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Abstract

State-of-the-art computer-vision algorithms relylmg and accurately annotated data, which are estpenlaborious and time-
consuming to generate. This task is even more exgithg when it comes to microbiological images,anse they require
specialized expertise for accurate annotation.iBusvstudies show that crowdsourcing and assistivestation tools are two
potential solutions to address this challenge hia work, we have developed a web-based platforrantable crowdsourcing
annotation of image data; the platform is powengd Bemi-automated assistive tool to support n@es>annotators to improve
the annotation efficiency. The behavior of annatatesith and without the assistive tool is analyzesing biological images of
different complexity. More specifically, non-expetiave been asked to use the platform to annotatebiological images of
gut parasites, which are compared with annotatignsxperts. A quantitative evaluation is carried @u the results, confirming
that the assistive tools can noticeably decreas@adn-expert annotation’s cost (time, click, int#i@n, etc.) while preserving or
even improving the annotation’s quality. The antiotaquality of non-experts has been investigatsidgiIOU (intersection of
union), precision and recall; based on this anslys propose some ideas on how to better desigfasionowdsourcing and
assistive platforms.

Our platform is available at https://object-detenta5d76.web.app/home.
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1. Introduction

Accurate computerized object detection and segrtientare becoming important in healthcare. For eplam
they have been successfully used for detectionnatoamical and cellular structures, as well as diagnand
prognosis of diseases [1]. In some studies, olfjetgction and segmentation have been utilized fal disease
screening (such as thrush, leukoplakia, lichengaetc. [2,3]), for disease diagnosis on X-ray iesagnd for cell
detection on microscopic images [4—6]. Despite whede use of object detection tools for the ideaéfion of
diseases, their application in cell biology (edgritification of microbes) is still quite rare. &adition, most of the
current state-of-the-art object detection algorghane based on deep neural networks [7-11], thferpgance of
which is highly correlated with the volume of datad the quality of annotations, which can be lafgj time-
consuming and expensive to generate. For everyli@gts, numerous annotated datasets such as Qigs{R2] or
COCO [13] are now publicly available. However, fpecialized domains such as microbiological images,
availability of adequate and accurately annotateid ¢ very limited. Furthermore, the requiremespmecialized
knowledge for microbiological images is a challeribat makes their annotation process more diffithéin the
annotation of everyday objects. Some general aphesacan be used to overcome the challenges afntiatation
process: icrowdsourcinghe annotation process and ii) providagsistive toolso the annotators [14].

Crowdsourcing is used to reduce costs by outsogiraitask to a group of experts or to a group ofexyerts,
who can be given online training [15]. Crowdsougcims drawn the attention of computer vision redeas, in
fact, studies [16,17] in this field have explorde effectiveness of outsourcing of image clasdificaand instance
segmentation on public datasets such as Pascal V&a@|Me and KITTI [18-20]. Recent studies on crsaukcing
have shown promising results on biomedical ima§es.example, [21] applied crowdsourcing technigfegsthe
detection of dividing cells in breast cancer histgl images, while [22] used a crowdsourcing fram#wor lung
nodule detection and annotation to aid radiologrstang cancer diagnosis.

To achieve an easy and faster annotation prodeésgssential to design an efficient annotatioer usterface and
assistive tools, which can also maintain the méitivaeof the annotators and the quality of their@tations. Polygon
operator is widely used for instance segmentati@j yvhile the use of assistive tools in conjunctimith polygon
operator to support annotators, e.g. to correctia@olygons or to propose new polygons [23-25§tiisan area of
development.

Given that crowdsourcing frameworks and assistiast have been used mainly in isolation, in thigdgtwe
propose a novel web-based image annotation platbembining crowdsourcing and assistive segmentatiols to
support non-experts in annotating microbiologicahges of gut parasites. We show that our assikinie enable
non-expert annotators to perform their task acelyaind more quickly. We also investigate the béaef non-
expert annotators under different levels of imagmulexity (high and low object density) of micropamimages.
Finally, we use our analysis to propose designctons for the development of state-of-the-art dation
platforms.

2. Related works

Given the importance of high-quality image annetagi to train machine learning algorithms, resedrah
looked into the design of annotation platformsedduce the annotation cost (i.e. time, clicks, etod improve its
quality, e.g. by designing intelligent user inteda which can assist human annotators to perfoentatsk. In the
following subsections, we present the key studaating to i) annotation tools in crowdsourcing roédical or
biological images, ii) assistive user interfaced gij annotators’ behavior analysis.

2.1.Crowdsourcing medical image annotations

Following the success in images of everyday objgidisl7], crowdsourcing has been increasingly aglbgor
medical image annotation by both experts and n@e#s. However, the lack of crowds’ expertise focts
specialized images is still the biggest challen2@].[[21] investigated the performance of a novgfiragation
technique (AggNet) for classification of mitosishineast histology images based on non-expert crovadss. The
AggNet network is trained with gold standard ima@jesages annotated by pathologists) for classifica(mitosis
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or not mitosis), along with an aggregation layexatthas been trained to generate a ground truth tfihermon-expert
votes. They showed how an aggregation through a @&tWork can help to overcome the challenge ofyndata

collected from non-experts. [27] has also used dsdwotes (i.e. from knowledge workers) for clagsifion of

abnormal fundus images of the rear of eyes. Furibes, [28] reported the performance of a groupasf-axperts in
annotating Malaria infected RBCs’ (Red Blood Caltlages throughout a crowdsourcing game. The auttuos

that the public contribution in detecting the pesitsamples of infected RBCs through a game cahtizap to 99%
accuracy compared to the experts’ detection. Aleitly outsourcing annotations for classification leams, studies
have also explored the performance of the crowithages segmentation. For instance, [29] introdwuceeb-based
platform for hip segmentation in MR (Magnetic Reance) images by non-expert annotators. SimilargijtHand

O’Neil explored the performance of non-expert aatmts in CT (Computer Tomography) images segmemtsti
aggregated with majority voting technique [30, 3dllectively, these studies have demonstrated jmomresults
of outsourcing medical-images annotation taskbegoublic.

