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Abstract

Perception is facilitated by a hierarchy of expectations generated from context and prior knowledge. In audi-
tory processing, violations of local (within-trial) expectations elicit a mismatch negativity (MMN), while viola-
tions of global (across-trial) expectations elicit a later positive component (P300). This result is taken as
evidence of prediction errors ascending through the expectation hierarchy. However, in language comprehen-
sion, there is no evidence that violations of semantic expectations across local-global levels similarly elicit a
sequence of hierarchical error signals, thus drawing into question the putative link between event-related po-
tentials (ERPs) and prediction errors. We investigated the neural basis of such hierarchical expectations of se-
mantics in a word-pair priming paradigm. By manipulating the overall proportion of related or unrelated word-
pairs across the task, we created two global contexts that differentially encouraged strategic use of primes.
Across two experiments, we replicated behavioral evidence of greater priming in the high validity context, re-
flecting strategic expectations of upcoming targets based on “global” context. In our preregistered EEG analy-
ses, we observed a “local” prediction error ERP effect (i.e., semantic priming) ;250ms post-target, which, in
exploratory analyses, was followed 100ms later by a signal that interacted with the global context. However,
the later effect behaved in an apredictive manner, i.e., was most extreme for fulfilled expectations, rather than
violations. Our results are consistent with interpretations of early ERPs as reflections of prediction error and
later ERPs as processes related to conscious access and in support of task demands.

Key words: ERP; predictive coding; relatedness proportion; semantic priming

Significance Statement

Semantic expectations have been associated with the event-related potential (ERP) N400 component,
which is modulated by semantic prediction errors across levels of the hierarchy. However, there is no evi-
dence of a two-stage profile that reflects violations of semantic expectations at a single level of the hierar-
chy, such as the mismatch negativity (MMN) and P3b observed in the local-global paradigm, which are
elicited by violations of local and global expectations, respectively. In the present study, we provided evi-
dence of an early ERP effect that reflects violations of local semantic expectations, followed by an apredic-
tive signal that interacted with the global context. Thus, these results support the notion of early ERPs as
prediction errors and later ERPs reflecting conscious access and strategic use of context.

Introduction
Predictive coding theory argues that the brain proc-

esses information in a hierarchical probabilistic Bayesian

manner (Knill and Pouget, 2004; Friston, 2005) by con-
trasting sensory input with prior expectations generated
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from context and the perceiver’s knowledge (Clark, 2013;
Heilbron and Chait, 2018). Expectations are sent down
from higher levels of the hierarchy and any subsequent
unexplained sensory input is sent back up the hierarchy
as prediction error (Rao and Ballard, 1999; Heilbron and
Chait, 2018; Friston and Kiebel, 2009; Bubic et al., 2010).
Some argue that evoked neural responses [e.g., event-

related potentials (ERPs)] reflect prediction errors (Friston,
2005; Chennu et al., 2013). For example, the mismatch
negativity (MMN) is larger in amplitude for stimuli that do
not match short-term auditory expectations, relative to
those that do (Wacongne et al., 2012; Heilbron and Chait,
2018). Prediction errors at higher levels of the hierarchy
are investigated in paradigms that introduce violations of
expectations formed from the global context in which
stimuli occur. Indeed, generating such expectations in-
volves complex cognition, including working memory and
report of conscious expectation (Bekinschtein et al.,
2009). The local-global paradigm (Bekinschtein et al.,
2009) elegantly pits local expectation within each trial (i.e.,
standard vs deviant pitch tones) against a global expecta-
tion built from the context across blocks of trials. This par-
adigm elicits an initial MMN to local violations of
expectation, and a subsequent centro-parietal positivity
at ;300ms poststimulus (P3b) to global violations of ex-
pectation (Faugeras et al., 2012; King et al., 2014; El
Karoui et al., 2015); thereby, separating prediction error
signals at two levels of an expectation hierarchy that un-
fold sequentially.
Within the realm of more ecologically valid stimulus proc-

essing, speech comprehension is similarly influenced by ex-
pectations at multiple levels of a hierarchy (Hutchison, 2007;
Lau et al., 2013a; Lewis and Bastiaansen, 2015; Kuperberg
and Jaeger, 2016; Ylinen et al., 2016). The N400, a negative
deflection peaking around 400ms poststimulus (Kutas and
Federmeier, 2011), is a potential marker of errors of such se-
mantic expectations (Rabovsky and McRae, 2014). On a
local level, the N400 is larger to words that have not been
primed relative to those that have (e.g., larger for DOG when
preceded by Lamp than by Cat; Koivisto and Revonsuo,
2001; Lau et al., 2013a; Cruse et al., 2014), and at a more
global level, the N400 is larger to words that are unexpected
within a sentential context (Berkum et al., 1999; Thornhill
and Van Petten, 2012; Boudewyn et al., 2015; Brothers et
al., 2017). Interestingly, unlike the MMN/P3b in auditory
processing, semantic prediction errors appear to be re-
flected in the magnitude of a single component, the N400,

rather than in a series of components moving through the hi-
erarchy of relative top-down involvement.
One approach to separate prediction error signals at

two levels of a semantic expectation hierarchy is with a
prime validity manipulation of a word-pair priming task.
Specifically, we can pit the facilitation of target word proc-
essing that comes from presentation of a related prime
against a global context in which it is not efficient for the
comprehender to use the prime to predict the target, i.e.,
primes rarely followed by related targets (Keefe and
Neely, 1990; Hutchison, 2007; Lau et al., 2013a,b).
Therefore, as the proportion of related pairs increases
within a context, the prime validity increases (i.e., the
prime is more likely to predict the target). If individuals use
the global context of prime validity to modulate their ex-
pectations, behavioral facilitation follows.
In ERP studies of prime validity, this hierarchy of local

expectations (i.e., the prime relatedness) and global ex-
pectations (i.e., the prime validity) has not been reported
to modulate the amplitudes of two sequential compo-
nents (Lau et al., 2013a; Boudewyn et al., 2015); hence,
there is no evidence of a two-stage profile to semantic ex-
pectation violation. Rather than reflecting error at one
level, the N400 (or for N200 evidence, see Boudewyn et
al., 2015) appears to account for a combination of errors
across levels of the hierarchy. To disentangle these re-
sults, here we report a preregistered trial-by-trial manipu-
lation of both local and global semantic expectations.
First, we report a replication of the reaction time (RT) facil-
itation caused by global context as described by
Hutchison (2007). Second, we report the associated elec-
trophysiological markers of expectation and violation
across levels of the hierarchy from a separate group of
healthy participants performing the same task. In accord-
ance with predictive coding, we hypothesized that ERP
amplitudes would reflect violations of expectation at con-
secutive levels of the hierarchy, with local violations evi-
dent earlier than global violations.

Materials and Methods
Experiment 1, behavioral study
Participants
We recruited participants through the Research

Participation Scheme website of the University of
Birmingham, who received credits for their participation. A
total of 64 participants were recruited, with the data of two
participants excluded from analysis because of outlying
data, as quantified by the non-recursive procedure for out-
lier elimination (detailed below, Behavioural data analyses
section; Van Selst and Jolicoeur, 1994; Hutchison, 2007).
Therefore, the final sample consisted of 62 participants (59
females, threemales; median age: 19, range: 18–28). All par-
ticipants reported to be monolingual native English speak-
ers, right-handed, and with no history of neurologic
conditions or diagnosis of dyslexia. All participants gave
written informed consent before participation in this study,
which was approved by the STEM Ethical Review
Committee of the University of Birmingham.

