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Abstract. Ensembles of classifiers are a very popular type of method for
performing classification, due to their usually high predictive accuracy.
However, ensembles have two drawbacks. First, ensembles are usually
considered a ’black box’, non-interpretable type of classification model,
mainly because typically there are a very large number of classifiers in
the ensemble (and often each classifier in the ensemble is a black-box
classifier by itself). This lack of interpretability is an important lim-
itation in application domains where a model’s predictions should be
carefully interpreted by users, like medicine, law, etc. Second, ensemble
methods typically involve many hyper-parameters, and it is difficult for
users to select the best settings for those hyper-parameters. In this work
we propose an Evolutionary Algorithm (an Estimation of Distribution
Algorithm) that addresses both these drawbacks. This algorithm opti-
mizes the hyper-parameter settings of a small ensemble of 5 interpretable
classifiers, which allows users to interpret each classifier. In our experi-
ments, the ensembles learned by the proposed Evolutionary Algorithm
achieved the same level of predictive accuracy as a well-known Random
Forest ensemble, but with the benefit of learning interpretable models
(unlike Random Forests).

Keywords: classification · evolutionary algorithms · ensemble learning
· machine learning · supervised learning

1 Introduction

The classification task of machine learning consists of training predictive models
for decision-making purposes [31]. Traditionally, classification research has fo-
cused mainly on the learned model’s predictive accuracy, but model interpretabil-
ity by users is currently a very active and important topic [6], especially in areas
such as medicine, credit scoring, bioinformatics, and churn prediction [12]. Model
interpretability is particularly critical in scenarios where models can lead to life-
or-death decisions (such as in medicine), or influence decisions that can put
several lives at risk, such as the use of recommendation algorithms in a nuclear
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power plant [12]. Model interpretability is also often required by law, a major
example being the European Union’s Data Protection Regulation, which includes
a “right to explanation” [13].

One field of machine learning that could benefit from interpretability is clas-
sification with ensemble learning. Ensembles are sets of classifiers which, when
combined, usually perform better than a single strong model, such as when
comparing a Random Forest ensemble [4] with a single decision tree learned
by C4.5 [29, 2]. Ensembles often have hundreds or thousands of models, which
greatly hinder their interpretability by human users. Moreover, ensembles often
consist of black box base models (e.g. neural networks or support vector ma-
chines) that prevent any direct interpretation of their reasoning. Tackling these
problems involves learning a small ensemble, consisting of a few directly inter-
pretable models, so that users can interpret each of the models in the ensemble.
This is the main problem addressed in this work.

The second problem addressed in this work is that selecting the best setting
(or configuration) of hyper-parameters for each base learner in an ensemble is
a difficult task per se [32, 10], which involves testing a very large number of
candidate hyper-parameter settings in order to find the best setting for the
dataset at hand. Auto-ML (Automated Machine Learning) has recently gained
attention due to its capacity of relieving the end user from a manual optimization
of algorithms’ hyper-parameters, which can be repetitive, tiresome, and often
requires advanced domain-specific knowledge [33, 10, 28].

One way to perform Auto-ML is to employ a population-based algorithm,
which explores several regions in the solution space in parallel, and adapts its
search depending on the quality of solutions found in those regions. Hence, evolu-
tionary algorithms seem to be a natural choice for the Auto-ML task of optimiz-
ing the settings of ensembles’ hyper-parameters [23, 20, 33, 14], due to performing
a global search in the solution space. Among several types of evolutionary al-
gorithms, we propose an Estimation of Distribution Algorithm (EDA) to evolve
an ensemble of interpretable classifiers.

The main difference between EDAs [24] and Genetic Algorithms (GA) [17] is
that while GAs implicitly propagate characteristics of good solutions through-
out evolution (by carrying on high-quality individuals from one generation to
another), EDAs do this explicitly, by encoding those characteristics in a proba-
bilistic graphical model (GM) [16, 27].

The rest of this paper is organized as follows. Section 2 describes our pro-
posed method. Sections 3 and 4 present the experimental setup and experimental
results, respectively. Section 5 discusses related work. Section 6 presents the con-
clusions and future research directions.