2.2.Assistive user interfaces

Introducing user-friendly interfaces and assistiv@ls in annotation platforms is an important reskalirection
to make the annotation process simple and engabarge resulting in a higher completion rate anaefeerrors.
For instance, [18] presented a well-known platfdomimage segmentation (using a polygon operatodfawing
the object’s outline) called LabelMe, in which ppbn operators were used. Polygon operators aremtbst
common technique for instance segmentation [25332&8d they are well established, therefore, mbthe efforts
of recent studies have been put on developingtassiapproaches. Regarding assistive tools, [28pduced an
automated classification approach that generafg®laninary classification on unlabeled images &donfirmed
by a non-expert crowd through a computer game. 1&ipni VATIC (Video Annotation Tool from Irvine,
California) and iVAT (interactive Video Annotatior@re two annotation platforms with rectangular @otygon
operators for bounding box and instance segmentatespectively, where for each frame of the inpdeo, a
supervised object detection algorithm generatepthiminary annotations that need to be confirmexlified by
annotators [23,25]. In a different approach, [3d}yd developed a recurrent neural network thattiteds proposes
segmented objects to human annotators and refieeannotations with regard to their previous maodifons. [35]
presented a semi-automated platform that worksdbaseedge detection, where high quality detectsthirces are
proposed to annotators. It is worth mentioning titaer studies have looked into novel tools basedifferent user
interactions mechanisms, e.g. the use of eye-tngckir pixel-wise probability estimation of presenaf an object
[36].

2.3.Human annotator behavior analysis

The behavioral patterns of human annotators haga bgplored in different studies [37-39], althoulgére are
only a few studies that correlated the user’s biehguattern with the quality of their annotatiohese are often
done by capturing and analyzing user’s video raogs] clickstreams, and mouse/tap dynamics, elgcig and
acceleration of mouse motion, time spent on cligks, [30]. [40] is one of the few studies thatretated the
mouse dynamics and clicks stream data with anoatatiality in crowdsourced image segmentationhat study,
a regression model was trained to estimate thatgudlannotations with respect to the featuresaoted from the
clicks stream, i.e. velocity, acceleration, zooimet single and double clicks, contour correctiand mouse
travelling distance. Similarly, [41] investigatethet correlation between human annotators’ effort dmeir
performance in the annotation task, as measurelDbly (Intersection of Union), where the annotatcefort is
qguantified by three metrics: segmentation time, benof points and average time per point. [31] atseurced the
task of CT lung scans annotation and investigathd correlation between users' behavior (time $pamd the
quality of the annotation, and found that thereasa strong correlation between annotations’ ¢galid annotation
time or quantities such as number of regions amdbau of polygon vertices.

All the aforementioned studies have been conduttei@cilitate the annotation process while monitgrthe
crowdsourced annotation quality. In our study, vim 0 address three main gaps of the existingditee: i)
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exploring the performance in instance segmentadbnon-expert annotators in the domain of cell dyf; ii)
studying the performance of the same non-expemtators when they are aided by assistive toolsiigrtudying
annotator’s behavior to glean insights to inform tlesign of future platforms.

3. Methodology

The aim of this study is to develop and evaluatesi-efficient, user-friendly, and publicly availalplatform for
instance segmentation, as well as to explore atoretébehavioral patterns. Our platform enablesausutsource
the task among a group of non-expert annotatots matknowledge in the relevant cell biology domaimolygon
operator is implemented to allow annotators to dthe boundary of the objects of interest. To supploe
annotators in the drawing and labeling processhawge implemented a non-iterative mask proposal owtthat
performs a preliminary detection on the input inmgePreliminary detections are followed by user
verification/modification steps on the computerdicéions. The mask proposal network is trained witlages that
have been accurately annotated by an expert. Tilmviog subsections explain how the architecturdghaf entire
platform and the different interconnected layergsehbeen developed, how the mask proposal netwottkaiised,
and how the images have been collected, sortedusend in the study. Finally, the annotation subsactixplains
the procedure of image annotation by non-experts.

3.1.Platform architecture

Our platform relies on different technologies amhtains three main blocks: i) the user interfacaften in
Typescript/HTML and deployed as a web-app, ii) tiser assistive model, written in python and deploge a
python server, which is connected to the front-tmdugh a Django gateway (shown as blue block gn EJ, iii) the
database, which is used to store images, annosadioth users’ information.

In the design process of the user interface, effastbeen put to make it as user-friendly as plestibease the
work of the annotators (as illustrated in sectid3).3

Model = View.py

django

Fig. 1. Overview of the interconnection of the fdan’s layers

The developed platform is powered by an assisteétb support annotators during the annotatiorcgss. The
core of the assistive tool is based on the MRCNMNgKRegional-Convolutional Neural Network, a staft¢éhe-art
object detection, proposed by [7]) algorithm theéds to be trained (see section 3.2 for detailtrivation). The
images and annotations are stored in a databasezh whidirectly called by the front-end (web-browsdtig. 1
shows the workflow of the platform and the intencections between different layers. The blddidel reported in
Fig. 1, represents the mask proposal network thaesponsible for generating proposed polygons. Blbek is
triggered by an Http request from the front-endefafveb-browser). The blockiew.py represents the auxiliary
functions for refining/converting proposal masksl anutputting them as polygons; théew.pyblock also stores
results in the database.

3.2.Mask proposal network

In this work, we have implementedoae-shotmask proposal network based on the Weakly Supsh/@bject
Localization (WSOL) technique [42], which is trathbefore use. Our approach is different from studiech as



Saber Mirzaee Bafti / Computers in Biology and Mie¢ 000 (2020) 000-000 5

[34,43], which utilized a recurrent neural netwatgorithm for auto-annotation that iteratively uggland propose
new masks. The WSOL technique has been appliedifel44]) for object detection with weakly annadtdata or
a subset of the entire data in many cases. Intady sinstead, we have utilized a WSOL network cadya mask
proposal network. The backbone of the proposedaptat which is a cutting-edge object detection alkhm (i.e.
MRCNN), is trained with 20% of the total images rfatated by an expert). To facilitate the annotatidrthe
remaining images, the weakly trained model gensrpteposal masks to help the non-experts. Proposeks,
which are initially generated in binary format, a@nverted into a tuple of polygon points using Ri@P (Ramer-
Douglas-Peucker) algorithm [45]. The proposed maskgrovided to non-expert annotators who havejttien to
accept, reject or modify them. Fig. 2, shows amraesv of the workflow of the assistive mask prodasetwork.

Raw Images Annotated Images MRCNN

-\nnl stion,_ B raining
Y eXp: crl
{

-—_
-

Adjustment
g

P s

Trained Object \
Input Image De(edlon Model Bm ary Masks Poh gons
4

’i“—» —_—

Fig. 2. The workflow of the assistive mask proposetivork. The supervised object detection algorif(MRCNN), trained with expert annotated
data (gold standard), performs a preliminary deiaatn newly coming data and proposes masks whielaecepted/modified by the annotator.

