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Abstract
As many ecosystems are under increasing pressure from invasive species, habitat 
degradation, overgrazing and overharvesting, pollution, and climate change, dietary 
niche monitoring is gaining importance. The Malai Mahadeshwara Wildlife Sanctuary 
(MMH) in southern India is home to several long-standing ethnic and tribal groups and 
supports a considerable number of domestic herbivores (cattle, goats and water buf-
falo) as well as a range of wildlife (including several species of deer, bonnet macaque, 
and Asian elephant). We reconstructed dietary niche partitioning of the herbivores 
occurring in MMH using eDNA metabarcoding to quantify diet richness, composi-
tion, and overlap. In total, we distinguish 134 diet items (molecular operational taxo-
nomic units), covering 31 plant families. Overall, our results indicate 35% overlap in 
domestic and wild herbivore diet items. The greatest overlap is found for the dietary 
niches of cattle and sambar deer (Pianka's niche overlap index: 0.68), and the dietary 
niche of cattle also overlaps considerably with those of Indian hare (0.65) and Asian 
elephant (0.46). This suggests that these herbivores may compete for these food 
plants in the case of limited availability, which could lead to exclusion of some herbi-
vore species. Particular concern should go to bonnet macaque and Asian elephant as 
their below average dietary richness could make them vulnerable to changes in their 
environment. With increasing pressures on local wildlife from a range of different 
factors, DNA metabarcoding of fecal samples is a non-invasive method for monitor-
ing changes in animal diets, providing valuable information for the management of 
biodiversity in mosaic natural and anthropogenic landscapes.
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1  | INTRODUC TION

In areas with species of similar ecology, the partitioning of eco-
logical niches can reduce competition for resources, thus aiding 

species coexistence and biodiversity (Hutchinson, 1959; MacArthur 
& Levins, 1967; Pianka, 2011). Given that diet represents a fundamen-
tal aspect of a species’ niche (Simberloff & Dayan, 1991), it is unsur-
prising that dietary niche analysis has been recognized as important 
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for understanding the mechanistic processes behind community 
ecology (Pompanon et al., 2012) and diversification (Cantalapiedra 
et al., 2014). More specifically, the dietary niche width of a species 
can provide information on the extent of dietary specialization (e.g., 
Sato et al., 2018), on the potential for competition between coexist-
ing species (e.g., Lopes et al., 2015) as well as adaptive responses to 
environmental changes (Devictor et al., 2010; Pianka, 2011). Species 
with narrow niches are deemed more vulnerable (Carscadden 
et al., 2020; Clavel et al., 2011; Devictor et al., 2010) and thus should 
be monitored closely in light of climate change, invasive species and 
other anthropogenic pressures.

Many natural ecosystems are currently under pressure from in-
vasive species, hunting, habitat degradation and destruction, threat-
ening 26% of all mammal species (IUCN, 2020) and more than half of 
all large wild herbivore species with extinction (Ripple et al., 2015). 
Moreover, wild herbivores can be threatened by growing live-
stock populations (Food & Agriculture Organization of the United 
Nations, 2017). This is worrying as domesticated herbivores gener-
ally have competitive advantage over local wild herbivores owing to 
support they get from humans, for example, through supplemental 
feeding during periods of scarcity. This encroachment by domestic 
herbivores can potentially lead to competitive exclusion of wild her-
bivores if they occupy similar niches (Hardin, 1960; Pianka, 2011). 
Similarly, establishing nature reserves and wildlife sanctuaries in 
traditionally managed lands can disempower local communities as 
wild herbivores encroach on cattle grazing lands and raid croplands 
(Anand & Radhakrishna, 2017; Lamarque et al., 2009).

Traditional methods for studying dietary niche partitioning have 
provided insight into herbivore niche overlap, but can be time-con-
suming and dependent on the presence of undigested and identifi-
able plant remains as well as direct observation of foraging behavior. 
More recently, advances in eDNA metabarcoding have enabled 
broad application of this method in biodiversity monitoring (for re-
views see, e.g., Bohmann et  al.,  2014; Cristescu & Hebert,  2018), 
and the application to fecal samples provides a valuable alternative 
approach for dietary reconstruction. This value is evidenced both 
by direct comparison of different approaches (e.g., Newmaster 
et al., 2013) and by the rapidly increasing number of studies using 
this method (for recent reviews see, e.g., Ando et  al.,  2020; de 
Sousa, Silva, & Xavier et  al.,  2019). So far, fecal DNA metabar-
coding has been successfully applied to reconstruct the diets of a 
range of different herbivores, including birds, insects, molluscs (e.g., 
Valentini et  al.,  2009) and a wide range of mammalian herbivores 
such as small rodents (e.g., Lopes et  al.,  2015; Sato et  al.,  2018; 
Soininen et  al.,  2014, 2015), a number of deer species (e.g., Bison 
et  al.,  2015; Czernik et  al.,  2013; Fløjgaard, De Barba, Taberlet, & 
Ejrnæs, 2017; Rayé et  al.,  2011), tapirs (e.g., Hibert et  al.,  2013), 
several primate species (e.g., Bradley et  al.,  2007), the European 
bison (e.g., Kowalczyk et  al.,  2011, 2019), and large herbivore as-
semblages in Kenya (Kartzinel et al., 2015; Kartzinel & Pringle, 2020) 
and Mozambique (Pansu et al., 2019). From a different perspective, 
dietary niche analysis should also be able to triangulate traditional 
ecological knowledge on grazing of domestic and wild herbivores. All 

of the above studies analyzing herbivore diet used the P6 loop of the 
chloroplast trnL (UAA) intron (Taberlet et al., 2007), a universal plant 
marker specifically suited to environmental samples with degraded 
DNA. Most studies applying the trnL approach have focussed on the 
dietary reconstruction of a few species, providing valuable insight 
into the trophic ecology of these particular species. However, the 
approach has also been applied to analyze dietary niche partitioning 
of more complete herbivore assemblages (e.g., in African large herbi-
vores; Kartzinel et al., 2015; Pansu et al., 2019).

Much of what is currently known about large mammalian herbi-
vore diet comes from research in North America, Europe and Africa, 
while data from Asia are particularly scarce (Öllerer et  al.,  2019; 
Schieltz & Rubenstein, 2016). Furthermore, despite globally grow-
ing livestock numbers, there are relatively few studies specifically 
investigating impacts of domesticated herbivores on wild herbi-
vores (see Schieltz & Rubenstein, 2016 for a review). Extrapolation 
from these other regions to Asia is typically not straightforward as 
effects of livestock on wildlife are highly context-dependent and 
species assemblages and biogeography differ greatly (Ahrestani & 
Sankaran, 2016). The potential competition from livestock is, how-
ever, of particular concern in Asia, and specifically in India. Here, 
the world's second largest livestock population is found (Food & 
Agriculture Organization of the United Nations,  2017) and many 
wildlife reserves are being grazed by livestock. Previous studies 
from India have shown that excessive livestock grazing seriously 
threatens elephant habitat contiguity (Silori & Mishra,  2001) and 
suggest livestock-mediated resource limitation as declining live-
stock numbers resulted in recovery of wild large herbivore densities 
(Madhusudan, 2004). Further insight into seasonal variation in diet 
and niche overlap among some of the most common large mamma-
lian herbivores in India comes primarily from microhistological anal-
yses (e.g., Ahrestani et al., 2012), and deer in particular are suggested 
to be impacted by livestock grazing (Bagchi et al.,  2003). Overall, 
the limited current knowledge from this area is based on traditional 
methods that can be time-consuming and dependent on the pres-
ence of undigested and identifiable plant remains, as well as direct 
observation of foraging behavior that is extra challenging as most of 
the species-rich large herbivore assemblages are found in densely 
forested areas (Ahrestani et al., 2012; Ahrestani & Sankaran, 2016).

