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Abstract

Chapter 1: Default and Punishment with Systemic Risk
This essay identifies substituting behaviors in an ex-ante financial system with

cyclical default/feedback leading to potential breakdown. Here, firms in a debt net-
work estimate potential default and as such, makes storage decision in order to avoid
defaulting. They make these decision due to the potential damages associated with
defaults. In doing so, firms optimize their savings strategy given their network/neigh-
borhood effect. We observe properties and existence of a Nash equilibrium under
instances where such ex-ante breakdown are caused in part by each owing firm.
Equilibrium storage is dominated by the fraction of default not attributed to conta-
gion. We also see a link between firms position in a default network and its storage.
As a policy tool, equilibrium under harsh punishment are also socially efficient in
achieving minimal default and systemic breakdown.

Chapter 2: Frictions in Financial Networks
This essay models transaction cost within an Eisenberg and Noe (2001) clear-

ing system and identifies such clearing properties such as existence, uniqueness and
methods of clearing. Further more, it adapts such transaction cost for decision mak-
ing into the Demange (2016)’s threat index with default feedback and observes the
behavior of the index/centrality rankings of each under changing transaction costs.
We find under strict conditions, existential possibilities of switching in such rankings
for firms involved.

Chapter 3: Strategic Interactions in Financial Networks
This essay models interactions of firms in a pre-trading(fixed network of lend-

ing/borrowing) period whereby firms set fixed lending rates given loan management
cost. We show strategic substitution in the rate each firm sets and more fundamen-
tally, propose that the rates charged to debtors by a creditor firm is likened to results
from a private provision of public good in networks game. We then highlight spe-
cific core-periphery network properties in relation to interdependence and Nash rate
charged by firms. For welfare policies, we find neutrality of intervention policies that
create or reduce transaction cost and improvement based on policies that provide
administrative subsidies thus creating an avenue for cost effective resource transfer
policy. Lastly, we find significant relationship between a firms centrality measured
by weaker negative externality and welfare improvement due to such subsidy.

Thesis Supervisor: Allouch Nizar.
Title: Professor of Economics

Thesis Supervisor: Alastair Bailey.
Title: Professor of Economics

Thesis Supervisor: Duncan Alfred.
Title: Lecturer in Economics
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Chapter 1

Default and Punishments with

Systemic Risk

1.1 Introduction

A reliably functioning financial system is one of the prominent goals monetary au-

thorities of economies around the world struggle to maintain. Numerous incidents

have left key players in the global financial sector at the brink of collapse or in

worse cases, a systemic failure for a certain period.1 There are however few excep-

tional cases in which early warning signals of such collapse spurred stakeholders to

proactive interventions thereby, managing to elude a major catastrophe. Primary

examples of market stabilisation through intervention by private firms include the

case of Panic of 1907 (New York) . As explained by Tallman, Moen, et al. (1990),

while signs of chaos were already looming on the streets of Manhattan, J.P Morgan,

one of the greatest bankers at the time, decided to gather the big banks and man-

age to persuade them into signing for funds release to avert a potential crises. It

was said that the amounts contributed was trivial in comparison to what the actual

1Popularly the 1930’s and 2008 financial crises.
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1. Default and Punishments with Systemic Risk

crises would have been. Also, another earlier incident with similar characteristics

was the Barings bank collapse (1890, London) which originated in Argentina but its

fear quickly escalated to other parts of the world.2 In this case, the Bank of England

was forced to lobby and succeeded in pulling in resources from numerous European

powers to salvage the British financial market. Finally another important case was

an incident with Long Term Capital Management (1998, New York) where, as Jorion

(2000) recounts, the President William McDonough managed to convince 15 banks

to bail out the Long-term Capital Management which had almost collapsed due to

the devaluation of the Russian Rubles among many other reasons.

We build a model within the clearing system proposed by Eisenberg and Noe

(2001) with a baseline model of systemic risk through default contagion. As a step for-

ward, we uniquely infuse punishments as means of enforcing redemption of promises.

These punishment vary directly to the default value of each firm which are treated

in isolation, Where firms are able to estimate these defaults reliably, we grant the

option of unlimited access to storage in order to avoid default. Our motivation links

to the fact that studies have shown that defaults are damaging to firms and has even

greater indirect consequences than its face value. Defaults and systemic breakdown

has been proven to be significantly detrimental to firms involved. An example of

cost linked to firms default can be found in the study carried out by Strebulaev and

Zhao (2011) . Here, they used large data sourced from Default Risk Service (DRS)

on firms that defaulted over 14 years in terms of observed prices of debt and equity.

They found cost to be on average, as high as 21.7% of the market value of assets.

Break down of these cost ranged from 14.7% for bond renegotiations to 30.5% for

bankruptcies. We however for ease modify these assumptions immensely as would

be explained in the next section. Studies like Glover (2016) carry out similar survey.

This work adapts financial networks contagion into a decision making model for

2see Mitchener and Weidenmier (2008).
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1. Default and Punishments with Systemic Risk

the purpose of extracting public good behaviors from games of substitute in networks.

This is so as to observe who(s) contributes to financial stability within a system and

possibly to what extent would they be required to. Intervention by stakeholders

which are not necessarily 3rd party regulators like the federal government can then

be said to be of importance especially when signs of failures are imminent. In a lot

of instances, it has been those private banks who have been convinced of possible

loss (in the event the crises is allowed to proceed) that end up making attempts to

help the situation. It has then been argued by some economists that the absence of

similar intervention in the 2007 lead to the 2007-2008 financial crisis which at the

end, still elicited interventions from the European powers to salvage failing economies

like Greece, Portugal, Spain and the likes since the Eurozone Crises. In the field of

behavioral financial economics, the agent based model have seen growth in not only

depth, but breath as it has extended to the dimension of looking at participants in

the financial system as interwoven networks whose interactions and activities has

huge impact on the overall performance of system.

We show existence and uniqueness of Nash equilibrium and its link to the first

wave default described in Eisenberg and Noe (2001). Equilibrium behavior of firms

arise from an interaction based on strategic substitution such that firms benefit from

storage decisions from their direct debtors. As such, equilibrium behavior are well

linked to those found in public good games works such as Bergstrom, Blume, and

Varian (1986), Bramoullé, Kranton, and D’Amours (2010), Allouch (2015), etc. Liq-

uidity provision in a fragile system has been identified as possessing public good

characteristics (Buiter, 2008). One which can be managed privately (by hoarding

inherently liquid assets). Furthermore, Buiter (2008) suggested it would not be so-

cially efficient for private banks and other financial institutions to hold liquid assets

on their balance sheets in amounts sufficient to tie them over when markets become

3



1. Default and Punishments with Systemic Risk

disorderly3. This suggests the ability for banks and other financial institutions to

provide liquidity as a pubic good in the face of growing necessity. Also, we see a rela-

tionship between a firms position in a well bounded default network and the amount

to which it stores.

For welfare properties, our Nash equilibrium is Pareto efficient and maximum

social efficiency would be based on higher punishments. Lastly, we reveal instance

of substitution behavior and equilibrium outcome which may link to the first wave

default in instance where cost where convex to default amount of each firm. An intu-

ition from this links to the fact that stochastic defaults of a firm are not substituted

for and as such, when each firm focuses on covering for risk arising outside the net-

work, then the system becomes increasingly less fragile. This provides a link between

social optimality as firms individual choices ensures the stability in the system.

1.1.1 Related Literature

Financial networks and contagion has become an increasingly targeted topic for nu-

merous researches since the start of the 21st century. Especially since 2008 events.

This paper is built around the Eisenberg and Noe (2001) framework which set up a

standard networks bounded by existing obligations which clear at a particular pe-

riod. As its primary focus, clearing characteristics of the model was described while

various methods of computing for the clearing payment was proposed, most notably,

the fictitious default algorithm. This algorithm solves for the sequence by using a

Gauss elimination approach from a starting point that all firms in the network pre-

sumably pay in full. Existence and uniqueness of equilibrium was established under

mild conditions using fixed point theorems. One very important characteristic of this

model was the concept of Waves of Default where other firms might fall short be-

cause some other connecting firm fell short. While the proposed sequence is fictitious

3In essence, characteristics of a looming crises.
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1. Default and Punishments with Systemic Risk

in nature, intuitions can be very important for understanding contagion as well as

strategic interactions in such network which we explore in this work. Additionally,

the model gives us an initial insight into a prototype financial system financial system

in which defaults exhibit cyclical behaviors. The clearing algorithm is such that so

far as iterations stop in a total sequence less than the paying nodes, then systemic

risk is avoided. In a case that it runs above, then evidence of feedback and as such,

systemic risk is revealed.

As a modification to the Eisenberg and Noe (2001), Elsinger, Lehar, and Summer

(2006) famously explores networks where certain agents are deemed of greater impor-

tance to others. Similar to the baseline model,4 conditions for clearing and further

characteristics where established. Also possible hints for its computations. Building

further, Elliott, Golub, and Jackson (2014) explored strategic interaction and impact

of shocks to networks with a primary focus on the dilemma between integration, di-

versification and contagion. Some important results reached is one that points to the

inefficiency of networks due to high amount of one and lower amount of the other5.

One form of these shocks (as it relates to the concept of first wave default in our

model) can arise due to stochasticity of returns. Broadly, they are product of mar-

ket irregularities which might affect the cashflow of firms. They as such, constitute

the part of default which can arise to a firm outside his network interlinks. In the

network, they materialise as contagion. In the light of contagion, Amini, Filipović,

and Minca (2016) looked at interactions in an instance whereby firms facing default

are forced to liquidate some amount to cover up and these liquidation is inversely

proportional to the price of the assets so that the more assets, the lower its worth.

It explored equilibrium amount of liquidation. A more general setting of this work

was similarly covered by Feinstein (2017).

An important work on penalty in equilibrium analysis Dubey, Geanakoplos, and
4By baseline, we mean the Eisenberg and Noe (2001) model
5Integration or Diversification.
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1. Default and Punishments with Systemic Risk

Shubik (2005) who famously captured punishment in general equilibrium analysis.

Key assumptions of the model that we drift away from includes the notion that

punishment may or may not occur even in the event of default, also agents where

not aware of other agents commitments and as such, could not estimate a network.

These limited information gave room for adverse selection and moral hazards in the

network and also, punishment varied from contract to contract. Furthermore, we

see in Demange (2016) a statement on destructiveness of systems and the ability for

agents who cause such systemic risk to ignore the full effect of his actions on the

system and as such aim to free-ride the provision of others to guarantee stability. We

aim to, using our build up, to investigate into these kinds of behaviors. This links

to the fact that Defaults due to ability for contagion/cascade in networks brings in

characteristics of Public Goods. Public goods in networks with strategic interactions

have been famously captured by Bramoullé et al. (2010) while private provision

of such public goods was the focus of Allouch (2015). Best replies in both cases

exhibit linearity (corresponding to those in Bergstrom et al. (1986), Bramoullé et al.

(2010) , as well as Allouch (2015) to mention but a few) and also ability to free-ride

contributions depends on the level of influence (using reverse centrality measures

indicating vulnerability ) on the network which otherwise would have led to what

Allouch (2015) grouped as specialist and free riders. Uniquely in our model, best

replies indicate that all players end up being specialist such that complete free-riders

are avoided. Our equilibrium also reveals similar intuitions to components of the

best replies of a default game given in Allouch and Jalloul (2016). However there are

subtle differences as we discuss in subsequent sections.

6



1. Default and Punishments with Systemic Risk

1.2 The Model

We consider a two period economy. First the initial period which we denote as 𝑡 = 0,

and then the payment period denoted as 𝑡 = 1 . Let 𝒩 = {1, . . . , 𝑛} be a set

which captures every firm that makes up the economy (nodes). At 𝑡 = 0, firms are

exogenously faced with existing promises of debt and repayment obligations to other

firms and we denote the total obligation every firm 𝑖 ∈ 𝒩 has as 𝐿𝑖. For each firm

𝑖 ∈ 𝒩 , let its set of debtors and creditors be 𝒩𝑖 so that 𝒩𝑖 = {𝒩 𝑖𝑛
𝑖 ∪𝒩 𝑜𝑢𝑡

𝑖 }.6 We

denote the total portion of firm 𝑖’s obligation that goes to firm 𝑗 as 𝐿𝑖𝑗 and the relative

liability of firm 𝑖 to firm 𝑗 as 𝑔𝑖𝑗 such that 𝑔𝑖𝑗 =
𝐿𝑖𝑗

𝐿𝑖

. Also given
∑︀

𝑗∈𝒩 𝑜𝑢𝑡
𝑖
𝐿𝑖𝑗 = 𝐿𝑖,

then
∑︀

𝑗∈𝒩 𝑜𝑢𝑡 𝑔𝑖𝑗 = 1.

This is such that firm 𝑗 ∈ 𝒩 𝑖𝑛
𝑖 if and only if 𝑔𝑗𝑖 > 0 and firm 𝑗 ∈ 𝒩 𝑜𝑢𝑡

𝑖 if and only

if 𝑔𝑖𝑗 > 0. Receiving as well as paying firms form a directed graph which we denote

as 𝐺(𝒩 , 𝑔) so that 𝒩 stands for the nodes(firms) while 𝑔 represents obligations

between 2 firms. The financial network graph 𝐺(𝒩 , 𝑔) is then captured using the

relative liability/obligation matrix given as 𝐺 = [𝑔𝑖𝑗] ∈ R𝑛×𝑛
+ whose elements contain

relative obligations for each firm in the network. We allow the possibility for bilateral

obligations such that liabilities cannot be netted off each other.

Furthermore, we hold that each firm 𝑖 ∈ 𝒩 , has an initial endowment which we

denote as 𝑦𝑖 at 𝑡 = 0 as well. The intuition as well as justification for this parameter

could be the concept of a Reserve Requirement in banking systems. The quality of

such endowment is that they are reserved solely for the purpose of meeting up with

obligations. They cannot be used for any other purpose. Let 𝜋𝑖 denote the parameter

firm 𝑖 pays given his obligation. This amount in turn is derived from the standard

6A firm 𝑖 is a debtor if and only if 𝒩 𝑜𝑢𝑡
𝑖 ̸= {} as in a creditor only when 𝒩 𝑖𝑛

𝑖 ̸= {}.
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1. Default and Punishments with Systemic Risk

Eisenberg and Noe (2001) clearing mechanism given as:

𝜋𝑖 = min

⎧⎨⎩ ∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑔𝑗𝑖𝜋𝑗 + 𝑦𝑖, 𝐿𝑖

⎫⎬⎭ , (1.1)

with 𝜋𝑗 denoting the payment of a given firm 𝑗 of which 𝑔𝑗𝑖 > 0 and hence, is directly

connected to firm 𝑖. So in line with the standard framework, firms do not pay more

than what they owe. The limited liability principle holds so that firms who are unable

to meet fully their obligations split their assets among all creditor firms on pro-rata

(In essence, in the case of a firm 𝑖, 𝑔𝑖𝑗𝜋𝑗 is given to each firm 𝑗 ∈ 𝒩 𝑜𝑢𝑡
𝑖 ). Let 𝜋0

𝑖 serve

as the amount firm 𝑖 pays given the parameters at 𝑡 = 0, and the expected default

estimable by the firm 𝑖 to be:

𝜗𝑖 = 𝐿𝑖 − 𝜋0
𝑖 .

Where 𝜋0
𝑖 = min

{︀∑︀
𝑗 𝑔𝑗𝑖𝜋

0
𝑗 + 𝑦𝑖, 𝐿𝑖

}︀
denotes the estimated payment at 𝑡 = 0.7

This model assumes that ∀ 𝑖 ∈ 𝒩 , 𝜋0
𝑖 is known with full certainty.8. In our model,

we assume that at 𝑡 = 0, 𝑦𝑖 captures the network endowment of firm 𝑖 and hence,

is not prone to any further shocks. Then given 𝜋0
𝑖 the following definition becomes

relevant,

Definition 1.2.1. Firm 𝑖 ∈ 𝒩 is a defaulter if 𝜗𝑖 > 0.

Then from the definition, let 𝒟 = {1, . . . , 𝑑} be a default set such that for any

𝑖 ∈ 𝒟, 𝜗𝑖 > 0, then we assume that punishment is applied to such firms using

the homogeneous functional form 𝜆𝑖(𝜗𝑖) which captures the rate of punishment from

default such that 𝜆𝑖(𝜗𝑖) is twice differentiable in 𝜗𝑖. As an integral part of our model,

we also have that 𝜆𝑖 = Λ for every 𝑖 ∈ 𝒟 such that punishment is applied in the

7The value 𝜋0
𝑖 is notably the same as the initial stress used in Paddrik, Rajan, and Young (2020).

8This is a subtle divergence from the structure of most contagion literature such as Elliott et
al. (2014), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Cabrales, Gottardi, and Vega-Redondo
(2014) or Blume, Easley, Kleinberg, Kleinberg, and Tardos (2011) for instance who all studied
networks where firms are susceptible to external shocks which could reduce their endowments (𝑦𝑖).
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1. Default and Punishments with Systemic Risk

same functional form and Λ intensity for each defaulting firm.

𝐿𝑖𝑘
𝑗

𝐿𝑗𝑖

𝑖

𝐿𝑖𝑗

𝐿𝑗𝑘

Figure 1-1: Network with 3 firms and 4 debt contracts (edges)

Given payments and possible defaults, it is not necessarily the case that based on

𝜋0, all firms are defaulters. To further streamline our analysis, we focus our attention

to the following situation;

Assumption 1.2.1. For every firm 𝑖 ∈ 𝒩 the following holds true

1. 𝒩 𝑜𝑢𝑡
𝑖 ̸= {},

2. 𝜋0
𝑖 < 𝐿𝑖 so that Firm 𝑖 is a defaulter.

This implies that all firms have some financial obligation to which they estimate

to fall short based on period the parameters at 𝑡 = 0. We use the sets 𝒩 and 𝒟

interchangeably going forward. We grant in period 𝑡 = 0 each firm 𝑖 ∈ 𝒟 the capacity

to store an amount denoted as 𝑥𝑖 to reduce default cost given their current position

(𝜋0). Examples of such storage could include bank savings, vault cash set aside for

payment, investment in collateral assets whose value are easily recoverable, etc.

These storage decisions of each firm in the network are common knowledge to

every other firm in our economy. Another characteristics of 𝑥 is its irreversiblity as

firms are unable to retract their decision on storage once made. It is then possible

to view 𝜋0
𝑖 as the output of fictitious default clearing mechanism at 𝑡 = 1 assuming

no further actions are taken by any firm in the network.

9



1. Default and Punishments with Systemic Risk

Payment system characterization

In this part we group the clearing payment for each firm 𝑖 in 𝑡 = 1 accounting for

defaults and storage decisions in 𝑡 = 0. Let 𝛿𝑖 be an indicator variable that takes

value

𝛿𝑖 =

⎧⎪⎨⎪⎩ 1 if firm 𝑖 is a defaulter, and

0 otherwise.

Also, let 𝜋𝑥
𝑖 be the payment of each firm 𝑖 ∈ 𝒟 in period 𝑡 = 1. Then, (1.1) can be

written as:

𝜋𝑥
𝑖 = 𝛿𝑖

⎛⎝𝑥𝑖 + 𝑦𝑖 +
∑︁

𝑗∈𝒩 𝑜𝑢𝑡
𝑖

𝑔𝑗𝑖𝜋
𝑥
𝑗

⎞⎠ + (1 − 𝛿𝑖)𝐿𝑖 ∀𝑖. (1.2)

The above equation then lets us group the inflow of a firm into those who can pay

in full given 𝑡 = 0 and those who cannot. The equality is guaranteed through limited

liability of the clearing payment 𝜋𝑖∈𝒩 . However, we know from assumption 1.2.1 that

for all firm 𝑖 for which 𝐿𝑖 > 0, then (1 − 𝛿𝑖) = 0. So consequently, we have the (1.2)

rewritten as below;

𝜋𝑥
𝑖 = 𝑥𝑖 + 𝑦𝑖 +

∑︁
𝑗∈𝒩 𝑜𝑢𝑡

𝑖

𝑔𝑗𝑖𝜋
𝑥
𝑗 ∀𝑖. (1.3)

Let I = {0, 1}𝑛×𝑛 as an identity matrix, x = (𝑥𝑖)𝑖∈𝒩 ∈ R𝑛
+ and y = (𝑦𝑖)𝑖∈𝒩 be

column vectors referring to total obligation, storage and initial-endowments of each

firm. Then we have the system in (1.3) given in vector form as follows;

𝜋𝑥 = x + y + 𝐺𝑇𝜋𝑥.

then collecting the like terms yields,

(I−𝐺𝑇 ) 𝜋𝑥 = x + y,

If the matrix (I − 𝐺𝑇 ) is invertible , then we have the clearing payment at period

10



1. Default and Punishments with Systemic Risk

𝑡 = 1 then given as;

𝜋𝑥 = (I−𝐺𝑇 )−1 ∙ (x + y) (1.4)

For simplicity, let w be a square matrix such that w = [𝑤𝑗𝑖] ∈ R𝑑×𝑑
+ := (I−𝐺𝑇 )−1

and 𝑤𝑖 = (𝑤𝑗𝑖)𝑗∈𝒩 ∈ R𝑑
+ be the 𝑖 − 𝑡ℎ row of the square matrix w. We can then

rewrite (1.4) as;

𝜋𝑥 = w ∙ (x + y),

so that for each firm 𝑖 ∈ 𝒟, we have

𝜋𝑥
𝑖 = 𝑤𝑖 ∙ (x + y). (1.5)

Corresponding to graph theory, 𝑤𝑗𝑖 is the sum of the number of backward walks of

any length from 𝑖 to 𝑗 where each firm within the walk is a defaulter. We also hold

the following assumption in relation to the graphical properties of the defaulting set

stated as follows;

Definition 1.2.2. A network graph 𝒢(𝒩 , 𝑔) is strongly connected if for ev-

ery pair of firms {0, 𝑛} ⊂ 𝒟, there exist a closed directed walk (the sequence

0, 𝑔01, 1, 𝑔12, . . . , 𝑔𝑛−1,𝑛, 𝑛, 𝑔0,𝑛, 0) from 0 to 0.

As such we describe the structure of the default network as follows;

Assumption 1.2.2. The default network 𝐺𝑇 is strongly connected.

The nature of clearing system whereby it meets the assumption 1.2.2 limits the

network to one exhibiting systemic risk such that defaults feedback to a less than 1

degree to source and thus a negative feedback mechanism is present. We focus on

this network with strongly connected property for this paper as we aim to access

a system where default feeds back to its primary source as is a unique property of

systemic risk through contagion. The fig. 1-1 for example shows that 𝒟 = {𝑖, 𝑗} fits

11



1. Default and Punishments with Systemic Risk

well into this description. To guarantee non-singluar matrix properties of 𝐺𝑇 , the

following lemma becomes important;

Lemma 1.2.1. Assume a default network 𝐺𝑇 which is strongly connected, in so far

as there exists 𝑖 /∈ 𝒩 such that
∑︀

𝑗∈𝒩 𝑜𝑢𝑡
𝑖
𝑔𝑖𝑗 = 0 and

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
𝑔𝑗𝑖 > 0 (a sink node),

then such default network is regular and as such w = (I − 𝐺𝑇 )−1 is definite, and

well defined with positive elements.

Proof. See Appendix for proof.

Regularity here follows Eisenberg and Noe (2001) which in context, sink nodes

guarantee that risk orbits are always a surplus set as it always has a non-zero equity.

Its impact is also similar to normality under Allouch (2015). In recalling some of the

key propositions of systemic risk in financial systems is the fact that firms face risk

not only from external activities it participates in, but also as a result of other firms

behaviors to which it is connected to and as such, we have chosen to focus on the

latter. Cascading default primarily comes from a source firm(s). These firms in the

network are said to have, among their total estimated default, a non-trivial portion

which coming exclusively from its outside activities rather than systemic.9 This is so

that while the Fictitious default sequence captures different waves of default among

firms in the network which is reflected in each iteration to arrive at the Clearing

Payment (𝜋0), that of the First-wave/First iteration reflects those who default from

non-systemic causes. In the light of that we can define the following term:

Definition 1.2.3 (Eisenberg and Noe (2001)). A firm 𝑖 is a First-wave defaulter

if 𝐿𝑖 −
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑔𝑗𝑖𝐿𝑗 − 𝑦𝑖 > 0.

Thus implying that within the estimates at 𝑡 = 0, firms who are first wave

defaulters fail to meet up their obligations even when they receive full payment from

9In this case, activities leading up to 𝑡 = 0.
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1. Default and Punishments with Systemic Risk

debtors. On the other hand, these firms originate the default that then cascades

through the system (thus instigating other iterations/waves). The first-wave default

could come from multiple sources. They include;

1. Internal Sources: Administrative deficiency, Mismanagement of funds, set-

tlement for litigation, other managerial diseconomies of scale, etc.

2. External Sources: Market shocks leading to stochasticity of returns, natural

disasters, theft, etc.

The underlying point is that first-wave defaults are product of systematic risk or

unsystematic risk a debtor firm faces. To complement assumption 1.2.1 for the sake

of this model, the following assumption becomes relevant:

Assumption 1.2.3. ∀ 𝑖 ∈ 𝒩 , firm 𝑖 is First-wave defaulter.

Magnitude of default amounts are allowed to vary as much among firms. What

is of importance with the assumption is that all firms with debt obligations are not

able to repay fully given they receive all they can from the network. This assump-

tion now guarantees strict non-negativity of 𝑥𝑖∈𝒟. These assumptions are crucial as

the first grantees default cyclicality but brings in mind questions as to normality.

The assumption 1.2.3 on the other hand ensures continuity of substitution which is

discussed in detail in the Appendix.

Additionally, an intuition behind 𝑤𝑖∈𝒟 as contained in (1.5) as the parameter

arises from the fact that when 𝐺𝑇 is strongly connected, then a firm 𝑖 ∈ 𝐷 has a

total default which includes 𝑤𝑖 times its first-wave default. Hence, default feedback

which Eisenberg and Noe (2001) describes as the instance where "a firm-A defaults

causing other firms to default, which then makes firm-A default even more". Other

literature captures such behaviors including Paddrik et al. (2020). This is within the

framework seen as an evidence of systemic crises.
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1. Default and Punishments with Systemic Risk

Payoff and Optimization Programme

Having described the payment and network structure, we then the punishment system

𝜆𝑖(𝜙𝑖) for each firm 𝑖 ∈ 𝒟 as the following payoff (cost) function:

𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖) =

Λ

2
(𝐿𝑖 − 𝜋𝑥

𝑖 )2 + 𝑥𝑖. (1.6)

The equation above then means that at 𝑡 = 1, the total size of punishment a firm

𝑖 ∈ 𝒟 bears is an increasing function of its default amount within the period. This

is split into to parts, the Benefit and Cost segments.

