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Abstract: In this paper, a polarization-insensitive metasurface, harvesting electromagnetic (EM)
energy with high efficiency and frequency stability over a wide range of incidence angles, is proposed.
The previously reported metasurfaces suffer from their maximum efficiencies shifting with the
frequency when the incidence angle increases. By introducing a square-shaped metal via ring around
the elements, the mutual coupling among adjacent cells is reduced so that the proposed metasurface
can maintain maximum efficiency at the fixed operation frequency over a wide range of incidence
angles. Furthermore, with one single harvesting via in the proper position for the connection of
a harvesting load, the metasurface can collect EM energy effectively with both transverse electric
(TE) and transverse magnetic (TM) polarizations in one single harvesting load. Compared with the
reported metasurfaces, this proposed metasurface has a higher efficiency and fixed operation frequency
within a wide incidence range. The energy distribution, harvesting efficiency, and surface current are
simulated to investigate the operation mechanism of the proposed metasurface. The simulation results
show that the maximum harvesting efficiency is 91% at 5.8 GHz for both TE and TM polarizations at
the normal incidence. When the incident angle increases to 75◦, the maximum efficiency is achieved
at 5.79 GHz (0.19% shift), and the maximum efficiencies of TM and TE polarizations are 91% and 68%,
respectively. A 5 × 5 array is fabricated and tested. The experimental results are in good agreement
with the simulated ones.

Keywords: electromagnetic energy harvesting; metasurface; frequency stability; polarization-insensitive

1. Introduction

With the rapid development of various wireless communications, the environment is filled with
more and more electromagnetic (EM) waves, which makes harvesting the ambient EM energy become
possible. The environmental EM wave varies with the frequency, incidence angle, and polarization.
The conventional rectenna, composed of a receiving antenna and a rectifier circuit, usually operates
at a pre-defined incidence angle, polarization, and frequency [1,2]. Therefore, they are not sufficient
for harvesting ambient EM energy. The metasurface, a periodic array of metamaterial cells with a
thin substrate [3], has been applied for designing absorbers [4–8], improving the performance of
antennae [9–11], and so on. The absorber absorbs the EM energy and dissipates it in the substrate

Appl. Sci. 2020, 10, 8047; doi:10.3390/app10228047 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6676-7939
http://www.mdpi.com/2076-3417/10/22/8047?type=check_update&version=1
http://dx.doi.org/10.3390/app10228047
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 8047 2 of 10

without reflection. Meanwhile, the harvester should not only receive EM waves, but also effectively
transfer the energy to a harvesting load for further energy recycling. Compared with the conventional
rectenna, the harvester could receive EM waves with a higher efficiency over a wide range of
incidence angles.

In 2012, Ramahi et al. proposed harvesting EM energy by the metasurface first [12]. Afterward,
the research on metasurfaces was mainly based on split-ring resonators (SRRs) [12,13] and
complementary split-ring resonators (CSRRs) [14,15], and metasurfaces with the characteristics
of a wide range of incidence angles [16–20], broadband [12,16,21], multiband [15,22], and polarization
insensitivity [12–16,23,24] were investigated. There are two main methods for designing and
analyzing metasurfaces: the artificial intelligence [22,25] and equivalent circuit approach [26–28].
However, there exists a defect in those metasurfaces; the harvesting efficiency decreases significantly
at a fixed frequency as the incidence angle increases. That is to say, the operation frequency of the
peak efficiency changes with the incidence angle, although the harvester operates on a wide angle
range. A broadband metasurface can avoid the influence of frequency shifting. However, the reported
broadband metasurfaces could only remain at half of the peak efficiency [12,16,21], and the band with
an efficiency of 90% was maintained only around the center frequency in the broadside direction.

An absorber with a circular sector structure was proven to have a stable operation frequency
under oblique incidence [10,11]. In this paper, a polarization-insensitive metasurface with frequency
variation of only 0.19% and up to a 75◦ incidence angle is proposed. The harvesting load is introduced
in the eight circular sectors at a proper position to make the metasurface insensitive to polarization,
and it is applied to collect EM energy. A square, ring-shaped metal via is added around the metasurface
unit cell to reduce the mutual coupling for further improvement of frequency stability. Table 1 gives
a comparison of the frequency deviations of the published works, with the incidence angle range
and the maximum harvesting efficiencies at the original frequency on the broadside and at a 60◦

incidence angle. It is obvious that the proposed metasurface can maintain a higher efficiency over a
wide, oblique incidence angle at the fixed operation frequency than those previously published.

Table 1. Comparison of the frequency deviation and maximum efficiency of metasurfaces with a wide
range of incidence angles.

