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Abstract: Let L be a family of lines and let P be a family of k-planes in Fn where F is a
field. In our first result we show that the number of joints formed by a k-plane in P together
with (n− k) lines in L is On(|L||P|1/(n−k)). This is the first sharp result for joints involving
higher-dimensional affine subspaces, and it holds in the setting of arbitrary fields F. In
contrast, for our second result, we work in the three-dimensional Euclidean space R3, and
we establish the Kakeya-type estimate

∑
x∈J

(
∑
`∈L

χ`(x)

)3/2

. |L|3/2

where J is the set of joints formed by L; such an estimate fails in the setting of arbitrary fields.
This result strengthens the known estimates for joints, including those counting multiplicities.
Additionally, our techniques yield significant structural information on quasi-extremisers for
this inequality.

1 Introduction

Let F be an arbitrary field and let L be a finite family of lines in Fn where n≥ 3. A joint for L is a point
x ∈ Fn at which n lines from L with linearly independent directions meet. Denoting the set of joints by J,
it has been proved (see especially [15, 16] and also [2, 4, 7, 9, 10, 18]) that

|J|. |L|n/(n−1)

*This material is partly based upon work supported by the National Science Foundation under Grant No. 1440140, while the
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where the implicit constant depends only on the dimension n, and in particular is independent of the field
F. Simple grid-like examples illustrate the optimality of the exponent n/(n−1).

This result does not measure the extent to which joints can occur in a multiple fashion. For x ∈ Fn let

N(x) = #{(l1, . . . , ln) ∈ Ln : l1, . . . , ln form a joint at x}.

Following earlier works by Iliopoulou and by Hablicsek (see [11–14]), Zhang [22] has proved that

∑
x∈Fn

N(x)1/(n−1) . |L|n/(n−1) (1)

where once again the implicit constant depends only on the dimension.
A variant of this set-up is to consider the situation where we have n families of lines L1, . . . ,Ln of

possibly very different cardinalities. Let

N′(x) = #{(l1, . . . , ln) ∈ L1×·· ·×Ln : l1, . . . , ln form a joint at x}.

A point x at which N′(x) 6= 0 is called a multijoint for L1, . . . ,Ln. Zhang [22] has proved that

∑
x∈Fn

N′(x)1/(n−1) . |L1|1/(n−1) . . . |Ln|1/(n−1),

which is formally stronger than (but is in fact equivalent to) the corresponding estimate when all the
families of lines coincide. We refer to this result as the multijoints with multiplicities estimate. Once
again, there was previous work of Iliopoulou on this problem (see [12–14]) prior to Zhang’s result.

Indeed, in the special case of R3, this multijoints with multiplicities estimate has been proved via two
different approaches, one in [14], where the topology of R is exploited, and, as previously mentioned,
another in [22]. The goal of this paper is to present two new results, each one of which stems from one of
the two approaches which have been hitherto developed.

Multijoints. The first of these results relates to the approach in [22] and it gives a small, but perhaps
promising, step towards counting joints formed by higher dimensional planes (rather than lines) in Fn,
where F is an arbitrary field. This result is presented in Theorem 1.1 and was announced in [1]; we
believe it to be the first sharp result for joints and multijoints outside the setting of lines.

We describe the setting for this result. For 1 ≤ j ≤ d, let P j be a set of k j planes in Fn, where
k1 + · · ·+ kd = n. A multijoint for {P j} is a point of intersection of d planes Pj, where Pj ∈ P j, such
that if ωωω j is a set of vectors spanning the linear subspace parallel to Pj, then

⋃d
j=1 ωωω j spans Fn. Letting J

be the set of multijoints of {P j}, it is conjectured that1

|J|. |P1|1/(d−1) . . . |Pd |1/(d−1),

and moreover that
∑

x∈Fn

N′(x)1/(d−1) . |P1|1/(d−1) . . . |Pd |1/(d−1),

1While we were preparing the final version of this paper for publication in Discret. Anal., the next two conjectures were
solved by Tidor, Yu and Zhao. See arXiv:2008.01610.
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JOINTS AND KAKEYA

where now

N′(x) = #{(P1, . . . ,Pd) ∈ P1×·· ·×Pd : P1, . . . ,Pd form a multijoint at x}.

It is easy to see that the exponents 1/(d−1) are sharp. In Theorem 1.1 we establish the first of these
conjectures when all but one of the families P j consists of a comparable number of lines. Yang [20]
deals with the general setting, but an ε-loss in the exponents is incurred. As we prepared this paper for
publication, we were informed by Yu and Zhao that they have recently also obtained Theorem 1.1 by
somewhat different methods; see [21].

Discrete Kakeya and quasi-extremals. Wolff [19] first popularised the joints problem as a discrete
analogue of the famous Kakeya problem and the corresponding Kakeya maximal problem. A strict
analogue of the Kakeya maximal problem in the setting of arbitrary fields would involve bounding
expressions of the form

∑
x∈Fn

(
∑
l∈L

χl(x)

)n/(n−1)

by a quantity such as |L|n/(n−1), under some hypothesis on L such as its members having distinct
directions. In the setting of finite fields this sort of problem has been considered by Ellenberg, Oberlin
and Tao [8]. One cannot hope to have such an estimate in the case of infinite fields since the previously
displayed expression will be infinite as soon as L is nonempty. On the other hand, if one modifies the
expression to include the sum only over the joints of L, and thus to exclude certain lower-dimensional
pathologies, it does indeed make sense to ask whether one has

∑
x∈J

(
∑
l∈L

χl(x)

)n/(n−1)

. |L|n/(n−1)

under the hypothesis that the family L consists of distinct lines (without imposing the condition that the
members of L have distinct directions).

Note that, for a joint x, (∑l∈L χl(x))
n is at least as large as N(x), and it may be significantly larger –

for example in R3, take M� 1 distinct coplanar lines through 0 augmented by a further line through 0
which is not in the common plane. The proposed estimate is therefore rather strong (stronger than (1)): in
fact, it fails in the setting of finite fields. (Indeed, consider the finite field Fp, and take the family of all
lines in F2

p×{0} together with one ‘vertical’ line in F3
p passing through each point of F2

p×{0}. Then we
have a family L of ∼ p2 lines in F3

p such that for each of ∼ p2 joints in F3
p, ∑l∈L χl(x)∼ p, showing that

the proposed estimate cannot hold in this setting.)
Our second new result establishes the proposed estimate in three-dimensional Euclidean space. In

particular, further development of the approach to the multijoints with multiplicities problem in [14] leads
to the proposed estimate

∑
x∈J

(
∑
l∈L

χl(x)

)3/2

. |L|3/2

for an arbitrary family L of distinct lines in R3, and moreover it provides a context for revealing the
structure of quasi-extremal configurations in this setting (see Theorems 1.6 and 5.2). Needless to say, our
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approach relies upon topological properties of Euclidean space which are not available in the setting of
finite fields.

Notation. Before we proceed to state the main results, we establish some notation and terminology.
If A and B are nonnegative quantities, we use the expression A∼ B to denote the existence of absolute
constants cn and Cn, whose precise values may vary from line to line as appropriate, such that cnB≤ A≤
CnB. We take A . B to denote the existence of an absolute constant Cn, whose precise value may vary
from line to line as appropriate, such that A≤CnB. We define & similarly. For a finite set X we use the
notations #X and |X | interchangeably to denote its cardinality. A definite proportion of a finite set X is a
subset X ′ ⊆ X such that #X ′ & #X .

1.1. Statement of results. The first theorem concerns multijoints.

Theorem 1.1. (Multijoints estimate) Let n ≥ 3 and k ≥ 2. Let L1, . . . ,Ln−k be finite families of lines
and P be a family of k-planes in Fn. Let J be the set of multijoints formed by these collections. Then,

|J|. L|P|
1

d−1 ,

where
L := max{|L1|, . . . , |Ln−k|}

and
d := n− k+1

denotes the total number of collections.

As we mentioned above, simple examples demonstrate the sharpness of the exponents in this result.
For our other main result, we first need a definition regarding structure of a set J of points incident

to a set L of lines. We will call this structure planar. In particular, planar structure will imply that for
each x ∈ J there exists some special plane through x which carries a definite proportion of the lines in L

passing through x. Actually, we shall require something stronger:

Definition 1.2. Let L be a finite family of distinct lines in R3, and J a set of points incident to lines in L.
We say that J has planar structure if there exist a set P of planes in R3, and a partition of J into pairwise
disjoint sets JΠ, indexed by Π ∈ P, such that

JΠ ⊆Π for all Π,

and so that the sets
LΠ := {l ∈ L : l ⊆Π and l contains some point in JΠ}

satisfy the following properties:

P1) For all Π ∈ P, for all x ∈ JΠ,

#{lines in LΠ through x} ∼ #{lines in L through x}2;
2The attentive reader will recognise that the definition of planar structure depends on the small implicit constant c1 in this

expression: we should therefore, strictly speaking, refer to this as c1-planar structure.

DISCRETE ANALYSIS, 2020:18, 45pp. 4
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P2) The sets LΠ, for Π ∈ P, are pairwise disjoint.

Remark 1.3. Further implications of planar structure are explored in Section 4.1. For now, observe that
when J has planar structure, the disjointness of the families LΠ implies that, in order to count incidences
between J and L, it suffices to count incidences between JΠ and lines in LΠ for each Π ∈ P, and to then
add the contributions from the different planes Π. This observation is relevant in particular in the proof of
Lemma 5.8 below.

Example 1.4. Consider a Loomis–Whitney grid of joints at lattice points in R3, with one line parallel to
each coordinate axis through each joint. Let P consist of the horizontal planes, and for Π ∈ P let JΠ be
the set of joints on Π. Then LΠ consists of those lines of L which lie in Π, and properties P1) and P2)
are clear. On the other hand, a bush configuration through a single joint does not in general endow it with
a planar structure, since there may be many more lines through the joint than are contained in any plane
through it.

For our purposes, a slightly weaker notion of planar structure is required. Informally, we will say
that J has nearly planar structure if there is an appropriate refinement of it which captures most of the
incidences with L, and which has planar structure. More precisely:

Definition 1.5. Let L be a finite family of distinct lines in R3, and J a set of points incident to lines in L.
We say that J has nearly planar structure if for every dyadic k ∈ N there exists a subset J′k of

Jk := {x ∈ J : x lies in at least k and fewer than 2k lines in L}

so that
|J′k| ∼ |Jk| for all k

and ⋃
k

J′k has planar structure3.

The reason why nearly planar structure is important to us is two-fold. Firstly, it gives the correct
concept for analysing quasi-extremals for the proposed Kakeya inequality. Secondly, under the hypothesis
of nearly planar structure, the validity of the Kakeya inequality can be established directly, see the key
Lemma 5.8 below. This, combined with the quasi-extremal analysis, then allows us to deduce the desired
Kakeya inequality in the general setting.

Theorem 1.6. (Discrete Kakeya-type theorem) For any finite set L of L distinct lines in R3, the set J
of joints formed by L satisfies

∑
x∈J

(
∑
l∈L

χl(x)

)3/2

. L3/2. (2)

Moreover, for any 0 < ε < 1/2, the set J̃ of joints in J, each of which lies in . L1/2 lines in L, satisfies

J̃ = Jgoodt Jbad,

3By this we mean that |J′k| ≥ c2|Jk| for all k, and that
⋃

k J′k has c1-planar structure, for specific constants c1,c2. Therefore,
this definition should be thought of as describing (c1,c2)-nearly planar structure.
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where Jgood satisfies the exceptionally good estimate

∑
x∈Jgood

(
∑
l∈L

χl(x)

)2−ε

.ε L3/2

and

Jbad has nearly planar structure.4

We give a more detailed version of this result, including a more precise structural description of the
sets Jgood and Jbad, in Section 5 below. See Theorem 5.2.

The main thrust of the argument to prove estimate (2) is to identify sufficient nearly planar structure for
Lemma 5.8 to apply. Indeed, we emphasise that the structural statement is the key point in Theorem 1.6;
it is the main new perspective that we offer, and most of the hard work goes into obtaining it.

Remark 1.7. Theorem 1.6 gives a structural analysis for sets of joints passing through . L1/2 lines of L.
If, on the other hand, we consider sets of joints passing through & L1/2 lines of L, it is not hard to see
that they must be arranged in essentially non-interacting bushes. See Remark 5.9 below for more details.

Remark 1.8. The analysis of quasi-extremals implicit in Theorem 1.6 applies in particular in the setting
of the joints problem (1).

Remark 1.9. We expect the Kakeya estimate (2) to continue to hold when the real field is replaced by
any field of characteristic zero. We also expect an n-dimensional analogue of (2) (with exponents 3/2
replaced by n/(n−1)) to hold at least in the case of the real field.

1.2. Outline of the paper. In common with many other results on joints, Theorems 1.1 and 1.6 are
proved using the polynomial method.

In particular, the multijoints Theorem 1.1 is proved with the use of a polynomial that vanishes to
appropriate order at the multijoints in question, and whose existence follows via a parameter counting
argument. To carry this out in the case of arbitrary fields requires some of the machinery of Hasse
derivatives of polynomials; to avoid disrupting the exposition, this ancillary material is postponed to
Appendix A. In Section 2 we give an outline of the scheme of the proof and summarise the required
polynomial calculus in the setting of the real field, where it is somewhat more straightforward. Then in
Section 3 we complete the proof of Theorem 1.1.

The discrete Kakeya-type Theorem 1.6 will instead be proved using polynomial partitioning, which
is described in Section 4. A more detailed discussion of the notion of planar structure, along with an
extended outline of the proof of Theorem 1.6, also features in Section 4. The details of the proof of
Theorem 1.6 are given in Section 5.