3.3.Collection, sorting and use of images

The dataset used in this study consists of brigid-fmicroscopic images from three groups of migbb
parasites, which requires domain-specific knowleftgeannotation. In total, 150 microscopic imagesnf three
different groups of microbial parasiteSntamoebaGiardia and Prototheca were collected (50 images in each
group). These three parasites were chosen spdgifitiee to their distinct visual characteristichape, color, size,
and texture (see appendix A for more informatidm)addition, these parasites are maintained axkyicaculture
(no other organism is present), avoiding any ieterfice with the imaging process. All images wegwad by an
iPhone 8 smartphone, attached on top of a VWR I @erted microscope’s ocular lens (magnificatidr0X)
with a resolution of 4032 (H) x 3024 (V) pixels.| Abllected images have been directly uploadedaammbtated by
a postgraduate student biologist (expert), andigdrby a senior academic biologist. The annotatefes are then
used as ground truth (GT) for training the model &esting the annotators’ performances. Fig. 3ywshexamples
of annotated images from each group of parasites.

Fig. 3. Sample images of the training dataset (&ted by biologist); (a) raiEntamoebamage, (b) annotatedEntamoebamage, (c) raw
Giardiaimage, (dannotatedsiardiaimage,(e) raw Protothecamage,(f) annotatedProtothecamage

In object detection, it is generally accepted tingiges which contain dense object€rowded” images) are
cognitively more demanding for human annotators ttNon-crowded” images. There is no a commonly accepted
definition of “Crowded” and“Non-crowded” images, although in some studies (e.g. [13]) imagih more than
10 objects are considered as crowded, while in satfmer sources (e.g. [46]) images with more tham alnject are
considered crowded. In our study, we sorted theg@ran ascending order according to the numbembEfcts in
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them. The first half of the images were considered-crowdedwvhile the second half was considemdwded(see
Appendix A with histograms of the number of objeictshe images). Note that the platform is a crawalsing
platform, and in some literature the annotatorshinlge called‘Crowd” . So, to avoid any confusion, we call the
crowdedandnon-crowdedmages a#iD (high density) and.D (low density) images, respectively. Fig. 4 shows
examples oD andLD images.

Fig. 4. Raw images for each group of parasited; QafEntamoeba(b) LD Giardia, (c) LD Prototheca (d) HD Entamoeba(e)HD Giardia, (f)
HD Prototheca.

To train the mask proposal network, 20% of theltmteages (i.e. 10 images from each group of pagkihas
been used, and the rest has been used by non-expertators to test the platform. Specifically,HID images and
20 LD images for each parasite were used by the anmgttdest the platform. Fig. 5 shows how the insagere
used in the workflow for training and testing tHatform.

;7 Train = sl N = s e
; ! |/ LowDense /" High Dense "\
20%;  Entamocha | ' " { 1
R (10) ! 50%, | i I
__Entamocba| | ! WY T e
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N e | i
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Fig. 5. Use of images in the workflow for trainiagd testing the platform.

Fig. 6 shows the annotation interface of the ptatfoThe annotation tools and options (previous/nege
buttons, classes’ buttons, etc.) are placed offethef the interface, and the annotation environhis on the right.
In Fig. 6, two parasites (blue polygons) are drawd accepted, while one drawn polygon, in yell@isélected for
revision.

Fig. 6. A screenshot of the annotation interfad&etdmoebaells). (Colorful)
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3.4. Train the proposed assistive Mask Proposal Network

The proposed assistive mask proposal network iisetawith 10 images (i.e., 20%) for each parasitens the
training Entamoebamages contain 149 objects and @Giardia andProtothecaimages contain 135 and 665 objects,
respectively. The purpose of this training is togmte proposal masks for annotators by the weedilyed model
(see section 3.2). The model is trained with thiefang hyper parameters: learning rate = 0.00@dp per epoch =
2000, epoch =10, ROIS (region of interest) per imad200, and image size = 1024 &1)024 (v). Along with the
training dataset, a sequential horizontal flippingytical flipping, horizontal and vertical reseaji and +90°
rotating augmenter have been applied on all imagesicrease the volume of training dataset and fi®de
generalization. The backbone of the MRCNN modeleisbased on Resnetl01. The trained model andbtkeot
the mask proposal network are then deployed ortteopyserver (See sections 3.1).

3.5. Annotation procedure

Four non-expert annotators were recruited to takg g this study. The annotators were from diffire
geographic locations and they all have been scieémemake sure no one has a background in bioldoge
annotators agreed to take part in this study byisggthe voluntary consent form. The annotatiorcpss starts with
the tutorial and assessment steps, which are felloly the actual annotation task as shown in Fign this
section, the annotator’s tutorial and assessmadtttee annotation task are discussed.

Annotator Selection \ Annotation Process

Recruited L ‘ P ’ | N 1 [
annotators | Tutorial || Assessment L] '.‘ 4 Semi—:ulﬂ X:::;:i
' - mode [

| |=Qualify Users=>|

Fig. 7. Overview of user selection and annotatimtess

Annotator tutorial and assessment. In order to increase the annotation quality and’sisederstanding of the
task, a short tutorial has been created to tranatinotators. The tutorial contains written indiarcs that explain
the process of annotation, followed by a short @ittt presents the annotation tools. In the kegt of the tutorial
the platform interface shows the annotators theetlannotated images (one from each group of pasasih which
the objects of interest are identified with polygoAfterwards, the annotators undergo an assesstemtin which
they have to annotate a small set of images. Atmistavho reached a mAP (mean average precisiohghithan
80% can then proceed to the annotation task.

Annoctation task. Four trained annotators start the annotation peodgét after they have successfully passed
the assessment. We have created two different mddemual (without assistive tool) andstmi-autd (with
assistive tool) in our platform and the four antats were added to both modes. Images were impantéxth
modes and equally distributed among the annotata) annotator was giverHd and 5LD images per parasite
(EntamoebaGiardia, and Prototheca respectively), i.e. 6x5=30 images in total. Twidvbiased results due to
learning effect and annotator’s fatigue, the annotatorehaeen asked to first complete g@mi-autotask and the
day after to complete th@anualtask. They had to use a laptop or a desktop, avithouse for annotation and sit
behind a desk. The annotators could remove andwetire proposed masks in themi-autatask if they thought it
was necessary. The annotation task’s results poetesl and analyzed in the next section.

4. Results

In this section, the performance of non-expert geoos in bothmanual and semi-automodes is analyzed.
Specifically, this section presents the analyseb@fnnotators’ performance in terms of time ksliand annotation
quality. The annotators’ ability to distinguish Wween true and false parasites has been measuat@scy and
recall, where their effort has been quantified bse¢ metrics i)Tp, true positive, ii)Fp, the number of falsely
identified objects, and iii)Fn, the number of missed (un-identified) objects byaators. The annotators’
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performance in terms of parasites’ border delingalias been measured with IOU (intersection ofn)nisince it is
the most common segmentation evaluation metriclf,08,34,43,47-51]. In the following subsectionejmlicks,
and annotation quality are discussed in detail.