In the present study, we use eDNA metabarcoding of fecal sam-
ples to test for dietary niche partitioning by livestock and wild mam-
malian herbivores in the Malai Mahadeshwara Hills Wildlife Sanctuary 
(MMH) in southern India (Figure  1). The MMH is home to people 
from long-standing ethnic and tribal groups with their domestic an-
imals (Harisha & Padmavathy, 2013; Kent & Dorward, 2015) as well 
as a wide range of wildlife. Although livestock rearing (forest grazing) 
has traditionally been part of the livelihoods of the local communities 
(Kent & Dorward, 2015), there is currently an effort to regulate for-
est access and livestock grazing in MMH (Thornton et al., 2019). At 
the same time, resource impacts from tens of thousands of pilgrims 
annually (Soumya et al., 2019a), invasive plant species and modern-
ization, including developmental activities and tourism, are reported 
to reduce biodiversity in the area. This is evident from, among 
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others, interviews with local communities (Harisha et al., 2015) and 
research on the impacts of the invasive plant Lantana camara L. on 
vegetation (Soumya et al., 2019b; Varghese et al., 2015), bird assem-
blages (Aravind et al., 2010), and human adaptive responses (Kent & 
Dorward, 2015; Thornton et al., 2019). Our results provide a starting 
point for tracking the effects of the environmental changes in the 
area and urge the need to understand and monitor dietary niches 
of both local wildlife and livestock, especially in regions where their 
potential overlap is high and/or under-examined. The application of 
eDNA technology for such monitoring proves to be an efficient tool 
to address this need, allowing non-invasive analyses of fecal samples 
that provide valuable data for improving biodiversity management.

2  | MATERIAL S AND METHODS

2.1 | Study site and sampling

Malai Mahadeshwara Hills Wildlife Sanctuary (MMH; 12.1.60N, 
77.35.21E, 906  km2) is a protected area of the Kollegala Range 
Forest in the state of Karnataka, southern India. The area is part of 
tiger habitat and acts as an important elephant corridor between 

two adjacent wildlife sanctuaries (i.e., Cauvery and Biligiriranganatha 
Swamy Temple Wildlife Sanctuary (BRT); Bawa, Joseph, & 
Setty, 2007; Gubbi et al., 2017). Most of the area is dry deciduous 
forest (64.3%) with scrub woodland (20.5%) and patches of moist 
deciduous and riparian forest (2.5%, Harisha & Padmavathy, 2013). 
MMH is home to approximately 12,000 people from several ethnic 
and tribal groups, but throughout the year the population is heavily 
elevated due to tens of thousands of religious pilgrims who visit the 
main temple and other shrines (Harisha & Padmavathy, 2013; Kent & 
Dorward, 2015; Soumya et al., 2019a). Despite its history of human 
interactions and anthropogenic character, the MMH forests host a 
wide range of wildlife.

We collected 116 fecal samples from 16 different mammal 
species in the winter and summer pre-monsoon seasons in 2015–
2016 (December to April), 2017 (March and April) and 2018 (April). 
Seventy-seven samples were identified as from herbivorous animals, 
and 62 provided usable results after quality control filtering of the 
herbivore and plant DNA sequence data. These samples represent 
10 herbivore species that can be subdivided into domestic herbi-
vores, goat (Capra hircus), cattle (Bos taurus), water buffalo (Bubalis 
bubalus), and wild herbivores, sambar (Rusa unicolor) and bark-
ing deer (Muntiacus muntjak), Indian hare (Lepus nigricollis), Indian 

F I G U R E  1   Map of Malai Mahadeshwara Hills Wildlife Sanctuary land use and sampling locations
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crested porcupine (Hystrix indica), bonnet macaque (Macaca radiata), 
wild boar (Sus scrofa), and Asian elephant (Elephas maximus). Samples 
were dried or placed in ethanol and stored at –20°C.

2.2 | DNA analyses

We followed standard procedures for working with low copy DNA, 
such as the regular cleaning of work surfaces with bleach and chang-
ing gloves between the handling of each sample. Subsamples of fecal 
material were obtained by spreading the fecal sample on a Petri dish 
and randomly collecting 200 mg from the dish. Excess ethanol from 
storing the fecal samples was evaporated by briefly heating the sam-
ple to 50°C. We extracted the DNA using the PSP Spin Stool DNA 
Kit (Stractec Biomedical, Berlin, Germany) following manufacturer's 
instructions, using 100 µl elution buffer supplied with the kit and 
omitting the heating step (10 min at 95°C) to prevent further DNA 
degradation. Extraction blanks (6) were included in each extraction 
round, and these were pooled per two during the PCR step resulting 
in sequences from 3 sets of extraction blanks in the final dataset. 
DNA extraction, PCR preparation, and post-PCR work took place in 
separate dedicated rooms.

2.3 | Herbivore DNA amplification and sequencing

The identity of the herbivore fecal samples was confirmed using 
specifically designed primers for each target species (Table S1). 
Herbivore DNA amplifications were carried out in a final volume 
of 12.5 µl using 1 µl of DNA extract and 0.24 µM of each primer. 
The amplification mixture contained 0.5 U of AmpliTaq Gold DNA 
Polymerase with buffer II (Applied Biosystems, Foster City, CA), 
1× Buffer II, 2.5 mM MgCl2, 0.48 mM of each dNTP, and 0.048 µg/
µl of bovine serum albumin (BSA, Roche Diagnostic, Basel, 
Switzerland). The mixture was denatured at 95°C for 10 min, fol-
lowed by 35 cycles of 30 s at 95°C, 30 s at 48–55°C depending 
on the primer pair used (Table S1), 45 s at 72°C and a 3 min final 
elongation at 72°C.

The PCR products were visualized with agarose gel electro-
phoresis and cleaned for sequencing by adding 2 µl 1:10 dilution of 
Illustra ExoProStar (GE Healthcare, USA) to the PCR products and 
incubating them at 37°C for 45 min before enzyme inactivation at 
80°C for 15 min. The cleaned PCR products were bidirectionally se-
quenced on an ABI 3730xl at Macrogen Europe BV (Amsterdam, the 
Netherlands).

2.4 | Plant DNA amplification and sequencing

Plant DNA metabarcoding was done using the trnL g and h primers 
(Taberlet et  al.,  2007). Both primers were tagged with a unique 8 
or 9 bp barcode at the 5′ end to allow for multiplexing as described 
by Voldstad et al.  (2020). We conducted three PCR replicates per 

sample, and both the extraction negative controls and PCR negative 
controls were included in the PCRs.