4By this we mean that Jbad has (c1,c2)-nearly planar structure for c1 and c2 absolute constants whose values depend on the
constants in various well-established inequalities; see the discussion below Definition 5.1 in Section 5 for more details.
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2 Preliminaries for the multijoints Theorem 1.1

2.1 Scheme of the proof

To motivate the discussion in this section, we briefly illustrate the main idea for the proof of the multijoints
Theorem 1.1 in Rn, when L ∼ |P|. In this case (which in hindsight will be simpler from a technical
perspective), the desired inequality becomes |J|. |P|

d
d−1 ,where J is the set of multijoints formed by the

∼ |P| lines and k-planes in question, and where d = n− k+1. This situation is depicted in Figure 1(a) in
the special case where n = 5 and k = 2.

(a) A multijoints configuration.

P ∈ P

`2

`3

`1

x

(b) Core idea: each x ∈ J is controlled via the van-
ishing properties of (derivatives of) p on one of the
objects P, `1, `2, `3 through x.

Figure 1: Diagram (a) features a configuration of a set J of multijoints (drawn red) in R5, formed by sets L1,L2,L3
of (respectively black, blue and pink) lines and a set P of (yellow) 2-dimensional planes. Diagram (b) depicts the
proof idea. For each P ∈ P and each multijoint on P, we draw a distinct red line through the multijoint, lying inside
P. If we can count the red lines, we can count the multijoints. To that end, we find a low-degree polynomial p
vanishing identically on all the red lines (and thus on J). Fixing P ∈ P, either p|P 6≡ 0 or p|P ≡ 0. The former case is
easy: we can control the number of multijoints on P, as the number of red lines on P is at most deg p. In the latter
case, it transpires that for each multijoint x ∈ P there exists ` ∈ L1∪L2∪L3 through x such that D` p vanishes at x
but not identically on `. Therefore, the number of multijoints arising from such harder cases is at most the total
number of roots of the polynomials D` p|` , over all ` ∈ L1∪L2∪L3.

One would ideally wish to show that either each line or each plane contains . |J| 1d = |J|
1

n−(k−1)

elements of J. This does not necessarily hold; however, we shall show that it is morally the case.
Indeed, for each P ∈ P, through each x ∈ J∩P we draw a distinct (k−1)-dimensional plane Π lying

inside P ∈ P, as in Figure 1(b). We thus draw |J| such (k− 1)-planes Π in total. Parameter counting

shows that there exists a non-zero p ∈ R[x1, . . . ,xn], with deg p . |J|
1

n−(k−1) , which vanishes identically on
each Π (and thus also vanishes on J).

DISCRETE ANALYSIS, 2020:18, 45pp. 7
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Observe that if p does not vanish identically on some P ∈ P, then we automatically deduce that P
contains ≤ deg p . |J|

1
n−(k−1) planes Π, and thus . |J|

1
n−(k−1) multijoints, as desired.

For any P ∈ P on which p vanishes identically, the above argument fails. However, we shall count
the multijoints contained in such k-planes P using the vanishing properties of appropriate directional
derivatives of p on the lines in L1∪ . . .∪Ln−k. This dichotomy is inspired by ideas in [22] in which
multijoints formed by lines are considered; the directional derivatives we consider in fact already appear,
in disguised form, in [22].

In particular, for any ` ∈ L1∪ . . .∪Ln−k denote by D` p a derivative of p of minimal order that does
not vanish identically on `. Fixing x ∈ J and P ∈ P, ` j ∈ L j through x that together span Rn, we will
prove that if p|P ≡ 0, then there exists some j ∈ {1, . . . ,n− k} such that D` j p vanishes at x (but of course
does not vanish identically on ` j, by definition). Therefore, the multijoints which were not counted
by the earlier argument can be counted as roots of at most |L1∪ . . .∪Ln| ∼ |P| non-zero one-variable

polynomials (the polynomials D` p|` , over all ` ∈ L1∪ . . .∪Ln), each of degree . |J|
1

n−(k−1) .
This perspective naturally motivates the study of directional derivatives of polynomials that vanish

on a set of multijoints but do not vanish identically on all the planes/lines forming the multijoints.
Subsection 2.3 identifies such derivatives in the Euclidean setting. The more tedious generalisations to
arbitrary field settings may be found in the Appendix.

2.2 The zero polynomial

We begin with an elementary observation concerning zero polynomials and vanishing.

Definition 2.1. Let R be a ring and n≥ 1. A polynomial p ∈ R[x1, . . . ,xn] is the zero polynomial, denoted
by p = 0, if all the coefficients of p equal 0 ∈ R.

We can also think of p ∈ R[x1, . . . ,xn] as its corresponding evaluation map p : Rn→ R. We often use
the term polynomial mapping to refer to an evaluation map. If G⊆ Rn, then we will take p|G ≡ 0 to mean
that p(x) = 0 for all x ∈ G. If F is a finite field, then there exist non-zero polynomials in F[x1, . . . ,xn]
whose evaluation maps vanish identically on Fn. For example, when F is a finite field of characteristic q,
the non-zero polynomial xq− x vanishes everywhere. However, this cannot happen for infinite fields.

Lemma 2.2. Let F be an infinite field and n≥ 1. Then, for any p ∈ F[x1, . . . ,xn], p is the zero polynomial
if and only if p vanishes everywhere on Fn.

Proof. It holds that any non-zero polynomial f ∈ R[x], where R is a commutative integral domain, has at
most as many roots as its degree; therefore, if R is infinite, there exists r ∈ R such that f (r) 6= 0 ∈ R.

The above implies in particular that the statement of the lemma is true when n = 1. Now, let
n ≥ 2 and let p ∈ F[x1, . . . ,xn] be non-zero. It follows that p is a non-zero polynomial in R[xn], where
R = F[x1, . . . ,xn−1] is an infinite commutative integral domain. Therefore, there exists g ∈ R such that
p(x1, . . . ,xn−1,g(x1, . . . ,xn−1)) is a non-zero element of R, i.e. a non-zero polynomial in F[x1, . . . ,xn−1].
By induction on n, it may be assumed that there exists y ∈ Fn such that p(y,g(y)) 6= 0 ∈ F; that is, p does
not vanish at (y,g(y)) ∈ Fn.

In order to prove Theorem 1.1 we will work in the context of algebraically closed fields, which are
always infinite. In such settings, the following corollary of Lemma 2.2 holds.
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Lemma 2.3. Let F be an infinite field, n≥ 1 and let p ∈ F[x1, . . . ,xn] be a non-zero polynomial. If P is a
family of distinct (n−1)-dimensional planes in Fn such that p|Π ≡ 0 for every Π ∈ P, then |P| ≤ deg p.

Proof. Since F is an infinite field (and under the harmless assumption that P is a finite family), for every
x ∈ Fn there exists a line ` in Fn through x that intersects all the members of P at distinct points. Let
e(`)∈ Fn \{0} be parallel to `. Assume that |P|> deg p; then the polynomial p|`(t) := p(x+e(`)t)∈ F[t]
has more roots than its degree, and is thus the zero polynomial. It follows in particular that p(x) = 0. Since
x ∈ Fn was arbitrary, p vanishes everywhere on Fn and is hence the zero polynomial by Lemma 2.2.

2.3 Polynomial calculus over the real field.

We need to develop some of the calculus of polynomials in so far as it relates to multiplicities and
restrictions to k-planes. We shall need to do so in arbitrary fields. It turns out that one may do this much
more directly in the case of R than in that of an arbitrary field. This is partly because we can then use
calculus freely, and partly because in this case we can avoid having to make a careful distinction between
a polynomial as a member of R[x1, . . . ,xn] and corresponding evaluations of it. For these reasons, we
restrict ourselves for this subsection to the case of the real field: in the Appendix we develop the results
in the case of arbitrary fields, via the Hasse calculus. Classical calculus is invariant under rigid but not
affine motions: with a view to the development of the theory in arbitrary fields, we shall therefore want to
focus on notions of the calculus of polynomials which are also affine-invariant, such as degree, vanishing
and multiplicity.

Denote by N the set of nonnegative integers, that is, N= {0,1,2, . . .}. Let n≥ 1. For any multiindex
a = (a1, . . . ,an) ∈ Nn, let

|a| := a1 + · · ·+an

be the length of a.
Let p ∈ R[x1, . . . ,xn], which we also consider as a polynomial mapping p : Rn→ R. If p 6= 0 we

define the degree of the mapping p : Rn→ R to be the least m such that Da p = 0 for all a with |a|> m.
This notion of degree coincides with that arising by regarding p as a member of R[x1, . . . ,xn]. The class of
all polynomial mappings p : Rn→ R of degree at most d is a real vector space of dimension

(n+d
d

)
∼n dn.

In this subsection, we focus on polynomial mappings, rather than polynomials, in order to be able to use
calculus freely.

Let ωωω = {ω1, . . . ,ωn} be a basis for Rn. We denote the (a,ωωω) directional derivative of p by

Da
ωωω p = (ωωω ·∇)a p := (ω1 ·∇)a1 · · ·(ωn ·∇)an p.

The degree of a non-zero p is equivalently the least m such that Da
ωωω p = 0 for all a with |a|> m, for any

basis ωωω . If A : Rn→ Rn is an affine map then the degree of p◦A coincides with that of p.
The multiplicity of a non-zero p at y0 ∈Rn, mult(p,y0), is the largest m∈N such that (Da

ωωω p)(y0) = 0
for all a with a1+ · · ·+an < m. This quantity is independent of the particular choice of basis ωωω employed,
and is invariant under affine maps of Rn.

Let 1 ≤ k ≤ n and let x0 ∈ Rn. Let P = P(x0,ω1, . . . ,ωk) be the affine k-plane through x0 which is
parallel to the subspace spanned by {ω1, . . . ,ωk}. The same P can arise as a P(y0,ν1, . . . ,νk) in many
different ways.
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The restriction p|P of p to P is also a polynomial mapping (with P identified with Rk). Thus, for
z0 ∈ P, mult

(
p|P ,z0

)
is canonically defined (independently of the base point x0 or the particular vectors

{ω1, . . . ,ωk} whose span, together with x0, determines P).
In what follows we use the notation above.

Lemma 2.4 (cf. Lemma A.15). (i) If for some y0 ∈ P

(ω1 ·∇)a1 · · ·(ωn ·∇)an p(y0) 6= 0,

then
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|P 6≡ 0.

(ii) For all y ∈ P we have

mult
(
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|P ,y

)
≥mult(p,y)− (ak+1 + · · ·+an).

Proof. (i) This is clear because (ω1 ·∇)a1 · · ·(ωn ·∇)an p is the result of applying the differential operator

(ω1 ·∇)a1 · · ·(ωk ·∇)ak

to the function
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p.

If the latter function is zero when restricted to P, any directional derivative of it in a direction parallel
to P will be zero when evaluated at any point of P. (Note that this argument breaks down in the case of
arbitrary fields.)

(ii) Continuing, we also have that if y ∈ P, and if (a′1, . . . ,a
′
k) ∈ Nk satisfies

(a′1 + . . .+a′k)+(ak+1 + · · ·+an)< mult(p,y),

then
(ω1 ·∇)a′1 · · ·(ωk ·∇)a′k(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p(y) = 0,

and so
(ω1 ·∇)a′1 · · ·(ωk ·∇)a′k

[
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|P

]
(y) = 0,

giving (ii).

Lemma 2.5 (cf. Lemma A.17). Suppose that p is non-zero. Let y0 ∈ P, and suppose that a1 + · · ·+an is
minimal with respect to

(ω1 ·∇)a1 · · ·(ωn ·∇)an p(y0) 6= 0.

Let bk+1 + · · ·+bn be minimal with respect to

(ωk+1 ·∇)bk+1 · · ·(ωn ·∇)bn p|P 6≡ 0.

Then
mult

(
(ωk+1 ·∇)bk+1 · · ·(ωn ·∇)bn p|P ,y0

)
≥ a1 + · · ·+ak.
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Proof. It follows by Lemma 2.4 that

(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|P 6≡ 0.

The minimality property of (bk+1, . . . ,bn) implies that bk+1 + · · ·+ bn ≤ ak+1 + · · ·+ an. On the other
hand, the minimality property of (ak+1, . . . ,an) means that a1 + · · ·+an = mult(p,y), and so

bk+1 + . . .+bn ≤ (a1 + . . .+an)− (a1 + · · ·+ak)

= mult(p,y0)− (a1 + · · ·+ak).

Combining this with assertion (ii) of Lemma 2.4, one deduces that

mult
(
(ωk+1 ·∇)bk+1 · · ·(ωn ·∇)bn p|P ,y0

)
≥mult(p,y0)− (bk+1 + · · ·+bn)

≥ a1 + · · ·+ak,

as required.

Lemma 2.6 (cf. Lemma A.18). Suppose that p is non-zero and that νk+1, . . . ,νn ∈Rn \{0} are such that
the set {ω1, . . . ,ωk, νk+1, . . . ,νn} also forms a basis for Rn. Let bk+1 + · · ·+bn be minimal with respect
to

(ωk+1 ·∇)bk+1 · · ·(ωn ·∇)bn p|P 6≡ 0,

and let ck+1 + · · ·+ cn be minimal with respect to

(νk+1 ·∇)ck+1 · · ·(νn ·∇)cn p|P 6≡ 0.

Then bk+1 + · · ·+bn = ck+1 + · · ·+ cn.

Proof. Suppose that for some b ∈ N we have

(ωk+1 ·∇)δk+1 · · ·(ωn ·∇)δn p|P ≡ 0

whenever δk+1 + · · ·+δn < b. Fix βk+1, . . . ,βn with βk+1 + · · ·+βn < b. It suffices to show that

(νk+1 ·∇)βk+1 · · ·(νn ·∇)βn p|P ≡ 0.

