[55, 56] also achieve a much larger computational complexity than the algorithm

presented in the thesis.

Further, BER exponential approximations are used for solving the problem of

power and data rate allocation by applying a Lagrangian optimization method

[58], with the objective of maximizing the sum-rate. The optimization result

is applied to proposing a novel iterative resource allocation (IRA)-data rate se-

lection (DRS) algorithm for BER-constrained multicarrier NOMA systems, with

the objective of maximizing the sum-rate. Unlike existing works, continuous

power levels and discrete modulation schemes are considered in order to achieve
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a performance close to optimal with reduced computational complexity. Through

numerical simulations, it is demonstrated that the proposed resource allocation

scheme for multicarrier NOMA systems yields a performance close to optimal,

and it outperforms other suboptimal schemes such as fractional transmit power

control (FTPC) [56]. Therefore, IRA-DRS yields an excellent trade-off between

sum-rate performance and computational complexity. Further, the proposed al-

gorithm greatly benefits from multi-user diversity in terms of achievable sum-rate,

number of iterations required for convergence, and degrees of freedom in choosing

different combinations of modulation levels at each subcarrier that yield the same

sum-rate.
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Vehicular Technology Conference (VTC-Fall), 2020.

3. E. Carmona Cejudo, H. Zhu, and J. Wang, ”Resource Allocation in Multi-

carrier NOMA Systems Based on Optimal Channel Gain Ratios,” submitted

to IEEE Transactions on Wireless Communications (under review), 2020.

4. E. Carmona Cejudo, H. Zhu, and J. Wang, ”Resource Allocation in BER-
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1.4 Structure of the Thesis

The remainder of this thesis is organized as follows.

• Chapter 2 offers an overview of the basic principles of OMA and NOMA

techniques, with a special emphasis on multicarrier-based systems, SC and

SIC.

• Chapter 3 presents research on the performance bounds on the BER of

NOMA systems. Analytical BER derivations are obtained, along with their

exponential approximations, numerical values of optimal channel gain ratios

in NOMA, and boundaries for the allowable channel gap conditions for the

fulfillment of BER constraints in NOMA.

• Chapter 4 presents research on resource allocation in multicarrier NOMA

systems, based on the optimal channel gain ratios that yield the maximum

sum-rate for a given BER constraint. User pairing and power and data rate

allocation schemes are proposed. Their close-to-optimal performance and

low computational complexity are demonstrated through numerical simu-

lations.

• Finally, Chapter 5 provides a summary of the work presented in this thesis

and highlights its main conclusions. In addition, potential future research

directions are discussed.
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Multiple access techniques allow multiple users to share communication re-

sources. Therefore, their importance is paramount in the design of modern wire-

less communication systems, and most specially in the paradigms of beyond-5G

networks with ultra-dense number of users.

Over the past few decades, diverse multiple access techniques have been

adopted by wireless communications systems from 1G to 4G, namely FDMA,
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TDMA, CDMA, and OFDMA. All of these techniques belong to the category of

OMA schemes, where the allocation of resources to users is done in an orthogonal

manner, in the time, frequency or code domain, or their combinations. There-

fore, the number of supported users in OMA schemes is limited by the number

of orthogonal resources in the system [59].

In contrast, NOMA schemes allocate resources to users in a non-orthogonal

manner, by multiplexing several users in the power, code, or space domain, or

their combinations. Therefore, NOMA-based systems can provide service to a

larger number of users than OMA-based systems, thus addressing the large ex-

plosion of connected users forecast in beyond-5G networks.

However, the benefits introduced by NOMA come at a high cost of increased

implementation complexity. A good trade-off between system throughput and

complexity can be achieved through the implementation of hybrid NOMA-OMA

systems, such as OFDM-based multicarrier NOMA. In the following, a brief

overview of the main OMA and NOMA technologies is presented, and the role of

multicarrier NOMA in enabling beyond-5G systems is discussed.

The rest of this Chapter is organized as follows. The basic principles of OMA

are summarized in Section 2.1, with a special emphasis in OFDMA systems.

Section 2.2 introduces the theoretical principles of NOMA with SC and SIC and

multicarrier NOMA systems.

2.1 Basic Principles of OMA

Conventional OMA schemes allocate orthogonal resources to users either in the

time, frequency or code domain, or their combinations. In TDMA, an exclusive

time slot is allocated to each user, and transmissions occupy the entire band-

width. In FDMA, the spectrum is divided up into orthogonal channels, and each

14



Chapter 2. Overview of Multiple Access Techniques

frequency resource is allocated to a single user. In CDMA, channels are defined by

code, and users are assigned with different codes that have low cross-correlation

properties [60]. Figure 2.1 represents the orthogonal division of resource blocks in

TDMA, FDMA and CDMA. The major benefit of orthogonality in OMA schemes

is that multi-user detection can be achieved with low-complexity receivers [59],

since inter-user interference is greatly reduced due to the orthogonality principle.

time

frequency

TDMA

time

frequency

FDMA

time

frequency

CDMA

Figure 2.1: Orthogonal division of resource blocks in TDMA, FDMA and CDMA.

2.1.1 OFDMA

4G wireless systems adopted OFDMA, which is based on OFDM. In OFDM sys-

tems, the broadband channel is divided into a number of flat-fading narrowband

channels.

In downlink OFDMA, the base station transmits data to a set of users whose

channel conditions are time and frequency variant. Due to the scarcity of spec-

trum and power resources, these must be allocated most effectively at the trans-

mitter, in order to optimize some system performance metric. This objective

is achieved through resource allocation, which comprises three basic tasks in

OFDMA systems [16]:

• Subcarrier allocation, consisting in allocating users to subcarriers in an
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efficient manner, according to factors such as the channel conditions of

users.

• Data rate allocation, consisting in varying the number of transmitted bits

per OFDM symbol in each subcarrier, according to the objective perfor-

mance metric and the instantaneous subchannel quality, while maintaining

an acceptable quality of service.

• Power allocation, consisting in the effective distribution of power over sub-

carriers, so as to maintain the link quality and optimize the objective per-

formance function.

It was shown in [61] that, in OFDMA systems with mutually independent sub-

channels among users, the best performance is achieved by allocating each sub-

carrier to the user with the best channel condition over that subcarrier, and

by allocating transmit power to subcarriers by following the water-filling prin-

ciple [62].

2.2 Basic Principles of NOMA

Power-domain NOMA has been regarded as the most promising NOMA scheme

[46,47], and therefore it is the focus of the work presented in this thesis.

Power domain NOMA –referred to as NOMA hereafter– transmits several

users’ signals on the same time, frequency and spatial resources by superposing

them in the power domain through the use of SC techniques [63]. The through-

put of each NOMA user is controlled through suitable adjustment of the power

allocation factor and modulation level at the transmitter.

Signals of multiple users are separated at the receivers by using advanced

multi-user detection and demodulation mechanisms based on the SIC technique.
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Figure 2.2: 2-user NOMA downlink scenario with SC at the transmitter and SIC
at the receiver.

SIC receivers exploit differences in received signals strengths to iteratively decode

each user’s data stream [3, 64]. NOMA with SIC can significantly enhance the

throughput of users with a poor channel condition, and thus the user fairness,

compared to OMA [65]. Figure 2.2 represents a 2-user NOMA downlink scenario

where SC is applied at the transmitter and SIC is employed at the receiver.

2.2.1 Superposition Coding

At the transmitter, the superposition of users’ signals in NOMA can be achieved

through the use of SC schemes [63]. SC was first proposed in [64] as a technique

for simultaneously transmitting data to several receivers from a single transmitter

[66,67].

A SC scheme can be viewed as a multiplexing technique where a high through-

put is achieved by simultaneously transmitting data in the form of superimposed

layers. In order to make SC practical, information relevant to each user must

be encoded at the transmitter, while applying a different layer-specific amplitude

through power control. For example, in a two-user scenario, two point-to-point

encoders at the transmitter map each user’s input data stream to complex-valued

sequences of the two-user superposed signal [3].
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Figure 2.3: Example of SC encoding, where Es = 1 and α1 + α2 = 1.

Figure 2.3 represents the superposition of two quadrature phase shift keying

(QPSK)-modulated symbols after applying SC, where the average symbol energy

Es is normalized to one in both superposed layers as well as in the resulting

superposed constellation. In Figure 2.3, more power is allocated to user 1 and,

as a result, the Euclidean norm of vector x1 is larger than the Euclidean norm

of vector x2. Further, the Euclidean vector of symbol x{1,2} is x{1,2} = x1 + x2,

and its Euclidean norm is calculated as ||x{1,2}||2=
√
||x1||22+||x2||22. Note that

boldface symbols denote vectors, and ||·||2 denotes the Euclidean norm of a vector.

Each user’s transmit constellation can be considered as an independent infor-

mation layer. During superposition, a different power allocation factor is applied

to each layer. After SC, the superposed contellation is formed by non-uniformly

spaced signal points, where the position of signal points depends on the power

allocation factor allocated to individual layers during superposition.

The throughput of each NOMA user is controlled through suitable adjust-

ment of the power allocation factor and the modulation level at the transmitter.

Further, every layer of information offers a different degree of protection against

errors [68], [69], which can also be adjusted through the power allocation factor

and the modulation level for each user.
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2.2.2 Successive Interference Cancellation

User demultiplexing at the receiver side is ensured in NOMA through the alloca-

tion of an adequate power difference between paired users during transmission,

and the application of SIC in the power-domain at the receivers, by exploiting the

differences in signal strength among the data streams of interest. Typically, the

user who enjoys a better channel condition is allocated with less power than the

user with a poorer channel condition. However, this is not always the case [17],

since the power level must be adjusted according to the target data rates at the

users.

The order of SIC decoding depends exclusively on the magnitude of the users’

channel gains [17,70], independently of power allocation. To achieve the capacity

region, SIC needs to be carried out in increasing order of users’ channel gain

magnitudes [17]. Following the example in Figure 2.3, SIC decoding at user 2 is

represented in Figure 2.4, where it is assumed that user 1 enjoys a poorer channel

condition than user 2, so it comes first in the decoding order. Therefore, user

1 can recover its signal directly, without applying SIC, by disregarding user 2’s

signal as noise. User 2 decodes user 1’s signal first, and then subtracts it from

the received data stream. After decoding and removing user 1’s signal, user 2 can

decode its own signal.

The use of SIC can result in error propagation as successive layers of in-

formation from the incoming signal are removed at the receivers. However, the

implementation of SC with SIC is feasible in the two-user case, through the choice

appropriate parameters such as channel gain difference between users, modulation

type and power allocation factor [71].

The high decoding complexity in NOMA is a limiting factor for practical sys-

tem implementation, and it remains an open research challenge [50]. However,

the extended processing capabilities of new generations of mobile devices together
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Figure 2.4: Example of SIC decoding at user 2, where Es = 1 and α1 + α2 = 1.

with recent advances such as network-assisted interference cancellation and sup-

pression techniques have made the use of SIC at the user equipment practical.

For simpler terminals such as low-cost Internet of Things (IoT) devices [72], inter-

ference cancellation still remains challenging, but this fact can be overcome by

adopting alternative solutions, such as letting devices treat interference from other

users as noise during decoding, such that SIC does not need to be applied [17].

Power control in NOMA with SC and SIC

Power control is a critical feature of SC, since it directly impacts the achievable

sum-rate and provides different data streams with different levels of protection

against noise [63]. Unlike broadcast systems applications where information is

grouped into data streams with different relative importance and where users

may have similar channel conditions [81], in NOMA systems there are multiple

users with large channel gain differences, and each user must be able to decode its

own data stream. Therefore, power control in NOMA must guarantee that each

user can overcome the inter-user interference introduced by SC, and decode its

own data. This is achieved in NOMA by allocating users with a weaker channel

condition with a greater share of power (i.e., with a larger power allocation factor).
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Figure 2.5: Effect of the power allocation factor on the inter-user interference in
superposed 4-QAM + 4-QAM constellations.

Figure 2.5 represents the effect of SC power allocation in NOMA for the case

where two 4-QAM symbol constellations are superposed. The diagram on the

left represents the case where the lower-layer user is assigned with a 0.83% of

the transmit power. The diagram on the right represents the situation where

the lower-layer user is assigned with a 0.56% of the transmit power. During the

first stage of SIC, a 4-QAM symbol is decoded. The axes represent the different

decision region boundaries, with symbols situated next to the axes yielding the

largest decoding error probability. Inter-user interference is larger for the diagram

on the right, since more power is allocated to the upper constellation layer. It is

observed that the Euclidean distances between the axis and adjacent symbols are

relatively small, resulting in an increased probability of decoding error during the

first stage of SIC, compared with the diagram on the left. Therefore, the power

allocation factor in NOMA must be carefully selected in order to guarantee that

users can overcome inter-user interference during decoding.

21



Chapter 2. Overview of Multiple Access Techniques

The capacity of NOMA with SC and SIC

From an information-theoretic perspective, NOMA with SC at the transmitter

and SIC at the receiver is optimal in the sense of achieving the capacity region

of the downlink broadcast channel [46], provided that each superposed layer is

protected by a capacity-achieving code, and assuming optimal power allocation

and perfect SIC [63].

Consider a downlink NOMA system with two users j and k, where |hj|2≤ |hk|2,

and therefore user j comes first in the SIC decoding order. User j can decode

its own signal directly, disregarding user k’s signal as noise [51]. Hence, it can

theoretically achieve a maximum data rate of

Rj = log2

(
1 +

αj|hj|2p
αk|hj|2p+N0

)
. (2.1)

User k decodes user j’s signal first, with an achievable data rate of

Rj→k = log2

(
1 +

αj|hk|2p
αk|hk|2p+N0

)
. (2.2)

After decoding user j’s signal, user k can subtract it from the receive signal, and

it can decode its own symbols next. The theoretically maximum achievable data

rate when decoding its own signal, when perfect SIC is achieved, is given by

Rk,s = log2

(
1 + αk|hk|2p

)
. (2.3)

The capacity of SC is bounded by the sum of individual rates of each infor-

mation layer [63]. In SC, the distribution of the channel input may either be

Gaussian, which is the typical assumption in theoretical studies, or any other

type of constellation-constrained input. In any case, the channel capacity is a

monotonically increasing function of the signal-to-interference noise ratio. How-
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ever, in practical NOMA systems the achievable sum-rate is constrained by the

use of constellation-constrained inputs with non-ideal channel codes, which nece-

ssarily yields lower data rates than those given by (2.1) and (2.3). Nevertheless,

the benefits of NOMA with respect to OMA can be retained when employing

non-ideal channel codes, through suitable resource allocation.

2.2.3 Multicarrier NOMA Systems

One of the main reasons why NOMA was initially proposed for inclusion in the

3GPP LTE-advanced standard [73] is due to its compatibility with OFDMA,

which is based on OFDM. NOMA can be applied to a group of users on each

OFDMA subcarrier without requiring any changes to LTE resource blocks [47],

facilitating the integration of NOMA into OFDMA.

frequency, 

time

power power

frequency, 

time

OFDMA Multicarrier NOMA

Figure 2.6: Orthogonal division of resource blocks in OFDMA and multicarrier
NOMA.

Multicarrier NOMA systems [47] combine the benefits of OMA and NOMA.

In multicarrier NOMA, users are divided into multiple pairs. Note that, in this

thesis, only two-user NOMA is considered, due to the high implementation cost

of SIC receivers [74], and therefore the terminology refers to user pairs rather

than groups. However, the NOMA principle is also applicable to groups of more

than two users.
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In multicarrier NOMA, all users within a pair are served in the same resource

block following the NOMA principle, and different resource blocks are orthogonal

in the time and frequency domains. By employing multicarrier NOMA, the sys-

tem complexity can be reduced with respect to a pure NOMA system where all

users are multiplexed simultaneously. Therefore, multicarrier NOMA achieves

a good trade-off between system performance and implementation complexity.

Figure 2.6 represents the orthogonal division of resource blocks in OFDMA and

in multicarrier NOMA.

In multicarrier NOMA, although different pairs of users are allocated to di-

fferent resource blocks, the same user can be included into several different user

pairs, and therefore be served in several resource blocks simultaneously. Intra-

pair interference is mitigated by applying the NOMA principle, whereas inter-pair

interference is avoided due to the orthogonality among subcarriers. As a result,

the system can be overloaded, i.e. it can provide service to a larger number of

users than the number of subcarriers, a requirement for enabling massive connec-

tivity [47].

Appropriate resource allocation, which includes user pairing and power alloca-

tion, plays a critical role in the performance of multicarrier NOMA systems [52],

[59]. While user pairing can reduce the computational complexity of executing

SIC and improve user fairness, power allocation directly impacts the achieva-

ble throughput. Further, dynamic resource allocation allows for the real-time

balancing of the system resources through adaptive variation of the system pa-

rameters such as the transmit power [75], and it can be applied to multicarrier

NOMA to further improve the system performance. In addition, resource alloca-

tion improves the capability of supporting diverse applications [59] in multicarrier

NOMA systems.

However, the joint optimization of user pairing and power allocation is an
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NP-hard problem requiring of exhaustive search over all user pairs [3]. To avoid

an excessively large computational complexity in resource allocation, there must

exist an optimization criterion such that a trade-off between system performance

and complexity can be achieved [52].

2.3 Conclusions

Multiple access techniques allow multiple users to share limited communication

resources. Therefore, their design is critical in modern wireless communication

systems, and specially in beyond-5G paradigms with ultra-dense number of users.

Wireless communications systems from 1G to 4G have adopted OMA tech-

niques, where orthogonal resources are allocated to users in the time, frequency or

code domain, or their combinations. OMA systems rely in the orthogonality prin-

ciple to reduce inter-user interference, and multi-user detection can be achieved

with low-complexity receivers. However, the number of supported users in OMA

systems is limited by the number of orthogonal resources. NOMA systems can

provide service to a larger number of users than OMA-based systems, thanks to

the non-orthogonality principle, and have the potential to address the ultra-high

densities of users forecast for beyond-5G paradigms. Further, NOMA with SC

and SIC is capacity-achieving when employing ideal channel codes and assuming

perfect SIC. When employing non-ideal channel codes and imperfect SIC, NOMA

can still achieve larger data rates than OMA techniques.