2 The Proposed Estimation of Distribution Algorithm
(EDA) for Evolving Ensembles

EDAs evolve a probabilistic graphic model of candidate solutions, so that can-
didate solutions (individuals) are sampled from that model and evaluated at
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each generation. In general, an EDA consists of three stages performed at each
generation: (a) sampling of new individuals (candidate solutions) from the prob-
abilistic graphic model; (b) evaluation of the new individuals’ performance; and
(c) updating of the probabilistic graphic model, based on the best individu-
als selected from the current generation. Importantly, EDAs avoid the need for
specifying genetic operators like crossover and mutation (and their correspond-
ing probabilities of application). That is, instead of generating new individuals
by applying genetic operators to selected individuals, they generate new individ-
uals by sampling from the current probabilistic graphic model, which captures
the main characteristics of the best individuals selected (based on fitness) along
the evolutionary process.

Among several EDA types, we chose PBIL: Probabilistic Incremental Learn-
ing [3]. The main characteristic of PBIL is that it assumes independence between
variables in the probabilistic graphical model. Although this has the disadvan-
tage of ignoring interactions among variables, it has an important advantage in
the context of our task of evolving an ensemble of classifiers: it makes PBIL
much more computationally efficient by comparison with other EDA types that
consider complex variable interactions – whilst still allowing PBIL to learn en-
sembles with good predictive accuracy, as shown later.

Another aspect of PBIL is the use of a learning rate U hyper-parameter for
updating probabilities in the graphical model, making this process smoother.
Take for example two initial probabilities for a binary variable + , % (+ = 0) = 0.5
and % (+ = 1) = 0.5, and a learning rate of 0.3. Assume only two individuals are
selected to update the graphic model’s probabilities, and both have + = 0. In this
extreme case, an EDA without learning rate would update + so that it would be
% (+ = 0) = 2

2 = 1 and % (+ = 1) = 0
2 = 0 in the next generation. However, using a

learning rate, the new probabilities for + are % (+ = 0) = (1−0.3) ×0.5+0.3× 2
2 =

0.65 and % (+ = 1) = (1 − 0.3) × 0.5 + 0.3 × 0
2 = 0.35. Section 2.3 discusses in more

detail how probabilities are updated.

PBIL keeps track of the best individual found so far in a variable i. At the
end of a PBIL run, the returned solution can be the best individual stored in i
or the best individual in the last generation (these two approaches are compared
later).

2.1 Individuals (Candidate Solutions)

Each individual is an ensemble, composed of five base models (each learned by a
different type of base learner) and an aggregation policy. Regarding base learn-
ers, we chose the ones that can generate readily interpretable models [12, 18,
26]. The recent literature on classification focuses mainly on producing classi-
fiers with ever-increasing predictive performance, with little attention devoted to
interpretability [13]. For instance, deep learning classifiers, which have received
great attention lately due to obtaining high predictive accuracy in image tasks,
are very difficult to interpret [13], with interested researchers shifting the focus
from interpreting the models themselves to interpreting their predictions [22].
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pruning
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Fig. 1: An example individual in PBIL. Note that, although PBIL assumes prob-
abilistic independence between variables, some values are dependent on others.

The five base learners employed are two decision-tree induction algorithms
(C4.5 [29] and CART [5]); two rule induction algorithms (RIPPER [7] and
PART [11]); and a Decision Table algorithm [19]. We use these algorithms’ im-
plementations in the well-known Weka Toolkit [15]. For the rest of this paper,
we will refer to them by their Weka names: J48 for C4.5, SimpleCart for CART,
JRip for RIPPER, PART, and Decision Table.

An individual is encoded as an array, where each position denotes a variable,
and each value denotes the assigned value for that variable. Some variables may
not have any value, because they are not used by an individual. Figure 1 depicts
a portion of an individual’s array, regarding some variables of its J48 classifier.
J48 has three options for tree pruning: reduced error pruning, confidence factor,
and unpruned. For this example individual, reduced error pruning is used. For
this reason, there is no need to set hyper-parameters of the confidence factor
strategy, which are then set to null.

Aggregators An aggregator is a method responsible for finding a consensus
among votes from base models. Consider a three-dimensional probability ma-
trix P, of dimensions (�, #,�) – respectively the number of base classifiers in
the ensemble, number of instances, and number of classes. The objective of an
aggregator is to transform this three-dimensional matrix into a unidimensional
array of length # , where each position has the predicted class for each instance.