Plant DNA amplifications were carried out in a final volume of 25 
µl containing 2 µl of DNA extract and 0.24 µM of each primer. The 
amplification mixture further contained 1 U of AmpliTaq Gold DNA 
Polymerase with Buffer II (Applied Biosystems), 1× Buffer II, 2.5 mM 
MgCl2, 0.48 mM of each dNTP, and 0.048 µg/µl of bovine serum al-
bumin (BSA, Roche Diagnostic). The mixture was denatured at 95°C 
for 10 min, followed by 35 cycles of 30 s at 95°C, and 30 s at 55°C, 
45 s at 72°C, and a 2 min final elongation at 72°C.

Amplicons were quantified using a Bio-Rad Gel doc XR+ and the 
Image Lab v.6.0.0 software (Bio-Rad Laboratory, Inc.) and subse-
quently cleaned as described above. A Biomek 4000 liquid handling 
robot (Beckman Coulter) was used to pool amplicons equimolarly into 
three pools, whereby each pool contained one of the three replicate 
PCRs. For amplicons with concentrations lower than 1  ng/µl, the 
maximum amount of 15 µl was added to the pool. The resulting three 
pools were cleaned two times with Ampure XP (Beckman Coulter) 
according to the manufacturer's protocol using first a 1.4:1 and then 
a 2:1 ratio between Ampure XP beads and pool. Concentrations 
of the pools were measured on a Qubit 2.0 with the Qubit dsDNA 
HS kit (Thermo Fisher), and pools were visualized on a Fragment 
Analyzer using the DNF-488 kit (Advanced Analytical Technologies 
Inc.). Libraries were built from the pools with plant PCRs using the 
KAPA HyperPrep DNA kit (Roche) and pools were sequenced on the 
Illumina HiSeq 4000 at the Norwegian Sequencing Centre.

2.5 | Data processing and analyses

2.5.1 | Herbivore DNA identification

Sequence reads from the herbivore DNA were aligned and trimmed 
manually using Geneious Prime 2019.1.3 (https://www.genei​
ous.com). The resulting consensus sequences were then checked 
against the NCBI nucleotide collection using megaBLAST (Morgulis 
et al., 2008). Sequences resulting in percentage ID < 95%, or poor 
quality reads (HQ% < 35) were excluded from further analyses.

2.5.2 | Plant DNA sequence analyses and filtering

Initial analyses and filtering of the plant DNA sequence data were 
performed using the OBITools package (http://metab​arcod​ing.org/
obito​ols/doc/index.html; Boyer et al., 2016). Assembling of the for-
ward and corresponding reverse reads was done using illuminapa-
iredend, followed by sample assignment with ngsfilter. We removed 
reads with a quality score < 40, <100% tag match, >3 mismatches 
with the primers, shorter lengths then expected (<8 bp), singletons, 
and those containing ambiguous nucleotides. Amplification and 
sequencing errors were identified using obiclean, with a threshold 
ratio of 5% for reclassification of sequences identified as “internal” 
to their corresponding “head” sequence. Finally, sequences were 
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compared to two taxonomic reference libraries using ecotag. These 
two reference libraries were prepared by performing an in-silico 
PCR with the ecoPCR software (Ficetola et al., 2010) and the NCBI 
Taxonomy database (https://www.ncbi.nlm.nih.gov/taxonomy). The 
first, local reference library contained 555 sequences of 134 plant 
taxa known to occur in MMH and the surrounding area from moni-
toring data (information provided by the Ashoka Trust for Research 
in Ecology and the Environment, ATREE) and published species lists 
(Appendix 1 of Harisha, Padmavathy, & Nagaraja, 2015). The major-
ity of the sequences for this library were obtained from the EMBL 
database (release 137). An additional 35 species of locally occurring 
Poaceae were sequenced for the database (at ATREE, Bengaluru, see 
Appendix S2). As the plant taxa in the local reference library occur 
in MMH and neighboring areas, we prioritized matches against this 
library. To mitigate erroneous or missing taxonomic assignment due 
to lacking references in this library, we used a second reference li-
brary based on the global EMBL database (release 137), containing 
111,146 sequences of 18,101 plant taxa.

In order to minimize any misidentifications, we filtered the iden-
tified sequences in R (version 3.5.2) to remove (a) sequences that 
were identified only as “internal” in the obiclean step, (b) sequences 
with higher occurrence (i.e., more reads) in negative controls than in 
samples, (c) sequences with a percentage identity < 95%, (d) 0.001% 
of each sequence read count per sample to correct for potential 
leakage, (e) unreliable PCR replicates, and (f) sequences that make up 
<1% of the sample (as advised during a workshop; see Appendix S3 
for details). We identified unreliable PCR replicates by estimating 
Euclidian distances between all PCR replicates and their centroid 
based on square rooted rarefied read counts (similar to Kowalczyk 
et  al.,  2019). We estimated kernel densities for nonreplicates and 
replicates and compared them to identify the distance where the 
kernel density was higher for nonreplicates compared to replicates. 
Replicates were discarded when distances among replicates were 
the same or larger than this threshold distance. Remaining replicates 
were merged while averaging the read counts per molecular opera-
tional taxonomic unit (MOTU). In order to check and where possible 
narrow down some of the taxonomic identifications, the identified 
plant taxa were checked by a taxonomist with extensive knowledge 
of the locally occurring plants. Remaining unique plant sequences 
were designated as MOTUs. An overview of these steps and the re-
maining reads can be found in Appendix S3, and the resulting pro-
cessed data in Tables S4–S7.

2.6 | Dietary niche analyses

All further data processing and statistical analyses were done in R 
(version 3.5.2). In order to quantify the diet composition, the ob-
tained plant MOTU-by-samples matrix of the read counts was trans-
formed using two distinct approaches: (a) the presence/absence of 
each plant MOTU in each fecal sample, and (b) the relative read abun-
dance (RRA), that is, the proportional representation of each plant 
MOTU in each fecal sample. All further analyses were performed on 

both of the resulting transformed datasets. RRA data has been used 
in numerous other dietary metabarcoding studies (e.g., Kartzinel 
et al., 2015; Kartizinel & Pringle, 2020; Mychek-Londer et al., 2020; 
Pansu et  al.,  2019), as results based on RRA have been shown to 
be less sensitive to rare MOTUs (i.e.,  low-abundant reads that may 
for example result from PCR or sequencing errors or contamination; 
Deagle et al., 2019). We only present figures and analyses performed 
on the RRA data in the main text. Analyses on presence/absence 
data can be found in the Appendices S8–S12.