Stimuli
Associated prime-target pairs were selected from the

Semantic Priming Project database (Hutchison et al.,
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2013) and the experimental design was a replication of
the paradigm implemented by Hutchison (2007). First, all
word pairs available in the database (N = 1661) were or-
dered by Forward Associative Strength (i.e., the propor-
tion of individuals who spontaneously name the same
target after reading the prime word) and the 352 word-
pairs with the highest strength were selected after re-
moval of any specific American English associations (e.g.,
Clorox-Bleach; Slacks-Pants).
The first 156 word-pairs from this list of 352 word-pairs

with the highest forward association were chosen to be
the critical stimuli for statistical analysis. The remaining
196 word-pairs served as fillers to generate the global
context and are not included in the statistical analysis. We
divided all 156 critical word-pairs into two lists (N = 78
word-pairs per list) that were balanced according to the
values from the database (Hutchison et al., 2013) for for-
ward association, length, log HAL frequency, and ortho-
graphic neighborhood (all p. 0.604; all BF10 ,0.196). In
the same way, we divided the 196 filler word-pairs into
two balanced lists (N = 98 word-pairs per list; all
p. 0.284, all BF10,0.267). Thus, we had created two
critical related word-pair lists and two filler related word-
pair lists. To create the unrelated word-pair lists, we man-
ually re-paired (within list) all word-pairs in each of the
four lists above, Stimuli section (two critical, two fillers)
ensuring that unrelated targets were semantically unre-
lated to their prime. This resulted in a final set of eight
lists: two critical related, two critical unrelated, two filler
related, and two filler unrelated. Each participant was as-
signed two Critical sets of word-pairs (one related and
one unrelated; 78 word-pairs per list) and two Filler sets
(one related and one unrelated; 98 word-pairs per list).
Hence, each participant saw all words within the full set of
352 word-pairs exactly once, composed of 176 related
word-pairs and 176 unrelated word-pairs.

To create the prime-validity manipulation, first we as-
signed half of the critical word-pairs, including both re-
lated and unrelated items, to one color (yellow or blue),
and the other half with the other color in an interleaved
order. Next, the related filler set was assigned with one
color (yellow or blue), and the unrelated filler set was as-
signed with the other color. Therefore, across all items
seen by each participant, 77.8% of word-pairs presented
in one of the two colors were related, thus giving that
color high prime validity, and 77.8% of word-pairs pre-
sented in the other color were unrelated, thus giving that
color low prime validity. Importantly, across the entire set
of stimuli that each participant saw, exactly half were re-
lated (the other half unrelated) and half were presented in
one color (the other half in the other color). However, the
probability of a related target following a prime of one
color was 77.8% and the probability of a related target fol-
lowing a prime of the other color was 22.2%. Across par-
ticipants, the color assignment of the high validity primes
was counterbalanced (i.e., half of participants saw high
prime validity word-pairs in blue and low prime validity
word-pairs in yellow; and the other half saw the opposite
colors for each proportion), and all possible combinations
of word lists were used, resulting in 32 permutations.

Procedure
The task was presented with Psychtoolbox (Brainard,

1997; Pelli, 1997; Kleiner et al., 2007) in MATLAB
(MathWorks). The vocal RTs were measured with a
Cedrus SV-1 Voice Key (Cedrus Corporation), with all par-
ticipants completing four practice trials under the experi-
menter¨s supervision to adjust the voice key threshold
according to the participant¨s speech volume. The trial
procedure is shown in Figure 1. Specifically, each trial
started with a central fixation cross on a gray background

Figure 1. Semantic priming relatedness proportion task (Hutchison, 2007). Participants were required to name the target word
aloud and as fast as possible, while their responses were recorded.
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lasting 600ms, then, the prime word was displayed in ei-
ther yellow or blue, at the center of the screen for 160ms,
followed by a blank screen for 1080ms, and subsequently
the target was displayed on the screen; thus, the stimulus
onset asynchrony (SOA) was 1240ms. The target stayed
on the screen until the participant pronounced the word;
then the word disappeared from the screen, which re-
mained blank for 300ms. Afterwards, a rating for the qual-
ity of pronunciation was displayed on the screen with the
following questions and potential responses: How would
you rate your pronunciation? (1) Correct pronunciation; (2)
unsure of pronunciation; (3) mispronunciation; (4) acci-
dental voice-key triggering. Participants gave a button re-
sponse on the keyboard (1–4) to rate their pronunciation
(as per Hutchison, 2007). After the participant responded,
the screen remained blank for 1000ms, before the next
trial began.
Each participant was tested individually and sat

;70 cm away from the computer screen. All participants
received written information about the study, the instruc-
tions, and the consent form. In addition, the instructions
were verbally repeated by the experimenter. We in-
structed all participants that a colored uppercase word
(either blue or yellow) will be displayed on the screen and
that they must read it silently to themselves; then, a black
lower case word will be displayed on the screen, and they
should pronounce the word aloud, as fast and accurately
as possible. Participants were told that the color of the
uppercase word will cue the probability of the lower case
target being related or unrelated. Half of the participants
received the following written instructions: “If the upper-
case word is Blue, it is highly likely that the meaning of the
lower case word will be related; and if the uppercase
word is Yellow, it is highly likely that the meaning of the
lower case word will be unrelated” (as per Hutchison,
2007). The other half of participants received the same in-
structions but with the colors flipped.
After the task, we asked participants to complete a self-

report form about the use of strategy throughout the task,
to determine whether they were using expectations stra-
tegically. The form was composed of three questions and
a free text description of the strategy. The questions were
the following: (1) which color was highly likely to be re-
lated? (responses: BLUE/YELLOW); (2) did you use the
color of the UPPERCASE word (BLUE, YELLOW) as a cue
for knowing whether the following word was related or un-
related? (responses: YES/NO); (3) did you engage in any
strategy to speed up your responses using the color cue?
(responses: YES/NO); (4) if YES, briefly describe. We con-
sidered participants to have used strategic expectation (i.
e., those referred to as the strategy group) if they correctly
identified the color that was assigned for the high validity
condition (question 1), answered YES in questions 2 and
3, and described a strategy in question 4. All other partici-
pants were classified into the no strategy group.