4.1.Time analysis

Time is an important factor in the annotation psscevhich can affect the annotator's motivation and
performance. In this study, we measure the tim¢-a&eslefined by the amount of time that annotatarse spent on
manualor semi-automode, respectively. Specifically, we definegagss-timethe total time spent by the annotators
to complete their task, from turning on the integfdo the end of the task (i.e. including imageliog time, time to
choose the different tools in the interface, timertove from one image to the next, drawing parssi¢c.). The
annotators were asked to measure g¢hness-time manually by themselves and report it to the re$easc
Furthermore, for more accurate, standardized, ataildd information, we define a®t-timethe time spent just for
annotation, which was measured automatically bypthgorm (i.e. time spent to draw polygons aroobgects plus
the time to modify polygons, which are indicatedDaawing-time and Modifying-time respectively). Finally, we
define asobservation-timehe difference betweegross-timeandnet-timethat represent the time spent to observe
images, choosing tools, moving images, etc. Figh8ws thegross-timespent by four annotators on the three
groups of parasites. Fig. 8 reports alsoahservation-timend thenet-time

300

0
T 20
g

< 150

00{ £

Entameeba Giardia Prototheca

Fig. 8. Gross-timefor each group of parasites, calculated as thedfuhegross-timegnet-time + observation-timef each annotator. Blue
bars refer tananualmode, red bars refer semi-automode. Light color (blue and red) representsaiservation-timewhile the dark color
representset-time (Colorful)

As Fig. 8 shows, for the first two parasite grogiiestamoebandGiardia) the gross-timein thesemi-automode
is 16% and 25% lower than tihheanualmode respectively; the gross-time for ftothecais 74.4% lower in the
semi-automode. In comparison with the other two groupsarbgitesProtothecashows a much larger reduction in
gross-time From Fig. 8 a consistent trend emerges:gitoss-timein semi-automode is shorter than in timeanual
mode’s one. Importantly, Fig. 8 shows that in thenualmode, most of the time is spent on drawing and fyidj
polygons (i.e.net-timg, while in the semi-automode, most of the time is spent to observe thegé@ma(i.e.
observation time). This is because the annotatpestsmore time studying the polygons proposed leyntask
proposal network to decide if they are real paeasénd if they need to correct any mistakes (speraiix B for
more detailed information).

Fig. 9 reports the mearet-timefor annotation of a single object (i.e. a paras#éh) over all four annotators (for
each parasite group, and fdD andLD images, respectively). In order to calculate tteammet-timereported in
Fig. 9, we calculated firstly the meast-timeper image, by each annotator:

Njm
net_time :Niz Drawing_ timg, + Modification time, @

j,m i=1

Wherei is the index for the object in imageandm represents the index for the annotabgy, is the number of
objects (parasites) within imagewhich have been identified by annotator Therefore, the meamet-timeof an
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object (for each parasite group, and D andLD images, respectively) reported in Fig. 9 is calted according
to Eq. (2):

mean_ net timsﬁzz net time )

m=1 j=1

Where the image-index, goes from 1 tov, i.e. the number of images given to each annofatds), and the
annotator-indexm, goes from 1 tow, i.e. the number of annotatofg=4). In Eq. (2),N is the total number of
images annotated by four annotators in each groupié case, N= 4x5=20). See Appendix B for mofermation.

Rt
# i i i i
g
£
5 i i
0 h u
HDGia  LDGa  HDPo Do

HD-Ent  LD-Ent

Fig. 9. Meamet-timefor each group and for high-dense and low-densgés. Blue bars for manual mode, red bars for semoi-mode. Error
bars represent the standard deviation calculatednev — time; ,,. (Colorful)

To evaluate the significance of the me®at-timeon groups, a statistical Wilcoxon test has beeriethout on
the mean net-times. According to the test, the nmedntime insemi-automode is significantly shorter thananual
mode (P < .001). Fig. 9 and the Wilcoxon test aomfihe trend from Fig 8, where tmet-timein the semi-auto
mode is shorter than theet-timein themanualmode. In the case &frototheca(bothHD andLD), the semi-auto
mode’snet-timeis noticeably smaller than timanualmode’snet-time(87.31% smaller foHD and 78.44% smaller
for LD, respectively). Looking at the results fBrototheca the densest group of parasites (see Fig. A.®), th
comparison of meanettime betweerHD andLD images in thenanualandsemi-automodes shows that threet
time reduction frommanualto semi-automode in theHD images is more pronounced than in ti2zimages. We
believe this could be because the annotators becaore fatigued and less motivated with tH® images.
Therefore when they annotatetD images in thesemi-automode, they tended to trust the proposed polyggns b
machine more often. To explore the impact of thisrdarusting of the proposed mask on quality arfteoaspects
of the annotation process, we have carried ouk eliel quality analyses in following sections.

4.2.Clicks Analysis

Clicks are also another factor that can affectatheotation cost, annotator’'s motivation, and thnesannotation
quality. In this study, further quantitative anasyis carried out by computing the number of clickshe annotation
task; we define aBrawing-clicksthe number of clicks required by the annotatodraw a new polygon around an
object (in bothmanualandsemi-automodes), and we define 8odifying-clicksthe number of clicks required for
correcting machine-proposed polygons (onlgémi-automode) or user-drawn polygons (in betlanualandsemi-
auto modes). Fig. 10 shows a consistent trend in that tbtal number of clicks in theemi-automode is
considerably smaller than the clicksnranualmode; this is the case in particular Rnotothecaimages (botiHD
andLD). With respect to this finding, and given that ftothecais the densest group of images in comparison
with the two other groups (See appendix B), weevelithat annotators were less motivated when thegtated
high dense images, therefore in the semi-auto thegied to do less clicks, and trust the proposéggpos by
machine.
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16000

W Total drawing clicks (Manual)
14000 | W Total modifying clicks (Manual)

= Total drawing clicks {Semi-auto)
12000 | ™ Total modifying clicks (Semi-auto)

10000

HDEnt LDEnt HDGia NCGia HDPo  LDPro

Fig. 10. Number of clicks for each group of imagedculated as the sum of the drawing and modifgiitks of each annotator. Blue bars refer
to manualmode and red bars refers to feni-autanode. Light colors (blue and red) represent drgvaiicks while dark colors represent
modifying-clicks. (Colorful)

Fig. 11 reports the mean number of clicks for ealoject, calculated over all the objects identiftedall four
annotators (for each parasite group andHbrimages and.D images, respectively). In order to calculate tremam
number of clicks, reported in Fig. 11, we calculdfiest the mean clicks per image, by each annatato