However, the advantages of NOMA with respect to OMA come at a cost of

increased implementation complexity. Moreover, power control in NOMA must

be carefully designed in order to balance user fairness and achievable sum-rate,

whilst limiting the effect of inter-user interference. Unsuitable power allocation

can make signal decoding in NOMA unfeasible, due to SIC error propagation.
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By combining NOMA with multicarrier schemes, a better trade-off between

performance and implementation complexity can be achieved. Multicarrier NOMA

can provide service to several users within a resource block, while maintaining the

orthogonality among different resource blocks in the time and frequency domains.

As a result, multicarrier NOMA systems can provide service to a number of users

larger than the number of resource blocks. Appropriate resource allocation plays

a critical role in the performance of multicarrier NOMA systems, and it must be

optimized according to certain criteria such as throughput or user fairness.
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3.1 Introduction

3.1.1 Motivation

Due to the potential advantages that NOMA introduces over OMA for beyond-

5G networks, as presented in Section 1.1, the performance of NOMA systems

has attracted extensive literature over the past few years. However, many of

these works addressed research problems based on the perspective of the channel

capacity and the system capacity, based on the Shannon formula [3,51]. In order

for NOMA to fulfill the challenges of practical scenarios in beyond-5G systems,

it is necessary to address some further research challenges.

Previous researches demonstrated that, in terms of achievable sum-rate, it is

preferable to pair two NOMA users with very distinct channel conditions [51].

This result has since been applied to numerous researches. However, the appli-

cation of this theoretical result might turn unrealistic in scenarios where some

users have a very poor channel link. In a NOMA setting with SC and SIC, these

users would have to be assigned most of the NOMA power share in order to en-

able successful decoding at the receiver. Such power allocations are inefficient in

terms of the sum-rate because most of the power is allocated to a user with a

very weak channel condition. In contrast, the user that enjoys a better channel

condition and contributes most to the achievable sum rate, is allocated with a

tiny fraction of the power allocation factor. Moreover, users with a very poor

28



Chapter 3. New Performance Bounds on the BER of NOMA Systems

channel condition might not be able to meet BER and quality of service cons-

traints. Therefore, it is critical to understand what the limit is in the channel

gain difference of two NOMA users in terms of BER and sum-rate, and how a

certain ratio of user channel gains affects the achievable BER.

Previous works such as [3,51] also assume perfect SIC at the receivers. How-

ever, in practical wireless communications systems, the use of SIC can result in

error propagation as successive layers of information are removed at the receivers.

This results in decoding errors being carried over from one decoding stage to the

next, greatly impacting the achievable BERs at the receivers. This can, in turn,

make the application of NOMA unfeasible. Therefore, it is of paramount impor-

tance to understand the impact of performance optimization parameters, such as

the transmit power and the power allocation factor, on the achievable BER in

NOMA.

Recently, some efforts have been devoted to studying the BER performance of

NOMA systems [76,77]. However, many of these works assumed fixed and equal

modulation levels at the users. This is not applicable to many realistic scenarios

where users have different data rate requirements. Therefore, it is critical to

gain more knowledge about the attainable BER in practical NOMA systems,

eg. in a scenario where users use different modulation levels, and to study the

optimal adjustment of the power allocation factor and modulation level in BER-

constrained NOMA systems.

3.1.2 Contributions

In this Chapter, several contributions are made in terms of proving the complex

interplay between critical parameters in NOMA and the achievable BER, and

new performance bounds on the BER of NOMA systems are provided.

First of all, theoretical BER expressions are presented for the BER in NOMA,
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assuming multi-layer, multi-level QAM. To the best of the author’s knowledge,

this work represents the first attempt in developing such expressions, with pre-

vious literature focusing mainly on fixed-level modulation. It is proved that, for

the user who comes second in the SIC decoding order –i.e. the user in the higher

SC layer–, there exists a certain value of the power allocation factor for which its

individual achievable BER is minimized. From the higher-layer user’s perspec-

tive, the value of the power allocation factor must be high enough as to increase

the power level of its own received signal, but it must also be low enough as to en-

sure successful decoding and removal of the lower-layer data stream. The optimal

power allocation factor value is also the value that minimizes the transmit power

in BER-constrained NOMA. It is proved that the optimal value of the power

allocation factor is dependent on the modulation levels assigned to each user.

Further, it is proved that, as the modulation level assigned to the lower-layer

user increases, the value of the optimal power allocation factor rises sharply.

The theoretical BER expressions are used for calculating the optimal channel

gain ratios for a pair of NOMA users, i.e. the ratios of channel gains that maxi-

mize the achievable sum-rate for a given BER constraint. Unlike previous research

in NOMA [51], this work demonstrates that, in NOMA systems with practical

QAM, the channel gains of two NOMA users must be of approximately the same

order of magnitude in order to guarantee that the effect of inter-user interference

can be overcome at the receivers, specially when the modulation levels assigned

to both NOMA users are similar.

However, the derived BER expressions are in terms of products of the Q-

function. These expressions are neither easily differentiable nor easily invertible

in their arguments, and it becomes complicated to apply them to developing a

resource allocation strategy. Therefore, accurate BER approximations are pre-

sented in the form of exponential functions. Last, the BER exponential approxi-
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mations are used for finding numerical boundaries for the values of the channel

gain ratios of NOMA users that fulfill BER constraints for different combinations

of modulation levels; any pair of NOMA users whose channel gain ratio falls

outside the numerical boundaries for a given modulation level cannot meet the

individual BER constraints.

3.1.3 Structure

The rest of this Chapter is organized as follows. In Section 3.2, a relevant litera-

ture review is provided. In Section 3.3, the system model is presented. In Sections

3.4 and 3.5, BER expressions are presented, and these are used for deriving the

optimal power allocation factors that minimize individual BERs, as well as the

optimal channel gain ratio for different modulation levels. In Sections 3.6 and 3.7,

exponential BER approximations are presented, and these are used for deriving

the values of the channel gain gap conditions that guarantee the fulfillment of the

BER constraint at both users. Numerical results are given in Section 3.8, and

conclusions in Section 3.9.

3.2 Literature Review

The attainable individual BERs in NOMA are dependent on the power allocation

factor at each user. It was proved in [51] that, by pairing NOMA users with very

different channel qualities and allocating a significantly larger power allocation

factor to the user with a poorer channel gain, NOMA is likely to outperform

OMA techniques. When the power allocation factor for the user with a poorer

channel gain decreases, it is still probable that NOMA will achieve a higher data

rate than conventional OMA, at a cost of a significant performance degradation.

Unlike previous researches in SC [63,67], constellation design in NOMA must
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guarantee the decoding at each user through the combination of first, a suitable

power allocation factor, and second, an appropriate modulation scheme [78, 79].

Some previous researches in SC considered the superposition of fixed constella-

tions. In [63], the authors studied the superposition of a large number of binary

phase shift keying (BPSK) signals under equal power allocation factors. In [80],

the superposition of BPSK signals with unequal power allocation factors was in-

vestigated, whereas [67] considered SC with QPSK signals where a combination

of unequal power allocation factor and phase shift was applied to superposed

constellations.

Furthermore, the concept of SC in NOMA is also related to that of hie-

rarchical modulations in broadcast systems, where information is grouped into

data streams with different relative importance and different levels of protection

against noise. The superposed constellation points are designed based on the pro-

portional number of bits allocated to each data stream [81]. Previous research in

hierarchical modulations in broadcast systems assumed systems models where all

users have similar channel conditions. For example, in [82] and [68], exact BER

expressions of hierarchical QPSK/M -QAM constellations were derived for 1-user

systems. In NOMA systems, in contrast, there are multiple users with large dif-

ferences in channel conditions. Independent symbols intended for different users

are superposed in NOMA, and each user must be able to decode information con-

tained within a certain layer through SIC. In addition, the use of a SIC receiver

at the user allocated to the top superconstellation layer means that a decoding

error at the low layer causes an error propagation when the top layer is decoded.

Therefore, in NOMA systems, the BER at each user is indirectly influenced by

the other user’s channel conditions through the setting of the power allocation

factor.

Some recent researches have considered the achievable BER in NOMA sys-
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tems. However, most existing studies considered single-carrier NOMA and as-

sumed fixed modulation levels. In [83], analytical BER expressions were derived

for two-user NOMA with QPSK + BPSK constellations, under Rayleigh fading

channels, and it was noted that some values of the power allocation factor might

cause some BER performance degradation, but no insight was given on how to

select the power allocation factor to optimize the BER. In [76], a BER analysis

and study of the impact of power allocation in the BER was also carried out for

fixed QPSK + BPSK, in two-user uplink NOMA. The work in [84] proposed a

user grouping scheme for NOMA, and system simulations were used to compute

the average BER over Rayleigh fading channels, under fixed QPSK modulation,

but the effect of the power allocation factor on the BER was not studied. In [77],

analytical BER expressions were also derived for the uplink, under QPSK +

QPSK constellations over an AWGN channel. In [85], the BER performance of

downlink NOMA over Nakagami-m flat fading channels was studied, for two-

user and three-user NOMA. Exact BER expressions were derived, and these were

used to evaluate the optimal power allocation under fairness and average BER

constraints. However, only QPSK modulation and single-carrier NOMA were

assumed. A more thorough analysis was presented in [86], where the effect of

the BER on NOMA-enabled visible light communication systems was studied,

focusing mainly on the BER in M -ary phase shift keying. However, this work as-

sumed fixed allocation factor, and did not consider the BER in NOMA users with

different QAM modulation levels. Although most of these works demonstrated

that the channel gain gap of NOMA users has an impact on the BER, this was

not analytically evaluated, and did not take into account the effect of varying the

power allocation factor.

The work in [87] considered the optimization of the minimum BER in multi-

carrier NOMA systems. The proposed scheme had a high computational comple-
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xity and, although it attained a good BER performance, this was at the expense

of a reduction in the achievable sum-rate. Further, although generalized QAM

schemes were considered, the same level modulation was assumed at each user.

Only perfect SIC was considered, and it was assumed that, for all users, their in-

dividual BER degenerates into the BER of regular QAM in OMA systems, which

is an over-simplistic assumption. Therefore, these contributions cannot be easily

translated to practical systems, where perfect SIC is unfeasible, and where more

flexibility is required in assigning users with different modulation levels.

Therefore, most existing works did not thoroughly study the relationship be-

tween power allocation, user channel gains, and their impact on the individual

BER in NOMA. Further, most works assumed fixed modulation levels at the

NOMA users. It is important to gain further knowledge about the attainable

BER in practical NOMA systems, eg. in a scenario where NOMA users use di-

fferent modulation levels. It is also of paramount importance to consider the

effect of imperfect SIC on the BER performance of NOMA, and the relationship

between the imperfect SIC effect and the channel gains of NOMA users.

3.3 System Model

In this Chapter, a single-carrier downlink NOMA scenario with K users is con-

sidered, where it is assumed that only user j and user k are paired together to

perform NOMA; user k enjoys a better channel condition than user j, and a

different power level is allocated to each user in the power domain during trans-

mission. It is assumed that the downlink channel gains are perfectly estimated by

both users through pilot channels and perfect channel state information. Study-

ing the impact of channel estimation error is not within the scope of this thesis,

and [88–91] provide insight into its impact in NOMA systems.
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Figure 3.1: Two-user downlink NOMA scenario with power-domain superposition
coding at the transmitter and successive interference cancellation at the receiver.

The system model under consideration is illustrated in Figure 3.1. At the

transmitter, the multiplexing of both users’ signals is achieved through the use of

SC [63]. In the system model under consideration, the user who enjoys a better

channel condition is allocated with less power than the user with a poorer channel

condition. User demultiplexing is ensured through the allocation of an adequate

power difference between users during transmission, and the application of SIC

in the power-domain at the receiver of user k. User j comes first in the decoding

order, and it does not need to apply SIC since it can decode its own signal directly.

The communication channel between the base station and the users is assumed

to be a Rayleigh fading channel with additive white Gaussian noise (AWGN), with

double-sided spectral density N0/2. The channel response of user j is given by

hj, with E{|hj|2} = 1. Similarly, the channel response of user k is given by hk,

with E{|hk|2} = 1 It is assumed that |hj| and |hk| are independent and Rayleigh-

distributed. Further, it is assumed that |hj|2≤ |hk|2. The base station transmits
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a signal of the form

x{j,k} =
√
pjxj +

√
pkxk, (3.1)

where xj ∈ C and xk ∈ C denote user j’s and user k’s transmit symbols, respecti-

vely. pj and pk are the transmit powers assigned to user j and user k, respectively.

Further, E{|xj|2} = E{|xk|2} = 1, pj = αjp and pk = αkp, where p is the total

transmit power and αj, αk are the power allocation factors of user j and user

k, respectively. The conditions pj + pk = p and αj + αk = 1 hold. Hence, the

received signals at user j and user k can be expressed as

yj =
√
pjhjxj +

√
pkhjxk + zj, (3.2)

yk =
√
pkhkxk +

√
pjhkxj + zk, (3.3)

respectively, where zj ∼ CN (0, σ2
zj

), zk ∼ CN (0, σ2
zk

) denote the AWGN.

The base station feeds forward information about modulation level assignment

to both users through downlink control signaling. In addition, information about

user j’s assigned power and modulation level is also fed forward to user k, thus

enabling SIC decoding at the receiver.

User j comes first in the SIC decoding order since |hj|2≤ |hk|2, and it can

decode its own signal directly, disregarding user k’s signal as noise [51]. User k

decodes user j’s signal first, subtracts it from the receive signal, and decodes its

own symbols next.

It is assumed that user j, uses maximum-likelihood detection with hard de-

cision. At user k, the maximum-likelihood method is applied to decode user j’s

data stream. Then, user k uses SIC to remove interference from user j, where

imperfect SIC is assumed, i.e. errors in detecting user j’s signals are carried over

to the second stage of detection, thus affecting the probability of correct detection

of user k’s own symbols. After removing user j’s symbols, user k uses maximum-
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likelihood detection with hard decision to decode its own data stream [92].

The instantaneous bit error rate (BER) at user j is represented as βj, and

that at user k is represented as βk. β0 denotes the individual BER constraint,

which is assumed to be equal at both user j and user k.

3.4 BER Derivations

Below, a BER analysis is carried out for multi-layer, multi-level modulation in

NOMA. Apart from proving the impact of the power allocation factor on the

BER, this analysis also yields the optimal channel gain ratio in NOMA, i.e. the

ratio of channel gains of the pair of NOMA users that maximize the sum-rate for

a given BER constraint. Further, expressions (2.1) and (2.3) are the theoretical

limits to the achievable data rates in NOMA under continuous modulation levels;

the BER expressions derived below relate the achievable data rates in NOMA to

the modulation levels of users and their BER constraint.

Note that the BER analysis below is carried out for the AWGN channel.

Assuming that the instantaneous channel fading factors of the users are known

at the receivers, the AWGN BER expressions are extensible to the instantaneous

BER in Rayleigh fading channels, by applying a suitable channel fading scaling

factor, according to the instantaneous channel gains of the users.

Consider the situation where two NOMA users j and k are multiplexed in the

power domain. The base station transmits a superposed signal x = x{j,k} as given

in (3.1). Let xj be the symbol intended for user j, from a signal constellation

Xj of Mj symbols, and let xk be user k’s symbol, from a constellation Xk of Mk

symbols. The supersymbol x = x{j,k} is the result of superposing symbols xj and

xk, where xj belongs to the lower layer of the superposed constellation, and xk

to the upper layer. Further, supersymbol x belongs to a superconstellation (i.e.
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a superposed constellation) X of size MjMk. The concept of superconstellations

in NOMA is similar to that of hierarchical constellations in digital broadcasting

systems [78, 82], where information is grouped into data streams with different

relative importance. The location of the superconstellation points in NOMA is

determined by the power allocation factors αj and αk. The average transmit

symbol energy for the resulting superconstellation is normalized to Esym = 1. As

an example, Figure 3.2 represents the constellations associated to two superposed

NOMA users, where user j’s and user k’s symbols belong to a 4-QAM conste-

llation. The resulting superconstellation is formed by 16 supersymbols, whose

Euclidean distances depend on αj and αk.
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Figure 3.2: Conventional NOMA superposed 4-QAM+4-QAM constellation at
transmitter with power allocation factor αk = 0.2.

To determine the symbol error rate (SER) at each user, the layout and num-

ber of superconstellation points must be considered, as well as the minimum

Euclidean distances among them. The SER at user k is conditioned on the

incoming interference from user j’s signal, which can either reduce or increase

user k’s minimum Euclidean distance. User k uses an SIC receiver, so an error

in decoding user j’s symbol means that the decoding of user k’s own signal is

also unsuccessful, due to SIC error propagation. Hence, the total SER at user k,

Pk(e), is affected by the SER that user k achieves when decoding user j’s transmit
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symbols during the first stage of SIC. Therefore,

Pk(e) = Pk(e|correctxj)Pk(correctxj) + Pk(e|errorxj)Pk(errorxj), (3.4)

where Pk(correctxj) is the probability that user j’s symbols are correctly detected

at user k, Pk(errorxj) is the probability that an error occurs whilst detecting

user j’s symbols at user k, Pk(e|correctxj) is the probability of error at user k

under the condition that no error occurred while detecting user j’s symbols, and

Pk(e|errorxj) is the probability of error under the condition that an error occurred

whilst detecting user j’s symbols. Therefore, the term Pk(e|errorxj)Pk(errorxj)

models the SIC propagation error at user k.

Below, closed-form expressions are derived for Pj(e) and Pk(e). It is assumed

that symbol errors in decoding are caused by incoming interference from the near-

est neighbor, and that Gray coding is independently applied to each user’s layer.