Behavioral data analyses
To ensure the inclusion of trials pronounced correctly,

we only included trials that were rated by the participants
with a correct pronunciation (button press 1); moreover,
we eliminated RTs that were longer than 2500ms and

shorter than 1ms (i.e., not correctly triggered by the vocal
onset). As raw RTs are skewed, some researchers opt to
log transform the data, although this can result in other in-
formation about response speed being lost (Lo and
Andrews, 2015). Here, we chose to follow the same pro-
cedure as in Hutchison (2007), namely, the non-recursive
procedure for outlier elimination (Van Selst and Jolicoeur,
1994). Specifically, RTs that were more than X SDs from
the mean were considered to be outliers and were re-
moved, where the value of X decreases with decreasing
sample size (i.e., number of trials in each condition for
that participant) and is anchored at X =2.5 for a sample
size of 100. Next, across all participants we used the
same procedure to determine outlier participants and re-
jected data from two participants that met the outlier cri-
teria. For the remaining 62 participants, a median of 37
trials (range: 16–39) contributed to the high related condi-
tion; a median of 36 trials (range: 12–39) to the high unre-
lated condition; a median of 37 trials (range: 16–39) to the
low related condition; and a median of 36 (range: 15–39)
contributed to the low unrelated condition.
All behavioral analyses were conducted in Jasp 0.9.1.0

software (JASP Team, 2018). To test for an effect of global
context on RTs, we conducted a two-way repeated meas-
ures ANOVA with factors of relatedness (i.e., related vs
unrelated targets) and prime validity (i.e., high vs low
prime validity). We also reported equivalent Bayesian re-
peated measures ANOVAs (Wagenmakers et al., 2018;
Van Doorn et al., 2019). We expected individuals to show
faster RTs for related (expected) in contrast with unrelated
(unexpected) targets because of local level expectations,
i.e., priming. Furthermore, we expected an interaction,
with larger priming effects in a high validity context in con-
trast with a low validity context, reflecting the use of
global level context to predict upcoming stimuli.
As a follow-up analysis, we conducted a three-way

ANOVA, with its Bayesian equivalent, to test for the inter-
action and the report of strategy versus no strategy (self-
report form) as a between-subjects factor.

Experiment 2, behavioral and electrophysiological
study
This study was preregistered in the Open Science

Framework website, details and all codes described in the
paper can be found under the following link: https://osf.io/
v35te/. Any deviations from the preregistered methods
and analyses are specifically stated in the text.

Participants
We recruited participants through the Research

Participation Scheme website and placed advertisement
posters at the University of Birmingham; participants re-
ceived a monetary compensation for their participation.
We recruited 37 participants, however, since we only in-
vestigated those who reported using a strategy, the final
sample only included 22 participants (15 female, seven
males; median age: 21, range: 18–30; classified by the
same report form as experiment 1). The inclusion criteria
were the same as those for experiment 1; however, partic-
ipants were also required to attend for a structural T1-
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weighted MRI scan at the University of Birmingham;
therefore, participants who had any metal parts in their
body, were claustrophobic, or women who were pregnant
were excluded from the study, as the scan was manda-
tory for participation. All participants gave written in-
formed consent before participation in this study, which
was approved by the STEM Ethical Review Committee of
the University of Birmingham.
We aimed to detect a RT interaction of the same magni-

tude as seen in the strategy group of experiment 1; therefore,
we conducted a power analysis to select an appropriate
sample size for this goal. We performed non-parametric
power calculations using the data of all participants of the
strategy group from experiment 1. Specifically, from the pool
of participants of the strategy group, we selected with re-
placement N participants and conducted the same two-way
repeated measures ANOVA 1000 times to test for the RT in-
teraction effect. With an N of 22 participants in the strategy
group, we achieved 80% power at p,0.05 (i.e., 80% of
ANOVAs included a significant interaction).
As we did not know whether a participant was in the

Strategy group until their self-report form was completed
at the end of the study, we recruited participants until 22
of them were classified as being in the strategy group
(median age: 21, range: 18–30; 12 in the no-strategy
group, median age: 22, range: 19–33). After removal of tri-
als rated as mispronunciations and those considered out-
liers according to the non-recursive outlier elimination
procedure of Van Selst and Jolicoeur (1994; as experi-
ment 1), a median of 28 trials (range: 11–38) contributed
to the high related condition; a median of 29.5 trials
(range: 13–38) to the high unrelated condition; a median
of 29 trials (range: 12–39) to the low related condition; and
a median of 28 (range: 14–37) contributed to the low unre-
lated condition.

Stimuli and procedure
Stimuli and procedure were the same as in experiment

1, except for the duration of the fixation cross (increased
from 600 to 750ms to provide more time for an EEG time-
frequency baseline). Additionally, we checked each unre-
lated prime-target pair across all lists and re-paired 55
unrelated targets within list to ensure that each unrelated
target shared no overlapping phonemes with their respec-
tive related target.

EEG recording
The EEG signal was continuously recorded with a 125

channel AntNeuro EEG system (AntNeuro b.v.) at a sampling
rate of 500Hz, with impedances kept below 20 kV. We
placed the ground electrode on the left mastoid bone and
referenced online to CPz. As participants were required to
pronounce words aloud, we also recorded a bipolar EMG
signal with one EMG electrode above the upper lip and the
other below the lower lip on the left side of the mouth, ap-
proximately over the superior and inferior Orbicularis Oris
muscles (Lapatki et al., 2003; Drake et al., 2009).

EMG preprocessing
As this task involved participants speaking, there were

considerable artefacts in the EEG data around the vocal

RT that were challenging to remove adequately. We there-
fore chose to analyze only the EEG data up to the point of
vocal artifact. To minimize artefacts from additional pre-
paratory muscular activity before vocal onset, in our pre-
registered methods, we planned to choose the latest time
point for analysis post-target by identifying when the
mouth EMG signal began to significantly differ between
prime validity conditions in a temporal cluster mass ran-
domization test, as implemented in FieldTrip (Oostenveld
et al., 2011). However, this approach revealed no signifi-
cant clusters (smallest cluster p=0.513), and so did not
provide a suitable cutoff time point for our analyses.
Therefore, in a deviation from the preregistered plan, we
chose our latest time point of EEG data to analyze as
150ms before the fastest mean RT across conditions (in
this instance, high validity-related= 532 ms; for a similar
approach, see Kuperberg et al., 2018). Our post-target
time window therefore continued to 382ms post-target.
From all the trials included for the statistical analysis, only
5.76% of trials had RTs earlier than this time point, com-
parable with previous studies (Kuperberg et al., 2018).

EEG preprocessing pipeline
We low-pass filtered the continuous EEG data at 40Hz

using the finite impulse response filter implemented in
EEGLAB (Delorme and Makeig, 2004). Because of our in-
terest in analyzing slow-waves (see below, Prime slow
wave linear fit analyses), we performed no high-pass filter-
ing. Next, we segmented the filtered EEG signals into
epochs from 750ms before the onset of the prime up to
382ms post-target (for details, see above, EMG prepro-
cessing). Subsequent artifact rejection proceeded in the
following steps based on a combination of methods de-
scribed by Nolan et al. (2010) and Mognon et al. (2011).
First, as in the behavioral data analysis, we excluded all

trials in which the participant rated their response as in-
correct (i.e., 2, 3, 4 button press) and those that had RTs
that were classified as outliers in the non-recursive proce-
dure for outlier elimination (Van Selst and Jolicoeur,
1994). Next, bad channels were identified and removed
from the data. We considered a channel to be bad if its
absolute z score across channels exceeded three on any
of the following metrics: (1) variance of the EEG signal
across all time points, (2) mean of the correlations be-
tween the channel in question and all other channels, and
(3) the Hurst exponent of the EEG signal (a measure of the
predictability of a time series (Nolan et al., 2010), esti-
mated with the discrete second order derivative from the
MATLAB function wfbmesti. After removal of bad chan-
nels, we identified and removed trials containing non-sta-
tionary artefacts. Specifically, we considered a trial to be
bad if its absolute z score across trials exceeded three on
any of the following metrics: (1) the mean across channels
of the voltage range within the trial, (2) the mean across
channels of the variance of the voltages within the trial,
and (3) the mean across channels of the difference between
the mean voltage at that channel in the trial in question and
the mean voltage at that channel across all trials. After re-
moval of these individual trials, we conducted an additional
check for bad channels, and removed them, by interrogating
the average of the channels across all trials (i.e., the ERP,
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averaged across all conditions). Specifically, we considered
a channel to be bad in this step if its absolute z score across
channels exceeds three on any of the following metrics: (1)
the variance of voltages across time within the ERP, (2) the
median gradient of the signal across time within the ERP,
and (3) the range of voltages across time within the ERP.
To remove stationary artefacts, such as blinks and eye