Lim
num_ click$m -1 > Drawing_ clicksm + Modification  clicksn 3)

im =1

Wherei is the index for the object in imageandm represents the index for the annotatoy,mis the number of
objects (parasites) within imagewhich have been identified by annotatarTherefore, the mean number of clicks
(for each group and for high-dense and low-densayés, respectively) reported in Fig. 11 is caledaccording
to Eq. (4):

W _V
Mean_ num_ cIickslzz num clicksn (4)
m=1 j=1
Where the image-indejx goes from 1 tov, i.e. the number of images given to each annofates), and the
annotator-indexm goes from 1 taw, i.e. the number of annotatofs=4). Here,L is the total number of images
annotated by the four annotators in each grouth{gncase, N= 4x5=20). See also appendix B.

ci

|
i

HD-Ent  LD-Ent  HD-Gia  NC.Gia  HD-Pro LD-Pro

Fig. 11. Mean number of clicks per object, for egobup and foHD andLD images. Blue bars fananualmode, red bars f@emi-automode.
Error-bars represent the standard deviation catdikavernum _clicks;,,. (Colorful)

Fig. 11 shows that the number of clickssemi-automode is smaller than in tmeanuals’one, especially for the
case ofPrototheca(88.8% smaller foHD and 85.4% smaller fotD images). This seems to reinforce what
emerged from the time analysis. A statistical Wilzo test has also been carried out on the mean ewatfkelicks
in all groups. According to the test, the mean neinds clicks insemi-autamode is significantly lower thamanual
mode (P <.001).

4.3. Annotation quality analysis
As it is common in object detection [13], we congulta range of evaluation metrics to explore aniuotst

quality, including Precision, Recall, IOU (intersea of union, also known as Jaccard index in stiteeature) and
Acceptance Ratio. These parameters are explainaedbie detail, later in this section. Here we intBcavith Tp
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(true positive) the number of truly identified obig, withFp, the number of falsely identified objects, andh¥n,
the number of missed (un-identified) objects byaators. Following the literature, we set the IGideshold to
50% for the calculation ofp, Fp, andFn, i.e. those objects, identified with an overlagh@r than 50% with GT
objects, are considered positiviga, Fp, andFn are calculated according to Equations (5). In Eg)s.image-index,
j» goes from 1 te, i.e. the number of images given to each annofatd), and the annotator-inder, goes from 1
tow, i.e. the number of annotatqrs=4).

Tp=>> True_ Positiven (%)
m=1 j=1

Fp= ZW:ZV“ False_ Positiven
m=1 j=1

Fn= ZW:ZV: False Positiven

m=1 j=1

Fig. 12 shows that the number of identified objgbisth Tp andFp) in the semi-automode is higher than the
identified objects irmanualmode for all groups of images, although, in som&es, the number &p in semi-auto
mode is higher than threanualmode (see appendix C for more detailed information

1000
00
_ 60
€
H
2
200

00

HDEnt  LDEnt  HDGia NCGia HD-Pro  LD-Pro

Fig. 12. True positivelp (dark color), false positivé;p (light color), and total number of objects (blagkleach group of images, with 50%
10U threshold. Blue-bamnanualmode, red-barsemi-autamode. (Colorful)

Precision, Recall and F1 score are calculated dowpto Eq. (6).

Precision= TP (6)
+Fp

Recall= TP
+ Fn

1= 2xPresiciorx Recal
Presicion+ Recall

Fig. 13 shows the average Precision, Recall andcBfie in bothmanualandsemi-automode for each group of
images. The comparison betweeranual and semi-automode in Fig. 13 shows that, unlike Precision, Reasa
considerably increased in teemi-automode, which means that teemi-automode helped to reduce the number of
Fn more than for the number Bp (see appendix C for detailed information).
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Recall (%)

HD-Ent  LDEnt  HD-Gia  LDGia  HDPro  LD-Pro HD-Ent  LD-Ent  HD-Gia  LD:Gia  HD-Pro  LD-Pro

Fig. 13. (a) Average Precision for each group aiges, (b) Average Recall for each group of ima@@#verage F1 score for each group of
images. (Colorful)

IOU is a well-known metric that has been widelydig® instance segmentation studies [10,14,18,347431],
as a measure of the annotators’ accuracy in draolpgcts’ borders. IOU is a measure of the ovedapveen a
drawn polygon (by non-experts in this case) andgttoaind truth polygon (by experts), and it is defiras in Eq.
(7):

_ Areaof overlap ' =@ )
IOU = — -
Areaof union “

Note that, the mean IOU is only calculatedTqn(true positive) objects. We first calculate the suation of the
entire objects’ IOU within each image, then caleilean_IOUas shown in Eq. 8, whermg, j, andi are the index
of annotator, image, and object, respectively. Heris the total number of objects annotate by the &mnotators
in each group of images, and z refers to the numbebjects within the image

Total_ 10U =Y’ 10U (8)

i=1

Mean_ IOU=12V:ZW: Total 10U

m=1 j=1

Fig. 14 indicates that the 10Us (feintamoebaandPrototheca HD andLD) in manualandsemi-automode do
not show a significant difference. The IOU faiardia images is 7% higher isemi-automode forHD images, and
10% higher inrsemi-automode forLD images (see appendix D for more information). Nb#g, unlikeEntamoeba
and Prototheca which have a round shape (see Fig.Gigrdia has a more complex shape, including sharp edges.
We believe that our assistive tool is more effext{in terms of I0U) for challenging objects tham &mpler
objects.

20
oj_l_l_l_l_l
-Ent -Gia -Pro. -Pro

Fig. 14. Mean IOU for each group of images. (Colpr

Fig. 15 presents a selection of sampleEmtimoebaGiardia, and Protothecgparasites, annotated by the expert
vs annotators (non-experts) manual and semi-automodes. As expected, the drawn masksamual mode is
coarser than theemi-automode, while it cost less number of points.
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Fig. 15. Samples of raw images, of annotated imbgespert and by non-expert annotatormiemualmode and isemi-automode. “Drawn
points” shows the points drawn with the polygonrapar, and “Masks” shows the final generated mask.

We undertook further analysis by calculating theeptance ratio of machine-proposed polygons byfdhe
annotators in theemi-automode. Given a machine proposed polygons, the atorstare faced with three options:
i) fully accept proposals without any modificatidi),accept with some modifications iii) reject (ete) proposals.
Therefore, we define three parametdtsily_acceptance_ratioPartially_acceptance_ratioand Rejection_ratio
(calculated from all annotators) as in Eq. (9). &H#reFully_acceptance_ratiosepresents the number of accepted
proposed polygons without any modification, whilee tPartially_acceptance_ratiorefers to those proposed
polygons which are accepted whether with or withraatification.