If we denote the Benefit firm 𝑖 gets from storing as 𝑏𝑖, then is 𝑏𝑖(𝑥𝑖) = −0.5Λ(𝐿𝑖−

𝜋𝑥
𝑖 )2. Therefore 𝑥𝑖 : 𝑥𝑖 → 𝑏𝑖 is so that 𝑏𝑖 is concave and continuously increasing in

𝑥𝑖. Our hypothesis here is that firms get more from storing while total default is

still significant.10 This relationship arises from the intuition that large amount of

defaults become even more pronounced and as such attract greater consequences

including fall in reputation of a firm due to bad publicity both from creditors and

potential investors. There could be even spillover to other aspects of the society which

would trace back to the defaulting firm. Other aspects such as bond renegotiation,

bankruptcy renegotiation as well as other access for future credit could greatly be

limited as a result of large amounts of defaults.

For the Cost part of 𝐶𝑖 is simply 𝑥𝑖 such that 𝑥𝑖 : 𝑥𝑖 → 𝑥𝑖 is linear as we assume

that storage at 𝑡 = 0 is spending forgone and as such, becomes a past cost the firm

bears. A defaulting firm 𝑖 makes his storage decision following the programme given

below:

min
𝑥𝑖,𝜋𝑥

𝑖

𝐶𝑖(𝑥𝑖, 𝜋
𝑥
𝑖 ) =

Λ

2
(𝐿𝑖 − 𝜋𝑥

𝑖 )2 + 𝑥𝑖, (1.7)

10Note that we refer to the total default as opposed to simply its first wave. Hence, the system
does not trace defaults of each firm from its origin (be it external or network based) but imposes
penalty on the full shortfall.
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subject to

𝜋𝑥
𝑖 = 𝑤𝑖 ∙ (x + y), (1.8)

We ignore the non-negativity of 𝑥𝑖 given that assumption 1.2.3 binds our optimization

which implies that 𝑥𝑖 
 0 for each firm 𝑖 ∈ 𝒟. The first order condition is then:

𝐶
′

𝑖(𝑥𝑖) = −𝑤𝑖𝑖Λ(𝐿𝑖 − 𝜋𝑥
𝑖 ) + 1 = 0. (1.9)

The left hand side of (1.9) is the marginal benefit of the action, and as such, captures

the reduction in default punishment resulting from a marginal increase in the action

𝑥𝑖.

It is possible to view the parameter 𝑤𝑖𝑖 from different perspectives, however at

this point, it is seen prominently as the value of additional payment a dollar action

yields a firm 𝑖 owing from the feedback loop that a default for the firm 𝑖 also takes.

For this reason, it then captures the marginal rate of transformation from the action

𝑥𝑖 into the repayment 𝜋𝑥
𝑖 . This should not be confused with the total payments

the system makes for a dollar action by firm 𝑖.11 Finally, from the marginal rate of

substitution from the action 𝑥𝑖 to the repayments 𝜋𝑥
𝑖 is then (Λ(𝐿𝑖 − 𝜋𝑥

𝑖 ))−1.

1.3 General Characterization of Equilibrium

In this part, we present the optimal storage of each defaulting firm which is the solu-

tion to the optimisation progamme in the previous section. We have the statement

below while keeping assumption 1.2.1 and assumption 1.2.3 in mind:

Proposition 1.3.1. Let 𝐴𝑖 = 1
𝑤𝑖𝑖Λ

(︁
𝐿𝑖 − 1

𝑤𝑖𝑖Λ
−
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑤𝑗𝑖𝑦𝑗

)︁
− 𝑦𝑖 and 𝐵𝑖𝑗 =

𝑤𝑖𝑗

𝑤𝑖𝑖

.

11Which would be the threat index as in Demange (2016).
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For each firm 𝑖 ∈ 𝒟, the following best replies hold;

𝑥𝑖 = 𝐴𝑖 − Λ−1 ·
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝐵𝑖𝑗𝑥𝑗, (1.10)

Proof. See Appendix for proof.

Remark 1.3.1. Nash decisions 𝑥𝑖∈𝒟 under 𝜆𝑖 = 1 ∀ 𝑖 ∈ 𝒟 arises from a game of

strategic substitution captured in;

𝑑𝑥𝑖
𝑑𝑥𝑗

= −𝑤𝑖𝑗

𝑤𝑖𝑖

.

Our best reply function in (1.10) is linear which has a form that is noticeably

isomorphic to best replies found in general public goods in networks literature.12. In

interpretation, the firm 𝑖 reduces its effort given an increase in effort 𝑥𝑗 of any other

firm 𝑗 ∈ 𝒩 𝑖𝑛
𝑖 to which 𝑔𝑗𝑖 > 0. It is worth noting that the reason (1.10) does not hold

as 𝑥𝑖 = max
{︁
𝐴𝑖 − 1

Λ
·
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝐵𝑖𝑗𝑥𝑗, 0

}︁
is due to assumption 1.2.3 because the non-

negativity constraint always holds13. The shape of the best reply from (1.23) is linear

and the degree of change is −𝑤𝑖𝑗

𝑤𝑖𝑖

. This is because from (1.10), firm 𝑖 substitutes

every 1$ amount of 𝑥𝑗 relative to its liability proportion.

The value 1
𝑤𝑖𝑖Λ

is multiplied by the bracket components of 𝐴𝑖 to serves as a counter

to the effects of default feedback. This is as firm 𝑖 intends to find the actual saving

amount and default of firm 𝑖 in its full scale also results from feedback firm 𝑖’s initial

default, then its actual requirement need be discounted by the feedback parameter

𝑤𝑖𝑖.

12Notably Bramoullé et al. (2010) or Allouch (2015).
13It is always the case that 𝑥𝑖∈𝒟 = 0.
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1.3.1 Equilibrium for a defaulting Firm

With linear best replies as given in the previous equation, equilibrium decisions can

be estimated for defaulting Firms. Similarly, for the firm 𝑖 still holding our previous

assumptions, we have the following statement,

Proposition 1.3.2. Let Nash equilibrium storage vector be given as x* = (𝑥*𝑖 )𝑖∈𝒟 ∈

R𝑑
+. Also, let 𝐵 = [𝐵𝑖𝑗] ∈ R𝑑×𝑑 be a matrix while 𝐴 = (𝐴𝑖)𝑖∈𝒟 ∈ R𝑑

+ be a column

vector.14 There exists a unique (interior) Nash equilibrium given as;

x*(𝒟,Λ,y) =

(︂
I +

1

Λ
·𝐵

)︂−1

·𝐴. (1.11)

under the following necessary conditions:

1. assumption 1.2.3 holds,

2. 1
Λ

∈
]︁
0,
(︀
𝜇𝑚𝑖𝑛

(︀
𝐵+𝐵

2

)︀)︀−1
]︁

where 𝜇𝑚𝑖𝑛(𝐺) is the minimum eigenvalue of a

matrix 𝐺.

Proof. See Appendix for proof.

More specific to the network we consider, we elaborate on proposition 1.3.2 by

writing an initial lemma as stated below;

Lemma 1.3.1. Assume a network 𝐺𝑇 , which is a directed ring network then it holds

that for 𝒟 = {0, 1, . . . , 𝑑}

𝑤00 = 𝑤11 = . . . = 𝑤𝑑𝑑. (1.12)

Proof. See Appendix for proof.

As a special case of lemma 1.3.1, take for example a directed ring network where

𝒟 = {𝑖, 𝑗}, then 𝐵𝑖𝑗 =
(︁

𝑔𝑗𝑖
(1−𝑔𝑖𝑗𝑔𝑗𝑖)

/ 1
(1−𝑔𝑖𝑗𝑔𝑗𝑖)

)︁
= 𝑔𝑗𝑖. We however leave 𝐵𝑖𝑗 as it is

14Note that 𝑑 is the cardinality of the set 𝒟.
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because of its ability to capture the dynamic nature of 𝒟. As such we then have the

following corollary from proposition 1.3.2 as;

Corollary 1.3.1 (Directed Ring Networks). Assume a network 𝐺𝑇 , which is a di-

rected ring network then there exists a unique Nash equilibrium given as;

x*(𝒟,Λ,y) =

(︂
I +

1

Λ
·𝐺𝑇

)︂−1

·𝐴, (1.13)

in so far as 1
Λ
∈

]︂
0,
(︁
𝜇𝑚𝑖𝑛

(︁
𝐺+𝐺𝑇

2

)︁)︁−1
]︂
.

Proof. See Appendix for proof.

This is so that in general, if firms with obligation are forced to avoid default at

all cost and such information is available to all firms, each potential defaulter stores

the amount that equals its first wave default.

A quick glance at the equation takes us back to definition 1.2.3. It is seen then

that the firm 𝑖 pays an amount that includes its First wave default and its reduction

would be subject to the value of Λ as well as the magnitude of the work of lengths.

Given the Nash equilibrium vector x*(𝒟,Λ,y), we have the following equilibrium for

each firm 𝑖 ∈ 𝒟 as written in the result below;

Proposition 1.3.3. Nash equilibrium for a firm 𝑖 case satisfies the following equa-

tion,

𝑥*𝑖 = 𝐿𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝐿𝑗 − 𝑦𝑖 −
𝑤𝑖𝑖

Λ
+

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑔𝑗𝑖
𝑤𝑗𝑗

Λ
. (1.14)

Proof. See Appendix for proof.

Observing (1.14), the Nash action of each player 𝑖 can be decomposed in two

segments namely:
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1. The liability gap which for a firm 𝑖 ∈ 𝒟 we denote as 𝑙𝑖 such that;

𝑙𝑖 = 𝐿𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝐿𝑗 − 𝑦𝑖. (1.15)

2. The centrality gap we denote as 𝛾𝑖 such that we have:

𝛾𝑖 = 𝑤𝑖𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝑤𝑗𝑗, (1.16)

Which in vector form for 𝑄 = (𝛾𝑖)𝑖∈𝒟 ∈ R𝑑
+ is represented as;

𝑄 = (I−𝐺𝑇 ) · 𝑑𝑖𝑎𝑔(w) (1.17)

The liability gap is synonymous to the value of first-wave default value of the

Fictitious Default Algorithm (FDA) proposed by Eisenberg and Noe (2001). In

its interpretation, it represents the amount of default by a firm which arises from

circumstances outside the network (hence, not as a result of default contagion from

debtor firms within the network). The value 𝑙𝑖 of each firm 𝑖 ∈ 𝒟 is also a special

case of the stress of a firm found in Paddrik et al. (2020)15 with the contrast that

why we assume unlimited access to 𝑥𝑖(though at cost of repayment), the greater 𝑙𝑖

is, the greater the stress on the firm 𝑖 ∈ 𝒟 thus increasing its likelihood of default.

The centrality gap in a way reflects an additional benefit resulting from greater

strategic dependence. To understand, take for example that 𝐺𝑇 is a directed ring,

for a firm 𝑖, its centrality gap is as follows;

𝛾𝑖 = 𝑤𝑖𝑖

⎛⎝1 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖

⎞⎠ .

This means that the stronger the firms direct relative asset for any firm 𝑖 ∈ 𝒟 (

15That is the instance to which a firm 𝑖 receives all it is owed from its debtors in 𝒩 𝑖𝑛
𝑖 .
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given as
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑔𝑗𝑖), then the lower 𝛾𝑖 is.16 The firm 𝑖 ∈ 𝒟 can now store an amount

lower than its liability gap. Also the value 𝑤𝑖𝑖 is useful in a default network which is

strongly connected as it hints to spread of influence of a firm. From lemma 1.3.1 the

result on ring networks as as such because each firm has only one directed outgoing

link. However, in order forms of strongly connected networks, it could vary depending

on the spread of interlinks. This is because additional links creates additional loops.

The more the loop the firm 𝑖 ∈ 𝒟 is a member of, the greater its 𝑤𝑖𝑖. This is the

case even when
∑︀

𝑗∈𝒩 𝑜𝑢𝑡
𝑖
𝑔𝑖𝑗 is the same weight ∀ firm 𝑖 ∈ 𝒟. Adapting 𝑙𝑖 and 𝛾𝑖 into

(1.14) gives us the following Nash equation;

𝑥*𝑖 = 𝑙𝑖 −
1

Λ
𝛾𝑖. (1.18)

It is also worth noting from (1.18) that a sizeable Λ coupled up with 𝛾𝑖 for

each firm 𝑖 ∈ 𝒟 guarantees that the value 𝜆−1𝛾𝑖 remains relatively small in size

when compared to 𝑙𝑖. Additionally, the value 1 −
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑔𝑗𝑖 means that in so far

as
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑔𝑗𝑖 < 1, then the greater the amount of direct relative asset owed to the

firm 𝑖, then the greater it has to store close to but less than its first wave default.

Should the reverse hold however, the firm 𝑖 ∈ 𝒟 would then be required to store

above its first wave default. This in itself is due to the increased dependence leading

to the firm 𝑖 having to cover up for greater amount of lapse(defaults) by its defaulting

debtor firms.

16assuming strictly that
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖 < 1.
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1.3.2 Relation to Public Good Problems

Recall our best reply in (1.10) as 𝑥𝑖 = 𝐴𝑖 − Λ−1
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝐵𝑖𝑗𝑥𝑗. In the case where

assumption 1.2.3 was absent so that we had

𝑥𝑖 = max

⎧⎨⎩𝐴𝑖 −
1

Λ

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝐵𝑖𝑗𝑥𝑗, 0

⎫⎬⎭ , (1.19)

then it will be likened to public good problems in network found in Bramoullé et

al. (2010), (Bramoullé & Kranton, 2007) or Allouch (2015) etc which are specifi-

cally focused on private provision on public good and best replies revealing strategic

substitution. Such substitution is a quality found in agents behavior to a privately

provided public good. In this case, the item linked to the public good consumption

for a firm 𝑖 is its 𝜋𝑥
𝑖 . While the firm 𝑖 ∈ 𝒟 tries to ensure that 𝜋𝑥

𝑖 ≈ 𝐿𝑖 by storing 𝑥𝑖,

it then provides the resource 𝑥𝑖 to its set 𝒩 𝑜𝑢𝑡
𝑖 (hence, its direct creditors).

Also, it is common in public good problems for Nash equilibrium decision to

include inactive firms17. In our model, assumption 1.2.3 rules out such possibility.

However, since for sizeable values of Λ, we have the liability gap which dominates the

equilibrium storage, then it is the case for each firm that while they are all active,

they substitute/free-ride on the storage of their direct debtors as their total payment

𝜋𝑥
𝑖 is based on the sum of all decisions all firm 𝑗 ∈ 𝒩 𝑖𝑛

𝑖 .

1.3.3 Comparative Study

We draw comparisons with Allouch and Jalloul (2016) as it is relatively close in

concept. The set up was where firms face binary choices between defaulting (Ψ𝑖∈𝒟 =

0) or not defaulting(Ψ𝑖∈𝒟 = 1) in 𝑡 = 1. The key parameters included 𝑇 (a𝒩 𝑖𝑛
𝑖

) which

defines the minimum amount required to avoid default, 𝑟 represents the returns in

17Defined as any firm 𝑖 ∈ 𝒟 whose Nash decision 𝑥𝑖 = 0.
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𝑡 = 1 for investing/storing the fixed endowment 𝑥𝑖 at 𝑡 = 0 while 𝑥̄𝑖 ≡ 𝑥𝑖 comes from

the utility of defaulting hence, satisfying the condition 𝑈𝑖(𝑥𝑖, 0) = 𝑈𝑖(0, 𝑥̄𝑖). Given

its best replies, its strategy is to not default when (1+𝑟)𝑥𝑖−𝑇 (a𝒩 𝑖𝑛
𝑖

) ≥ 𝑥̄𝑖, otherwise,

the firm defaults. Thus Ψ𝑖∈𝒟 = 1 also implied 𝑥𝑖 is stored with Ψ𝑖∈𝒟 = 0 implying

𝑥𝑖 is consumed at 𝑡 = 0.

While payoffs and functional forms of the best replies differ significantly in both

models,18 we draw attention to the threshold value 𝑇 (a𝒩 𝑖𝑛
𝑖

).

𝐴 𝐵 𝐶
𝐿𝐴 𝐿𝐵

Figure 1-2: Line liability network with 3 firms.

Observe then from fig. 1-2 above that given at firm 𝐴 and firm 𝐵 are defaulters at

𝑡− 0, a unique strictly dominant Nash equilibrium always exits in a default game as

in Allouch and Jalloul (2016). However, as such the threshold value for Firm 𝐴 given

as 𝑇𝐴(a𝒩 𝑖𝑛
𝑖

) = 𝐿𝐴 − 𝑦𝐴 which corresponds strictly to its first wave default/liability

gap as in our equilibrium. In general, for 𝑖 ∈ 𝒟, we have that

𝑇𝑖(a𝑗∈𝒩 𝑖𝑛
𝑖

) = 𝐿𝑖 − 𝑦𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗,𝑖(𝑦𝑗 +
∑︁

𝑘∈𝒩 𝑖𝑛
𝑗

𝑔𝑗,𝑘𝜋
𝑥
𝑗 ) −

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

Ψ𝑗𝑔𝑗,𝑖𝑥̄𝑗. (1.20)

Where Ψ𝑗 ∈ {0, 1} and as such is 0 if Firm 𝑗 Nash decision is to default and

1 otherwise. This threshold value in (1.20) thus reveals the possibility whereby it

corresponds to the first wave default even in a cyclical network. For example, if

𝑗 ∈ 𝒟 ∩ 𝒩 𝑖𝑛
𝑖 and Ψ𝑗 = 1, then 𝑇𝑖(Ψ𝒩 𝑖𝑛

𝑖
= 1) is equal to the first wave default for

Firm 𝑖. In a way, it can then be seen that results from our model point to solutions

similar to 𝑇𝑖(a𝒩 𝑖𝑛
𝑖

). However, an easily observable difference is that 𝑇𝑖(a𝒩 𝑖𝑛
𝑖

) is a

product of corner equilibrium choices of directly connected defaulting firms. Our
18Firms in Allouch and Jalloul (2016) are more likely to store if other firms connected to them

store.
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equilibrium 𝑥𝑖 is a product of a continuous mapping best reply function of other

connected firms storage which does not have to be a directly connected firm.

1.3.4 Efficiency and Equilibrium

Efficiency broadly can be split into individual as well as social efficiency. Given

that 𝑥*𝑖 = argmax
𝑥𝑖∈R+

𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖), then the Nash equilibrium of each firm corresponds

to the amount of storage 𝑥𝑖 that yields minimum cost the firm 𝑖 ∈ 𝒟, which is its

individually efficient storage. For efficiency of the system, we assume the planner who

sets Λ(𝜗𝑖) binding on each contracts does so to act as a deterrent towards default. We

also know that the centrality gap 𝛾𝑖∈𝒟 becomes closer to zero the greater Λ is. Hence,

since each firm 𝑖 has unlimited access to 𝑥𝑖 so that each are not cash constrained,

then payments
∑︀

𝑖∈𝒩 𝜋𝑥
𝑖 is maximised when Λ is such that 𝛾𝑖∈𝒟 ≈ 0.

1.4 Punishment and Non-interior equilibrium

So far, we have estimated the storage value 𝑥𝑖∈𝒟 through the mapping 𝑥𝑖 : 𝑥𝑖 →

𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖) is convex (cup-shaped) and compact in 𝑥𝑖. However, should the shape be

𝑥𝑖 : 𝑥𝑖 → 𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖) is concave, intuitions drawn might be valuable especially for

robustness purpose. We do not attempt to go quite in-depth on this. Observe the

interaction in its simplest form. Assume then that we have;

𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖) = Λ𝑙𝑜𝑔(𝐿𝑖 − 𝜋𝑥

𝑖 ) + 𝑥𝑖. (1.21)

Then assuming assumption 1.2.1 and assumption 1.2.3 still binds, we present some

little intuition summarised as follows;

Proposition 1.4.1. Given a punishment function 𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖) such that 𝑥𝑖 : 𝑥𝑖 →

𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖) is convex, if Λ is of significant magnitude, Nash equilibrium decisions ∀

23



1. Default and Punishments with Systemic Risk

𝑖 ∈ 𝒟 corresponds to the first wave default so that the following equation holds true

∀ 𝑖 ∈ 𝒟,

𝑥𝑖(𝒟,x) =

⎧⎪⎨⎪⎩
1
𝑤𝑖𝑖

(︀
𝐿𝑖 −

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

)︀
− 𝑦𝑖 if 𝐶𝑖(𝑥𝑖 > 0) ≤ 𝐶𝑖(𝑥𝑖 = 0)

0 otherwise
(1.22)

so far as ∀ 𝑖 ∈ 𝒟, 𝑥𝑖 ∈ ]0,R+].

Proof. See Appendix for proof.

In essence, what we show here simply put is that while local minimum exists

at two critical values of 𝑥𝑖(
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑥𝑗) ∀ 𝑖 ̸= 𝑗, then since the punishment Λ is

homogeneous, then a value of Λ that forces min𝑥𝑖
𝐶𝑖(𝜋

𝑥
𝑖 , 𝑥𝑖) : 𝑥𝑖 > 0 would also

force all other 𝑥𝑗 > 0 : 𝑗 ̸= 𝑖. This then means that depending on Λ magnitude,

it equilibrium would be binary: All default at 𝑡 = 1 or all contribute an amount

equivalent to its first wave default completely. A simple illustration of this problem

can be found as follows.

Example 1.4.1. Say we have the following;

𝐿𝑖 = 100

𝑤𝑖𝑖 = 2

Λ = 1∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗) = 30

then at 𝑥𝑖 = 0 Implies,

𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖) = 1.69
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and and at 𝑥𝑖 = 1
𝑤𝑖𝑖
. . . we have,

𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖) = 25

𝑥*𝑖 = 0 minimizes 𝐶𝑖(𝜋
𝑥
𝑖 , 𝑥𝑖).

This the implies that the Nash profile arises from a new binary best reply, partic-

ularly 𝑥𝑖 = {0, 𝜗𝑖(𝑥𝒩 𝑖𝑛
𝑖

)} thus taking a similar game structure once again to Allouch

and Jalloul (2016). Observe then that the Centrality Gap seizes to be a component

of the equilibrium as there is no longer a trade off of choices such that each defaulting

firm either does all or nothing.

1.5 Summary and Conclusions

So far we have introduced behavior of firms faced with ex-ante default and also cor-

responding penalties which is mapped by such defaults. Firms storing to avoid such

default strategically substitute to arrive at the best amount of storage. Hence, their

actions yields a public goods which can be substituted by their outgoing neighbours.

Overall, when there is a sizeable amount of punishment in such ex-ante default sys-

tem, we have seen that firms are best to store the amount corresponding to the

amount of the default specifically attributed to each firm caused by factors external

to the network. Lastly, we see that a firms position in a network can (especially when

the punishment intensity is low) lead to greater or lesser burden of storage on the

defaulting firm.

The model provides a basic framework into behaviors in well bounded default net-

works. Even at that, we distance ourselves from instances where potential kinks/dis-

continuity might arise. It would be useful to merge and investigate equilibrium under

a best response which defaults are cyclical but not all firms default at first wave. Also
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shy away from restricted endowments of firms and implicitly assume in our equilib-

rium that such endowments are fully liquid. These can potentially be improved up

thereby adopting methods from Amini et al. (2016) or Feinstein (2017) which can

lead to a more sequential (algorithmic) Nash equilibrium. Also our model assumes

homogeneous default rate applied to each firm. In reality, the size of Λ could depend

on other factors such as the size of the firm as well as its network position. We

believe that this idea provides a valuable extension to the model. Additionally, there

could be other means to ensure that firms avoid default such as prudential regulation

including reserve requirement which could be enforced by a regulator. Such instances

are weakly accounted for in our model as one might say it would be the basis for our

exogenous cash for each debtor firm. However, treating this policy as endogenous

could shed additional light to firms behavior especially banks.

To conclude, our results arises from an environment where a planner uses an

alternate approach monetary interventions or prudential regulations to achieve sim-

ilar goals. Here firms are the decision maker as opposed to regulation. Broadly, in

attempt to understand from various behaviors in response catalyst that could po-

tentially lead to or avoid a default crises, interactions between firms/nodes involved

under different settings provides valuable intuitions. Outcome of firms actions in

themselves could serve as valuable hints and predictors to not only the anticipated

cries but the individual firms roles in leading to or away from it.

26



1. Default and Punishments with Systemic Risk

1.6 Appendix

Existence properties and the impact of Assumption

1.2.3

Observing the best reply function at (1.10), we see that 𝑥𝑗 : 𝑥𝑗 → 𝑥𝑖 by a coefficient

defined by 𝐵𝑖 =
𝑤𝑖𝑗

𝑤𝑖𝑖
. Also the parameters 𝑤𝑖𝑗, 𝑤𝑖𝑖 are elements of the matrix w.

Assume then 𝒩 = {𝑖, 𝑗, 𝑘} where firm 𝑘 ∈ {𝒩 𝑜𝑢𝑡
𝑖 ∪ 𝒩 𝑜𝑢𝑡

𝑗 } such that firm 𝑘 is a sink

node. Then also assume 𝒟 = {𝑖, 𝑗}, we have the following typically already shown

in our proof of lemma 1.3.1;

w = (I−𝐺𝑇 )−1 =

⎛⎜⎝ 1
(1−𝑔𝑗𝑖𝑔𝑖𝑗)

𝑔𝑗𝑖
(1−𝑔𝑗𝑖𝑔𝑖𝑗)

𝑔𝑖𝑗
(1−𝑔𝑗𝑖𝑔𝑖𝑗)

1
(1−𝑔𝑗𝑖𝑔𝑖𝑗)

⎞⎟⎠
so that 𝑤𝑖𝑖 = 𝑤𝑗𝑗 = (1−𝑔𝑖𝑗𝑔𝑗𝑖)−1. Then also assume only 𝑖 is a first wave defaulter so

that 𝐿𝑗−𝑔𝑖𝑗𝐿𝑖−𝑦𝑗 ≥ 0 but 𝐿𝑗−𝑔𝑖𝑗𝜋0
𝑖 −𝑦𝑗 < 0. Then it means ∃ 𝑥𝑖 : 𝐿𝑗−𝑔𝑖𝑗𝜋0

𝑖 (𝑥𝑖)−

𝑦𝑗 = 0. In such a case, 𝛿 · 𝑔𝑗𝑖 = 0 and as such 𝑤𝑖𝑖 = 𝑤𝑗𝑗 = (1 − (𝑔𝑖𝑗 · 0))−1 = 1 or in

matrix, we have;

w = (I−𝐺𝑇 )−1 =

⎛⎜⎝ 1 0

𝑔𝑖𝑗 1

⎞⎟⎠ .

This causes a kink such that there exists a discontinuity within the best reply

function for 𝑖 ∈ 𝒩 and so is it for any firm in the initial default loop. To evade

this problem we then hold assumption 1.2.3 such that ∀ 𝑖 ∈ 𝒟, 𝐿𝑖 − 𝑔𝑗𝑖𝐿𝑗 − 𝑦𝑖 < 0.

This then means that assuming 𝑖, 𝑗 ∈ 𝒩 are in default, w as well as 𝑤𝑖𝑖 = 𝑤𝑗𝑗 =

(1 − 𝑔𝑖𝑗𝑔𝑗𝑖)
−1 are constant for all values, say 𝑖, 𝑗 ∈ 𝒟, 𝑥𝑖 → 𝐴𝑖 − 𝐵𝑗𝑖𝑥𝑗 is linear and

continuous and vice versa.
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Proofs

Proof of Lemma 1.2.1

Assume no sink node exits, then the values in each column of 𝑔′ sum to

∑︁
𝑖

[𝐺𝑇 ]𝑗𝑖 = 1 ∀𝑗

which is the same as the row sum of 𝑔. It the follows that when 𝛿 = 𝐽 such that all

assumption 1.2.1 holds,

(I−𝐺𝑇 ) is not invertible.