Therefore, for small error rates, the BER at user j and user k can be calculated

from the SER as βj ≈ Pj(e)/log2Mj and βk ≈ Pk(e)/log2Mk, respectively, even

in the event of SIC error propagation [62, 68]. It is assumed that the lower level

constellation is assigned to user j in the lower layer, and that the average trans-

mit power is always normalized to one for the NOMA superconstellation, i.e.

p = pj + pk = 1. Note that, throughout the text, Esym,j = 1 and Esym,k = 1 are

respectively user j’s and user k’s normalized symbol energies before NOMA power

allocation and superposition. Ebit,j and Ebit,k refer to the average bit energy of

user j and user k, respectively, where

Ebit,j =
Esym,j
log2Mj

=
1

log2Mj

, (3.5)

Ebit,k =
Esym,k
log2Mk

=
1

log2Mk

. (3.6)
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Figure 3.3: BPSK + BPSK superconstellation, where the average superconste-
llation transmit symbol energy is normalized to one.

3.4.1 BPSK + BPSK

Assume that both user j’s and user k’s signals are BPSK modulated. The re-

sulting superconstellation is made up of four symbols of different amplitude in

one dimension only, as represented in Figure 3.3. Let dj and dk represent the

Euclidean distances of the layers belonging to user j’s and user k’s symbols, res-

pectively, after power scaling by factors αj and αk. Further, let d′j represent the

largest Euclidean distance between symbols in the superconstellation, as repre-

sented in Figure 3.3. The set of Euclidean distances between superconstellation

symbols is given by

d′j = dj − dk, (3.7)

dj =
√
αjEbit,j, (3.8)

dk =
√
αkEbit,k. (3.9)

User j’s SER

User j’s SER is similar to that of a conventional BPSK constellation (see [93]),

but the effect of interference from user k’s symbols must be taken into account.
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In the best case, symbols in the superconstellation are at a distance d′j +2dk from

the decision region boundary. In the worst case, the distance is reduced to d′j.

By averaging out the effect of both possibilities, the SER at the receiver results

Pj(e) = 0.5Q

(√
2

N0

d′j

)
+ 0.5Q

(√
2

N0

(d′j + 2dk)

)
, (3.10)

where Q(x) = 1/
√

2π
∫∞
x

exp (−u2/2) du is known as the Q-function [93].

The error rate due to interference from user k’s symbols at user j is given by

Pk→j(e) = Pj(e)−Q
(√

2

N0

dj

)
, (3.11)

where the term Q
(√

(2/N0)dj

)
is equivalent to the SER of a BPSK constellation

with a transmit power of αjp.

User k’s SER

During the first stage of SIC decoding, user k decodes and removes user j’s

symbols from the received data stream. Errors in SIC are caused by symbols

received on the wrong side of the lower layer decision boundaries. Therefore, the

SER due to SIC errors at user k is given by

Pk(e|errorxj)Pk(errorxj) = 0.5Q

(√
2

N0

d′j

)
+ 0.5Q

(√
2

N0

(d′j + 2dk)

)
, (3.12)

where it is assumed that Pk(e|errorxj) = 1, i.e. an error in decoding the lower

layer symbols at user k necessarily causes an error when user k decodes its own

symbols during the second stage of SIC. If SIC is successful, user k decodes its

own symbols from a BPSK constellation of transmit power αkp, yielding an error

rate

Pk(e|correctxj) = Q

(√
2

N0

dk

)
. (3.13)
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Thus, from (3.4), (3.12) and (3.13), the total SER at user k results

Pk(e) = Q

(√
2

N0

dk

)(
1− 0.5Q

(√
2

N0

d′j

)
− 0.5Q

(√
2

N0

(d′j + 2dk)

))
+ 0.5Q

(√
2

N0

d′j

)
+ 0.5Q

(√
2

N0

(d′j + 2dk)

)
.

(3.14)

Power Allocation Factor Condition

In order to ensure that the BER constraints are simultaneously met at user j and

user k, the selected power allocation factor must ensure a manageable level of

inter-user interference at user j and successful SIC decoding at user k. Therefore,

the Euclidean distance among symbols in the lower superconstellation layer must

be equal or larger than that among symbols in the upper layer, i.e.

d′j ≥ dk. (3.15)

From (3.7)–(3.9), the values of αk that minimize the BER fulfill the condition

αk ≤ 0.2. (3.16)

For the value αk = 0.2, the distances among all the superconstellation symbols

are identical, and the superconstellation is identical to that of single-layer 4-pulse

amplitude modulation (4-PAM). The effect of varying the value of αk on the

inter-user interference in BPSK + BPSK is represented in Figure 3.4. It can

be observed that, for values of αk that do not fulfill 3.16, there is a high error

probability when decoding the symbols placed next to the origin.
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Figure 3.4: Effect of αk on the inter-user interference in BPSK + BPSK, where
the average superconstellation transmit symbol energy is normalized to one in all
cases.

3.4.2 Mk-QAM + BPSK

In this case where user k is assigned with a square Mk-QAM constellation and user

j with BPSK, the resulting superconstellation is not symmetrical in the in-phase

and quadrature dimensions. User j’s symbols are one-dimensional, whereas user

k’s layer is two-dimensional. User j will decode symbols from a BPSK conste-

llation, with two decision regions contained within the in-phase dimension. User

k will decode user j’s symbols from a BPSK constellation first, and then it will

decode its own symbols from a Mk-QAM constellation, with Mk decision regions.

In general, for any Mk-QAM + BPSK constellation, the minimum Euclidean dis-

tance between user k’s symbols is dmin,k = 2dk, whereas for user j’s symbols it

is dmin,j = 2(d′j + 2idk), as represented in Figure 3.5 for a 16-QAM + BPSK

constellation. Note that, due to interference from user k, the minimum distance

between user j’s symbols in adjacent quadrants can be reduced or increased with

respect to that in the originating constellation, i.e. 2dj. The following relation

can be established among the set of distances:

d′j = dj −
(√

Mk − 1
)
dk, (3.17)
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Figure 3.5: 16-QAM + BPSK superconstellation, where the average supercons-
tellation transmit symbol energy is normalized to one.

where

dj =
√
αjEbit,j =

√
αjEsym,j, and (3.18)

dk =

√
1.5 log2Mk

Mk − 1
αkEbit,k =

√
1.5

Mk − 1
αkEsym,k. (3.19)

User j’s SER

In this case, Pj(e) is that of a BPSK constellation where dmin,j varies depending

on the interference introduced by user k’s symbols. In the worst case, when

the transmit NOMA symbol is adjacent to the imaginary axis, dmin,j = 2d′j. In

the best case, when the NOMA constellation points are farthest from the origin,

dmin,j = 2(d′j +2dk + . . .+2dk). By averaging out the corresponding symbol error
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probabilities, the following expression is derived:

Pj(e) = P
(I)
j (e) =

1√
Mk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
, (3.20)

and the level of errors due to interference from user k’s symbols can be calculated

by replacing Pj(e) into (3.11).

User k’s SER

During the first stage of SIC decoding, user k decodes and removes user j’s

symbols from the data stream. Errors in SIC are caused by symbols received on

the wrong side of the lower layer decision boundaries. Therefore, the SER due to

SIC errors at user k is given by

Pk(e|errorxj)Pk(errorxj) =
1√
Mk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
, (3.21)

where it is assumed that Pk(e|errorxj) = 1, i.e. an error in decoding the lower

layer symbols at user k necessarily causes an error when user k decodes its own

symbols.

If SIC is successful, user k decodes its own symbols from a Mk-QAM constella-

tion of transmit power αkp, which is symmetrical in the in-phase and quadrature

dimensions. This yields [62,93]

P
(I)
k (e|correctxj) = P

(Q)
k (e|correctxj) = 2

(
1− 1√

Mk

)
Q

(√
2

N0

dk

)
, (3.22)

where P
(I)
k (e|correctxj) and P

(Q)
k (e|correctxj) are the error probabilities at user

k when decoding its own symbols after SIC in the in-phase and quadrature di-

mensions, respectively. Therefore, from (3.4), the error probability at user k in
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the in-phase dimension is given by

P
(I)
k (e) / 2

(
1− 1√

Mk

)
Q

(√
2

N0

dk

)1− 1√
Mk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
+

1√
Mk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
.

(3.23)

In the quadrature dimension, the error probability at user k is given by

P
(Q)
k (e) = 2

(
1− 1√

Mk

)
Q

(√
2

N0

dk

)
, (3.24)

and the overall SER at user k for Mk-QAM + BPSK is found by replacing (3.23)

and (3.24) into [93]

Pk(e) = 1−
(

1− P (I)
k (e)

)(
1− P (Q)

k (e)
)
. (3.25)

Power Allocation Factor Condition

In order to ensure that the BER constraints are simultaneously met at user j

and user k, and that SIC can be successfully applied at user k, the Euclidean

distances among symbols in user j’s constellation layer need to be equal or larger

than those among symbols in user k’s constellation layer, i.e. condition (3.15)

must hold. Therefore, the values of αk that minimize the BER are analytically

derived by substituting (3.17)–(3.19) into

αk ≤
Mk − 1

2.5Mk − 1
. (3.26)

For the value αk = (Mk − 1)/(2.5Mk − 1), the distances among all the super-

constellation symbols are identical. The effect of varying the value of αk on the
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Figure 3.6: Effect of αk on the inter-user interference in Mk-QAM + BPSK, where
the average superconstellation transmit symbol energy is normalized to one in all
cases.

inter-user interference in Mk-QAM + BPSK is represented in Figure 3.6. It can

be observed that, for values of αk that do not fulfill 3.26, there is a high error

probability when decoding the symbols placed next to the origin.

3.4.3 Mk-QAM + Mj-QAM

Assume that user j is assigned with square Mj-QAM, and user k with square

Mk-QAM. The superconstellation in this case is symmetrical in both dimensions,

hence the in-phase and quadrature components have the same error probability.

See, for a reference, the superconstellation points and Euclidean distances given in

Figure 3.7, for a 16-QAM + 4-QAM superconstellation. The Euclidean distances

expressions given in (3.17) and (3.19) still hold, whereas

dj =

√
1.5 log2Mj

Mj − 1
αjEbit,j =

√
1.5

Mj − 1
αjEsym,j. (3.27)
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Figure 3.7: 16-QAM + 4-QAM superconstellation, where the average supercons-
tellation transmit symbol energy is normalized to one.

User j’s SER

For clarity, the in-phase dimension is considered first. In the lower supercons-

tellation layer, there are
√
Mj decision regions from which user j decodes its

symbols. There are two outer decision regions which are limited by only one de-

cision boundary. In addition, there are
√
Mj−2 decision regions enclosed within

two decision boundaries. Enclosed within each decision region is a Mk-QAM

constellation, which represents user k’s symbols. In terms of decoding at user j,

each upper constellation point introduces a certain amount of interference, due to

the varying distance to user j’s decision boundary. This results in a certain error

rate during decoding. Averaging out the corresponding error rate per branch

yields

P
(I)
j (e) = P

(Q)
j (e) =

2
√
Mj − 2√
MjMk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
, (3.28)
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due to in-phase and quadrature symmetry. The joint SER is given by

Pj(e) = 1−
[
1− P (I)

j (e)
]2

= 1−
[
1− P (Q)

j (e)
]2
. (3.29)

Substituting (3.28) into (3.29) yields

Pj(e) = 1−

1−
2
√
Mj − 2√
MjMk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)2

. (3.30)

The level of error due to interference from user k’s symbols is given by

Pk→j(e) = Pj(e)− 2Q

(√
2

N0

dj

)
, (3.31)

where 2Q(
√

(2/N0)dj) is the SER of an Mj-QAM constellation with transmit

power αjp.

User k’s SER

During the first stage of SIC decoding, user k removes user j’s symbols first.

Errors in SIC are caused by symbols received on the wrong side of the lower

layer decision boundaries. Therefore, the SER due to SIC errors in the in-phase

dimension is given by

P
(I)
k (e|errorxj)P

(I)
k (errorxj) =

2
√
Mj − 2√
MjMk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
, (3.32)

where it is assumed that P
(I)
k (e|errorxj) = 1, i.e., an error in decoding user

j’s symbols at user k necessarily causes an error when user k decodes its own

symbols. If SIC is successful, user k decodes its own symbols from an Mk-QAM

49



Chapter 3. New Performance Bounds on the BER of NOMA Systems

constellation, yielding [75]

P
(I)
k (e|correctxj) = 2

(
1− 1√

Mk

)
Q

(√
2

N0

dk

)
. (3.33)

Thus, from (3.4),

P
(I)
k (e) /

2

(
1− 1√

Mk

)
Q

(√
2

N0

dk

)1−
2
√
Mj − 2√
MjMk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
+

2
√
Mj − 2√
MjMk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
.

(3.34)

As the SER on each dimension is identical, P
(I)
k (e) = P

(Q)
k (e), and the joint SER

can be calculated by substituting (3.34) into

Pk(e) = 1−
[
1− P (I)

k (e)
]2

= 1−
[
1− P (Q)

k (e)
]2
, (3.35)

which yields

Pk(e) / 1−[
1− 2

(
1− 1√

Mk

)
Q

(√
2

N0

dk

)1−
2
√
Mj − 2√
MjMk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)
−

2
√
Mj − 2√
MjMk

√
Mk−1∑
i=0

Q

(
2
d′j + 2idk√

2N0

)]2
.

(3.36)
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Power Allocation Factor Condition

In order to ensure a manageable level of inter-user interference at user j and

successful SIC decoding at user k, the distance among symbols in the lower

superconstellation layer must be equal or greater than that among symbols in

the upper layer, i.e. d′j ≥ dk. From (3.17), (3.19) and (3.27), the optimal values

of αk that minimize the BER are analytically derived below in terms of Mj and

Mk as

αk ≤
Mk − 1

MjMk − 1
. (3.37)

Equivalently, the value of αk for which the BER constraint can be met with

minimum transmit power always fulfills (3.37), as otherwise interference in the

lower layer would increase, resulting in a larger SIC error rate at user k due to

larger inter-user interference. Under the assumption that the lower modulation

level is always assigned to user j in the lower superconstellation layer, condition

(3.37) guarantees that the effect of inter-user interference can be overcome.

For the value αk = (Mk − 1)/(MjMk − 1), the distances among all the super-

constellation symbols are identical. The effect of varying the value of αk on the

inter-user interference in Mk-QAM + Mj-QAM is represented in Figure 3.8. It

can be observed that, for values of αk that do not fulfill 3.37, there is a high error

probability when decoding the symbols placed next to the axes, due to inter-user

interference.

For 4-QAM + 4-QAM, the value of αk obtained from (3.37) is identical to the

value obtained in (3.16), i.e. αk ≤ 0.2, since (3.17), (3.19) and (3.27) yield the

same values of dj, dk and d′j as (3.7)–(3.9) for modulation levels Mj = Mk = 2.
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Figure 3.8: Effect of αk on the inter-user interference in Mk-QAM + Mj-QAM,
where the average superconstellation transmit symbol energy is normalized to
one in all cases.

3.5 Optimal Channel Gain Ratios

Having prior knowledge about the optimal ratio between the channel gains of the

two NOMA users is useful for simplifying the problem of user pairing in NOMA.

Therefore, a channel gain ratio gj,k for user j and user k is defined as follows,

g{j,k} =
|hk|2

|hj|2
. (3.38)

Let G(Mj,Mk, β0) denote the optimal channel gain ratio for two NOMA users,

assuming modulation levels of Mj and Mk, and a BER constraint β0. A pair of

users {j, k} is an optimal pair if

gj,k = G(Mj,Mk, β0). (3.39)

Numerical results in Table 3.1 show optimal channel gain ratio G(Mj,Mk, β0)

values calculated from the numerical evaluation of the analytical expressions

(3.30) and (3.36), conditioned on the channel fading factors of users j and k,

i.e. |hj| and |hk|, and assuming that the BER constraint and expression (3.37)

52



Chapter 3. New Performance Bounds on the BER of NOMA Systems

Optimal channel gain ratio G(Mj,Mk, β0)
β0 = 10−3 β0 = 10−4 β0 = 10−5 β0 = 10−6

4-QAM + 4-QAM 1.548 1.342 1.264 1.206
16-QAM + 4-QAM 1.760 1.456 1.324 1.253
64-QAM + 4-QAM 2.225 1.686 1.467 1.343

256-QAM + 4-QAM 3.167 2.060 1.685 1.500
16-QAM + 16-QAM 2.113 1.640 1.443 1.342
64-QAM + 16-QAM 2.732 1.886 1.604 1.342

Table 3.1: Optimal channel gain ratio G(Mj,Mk, β0) for Mk-QAM + Mj-QAM.

are marginally met, i.e.

βj = βk = β0, (3.40)

and

αk = (Mk − 1)/(MjMk − 1). (3.41)

The results from Table 3.1 can be interpreted as follows. Take, for example,

a BER constraint β0 = 10−3 and a 4-QAM + 4-QAM superconstellation, where

G(4, 4, 10−3) = 1.548. Any pair of NOMA users j and k that fulfill gj,k = 1.548

can simultaneously meet β0, provided that the transmit power is large enough.

Moreover, if user k fulfills β0 for a given transmit power and modulation level,

any user j with a channel gain |hsj|2≥ |hsk|2/g{j,k} is guaranteed to fulfill β0 too.

In general, for any given BER constraint β0, a larger difference between Mj and

Mk requires a larger channel gain ratio between users j and k.