Each ν j is a linear combination of ωr’s, and multiplying out the expression

(νk+1 ·∇)βk+1 · · ·(νn ·∇)βn

using the binomial theorem leads to a (weighted) sum of expressions of the form

(ω1 ·∇)γ1 · · ·(ωn ·∇)γn ,

where γ1 + · · ·+ γn = βk+1 + · · ·+βn < b. Now

n

∏
j=k+1

(ω j ·∇)γ j p
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vanishes on P by hypothesis, and further derivatives of this expression in directions parallel to P will
continue to return zero. Summing, we conclude that

(νk+1 ·∇)βk+1 · · ·(νn ·∇)βn p

vanishes on P, as required.

Despite appearances to the contrary, it is not completely obvious how to generalise the above
arguments to the case of arbitrary fields. For details of these natural extensions via the Hasse calculus,
see the Appendix.

3 Proof of Theorem 1.1

Theorem 1.1. Let n ≥ 3 and k ≥ 2. Let L1, . . . ,Ln−k be finite families of lines and P be a family of
k-planes in Fn. Let J be the set of multijoints formed by these collections. Then,

|J|. L|P|
1

d−1 ,

where
L := max{|L1|, . . . , |Ln−k|}

and
d := n− k+1

denotes the total number of collections.

Proof. It may be assumed that F is algebraically closed (and therefore infinite), since the lines and
k-planes in the collections L1, . . . ,Ln−k, P can be naturally extended to lines and k-planes in Fn

(where F
is the algebraic closure of F), still forming the multijoints in J.

For every multijoint x, fix lines li(x) ∈ Li, i = 1, . . . ,n− k, and a k-plane P(x) ∈ P that form a
multijoint at x. We say that x chooses these lines and k-plane.

For every k-plane P ∈ P, let JP be the set of multijoints that have chosen P; it holds that JP ⊆ P. For
some B ∈ N that will be fixed later, fix ΠP to be a family of distinct (k−1)-planes contained in P, with
exactly B of them through each element of JP, so that each (k− 1)-plane in ΠP contains exactly one
multijoint in JP. In particular,

|ΠP|= |JP|B.

Note that the existence of such distinct (k−1)-planes contained in P is ensured by the condition k ≥ 2
and the fact that F is algebraically closed and therefore infinite.

The goal is to count these (k−1)-planes contained in P; the above equality will then directly give
an estimate on the number of multijoints in P. And, indeed, under certain conditions, the number of
these (k−1)-planes contained in P can be controlled, as they will all lie in the zero set of a relatively low
degree polynomial that does not vanish identically on P. The existence of such a polynomial will follow
from Claim 3.1 below, which uses a standard parameter-counting argument.
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More precisely, for some large parameter T > 0, fix natural numbers

A∼ T ·L
(Ln−k |P|)1/d |J|1/d

and

B∼ T · |P|
(Ln−k |P|)1/d |J|1/d .

For each P ∈ P, fix e1(P), . . . ,ek(P) ∈ Fn which span P, and ek+1(P), . . . ,en(P) ∈ Fn transverse to P (see
Definition A.8). Claim 3.1 below states that there exists a low degree polynomial, all of whose derivatives
in directions ek+1(P), . . . ,en(P) up to order A vanish on all (k−1)-planes in ΠP, for all P ∈ P.

Claim 3.1. For all T > 0 sufficiently large, there exists non-zero p ∈ F[x1, . . . ,xn] with

deg p . T

such that for any P ∈ P (
ek+1(P) ·∇

)λk+1 · · ·
(
en(P) ·∇

)λn p|Π ≡ 0

for all Π ∈ΠP, for all (λk+1, . . . ,λn) ∈ Nn−k with λk+1 + · · ·+λn ≤ A.

Here and below we are employing Hasse derivatives – for more details see the Appendix.
Note that

(
ek+1(P) ·∇

)λk+1 · · ·
(
en(P) ·∇

)λn p|Π above denotes the usual restriction to Π of the function(
ek+1(P) ·∇

)λk+1 · · ·
(
en(P) ·∇

)λn p : Fn → F. Since F is an infinite field, this restriction is the zero
function if and only if the polynomial(

ek+1(P) ·∇
)λk+1 · · ·

(
en(P) ·∇

)λn p(x0 +ΩΠt) = 0 ∈ F[t1, . . . , tk−1]

for any x0 ∈ P and any n× (k− 1) matrix ΩΠ whose columns are (k− 1) fixed linearly independent
vectors in Fn parallel to Π.

Proof of Claim 3.1. For each Π ∈
⋃

P∈P ΠP, fix (k− 1) linearly independent vectors in Fn which are
parallel to Π, and denote by ΩΠ the n× (k−1) matrix with these vectors as columns. Recall that ΠP

is the disjoint union, over all x ∈ J that have chosen P (i.e., with P(x) = P), of all Π ∈ΠP(x) through x.
Therefore, we may take our polynomial to be any non-zero p ∈ F[x1, . . . ,xn] with deg p . T such that, for
any x ∈ J, (

ek+1(P) ·∇
)λk+1 · · ·

(
en(P) ·∇

)λn p(x+ΩΠt) = 0 (3)

in F[t1, . . . , tk−1], for all Π ∈ΠP(x) through x, for all (λk+1, . . . ,λn) ∈ Nn−k with λk+1 + · · ·+λn ≤ A.
Now, we assert that in order to ensure that a polynomial p of degree at most D satisfies the vanishing

requirements above, it suffices to impose ∼ |J|BAn−kDk−1 linear conditions on the coefficients of the
polynomial. Indeed, for each x ∈ J, for each one of the B in total (k−1)-planes Π ∈ΠP(x) through x, we
simply require that each of the ∼ An−k polynomials(

ek+1(P) ·∇
)λk+1 · · ·

(
en(P) ·∇

)λn p(x+ΩΠt) ∈ F[t1, . . . , tk−1],
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for all λk+1 + · · ·+λn ≤ A, is the zero polynomial. Since F is an infinite field, each of these polynomials
is the zero polynomial in F[t1, . . . , tk−1] as long as it vanishes with multiplicity at least D+1 at 0 along
each of (D+1)k−2 lines through 0 appropriately arranged in Fk−1. (To see this, first consider the case
k = 3, and then proceed by induction.) Therefore, a non-zero polynomial of degree ≤ D with the desired
vanishing properties exists as long as

|J|An−kBDk−1 . Dn,

or equivalently
|J|An−kB . Dn−k+1 = Dd ,

a property that is satisfied by the chosen parameters when D∼ T .

Fix p as in Claim 3.1. We say that a k-plane P ∈ P is exceptional if(
ek+1(P) ·∇

)λk+1 · · ·
(
en(P) ·∇

)λn p|P 6≡ 0

for some (λk+1, . . . ,λn) ∈ Nn−k with λk+1 + · · ·+λn ≤ A. Let

Jexc := {x ∈ J : P(x) is exceptional}.

It will transpire that using Claim 3.1 one can count the multijoints in Jexc. The main observation at this
point is that the multijoints which cannot be counted using Zhang’s argument in [22] are all in Jexc.

More precisely, recall that for each x ∈ J we have fixed lines l1(x) ∈ L1, . . . , ln−k(x) ∈ Ln−k through
x; denote by e(l1(x)), . . . ,e(ln−k(x)) their respective directions and observe that these directions are
transverse to P(x) since x is a multijoint.

Since p is not the zero polynomial, for every x ∈ J there exists a(x) = (a1(x), . . . ,an(x)) ∈ Nn of
minimal length such that

(
e1(P(x)) ·∇

)a1(x) · · ·
(
ek
(
P(x)

)
·∇)ak(x) ·

(
e
(
l1(x)

)
·∇
)ak+1(x)

· · ·
(

e
(
ln−k(x)

)
·∇
)an(x)

p(x) 6= 0. (4)

We fix some choice of {a(x)}x∈J . We say that x is of type 1 if

ak+1(x)+ · · ·+an(x)> A;

otherwise, we say that x is of type 2.
Let J1 be the set of multijoints in J of type 1, and J2 the set of multijoints in J of type 2.
Estimating |||JJJ111|||. The multijoints in J1 can be counted in a similar manner as in [22]. Indeed, let

x ∈ J1. By definition, it holds that
ak+1(x)+ · · ·+an(x)> A,

thus there exists i ∈ {1, . . . ,n− k} for which x is of type (1, i), meaning that

ak+i(x)& A.
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Fix i ∈ {1, . . . ,n− k}. Since p is not the zero polynomial, it follows by Lemma 2.4/Lemma A.15 that for
every line l ∈ Li there exists a directional derivative Dl p of p of minimal order such that

Dl p|l (t) :=Dl p
(
x0 + te(l)

)
6= 0 ∈ F[t]

for some (any) x0 ∈ l. By Lemma 2.5/Lemma A.17 and the minimality property of a(x) ∈ Nn this
derivative satisfies

mult(Dl p|l , ty)≥ ak+i(y)& A for all y ∈ J of type (i,1) which choose l,

where for each y ∈ l, ty ∈ F is defined by y = x0 + tye(l). Thus, by Bézout’s theorem,

|{x ∈ J of type (i,1)}|A = ∑
l∈Li

∑
x∈J of type (i,1) choosing l

A

. ∑
l∈Li

∑
x∈J of type (i,1) choosing l

mult(Dl p|l , tx)

≤ ∑
l∈Li

degDl p|l ≤ ∑
l∈Li

deg p

. |Li|T.

It follows that
|{x ∈ J of type (i,1)}| · T L

(Ln−k |P|)1/d |J|1/d . |Li|T,

and thus
|{x ∈ J of type (i,1)}|. (Ln−k |P|)1/d |J|1/d

for all i = 1, . . . ,n− k, implying that

|J1|. (Ln−k |P|)1/d |J|1/d .

Estimating |||JJJ222|||. The crucial observation here is that

J2 ⊆ Jexc.

Indeed, let x ∈ J2. By definition,
ak+1(x)+ · · ·+an(x)≤ A.

Combining (4) with Lemma 2.4/Lemma A.15 and Lemma 2.2, one obtains(
e
(
l1(x)

)
·∇
)ak+1(x)

· · ·
(

e
(
ln−k(x)

)
·∇
)an(x)

p|P(x) 6≡ 0.

Lemma 2.6/Lemma A.18 thus implies that any directional derivative Dp of p of minimal order with
the property that Dp|P(x) 6≡ 0 has order at most A. In particular, any derivative Dp of p in directions
ek+1(P(x)), . . . ,en(P(x)) (the vectors appearing in the statement of Claim 3.1) of minimal order such that

Dp|P(x) 6≡ 0 (5)
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takes the form
Dp =

(
ek+1(P(x)) ·∇

)λk+1 · · ·
(
en(P(x)) ·∇

)λn p

for some (λk+1, . . . ,λn) ∈ Nn−k with λk+1 + · · ·+λn ≤ A. Since the existence of such a derivative is
guaranteed (see Remark A.16 for further clarification), it immediately follows that P(x) is exceptional,
hence x ∈ Jexc.

It thus suffices to estimate |Jexc|. Observe that

Jexc =
⊔

exceptional P∈P
JP.

Now, let P ∈ P be an exceptional k-plane; by definition, there exists (λk+1, . . . ,λn) ∈ Nn−k, with λk+1 +
· · ·+λn ≤ A, such that (

ek+1(P) ·∇
)λk+1 · · ·

(
en(P) ·∇

)λn p|P 6≡ 0.

On the other hand, by Claim 3.1 it further holds that(
ek+1(P) ·∇

)λk+1 · · ·
(
en(P) ·∇

)λn p|Π ≡ 0 for all Π ∈ΠP.

Therefore, the polynomial

g(t) :=
(
ek+1(P) ·∇

)λk+1 · · ·
(
en(P) ·∇

)λn p(xP + t1e1(P)+ · · ·+ tkek(P)) ∈ F[t1, . . . , tk]

(for some fixed xP ∈ P) is not the zero polynomial, but it vanishes everywhere on Π̃ for every Π̃ in a
family of distinct (k−1)-planes in Fk of size |ΠP|. It follows by Lemma 2.3 that

|JP|B = |ΠP| ≤ degg . T

for every exceptional P. Therefore,

|Jexc|= ∑
exceptional P∈P

|JP| ≤ |P|max
P
|JP|.

|P|T
B

and thus
|J2| ≤ |Jexc|. (Ln−k |P|)1/d |J|1/d .

Combining the above estimates on |J1| and |J2|, one obtains the desired estimate

|J|. L|P|
1

d−1 .

4 Preliminaries for the discrete Kakeya-type Theorem 1.6

In this section we further explain the statement of Theorem 1.6 and outline some computational estimates
of an algebraic-geometric nature which are useful for its proof.
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4.1 Further understanding planar structure

Let J be a set of points, incident to lines in a family L, that has planar structure.
As already mentioned in the Introduction, the planar structure of J implies, roughly speaking, that

there exists a plane through each point x ∈ J that contains the bulk of the lines in L through x. Such a
situation in itself however is not sufficient to imply planar structure.

In particular, bearing in mind the notation of Definition 1.2, view the points in JΠ and the lines in LΠ

as associated to Π. Assign a different colour to each plane Π, and assign the colour of Π to the points in
JΠ and the lines in LΠ. (Note that a blue plane may contain a red line, and a blue line may contain a red
point.) We say that a fan of colour C is any collection of coplanar lines of colour C all passing through
the same point of colour C (which may be thought of as the root of the fan, or the point from which the
fan emanates).

Π

l

Π′

(a) Planar structure.

Π

Π′

l

(b) Non planar structure.

Figure 2: Above are examples of an allowed and a forbidden configuration inside a set with planar structure. The
black lines are lines in L that have not been coloured, i.e. not assigned to a plane. The second diagram demonstrates
that a union of sets with planar structure does not necessarily have planar structure.

(i) Property P1) implies that, if Π is blue, then there is a blue fan inside Π emanating from each blue
point in Π. Moreover, roughly speaking, each such fan contains the bulk of lines in L through its
root (as in Figure 2(a).)

(ii) If a blue plane Π contains a red point x, then x is associated to some red plane Π′ 6= Π. In particular,
there exists a red fan emanating from x fully inside Π′ (as in Figure 2(a).)