When (I−𝐺𝑇 ) is invertible, then the spectral radius 𝜌(𝐺𝑇 ) ∈ (−1, 1), and

(I−𝐺𝑇 )−1 = I + 𝐺𝑇 + (𝐺𝑇 )2 + (𝐺𝑇 )3 + ...

However, with the existence of sink node, invertiblity is guaranteed as as 𝐺𝑇 ̸= 1

because ∃ 𝑖 ∈ 𝒟 such that
∑︀

𝑗∈𝒟 𝑔𝑖𝑗 < 1. As such 𝐺𝑇 ̸= 1 such that 𝜌(𝐺𝑇 ) ∈ (−1, 1).

This property also is the regularity lemma in Eisenberg and Noe (2001) where the

clearing payment vector can simply be mapped to exogenous cash flow through the

inversion in essence y : y → 𝜋 is given as simply;

𝜋 = (I−𝐺𝑇 )−1 ∙ y,

when all paying firms are defaulting. �
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Proof of Proposition 1.3.1

Given the FOC in (1.9) we have,

𝑤𝑖𝑖Λ(𝐿𝑖 − 𝜋𝑥
𝑖 ) = 1

Then making 𝜋𝑥 the subject of the formula gives

𝜋𝑥
𝑖 = 𝐿𝑖 −

1

𝑤𝑖𝑖Λ

Then recall 𝜋𝑥
𝑖 = 𝑤𝑖𝑖(𝑥𝑖 + 𝑦𝑖) + 𝑤𝑗𝑖(𝑥𝑗 + 𝑦𝑗) so that we then have

𝑤𝑖𝑖(𝑥𝑖 + 𝑦𝑖) + 𝑤𝑗𝑖(𝑥𝑗 + 𝑦𝑗) = 𝐿𝑖 −
1

𝑤𝑖𝑖Λ

→ then to make 𝑥𝑖 the subject becomes

𝑤𝑖𝑖(𝑥𝑖 + 𝑦𝑖) = 𝐿𝑖 −
1

𝑤𝑖𝑖Λ
− 𝑤𝑗𝑖(𝑥𝑗 + 𝑦𝑗)

→

𝑥𝑖 = max

⎧⎨⎩ 1

𝑤𝑖𝑖Λ

⎛⎝𝐿𝑖 −
1

𝑤𝑖𝑖Λ
−

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖, 0

⎫⎬⎭ . (1.23)

and with assumption 1.2.3, we have,

𝑥𝑖 =
1

𝑤𝑖𝑖Λ

⎛⎝𝐿𝑖 −
1

𝑤𝑖𝑖Λ
−

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑤𝑗𝑖(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖

�

29



1. Default and Punishments with Systemic Risk

Proof of Proposition 1.3.2

Given each firm 𝑖 ∈ 𝒟 has the best reply function as,

𝑥𝑖 =
1

𝑤𝑖𝑖Λ

⎛⎝𝐿𝑖 −
1

𝑤𝑖𝑖Λ
−

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑤𝑗𝑖(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖,

let 𝐵 = [𝐵𝑖𝑗] such that 𝐵𝑖𝑗 =
𝑤𝑖𝑗

𝑤𝑖𝑖
then be the 𝑑× 𝑑 zero diagonal matrix whose ele-

ments for 𝑖, 𝑗 ∈ 𝒟. 𝐴 = (𝐴𝑖)𝑖∈𝒟 such that 𝐴𝑖 = 1
𝑤𝑖𝑖Λ

(︁
𝐿𝑖 − 1

𝑤𝑖𝑖Λ
−
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑤𝑗𝑖(𝑦𝑗)

)︁
−

𝑦𝑖. Then we have the vector form best reply given as;

x = 𝐴− Λ−1 ∙ 𝐵x. (1.24)

Existence of x is the guaranteed under Brouwer’s fixed point theorem as [0,𝐴] →

[0,𝐴] intersects with the monotonic mapping f : x → 𝐴−Λ−1 ·𝐵x. For uniqueness

however, it is guaranteed by positive definiteness of (I + Λ−1 ·𝐵) which because 𝐵

is directed, becomes that the scalar Λ as to be large enough such that the condition

1
Λ
∈

]︂
0,
(︁
𝜇𝑚𝑖𝑛

(︁
𝐵+𝐵𝑇

2

)︁)︁−1
]︂

is met. A more detailed explanation of this condition

can be found in works such as Rosen (1965). �

Proof of Lemma 1.3.1

Take the same example in 1-1 for simplicity. Since both Firm 𝑖 and Firm 𝑗 are

defaulters, then we have

𝐺𝑇 =

⎛⎜⎝ 0 𝑔𝑗𝑖

𝑔𝑖𝑗 0

⎞⎟⎠
then

w = (I−𝐺𝑇 )−1 =

⎛⎜⎝ 1
(1−𝑔𝑗𝑖𝑔𝑖𝑗)

𝑔𝑗𝑖
(1−𝑔𝑗𝑖𝑔𝑖𝑗)

𝑔𝑖𝑗
(1−𝑔𝑗𝑖𝑔𝑖𝑗)

1
(1−𝑔𝑗𝑖𝑔𝑖𝑗)

⎞⎟⎠
then notice from the diagonal that 𝑤𝑖𝑖 = 𝑤𝑗𝑗 = (1 − 𝑔𝑗𝑖𝑔𝑖𝑗)

−1. �
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Proof of Corollary 1.3.1

Since we have for example given 𝒟 = {𝑖, 𝑗} that 𝑤𝑖𝑖 = 𝑤𝑗𝑗 =
(︀⃒⃒
I + 1

Λ
·𝐺𝑇

⃒⃒)︀−1,

then for each firm 𝑖 and firm 𝑗 ∈ 𝒩 𝑖𝑛
𝑖 , 𝐵𝑖𝑗 =

𝑤𝑖𝑗

𝑤𝑖𝑖
= 𝑔𝑗𝑖 this means that the Nash

equilibrium vector holds as follows;

x* = (I +
1

Λ
𝐵)−1 · 𝐴 =

(︂
I +

1

Λ
·𝐺𝑇

)︂−1

·𝐴. (1.25)

This means that in so far
(︀
I + 1

Λ
·𝐺𝑇

)︀
is positive definite then x is uniquely

defined. This is guaranteed so far as 1
Λ
∈

]︂
0,
(︁
𝜇𝑚𝑖𝑛

(︁
𝐺+𝐺𝑇

2

)︁)︁−1
]︂
. �

Proof of Proposition 1.3.3

Without loss of generality, assume that 𝒟 = {𝑖, 𝑗} as in fig. 1-1. Then we have the

Nash equilibrium equations as;

𝑥𝑖 =
1

𝑤𝑖𝑖

(︂
𝐿𝑖 −

1

𝑤𝑖𝑖Λ
− 𝑤𝑗𝑖(𝑥𝑗 + 𝑦𝑗)

)︂
− 𝑦𝑖

as well as,

𝑥𝑗 =
1

𝑤𝑗𝑗

(︂
𝐿𝑗 −

1

𝑤𝑗𝑗Λ
− 𝑤𝑖𝑗(𝑥𝑖 + 𝑦𝑖)

)︂
− 𝑦𝑗

Then substituting in 𝑥𝑖 we have,

𝑥𝑖 =
1

𝑤𝑖𝑖

(︂
𝐿𝑖 −

1

𝑤𝑖𝑖Λ
− 𝑤𝑗𝑖

[︂
1

𝑤𝑗𝑗

(︂
𝐿𝑗 −

1

𝑤𝑗𝑗Λ
− 𝑤𝑖𝑗(𝑥𝑖 + 𝑦𝑖)

)︂
− 𝑦𝑗 + 𝑦𝑗

]︂)︂
− 𝑦𝑖

→

𝑥𝑖 =
𝐿𝑖

𝑤𝑖𝑖

− 1

𝑤2
𝑖𝑖Λ

− 𝑤𝑗𝑖

𝑤𝑖𝑖

[︂
𝐿𝑗

𝑤𝑗𝑗

− 1

𝑤2
𝑗𝑗Λ

− 𝑤𝑖𝑗

𝑤𝑗𝑗

(𝑥𝑖 + 𝑦𝑖)

]︂
− 𝑦𝑖
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so that,

𝑥𝑖 =

(︂
𝐿𝑖

𝑤𝑖𝑖

− 1

𝑤2
𝑖𝑖Λ

− 𝑤𝑗𝑖

𝑤𝑖𝑖

[︂
𝐿𝑗

𝑤𝑗𝑗

− 1

𝑤2
𝑗𝑗Λ

− 𝑤𝑖𝑗

𝑤𝑗𝑗

𝑦𝑖

]︂
− 𝑦𝑖

)︂(︂
𝑤𝑖𝑖𝑤𝑗𝑗

(𝑤𝑖𝑖𝑤𝑗𝑗 − 𝑤𝑖𝑗𝑤𝑗𝑖)

)︂

→

𝑥𝑖 =
𝑤𝑗𝑗𝐿𝑖 − 𝑤𝑗𝑖𝐿𝑗

(𝑤𝑖𝑖𝑤𝑗𝑗 − 𝑤𝑖𝑗𝑤𝑗𝑖)
− 𝑦𝑖 +

𝑤𝑗𝑖 − 𝑤𝑖𝑖

Λ(𝑤𝑖𝑖𝑤𝑗𝑗 − 𝑤𝑖𝑗𝑤𝑗𝑖)

and since we have,

𝑤𝑖𝑖 = 𝑤𝑗𝑗 = (1 − 𝑔𝑖𝑗𝑔𝑗𝑖)
−1

𝑤𝑗𝑖 = 𝑔𝑗𝑖𝑤𝑗𝑗, 𝑎𝑛𝑑,

𝑤𝑗𝑖 = 𝑔𝑖𝑗𝑤𝑖𝑖

Then we have:

𝑥*𝑖 = 𝐿𝑖 − 𝑔𝑗𝑖𝐿𝑗 − 𝑦𝑖 −
𝑤𝑖𝑖

Λ
+ 𝑔𝑗𝑖

𝑤𝑖𝑖

Λ
,

which assume 𝐺𝑇 is a directed ring network will then have the equation above written

as:

𝑥*𝑖 = 𝐿𝑖 − 𝑔𝑗𝑖𝐿𝑗 − 𝑦𝑖 −
𝑤𝑖𝑖

Λ
(1 − 𝑔𝑗𝑖).

So that in so far as Λ > 0 so that the last part of the equation does not become

undefined, then 𝑥𝑖 exists and is well defined. �

Proof of Proposition 1.4.1

Say we have the following payoff for a firm 𝑖 ∈ 𝒟 given as follows;

𝐶𝑖 = Λ log

⎛⎝𝐿𝑖 − 𝑤𝑖𝑖(𝑥𝑖 + 𝑦𝑖) −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗) + 1

⎞⎠ + 𝑥𝑖
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and we have the following boundary of 𝑥𝑖 as

𝑥𝑖 = 0 and,

𝑥𝑖 =
1

𝑤𝑖𝑖

⎛⎝𝐿𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖.

Then When 𝑥𝑖 = 0, we have

𝐶𝑖 = Λ log

⎛⎝𝐿𝑖 − 𝑤𝑖𝑖(𝑦𝑖) −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗) + 1

⎞⎠ .

For 𝑥𝑖 = 1
𝑤𝑖𝑖

(︁
𝐿𝑖 −

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

)︁
− 𝑦𝑖, we have the following below;

𝐶𝑖 = Λ log

⎛⎝𝐿𝑖 − 𝑤𝑖𝑖

⎡⎣ 1

𝑤𝑖𝑖

⎛⎝𝐿𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖 + 𝑦𝑖

⎤⎦−
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗) + 1

⎞⎠
+

1

𝑤𝑖𝑖

⎛⎝𝐿𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖

𝐶𝑖 = Λ log 1 +
1

𝑤𝑖𝑖

⎛⎝𝐿𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖.

Therefore we have that

𝐶 =
1

𝑤𝑖𝑖

⎛⎝𝐿𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖

If we assume that Λ and first wave default are substantially large such that

C(x > 0) ≤ C(x = 0) then we imply that;

∀𝑖, 𝑗 ∈ 𝒩 , 𝑥𝑖 =
1

𝑤𝑖𝑖

⎛⎝𝐿𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑤𝑖𝑗(𝑥𝑗 + 𝑦𝑗)

⎞⎠− 𝑦𝑖.
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WLOG, assume that {𝑖, 𝑗} ∈ 𝒟 and 𝐺 is a directed ring. The best replies for the

Firm 𝑖 becomes;

𝑥𝑖 =
1

𝑤𝑖𝑖

(︂
𝐿𝑖 − 𝑤𝑖𝑗

[︂
1

𝑤𝑗𝑗

(𝐿𝑗 − 𝑤𝑗𝑖(𝑥𝑖 + 𝑦𝑖)) − 𝑦𝑗 + 𝑦𝑗

]︂)︂
− 𝑦𝑖

which gives;

𝑥𝑖 =
1

𝑤𝑖𝑖

(︂
𝐿𝑖 − 𝑤𝑖𝑗

[︂
𝐿𝑗

𝑤𝑗𝑗

− 𝑤𝑖𝑗

𝑤𝑗𝑗

(𝑥𝑖 + 𝑦𝑖)

]︂)︂
− 𝑦𝑖

⇒ So that collecting the like terms gives;

𝑥*𝑖

(︂
𝑤𝑖𝑖𝑤𝑗𝑗 − 𝑤𝑗𝑖𝑤𝑖𝑗

𝑤𝑖𝑖𝑤𝑗𝑗

)︂
=

𝐿𝑖

𝑤𝑖𝑖

− 𝑤𝑖𝑗𝐿𝑗

𝑤𝑗𝑗

− 𝑦𝑖

(︂
𝑤𝑖𝑖𝑤𝑗𝑗 − 𝑤𝑗𝑖𝑤𝑖𝑗

𝑤𝑖𝑖𝑤𝑗𝑗

)︂
,

Which is the same as

𝑥*𝑖 =
𝑤𝑗𝑗𝐿𝑖 − 𝑤𝑖𝑗𝐿𝑗

𝑤𝑖𝑖𝑤𝑗𝑗 − 𝑤𝑖𝑗𝑤𝑗𝑖

− 𝑦𝑖.

Then recall that the following holds,

𝑤𝑖𝑖 = 𝑤𝑗𝑗 = (1 − 𝑔𝑖𝑗𝑔𝑗𝑖)

𝑤𝑖𝑗 = 𝑔𝑗𝑖𝑤𝑗𝑗 𝑎𝑛𝑑

𝑤𝑗𝑖 = 𝑔𝑖𝑗𝑤𝑖𝑖

Substituting into 𝑥*𝑖 above gives us;

𝑥*𝑖 =
(1 − 𝑔𝑖𝑗𝑔𝑗𝑖)

−1(𝐿𝑖 − 𝑔𝑗𝑖𝐿𝑗)

(1 − 𝑔𝑖𝑗𝑔𝑗𝑖)−2(1 − 𝑔𝑖𝑗𝑔𝑗𝑖)
− 𝑦𝑖
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and finally The Nash for Firm 𝑖 is ;

𝑥*𝑖 = 𝐿𝑖 − 𝑔𝑗𝑖𝐿𝑗 − 𝑦𝑖 (1.26)

Implying First wave default.
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Chapter 2

Frictions in Financial Networks

2.1 Introduction

Networks in itself involves set of nodes connected by some link. While theoretical

financial networks shows directed interlinks between nodes(which could be bilateral)

by frequently a relative liability/asset ratio, the reality is that nodes may represent

more unique and detailed property a mere asset/liability ratio may fail to reveal for

analytical purpose. This means that simple network diagrams do not highlight the

special properties of both the nodes involved or details on the links that bind two

of such interconnected nodes. It is noticeable that, in networks bounded by debt or

payment obligations, payments are assumed to be transferable between parties at no

cost. As such the clearing payment system are designed with such implicit assump-

tion. A core example is the fictitious default sequence proposed by Eisenberg and

Noe (2001). However, the reality is that payments in many cases may not happen

face to face or without the absence of barriers. Embedded within links between firms

could include as impediments to payments. These strain of payments thus spur the

need for an adequate intermediary to facilitate smoother transactions. Intermediaries

might include banks and other monetary institutions. Take an example of a payment
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system existing across different economies with different currencies, exchange rates

then comes into play. Even in cases where exchange rates are stable over period

to payment, there are always tendencies for additional charges to exist per transac-

tion when dealing with foreign currency operations. Impediments involving foreign

currency transaction might hint a policy to reduce pressure on existing countries

exchange. However in spite of such reason, what this means for the indebted firm

is that payments made would have to account for that additional variable payment

costs, hence, frictions to payments. Even in generic local transactions, there exists

bank charges where banks take a certain quota for a transaction as more or less, com-

mission for their services. In general, forms of transaction cost involved in movement

of cash could include; Bank Transfer Charges, Broker/agency fees, Foreign exchange

charges, Change in exchange rates in a network involving foreign exchange debts,

recovery cost, other forms of commissions.

We henceforth use transaction cost and frictions interchangeably for the sake of

this work. This work for this reason attempts to use the equilibrium properties with

the transaction cost to observe the reaction threat indexes to frictions in the system.

In a realistic sense, these forms of transaction cost could be caused by a host of

factors. Factors in this case is grouped into two listed as follows;

1. Market Induced Frictions: Also known as Over-the-counter frictions. These

forms refer to those introduced by the intermediaries who in turn raise the

amount of transaction cost to vary with the demand intensity of these transac-

tions. Other factors that potentially could be considered is the firms financial

health, potential systemic risk as well as other factors including long-term rep-

utation, market structure between intermediaries (competition vs collusion),

etc.

2. Regulatory Imposed Frictions: These are set of transaction cost directly
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imposed by a regulator which oversees the entire system. They are a product of

various amount of sources and in many case may be a form of market regulation

(a price ceiling on floor) between firms and their intermediaries.

For the lens of this essay, transaction cost is viewed as one which originates

from regulatory imposed sources, hence not a direct product of market interactions

between firms and intermediaries. The essay primarily captures a system where pay-

ments are made with certain cost proportional to the levels of payments and as such,

though assets are liquid, an amount is paid to get them to their creditors. We begin

with results on the clearing properties of the Eisenberg and Noe (2001) system as

well as characteristics of the fictitious default system with transaction cost . Because

Demange (2016) is primarily built upon Eisenberg and Noe (2001) equilibrium, we

begin by identifying clearing characteristics in a system with transaction cost, then

proceed into observing potential behaviors of threat indexes where these transaction

costs hold. We show that a unique clearing payment still exist with transaction cost

when similar criteria to those laid out in Eisenberg and Noe (2001) are met. We

then proceed to show that in ranking threat indexes, the total relative link to direct

creditors are the dominant part of a firms threat index compared to other firm. This

result is then summarized into stylized topology such as ring, star as well as nested

split graphs.

Related Literature

Financial frictions in most mainstream economic analysis has paid greater attention

to its effects on general equilibrium. Various examples of works linked to general

equilibrium would include Buss and Dumas (2013) who develops a general equilibrium

model where agents perform everyday trading activities with transaction costs and as

such, the roles in which transaction cost play in portfolio choices of investors, Hasman,

Samartín Sáenz, and van Bommel (2009) proposes an overlapping generations model
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where agents assume intermediaries help to reduce transaction cost. Some important

results they found is that transaction costs reduces cyclical effect in a system. This is

notably similar with our results on transaction costs on threat index. Also, Duncan

and Nolan (2018) summarizes groups of literature focused on financial frictions in

DSGE models and examines loopholes. However, since the advent of increased study

of systemic risk through financial networks which has in recent time gained increasing

attention, there becomes the interest in understanding the importance of frictions in

such partial equilibrium models. Eisenberg and Noe (2001) establishes a generic

model of systemic risk to which some agent(s) initiates defaults and such defaults

leads to other connected agent(s) defaulting. In extreme cases, these defaults even

feeds back to the origin which serves as an easy prototype of a systemic risk/crises.

In an extension of this work, models of frictions has been captured by authors such

as Amini, Filipović, and Minca (2016) as well as Feinstein (2017) where potential

defaulting agents incur liquidation cost on assets to meet up to such debts and the

role in which systemic risk has to play.

Clearing payment equilibrium has been adapted to capture policy decision in

works such as in Demange (2016) who uses these systemic properties to identify

injection points of firms by using a centrality measure known as the threat index. As

a ranking measure, e firms with higher threat index make the most valuable point

to inject cash in order to increase payment in a defaulting system. This index is

identical to the Bonacich Centrality measure for each firm in the default network.1

This is because firms with higher threat indexes are the ones who can potentially

reach the great number of other defaulting firms and with greater magnitude. Hence,

a measure of power and influence as in standard network centrality literature.2

1See Bonacich (1987).
2More precisely Bonacich as well as Eigenvector Centrality.
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2.2 Transaction Cost in Debt Clearing Systems.

Consider an economy with 𝒩 = {1, 2, ..., 𝑛} set of firms. Firm 𝑖’s endowment is 𝑧𝑖.

The endowment of firm 𝑖 denotes the cash flows arriving from outside the financial

system. For each firm 𝑖 ∈ 𝒩 , let the neighbourhood set be given as 𝒩𝑖 such that

𝒩𝑖 = {𝒩 𝑜𝑢𝑡
𝑖 ∪ 𝒩 𝑖𝑛

𝑖 } Also, let 𝐿𝑖𝑗 denote the liability that firm 𝑖 owes firm 𝑗 such

that 𝐿𝑖𝑗 ∈ ]0,R+] if and only if firm 𝑗 ∈ 𝒩 𝑜𝑢𝑡
𝑖 . Then, firm 𝑖’s total liabilities is 𝐿𝑖 =∑︀

𝑗∈𝒩 𝑜𝑢𝑡
𝑖
𝐿𝑖𝑗. Meanwhile

∑︀
𝒩 𝑖𝑛

𝑖
𝐿𝑗𝑖 is the total assets of firm 𝑖. Let 𝐺 = [𝑔𝑖𝑗] ∈ R𝑛×𝑛

+

denote the matrix of relative liabilities, with entries 𝑔𝑖𝑗 =
𝐿𝑖𝑗

𝐿𝑖
representing the ratio

of the liability firm 𝑖 owes to firm 𝑗 over the total amount of liabilities of firm 𝑖.

The network formed from 𝐺 is denoted as 𝐺(𝒩 , 𝑔). We also assume that edges (𝑔’s)

form at least on cycle such that other agents not in the cycle are sink nodes. Also,

we assume that 𝑧𝑖 is readily available and firms, even in default do not liquidate.

Standard with the model, all firms are also of equal status including sink nodes.

Let 𝜋 = (𝜋𝑖)𝑖∈𝒩 denote the clearing payment vector, uniquely3 defined as in

Eisenberg and Noe (2001) such that for each agent 𝑖 it holds that:

𝜋𝑖 = min

⎧⎨⎩𝑧𝑖 +
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝜋𝑗;𝐿𝑖

⎫⎬⎭ (2.1)

As a key modification to this model, suppose for every edge, there exist a market

friction or transaction cost 1 ≥ 𝛿 > 0 representing a particular percentage of total

payment made by an firm 𝑖 to 𝑗 which is deducted to cover this cost such that if

firm 𝑗 pays an amount we denote as 𝜋𝑜𝑢𝑡
𝑗 only (1 − 𝛿)𝑔𝑗𝑖𝜋

𝑜𝑢𝑡
𝑗 reaches agent 𝑖. Let us

denote this value as 𝜋𝑖𝑛
𝑗 such that we have,

𝜋𝑖𝑛
𝑗 = (1 − 𝛿)𝜋𝑜𝑢𝑡

𝑗 .

3Under mild assumptions.
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Also, this then implies that a firm 𝑖 needs to pay about 𝐿𝑖

1−𝛿
to fully meet up to its

obligation 𝐿𝑖 if it can. Adapting this into the clearing mechanism, it becomes:

𝜋𝑜𝑢𝑡
𝑖 = min

⎧⎨⎩𝑧𝑖 + (1 − 𝛿)
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝜋
𝑜𝑢𝑡
𝑗 ;

𝐿𝑖

1 − 𝛿

⎫⎬⎭ , (2.2)

if we denote 𝐿𝑖

1−𝛿
= L𝑖 , then we have the (2.2) rewritten as;

𝜋𝑜𝑢𝑡
𝑖 = min

⎧⎨⎩𝑧𝑖 + (1 − 𝛿)
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝜋
𝑜𝑢𝑡
𝑗 ;L𝑖

⎫⎬⎭ . (2.3)

A simple interpretation of 𝜋𝑖𝑛
𝑖 would be that a firm 𝑖 who does not default clears

at 𝜋𝑖𝑛
𝑖 = 𝐿𝑖. We then define a set 𝒟 = {1, 2, . . . , 𝑑} such that a firm 𝑖 ∈ 𝒟 if at

clearing, 𝜋𝑜𝑢𝑡
𝑖 < L𝑖. Also we define a set 𝒮 = {1, 2, . . . , 𝑠} such that a firm 𝑖 ∈ 𝒮

⇐⇒ firm 𝑖 ̸∈ 𝒟. Hence, we bring in the concept of surplus set to include atleast one

node who is safe and thus, in 𝒮. In essence, the Eisenberg and Noe (2001) concept

of the risk orbit applies so that for each firm 𝑖 such that 𝒩 𝑜𝑢𝑡
𝑖 ̸= {}, there exist a

firm 𝑗 which has the following properties;

1. 𝒩 𝑜𝑢𝑡
𝑗 = {} so that the firm 𝑗 ∈ 𝒮 is a sink node.

2. There exist a directed path 𝑖, 𝑔𝑖0, 0, 𝑔01, 1, . . . , 𝑛, 𝑔𝑛𝑗, 𝑗 from firm 𝑖 to the firm 𝑗.

This is such that firm 𝑗 has the potential to be paid less due to a default firm 𝑖.4

2.2.1 Clearing Payment with Homogeneous Frictions

The fixed point solution to (2.1) is ascertained through iteration which the fictitious

default sequence solves for the clearing system as proposed by Eisenberg and Noe

(2001). We adapt the proposed solution method to our model with 𝛿 ∈ ]0, 1[ so that

4This depends on the the payment of direct debtors to firm 𝑗. For example, a firm 𝑛 for which
𝑛 ∈ 𝒩 𝑖𝑛

𝑗 and the firm 𝑛 is also a within firm 𝑖’s risk orbit.
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Figure 2-1: A hypothetical line network of a 3-paying Firm with 10% transaction cost:
Arrows pointing downwards shows amount received by firms from debtors.

the clearing computation for the system that solves (2.3) for a given firm 𝑖. To show

this solution, we divide the computation into 2 phases stated as follows:

Phase 1: This simply solves for the value of 𝜋𝑜𝑢𝑡
𝑖 for each firm 𝑖 ∈ 𝒩 so that it

is simply given as;

𝜋𝑜𝑢𝑡
𝑖 = min

⎧⎨⎩𝑧𝑖 + (1 − 𝛿)
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝜋
𝑜𝑢𝑡
𝑗 ;L𝑖

⎫⎬⎭ .

