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Multiple orthogonal polynomials with respect to Gauss’
hypergeometric function

Hélder Lima∗and Ana Loureiro∗

December 27, 2020

Abstract

A new set of multiple orthogonal polynomials of both type I and type II with respect to two
weight functions involving Gauss’ hypergeometric function on the interval (0,1) is studied.
This type of polynomials have direct applications in the investigation of singular values of
products of Ginibre matrices, in the analysis of rational solutions to Painlevé equations and are
connected with branched continued fractions and total positivity problems in combinatorics.
The pair of orthogonality measures is shown to be a Nikishin system and to satisfy a matrix
Pearson-type differential equation. The focus is on the polynomials whose indexes lie on the
step line, for which it is shown that differentiation on the variable gives a shift on the param-
eters, therefore satisfying Hahn’s property. We obtain a Rodrigues-type formula for type I,
while a more detailed characterisation is given for the type II polynomials (aka 2-orthogonal
polynomials) which include: an explicit expression as a terminating hypergeometric series,
a third-order differential equation, and a third-order recurrence relation. The asymptotic be-
haviour of their recurrence coefficients mimics those of Jacobi-Piñeiro polynomials, based on
which, their zero asymptotic distribution and a Mehler-Heine asymptotic formula near the ori-
gin are given. Particular choices on the parameters degenerate in some known systems such
as special cases of the Jacobi-Piñeiro polynomials, Jacobi-type 2-orthogonal polynomials, and
components of the cubic decomposition of threefold symmetric Hahn-classical polynomials.
Equally considered are confluence relations to other known polynomial sets, such as multiple
orthogonal polynomials with respect to Tricomi functions.
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MOPs with respect to Gauss’ hypergeometric function

1 Introduction and motivation

The main aim of this paper is to investigate the multiple orthogonal polynomials with
respect to two absolutely continuous measures supported on the interval (0,1) and admitting an
integral representation via weight functions W (x;a,b;c,d) and W (x;a,b+1;c+1,d), where

W (x;a,b;c,d) =
Γ(c)Γ(d)

Γ(a)Γ(b)Γ(δ )
xa−1(1− x)δ−1

2F1

(
c−b,d−b

δ
; 1− x

)
, (1.1)

with

a,b,c,d ∈ R+ such that min{c,d}> max{a,b} and δ = c+d−a−b > 0. (1.2)

The weight functions involve Gauss’ hypergeometric function, which is defined, for pa-
rameters α,β ∈ C and γ ∈ C\{−n : n ∈ N}, by

2F1 (α,β ;γ;z) =
∞

∑
n=0

(α)n (β )n
(γ)n

zn

n!
. (1.3)

where (z)n denotes the Pochhammer symbol defined by

(z)0 = 1 and (z)n := z(z+1) · · ·(z+n−1), n ∈ Z+.

The detailed knowledge of multiple orthogonal polynomials with respect to (generalised)
hypergeometric functions has applications in random matrix theory, combinatorics, description
of rational solutions to nonlinear differential difference equations, such as Painlevé equations,
number theory, among other fields. For instance, the analysis of singular values of products
of Ginibre matrices in [19, 18] uses multiple orthogonal polynomials associated with weight
functions expressed in terms of Meijer G-functions, a class of weights to which the weight
(1.1) belongs. Besides, these polynomials are linked with the branched continued fractions
introduced in [29] as the generating functions of m-Dyck paths, for the purpose of solving
total positivity problems involving combinatorially interesting sequences of polynomials. This
connection, which leads to new results on both fields involved, will be further explored in
forthcoming work.

The hypergeometric function defined by (1.3) converges absolutely for |z| < 1, and it is a
solution of the hypergeometric differential equation

z(1− z)F ′′(z)+(γ− (α +β +1)z)F ′(z)−αβF(z) = 0. (1.4)

Recall the identity 2F1 (α,β ;γ;1) = Γ(γ)Γ(γ−α−β )
Γ(γ−β )Γ(γ−α) , which is valid for (γ −α −β ) > 0. When

(γ −α − β ) < 0, we have lim
x→1−

(1− x)−(γ−α−β )
2F1 (α,β ;γ;x) = Γ(γ)Γ(α+β−γ)

Γ(α)Γ(β ) . This yields

lim
x→0+

W (x;a,b;c,d) = 0.

Observe that W (x;a,b;c,d) = W (x;a,b;d,c), which is a straightforward consequence of
(1.1) and (1.3). In addition, the symmetry W (x;a,b;c,d) =W (x;b,a;c,d) also holds, because
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using [8, Eq. 15.8.1] we have

2F1

(
c−b,d−b

δ
; 1− x

)
= xb−a

2F1

(
d−a,c−a

δ
; 1− x

)
.

Under the assumptions (1.2), we have (see [4, Eq. 2.21.1.11] or [16, Eq. 7.512.4])∫ 1

0
xa+n−1(1− x)δ−1

2F1

(
c−b,d−b

δ
; 1− x

)
dx =

Γ(a+n)Γ(b+n)Γ(δ )
Γ(c+n)Γ(d +n)

.

Therefore, W (x;a,b;c,d) is a probability density function on the interval (0,1) with moments∫ 1

0
xnW (x;a,b;c,d)dx =

(a)n (b)n
(c)n (d)n

for n ∈ N. (1.5)

Throughout the text, N = Z+
0 = {0,1,2, · · ·}. When referring to {Pn(x)}n∈N as a polyno-

mial sequence it is assumed that Pn is a polynomial of a single variable with degree exactly n.
We consistently deal with monic polynomials, unless stated otherwise.

Multiple orthogonal polynomials are a generalisation of (standard) orthogonal polynomi-
als. We give a brief introduction to this topic here, further information can be found for instance
in [17, Ch. 23] and [23].

The orthogonality conditions of multiple orthogonal polynomials are spread across a vector
of r ∈ Z+ measures and they are polynomials on a single variable depending on a multi-index
~n = (n0, · · · ,nr−1)∈Nr of length |~n|= n0+ · · ·+nr−1. There are two types of multiple orthog-
onal polynomials with respect to a system of r measures (µ0, · · · ,µr−1). When the number of
measures is r = 1, both types of multiple orthogonality reduce to standard orthogonality. A
polynomial sequence {Pn(x)}n∈N is orthogonal with respect to a measure µ if

∫
xkPn(x)dµ(x) =

{
0, if 0≤ k ≤ n−1,

Nn 6= 0, if n = k.

We focus on the case of r = 2 measures but the definitions presented here are easily gener-
alised for r ≥ 2.

The type I multiple orthogonal polynomials for~n = (n0,n1)∈N2 are given by a vector of 2
polynomials

(
A(n0,n1),B(n0,n1)

)
, with degA(n0,n1) ≤ n0−1 and degB(n0,n1) ≤ n1−1, satisfying

the orthogonality and normalisation conditions

∫
xkA(n0,n1)(x)dµ0(x)+

∫
xkB(n0,n1)(x)dµ1(x) =

{
0, if 0≤ k ≤ n0 +n1−2,

1, if k = n0 +n1−1.
(1.6)

If the measures µ0(x) and µ1(x) are absolutely continuous with respect to a common posi-
tive measure µ , that is, if there exist weight functions w0(x) and w1(x) such that dµ j(x) =
w j(x)dµ(x), for both j ∈ {0,1}, then the type I function is

Q(n0,n1)(x) = A(n0,n1)(x)w0(x)+B(n0,n1)(x)w1(x) (1.7)
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MOPs with respect to Gauss’ hypergeometric function

and the conditions in (1.6) become

∫
xkQ(n0,n1)(x)dµ(x) =

{
0, if 0≤ k ≤ n0 +n1−2,

1, if k = n0 +n1−1.

The type II multiple orthogonal polynomial for~n= (n0,n1)∈N2 is a monic polynomial P(n0,n1)

of degree n0 +n1 which satisfies, for both j ∈ {0,1}, the orthogonality conditions∫
xkP(n0,n1)(x)dµ j(x) = 0, 0≤ k ≤ n j−1. (1.8)

The orthogonality conditions for both type I and type II multiple orthogonal polynomials give
a non-homogeneous system of n0 + n1 linear equations for the n0 + n1 unknown coefficients
of the vector of polynomials

(
A(n0,n1),B(n0,n1)

)
in (1.6) or the polynomials P(n0,n1)(x) in (1.8).

If the solution exists, it is unique and the corresponding matrices of the system for type I and
type II are the transpose to each other. However it is possible that this system doesn’t have
a solution, unless further conditions are imposed (unlike standard orthogonality on the real
line, the existence of such solutions is not a trivial matter). If there is a unique solution, then
the multi-index ~n is called normal and if all multi-indices are normal, the system is a perfect
system.

An example of systems known to be perfect are the Algebraic Tchebyshev systems, or
simply AT-systems (see [28, Ch. 4]). A pair of measures (µ0,µ1) is an AT-system on an interval
I for a multi-index~n = (n0,n1)∈N2 if the measures µ0(x) and µ1(x) are absolutely continuous
with respect to a common positive measure µ on I, via weight functions w0(x) and w1(x), and
the set of functions{

w0(x),xw0(x), · · · ,xn0−1w0(x),w1(x),xw1(x), · · · ,xn1−1w1(x)
}

forms a Chebyshev system on I, meaning that for any polynomials p0 and p1 of degree not
greater than n0− 1 and n1− 1, respectively, and not simultaneously equal to 0, the function
p0(x)w0(x)+ p1(x)w1(x) has at most n0 +n1−1 zeros on I. A vector of measures (µ0,µ1) is
an AT-system on an interval I if it is an AT-system on I for every multi-index in N2.