We use two types of aggregators: majority voting and weighted aggregators.
The probabilistic majority voting aggregator uses the fusion function described
in [21, p. 150]:

d
( 9)
2 =

�∑
8=1

%
(8, 9)
2 (1)

ℎ(- ( 9) ) = arg max
2∈�

(
d
( 9)
2∑�

:=1 d
( 9)
:

)
(2)



An EA for Learning Interpretable Ensembles of Classifiers 5

where d ( 9)2 is the sum of the probabilities that the 9-th instance has the 2-th class,
over all � classifiers, and � is the number of classes. The weighted aggregator is
similar to majority voting, except that individual probabilities from classifiers
are weighted according to the fitness of each classifier:

d
( 9)
2 =

�∑
8=1

k (8)% (8, 9)2 (3)

ℎ(- ( 9) ) = arg max
2∈�

(
d
( 9)
2∑�

:=1 d
( 9)
:

)
(4)

where k (8) is the fitness value of individual ( (8) .

2.2 Fitness evaluation

At the start of the evolutionary process, PBIL receives a training set. This
set is splitted into five subsets, which are used to compute each individual’s
fitness by performing an internal 5-fold stratified cross validation (SCV). By
keeping the subsets constant throughout all evolutionary process, we allow direct
comparisons between individuals from different generations. The fitness function
is the Area Under the Receiving Operator Characteristic (ROC) curve (AUC) [8]
– a popular predictive accuracy measure.

AUC values are within [0, 1], with the value 0.5 representing the predictive
accuracy of random predictions in the case of binary-class problems. In this
work, regardless of the number of classes in the dataset, we calculate one AUC
for each class, and then average the AUC among all classes. Hence, the fitness
of an individual is actually a mean of means: first, the mean AUC among all
classes, for a given fold; then, the mean AUC among all five internal folds.
Figure 2 depicts the fitness calculation procedure.

1: function compute fitness(X, ~,�)
2: train← (generate train subsets(~))
3: val← (generate validation subsets(~))
4: R ← (0|8 = 1, 2, . . . , |( |)
5: for 8 = 1, 2, . . . , |( | do
6: for : = 1, . . . , 5 do

7: ( (8) ← build model(X(train(: ) ) , ~ (train(: ) ) )

8: % (8) ← predict(( (8) ,X(val(: ) ) )

9: k ← 1
5�

∑�
2=1 AUC(% (8)2 , (~ ( 9) = 2 | 9 ∈ val(:) ))

10: R (8) ←R (8) +k
11: )
12: return R

Fig. 2: Pseudo-code used for calculating fitness.
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2.3 PBIL’s Probabilistic Graphical Model

At each generation, new individuals are sampled from the probabilistic graphical
model (GM), and the best individuals will update GM’s probabilities. Recall that
PBIL assumes that the variables in the GM are independent, although we know
(as shown in Figure 1) that there are some dependencies. However, this does
not prevent PBIL from finding good-performing solutions; analogously to the
overall good performance of the Näıve Bayes classifier, which also assumes that
attributes are independent [30].

The sampling procedure is based on hierarchical relationships among the vari-
ables representing hyper-parameters in PBIL’s GM, as shown in Figure 3, where
the top-level variables are hyper-parameters of base learners that will activate
or deactivate the sampling of other variables/hyper-parameters at a lower level.
When sampling a new individual, higher-level variables are sampled first, and
their descendants are sampled next. Using J48 as example, the variables for this
algorithm are useLaplace, minNumObj, useMDLcorrection, collapseTree, doNot-
MakeSplitPointActualValue, binarySplits, and pruning. Since none of these vari-
ables have any descendent variable, with the exception of pruning, the sampling
proceeds to choose which type of pruning will be used by J48, and depending on
the chosen option, it samples the variables descendent to that option. Unused
variables are set to null. Once all pertinent variables are sampled, their values
are fed to the base classifier constructor, which will in turn generate the model.
Figure 3 depicts the variables in PBIL’s GM.