In [51], it was proved that the achievable data rate in NOMA is enlarged by

pairing users with more distinctive channel gains, which is consistent with the

results in Table 3.1. However, Table 3.1 also shows that there exists a limit on

how distinctive the channel gains of two NOMA users can be in order for users

with a poor channel condition to fulfill their individual BER constraint for a given

modulation level. This fact is applied in Chapter 4, where the values in Table 3.1

are used to simplify the problem of user pairing.
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3.6 BER Exponential Approximations

As the levels of Mj and Mk increase, the SER expressions (3.30) and (3.36) be-

come more complicated, with additional Q-function terms. These expressions are

neither easily invertible nor easily differentiable in their arguments, and therefore

cannot be used for adaptive rate and modulation design. Therefore, instanta-

neous BER approximations are introduced with only one Q-function term. These

approximations are used for finding the analytical relationship between the cha-

nnel gain ratio of a pair of NOMA users and their achievable data rates. This

knowledge is later applied in Chapter 4 to the development of the subcarrier,

power and data rate allocation schemes.

Assume that the Euclidean distances condition given in (3.15) and the power

allocation factor condition given in (3.37) are marginally met for the user pair

{j, k}, i.e.

d′j = dk, (3.42)

and

αk =
Mk − 1

MjMk − 1
. (3.43)

In this case, it can be demonstrated that

Q

(√
2

N0

dk

)
.

√
Mk−1∑
i=0

Q

(
2
dk + 2idk√

2N0

)
. (3.44)

Therefore, according to (3.30), Pj(e) is approximately proportional to the term

Q(
√

2/N0dk,s), i.e.

Pj(e) ∝∼ Q
(√

2

N0

dk

)
. (3.45)
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Further, the argument in all Q(·) terms in (3.36) is
√

2N0dk. Therefore,

Pk(e) / 1−[
1− 2

(
1− 1√

Mk

)
Q

(√
2

N0

dk

)(
1−

2
√
Mj − 2√
MjMk

Q

(√
2

N0

dk

))

−
2
√
Mj − 2√
MjMk

Q

(√
2

N0

dk

)]2
. (3.46)

After some algebraic manipulations, it is demonstrated that Pk(e) is a quadratic

polynomial function of the form

Pk(e) = aQ

(√
2

N0

dk

)
+ bQ2

(√
2

N0

dk

)
+ cQ4

(√
2

N0

dk

)
, (3.47)

where a, b and c are some given polynomial coefficients in terms of Mj and Mk.

For sufficiently small BER values, eg. for BERs smaller than 10−1,

Q

(√
2

N0

dk

)
� Q2

(√
2

N0

dk

)
� Q4

(√
2

N0

dk

)
. (3.48)

Hence, from (3.47), it is demonstrated that Pk(e) is also approximately propor-

tional to the term Q(
√

2/N0dk), i.e.

Pk(e) ∝∼ Q
(√

2

N0

dk

)
. (3.49)

Based on (3.45) and (3.49), and following eq. (9) in [75], it is found that the

BERs at user j and user k in the AWGN channel can be approximated as

βj ≈ 0.14
1.6 +

√
0.18 log2Mj log2Mk√

MjMk

exp

(
−1.54Tsymp

N0(MjMk − 1)

)
, (3.50)
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and

βk ≈ 0.77
1.6 +

√
0.18 log2Mj log2Mk√

MjMk

exp

(
−1.54Tsymp

N0(MjMk − 1)

)
, (3.51)

respectively, where Tsym is the symbol duration in seconds. Therefore, the ins-

tantaneous BERs at user j and user k under fading can be approximated as

βj ≈ 0.14
1.6 +

√
0.18 log2Mj log2Mk√

MjMk

exp

(
−1.54|hj|2Tsymp
N0(MjMk − 1)

)
, (3.52)

and

βk ≈ 0.77
1.6 +

√
0.18 log2Mj log2Mk√

MjMk

exp

(
−1.54|hk|2Tsymp
N0(MjMk − 1)

)
, (3.53)

respectively. The validity of the BER exponential approximations is demon-

strated in Section 3.8 for the AWGN channel.

Expressions 3.50–3.53 demonstrate that it is possible to express the BER of

NOMA users in an exponential form. These expressions are easily invertible and

differentiable in their arguments, and can therefore be applied to the problem

of resource allocation in NOMA under BER constraints. Similarly to exponen-

tial approximations to the BER in single-layer modulation [75], the value of the

exponential function increases for higher modulation levels. However, the expo-

nential approximations 3.50–3.53 are more complex than those given in [75] for

single-layer modulation, as additional terms are added to 3.50–3.53 in order to

model the effect of inter-user interference in NOMA.
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3.7 Channel Gain Gap Condition

Next, expressions (3.52) and (3.53) are used for deriving a channel gain gap

condition between NOMA users that maximizes the sum-rate whilst ensuring

that the inter-user interference remains manageable for any given modulation

level and BER constraint. For user k, the channel gain gap condition guarantees

that the first stage of SIC can be carried out with an equal or lower probability

of error than that of the last decoding stage, thus minimizing the probability of

error propagation. For user j, it is ensured that interference from user k’s symbols

is low enough such that user j can decode its own data successfully.

Assume that the BER constraint β0 is marginally met at both user j and user

k, and that condition (3.43) is also met. In this case, (3.52) and (3.53) can be

written in terms of Rj and Rk as

exp

(
c|hj|2p

2Rj+Rk − 1

)
= 7.14β0 ·

20.5(Rj+Rk)

1.6 +
√

0.18RjRk

, (3.54)

and

exp

(
c|hk|2p

2Rj+Rk − 1

)
= 1.30β0 ·

20.5(Rj+Rk)

1.6 +
√

0.18RjRk

, (3.55)

respectively, where c = −1.54Tsym/N0. After some algebraic manipulations, the

channel gains at user j and user k can be expressed in terms of Rj, Rk and β0 as

|huj |2= ln

(
2.86β0

20.5(Rj+Rk)

1.6 +
√

0.18RjRk

)
2Rj+Rk − 1

cp
, (3.56)

and

|huk |2= ln

(
1.11β0

20.5(Rj+Rk)

1.6 +
√

0.18RjRk

)
2Rj+Rk − 1

cp
, (3.57)

respectively. It is clear that, for a fixed p and β0, a larger data rate at either user

j or user k requires larger a channel gain at both user j and user k. Further,
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dividing (3.55) over (3.54) yields

exp

(
cp (|hk|2−|hj|2)

2Rj+Rk − 1

)
= 0.18. (3.58)

Therefore,

H{j,k} = ln 0.18 · 2Rj+Rk − 1

cp
. (3.59)

From (3.38), by writing |hj|2 as |hk|2/g{j,k},

H{j,k} = |hk|2−|hj|2= |hk|2
(

1− 1

g{j,k}

)
, (3.60)

where H{j,k} is the channel gain gap of user j and user k.

From (3.59), it is clear that, for a fixed transmit power p, the sum-rate in-

creases with an increasing value of the channel gain gap H{j,k}. However, accord-

ing to (3.60), H{j,k} is also upper-bounded by the channel gain ratio g{j,k}, which

must be small enough to guarantee that the BER constraint β0 is simultaneously

met at user j and user k for Mj and Mk, i.e.

g{j,k} ≤ G(Mj,Mk, β0). (3.61)

In addition, g{j,k} must be large enough to maximize H{j,k} and, consequently,

the achievable sum-rate, Rj+Rk. Consider the scenario where the BER constraint

is marginally met at user k, and user j is selected as a partner to user k, such that

the BER constraint is met by a larger margin. In this case, Pj(e) ≤ Pk(e). From

(3.45) and (3.49), this condition translates into d′j|hj|≥ dk|hk|. By substituting

(3.17), (3.19) and (3.27), this yields

g{j,k} ≥ 1,∀β0,Mj,Mk. (3.62)
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Therefore, from (3.60), H{j,k} ≥ 0. Hence, from (3.60), any two users j and k can

be paired if and only if their individual channel condition gains jointly fulfill the

channel gain ratio condition:

1 ≤ g{j,k} ≤ G(Mj,Mk, β0), (3.63)

for a BER constraint of β0 and modulation levels Mj and Mk. The channel

gain ratio condition (3.63) is applied in Chapter 4 for developing a subcarrier

allocation algorithm with quasi-linear complexity.

3.8 Numerical Results

3.8.1 Impact of the Power Allocation Factor on the BER

Below, numerical results show the impact of varying the power allocation factor

on the BER at both user j and user k. Note that, in all cases, the curves

represent the BER in the AWGN channel; these curves are equivalent to those of

the instantaneous BER under fading for |hj|= 1 and |hk|= 1.

BPSK + BPSK

Figure 3.9 represents the achievable BER at user j for BPSK + BPSK modu-

lation, under a received SNR of 8dB and varying values of the power allocation

factor. The BER at user j can be reduced only by increasing the share of power

allocated to user j, αj.

Figure 3.10 represents the BER at user k for BPSK + BPSK modulation,

under a received SNR ratio of 15dB and varying values of the power allocation

factor. There is an optimal value of the power allocation factor for which the

BER is minimized at user k.
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Figure 3.9: BER at user j for BPSK + BPSK under a received SNR of 8dB, for
different values of the power allocation factor.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

k

10
-6

10
-4

10
-2

10
0

Figure 3.10: BER at user k for BPSK + BPSK under a received SNR of 20dB,
for different values of the power allocation factor.

60



Chapter 3. New Performance Bounds on the BER of NOMA Systems

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

j

10
-8

10
-6

10
-4

10
-2

10
0

4-QAM + BPSK

16-QAM + BPSK

64-QAM + BPSK

256-QAM + BPSK

Figure 3.11: BER at user j for Mk-QAM + BPSK under a received SNR of 14dB,
for different values of the power allocation factor.

At user j, according to Figure 3.9, the BER decreases when more transmit

power is allocated to user j’s symbols. At user k, according to Figure 3.10, the

BER improves initially with an increasing power allocation factor too. However,

due to the effect of inter-user interference, there is an optimal value of the power

allocation factor for which the lowest BER is achieved. If the power allocation

factor at user k increases, the BER deteriorates due to an increasing probability

of error during the first stage of SIC. The lowest joint BER is achieved when the

condition (3.16) is marginally met, i.e. when αk = 0.2. Further, condition (3.16)

ensures that the BER constraint can be simultaneously met at user j and user k

with minimum transmit power.

61



Chapter 3. New Performance Bounds on the BER of NOMA Systems

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

k

10
-10

10
-8

10
-6

10
-4

10
-2

4-QAM + BPSK, 20dB

16-QAM + BPSK, 25dB

64-QAM + BPSK, 30dB

256-QAM + BPSK, 35dB

Figure 3.12: BER at user k for Mk-QAM + BPSK, for different values of the
power allocation factor and received SNR.

Mk-QAM + BPSK

Figure 3.11 represents the BER at user j for Mk-QAM + BPSK, under a received

SNR ratio of 16dB and varying values of the power allocation factor. It is observed

that, for an increasing level of Mk, a higher share of power is required at user j

in order to achieve a given BER value, due to an increased level of interference

from user k’s symbols.

Figure 3.12 shows the BER at user k for Mk-QAM + BPSK, for various levels

of Mk and power allocation factor. It is observed that the minimum BER in each

case is achieved for a value of the power allocation factor that increases with the

modulation level Mk.

According to Figure 3.12, the minimum BER at user k is achieved for a value

of αk that increases with the modulation level Mk. Condition (3.26) guarantees

that the effect of inter-user interference can be overcome at user k, and that the
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BER constraint can be met with minimum transmit power.

Mk-QAM + Mj-QAM

Figure 3.13 represents the BER at user j for Mk-QAM + 4-QAM and Mk-QAM

+ 16-QAM, under received SNRs of 20dB and 33dB respectively, for varying

values of the power allocation factor. As Mj increases, the power share required

at user j to overcome the effect of interference from user k’s symbols rises sharply.

This fact implies that, for two superconstellations of the same level (for example,

64-QAM + 4-QAM and 16-QAM + 16-QAM), a larger constellation level in the

lower layer of the superconstellation requires a much better channel condition at

user k, since a very large share of power is allocated to user j in order to overcome

the effect of inter-user interference at both user j and user k.

By comparing Figure 3.13a and Figure 3.13b, the required channel condition

at user j to fulfill its BER constraint is significantly larger for a higher level of

Mj. Therefore, in this case, the channel gap between the two NOMA users is

significantly lower than in the case of superconstellations with a lower Mj level.

Figure 3.14 shows the BER at user k, for various levels of Mk and received

SNR, for fixed Mj = 4 and Mj = 16. The effect of increasing Mj that was

presented in Figure 3.13 for user j is also observed at user k. Figures 3.14a and

3.14b demonstrate that a smaller αk is required when the level of Mj increases,

in order to guarantee that user k can successfully carry out SIC. However, in

order to guarantee that the BER constraint is met at user k, the value of αk must

increase when the level Mk increases.

Figure 3.13b and Figure 3.14b are good representations of the effect of the

inter-user interference in the BER, which becomes more critical for higher mo-

dulation levels. The curves show dips in the BER for both user j and user k, for

several values of the power allocation factor. At these values, there is a reduction
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(a) BER at user j for Mk-QAM + 4-QAM under a received SNR of 20dB, for different
values of the power allocation factor.
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(b) BER at user j for Mk-QAM + 16-QAM under a received SNR of 33dB, for different
values of the power allocation factor.

Figure 3.13: BER at user j for Mk-QAM + Mj-QAM.
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Figure 3.14: BER at user k for Mk-QAM + Mj-QAM.
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Figure 3.15: 64-QAM + 16-QAM superconstellation for αk = 0.15.

of the number of superconstellation symbols that cannot be correctly decoded

due to inter-user interference. This effect is clearly illustrated in Figure 3.15 and

Figure 3.16, where it can be observed a reduction of over 50% in the number of

symbols for which inter-user interference is too large. In Figure 3.13b and Figure

3.14b this reduction translates into a dip in the BER curves.

3.8.2 Validity of the BER Exponential Approximations

The accuracy of expressions (3.52) and (3.53) is shown in Figures 3.17–3.20 for

some modulation levels and for varying SNR. Note that, in all cases, the curves
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Figure 3.16: 64-QAM + 16-QAM superconstellation for αk = 0.1.
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Figure 3.17: BER exponential approximations for 4-QAM + 4-QAM.

represent the BER in the AWGN channel; these curves are equivalent to those of

the instantaneous BER under fading when the channel gains of users j and k are

given by |hj|= 1 and |hk|= 1, respectively.

Figure 3.17 represents the validity of the exponential approximations for 4-

QAM + 4-QAM, for both NOMA users. For user k, the exponential approxi-

mation becomes more accurate for higher transmit power and lower target BER.
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However, at user j, the accuracy of the exponential approximation remains ap-

proximately constant within the transmit power interval of interest.

31 32 33 34 35 36 37 38 39

SNR (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Standard formula

Exponential approximation

(a) BER at user k
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Figure 3.18: BER exponential approximations for 256-QAM + 4-QAM.

Figure 3.18 represents the accuracy of the exponential approximations for

256-QAM + 4-QAM. At user k, the approximated BER is below the theoretical

value. Moreover, the curvature of the approximated BER differs from that of

the theoretical curve. However, the accuracy still remains good and it is within
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0.6dB. At user j, the accuracy of the approximation worsens with respect to the

result obtained in Figure 3.17. The exponential approximation (3.52) is accurate

to within 0.51 dB with respect to the standard formula (3.30).
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Figure 3.19: BER exponential approximations for 16-QAM + 16-QAM.

Next, Figure 3.19 represents the accuracy of the exponential approximations

for 16-QAM + 16-QAM. In this case, the accuracy of the BER approximations

improves substantially for both user j and user k, although it is observed that the
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curvature of (3.52) differs with respect to that of (3.30). However, the accuracy

remains within 0.25dB for all cases of interest at both user j and user k.
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Figure 3.20: BER exponential approximations for 64-QAM + 16-QAM.

Last, Figure 3.20 represents the accuracy of the exponential approximations

for 64-QAM + 16-QAM. At user k, the accuracy of (3.53) differs with respect to

that of (3.36) is within 0.25dB for all cases of interest. At user j, (3.52) becomes

a lower bound to (3.30), and the worst accuracy is obtained for low transmit
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power and high BER values. For a BER of 10−3, the accuracy is within 0.67dB,

and it improves for lower BER values.

In conclusion, at user j, the approximation error introduced by (3.52) de-

creases for increasing Mj,s and decreasing Mj,sMk,s. In the worst case, for 256-

QAM + 4-QAM, the exponential approximation (3.52) is accurate to within 0.51

dB with respect to the standard formula (3.30).

At user k, the exponential approximation (3.53) is more accurate with respect

to the standard formula (3.36) for increasing values of Mj,s and Mk,s. In the worst

case, for 4-QAM + 4-QAM and 16-QAM + 4QAM, at user k, (3.53) is accurate

to within 0.67dB with respect to (3.36).

In most cases, for β0 = 10−3, the exponential approximations constitute an

upper-bound to the standard BER expressions in terms of the Q-function. The

exceptions are the approximations to the BER at user k for 256-QAM + 4-QAM

and 64-QAM + 16-QAM, as given in Figures 3.18 and 3.20, respectively.

3.9 Conclusions

In this Chapter, theoretical BER expressions were presented for two-user NOMA,

for BPSK + BPSK, multilevel Mk-QAM + BPSK and multilevel Mk-QAM + Mj-

QAM. To the best of the author’s knowledge, this work provides the first attempt

to derive BER expressions for multilevel Mk-QAM + Mj-QAM in NOMA.

It was analytically proved that, for the user who comes second in the SIC

decoding order, there exists a certain value of the power allocation factor for

which the BER is minimized. From the higher-layer user’s point of view, the value

of the power allocation factor must be high enough as to increase the power level

of its own received signal, but it must also be low enough as to ensure successful

decoding and removal of the lower-layer data stream. Further, the optimal power
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allocation factor value is also the value that minimizes the transmit power in

a BER-constrained NOMA system. The optimal level of the power allocation

factor is dependent on the modulation level assigned to both NOMA users and,

as the modulation level assigned to the lower-layer user increases, the value of

the optimal power allocation rises sharply.