Ref Center
Frequency

Frequency
Deviation

Incidence
Angle Range

Efficiency
at 0◦

Efficiency at
60◦

[16] 5.4 GHz 300 MHz (5.55%) 0–60◦ 92% 48%
[17] 5.8 GHz 75 MHz (1.3%) 0–75◦ 88% 62%
[18] 2.7 GHz 80 MHz (2.96%) 0–60◦ 91% 54%
[19] 5.7 GHz 120 MHz (4.44%) 0–60◦ 81% 30%
[20] 3.8 GHz 100 MHz (2.63%) 0–45◦ 90% 52%

This work 5.8 GHz 11 MHz (0.19%) 0–75◦ 91% 72%

2. Design of the Harvester

As shown in Figure 1, the metasurface consisted of a metal ground, a dielectric substrate layer,
and a periodic array of specially designed units. The centrally symmetrical circular sectors had the
center point of O and a radius of R1. Each unit cell was surrounded by a square, ring-shaped metal
via, and a metal harvesting via for connecting the harvesting load was placed near the center at
position O’. This via shifted a little from the center point O and was located at the position having the
strongest surface current. The polarization insensitivity property was generated from the approximate,
centrally symmetrical structure (except for the harvesting via). To effectively conduct and collect the
absorbed EM energy, a harvesting load of 50 Ω was added between the cell and the ground through the
harvesting via. The position of the harvesting via and the value of the harvesting load were adequately
optimized to maximize the harvesting efficiency of the metasurface.
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Figure 1. Topology of the proposed metasurface and unit cell structure.

The dielectric substrate had a thickness of 0.8 mm, a dielectric constant of 2.65, and a loss tangent
of 0.0012. The top and bottom metal planes were copper foil, with a conductivity of 5.8 × 107 S/m and
a thickness of 0.035 mm. The dimensions of the unit cell were as follows: R1 = 5.8 mm, R2 = 1 mm,
R’ = 0.6 mm, W = 0.3 mm, Dv = 0.6 mm, S = 0.6 mm, H = 0.8 mm, and P = 15 mm.

3. Results and Analysis

The harvesting efficiency is the most important index for a harvester. This work focuses on
maximizing the harvesting efficiency with a wide range of incidence angles and a fixed operation
frequency. The harvesting efficiency of the metasurface was calculated as η= PLOAD/PINC, where PLOAD

is the total time-average power dissipated on the loads and PINC is the total time-average power
incident on the metasurface. High Frequency Structure Simulator (HFSS) software was used to
analyze the performance of the harvester. The periodic boundary condition was applied to the unit
cell to numerically realize an infinite array. The unit cell was excited by the Floquet port with two
modes of transverse electric (TE) and transverse magnetic (TM) polarizations at the top boundary.
These two modes correspond to a plane wave, with the electric component perpendicular to the xz-
and yz-planes, respectively.

3.1. Simulation Results

The absorbed EM energy, the energy distribution on the load, and the harvesting efficiency of the
metasurface at a normal incidence were analyzed. It can be seen from Figure 2a that the metasurface
had the maximum absorption efficiency at 5.8 GHz. The absorption and harvesting efficiencies were
96% and 91%, respectively. Only 5% of the energy was dissipated in the substrate and metal, and most
of the energy was harvested by the resistor, which indicates that the metasurface can effectively collect
EM energy. Figure 2b shows the harvesting efficiency of the TE and TM polarizations, which were
basically the same. The arbitrary polarization wave could be deconstructed into two orthogonal
polarizations of TE and TM waves so that a similar efficiency would be obtained for an arbitrary
polarization at the normal incidence. Thus, the metasurface was insensitive in polarization. As shown
in Figure 2c, the harvester performed well with low cross polarization, measuring below −20 dB at
5.8 GHz, which means the energy could be harvested simultaneously and separately by these two
orthogonal polarizations.
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The absorption principle can be explained by the impedance matching between the free
space and the metasurface interface. The effective parameters were extracted from the complex
scattering parameters by the standard retrieval procedure [3]. As shown in Figure 3, the extracted
permittivity and permeability at the resonance frequency were (4.42-j63.4) and (4.44-j44.60), respectively.
The normalized impedance (z =

√
µ/ε), compared with that of the free space (377 Ω), was (0.84-j0.01) Ω.

Thus, the metasurface was a good match with the free space, and reflections at the metamaterial
interface would be very small.
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The operation mechanism of the metasurface can be analyzed by the equivalent circuit approach.
The transmission line equivalent circuit of the proposed metasurface is shown in Figure 4. Part 1
represents the incident plane wave from the free space, which had a wave impedance of 377 Ω. Part 2
is for the metasurface. C1 and L1 represent the total capacitance between each of two sectors and the
total inductance of the eight sectors, respectively. C2 and L2 represent the capacitance between the unit
pattern and the metallic ground and the inductance of the metal via near the center, respectively. R is
the harvesting load, and C3 represents the capacitance between the via and the ground. The substrate
between the unit pattern and the ground can be modeled as a transmission line, with a characteristic
impedance of 377/

√
εr = 231 Ω.