We assessed dietary niche width by calculating average MOTU 
richness and the Shannon diversity index for each sample using the 
spaa package (Zhang, 2016). We subsequently computed and visu-
alized intersections of herbivore species’ diets and calculated inter-
section sizes in number of shared MOTUs using UpSetR (Conway 
et al.,  2017). Similar to Pansu et  al.  (2019), we used two comple-
mentary metrics to describe the (dis-)similarities between the dif-
ferent dietary niches: Bray–Curtis dissimilarity index and Pianka's 
niche overlap index (Pianka,  1974). Bray–Curtis dissimilarity was 
calculated between each pair of fecal samples in order to quantify 
dietary dissimilarity. We subsequently ordinated these values in two 
dimensions using nonmetric multidimensional scaling (NMDS) in the 
vegan package (Oksanen et al., 2019) to allow the visualization of the 
patterns of dietary dissimilarity among samples, and species (groups 
of samples). A stress level for the NMDS of <0.2 is considered ac-
ceptable (Clarke, 1993). We tested for dietary difference among 
species by doing a permutational multivariate analysis of variance 
(perMANOVA) with 999 permutations, using the adonis-function in 
vegan. We tested the perMANOVA assumption of homogeneity of 
multivariate dispersions using the permutest function in vegan with 
999 permutations. Pairwise calculations of Pianka's niche over-
lap index (Pianka,  1974) were performed with the spaa package 
(Zhang, 2016). We evaluated these results with reference to 1,000 
permutations of a null model that retains the dietary niche width of 
each species while randomizing the values for the diet items using 
EcoSimR (Gotelli et al., 2015). See Appendix S12 for further details.

3  | RESULTS

3.1 | Description of the raw dataset

The 77 analyzed samples yielded 62 retained samples. Five samples 
were discarded due to poor quality sequences from the herbivore 
PCR, six samples were discarded due to percentage herbivore iden-
tity of < 95%, and four samples were discarded due to poor yield of 
plant DNA. After filtering and merging the replicates, the dataset 
contains a total of 12.5 M reads distributed over 134 plant MOTUs 
from 62 fecal samples, representing the diets of 10 herbivore spe-
cies (Table S6). Read depth per sample ranged from 16 929 to 820 
667 (average: 201 718 ± 16 615). 31% of the MOTUs are annotated 
with a plant species name, 13% with a genus name, and 40% with 
a plant family name. The remaining 16% are annotated to higher 
taxonomic ranks (Table S5). A total of 31 different plant families are 

https://www.ncbi.nlm.nih.gov/taxonomy
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distinguished. The most abundant plant families in the dataset are 
Fabaceae and Poaceae, both in number of MOTUs (24 and 22) and 
in percentage read counts (30% and 35%, respectively; Table S4). 
These are followed by Malvaceae in terms of MOTUs (7), and by 
Anacardiaceae in terms of percentage of read counts (6%).

3.2 | Dietary niche width and composition

Average dietary niche width over all studied individuals is 
8.23 ± 0.55 in MOTU richness and 1.24 ± 0.09 in Shannon diver-
sity. MOTU richness is greatest for domestic goat, water buffalo and 
sambar deer (Table 1), with averages of 11.75 ± 1.53, 13.33 ± 2.73, 
and 12.40  ±  0.93, respectively. The Shannon diversity index also 
indicates the greatest dietary richness for these herbivore species, 
with index values: 1.78 ± 0.18, 1.88 ± 0.30, and 2.00 ± 0.18, respec-
tively. The narrowest dietary niches are found for bonnet macaque 
and cattle samples (Table 1). Bonnet macaques have a dietary niche 
width of 4.83 ± 0.91 in MOTU richness and 0.78 ± 0.19 in Shannon 
diversity. The bulk of the bonnet macaque diet consists of Fabaceae 
(63%) of which 85% represents the Senegalia genus, followed by 
Malvaceae (13%) and Rhamnaceae (10%, Figure  2 and Table S7). 
Contrarily, the diet of cattle consists primarily of grass, as indicated 
by the RRA for Poaceae of 84%. Although the remaining 16% of the 
cattle diet is composed of 15 other plant families and at least 24 
genera, the MOTU richness and Shannon diversity are still below 
average, with 6.22 ± 0.69, and 0.87 ± 0.13, respectively.

Comparing the dietary composition for the 10 studied her-
bivores, five species primarily consume Poaceae, whereas four 

species primarily consume Fabaceae. Members of the Poaceae 
family make up more than 50% of the diet of cattle, Asian ele-
phant, wild boar, Indian hare, and more than 30% of the sambar 
deer diet. By contrast, the diets of domestic goat, bonnet macaque, 
Indian porcupine, and barking deer consist primarily of Fabaceae 
(43%–63%). The diet of water buffalo forms the exception with 
31% of reads from the Anacardiaceae family (which consists for 
84% of Mangifera), followed by 22% from the Moraceae family 
(which consists for 94% of Ficus) and 20% Poaceae reads (Figure 2 
and Table S7).

3.3 | Dietary niche overlap

From the 134 plant MOTUs in the total dataset, 48 MOTUs are 
exclusive for domestic herbivore samples and 39 MOTUs are only 
found in wild herbivore samples (Figure 3 and Table S7). These sets 
make up 17% and 7% of the RRA dataset, respectively. The remain-
ing 47 MOTUs (35% of all MOTUs) are shared between domestic 
and wild herbivores and represent the remaining 76% of RRAs in 
the total dataset. These 47 MOTUs are spread over 38 intersections 
each representing the number of plant MOTUs shared by a particu-
lar combination of herbivore species (Figure 3). The total number of 
shared plant MOTUs for a specific combination of herbivore species 
can be found by taking the sum of intersection sizes for all combina-
tions that include the pair or group of herbivore species of interest. 
The largest number of shared MOTUs between two species is 17 and 
is found for two pairs of species: cattle and domestic goat, and do-
mestic goat and sambar deer. This is followed by 14 shared MOTUs 

TA B L E  1   Overview of the sample size, a priori feeding guild assignment, and niche width described by average MOTU count and 
Shannon diversity index per herbivore species with standard errors (SE) for both measures

Herbivore 
species Scientific name N Feeding guild MOTUs (± SE) Shannon (± SE)

Domestic Cattle Bos taurus indicus 23 folivore 
(grazer)

6.22 (± 0.69) 0.87 (± 0.13)

Domestic goat Capra hircus 8 folivore (mixed 
feeder)

11.75 (± 1.53) 1.78 (± 0.18)

Water buffalo Bubalus bubalis 3 folivore (mixed 
feeder)

13.33 (± 2.73) 1.88 (± 0.30)

Wild Asian elephant Elephas maximus 5 folivore (mixed 
feeder)

8.40 (± 2.84) 1.09 (± 0.46)

Barking deer Muntiacus 
muntjak

2 folivore 
(browser)

7.50 (± 2.50) 1.22 (± 0.59)

Bonnet macaque Macaca radiata 6 frugivore 4.83 (± 0.91) 0.78 (± 0.19)

Indian hare Lepus nigricollis 3 folivore 
(grazer)

7.67 (± 1.76) 1.40 (± 0.19)

Indian porcupine Hystrix indica 4 frugivore 8.75 (± 1.97) 1.43 (± 0.43)

Sambar deer Rusa unicolor 5 folivore (mixed 
feeder)

12.40 (± 0.93) 2.00 (± 0.12)

Wild boar Sus scrofa 3 omnivore 
(browser)

9.33 (± 1.20) 1.51 (± 0.18)

Note:: Feeding guild assignments are based on Nowak and Walker (1999), Ahrestani et al. (2012), Ahrestani and Sankaran (2016), and IUCN (2020).
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for cattle and water buffalo, and 13 shared MOTUs for domestic 
goat and Asian elephant.