(iii) Observe that property P2) can be rephrased as follows: Let Π ∈ P and l ∈ LΠ; then

for each x ∈ J∩ l, either x ∈ JΠ or x ∈ JΠ′ for some Π
′ ∈ P transverse to l.
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To illustrate this, let l be a blue line. This means that there exists a blue fan emanating from each
blue point in l, lying fully inside the blue plane Π that l is associated to. If l contains some red
point x as well, then the fact that l is not red (by P2)) implies that the red plane Π′ associated to
x (which carries the red fan emanating from x) cannot contain l (and is thus transverse to l); see
Figure 2(a). In other words, if l is the intersection of the blue plane Π with a red plane Π′, then l
does not contain red points (and thus there are no red fans, rooted at l, that live inside Π′). In other
words, a configuration as in Figure 2(b) is forbidden for a set of planar structure.

4.2 Algebraic preliminaries

Theorem 1.6 will be proved using the polynomial partitioning technique of Guth and Katz [10]. The
method, described in the theorem that follows, exploits the topology of Euclidean space to partition finite
sets of points into smaller parts, using the zero set of a polynomial.

Theorem 4.1. (Polynomial partitioning) Let S be a finite set of points in Rn, and d > 1. Then there
exists a non-zero polynomial p ∈R[x1, ...,xn], of degree ≤ d, and ∼n dn pairwise disjoint open sets (cells)
C1, . . . ,Cm, each of which contains ≤ |S|/m .n |S|/dn points of S, such that Rn = C1 t . . .tCm tZp,
where Zp is the zero set of p.

Since its birth in 2010, polynomial partitioning has revolutionised incidence geometry, and has further
shed light on some long-standing harmonic analytic problems. The reason is that, when it comes to
point-line incidences, extremising situations tend to occur when the points and lines in question cluster on
low-degree varieties. When this is indeed the case for a specific point-line incidence problem, polynomial
partitioning has the potential to allow a reduction of the original problem to this type of situation. In other
words, and roughly speaking, it naturally reduces to the study of extremisers.

At a more technical level, polynomial partitioning may be viewed as a divide-and-conquer approach:
the fact that each cell carries few points suggests that its contribution to point-line incidences could
potentially be controlled by some induction argument. If that is achieved, it remains to control the
point-line incidences that occur on the zero set itself – and this is facilitated via the computational bounds
below, which follow from Bézout’s theorem in algebraic geometry.

Theorem 4.2. (Guth–Katz [9]) Let p1, p2 ∈ R[x1,x2,x3] be non-zero. If p1, p2 do not have a common
factor, then at most deg p1 ·deg p2 lines in R3 lie simultaneously in the zero set of p1 and the zero set of
p2.

Definition 4.3. Let p ∈ R[x1,x2,x3] be a non-zero polynomial of degree ≤ d. Let Z be the zero set of
p. Denote by ps f the square-free polynomial obtained after eliminating all the squares appearing in the
expression of p as a product of irreducible polynomials in R[x1,x2,x3].5

A critical point x of Z is a point of Z for which ∇ps f (x) = 0. Any other point of Z is called a regular
point of Z. A point x ∈ R3 is a flat point of Z if it is a regular point of Z lying in at least three co-planar
lines of Z.

A line in R3 a critical line of Z if each point of the line is a critical point of Z.
A line l in R3 is a flat line of Z if all the points of l, except perhaps for finitely many, are regular

points of Z on which the second fundamental form of Z vanishes.
5Observe that p and ps f have the same zero set.
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Note that the tangent space to Z at x is well-defined at all regular points x of Z.
The number of critical lines inside a variety can easily be controlled by Theorem 4.2 above.

Proposition 4.4. (Guth–Katz [9]) Let Z be the zero set of a non-zero p ∈ R[x1,x2,x3]. Then Z contains
at most d2 critical lines.

Flat points of a variety are points where the second fundamental form of the variety vanishes. And
these, in turn, are points where specific appropriate polynomials simultaneously vanish. Using this fact,
Theorem 4.2 also yields control on the number of flat lines inside a variety.

Proposition 4.5. (Elekes–Kaplan–Sharir [7]) Let Z be the zero set of a non-zero p ∈ R[x1,x2,x3]. If a
line l in R3 contains at least 3d−3 flat points of Z, then l is a flat line of Z. Moreover, at most 3d2−4d
flat lines do not fully lie inside planes contained in Z.

4.3 The Szemerédi–Trotter theorem

The discrete Kakeya-type Theorem 5.2 is a statement on incidences between lines and joints in R3. To
prove it, we shall use the following theorem (which, note, fails in general field settings).

Theorem 4.6. (Szemerédi–Trotter [17]) Let S be a finite set of points in R2 and L a finite set of lines in
R2. Then, if I(S,L) denotes the number of incidences between S and L, it holds that

I(S,L). |S|2/3|L|2/3 + |L|+ |S|.

In particular, for any k ≥ 2, if Sk denotes the set of points in S each lying in at least k and fewer than 2k
lines of L, then

|Sk|.
|L|2

k3 +
|L|
k
.

5 Proof of Theorem 1.6

As well as giving our desired discrete Kakeya estimate, Theorem 5.2 below gives strong structural
information on configurations of joints and lines that quasi-extremise discrete Kakeya-type inequalities.

Let L be a finite family of L distinct lines in R3, and J a set of joints formed by L. For dyadic k ∈ N
let

Jk := {x ∈ J : x lies in at least k and fewer than 2k lines in L}.

For reasons that will become clear later, k ∼ L1/2 is a natural threshold for us. We refer to values of
k ≤ cL1/2 as small and values of k > cL1/2 as large (any constant c is allowed in this dichotomy, as long
as it is fixed throughout the argument).

Definition 5.1. For each 0 < ε < 1/2 and each dyadic k . L1/2 (i.e., each small dyadic k), we say that k
is good if Jk satisfies the exceptionally good estimate

|Jk|k2−ε/2 .ε L3/2;

otherwise, we say that k is bad.
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Note that the notions of goodness and badness are ε-dependent, but this will not be of concern to us,
since ε will be fixed. The implicit constants in the definition of good Jk should be thought of as large:
they will need to be uniformly bounded below by absolute constants which will arise from the proof
of Theorem 5.2 – for example the constant in the Szemerédi–Trotter theorem, the constant in the joints
inequality |J|. |L|3/2 in R3, the constant in the simple multijoints inequality |J|. (|L1||L2||L3|)1/2 in
R3 (discussed in the Introduction), and constants arising as part of standard refinement processes when
employing polynomial partitioning.

The result below gives precise structural information on the union of the “bad" sets Jk, and asserts
that they do not obstruct our desired strong discrete Kakeya inequality.

Theorem 5.2. (Discrete Kakeya-type theorem) For any finite set L of L distinct lines in R3, the set J
of joints formed by L satisfies

∑
x∈J

(
∑
l∈L

χl(x)

)3/2

. L3/2. (6)

Moreover, for any 0 < ε < 1/2, the set J̃ of joints in J, each of which lies in . L1/2 lines in L, may be
decomposed as

J̃ = Jgoodt Jbad,

where Jgood satisfies the exceptionally good estimate

∑
x∈Jgood

(
∑
l∈L

χl(x)

)2−ε

.ε L3/2 (7)

and
Jbad has nearly planar structure .

In particular, we may take
Jgood :=

⋃
good k

Jk and Jbad :=
⋃

bad k

Jk.

Structure of the proof of Theorem 5.2. The proof of Theorem 5.2 is rather involved, and so we
outline its six principal steps. We first fix ε ∈ (0,1/2). We make the preliminary observation that with L,
J and Jk as in the statement of the theorem, the desired inequality (6) becomes

∑
k
|Jk|k3/2 . L3/2 (8)

and the exceptionally good estimate (7) becomes

∑
good k

|Jk|k2−ε .ε L3/2, (9)

in which expressions, and in all to follow, only dyadic k are considered. We observe that (9) is a direct
consequence of the definition of goodness: we have

∑
good k

|Jk|k2−ε = ∑
good k

|Jk|k2−ε/2

kε/2 .ε L3/2
∑
k

1
kε/2 .ε L3/2.

DISCRETE ANALYSIS, 2020:18, 45pp. 20

http://dx.doi.org/10.19086/da


JOINTS AND KAKEYA

Moreover, the estimate

∑
k&L1/2

|Jk|k3/2 . L3/2

immediately follows from the Szemerédi–Trotter theorem (see Step 6 for details). Thus, in order to prove
(8) it suffices to consider bad k only. In fact, as we have mentioned already, the key difficulty is obtaining
the structural statement, and we focus on this in the first five steps of the proof. In the final Step 6 we use
the structural statement to complete the proof of (8).

To establish the structural statement we need to show that Jbad =
⋃

bad k Jk has nearly planar structure.
We shall first focus on the contributions to Jbad coming from joints in each individual Jk; interactions

between different values of k come into play only when we begin to expose the planar structure in Step 5.
In Step 1 we use polynomial partitioning with suitable parameters to partition Jk (for bad k) into

those points lying in a variety Zk, and those lying in R3 \ Zk.
By the end of Step 4, we will have shown that Jk has nearly planar structure; and, crucially, that the

bulk of the lines incident to most of the joints in Jk lie in planes inside Zk. Then, in Step 5, the interaction
between the various partitioning varieties Zk (corresponding to all bad k) will be studied in order to show
that

⋃
bad k Jk has nearly planar structure.

In Step 2 we specify the choice of parameters from Step 1 in order to ensure that a definite proportion
of the points of Jk in fact lie in Zk, thus reducing matters to the “algebraic" case. Steps 1 and 2 essentially
feature as part of the analysis in [10], and we do not claim any originality here.

In Step 3 we begin to explore structures within the set Jk of joints and the set of lines forming them.
In particular, we show that a definite proportion J̄k of the joints in Jk are regular points of Zk and, crucially,
live inside planes contained in Zk. These planes are further shown to contain the bulk of the lines forming
each joint in J̄k.

In Step 4 we easily deduce that the set J̄k identified in Step 3 has planar structure. Note that this
implies that Jk has nearly planar structure for every bad k.

Step 5 is the central step in our analysis and represents the heart of the matter: showing that
Jbad =

⋃
bad k Jk has nearly planar structure. While in general a union of sets with planar structure needs

not have planar structure (see the discussion in Section 4.1), we show in this step that the sets J̄k in turn
have subsets of definite proportion, whose corresponding union has planar structure. In other words, the
set
⋃

bad k J̄k has nearly planar structure, and therefore Jbad has nearly planar structure too. We begin the
argument in Step 5a by describing potential obstructions to nearly planar structure. Such obstructions
naturally motivate the study of the interaction of the various varieties Zk for bad k (as these varieties,
and more precisely the planes inside them, carry the joints in the various sets J̄k, and most of the lines
forming them). This study is undertaken in Step 5b and allows us to establish the crucial Claim 5.7. In
particular, this claim allows us in Step 5c to assert that no potential obstruction to nearly planar structure
can actually succeed.

Finally, in Step 6, we establish the free-standing Lemma 5.8 which shows that inequality (8) (and
therefore inequality (6)) holds in the presence of nearly planar structure. We use this, together with (9),
and easy arguments for large k (i.e., k & L1/2), to finally establish (8) in the general case.

We now give the details.

Proof. Let ε ∈ (0,1/2). For the first five steps of the proof, we focus only on (small) bad k.
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Step 1: Partitioning JJJkkk for each bad kkk. Since k . L1/2, the Szemerédi–Trotter theorem asserts that

|Jk|.
L2

k3 .

Therefore, for an appropriately large constant A > 0 (independent of k and ε) which will be specified in
Step 2, the quantity

dk := A
L2

|Jk|k3

is larger than 1. It follows by the polynomial partitioning Theorem 4.1 that there exists a non-zero
pk ∈ R[x1,x2,x3], with deg pk ≤ dk, whose zero set Zk splits R3 in ∼ d3

k cells, each containing . |Jk|
d3

k
elements of Jk.

Step 2: Reducing to the joints in ZZZkkk. Either & |Jk| elements of Jk lie in the union of the cells (the
cellular case) or & |Jk| elements of Jk lie in Zk (the algebraic case). However, the constant A will be fixed
to be large enough for the cellular case to be impossible; thus, the algebraic case will hold.

More precisely, suppose that the cellular case holds. The following claim holds – its proof is a
standard counting argument, and is included here for purposes of self-containment.

Claim 5.3. In the cellular case, there exists a cell C such that

|Jk∩C| ∼ |Jk|
d3

k
and |LC|.

L
d2

k
, (10)

where LC is the set of lines in L that cross C.

Proof. In the cellular case, there is some absolute constant 0 < a < 1 such that at least a|C| of the cells C
satisfy

|Jk∩C|. |Jk|
d3

k
.

Indeed, by the polynomial partitioning Theorem 4.1, |Jk∩C| ≤ |Jk|/|C| for each cell C (where C denotes
the set of cells and is ∼ d3

k ). Combining this with the fact that ∑C |Jk ∩C| ≥ c̄|Jk| for some absolute
constant c̄ (since the cellular case holds), one obtains that at least a|C| of the cells C satisfy |Jk ∩C| ≥
c|Jk|/|C|, for an appropriately small constant c. Indeed, otherwise the cells that satisfy |Jk∩C| ≥ c|Jk|/|C|
contribute fewer than a|C| · |Jk|/|C|= a|Jk| joints in total, while the remaining cells contribute fewer than
|C| · c|Jk|/|C|= c|Jk| joints in total. Therefore, the cells contribute fewer than (a+ c)|Jk| joints in total,
which is a contradiction for appropriately small a and c.