Phase 2: This phase is not particularly part of the default sequence iteration.

This computes the value receivable by each firms creditors is shown in the equation

below;

𝜋𝑖𝑛
𝑖 = (1 − 𝛿)

(︀
𝑧𝑖 + (1 − 𝛿)

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑔𝑗𝑖𝜋
𝑜𝑢𝑡
𝑗

)︀
, ∀𝜋𝑜𝑢𝑡

𝑖 < L𝑖,

so that opening the bracket we have:

𝜋𝑖𝑛
𝑖 = (1 − 𝛿)𝑧𝑖 + (1 − 𝛿)2

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑔𝑗𝑖𝜋
𝑜𝑢𝑡
𝑗 , ∀𝜋𝑜𝑢𝑡

𝑖 < L𝑖,

and we further denote (1 − 𝛿)𝑧𝑖 = 𝜀𝑖 the value firm 𝑖’s creditors then receive would

be:

𝜋𝑖𝑛
𝑖 = 𝜀𝑖 + (1 − 𝛿)2

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑔𝑗𝑖𝜋
𝑜𝑢𝑡
𝑗 , ∀𝜋𝑜𝑢𝑡

𝑖 < L𝑖. (2.4)
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However for the firm 𝑖 such that 𝜋𝑜𝑢𝑡
𝑖 ≥ L𝑖, it implies the firm 𝑖 ∈ 𝒮 and as such,

𝜋𝑖𝑛
𝑖 = 𝐿𝑖. This then applies to all firms who are safe. Additionally let us have the

following definition;

Definition 2.2.1. ∀ 𝑖 ∈ 𝒩 , let equity be defined as the residual asset after settling

all obligations such that at clearing, equity is given as;

𝑒𝑞𝑖
def
= 𝑧𝑖 + (1 − 𝛿)

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑔𝑗𝑖𝜋
𝑜𝑢𝑡
𝑗 − L𝑖. (2.5)

The (2.4) reveals that inflows from debtors are net of transaction cost while

further transaction cost applies to payments to creditors as the movement of 𝑧𝑖 to

creditors is a one step movement from the firm 𝑖 while the payment of total receipts

to creditors yields a 2 step movement from each 𝑗 ∈ 𝒩 𝑖𝑛
𝑖 to another firm 𝑘 ∈ 𝒩 𝑜𝑢𝑡

𝑖 .

2.3 Clearing Payment Properties

Fundamental clearing characteristics of a system with transaction cost relies of the

following theorem which is hardly different from Eisenberg and Noe (2001) as follows;

Theorem 2.3.1. Given a financial system including sink nodes whose edges contain

transaction costs 𝛿, There exist a clearing payment vector which satisfies the following

conditions;

1. Limited Liability: 𝜋𝑜𝑢𝑡
𝑖 ≤ 𝑧𝑖 + (1 − 𝛿)

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
𝑔𝑗𝑖𝜋

𝑜𝑢𝑡
𝑗 as well as,

2. Absolute Priority: 𝜋𝑜𝑢𝑡
𝑖 = 𝑧𝑖 + (1 − 𝛿)

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
𝑔𝑗𝑖𝜋

𝑜𝑢𝑡
𝑗 .

This clearing payment vector is unique in so far ∀ 𝑖 ∈ 𝒩 , the risk orbit is surplus

set.

Proof. See Appendix for proof.
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The result above simply shows that the clearing payment each firm 𝑖 ∈ 𝒩 makes

to 𝒩 𝑜𝑢𝑡
𝑖 is one which satisfies the condition of paying at most what it owes or what

it has in pro-rata where the first option is not feasible. Regularity and existence

of a uniquely defined clearing payment for all firm 𝑖 ∈ 𝒩 is a rule with very rare

exceptions5.

Shifting our focus to the fictitious default sequence, we observe that with exis-

tence of frictions, several firms are worse off in terms of value as a result of charges

attributable to each higher level of payment they make. However, another intuition

from the clearing system is that successive defaults by a firm implies that such firm

avoids some value in transaction cost leakage. The reasoning is that those who are

unable to meet up to their full obligation pay less and hence suffer less charges in

total. This is a likely occurrence in networks with ring properties. From the def-

inition definition 2.2.1, let equity of the system be captured in the column vector

eq = (𝑒𝑞𝑖)𝑖∈𝒩 ∈ R𝑛
++. Also, let us have other column vectors as 𝜋𝑜𝑢𝑡 = (𝜋𝑜𝑢𝑡

𝑖 )𝑖∈𝒩

and z = (𝑧𝑖)𝑖∈𝒩 . Then we can rewrite (2.5) as

eq = z + (1 − 𝛿)𝐺𝑇𝜋𝑜𝑢𝑡 − 𝜋𝑜𝑢𝑡.

The total residual of the system is then
∑︀

𝑖/∈𝒮 𝑒𝑞𝑖 = 1𝑇eq. In the Eisenberg and Noe

(2001) model, this amount does not depend on payment 𝜋. However, with friction,

we introduce the following lemma;

Lemma 2.3.1. Let iterations of the clearing system(Waves of defaults) be denoted

as 𝐾 = {1, . . . , 𝜅−1, 𝜅} such that 𝜅 is the iteration that clears the system. Then with

transaction cost (𝛿 > 0), then
∑︀𝑛

𝑖=1 𝑒𝑞𝑖(1) < . . . <
∑︀𝑛

𝑖=1 𝑒𝑞𝑖(𝜅) such that 𝜅 : 𝜅 → eq

is a strictly increasing concave function.

Proof. See Appendix for proof.
5See Eisenberg and Noe (2001) for example of such exceptions.
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The changing values of equity across waves of defaults gives us a hint that initial

iterations of equity might not reveal signs of defaults feedback. Feedbacks occur

strictly in networks where obligations are cyclical. The following results summarize

this point;

Proposition 2.3.1 (Directed Ring Properties). Assume a network 𝐺(𝒩 , 𝑔) with a

subgraph 𝐺1(𝒩1, 𝑔) such that for every {0, 𝑛} ⊂ 𝒩1, there exists a closed walk given

as 0, 𝑔01, 1, . . . , 𝑛− 1, 𝑔𝑛−1,𝑛, 𝑛, 𝑔𝑛0, 0 between firm 0 and firm 𝑛. In so far as amount

of leakage avoided as result of default at clearing is greater than the absolute value of

the negative net equity of creditors at first wave, then defaults do not feedback.

Proof. See Appendix for proof.

The network 𝐺1(𝒩1, 𝑔) is as such strongly connected since a directed walk exists

between every 2 firms within the network. This gives the opportunity for default

feedback due to cyclical obligations and dependency. This happens when a firm, say

firm 𝑖’s initial default causes all firm in firm 𝑖’s risk orbit (directed path) to default

which makes firm 𝑖 default even further. A common case of this kind of network is the

directed ring network. The proposition 2.3.1 gives us the criteria for such feedback

to be avoided. Hence, where it fails to hold, we have a firm defaulting more due to

its initial default. We use the illustration below to show elaborate on this;

Example 2.3.1 (Illustration involving equity). Assuming we have a network as in

fig. 2-2 below;

𝑖

𝑗

𝑘 𝑙

20

10

30

10

Figure 2-2: An Example of a 4-Firm Network
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Other properties of the network are exogenous cash given as 𝑍 = (5, 0, 10, 0)𝑇

while the liability is given 𝐿 = (20, 30, 20, 0)𝑇 , we have the following tables assuming

𝛿 = 0 The clearing is solved in the table below;

Table 2.1: Clearing without friction

𝛿 = 0
Waves Firms Payment/Asset (𝜋) Equity(𝑒𝑞) Net Equity

1st Wave
i 15 -5

5j 20 -10
k 40 20

2nd
Wave

i 15 0
5j 15 -5

k 30 10

3rd
Wave

i 15 0
5j 15 0

k 25 5

assuming 𝛿 = 5%, due to the friction, the liability becomes;

𝐿

0.95
= (21.05, 31.58, 21.05, 0)𝑇

So that the payment system is then solved in the table below;

Table 2.2: Clearing with friction

𝛿 = 0.05
Waves Firms Payment/Asset (𝜋) Equity(𝑒𝑞) Net Equity

1st Wave
i 15 -6.05

1.32j 20 -11.58
k 40 18.95

2nd
Wave

i 15 0
2.2j 14.25 -5.75

k 29 7.95

3rd
Wave

i 15 0
2.48j 14.25 0

k 23.53 2.48
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From the table 2.2, $2.48−$1.32 = $1.16 is the equity gain from 1st wave through

to the 3rd wave. This value is exactly the same as the amount of transaction cost

Firms 𝑖 and 𝑗 did not pay as a result of default. In essence $0.05($21.05 + $31.58)−

$0.05($15+$14.25) = $2.63−$1.4625 = $1.16. The fact that the net equity (excluding

firm 𝑙 who is a sink node. Sink nodes are hence, always excluded) rises as more default

increases satisfies our lemma 2.3.1.

Assuming no friction, if net equity was say −$5 from the first wave, this means

that it maintains the value such that the system falls short of the amount thus

leading to default feedback. However, if from table 2.2 the net equity at 1st wave

was −$1,then it means that with gains of $1.16 through the 3rd wave,6 it leaves net

equity at 3rd wave as $0.16 which is positive for firm 𝑘 and implies the system clears.

For further properties, we proceed introduce the following terminology;

Definition 2.3.1. A given firm 𝑖 is called a Fragile firm ⇐⇒ for the firm 𝑖,

𝐿𝑖 −
(︁
𝑧𝑖 +

∑︀
𝑗∈𝒩 𝑖𝑛

𝑗
𝑔𝑗𝑖𝜋𝑗

)︁
= 𝑒𝑞𝑖(𝛿|𝛿 = 0) ≈ 0.

As such, firms are classified as fragile when they have a near or even zero value

after all their obligations are met. This definition is contextual as such threshold value

might vary depending on the nature of the system. Then as a means of understanding

the effect on such firm, we initiate the following proposition:

Proposition 2.3.2. Let the total default of a firm 𝑖 be 𝜗𝑖(𝛿) = L𝑖 − 𝜋𝑜𝑢𝑡
𝑖 Given

transaction cost, a firm 𝑖 who is a fragile firm would now have its total default amount

as follows;

𝜗𝑖 ≈

⎧⎪⎪⎨⎪⎪⎩
𝛿
(︁
𝑧𝑖 +

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
𝑔𝑗𝑖𝐿𝑗

)︁
, if 𝜋𝑖𝑛

𝑗 = 𝐿𝑗 ∀ 𝑗 ∈ 𝒩 𝑖𝑛
𝑖 ,

𝛿
(︁
𝑧𝑖 +

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
𝑔𝑗𝑖𝜋

𝑖𝑛
𝑗

)︁
+
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑔𝑗𝑖𝜗𝑗, if 𝜋𝑖𝑛

𝑗 < 𝐿𝑗.

(2.6)

Proof. No further proof required.
6Usually the wave equivalent to the total number of firms in the loop.
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Given the concept of a fragile firm, assume then that equity without friction is

zero hence 𝑒𝑞𝑖(𝛿 = 0) = 0. Then the statement above explains that a firm 𝑖 defaults

by the amount equal to 𝛿 times its total assets7 in unique instance where firm 𝑖 still

receives its payment from debtors (𝒩 𝑖𝑛
𝑖 ) in full. Otherwise, it defaults by the amount

equivalent to 𝛿 times its total asset as well as the total sum of default borne by the

firm 𝑖 from its 𝒩 𝑖𝑛
𝑖 .

2.4 Intervention Targeting with Market Frictions

We highlight the effect of transaction cost in decision making models. To do this let

𝑥 = (𝑥𝑖)𝑖∈𝒟 ∈ R𝑛
+ such that 𝑥𝑖 represents any exogenous cash amount added to the

endowment 𝑧𝑖 of the firm 𝑖 which could be possibly be an outside intervention. We

adopt the problem in Demange (2016). Assume a planner who has a value function

denoted as 𝑉 (𝑥) who estimates systemic defaults wishes to intervene in other to

reduce or eliminate total default. Here, 𝑉 (𝑥) is piece-wise linear and concave. Also

𝑉 (𝑥) is sub-modular such that for all firm 𝑖 ∈ 𝒟, 𝑥′
𝑖 ≥ 𝑥𝑖 and 𝑥′

−𝑖 ≥ 𝑥−𝑖 implies that

𝑉 (𝑥
′
𝑖, 𝑥

′
−𝑖) − 𝑉 (𝑥𝑖, 𝑥

′
−𝑖) ≤ 𝑉 (𝑥

′
𝑖, 𝑥−𝑖) − 𝑉 (𝑥𝑖, 𝑥−𝑖).

Assuming no fragile defaulting firm 𝑖, 𝑉 ′(𝑥𝑖) = 𝜇𝑖 where 𝜇𝑖 is the threat index

for the firm 𝑖 ∈ 𝒟 given as;

𝜇𝑖 = 1 +
∑︁

𝑗∈{𝒟∩𝒩 𝑜𝑢𝑡
𝑖 }

𝑔𝑖𝑗𝜇𝑗. (2.7)

When we then include frictions to the model, we then have(2.7) rewritten as;

𝜇𝑖 = 1 + (1 − 𝛿)
∑︁

𝑗∈{𝒟∩𝒩 𝑜𝑢𝑡
𝑖 }

𝑔𝑖𝑗𝜇𝑗. (2.8)

Let us then have 𝜇 = (𝜇𝑖)𝑖∈𝒟 ∈ R𝑑
+ as the vector of threat indexes of each firm. The

7Same as 𝑑𝑒𝑙𝑡𝑎 times firm 𝑖’s total liability
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equation above in vector form is written as follows;

𝜇(𝒟,𝐺, 𝛿) = (I− (1 − 𝛿) ·𝐺𝒟×𝒟)−1 · 1𝒟 (2.9)

Observe then that the equation above corresponds to the Bonacich Centrality of the

network derived from the relative liability matrix of defaulting firms 𝐺𝒟×𝒟. Hence,

the threat points to the defaulting firm whose $1 increase in asset(liquid cash) will

lead to the greatest total payment in the system. This implies a multiplier effect such

that in so far there exist a firm 𝑗 such that 𝑗 ∈ 𝒟 ∩ 𝒩 𝑜𝑢𝑡
𝑖 , then the overall system

payment from a $1 increase to 𝑧𝑖 would be greater than $1.

Also, there are parallels that can be drawn with the threat index and princi-

pal component of a matrix 𝐺 as proposed in Galeotti, Golub, and Goyal (2017).

Though we have the contrast of such properties being obtainable in symmetric (ad-

jacency) matrix, the intuitions are similar in that in games of strategic compliments

(for example, the (2.1)), the greater the principal component of a firm, the greater

its importance in intervention targeting. Similarly, the threat index here gives the

same interpretation. Moreover, the amplifying factor in Galeotti et al. (2017) is

synonymous to the discounted value (1 − 𝛿) in our model.

2.5 Endogenous Threat Index Rankings

We observe the impact of transaction costs to threat index rankings of firm in different

default network topology. Before we proceed, let us introduce the following definition;

Definition 2.5.1. A direct relative liability for any firm 𝑖 ∈ 𝒟 is the sum of

relative liability to all defaulting firms. If we denote the direct relative liability for
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any firm 𝑖 ∈ 𝒟 as 𝑔𝑖, then we have;

𝑔𝑖 =
∑︁

𝑗∈{𝒟∩𝒩 𝑜𝑢𝑡
𝑖 }

𝑔𝑖𝑗.

𝐴

𝐵

𝐶

0.45

0.7
5

0.
55

Figure 2-3: An Example of a 3-paying Firm Network which arrow shows relative liability

Keeping this in mind, we highlight some overall characteristics of the threat index

under transaction cost in the following lemma;

Lemma 2.5.1. In so far as there exists one or more sink-nodes such that 𝒟 ( 𝒩 ,

even with networks with cyclical properties (I− (1 − 𝛿) ·𝐺𝒟×𝒟) is always invertible.

To which we then have the theorem as follows;

Theorem 2.5.1. Given 𝜇(𝒟,𝐺, 𝛿) = (I− (1− 𝛿) ·𝐺𝒟×𝒟)−1 ·1𝒟, then as 𝛿 → 1 such

that 𝜇(𝒟,𝐺, 𝛿) → 1𝒟 , the direct relative liability 𝑔𝑖 of each firm 𝑖 ∈ 𝒟 dominates

the value 𝜇𝑖.

This result as such has significant implications especially as it pertains the ranking

of each firms threat index. We explore some of implications of our theorem above by

examining its implication in stylized network. Let 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿)) be the rank of

threat index ∀ elements of 𝒟 while 𝑔(𝒟,𝐺)) = (𝑔𝑖)𝑖∈𝒟 be the direct relative liability

vector so that 𝑅𝑎𝑛𝑘(𝑔(𝒟,𝐺))) is the rank of each firms direct relative liability in

ascending order. We highlight an important corollary built on the theorem 2.5.1

above as follows;
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Corollary 2.5.1. Assuming the threat index vector 𝜇(𝒟,𝐺, 𝛿) is proportional to the

the direct relative liability 𝑔(𝒟,𝐺), then assume 2 values of 𝛿, say 𝛿1 and 𝛿2 such

that 𝛿2 
 𝛿1. Then we have that 𝜇(𝒟,𝐺, 𝛿1) = 𝜇(𝒟,𝐺, 𝛿2).

Proof. Particularly intuitive as since for each firm 𝑖 ∈ 𝒟, 𝑔𝑖 dominates 𝜇𝑖(𝐺, 𝛿) the

greater the value of 𝛿.

This corollary then forms the most important intuition of our model as it means

that where the 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿)) is not proportional to 𝑅𝑎𝑛𝑘(𝑔(𝒟,𝐺)), then there

exists the probability that given 𝛿2 
 𝛿1, then 𝜇(𝒟,𝐺, 𝛿1) = 𝜇(𝒟,𝐺, 𝛿2) implying

that threat index rankings are then altered by the different size of transaction cost.

We discuss examples and conditions of this in stylised networks as follows;

2.5.1 Sample 1: Directed Ring Networks

𝐴

𝐵

𝐶

0.45

0.4
5

0.
45

(a) Perfect Cycle

𝐴

𝐵

𝐶

0.55

0.8
5

0.
45

(b) Stronger Cycle

𝐴

𝐵

𝐶

0.45

0.0
5

0.
55

(c) Weaker Cycle

Figure 2-4: Three forms of Directed Ring Networks.

Take an example from fig. 2-4a, we have 𝑔(𝒟,𝐺) = (0.45, 0.45, 0.45)𝑇
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which is proportional to the threat index 𝜇(𝒟,𝐺) = (1.82, 1.82, 1.82)𝑇 . Hence,

𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿)) remains constant for any 𝛿 ∈ ]0, 1[.

In the fig. 2-4b , 𝜇(𝒟,𝐺) = (2.28, 2.32, 2.93)𝑇 while 𝑔(𝒟,𝐺) = (0.55, 0.45, 0.85)𝑇 .

Since 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿 = 0)) ⇒ 𝐶 > 𝐵 > 𝐴 while 𝑅𝑎𝑛𝑘(𝑔(𝒟,𝐺)) ⇒ 𝐶 > 𝐴 > 𝐵,

then 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿)) is robust to 𝛿. To confirm, take for example 𝛿 = 0.5, then we

have 𝜇(𝒟,𝐺, 𝛿 = 0.5) = (1.37, 1.36, 1.58)𝑇 such that 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿 = 0)) ⇒ 𝐶 >

𝐴 > 𝐵 which then corresponds to 𝑅𝑎𝑛𝑘(𝑔(𝒟,𝐺)).

Lastly, for the fig. 2-4c , 𝜇(𝒟,𝐺) = (1.72, 1.60, 1.09)𝑇 while 𝑔(𝒟,𝐺)) =

(0.45, 0.55, 0.05)𝑇 . Since 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿 = 0)) ⇒ 𝐴 > 𝐵 > 𝐶 while

𝑅𝑎𝑛𝑘(𝑔(𝒟,𝐺)) ⇒ 𝐵 > 𝐴 > 𝐶, then 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿)) is robust to 𝛿. To con-

firm, take for example 𝛿 = 0.7, then we have 𝜇(𝒟,𝐺, 𝛿 = 0.7) = (1.16, 1.17, 1.02)𝑇

such that 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿 = 0)) ⇒ 𝐵 > 𝐴 > 𝐶 which also corresponds to

𝑅𝑎𝑛𝑘(𝑔(𝒟,𝐺)).

2.5.2 Sample 2: Non-Cyclical Defaults

Here, we refer back to our construct of the default network 𝐺(𝒟, 𝑔) with its cor-

responding matrix 𝐺𝑑×𝑑 pointing to the fact that for a firm 𝑖 ∈ 𝒟 and firm

𝑗 ∈ {𝒟′ ∩𝒩 𝑜𝑢𝑡
𝑖 } where 𝒟′ is the set of non-defaulting firms, 𝑔𝑖𝑗(𝐺𝑑×𝑑) = 0.

𝐴 𝐵

𝐸 𝐶

0.45

0.65

0.
75

0.55

(a) Ring network which firm
𝐸 /∈ 𝒟.

𝐴 𝐵 𝐶
0.45 0.55

(b) Default Network in line form

Figure 2-5: Shows a ring network with non-cyclical default being represented in Line form.
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Because links to and from a non-defaulting firm are excluded from 𝐺𝑑×𝑑, then

if original network 𝐺(𝒩 , 𝑔) is a ring network of debtor firms such that one or more

firm do not default, then the network of the default set 𝐺(𝒟, 𝑔) is a line network.

An example of this is reflected in fig. 2-5 where we see the representation between

𝐺(𝒩 , 𝑔) which is a ring as in fig. 2-5a and then the transformation to a line for

𝐺(𝒟, 𝑔) as in fig. 2-5a.

For the threat index for defaulting firms in fig. 2-5 , we have that 𝜇(𝒟,𝐺) =

(1.70, 1.55, 1)𝑇 while 𝑔(𝒟,𝐺)) = (0.45, 0.55, 0)𝑇 and it means 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿 =

0)) ⇒ 𝐴 > 𝐵 > 𝐶 while 𝑅𝑎𝑛𝑘(𝑔(𝒟,𝐺)) ⇒ 𝐵 > 𝐴 > 𝐶. Again, if we have

𝛿 = 0.9 for example, we then have 𝜇(𝒟,𝐺, 𝛿 = 0.6) = (1.219, 1.220, 1)𝑇 such that

𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿 = 0)) ⇒ 𝐵 > 𝐴 > 𝐶.

The combination of the ring and line default networks can improve our under-

standing of a special form of network known as Nested Split Graphs. Split graphs are

increasingly studied as they relate to understanding qualities relating to subgroup

behavior within network. As Belhaj, Bervoets, and Deroïan (2016) rightly points

out, the core-periphery network is a special case of a Nested split graph. Here, we

have 2 partition set namely the Core and the Periphery.
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Figure 2-6: Core-periphery default network.

For directed network properties, we identify core set of firms as those whom are

directly connected to other core firms while connected to one or more periphery.

Periphery firms on the other hand are only connected to their corresponding core

and as such are not connected to other periphery firms.

If we take an illustration from fig. 2-7 above, we observe that 𝜇6 = 𝜇9 = 1 and

remains constant irrespective of 𝛿. Subsequently, for the rest of the subgroup of

defaulting firms {6, 9}′ ( 𝒟, the criterion on the 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿 = 0)) and its pro-

portionality to 𝑅𝑎𝑛𝑘(𝑔(𝒟,𝐺)) determines the responsiveness of 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿))

to the size of 𝛿.

2.5.3 Endogenous Defaults and the Threat Index

Let 𝒟′
= 𝒮 ( 𝒩 represent the non-defaulting set of firms. Then we have the

following statement;
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Proposition 2.5.1. Assume network graph 𝐺(𝒩 , 𝑔, 𝛿) which strongly connected8. If

at 𝛿 = 0, we have that 𝒮 ̸= {}, ∃ 0 < 𝛿 ≤ 1 to which 𝒮(𝛿) = {} so that default

becomes cyclical.

This is because even otherwise safe systems become fragile in the face of high

transaction costs on payments as more resources are then required to meet up with

firms obligations.

Figure 2-7: Where a full loop of firms default due to transaction cost: Observe the sharp
rise in the threat index of Firm A and Firm B when Firm C joins in default due to an
increase in 𝛿.

This possibility is earlier introduced in section 3 where we examined the ability

for a fragile system to face systemic crises when frictions are introduced and as

such, exhibit feedback characteristics. Its implication then is that 𝒟 is responsive

in a discreet manner to the value of 𝛿. This in turn affects the value of the threat

index of each firm 𝑖 ∈ 𝒟 𝜇𝑖(𝒟,𝐺, 𝛿) as well as its rank 𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿)). An

example can be seen from fig. 2-5a whose threat index relationship to 𝛿 is given in

fig. 2-7. Observe then that at at 𝛿 = 0.5, firm 𝐸 now joins the default set and if
8Strongly connected graph here refers to a case where ∀ firms 0, 𝑛 ∈ 𝒩 , there exist a directed

path(cycle) 0, 𝑔01, 1, 𝑔12, . . . , 𝑔𝑛−1,𝑛, 𝑛, 𝑔0,𝑛, 0).
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your compare firm 𝐴, firm 𝐵 and firm 𝐶’s index as shown in the figure, firm 𝐶,

𝑅𝑎𝑛𝑘(𝜇(𝒟,𝐺, 𝛿 = 0.5)) ⇒ 𝐶 > 𝐵 > 𝐴. Also observable is the snap switch between

𝜇𝐴 and 𝜇𝐵 in terms of ranking. This is the implication of a change in the composition

of the default set.

2.6 Conclusions

The implication of our results align with the policy purpose of the threat index as in

Demange (2016). As such since a regulator who has limited intervention potential is

best to target the firm/bank with the greatest threat index, then the main implica-

tion of our result is that at varying level of homogeneous transaction cost, different

firms might meet such criteria whom otherwise would not. Though contagion tend

to grow weaker with frictions, increased risk of initial defaults as consequence of fric-

tions could alter significantly which firm becomes the most desirable for monetary

intervention. Overall, since cash policies are optimally targeted at banks/firms with

greater default impact, frictions could put an otherwise bank of lower importance to

a higher ranking position.

As is noticeable by now, our concept of frictions used so far assumes homogeneity

which is easily not the case in real life. Additional intuitions should be obtainable

from setting a system with heterogeneous transaction cost. Also, the model could

be extended to an inter-temporal setting where firms might anticipate frictions and

adopt prudential behaviours can be considered. Here, assuming such frictions remain

exogenous to the firm, it is concerned with such friction to the extent it might lead to

it defaulting to its creditors. This would have a lot to do with default punishment as

well as a dynamic model to capture forecast trends that might predict the introduc-

tion of frictions to the payment system. lastly, we do fail to capture transaction cost

as a product of market equilibrium decision between firms and financial intermedi-
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aries. We believe that further work on this aspect has the prospect of improving our

knowledge on firms interactions and decisions given such market induced transaction

cost.