The value of each lumped element in the equivalent circuit could be estimated using a microstrip
line model that estimates the total inductance and capacitance [29]. Optimized using Advanced Design
System (ADS) software, the reflection coefficient of the equivalent circuit, with a comparison to that of
the metasurface in HFSS, is shown in Figure 5a. The resonance frequencies of the two models both
occured at 5.8 GHz, which agrees well with the experiment results. Figure 5b,c show the trend of the
reflection coefficient changing with the value of R. The minimum reflection was achieved with a value
of 50, and the reflection increased when the value shifted from 50 in both models. The similar trend
further demonstrates the consistency of the two models. It should be noticed that the coupling effects
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To analyze the polarization insensitivity feature, the surface current of the metasurface unit
cell was explored. Figure 6a shows the current distribution of the TE wave at the normal incidence,
and Figure 6b–d show the surface current with the polarization plane being rotated by 30◦, 60◦,
and 90◦ along the xoy-plane, respectively. For any polarization angle, the current always passed
through the circle in the center, and the harvesting load was placed at the concentrated point of the
current, which was the criterion of determining the harvesting load position. What is more, the current
distribution density and pattern stayed relatively unchanged, due to the approximate symmetrical
pattern of the unit. Therefore, the unit cell could effectively harvest the energy and maintain a high
efficiency for arbitrary polarization waves at the normal incidence.Appl. Sci. 2020, 10, x 6 of 11 
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The harvesting efficiency of the metasurface under an oblique incidence for TE and TM
polarizations was studied. Figure 7a shows the efficiency for TE polarization. As the incidence
angle increased from 0◦ to 75◦, the operation frequency in the broadside direction was nearly
unchanged, and the harvesting efficiency reduced gradually. When the incident angle increased to 60◦,
the harvesting efficiency was 72%. For TM polarization, as the incidence angle increased from 0◦ to
75◦, the operation frequency in the broadside direction shifted by only 11 MHz. When the incidence
angle was 60◦, the harvesting efficiency was 91%, as shown in Figure 7b. The simulated results show
that the metasurface can maintain a high efficiency at a fixed frequency over a wide range of incidence
angles, and it remains insensitive to polarization, even in the case of an oblique incidence under 45◦.
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In this design, a square-shaped metal via ring around the unit cells is proposed to decrease
the mutual coupling and improve the frequency stability. Figure 8 shows the impedance for TM
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The variation tendency of the harvesting efficiency is similar to that of the impedance for TM
polarization as shown in Figure 9. Without the square rings, the operation frequency at the broadside
direction shifts 48 MHz when the incidence angle increase from 0◦ to 75◦. With the square rings,
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the operation frequency at the broadside direction shifts only 11 MHz, which makes the efficiency at
the original operation frequency of 5.8 GHz 10% higher.
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The incident power was calculated by multiplying the incident power intensity and the physical
area of the central unit. The incident power intensity S at the distance of R from the horn was calculated
using the following equation [16]:

→

S = r̂
GPIN

4πR2 (1)

where PIN is the input power and G is the gain of the horn. The reason for measuring a center unit cell
is that it was the closest to the one in the infinite array. In order to achieve an EM coupling environment
similar to the one in the simulation, the other unit ports of the array were all connected to a 50 Ω load
(see Figure 10b).

To adjust the incidence angle in the experiments, we rotated the metasurface while keeping
the transmitting horn fixed. The center point of the metasurface was aligned to that of the horn
plane. Figure 11 shows the measured harvesting efficiency of the TE and TM waves under oblique
incident angles. The maximum efficiency at the normal incidence was 88% at 5.91 GHz, which had
a slight shift of 1.9% to the simulated 5.8 GHz. Compared with the original frequency of 5.91 GHz
at the normal incidence, the operation frequency in the broadside direction shifted only 12 MHz
(0.2%) up to a 75◦ incidence angle for both the TE and TM waves. When the incidence angle was 60◦,
the maximum harvesting efficiency was 60%. The differences between the simulated and measured
results come from three aspects. Firstly, the fabricated metasurface array was 5 × 5, while the simulated
one was an infinite array. The finite array had the edge effect, which would influence the central
cell’s performance. Secondly, the simulation software imitated the infinite array by setting the period
boundary condition around the unit cell, which might have caused a difference with the actual infinite
array. Thirdly, the fabrication tolerances might have also induced errors. This work focused on the
frequency stability over a wide range of incidence angles, and the measured results were in reasonable
agreement with the simulated ones.Appl. Sci. 2020, 10, x 9 of 11 
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4. Discussion

The proposed metasurface is highly efficient for harvesting EM energy in the Wireless Local
Area Network (WLAN) band. The simulated and experimental results show that the metasurface
has the properties of polarization insensitivity and high efficiency over a wide range of incidence
angles. With square-shaped metal via rings around the unit cell and one harvesting via near the
center, this metasurface solves the problem of operation frequency shifts of the maximum efficiency
when the incidence angle increases. This metasurface can harvest energy with a higher efficiency over
an oblique incidence in both TE and TM polarizations. This work still maintains limitations in that
the efficiency decreases unequally for TE and TM polarizations when the incidence angle increases,
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which could be solved in future work. Nevertheless, the metasurface can efficiently harvest complex
environmental EM energy, and it is expected to be applied in wireless energy charging for low-power
electronic devices.
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