On the other hand, at least (1−a)|C| of the cells C satisfy that

|LC| ≤ H
L
d2

k
,

for some large absolute constant H. Indeed, if the above fails, then at least a|C| of the cells C are each
crossed by at least HL/d2

k lines in L. Since |C| ∼ d3
k , it follows that

∑
C∈C
|LC|> 100Ldk.
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This is a contradiction; indeed, a line l in R3 cannot cross more than dk + 1 cells (as otherwise l
would intersect Zk more than dk times, and would thus lie in Zk, which would imply that l crosses 0
cells). Therefore, ∑C∈C |LC|= ∑l∈L #{cells that l crosses} ≤ L(dk +1)≤ 2Ldk, contradicting the earlier
estimate.

By pigeonholing, there exists a cell C that satisfies the statement of the claim.

Fix a cell C that satisfies (10). It holds that |Jk∩C|> k. Indeed, if |Jk∩C| ≤ k then (10) implies that
|Jk|
d3

k
. k, or equivalently |Jk|k2 . L3/2 (recalling the definition of dk). This is a contradiction because k is

bad (harmlessly assuming that the implicit constant in the definition of bad k is sufficiently large relative
to the soon-to-be-specified constant A). Now, since |Jk ∩C|> k and since each joint in Jk ∩C has ∼ k
lines in L through it, there exist at least k+(k−1)+(k−2)+ · · ·+1 & k2 lines in L crossing the cell
C. That is, |LC|& k2, or equivalently k . |LC|1/2. Therefore, the Szemerédi–Trotter theorem applied to
count incidences between Jk∩C and LC gives that

|Jk∩C|. |LC|2

k3 ,

which, by the bounds (10) on |Jk∩C| and |LC|, implies that

|Jk|
d3

k
.

1
k3

(
L
d2

k

)2

.

Rearranging the above, it follows that

dk .
L2

|Jk|k3

for an implicit constant independent of A. Fixing A to be a constant larger than this implicit one (which
itself is absolute), one obtains a contradiction, and therefore concludes that the cellular case does not
occur.

Since the cellular case does not occur, the algebraic case holds, hence one may assume without loss
of generality that

Jk ⊆ Zk.

Step 3: Reducing to a set J̄JJkkk of joints, with |||J̄JJkkk||| ∼∼∼ |||JJJkkk|||, such that

• each xxx ∈∈∈ J̄JJkkk is a regular point of ZZZkkk, and

• each xxx ∈∈∈ J̄JJkkk lives in a plane ΠΠΠ contained in ZZZkkk, and ΠΠΠ contains ∼∼∼ kkk lines in L through xxx.

Let Pk be the set of planes inside Zk.6

Denote by Lcr,k the set of critical lines in L, by L′f l,k the set of flat lines in L that do not lie inside
planes of Pk, and by L f l,k the set of flat lines in L that lie inside planes of Pk. The next claim will allow
us to assert in the following step that a definite proportion of Jk has planar structure.

Claim 5.4. There exists J̄k ⊆ Jk, with |J̄k|& |Jk|, such that each joint in J̄k is a flat point of Zk, lying in
∼ k lines in L f l,k.

6Non-emptiness of Pk is not a priori obvious, however it will follow as a result of our arguments.
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Proof of Claim 5.4. The proof combines a refinement process with a multijoints estimate.
•We begin with an elementary refinement argument, which shows that, for a definite proportion of

the joints in Jk, ∼ k of the lines in L through each lie in Zk.
Indeed, let L′ be the set of lines in L each containing ≥ 1

100
|Jk|k

L elements of Jk (i.e., at least the
average number of joints). It is easy to see that the lines in L′ are responsible for a definite proportion of
the incidences between Jk and L; therefore,

there exist & |Jk| joints in Jk with ∼ k lines of L′ through each.

Denote by J′k the set of joints with this property.
• Refining once more, we obtain a definite proportion of the joints in Jk, such that ∼ k of the lines in

L through each are critical or flat lines in Zk.
Indeed, observe that

|Jk|k
L

& dk,

as otherwise k would be good. In particular, it may be assumed that each line in L′ contains more than dk
elements of Jk. This means that each line in L′ lies in Zk.

Since k may be assumed to be large enough for at least 3 lines of L′ to pass through each element of
J′k, it follows that each element of J′k is either a critical or a flat point of Zk. (The coplanarity condition
holds because any three lines contained in Zk which meet at a regular point must be coplanar.)

The elementary refinement argument is now repeated. More precisely, let L′′ be the set of lines in L

each containing ≥ 1
100
|J′k|k

L & |Jk|k
L elements of J′k, for an appropriately small implicit constant. The lines

in L′′ are responsible for a definite proportion of the incidences between J′k and L; therefore,

there exist & |Jk| joints in J′k each with ∼ k lines of L′′ through it.

Importantly, since each element of J′k is either critical or flat, each line in L′′ contains either > dk critical
points of Zk or > 3dk−3 flat points of Zk (as in the first application of the refinement argument, we may
again assume that the quantity |Jk|k

L is larger than an appropriate multiple of dk). Therefore, each line in
L′′ is either critical or flat.

Therefore, for & |Jk| joints in J′k, ∼ k lines in L through each are either critical or flat.
• To conclude, we incorporate a multijoints estimate.
The main observation is that since by Propositions 4.4 and 4.5 the lines in Lcr,k∪L′f l,k are “few" (in

particular they number . d2
k ), they cannot be responsible for too many joints in Jk. And, therefore, a lot

of lines in L f l,k pass through each one of a definite proportion of the joints in Jk.
Indeed, suppose for contradiction that & |Jk| joints in J′k have the property that each lies in at least 2

lines in Lcr,k∪L′f l,k. The joints with this property are multijoints formed by the three families Lcr,k∪L′f l,k,
Lcr,k∪L′f l,k, L. (Indeed, given two lines in Lcr,k∪L′f l,k containing a joint x, there must be a third line of
L which is not in the plane formed by these two lines, which together with the first two lines makes x a
multijoint.) It follows from the (classical) multijoints theorem discussed in the introduction that

|Jk|.
(
|Lcr,k∪L′f l,k| · |Lcr,k∪L′f l,k| ·L

)1/2
. (d2

k ·d2
k ·L)1/2 ∼ d2

k L1/2,

a contradiction, since k is bad.
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Therefore, & |Jk| joints in J′k have the property that each lies in ∼ k lines in L f l,k.
Now, if & |Jk| of the above joints were critical, then there would exist l ∈ L f l,k containing & |Jk|k

L
such critical joints. However, since every ` ∈L f l,k is not a critical line (it is, in fact, a flat line), it contains
at most dk critical points. Therefore, |Jk|k

L . dk, a contradiction, since k is bad.
It follows that & |Jk| joints in J′k are flat. The set J̄k of these joints satisfies the statement of the

claim.

Step 4: For all bad kkk, J̄JJkkk has planar structure. This is an easy consequence of the previous step.
Indeed, fix any bad k. For any plane Π ∈ Pk (i.e., for any plane lying inside Zk), define

J̄k,Π := J̄k∩Π

and
Lk

Π := {l ∈ L : l ⊆Π and l contains some joint in J̄k,Π}.

It holds that J̄k =
⋃

Π∈Pk
J̄k,Π, as the joints in Jk live inside the planes in Pk. The sets J̄k,Π are pairwise

disjoint, as each joint in J̄k is a regular point of Zk, and thus cannot live inside two distinct planes in Zk.
Finally, the sets Lk

Π
are pairwise disjoint as well: if a line l belongs to Lk

Π
and Lk

Π′ for some Π 6= Π′

inside Zk, then l is a critical line of Zk and therefore cannot contain any regular points of Zk (contradicting
the definitions of Lk

Π
and Lk

Π′).

Remark 5.5. As we have noted, in general, a union of sets with planar structure does not have planar
structure – see the discussion in Section 4.1. Nevertheless, the study of the interaction between the Zk
corresponding to different bad k reveals that the sets J̄k above are exceptional, in that they have large
subsets whose union has planar structure. The proof of this assertion – which features below in Step 5 –
builds upon the following (already established) properties of J̄k:

(i) Each element of J̄k is a regular point of Zk.

(ii) Each x ∈ J̄k lies in J̄k,Π for the unique Π inside Zk that contains x.

(iii) The sets Lk
Π

(for any fixed bad k) are pairwise disjoint.

Step 5: The set JJJbad ===
⋃⋃⋃

bad k JJJkkk has nearly planar structure. The following lemma immediately
implies that the set

J̄ :=
⋃

bad k

J̄k,

has nearly planar structure. Since |Jk| ∼ |J̄k| for all bad k, it directly follows that Jbad =
⋃

bad k Jk has
nearly planar structure.

Lemma 5.6. For each bad k, there exists J̄′k ⊆ J̄k, with |J̄′k| ∼ |Jk|, such that
⋃

bad k J̄′k has planar structure.

We break up the proof of Lemma 5.6 into three sub-steps.
Step 5a: Identification of the enemy. In this step we partition the joints in J̄ into planes in a natural

way, and identify the configurations which could obstruct planar (and thus potentially nearly planar)
structure for J̄ in the context of this partition.
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Indeed, we begin by partitioning J̄ using the planes inside the collections Pk (defined in Step 3), over
all bad k. In particular, recall that, for each bad k, all joints in J̄k are regular points of Zk, lying inside the
union of planes

⋃
Π∈Pk

Π⊆ Zk. For each bad k and Π ∈ Pk, we have defined J̄k,Π := J̄k∩Π.
As stated in Remark 5.5, for any given k the sets J̄k,Π are disjoint (and thus form a partition of J̄k).
Let P :=

⋃
bad kPk. For each Π ∈ P, let

J̄Π :=
⋃

k: Π∈Pk

J̄k,Π.

The sets J̄Π are pairwise disjoint (and form a partition of J̄). Indeed, for each x ∈ J̄, the Π ∈ P for which
x ∈ JΠ is the unique plane inside Zk that contains x, for the unique k for which x ∈ Jk. Define

LΠ := {l ∈ L : l ⊆Π and l contains some point in J̄Π}

and observe that for any Π ∈ P it holds that LΠ =
⋃

bad kL
k
Π

, where, recall,

Lk
Π := {l ∈ L : l ⊆Π and l contains some point in J̄k,Π}.

If the sets LΠ are pairwise disjoint, then J̄ has planar structure. In order to study the interaction of the
sets LΠ, for any bad k define

Lk :=
⊔

Π∈Pk

Lk
Π.

For any ` ∈ Lk, denote by Πk
` the unique Π ∈ Pk for which ` ∈ Lk

Π
(the unique Π ∈ Pk in which ` lies).

Π = Πk
` ⊆ Zk

Π′ = Πk′
` ⊆ Zk′

`= Π∩Π′

∼ k

∼ k

∼ k′

∼ k′

Figure 3: We demonstrate the situation which could obstruct planar structure (and could thus potentially also
obstruct nearly planar structure) for J̄. The k, k′ are both bad. The line ` is the intersection of two distinct planes,
one in Zk (red) and one in Zk′ (blue), and carries simultaneously joints in J̄k (red) and in J̄k′ (blue). The bulk of the
lines through each of the red joints are in Lk, and they are flat lines of Zk inside Π. The bulk of the lines through
each of the blue joints are in Lk′ , and they are flat lines of Zk′ inside Π′. The line ` itself lies in Lk ∩Lk′ .
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Note that this Π is unique, due to the disjointness of the sets Lk
Π

for fixed k (see Remark 5.5).
Suppose that the sets LΠ are not pairwise disjoint. This means that there exists a line ` ∈ LΠ∩LΠ′

for some Π 6= Π′ in P; in particular, there exist bad k,k′ so that ` ∈ Lk
Π
∩Lk′

Π′ . This implies that k 6= k′ (as
the sets Lk

Π
,Lk

Π′ are disjoint). Therefore, ` ∈ Lk ∩Lk′ for these distinct k,k′, and moreover the planes
Πk

` = Π and Πk′
` = Π′ are distinct. This situation is depicted in Figure 3.

We have thus demonstrated that the only potential obstruction to J̄ having planar structure in the
context of our partition would be the existence of some line ` that lives simultaneously in two sets Lk, Lk′

for k 6= k′, and additionally satisfies Πk
` 6= Πk′

` . We are not disproving the existence of such a problematic
line here. However, the technical Claim 5.7 in Step 5b below will imply (in Step 5c) that, even if such
problematic lines exist (causing potential obstructions to planar structure), they still cannot obstruct
nearly planar structure. In particular, the lines through each joint in a large subset of J̄ =

⋃
bad k J̄k are not

problematic. The algebraic-geometric nature of obstructions to planar structure (see Figure 3) prompts us
to show this by exploring how different varieties Zk, Zk′ (for bad k, k′) interact with each other.

Step 5b: Interaction of the varieties ZZZkkk as bad kkk varies. To study this interaction in a manner
which is helpful for the proof of Claim 5.7, we define a total order ≺ on the set of bad k such that

if k′ ≺ k, then k′εdk′ ≤ kεdk.

This is achieved by simply ordering the quantities kεdk in (usual) increasing order, and assigning the
same order to the corresponding k’s. (For k’s for which the corresponding kεdk are equal, any total order
between them is permitted.)

To formulate the claim, for any x ∈ J̄ define

Lx := {l ∈ LΠ through x}

for the unique Π ∈ P for which x ∈ JΠ. Observe that if x ∈ J̄k then all lines in Lx belong to Lk (and total
∼ k in number).

Claim 5.7. For all bad k, there exists J̄′k ⊆ J̄k, with |J̄′k| ∼ |Jk|, such that any line ` ∈
⋃

x∈J̄′k
Lx with

` ∈ Lk∩
⋃

k′≺k

Lk′

satisfies
Π

k′
` = Π

k
`.

Roughly speaking, Claim 5.7 states that, for any bad k, only a small proportion of the joints in J̄k may
live in lines ` as in the obstructive Figure 3, for k′ ≺ k.

Proof of Claim 5.7. Fix a bad k. For x ∈ J̄k, we say that x is problematic if there exists ` ∈ Lx with

` ∈
⋃

k′≺k

Lk′ and Π
k′
` 6= Π

k
`.