Another special example of a perfect system is a Nikishin system (firstly introduced in
[27]). A pair of measures (µ0,µ1) forms a Nikishin system (of order 2) if both measures
are supported on an interval I0 and there exists a positive measure σ on an interval I1 with
I0∩ I1 = /0 such that

dµ1(x)
dµ0(x)

=
∫

I1

dσ(t)
x− t

. (1.9)

It was proved in [13] that every Nikishin system is perfect (see also [14] for the cases where
the supports of the measures are unbounded or where consecutive intervals touch at one point).
More precisely, it is proved in [13] and [14] that every Nikishin system is an AT-system,
therefore it is perfect. Moreover, for any (n0,n1)∈N2 belonging to an AT-system on an interval
I, the type I function for Q(n0,n1) defined by (1.7) has exactly n0 +n1−1 sign changes on I and
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the type II multiple orthogonal polynomial P(n0,n1) has n0 +n1 simple zeros on I which satisfy
an interlacing property as there is always a zero of P(n0,n1) between two consecutive zeros of
P(n0+1,n1) or P(n0,n1+1). As a Nikishin system is always an AT-system, the same properties hold
for Nikishin systems.

The main contribution of this paper is on multi-indices on the step line. A multi-index
(n0,n1) ∈ N2 is on the step line if either n0 = n1 or n0 = n1 +1 (alternatively to the latter we
could consider n1 = n0 + 1, that change is equivalent to swapping the roles of the measures).
For each n∈N, there is a unique multi-index of length n on the step line of N2. More precisely,
the multi-index of length n is~n= (m,m), if n= 2m, or~n= (m+1,m), if n= 2m+1. Therefore,
when we only consider multi-indices on the step line, we can replace any multi-index by its
length without any ambiguity.

For the type II multiple orthogonal polynomials on the step line, we obtain a polynomial
sequence with exactly one polynomial of degree n for each n ∈ N. These are often referred to
as d-orthogonal polynomials (where d is the number of orthogonality measures), as introduced
in [25]. In the case of d = 2 measures, the type II multiple orthogonality conditions (1.8) on
the step line correspond to say that if we set

P2m(x) = Pm,m(x) and P2m+1(x) = Pm+1,m(x),

then the polynomial sequence {Pn(x)}n∈N is 2-orthogonal with respect to a pair of measures
(µ0,µ1) if for each j ∈ {0,1}

∫
xkPn(x)dµ j(x) =

{
0, if n≥ 2k+ j+1,

Nn 6= 0, if n = 2k+ j.

Straightforwardly from the definition (1.8) observe that {P(n,0)}n≥0 and {P(0,n)}n≥0 are
(standard) orthogonal polynomial sequences with respect to the measures µ0 and µ1, respec-
tively. As such, by the spectral theorem for orthogonal polynomials (aka Shohat-Favard theo-
rem) : {P(n,0)}n≥0 and {P(0,n)}n≥0 are orthogonal if and only if there exist coefficient two pairs

of coefficients (β (0)
n ,γ

(0)
n ) and (β

(1)
n ,γ

(1)
n ) with γ

( j)
n 6= 0 for all n≥ 1 and each j = 1,2 such that

{P(n,0)}n≥0 and {P(0,n)}n≥0 respectively satisfy the second order recurrence relation

pn+1(x) = (x−β
( j)
n )pn(x)− γ

(1)
n pn−1(x),

with initial conditions p−1 = 0 and p0 = 1. Moreover, if the β -coefficients are all real and the
γ-coefficients are all positive, then µ is a positive measure on the real line.

Multiple orthogonal polynomials also satisfy (nearest-neighbour) recurrence relations (see
[34]). In particular, when the indexes lie on the step line, a polynomial sequence {Pn(x)}n∈N
is 2-orthogonal if and only if it satisfies a third order recurrence relation of the type

Pn+1(x) = (x−βn)Pn(x)−αnPn−1(x)− γn−1Pn−2(x), (1.10)

with γn 6= 0, for all n≥ 1, and initial conditions P−2 = P−1 = 0 and P0 = 1.
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The latter recurrence relation can be expressed, for each n ∈ Z+, as

Hn


P0(x)
P1(x)

...
Pn−2(x)
Pn−1(x)

= x


P0(x)
P1(x)

...
Pn−2(x)
Pn−1(x)

−Pn(x)


0
0
...
0
1

 ,

involving the truncated lower-Hessenberg matrix

Hn =



β0 1 0 0 · · · 0
α1 β1 1 0 · · · 0

γ1 α2 β2 1
. . .

...

0
. . . . . . . . . . . . 0

...
. . . γn−3 αn−2 βn−2 1

0 · · · 0 γn−2 αn−1 βn−1


. (1.11)

Therefore, the zeros of Pn(x) correspond to the eigenvalues of the Hessenberg matrix Hn, which
highlights the connection between multiple orthogonal polynomials and the spectral theory of
non-selfadjoint operators explored in [1] and [33], among others.

For the type I multiple orthogonal polynomials on the step line for r = 2 measures, we have

deg(An)≤
⌊

n−1
2

⌋
and deg(Bn)≤

⌊n
2

⌋
−1,

that is, deg(An)=m−1, if n= 2m or n= 2m−1, and deg(Bn)=m−1, if n= 2m or n= 2m+1.
Assuming that there exists a positive measure µ and a pair of weight functions (w0,w1) such
that dµ0(x) = w0(x)dµ(x) and dµ1(x) = w1(x)dµ(x), the type I function on the step line is

Qn(x) = An(x)w0(x)+Bn(x)w1(x) (1.12)

and the orthogonality and normalisation conditions correspond to

∫
xkQn(x)dµ(x) =

{
0, if 0≤ k ≤ n−2,

1, if k = n−1.

Further information about multiple orthogonal polynomials can be found for instance in [17,
Ch. 23] and [23].

We start Section 2 by showing that the weight functions W (x;a,b;c,d) and W (x;a,b+
1;c+ 1,d) in (1.1) form a Nikishin system (see Theorem 2.1). This readily implies that the
multiple orthogonal polynomials of both type II and type I with respect to these weight func-
tions exist and are unique for every multi-index ~n = (n0,n1) ∈ N2 and their zeros satisfy the
properties as those of an AT-system. Next we obtain a second order differential equation and
a matrix differential equation satisfied by the weight functions (see Theorems 2.2 and 2.3,
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respectively), which we use to deduce differential properties for the multiple orthogonal poly-
nomials of both type II and type I on the step line (see Theorem 2.4). More precisely, we show
that the differentiation of both type II and type I polynomials on the step line gives a shift on
the parameters as well as on the index. So this means that these multiple orthogonal polyno-
mials satisfy the so called Hahn’s property: the sequence of its derivatives is again multiple
orthogonal. In particular, the type II polynomials stand as an example of a Hahn-classical 2-
orthogonal family. Finally, we derive a Rodrigues-type formula for the type I functions on the
step line (see Theorem 2.5) as well as a recursive relation generating the type I polynomials.

Section 3 is devoted to the characterisation of the 2-orthogonal polynomials with respect
to the pair of weights

[
W (x;a,b;c,d),W (x;a,b+1;c+1,d)

]
. To begin with, in §3.1, we give

an explicit expression for these polynomials as terminating generalised hypergeometric series,
more precisely as 3F2. Generalised hypergeometric series are formally defined by

pFq

(
α1, · · · ,αp

β1, · · · ,βq
; z
)
=

∞

∑
n=0

(α1)n · · ·(αp)n
(β1)n · · ·(βq)n

zn

n!
, (1.13)

where p,q ∈ N, z,α1, · · · ,αp ∈ C and β1, · · · ,βp ∈ C\{−n : n ∈ N}. If one of the parameters
α1, · · · ,αp is a non-positive integer, the series (1.13) terminates and defines a (hypergeometric
type) polynomial. When the series does not terminate, it converges for all finite values of
z if p ≤ q and on the open unit disk |z| < 1 (with convergence on the unit circle depending
on the parameters) if p = q + 1 and it diverges for any z 6= 0 otherwise. When the series
is convergent, the function defined by (1.13) is a solution to the generalised hypergeometric
differential equation (see [8, Eq. 16.8.3])[(

z
d
dz

+β1

)
· · ·
(

z
d
dz

+βq

)
d
dz

]
F(z) =

[(
z

d
dz

+α1

)
· · ·
(

z
d
dz

+αp

)]
F(z). (1.14)

Note that the latter reduces to (1.4) when (p,q) = (2,1). Thus, based on the explicit ex-
pression for the 2-orthogonal polynomials we are able to describe them as a solution to a third
order differential equation (of hypergeometric type) in §3.2 and in §3.3 as a solution to a third
order recurrence relation. Particular choices on the parameters a,b,c,d of these polynomials
result in known multiple orthogonal polynomials. So, in §3.5 we make the connection to the
so-called Jacobi-type 2-orthogonal polynomials investigated in [21], where we pay particular
attention to the case where all the coefficients are constant. The recurrence relation coeffi-
cients of the multiple orthogonal polynomials under analysis can be written as combinations
of the coefficients of a branched continued fraction representation for a generalised hyperge-
ometric function derived in [29]. Hence, these recurrence coefficients are real, positive and
bounded, whose asymptotic behaviour coincides with the one of the recurrence relation co-
efficients of Jacobi-Piñeiro (type II) multiple orthogonal polynomials on the step line studied
in [6]. As a consequence (see [5]), the two distinct polynomial sets also share the same ratio
asymptotics and therefore the same asymptotic zero distribution as well as the same Mehler-
Heine asymptotic near the endpoint at 0, as detailed in §3.4. Besides, other particular choices
on the parameters a,b,c,d lead to the three components of certain 3-fold symmetric Hahn-
classical 2-orthogonal polynomials on star-like sets that appeared in [24], as we explain in

7
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§3.6. Finally, we establish confluence relations (or limiting relations on the parameters) to
other Hahn-classical 2-orthogonal polynomials of hypergeometric type, such as the ones in-
vestigated in [22].