In order to quantify the degree of overlap in dietary niches be-
tween the different herbivores, we calculated Bray–Curtis dissimi-
larity (BC; 0: similar, 1: dissimilar) and complementary Pianka niche 
overlap indices (O; 0: no overlap, 1: full overlap) based on MOTU rel-
ative read abundances. Resulting Bray–Curtis dissimilarity index val-
ues are in the range of 0.61 to 1.00 with an average of 0.88 ± 0.02, 
whereas Pianka index values range from 0.00 to 0.68 with an aver-
age of 0.15 ± 0.04 (Table 2). 35 MOTUs, representing 79% of total 
RRAs are shared between wild herbivore species. Seven of these 35 
MOTUs (13% of total RRAs) do not occur in the diets of the domestic 
herbivore species. The highest degree of dietary niche overlap for 

wild herbivores was observed between barking deer and porcupine 
(BC: 0.72, O: 0.63; Table  2) and between sambar deer and Indian 
hare (BC: 0.67, O: 0.60). Within the group of domestic herbivores, 30 
MOTUs representing 53% of total RRAs are shared among species. 
Of these 30 MOTUs, nine (5% of total RRAs) do not occur in the diets 
of the wild herbivore species. The dietary niche of cattle overlaps 
with those of the other domestic herbivores (goat, BC: 0.75, O: 0.28; 
water buffalo, BC: 0.82, O: 0.23; Table 2), but comparison between 
goat and water buffalo reveals little overlap of their dietary niches 
(BC: 0.92, O: 0.05).

A perMANOVA on Bray–Curtis dissimilarities derived from the 
RRA data indicates significant dietary differences among species 
(F9,52 = 3.79, r2 = 0.40, p ≤  .001). The assumption of homogeneity 

F I G U R E  2   The relative read abundance (RRA) per plant family for the entire dataset (left; no percentage indication means RRA < 1%) and 
for each herbivore species (right), where percentages indicate the RRA of the most abundant plant family in the diet
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Asteraceae
Meliaceae
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Verbenaceae
Celastraceae
Ebenaceae
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Euphorbiaceae
Sapindaceae
Malpighiaceae
Primulaceae
Lamiaceae
Apocynaceae
Rutaceae
Convolvulaceae
Amaranthaceae
Commelinaceae
Brassicaceae
Ulmaceae
Apiaceae
Acanthaceae

Cattle
Bos taurus

Wild boar
Sus scrofa

Indian hare
Lepus nigricollis

Asian elephant
Elephas maximus

Sambar deer
Rusa unicolor

Water buffalo
Bubalis bubalus
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Muntiacus muntjak
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34%
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60%

60%
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of dispersion among species was supported by a nonsignificant per-
mutest result (p = .789). In order to uncover which particular herbi-
vore species drive these results, we performed a post hoc pairwise 
perMANOVA (using a Bonferroni correction of the p-values). Four 

of the 45 comparisons were statistically significant (p < .05): cattle 
versus domestic goat, cattle versus bonnet macaque, domestic goat 
versus bonnet macaque, and cattle versus wild boar (see Table S11). 
A perMANOVA on the presence/absence data also identifies these 

F I G U R E  3   Upset plot visualizing intersecting sets of the two herbivore groups (domestic and wild; left) and herbivore species (right). 
Intersection size is presented in the number of shared plant MOTUs observed only for that particular combination of herbivore species 
indicated by the dots. Herbivore combinations and their respective intersection size bars are colored to indicate their composition of 
exclusively wild herbivore species (green), exclusively domestic herbivore species (purple), or both wild and domestic herbivore species 
(orange). Set size indicates the total number of MOTUs found per herbivore species. Scientific names for the herbivore species from top to 
bottom are as follows: Lepus nigricollis, Sus scrofa, Muntiacus muntjak, Elephas maximus, Macaca radiate, Hystrix indica, Rusa unicolor, Bubalis 
bubalus, Capra hircus, and Bos taurus indicus. The total number of shared plant MOTUs for a specific combination of herbivore species can be 
found by taking the sum of intersection sizes for all combinations that include the pair or group of herbivore species of interest. An example 
is shown for Asian elephant and cattle, where the total number of shared plant MOTUs is found by taking the sum of the bars indicated with 
“B.” The bars specifying the number of MOTUs found for the Asian elephant but not for cattle are indicated with “A,” and those found for 
cattle but not for Asian elephant are indicated with “C.”
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TA B L E  2   Bray–Curtis dissimilarity (bottom left; 0: similar, 1: dissimilar) and Pianka's overlap index (top right; 0: no overlap, 1: full overlap) 
based on RRA data

Cattle
Domestic 
goat

Water 
buffalo

Asian 
elephant

Barking 
deer

Bonnet 
macaque

Indian 
hare

Indian 
porcupine

Sambar 
deer

Wild 
boar

Cattle 0.28* 0.23* 0.49* 0.00 0.00 0.65* 0.01 0.68* 0.03

Domestic goat 0.75 0.05 0.52* 0.08* 0.06 0.04 0.11* 0.46* 0.00

Water buffalo 0.82 0.92 0.12* 0.00 0.02 0.20* 0.04 0.24* 0.12*

Asian elephant 0.70 0.76 0.84 0.02 0.05 0.00 0.03 0.10* 0.00

Barking deer 0.98 0.92 0.99 0.93 0.19* 0.00 0.63* 0.03 0.00

Bonnet macaque 0.99 0.87 0.97 0.94 0.79 0.00 0.02 0.04 0.00

Indian hare 0.61 0.93 0.85 0.97 1.00 1.00 0.10* 0.60* 0.24*

Indian porcupine 0.94 0.87 0.94 0.90 0.72 0.95 0.90 0.06 0.01

Sambar deer 0.68 0.65 0.77 0.87 0.96 0.89 0.67 0.90 0.08*

Wild boar 0.96 0.99 0.88 1.00 1.00 0.98 0.80 0.99 0.93

Asterisks indicate statistically significant niche overlap (i.e., greater than expected by chance based on comparison with 1,000 null models, α = 0.05, 
95% CI [0.02, 0.07]).
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pairs of herbivores to differ significantly in their dietary niches, but 
further indicates different niches for cattle compared to Asian ele-
phant, Indian porcupine, and sambar deer (see Table S11).

Herbivore pairs with significantly different dietary niches ac-
cording to the pairwise perMANOVA on RRA-based Bray–Curtis 
dissimilarities also score below average on Pianka's overlap index 
(O: 0.00–0.06), except for cattle versus domestic goat (O: 0.28). In 
contrast, the highest overlap in dietary niches of domestic and wild 
herbivore species is observed for cattle and sambar deer (BC: 0.68, 
O: 0.68), and cattle and Indian hare (BC: 0.61, O: 0.65). These are 
followed by domestic goat and Asian elephant (BC: 0.84, O: 0.52), 
cattle and Asian elephant (BC: 0.70, O: 0.49), and domestic goat and 
sambar deer (BC: 0.65, O: 0.46).