More precisely, for k′ ≺ k, we say that x is k′-problematic if there exists ` ∈ Lx with

` ∈ Lk′ and Π
k′
` 6= Π

k
`.
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In other words, x ∈ J̄k is k′-problematic if it is a red joint inside some line ` as in Figure 3.
Denote by J̄k,prob and J̄k′

k,prob the sets of problematic and k′-problematic joints, respectively. Observe
that

J̄k,prob =
⋃

bad k′≺k

J̄k′
k,prob. (11)

The goal is to prove that
|J̄k,prob|. |Jk|

(for an appropriate implicit constant smaller than 1); that is, that only a small proportion of the joints in
J̄k may live in lines ` as in Figure 3, for k′ ≺ k.

Suppose for contradiction that |J̄k,prob|& |Jk|. It follows that there exists a bad k′ ≺ k such that

|J̄k′
k,prob|&ε

|Jk|
k′ε

(since otherwise (11) would imply that |J̄k,prob| ≤ ∑bad k′≺k |J̄k′
k,prob|.ε ∑bad k′≺k

|Jk|
k′ε . |Jk|, a contradiction

under the assumption that the ε-dependent implicit constant above is appropriately small).
We will derive a contradiction by appropriately bounding I(J̄k′

k,prob,L
k), the number of incidences

between the joints in J̄k′
k,prob and the lines in Lk. The core of the analysis is informally summarised in

Figure 4 below, which builds on Figure 3.
To begin with, the planar structure of J̄k (more precisely, the fact that ∼ k lines in Lk pass through

each joint in J̄k) and the assumed lower bound on |J̄k′
k,prob| imply that

I(J̄k′
k,prob,L

k)∼ |J̄k′
k,prob| · k &ε

|Jk|
k′ε
· k.

On the other hand,
I(J̄k′

k,prob,L
k) = I(J̄k′

k,prob,L
k
(Zk′

)+ I(J̄k′
k,prob,L

k
⊆Zk′

), (12)

where Lk
(Zk′

is the set of lines in Lk that do not lie fully inside Zk′ , and where Lk
⊆Zk′

is the set of lines in
Lk that lie fully inside Zk′ . We split the analysis into two cases, according to which of the summands is
dominant in (12). Recall, each x ∈ J̄k′

k,prob lies in Zk∩Zk′ .
• Suppose that I(J̄k′

k,prob,L
k)∼ I(J̄k′

k,prob,L
k
(Zk′

). It directly follows that

I(J̄k′
k,prob,L

k
(Zk′

)&ε

|Jk|
k′ε
· k.

On the other hand, since J̄k′
k,prob ⊆ Zk′ , each line in Lk

(Zk′
contains at most dk′ elements of J̄k′

k,prob ⊆ Zk′ .
Therefore,

I(J̄k′
k,prob,L

k
(Zk′

)≤ Ldk′ .

It follows by the two estimates above that

|Jk|
k′ε
· k .ε Ldk′ .

DISCRETE ANALYSIS, 2020:18, 45pp. 28

http://dx.doi.org/10.19086/da


JOINTS AND KAKEYA

This situation is illustrated by (ii) in Figure 4.
• Suppose that I(J̄k′

k,prob,L
k)∼ I(J̄k′

k,prob,L
k
⊆Zk′

). It directly follows that

I(J̄k′
k,prob,L

k
⊆Zk′

)&ε

|Jk|
k′ε
· k.

Π = Πk
` ⊆ Zk

Π′ = Πk′
` ⊆ Zk′

`= Π∩Π′

regular for Zk′

∼ k

∼ k

∼ k′

∼ k′

Figure 4: The problematic joints (red) are arranged in lines ` ∈ Lk ∩Lk′ as above (a configuration precisely as in
Figure 3). Everything that is red lives in Zk, and everything that is blue lives in Zk′ (and ` itself lives in both zero
sets). The lines that are only red do not live in Zk′ , while the red lines that are also blue-dashed live in Zk′ . The red
joints are regular points of Zk, while the blue joints are regular points of Zk′ . The problematic joints are few: (i) The
existence of regular blue points along ` means that the red plane Π cannot also be blue (i.e., cannot live in Zk′),
so the blue-dashed lines are few, contributing few incidences with the red joints. (ii) The red lines contribute few
incidences with the red joints as each can only intersect the blue zero set few times.

More precisely, one obtains that

& |J̄k′
k,prob|&ε

|Jk|
k′ε

joints x ∈ J̄k′
k,prob have ∼ k lines in Lk

⊆Zk′
through each. (13)

Since the joints in J̄k′
k,prob lie in the lines in the set

{` ∈ Lk∩Lk′ : Π
k
` 6= Π

k′
` } ⊆ L,

it follows that there exists ` ∈ Lk∩Lk′ with Πk
` 6= Πk′

` which contains &ε
|Jk|
k′ε L of the joints in (13). The

∼ k lines in Lk through each of these joints all lie in Πk
` (as these joints are regular points of Zk on the

plane Πk
` ⊆ Zk, and the lines in Lk lie in Zk); thus, by (13), Πk

` contains &ε
|Jk|
k′ε L k lines that all lie in Zk′ .

However, these lines are fewer than dk′ in total, as otherwise Πk
` would lie in Zk′ , and thus `, a line that
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contains at least one regular point of Zk′ , would be the intersection of two distinct planes in Zk′ , which
cannot happen. Therefore,

|Jk|
k′εL

k .ε dk′ .

This situation is illustrated by (i) in Figure 4.

Observe that both cases above lead to the same bound

|Jk|k .ε Lk′εdk′

for Jk. Now, due to the fact that k′ ≺ k it holds that k′εdk′ ≤ kεdk, thus

|Jk|k .ε Lkεdk,

or equivalently |Jk|k2−ε/2 .ε L3/2, which is a contradiction because k is bad.
Therefore, |J̄k,prob|. |Jk|; the proof of Claim 5.7 is complete.

Step 5c: Conclusion: the failure of the enemy. Claim 5.7 implies that J̄′ :=
⋃

bad k J̄′k has planar
structure. Indeed, for all k and Π ∈ P=

⋃
bad kPk define

J̄′k,Π := J̄′k∩ J̄k,Π

and
J̄′Π :=

⊔
k:Π∈Pk

J̄′k,Π.

The sets J̄′
Π

are pairwise disjoint, as each x ∈ J̄ (and thus in J̄′) belongs to J̄′
Π

for the unique Π ∈ Pk that
contains x, for the unique k for which x ∈ J̄′k. Therefore, to show that J̄′ has planar structure it suffices to
show that the sets

L̄Π := {l ∈ L : l ⊆Π and l contains some joint in J̄′Π}

are pairwise disjoint.
Assume for contradiction that the sets L̄Π are not pairwise disjoint. This means that there exists a line

` ∈ L̄Π∩ L̄Π′ for some Π 6= Π′ in P. Since ` ∈ LΠ, it follows that ` is contained in Π and contains some
joint x ∈ J̄′k,Π, for some k. This further implies that ` ∈

⋃
x∈J̄′k

Lx, ` ∈ Lk and Πk
` = Π ∈ Pk. Similarly, the

fact that ` ∈ L̄Π′ implies that ` contains some joint in J̄′k′,Π for some k′, and therefore that ` ∈
⋃

x∈J̄′k′
Lx,

` ∈ Lk′ and Πk′
` = Π′ ∈ Pk′ .

It is impossible for the above to hold for k = k′. Indeed, if this was the case, then ` would be the
intersection of the two distinct planes Π,Π′, which both lie in Zk. Thus all points in ` would be critical
points of Zk, and therefore ` would not contain any element of J̄′k, a contradiction.

It follows that k 6= k′. It has thus been shown that for these distinct k,k′

` ∈
⋃

x∈J̄′k

Lx and ` ∈
⋃

x∈J̄′k′

Lx
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while also
` ∈ Lk∩Lk′ .

Now, either k′ ≺ k or k≺ k′. If k′ ≺ k, then the above implies that ` ∈
⋃

x∈J̄′k
Lx and ` ∈Lk∩

⋃
k′≺kL

k′ ; by
Claim 5.7 it follows that Π = Π′, a contradiction. Similarly, if k≺ k′ the above implies that ` ∈

⋃
x∈J̄′k′

Lx

and ` ∈ Lk′ ∩
⋃

k≺k′L
k′ , which again leads to the contradiction Π = Π′ by Claim 5.7.

Therefore, the sets L̄Π are pairwise disjoint. It follows that J̄′ has planar structure – the proof of
Lemma 5.6 is complete.

Step 6: Proving the discrete Kakeya estimate. To complete the proof of Theorem 5.2, it remains
to show the discrete Kakeya-type estimate (8). We begin by showing that it holds under the additional
hypothesis of nearly planar structure, with the aid of the Szemerédi–Trotter theorem.

In crude terms, each plane Π featuring in a nearly planar structure is independent from the other
planes, when it comes to counting incidences. In particular, it is the lines from within Π that contribute
essentially all incidences with the points that have chosen Π. This fact informs the basic idea for the
proof of Lemma 5.8: finding an appropriate incidence estimate on each such plane Π, and then summing
over all Π.

Lemma 5.8. Let J be a set of joints formed by a set L of L lines in R3. If J has nearly planar structure,
then

∑
x∈J

(
∑
l∈L

χl(x)

)3/2

. L3/2.

Proof. The lemma is proved for sets of joints with planar structure; the general statement immediately
follows by the definition of nearly planar structure.

Let J be a set of joints formed by L that has planar structure. As before, the desired inequality
becomes

∑
k
|Jk|k3/2 . L3/2.

Since J has planar structure, there exist a set P of planes and a decomposition J =
⊔

Π∈P JΠ in sets
JΠ ⊆ J∩Π, so that the sets

LΠ := {l ∈ L : l ⊆Π and l contains some point in JΠ},

whose cardinalities we denote by LΠ, are pairwise disjoint and satisfy

#{lines in LΠ through x} ∼ #{lines in L through x}

for every joint x ∈ JΠ. Observe that Jk =
⊔

Π∈P Jk,Π, where Jk,Π is the set of joints in JΠ∩ Jk. The desired
inequality thus becomes

∑
Π∈P

∑
k
|Jk,Π|k3/2 . L3/2, (14)

and will follow from the “pointwise" estimate

∑
k
|Jk,Π|k3/2 . LΠL1/2 for all Π ∈ P (15)
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by adding over all Π ∈ P, crucially using the fact that

∑
Π∈P

LΠ ≤ L,

which holds because the sets LΠ are pairwise disjoint.
We now show (15) to complete the proof. Let Π ∈ P. Observe that, due to the planar structure of J,

each joint in Jk,Π lies in ∼ k lines in LΠ. Therefore, the desired estimate

∑
k
|Jk,Π|k3/2 . LΠL1/2 (16)

is a statement regarding incidences between Jk,Π and LΠ, and the Szemerédi–Trotter theorem will be
employed for its proof. In particular, for k & L1/2

Π
, applying the Szemerédi–Trotter theorem to count

incidences between Jk,Π and LΠ, one obtains

|Jk,Π|.
LΠ

k
.

Therefore,
∑

k&L1/2
Π

|Jk,Π|k3/2 . LΠ ∑
k&L1/2

Π

k1/2 . L3/2
Π

. LΠL1/2.

On the other hand, the Szemerédi–Trotter theorem asserts that for k . L1/2
Π

the inequality

|Jk,Π|.
L2

Π

k3 (17)

holds. Moreover, the joints structure may be exploited to derive

|JΠ| ≤ L. (18)

Indeed, all points in JΠ lie on the same plane Π, however they are joints formed by L; hence, there exists
a distinct line in L through each joint in JΠ (which does not lie in Π), and therefore L≥ |JΠ|. Inequalities
(17) and (18) will now be combined to derive the estimate

∑
k.L1/2

Π

|Jk,Π|k3/2 . LΠL1/2, (19)

concluding the proof. The analysis is split in two cases, according to whether k . Q or k & Q, where

Q :=
(

L2
Π

L

)1/3

.

The former case is resolved by exploiting the joints structure (in particular, (18)). More precisely,

∑
k.Q
|Jk,Π|k3 .

(
∑

k.Q
|Jk,Π|

)
Q3 . |JΠ|

L2
Π

L
. L

L2
Π

L
= L2

Π, (20)
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where the last inequality is (18). (Note that the above estimate may be viewed as an improved version of
the Szemerédi–Trotter theorem for

⊔
k.Q Jk,Π, as merely applying (17) for each k . Q and adding over

all such k will in general yield the above inequality with a logQ loss.) Applying the Cauchy-Schwarz
inequality and using again the joints structure estimate (18), this time combined with (20), one deduces

∑
k.Q
|Jk,Π|k3/2 = ∑

k.Q
(|Jk,Π|k3)1/2|Jk,Π|1/2

.

(
∑

k.Q
|Jk,Π|k3

)1/2(
∑

k.Q
|Jk,Π|

)1/2

.

(
∑

k.Q
|Jk,Π|k3

)1/2

|JΠ|1/2

. LΠL1/2.

(21)

The situation for the remaining k (those for which Q . k . L1/2
Π

) is resolved using estimate (17) (which
holds independently of the joints structure). In particular,

∑
Q.k.L1/2

Π

|Jk,Π|k3/2 = ∑
QΠ.k.L1/2

Π

|Jk,Π|k3 1
k3/2

. L2
Π ∑

Q.k.L1/2
Π

1
k3/2

. L2
Π

1
Q3/2 ∼ L2

Π

L1/2

LΠ

∼ LΠL1/2.

(22)

Combining (21) and (22), the desired estimate (19) follows.