2 Differential properties and multiple orthogonality

This investigation starts with a pair of weight functions W (x;a,b;c,d) and W (x;a,b+
1;c+1,d) defined in (1.1) subject to the constraints (1.2) on the parameters a,b,c and d. The
goal is to describe multiple orthogonal polynomials of type I and type II with respect to these
weights. Before doing so, we aim to prove that such sets of polynomials exist and are unique. A
fact that is proved to be true, after it is shown in Theorem 2.1 in §2.1 that the vector of weights[
W (x;a,b+1;c+1,d),W (x;a,b;c,d)

]
forms a Nikishin system. The characterisation of the

polynomials is guided by the algebraic and differential properties of the weights. As such, the
technical results described in Theorem 2.3 (regarding the vector of weights) and Theorem 2.4
(for the differential properties of the polynomials of type II and the type I functions) form the
basis of an explicit analysis carried on in §2.3 for the type I and in the next Section 3 for the
type II polynomials.

2.1 Nikishin system

We show that the weight vector
[
W (x;a,b+1;c+1,d),W (x;a,b;c,d)

]
forms a Nikishin

system, which guarantees that both type I and II multiple orthogonal polynomials with respect
to these weight functions exist and are unique for every multi-index (n0,n1) ∈ N2 as well as
it implies that the type I multiple orthogonal polynomials A(n0,n1) and B(n0,n1) have degree
exactly n0−1 and n1−1, respectively, and the type II multiple orthogonal polynomial P(n0,n1)

has n0+n1 positive real simple zeros that satisfy the usual interlacing property: there is always
a zero of P(n0,n1) between two consecutive zeros of P(n0+1,n1) or P(n0,n1+1).

To prove this result, we use the connection between continued fractions and Stieltjes trans-
forms to guarantee the existence of an integral representation of the type in (1.9) for the ratio
of the weight functions involved. For simplicity, we follow the notation for continued fractions
used in [7]:

∞

K
n=0

(
an

bn

)
:=

a0

b0 +
a1

b1 +
a2

b2 + · · ·

. (2.1)

Particularly relevant to this work are the so-called Stieltjes continued fractions or, simply, S-
fractions, due to their connection with Stieltjes transforms which was firstly investigated in
[32]. The continued fraction playing a role here is an example of a modified S-fraction which
is obtained if, for some constants αk, k ∈N, we set in (2.1), a0 = α0 and, for any n ∈N, bn = 1
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and an+1 = αn+1z, to obtain

F(z) =
α0

1+
α1z

1+
α2z

1+ · · ·

. (2.2)

The main result of this subsection is the following.

Theorem 2.1. Let W (x;a,b;c,d) be given (1.1) under the assumptions (1.2). The ratio

W (x;a,b;c,d)
W (x;a,b+1;c+1,d)

can be represented via the continued fraction (2.2) with z = x− 1 and αn = (1−gn−1)gn,

where g0 = 0, g2k+1 =
c−b+ k
δ +2k

and g2k+2 =
d−b+ k

δ +2k+1
for n≥ 1 and k≥ 0. Moreover, there

exist probability density functions σ in (0,1) and θ in (1,+∞) such that

W (x;a,b;c,d)
W (x;a,b+1;c+1,d)

=
c
b

∫ 1

0

dσ(t)
1+ t(x−1)

=
c
b

∫ −1

−∞

dθ(−u)
x−1−u

=
c
b

∫ 0

−∞

dθ(1− s)
x− s

.(2.3)

Therefore, the vector of weight functions
[
W (x;a,b+1;c+1,d),W (x;a,b;c,d)

]
forms a Nik-

ishin system on the interval (0,1).

Proof. Recalling (1.1),

W (x;a,b;c,d)
W (x;a,b+1;c+1,d)

=
c
b

2F1 (c−b,d−b;δ ;1− x)

2F1 (c−b,d−b−1;δ ;1− x)
, with δ = c+d−a−b. (2.4)

Therefore, the ratio of weight functions above admits a representation similar to Gauss’ con-
tinued fraction. More precisely, based on [29, Eq. (14.29)], the ratio of weights in (2.4) can be
represented by a continued fraction of the type in (2.2), with z = x−1, and coefficients

α0 =
c
b

; α1 =
c−b

δ
; α2k+1 =

(c−b+ k)(c−a+ k)
(δ +2k−1)(δ +2k)

, k ≥ 1; α2k+2 =
(d−b+ k)(d−a+ k)
(δ +2k)(δ +2k+1)

, k ∈ N.

Moreover, the coefficients αn, n≥ 1, can be rewritten as αn = (1−gn−1)gn, with g0 = 0 and,

for each k∈N, g2k+1 =
c−b+ k
δ +2k

and g2k+2 =
d−b+ k

δ +2k+1
(see [20, Eqs. (2.7)-(2.8)]). Note that

0 < gn < 1, for all n≥ 1, and, as a result, the continued fraction described above is of the type
in [37, Eq. 27.8]. Therefore, the first integral representation in (2.3) can be derived directly
from [37, Eq. 67.5] and the second one can be deduced combining [37, Ths. 67.1 & 27.5],
while the last equality in (2.3) is obtained via the change of variable s = u+1.

Under the additional assumption b > a−1 and using a recent result from Dyachenko and
Karp in [11], the generating measure σ in (2.3) admits the following integral representation

W (x;a,b;c,d)
W (x;a,b+1;c+1,d)

=
∫ 1

0

λ tc+d−2b−2(1− t)b−adt

(1+ t(x−1)) |2F1 (c−b,d−b−1;δ ; t−1)|2
+K(c,d) (2.5a)

9
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with

λ =
c(Γ(δ ))2

bΓ(c−b)Γ(d−b)Γ(d−a)Γ(c−a+1)
and K(c,d) =

{
0, if d ≤ c+1,
d−c−1

d−1 , if d ≥ c+1.

The change of variable t = 1
1−s in (2.5a) gives

W (x;a,b;c,d)
W (x;a,b+1;c+1,d)

=
∫ 0

−∞

λ (−s)b−a(1− s)1−δ

(x− s)
∣∣∣2F1 (c−b,d−b−1;δ ;1− s)

∣∣∣2 ds+K(c,d).(2.5b)

Hence, if b > a− 1, the measures in the first and last integral representations in (2.3) can be
explicitly represented by (2.5a) and (2.5b), respectively.

2.2 Differential properties

We start by describing the weight function W (x;a,b;c,d) in (1.1) as a solution to a second-
order ordinary differential equation, to then describe the vector of weight functions

W (x;a,b;c,d) :=

[
W (x;a,b;c,d)

W (x;a,b+1;c+1,d)

]
, (2.6)

as a solution to a system of first order differential equations in Theorem 2.3. A result that is
crucial to obtain, in Theorem 2.4, differential properties on the system of multiple orthogonal
polynomials of type II and the functions of type I, revealing their Hahn-classical property.

Proposition 2.2. For a,b,c,d ∈R+ such that min{c,d}>max{a,b}, let W (x) :=W (x;a,b;c,d)
be the weight function defined by (1.1). Then

(1− x)x2W ′′(x)+((c+d−5)x− (a+b−3))xW ′(x)+((a−1)(b−1)− (c−2)(d−2)x)W (x) = 0.
(2.7)

Proof. We set δ = c+d−a−b, λ =
Γ(c)Γ(d)

Γ(a)Γ(b)Γ(δ )
and F(z) = 2F1 (c−b,d−b;δ ;z) so that

W (x) = λxa−1(1− x)δ−1F(1− x).

Differentiating this expression twice, we get

W ( j)(x) = λxa−1− j(1− x)δ−1− jFj(x), j = 0,1,2, (2.8)

with F0(x) = F(1− x),

F1(x) =
(
(2+b− c−d)x+(a−1)

)
F(1− x)− x(1− x)F ′(1− x)

and

F2(x) = x2(1− x)2F ′′(1− x)+2x(1− x)
(
(c+d−b−2)x+(1−a)

)
F ′(1− x)

+
(
(c+d−b−2)(c+d−b−3)x2−2(a−1)(c+d−b−3)x+(a−1)(a−2)

)
F(1− x).

10
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Recall (1.4) to derive that F(1− x) = 2F1 (c−b,d−b;δ ;1− x) satisfies

x(1− x)F ′′(1− x) = (c−b)(d−b)F(1− x)− ((c+d−2b+1)x+(b−a−1))F ′(1− x),

which can be used to rewrite F2(x) as

F2(x) = ((5− c−d)x+(a+b−3))F1(x)+(1− x)((c−2)(d−2)x− (a−1)(b−1))F0(x).

Combining the latter relation with (2.8), we derive (2.7).

Based on the second order differential equation (2.7) we deduce a system of first order
differential equations for which the vector (2.6) is a solution.

Theorem 2.3. Let W (x;a,b;c,d) as defined in (2.6) subject to (1.2). Then, the following
identities hold

xΦ(x)W (x;a,b;c,d) = W (x;a+1,b+1;d +1,c+2) (2.9)

and
d
dx

(
xΦ(x)W (x;a,b;c,d)

)
+Ψ(x)W (x;a,b;c,d) = 0, (2.10)

where

Φ(x) := Φ(x;a,b;c,d) =


c(c+1)d
ab(c−b)

− (c+1)d
a(c−b)

− c(c+1)d(d +1)
ab(b+1)(d−a)

x
(c+1)d(d +1)
a(b+1)(d−a)

 (2.11)

and

Ψ(x) := Ψ(x;a,b;c,d) =

 −c(c+1)d
a(c−b)

c(c+1)d
a(c−b)

c(c+1)d2(d +1)
ab(b+1)(d−a)

x − (c+1)d(d +1)
(b+1)(d−a)

 .
Proof of Theorem 2.3. In order to prove (2.9), we need to check that[

V0(x)

V1(x)

]
:= xΦ(x)

[
W (x;a,b;c,d)

W (x;a,b+1;c+1,d)

]
=

[
W (x;a+1,b+1;d +1,c+2)

W (x;a+1,b+2;d +2,c+2)

]
.

