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A B S T R A C T   

Approaches to characterise and monitor biodiversity based on the sound signals of ecosystems have become 
popular in landscape ecology and biodiversity conservation. However, to date, validation studies of how well 
acoustic indices reflect observed biodiversity patterns have often relied on low levels of either spatial or tem
poral replication, while focussing on habitats with similar underlying anthropological and geophysical sound 
characteristics. For acoustic indices to be broadly applicable to biodiversity monitoring, their capacity to 
measure the ecological facets of soundscapes must be robust to these potential sources of bias. Using two 
contrasting recording approaches, we examined the efficacy of four commonly used acoustic indices to reflect 
patterns of observed bird species richness across a tropical forest degradation gradient in Northeast Borneo. The 
gradient comprised intact and logged forests, riparian forests, remnants, and oil palm plantations, thus providing 
a highly variable anthrophonic and geophonic soundscape. We compared the degree to which acoustic indices 
derived from automated versus point count recording methods detected variation in inter-habitat species rich
ness, as well as their capacity to capture changes in species diversity as a consequence of forest degradation 
quantified by high-resolution LiDAR derived forest canopy heights. We found Acoustic Diversity Index was as
sociated with forest canopy height as measured by both automated recorders and recordings from point counts, 
whereas the association between canopy height and Acoustic Complexity Index was only detected using point 
count recordings. For both types of recordings, Acoustic Complexity Index exhibited the strongest relationship 
with observed bird richness in old growth and logged forest, whereas Acoustic Diversity was not linked, sug
gesting avian richness does not drive its association with canopy height. No acoustic indices were associated with 
observed bird richness in oil palm riparian areas. Our findings underscore the potential utility of soundscape 
approaches to characterise biodiversity patterns in degraded tropical landscapes, and may be used as a proxy for 
human inventories of bird communities. However, we also show that for acoustic indices to be effective on 
landscape-wide studies of environmental gradients, adequate spatial replication is required, and care must be 
taken to control for non-target elements of soundscapes in different habitats.   

1. Introduction 

Global ecosystems are changing rapidly due to anthropological 
pressures, resulting in wildlife population declines and extinctions 
(Ceballos et al., 2017). In turn, biodiversity loss weakens the stability of 
ecosystems upon which human populations depend (Hautier et al., 
2015). As the number, extent, and severity of threats to biodiversity 
continue to increase, conservation practitioners are seeking more effi
cient, cost-effective, and scalable ways to monitor biodiversity, so they 
can identify and respond to emerging ecological crises (Bustamante 
et al., 2016; Anderson, 2018). 

Recent advances in monitoring include the application of new re
mote sensing technologies (Pettoretti et al., 2014), such as Light 

Detection and Ranging (LiDAR) (Guo et al., 2017) and Synthetic 
Aperture Radar (Villard et al., 2016). These technologies allow biodi
versity, human pressures and management interventions to be assessed 
over spatiotemporal scales that would be logistically unfeasible via 
ground-based methods alone, providing repeatable and standardised 
information on a suite of biodiversity indicators (Pettoretti et al., 2014). 
When combined with powerful new statistical approaches, robust esti
mates of species occupancy and habitat associations can be derived 
(Royle et al., 2007). 

Further, the mass availability and reduced cost of sound-recorders 
has opened up an entirely new field of conservation research and 
practice (Beason et al., 2019). Now that it is feasible to deploy multiple 
sound-recorders within a given area, soundscape approaches are being 
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used increasingly to address landscape-scale problems and questions - 
for example, how acoustic signals associated with biodiversity change 
with time, habitat-disturbance, and patterns of biological and human 
activity (Gasc et al., 2017). Such work is implemented across a wide 
variety of habitats and environmental contexts, including studies of 
species diversity in tropical (Mammides et al., 2017) and marine en
vironments (Harris et al., 2016), responses of wildlife to forest fire 
smoke (Lee et al., 2017), and monitoring freshwater lakes for invasive 
species (Kottege et al., 2015). 

Despite this, it remains unclear whether associations between 
acoustic indices and species richness are retained over large spatial 
scales and/or complex environmental gradients. In general, studies 
investigating these relationships have been relatively restricted in terms 
of spatial replication. For example, studies examining the link between 
acoustic indices and tropical avian richness, have typically been limited 
to a discrete habitat type (e.g. Machado et al., 2017; Mammides et al., 
2017; Eldridge et al., 2018; Izaguirre et al., 2018). More recently  
Bradfer-Lawrence et al., (2019) made recommendations for the level of 
temporal and spatial sampling required to fully capture tropical forest 
soundscapes. However, this study focussed on capturing patterns of 
temporal and spatial variability within soundscapes, rather than whe
ther acoustic indices measured patterns of biodiversity across multiple 
habitats, as captured via other survey methods. de Camargo et al., 
(2019) addressed spatio-temporal scaling of acoustic monitoring with 
respect to diversity, but assessed unsupervised learning techniques 
applied to only a subset of the community, rather than acoustic indices. 