The theoretical BER expressions were used for calculating the optimal channel

gain ratio for a pair of NOMA users, i.e. the ratio of channel gains that maximize

the achievable sum rate for a given BER constraint. Unlike previous research in

NOMA [51], it was demonstrated that, in NOMA systems with practical QAM,

albeit different, the channel gains of two NOMA users must be of approximately

the same order of magnitude in order to guarantee that the effect of inter-user

interference can be overcome at the receivers, especially when the modulation

levels assigned to users are similar.

Further, accurate exponential approximations were proposed for the BER in

NOMA under multilevel Mk-QAM + Mj-QAM. Based on the BER exponential

approximations, numerical boundaries were found for the values of the channel

gain ratios of NOMA users that fulfill individual BER constraints for different

combinations of modulation levels. It was proved that a pair of NOMA users

whose channel gain ratio falls outside the numerical boundaries for a given mo-

dulation level cannot meet the individual BER constraints. In addition, the expo-

nential BER approximations are easily invertible and differentiable, unlike their

Q-function-based equivalent expressions. These qualities make them suitable for

their application to solving the problem of resource allocation in NOMA.
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4.1 Introduction

4.1.1 Motivation

Beyond-5G paradigms such as the IoE require of novel technologies that are capa-

ble of providing massive scale connectivity in an efficient manner. It is expected

that, in the connected society of 2030, massive machine-type communication net-

works will be occupied by the traffic of billions of devices, reaching densities of

the order of 107 devices/km2, with data rates of up to 1 Tbps and vast increases

in energy and spectrum efficiency [12].

It has been proved that NOMA with SC can approach the channel capacity

boundary in both the uplink and the downlink [46, 56, 63, 94]. SC takes ad-

vantage of the near-far effect in wireless communications [62] to simultaneously

convey data of multiple users over the same communication channel. In con-

trast, the near-far effect may significantly degrade the achievable performance

of OMA-based systems. In addition, NOMA can be easily combined with other
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technologies [52], further increasing the scalability, spectral efficiency and energy

efficiency of future wireless networks.

For the reasons above, NOMA has received considerable attention as a poten-

tial multiple access technique over the last few years. Although it was decided not

to continue with NOMA as a study item for 5G in 3GPP [95], the proliferation

of new use cases with an ultra-dense number of devices in beyond-5G networks

is a motivating paradigm for the use of NOMA.

Up to this date, the relative performance gain of NOMA over OMA is still

smaller than its high implementation cost. In particular, optimal user pairing in

NOMA is specially challenging for systems with a large number of users, since it

requires a large channel state information acquisition and feedback overhead, as

well as very computationally complex optimization algorithms [95]. Further, the

spectral efficiency of NOMA needs to be improved to provide larger gains than

its OMA counterpart.

By combining NOMA with subcarrier-based schemes, the capabilities of both

can be enhanced. Multicarrier NOMA systems take advantage of the ortho-

gonality of radio resources in subcarrier-based schemes, in terms of a reduced

implementation complexity, whilst increasing the performance by multiplexing

users in a non-orthogonal manner in the same resource. The key to achieve the

full potential of NOMA is resource allocation, which carries out the assignment

of radio resources with the objective of optimizing a certain performance metric.

Appropriate resource allocation in NOMA comprises the joint optimization of

subcarrier allocation, data rate allocation and power allocation [52–54], which

quite often yields an intractable problem, for which finding the optimal solution

requires of prohibitively complex exhaustive search algorithms [55]. Therefore,

in order to reduce the implementation cost of NOMA, it is critical to investigate

how to reduce the computational complexity of resource allocation in multicarrier
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NOMA systems, while achieving a performance close to optimal.

4.1.2 Contributions

In this Chapter, several contributions are made in terms of user pairing and

resource allocation in multicarrier NOMA systems. Due to the intractability

of the formulated problem, this is divided into the sub-problems of subcarrier

allocation, and power and data rate allocation. These two sub-problems are

separately optimized.

First, for the problem of subcarrier allocation, knowledge about the optimal

channel gain ratios and channel gain gaps in NOMA that maximize the achie-

vable sum-rate in BER-constrained scenarios is used to propose a user pairing

algorithm that achieves quasi-linear complexity with respect to the number of

users. This is achieved by implementing a search procedure with prior knowledge

about the optimal value of the users’ channel gains ratio and gap. In contrast, the

complexity of exhaustive search procedures is of the order of the squared number

of users. Other sub-optimal user pairing schemes in the literature [55, 56] also

achieve a much larger computational complexity than the algorithm presented in

the thesis.

Second, BER exponential approximations in NOMA are used for solving the

problem of power and data rate allocation by applying a Lagrangian optimization

method [58], with the objective of maximizing the sum-rate. The optimization

result is applied to proposing a novel IRA-DRS power and data rate allocation al-

gorithm for BER-constrained multicarrier NOMA systems. Unlike existing works,

continuous power levels and discrete modulation levels are considered. Through

numerical simulations, it is demonstrated that the proposed resource allocation

scheme for multicarrier NOMA systems yields a performance close to optimal,

and it outperforms other suboptimal schemes such as FTPC [56]. The minimum
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performance loss introduced by IRA-DRS with respect to the optimal solution is

1.5%. Therefore, IRA-DRS yields an excellent trade-off between sum-rate per-

formance and computational complexity. Further, the proposed scheme greatly

benefits from multi-user diversity in terms of achievable sum-rate, number of it-

erations required for convergence, and degrees of freedom in choosing different

combinations of modulation levels at each subcarrier that yield the same sum-

rate.

Moreover, unlike previous works, it is demonstrated that the benefit of pairing

NOMA users with very distinct channel conditions is lost in BER-constrained

multicarrier NOMA with QAM. In fact, the average channel gain ratio obtained

from simulations has a value close to two.

4.1.3 Structure

The remainder of this Chapter is organized as follows. A thorough literature

review on user pairing and resource allocation in multicarrier NOMA systems is

presented in Section 4.2. The system model and the problem formulation are

presented in Section 4.3 and Section 4.4, respectively. The subcarrier allocation

problem is solved in Section 4.5, where the user pairing algorithm is presented.

Derivations for the power allocation and modulation level selection are presented

in Section 4.6. Then, the IRA-DRS algorithms are presented in Section 4.7 and

in Section 4.8, respectively. Numerical results on the effect of multi-user diver-

sity, sum-rate performance, system optimization parameters and computational

complexity of IRA-DRS are provided in Section 4.9. Finally, Section 4.10 con-

cludes the Chapter.
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4.2 Literature Review

Multicarrier NOMA systems [47] combine the benefits of OMA and NOMA. One

of the major advantages of NOMA is that it is compatible with multicarrier based

schemes, and therefore it can be easily integrated into existing schemes such as

OFDMA. In multicarrier NOMA systems, different resource blocks are orthogonal

in the time and frequency domains, but several NOMA users can be multiplexed

into the same resource block in a non-orthogonal manner.

Resource allocation, i.e. the joint optimization of subcarrier and power allo-

cation, is required in order to obtain the full benefits of multicarrier NOMA.

However, in NOMA systems, this joint optimization problem normally leads to

a mixed-integer, NP-hard problem [55]. NP-hard problems are intractable, and

therefore their optimal solution can only be found through exhaustive search,

which is a combinatorial optimization problem. A more practical approach to

solving the joint problem of subcarrier and power allocation in multicarrier NOMA

is to separate the problems of subcarrier allocation and power allocation, fix one

of them and optimize the other [55], [57]. This leads to suboptimal but practical

and efficient solutions that provide a better trade-off between implementation

complexity and system performance [79,96–98].

The main focus of this literature review is the study of existing works related

to resource allocation in multicarrier NOMA, in terms of subcarrier allocation

and power allocation.

4.2.1 Subcarrier Allocation

The problem of subcarrier allocation in NOMA consists in carrying out user pair-

ing or user grouping at each subcarrier in an optimal manner. One approach

to select the best NOMA user set on each subcarrier is to search over all pos-
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sible combinations of users, then select the pair that optimizes a given system

optimization parameter, such as the maximum sum-rate [56]. However, exhaus-

tive search procedures require a computational complexity that is too large for

implementation in practical systems.

The landmark work in [51] provided the first thorough study on the impact

of user pairing on the performance of NOMA systems. It was proven that, in

NOMA with fixed power allocation, both the probability that NOMA achieves

a higher sum-rate than OMA and the sum-rate gain gap of NOMA over OMA

can be increased by pairing NOMA users whose channel gains are significantly

distinctive. It was also shown that, in terms of maximizing individual user data

rates in NOMA systems, it is also preferable to pair two users with significantly

distinctive channel gains.

The findings from [51] have since been applied extensively to the design of

user pairing and user grouping schemes, which offer a more efficient solution

to the subcarrier allocation problem than exhaustive search-based schemes. A

common approach in the existing literature was the development of suboptimal

schemes based on user grouping, i.e. roughly classifying users as strong or weak,

depending on their channel conditions, and multiplexing them according to this

classification. The procedure in [99] was to randomly allocate users in groups,

then pair the users with best and worst channel conditions within each group. A

similar approach was followed in [100], where dynamic user clustering and power

allocation was proposed. Users were clustered and then paired within each cluster

depending on their channel conditions.

Other more practical approaches considered aspects such as fairness or data

rate constraints. For example, [101] proposed a sort-based pairing algorithm for

downlink NOMA, where the users were sorted according to their channel condition

and then paired. The algorithm guaranteed the minimum achievable data rate
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at both users to be at least equal to the achievable with OMA schemes. In [102],

a low-complexity algorithm for user pairing was proposed, in which a priority

coefficient was derived in terms of data rate constraints, and the user with the

largest priority coefficient was paired with the user with the best channel condi-

tion. Furthermore, a fair NOMA power allocation scheme was proposed in [103],

where users were opportunistically paired irrespective of their channel conditions.

The authors proved again that a larger difference in channel conditions between

paired users leads to a larger increase in sum-rate.

Other investigations considered user grouping-based strategies, but with an

increased degree of complexity in order to improve the balance between system

performance and computational complexity. For example, in [104], a genera-

lized user grouping approach was proposed, in which NOMA users are allowed

to participate in several groups simultaneously, according to their channel gains,

and under individual power constraints. By introducing this increased flexibility

with respect to conventional user grouping schemes where users are placed into

disjoint groups, a significant performance gain in terms of the sum-rate can be

achieved, striking a good balance between computational complexity and perfor-

mance. In [105], user pairing was carried out while considering the optimal power

allocation between user pairs. A classification of user pairs was established based

on the relationship between the users’ channel conditions and the signal to noise

and interference constraints. Then, a Tabu search algorithm was used to find a

suboptimal user pair in a computationally efficient manner.

However, many challenges still remain open in terms of the subcarrier alloca-

tion problem. For example, the impact of user pairing on the users’ individual

BER has not been studied so far. It is also needed to further study how a certain

ratio of users’ channel conditions affects system parameters such as the system

sum-rate and outage probability in multicarrier NOMA systems. This is necessary
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in order to gain more insight into how to develop user grouping and user pairing

strategies that can provide a performance close to that of exhaustive search, but

with a reduced computational complexity. This is of paramount importance in the

machine-type communications paradigm, due to the low processing capabilities

of IoT devices.

4.2.2 Power Allocation

It is well known that the joint optimization of subcarrier and power allocation

in multicarrier NOMA may lead to an NP-hard problem. A thorough analysis

of the tractability of resource allocation in multicarrier NOMA was carried out

in [55]. It was proven that the joint power and channel allocation problems in

multicarrier NOMA under the utilities of sum-rate and weighted sum-rate are

both NP-hard.

In the literature, the problem of optimal power allocation in multicarrier

NOMA is commonly studied in a joint manner with the problem of subcarrier

allocation. For intractable joint subcarrier and power allocation problems in

multicarrier NOMA, the optimal solution requires of exhaustive search [107],

which is not applicable in practical systems due to its prohibitively high compu-

tational complexity. It is usually preferable to design suboptimal schemes, that

can provide a good trade-off between system performance and implementation

complexity [108]. A performance bound on the global optimum was developed

in [55] for both sum-rate and weighted sum-rate formulations, which can be used

as a framework for performance evaluation of suboptimal subcarrier and power

allocation schemes.

Power allocation in multicarrier NOMA systems has been studied under diffe-

rent performance metrics. A comprehensive investigation of joint subcarrier and

power allocation in downlink NOMA systems was provided in [108], for several
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problem formulations based on different performance criteria. Closed-form and

semi-closed-form solutions were derived for the optimal power allocation, and

these were used to jointly optimize subcarrier and power allocation in a subopti-

mal but practical and efficient manner.

The problem of sum-rate maximization in multicarrier NOMA is one of the

most commonly adopted in the literature. This is an NP-hard problem [55] and,

due to its complexity, most researches divided it into two equivalent subproblems,

namely subcarrier and power allocation, and only proposed heuristic methods for

resource allocation based on user grouping for pairing users sharing the same

subcarrier. In [109], the authors formulated a resource allocation problem for

downlink OFDM-based NOMA systems, with the objective of heuristically max-

imizing the system sum-rate, subject to power constraints. For subcarrier allo-

cation, users with similar channel gains were allocated into a group. NOMA was

applied to users from different groups in a greedy manner, by imposing a cons-

traint to ensure a large enough difference in mean channel gain ratio between any

two groups, based on the findings on optimal user pairing in [51]. [107] investi-

gated resource allocation for the maximization of the weighted sum throughput of

full-duplex multicarrier NOMA systems. A low-complexity suboptimal algorithm

based on successive convex approximation was proposed, and its performance was

shown to be close to optimal. A near-optimal solution to the sum-rate maximiza-

tion problem was proposed in [55], through the discretization of the user power

budget. However, in practical systems with a large number of power levels, the

achievable computational complexity remained too high. In [110], optimal and

approximate algorithms were proposed for joint subcarrier and power allocation.

However, these relied on using a precomputation procedure in order to reduce the

complexity of the power control algorithm. Therefore, this solution is not viable

for a practical system where the channel conditions of all users are time variant,
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and adaptive resource allocation is needed.

In summary, these works assumed continuous data rate allocation, based on

theoretical data rate expressions, and did not consider practical systems using dis-

crete modulation levels. Therefore, more knowledge is needed on how to achieve

a good trade-off between complexity and performance in such a system, for exam-

ple when QAM is employed. Moreover, existing works mainly considered system

constraints such as minimum individual data rates or maximum transmit power,

but did not consider constraints such as BER, which plays a critical role in en-

suring that users receive a certain quality of service.

4.3 System Model

Consider a single-cell, multicarrier downlink NOMA system as represented in

Figure 4.1, where it is assumed that the downlink channel gains of all subcarriers

are perfectly estimated by each user through pilot channels and channel state

information. Studying the impact of channel estimation error is not within the

scope of this thesis, but insight into its impact in NOMA systems is provided

in [88–91].

The scenario under consideration is assumed to have a set of active users K =

{1, · · · , K}. The entire bandwidth of W Hertz is partitioned into S orthogonal

subcarriers contained within the set S = {1, · · · , S}. It is assumed that there

is no interference among adjacent subcarriers due to the orthogonal frequency

partitioning. For all users, all subcarriers are assumed to be Rayleigh fading

channels with AWGN, with double-sided spectral density N0/2. The channel

response of user j on subcarrier s is given by hj,s, with E{|hj,s|2} = 1, where E{·}

denotes statistical expectation. It is assumed that |hj,s| is Rayleigh distributed,

∀j, s. Further, hj,s and hk,s are independent for j 6= k.
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Figure 4.1: Multicarrier NOMA system model.

It is assumed that one user may be simultaneously assigned to several sub-

carriers. A particular subcarrier may be unused during a certain time resource if

the channel conditions of users in that subcarrier are unfavorable. Without loss

of generality, it is assumed that all users’ channel gains on subcarrier s have been

ordered from lowest to highest, i.e. |h1,s|2≤ · · · ≤ |hK,s|2. Assume that users

{j, k} ∈ K are jointly selected to perform NOMA on subcarrier s ∈ S. The base

station transmits a signal of the form

x{j,k},s =
√
pj,sxj,s +

√
pk,sxk,s, (4.1)

where xj,s ∈ C denotes user j’s transmit symbol, and pj,s is the transmit power

to user j on subcarrier s. Further, E{|xj,s|2} = E{|xk,s|2} = 1 and pj,s = αj,sps,

where ps is the total transmit power on subcarrier s and αj,s is the power allocation

factor of user j on that subcarrier. For any two multiplexed users j and k, the

conditions pj,s + pk,s = ps and αj,s + αk,s = 1 hold for subcarrier s. Hence, the
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received signals at user j and user k on subcarrier s can be expressed as

yj,s =
√
pj,shj,sxj,s +

√
pk,shj,sxk,s + zj,s, (4.2)

yk,s =
√
pk,shk,sxk,s +

√
pj,shk,sxj,s + zk,s, (4.3)

respectively, where zj,s ∼ CN (0, σ2
zj,s

), zk,s ∼ CN (0, σ2
zk,s

) denote the AWGN.

Note that CN (a, σ2) represents a circularly symmetric complex Gaussian distri-

bution with mean a and variance σ2.

It is assumed that the lower-layer user on each subcarrier, i.e. user j, uses

maximum-likelihood detection with hard decision. At user k, the maximum-

likelihood method is applied to decode user j’s data stream. Then, user k uses SIC

to remove interference from user j, where imperfect SIC is assumed, i.e. errors

in detecting user j’s signals are carried over to the second stage of detection,

thus affecting the probability of correct detection of user k’s own symbols. After

removing user j’s symbols, user k uses maximum-likelihood detection with hard

decision to decode its own data stream [92].