movements, the pruned EEG data were subjected to an
independent component analysis with the runica function
of EEGLAB. The MATLAB toolbox ADJUST (Mognon et
al., 2011) subsequently identified which components re-
flect artefacts on the basis of their similarity to stereotypi-
cal spatiotemporal patterns associated with blinks, eye
movements, and data discontinuities, and the contribu-
tion of these artifact components was then subtracted
from the data. Next, we interpolated the data of any previ-
ously removed channels via the spherical interpolation
method of EEGLAB and re-referenced the data to the av-
erage of the whole head. We chose to use the average ref-
erence as this is common practice in high-density EEG
recordings and allows for clearer comparison of ERPs
with other relevant paradigms (Bekinschtein et al., 2009;
Faugeras et al., 2012).
Before proceeding to group-level analyses, single-subject

averages for the ERP analysis were finalized in the following
way. First, a robust average was generated for each condi-
tion separately, using the default parameters of SPM12.
Robust averaging iteratively down-weights outlier values by
time point to improve estimation of the mean across trials.
As recommended by SPM12, the resulting ERP was low-
pass filtered below 20Hz using a FIR filter (again, with
EEGLAB’s pop_neweegfilt), and the mean of the baseline
window (�200–0ms) was subtracted.
Single-subject data for the time-frequency analysis

were preprocessed in a similar way. However, first, we
concatenated the individual trials into a matrix of channels
x all time points, and filtered each channel in two-steps
(high-pass then low-pass) to retain the frequency bands
of interest (i.e., 8–12 Hz a and 13–30 Hz b ), using
EEGLAB’s finite impulse response filter (function: po-
p_eegnewfilt). Next, we extracted the squared envelope
of the signal (i.e., the squared complex magnitude of the
Hilbert-transformed signal) to provide a time-varying esti-
mate of power within that frequency band. The resulting
time course was re-segmented into its original epochs
and averaged within each condition separately using
SPM12’s robust averaging procedure. As with the ERP
analyses, we low-pass filtered the resulting average time
series below 20Hz (EEGLAB’s pop_neweegfilt). Finally,
we converted the power estimates to decibels relative to
the mean of the baseline window (�200–0ms).

EEG/MRI co-registration
We recorded the electrode locations of each participant

relative to the surface of the head using a Xensor
Electrode Digitizer device and the Visor2 software
(AntNeuro b.v.). Furthermore, on a separate day, we ac-
quired a T1-weighted anatomic scan of the head (nose in-
cluded) of each participant with a 1 mm resolution using a
3T Philips Achieva MRI scanner (32 channel head coil).

This T1-weighted anatomic scan was then co-registered
with the digitized electrode locations using FieldTrip.

Analyses
Behavioral data analysis. The behavioral analyses are

the same as for the strategy group in experiment 1.
EEG analysis.

Target ERP, prime ERP and prime time frequency anal-
yses.Time courses (ERPs/time frequency) within the time
window of interest (0–1240 ms for primes; 0–382 ms for
targets) were compared with the cluster mass method of
the open-source MATLAB toolbox FieldTrip (Oostenveld
et al., 2011). This procedure involves an initial parametric
step followed by a non-parametric control of multiple
comparisons (Maris and Oostenveld, 2007). Specifically,
we conducted two-tailed dependent samples t tests at
each spatiotemporal data point within our time window of in-
terest. Spatiotemporally adjacent electrodes (t values) with
p, 0.05 were then clustered based on their proximity, with
the requirement that a cluster must span more than one time
point and at least four neighboring electrodes, with an elec-
trode’s neighborhood containing all electrodes within an;4-
cm radius (median: 8, range:2–10). Finally, we summed the t
values at each spatiotemporal point within each cluster. Next,
we estimated the probability under the null hypothesis of ob-
serving cluster sum Tsmore extreme than those in the experi-
mental data, i.e., the p value of each cluster. Specifically,
FieldTrip randomly shuffles the trial labels between condi-
tions, performs the above spatiotemporal clustering proce-
dure, and retains the largest cluster sum T. Consequently, the
p value of each cluster observed in the data are the propor-
tion of the largest clusters observed across 1000 such ran-
domizations that contain larger cluster sum Ts. As our
analyses were two-tailed, we set the family-wise error cor-
rected cluster a to 0.025.
Prime slow wave linear fit analyses. To further test for
ERP evidence of expectation formation in response to the
prime, we analyzed whether a slow wave differentiates
high validity and low validity conditions. For this compari-
son, we used a least-squares linear fit to the averaged
ERPs of each condition (high and low validity primes) for
each electrode and participant (as per Chennu et al.,
2013). Next, the slope values were compared between
conditions with the spatial cluster mass analysis in
FieldTrip (Oostenveld et al., 2011).
Source estimation analysis. We constructed individual
boundary element head models (BEM; four layers) from
subject-specific T1-weighted anatomic scans, by using
the “dipoli” method of the MATLAB toolbox FieldTrip
(Oostenveld et al., 2011). Next, we aligned the electrode
locations, that were recorded with Xensor Electrode
Digitizer device, to the surface of the scalp layer that was
segmented from the T1-weighted anatomic scan. For ref-
erence points, we used the fiducial points and electrode
locations as head shape. We visually checked that the
electrode positions and the scalp surface were aligned,
and we manually fixed imperfections. We prepared the
EEG data before subjecting it to statistical analyses,
where we balanced the number of trials in each condition,
by taking the smallest condition N as a reference and ran-
domly discarding trials from the other conditions
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surpassing that N, resulting in equal datasets. This proce-
dure is used to remove the potential influence of biases
from unequal sample sizes.
ERPs whole brain. For the whole brain ERP source
analysis, we used single-trial data that had not been
subjected to robust averaging, and defined trials as time
windows from �382 to 382ms relative to target onset.
This data were then bandpass filtered between 1 and
40Hz using a firws filter as implemented in FieldTrip
(Oostenveld et al., 2011). Subsequently, relative to the dif-
ferent conditions, data were divided into seven sets: one
containing all trials, one containing only related trials, one
only unrelated trials, one all high-validity related and
one all low-validity related trials, one containing all high-va-
lidity unrelated and one all low-validity unrelated trials. The
sensor covariance matrix was estimated for all these sets
of data in the time window �382–382ms relative to target
onset. A common spatial filter was then computed on the
dataset containing all trials using a linear constraint mini-
mum variance (LCMV) beamformer (Van Drongelen et al.,
1996; Van Veen et al., 1997; Robinson and Vrba, 1999).
Beamformer parameters were chosen including a fixed di-
pole orientation, a weighted normalization (to reduce the
center of head bias), as well as a regularization parameter
of 5% to increase the signal-to-noise ratio (cf. Popov et al.,
2018; Sokoliuk et al., 2019a). This common spatial filter
served then for source estimation of the remaining six sets
of trials. Subsequently, the dipole moments of the differ-
ent source estimates were extracted within the poststimu-
lus time windows of interest (time windows for source
estimates of related vs unrelated trials: 226–280, 232–
290, 306–382, 316–350 ms; time window to test interac-
tion effect for source estimates of highly related and
unrelated trials and low related and unrelated trials: 316–
350 ms) and their absolute values averaged over time to
obtain one average source estimation value per grid point
([dot]VE) and condition.
To test for significant differences between conditions