Firstly,

V0(x) = x
(c+1)d
a(c−b)

( c
b

W (x;a,b;c,d)−W (x;a,b+1;c+1,d)
)

=
Γ(c+2)Γ(d +1)xa(1− x)δ−1

Γ(a+1)Γ(b+1)Γ(δ )(c−b)

(
2F1

(
c−b,d−b

δ
; 1− x

)
− 2F1

(
c−b,d−b−1

δ
; 1− x

))
.

11
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Based on [8, Eq. 15.5.15 & Eq. 15.5.16], we obtain, respectively,

(c−b)2F1

(
c−b+1,d−b

δ +1
; 1− x

)
= δ 2F1

(
c−b,d−b

δ
; 1− x

)
− (d−a)2F1

(
c−b,d−b

δ +1
; 1− x

)
and

d−a
δ

(1− x)2F1

(
c−b,d−b

δ +1
; 1− x

)
= 2F1

(
c−b,d−b−1

δ
; 1− x

)
− x 2F1

(
c−b,d−b

δ
; 1− x

)
.

Therefore, we can derive that

c−b
δ

(1− x)2F1

(
c−b+1,d−b

δ +1
; 1− x

)
= 2F1

(
c−b,d−b

δ
; 1− x

)
− 2F1

(
c−b,d−b−1

δ
; 1− x

)
and, as a result,

V0(x) =
Γ(c+2)Γ(d +1)xa(1− x)δ

Γ(a+1)Γ(b+1)Γ(δ +1) 2F1

(
c−b+1,d−b

δ +1
; 1− x

)
= W (x;a+1,b+1;d +1,c+2).

(2.12)

Similarly, we have

V1(x) = x
(c+1)d(d +1)
a(b+1)(d−a)

(
W (x;a,b+1;c+1,d)− c

b
xW (x;a,b;c,d)

)
=

Γ(c+2)Γ(d +2)xa(1− x)δ−1

Γ(a+1)Γ(b+2)Γ(δ )(d−a)

(
2F1

(
c−b,d−b−1

δ
; 1− x

)
− x 2F1

(
c−b,d−b

δ
; 1− x

))
and

2F1

(
c−b,d−b−1

δ
; 1− x

)
− x 2F1

(
c−b,d−b

δ
; 1− x

)
=

d−a
δ

(1− x)2F1

(
c−b,d−b

δ +1
; 1− x

)
,

hence we get

V1(x) =
Γ(c+2)Γ(d +2)xa(1− x)δ

Γ(a+1)Γ(b+2)Γ(δ +1) 2F1

(
d−b,c−b

δ +1
; 1− x

)
= W (x;a+1,b+2;d +2,c+2).

In order to prove (2.10), we need to check that

[
V ′0 (x)

V ′1 (x)

]
=


c(c+1)d
a(c−b)

(
W (x;a,b;c,d)−W (x;a,b+1;c+1,d)

)
(c+1)d(d +1)
(b+1)(d−a)

(
W (x;a,b+1;c+1,d)− cd

ab
xW (x;a,b;c,d)

)
 .

Recalling (2.12),

V ′0 (x) = W ′(x;a+1,b+1;d +1,c+2)

=
Γ(c+2)Γ(d +1)

Γ(a+1)Γ(b+1)Γ(δ +1)
d
dx

(
xa(1− x)δ

2F1

(
c−b+1,d−b

δ +1
; 1− x

))
,

12
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which is equivalent to

V ′0 (x) =
Γ(c+2)Γ(d +1)xa−1(1− x)δ−1

Γ(a+1)Γ(b+1)Γ(δ +1)
G0(x),

with

G0(x) =(a− (c+d−b)x)2F1

(
c−b+1,d−b

δ +1
; 1− x

)
− (c−b+1)(d−b)

δ +1
x(1− x)2F1

(
c−b+2,d−b+1

δ +2
; 1− x

)
.

Using [8, Eq. 15.5.19],

(c−b+1)(d−b)
δ +1

x(1− x)2F1

(
c−b+2,d−b+1

δ +2
; 1− x

)
=δ 2F1

(
c−b,d−b−1

δ
; 1− x

)
−
(
(c+d−2b)x+(b−a)

)
2F1

(
c−b+1,d−b

δ +1
; 1− x

)
.

(2.13)

so that

G0(x) =−δ 2F1

(
c−b,d−b−1

δ
; 1− x

)
+b(1− x)2F1

(
c−b+1,d−b

δ +1
; 1− x

)
=

δ

c−b

(
b 2F1

(
c−b,d−b

δ
; 1− x

)
− c 2F1

(
c−b,d−b−1

δ +1
; 1− x

))
.

Therefore,

V ′0 (x) =
Γ(c+2)Γ(d +1)xa−1(1− x)δ−1

Γ(a+1)Γ(b)Γ(δ )(c−b)

(
2F1

(
c−b,d−b

δ
; 1− x

)
− c

b 2F1

(
c−b,d−b−1

δ +1
; 1− x

))
,

which implies that

V ′0 (x) =
c(c+1)d
a(c−b)

(
W (x;a,b;c,d)−W (x;a,b+1;c+1,d)

)
.

Similarly,

V ′1 (x) = W ′(x;a+1,b+2;d +2,c+2) =
Γ(c+2)Γ(d +2)

Γ(a+1)Γ(b+2)Γ(δ +1)
d
dx

(
xa(1− x)δ

2F1

(
c−b,d−b

δ +1
; 1− x

))
,

which is equivalent to

V ′1 (x) =
Γ(c+2)Γ(d +1)xa−1(1− x)δ−1

Γ(a+1)Γ(b+1)Γ(δ +1)
G1(x),
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with

G1(x) =(a− (c+d−b)x)2F1

(
c−b,d−b

δ +1
; 1− x

)
− (c−b)(d−b)

δ +1
x(1− x)2F1

(
c−b+1,d−b+1

δ +2
; 1− x

)
.

Using (2.13) with a shift c→ c−1 and a→ a−1, we derive that

G1(x) =−δ 2F1

(
c−b−1,d−b−1

δ
; 1− x

)
+(b+1)(1− x)2F1

(
c−b,d−b

δ +1
; 1− x

)
=

δ

d−a

(
a 2F1

(
c−b,d−b−1

δ
; 1− x

)
−dx 2F1

(
c−b,d−b

δ
; 1− x

))
.

Therefore,

V ′1 (x) =
Γ(c+2)Γ(d +2)xa−1(1− x)δ−1

Γ(a)Γ(b+2)Γ(δ )(d−a)

(
2F1

(
c−b,d−b

δ
; 1− x

)
− d

a
x 2F1

(
c−b,d−b−1

δ +1
; 1− x

))
,

which implies that

V ′1 (x) =
(c+1)d(d +1)
(b+1)(d−a)

(
W (x;a,b+1;c+1,d)− cd

ab
xW (x;a,b;c,d)

)
.

The latter result guarantees the Hahn-classical property of the multiple orthogonal poly-
nomials investigated here. In fact, combining it with [22, Prop. 2.6 & 2.7] we show that the
differentiation with respect to the variable of both type I and type II polynomials on the step
line gives a shift on the parameters as well as on the index, as detailed in the next result.

Theorem 2.4. For a,b,c,d ∈ R+ such that min{c,d} > max{a,b}, let Pn(x;a,b;c,d) and
Qn(x;a,b;c,d), with n ∈ N, be, respectively, the type II multiple orthogonal polynomial and
the type I function for the index of length n on the step line with respect to W (x;a,b;c,d). Then

d
dx

(Pn+1(x;a,b;c,d)) = (n+1)Pn(x;a+1,b+1;d +1,c+2) (2.14)

and

d
dx

(
Qn(x;a+1,b+1;d +1,c+2)

)
=−nQn+1(x;a,b;c,d). (2.15)

Proof. Let Φ(x) be defined by (2.11) and denote W (x;a,b;c,d) by W (x).
Since W (x) satisfies the equation (2.10) and on account of the degrees of the polynomial

entries in the matrices Φ(x) and Ψ(x), then Proposition 2.6 in [22] ensures the 2-orthogonality

14
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of the polynomial sequence
{
(n+1)−1 P′n+1(x;a,b;c,d)

}
n∈N with respect to the vector of

weights xΦ(x)W (x) whilst Proposition 2.7 in [22] implies that, if Rn(x) is the type I func-
tion for the index of length n on the step line with respect to xΦ(x)W (x), then −n−1 R′n(x) is
the type I function for the index of length n+ 1 on the step line with respect to the vector of
weights W (x).

Therefore, by virtue of (2.9), we conclude that both (2.14) and (2.15) hold.

2.3 Type I multiple orthogonal polynomials

Due to the differential relation (2.15), the type I functions on the step line can be generated
by concatenated differentiation of the weight function or, in other words, via a Rodrigues-type
formula as it follows.

Theorem 2.5. For a,b,c,d ∈R+ such that min{c,d}>max{a,b} and n∈N, let Qn+1(x;a,b;c,d)
be the type I function for the index of length n+1 on the step line with respect to W (x;a,b;c,d).
Then

Qn+1(x;a,b;c,d) =
(−1)n

n!
dn

dxn

(
W

(
x;a+n,b+n;c+

⌊
n+1

2

⌋
+n,d +

⌊n
2

⌋
+n
))

.(2.16)

Proof. We proceed by induction on n ∈ N.
For n = 0, (2.16) reads as Q1(x;a,b;c,d) = W (x;a,b;c,d), which trivially holds.
Using (2.15) and then evoking the assumption that (2.16) holds for a fixed n∈N, we obtain

Qn+2(x;a,b;c,d) =− 1
n+1

d
dx

(Qn+1(x;a+1,b+1;d +1,c+2))

=
(−1)n+1

(n+1)!
dn+1

dxn+1

(
W

(
x;a+1+n,b+1+n;d +1+

⌊
n+1

2

⌋
+n,c+2+

⌊n
2

⌋
+n
))

=
(−1)n+1

(n+1)!
dn+1

dxn+1

(
W

(
x;a+n+1,b+n+1;c+

⌊
n+2

2

⌋
+n+1,d +

⌊
n+1

2

⌋
+n+1

))
.