The reliability of acoustic indices as proxies for species richness 
depends upon sufficient spatiotemporal replication to capture both 
variation in the biological community itself, as well as the factors af
fecting the acoustic indices (e.g. Jorge et al., 2018). One of the much- 
lauded advantages of monitoring using automated sound-recorders is 
that they allow data to be collected over long time periods, which 
would be necessary to capture temporal variation (Darras et al., 2018). 
However, spatial replication is equally important when considering 
sampling design (Bradfer-Lawrence et al., 2019), particularly when the 
research aims to assess the relative biodiversity value of contrasting 
habitats. First, the variation in both alpha and beta diversity of trees is 
especially high in tropical forests (Duivenvoorden et al., 2002; Molino 
and Sabatier, 2001), and contributes to substantial variation in animal 
communities, including those that vocalise. Second, acoustic signals 
might be influenced unduly by vegetation structure affecting noise at
tenuation (Gasc et al., 2015), the degree of anthropogenic sound in the 
environment (e.g. vehicle engines or chainsaw noise, Fuller et al., 
2015), and the presence of geophonic sound (e.g. running water or 
rainfall, Fuller et al., 2015). Indeed, studies in urban environments 
counter the widely held view that acoustic indices reflect biodiversity 
patterns, due to strong and disruptive anthrophonic signals in highly 
disturbed environments (Fairbrass et al., 2017). 

Birds are highly responsive bio-indicators of environmental change 
and, therefore, excellent surrogates for wider patterns of biodiversity 
(Lewandowski et al., 2010; Gardner et al., 2008). They are also one of 
the most dominant terrestrial taxonomic groups in terms of their con
tribution to soundscapes (Gasc et al., 2017). As such, birds are fre
quently a focal taxon to document or monitor via acoustic recordings. 
The central tenet underpinning this decision is that greater diversity of 
acoustic signals reflects more vocal species in a given community (Gage 
et al., 2001). Preliminary validations that compared acoustic indices 
with observed bird diversity from point counts or expert identification 
from recordings have yielded encouraging results. Indeed, acoustic in
dices tend to correlate with avian richness in temperate (Depraetere 
et al., 2012; Eldridge et al., 2018), sub-tropical (Burivalova et al., 2019) 
and some tropical environments (Mammides et al., 2017). 

Here, we assess the performance of five commonly used acoustic 
indices, and two recording approaches at capturing variation in bird 
communities across a tropical forest degradation gradient. We compare 
acoustic outputs over extended time periods (i.e. the general 

convention in acoustic studies, particularly those using autonomous 
recording techniques), with those generated during point count re
cordings which tend to have higher levels of spatial replication. We 
compare the efficacy of these two sampling designs in terms of how the 
acoustic indices detect variation between habitat types, as well as their 
capacity to capture changes in species diversity as a consequence of 
forest degradation, as quantified by high-resolution LiDAR derived 
forest canopy heights. Boelman et al., (2007) previously combined field 
surveys, bioacoustics and LiDAR in the context of impoverished island 
communities of Hawaii, but made no assessment of the levels of spatial 
or temporal replication required for acoustic indices to be useful in such 
studies. Other studies demonstrated relationships between LiDAR-de
rived metrics and acoustic indices (Pekin et al., 2012), but without 
assessing how they are mediated by species richness of any particular 
taxonomic group. We verify selected acoustic indices against the 
number of species recorded during traditional point counts (i.e. con
ducted simultaneously with the point count sound-recordings and 
within the same landscapes), and to richness estimates from occupancy 
models that control for detection probability. Variation in detection 
probability between species has yet to be accounted for within acoustic 
indices. We undertake our validation in a hyper-diverse but hyper- 
disturbed tropical forest system, where the performance of acoustic 
indices is less well studied than in temperate regions. We discuss the 
implications of our findings across the indices, contrasting recording 
approaches, and in relation to spatial replication in acoustic mon
itoring. 