The high implementation complexity of SIC remains an open research cha-

llenge [50], [111]. Therefore, in order to achieve a reasonable SIC implementation

complexity, it is assumed that the base station multiplexes at most two NOMA

users during each resource allocation instant. Resource allocation is performed

at the base station under the constraints of total downlink transmit power, ptotal,

and identical maximum instantaneous BER per user, β0. The base station multi-

plexes users into each subcarrier according to their channel gain ratios, such that

the NOMA principle can be successfully applied. In the event that the application

of NOMA is not feasible, a subcarrier may be unused.

The base station feeds forward information about subcarrier and modula-

tion level assignment to each active user through downlink control signaling. In
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addition, where two users are multiplexed according to the NOMA principle, in-

formation about user j’s assigned power and modulation level is also fed forward

to user k, thus enabling SIC decoding at the receiver.

The instantaneous BER at user j on subcarrier s is represented as βj,s, and

that at user k is represented as βk,s. β0 denotes the individual BER constraint,

which is assumed to be equal at both user j and user k, for all subcarriers.

4.4 Problem Formulation

The optimization objective under consideration in this thesis is the maximization

of the system sum-rate under individual, instantaneous BER constraints at each

user and total transmit power constraint at the base station. This is given by the

following indication function:

max
pj,s,pk,s,δj,s,δk,s

S∑
s=1

K∑
j=1
j 6=k

K∑
k=1

δj,sRj,s + δk,sRk,s (4.4a)

s.t. C1: 0 ≤ pj,s, ∀j, s, (4.4b)

C2: δj,s ∈ {0, 1}, ∀j, s, (4.4c)

C3:
K∑
j=1

δj,s ≤ 2, ∀s, (4.4d)

C4:
S∑
s=1

(pj,s + pk,s) ≤ ptotal, (4.4e)

C5: βj,s ≤ β0,∀j, s, (4.4f)
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where Rj,s and Rk,s are given by (3.58) and (3.59) in terms of the channel gain

gap. δj,s is a binary variable defined as

δj,s =


1, if user j is assigned to subcarrier s,

0, otherwise.

(4.5)

Constraint C1 ensures non-negative transmit power. Constraints C2 and C3

guarantee that a maximum of two users may be allocated to one subcarrier.

Constraint C4 is the maximum transmit power allowance at the base station,

ptotal. Further, constraint C5 guarantees that the individual instantaneous BERs

at users on subcarrier s, i.e. βj,s, ∀j, are lower than the BER threshold, β0.

The problem in (4.4) was found to be NP-hard in [55]. Therefore, its optimal

solution can only be found through exhaustive search, which is not practical due

to its large computational complexity [56]. In order to make the maximization

problem (4.4) more tractable, the proposed solution is to divide it into the sub-

problems of subcarrier and power allocation, and then optimize each of them

separately. This yields a sub-optimal but computationally efficient solution.

First, in order to solve the problem of subcarrier allocation in a simplified

manner, the channel gain gap expression derived in Section 3.7 is applied to

the development of a user pairing algorithm in Section 4.5. Second, by using

the channel gain gap expression, a procedure for power and rate allocation is

proposed in Sections 4.6–4.8.

4.5 Subcarrier Allocation

The main idea of subcarrier allocation is to allocate the best pair of NOMA users

to a subcarrier, with no prior information on the transmit power, such that the

sum-rate is maximized. In this work, it is assumed that one user can be assigned
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to more than one subcarrier at the same time.

A relevant conclusion that can be extracted from (3.60)–(3.63) is that, in

a scenario with a finite number of users, there might not be a suitable NOMA

partner for the user with the highest channel gain. Therefore, in order to optimize

H{j,k},s, it might be feasible to select a user with a lower channel gain, but for

whom a suitable partner that yields an adequate value of g{j,k},s can be found.

Based on the optimal channel gain gap values from Table 3.1 and on the channel

gain ratio condition (3.63), an efficient user pairing algorithm is proposed to carry

out optimal user pairing at each subcarrier.

The aim of the user pairing algorithm is to select the pair of users k and j

that yield the largest channel gain gap for a given subcarrier, H{j,k},s. This is

achieved by pairing a user with a very strong channel condition, and a user with

the lowest possible channel condition that fulfills the BER constraint. Therefore,

the user pairing algorithm is an iterative search procedure where the user with the

strongest channel condition is considered, and a suitable partner with the lowest

possible channel condition is searched for; when there are no suitable partners

for the user with the strongest channel condition, the procedure is repeated for

the second user with the best channel condition, and so on, until a suitable pair

of NOMA users is found.

In the user pairing algorithm, the channel gains of users are ordered first from

smallest to largest on subcarrier s, i.e. |h1,s|2≤ · · · ≤ |hK−1,s|2≤ |hK,s|2. The

user with the largest channel gain is selected first, since this is the user that can

potentially yield the largest H{j,k},s value, and consequently a higher sum-rate.

Next, the set J of possible partners that fulfill condition (3.63) when paired

with user K is found. The user j that provides the highest H{j,k},s value, ∀j,

is selected as the partner to user K, i.e. j = min (J), in order to maximize the

value of H{j,k},s while fulfilling the BER constraint.
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Figure 4.2: User pairing algorithm flowchart.

If no users fulfill (3.63) when paired with user K, the procedure is repeated

for user K − 1, and so on, until a suitable pair of users is found. Iterations are

carried out for users in decreasing order of channel gains, in order to maximize

the value of the channel gain gap. The user pairing algorithm is summarized in

Algorithm 4.1, and its flowchart is given in Figure 4.2.

In scenarios with low multi-user diversity, it is more likely that users with a

small channel gain ratio are paired on subcarrier s after applying user pairing.

This yields a smaller H{j,k},s and therefore, according to (3.59) and Table 3.1, a

smaller achievable sum-rate at subcarrier s. In the power allocation procedure in

Section 4.6, this is penalized by allocating less power to subcarriers with a smaller

H{j,k},s. However, since both (3.37) and (3.63) are fulfilled, it is guaranteed that

the effect of inter-user interference is manageable at user j, even for small channel

gain ratios.

The presented user pairing procedure is applied in Section 4.7 to iteratively

select the optimal pair of NOMA users allocated on every subcarrier for any given

transmit power and BER constraints.

Numerical results in Section 4.9 prove that the complexity of the user pairing
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Algorithm 4.1: User Pairing Algorithm

initialization;

order users from lowest to largest channel gain, as

|h1,s|2≤ · · · ≤ |hK−1,s|2≤ |hK,s|2;
set i = K and j = ∅;
while j = ∅ and i > 1 do

set k = i;

find set J of possible partners for user k that fulfill (3.63);

if J = ∅ then

i = i-1;

end

else
set j as element from J that yields the maximum H{j,k},s, i.e.

j = min (J);

end

end

Result: pair of users {j, k}.
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algorithm is quasi-linear in practice, of the order of O(1.54K) for a system with

a number of users between five and fifty-five. In comparison, the complexity of

the user pairing prodecure in FTPC [56] and that of exhaustive search are of the

order of O(K2) per subcarrier, whereas the complexity of the sub-optimal SCUS

scheme in [55] is of the order of O(2CK) after an initial stage of precomputation,

where C is the number of discrete power allocation factor levels and it is of the

order of 100-1000.

4.6 Power Allocation

After all subcarriers are allocated, the original objective in (4.4) leads to the devel-

opment of power allocation in all subcarriers under the given subcarrier allocation

result. Assume that the pairs of NOMA users allocated to each subcarrier are

collected in the subcarrier allocation vector U. Further, through the application

of (3.58) and (3.59), it is imposed that the BER constraint be marginally met at

all users. Therefore, the optimization problem given in (4.4) can be simplified as

follows:

max
pj,s,pk,s

S∑
s=1

Rj,s +Rk,s (4.6a)

s.t. C1: 0 ≤ ps, ∀j, s, (4.6b)

C2:
S∑
s=1

ps ≤ ptotal (4.6c)

In order to further simplify the analysis, the data rate variables {Rj,s, Rk,s} ∈

I+ in (4.6), which are positive integers, are respectively transformed into their

equivalent real versions, {R̂j,s, R̂k,s} ∈ R. According to the expression given in

(3.59), the continuous sum-rate on subcarrier s can be written in terms of the
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transmit power as

R̂j,s + R̂k,s = log2

(
1 +

cpsH{j,k},s
log 0.18

)
. (4.7)

Since the second derivative of R̂j,s + R̂k,s is always positive with respect to

ps for the interval ps > 0, then the function (4.7) is concave, and the optimiza-

tion problem given by (4.6) can be solved by using the Lagrangian method [58].

Consider the Lagrangian function

L =
S∑
s=1

(
R̂j,s + R̂k,s

)
− λ

(
S∑
s=1

ps − ptotal

)
, (4.8)

where λ is the Lagrange multiplier for constraint (4.4e) and ps is the total power

allocated to subcarrier s. The solution to the optimal power allocation can be

found by differentiating L in (4.8) with respect to ps and equaling each derivation

to zero, i.e.

∂L
∂ps

=
dR̂j,s

dps
+

dR̂k,s

dps
− λ = 0. (4.9)

In order to obtain dR̂j,s/dps and dR̂k,s/dps, both sides of (3.58) are differentiated

with respect to ps, yielding

exp

(
cH{j,k},sps

2R̂j,s+R̂k,s − 1

)

·

cH{j,k},s
(

2R̂j,s+R̂k,s − 1
)
− ln 2 · 2R̂j,s+R̂k,sps

(
dR̂j,s

dps
+

dR̂s
uk,s

dps

)
2R̂j,s+R̂k,s − 1

 = 0. (4.10)

In order for (4.10) to be zero, the following condition must be fulfilled:

(
2R̂j,s+R̂k,s − 1

)
− ln 2 · 2R̂j,s+R̂k,sps

(
dR̂j,s

dps
+

dR̂k,s

dps

)
= 0. (4.11)
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Hence, the derivative of the data rate at user k with respect to the transmit power

on subcarrier s can be expressed as

dR̂j,s

dps
+

dR̂k,s

dps
=

2R̂j,s+R̂k,s − 1

2R̂j,s+R̂k,sps ln 2
. (4.12)

Substituting (4.12) in (4.9) yields

λ =
2R̂j,s+R̂k,s − 1

2R̂j,s+R̂k,sps ln 2
, s = 1, · · · , S. (4.13)

Thus, the transmit power of subcarrier s is derived as

ps =
2R̂j,s+R̂k,s − 1

2R̂j,s+R̂k,s

· 1

λ · ln 2
(4.14)

Consider now that the constraint given in (4.4e) is marginally met, i.e.

S∑
s=1

ps = ptotal. (4.15)

After substituting (4.14) into (4.15), λ is derived as

λ =
1

ln 2 · ptotal

S∑
s=1

2R̂j,s+R̂k,s − 1

2R̂j,s+R̂k,s

. (4.16)

By equaling the value of λ in (4.14) and (4.16), the transmit power allocated to

subcarrier s is derived as

ps =
ptotal

(
2R̂j,s+R̂k,s − 1

)
2R̂j,s+R̂k,s

∑S
t=1

(
1− 1

2
R̂j,t+R̂k,t

) =
ptotal

(
2R̂j,s+R̂k,s − 1

)
2R̂j,s+R̂k,sS −

∑S
t=1

(
2
R̂j,s+R̂k,s

2
R̂j,t+R̂k,t

) . (4.17)
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From (3.59) and (4.14), the variable H{j,k},s can be written in terms of λ as

H{j,k},s = λ
log 0.18 log 2

c
2R̂j,s+R̂k,s . (4.18)

Then, by replacing H{j,k},s into (4.17),

ps =
ptotal

(
2R̂j,s+R̂k,s − 1

)
2
R̂j,s+R̂s

uk,sS −
∑S

t=1

H{j,k},s
H{j,k},t

. (4.19)

Further, by expressing 2R̂j,s+R̂k,s in terms of H{j,k},s and ps according to (3.59),

2R̂j,s+R̂k,s = 1 +
cpsH{j,k},s
log 0.18

, (4.20)

and the transmit power allocation at subcarrier s is finally given by

ps = p+
ln 0.18

cS

S∑
t=1

1

H{j,k},t
− ln 0.18

cH{j,k},s
≥ 0, (4.21)

where p = ptotal/S is the average transmit power per subcarrier, and the term

(1/S) ·
∑S

t=1 1/H{j,k},t is the average of 1/H{j,k},t over all subcarriers t = 1, · · ·S.

According to (3.63) and (4.21), the power allocated to subcarrier s increases

when the channel gain gap H{j,k},s between user j and user k on subcarrier s

increases. This fact follows the water-filling principle in multiuser environments

[62].

Note that, due to constraint (4.4b), if the result of (4.21) for subcarrier s is

negative, then ps is set to zero. In the event that one or more subcarriers are

allocated with zero power, power allocation is carried out again among subcarriers

allocated with positive power, in order to allocate all unused transmit power.

After power allocation, the theoretical sum-rate on each subcarrier with power
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larger than zero can be derived from (3.59), by expressing

2R̂j,s+R̂k,s =
cps

ln 0.18
H{j,k},s + 1. (4.22)

From (4.21), it is found that (4.22) is equivalent to

2R̂j,s+R̂k,s =
cH{j,k},s
ln 0.18

· p+
1

S

S∑
t=1

H{j,k},s
H{j,k},t

. (4.23)

Therefore,

R̂j,s + R̂k,s = log2

(
cH{j,k},s
ln 0.18

· p+
1

S

S∑
t=1

H{j,k},s
H{j,k},t

)
. (4.24)

From (4.24), it is clear that the highest sum data rate corresponds to the pair of

NOMA users with the highest H{j,k},s value, which is consistent with the results

obtained in (3.58) and Table 3.1.

Power Correction Factor

The approximation error introduced by (3.52) and (3.53) with respect to (3.30)

and (3.36) results in excess power allocated to subcarriers. By introducing a

power correction factor, the power allocated to each subcarrier can be reduced.

Any unused power can then be applied to certain subcarriers in order to further

increase the sum-rate.

Let εj,s denote the excess power introduced on subcarrier s by (3.52) with

respect to (3.30), and let εk,s denote the excess power introduced on subcarrier s

by (3.53) with respect to (3.36). By reducing the powers allocated to user j and

user k by factors of εj,s and εk,s respectively, the same sum rate can be achieved

while fulfilling the BER constraint β0. The excess powers allocated to user j and

user k on subcarrier s become equal by setting the power allocation factor at

user j to α̌j,s = αj,s
√
εj,s/εk,s. At user k, the power allocation factor is set to
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Ratio εk,s/εj,ss
β0 = 10−3 β0 = 10−4 β0 = 10−5 β0 = 10−6

4-QAM + 4-QAM 1.101 1.088 1.074 1.066
16-QAM + 4-QAM 1.124 1.226 1.084 1.073
64-QAM + 4-QAM 1.110 1.096 1.083 1.068

256-QAM + 4-QAM 0.926 0.928 0.936 0.943
16-QAM + 16-QAM 1.023 1.040 1.038 1.036
64-QAM + 16-QAM 0.989 0.970 0.965 0.968

Table 4.1: Numerical evaluation of the ratio εk,s/εj,s for Mk-QAM + Mj-QAM.

α̌k,s = αk,s
√
εk,s/εj,s. Therefore, a power correction factor Fs is defined as

Fs =
√
εk,s/εj,s, if εk,s/εj,s ≥ 1

Fs =
√
εj,s/εk,s, otherwise. (4.25)

Fs is calculated from (4.25) by applying the numerical values for εk,s/εj,s, as given

on Table 4.1. The transmit power per subcarrier is readjusted by applying Fs to

(4.21), i.e.

p̌s =

(
p+

ln 0.18

cS

S∑
t=1

1

H{j,k},t
− ln 0.18

cH{j,k},s

)
· 1

Fs
≥ 0. (4.26)

Fs is applied after data rate allocation, given that prior knowledge about Mj,s

and Mk,s is needed.

4.7 Iterative Resource Allocation Algorithm

Equation (4.24) is the theoretical sum-rate achieved for a subcarrier for a given

power allocation. However, different individual user data rates may yield the

same sum-rate for a given subcarrier. Consider, for example, a sum-rate of 8

bits/symbol for a given subcarrier; this sum-rate can be achieved for combinations

of individual data rates such as 4+4, 5+3 or 6+2. In this Section, a heuristic
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IRA algorithm is proposed to select suitable individual user data rates based on

the optimal power allocation and theoretical sum-rate result, such that the BER

constraint can be met by all users. In IRA, user pairing, power allocation and

modulation selection are performed in an iterative manner, by applying (3.59),

the numerical results from Table 3.1 and the optimal power allocation result given

by (4.21).

In IRA, an initial pair of NOMA users is selected first for each subcarrier,

based on the average transmit power per subcarrier p. Expression (3.60) can be

written in terms of p as follows,

exp

(
cpH{j,k},s

2
R̂s

uj,s
+R̂s

uk,s − 1

)
= 0.18. (4.27)

According to (3.60), the expectation of the channel gain gap H{j,k},s across all

subcarriers can be expressed as

E{H{j,k},s} =

(
1− 1

g{j,k},s

)
E{|hk,s|2}, (4.28)

where E{|hk,s|2} = 1. Therefore, from (4.27), the average data rate on subcarrier

s is given by

E{R̂j,s + R̂k,s} = log2

(
cpE{H{j,k},s}

ln 0.18
+ 1

)
= log2

(
cp
(
1− 1/g{j,k},s

)
ln 0.18

+ 1

)
.

(4.29)

For simplicity of notation, assume that the subset V ⊂ U is the collection

of users j allocated to each subcarrier, whereas W ⊂ U is the subset of users

k allocated to each subcarrier, and V ∪W = U. The first user in V is paired

with the first user in W on the first subcarrier, the second user in V is paired

with the second user in W on the second subcarrier, and so on. The average

data rates of the sets of users V and W across all subcarriers are given by
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Figure 4.3: IRA flowchart.