Overall, 20 out of 45 comparisons showed statistically significant 
niche overlap based on comparison with 1,000 null models (Table 2). 
Three out of seven wild herbivores have significant dietary overlap 
with cattle. In order of Pianka's niche overlap values from highest 
to lowest, these are sambar deer, Indian hare, and Asian elephant 
(O: 0.68, 0.65 and 0.49, respectively). Four wild herbivores have 
significant dietary overlap with domestic goat: Asian elephant, sam-
bar deer, Indian porcupine and barking deer (O: 0.52, 0.46, 0.11 and 
0.08). In the case of water buffalo, significant dietary overlap is also 
found for four wild herbivore diets: sambar deer, Indian hare, wild 
boar, and Asian elephant (O: 0.24, 0.20, 0.12, and 0.12).

4  | DISCUSSION

Environmental DNA metabarcoding of fecal samples has enabled us 
to reconstruct the dietary niche partitioning of 10 mammalian herbi-
vore species present in the MMH in southern India. We specifically 
focused on dietary overlap that may arise by shared use of the for-
est and village habitats by domesticated animals and wildlife and we 
argue for monitoring of potential effects of environmental change as 
restrictions on grazing are enforced and impacts of invasive species 
change.

4.1 | Dietary niche reconstruction

The reconstructed diets represent a continuum of grazers, through 
mixed feeders and browsers to frugivorous mammals based on the 
RRAs of Poaceae compared to other plant families (Figure 2). Despite 
limited sample sizes for some herbivore species, these assignments 
are in agreement with the priori feeding guild assignments of the her-
bivores under study (Table 1) as based on Nowak and Walker (1999), 
Ahrestani et  al.  (2012), Ahrestani and Sankaran (2016), and IUCN 
(2020). One exception is observed: wild boar (Sus scrofa) is consid-
ered an omnivorous browser, but with 78% Poaceae in our study its 
diet is categorized together with the grazers (Figure 2). Wild boar 
are some of the most persistent crop raiders in the area, especially 
when local food staples finger millet (Eleusine coracana L.), sorghum 
(Sorghum bicolor L.), and maize (Zea mays L.) ripen and are harvested 

(November to January). This interpretation also fits with other stud-
ies that show a variable diet for wild boar across geographic regions 
and habitats (Gray et al., 2016; Ickes, 2001; Robeson et al., 2018).

Considering the ability of mixed feeders to switch between 
grazing and browsing (Ahrestani & Sankaran,  2016), we expected 
these species to have a generalist diet and therefore a relatively 
large dietary niche width compared to more specialized feeders. In 
accordance with these expectations, the narrowest dietary niches 
were found for two specialized feeders: bonnet macaque and cattle 
with Shannon diversities of 0.78  ±  0.19 and 0.87  ±  0.13, respec-
tively (Table 1). Bonnet macaques are conventionally described as 
frugivores and we primarily found diet items originating from the 
Fabaceae family (63% RRA, Figure 2) in their diet. Contrarily, cattle 
are grazers and primarily eat grass, as indicated by the high RRA for 
Poaceae of 84%. Although the remaining 16% of the cattle diet is 
composed of 15 other plant families, the average number of MOTUs 
and Shannon diversity are low (6.22 ± 0.69 and 0.87 ± 0.13, respec-
tively), which include wild grasses that grow in the villages and in 
the forest, as well as bamboos and cereal and vegetable crops. The 
hare is also conventionally described as primarily grazing (Nowak 
& Walker, 1999), but the analyzed samples of the Indian hare con-
tained a high proportion of Fabaceae (36%) as well as the expected 
Poaceae (61%). The high proportion of Fabaceae might be explained 
by crop raiding on various species of beans grown by farmers, and 
Cajanus sp. (pigeon pea) was indeed detected in the hare diet (Table 
S7). Species assigned to the feeding guild of mixed feeders scored 
above average in dietary richness in both average number of MOTUs 
and Shannon diversity (Table 1 and Table S8.1). The Asian elephant 
is the exception to this pattern, scoring below average on Shannon 
diversity for both datasets. We found the diet of elephants to con-
sist mainly of grasses (56%), which is consistent with other reports 
from southern India, although their diets are suggested to shift to-
ward less woody plants and more graminoids (Poaceae, Juncaceae 
and Cyperaceae) in the wet season (Ahrestani et al., 2012; Baskaran 
et al.,  2010; Sukumar,  2006). The classification of mixed feeder is 
therefore only appropriate if one takes into account the complete 
diet, while it seems that within seasons they should be considered as 
either grazer or browser.

In the present study, samples were collected in the winter 
and summer pre-monsoon seasons in three subsequent years. 
Considering the seasonal availability of plants and the evidence for 
differences in herbivore feeding patterns over wet and dry seasons 
approximately 100 km from the study area (Ahrestani et al., 2012), it 
is likely that the dietary niches of the herbivores in MMH would shift 
over the seasons. Such shifts may also result in temporal variation in 
the dietary niche overlap between species pairs, though Ahrestani 
et al. (2012) found that the overlap in dietary niches of sambar deer 
and elephants remained constant across dry and wet seasons.

As species with narrow niches are deemed more vulnerable to 
environmental changes (Clavel et al., 2011; Devictor et al., 2010), it is 
especially important to closely monitor the dietary niches of bonnet 
macaque and Asian elephant. To obtain a more complete view of 
diet and dietary niche overlap, samples should be analyzed across 
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different seasons, and long-term monitoring of diet and its overlap 
should include temporally spaced sample collection ensuring both 
the wet and the dry season are covered.

4.2 | Dietary niche partitioning

Due to the limited number of samples for several herbivore species, 
an amount of uncertainty in their dietary reconstructions needs to 
be acknowledged, and dietary niche dissimilarity or overlap may be 
under- or overestimated as a result. Nonetheless, the dietary compo-
sitions of the samples within herbivore species are similar and clear 
clusters can be distinguished (Figure  4, Supplemental Information 
S9) indicating dietary niche partitioning between the studied spe-
cies. Herbivore species pairs of diverse feeding guilds show high 
niche dissimilarity and low overlap, which is especially the case for 
cattle versus bonnet macaque, cattle versus wild boar, and domes-
tic goat versus bonnet macaque (Table 2). Corresponding herbivore 
pairs also clearly segregate in the nMDS plot (Figure 4, Supplemental 
Information S9).

As expected based on previous indications of livestock-mediated 
resource limitation in India (Bagchi et al., 2003; Madhusudan, 2004), 
we found significant overlap in consumed MOTUs (35%) between 
domestic and wild herbivores in MMH representing 76% of RRAs in 
the dataset. The greatest overlap was found for the dietary niches of 
cattle and sambar deer (O: 0.68). The cattle diet also overlaps with 
the diets of Indian hare and Asian elephant and the diet of domes-
tic goat overlaps with the diets of sambar deer and Asian elephant 

(Table 2). Bray–Curtis dissimilarities and perMANOVA results sup-
port these findings with below average dissimilarities and no signif-
icant differences in dietary niches for these herbivore pairs. Similar 
overlap between cattle diet and the diets of several wild herbivore 
species across dietary guilds such as elephant (mixed feeder), im-
pala (mixed feeder), and Dik-Dik (browser) have previously been 
reported in Kenya (Kartzinel et al., 2015). Likewise, a study in the 
Greater Himalayas indicates high trophic niche overlap between 
livestock (sheep and goats) and wild ungulates, including sambar 
deer (Bhattacharya et al., 2012) further supporting our findings of 
dietary overlap between domesticates and wildlife.