If we equate the first and latter members, we obtain (2.16) for n+1 and the result follows by
induction.

We continue with further properties reagrding type I polynomials (An,Bn) in (1.12) asso-
ciated with the type I function Qn(x) in (2.16). In fact, Theorem 2.3 combined with the proof
of [22, Prop. 2.7] leads to the following differential-difference relation between the pair of
polynomials

(An+1(x),Bn+1(x)) := (An+1(x;a,b;c,d),Bn+1(x;a,b;c,d))

and

(Cn(x),Dn(x)) := (An(x;a+1,b+1;d +2,c+1),Bn(x;a+1,b+1;d +2,c+1)) ,
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the polynomials on the step line satisfying multiple orthogonality relations of type I with re-
spect to W (x;a,b;c,d) and to W (x;a+1,b+1;d +1,c+2):

An+1(x) =
c(c+1)d

nab

(
− 1

c−b

(
bCn(x)+ xC′n(x)

)
+

(d +1)x
(b+1)(d−a)

(
d Dn(x)+ xD′n(x)

))
(2.17a)

and

Bn+1(x) =
(c+1)d

na

(
1

c−b

(
cCn(x)+

x
b

C′n(x)
)
− d +1

(b+1)(d−a)

(
aDn(x)+ cxD′n(x)

))
(2.17b)

which hold for all n≥ 1.
Formulas (2.17a)-(2.17b) can be used to recursively generate type I polynomials with re-

spect to W (x;a,b;c,d). The latter can be written as follows

na
c(c+1)d

[
b 0
0 c

][
An+1(x)

Bn+1(x)

]
=

[
b −dx
−c a

]
M

[
Cn(x)

Dn(x)

]
+ x

[
1 −x
−1/b c

]
M

[
C′n(x)

D′n(x)

]

where

M =

[
− 1

c−b 0
0 − (d+1)

(b+1)(d−a)

]
or, equivalently,

nab
(c+1)d

[
An+1(x)

Bn+1(x)

]
=

[
bc −cdx

−bc ba

]
M

[
Cn(x)

Dn(x)

]
+ x

[
c −cx

−1 bc

]
M

[
C′n(x)

D′n(x)

]
.

Thus, the type I polynomials can be generated by the rising operator

O(a,b;c,d) =
(c+1)d

ab


 −

bc
c−b

cdx
c−b

bc
c−b

− ab
c−b

+

− c(d +1)
(b+1)(d−a)

c
c(d +1)x

(b+1)(d−a)

(d +1)
(b+1)(d−a)

−bc(d +1)
(b+1)(d−a)

 x∂x

 ,

since we have [
An+1(x;a,b;c,d)

Bn+1(x;a,b;c,d)

]
=

1
n

O

[
An(x;a+1,b+1;d +2,c+1)

Bn(x;a+1,b+1;d +2,c+1)

]
.

As a result, we obtain the matrix Rodrigues-type formula for type I polynomials[
An+1(x;a,b;c,d)

Bn+1(x;a,b;c,d)

]
=

1
n!

(
n−1

∏
k=0

O(ak,bk;ck,dk)

)[
1

0

]
, n ∈ N,

where, as usual, the product of differential operators is understood as the composition, and the
parameters involved are as follows ak = a+k, bk = b+k, c2 j = c+3 j and c2 j+1 = d+3 j+2,
d2 j = d +3 j and d2 j+1 = c+3 j+1.

16



H. Lima and A. F. Loureiro

3 Characterisation of the type II polynomials

The type II multiple orthogonal polynomials on the step line are described in detail here.
This characterisation includes: their explicit expression in Theorem 3.1, a third order linear
differential equation with polynomial coefficients in Theorem 3.3, a third order recurrence in
Theorem 3.4. The asymptotic properties of these polynomials are analysed in §3.4, which
coincide with those observed for Jacobi-Piñeiro polynomials. We give the ratio asymptotics of
two consecutive polynomials, the limiting zero distribution as well as a Mehler-Heine formula
for the behaviour near the endpoint 0. At last, we analyse particular realisations of these
polynomials. Namely, the connection to Jacobi-type 2-orthogonal polynomials, in §3.5, and
the connection to the cubic components of Hahn-classical threefold symmetric polynomials in
§3.6, where we also describe confluence relations to another (Hahn-classical) polynomials that
are 2-orthogonal with respect to weights involving the confluent hypergeometric functions of
the second kind.

3.1 Explicit expression

Based on the moments expression (1.5), we deduce an explicit representation for the type II
multiple orthogonal polynomials on the step line with respect to W (x;a,b;c,d) as generalised
hypergeometric series.

Theorem 3.1. For a,b,c,d ∈R+ such that min{c,d}>max{a,b}, let {Pn(x) := Pn(x;a,b;c,d)}n∈N
be the monic 2-orthogonal polynomial sequence with respect to W (x;a,b;c,d). Then

Pn(x) =
(−1)n (a)n (b)n(

c+
⌊ n

2

⌋)
n

(
d +

⌊ n−1
2

⌋)
n

3F2

(
−n,c+

⌊ n
2

⌋
,d +

⌊ n−1
2

⌋
a,b

; x
)
. (3.1)

By definition of the generalised hypergeometric series, the latter formula is equivalent to

Pn(x) =
n

∑
j=0

τn, jxn− j, with τn, j =

(
n
j

)
(−1) j (a+n− j) j (b+n− j) j(

c+
⌊ n

2

⌋
+n− j

)
j

(
d +

⌊ n−1
2

⌋
+n− j

)
j

. (3.2)

To prove Theorem 3.1 we need to show that the sequence {Pn(x)}n∈N defined by (3.1)
satisfies the 2-orthogonality conditions with respect to W (x;a,b;c,d), that is, we need to check
that, for each j ∈ {0,1},

∫ 1

0
xkPn(x)W (x;a,b+ j;c+ j,d)dx =

{
0, if n≥ 2k+ j+1,

Nn(a,b;c,d) 6= 0, if n = 2k+ j.
(3.3)

Actually, as we are dealing with a Nikishin system, the existence of a 2-orthogonal polynomial
sequence with respect to W (x;a,b;c,d) is guaranteed. By virtue of the generalised hyperge-
ometric differential equation (1.14), it is rather straightforward to show that the polynomials
given by (3.1) satisfy the differential property (2.14) stated in Theorem 2.4. A property that
a 2-orthogonal polynomial sequence with respect to W (x;a,b;c,d) must satisfy. Therefore, it
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would be sufficient to check the orthogonality conditions (3.3) when k = 0 to then prove the re-
sult by induction on n ∈N (the degree of the polynomials). However, we opt for checking that
the polynomials Pn(x) in (3.1) satisfy all the orthogonality conditions (3.3). On the one hand,
this process enables us to show directly that the polynomials in (3.1) are indeed 2-orthogonal
with respect to W (x;a,b;c,d) without arguing with the Nikishin property. On the other hand,
it provides a method to derive explicit expressions for the nonzero coefficients Nn(a,b;c,d)
in (3.3) which are used in Subsection 3.3 to obtain explicit expressions for the nonzero γ-
coefficients in the third order recurrence relation (1.10) satisfied by these polynomials.

To compute the integrals in (3.3), we use the following auxiliary lemma, which can be
found in [22, Lemma 3.2]. As mentioned therein, (3.5) was deduced in [26] and (3.4) can be
obtained by taking the limit β →+∞ in (3.5).

Lemma 3.2. Let n, p, and m1, · · · ,mp be positive integers such that m :=
p

∑
i=1

mi ≤ n and

β , f1, · · · , fp be complex numbers with positive real part. Then

p+1Fp

(
−n, f1 +m1, · · · , fp +mp

f1, · · · , fp
; 1
)
=


0 if m < n,

(−1)nn!
( f1)m1

· · ·( fp)mp

if m = n.
(3.4)

and

p+2Fp+1

(
−n,β , f1 +m1, · · · , fp +mp

β +1, f1, · · · , fp
; 1
)
=

n!( f1−β )m1
· · ·( fp−β )mp

(β +1)n ( f1)m1
· · ·( fp)mp

. (3.5)

Proof of Theorem 3.1. Recalling the explicit expression for Pn(x) given by (3.1), and the def-
inition of the generalised hypergeometric series (1.13), we get, for both j ∈ {0,1} and any
k,n ∈ N,∫ 1

0
xkPn(x)W (x;a,b+ j;c+ j,d)dx

=
(−1)n (a)n (b)n(

c+
⌊ n

2

⌋)
n

(
d +

⌊ n−1
2

⌋)
n

n

∑
i=0

(−n)i
(
c+
⌊ n

2

⌋)
i

(
d +

⌊ n−1
2

⌋)
i

i!(a)i (b)i

∫ 1

0
xk+iW (x;a,b+ j;c+ j,d)dx.

Moreover, using the formula for the moments of the hypergeometric weight (1.5),∫ 1

0
xkPn(x)W (x;a,b+ j;c+ j,d)dx

=
(−1)n (a)n (b)n(

c+
⌊ n

2

⌋)
n

(
d +

⌊ n−1
2

⌋)
n

n

∑
i=0

(−n)i
(
c+
⌊ n

2

⌋)
i

(
d +

⌊ n−1
2

⌋)
i

i!(a)i (b)i

(a)k+i (b+ j)k+i

(c+ j)k+i (d)k+i
.

Therefore, recalling again the definition of the generalised hypergeometric series (1.13), we
have∫ 1

0
xkPn(x)W (x;a,b+ j;c+ j,d)dx

=
(−1)n (a)n (b)n (a)k (b+ j)k(

c+
⌊ n

2

⌋)
n

(
d +

⌊ n−1
2

⌋)
n (c+ j)k (d)k

5F4

(
−n,a+ k,b+ k+ j,c+

⌊ n
2

⌋
,d +

⌊ n−1
2

⌋
a,b,c+ k+ j,d + k

; 1
)
.