Initial values There are two types of variables in PBIL’s GM: 48 discrete and
2 continuous variables. Discrete variables were first introduced in the original
PBIL work [3]. We use the EDA ability of biasing probabilities to increase by
10% the probability to sample values that are the base learner’s default in Weka.
For all other values, we set uniform probabilities. For instance, for J48’s num-
Folds, the default value 3 folds has probability 20%, while each other value in
{2, 4, 5, 6, 7, 8, 9, 10} has probability 10%. Exceptionally for variable evaluation-
Measure of Decision Table, value auc has a 50% probability of being sampled.
We do this to increase the chances that a base learner is using the same metric
used as fitness function, which in this work is the AUC.

For continuous variables, we use unidimensional Gaussian distributions. The
mean is the default Weka value for the hyper-parameter, and the standard de-
viation was chosen in a way that borderline values have at least 10% chance of
being sampled. Values outside valid range are clipped to the closest valid value.
The range of valid values was inferred by inspecting Weka’s source code. The
list of of variables and its values is present in the source-code of our method 3.

Updating PBIL’s GM The updating of the variables’ probabilities is depen-
dent on their type. If a variable is discrete, the update follows the scheme known
as PBIL-iUMDA [33, 34], shown in equation 5:

3 Available at https://github.com/henryzord/PBIL
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PBIL
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JRip
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Variable (level  3)
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Fig. 3: Graphical Model used by PBIL. Edges denote an implicit correlation,
since no probabilistic correlation is designed. Borderless nodes denote values
that were sampled from the variable in the above level (i.e. not variables).

?6+1 (+9 = E) = (1 − U) × ?6 (+9 = E) + U × ?Q,6 (+9 = E) (5)

where ?6 (+9 = E) is the probability that variable +9 assumes discrete value E

in the 6-th generation (estimated by the proportion of observed occurrences of
value E for variable +9 among all individuals in that generation), U is the learning
rate, and ?Q,6 (+9 = E) is the proportion of occurrences of value E for +9 in the set
of individuals Q which were selected (based on fitness) at the 6-th generation.
This process is iterated over all values of a discrete variable. Note that when
computing ?6 (+9 = E) and ?Q,6 (+9 = E), if some individuals do not have any value
set for variable +9 , their null values are discarded and do not contribute at all
to the updating of probabilities for +9 ’s values.

Equation 5 was adapted to deal with continuous variables, which encode the
mean and the standard deviation of a normal distribution, as follows. The mean
of the normal distribution is updated by

`6+1 (+9 ) = `6 (+9 ) + U × (`6 (+9 ) − `Q,6 (+9 )) (6)

where `6 (+9 ) is the mean of the normal distribution of the 9-th variable +9 in
the 6-th generation, U is the learning rate, and `Q,6 (+9 ) is the observed mean for
the variable +9 in the set of individuals Q selected at the 6-th generation, again
considering only individuals where the variable +9 was used.
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The standard deviation is decreased as follows:

f6+1 (+9 ) = f6 (+9 ) −
f1 (+9 )
�

(7)

where f6 (+9 ) is the standard deviation of the 9-th variable +9 in the 6-th gener-
ation, f1 (+9 ) the initial standard deviation for variable +9 , and � is the number
of generations.

2.4 Early Stop and Termination

If the fitness of the best individual does not improve more than n in Y generations,
we assume that PBIL is overfitting the training data, and terminate the run of
the algorithm. In our experiments, we use n = 5 × 10−4 and Y = 10.

At the end of the evolutionary process, we report the best individual from
the last generation as the final solution.

2.5 Complexity Analysis

Assume ) (CA08=) to be the time to train an ensemble, and ) (5 8C=4BB) to be the
time to assert the fitness of said ensemble. At every generation ( new ensembles
are generated. This process is repeated at most � times (assuming that the
early stop mechanism of the previous section is not triggered). This procedure
has complexity �( × () (CA08=) +) (5 8C=4BB)).

Sampling and updating the graphical model are procedures directly depen-
dent on the number of variables |+ |. Variables need first to be initialized with
default values, for later sampling and update. Variables are sampled ( times ev-
ery generation, and are updated based on the number of fittest individuals, |Q |.
For each variable, we iterate over all of its values, but we assume the number of
its values not to be significant – discrete variables have between 2 and 10 values,
with 4 as average; continuous variables count as 2 values, i.e. mean and standard
deviation of normal distributions. From this analysis we have |+ |× (1+� ((+|Q |)).
Thus, the overall complexity of training the proposed PBIL is

$ (�( × () (CA08=) +) (5 8C=4BB)) + |+ | ×� (( + |Q |)) (8)