2.7 Appendix

Proof of Theorem 2.3.1

With (2.2), we have 𝜋𝑜𝑢𝑡
𝑖 = min

{︁
𝑧𝑖 + (1 − 𝛿)

∑︀
𝑗 𝑔𝑗𝑖𝜋

𝑜𝑢𝑡
𝑗 ; 𝐿𝑖

1−𝛿

}︁
which still follows the

Knaster-Tarski fixed point theorem such that if we use ∧ to denote "the least be-

tween": the monotone mapping f : 𝜋𝑜𝑢𝑡 → (z + (1 − 𝛿)𝐺𝑇𝜋𝑜𝑢𝑡) ∧ L
1−𝛿

of a complete

lattice [0, L
1−𝛿

] → [0, L
1−𝛿

] consists of greater an least fixed points (𝜋𝑜𝑢𝑡, and 𝜋𝑜𝑢𝑡).

And since the set [0, L
1−𝛿

] has the property that it is both convex, compact and f is

a continuous mapping, the existence of fixed point still follows the classical Brouwer

fixed point theorem. Uniqueness of a clearing payment vector implies the greater

and least 𝜋𝑜𝑢𝑡 are equal to each other as such 𝜋𝑜𝑢𝑡+ = 𝜋𝑜𝑢𝑡−. This is the case all

firms affected by debtor firms are a surplus set (hence, atleast on of such firm has

a positive initial cash value, i.e, given a cyclical network 𝑛, 1′
𝑛z𝑛 >> 0. ). This is

always the case as long as a sink node exists because intuitively, it is a creditor firm

with no obligation and so fare as
∑︀

𝑖∈𝒩 𝑧𝑖 > 0, then the net value of the sink node is

greater than zero.

Since (1−𝛿) is infused into a uniquely clearing EN model, then we recall that the

EN clearing is likened to a game of strategic complimentarity as in Ballester, Calvó-

Armengol, and Zenou (2006) such that (I−𝐺𝑇 ) is positive definite such as to guaran-

tee uniquely defined payment vector without friction. Let 𝜆𝑚𝑎𝑥(𝐺𝑇 ) be the maximum

eigenvalue of 𝐺𝑇 . Then (I − 𝐺𝑇 ) being positive definite implies 𝜆𝑚𝑎𝑥(𝐺
𝑇+𝐺
2

) < 1.

(I− (1− 𝛿)𝐺𝑇 ) then depends on the condition that (1− 𝛿) ∈
]︂
0, 1

𝜆𝑚𝑎𝑥(
𝐺𝑇+𝐺

2
)

[︂
. Since

59



2. Frictions in Financial Networks

we then have (1 − 𝛿) ∈ ]0, 1[ and 𝜆𝑚𝑎𝑥(𝐺
𝑇+𝐺
2

) < 1 such that 1

𝜆𝑚𝑎𝑥(
𝐺𝑇+𝐺

2
)
> 1, then

clearing payment is always unique as transaction cost always satisfies such criteria.

�

Proof of Lemma 2.3.1

Recall the first iteration of the payments in the fictitious default sequence assumes

that ∀ firm 𝑖 ∈ 𝑛, 𝜋𝑜𝑢𝑡
𝑖 = L𝑖 and as such the total transaction cost absorbed based

on that assumption is 𝛿
∑︀𝑛

𝑖=1 L𝑖.

But then the reason for a higher iteration is because of the existence of firms who

default in the first wave. We group firms into default and no default categories by

using the operator given as:

𝜓𝑖(𝜅) =

⎧⎪⎨⎪⎩ 1 if firm 𝑖, up to the 𝜅𝑡ℎ − 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, is a defaulter , and

0 otherwise.

Then the total value of transaction cost for leaving the system based on the second

iteration( second default wave) would be given as:

𝛿
𝑛∑︁

𝑖=1

(1 − 𝜓𝑖(2))L𝑖(2) + 𝛿
𝑛∑︁

𝑖=1

𝜓𝑖(2)𝜋𝑜𝑢𝑡
𝑖 (2) < 𝛿

𝑛∑︁
𝑖=1

L𝑖. (2.10)

So that up until clearing, the adjusted level of transaction cost over all iterations

is captured in the expression written as:

𝛿

𝑛∑︁
𝑖=1

(1 − 𝜓𝑖(𝜅))L𝑖(𝜅) + 𝛿

𝑛∑︁
𝑖=1

𝜓𝑖(𝜅)𝜋𝑜𝑢𝑡
𝑖 (𝜅)

< 𝛿

𝑛∑︁
𝑖=1

(1 − 𝜓𝑖(𝜅− 1))L𝑖(𝜅− 1) + 𝛿

𝑛∑︁
𝑖=1

𝜓𝑖(𝜅− 1)𝜋𝑜𝑢𝑡
𝑖 (𝜅− 1) < . . .

< 𝛿

𝑛∑︁
𝑖=1

(1 − 𝜓𝑖(2))L𝑖(2) + 𝛿

𝑛∑︁
𝑖=1

𝜓𝑖(2)𝜋𝑜𝑢𝑡
𝑖 (2) < 𝛿

𝑛∑︁
𝑖=1

L𝑖.
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Proof of Proposition 2.3.1

From lemma 2.3.1 is that waves of default imply lesser overall payment (
∑︀𝑛

𝑖=1 𝜋
𝑜𝑢𝑡
𝑖 )

payment and as such, lower transaction cost.

As such Equity is strictly increasing with respect to 𝜋𝑜𝑢𝑡 and as such order pre-

serving/strictly monotone. The implication on a closed walk graph 𝐺1(𝒩1, 𝑔) is that

since
∑︀

𝑖∈𝑛 𝑒𝑞𝑖(𝑘 = 𝑛) −
∑︀

𝑖∈𝑛 𝑒𝑞𝑖(𝑘 = 0) = 𝛿(
∑︀

𝑖∈𝒟 L𝑖 −
∑︀

𝑖∈𝒟 𝜋
𝑜𝑢𝑡
𝑖 ), it then means

that
∑︀

𝑖∈𝑛 𝑒𝑞𝑖(𝑘 = 𝑛) = 𝛿(
∑︀

𝑖∈𝒟 L𝑖 −
∑︀

𝑖∈𝒟 𝜋
𝑜𝑢𝑡
𝑖 ) +

∑︀
𝑖∈𝑛 𝑒𝑞𝑖(𝑘 = 0). Recall also that

because 𝜋𝑜𝑢𝑡 satisfies the Eisenberg and Noe (2001) limited liability condition, then

it is the case that 𝛿(
∑︀

𝑖∈𝒟 L𝑖 −
∑︀

𝑖∈𝒟 𝜋
𝑜𝑢𝑡
𝑖 ) is strictly positive. This means then that∑︀

𝑖∈𝑛 𝑒𝑞𝑖(𝑘 = 𝑛) < 0 ⇐⇒ | − 𝑣𝑒
∑︀

𝑖∈𝑛 𝑒𝑞𝑖(𝑘 = 0)| > 𝛿(
∑︀

𝑖∈𝒟 L𝑖 −
∑︀

𝑖∈𝒟 𝜋
𝑜𝑢𝑡
𝑖 ). �

Proof of Lemma 2.5.1

Recall that networks contains sink nodes. This is such that if we have a default set

𝐷 given the entire network set 𝒩 , then it is the case that 𝒟 ≠ 𝒩 even when possible

loops default. Also, because there is atleast a sink node, then atleast a firm in the

𝑙𝑜𝑜𝑝(𝐷) defaults to a non-defaulting firm such that ∃𝑖 ∈ 𝒟 such that
∑︀

𝑗∈𝒟 𝑔𝑖𝑗 < 1.

This then implies that 𝐺𝒟×𝒟 · 1𝒟 << 1𝒟 and 𝐺
(𝑝)
𝒟×𝒟 · 1𝒟 << 1𝒟 where 𝑝 = 1, 2, . . ..

Additionally, the spectral radius 𝜌(𝐺𝒟×𝒟), 𝜌(𝐺2
𝒟×𝒟) . . . are all less than 1(See

Demange Appendix on proof). This is also the same as in 𝜌(𝐺𝑇
𝒟×𝒟) because atleast

the row(s) belonging to the value receivable are always less than 1. And since 𝛿 ∈

[0, 1], then (1 − 𝛿)𝐺𝑇
𝒟×𝒟 where 𝛿 > 0 can only reduce the value of the 𝑔’s and as

such, is just as invertible. �
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2. Frictions in Financial Networks

Proof of Theorem 2.5.1

So we have the parameter 𝜇(𝒟, 𝛿) = ((I− (1 − 𝛿) ·𝐺𝒟×𝒟)−1) · 1. Let us start by

assuming that 𝛿 = 0, then we have the following transformation;

𝜇(𝒟, 𝛿) =
(︀
(I−𝐺𝒟×𝒟)−1)︀ · 1 =

(︀
I + 𝐺𝒟×𝒟 + 𝐺2

𝒟×𝒟 + 𝐺3
𝒟×𝒟 + . . .

)︀
· 1. (2.11)

Recall that following theorem 2.5.1, (I − 𝐺𝒟×𝒟) is invertible for the following

reasons already given in the proof of theorem 2.5.1. Now since it is already proven

that the sum of rows in 𝐺𝒟×𝒟 is strictly < 1 , then we know through power series

that higher exponents of 𝐺𝒟×𝒟 imply lower values of each elements and as such,

lower row sums. This is so that if 𝛿 > 0 then we have,

𝜇(𝒟, 𝛿) =
(︀
I + (1 − 𝛿) ·𝐺𝒟×𝒟 + (1 − 𝛿)2 ·𝐺2

𝒟×𝒟 + (1 − 𝛿)3 ·𝐺3
𝒟×𝒟 + . . .

)︀
·1 (2.12)

And as 𝛿 is also strictly less than 1, then it means that the higher order parts die out

even faster such that as 𝛿 → 1, (1− 𝛿) ·𝐺𝒟×𝒟 dominates all other parts and as such

the rank of the threat index is purely based on 𝜇(𝒟, 𝛿) = (I + (1 − 𝛿) ·𝐺𝒟×𝒟) ·1. �

Proof of Proposition 2.5.1

Take a firm 𝑖 ∈ 𝒮 when 𝛿 = 0 with the clearing function given earlier as in (2.3)

as 𝜋𝑜𝑢𝑡
𝑖 = min

{︁
𝑧𝑖 + (1 − 𝛿)

∑︀
𝑗 𝑔𝑗𝑖𝜋

𝑜𝑢𝑡
𝑗 ;L𝑖

}︁
. Then as 𝛿 → 1, L𝑖 → +∞ and (1 −

𝛿)
∑︀

𝑗 𝑔𝑗𝑖𝜋
𝑜𝑢𝑡
𝑗 → 0 while 𝑧𝑖 remains constant. And as 𝑧𝑖 is clearly defined and less

than ∞, then ∞ − 𝑧𝑖 > 0 so that firm 𝑖 is no longer able to meet up its liability,

hence, 𝒮 ∪ 𝒟 = 𝒟 such that all debtor are now in the default set. �
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Chapter 3

Strategic Interactions in Financial

Networks

3.1 Introduction

Financial behaviours can be studied in several ways including interactions which are

a function of the link between parties(firms) involved. Links commonly modeled

are those which captures contractual obligation of one party which represents an

asset to the other party. Because a contract can only be created by the mutual

consent of the two potential firms involved, links project such attributes among a

host of properties. Also with these links comes exposure. Sometimes these exposure

could be advantageous to firms for example in a firms ability to external shocks and

promotion of stability (Elliott, Golub, & Jackson, 2014). However, where these links

are binding and difficult to sever, they could be a source of negative spillover to one

or more firms.

We explore endogenous interest(lending) rate determination in fixed lending/bor-

rowing network where firms account for administrative overheads associated with

levels of total lending and a percentage of borrowing. Inter-firm lending rate, as core
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3. Strategic Interactions in Financial Networks

of the contract clause, is the additional amount over a period of time to which a

lending firm charges a borrowing firm for such transaction. In this case, firms give

significant attention to cost arising from its debt management procedure. It is not

a novel observation that the vast amount of businesses engage in credit financing.

Many of such businesses have both creditors (suppliers, banks etc) as well as debtors

(customers,retailers, etc). In order to effectively keep track and ensure a smooth

settling process, administrative resources are then devoted towards different aspects

of such overall loans. One major assumption we make is to relate the total amount

of loans1 to total administrative cost. The intuition here remains that large amount

of loans implies large volume of transaction to which raises risk of significant amount

of loss to both the personnel2 involved and the business at large. Such delicate na-

ture then spurs the need for remuneration to match up to such risk, hence greater

expenses. Other types of market frictions could also add to this cost. This is so that

assuming a single clearing period, all liabilities are settled such that the lending firm

regains its cash and some premium.

As a main result, we show that the optimal lending rate a firm charges to its

debtors is on derived from a game of strategic substitution. such substitution be-

haviours are in line with major public goods in network literature such as Bramoullé,

Kranton, and D’amours (2014), Allouch (2015), etc. We then show that Nash equi-

librium exists and is uniquely defined in pure strategies given our network game. We

then discuss special equilibrium properties in networks such as the Core-periphery

network which are specifically well bounded. We find that core firms are closely de-

pendent on links from other core firms while giving less priority to periphery firms.

Periphery firms on the other hand substitute from rates charged by their core inter-

links.

Adopting a utilitarian welfare approach, we show welfare neutrality of firms,
1We discount those from creditors as we show later in the model.
2Accountant, Debt Administrator, Legal teams, etc.
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3. Strategic Interactions in Financial Networks

whose equilibrium lending rate is positive, to intermediation policies. Given such

neutrality, we hold that Pareto improvement of welfare can be achieved at zero cost

to Planner by leaking out little amount from the paying system (such that active

firms are fixed) and proportionally splitting it so as to subside for loan management

expenses. Lastly, we then show quality of firms least externality based centrality is

vital for targeting firms with subsidy policies.

Related Literature

Rates agreed upon by such parties become an asset in that they contribute potentially

to profit of firms from an inter-firm lending in a given trading period. Sometime

these rates are determined based on set regulatory benchmarks, for example in case

of banks premiums are added to the inter-banks offered rate (e.g Libor as shown

by Eisl, Jankowitsch, and Subrahmanyam (2017), Coulter, Shapiro, and Zimmerman

(2017), Duffie and Dworczak (2014), Abrantes-Metz, Kraten, Metz, and Seow (2012)

and Eaglesham (2013)). There might be other benchmark at typical firms level which

for example might be the risk-free interest rate used in CAPM analysis. We however

pay less attention to such parameter. Instead we focus on situations where by firms

primarily make decisions as to their lending rate. An existing work in this is found in

Aldasoro, Gatti, and Faia (2017) which models an endogenous interest premium in

a system in which firms given potential cascading defaults/systemic risk. Hence, the

additional premium is determined while accounting for estimated default probability.

Earlier discussion has made reference to strategic interactions and more sepcif-

ically, a substitution relationship. Strategic interdependence here can be traced to

network properties of our debtors and/or creditor firms as a form of financial net-

work. Most financial network literature such as Morris (2000), Morris and Shin

(2001), Allen and Babus (2008), Babus (2016), Bhattacharya, Gale, Barnett, and

Singleton (1985) have focused on systemic risk as well as other issues to do with risk
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3. Strategic Interactions in Financial Networks

contagion and financial network stability e.g Caballero and Simsek (2013), Cabrales,

Gottardi, and Vega-Redondo (2014), Nier, Yang, Yorulmazer, and Alentorn (2007),

Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Greenwood, Landier, and Thesmar

(2015)(on banks), Galeotti, Ghiglinoy, and Goyal (2016), König, Tessone, and Zenou

(2009), Bilkic, Gries, et al. (2014), Gollier, Koehl, and Rochet (1997), etc. Others

on network influence and power as in Demange (2016) as well as Aldasoro and An-

geloni (2015) while a host of literature pay attention to liquidation as well as network

financing such as Allouch and Jalloul (2016), Amini, Filipović, and Minca (2016),

Feinstein (2017), Rogers and Veraart (2013) and Elsinger, Lehar, and Summer (2006)

to mention but a few. However, it is noted that since systemic risk and stability is

the key focus of most of the works mentioned above, strategic interaction plays less

importance.

Additionally, little attempt have been given to link interactions in debt networks

to public good games which yields best replies revealing strategic substitution. How-

ever, those on contagion in the previous par graph rely on strategic complements.

Public good games with strategic substitution are found in in Allouch (2015) and

Allouch and King (2018a)(which shows equilibrium in a fully bounded action pro-

file). Also importantly is Bramoullé and Kranton (2007) and Bramoullé et al. (2014)

where by interaction mostly based on strategic substitution is identified. Such games

of public good provision and more specifically private public good provision can ma-

terialize in different ways in financial networks. That being said, the underlying

ideas has not been aimed at identifying such behaviors in financial network games.

A contrast of this work from seminal works including Bramoullé and Kranton (2007)

and Allouch (2015) is the close attention paid to interactions to undirected network

(with Bramoullé et al. (2014) providing initial intuitions as to weighted and direct

network). While there are observable differences, intuitions are very useful in ob-

serving such behaviors in financial networks which are uni-directional and weighted
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3. Strategic Interactions in Financial Networks

in nature.

Our results on neutrality is also in distinction to neutrality of income redistribu-

tion. For income redistribution, neutrality holds such that wealth transfer between

active agents in a public good game leads to no change in aggregate public good

provision and individual consumption. These forms of neutrality is discussed well in

Bergstrom, Blume, and Varian (1986), Wells (2004) as well as Allouch (2015) though

we point out that our intervention are not particularly redistributive in nature. lastly,

our targeting criterion has a lot of similarities to works like key player concepts in

works like Ballester, Calvó-Armengol, and Zenou (2006), Galeotti, Golub, and Goyal

(2020), Belhaj, Bervoets, and Deroïan (2016) as well as Belhaj and Deroïan (2019).

3.2 The Model

Assume a three period economy consisting of 𝒩̂ = {1, . . . , 𝑛} set of firms. We denote

the set of periods denoted as 𝒯 such that 𝒯 = {𝑡− 1, 𝑡, 𝑡+ 1}. For every firm 𝑖 ∈ 𝒩̂ ,

its neighborhood is denoted as 𝒩𝑖 and 𝒩𝑖 = {𝒩 𝑜𝑢𝑡
𝑖 ∪𝒩 𝑖𝑛

𝑖 } ⊂ 𝒩̂ where 𝒩 𝑜𝑢𝑡
𝑖 represents

firm 𝑖 ∈ 𝒩 ’s debtors and 𝒩 𝑖𝑛
𝑖 represents firm 𝑖 ∈ 𝒩 ’s creditors. Debtors are those

whom a firm lends to and creditors are who the firm loans from. The amount to be

borrowed by each firm 𝑖 ∈ 𝒩̂ is given as 𝑏𝑖 : 𝑏𝑖 > 0 ∀ 𝑖 ∈ 𝒩̂ . This interaction forms

a borrowing network 𝐺(𝒩̂ , 𝑔) with 𝑔 representing links between firms.

Each firm strictly lends to each other based on the network 𝐺(𝒩̂ , 𝑔) in 𝑡 and

as such 𝐺(𝒩̂ , 𝑔) indicate borrowing/lending contract in this model. The network

𝐺(𝒩̂ , 𝑔) is set at 𝑡 − 1 ∈ 𝒯 so that it is exogenous to period 𝑡 and 𝑡 + 1. At 𝑡 + 1

links are dissolved (cleared). Given that if firm 𝑗 ∈ 𝒩 𝑖𝑛
𝑖 , then 𝑔𝑗𝑖 > 0 while 𝑔𝑗𝑖 = 0

otherwise. Hence,
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑔𝑗𝑖 = 1 and

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
𝑔𝑗𝑖𝑏𝑖 = 𝑏𝑖. A firm while lending charges

an extra amount it sets at 𝑡 ∈ 𝒯 denoted as 𝑟𝑖. This rate 𝑟𝑖 remains fixed for the

rest of 𝒯 once set. Also, we assume that firms then incur additional cost to manage
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debtors and creditors accounts and repayment procedures which we capture under

loan management cost.

In the economy, a typical firm 𝑖’s lending is then given as;

𝑏−𝑖 =
∑︁

𝑗∈𝒩 𝑜𝑢𝑡
𝑖

𝑔𝑖𝑗𝑏𝑗, ∀ 𝑖 ∈ 𝒩̂ . (3.1)

A sample balance sheet at 𝑡+ 1 for any firm in 𝒩̂ is represented in the table below;

Table 3.1: Firms balance Sheet at 𝑡+ 1

Assets Amount Liability Amount

Debtors 𝑥𝑥𝑥𝑥 Creditors 𝑥𝑥𝑥𝑥

Profit 𝑥𝑥𝑥𝑥

So then assume a firm 𝑖 ∈ 𝒩̂ who is scheduled at 𝑡 to lend to as well as borrow

from other firms within the same system (Thus creating incoming and/or outgoing

links). Then profit for the firm 𝑖 ∈ 𝒩̂ intuitively drawn from its balance sheet marks

its payoff which we show subsequently.

𝑖 𝑗

𝑘𝑙

𝑏𝑖𝑗

𝑏
𝑗𝑘𝑏 𝑙

𝑖

𝑏𝑘𝑙

𝑏
𝑘𝑖

𝑏 𝑙𝑗

Figure 3-1: A Bounded Borrowing Network:
Arrows (edges) point to direction of borrowers and originate from lenders.

We observe that the firm 𝑖 ∈ 𝒩̂ is only concerned about his lenders and borrowers
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𝑖

𝑙 𝑘

𝑗

𝑔
𝑙𝑖 𝑏𝑖

𝑔𝑘𝑖
𝑏 𝑖

𝑔 𝑖𝑗
𝑏 𝑗

(a) firm 𝑖

𝑗

𝑖 𝑙

𝑘

𝑔
𝑖𝑗 𝑏𝑗

𝑔 𝑙𝑗
𝑏 𝑗

𝑔
𝑗𝑘 𝑏

𝑘

(b) Firm 𝑗

𝑘

𝑗

𝑖𝑙

𝑔
𝑗𝑘 𝑏

𝑘 𝑔
𝑘𝑖 𝑏𝑖

𝑔𝑘𝑙
𝑏 𝑙

(c) Firm 𝑘

𝑙

𝑘

𝑖 𝑗

𝑔𝑘𝑙
𝑏 𝑙

𝑔 𝑙𝑖
𝑏 𝑖

𝑔
𝑙𝑗 𝑏𝑗

(d) Firm 𝑙

Figure 3-2: Decomposed Network to capture pivotal links. We see that for decision making
purpose, it is direct incoming and outgoing link that are useful to firms decision. This is

as Loan management cost is spent mainly through managing a firms asset/liabilities.

as opposed to the entire network. Since we ignore default risk it then implies that

regardless of the nature of borrowing network, each firm 𝑖 can identify its position

given a star which carries its lenders and borrowers.

Take an example of a system 𝒩̂ = {𝑖, 𝑗, 𝑘, 𝑙} as in fig. 3-1. Observe also, the

break down in 𝑓𝑖𝑔. 3− 2. It shows that from any directed network of borrowing and

lending, for example the network in 𝑓𝑖𝑔. 3−1, relevant sub-networks can be derived.

Such sub-networks as in 𝑓𝑖𝑔. 3 − 2 captures each individual firm 𝑖 ∈ 𝒩̂ lending and

borrowing.

To translate this into a firm 𝑖 ∈ 𝒩̂ payoff, we additionally assume each firm

𝑖 ∈ 𝒩̂ has included in its cost, loan management/administrative expenses. This

loan management cost is split into 2 main parts. The first a homogeneous constant

𝜅 which measures the level of efficiency in managing overall debtors and creditors

accounts and recovery process. In itself, a higher 𝜅 implies lesser efficiency in loan
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management while a lesser 𝜅 implies greater efficiency. Such efficiency could arise

from specialization, technical know-how, technological progress and other factors that

imply positive economies of scale for the firm. The second part is the endogenous

loan size parameter which we denote as 𝜇𝑖 for the given firm 𝑖 ∈ 𝒩̂ . More formally,

we define 𝜇𝑖∈𝒩̂ as follows;

𝜇𝑖(𝑟𝑖, 𝑟−𝑖∈𝒩 𝑖𝑛
𝑖

) = 𝑏−𝑖 ∙ 𝑟𝑖 + 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑟𝑗 (𝑔𝑗𝑖𝑏𝑖) , (3.2)

where the parameter 𝑎 ∈ R+ captures the degree to which interest from debtors

increases administrative cost. Let r = (𝑟𝑖)𝑖∈𝒩 ∈ R𝑛
+ be the lending rate vector for

firms, we assume that the firm 𝑖 ∈ 𝒩̂ has the following variable loan management

cost;

𝜅 ∙ f (𝜇𝑖(𝑟𝑖)) (3.3)

such that we then have the following important assumption;

Assumption 3.2.1. ∀ firm 𝑖 ∈ 𝒩̂ , we hold that;

𝜕f (𝜇𝑖(𝑟𝑖))

𝜕𝑟𝑖
> 0,

𝜕2f (𝜇𝑖(𝑟𝑖))

𝜕𝑟2𝑖
> 0.

We assume the mapping 𝑟𝑖 : 𝑟𝑖 → f (𝜇𝑖) is convex due to the fact that we assume

that cost exponentially rises as total variable loan obligation to and from the firm

rises. The (3.3) captures the variable loan management cost which is weighed using

the parameter 𝜅 that would usually assume a very small value. Loan management

cost as defined here includes both the firm 𝑖’s debtors management as well as its

creditors the value ′𝑎′ discounts the total creditor portion.
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3.2.1 Payoffs and Strategic Substitution

We then hold that the firm 𝑖 ∈ 𝒩̂ , f (𝜇𝑖) = (𝜇𝑖)
2 which fits well into assumption 3.2.1.

Then the firm 𝑖 ∈ 𝒩̂ , has the following payoff function,

𝑃𝑖(𝑟𝑖|𝑟𝑗, . . .) = 𝑏−𝑖 ∙ 𝑟𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑟𝑗 (𝑔𝑗𝑖𝑏𝑖) − 𝜅(𝜇𝑖)
2. (3.4)

To elaborate, the payoff captures variable components of a firm 𝑖 ∈ 𝒩̂ since for

example, lends out a total of 𝑏−𝑖 and at 𝑡+ 1, gets back 𝑏−𝑖 ∙ (1 + 𝑟𝑖) from its debtors.

So what it gets at 𝑡+ 1 is 𝑏−𝑖 + 𝑏−𝑖𝑟𝑖. Additionally, it pays
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖

(1 + 𝑟𝑗) (𝑔𝑗𝑖𝑏𝑖) to

its creditors such that it is broken into
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖

(𝑔𝑗𝑖𝑏𝑖) +
∑︀

𝑗∈𝒩 𝑖𝑛
𝑖
𝑟𝑗 (𝑔𝑗𝑖𝑏𝑖). We thus

define the firm 𝑖 ∈ 𝒩̂ payoff as one that captures only the parts which are multiples

of the action profile r.