(3.6)
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For any n ∈N,
⌊n

2

⌋
+

⌊
n−1

2

⌋
= n−1 and if n≥ 2k+ j+1, j ∈ {0,1}, then

⌊n
2

⌋
≥ k+ j and⌊

n−1
2

⌋
≥ k. Therefore, using (3.4) in Lemma 3.2, we deduce that, for both j ∈ {0,1},

5F4

(
−n,a+ k,b+ k+ j,c+

⌊ n
2

⌋
,d +

⌊ n−1
2

⌋
a,b,c+ k+ j,d + k

; 1
)
= 0, for any n≥ 2k+ j+1,

and, as a result,∫ 1

0
xkPn(x)W (x;a,b+ j;c+ j,d)dx = 0, for any n≥ 2k+ j+1.

Taking j = 0 and n = 2k in (3.6),

∫ 1

0
xkP2k(x)W (x;a,b;c,d)dx =

(a)2k (b)2k (a)k (b)k
(c)3k (d)3k−1 (d + k−1) 4F3

(
−2k,a+ k,b+ k,d + k−1

a,b,d + k
; 1
)
.

and, using (3.5), we get

4F3

(
−2k,a+ k,b+ k,d + k−1

a,b,d + k
; 1
)
=

(2k)!(a−d +1− k)k (b−d +1− k)k
(d + k)2k (a)k (b)k

=
(2k)!(d−a)k (d−b)k
(a)k (b)k (d + k)2k

.

Therefore, ∫ 1

0
xkP2k(x)W (x;a,b;c,d)dx =

(2k)!(a)2k (b)2k (d−a)k (d−b)k
(c)3k (d)3k (d + k−1)2k

> 0, (3.7)

and (3.3) holds for any k,n ∈ N when j = 0.
Similarly, taking j = 1 and n = 2k+1 in (3.6),

∫ 1

0
xkP2k+1(x)W (x;a,b+1;c+1,d)dx =−

(a)2k+1 (b)2k+1 (a)k (b+1)k

(c+1)3k (c+ k)(d)3k+1
4F3

(
−2k−1,a+ k,b+ k+1,c+ k

a,b,c+ k+1
; 1
)
.

and, using again (3.5), we get

4F3

(
−2k−1,a+ k,b+ k+1,c+ k

a,b,c+ k+1
; 1
)
=−

(2k+1)!(c−a+1)k (c−b)k+1

(a)k (b)k+1 (c+ k+1)2k+1
,

so that∫ 1

0
xkP2k+1(x)W (x;a,b+1;c+1,d)dx =

(2k+1)!(a)2k+1 (b+1)2k (c−a+1)k (c−b)k+1

(c+1)3k+1 (c+ k)2k+1 (d)3k+1
> 0.

(3.8)

ensuring that (3.3) also holds for any k,n ∈ N when j = 1.
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3.2 Differential equation

The type II multiple orthogonal polynomials of hypergeometric type described in (3.1) are
solutions to the following third order differential equation.

Theorem 3.3. For a,b,c,d ∈R+ such that min{c,d}>max{a,b}, let {Pn(x) := Pn(x;a,b;c,d)}n∈N
be the monic 2-orthogonal polynomial sequence with respect to W (x;a,b;c,d). Then

x2(1− x)P′′′n (x)− xϕ(x)P′′n (x)+ψn(x)P′n(x)+nλnPn(x) = 0, (3.9)

with

ϕ(x) = (c+d +2)x− (a+b+1),

ψn(x) =
(
(n−1)(c+d +n)−λn

)
x+ab,

λn =
(

c+
⌊n

2

⌋)(
d +

⌊
n−1

2

⌋)
.

Proof. Combining the explicit formula for the 2-orthogonal polynomials as terminating hy-
pergeometric series (3.1) and the generalised hypergeometric differential equation (1.14), we
obtain [(

x
d
dx

+a
)(

x
d
dx

+b
)

d
dx

]
Pn(x)

=

[(
x

d
dx
−n
)(

x
d
dx

+ c+
⌊n

2

⌋)(
x

d
dx

+d +

⌊
n−1

2

⌋)]
Pn(x).

(3.10)

Expanding the left-hand side of (3.10), we get[(
x

d
dx

+a
)(

x
d
dx

+b
)

d
dx

]
Pn(x) = x2 P′′′n (x)+(a+b+1)xP′′n (x)+abP′n(x).

Similarly, recalling that
⌊n

2

⌋
+

⌊
n−1

2

⌋
= n−1, for any n ∈ N, we derive

[(
x

d
dx

+ c+
⌊n

2

⌋)(
x

d
dx

+d +

⌊
n−1

2

⌋)]
Pn(x) = x2P′′n (x)+(c+d +n)xP′n(x)+ εnPn(x).

Therefore, the right-hand side of (3.10) is[(
x

d
dx
−n
)(

x
d
dx

+ c+
⌊n

2

⌋)(
x

d
dx

+d +

⌊
n−1

2

⌋)]
Pn(x)

=x3 P′′′n (x)+(c+d +2)x2 P′′n (x)+(λn− (n−1)(c+d +n))xP′n(x)−nλnPn(x).

Finally, combining the expressions for both sides of (3.10), we derive the differential equation
(3.9).
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3.3 Recurrence relation

As a 2-orthogonal sequence, the hypergeometric type polynomials expressed by (3.1) sat-
isfy a third order recurrence relation of the form

Pn+1(x) = (x−βn)Pn(x)−αnPn−1(x)− γn−1Pn−2(x), (3.11)

Our purpose here is to obtain explicit expressions for the recurrence coefficients involved. The
linear independence of {xn}n∈N implies that we can equate their coefficients on both sides
of the recurrence relation (3.11). After equating the coefficients of xn and xn−1 we obtain,
respectively,

βn = τn,1− τn+1,1 and αn = τn,2− τn+1,2− (τn,1)
2 + τn,1τn+1,1,

where, based on (3.2), we have

τn,1 =−
n(a+n−1)(b+n−1)(

c+
⌊ n

2

⌋
+n−1

)(
d +

⌊ n−1
2

⌋
+n−1

)
and

τn,2 =
n(a+n−1)(b+n−1)(n−1)(a+n−2)(b+n−2)

2
(
c+
⌊ n

2

⌋
+n−1

)(
d +

⌊ n−1
2

⌋
+n−1

)(
c+
⌊ n

2

⌋
+n−2

)(
d +

⌊ n−1
2

⌋
+n−2

) .
Hence we derive that, for each k ∈ N,

β2k(a,b;c,d) =
(2k+1)(a+2k)(b+2k)

(c+3k)(d +3k)
− 2k(a+2k−1)(b+2k−1)

(c+3k−1)(d +3k−2)

and

β2k+1(a,b;c,d) =
(2k+2)(a+2k+1)(b+2k+1)

(c+3k+2)(d +3k+1)
− (2k+1)(a+2k)(b+2k)

(c+3k)(d +3k)

as well as

α2k+1(a,b;c,d) =
(2k+1)(a+2k)(b+2k)

(c+3k)(d +3k)

(
k(a+2k−1)(b+2k−1)
(c+3k−1)(d +3k−1)

− (2k+1)(a+2k)(b+2k)
(c+3k)(d +3k)

+
(k+1)(a+2k+1)(b+2k+1)

(c+3k+1)(d +3k+1)

)
,

and

α2k+2(a,b;c,d) =
2(k+1)(a+2k+1)(b+2k+1)

(c+3k+2)(d +3k+1)

(
(2k+1)(a+2k)(b+2k)

2(c+3k+1)(d +3k)

− 2(k+1)(a+2k+1)(b+2k+1)
(c+3k+2)(d +3k+1)

+
(2k+3)(a+2k+2)(b+2k+2)

2(c+3k+3)(d +3k+2)

)
.
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The expressions for the coefficients γn in (3.11) could also be obtained in an analogous way af-
ter comparing the coefficients of xn−2. However, it is easier to derive such expressions directly
from the 2-orthogonality conditions, which, applied to the recurrence relation (3.11), imply
that, for each k ∈ N and j ∈ {0,1},

γ2k+1+ j(a,b;c,d) =

∫ 1

0
xk+1P2k+2+ j(x;a,b;c,d)W (x;a,b+ j;c+ j,d)dx∫ 1

0
xkP2k+ j(x;a,b;c,d)W (x;a,b+ j;c+ j,d)dx

.

Based on the latter alongside with (3.7) and (3.8), we deduce that, for all k ∈ N,

γ2k+1(a,b;c,d) =
(2k+1)2 (a+2k)2 (b+2k)2 (d−1+ k)(d−a+ k)(d−b+ k)

(c+3k)3 (d +3k−1)3 (d +3k)3
.

and

γ2k+2(a,b;c,d) =
(2k+2)2 (a+2k+1)2 (b+2k+1)2 (c+ k)(c−a+ k+1)(c−b+ k+1)

(c+3k+1)3 (c+3k+2)3 (d +3k+1)3

As a consequence, we have just proved the following result.