Num of accepted polygofis Without modifica)i)c()Eoo (9)

Fully _ Acceptance ratie
Num of proposed polygons

Num of accepted polygofis With Without modifica)i)gfoo

Partially _ Acceptance ratie-
Num of proposed polygons

Rejection_ ratio=100%- Partially acceptance rat

Table 1. Acceptance ratio of proposed polygongé&mh group of imageRartially_acceptance_ratio
refers to machine-generated masks accepted byatarmtandully_acceptanceratio refers to those
computer generated masks they are accepted andiedodi

Entamoeba Giardia Prototheca

HD LD HD LD HD LD
Partially Acceptance ratio 83.84% 85% 73.42%  58.57%5% 87.6%
Fully Acceptance ratio 41.1% 32.6% 40.3% 39% 85.8%7%
Rejection ratio 16.16% 15% 26.58% 41.43% 5% 12.4%

Table 1 shows that irlD images, the annotators tend to accept proposale often tharLD images, which
reinforces what emerged from the time and clickalys®es (for detailed information see appendix E§sé&&l on
appendix D (Tables D.2 and D.3), despite the faat the annotators spend a significant amountué for refining
proposed masks, the final IOU of accepted/refineghpsals by annotators does not show a noticeatgeovement
over the proposed masks.

5. Discussion

In this paper, we investigated non-expert annasatoehavior on a specialized domain (cell biologyging a
bespoke segmentation annotation platform powered bger-assistive tool. The annotators were askgetform
segmentation tasks in two modesanualandsemi-auto(assisted with a mask proposal network). Our tesiow
that like the segmentation of everyday objects. (@sing Cityscapes or COCO dataset), outsourciagpiecialized
annotation task in cell biology to non-experts oasult in a decrease in the annotation cost,in@ spent, number
of clicks, when supported by the assistive tool(Sigs. 9 and 11). Importantly, the overall IOU peniance of non-
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expert annotations was higher with the assistiv@. tBurthermore, our results show themi-autoannotation
resulted in consistently higher recall (which medhnat fewer objects/cells in the image were misbgdthe
annotator). We have also investigated the behdviat@erns of annotators in both modes and idedtiSome key
directions for the design of future platforms.

Firstly, our analysis reveals that performing molieks and spending more time on the segmentatfogach
object does not lead to significantly better antiotaquality (see Tables B.2, B.6, and D.1). Weidwal that
spending more time and more clicks on the taskteedlg lead to mental fatigue, which may resulpwor quality
annotation. This implies that the design of sudtfpims should focus not just on helping users &kenaccurate
annotations, but also efficient ones with fewecldi hence less time. Conventional reward mechanighsome
crowdsourcing platforms calculate users’ wages dasethe number of clicks and time spent, which rhaye a
perverse incentive to produce lower quality workne, we suggest that wage calculations couldita@eaccount
the efficiency of the annotator's work as well,drder to set the right motivation. Another way taprove user
motivation may involve a system with non-monetaward (e.g. gamification scoring system), nudgingadators
toward more efficient annotations whilst maintagithe quality of the results. This reward systenm &
implemented in the tutorial phase, or embedded ksaiy throughout the annotation task to train saoos to do
the task more efficiently.

Secondly, contrary to expectations, our resultsvsthat in thesemi-automode, despite annotators spending a lot
of time refining the proposed masks, the mean I®kéfined masks was not always improved. In cadesravthere
was an improvement, it was only marginal (see apipe, Tables D.2 and D.3). Furthermore, we obsérthat
although the annotators tended to spend a lotva tefining a proposed mask, they did not pay sieffit attention
to verify if a proposed mask contained a real paraxbject, i.e. many false proposed masks weréirooed by the
annotator and only a few ones were rejected (sb&e3&.1 and E.1). Consequently, it resulted inga humber of
Fp (False-positive) and low precision (see Fig. T3 implication of this observation is notewortkiye annotators
seemed to have trusted the machine in identifyiregadbject, but did not trust as much the segmemtdtiat was
done by the machine.

Consequently, the design of future platforms, eigigdor the tutorial phase, could emphasize tbedto verify
machine-proposed masks prior to refining them. Haurhore, the behavior we observed suggests the toeed
optimize the confidence threshold of the mask psapaetwork (set at 30% in our work). Setting ahigthreshold,
in fact, will force the machine to propose a maskyavhen it is really confident about it, to avdlte problem of
over-trusting of the annotators. However, a higheeshold will mean fewer masks are proposed byrihehines,
potentially resulting in more time spent to segmehjects from scratch. Alternatively, future platfe could
present individually the generated masks to anoatather than in bulk within each image. We psmpthe
exploration of these solutions as the topic fourfatresearches. We also found that on averagenth&tators spent
0.49+0.16 seconds per click when creating a nevkrftas scratch (for detailed information see appe] Table
B.5), while the modification of a point took 1.5890seconds on average, in a mask either proposéuebyachine
or generated by themselves. This means that thdfioadmn of a few points is more efficient thareating a mask
from scratch by the annotator. However, if the fualf machine-proposed mask is low, resultinghie heed of
modifying many points, it may be more efficient fmnotators to generate a mask from scratch. Fnesetresults,
we recommend that in a machine-proposed maskeifittmber of points which requires modification isrexthan
30% of all total points, it may be more efficieatreject this proposed mask and create the mask$ayatch by the
annotator.

6. Conclusion

Our study sheds some light onto important behaVideatures of non-expert annotators in performing
segmentation tasks in the specialized domain ofahiology, when assisted by a supervised objectatien
algorithm. These insights can help inform the desifjfuture systems, taking into account the pentonce trade-
off due to human-machine interactions (e.g. humaeiceived trust on machine), the complexity ofgaes and
human factors (e.g. fatigue and motivation). Howewe acknowledge that the present results aredbaseonly
four annotators (although they performed a total®42 and 2209 segmentations in manual and semiraatle,
respectively, yielding a large number of activitfes analysis), and are drawn from images fromelparasite cells
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produced using a single microscope. Different cetigy present different challenges for the annatati&sk,

especially to non-experts. More specifically, diffet life stages of the parasites (i.e. cysts, efpogametes),
environmental stresses (that change the morphotdgfhe parasite) and other objects could be presetihe

images, making the annotation task more challendgtugthermore, it is not clear how annotators’ bédramay

change over a longer period of time, and if theesysneeds to be more adaptive to respond to tlssifge change.
This calls for future studies to broaden the scopé¢he investigation, involving more participantsdadiverse
microscopic images over a longer period of timaudilly, a collective effort is needed to generateublic dataset
for microbiology, similar to Cityscape or COCO dwts for everyday objects. Future work should &sws on

how human annotators perceive machine recommemdatand how user interfaces can be designed thitdeei
efficient, trusting and transparent human-machiteraction.
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Appendix Overview