Algorithm 4.2: Iterative Resource Allocation (IRA) Algorithm

initialization;

derive R̂V(0)
, R̂W(0)

, M̂V(0)
and M̂W(0)

from P̂(0) and β0, according to

(4.29);

execute Algorithm 4.1 to derive V(0) and W(0) from M̂V(0)
, M̂W(0)

and

β0;

derive P̂(1) from V(0) and W(0), according to (4.21);

derive R̂V(1)
, R̂W(1)

, M̂V(1)
and M̂W(1)

from P̂(1), according to (4.24);

update P̂(1), according to (4.26);

execute Algorithm 4.1 to derive V(1) and W(1) from M̂V(1)
and M̂W(1)

;

set i = 1;

while V(i) 6= V(i−1) or W(i) 6= W(i−1) do

i = i+ 1;

derive P̂(i) from V(i−1) and W(i−1), according to (4.21);

derive R̂V(i)
, R̂W(i)

, M̂V(i)
and M̂W(i)

from P̂(i), according to (4.24);

update P̂(i) according to (4.26);

execute Algorithm 4.1 to derive V(i) and W(i) from M̂V(i)
and M̂W(i)

;

end

make P̂ = P̂(i), R̂V = R̂V(i)
, R̂W = R̂W(i)

, M̂V = M̂V(i)
, M̂W = M̂W(i)

,

V = V(i) and W = W(i);

Result: P̂, R̂V, R̂W, M̂V, M̂W, V and W.
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RV = E{R̂k,s} and RW = E{R̂j,s}, respectively. The average modulation levels

are given by MV = 2RV and MW = 2RW , respectively. Note that there is an

implicit dependency between RV, RW and the BER constraint β0, which is given

by the values of the channel gain ratios on each subcarrier, g{j,k},s.

In IRA, the initial modulation levels per user are derived first based on the av-

erage transmit power per subcarrier. Then, the user pairing algorithm is applied,

based on the initial modulation levels. According to (4.21), the sum-rate per sub-

carrier increases with H{j,k},s; therefore, the initial pair of NOMA users allocated

to subcarrier s corresponds to the pair {j, k} such that H{j,k},s = max {Hs},

where Hs is the set of all possible channel gain gaps on subcarrier s that fulfill

the channel gain ratio requirement for G(bMWc, bMVc, β0). Note that the use

of the function b·c is necessary given that {MW,MV} ∈ R and the fact that the

channel gain ratio values on Table 3.1 are given for positive integer modulation

values.

Let V(0) and W(0) denote the initial sets of users on each subcarrier. The

initial power allocation set is denoted as P̂(0) = {ptotal/S, · · · , ptotal/S}. The set

of achievable data rates for the set of users V(0) is expressed as

R̂V(0)
= {RV, · · · , RV}, (4.30)

and that for the set of users W(0) is given by

R̂W(0)
= {RW, · · · , RW}. (4.31)

The initial modulation levels of users V(0) is given by the set {MV, · · · ,MV},

and that of the set of users W(0) is given by {MW, · · · ,MW}. User pairing is

applied initially to derive V(0) and W(0) in terms of MW, MV and β0.

After the initial sets of users are paired to each subcarrier, the achievable
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modulation level on each subcarrier is calculated in an iterative manner, according

to (4.24). A new pair of users {l,m} is allocated on subcarrier s during each

iteration, such that the BER constraints are met for any given power allocation.

In this manner, more power is iteratively allocated to subcarriers where a higher

sum-rate can be achieved, i.e. subcarriers where there exists a user with a large

channel condition and for whom a suitable partner can be found.

The IRA algorithm finishes when an equilibrium state is found, i.e. when the

sets of users V(i) and W(i) remain unchanged after the i-th iteration. IRA is

summarized in Figure 4.3 and Algorithm 4.2.

4.8 Digitization of Data Rates

Recall that this work assumes practical, discrete-level modulation. However,

after optimal power allocation, the theoretical sum-rate R̂j,s + R̂k,s achieved per

subcarrier, given by (4.24), is a real-valued number. Further, the resulting data

rates from IRA are real, i.e. {R̂V, R̂W} ⊂ R.

In order to obtain discrete modulation levels, it is necessary to carry out

a digitization (or data rate conversion) process to transform the sets of data

rates obtained from IRA into equivalent, practical discrete-valued data rates.

When the digitization process is carried out, the discrete-valued dates are lower

than their real-valued equivalents. Since lower power is required to achieve these

discrete-valued data rates, the digitization process results in unused power at the

transmitter.

In this Section, a DRS algorithm is proposed in order to carry out the digiti-

zation of data rates in all subcarriers after optimal, theoretical power allocation.

In addition, any unused power after the conversion process is re-allocated among

certain subcarriers to further increase the system sum-rate.
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In order to obtain discrete modulation levels, it is first necessary to transform

the real-valued sets of data rates resulting from IRA, i.e. R̂V and R̂W, into

equivalent sets of positive integers, i.e. R̃V = {R̃k,1, · · · , R̃k,s} ⊂ I+ and R̃W =

{R̃j,1, · · · , R̃j,s} ⊂ I+. R̃j,s and R̃k,s are, initially, the largest integer values less

than or equal to R̂j,s and R̂k,s, respectively.

In order to carry out data rate conversion after IRA, the discrete data rates

R̃j,s and R̃k,s are allocated to user j and user k, respectively, on subcarrier s. Let

p̃s express the necessary power at subcarrier s, and denote P̃ = {p̃1, · · · , p̃s, · · · , p̃S}.

After initial modulation selection, given that R̃j,s ≤ R̂j,s and R̃k,s ≤ R̂k,s, the re-

quired transmit power is given by
∑S

s=1 p̃s ≤
∑S

s=1 p̂s = ptotal, i.e. not all available

power is used. The unused power after data rate conversion can be evaluated from

(4.26) as

punused =
S∑
s=1

(p̂s − p̃s) =
ln 0.18

c

S∑
s=1

(
2R̂j,s+R̂k,s

F̂sH{j,k},s
− 2R̃j,s+R̃k,s

F̃sH{j,k},s

)
. (4.32)

The unused power can be assigned to certain subcarriers in order to further

increase the data rate at user k, without affecting user j’s allocated data rate

on that subcarrier. Let R∗k,s ∈ I+ denote dR̂k,se, i.e. R∗k,s = R̃k,s + 1. In order

to achieve M∗
k,s = 2R

∗
k,s , if g{j,k},s /∈ [1,G(M∗

k,s, β0)] it is necessary to apply user

pairing in order to select a different pair of NOMA users {l,m} on subcarrier s

such that g{l,m},s ∈ [1,G(M∗
k,s, β0)]. The pair {l,m} is allocated to subcarrier s

if and only if H{l,m},s ≥ H{j,k},s. Otherwise, the pair {j, k} remains allocated to

subcarrier s and the data rate is set to R̃k,s.

In the case where the pair {l,m} is allocated to subcarrier s, the required

power increase for a data rate of R∗k,s with respect to R̂k,s is given by

∆ps =
ln 0.18 · 2R̃j,s

c

(
2R
∗
m,s

F∗sH{l,m},s
− 2R̂k,s

F̂sH{j,k},s

)
. (4.33)
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Figure 4.4: DRS flowchart.

Algorithm 4.3: Data Rate Selection (DRS) Algorithm

Data: P̃, R̂V, M̂V, V and W.

initialization;

convert R̂V ⊂ R to R̃V ⊂ I+ and derive punused according to (4.32);

derive Υ = {∆p1, · · · ,∆ps, · · · ,∆pS} according to (4.33);

while ∃r : ∆pr < punused do

sub-routine Algorithm 4.4;

end

Result: R̃V, P̃, V, W and punused.

For lower values of ∆ps, lower additional extra power is required to increase

the data rate at user k on subcarrier s. Thus, in order to maximize the system

sum-rate, extra power is assigned to subcarriers in a strictly increasing order of

∆ps while punused > 0. A DRS algorithm is proposed in Algorithm 4.3 to assign

the optimal integer data rate to each subcarrier, and to allocate punused to selected

subcarriers to maximize the sum-rate. The overall computational complexity of

IRA-DRS is presented in Section 4.9 for a practical system simulation.

Figure 4.4 represents the flowchart of the DRS algorithm. For simplicity,

parts of the pseudo-code in Algorithm 4.3 are presented in Algorithm 4.4 and

Algorithm 4.5, and flowcharts are given in Figure 4.5 and Figure 4.6.
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Figure 4.5: Data rate increase sub-routine flowchart.

Algorithm 4.4: Data Rate Increase Sub-Routine

Data: P̃, R̂V, M̂V, V, W and Υ.

initialization;

select s such that ∆ps = min Υ;

if g{j,k},s /∈
[
1,G(M̃j,s,M

∗
k,s, β0)

]
then

sub-routine Algorithm 4.5;

end

else

make R̃k,s ∈ R̃V equal to R∗m,s;

update ∆ps, according to (4.33);

make punused = punused −∆ps, p̃
s = p̃s + ∆ps;

end

Result: R̃V, P̃, V, W and punused.
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Figure 4.6: User re-allocation sub-routine flowchart.

Algorithm 4.5: User Re-Allocation Sub-Routine

Data: P̃, R̂V, V, W and H{j,k},s.

initialization;

execute Algorithm 4.1 to find pair of users {l,m} such that

g{l,m},s ∈ [1,G(M̃j,s,M
∗
k,s, β0)];

if H{l,m},s ≥ H{j,k},s then

allocate users {l,m} to subcarrier s;

make R̃k,s ∈ R̃V equal to R∗m,s;

re-calculate ∆ps for H{l,m},s, according to (4.33);

make punused = punused −∆ps and p̃s = p̃s + ∆ps;

end

else

remove ∆ps from Υ;

end

Result: R̃V, P̃, V, W, Υ and punused.
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4.9 Numerical Results

The performance of the user pairing algorithm and that of IRA-DRS are evaluated

in this Section. Results on the effect of multi-user diversity in the system are

presented first, in order to provide the reader with some prior insight about the

impact of multi-user diversity in the overall system performance. Then, sum-rate

performance results are presented and compared to other schemes previously

proposed in the literature. Further, some additional results are given on the

impact of system optimization parameters, specifically the channel gain ratio and

the power allocation factor. Last, the computational complexity and convergence

of the user pairing and IRA-DRS algorithms are presented.

The simulated system model is formed by a single cell with one base station

and a varying number of users. The number of subcarriers is set to S = 64,

with a downlink system bandwidth of W = 10MHz, and a channel bandwidth of

Ws = W/S. It is assumed that the broadband channel is frequency selective and

independent for all users in all subcarriers. The normalized channel fading factor

of all users on each subcarrier follows a Rayleigh distribution with mean square

of one. Further, the system BER constraint is set to β0 = 10−3 for all users and

the average transmit SNR per subcarrier is set to 23dB.

4.9.1 Effect of Multi-User Diversity

Before presenting sum-rate performance results, it is convenient to give some prior

insight about the effect of multi-user diversity in the performance of IRA-DRS.

Recall that, in the user pairing procedure, two NOMA users can only be

paired into subcarrier s if their individual channel condition gains fulfill (3.63),

according to the values in Table 3.1.

Figure 4.7 represents the percentage of subcarriers where NOMA cannot be
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Figure 4.7: Percentage of subcarriers for which NOMA is not applicable.

applied, due to the impossibility of finding a pair of users with a channel condi-

tion gain ratio such that the BER constraint can be jointly meet at both users.

Specifically, for a system with K = 4, NOMA can be applied in under half of the

subcarriers. However, the probability of finding a suitable pair of NOMA users

increases rapidly with K. For a system with K = 8, the percentage of subcarri-

ers where NOMA cannot be applied decreases to under 6%, and for K ≥ 20 the

percentage becomes approximately zero. A conclusion that can be gathered from

this result is that, for systems with a small number of users, the performance

gain introduced by NOMA with respect to OMA is relatively small, whereas the

implementation complexity is much larger. However, the performance of NOMA

increases rapidly with the number of users. This result corroborates that NOMA

yields a good performance-versus-complexity trade-off in scenarios with a high

density of users, enabling massive connectivity.
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Figure 4.8: System sum-rate versus number of users.

4.9.2 Sum-Rate Performance

In this section, results on the system sum-rate performance of IRA-DRS are

presented in terms of the number of users and the average transmit SNR per

subcarrier. The performance of IRA-DRS is compared to those of upper-bound

Lagrangian duality and dynamic programming (UB-LDDP) [55] and FTPC [56].

UB-LDDP is a Lagrangian duality and dynamic programming scheme which

serves as a very tight upper-bound for the optimum achievable value of exhaustive

search, and therefore it is used as a theoretical framework for performance evalua-

tion. In FTPC, a greedy user pairing scheme is applied and power is dynamically

allocated according to the channel gains of the multiplexed users. FTPC is a

commonly used framework in the literature for sub-optimal resource allocation

schemes [55].

Figure 4.8 represents the sum-rate achieved by IRA-DRS, for different num-
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bers of users. For a system with twenty-four users, IRA-DRS has a performance

loss within 1.5% of the maximum rate achieved with UB-LDDP, and a perfor-

mance gain of over 28% with respect to FTPC. However, for a system with a

number of users smaller than eight, IRA-DRS is outperformed by FTPC. The

explanation for this effect is as follows. When the number of users in the sys-

tem is small, there is a low probability of finding a pair of users with a suitable

channel condition ratio in IRA-DRS, such that their channel gain ratio fulfills

(3.63), according to the values in Table 3.1. Therefore, it might not be possible

to apply the NOMA principle to some of the subcarriers. Further, in IRA-DRS,

a minimum modulation level of 4-QAM + 4-QAM is assumed. In FTPC, a con-

tinuous modulation level is assumed, so it might be feasible to apply NOMA to

a subcarrier yielding a total modulation level smaller than 4 · 4 in a situation

where NOMA cannot be applied through IRA-DRS. However, it is observed that

IRA-DRS greatly benefits from multi-user diversity. For a larger number of users,

there is a higher probability that two users with a channel gain ratio close to the

optimal value can be found. Therefore, the system sum-rate increases rapidly for

an increasing number of users. For K ≥ 14, the slope of the sum-rate curve de-

creases, as the system approaches the situation where multi-user gain saturation

is reached. Overall, the IRA-DRS scheme provides an excellent tradeoff between

achievable performance and system complexity for K ≥ 8.

Figure 4.9 compares the performance of IRA-DRS with that of UB-LDDP

and FTPC, for an increasing average transmit SNR per subcarrier, in a system

with K = 20 users. For an average SNR per subcarrier greater than 23dB,

the performance gap between IRA-DRS and UB-LDDP becomes approximately

constant. The explanation for this effect is that, for higher SNR values, there are

more combinations of modulation levels that fulfill the system BER constraint.

Recall the BER results given in Figure 3.13a and Figure 3.13b, where it is clear
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Figure 4.9: System sum-rate in terms of average SNR per subcarrier (dB).

that a much better receive SNR is required at user j as the level of Mj,s increases.

Therefore, according to Figure 4.9, there is a greater probability of finding a

pair of NOMA users with a channel gain ratio closer to the optimal value for

SNR≥23dB. In contrast, for lower SNR values, there are less combinations of

modulation levels for which a pair of users can simultaneously meet the BER

constraints. Therefore, there is a lower probability of finding a pair of NOMA

users with the channel gain ratio required for achieving higher modulation levels.

4.9.3 Results on System Optimization Parameters: Cha-

nnel Gain Ratio and Power Allocation Factor

In this section, the channel gain ratio and power allocation factor are studied in

terms of the number of users and the average transmit SNR. Further, their effect

on the overall system performance is studied.
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Figure 4.10: IRA-DRS average channel gain ratio.

Figure 4.10 shows the average channel gain ratio for IRA-DRS versus the

number of users. The quotient of this curve over the maximum channel gain

ratio is also presented, where the maximum channel gain ratio is calculated as

follows. A set of randomized channel gains are obtained for each subcarrier

over 107 realizations. Only the channel gain values between the 5th and 95th

percentiles of the resulting distribution are considered, as a means of regularizing

the data and avoiding distortions introduced by either very large or very small

values of the channel gain. For each subcarrier, the ratio between the largest

and smallest channel gains is calculated, and this value is averaged over all the

system realizations. When the number of users increases, the IRA-DRS average

channel gain ratio increases, but the coefficient between the IRA-DRS average

channel gain ratio and the maximum channel gain ratio decreases. Therefore,

the maximum channel gain ratio increases faster than the IRA-DRS channel gain

ratio. This is due to the fact that, for a fixed transmit SNR, there exists a limit on
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the sum-rate that IRA-DRS can achieve. Therefore, there also exists a limit to the

IRA-DRS maximum average channel gain ratio. Moreover, Figure 4.10 illustrates

the fact that, when practical QAM schemes are applied to NOMA, the benefit

of pairing users with the most distinct channel condition [51] is lost, due to the

inability of users with poor channel conditions to meet BER constraints. In the

IRA-DRS setting simulated in Figure 4.10, the average maximum ratio between

NOMA pairs is of the order of 2.1 as the optimal sum-rate is approached. This

result is meaningful since it implies that NOMA user pairing schemes can be

greatly simplified, by only searching among a handful of users that fulfill certain

channel gain ratio conditions.

The average channel gain ratio for IRA-DRS versus increasing average trans-

mit SNR per subcarrier is represented in Figure 4.11. This is compared to the

average maximum channel gain ratio calculated over 107 realizations for a system

with K = 20 users. In IRA-DRS, the average channel gain ratio is between 11 and

21 times smaller than the average maximum channel gain ratio per subcarrier,

which equals 32.07. In a scenario where two users are paired with such a large

channel gain ratio, a very large share of the power has to be allocated to the user

with poorer channel condition in order to make the application of NOMA feasible.

However, in systems with practical QAM schemes, this implies that the BER at

the user with the stronger channel condition is far from the optimal value. The

results in Figure 4.11 show again that, even though the average channel gain ratio

increases with the transmit SNR, the optimal performance under discrete QAM

levels is achieved for users with channel gains of the same order of magnitude.