we conducted five contrasts as mentioned above; first, an
interaction between prime validity (high/low) and related-
ness of the target (related/unrelated) in a time window
from 316 to 350ms; next, we tested the early and late
main effects of relatedness of the target (related/unre-
lated) as observed in the sensor analyses results (four
main effects), in their respective time windows for the
early effect (226–280 and 232–290 ms); and the late effect
(306–382 and 316–350 ms). Montecarlo cluster-based
permutation tests were computed as implemented in
FieldTrip (Oostenveld et al., 2011) by using averaged data
over each time window; moreover, we used an a and a
cluster a level of 0.025 and 1000 permutations.
Automated anatomical labeling (AAL) analysis. We
tested for the post-target interaction, between the relat-
edness of the target (related/unrelated) and the validity of
the prime (High prime validity/Low prime validity) in five
specific anatomic regions of interest that are defined
using the automated anatomic labeling (AAL) atlas (for
similar analyses with MEG and EEG data, see Brookes et
al., 2016; Sokoliuk et al., 2019b). The selected regions are
the left inferior frontal gyrus (LIFG), including pars

opercularis, pars triangularis and pars orbitralis; the pos-
terior left middle temporal gyrus (LMTG); and posterior left
superior temporal gyrus (LSTG), as Weber et al. (2016) re-
ported a relatedness proportion interaction in these re-
gions. In addition, we tested the post-target interaction in
the anterior LMTG and anterior LSTG, as Lau et al.
(2013b) found differences in the anterior left superior tem-
poral region (LSTG) in related versus unrelated items in a
high validity condition. Moreover, as a deviation from our
preregistered analyses, we tested the main effects found
in the Related – Unrelated contrast at the sensor level
(ERPs) in the same anatomic regions (for more details,
see Results). To determine both the anterior and posterior
parts of the LMTG and LSTG, we calculated the center of
mass of each AAL region and selected all virtual electro-
des that were anterior or posterior to the center of mass.
We aggregated the AAL regions of interest to each par-

ticipant’s T1-weighted image. Next, for each participant
individually, we extracted the average source estimation
values of all VEs (from prior source estimation; cf. above,
ERPs whole brain) within each AAL region, weighted them
according to their Euclidian distance to the center of
mass of the AAL region (Brookes et al., 2016) and aver-
aged over VEs within each AAL region of interest. We then
conducted paired-sample t tests between the post-target
conditions (SP-high validity/SP-low validity) for all AAL re-
gions; and another paired-sample t test between the relat-
edness conditions (related/unrelated) for each AAL region
in four time windows (226–280, 232–290, 316–350, 306–
382 ms) from the main effects obtained in the sensor level
ERP analyses (Results). The p values that we obtained
were corrected for multiple comparisons across AAL re-
gions using false discovery rate (FDR; Yekutieli and
Benjamini, 1999). Furthermore, to test for evidence for the
null hypothesis, we calculated Bayes Factors using the
Bayes equivalent t test, according to Rouder et al. (2009).
A Bayes factor between 1 and 3 is considered to be weak/
anecdotal evidence in support of the hypothesis being
tested; from 3 to 10 is substantial evidence and 10 to 100
is strong evidence (Jeffreys, 1961). Note that, as the
Bayes factor is the ratio of evidence for two hypotheses,
the same category descriptions hold for the inverse (i.e.,
1:3, 1:10, 1:100).

Results
Experiment 1, behavioral only
In a two-way repeated measures ANOVA, we found a sig-

nificant interaction between prime validity and relatedness
of the target (F(1,61) =13.751, p,0.001, hp2 = 0.184), which
was also strongly supported by a Bayesian repeated meas-
ures ANOVA (BFinclusion = 19.25). As shown in Table 1, this
interaction stems from the larger semantic priming effect in
the high prime validity context (t(61) = �6.525, p, 0.001,
Cohen’s d =�0.829, CI =�1.115�0.537) relative to the low
prime validity context [t(61) =�5.169, p, 0.001, Cohen’s d =
�0.656, confidence interval (CI) = �0.929 �0.380].
Furthermore, RTs to unrelated items were markedly similar
across contexts (t(61), 0.001, p=0.999, Cohen’s d, 0.001,
CI = �0.249 0.249), while the difference in semantic priming
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stems from significantly different RTs to related items (t(61) =
�3.797, p, 0.001, Cohen’s d = �0.482, CI = �0.744
�0.217).
Of 62 participants, 32 were classified in the “no-strat-

egy” group and 30 were classified in the “strategy”
group according to their responses on the self-report
form (for description, see Materials and Methods). A post
hoc mixed design ANOVA with two within factors (relat-
edness of target; validity of the prime) and one between
subjects factor (strategy; no-strategy) revealed a signifi-
cant target � prime validity � strategy interaction
(F(1,60) = 7.537, p =0.008, hp2 = 0.112, BFinclusion =
3.203), reflecting the apparent presence of a prime va-
lidity effect when participants reported using the prime
strategically (F(1,29) = 20.388, p, 0.001, hp2 = 0.413;
BFinclusion = 34.67) but absence of a prime validity effect
when participants reported no strategy (F(1,31) = 0.860,
p = 0.361, hp2 = 0.027; BFinclusion = 0.393; Fig. 2). The
no strategy group, however, did exhibit a significant se-
mantic priming effect by showing faster responses in
the related relative to unrelated items (F(1,31) = 21.656,
p,0.001, hp2 = 0.411; inclusion BFinclusion = 4994.57).

Experiment 2
Behavioral results
These results were qualitatively consistent with those

we observed in experiment 1. A two-way repeated meas-
ures ANOVA analysis showed a significant interaction be-
tween prime validity and relatedness of the target

(F(1,21) = 9.071, p=0.007, hp2 = 0.302), while the Bayesian
repeated measures ANOVA analysis showed anecdotal
evidence for the interaction (BFinclusion = 2.519). The inter-
action was driven by a larger semantic priming effect in
the high prime validity context (t(21) = �4.254, p, 0.001,
Cohen’s d = �0.907, CI = �1.398 �0.400) than in the low
prime validity context (t(21) = �2.046, p=0.054, Cohen’s d
= �0.436, CI = �0.869 0.007; Table 2). There was no sig-
nificant difference between the RTs to unrelated items
across contexts (t(21) = 0.731, p = 0.473, Cohen’s
d= 0.156, CI = �0.266 0.575) as opposed to a significant
difference between related items across contexts (t(21) =
�2.719, p = 0.013, Cohen’s d = �0.580, CI = �1.027
�0.121).