Now we prove (8) in the general case. For large k, the Szemerédi–Trotter theorem implies that

|Jk|.
L
k

for all k & L1/2, (23)

hence
∑

k&L1/2

|Jk|k3/2 . ∑
k&L1/2

Lk1/2 . L3/2. (24)

For (small) good k the inequality
∑

good k
|Jk|k3/2 . L3/2

follows from the superior estimate (9). Finally, the estimate

∑
bad k
|Jk|k3/2 . L3/2,

follows directly from the fact that Jbad has nearly planar structure together with Lemma 5.8. This
completes the proof of Step 6 and of the theorem.
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Remark 5.9. As is shown by the case where all lines in L pass through the same point, equality in (24)
is sometimes (essentially) achieved. Note that, in this case of large k, (23) implies via a simple counting
argument (and independently of the joints structure) that the joints and lines are arranged in essentially
non-interacting bushes.

A Appendix: Affine-invariant Hasse calculus – directional derivatives, re-
strictions and multiplicities

Throughout this appendix we will consider polynomials and not polynomial mappings. We shall regard
all vectors in Fn as column vectors unless otherwise stated.

A.1 The Hasse derivative.

Let n≥ 1. For any i = (i1, . . . , in) and j = ( j1, . . . , jn) ∈ Nn, define(
i
j

)
:=
(

i1
j1

)
· · ·
(

in
jn

)
.

For all i = 1, . . . ,n, denote by ei the vector (0, . . . ,0,1,0, . . . ,0)T with 1 in the i-th coordinate. Finally, for
any field F, any x = (x1, . . . ,xn)

T ∈ Fn and any multi-index a = (a1, . . . ,an) ∈ Nn, let xa := xa1
1 · · ·xan

n .
Theorem 1.1 is proved by studying directional derivatives of appropriate polynomials along directions

carried by the objects forming the joints. While in a general field setting derivatives cannot be defined
analytically, they can be defined algebraically as coefficients in Taylor expansions.

Definition A.1. (Hasse derivative) Let F be a field, n ≥ 1 and p ∈ F[x1, . . . ,xn]. For each a ∈ Nn, the
Hasse derivative Da p of p is defined as the element of F[x1, . . . ,xn] which is the coefficient of ya in the
expression of p(x+ y) as a polynomial in x.

It follows that, for all p ∈ F[x1, . . . ,xn], we have the “Taylor expansion"

p(x) = ∑
a∈Nn

Da p(x0)(x− x0)
a

in the sense of equality between polynomials in x and x0, and therefore also in the sense of polynomials
in x with x0 ∈ Fn fixed. Moreover, if we know that an expression

p(x) = ∑
a∈Nn

pa(x0)(x− x0)
a.

with pa a polynomial in x0 holds in the world of polynomials in x and x0, then we can deduce that
pa = Da p.7

7More precisely, this equality holds in F[x,x0] (and thus in F[x0]). Indeed, suppose that ∑a∈Nn,|a|≤N qa(x0)(x− x0)
a = 0,

with qa a polynomial in x0, and that some qa with |a|= N is non-zero. The coeffcients of xa with |a|= N must be zero, and
hence qa = 0 for all a with |a|= N, contradiction.
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Remark A.2. Observe that one can recover a polynomial via its Hasse derivatives at a point. In the
special case where F = R, the Hasse derivative Da p(x0) is simply a (non-zero) multiple of the usual
derivative (e1 ·∇)a1 · · ·(en ·∇)an p(x0) of p at x0; more precisely,

(e1 ·∇)a1 · · ·(en ·∇)an p(x0) = a! Da p(x0).

So, in this particular case the usual and Hasse derivatives are equivalent notions. However, in general
field settings the “usual" derivatives a!Da p(x0) of a polynomial at a point provide less information about
the polynomial, in that they do not suffice to fully recover the polynomial. For instance, all “usual"
derivatives of the polynomial p(x) = xq ∈ Zq[x] for q prime vanish at 0, yet p has a non-zero coefficient
(D(q)p(0) = 1 6= 0). Therefore the Hasse derivative generalises the standard Euclidean space derivative in
a more robust way than the “usual" derivative does. In particular, even in the case n = 1, it is not in general
the case that D(2) = D(1) ◦D(1) (see Proposition A.3 (iii) below), and it is quite possible for a polynomial
to satisfy Da p = 0 while Da+1 p 6= 0 – consider for example p(x) = xq in Zq[x], with a = q−1.

Proposition A.3. (Basic properties of the Hasse derivative.) Let F be a field and n ≥ 1. Then, the
following hold:

(i) For each a, Da : F[x1, . . . ,xn]→ F[x1, . . . ,xn] is a linear map.

(ii) For any monomial xa1
1 · · ·xan

n ∈ F[x1, . . . ,xn], it holds that

Dei(xa1 · · ·xan) =

{
ai xa1

1 · · ·x
ai−1
i · · ·xan

n , if ai > 0,
0, if ai = 0

.

(iii) Di
(
D j p

)
=
(i+ j

j

)
Di+ j p =

(i+ j
i

)
Di+ j p = D j

(
Di p
)
, for all p ∈ F[x1, . . . ,xn] and i, j ∈ Nn.

(iv) Each Da is translation-invariant: Da(p(·+ y))(x) = Da p(x+ y) as polynomials in x and y.

Proofs for properties (i) and (iii) can be found for example in [5] and [6], while (ii) is proved in [14].
The proof of (iv) is an easy exercise.

Much of the rest of this section is devoted to a careful verification that calculus with Hasse derivatives
proceeds in parallel with classical calculus. In subsequent subsections we consider, in turn, directional
derivatives, restrictions of derivatives of polynomials to planes, Hasse-multiplicities of polynomials and
vanishing properties of restrictions of directional derivatives of polynomials to planes. Many of the
statements which follow also appear, in disguised form, in [22].

The following technical lemma describes the derivatives of restrictions of polynomials to affine
subspaces, and will subsequently be used for the study of directional derivatives.

Lemma A.4. Let F be a field, n≥ 1, p ∈ F[x1, . . . ,xn] and x0 ∈ Fn. Let k ∈ {1,2, . . . ,n} and let P be the
k-plane through x0 spanned by the vectors ω1, . . . ,ωk ∈ Fn \{0}. Let Ω be the n× k matrix with columns
ω1, . . . ,ωk, and let, for t = (t1, . . . , tk)T ,

p|Px0
(t) := p(x0 +Ωt) ∈ F[t1, . . . , tk].

DISCRETE ANALYSIS, 2020:18, 45pp. 35

http://dx.doi.org/10.19086/da


ANTHONY CARBERY, MARINA ILIOPOULOU

Then, for all m ∈ Nk, the identity

Dm(p|Px0

)
(t) = ∑

a=α1+···+αk∈Nn: |αi|=mi ∀i
Da p(x0 +Ωt) ω

α1
1 · · ·ω

αk
k

holds in F[t1, . . . , tk].
Proof. For convenience we denote the entries of Ω by (ω jl)

n
j=1

k
l=1, so that the column vector ωl has

entries (ω jl)
n
j=1. For any vectors t = (t1, . . . , tk)T and t0 = (t01, . . . , t0k)

T of indeterminants, we have

p|Px0
(t) = p(x0 +Ωt)

= ∑
a∈Nn

Da p(x0 +Ωt0) ·
(
Ω(t− t0)

)a

= ∑
a∈Nn

Da p(x0 +Ωt0) ·
(
(t1− t01) ω1 + · · ·+(tk− t0k) ωk

)a

= ∑
a∈Nn

Da p(x0 +Ωt0) ·
n

∏
j=1

(
(t1− t01) ω j1 + · · ·+(tk− t0k) ω jk

)a j .

With a ∈ Nn and j fixed we have(
(t1− t01) ω j1 + · · ·+(tk− t0,k) ω jk

)a j = ∑
b j1+···+b jk=a j

[(t1− t01)ω j1]
b j1 · · ·

[
(tk− t0k)ω jk

]b jk

and the product in j of these terms is therefore
n

∏
j=1

∑
b j1+···+b jk=a j

[(t1− t01)ω j1]
b j1 · · ·

[
(tk− t0k)ω jk

]b jk .

With a still fixed, let B be the n× k matrix whose entries are b jl . Denote its rows by b j ∈ Nk and its
columns by αl ∈ Nn, so that for each j the entries b jl of b j satisfy ∑

k
l=1 b jl = a j. The previous displayed

expression becomes

∑
α1+···+αk=a

[
(t1− t01)

∑
n
j=1 b j1

n

∏
j=1

ω
b j1
j1

]
· · ·

[
(tk− t0k)

∑
n
j=1 b jk

n

∏
j=1

ω
b jk
jk

]
= ∑

α1+···+αk=a
(t− t0)∑

n
j=1 b j ω

α1
1 · · ·ω

αk
k

= ∑
m∈Nk

(t− t0)m
∑

α1+···+αk=a,∑n
j=1 b j=m

ω
α1
1 · · ·ω

αk
k

= ∑
m∈Nk

(t− t0)m
∑

a=α1+···+αk,|αl |=ml ∀ l
ω

α1
1 · · ·ω

αk
k .

Therefore, summing over a,

p|Px0
(t) = ∑

m∈Nk

(
∑

a=α1+···+αk∈Nn: |αi|=mi ∀ i
Da p(x0 +Ωt0) ω

α1
1 · · ·ω

αk
k

)
(t− t0)m.

Consequently, for any m ∈ Nk, Dm
(

p|Px0

)
(t0) equals the coefficient of (t− t0)m in the last expression

above, and we are done.
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A.2 Directional derivatives.

As with standard derivatives, directional derivatives can be understood algebraically in Euclidean space
and can therefore be meaningfully defined in all field settings. In particular, it is easy to see that for all
linearly independent vectors ω1, . . . ,ωn in Rn and any a = (a1, . . . ,an) ∈ Nn, it holds that

(ω1 ·∇)a1 · · ·(ωn ·∇)an p(x0) = a! Da(p◦L)(L−1x0)

where L : Rn→ Rn is the linear isomorphism with L(ei) = ωi. This observation leads to the following
definition:

Definition A.5. (Directional Hasse derivative.) Let F be a field, n≥ 1 and p ∈ F[x1, . . . ,xn]. Suppose
that ω1, . . . ,ωn ∈ Fn are linearly independent vectors, and let L : Fn→ Fn be the linear isomorphism with
L(ei) = ωi for all i = 1, . . . ,n. For each a = (a1, . . . ,an) ∈ Nn, we define

(ω1 ·∇)a1 · · ·(ωn ·∇)an p(x) := Da(p◦L)(L−1x) ∈ F[x1, . . . ,xn].

Sometimes we write this more succinctly as

(ωωω ·∇)a p := (ω1 ·∇)a1 · · ·(ωn ·∇)an p

where ωωω := (ω1, . . . ,ωn). Note that, for any a= (a1, . . . ,an)∈Nn, this definition introduces the alternative
notation (e1 ·∇)a1 · · ·(en ·∇)an p(x0) for Da p(x0).

A directional derivative can easily be expressed in terms of standard Hasse derivatives, and more
generally in terms of directional derivatives in another set of fixed directions, as follows.

Lemma A.6. Let F be a field, n ≥ 1 and p ∈ F[x1, . . . ,xn]. For any linearly independent vectors
ω1, . . . ,ωn ∈ Fn, for any (a1, . . . ,an) ∈ Nn, the equality

(ω1 ·∇)a1 · · ·(ωn ·∇)an p(x) = ∑
ã=α1+···+αn∈Nn:|αi|=ai ∀i

Dã p(x) ω
α1
1 · · ·ω

αn
n

holds in F[x1, . . . ,xn].

This is a simple application of Lemma A.4 in the case k = n for the polynomial (ω1 ·∇)a1 · · ·(ωn ·
∇)an p, and easily implies the more general identity

(ωωω ·∇)a p(x) = ∑
ã=α1+···+αn∈Nn:|αi|=ai ∀i

(ω ·∇)ã p(x) ω̃
α1
1 · · · ω̃

αn
n (25)

in F[x1, . . . ,xn], for all n-tuples ωωω = (ω1, . . . ,ωn) and ω = (ω1, . . . ,ωn) of linearly independent vectors
in Fn, where for each j, ω̃ j = LL−1

(e j), where L is the linear isomorphism of Fn sending each ei to ωi,
and L the linear isomorphism of Fn sending each ei to ωi.

Remark A.7. Let 1 ≤ k ≤ n, (ak+1, . . . ,an) ∈ Nn−k and let ωk+1, . . . ,ωn ∈ Fn be linearly independent.
The above lemma implies that the polynomial

(ω1 ·∇)0 · · ·(ωk ·∇)0 · (ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p ∈ F[x1, . . . ,xn] (26)
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is independent of the choice of vectors ω1, . . . ,ωk ∈ Fn with the property that span{ω1, . . . ,ωn}= Fn, as
one would expect. We thus henceforth denote any polynomial in (26) by

(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p.

It follows that
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p(x) = Da(p◦L)(L−1x)

where a := (0, . . . ,0,ak+1, . . . ,an) ∈ Nn, for all linear isomorphisms L : Fn→ Fn such that L(ei) = ωi for
i = k+1, . . . ,n.

It will be seen that directional derivatives enjoy to a large extent properties analogous to those of
standard directional derivatives in Euclidean space.

A.3 Restrictions of derivatives of polynomials to planes.

Restrictions of directional Hasse derivatives of polynomials to planes can be themselves viewed as
polynomials in a natural way.

Definition A.8. Let F be a field, n≥ 1, 1≤ k ≤ n and p ∈ F[x1, . . . ,xn]. Let P = x0 + span{ω1, . . . ,ωk}
be a k-dimensional plane in Fn. We say that the vectors ωk+1, . . . ,ωn ∈ Fn are transverse to P if, together
with ω1, . . . ,ωk, they span Fn.