To optimize 𝑃𝑖, the Lagrange equation is given as;

max
𝑟𝑖≥0

𝑄𝑖(𝑟𝑖) = 𝑏−𝑖 ∙ 𝑟𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝑏𝑖 (𝑟𝑗) − 𝜅(𝜇𝑖)
2 − 𝜉𝑟𝑖 (3.5)

With the complementary slackness condition 𝜉𝑟𝑖 = 0 from the non-negativity con-

straint of 𝑟𝑖∈𝒩̂ . Then given 𝜉 = 0 satisfies the condition, the first order condition

equates the marginal benefit to marginal cost as shown below;

𝜕𝑄𝑖

𝜕𝑟𝑖
= 0 ⇒ 2𝑏−𝑖(𝜇𝑖) =

𝑏−𝑖

𝜅
.

We then make 𝑟𝑖 the subject of the formula using 𝜇𝑖 as in (3.2) so that we have

the firm 𝑖’s optimal lending rate as,

𝑟𝑖 =
1

2𝜅𝑏−𝑖

− 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝑏𝑖
𝑏−𝑖

𝑟𝑗. (3.6)
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Let us have 𝜋𝑖 = 1
2𝜅𝑏−𝑖

and 𝑔𝑗𝑖 =
𝑔𝑗𝑖𝑏𝑖
𝑏−𝑖

=
𝑏𝑗𝑖
𝑏−𝑖

∀ 𝑗 ∈ 𝒩 𝑖𝑛
𝑖 , we have;

𝑟𝑖 = 𝜋𝑖 − 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝑟𝑗. (3.7)

The linear reaction curve (best reply) for the firm 𝑖 when 𝑟𝑖∈𝒩̂ ∈ [0,R+] is given as;

𝑟𝑖 = max

⎧⎨⎩𝜋𝑖 − 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑔𝑗𝑖𝑟𝑗, 0

⎫⎬⎭ . (3.8)

The lending rate 𝜋𝑖 reflects the autarkic amount charged to each firm 𝑗 such that

𝑗 ∈ 𝒩 𝑖𝑛
𝑖 . firm 𝑖 is desires a greater 𝑟𝑖 if it expects to lend in greater deal compared

to its borrowing and thus submits its rate accordingly. However, the magnitude of

its rate charged depends on its best reply. 𝜋𝑖 additionally reveals the Engels curve

for the firm 𝑖. Also, strategic substitution properties is captured in 𝛿𝑟𝑖
𝛿𝑟𝑗

= −𝑎𝑔𝑗𝑖 for

𝑗 ∈ 𝒩 𝑖𝑛
𝑖 .

Let G = [𝑔𝑗𝑖] be a zero-diagonal matrix and the game arising from (3.8) be

denoted as Γ(G, r, 𝑎) . We make distinction between participating firms and those

who do not participate in Γ(G, r, 𝑎). This is because financial networks could posses

cyclical interconnection as we see in line works within Eisenberg and Noe (2001)

framework. Assume a subset 𝒮 ⊂ 𝒩̂ . We have the formal definition;

Definition 3.2.1. A firm 𝑖 ∈ 𝒩̂ is a sink-node ⇐⇒ 𝒩 𝑜𝑢𝑡
𝑖 = {}.

A Sink-node is a debtor to one or more firms but not a creditor to any other firm.

Let the set 𝒩 = {1, . . . , 𝑛} be so that 𝒮 ∪ 𝒩 ⊆ 𝒩̂ and ∀ firm 𝑖 ∈ 𝒩 , 𝒩 𝑜𝑢𝑡
𝑖 ̸= {}

and also 𝒩 𝑖𝑛
𝑖 ̸= {} . This distinction is important for example if we have a firm 𝑖

such that 𝒩 𝑜𝑢𝑡
𝑖 = {}, then 𝑔𝑗𝑖 = ∞ as 𝑏−𝑖 = 0. It means are unable to define firm 𝑖’s

best reply as it makes no decision. Furthermore, we could have also the firm 𝑖 such

that 𝒩 𝑖𝑛
𝑖 = {}. Let G𝑖 represent the 𝑖 − 𝑡ℎ row of the matrix G, we would have

G𝑖 = (0)𝑖∈𝒩 leading to a pure strategy Nash equilibrium 𝑟𝑖 = 𝜋𝑖. This is described as
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strategic dominance as its lending rate is made in isolation. To avoid these instances,

we introduce another important but common concept to directed networks as follows;

Definition 3.2.2. A directed graph 𝐺(𝒩 , 𝑔) is strongly connected (SC) if and

only if for every {0, 𝑛} ∈ 𝒩 , there exist a closed directed walk (the sequence

0, 𝑔01, 1, 𝑔12, . . . , 𝑔𝑛−1,𝑛, 𝑛, 𝑔0,𝑛, 0) from 0 to 0.

Then going further, we will rely on the assumption written below;

Assumption 3.2.2. The graph 𝐺(𝒩 , 𝑔) is strongly connected so that the set ∀ firm

𝑖 ∈ 𝒩 , firm 𝑖 is a strongly connected firm(SCF).

This as such ensures that we avoid dominant equilibrium outcomes or undefined

best replies given sink nodes (for any firm 𝑖 ∈ 𝒮, 𝑏−𝑖 = 0 such that 𝑟𝑖 = ∞).

3.3 Pure Strategy Solutions

We define in this section the shape and characteristics of equilibrium under such

game Γ(G, r, 𝑎).

3.3.1 Uniqueness and Stability

We present the existence of the equilibrium and conditions for uniqueness. To support

our next few results, we define a key attribute which is positive definiteness a directed

network as follows;

Definition 3.3.1. Let M be a matrix and 𝜈1(𝑀), . . . , 𝜈𝑛(𝑀) be the eigenvalues of

the matrix (M). Then 𝑀 is positive definite if and only if it holds that;

𝜈1

(︂
M + M𝑇

2

)︂
, . . . , 𝜈𝑛

(︂
M + M𝑇

2

)︂
> 0. (3.9)
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This definition is useful given the vast amount of public good in network literature

emphasises symmetric matrix. Let the minimum eigenvalue of a matrix M be denoted

as 𝜈𝑚𝑖𝑛(M), we have the following lemma;

Lemma 3.3.1. The matrix (I + 𝑎G) is positive definite in so far 𝑎 ∈]︂
0, 1⃒⃒⃒

𝜈𝑚𝑖𝑛(
G+G𝑇

2
)
⃒⃒⃒[︂.

Proof. See Appendix for proof.

We summarize the properties of the equilibrium under Γ(G, r, 𝑎) with the follow-

ing proposition;

Proposition 3.3.1. Given the parameter ′𝑎′ meets the boundary conditions as in

lemma 3.3.1, there always exists a unique Nash equilibrium in pure strategies for the

game Γ(G, r, 𝑎) and the unique Nash equilibrium is always asymptotically stable.

Proof. From Rosen (1965) concept of diagonal strict concavity, we understand that

a sufficient condition for the payoff 𝑃 (r) to be diagonally strictly concave, then

H(r,1) + H(r,1)𝑇 must be negative definite where H(r,1) is the Jacobian with

respect to r of 𝑃 ′
(r). Since it hold that the Jacobian H(r,1) = −(I+𝑎G) , then the

condition is achieve should (I+ 𝑎G) be positive definite which lemma 3.3.1 satisfies.

It is then shown that Nash equilibrium is unique if and only if lemma 3.3.1 is satisfied.

This is so that each firm capture the amount charged by their creditors on bor-

rowings in order to determine the rate charged to debtors without consideration for

their own power.3

3The magnitude to which a firm 𝑖 ∈ 𝒩 rate charged 𝑟𝑖 affects all other firms outcome.
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3.3.2 Analysis of Equilibrium

We denote 𝜋 = (𝜋𝑖)𝑖∈𝒩 ∈ R𝑛
+ as the autarkic-rate column vector while r* = (𝑟*𝑖 )𝑖∈𝒩 ∈

R𝑛
+ is the Nash equilibrium vector. Following the best reply in (3.8), draw distinction

between active and inactive firms in the definition below.

Definition 3.3.2. A firm 𝑖 ∈ 𝒩 is thus defined as active if and only if 𝑟*𝑖 (𝒩 , 𝑎) ∈

]0,R+] and non-active if 𝑟*𝑖 (𝒩 , 𝑎) = 0 .

Let the set of active firms be denoted with the set 𝒜 ⊆ 𝒩 and hence non-active

firms be 𝒩 −𝒜 ( 𝒩 . Then using intuitions from Bergstrom et al. (1986), Bramoullé

et al. (2014) and more closely, Allouch (2015), we have the following;

Proposition 3.3.2. A set of rates vector r*(𝒜, 𝑎) with active firms 𝒜 ≠ {} is a

Nash equilibrium if and only if the following conditions hold true;

1.

(I + 𝑎G)𝒜×𝒜 ∙ r*𝒜 = 𝜋𝒜

2.

𝑎G𝒩−𝒜×𝒜 ∙ r*𝒜 ≥ 𝜋𝒩−𝒜

Proof. See Appendix for proof.

The proposition above translates to the fact that firms become non-active when

targets are achieved by simply charging a zero rate and thus, substitute for rates

charged of active firms in such a way that the outcome is the same or is greater

than the outcome from the non-active firms’ autarkic rate charged to debtors. It

also holds then that Nash equilibrium for the game has to include at least one active

firms such that 𝐴 cannot be a null set. We show a simple algorithm in the appendix
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which efficiently computes this equilibrium4. Furthermore, we draw the following

statement from the proposition 3.3.2 as follows;

Corollary 3.3.1. Assume that ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑏−𝑖 = 𝑏−𝑗 so that 𝜋 = 𝜋 ∙ 1𝒜. This means

that r*(𝒜,−𝑎) = 𝜋 ∙ 𝑏(𝒜,−𝑎) so that ∀ firm 𝑖 ∈ 𝒜;

𝑟*𝑖 (G,𝒜, 𝑎) = 𝜋 ∙ 𝛽𝑖(𝒜,−𝑎),

where 𝛽𝑖(𝒜,−𝑎) refers the Bonacich independence index5 or simply independence

index of an active firm 𝑖 implying 𝑏(𝒜,−𝑎) = (𝛽𝑖(𝒜,−𝑎))𝑖∈𝒜 ∈ R𝑛
+.

Proof. Because we have the following;

𝑏(𝒜,−𝑎)
def
= (I + 𝑎G)−1

𝒜×𝒜 ∙ 1𝒜. (3.10)

This implies that Nash equilibrium rate is of each firm is directly proportional to

their independence index. The independence index is so named because G = [𝑔𝑗𝑖]

accounts for the strength of incoming links. Also since in the series, (I−𝑎G)𝒜×𝒜 ∙1𝒜

dominates ((I − 𝑎G)𝒜×𝒜 ∙ 𝜋𝒜 dominates the Nash equilibrium r(𝒜,−𝑎)), then the

greater the strength of 𝑔𝑗𝑖 for each firm 𝑖, the lower its 𝛽𝑖(𝒜,−𝑎)]. This then hints

as to which firm 𝑖 charging less amount in lending rate. We explore some special

network properties in relation to this in the next section.

4A simple computational algorithm takes 2|𝒩 | − 1 iterations representing possible combination
of active firms. It is noteworthy that even if we relax assumption 3.2.2 so that 𝒩̂ = {𝒩 ,𝒮},
Equilibrium is simply obtainable by computing for 𝒩 . Hence, for each firm 𝑖 ∈ 𝒩 such that a firm
𝑗 ∈ 𝒮 ∩ 𝒩 𝑜𝑢𝑡

𝑖 , then 𝑏−𝑖 = 𝑏𝑖𝑗 + . . .
5So as not to confuse it with Bonacich Centrality which is 𝛽𝑖(G

𝑇 , 𝑎) for a firm 𝑖.
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3.3.3 Equilibrium and Inactive Firms

Our proposition 3.3.2 shows that Nash equilibrium could be such that 𝒩 −𝒜 ≠ {}.

A firm 𝑖 ∈ 𝒩 − 𝒜 thus has an 𝑟𝑖 = 0 as its equilibrium rate charged to its debtors.

We draw a swift distinction between inactive firms in our model and the concept of

free-riders found in major public goods in networks papers such as Bramoullé and

Kranton (2007), Bramoullé et al. (2014) as well as Allouch (2015). To understand

this is to understand the best replies given in (3.8) as an outcome of the payoff.

Observe that loan management is a main objective of the firm and as such, strategic

substitution arises in a bid to reduce such management cost. So while a firm who

borrows cannot influence (directly) the rate to which it is charged, it can charge a

corresponding rate to its debtors to balance and optimize loan management expenses.

For this reason, charging a zero rate to debtor thus arises from the fact the present

loan management cost is quite substantial that a positive rate would be even more

harmful to the firm.

The idea here is that an inactive firm 𝑖 ∈ 𝒩 − 𝒜 is not necessarily free-riding

the provision of other firms but on the other hand, is simply avoiding any further

cost as a result of its own decision since its creditors has increased such cost to the

maximum.

3.4 Core-Periphery Networks

We explore in a unique way, further properties of our equilibrium. More specifically

we aim to discuss and show unique network properties of active firms and what the

implication might be in terms of the equilibrium lending rate each firm charges.
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Figure 3-3: Core-periphery network bilateral links between periphery and core sets.

To do this, we examine a stylized case of a network which is shown in fig. 3-5

which contains a core-periphery network where each firm in the core-periphery lends

and borrows to others. Core-periphery network has been widely stylized within the

inter-bank network literature especially within the line of financial contagion and

systemic risk. Recent examples of such studies include Chiu, Eisenschmidt, and

Monnet (2020), Lux, Fricke, et al. (2012), Van Lelyveld et al. (2014) as well as Sui,

Tanna, and Zhou (2020). We describe a core-periphery network as one which has

2 groups of firms, the core firms whose set we denote as 𝐶𝑟 and the periphery set

which we denote as 𝑃𝑟. For a directed graph 𝐺(𝒩 , 𝑔) such that Ω = {𝐶𝑟, 𝑃𝑟} = 𝒩 .

Also, assume 𝒩 (Ω, r*) = 𝒜 such that all firms in the core-periphery network are

actively charging lending rates at equilibrium. The core-periphery network has the

following graph form;
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G(𝐶𝑟, 𝑃𝑟) =

⎡⎢⎣ 𝐶𝑟 × 𝐶𝑟 𝐶𝑟 × 𝑃𝑟

𝑃𝑟 × 𝐶𝑟 𝑃𝑟 × 𝑃𝑟

⎤⎥⎦ =

⎡⎢⎣ G(CC) G(CP)

G(PC) G(PP)

⎤⎥⎦ (3.11)

For a network to be deemed core-periphery, it means it can be grouped into the

block partition as shown above.

Assumption 3.4.1 (Block Matrix Properties). Given G(𝐶𝑟, 𝑃𝑟) which is strictly

unidirectional let Ω = {𝐶𝑟, 𝑃𝑟}. We have the following conditions;

1. |𝑃𝑟| = |𝐶𝑟|,

2. G(PP) = 0,

3. G(PC) = 𝜚 ∙ I,

4. G(CP) = 𝜃 ∙ I.

This indicates that we allow for bilateral relationships.6. We are able to compute

the Nash Equilibrium using the block-partition matrix as in (3.11) to compute each

firms Nash Equilibrium:

Proposition 3.4.1. Let 𝐺(Ω, 𝑔) be a directional graph whose topology is core-

periphery in nature. Also assume Ω = {𝐶𝑟, 𝑃𝑟}, 𝜋 = (𝜋𝐶𝑟,𝜋𝑃𝑟)
𝑇 and assump-

tion 3.4.1 holds. In so far as 𝑎 ∈
]︂
0, 1⃒⃒⃒

𝜈𝑚𝑖𝑛(
G+G𝑇

2
)
⃒⃒⃒[︂, we have the following Nash

Equilibrium;

r*𝐶𝑟(G,Ω, 𝑎) =

(︂
I +

𝑎

1 − 𝑎2𝜃𝜚
G(CC)

)︂−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟)

1 − 𝑎2𝜃𝜚
, (3.12)

6One could possibly argue that bilateral liabilities would not hold given that it can simply be
netted off. However, because each firm makes separate lending rate decision, bilateral links need be
exactly as they are as contractual properties might differ as we show for example in fig. 3-5 where
periphery and core have between them, such bilateral relationships.
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r*𝑃𝑟(G,Ω, 𝑎) = 𝜋𝑃𝑟 − 𝑎𝜚 ∙ r*𝐶𝑟(G,Ω, 𝑎). (3.13)

Proof. See Appendix for proof.

The (3.13) above then provides us with an initial intuition as we can see that for

any firm 𝑖 ∈ 𝐶𝑟 and a firm 𝑗 ∈ 𝑃𝑟|𝑗 ∈ {𝒩𝑖 ∩ 𝐶𝑟}, then it holds that;

𝑎𝑔𝑖𝑗 ∙ 𝑟*𝑖 (G,Ω, 𝑎) + 𝑟*𝑗 (G,Ω, 𝑎) = 𝜋𝑗, (3.14)

thus implying a direct strategic substitution relationship between Nash lending

rate decision of each core and its corresponding periphery. The greater the Nash rate

the core charges, the less its corresponding periphery lending rate is and vice versa.

Furthermore, (3.12) shows the core set Nash Equilibrium is then modified into

a measure which includes the value 𝑎
1−𝑎2𝜃𝜚

. This parameter takes the form of a

new attenuation parameter such that it replaces the initial attenuation parameter

𝑎. The new attenuation parameter is greater as 𝑎
1−𝑎2𝜃𝜚

> 𝑎 and since the Bonacich

expression in (3.12) takes the power series I− 𝑎
1−𝑎2𝜃𝜚

G(CC) +
(︁
− 𝑎

1−𝑎2𝜃𝜚
G(CC)

)︁2

+(︁
− 𝑎

1−𝑎2𝜃𝜚
G(CC)

)︁3

+. . ., it implies that greater substitution from distant neighbours.

However, this time, the weight of relationship between the core and periphery set

of firms now determines how much of such weight is accounted for in the Nash

equilibrium . To show, since we have that 1 − 𝑎2𝜃𝜚 ↓ if either 𝜃 or 𝜚 rises, then

it means that the link 𝑎
1−𝑎2𝜃𝜚

G(CC) is strengthened to such rise in 𝜃 and/or 𝜚 and

weakened when the reverse holds.

Lastly, the density of the core set is accounted for in the matrix G(CC) such that

the diversification of core firms within the core network is crucial in determining the

rate to which the core firms would charge.
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3.4.1 Equitable Partition

We are able to understand further special properties of the core periphery relation

under possible stylized partition network property. We hold the following assumption

for this part of the paper;

Assumption 3.4.2. Given Ω = {𝐶𝑟, 𝑃𝑟}, we hold that G(CC) ∙ 1 = 𝜌 ∙ 1, while

G(PC) = 𝜚 ∙ I and G(CP) = 𝜃 ∙ I for 𝜌, 𝜚, 𝜃 ∈ ]0,R++].

This yields a core-periphery network which has both out-equitable and in-

equitable properties as defined using Kada (2020) as well as Deng, Sato, and Wu

(2007) as follows;

Definition 3.4.1 (Equitable Partition). Consider Ω = {𝐶𝑟, 𝑃𝑟} where G(CC) ∙1 =

𝜌 ∙1 and G(PP) ∙1 = 0 ∙1 arising from G(PP) = 0 (from assumption 3.4.1) so that

𝐶𝑟 and 𝑃𝑟 are Partitions. If we have that G(PC) = 𝜚 ∙ I and G(CP) = 0 ∙ I then

Ω is ’out-equitable’ while if we have that G(CP) = 𝜃 ∙ I and G(PC) = 0 ∙ I, then Ω

is ’in-equitable’. Where both G(PC) = 𝜚 ∙ I and G(CP) = 𝜃 ∙ I holds simultaneously

then Ω is simply an ’Equitable’ partition.

Since core network are directed ring-network, observe the examples as in fig. 3-5a

as well as a complete bi-directional core-network shown in fig. 3-6b. Also from the

fig. 3-6 , observe that all but fig. 3-5b are partitioned cores7 as each core-firm has

same amount of incoming and outgoing link in each case.

7For example, 𝜌 = 1 for fig. 3-5a, 𝜌 = 2 in fig. 3-6a while 𝜌 = 3 in fig. 3-6b. Because G(CC) ∙1 =
(2, 1, 1, 2)𝑇 for fig. 3-5b, we are unable to define 𝜌 in such case.
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(a) Directed-Ring Core Network.
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(b) Irregular Core Network.
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(c) Bilateral-Ring Core Network.
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(d) Complete Core Network.

Figure 3-4: Sample Core Networks. The figure a, c and d involve cores with fit the
partition criteria.

We begin with an added assumption which satisfies both the ring core-network,

core network with regular ring properties based on proposition 3.4.1 to show some

realization in the following statement below;

Proposition 3.4.2. Let G bi-directional graph of SCF which are core-periphery in

nature as in Ω = {𝐶𝑟, 𝑃𝑟} and assumption 3.4.2 holds. In so far as ′𝑎′ is within

threshold, we have the following Nash Equilibrium;

r*𝐶𝑟(G,Ω, 𝑎) = (1 + 𝑎𝜌− 𝑎2𝜃𝜚)−1(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟),

r*𝑃𝑟(G,Ω, 𝑎) = 𝜋𝑃𝑟 − 𝑎𝜚 ∙ r*𝐶𝑟(G,Ω, 𝑎),

(3.15)

Proof. See Appendix for proof.

This is such that if 𝜋 = 𝜋 ∙ 1, each within a partition charges identical lending

rates. Observe further intuitions from this proposition,
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Remark 3.4.1. If 𝜋 = 𝜋 ∙ 1 and 𝜃 = 𝜚, the expression 𝑟*𝑃𝑟(G,Ω, 𝑎) > 𝑟*𝐶𝑟(G,Ω, 𝑎)

always holds true in so far 𝜌 > 0.

The remark above points to the fact that if a borrowing network meets the criteria

for core-periphery relationship where links between each periphery and its core are

identical and each firm lends same total amount, then one can presume core firms

would charge a lower lending rate as compared to the peripheries.

To discuss more on the condition that G(CC) ∙ 1 = 𝜌 ∙ 1 in assumption 3.4.2, we

illustrate this in the examples below;

Example 3.4.1. Assuming the following networks with homogeneous links such that

each edge is weighted 𝛼 ∈ ]0,R+[ below;

1

2

3
4

5

(a) Regular Core Network

1

2

3
4

5

(b) Irregular Core Network

Figure 3-5: Core Network with homogeneous links.

We have the sub-matrix of core interconnections as;

G1(CC) = 𝛼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑎𝑛𝑑 G2(CC) = 𝛼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1

1 0 0 0 1

0 1 0 0 1

0 1 1 0 0

0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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G1(CC) ∙ 1|𝐶𝑟| = G2(CC) ∙ 1|𝐶𝑟| = 𝛼(2, 2, 2, 2, 2)𝑇

This implies that,

G1(CC)/Ω = G2(CC)/Ω = 𝜌 = 𝛼 ∙ 2

Example 3.4.2. Let us take another set of networks, this time with heterogeneous

links as follows;

1

2

3

4

0.8

0.
80.8

0.
4

0
.4

(a) Directed Core Network.

1

2

3

4

0.8

0.
80.4

0.
8

0.
4

(b) Directed Core Network.

Figure 3-6: Core Networks with heterogeneous links.

We have the sub-matrix of core interconnections as;

G1(CC) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.4 0.4

0.8 0 0 0

0 0.8 0 0

0 0 0.8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑎𝑛𝑑 G2(CC) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.4 0.8

0.8 0 0 0

0 0.8 0 0

0 0 0.4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G1(CC) ∙ 1|𝐶𝑟| = (0.8, 0.8, 0.8, 0.8)𝑇 ,

G2(CC) ∙ 1|𝐶𝑟| = (0.8, 0.8, 1.2, 0.4)𝑇 .
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This implies that,

G1(CC)/Ω = 𝜌 = 0.8

G2(CC)/Ω =??

As such the core network in fig. 3-6b does not satisfy the assumption 3.4.2.

3.5 Intervention and Welfare Policies

In this section, we define outcomes based on Nash lending rates and then observe

welfare properties of the model. More precisely, we highlight various possible policy

initiative to which a maximising Planner could adopt and its estimate the overall

impact. To study welfare, we adopt the standard utilitarian approach. As such, we

introduce the following definition;

Definition 3.5.1. The welfare from the game Γ(G, r, 𝑎) is defined specially for firms

who charge a positive amount as;

𝑊 (r,𝒜, 𝑎)
def
=

∑︁
𝑖∈𝒜

𝑃𝑖, (3.16)

This implies we use welfare is the aggregate payoff of all firms who charge a

positive amount. To define such payoff, we write the following lemma;

Lemma 3.5.1. Assume 𝒩 and the game Γ(G, r, 𝑎), ∀ firm 𝑖 ∈ 𝒜, payoff given Nash

equilibrium is as follows;

P𝒜 = 𝑑𝑖𝑎𝑔(B) ∙
(︀
(I + 𝑎G)−1 ∙ 𝜋𝒜

)︀
−𝐾, (3.17)

where 𝐾 =
(︀
2+𝑎
4𝜅𝑎

)︀
𝑖∈𝒜 and B =

(︁
(𝑎+1)

𝑎
∙ 𝑏−𝑖

)︁
𝑖∈𝒜

are both column vectors.

Proof. See Appendix for proof.
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It is important to note the implication of (3.17). We see here that firms utility for

charging is mainly dependent on their individual Nash equilibrium rate. This means

that if we were to observe (3.17) and our best reply in (3.5) we then have an idea of

kinds of policy implications for the model which we explore in the coming sections.

3.5.1 Transaction Cost and Welfare Neutrality

In this part, we explore the possibility of intervention policies and their welfare

impact. Usually in payment systems, movement of a cash could face barriers such

as foreign exchange conversion cost (if 2 firms are located at different economic

regions), transaction cost like bank charges, etc. If we assume a system where firms

incur transaction cost on total payment which we denote as 𝜆, let us have a case

where a regulator decides to grant 𝜆𝑏−𝑖 to each 𝑖 ∈ 𝒩 , such policies are done so far

as they keep the active set 𝒜 the same which means the network graph G𝒜 should

remain unchanged, unchanged. Given 𝜆𝑏−𝑖 for all firm 𝑖 ∈ 𝒩 . The initial mark of

the policy 𝜆 is such that payoff is written as;

𝑃 𝜆
𝑖 (𝑟𝑖) = 𝜆

⎛⎝𝑏−𝑖 ∙ 𝑟𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

(𝑔𝑗𝑖𝑏𝑖) 𝑟𝑗

⎞⎠− 𝜅 (𝜆𝜇𝑖)
2 (3.18)

The diagram fig. 3-7 shows a Planner 𝑃 whose objective is to maximise
∑︀

𝑖∈𝒜 𝑃𝑖.

More specifically, the fig. 3-7a represents and instance where a Planner increases

payment made by each firm to another (for example, through elimination of a pre-

vailing transaction cost like bank charges) while the fig. 3-7b shows a case where even

without friction, the Planner grants each lender an extra amount to loan its potential

debtors given strictly that debtors are not opposed to such additional loans. The

arrows show the policy action. In terms of equilibrium, we introduce the following

lemma;
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Lemma 3.5.2. The active set 𝒜 remains fixed ∀ 𝜆 ≶ 1 even though r𝜆 = 𝜆−1 ∙ r.