Theorem 3.4. For a,b,c,d ∈ R+ satisfying (1.2), let {Pn(x) := Pn(x;a,b;c,d)}n∈N be the
monic 2-orthogonal polynomial sequence with respect to W (x;a,b;c,d). Then {Pn(x)}n∈N
satisfies the recurrence relation

Pn+1(x) = (x−βn)Pn(x)−αnPn−1(x)− γn−1Pn−2(x), (3.12)

where, for each n ∈ N,

βn =
(n+1)(a+n)(b+n)(

c′n−1 +n
)
(c′n +n)

− n(a+n−1)(b+n−1)(
c′n−1 +n−1

)
(c′n +n−2)

, (3.13a)

αn+1 =
(n+1)(a+n)(b+n)
(c′n−1 +n)(c′n +n)

(
n(a+n−1)(b+n−1)

2(c′n−1 +n−1)(c′n +n−1)

− (n+1)(a+n)(b+n)
(c′n−1 +n)(c′n +n)

+
(n+2)(a+n+1)(b+n+1)
2(c′n−1 +n+1)(c′n +n+1)

)
.

and

γn+1 =
(n+1)2 (a+n)2 (b+n)2 (c

′
n−1)(c′n−a)(c′n−b)(

c′n−1 +n
)

3 (c
′
n +n)3 (c′n +n−1)3

, (3.13b)

with

c′n =

{
c+ k if n = 2k−1,

d + k if n = 2k.
(3.14)
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With the purpose of rewriting the recurrence relation coefficients using more convenient
expressions, we introduce a set of positive coefficients (λk = λk (a,b;c,d))k∈N, involving the
c′n introduced in the latter theorem and defined by

λ3n =
n(b+n−1)(c′n−a−1)

(c′n +n−2)(c′n +n−1)(c′n−1 +n−1)
,

λ3n+1 =
n(a+n)(c′n−1−b)

(c′n +n−1)(c′n−1 +n−1)(c′n−1 +n)
,

λ3n+2 =
(a+n)(b+n)(c′n−1)

(c′n +n−1)(c′n +n)(c′n−1 +n)
.

(3.15)

The coefficients above were obtained from [29, Th. 14.5] as the coefficients of a branched
continued fraction representation for 3F2 (a,b,1;c,d; t), the ordinary generating function of the
moment sequence given by (1.5).

Observe that λ0 = λ1 = 0 and λk > 0, for all k ≥ 2. In addition, λk →
4
27

, as k→ ∞, and
we have, for all n ∈ N,

• βn = λ3n +λ3n+1 +λ3n+2; (3.16)

• αn+1 = λ3n+1λ3n+3 +λ3n+2λ3n+3 +λ3n+2λ3n+4; (3.17)

• γn+1 = λ3n+2λ3n+4λ3n+6. (3.18)

Therefore, we can rewrite Theorem 3.4 as the following result.

Theorem 3.5. For a,b,c,d ∈ R+ satisfying (1.2), let {Pn(x) := Pn(x;a,b;c,d)}n∈N be the
monic 2-orthogonal polynomial sequence with respect to W (x;a,b;c,d) and let the coeffi-
cients λk, k ∈ N, be defined by (3.15) Then {Pn(x)}n∈N satisfies the recurrence relation (3.12),
with coefficients given by (3.16)-(3.18). Therefore, the recurrence coefficients are real, positive
and bounded with asymptotic behaviour

βn→ 3
(

4
27

)
=

4
9
, αn→ 3

(
4

27

)2

=
16

243
and γn→

(
4

27

)3

=
64

19683
, as n→ ∞.

(3.19)

The expressions (3.16)-(3.18) for the recurrence coefficients lead to a decomposition of the
lower-Hessenberg matrix (1.11) as a product of three bidiagonal matrices with positive entries
in the nonzero diagonals. Thus, (1.11) is a special type of totally positive matrix, an oscillatory
matrix (see [15]). As a result, we can conclude that the zeros of Pn(x), which correspond to the
eigenvalues of Hn, are real and positive as well as that the zeros of consecutive polynomials
interlace, similarly to the main result of [31, §9.2]. Furthermore, applying [22, Th. 3.5] to this
case, with β = 4

9 , α = 16
243 and γ = 64

19683 , we guarantee that the zeros have absolute value less
than 1. Therefore, we have an alternative proof, independent of the system being Nikishin,
that the zeros of {Pn(x;a,b;c,d)}n∈N are all located in the interval (0,1) and that the zeros of
consecutive polynomials interlace.
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3.4 Asymptotic behaviour. Connection with Jacobi-Piñeiro polynomials

Jacobi-Piñeiro polynomials are multiple orthogonal polynomials with respect to several
classical Jacobi weights on the same interval. They are usually defined as the multiple or-
thogonal polynomials with respect to measures (µ0, · · · ,µr−1) supported on the interval (0,1),
with dµi(x) = xαi(1− x)β dx for some β ,α1, · · · ,αr >−1 such that αi−α j 6∈ Z for any i 6= j.
These polynomials were introduced by Piñeiro in [30] with β = 0. See [6] for a Rodrigues
formula generating the type II Jacobi-Piñeiro polynomials as well as explicit expressions for
the polynomials and for their recurrence relation coefficients.

The asymptotic behaviour of the recurrence relation coefficients in Theorem 3.4 coincides
with the asymptotic behaviour obtained in [6] for the coefficients of the recurrence relation
satisfied by the Jacobi-Piñeiro polynomials. Based on this relation, we show in this subsection
that the polynomials investigated here share the ratio asymptotics, the asymptotic zero distri-
bution and a Mehler-Heine asymptotic formula near the endpoint 0 with the Jacobi-Piñeiro
polynomials. In fact, the Jacobi-Piñeiro polynomials originally studied by Piñeiro in [30] are a
limiting case of the polynomials investigated here. Precisely, the choice of c = a and d = b+1
gives W (x;a,b;c,d) = bxb−1 and W (x;a,b+ 1;c+ 1,d) = axa−1, and, for this reason, the
explicit formulas for the polynomials obtained in §3.1 and in [30] coincide.

Due to the asymptotic behaviour of the recurrence coefficients obtained in Theorem 3.4
and to the zeros of Pn(x) being real, simple and interlacing with the zeros of Pn+1(x), for each
n ∈ N, as previously shown, we can use [2, Lemma 3.2] and [5, Th. 3.1] to derive that

lim
n→∞

Pn(x)
Pn+1(x)

= ρ(x) :=
27
4

(
3
2

x
1
3

(
e

4πi
3

(
−1+

√
1− x

) 1
3
+ e

2πi
3

(
−1−

√
1− x

) 1
3
)
−1
)
,

uniformly on compact subsets of C\[0,1]. As explained in [5], the knowledge of this ratio
asymptotic leads to prove that

lim
n→∞

P′n(x)
Pn(x)

=−ρ ′(x)
ρ(x)

, for x ∈ C\[0,1],

which results in showing that there exists a limit for the normalised zero counting measure of
Pn(x)

νn :=
1
n ∑

Pn(x)=0
δx,

as n → ∞, in the sense of the weak limit of measures, ie lim
n→∞

∫
f dνn =

∫
f dν for every

bounded and continuous function f on [0,1]. Here δx is the Dirac point mass at x. As such, it
was proved that

lim
n→∞

∫ 1
x− t

dνn(t) =−
ρ ′(x)
ρ(x)

, for x ∈ C\[0,1],
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and, as shown in [5, Th. 2.1] the limiting measure ν has density

dν

dx
=


√

3
4π

(
1+
√

1− x
) 1

3 +
(
1−
√

1− x
) 1

3

x
2
3
√

1− x
if x ∈ (0,1),

0 elsewhere,

(3.20)

which is the asymptotic zero distribution of {Pn(x)}n∈N.
Jacobi-Piñeiro polynomials (orthogonal with respect to two measures) on the step line and

the polynomial sequence {Pn(x)}n∈N under analysis share the same ratio asymptotics and the
asymptotic zero distribution because their recurrence coefficients have the same asymptotic
behaviour and their zeros are simple, real, satisfy the interlacing property and are located on
the interval [0,1].

We also derive a Mehler-Heine asymptotic formula satisfied by the 2-orthogonal polyno-
mials Pn(x;a,b;c,d) near the origin, which give us more information about the zeros near
the endpoint 0 of the orthogonality interval. For that purpose, we recall that the generalised
hypergeometric series p+1Fq satisfies the confluent relation (see [8, Eq. 16.8.10])

lim
|α|→∞

p+1Fq

(
α1, · · · ,αp,α

β1, · · · ,βq
;

z
α

)
= pFq

(
α1, · · · ,αp

β1, · · · ,βq
; z
)
, (3.21)

whenever both sides of this relation are convergent. Moreover, we recall Theorem 3.1 to write

(−1)n
(
c+
⌊ n

2

⌋)
n

(
d +

⌊ n−1
2

⌋)
n

(a)n (b)n
Pn

( z
n3 ;a,b;c,d

)
= 3F2

(
−n,c+

⌊ n
2

⌋
,d +

⌊ n−1
2

⌋
a,b

;
z

n3

)
.

Clearly, c+
⌊n

2

⌋
,d +

⌊
n−1

2

⌋
∼ n

2
, as n→ ∞. So we apply (3.21) three consecutive times to

the generalised hypergeometric series on the right-hand side of the latter equation to deduce a
Mehler-Heine type formula near the endpoint 0

lim
n→∞

(−1)n
(
c+
⌊ n

2

⌋)
n

(
d +

⌊ n−1
2

⌋)
n

(a)n (b)n
Pn

( z
n3 ;a,b;c,d

)
= 0F2

(
−

a,b
;− z

4

)
,

which converges uniformly on compact subsets of C.
Note that the limit in this Mehler-Heine formula coincides with the limit in the Mehler-

Heine formula for the Jacobi-Piñeiro polynomials obtained in [35, Th. 2], with r = 2 and
q1 = q2 = 1/2.