EEG results, sensor level
Prime analyses: ERPs, time frequency and slow wave

linear fit analyses
As the global context was instantiated by the prime

words, we sought to also investigate potential electro-
physiological markers of expectation setting (rather than
post-target prediction errors). However, none of our pre-
registered analyses in the prime time window (0–1240
ms after prime onset) revealed evidence of markers of
expectation in response to the prime. Specifically, there
were no effects in analysis of the ERPs (smallest cluster
p= 0.233), the slow wave linear fit analysis (no clusters
formed), or the a-b time-frequency analysis (smallest
cluster p = 0.136).

Table 1: Descriptive statistics including mean RT (ms) and SD of related and unrelated word-pairs on each validity context,
high prime validity and low prime validity

Condition Low validity = 22.2% mean RTs (SD)
High validity = 77.8%
mean RTs (SD) Prime validity effect

Unrelated 508 ms (76 ms) 508 ms (75 ms)
Related 493 ms (73 ms) 472 ms (76 ms)
Priming effect 15 ms (32ms) 36 ms (54ms) 21 ms (60ms)

Semantic priming effects and prime validity effect (relatedness proportion effect).

Figure 2. Mean RTs and confidence intervals (95%): prime validity (high/low), relatedness of the target (related/unrelated). Interaction
(p,0.001) between the validity of the prime and the relatedness of the target in the group of participants that reported the use of a
conscious strategy (right), and no interaction (p=0.361) in the group of participants that did not report a conscious strategy (left).
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Therefore, in exploratory analyses, we focused the time
window of interest for the ERP analysis on the peak of the
global field power Skrandies (1990) (530–1240 ms); how-
ever, this also revealed no significant difference between
the high and low validity contexts (smallest cluster
p=0.139). Similarly, we used the window of interest for the
a-b time-frequency analysis to the peak of the global field
power Skrandies (1990) (602–1240 ms), which also yielded
no significant difference between conditions (no clusters
formed). Moreover, as a-b frequency bands include a wide
range of frequencies we analyzed them separately.
However, the time-frequency analysis in the a band (8–12
Hz) showed no significant differences between conditions in
the 0- to 1240-ms time window (smallest cluster p=0.121),
nor in the 530- to 1240-ms time window (smallest cluster
p=0.08). The same was true for the b band (13–30 Hz; 0- to
1240-ms cluster p=0.312; 530- to 1240-ms cluster
p=0.197). Together, these analyses suggested no apparent
electrophysiological markers of pre-target expectation for-
mation in our data.

Target results: ERPs. In our preregistered interaction
contrast in the latency range from 0 to 382ms poststimu-
lus, the cluster-based permutation analysis yielded no
clusters. However, in preregistered analyses of main ef-
fects in the same latency range, we found four significant
main effects of relatedness of the target (i.e., unrelated vs
related targets; Fig. 3). The clusters in our data occurred
in two distinct periods within the time window as shown in
Figure 3. Specifically, two clusters reflected a left fronto-
temporal dipolar effect of relatedness (Fig. 3A,B) at
;250ms poststimulus (negative cluster: 226–280ms,
p=0.019; positive cluster: 232–290ms, p=0.009), and
two clusters reflected a later parieto-occipital dipolar ef-
fect of relatedness (Fig. 3C,D) at ;350ms poststimulus
(negative cluster: 316–350ms, p=0.021; positive cluster:
306–382ms, p=0.004). The early effects showed a pre-
dictive signal as in both clusters the voltage exhibited
more extreme values for unrelated than related items.
On the contrary, the later effects showed signs of an apre-
dictive signal, especially in Figure 3D, as the voltage with-
in the cluster had more extreme values for the related
relative to the unrelated items.
As an exploratory analysis, and to increase power to

detect a potential interaction effect, we tested for the in-
teraction within each of the main effect clusters by aver-
aging per condition and participant across all channels
and time points within each main effect cluster. With this
approach, the later negative cluster (Fig. 3C) showed a
significant interaction (F(1,21) = 6.679, p=0.017, hp2 =
0.241), reflecting a larger voltage difference between the

related and unrelated targets in a high validity context
with respect to a low validity context (other clusters
p=0.396, p=0.110, p=0.273). Bayesian equivalent anal-
yses considered this to be anecdotal evidence for the al-
ternative hypothesis (BFinclusion = 1.505; Fig. 4).

Source estimate analyses
Our preregistered analyses included whole-brain inter-

action and main effect contrasts within the time windows
of significant clusters at the sensor level. However, this
approach returned no significant clusters at the source
level (interaction smallest cluster p=0.147; main effect
smallest cluster p=0.067). Furthermore, our preregistered
source analyses included regions of interest from the fol-
lowing AAL regions: LIFG, LMTG, and LSTG. However,
none of these regions exhibited significant interaction ef-
fects or main effects (all FDR corrected p. 0.05).
Consequently, for a qualitative visualization of the

source estimates, here we plot the whole-brain thresh-
olded t values (p,0.05) of the source estimate contrasts,
uncorrected for multiple comparisons. Specifically, we
plot these t values for the early main effect (Fig. 3A,B) and
the late main effect (Fig. 3C,D) in time windows selected
to be entirely within the significant dipolar sensor level
clusters (early: 232–280 ms; late: 316–350 ms; Fig. 5). The
thresholded t values showed the peak of activity at the
right middle and superior fontal gyri for the early effect;
and the activity peak at the right supplementary motor
area for the late effect, as shown in Figure 5.

Discussion
Predictive coding theory posits that the brain generates

expectations about upcoming stimuli at varying levels of
complexity, from low-level expectations about stimulus
properties through to higher-level conceptual expecta-
tions. Here, we investigated the behavioral and electro-
physiological correlates of such expectations and their
violations at two levels of a semantic expectation hierar-
chy (local and global). First, on the behavioral level, partic-
ipants of two separate experiments showed evidence of
speeded RTs in related trials relative to unrelated trials,
consistent with a local expectation generated about target
word identity on the basis of the prime identity.
Furthermore, participants generated a more conceptually
complex expectation based on the global context (i.e.,
prime validity) to exhibit greater behavioral facilitation in
the high prime validity context than the low prime validity
context (Boudewyn et al., 2015). Importantly, only those
individuals who reported conscious strategic expectation
showed evidence of behavioral facilitation given by the

Table 2: Descriptive statistics including mean RT (ms) and SD of related and unrelated word pairs on each validity context,
high prime validity and low prime validity

Condition
Low validity = 22.2%
mean RTs (SD)

High validity = 77.8%
mean RTs (SD) Prime validity effect

Unrelated 576 ms (92 ms) 582 ms (87 ms)
Related 560 ms (107ms) 532 ms (110 ms)
Priming effect 16 ms (54ms) 50 ms (69ms) 34 ms (95ms)

Semantic priming effects and prime validity effect (relatedness proportion effect).
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global context, while those individuals who did not report
a conscious strategy only exhibited facilitation as a result
of the local context. Together, these behavioral data are
consistent with a dissociation between a local expecta-
tion about the identity of the target generated by the
prime, and a global expectation about the relatedness of
the target that necessitates reportable, effortful, and stra-
tegic application of expectation. Moreover, the present
data provides evidence for a successful replication of the
behavioral effect elicited by the same paradigm as imple-
mented by Hutchison (2007), who also found that the
magnitude of the global facilitatory effect was modulated
by the level of attentional control (i.e., weaker effect in in-
dividuals with lower attentional control; Hutchison, 2007).
Similarly, our results suggested that only individuals that

reported applying an effortful conscious strategy showed
the global context effect as mentioned above.
Consistent with this two-stage expectation profile, the