In this section, we provide detailed informatioroabthe annotators, in the annotation process th bwdes of
manualandsemi-auto All tables in this section present data for a#i annotators

Appendix A. Data Statistics

To explore the correlation between annotationst ensl images’ features such as shape, size, calanber of
objects per images, and difficulty level of detegtbbjects in images, we computed different featafethe images
in each group. The number of objects in the imagesns to be a factor that can influence the aror&tdiehavior,
and consequently the cost of annotation. Fig. Aekgnts the number of parasites in each group ajes

a b

C
- Nmber of objects

Number of ablects Number of objects

s ] g
£ £ £2

Number of abects

Fig. A.1. Histograms of the number of objects iragas: (a).D Entamoeba(b) LD Giardia, (c) LD Prototheca (d) HD Entamoeba(e) HD
Giardia, (f) HD Prototheca

The object’s size is another factor that can affeetannotation’s cost, including the number ofldiand time.
To investigate the effect of annotating objectslifferent sizes on the annotator’s performance haxe computed
the object’s size per each group of images as prasdable A.1.

Tallel. Parasites’ sizeHD-Ent high-densé&ntamoebal D-Ent low-denseEntamoeba
HD-Gia: high-denséiardia, LD-Gia: low-denseGiardia, HD-Pro: high-densé’rototheca
LD-Pro: low-densePrototheca

Image Height ( pixel) Width (pixels) Area (pixel)

Group Min  Max Mean Min Max Mean Min Max Mean
HD-Ent 103 1099 560 113 1121 608 431k 1189k 355k
LD-Ent 97 1147 560 84 1160 549 36k 1169k 348k
HD-Gia 55 520 264 122 500 271 15k 206k 71k
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Image Height ( pixel) Width (pixels) Area (pixel)

Group Min  Max Mean Min Max Mean Min Max Mean
LD-Gia 109 524 263 126 586 263 20k 224k 69k
HD-Pro 27 460 206 89 502 214 3.4k 227k 46k
LD-Pro 56 556 217 50 524 218 8k 264k 50k

The Entamoebaand Protothecahave a round shape, while tBgardia has a non-round object and therefore is
more challenging in terms of visibility and for diag (see Fig. 4)EntamoebaGiardia, andProtothecaare the
biggest to the smallest objects in terms of piXetssed on Table A.1. On the other haPhtothecaimages are the

most populated (dense) images, as there are 2(28t®ln Protothecaimages, 643 objects iBiardia, and 541
objects inEntamoebamages.

Appendix B. Time and clicks results

This section presents detailed results of clické tame analysis for all participants. Table B.1whkdhenet-time
spent on each group of images by the four annatatad the expert biologist.

Table B.1. Net-time (seconds) spent on each gobipages by four annotators and biologist. Thet flumber is drawing time and second
number refers to the modifying time

# user Enteomeba Giardia

Prototeca
HD LD HD LD HD LD
Manual S-auto Manual S-auto Manual S-auto Manual auts- Manual S-auto Manual S-auto

#1 440;72  26;161 285;0 0,66 490;10 73;251 133;4 ;189 87840 37,105 694,51 63;116
#2 525;117 52;240 235,94  44;266 356;41  136;153;2%01 88;97  1509;180 104;75 139;3 32;21
#3 972,303 63;600 554;107 10;395 904;23  82;217 ;1®10 89;44 2581;178 323;273 232;0 9;79
#4 951;88  159;624 389;14 0;167 682;15  149;277 13; 132,39 2654;,178 355;32 1420;247 223,40
Expert 4205;765N/A 1553;210 N/A 2481;248 N/A 1565;82 N/A 8641;1112 N/A 3187;445 N/A

Tables B.2 and B.3 present the average time smgnikgect (drawing and modifying) imanualandsemi-auto
mode (calculated based on Eq. (2)).

Table B.2. Average spent time (drawang modifying, in seconds) per objechianualmode.
(Meant Standard deviation)

#user Enteomeba Giardia Prototeca

HD LD HD LD HD LD
#1 14.2+4.5 9.5+1.6 7.1+1.7 7.612.4 6.9+2.4 5.8+1.
#2 10.5£3.2 11.7£3.4 6.8+2 8+2.3 8.3+3.5 8.3+4.1
#3 23.6+11.6 21.3£10.5 14.2+10.9 11.8+4 10.5+3.52+3.9

#4 18.248.5 13.8+4.7 9.1743.2  11.5+4 13.1#35 4.9
Expert 19.5+8.8 12.8+4.5 7.942.3 9.9+4.1 10+3.5 +8.2

Table B.3. Average spent time (drawing and ffiyody, in seconds) per object gemi-autamode.
(Meant Standard deviation)

#user Enteomeba Giardia Prototeca

HD LD HD LD HD LD
#1 3.44+2.6 2.241.1 4.7+4.6 5.3t1.8 0.740.2 1.1+0.8
#2 4.8410.9 9.742.1 45+1.9 7.242.5 0.8#0.4 2.5+#1.8
#3 10.8+6.9 12.8+6.5 3.4+1.1 2.5%£1.6 2+0.6 3.544.2
#4 12.1+£2.7 4.7+6.9 5.312.1 4.4+4.3 1.6+£3 1.4+2.3

The average number of clicks per objectmanualmode, for all four annotators, according to Eq.g#e shown
in Table B.4.
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Table B.4. Average number of clicks (drawémgl modifying) per object imanualmode.
(Mean + Standard deviation)

# user

Enteomeba

Giardia Prototeca
HD LD HD LD HD LD
#1 33.4£10.54 24.7+3.9 14.842.8 17+3.5 16.5t4 12.2
#2 21.846.3 21.145 15.3+3.3 15.3+3.3 17.945.6 184
#3 42.9+14.7 45.9+16.5 33.4+9.8 30.847.5 19.44554.4+6.7
#4 25.4+8.2 22.8+7.9 15.843.8 17.6+x4.7 17+15 15.8+

17

In manualmode, when annotators are drawing parasites froatch, the time between each click is different
from person to person. Table B.5, illustrate therage time spent for each clicks for different grofiimages.

Table B.5. Average spent timesgonds) per click for drawing parasites (Mearnian&ard deviation)

#user Enteomeba Giardia Prototeca

HD LD HD LD HD LD
#1 0.36+0.05 0.38+0.04 0.48+0.1 0.43+0.07 0.440.09.37+0.1
#2 0.45+0.08 0.51+0.06 0.42+0.08 0.5+0.08 0.4330.®.41+0.05
#3 0.4+0.14 0.37£0.06 0.41+0.3 0.37+0.07 0.51+0.138+0.16
#4 0.62+0.1 0.58+0.06 0.55+0.12 0.62+0.09 0.72%0.D.63+0.1

The total number of clicks by annotators are prieseim Table B.6. The first number shows the tatahber of
clicks for drawing and second number shows the tatanber of clicks for modifying objects.