3 Experimental Setup

3.1 PBIL’s hyper-parameter optimization

In order to find the best configuration to run PBIL, we perform a grid-search
for optimizing five of its hyper-parameters, using eight datasets, hereafter called
parameter-optimization datasets, described in Table 1. We measure PBIL’s AUC
on each dataset using a well-known 10-fold cross validation procedure. We em-
phasize that these datasets were used only for PBIL’s hyper-parameter optimiza-
tion, i.e., they were not used to compare PBIL with baseline algorithms, thus
avoiding over-optimistic measures of predictive performance.
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We optimize 5 hyper-parameters, with the following range of values: popu-
lation size : {75, 150}; number of generations: {100, 200}; learning rate: {0.3,
0.5, 0.7}; selection share {0.3, 0.5}; and whether the type of solution returned
is the best individual from the last generation or the best individual produced
across all generations. Thus, from the 48 combinations of hyper-parameter val-
ues, we found the combination that provided the best average AUC across all
datasets to be: population size |( | = 75, number of generations � = 200, learn-
ing rate U = 0.7, share (proportion) of selected individuals |Q |/|( | = 0.5, and
type of solution returned = best individual from last generation. We use this
configuration for conducting further experiments.

3.2 Baseline Algorithms

We compare PBIL with other two algorithms: a baseline ensemble and Ran-
dom Forest. The baseline ensemble consists of the five base classifiers from
PBIL (namely J48, CART, JRip, PART, and Decision Table) with their de-
fault hyper-parameter configuration (according to Weka), and a simple majority
voting scheme as aggregation policy. The intention of using this baseline algo-
rithm is to check if there is a difference between simply using an ensemble of
classifiers, with the simplest voting aggregation policy (i.e. majority voting), and
optimizing their hyper-parameter configuration with PBIL.

Random Forest [4] is a well-known ensemble algorithm, and in general it
is among the best classification methods regarding predictive performance [9].
A random forest ensemble is solely composed of decision trees. Each decision
tree is learned from a different subset of N instances, randomly sampled with
replacement from the training set. For each internal node in each tree, a subset of
" attributes is randomly sampled without replacement, and the attribute that
minimizes the local class impurity is selected as splitting criterion. This process
is repeated recursively until no further split improves the impurity metric, when
nodes are then turned into leaves.

Random forests usually require a large number of trees in the ensemble to
achieve good predictive performance. Also, despite using decision trees, the en-
semble as a whole is not directly interpretable, since there are a very large number
of trees. Even if the number of trees were small, interpreting each tree would
still be problematic due to the large degree of randomness involved in learning
each tree. That randomness is necessary to provide diversity to the ensemble,
which improves its predictive accuracy, but it hinders interpretability. There are
indirect approaches to interpret random forests, using variable importance mea-
sures to rank the variables based on their importance in the model, but such
measures are out of the scope of this paper.

We also performed a grid-search for optimizing 3 hyper-parameters of Ran-
dom Forest, with their following ranges of values: number of trees in the forest:
{100, 200, 300, 400, 500}; whether to randomly break ties between equally at-
tractive attributes at each tree node, or to simply use the attribute with the
smallest index; and maximum tree depth: {0 (no limit), 1, 2, 3, 4}. Hence, Ran-
dom Forests and PBIL had about the same number of configurations tested by
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the grid search (50 and 48), and both had their configurations optimized in the
same 8 parameter-optimization datasets shown in Table 1, to be fair. We found
the best combination to be: number of iterations = 300, do not break ties ran-
domly, and max tree depth = 4. We leave the other two hyper-parameters, the
number of instances in the bag for learning each decision tree, and the number of
sampled attributes at each tree node, at their default Weka values, respectively
# and log2 (" − 1) + 1.

3.3 Datasets

We use a different set of 9 datasets, described in Table 1, for comparing the
predictive performance of the tested algorithms. All datasets, including the ones
used for hyper-parameter optimization, were collected from KEEL4 [1] and the
UCI Machine Learning repository5 [25].

Table 1: Datasets used in this work.