This condition facilitates the BER constraints being met at both NOMA users.

Figure 4.12 shows the sum-rate performance loss introduced by the IRA-DRS

scheme with respect to UB-LDDP, versus the coefficient between the average

channel gain ratio over the maximum channel gain ratio. The minimum per-
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Figure 4.11: Average channel gain ratio in terms of average SNR per subcarrier
(dB).

formance gap between IRA-DRS and UB-LDDP is just below 1.5%, and this is

achieved when the average channel gain ratio is, approximately, 0.072 times the

value of the maximum channel gain ratio. Increasing the value of the coefficient

betweent the average channel gain ratio and the maximum channel gain ratio has

a negligible effect on the sum-rate performance loss of IRA-DRS with respect to

UB-LDDP, which becomes approximately constant for values over 0.072. How-

ever, when the coefficient is reduced below this value, the negative impact on the

sum-rate performance loss is exponential.

Figure 4.13 presents the standard deviation of the IRA-DRS average channel

gain ratio with respect to the optimal value, G(Mj,Mk, β0). The curve decreases

with the number of users due to multi-user diversity. This result is consistent

with the obtained in Figure 4.7, since a larger standard deviation with respect to

the optimal value of G(Mj,Mk, β0) results in a larger probability of not finding a
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Figure 4.12: Performance loss of IRA-DRS against UB-LDDP (%) versus the
coefficient of average channel gain ratio over maximum channel gain ratio.
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suitable pair of NOMA users on each subcarrier. By comparing Figures 4.8 and

4.13, it is observed that IRA-DRS outperforms FTPC when the standard devia-

tion with respect to G(Mj,Mk, β0) is smaller than 0.15. At this point, according

to Figure 4.7, the percentage of subcarriers where NOMA is not applicable drops

to a 5%.

Figure 4.14 shows the system performance for K = 20 users, in terms of the

sum-rate versus a ratio defined as

g − 1

G(Mj,Mk, β0)− 1
, (4.34)

where

g − 1

G(Mj,Mk, β0)− 1
= 100% =⇒ g = G(Mj,Mk, β0), (4.35)
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and

g − 1

G(Mj,Mk, β0)− 1
= 0% =⇒ g = 1. (4.36)

Recall that g = G(Mj,Mk, β0), and g = 1 are the boundaries for the value of

the channel gap ratio, according to (3.63). The performance loss of IRA-DRS

becomes more critical for values of (g− 1)/(G(Mj,Mk, β0)− 1) under 65%, when

the negative slope of the sum-rate curve becomes steeper, and the performance

loss reaches 10%. For values of (g − 1)/(G(Mj,Mk, β0) − 1) under 40%, a large

benefit can be obtained by applying OMA to unused subcarriers. Further, when

the ratio (g − 1)/(G(Mj,Mk, β0)− 1) falls under 50%, the performance achieved

by IRA-DRS and IRA-DRS combined with NOMA falls under the achieved by

FTPC, as given in Figure 4.8. Therefore, by increasing the lower boundary of the

channel gain ratio in (3.63), a better trade-off between performance and simplicity

can be achieved, for example by applying OMA or FTPC to subcarriers where

the value of the NOMA channel gain ratio falls under a given threshold.

Figure 4.15 shows the average power allocation factor per subcarrier at user k,

for different number of users and an average transmit SNR of 23dB per subcarrier.

The shape of the curve is similar to that of the sum-rate given in Figure 4.8,

and that of the average channel gain ratio, as given in Figure 4.10. As the

number of users increases and the sum-rate approaches its maximum achievable

value, so does the power allocation factor, which converges to a maximum value

of approximately 0.249 according to Figure 4.15. The reason is that, due to

multi-user diversity, the average modulation level of the system converges to its

maximum level, and therefore the power allocation factor converges to the optimal

value for that modulation level. This limitation in the maximum power allocation

factor ensures that the level of inter-user interference remains manageable and

that the BER constraints can be simultaneously met at both NOMA users.
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4.9.4 Computational Complexity and Convergence

The computational complexity of the user pairing algorithm and that of IRA-DRS

are presented in this section. The computational complexity has been computed

numerically rather than theoretically in all cases, for two reasons. First, it is

overly complicated to obtain an analytical complexity expression. And second,

the complexity obtained in a practical scenario may differ from the analytical

value, due to the effect of multi-user diversity. While in a worst case scenario the

user pairing algorithm would search over all combinations of users, in practice

the search is reduced to only a few iterations, for a sufficiently large number of

normally distributed user channel conditions. In all cases, the complexity of the

algorithms has been numerically computed over 6.4 ·104 repetitions, for a varying

number of users and subcarriers.

Figure 4.16 demonstrates that the complexity of the user pairing algorithm

is quasi-linear in practice, of the order of O(1.54K) for K = 55 users. In com-
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Figure 4.16: Complexity of the user pairing algorithm versus number of users.

parison, the complexity of the user pairing prodecure in FTPC [56] and that of

exhaustive search are of the order of O(K2) per subcarrier, whereas the comple-

xity of the sub-optimal single-carrier user selection (SCUS) scheme in [110] is of

the order of O(2CK) after an initial stage of precomputation, where C is the

number of discrete power allocation factor levels, of the order of 102 − 103. The

user pairing procedure proposed in this work uses prior knowledge about the op-

timal channel gain ratio from Table 3.1 and expression (3.63). Therefore, it is

possible to tune the user pairing algorithm to search only among a limited num-

ber of users, and the achieved complexity is greatly reduced compared to that of

FTPC and SCUS.

Figure 4.17 shows the complexity of IRA-DRS versus the number of users,

for a fixed average transmit SNR per subcarrier. When multi-user diversity gain

saturation is achieved, the number of iterations of IRA-DRS is constant with the
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Figure 4.17: Complexity of IRA-DRS versus number of users.

number of users. However, for scenarios with a small number of users, additional

iterations are required. The reason is that, when an initial modulation level is

assigned to a subcarrier, it might not be possible to find a pair of NOMA users

that fulfill the BER constraints. In this case a lower modulation level must be

assigned to the subcarrier, unused power shared among the remaining subcarriers,

and so on. In contrast, for systems with a large multi-user diversity gain, it is

highly probable to find a pair of users that fulfill the modulation level initially

assigned to a given subcarrier, and this reduces the necessary number of iterations

for IRA-DRS to converge.

Last, Figure 4.18 shows the complexity of IRA-DRS versus the number of

subcarriers in the system. It is demonstrated that the complexity of IRA-DRS

is linear with the number of subcarriers, as it is also the case with the FTPC,

UB-LDDP and SCUS schemes.
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Figure 4.18: Complexity of IRA-DRS versus number of subcarriers.

4.10 Conclusions

In this Chapter, the problem of resource allocation in multicarrier NOMA systems

was addressed. The optimization objective was the maximization of the system

sum-rate under maximum transmit power and individual BER constraints. Due

to the intractability of this problem, it was divided into the sub-problems of sub-

carrier allocation, and power and data rate allocation. These two sub-problems

were separately optimized.

In order to solve the problem of subcarrier allocation, knowledge about op-

timal channel gain ratios and channel gain gaps in NOMA that maximize the

achievable sum-rate in BER-constrained scenarios was applied. This knowledge

was used to propose a search procedure, where the complexity is greatly re-

duced due to the prior knowledge about the optimal value of the users’ channel

gains ratio and gap. A user pairing algorithm was proposed that achieves quasi-
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linear complexity with the number of users, in contrast with other sub-optimal

schemes [55,56] that yield a much larger computational complexity.

In terms of the power and data rate allocation problem, BER exponential

approximations in NOMA were used for proposing a resource allocation scheme

for the same BER-constrained multicarrier NOMA system, with the objective

of maximizing the sum-rate. In order to solve this problem, a Lagrangian op-

timization method [58] was applied, yielding an analytical result that was ap-

plied to proposing an IRA-DRS scheme for resource allocation. Unlike existing

works, continuous power levels and discrete modulation levels were considered.

Through numerical simulations, it was demonstrated that the proposed IRA-DRS

scheme yields a performance close to optimal, and it outperforms other subopti-

mal schemes such as FTPC [56]. The minimum performance loss introduced by

IRA-DRS with respect to the optimal solution was measured as 1.5%. Therefore,

it was demonstrated that IRA-DRS yields an excellent trade-off between sum-

rate performance and computational complexity. Further, it was demonstrated

that the proposed scheme greatly benefits from multi-user diversity in terms of

achievable sum-rate, number of iterations required for convergence, and degrees

of freedom in choosing different combinations of modulation levels at each sub-

carrier that yield the same sum-rate.

Unlike previous works, it was demonstrated that the benefit of pairing NOMA

users with very distinct channel conditions is lost in BER-constrained multicar-

rier NOMA with QAM. In fact, the average channel gain ratio obtained from

simulations has a value close to two.
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5.1 Summary and Conclusions

The application of NOMA technologies to future wireless communications sys-

tems can improve the spectrum efficiency and enable massive connectivity in

beyond-5G networks. NOMA can contribute to addressing the increasing need

for massive connectivity by multiplexing several users into the same time and

frequency resources. Further, the capabilities of NOMA can be extended through

its combination with subcarrier-based schemes, such as OFDM, which is widely

used in current wireless communications systems. However, some research cha-

llenges remain unaddressed. For example, many previous researches assumed

perfect SIC and mainly considered the pairing of users with very distinct cha-

nnel conditions [3, 51]. This can yield inefficient power allocations in terms of

sum-rate. Further, the assumption of perfect SIC is not realistic in practical sys-
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tems, where the SIC error propagation greatly impacts the achievable BER at the

receivers. The implementation complexity of NOMA remains another major re-

search challenge. Specifically, efficient resource allocation algorithms that provide

a good trade-off between system performance and implementation practicality are

needed.

The contributions in this thesis were two-fold. First, several contributions

were made in terms of new performance bounds on the BER of NOMA systems,

that prove the complex interplay between critical parameters in NOMA and the

achievable BER. And second, several contributions were made in terms of user

pairing and resource allocation in multicarrier NOMA systems.

First, theoretical BER expressions were presented for NOMA, assuming multi-

layer, multi-level QAM. The optimal value of the power allocation factor in terms

of BER transmit power was analytically derived. Further, the theoretical BER ex-

pressions were used for calculating the ratios of user channel gains that maximize

the sum-rate for a given BER constraint. Unlike previous research in NOMA,

it was demonstrated that, in NOMA systems with practical QAM, the channel

gains of two NOMA users must be of approximately the same order of magnitude

in order to guarantee that inter-user interference can be overcome at the receivers.

By pairing two users such that their channel gain ratio equals the maximum al-

lowable value (i.e. the optimal channel gain ratio), it is guaranteed that both

users can marginally meet the BER constraint, while maximizing the sum-rate.

Additionally, accurate BER approximations were presented in the form of

exponential functions, that were then applied for finding numerical boundaries for

the values of the channel gain ratios of NOMA users that fulfill BER constraints

for different combinations of modulation levels.

In terms of the resource allocation problem, the sub-problems of user pairing

(i.e. subcarrier allocation), and power and data rate allocation were divided and
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separately optimized. Knowledge about optimal channel gain ratios and channel

gain gaps in NOMA was used to develop a user pairing algorithm that achieves

quasi-linear complexity with respect to the number of users. In contrast, the

complexity of exhaustive search procedures and FTPC is of the order of the

squared number of users.

In terms of the power and data rate allocation problems, a Lagrangian opti-

mization method based on BER exponential approximations was applied, with

the objective of maximizing the system sum-rate. The optimization result was

applied to proposing a novel IRA-DRS algorithm. Unlike existing works, con-

tinuous power levels and discrete modulation schemes were considered. Through

numerical simulations, it was demonstrated that IRA-DRS yields a performance

close to optimal, and it outperforms other suboptimal schemes such as FTPC.

IRA-DRS yields an excellent trade-off between sum-rate performance and com-

putational complexity.

The proposed scheme greatly benefits from multi-user diversity in terms of

achievable sum-rate, number of iterations required for convergence, and degrees of

freedom in choosing different combinations of modulation levels at each subcarrier

that yield an equal sum-rate.

5.2 Future Research Directions

Despite the many potential benefits introduced by NOMA, its relative perfor-

mance gain with respect to OMA is still relatively small compared to its large

implementation cost in many use-case scenarios of interest. To make NOMA

more suitable for implementation in future wireless networks, it is imperative

to improve its spectral efficiency and practicality of implementation. Moreover,

NOMA schemes can improve fairness among users, and this advantage should
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be exploited in order to improve the performance gap with respect to OMA. In

addition, it is important to better understand the performance limits of NOMA

in more realistic scenarios that have been considered in the literature so far, such

as under imperfect channel state information. Some interesting future research

directions related to spectral efficiency, implementation complexity and studying

the effect of imperfect channel state information are listed below.

User Fairness

NOMA schemes offer the potential to improve user fairness with respect to OMA

systems.

1. An important research direction for this work is to extend the resource

allocation problem formulation by considering the optimization of the sys-

tem weighted sum-rate under BER constraints, as a means to improve user

fairness.

2. In fairness-constrained systems, this work can be extended to consider the

situation where the higher-level modulation is assigned to the NOMA user

that enjoys a poor channel condition but has a high data rate requirement,

whereas the lower-level modulation is assigned to the NOMA user with a

better channel condition and lower data-rate requirements.

Spectral Efficiency

A way of improving the current performance gap between NOMA schemes and

their OMA counterpart is to further increase the spectral efficiency of NOMA.

1. One method for improving the spectral efficiency in NOMA is the multiple-

xing of more than two users per subcarrier. Therefore, a logical extension to

this work is to extend the derivations to an arbitrary number of users, and
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study the performance boundaries of the system under BER constraints.

This analysis can be performed for systems where SIC is applied, or for less

complex systems where users decode their data directly.

2. Another possible research direction is to derive the optimal number of

NOMA users per subcarrier, such that the spectral efficiency is maximized,

but subject to minimum data rate requirements and maximum BER cons-

traints. The number of users per subcarrier can then be adaptively selected

according to the system performance metric, constraints and data rate re-

quirements of users.

3. Another interesting research direction is to extend this work to consider

scenarios where users can be assigned to any level of the transmit super-

constellation, independently of their channel condition (eg. the case where

the user with the highest channel gain is assigned to the lower layer of the

transmit superconstellation), and study the performance bounds of such

scenarios. Although such allocations may not be optimal in terms of sys-

tem sum-rate, they can contribute to enhancing the spectral efficiency, for

example by multiplexing users with a good channel condition and low data

rate requirements together with users that enjoy a poorer channel condition

but require a higher data rate.

Implementation Complexity

Receiver complexity remains one of the major drawbacks of NOMA systems,

specially in use cases where end devices have low processing capabilities. Another

source of complexity is the tremendous signaling overhead and computational

resource consumption of multicarrier allocation schemes. Some future directions

of work are proposed below to tackle these issues.
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1. In machine-type communications applications where the capabilities of IoT

devices are constrained in terms of power and processing capabilities, the

power consumption and complexity of NOMA could be reduced by not

applying SIC at the receivers, and instead directly decoding data by disre-

garding other users’ information as noise. This would improve the number

of users in the system at the expense of reduced sum-rates, which might be

acceptable for machine-type communications devices given their normally

low data rate requirements. The work in this thesis could be extended to de-

rive the modulation levels and power allocation factor boundaries for which

such a simplified system is feasible, such that decoding can be guaranteed

at the receivers with a certain quality of service.

2. One of the major types of NOMA receiver is minimum mean squared error

(MMSE)-hard interference cancellation (IC) [49]. A big source of comple-

xity in MMSE-hard IC receivers is demodulation weight calculation, which

involves matrix inversion operations. In scenarios with high correlation

between channel coefficients over adjacent symbols, the weight vector of

the MMSE-hard IC receiver might not need to be calculated and updated

for every modulation symbol, thus reducing the computational complexity

drastically.

Therefore, a promising future direction of study is to apply the findings of

this thesis to practical system models based on MMSE-hard IC receivers,

and evaluating the performance loss when the updating of the system opti-

mization parameters is spaced out in time, based on the channel correlation.

The computational complexity of the MMSE-hard IC receiver could also be

reduced through the application of chunk-based resource allocation [16,112]

in multicarrier NOMA. Effectively, chunk-based resource allocation is equi-
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valent to spacing out the optimization of system parameters in frequency,

based on the correlation of adjacent subcarriers.

3. Since wireless communication environments can change rapidly and opti-

mal resource allocation requires real-time computation, the application of

machine learning techniques can achieve a fast adaptation of the system

parameters to the time-varying environment, and thus greatly reduce the

computational complexity of resource allocation. Therefore, a possible fu-

ture direction of study is the application of machine learning techniques to

design low-complexity resource allocation schemes in multicarrier NOMA.

Further, machine learning techniques can be applied to adaptively calculate

how frequently the parameters of the the weight vector of the MMSE-hard

IC receiver must be updated, according to the variability of the channel

conditions in time, frequency and space.

Imperfect Channel State Information

In [113], it was proven that imperfect channel state information significantly

degrades the performance of NOMA. Therefore, it is critical to understand the

performance limits and benefits of NOMA in terms of channel state information

in realistic scenarios.

1. In this sense, an interesting research direction is to study the effect of both

statistical and imperfect channel state information on BER performance of

NOMA. Specifically, the BER expressions can be extended to the case of sta-

tistical and imperfect channel state information, and use this knowledge to

understand the performance boundaries of NOMA under BER constraints

in such cases.

2. Another exciting application of machine learning in wireless communication
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systems is the prediction of the fading channel [114]. This could be applied

to NOMA systems under imperfect channel state information, in order to

study its impact on the BER and develop techniques to improve the system

performance.

3. Another important line of research is the study of NOMA under more cha-

llenging channel conditions, such as in millimeter-wave communication sce-

narios. By understanding the BER performance limits of NOMA in such

scenarios, its performance can be enhanced.
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