Definition A.9. (Restrictions of directional derivatives of polynomials to planes.) Let F be a field,
n ≥ 1, 1 ≤ k ≤ n and p ∈ F[x1, . . . ,xn]. Let P = x0 + span{ω1, . . . ,ωk} be a k-dimensional plane in Fn.
Let Ω be the n× k matrix with columns ω1, . . . ,ωk. For any vectors ωk+1, . . . ,ωn ∈ Fn transverse to P
and for any a = (a1, . . . ,an) ∈ Nn, define the polynomial

(ω1 ·∇)a1 · · ·(ωn ·∇)an p|Px0 ,Ω
∈ F[t1, . . . , tk]

by

(ω1 ·∇)a1 · · ·(ωn ·∇)an p|Px0 ,Ω
(t1, . . . , tk) := (ω1 ·∇)a1 · · ·(ωn ·∇)an p(x0 + t1ω1 + · · ·+ tkωk).

In the proof of Theorem 1.1, for p ∈ F[x1, . . . ,xn] we employ the notation p|P to denote the standard
restriction of the function p : Fn→ F to P. In this appendix, however, the more elaborate notation p|Px0 ,Ω

(and also the form p|Px0
used in Lemma A.4) is reserved to denote the polynomial in F[t1, . . . , tk] given

by the above definition. (Observe that, by Lemma 2.2, in the case where F is infinite, p|Px0 ,Ω
is the zero

polynomial in F[t1, . . . , tk] if and only if the function p|P is zero. This property is independent of the
particular x0 and Ω used to define P. Likewise, deg p|Px0 ,Ω

, and the multiplicity of p|Px0 ,Ω
(which will be

discussed in Lemma A.15) at any point of Fk, are independent of the particular x0,Ω used to define P.)

Remark A.10. Using the above notation, and recalling that

(ω1 ·∇)a1 · · ·(ωn ·∇)an p(x) := Da(p◦L)(L−1x)
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where L : Fn→ Fn is the linear isomorphism with L(ei) = ωi for all i = 1, . . . ,n, it follows that

(ω1 ·∇)a1 · · ·(ωn ·∇)an p|Px0 ,Ω
(t1, . . . , tk) = Da(p◦L)[L−1(x0 + t1ω1 + · · ·+ tkωk)]

= Da(p◦L)(L−1x0 + t1e1 + · · ·+ tkek).

Of particular interest to us will be restrictions to P of directional derivatives of the form

(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p,

i.e. derivatives in directions transverse to P. Recall that by Remark A.7 the equality

(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p = (ω1 ·∇)0 · · ·(ωk ·∇)0(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p

holds, hence

(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω
(t1, . . . , tk) = Da(p◦L)(L−1x0 + t1e1 + · · ·+ tkek)

for the above isomorphism L and for a = (0, . . . ,0,ak+1, . . . ,an).

Lemma A.11. Let F be a field, n ≥ 1, 1 ≤ k ≤ n and p ∈ F[x1, . . . ,xn]. Let P = x0 + span{ω1, . . . ,ωk}
be a k-dimensional plane in Fn and denote by Ω the n× k matrix with columns ω1, . . . ,ωk. For every
ωk+1, . . . ,ωn ∈ Fn transverse to P and all a = (a1, . . . ,an) ∈ Nn, the equality

D(a1,...,ak)
[
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω

]
= (ω1 ·∇)a1 · · ·(ωn ·∇)an p|Px0 ,Ω

.

holds in F[t1, . . . , tk].
Proof. Let L : Fn→ Fn be the linear isomorphism with L(ei) = ωi for all i = 1, . . . ,n. The statement of
the lemma is that

D(a1,...,ak)
[
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω

]
(t) = (ω1 ·∇)a1 · · ·(ωn ·∇)an p(x0 +Ωt)

in F[t1, . . . , tk], i.e. that the polynomial

g(t1, . . . , tk) : = (ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω
(t1, . . . , tk)

= (ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p(x0 + t1ω1 + · · ·+ tkωk)

= D(0,...,0,ak+1,...,an)(p◦L)(L−1x0 + t1e1 + · · ·+ tkek) ∈ F[t1, · · · , tk]
satisfies

D(a1,...,ak)g(t1, . . . , tk) = Da(p◦L)(L−1x0 + t1e1 + · · ·+ tkek).

By Lemma A.4,
D(a1,...,ak)g(t1, . . . , tk)

= ∑
a′=α1+···+αk∈Nn: |αi|=ai

Da′[D(0,...,0,ak+1,...,an)(p◦L)
]
(L−1x0 + t1e1 + · · ·+ tkek) eα1

1 · · ·e
αk
k .

Now, for each i ∈ {1, . . . ,k}, eαi
i equals 0 unless αi = (0, . . . ,0,ai,0, . . . ,0), with ai in the i-th coordinate.

Therefore, only one term survives in the sum, and we have

D(a1,...,ak)g(t) = D(a1,...,ak,0,...,0)
[
D(0,...,0,ak+1,...,an)(p◦L)

]
(L−1x0 + t1e1 + · · ·+ tkek)

= Da(p◦L)(L−1x0 + t1e1 + · · ·+ tkek)

as required, where the last equality is due to property (iii) of Hasse derivatives.
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A.4 Multiplicities of polynomials

We now turn to the notion of multiplicity (or order of vanishing) of a polynomial at a point. Our
subsequent analysis will rely upon this notion. The definition of multiplicity for Euclidean space carries
over directly to the setting of arbitrary fields when we use the Hasse derivative. In this subsection, let F
be a field, and n≥ 1.

Definition A.12. (Multiplicity.) Let p ∈ F[x1, . . . ,xn] and x0 ∈ Fn. If p 6= 0, the multiplicity of p at
x0, denoted by mult(p,x0), is the largest m ∈ N with the property that Da p(x0) = 0 for all a ∈ Nn with
|a|< m. If p(x0) 6= 0 we say that mult(p,x0) = 0. If p = 0 we say that mult(p,x0) = +∞ for all x0 ∈ Fn.

Definition A.13. (Directional multiplicity.) Let p ∈ F[x1, . . . ,xn]. If p 6= 0, for an n-tuple ωωω of linearly
independent vectors in Fn, define the directional multiplicity multωωω(p,x0) of p at x0 ∈ Fn to be the largest
m ∈ N with the property that (ωωω ·∇)a p(x0) = 0 for all a ∈ Nn with |a| < m. (We make the obvious
modifications if p(x0) 6= 0 or p = 0.)

Central to our analysis is the following proposition, which states that the multiplicity of a polynomial
at a point is independent of the choice of coordinate system, and is a direct consequence of (25).

Proposition A.14. (Multiplicity invariance.) Let p ∈ F[x1, . . . ,xn]. For any x0 ∈ Fn and any linearly
independent vectors ω1, . . . ,ωn in Fn, it holds that

multω1,...,ωn(p,x0) = mult(p,x0).

A.5 Vanishing properties of restrictions of directional derivatives of polynomials to planes

Counting points on a plane can be carried out using polynomials that vanish at the points of interest,
but not identically on the plane. For a polynomial in F[x1, . . . ,xn] and a k-plane in Fn, the following
lemma facilitates the identification of directional derivatives with non-zero restrictions (when viewed
as polynomials) on the plane. Under certain conditions, it also provides meaningful information on the
order of vanishing of such restrictions.

Lemma A.15. Let F be a field, n≥ 1, 1≤ k≤ n and p ∈ F[x1, . . . ,xn]. Let P = x0 + span{ω1, . . . ,ωk} be
a k-dimensional plane in Fn, and denote by Ω the n×k matrix with columns ω1, . . . ,ωk. Let ωk+1, . . . ,ωn

be vectors in Fn transverse to P and let a = (a1, . . . ,an) ∈ Nn.

(i) (Identifying derivatives with non-zero restrictions) If (ω1 ·∇)a1 · · ·(ωn ·∇)an p(x0) 6= 0, then

(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0,Ω
6= 0.

(ii) (Multiplicities) For all y = x0 +Ωt ∈ P, it holds that

mult
(
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω

, t
)
≥mult(p,y)− (ak+1 + · · ·+an).
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Proof. Recall by Lemma A.11 that

D(a1,...,ak)
[
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω

]
(t) = (ω1 ·∇)a1 · · ·(ωn ·∇)an p(x0 +Ωt) (27)

in F[t1, . . . , tk]. It follows that if (ω1 ·∇)a1 · · ·(ωn ·∇)an p(x0) 6= 0 then also

D(a1,...,ak)
[
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω

]
(0) 6= 0,

therefore (ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω
is not the zero polynomial. This establishes (i).

Furthermore, (27) implies that for any t ∈ Fk

D(a′1,...,a
′
k)
[
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω

]
(t) = 0

for all (a′1, . . . ,a
′
k) ∈ Nk with

(a′1 + . . .+a′k)+(ak+1 + · · ·+an)< multω1,...,ωn(p,x0 +Ωt)

= mult(p,x0 +Ωt),

thereby directly implying (ii).

Assertion (i) can be used to identify derivatives of p with non-zero restrictions (when viewed as
polynomials) to a plane P. Now, let g := (ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p be such a derivative. This implies
that for every y ∈ P there exists (a′1, . . . ,a

′
k) ∈ Nk with

(ω1 ·∇)a′1 · · ·(ωk ·∇)a′k g(y) 6= 0,

and thus by (ii), mult(g,y)≥mult(p,y)− (ak+1 + · · ·+an), a quantity which may well be non-positive.
And indeed, in general there can be no guarantee that g vanishes at points y ∈ P of interest (such as in the
case where p is a non-zero constant polynomial and g = p).

If however g is a derivative of minimal order that does not identically on P, it transpires that the
quantity mult(p,y)− (ak+1 + · · ·+an) is nonnegative, and is in fact positive under suitable conditions.
This is made precise in Lemma A.17 below.

Remark A.16. Observe that any directional derivative of p of minimal order with non-zero restriction
(when viewed as a polynomial) on P is necessarily a derivative in directions transverse to P, i.e. it is of
the form

(ωk+1 ·∇)mk+1 · · ·(ωn ·∇)mn p

where ωk+1, . . . ,ωn are vectors in Fn which, together with ω1, . . . ,ωk, span Fn. Moreover, it follows by
Lemma A.15 (i) that if p is not the zero polynomial, then, for any directions transverse to P, there exists a
derivative of p in these directions whose restriction to P is not the zero polynomial.
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Lemma A.17. Let F be a field, n ≥ 1, 1 ≤ k ≤ n and p ∈ F[x1, . . . ,xn] be non-zero. Let P = x0 +
span{ω1, . . . ,ωk} be a k-dimensional plane in Fn, and denote by Ω the n× k matrix with columns
ω1, . . . ,ωk. Let y = x0 +Ωt ∈ P. Fix ωk+1, . . . ,ωn ∈ Fn transverse to P and let a = (a1, . . . ,an) ∈ Nn be
of minimal length such that

(ω1 ·∇)a1 · · ·(ωn ·∇)an p(y) 6= 0.

Then, any directional derivative Dp of p of minimal order such that Dp|Px0 ,Ω
6= 0 satisfies

mult
(
Dp|Px0 ,Ω

, t
)
≥ a1 + · · ·+ak.

Proof. Let Dp be a directional derivative of p of minimal order such that Dp|Px0 ,Ω
6= 0 in F[t1, . . . , tk].

Then,
Dp = (ωk+1 ·∇)mk+1 · · ·(ωn ·∇)mn p

for some m = (mk+1, . . . ,mn) ∈ Nn−k and ωk+1, . . . ,ωn ∈ Fn transverse to P. Fix y = x0 +Ωt ∈ Fn. Let
ωk+1, . . . ,ωn ∈ Fn be vectors transverse to P and a = (a1, . . . ,an) ∈ Nn be of minimal length such that

(ω1 ·∇)a1 · · ·(ωn ·∇)an p(y) 6= 0.

It follows by Lemma A.15 that

(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Py,Ω
6= 0

or equivalently that
(ωk+1 ·∇)ak+1 · · ·(ωn ·∇)an p|Px0 ,Ω

6= 0.

The minimality property of m implies that mk+1 + · · ·+mn ≤ ak+1 + · · ·+ an. On the other hand, the
minimality property of a implies that a1 + · · ·+an = multω1,...,ωn(p,y), therefore

mk+1 + . . .mn ≤ (a1 + . . .+an)− (a1 + · · ·+ak)

= multω1,...,ωn(p,y)− (a1 + · · ·+ak)

= mult(p,y)− (a1 + · · ·+ak).

Combining assertion (ii) of Lemma A.15 with the above, one deduces that

mult(Dp, t)≥mult(p,y)− (mk+1 + · · ·+mn)

≥ a1 + · · ·+ak,

as required.

Let p ∈ F[x1, . . . ,xn] be a non-zero polynomial. Lemma A.15 (i) asserts that, for any plane P, if
one takes enough derivatives of p in directions transverse to P, then the resulting polynomial will not
vanish identically on P. The following lemma (which is a direct consequence of (25)) states that the
number of derivatives required to achieve this is independent of the directions along which we choose to
differentiate.
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Lemma A.18. Let F be a field, n ≥ 1 and p ∈ F[x1, . . . ,xn] be non-zero. Let 1 ≤ k ≤ n and P :=
x0 + span{ω1, . . . ,ωk} be a k-dimensional plane in Fn. Let ωk+1, . . . ,ωn ∈ Fn be transverse to P, and let

Dp := (ωk+1 ·∇)mk+1 · · ·(ωn ·∇)mn p

be a derivative of p with the property that, amongst all derivatives of p in directions ωk+1, . . . ,ωn, Dp is
of minimal order so that Dp|Px0 ,Ω

6= 0 in F[t1, . . . , tk]. Furthermore, let ωk+1, . . . ,ωn ∈ Fn be transverse to
P, and let

Dp := (ωk+1 ·∇)λk+1 · · ·(ωn ·∇)λn p

be a derivative of p with the property that, amongst all derivatives of p in directions ωk+1, . . . ,ωn, Dp is
of minimal order such that and Dp|Px0 ,Ω

6= 0 in F[t1, . . . , tk]. Then,

mk+1 + · · ·+mn = λk+1 + · · ·+λn.
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