Table B.6. Total number of clicks for each groupnafiges. (Num. of drawing clicks; num. of modifyiokicks)

# user HD Enteomeba LD Enteomeba HD Giardia LD dsdar HD Prototeca LD Prototeca
Manual S-auto Manual  S-auto Manual S-auto Manual aufe Manual A-auto Manual A-auto
#1 1205;53 58;107  742;0 0;40 1041;3 191;274 306;226;197  2198;24 108;54  1919;35 134;102
#2 1311;107 85;170 593;85 95;314 891;33 301;1181;143 18966 3628;205 290;43 326;2 61;15
#3 2318;255 103;448 1425;78 14,251 2175;13 164;11857;5 182;38 5106;106 659;121 611;0 18;73
#4 1451;30 255,571 664;4 0;137 1207;5 283;260 H477; 254;33  3674;63 661;22 2197;99 447;38

Appendix C. Precision and recall

Table C.1 shows the number of truly identified, mgly identified, and missed objects in botlanualandsemi-
autois calculated (for calculation, the 10U threshi@det to 50%).

Table C.1Tp (true-positive) Fp (false-positive) anétn (false-negative) with I0U-threshold=50% for eacbup of images, per annotators
(num. of Tp; num. ofFp ; num. ofFn)

# user HD Enteomeba LD Enteomeba HD Giardia LD ddar HD Prototeca LD Prototeca
Manual S-auto Manual S-auto Manual S-auto Manuahuts- Manual S-auto Manual S-auto
#1 33;3;23 45;2;11 24;6;11 30;3;5 55;15;49 71;31;310;8;33 24;13;19 103;30;89 167;34;25 115;20;570;1%22
#2 60;1;8 59;1;10 27;1;9 31;1;5 33;25;44 57;6;20 ;1922 22;5;9 167;35;59 202;18;24 16;1;2 18;0;1
#3 50;4;4 50;10;4 30;1;1 30;1;1 37;28;33 54;33;186;8;7 40;12;3 209;53;82 259;28;32 13;12;4 15;11;2
#4 56;1;21 66;1;11 28;1;7 32;2;3 60;16;32 74;12;122;5;26 36;7;12 208;8;,56 235;23;29 136;4;42 15213
Precision 95.67 94.01 92.37 94.61 68.77 73.56 65.816.72 84.50 89.33 88.32 90.05
Recall 78.03 8593 79.56 91.95 53.93 74.62 46.66 .9373 70.60 89.52 72.91 86.56

Appendix D. Intersection of Union

I0Us for each group of images in battanualandsemi-autcare shown in Tables D.1 and D.2.
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Table D.1. Final IOU imanualmode for each group of images (Mean + Standarthtien).

# user Enteomeba Giardia Prototeca

HD LD HD LD HD LD
#1 85+7.9 75.516.2 72+11.1 68.8+12.6 77.318.9 ¥D.4
#2 85.548.9 85.1+10.4 69.5+10.7 64.8+10.8 77.748.980.3+9.4
#3 87.4+12.4 9045 71+12.3 76.318.8 78.2+11.9 78333

#4 90.1+6.5 90.845.5 76.2+12.8 75.6+13.4  84+6.8 .9856.7

Table D.2. Final IOU isemi-autamode for each group of images (Mean * Standarthtien).

# user Enteomeba Giardia Prototeca

HD LD HD LD HD LD
#1 86.816.5 86.6+7.4 75.6+11.9 75.2+12.8  80.7+7.883.7t6.9
#2 87.846 85.949.5 81.848.5 79+10.9 82.848.7 8616.

#3 84.8+12.4 87.1+6.5 76.6+13.7 82.2+6.4 83.4+9.980.8+13.3
#4 88.6+4.9 86.6+7.4 80.1+9.8 79.3+10.2  84.2+7.3 2+788

The IOUs for the masks generated in $keni-automode in comparison with the GT (ground truth) sttewn in
Table D.3.

Table D.3. IOU of computer generated masksdgivi: Standard deviation).

#user Enteomeba Giardia Prototeca

HD LD HD LD HD LD
#1 86+6.9 86.3+7 78+9.5 80+7.2 81.4+6.8 84.246.6
#2 8716 85.3+8.3 81.1+8.2 80+8.5 83.7+6.5 85.5+7.4
#3 84.7+8.9 86.1+7.2 79+9.6 82.6+685.3+6.8 84.7+10
#4 86.316.4 85.8+7.1 80.2+7.2 80.6x8 84.7+6.5 81.8

Appendix E. Semi-auto mode complementary results

Number of proposed objects, along with the numifeadiled and removed parasitessiemi-automode are
shown in Table E.1.

Table E.1. Accepted, removed and modified maskgsals insemi-autamode. (P: total number of proposed objects, A: Nenof added
objects by annotator, D: number of deleted objegtannotator, T: the final number of annotated cisje
# user HD Enteomeba LD Enteomeba HD Giardia ligrdia HD Prototeca LD Prototeca

P A DT P AD T P A DT P AD T P ADT P ADT
#1 56 2 11 47 400 7 33 140 14 40 1138 2 23 37 203 7 9 201 158 12 7 163
#2 68 4 13 59 384 10 32 86 14 37 63 44 8 25 2225 1924 220 27 3 1218
#3 60 2 2 60 311 1 31 82 6 1 87 47 7 12 4256 354 287 44 1 1926
#4 76 7 16 67 380 4 34 106 12 32 86 61 9 27 4220 468 258 142 12 31165

Table E.2. Number of partially and fully apted polygons (num. of accepted proposals with
modification; num. of accepted proposal withmodification).

# user Enteomeba Giardia Prototeca
HD LD HD LD HD LD
#1 9;36 10; 23 39;61 24 ;11 25;169 238 12

#2 34;21 27;1 20;29 12,7 15,186 4;11
#3 25;33 16;14 40;41 8,37 43 ;209 11;14
#4 43 ;17 24;10 38,36 7,27 0,212 1,133
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Highlights

Our assistive tool enables non-expert annotators to perform annotation of microbiological images
accurately and quickly.

Our study sheds some light on important behavioral features of non-expert annotators.

Our findings can help inform the design of future annotation systems.

Annotation quality is not found to be strongly correlated with either annotation time or quantities
including the number of regions and polygon vertices.

Results reveal that other than time reduction, annotation platforms should encourage annotators
toward more efficient annotations to maintain their motivation.
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