Attributes
Dataset Instances Total Categorical Numeric Classes

Hyper-parameter optimization datasets

australian 690 14 6 8 2
bupa 345 6 0 6 2

contraceptive 1473 9 0 9 3
flare 1066 11 11 0 6

german 1000 20 13 7 2
pima 768 8 0 8 2

vehicle 846 18 0 18 4
wisconsin 699 9 0 9 2

Predictive performance assessment datasets

balance-scale 625 4 0 4 3
blood-transfusion 748 4 0 4 2

credit-approval 690 15 9 6 2
diabetic 1151 19 3 16 2

hcv-egypt 1385 28 9 19 4
seismic-bumps 2584 18 4 14 2

sonar 208 60 0 60 2
turkiye 5820 32 32 0 13

waveform 5000 40 0 40 3

4 Experimental Results

For each algorithm and each dataset, we run 10 times a 10-fold cross validation
procedure, and report the mean unweighted area under the ROC curve among
the 10 executions. The results are shown in Table 2.

4 Available at https://sci2s.ugr.es/keel/datasets.php
5 Available at https://archive.ics.uci.edu/ml/datasets
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Table 2: Area under the ROC curve and standard deviations for compared algo-
rithms. Best result for each dataset is shown in bold font.

Dataset Random Forest baseline ensemble the proposed PBIL

balance-scale 0.8441 ± 0.05 0.8766 ± 0.01 0.8560 ± 0.00
blood-transfusion 0.7354 ± 0.03 0.7335 ± 0.00 0.6742 ± 0.00

credit-approval 0.9358 ± 0.02 0.9270 ± 0.00 0.9267 ± 0.00
diabetic 0.7307 ± 0.04 0.7370 ± 0.01 0.7674 ± 0.00

hcv-egypt 0.5073 ± 0.05 0.4850 ± 0.01 0.5167 ± 0.00
seismic-bumps 0.7823 ± 0.07 0.7715 ± 0.01 0.7553 ± 0.00

sonar 0.9214 ± 0.08 0.8612 ± 0.01 0.9356 ± 0.00
turkiye 0.8549 ± 0.01 0.8542 ± 0.00 0.8213 ± 0.00

waveform 0.9562 ± 0.00 0.9502 ± 0.00 0.9670 ± 0.00

Regarding predictive performance, PBIL and Random forests obtained over-
all the best results, each with the highest AUC value in 4 datasets. The baseline
method obtained the highest value in only one dataset. The largest difference in
performance was observed in the blood-transfusion dataset, where the baseline
and the Random Forest obtained an AUC value about 6% higher than the AUC
of PBIL. In the other datasets, the differences of AUC values among the three
methods was relatively small, about 3% or less in general. We believe this is due
to the skewed nature of the class distribution in the blood-transfusion dataset.

In addition, the ensembles learned by PBIL and the baseline method have
the advantage of consisting of only 5 interpretable base classifiers; so they are
directly interpretable by users, unlike Random Forests (as discussed earlier).

Figures 4 and 5 show an ensemble learned by PBIL from the sonar dataset,
as an example of such ensembles’ interpretability. The models learned by J48
and SimpleCART are both small (with 3 and 13 nodes) and consistently identify
Band11 as the most relevant variable in their root nodes. The rule lists learned
by JRip and PART are also small, with 5 and 8 rules (most being short rules).
The decision table is not so short, with 25 rows, but the fact that all rows refer
to the same selected attributes and in the same order (unlike decision trees and
rule sets) improves interpretability by users [12].

5 Related Work

Several evolutionary algorithms have been recently proposed for evolving ensem-
bles of classifiers. In [33], another PBIL version was proposed to select the best
combination of ensemble method (e.g. bagging, boosting, etc), base learners (e.g.
neural networks, SVMs, decision trees, etc.) and their hyper-parameter settings
for a given dataset. However, that work focused only on predictive accuracy, so
that their learned ensembles are in general non-interpretable (due to being very
large and often consisting of non-interpretable classifiers), unlike the ensembles
learned in this current work.