2. Methods 

2.1. Study system 

Bird and acoustic surveys were conducted in four landscapes in 
Sabah, Malaysian Borneo: Danum Valley, Maliau Basin, Sepilok and 
Kalabakan. We undertook simultaneous point counts and sound-re
cordings at 296 sites within five habitat types, covering a gradient of 
habitat degradation and increasing human presence, from unlogged old 
growth dipterocarp forest through to oil palm plantations (Fig. 1). Old 
growth forest was sampled at Danum Valley, Maliau Basin and Sepilok 
(‘old growth’; 20, 10 and 19 sites, respectively). At Kalabakan, surveys 
were implemented in and around the Stability of Altered Forest Eco
systems (SAFE) Project (https://www.safeproject.net) in logged ri
parian forest (‘riparian forest’; 80 sites), isolated riparian forest rem
nants within oil palm plantations (‘riparian reserve’; 90 sites), and 
riparian areas without natural vegetation in oil palm estates (‘oil palm’; 
20 sites). We also sampled continuous logged forests at SAFE and in the 
adjacent Ulu-Segama Forest Reserve in non-riparian areas (‘logged 
forest’; 123 sites). 

Anthropogenic noise varied for each habitat. Mostly it comprised 
distant machinery from adjacent logging, agricultural operations, and/ 
or road and trail maintenance, the latter being especially prominent 
within oil palm. Old growth and logged forests were characterised by 
low geophonic sound, whereas riparian forests included fast-flowing 
streams, thus high levels of background geophonic noise. In compar
ison, the streams in riparian forest sites were typically slower-flowing, 
resulting in lower levels of geophonic noise. Although oil palm riparian 
sites were located along watercourses, they were all very small and 
slow-flowing, providing minimal acoustic signal in recordings. The 
biophonic contribution to the soundscape was typical of that a tropical 
forest landscape, incorporating a wide variety of taxa such as birds, 
insects and frogs. 

2.2. Bird point count sampling 

Birds were sampled via 15-minute, 50 m radius point counts with 
three or four visits to each site between 2014 and 2017 (1146 counts in 
total). Surveys were undertaken by a single experienced surveyor (SLM) 
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Fig. 1. Map of Eastern Sabah with the location of study areas inset: a) SAFE project at Kalabakan; b) Danum Valley; c) Sepilok; and d) Maliau Basin. Locations of 
automated sound-recorder deployments are labelled with black triangles whilst point count locations are marked with orange circles. 
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between 06:00 and 11:00 on days without rain. Sampling reflected 
seasonal variation across the whole forest degradation gradient as far 
possible given access constraints. Repeated point counts at a given site 
where done on different days to ensure temporal independence. Sites 
were located at least 180 m apart to maintain spatial independence. 

2.3. Sound-recorder samples 

To best measure the elements of the soundscape most reflective of 
the bird community, we focussed both types of acoustic recordings 
during the hours of the dawn chorus, when forest soundscapes tend to 
be dominated by birdsong (Eldridge et al., 2018).. However, our ana
lyses do not allow for the complete exclusion of non-focal biophonic 
sounds. 

During each bird point count a matched sound recording was made, 
using a single field recorder (Olympus LS-11/LS-12) and dual cardioid 
microphones positioned perpendicular to one another. In the riparian 
sites, the microphone was placed a minimum of 10 m from the water
course and oriented away from areas producing the most noise. We 
recorded for the 15-minute period of the point count, following the 
convention for the duration of such counts generally used in tropical 
forests (e.g Mitchell et al., 2018; Hatfield et al., 2020). A total of 1146 
recordings from the 296 sampling locations amounted to 286 h of re
cording time. 

Automated sound-recorders were deployed at 26 sites across 
Kalabakan in logged forest (11 sites), riparian forest (9), riparian re
serves (4) and oil palm (2) in order to capture a broad variation in the 
soundscape along a gradient of vegetation structure (Fig. 1). Deploy
ment of automated acoustic devices took place during the same seasons 
as point count surveys. At each site we set the recorders for five 
mornings, which we determined to be the number of mornings required 
to fully capture the variation in the dawn chorus soundscape 
(Supplementary Materials). We used SM2 automated recorders 
(Wildlife Acoustics) with an omnidirectional microphone (SMX-II; 
sampling rate 48 kHz) positioned at a height of 1.5 m via a supporting 
pole. The units were configured to record the first three and half hours 
after 06:00am to coincide with the dawn chorus and with our point 
count surveys, and were split into 30 min segments, reflecting the 
length of analytical subunits commonly used in the automated re
cording literature (e.g. Burivalova et al., 2018, Tucker et al., 2014). 
This amounted to 455 h of recording time. 