Proof. For the Nash equilibrium given such policies, we have for all active firms that;

𝑟𝜆𝑖 =
𝜋𝑖
𝜆

− 𝑎
∑︁
𝑗

𝜆𝑏𝑗𝑖
𝜆𝑏−𝑖

𝑟𝜆𝑗 =
𝜋𝑖
𝜆

− 𝑎
∑︁
𝑗

𝑏𝑗𝑖
𝑏−𝑖

𝑟𝜆𝑗 . (3.19)

This is so that rewriting in vector form, our Nash for active firms is given as;

r𝜆𝒜 = (I + 𝑎G𝒜)−1 ∙
𝜋𝒜

𝜆
= 𝜆−1 ∙ r𝒜.

For this set combination 𝒜 and 𝒩 − 𝒜 to not be the Nash equilibrium set would

mean that the following has to hold;

𝑎

𝜆
G𝒩−𝒜×𝒜 ∙ r𝒜 <

𝜋𝒩−𝒜

𝜆
.

However, multiplying the equation above by 𝜆 gives the condition as;

𝑎G𝒩−𝒜×𝒜 ∙ r𝒜 < 𝜋𝒩−𝒜,

Which is a contradiction to the original equilibrium of 𝑎G𝒩−𝒜×𝒜r𝒜 ≥ 𝜋𝒩−𝒜.

Some explanation of this lemma is that since transaction cost 𝜆 is homogeneous

and since inactive firms are such that 𝑎G𝒩−𝒜×𝒜 ∙ r𝜆𝒜 ≥ 𝜋𝜆
𝒩−𝒜, then it means that

while it is that 𝑟𝜆𝑖∈𝒜 = 𝜆−1𝑟𝑖, it is also the case that 𝜋𝜆
𝑖∈𝒩−𝒜 = 𝜆𝜋𝑖. So if because 𝜋

rises and falls at equal magnitude for each firm, set of active firms remains constant.

As such the magnitude of transaction cost or intermediate intervention is not relevant

in terms of what the composition of active set would be at Nash equilibrium. In that

light, we summarise the effect of such homogeneous intervention policy as follows;

Proposition 3.5.1. Given the homogeneous policy 𝜆, ∆𝑊 (r𝜆,𝒜, 𝑎) = 0, hence wel-

fare is neutral.

89



3. Strategic Interactions in Financial Networks

Proof. See Appendix for proof.

𝑖 𝑘

𝑗 𝑙

𝑃

𝜆−1𝑏−𝑖

𝜆
−
1𝑏−

𝑘

𝜆−1𝑏−𝑙

𝜆
−
1
𝑏 −

𝑗 𝜆
𝜆

𝜆

𝜆

(a) Intervention in a system with
existing frictions.

𝑖 𝑘

𝑗 𝑙

𝑃

𝑏−𝑖

𝑏−
𝑘

𝑏−𝑙

𝑏 −
𝑗

𝜆
𝜆

𝜆

𝜆

(b) Intervention in a system
without existing frictions.

Figure 3-7: Directions of a Planner 𝑃 ’s intervention to 4 firms

We then move to observe the impact of mutually exclusive policy 𝜆𝑖𝑏−𝑖 ∀ 𝑖 ∈ 𝒜

such that 𝜆𝑖 S 𝜆𝑗 for all 𝑖, 𝑗 ∈ 𝒜. Observe here that policies are restricted to active

set, we assume strictly that such policy intervention is such that leaves active set

unchanged. For simplicity, one can initially assume the policy 𝜆𝑖 is applied to a

single firm while holding others fixed as shown in fig. 3-8 where this time a regulator

increases only one firms borrowing . In practice, it could be through eliminating

transaction cost for a single firm while leaving other constant as shown in the figure

below;

𝑖 𝑘

𝑗 𝑙

𝑃

𝑏−𝑖

𝑏−
𝑘

𝑏−𝑙

𝑏 −
𝑗

𝜆
𝑖

Figure 3-8: Ring network with 4 firms where a regulator decides to increase total firm 𝑖’s
lending to 𝜆𝑖𝑏−𝑖.
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More broadly, the concept of the policy is that links of firms could be increased

at heterogeneous proportion. The impact of such policy on welfare goes as follows;

Theorem 3.5.1. Given a policy (𝜆𝑖, 𝜆𝑗, . . .) so that 𝜆𝑖 S 𝜆𝑗 for all 𝑖, 𝑗 ∈ 𝒜 we have

the following outcome;

∆𝑊 𝜆(r𝜆,𝒜, 𝑎) = 0 (3.20)

Hence such policy is welfare neutral.

Proof. See Appendix for proof.

This means that it is not possible for a regulator to improve the welfare of active

players by simply increasing/reducing one or more active firm network intensity even

if it is by varying amounts. Welfare Neutral policies are also found in major public

literature such as Bergstrom et al. (1986) and Warr (1983) who both showed neutral-

ity to aggregate provision of public good and individual consumption of private good

in so far as wealth redistribution does not change the set of active players involved.

In an extension to this, Allouch (2015) adds that small transfers that leave active set

the same are also neutral only when such transfers are made between the active set

themselves. To contrast with our results yield neutrality without transfer policies.

Because each firms utility is based on their individual Nash equilibrium, payoffs are

neutral which leaves overall welfare unchanged. Additionally, intervention are not

be restricted to active firms and due to the homogeneous nature of intervention, the

magnitude of 𝜆 is pertinent in influencing the outcome in so far rates charged by

creditor firms are limited to non-negative rates.

3.5.2 Resource Allocation

To access a possible impact of theorem 3.5.1, we observe a policy change of ∆ 𝜅𝑖

for 𝑖 ∈ 𝒜 (i.e, firms who charge at Nash equilibrium ). Let us have the following

definition;
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Definition 3.5.2. For any firm 𝑖 ∈ 𝒩 , we have it that

• Subsidy ⇒ Δ𝜅𝑖

𝜅𝑖
= 𝛾−𝑖

• Tax burden ⇒ Δ𝜅𝑖

𝜅𝑖
= 𝛾+𝑖

Assume then that 𝛾𝑖 = 𝛾 ∀ firm 𝑖 ∈ 𝒜 so that the policy is applied in homogeneous

proportion to all active firms. Payoff of each firm 𝑖 is written as;

∀ 𝑖 ∈ 𝒩 𝑃 𝛾
𝑖 (𝑟𝑖) = 𝑏−𝑖 ∙ 𝑟𝑖 −

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

(𝑔𝑗𝑖𝑏𝑖) 𝑟𝑗 − (1 + 𝛾)𝜅(𝜇𝑖)
2 (3.21)

We summarise the effect in the following results;

Lemma 3.5.3. Given 𝛾, welfare differential is as follows;

∆𝑊 𝛾(r𝛾,𝒜, 𝑎) = 1𝑇P𝒜 ∙
−𝛾

(1 + 𝛾)
. (3.22)

Remark 3.5.1. This implies that if 𝛾 ∈ [−1, 0[, then ∆𝑊 𝛾(r𝛾,𝒜, 𝑎) > 0 while if

𝛾 ∈ [0, 1[ then ∆𝑊 𝛾(r𝛾,𝒜, 𝑎) < 0 and its interpretation is simply that subsidies

improves welfare while taxes reduce welfare.

Note that Active firms 𝒜 also remains fixed ∀ 𝛾 ∈ ]0, 1[. Results in this case are

clearly unsurprising as lighter burden means firms are less sensitive to the volume

of indebtedness given its fixed debt. Examples of such policies could be through

providing outsourcing facility to a portion of debts or maybe policies to reduce call

rates or providing free training of labour force involved in such area. When however,

this policy applies in a heterogeneous manner to firms, it then becomes isomorphic

to resource transfers which we explore in details subsequently.

In lemma 3.5.2 as well as theorem 3.5.1, it is noted that given a policy 𝜆𝑖 ≶ 1

such that lending becomes 𝜆𝑖𝑏−1 for any 𝑖 ∈ 𝒜, ∆𝑊 (G, 𝑎) = 0 in so far as the active

firms 𝒜 remains fixed. Given our results above, we have the following results;

92



3. Strategic Interactions in Financial Networks

Proposition 3.5.2. Given the game Γ(G,𝒜, 𝑎) there exists ∆𝑊 (r,𝒜, 𝛾, 𝜆) ∈

]0,R++[ (not necessarily Pareto) at zero cost to a Planner in so far as there exists∑︀
𝑖∈𝒜 𝜆𝑖𝑏−𝑖 such that 𝒜 remains fixed.

Proof. Strictly holding 𝒜 fixed, let
∑︀

𝑖∈𝒜(1 − 𝜆𝑖)𝑏−1 be the amount the regulator

charges for intermediate payments from each firm 𝑖 (building from proposition 3.5.1)

, then this is the case so far
∑︀

𝑖∈𝒜(1−𝜆𝑖)𝑏−1 = 𝛾
∑︀

𝑖∈𝒜 (𝜅𝑖(𝜇𝑖)
2) which then guarantees

Pareto improvement among active firms. For non-Pareto improvement, subsidised

administrative cost 𝛾𝑖𝜅𝑖(∙)2 need not apply to all firms in 𝒜. In this case, the criteria

shown in theorem 3.6.1 becomes useful.

This comes from the fact that so far as active set remains fixed, the regulator

can instead of eliminating transaction cost, create one at no cost to overall welfare.

This also grants resources to subsidise one or more firms in a way that improves

welfare. Pareto improvement is possible if 𝑋 =
∑︀

𝑖∈𝒜(1 − 𝜆𝑖)𝑏−1 is split such that

𝛾
∑︀

𝑖∈𝒜 𝜅𝑖(𝜇𝑖)
2 ≤ 𝑋. Observe now that 𝛾 is constant so that its effect on welfare

corresponds to lemma 3.5.3. This is a unique form of transfer compared to those

found in mainstream public good in networks literature such as Allouch (2015),

Allouch and King (2018b), etc. This is because in this case, transfers could be

simply from one firm to another through different variables the firm faces.

3.6 Intervention Targeting

We project in this section the relationship between Bonacich externality measures

and firms quality, especially in terms of marginal welfare given a resource constrained

Planner. We here generalise the Planner to one who wishes to grant loan management

cost subsidy in order to maximise overall welfare (∆𝑊 𝛾(r𝛾,𝒜, 𝑎))𝑚𝑎𝑥 of active firms

𝒜 . Then if the set Φ(𝒜) represents the possible combinations of firms, the Planner

has |Φ(𝒜)| = 2|𝒜| − 1 amount of alternative actions as to the distribution of subsidy
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intervention in order to achieve (∆𝑊 𝛾(r𝛾,𝒜, 𝑎))𝑚𝑎𝑥. This is such that the earlier

discussed "𝛾 ∀ firm 𝑖 ∈ 𝒜" is a strategy element in Φ(𝒜) arising from the 𝐶(|𝒜|, |𝒜|)

combination, where 𝐶(𝑎, 𝑏) = 𝑎!
(𝑎−𝑏)!𝑏!

. On the other extreme, let 𝜑 ⊂ Φ be the subset

arising the combination 𝐶(|𝒜|, 1), This then means that |𝜑| = |𝒜| such that the

Planner calculates the total welfare from subsidising for a single firm 𝑖 ∈ 𝒜. We then

wish to show the qualities of the firm 𝑖 ∈ 𝒜 which yields the greatest payoff from the

strategy subset 𝜑. Literature in recent times have, within network spillover problems

come up with various targeting criterion; The Key-Player concept introduced in

Ballester et al. (2006), The highest threat index (which is the Bonacich centrality)

introduced in Demange (2016) as well as the top Principal Components as another

eigenvalue related measure used in Galeotti et al. (2020).

We begin with a naive scenario. Assume a Planner with unlimited finance but

one who wishes to subsidise administrative cost by a 𝛾 amount a single selected firm

so as to maximise overall network welfare. Formally, we define the Planners problem

within the strategy 𝜑 ⊂ Φ is stated as;

max
𝛾

{𝑃 𝛾
𝑖 − 𝑃𝑖|𝑖 = 1, . . . , 𝑛} 𝑠.𝑡 𝛾− = 𝛾𝑖|𝑖 ∈ {𝒜}. (3.23)

The choice firm 𝑖 ∈ 𝒜 then has a payoff is written as;

𝑃 𝛾
𝑖 (𝑟𝑖) =

⎛⎝𝑏−𝑖 ∙ 𝑟𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

(𝑔𝑗𝑖𝑏𝑖) 𝑟𝑗

⎞⎠− (1 + 𝛾)𝜅(𝜇𝑖)
2 (3.24)

94



3. Strategic Interactions in Financial Networks

𝑖 𝑘

𝑗 𝑙

𝑃

𝑏𝑘𝑖

𝑏
𝑙𝑘

𝑏𝑙𝑗

𝑏 𝑖
𝑗

𝛾
𝑖 ?

𝛾 𝑘
?

𝛾 𝑗?

𝛾
𝑙 ?

Figure 3-9: Ring network with 4 firms to which the Planner makes a decision which to
subsidise.

Hence the question is which firm should the Planner subsidise for? Observe the

following equation of the measure of a firm 𝑖 ∈ 𝒩 ;8

𝛽𝑖(G
𝑇 ,−𝑎)

def
=

+∞∑︁
𝑘=0

(−𝑎)𝑘
𝑛∑︁

𝑗=1

(︁(︀
G𝑇

)︀𝑘)︁
𝑖𝑗

(3.25)

This is such that 𝑏(G𝑇 ,−𝑎) = (I+𝑎G𝑇 )−1 ∙1 =
(︀
𝛽𝑖(G

𝑇 ,−𝑎)
)︀
𝑖∈𝒩 ∈ R𝑛

+. The measure

above is related to the Bonacich centrality used to capture prestige and network

influence as proposed by Bonacich (1987). However, it measures the weakness of

firms link to its debtors. This means that the greater 𝛽𝑖(G𝑇 ,−𝑎) is for a firm 𝑖, the

smaller the weight of the direct link to 𝒩 𝑜𝑢𝑡
𝑖 . Going further, 𝛽𝑖(G𝑇 ,−𝑎) is referred

to as the externality index for firm 𝑖. We as such present the following results.

Theorem 3.6.1. Assume that 𝑏−𝑖 = 𝑏−𝑗 ∀ 𝑖, 𝑗 ∈ 𝒜. The welfare differential

∆𝑊 (r𝛾,𝒜) is at maximum if and only if subsidy 𝛾𝑖 such that for firm 𝑖 ;

𝛽𝑖(G
𝑇
𝒜,−𝑎) ≥ 𝛽𝑗 ̸=𝑖(G

𝑇
𝒜,−𝑎),

Hence firm 𝑖 has the largest externality index.

Proof. See Appendix for proof.
8We still hold in this part that 𝒩 = 𝒜.
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This result shows the relationship between externalities on outgoing links based

on weighted interconnections and ability to improve overall welfare overall from in-

tervention related to subsidy. To summarise this point, recall that we can also write

firm 𝑖’s centrality measure as below,

𝛽𝑖(G
𝑇
𝒜,−𝑎) = 1 − 𝑎

∑︁
𝑗∈𝒩 𝑜𝑢𝑡

𝑖

𝑔𝑖𝑗𝛽𝑗(G
𝑇
𝒜,−𝑎). (3.26)

This means that for every unit increase in 𝜋𝑖, it negatively impacts each

𝑟𝑗∈{𝒩 𝑜𝑢𝑡
𝑖 ∩𝒜}. Thus a negative externality. Then given that lending rates charged

by active firm serve as a form on negative externality, the subsidy should be given to

the firm who produces the least externality in the network. This is as subsidy here

increases strategic substitution since it increases the potential 𝑟𝑖 for any firm whose

𝜅(𝜇𝑖)
2 is reduced. This serves as an identifier for pressure points of our model in

contrast to other network targeting works.

A more practical and justifiable scenario would be where the Planner has limited

resource. In this instance, the Planner wishes to maximise total welfare and as

such, measures the impact of channeling subsidy to a single firm versus splitting

proportionally across all active firms. In order to select the firm to consider allocating

resource to, let us rewrite the problem of the Planner from (3.23) as follows;

max
𝛾𝑖|𝑖∈𝒜

{𝑃 𝛾𝑖
𝑖 − 𝑃𝑖|𝑖 = 1, . . . , 𝑛} , (3.27)

𝑠.𝑡 𝛾𝑖 = 𝛾𝑖|𝑖 ∈ {𝒜} 𝑎𝑛𝑑,

𝛾𝑖 ∙ 𝜅𝑖(𝜇𝑖)
2 ≤ 𝑋

It follows then that 𝛾𝑖 ≤ − 𝑋
𝜅𝑖(𝜇𝑖)2

where 𝑋 represents the cash endowment of the
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regulator. In this case, we then derive another corollary from theorem 3.6.1 as,

Corollary 3.6.1. Assuming a regulator who is cash constrained and 𝑏−𝑖 = 𝑏−𝑗 ∀

𝑖, 𝑗 ∈ 𝒜, the welfare differential ∆𝑊 𝛾𝑖(r𝛾𝑖 ,𝒜, 𝑎)|𝑖 ∈ 𝒜 is at maximum if and only if

subsidy 𝛾 is applied to firm 𝑖 which meets the following criteria,

𝛽𝑖(G
𝑇
𝒜,−𝑎) ∙

−𝛾𝑖
1 + 𝛾𝑖

≥ 𝛽𝑗 ̸=𝑖(G
𝑇
𝒜,−𝑎) ∙

−𝛾𝑗
1 + 𝛾𝑗

.

Proof. Let 𝜂 = 2+𝑎
4𝑎

and 𝜔 = 𝑎+1
𝑎

. Since 𝛾𝑖 is not necessarily homogeneous across

firms, then ∀ firm 𝑖 such that 𝑃𝑖 = . . . + (1 + 𝛾𝑖) ∙ 𝜅(𝜇𝑖)
2, ∆𝑊 (r𝛾,𝒜, 𝑎) = −𝛾𝑖𝜔

2𝜅(1+𝛾𝑖)
∙

𝛽𝑖(G
𝑇
𝒜,−𝑎) + 𝜂𝛾𝑖

1+𝛾𝑖
= 𝛾𝑖

1+𝛾𝑖

(︀
𝜂 − 𝜔

2𝜅
∙ 𝛽𝑖(G

𝑇
𝒜,−𝑎)

)︀
and we also hold that 𝛾𝑖

1+𝛾𝑖
→ +∞ as

𝛾𝑖 → −1 while keeping active set 𝒜 strictly fixed.

The intuition then from our results is that welfare due to individual subsidy

especially when the regulator has limited funds are best allocated to firms with a

combination of greater proportional reduction in loan management expenses as well

as lower negative spillover effects. An example of the Planner making this decision

can be observed below;

Example 3.6.1 (Individual vs Group Targeting). Assuming the following debt net-

work below;

8
𝑗

12

𝑖

10

15

Figure 3-10: Network with 3 firms and 4 debt contracts (edges)

Other parameters are as follows, 𝑎 = 0.8, 𝜅 = 0.04. This means we have 𝜋 =
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(0.699, 0.46)𝑇 and

G =

⎡⎢⎣ 0 0.67

0.37 0

⎤⎥⎦ .

So that r* = (0.54, 0.3)𝑇 , b(G𝑇 ,−𝑎) = (0.8368, 0.5515)𝑇 and P =

(19.198, 15.553)𝑇 . Which leaves the initial welfare 1𝑇P = 34.751.

Assume then that a Planner has $2 to distribute. First we have the loan manage-

ment cost as;

𝜅(𝜇𝑖(r
*))2 = 6.35 and,

𝜅(𝜇𝑗(r
*))2 = 6.17.

We have Φ = {𝜑1, 𝜑2, 𝜑3} where 𝜑1 = {𝑖, 𝑗}, 𝜑2 = {𝑖} and 𝜑3 = {𝑗}.

For the strategy 𝜑1, 𝛾𝑖 = 𝛾𝑗 = 𝛾. This gives the value as 𝛾 = −0.1587. Strategy

𝜑2 gives 𝛾𝑖 = −0.3149 while Strategy 𝜑3 gives 𝛾𝑗 = −0.324.

Strategy 1(𝜑1): Where 𝛾 = −0.1587.

We have the welfare improvement then as;

∆𝑊 𝛾(r𝛾,𝒜, 𝑎) = 1𝑇P𝒜 ∙
−𝛾

(1 + 𝛾)
,

= 34.751 ∙
0.1587

0.8413
,

= 6.56.

Strategy 2(𝜑2): Where 𝛾𝑖 = −0.3149.
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The welfare improvement is;

∆𝑊 𝛾(𝛾𝑖,𝒜, 𝑎) =
−𝛾𝑖𝜔

2𝜅(1 + 𝛾𝑖)
∙ 𝛽𝑖(G

𝑇
𝒜,−𝑎) +

𝜂𝛾𝑖
1 + 𝛾𝑖

,

=
0.7085

0.0548
∙ (0.8368) − 0.2755

0.6851
,

= 10.41.

Strategy 3(𝜑3): Where 𝛾𝑗 = −0.324.

The welfare improvement is;

∆𝑊 𝛾(𝛾𝑗,𝒜, 𝑎) =
−𝛾𝑗𝜔

2𝜅(1 + 𝛾𝑗)
∙ 𝛽𝑗(G

𝑇
𝒜,−𝑎) +

𝜂𝛾𝑗
1 + 𝛾𝑗

,

=
0.729

0.0508
∙ (0.5515) − 0.2835

0.6760
,

= 7.4928.

Here, we see that the optimal intervention would be to spend the $2 on subsidising

firm 𝑖’s loan management cost which in itself, gives a total welfare improvement that

supersedes splitting proportionately among both active firms. Also noticeable, is the

fact that firm 𝑖 has a greater externality index 𝛽𝑖(G
𝑇
𝒜,−𝑎) in comparison to firm

𝑗 which corresponds to our results. On a final note, it is worth pointing out that

the sub-strategy combination 𝐶(|𝒜|, 𝑏), where 1 < 𝑏 < |𝒜|, strategies are known as

group strategy. This is even more distinct when the number of active firms exceeds 2

(|𝒜| > 2). Our analysis still implies the Planner weighs these strategy and indeed, the

optimal could be found within such strategy. However, we have focused primarily on

individual firms quality which makes it a suitable target. Group based intervention

remain unexplored but relevant.
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3.7 Concluding Remarks

We have shown strategic substituting behaviour of firms arising from firms making

an inter-temporal lending rate decision so as to make maximum profit in the face

of Loan management cost. Such Loan management cost depends on the level of

firms efficiency in managing overall debtors as well as creditors. The outcome of this

is a substitute game with mostly a unique equilibrium. Our best replies are very

likened to notable works such as Blume, Easley, Kleinberg, Kleinberg, and Tardos

(2011), Allouch (2015) as well as Bramoullé et al. (2014) without boundaries and

Allouch and King (2018a) with boundaries but with slightly different weight and

directional properties. We identify neutrality and welfare improving policies given

various types of intervention. One main intuition from our model is that resources can

be redirected from within and to the same firm such that the Planner improves welfare

while suffering little to no additional cost. Lastly, we established that interventions

targeted at firms who have a relatively higher degree of network centrality based on

weak link to debtors yields the most efficient welfare based outcomes. This is because

then, raising such firms lending rate yields lower negative spillover to debtor firms.

This work primarily pays more attention to cost coming from loan management

and as such gives intuition towards strategic substitute under the assumption that

the firm incurs additional cost on the basis of additional volume of loans. A possible

critique of this idea would be that to a significant degree, the number of debtors and

creditors are also key drivers of loan management cost as well and our model seems

to ignore this prospect. One reason for ignoring this is that it would mean that

firms then make decision as to how many incoming and outgoing link to establish,

which goes against our fixed network environment as we assume that such decision

are made exogenous to the model, hence the network environment we have . As

with regards to decisions on lending rates, given that there are host of other factors
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that might influence a lending rate charged, then it is easily predicted that other

forms of interaction including games of complementarity could arise if the focus is

on other factors. Also, because we assume a one-shot decision making, we ignore

instances where firms could work to increase administrative efficiency. This in itself

could lead to new problems including moral hazard (for example, a personnel might

not reveal his/her true efficiency as it might alter remuneration). We believe this

would make for a vital extension to the model. Another line of extension is linked to

welfare whereby the Planner weights firms by order of importance such that payoffs

are given weights. This could also shed a more realistic lights to impacts of policies

to firms.

3.8 Appendix

Proof of Lemma 3.3.1

Intuitions on this concept is briefly discussed in (Bramoullé et al., 2014). Addition-

ally, it should be noted that because G is a directed graph, then (I + 𝑎G) being

positive definite implies

1 + 𝑎 𝜈𝑚𝑖𝑛

(︂
G + G𝑇

2

)︂
> 0, (3.28)

hence the condition. �

Proof of Proposition 3.3.2

Given (3.8), then for the active set 𝒜, we would have for firm 𝑖 ∈ 𝒜 the following;

𝑟𝑖∈𝒜 = 𝜋𝑖 − 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖 ,𝑗∈𝒜

𝑏𝑗𝑖
𝑏−𝑖

𝑟𝑗. (3.29)
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Intuitively, any firm 𝑙 ∈ 𝒩 −𝒜 would be such that the following holds;

𝑟𝑙∈𝒩−𝒜 = 𝜋𝑙 − 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑙 ,𝑗∈𝒜

𝑏𝑗𝑙
𝑏−𝑙

𝑟𝑗 ≤ 0,

Which then translates to;

𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑙 ,𝑗∈𝒜

𝑏𝑗𝑙
𝑏−𝑙

𝑟𝑗 ≥ 𝜋𝑙. (3.30)

Writing (3.29) and (3.30) in vector form for the full set 𝒩 completes the proof.