ERPs in response to the target words also exhibited a
two-stage profile, with an early effect modulated by local
expectation (around 250ms) and a later effect modulated
by global expectation (around 350ms). These results are
broadly consistent with the two-stage profile observed in
the auditory oddball local, global paradigm (Bekinschtein
et al., 2009), which includes an MMN in an early stage re-
flecting errors of the local context of the stimuli and a P3b
response to errors of the global context given by blocks
across the task.
Furthermore, the early effect in the present experiment

showed more extreme amplitudes for unexpected targets

Figure 3. Four main effects from the cluster-based permutation analyses, which contrasted the voltage difference between related
and unrelated word-pairs from 0 to 382 ms poststimulus. ERP scalp topographies revealed two dipolar effects; first, an early fronto-
temporal effect at ;250ms (A, B); then, a later parieto-occipital effect at around 340ms. Electrodes contributing to the clusters are
marked with black dots. C, D, ERP plots show data (mean and shaded 95% confidence interval) from the electrode where the effect
was maximal (highlighted with a white circle on the top plots), with the cluster period highlighted in gray.
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relative to expected targets, consistent with a prediction
error signal, such as the MMN to unexpected/deviant
items observed across levels of stimulus awareness
(Bekinschtein et al., 2009; Faugeras et al., 2012;
Wacongne et al., 2012; Chennu et al., 2013; El Karoui et
al., 2015). Moreover, the scalp topography of the early ef-
fect has a fronto-central peak, which is consistent with
the MMN (Bekinschtein et al., 2009; Faugeras et al., 2012;
Chennu et al., 2013); however, its latency is a little longer
than seen in some of these previous papers and is not
elicited here by a violation of auditory regularity.
Additionally, in our source estimation analyses, the early
effect was localized to the middle frontal gyrus (Fig. 5),
whereas in another study the local MMN effect was local-
ized to the temporal parietal junction and prefrontal cortex
(Chennu et al., 2013), indicating not entirely overlapping
neurocognitive processes. Nevertheless, as we observed
behavioral semantic priming (as tracked by the early ef-
fect) even for participants who were not making strategic
expectations, and because of the shared common fea-
tures with the MMN (i.e., more extreme for errors and with
a fronto-central focus), we consider the early effect to
be consistent with an error of local expectation, i.e.,

expectation based on the identity of the prime, rather than
the prime validity. Indeed, the MMN is elicited even by in-
dividuals who are not actively attending to the stimuli
(Bekinschtein et al., 2009).
The late effect, however, was the opposite of what

would be expected for a prediction error signal, i.e., its
amplitude was more extreme for expected targets com-
pared with unexpected targets. While the topography of
this effect is similar to that of an N400 effect, with a maxi-
mum over midline parietal electrodes, it is evident from
Figure 3D that the underlying waveforms are not consist-
ent with an N400 effect. Indeed, a classical N400 effect is
the difference between two negative-going ERPs that are
more extreme (i.e., more negative-going) for semantically
unexpected targets (Kutas and Federmeier, 2011).
Conversely, the late effect here is evidently the difference
between two positive-going ERPs (Fig. 3D) and is more
extreme (i.e., more positive-going) for expected targets.
This apredictive pattern is not readily explained by predic-
tion error accounts without appeal to precision-weighting,
in which a prediction error is weighted by the system’s
confidence in the signal (Friston, 2005; Wacongne et al.,
2012; Chennu et al., 2013). Under precision-weighting, all

Figure 4. Exploratory analysis to test for the interaction between the four conditions [(HR – HU) – (LR – LU)]. The ERP plot in panel
A shows the mean of electrodes (19 electrodes) within the 316- to 350-ms cluster found in the main effect analysis (Fig. 3C). B,
Mean and confidence intervals (95%) for each condition within the same time window that was analyzed with repeated measures
ANOVA showing a significant voltage interaction (p=0.017) with a larger difference in voltage between related and unrelated items in
high validity context than low validity context. C, Mean RTs and confidence intervals (95%) showing a significant interaction (p=0.007)
presented in Table 2. In this experiment, participant’s behavior (RT; C) showed the same pattern as their ERP responses (B).
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possible patterns of prediction error signals on the scalp
are possible, including apredictive patterns as we ob-
served here, as precision may vary freely across task con-
ditions (Kok et al., 2012). For example, Barascud et al.
(2016) reported a larger MEG signal for auditory stimuli
that become predictable, relative to stimuli that are en-
tirely unpredictable, i.e., an apredictive pattern, that they
linked to up-weighting of the expected stimuli by preci-
sion (Heilbron and Chait, 2018). Within predictive coding,
attention is one specific mechanism that is thought to in-
crease precision (Hohwy, 2012). Therefore, under a pre-
dictive coding framework, one can appeal to varying
levels of attention across task conditions. Therefore, we
could post hoc theorize that our late apredictive effect re-
flects individuals paying greater attention to the high va-
lidity trials as they have a high level of predictability and
paying greater attention to related targets than unrelated
targets, as the former fulfil their expectations. Therefore,
the relative levels of attention across conditions could
interact to generate this apredictive effect. Indeed,
consistent with this, 59% of our participants (13/22)
self-reported that their strategy was to generate an ex-
pectation in the high validity condition only (i.e., “I was
trying to guess next word if previous was blue,” where
blue was high validity condition).
An alternative interpretation stems from evaluation of

our behavioral data. When comparing the behavioral RT
interaction with the ERP voltage interaction (Table 2; Fig.
4, respectively), both show the same pattern: namely, that
the interaction is driven by expected items in a high valid-
ity context, showing more extreme values with respect to
the other three conditions. This similarity in behavior and
ERP effects suggest that our late “error” effect may simply
reflect processing in service of behavior, whereby sensory
signals are routed to goal-driven analogous motor

behavior (Zylberberg et al., 2010). One formulation of how
this may occur is provided by the Brain’s router model
(Zylberberg et al., 2010), in which a set of neurons (the
router) connects incoming sensory information to a set of
possible responses, while a task-set specifies the re-
sponse to be executed in response to a given stimulus.
Within the paradigm described here, one might consider
that the router links the lexical and semantic representa-
tions of the prime word input (e.g., CAT) with the motor
commands for a set of related subsequent target words
(e.g., DOG, KITTEN, etc.). The task-set is specified by the
prime validity, such that under high prime validity, the
links between words and motor responses for related
words are foregrounded/preactivated, e.g., the response
“DOG” is set. Under the router model, and the related
global neuronal workspace model (Dehaene and Christen,
2011), the neural substrate of routing to action is consid-
ered to lie within the broad frontoparietal network. Having
a goal, i.e., having the intention to anticipate and pro-
nounce a target word, will form a task-set that prepares
the motor representation of the target word for execution
when sufficient evidence about the target identity has
been accumulated. Therefore, having this goal will speed
RTs by preparing the link to the appropriate motor plan.
Indeed, consistent with the role of goal-based expecta-
tions about which appropriate motor plan to execute, par-
ticipants in the no-strategy group, who do not report
engaging in any form of conscious expectation of target
identity, show no speeding of RTs under high validity. Our
late apredictive ERP pattern may therefore not reflect a
precision-weighted global prediction error, but more sim-
ply the result of the brain routing the incoming information
into appropriate behavior. Under this interpretation, our
results are therefore also consistent with interpretations
of early ERPs as reflections of prediction error and later