Compared to RRA data, presence/absence data transforma-
tions result in a larger differentiation in some herbivore pairs (cattle 
paired with Asian elephant, Indian porcupine, and sambar deer) and 
a smaller differentiation in seven other pairs (see Table S10). This 
reflects the difference in the amount of rare, low-abundant MOTUs 
in the diet of the various animals, since results based on RRAs are 
less sensitive to the presence of rare MOTUs compared to results 
based on presence/absence alone (Deagle et al., 2019). Rare MOTUs 
also play a role in the seemingly contradictory results of dietary 
niche similarity indices of two domestic herbivores. Domestic goat 
and cattle have significantly different dietary niches according to 
the RRA-based perMANOVA test, but score significantly high on 
Pianka's niche overlap index. Comparison of quantitative metrics of 
niche overlap from species distributions by Rödder and Engler (2011) 
suggests that Bray–Curtis values more accurately reflect niche over-
lap than most other tested methods. Especially for species distribu-
tions made up of many grid cells with low occurrence, Pianka's niche 

F I G U R E  4   Dietary niche partitioning within and among domestic and wild herbivore species by nMDS of RRA-based Bray–Curtis 
dissimilarity of samples (adonis F9,52 = 3.79, R2 = 0.40, p ≤ .001). The positioning of the species label indicates the mean for that species. 
Depicted are as follows: cattle (Bos taurus indicus), domestic goat (Capra hircus), water buffalo (Bubalis bubalus), Indian hare (Lepus nigricollis), 
barking deer (Muntiacus muntjak), sambar deer (Rusa unicolor), Asian elephant (Elephas maximus), wild boar (Sus scrofa), Indian porcupine 
(Hystrix indica), and bonnet macaque (Macaca radiata). Samples from domestic herbivore species are indicated with filled symbols and the 
shaded ellipses indicate the standard deviation from the mean of domestic and wild herbivore groups. The shapes of the symbols refer to the 
different feeding guilds: grazer (square), mixed feeder (diamond), and frugivore (triangle). The stress level of 0.167 is under the cut-off value 
of 0.2 as posed by Clarke (1993) to indicate an interpretable ordination
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overlap was shown to be prone to both under- as well as overesti-
mation (Rödder & Engler,  2011), suggesting a potential bias when 
herbivore diet is made up of many MOTUs with low RRAs. As this is 
the case for the comparison of domestic goat and cattle in this study, 
we should conclude that despite the suggested overlap according to 
Pianka's niche overlap index, their dietary niches are different.

Although eDNA metabarcoding provides a relatively cost-ef-
fective and time-efficient alternative to microhistological analyses 
(Pompanon et al., 2012), a limitation of the use of eDNA metabar-
coding for dietary niche partitioning studies is the lack of differenti-
ation between plant tissues. In cases where some herbivores prefer 
to eat the fruits, while others eat the leaf material or the roots of a 
plant, the dietary niche overlap can be overestimated as partitioning 
does not take place on a taxonomic level, but is instead based on the 
consumption of different parts of the plants. For example, this could 
be the case for bonnet macaque and barking deer based on their 
feeding guild assignments (Table 2), although both are reported to 
prefer young, fresh leaves and fruits (Ahrestani & Sankaran, 2016; 
Krishnamani,  1994) and thus partitioning would more likely take 
place based on which parts of the plants the animals can reach. 
Otherwise, we found relatively low taxonomic overlap in diets be-
tween herbivore species that are known to feed on different plant 
tissues.

4.3 | Land use and invasive species

Apart from identifying dietary niches and quantifying dietary niche 
overlap, eDNA metabarcoding data from herbivore fecal samples 
also provide an opportunity to monitor the available plant taxa in 
the foraging areas of the herbivores under study. MMH is home to 
several ethnic groups that largely depend on the forest for their live-
lihoods (Harisha & Padmavathy, 2013; Kent & Dorward, 2015), and 
the area consists of forests, interspersed with anthropogenic lands 
for crops, plantations, or buildings (Figure 1). Human influences on 
dietary composition are therefore likely.

The traditional ecological knowledge in the MMH villages to-
gether with the locally occurring plant species and their use have 
been mapped in a previous study (Harisha et  al.,  2015). The local 
communities depend to a large degree on agriculture for their liveli-
hood and grow both subsistence crops (e.g., the cereals and beans) 
as well as cash crops (e.g., maize and sunflower; Harisha et al., 2015). 
Not all known cultivated species could be identified to species level 
in our study; nevertheless, we detected several known crop species 
in the diets of the studied herbivores. For example, in the diet of 
the water buffalo, we observed Brassica rapa L. which is cultivated 
in the area for food and medicinal purposes (Harisha et al., 2015). In 
the cattle diet, Achyranthes aspera L. is present—a species used for 
food and cultural reasons (Harisha et al., 2015)—and Sorghum bicolor 
(L.) Moench—commonly cultivated as cash crop for use as fodder as 
well as human consumption (Harisha et al., 2015)—was found in the 
diet of both cattle and water buffalo. These domestic herbivores are 
likely to obtain these food sources by way of supplemental feeding.

We also found evidence for the consumption of agricultural 
crops by wild herbivores, for example, in the presence of Amaranthus 
spp. and Poaceae spp. in the diet of wild boar, and Cajanus spp. in 
the diet of Indian hare, all of which are cultivated for food (Harisha 
et  al.,  2015). Many other members from the Poaceae plant family 
are commonly used as fodder (e.g., Apluda mutica L., Cynodon dac-
tylon (L.) Pers., Melinis repens (Willd.) Zizka, Heteropogon contortus 
(L.) P.Beauv. ex Roem. & Schult., and Themeda triandra Forssk.), but a 
large proportion of Poaceae found could not be identified to genus 
or species level, thereby limiting inferences about the proportion 
of cultivated fodder versus wild Poaceae species. However, using 
the diet items that do have genus or species level identifications, 
some instances can be identified where typical fodder species are 
also eaten by wild herbivores. One example is Cynodon dactylon, 
which is present in the diets of water buffalo (4%) and cattle (< 1%), 
but also in the diets of sambar deer (1%), Indian hare (7%), and wild 
boar (37%). Vachellia farnesiana (L.) Wight & Arn. (Fabaceae) is also 
a known fodder species and is present in the diet of domestic goat 
and cattle at percentages below 1%, but at 17% represents a much 
larger proportion of the Indian porcupine diet. Wild boar are some 
of the most persistent crop raiders in the area, especially as local 
food staples ripen (finger millet, sorghum, and maize in November to 
January), and farmers stay up all night with smoky fires to scare away 
the boar, as well as deer, hare, and elephants. Reports from farmers 
in MMH indicate an increase in crop raiding with the increase of inva-
sive Lantana camara L. (Verbenaceae) in the forest understory, while 
Mundoli et al. (2016) documented similar increases of crop raiding by 
boar in neighboring BRT Tiger Reserve over a 7-year period, leading 
to many farmers giving up growing food crops altogether in favor of 
commercial coffee.