The differing durations of our analytical subunits were chosen to 
reflect those most typical of the contrasting recording methods, which 
also differ in a number of other key respects including microphone type, 
positioning and processing (see Supplementary Materials). 

2.4. Acoustic indices 

Multiple indices are available to statistically describe the distribu
tion of acoustic information related to biodiversity in a given sound 
recording. Most are designed to gauge the richness and complexity of 
ecological communities, such as Acoustic Complexity Index (hereafter 
Acoustic Complexity) or bioacoustic activity (e.g. Pieretti et al., 2011; 
Sueur et al., 2008a; Sueur et al., (2008b; Depraetere et al., 2012). 
Others are designed to evaluate specific facets of soundscapes that 
could be useful for decision makers, such as anthropogenic disturbance 
(i.e. ‘anthrophony’; Kasten et al., 2012), while indices that measure 
acoustic dissimilarity (i.e. expressing the difference between multiple 
recordings; Sueur et al., 2008a; Sueur et al., 2008b) are potentially 
useful in studies seeking to measure beta diversity across landscapes. 

We used the R packages soundecology (Villanueva-Rivera et al., 
2018) and seewave-R (Sueur et al., 2008a; Sueur et al., 2008b) to 
quantify five common acoustic indices for each recording from each 
sample design: Acoustic Complexity; Bioacoustic Index; Acoustic Diversity 
Index (hereafter Acoustic Diversity); and the Normalised Difference in 
Soundscape Index. Acoustic Complexity is designed to capture the 

intricacy of biophonic signals (sounds created by living things), while 
ignoring the influence of anthropological and geophysical noises. It is 
based on the premise that biotic sounds intrinsically encompass a large 
variety of intensities, whereas sounds such as overflying airplanes or 
running water are associated with constant intensity values (Pieretti 
et al., 2011). Bioacoustic Index describes mean spectral power between 
2,000 kHz and 8,000 kHz, as this frequency range covers most ecolo
gically important sound, but excludes many anthropogenic noises 
which, in general, register below 2,000 kHz (Boelman et al., 2007). 
Acoustic Diversity calculates Shannon’s diversity index (akin to the 
Shannon-Wiener index) for each recording, according to the power (i.e. 
measurable sound energy detected) of each 1 kHz frequency band (Jost, 
2006). Acoustic Evenness, based on the Gini-Simpson index (Gini, 1912), 
measures evenness between ten equal frequency bands 0 – 22,050 kHz, 
as the proportion of the power in each band above a −50 dBFS (dec
ibels relative to full scale) threshold (Villanueva-Rivera et al., 2011). 
Finally, we also computed the Normalised Difference in Soundscape Index 
(NDSI), which is simply the ratio of biotic to anthropogenic signal 
(Kasten et al., 2012). Acoustic Diversity and Acoustic Evenness char
acterise inverse soundscape properties to one another (Eldridge et al., 
2018), and so after confirming this was the case in our data (Table S1), 
we limit analysis to just Acoustic Diversity (for further details on the 
settings used for the acoustic indices see Supplementary Materials). 

2.5. LiDAR forest canopy height metric 

To assess the impact of forest degradation on acoustic indices we 
estimated canopy height, which is known to strongly influence tropical 
bird communities in the region (Mitchell et al., 2018), and is correlated 
with other measures of forest structure, such as tree density, biomass 
and vegetation complexity (Deere et al., in press). Higher canopy cor
responds with old growth, carbon-rich forest that has experienced little 
or no logging in our study. We extracted average canopy height within 
a 50 m radius of each sampling site using LiDAR data, generated in 
November 2014 using protocols described by Jucker et al. (2018). 
Surveys employed a Leica ALS50-II sensor aboard a light aircraft 
(Supplementary Materials). 

2.6. Raw species richness 

Using the raw point count data, we counted the total number of 
species for each location and habitat type. However, these types of 
species lists are not necessarily indicative of the numbers of species 
regularly using them, as some species are rare or transient in particular 
habitats. To make comparisons with acoustic indices we counted the 
raw number of species per 15-minute visit, and analysed this relative to 
index scores from the simultaneous recordings. 

2.7. Modelled species richness 

We used occupancy modelling to estimate species diversity at every 
point count location, based on the occupancy probabilities of each 
species and controlling for differing detection probabilities between 
species. Occupancy was estimated using a Bayesian hierarchical com
munity model, whereby each species could be affected by five structural 
vegetation metrics and overall community means, and detection prob
ability was influenced by time-of-day and survey date (see  
Supplementary Materials for model formulation and specification). 
Modelled richness was calculated as the sum of the median probabilities 
of each species being present at a particular site. 