Figure 5. Thresholded t values (p, 0.05) of the ERP source estimates over two distinct time windows that corresponded to the
early and late ERP effects reported above in Figure 3. Upper panel, Difference between related and unrelated targets in the early
time window (232–280 ms). Lower panel, Same difference in a later time window (316–350 ms; thresholded t values, p, 0.025).
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ERPs as processes related to conscious access and in
support of task demands (Dehaene and Christen, 2011;
Rohaut et al., 2015).
It is possible that other later error signals were also evi-

dent in the neural response during our task, including
those traditionally linked to the N400 (i.e., peaking
;400ms post-target). However, we limited our analyses
to the 0- to 382-ms time window post-target so as to
avoid muscle artifact created by the pronunciation re-
sponses. We chose to use a pronunciation task as our
aim was to observe the behavioral effect produced by the
manipulation of both the local (relatedness) and global
context (prime validity) as implemented by Hutchison
(2007). Nevertheless, tasks that do not produce large
muscular artefacts, such as a lexical decision task (LDT)
in which individuals only produce motor responses on
filler trials, would allow for analysis of the N400 time win-
dow. However, as argued by Hutchison (2007), partici-
pants can complete an LDT with a semantic-matching
strategy, meaning that after seeing the target they can
verify whether it is related to the prime, which could bias
their responses as only words can be related and non-
words would be, by their nature, unrelated (Hutchison,
2007). Additionally, as we provided a global context by
manipulating the proportion of related items across the
task, individuals could bias their responses using the va-
lidity cue (Keefe and Neely, 1990); for example, primes
that were presented in blue (high validity context) were
more likely to be related (80%). Therefore, when seeing a
blue prime, individuals could judge their response (word/
non-word) solely based on the prime, in this case a
“word” as most of the word-pairs are related. Instead,
using a pronunciation task allows for a purer measure of
expectation, with the caveat of limiting the time window of
artifact-free EEG for analysis. While our limit of 382ms for
analysis post-target likely excludes the later portion of the
N400 (generally peaking at;400ms post-target), it never-
theless captures the onset of any putative N400, generally
considered to onset at 200ms poststimulus and to reflect
semantic processing (Kutas and Federmeier, 2011).
Furthermore, we can be confident that the 382-ms time
window allows us to capture semantic processes as this
time window was defined on the basis of RTs (minus a
motor preparation period) that are themselves modulated
by the semantic associations of the words.
A recent prediction error view on language-related

ERPs proposes that the N400 has similar properties to the
MMN, as they both are modulated by the predictability of
stimuli (i.e., increased ERP amplitude as a prediction-
error response) but that their relative latencies indicate
prediction-error processing at different levels of stimulus
complexity (Bornkessel-Schlesewsky and Schlesewsky,
2019). In our findings, both consecutive effects could be
similarly interpreted as reflecting different levels of com-
plexity of precision-weighted prediction error processing
across a semantic hierarchy. However, as noted above,
appeal to precision-weighting problematically allows for
post hoc explanations of all possible ERP patterns
(Bowman et al., 2013).
Regarding the source estimation analyses, the early ef-

fect was localized to the middle frontal gyrus, which has
been previously associated with semantic categorization
when compared with passive listening (Noesselt et al.,

2003). Furthermore, the ERP source estimation analysis
for the late effect was localized to the supplementary
motor area, consistent with the above interpretation that
the late interaction reflects goal-driven routing toward ac-
tion. Indeed, this area has been linked to speech motor
control, verbal working memory, and predictive top-down
mechanisms in speech perception (Hertrich et al., 2016).
However, neither of these two regions were part of our
preregistered hypotheses. Therefore, these source esti-
mates should be interpreted with caution, and future stud-
ies with this paradigm will wish to replicate these sources.
In our preregistered analyses, we also hypothesized

that we would observe electrophysiological markers of
differential expectations generated by the high and low
validity primes, before the onset of the target. Specifically,
we expected these differential expectations to be re-
flected in the ERPs, including the slope of a putative slow
wave, or contingent negative variation (CNV; Chennu et
al., 2013), and/or in the power of the EEG in the a/b
bands, as these have been previously associated with the
precision of expectations (Bauer et al., 2014). However,
we found no evidence of any differences in these meas-
ures between high and low validity primes before target
onset. The CNV is typically observed in the preparatory
period before a temporally-expected target and is consid-
ered to reflect priming of the neural circuits required for a
task-appropriate response, whether that be motoric
(Gómez et al., 2001) or cognitive (Chennu et al., 2013).
Indeed, the magnitude of the CNV has been linked to the
amount of top-down expectation instantiated by a stimu-
lus (Chennu et al., 2013), thus leading to our hypothesis of
differential amounts of expectation instantiated by high
validity and low validity primes. One interpretation of our
data’s lack of support for this hypothesis is that our spe-
cific measures were simply not sensitive enough to detect
the differential expectations in these conditions. Indeed,
we powered our study to detect the post-target behav-
ioral effect specifically. Furthermore, EEG may lack the
spatial sensitivity to detect subtle differences in prepara-
tory motor and/or semantic neural circuits. An alternative
interpretation is that expectations were, in fact, not differ-
ent between the two conditions. Indeed, under predictive
coding, the brain is considered to optimize the difference
between its expectations and sensory input by updating
its internal model (Friston, 2010); hence, it is possible that
the optimal means of minimizing prediction error in this
task is to always predict the related target, regardless of
the prime validity. This would result in preparatory priming
of the same circuits in expectation of the upcoming target
item, and therefore equivalent CNVs. For example, even if
one were to consciously expect that an upcoming target
will be unrelated (as in a low validity trial), it is simply not
possible to accurately predict the identity of that target,
as the range of possible unrelated target words is consid-
erable. Therefore, although predicting the identity of a
specific related target had only a ;22% probability of
being correct in a low validity context, it was still more
likely than predicting any one of the vast arrays of poten-
tial unrelated target words. An optimal expectation then
would be to always predict DOG in response to CAT, thus
resulting in CNVs that do not differ across prime validity.
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Nevertheless, our speculation here is based on a null re-
sult, and future inspection of participants’ meta-cognition
in relation to their specific expectations following prime
presentation will help speak to this interpretation.

Conclusions
In conclusion, we here reported ERP evidence of hier-

archical matching of semantic expectations to incoming
speech. Lower lever expectations based on the local
context (i.e., the prime identity) elicited an early and
predictive pattern that matches with prediction error ac-
counts. Higher level expectations generated from the
global context required awareness of the global rule
and the use of a reportable strategy, and were associ-
ated with an apredictive pattern that can be interpreted
within a precision-weighted prediction error account, or
may reflect the routing of sensory signals and their ex-
pectations into task-directed behavior. This later effect
was only evident in exploratory analyses (i.e., not our
preregistered analyses) and therefore requires further
future replication.
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