Many plant species occur both in the wild as well as on agricul-
tural lands, or are collected from the wild for use as food, medicine 
or cultural purposes. Harisha et  al.  (2015) identified 96 wild plant 
species that are used for food, 118 for medicine, 26 for cultural and 
14 for economic purposes in the area. An example is the tamarind 
(Tamarindus indica L.) of which local communities use the fruits as 
food and as a source of income (Shaanker et al., 2004). We found se-
quence reads from Tamarindus indica in the diets of bonnet macaque, 
water buffalo and wild boar. Another example is Semecarpus anac-
ardium L.f.; its fruits are used for food as well as medicine (Harisha 
et  al.,  2015) and sequence reads for this species were identified 
in the diets of Asian elephant, barking deer, cattle, domestic goat, 
Indian porcupine, sambar deer, and water buffalo. These herbivores 
are probably eating the leaves as the use of fruits is limited to the 
months of May to October (Harisha et al., 2015) and fecal samples 
were obtained between December and April. In addition to niche 
overlap between wild and domestic herbivores, there is a potential 
overlap between herbivores and humans in utilized plant species.

Finally, the introduction and spread of invasive species may in-
fluence the diet of herbivores in MMH. L. camara is a very abun-
dant invasive plant species in the area and has been given academic 
attention (e.g., Aravind et  al.,  2010; Varghese et  al.,  2015) as well 
as in conservation management: Local communities are encouraged 



12  |     ter SCHURE et al.

to use it for the production of nontimber forest products (Kannan 
et al., 2016). The species makes up a small part of our dataset (0.78%) 
and is found in 13 of the 62 samples. Cattle and domestic goats eat 
it in small quantities, and also some of the wild herbivores, that is, 
porcupines and macaques that reportedly mostly eat the fruits. 
However, it seems to make up a more substantive part of the diet of 
particularly sambar deer (5%). Large herbivores are reported to avoid 
L. camara as its leaves and fruits contain toxins that cause cholesta-
sis and hepatoxicity, which could ultimately lead to death (Sharma 
et al., 2007). Furthermore, the spread of L. camara in MMH is likely 
to reduce the availability of more suitable diet items, as its presence 
is associated to a decline in tree sapling densities and grass volume 
(Prasad, 2012; Varghese et al., 2015) and reduces access to the for-
ests for wildlife, domesticates, and humans (Thornton et al., 2019). 
Widespread expansion of this invasive plant may therefore restrict 
resource availability and consequently change the foraging ecology 
of herbivores in invaded areas (Wilson et al., 2013). Continued moni-
toring of the presence of L. camara is therefore recommended.

4.4 | Wildlife management in MMH

MMH is known as an important elephant corridor and forms a large 
tiger habitat together with the adjacent BRT wildlife sanctuary 
(Bawa, Joseph, & Setty, 2007; Gubbi et al., 2017). Of the wild herbi-
vores under study, the sambar deer and Asian elephant are, respec-
tively, considered vulnerable and endangered (IUCN,  2020), while 
the other herbivores are considered of least concern under IUCN 
3.1. A study of the food habits of tigers in northern India indicated 
that the sambar deer, together with wild boar and chital, constitutes 
a major part of the tiger's diet (Biswas & Sankar, 2002), which further 
indicates the importance of studying the wildlife in MMH.

The dietary niche overlap we identified between wild and do-
mestic herbivores, combined with previous indications of live-
stock-mediated resource limitation in India (Madhusudan,  2004), 
suggests potential for competition between domestic and wild her-
bivores in the MMH area, especially in case of limited resource avail-
ability. Niche overlap does not necessarily equate to competition 
(Pianka, 2011), and assessment of the resource availability is needed 
to establish if there is direct competition. Previous authors have sug-
gested that competitive exclusion of wild herbivores occupying sim-
ilar niches may eventually occur if domestic herbivores are given an 
artificial competitive advantage (e.g., through extra feed in periods 
of scarcity) (Hardin, 1960; Pianka, 2011). For instance, an experimen-
tal study in Kenya showed a reduction of land use by wildlife (includ-
ing zebra, oryx, buffalo, steenbok, gazelle, eland and elephant) with 
the presence of cattle (Kimuyu et al., 2017). The effect of livestock 
presence on wild herbivores will vary per species and geographic 
area, depending on the overlap in dietary niches, social intolerance, 
required forage quantity and quality, and several other factors (see 
Schieltz & Rubenstein, 2016 for a review). For example, Madhusudan 
(2004) described a muted effect for sambar deer, but a sharp decline 
in elephant population densities with increased livestock presence, 

followed by a clear increase after reduced livestock numbers in 
Bandipur national park, southern India. Furthermore, domestic her-
bivores can act as carrier of disease, such as foot-and-mouth dis-
ease, potentially spreading to wild herbivores as suggested for two 
wildlife sanctuaries close to MMH (Chandranaik et al., 2016; Silori & 
Mishra, 2001).

Since becoming a designated wildlife sanctuary in 2013, forest 
access has become more regulated and only daily livestock grazing 
is permitted as cowsheds have been forbidden in MMH (Thornton 
et al., 2019). Such measures are likely to reduce resource competi-
tion and interaction between wild and domestic species. Likewise, 
the encouraged use of the invasive plant L. camara by local commu-
nities may limit the negative impacts of this plant on the habitat and 
resource availability of herbivores in MMH. Continued monitoring 
could show if these particular conservation management strategies 
prove to be effective.

Based on our findings, particular concern should go to bonnet ma-
caque and Asian elephant as their narrow dietary niches could make 
them vulnerable to changes in their environment (Clavel et al., 2011; 
Devictor et al., 2010), such as climate change, invasive species, and 
other anthropogenic pressures. Indeed, the range extension of rhe-
sus macaque has already been suggested to threaten the declining 
bonnet macaque populations in southern India (Kumar et al., 2011) 
and Asian elephant habitats in India are under continuous threats 
of forest fragmentation and loss (Padalia et  al.,  2019). Moreover, 
our observations of dietary niche overlap suggest that especially 
the overlap of cattle and domestic goat with sambar deer and Asian 
elephants should be monitored closely, as these latter species are 
already considered vulnerable and endangered (IUCN, 2020).

Environmental DNA metabarcoding of fecal samples has pro-
vided a starting point for tracking the effects of the environmental 
changes in MMH on local wildlife. As environmental change con-
tinues to threaten biodiversity in the area, the need to continue 
monitoring both the wildlife species themselves and the interaction 
between wildlife and domestic livestock becomes more urgent. This 
is not only true for the wildlife sanctuary under study, but for many 
ecosystems across the world as they are under increasing pressure 
from globally increasing livestock population sizes, invasive species, 
habitat degradation, and other anthropogenic factors. DNA me-
tabarcoding of fecal samples is an ideal, non-invasive method for 
such monitoring, providing a wide variety of valuable information 
for biodiversity management.
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