Furthermore, we can derive a result about the asymptotic behaviour of the k-th smallest
zero of Pn(x;a,b;c,d), which also coincides with the one obtained in [35, §4] for the zeros of
the 2-orthogonal Jacobi-Piñeiro polynomials. In fact, if we denote the zeros of Pn(x;a,b;c,d)

by
(

x(n)k

)
1≤k≤n

and the zeros of the generalised hypergeometric series 0F2 (−;a,b;−z), which

are all real and positive, by ( fk)k∈Z+ , with the zeros written in increasing order for both cases,
then we have

lim
n→∞

n3x(n)k = 4 fk.
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3.5 Particular cases: Jacobi-type 2-orthogonal polynomials and a se-
quence with constant recurrence relation coefficients

Using the coefficients c′n introduced in (3.14), the explicit expression for the type II poly-
nomials given by (3.1) can be rewritten as

Pn(x;a,b;c,d) =
(−1)n (a)n (b)n(
c′n−2

)
n

(
c′n−1

)
n

3F2

(
−n,c′n−2,c

′
n−1

a,b
; x
)

Furthermore, if d = c +
1
2

, then c′n = c +
n+1

2
, for any n ∈ N, and the expression above

becomes

Pn

(
x;a,b;c,c+

1
2

)
=

(−4)n (a)n (b)n
(2c−1+n)2n

3F2

(
−n,c+ n−1

2 ,c+ n
2

a,b
; x
)
. (3.22)

The latter polynomials coincide, up to a linear transformation of the variable, with the Jacobi-

type 2-orthogonal polynomials investigated in [21], with c =
ν +1

2
.

A particular case of (3.22) which is worth of interest arises if we set (a,b;c,d)=
(

4
3
,

5
3

;2,
5
2

)
.

This choice of parameters gives

Pn

(
x;

4
3
,

5
3

;2,
5
2

)
=

(n+1)(n+2)
2

(
−4
27

)n

3F2

(
−n, n+3

2 , n
2 +2

4
3 ,

5
3

; x
)
, (3.23)

where we have used
(

4
3

)
n

(
5
3

)
n
=

(n+1)2n+2

2 ·27n . So, we have c′n =
n+5

2
, for any n ∈ N, and

the recurrence relation coefficients given by (3.13a)-(3.13b) are all constant and equal to the
limits in (3.19), precisely we have:

βn

(
4
3
,

5
3

;2,
5
2

)
=

4
9
, αn+1

(
4
3
,

5
3

;2,
5
2

)
=

16
243

and γn+1

(
4
3
,

5
3

;2,
5
2

)
=

64
19683

,

for all n ∈ N. Therefore, based on Theorem 3.4, the sequence
{

Pn

(
x;

4
3
,

5
3

;2,
5
2

)}
n∈N

satis-

fies the third-order recurrence relation with constant coefficients

Pn+1(x) =
(

x− 4
9

)
Pn(x)−

16
243

Pn−1(x)−
64

19683
Pn−2(x).

Finally, recall (2.6) and (1.1) and use [8, Eq. 15.4.9] to conclude that the polynomials in (3.23)-
(3.24) are 2-orthogonal with respect to the vector of weights

W

(
x;

4
3
,

5
3

;2,
5
2

)
=


81
√

3
16π

x
1
3

((
1+
√

1− x
) 1

3 −
(

1−
√

1− x
) 1

3
)

243
√

3
160π

x
1
3

((
1+
√

1− x
) 4

3 −
(

1−
√

1− x
) 4

3
)
 . (3.24)

Observe the similarities between the orthogonality weights above and the asymptotic zero
distribution (3.20).
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3.6 Connection with other Hahn-classical 2-orthogonal polynomials

Particular choices on the parameters a,b,c and d of the 2-orthogonal polynomial sequence
(3.1) appeared in [24] as the components of a certain family of threefold symmetric Hahn-
classical 2-orthogonal polynomials on star-like sets. A polynomial sequence {Sn(x)}n∈N is
said to be threefold symmetric if

Sn

(
e

2π
3 i x
)
= e

2nπ
3 iSn(x) and Sn

(
e

4π
3 i x
)
= e

4nπ
3 iSn(x). for all n ∈ N.

This means there exist three polynomial sequences
{

S[k]n (x)
}

n∈N
, with k ∈ {0,1,2}, which are

called the cubic components of {Sn(x)}n∈N, such that

S3n+k(x) = xkS[k]n (x3) for all n ∈ N.

As reported in [9] and studied in detail in [24], there are four distinct families of Hahn-
classical threefold symmetric 2-orthogonal polynomials, up to a linear transformation of the
variable. The four arising cases were therein denominated as A, B1, B2 and C. The polynomi-
als in case A have no parameter dependence and their cubic components are particular cases
of the 2-orthogonal polynomials with respect to Macdonald functions investigated in [3] and
[36], while the polynomials in cases B1 and B2 depend on a parameter and their cubic com-
ponents are particular cases of the 2-orthogonal polynomials with respect to weights involving
confluent hypergeometric functions of the second kind. These components were investigated
in [22]. At last, the cubic components of the polynomials in case C, depend on two parameters,
are particular cases of the 2-orthogonal polynomials under analysis here.

Precisely, denoting the Hahn-classical threefold symmetric 2-orthogonal polynomials anal-
ysed in [24, §3.4] by Sn(x; µ,ρ) and their cubic components by S[k]n (x; µ,ρ), k ∈ {0,1,2}, and
comparing the explicit expressions exhibited in [24, §3.4.1] with (3.1), we derive that, for each
µ,ρ ∈ R+ and k ∈ {0,1,2},

S[k]n (x; µ,ρ) = Pn (x;ak,bk;ck,dk) ,

with (ak,bk;ck,dk) equal to
(

1
3 ,

2
3 ; µ+2

3 , ρ

3 +1
)

,
(

4
3 ,

2
3 ; ρ

3 +1, µ+5
3

)
and

(
4
3 ,

5
3 ; µ+5

3 , ρ

3 +2
)

, for
k = 0,1,2, respectively.

Furthermore, there are confluent relations between the 2-orthogonal polynomials analysed
here and the ones investigated in [22]. These relations generalise the ones between case C and
cases B1 and B2 in [24], similarly to how the confluent relations shown in [22, Section 3.5]
generalise the ones between cases B1 and B2 and case A.

The 2-orthogonal polynomials investigated in [22] satisfy orthogonality conditions with
respect to weight functions V (x;a,b;c) and V (x;a,b;c+1), supported in R+, with a,b,c∈R+

such that c > max{a,b} and

V (x;a,b;c) =
Γ(c)

Γ(a)Γ(b)
e−xxa−1 U(c−b,a−b+1;x) , (3.25)
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where U(α,β ;x) is the confluent hypergeometric function of the second kind, also known
as the Tricomi function (see [8, §13] for the definition and some properties of the confluent
hypergeometric functions). These 2-orthogonal polynomials have also appeared in [10].

As shown in [22, Th. 3.1], if we denote by R[ε]
n (x;a,b;c), with ε ∈ {0,1}, the 2-orthogonal

polynomials with respect to [V (x;a,b;c+ ε),V (x;a,b;c+1− ε)], then

R[ε]
n (x) =

(−1)n (a)n (b)n(
c+
⌊ n+ε

2

⌋)
n

2F2

(
−n,c+

⌊ n+ε

2

⌋
a,b

; x
)
.

The confluent relations are a straightforward consequence of the explicit expressions for
the 2-orthogonal polynomials via the confluent relation for the generalised hypergeometric
series (3.21). Naturally, limiting relations connecting the corresponding weight functions are
obtained in a similar manner.

So, applying the confluent relation for the generalised hypergeometric series (3.21) to the
polynomials defined by (3.1), we derive the confluent relations

lim
d→∞

Pn

( x
d

;a,b;c,d
)
= R[0]

n (x;a,b;c) and lim
c→∞

Pn

(x
c

;a,b;c,d
)
= R[1]

n (x;a,b;d−1) .

We can also obtain similar confluent relations connecting the weight functions W (x;a,b;c,d),
defined by (1.1), and V (x;a,b;c), defined as in (3.25). More precisely, we derive

lim
d→∞

1
d

W
( x

d
;a,b;c,d

)
= V (x;a,b;c) and lim

c→∞

1
c

W
(x

c
;a,b;c,d

)
= V (x;a,b;d) ,

as a consequence of combining the linear transformation of variable (see [8, Eq. 15.8.1])

2F1

(
α,γ−β

γ
; z
)
= 2F1

(
α,β

γ
;

z
z−1

)
and the limiting relation between the hypergeometric and Tricomi functions (see [12, Eq. 6.8.1])

lim
γ→∞

2F1

(
α,β

γ
; 1− γ

x

)
= xα U(α,α−β +1;x) .

Concluding remarks.

The main contribution of this paper is the analysis of the multiple orthogonal polynomials
on the step line with respect to the Nikishin system obtained in Subsection 2.1. The study of
the multiple orthogonal polynomials with respect to the same system for indices out of the step
line and, in particular, the study of the (standard) orthogonal polynomials with respect to the
weight function W (x;a,b;c,d) remains an open (and challenging) problem. The same holds in
general when the weight function is a solution to a second (or higher) order differential equa-
tion. In spite of this, the knowledge of the multiple orthogonal polynomials whose indexes lie
on the step line is a largely sufficient tool for its applicability to a number of related fields in
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mathematics. An example of this applicability is the newly found connection between multi-
ple orthogonal polynomials and branched continued fractions which will be object of further
research.
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ing discussions on branched continued fractions and their connection with multiple orthogonal
polynomials.
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[9] K. Douak and P. Maroni. Les polynômes orthogonaux classiques de dimension deux.
Analysis, 12:71–107, 1992.

[10] Khalfa Douak and Pascal Maroni. On a new class of 2-orthogonal polynomials, i: the
recurrence relations and some properties. Integral Transforms and Special Functions,
0(0):1–20, 2020.

[11] A. Dyachenko and D. Karp. Ratios of the Gauss hypergeometric functions with parame-
ters shifted by integers. In preparation for publication.

29



MOPs with respect to Gauss’ hypergeometric function

[12] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Transcendental
Functions, volume 1. McGraw-Hill, New York, 1953.
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[30] L.R. Piñeiro. On simultaneous approximations for a collection of Markov functions.
Vestnik Mosk. Univ., Ser. I, 2:67–70, 1987.

[31] A. Saib. Some new perspectives on d-orthogonal polynomials. arXiv:1605.00049v5,
2018.

[32] T.-J. Stieltjes. Recherches sur les fractions continues. Annales de la Faculté des Sciences
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