�

Proof of Proposition 3.4.1

Holding 𝒩 = 𝒜, since our Nash equilibrium is r(G, 𝑎) = (I + 𝑎G)−1 ∙ 𝜋, we then

solve for r(G, 𝑎) below as follows;

r(G,Ω, 𝑎) =

⎡⎢⎣(I + 𝑎G(CC)) 𝑎G(CP)

𝑎G(PC) I

⎤⎥⎦
−1

∙

⎡⎢⎣𝜋𝐶𝑟

𝜋𝑃𝑟

⎤⎥⎦ (3.31)

Using block matrix inversion concept to solve for

⎡⎢⎣(I + 𝑎G(CC)) 𝑎G(CP)

𝑎G(PC) I

⎤⎥⎦,

assume without loss of generality that (I + 𝑎G(CC)) = 𝐴, 𝑎G(CP) = 𝐹 while

𝑎G(PC) = 𝐸 so that

⎡⎢⎣(I + 𝑎G(CC)) 𝑎G(CP)

𝑎G(PC) I

⎤⎥⎦ =

⎡⎢⎣𝐴 𝐹

𝐸 I

⎤⎥⎦ .
From the Helmert-Wolf blocking inversion method,9 we have the following;

9See Wolf (1978).
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⎡⎢⎣𝐴 𝐹

𝐸 I

⎤⎥⎦
−1

=

⎡⎢⎣𝐴−1 + 𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1𝐸𝐴−1 −𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1

−(I− 𝐸𝐴−1𝐹 )−1𝐸𝐴−1 (I− 𝐸𝐴−1𝐹 )−1

⎤⎥⎦
This is so that we have ⇒

⎡⎢⎣𝐴 𝐹

𝐸 I

⎤⎥⎦
−1

∙

⎡⎢⎣𝜋𝐶𝑟

𝜋𝑃𝑟

⎤⎥⎦ =

⎡⎢⎣(𝐴−1 + 𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1𝐸𝐴−1)𝜋𝐶𝑟 − (𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1)𝜋𝑃𝑟

− ((I− 𝐸𝐴−1𝐹 )−1𝐸𝐴−1)𝜋𝐶𝑟 ((I− 𝐸𝐴−1𝐹 )−1)𝜋𝑃𝑟

⎤⎥⎦
=

⎡⎢⎣𝐴−1𝜋𝐶𝑟 − 𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1(𝜋𝑃𝑟 − 𝐸𝐴−1𝜋𝐶𝑟)

(I− 𝐸𝐴−1𝐹 )−1(𝜋𝑃𝑟 − 𝐸𝐴−1𝜋𝐶𝑟)

⎤⎥⎦

We then focus on the first line for which we have the following expression ⇒

𝐴−1𝜋𝐶𝑟 − 𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1(𝜋𝑃𝑟 − 𝐸𝐴−1𝜋𝐶𝑟) = 𝐴−1(I− 𝐸𝐴−1𝐹 )−1(I− 𝐸𝐴−1𝐹 )𝜋𝐶𝑟

− 𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1(𝜋𝑃𝑟 − 𝐸𝐴−1𝜋𝐶𝑟)

= 𝐴−1(I− 𝐸𝐴−1𝐹 )−1𝜋𝐶𝑟

− 𝐴−1(I− 𝐸𝐴−1𝐹 )−1𝐸𝐴−1𝐹𝜋𝐶𝑟

− 𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1𝜋𝑃𝑟

+ 𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1𝐸𝐴−1𝜋𝐶𝑟

= 𝐴−1(I− 𝐸𝐴−1𝐹 )−1𝜋𝐶𝑟

− 𝐴−1𝐹 (I− 𝐸𝐴−1𝐹 )−1𝜋𝑃𝑟

= 𝐴−1(I− 𝐸𝐴−1𝐹 )−1(𝜋𝐶𝑟 − 𝐹𝜋𝑃𝑟)
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r*𝐶𝑟(G,Ω, 𝑎) = 𝐴−1(I− 𝐸𝐴−1𝐹 )−1(𝜋𝐶𝑟 − 𝐹𝜋𝑃𝑟)

r*𝑃𝑟(G,Ω, 𝑎) = (I− 𝐸𝐴−1𝐹 )−1(𝜋𝑃𝑟 − 𝐸𝐴−1𝜋𝐶𝑟).

Since 𝐹 = 𝑎G(CP), 𝐸 = 𝑎G(PC), and (I + 𝑎G(CC)) = 𝐴 we then have the

following;

r*𝐶𝑟(G,Ω, 𝑎) = (I + 𝑎G(CC))−1
(︀
I− 𝑎G(PC)(I + 𝑎G(CC))−1𝑎G(CP)

)︀−1
(𝜋𝐶𝑟 − 𝑎G(CP)𝜋𝑃𝑟),

r*𝑃𝑟(G,Ω, 𝑎) =
(︀
I− 𝑎G(PC)(I + 𝑎G(CC))−1𝑎G(CP)

)︀−1
(𝜋𝑃𝑟 − 𝑎G(PC)(I + 𝑎G(CC))−1𝜋𝐶𝑟).

Since for a matrix Z, (I− 𝜃 ∙ I) ∙ Z = (1 − 𝜃) ∙ Z, we then have the following;

r*𝐶𝑟(G,Ω, 𝑎) = (I + 𝑎G(CC))−1
(︀
I− 𝑎2𝜃𝜚(I + 𝑎G(CC))−1

)︀−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟),

=
(︀
(I + 𝑎G(CC))

(︀
I− 𝑎2𝜃𝜚(I + 𝑎G(CC))−1

)︀)︀−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟),

=
(︀
I + 𝑎G(CC) − 𝑎2𝜃𝜚 ∙ I

)︀−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟),

=
(︀
(1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)

)︀−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟),

=

(︂
I +

𝑎

1 − 𝑎2𝜃𝜚
G(CC)

)︂−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟)

1 − 𝑎2𝜃𝜚
.
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r*𝑃𝑟(G,Ω, 𝑎) =
(︀
I− 𝑎2𝜃𝜚(I + 𝑎G(CC))−1

)︀−1
(𝜋𝑃𝑟 − 𝑎𝜚(I + 𝑎G(CC))−1𝜋𝐶𝑟),

=
(︀
(I + 𝑎G(CC))−1

(︀
I + 𝑎G(CC) − 𝑎2𝜃𝜚 ∙ I

)︀)︀−1
𝜋𝑃𝑟

− 𝑎𝜚
(︀(︀
I− 𝑎2𝜃𝜚(I + 𝑎G(CC))−1

)︀
(I + 𝑎G(CC))

)︀−1
𝜋𝐶𝑟,

= (I + 𝑎G(CC))
(︀
I + 𝑎G(CC) − 𝑎2𝜃𝜚 ∙ I

)︀−1
𝜋𝑃𝑟

− 𝑎𝜚
(︀
I + 𝑎G(CC) − 𝑎2𝜃𝜚 ∙ I

)︀−1
𝜋𝐶𝑟,

=
(︀
I + 𝑎G(CC) − 𝑎2𝜃𝜚 ∙ I

)︀−1
((I + 𝑎G(CC))𝜋𝑃𝑟 − 𝑎𝜚 ∙ 𝜋𝐶𝑟)

=
(︀
(1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)

)︀−1
((I + 𝑎G(CC))𝜋𝑃𝑟 − 𝑎𝜚 ∙ 𝜋𝐶𝑟)

=
(︀
(1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)

)︀−1
(𝑎G(CC)𝜋𝑃𝑟 + 𝜋𝑃𝑟 − 𝑎𝜚 ∙ 𝜋𝐶𝑟)

=
(︀
(1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)

)︀−1

(︀(︀
(1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)

)︀
𝜋𝑃𝑟 − (1 − 𝑎2𝜃𝜚) ∙ 𝜋𝑃𝑟 + 𝜋𝑃𝑟 − 𝑎𝜚 ∙ 𝜋𝐶𝑟

)︀
=

(︀
(1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)

)︀−1
(𝑎2𝜃𝜚 ∙ 𝜋𝑃𝑟 − 𝑎𝜚 ∙ 𝜋𝐶𝑟)

+ ((1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)−1
(︀
(1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)

)︀
𝜋𝑃𝑟

= 𝜋𝑃𝑟 +
(︀
(1 − 𝑎2𝜃𝜚) ∙ I + 𝑎G(CC)

)︀−1
(𝑎𝜚(𝑎𝜃 ∙ 𝜋𝑃𝑟 − 𝜋𝐶𝑟))

= 𝜋𝑃𝑟 − 𝑎𝜚 ∙

(︂
I +

𝑎

1 − 𝑎2𝜃𝜚
G(CC)

)︂−1
𝜋𝐶𝑟 − 𝑎𝜃 ∙ 𝜋𝑃𝑟

1 − 𝑎2𝜃𝜚
.

�

*

Proof of Proposition 3.4.2 From proposition 3.4.1, recall we have the vector of

Bonacich centrality grouped in Core and Periphery vector as follows;

r𝐶𝑟(G,Ω, 𝑎) =

(︂
I +

𝑎

1 − 𝑎2𝜃𝜚
G(CC)

)︂−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟)

1 − 𝑎2𝜃𝜚
, (3.32)

as well as,
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r𝑃𝑟(G,Ω, 𝑎) = 𝜋𝑃𝑟 −
(︂
I +

𝑎

1 − 𝑎2𝜃𝜚
G(CC)

)︂−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟)

1 − 𝑎2𝜃𝜚
(3.33)

Given the assumption that G(CC) ∙ 1 = 𝜌 ∙ 1 , then such regularity means that

we have the following Bonacich centrality based Nash equilibrium vectors;

r𝐶𝑟(G,Ω, 𝑎) =

(︂
1 +

𝑎𝜌

1 − 𝑎2𝜃𝜚

)︂−1
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟)

1 − 𝑎2𝜃𝜚
,

=

(︂
1 − 𝑎2𝜃𝜚

1 − 𝑎2𝜃𝜚+ 𝑎𝜌

)︂
(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟)

1 − 𝑎2𝜃𝜚
,

= (1 + 𝑎𝜌− 𝑎2𝜃𝜚)−1(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟).

Then for the Periphery set we have;

r𝑃𝑟(G,Ω, 𝑎) = 𝜋𝑃𝑟 − 𝑎𝜚(1 + 𝑎𝜌− 𝑎2𝜃𝜚)−1(𝜋𝐶𝑟 − 𝑎𝜃𝜋𝑃𝑟)

�

Proof of Lemma 3.5.1

Recall that 𝑔𝑗𝑖 =
𝑏𝑗𝑖
𝑏𝑖

.

Assume 𝒩 = 𝒜. This means we can rewrite (3.4) as follows

𝑃𝑖 = 𝑏−𝑖𝑟𝑖 −
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑏𝑗𝑖𝑟𝑗 − 𝜅 ∙ (𝜇𝑖)
2 (3.34)

Also, from (3.8),

𝑟𝑖 = 𝜋𝑖 − 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑏𝑗𝑖
𝑏−𝑖

𝑟𝑗
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yielding;

𝑏−𝑖𝜋𝑖 = 𝑏−𝑖𝑟𝑖 + 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

𝑏𝑗𝑖𝑟𝑗 (3.35)

Also from (3.35), ∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

𝑏𝑗𝑖𝑟𝑗 =
𝑏−𝑖𝜋𝑖 − 𝑏−𝑖𝑟𝑖

𝑎
(3.36)

then substituting (3.35) and (3.36) in (3.34) yields;

𝑃𝑖 = 𝑏−𝑖𝑟𝑖 −
𝑏−𝑖𝜋𝑖 + 𝑏−𝑖𝑟𝑖

𝑎
− 𝜅 ∙ (𝜇𝑖)

2

which is also;

𝑃𝑖 = 𝑏−𝑖𝑟𝑖
(𝑎+ 1)

𝑎
− 𝑏−𝑖𝜋𝑖

𝑎
− 𝜅 ∙ (𝑏−𝑖𝜋𝑖)

2

Given that we have 𝜋𝑖 = 1
2𝜅𝑏−𝑖

, we then have our payoff as ;

𝑃𝑖∈𝒜 =
𝑏−𝑖(𝑎+ 1)

𝑎
𝑟𝑖 −

2 + 𝑎

4𝜅𝑎
. (3.37)

Let 𝜔 = (𝑎+1)
𝑎

and 𝜂 = 2+𝑎
4𝜅𝑎

, given (4), we have the expression with respect to firm

𝑖 ∈ 𝒜 Bonacich centrality as;

𝑃𝑖∈𝒜 = 𝜔𝑏−𝑖

(︀
(I + 𝑎G)−1 ∙ 𝜋𝒜

)︀
𝑖
− 𝜂 (3.38)

In vector for, this becomes;

P𝒜 = 𝑑𝑖𝑎𝑔(B) ∙
(︀
(I + 𝑎G)−1 ∙ 𝜋𝒜

)︀
−𝐾

such that 𝐾 = [𝜂]𝒜×1 and B = [𝜔 ∙ 𝑏−𝑖]
𝒜×1. �
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Proof of Proposition 3.5.1

So we have that given 𝜆 = (1+𝜀), we have 𝑃 𝜀
𝑖 (𝑟𝑖) = 𝜆

(︁
𝑏−𝑖 ∙ 𝑟𝑖 −

∑︀
𝑗∈𝒩 𝑖𝑛

𝑖
(𝑔𝑗𝑖𝑏𝑖) 𝑟𝑗

)︁
−

𝜅 (𝜆𝜇𝑖)
2 + 𝜉𝑟𝑖. If we were to take the differential with respect to 𝑟𝑖; we end up with

the best reply as follows;

𝑟𝑖(𝜆) =
𝜋𝑖
𝜆

− 𝑎
∑︁
𝑗

𝜆𝑏𝑗𝑖
𝜆𝑏−𝑖

𝑟𝑗 =
𝜋𝑖
𝜆

− 𝑎
∑︁
𝑗

𝑏𝑗𝑖
𝑏−𝑖

𝑟𝑗.

This is so that rewriting in vector form, our Nash for active firms is given as;

r(𝜆) = (I + 𝑎G𝒜)−1 ∙
𝜋𝒜

𝜆
.

We can simply deduce from (3.18) that the vector payoff for active firms is as

follows;

P𝜆
𝒜 = 𝜆𝑑𝑖𝑎𝑔(B) ∙

(︁
(I + 𝑎G𝒜)−1 ∙

𝜋𝒜

𝜆

)︁
−𝐾 = P𝒜

This is because granting 𝜀𝑏−𝑖 to each firm 𝑖 ∈ 𝒩 yields equation (1) and (6). Hence

payoff is homogeneous of degree zero, i.e P𝜆
𝒜(𝜆𝑏−𝑖) = P𝒜(𝑏−𝑖). As such, welfare

differential

𝑊 (r*,𝒜) −𝑊 𝜆(r𝜆,𝒜) = 1𝑇 (P𝒜 −P𝜆
𝒜) = 0.

�

Proof of Theorem 3.5.1

Assume the Planner decides to change a firm 𝑖’s total lending by a parameter 𝜆 and

let us have it that the policy intervention 𝜆𝑖 such that payoffs is written as;

𝑃 𝜆
𝑖 (𝑟𝑖) = 𝜆𝑖𝑏−𝑖 ∙ 𝑟𝑖 −

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖

(𝑔𝑗𝑖𝑏𝑖) 𝑟𝑗 − 𝑘

⎛⎝𝜆𝑖𝑏−𝑖 ∙ 𝑟𝑖 + 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖

(𝑔𝑗𝑖𝑏𝑖) 𝑟𝑗

⎞⎠2

(3.39)
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The addition of 𝜆𝑏𝑖 to firm 𝑖 is strictly conditional on the following;

1. 𝒜(𝜆) = 𝒜, and

2. 𝑎 ∈
]︂
0, 1⃒⃒⃒

G(𝜆)+G(𝜆)𝑇

2

⃒⃒⃒
[︂
.

The Nash equilibrium for firm 𝑖 given 𝜆𝑏−𝑖 is ;

𝑟𝜆𝑖 =
𝜋𝑖
𝜆𝑖

− 𝑎
∑︁

𝑗∈𝒩 𝑖𝑛
𝑖 ,𝑗∈𝒜

𝑔𝑗𝑖
𝜆𝑖
𝑟𝜆𝑗

While the equilibrium for all firm 𝑗|𝑗 ∈ 𝒩 𝑜𝑢𝑡
𝑖 ∩ 𝒜 is

𝑟𝜆𝑗 = 𝜋𝑗 − 𝑎
∑︁

𝑘∈(𝒩 𝑖𝑛
𝑘 −{𝑖})∩𝒜

𝑔𝑘𝑗𝑟
𝜆
𝑘 − 𝑎𝜆𝑖𝑔𝑖𝑗𝑟

𝜆
𝑖

The vector payoff for active firms is then;

P𝜆
𝒜 = 𝑑𝑖𝑎𝑔(B𝜆) ∙

(︀
(I + 𝑎G𝜆

𝒜)−1 ∙ 𝜋𝜆
𝒜
)︀
−𝐾

where B𝜆 = (𝜔𝜆𝑖𝑏𝑖, 𝜔𝑏𝑗, 𝜔𝑏𝑘, . . .)
𝑇 , 𝜋𝜆 =

(︀
𝜆−1
𝑖 𝜋𝑖, 𝜋𝑗, 𝜋𝑘 . . .

)︀𝑇 and lastly,

G𝜆
𝒜 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑔𝑗𝑖
𝜆𝑖

. . . 𝑔𝑛𝑖

𝜆𝑖

𝜆𝑖𝑔𝑖𝑗 . . . . . . 𝑔𝑗𝑖
...

...
...

...

𝜆𝑖𝑔𝑖𝑛 𝑔𝑛𝑗 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We then show that 𝑑𝑖𝑎𝑔(B𝜆) ∙

(︀
(I + 𝑎G𝜆

𝒜)−1 ∙ 𝜋𝜆
𝒜
)︀

= 𝑑𝑖𝑎𝑔(B) ∙ ((I + 𝑎G𝒜)−1 ∙ 𝜋𝒜).

First we have that
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𝑑𝑖𝑎𝑔(B𝜆)∙
(︀
(I + 𝑎G𝜆

𝒜)−1 ∙ 𝜋𝜆
𝒜
)︀

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜔𝜆𝑖𝑏𝑖 0 . . . 0

0 . . . . . . 0

...
...

...
...

0 0 . . . 𝜔𝑏𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑚𝑖𝑖
𝑚𝑗𝑖

𝜆𝑖
. . . 𝑚𝑛𝑖

𝜆𝑖

𝑚𝑖𝑗 * 𝜆𝑖 . . . . . . 𝑚𝑛𝑖

...
...

...
...

𝑚𝑖𝑛 * 𝜆𝑖 𝑚𝑛𝑗 . . . 𝑚𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜋𝑖

𝜆𝑖

𝜋𝑗
...

𝜋𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
This is then the same as;

𝑑𝑖𝑎𝑔(B𝜆) ∙
(︀
(I + 𝑎G𝜆

𝒜)−1 ∙ 𝜋𝜆
𝒜
)︀

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜔𝜆𝑖𝑏−𝑖 0 . . . 0

0 . . . . . . 0

...
...

...
...

0 0 . . . 𝜔𝑏−𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜆𝑖

(𝑚𝑖𝑖𝜋𝑖 +𝑚𝑗𝑖𝜋𝑗 + . . .+𝑚𝑛𝑖𝜋𝑛)

𝑚𝑖𝑗𝜋𝑖 + . . .+ . . .+𝑚𝑛𝑖𝜋𝑛
...

𝑚𝑖𝑛𝜋𝑖 +𝑚𝑛𝑗𝜋𝑗 + . . .+𝑚𝑛𝑛𝜋𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜔𝑏𝑖 (𝑚𝑖𝑖𝜋𝑖 +𝑚𝑗𝑖𝜋𝑗 + . . .+𝑚𝑛𝑖𝜋𝑛)

𝜔𝑏𝑗 (𝑚𝑖𝑗𝜋𝑖 + . . .+ . . .+𝑚𝑛𝑖𝜋𝑛)

...

𝜔𝑏𝑛 (𝑚𝑖𝑛𝜋𝑖 +𝑚𝑛𝑗𝜋𝑗 + . . .+𝑚𝑛𝑛𝜋𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑑𝑖𝑎𝑔(B) ∙

(︀
(I + 𝑎G𝒜)−1 ∙ 𝜋𝒜

)︀
Say then we have 𝜆𝑖 ̸= 𝜆𝑗 ̸= . . . ̸= 𝜆𝑛, we have our Nash equilibrium as;

(I+𝑎G𝜆
𝒜)−1∙𝜋𝜆

𝒜 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑚𝑖𝑖
𝑚𝑗𝑖*𝜆𝑗

𝜆𝑖
. . . 𝑚𝑛𝑖*𝜆𝑛

𝜆𝑖

𝑚𝑖𝑗*𝜆𝑖

𝜆𝑗
. . . . . . 𝑚𝑛𝑖*𝜆𝑛

𝜆𝑗

...
...

...
...

𝑚𝑖𝑛*𝜆𝑖

𝜆𝑛

𝑚𝑛𝑗*𝜆𝑗

𝜆𝑛
. . . 𝑚𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜋𝑖

𝜆𝑖

𝜋𝑗

𝜆𝑗

...

𝜋𝑛

𝜆𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜆𝑖

(𝑚𝑖𝑖𝜋𝑖 +𝑚𝑗𝑖𝜋𝑗 + . . .+𝑚𝑛𝑖𝜋𝑛)

1
𝜆𝑗

(𝑚𝑖𝑗𝜋𝑖 + . . .+ . . .+𝑚𝑛𝑖𝜋𝑛)

...

1
𝜆𝑗

(𝑚𝑖𝑛𝜋𝑖 +𝑚𝑛𝑗𝜋𝑗 + . . .+𝑚𝑛𝑛𝜋𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Which when multiplied by 𝑑𝑖𝑎𝑔(B𝜉) still yields the same expression that

𝑑𝑖𝑎𝑔(B𝜆) ∙
(︀
(I + 𝑎G𝜆

𝒜)−1 ∙ 𝜋𝜆
𝒜
)︀

= 𝑑𝑖𝑎𝑔(B) ∙
(︀
(I + 𝑎G𝒜)−1 ∙ 𝜋𝒜

)︀
.
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�

Proof of Lemma 3.5.3

then best replies are ;

𝑟𝛾𝑖 =
𝜋𝑖

(1 + 𝛾)
− 𝑎

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖 ,𝑗∈𝒜

𝑔𝑗𝑖𝑟
𝛾
𝑗

While the vector payoff for active firms is then;

P𝛾
𝒜 = 𝑑𝑖𝑎𝑔(B) ∙

(︂
(I + 𝑎G𝒜)−1 ∙

𝜋𝒜

(1 + 𝛾)

)︂
− 𝐾

(1 + 𝛾)
=

1

(1 + 𝛾)
∙ P𝒜

as such, welfare differential

𝑊 𝛾(r𝛾,𝒜) −𝑊 (r*,𝒜) = 1𝑇P𝒜 ∙
𝛾

(1 + 𝛾)

�

*

Proof of Theorem 3.6.1 The best replies for the firm 𝑖 which is subsidised for is ;

𝑟𝛾𝑖 =
𝜋𝑖

(1 + 𝛾)
− 𝑎

∑︁
𝑗∈𝒩 𝑖𝑛

𝑖 ,𝑗∈𝒜

𝑔𝑗𝑖𝑟
𝛾
𝑗

While the vector payoff for active firms is then;

P𝛾
𝒜 = 𝑑𝑖𝑎𝑔(B) ∙

(︀
(I + 𝑎G𝒜)−1 ∙ 𝜋𝛾

𝒜
)︀
−𝐾𝛾

Where 𝜋𝛾
𝒜 =

(︁
𝜋𝑖

1+𝛾
, 𝜋𝑗, . . .

)︁𝑇

, while 𝐾𝛾 =
(︁

𝜂
1+𝛾

, 𝜂, . . .
)︁𝑇

. As such, payoff vector
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differential;

P𝛾(r𝛾,𝒜) −P(r*,𝒜) = 𝑑𝑖𝑎𝑔(B) ∙
(︀
(I + 𝑎G𝒜)−1 ∙ (𝜋𝛾

𝒜 − 𝜋𝒜)
)︀
− (𝐾𝛾 + 𝐾) (3.40)

Where 𝜋𝛾
𝒜 − 𝜋𝒜 =

(︁
𝜋𝑖𝛾
1+𝛾

, 0, . . . , 0
)︁𝑇

, while 𝐾𝛾 − 𝐾 =
(︁

𝜂𝛾
1+𝛾

, 0, . . . , 0
)︁𝑇

We can

then expand (3.40) as such;

P𝛾(r𝛾,𝒜) −P(r,𝒜) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜔𝑏−𝑖 0 . . . 0

0 . . . . . . 0

...
...

...
...

0 0 . . . 𝜔𝑏−𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∙ (I + 𝑎G𝒜)−1 ∙

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 𝜋𝑖𝛾
1+𝛾

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 𝜂𝛾
1+𝛾

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜔𝑏−𝑖 0 . . . 0

0 . . . . . . 0

...
...

...
...

0 0 . . . 𝜔𝑏−𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∙

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝑚𝑖𝑖
𝜋𝑖𝛾
1+𝛾

−𝑚𝑖𝑗
𝜋𝑖𝛾
1+𝛾

...

−𝑚𝑖𝑘
𝜋𝑖𝛾
1+𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 𝜂𝛾
1+𝛾

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝑚𝑖𝑖𝜔
𝑏−𝑖𝜋𝑖𝛾
1+𝛾

−𝑚𝑖𝑗𝜔
𝑏−𝑗𝜋𝑖𝛾

1+𝛾

...

−𝑚𝑖𝑘𝜔
𝑏−𝑛𝜋𝑖𝛾
1+𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 𝜂𝛾
1+𝛾

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

This then means that since 𝜋𝑖 = 1
2𝜅𝑏−𝑖

, we have;

∆𝑊 (r𝛾,𝒜|𝑖) =
−𝛾𝜔

2𝜅(1 + 𝛾)

(︂
𝑚𝑖𝑖 +𝑚𝑖𝑗

𝑏−𝑗

𝑏−𝑖

+ . . .+𝑚𝑖𝑛
𝑏−𝑛

𝑏−𝑖

)︂
+

𝜂𝛾

1 + 𝛾
(3.41)

This means that if 𝑏−𝑖 = 𝑏−𝑗 ∀ 𝑖, 𝑗 ∈ 𝒜, then we have that the equation above
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becomes;

∆𝑊 (r𝛾,𝒜|𝑖) =
−𝛾𝜔

2𝜅(1 + 𝛾)
(𝑚𝑖𝑖 +𝑚𝑖𝑗 + . . .+𝑚𝑖𝑛) +

𝜂𝛾

1 + 𝛾

=
−𝛾𝜔

2𝜅(1 + 𝛾)
∙ 𝛽𝑖(G

𝑇
𝒜,−𝑎) +

𝜂𝛾

1 + 𝛾

> 0 in so far 𝛾 < 0.

(3.42)

Observe also that −𝛾𝜔
2𝜅(1+𝛾)

as well as 𝜂𝛾
1+𝛾

is common to every active firm. This

means that the firm 𝑖 such that 𝛽𝑖(G𝑇
𝒜,−𝑎) is greatest achieves the highest value

of ∆𝑊 (r𝛾,𝒜|𝑖).

�

Pseudo-Code for Computation

Algorithm 1 Nash Equilibrium Lending Rate Algorithm
1: procedure Define Parameters

2: 𝒜(𝑘) ⊂ 𝒩 , 𝒩 −𝒜(𝑘) ⊂ 𝒩 , 𝒩 −𝒜(𝑘) ∩ 𝒜(𝑘) = ∅, 𝒩 −𝒜(𝑘) ∪ 𝒜(𝑘) = 𝒩 .

3: 𝑚𝑎𝑥𝑘 = 2|𝒩 | − 1 (𝑙𝑜𝑜𝑝)

4: loop:

5: if 𝑘 = 1 : 1 : 𝑚𝑎𝑥𝑘 then

6: r*𝒜(𝑘) = (I + 𝑎G𝒜(𝑘),𝒜(𝑘))
−1 ∙ 𝜋𝒜(𝑘).

7: r*𝒩−𝒜(𝑘) = 0.

8: End If :

9: r*𝒜(𝑘) ≥ 0 and,

10: 𝑎G𝒩−𝒜(𝑘),𝒜(𝑘) ∙ r*𝒜(𝑘) ≥ 𝜋𝒩−𝒜(𝑘).

11: Else:

12: goto loop.
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