In [20], a Genetic Programming algorithm is used to optimize configurations
of ensemble methods (bagging, boosting, etc) and their base learners (logistic
regressors, neural networks, etc). In addition, [23] proposes a co-evolutionary
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Band11

M (97/26)R (64/15)

< 0.197 ≥ 0.197

(a) J48

conditions predicted class

Band11 ≤ 0.168 AND Band49 ≤ 0.04 R (42.0/1.0)

Band37 ≥ 0.46 AND Band17 ≥ 0.42 R (20.0/2.0)

Band9 ≤ 0.097 AND Band31 ≥ 0.353 R (15.0/2.0)

Band51 ≤ 0.012 AND Band23 ≤ 0.681 
AND Band41 ≤ 0.271

R (8.0/0.0)

otherwise M (102.0/7.0)

(b) JRip

Band11

Band27Band4

< 0.198 ≥ 0.198

R (51/5) Band45

< 0.051 ≥ 0.051

< 0.162 ≥ 0.162

R (8/3) M (9/0)

Band21 M (50/2)

< 0.8165 ≥ 0.8165

R (13/3) Band51

< 0.543 ≥ 0.543

R (11/7) M (23/2)

< 0.013 ≥ 0.013

(c) SimpleCART

conditions predicted class

Band11 ≤ 0.198 AND Band52 ≤ 0.0205 AND Band5 ≤ 0.0695 AND Band10 ≤ 0.1665 AND Band7 > 0.0415 R (40.0)

Band47 > 0.063 AND Band37 ≤ 0.48 AND Band18 ≤ 0.914 AND Band49 > 0.0285 M (64.0)

Band54 ≤ 0.0225 AND Band45 > 0.2745 AND Band2 ≤ 0.044 M (9.0)

Band54 ≤ 0.0225 AND Band8 > 0.0655 AND Band27 ≤ 0.846 AND Band28 > 0.3585 AND Band4 ≤ 0.109 AND Band3 ≤ 0.0655 R (25.0)

Band8 > 0.0625 AND Band12 > 0.154 AND Band54 > 0.0105 M (17.0)

Band8 ≤ 0.104 R (14.0)

Band17 > 0.4445 R (11.0/3.0)

otherwise M (7.0)

(d) PART

Fig. 4: Four of the five base classifiers from the best individual of PBIL for a given
run of the sonar dataset. type is the class variable (with class labels Rock (R)
and Metal (M)), and broadly speaking the features represent the echo returned
from hitting rock and metal objects with different frequencies of audio waves.

algorithm for finding the best combination of hyper-parameters for a set of base
classifiers, which might also include the best combination of data pre-processing
methods for a given dataset. AUTO-CVE concurrently evolves two populations:
a population of base models (using Genetic Programming) and a population of
ensembles (using a Genetic Algorithm). In both [20] and [23], again the focus was
on predictive accuracy, and those works tend to produce very large ensembles of
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band11 band16 band19 band36 band45 band48 band52 band56 type

(0.198-∞) all all (-∞-0.4425] (-∞-0.3855] (-∞-0.0755] (0.0095-∞) all m

(-∞-0.198] all all (-∞-0.4425] (-∞-0.3855] (-∞-0.0755] (0.0095-∞) all r

(0.198-∞) all all (-∞-0.4425] (-∞-0.3855] (0.0755-∞) (-∞-0.0095] all m

(-∞-0.198] all all (-∞-0.4425] (-∞-0.3855] (0.0755-∞) (-∞-0.0095] all r

(0.198-∞) all all (-∞-0.4425] (0.3855-∞) (-∞-0.0755] (-∞-0.0095] all r

(0.198-∞) all all (0.4425-∞) (-∞-0.3855] (-∞-0.0755] (-∞-0.0095] all m

(-∞-0.198] all all (0.4425-∞) (-∞-0.3855] (-∞-0.0755] (-∞-0.0095] all r

(0.198-∞) all all (-∞-0.4425] (-∞-0.3855] (-∞-0.0755] (-∞-0.0095] all r

(-∞-0.198] all all (-∞-0.4425] (-∞-0.3855] (-∞-0.0755] (-∞-0.0095] all r

(-∞-0.198] all all (0.4425-∞) (0.3855-∞) (0.0755-∞) (0.0095-∞) all r

(0.198-∞) all all (0.4425-∞) (0.3855-∞) (0.0755-∞) (0.0095-∞) all m

(-∞-0.198] all all (-∞-0.4425] (0.3855-∞) (0.0755-∞) (0.0095-∞) all m

(0.198-∞) all all (-∞-0.4425] (0.3855-∞) (0.0755-∞) (0.0095-∞) all m

(-∞-0.198] all all (0.4425-∞) (-∞-0.3855] (0.0755-∞) (0.0095-∞) all r

(0.198-∞) all all (0.4425-∞) (-∞-0.3855] (0.0755-∞) (0.0095-∞) all r

(0.198-∞) all all (0.4425-∞) (0.3855-∞) (-∞-0.0755] (0.0095-∞) all r

(0.198-∞) all all (0.4425-∞) (0.3855-∞) (0.0755-∞) (-∞-0.0095] all m

(-∞-0.198] all all (0.4425-∞) (0.3855-∞) (0.0755-∞) (-∞-0.0095] all r

(-∞-0.198] all all (-∞-0.4425] (-∞-0.3855] (0.0755-∞) (0.0095-∞) all m

(0.198-∞) all all (-∞-0.4425] (-∞-0.3855] (0.0755-∞) (0.0095-∞) all m

(0.198-∞) all all (-∞-0.4425] (0.3855-∞) (0.0755-∞) (-∞-0.0095] all r

(0.198-∞) all all (0.4425-∞) (-∞-0.3855] (-∞-0.0755] (0.0095-∞) all r

(-∞-0.198] all all (0.4425-∞) (-∞-0.3855] (-∞-0.0755] (0.0095-∞) all r

(0.198-∞) all all (0.4425-∞) (-∞-0.3855] (0.0755-∞) (-∞-0.0095] all r

(-∞-0.198] all all (0.4425-∞) (-∞-0.3855] (0.0755-∞) (-∞-0.0095] all r

Fig. 5: The decision table learned by the best individual from PBIL for a given
run of the sonar dataset. This classifier is part of the ensemble composed of
classifiers from Figure 4.

non-interpretable base classifiers. By contrast, in the current work the learned
ensembles are small (with only 5 base classifiers) and consist of interpretable
classifiers by design.

6 Conclusion and Future Work

We presented a new evolutionary algorithm (a version of PBIL) for optimiz-
ing the configuration of a small ensemble of interpretable classifiers, aiming at
maximizing predictive performance on the dataset at hand whilst generating in-
terpretable models by design. The proposed PBIL and Random Forest achieved
the best predictive accuracy overall – each was the best in 4 of 9 datasets. The
baseline ensemble was the best in one dataset.

Both the proposed PBIL and the baseline ensemble produce interpretable
models consisting of only 5 interpretable classifiers, unlike random forest en-
sembles, which are not directly interpretable as discussed earlier. Note that the
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baseline ensemble proposed here is not a standard ensemble in the literature,
because the literature focuses on large, non-interpretable ensembles. Hence, the
results for the baseline ensemble reported here can also be seen as a contribu-
tion to the literature, in the sense of being further evidence (in addition to the
PBIL’s results) that small ensembles of interpretable classifiers can be competi-
tive against large, non-interpretable ensembles.

Future work will involve designing a more advanced version of PBIL en-
coding dependencies among variables in the graphical model and doing other
experiments with more datasets.
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26. Luštrek, M., et al.: What makes classification trees comprehensible? Expert Sys-
tems with Applications 62, 333–346 (2016)

27. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT Press (2012)
28. Olson, R., et al.: Automating biomedical data science through tree-based pipeline

optimization. In: European Conference on the Applications of Evolutionary Com-
putation. pp. 123–137. Springer (2016)

29. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers,
San Mateo, CA (1993)

30. Rish, I., et al.: An empirical study of the naive Bayes classifier. In: Proceedings
of theWorkshop on empirical methods in artificial intelligence, IJCAI 2001. vol. 3,
pp. 41–46. Seattle, USA (2001)

31. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson (2006)
32. Thornton, C., et al.: Auto-WEKA: Combined selection and hyperparameter opti-

mization of classification algorithms. In: International Conference on Knowledge
Discovery and Data Mining. pp. 847–855. ACM (2013)

33. Xavier-Júnior, J.a.C., et al.: A Novel Evolutionary Algorithm for Automated Ma-
chine Learning Focusing on Classifier Ensembles. In: Brazilian Conference on In-
telligent Systems. pp. 1–6. IEEE, São Paulo, Brazil (2018)

34. Zangari, M., et al.: Not all PBILs are the same: Unveiling the different learning
mechanisms of PBIL variants. Applied Soft Computing 53, 88–96 (2017)