2.8. Statistical analyses 

To understand the relationship between different acoustic indices 
and raw point count species richness, we fitted a series of bivariate 
linear regressions. Similarly, linear regressions were used to explore 
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relationships between time-of-day and each acoustic index. 
To test the relative performance of acoustic indices (calculated se

parately for point count and automated recordings) in reflecting ha
bitat, time-of-day and raw species richness from the point counts, we 
ran GLMs using the appropriate link function for each acoustic index 
derived from the R package ‘fitdistrplus’ (Delignette-Muller & Dutang, 
2015). We fitted Acoustic Complexity and Bioacoustic Index with Gamma 
family models, while Acoustic Diversity, Acoustic Evenness, and NDSI 
were fitted with Beta distribution models. Beta distributions were 
standardised using the package ‘reghelper’ (Hughes and Core, 2017. 

Using linear mixed-effects models, we assessed the relationships 
between each of our indices and modelled species richness, canopy 
height and time-of-day, while controlling for site identity as a random 
factor. Species richness and canopy height were modelled separately 
from one another as they were correlated (Table S2), but time-of-day 
was included fixed effect in both cases, to provide comparable model 
structure between the former two variables. Site identity was included 
as a random effect in each set of models. This process was undertaken 
for point count recordings and autonomous samples separately. All 
statistical analyses were undertaken using R (R Core Team, 2014). 

3. Results 

3.1. Species richness 

We recorded 221 bird species across all point count locations 
(Fig. 2e). Of these, 173 were observed in old growth, 185 in logged 
forest, 166 in riparian forest, 177 in riparian reserves and 49 in oil 
palm. Over 90% of species detections were acoustic identifications by 
the surveyor, so would also have been recorded as vocalisations by the 
simultaneous point count sound-recordings. 

Our occupancy model represented 173 species sampled in the 
community, with any species recorded fewer than three times excluded. 
The model estimated species richness at every point count location, 
with a median of 78 species per location predicted in old growth, 68 in 
logged forest, 66 in riparian reserves and 52 in oil palm. The average 
number of species recorded per visit also varied between habitats: old 
growth (median = 12.5); logged forest (13.1), riparian forest (7.6), 
riparian reserves (9.6) and oil palm (6.9; Fig. 2j). 

3.2. Acoustic indices from point count and autonomous sound-recording 
sampling designs 

The broad differences apparent in acoustic indices between habitat 
types were similar, whether they were based on data from the point 
count or autonomous sound-recorders (Fig. 2). In both cases, the 
highest values for Acoustic Complexity were recorded in logged forests 
and oil palm (Fig. 2a, 2b), and the lowest were for riparian forests and 
riparian reserves. Acoustic Diversity (Fig. 2c, 2d) was lowest in riparian 
forests and riparian reserves, with higher values detected in oil palm 
and logged forest. Bioacoustic Index (Fig. 2e, 2f) was highest in oil palm, 
followed by logged forest, riparian forest and riparian reserves. Nor
malised Difference in Soundscape Index (NDSI) patterns were also con
sistent between point count recordings and autonomous recorders 
(Fig. 2g, 2 h). For Acoustic Complexity, Acoustic Diversity and NDSI we 
found that results from autonomous recorders demonstrated a greater 
overall variance than those from point count recordings (Fig. 2). 

3.3. Relationships between acoustic indices and raw point count species 
richness 

Relationships between acoustic indices and raw species richness 
were strongly mediated by habitat type (Table S1; Fig. S1). Differences 
between habitat types were particularly strong for Acoustic Complexity, 

Bioacoustic Index and Acoustic Evenness. Bird diversity was associated 
with one or more acoustic indices in every habitat type, with the ex
ception of riparian reserves. 

3.4. Effects of time-of-day 

The time period for point count and autonomous sound-recorder 
samples was highly consistent (998 of 1146 point count sound-re
cordings were made before 09:30). Bioacoustic Index and Acoustic 
Complexity were negatively related to time-of-day when the point count 
sound-recordings were analysed (Table 1, Table 2). No such significant 
relationships were found for Acoustic Diversity. For the acoustic indices 
estimated from the autonomous sound-recorders, Acoustic Complexity 
was again negative against with time-of-day, while Acoustic Diversity 
was positively related. Raw species richness was also affected by time- 
of-day (Table S2) 

3.5. Performance of acoustic indices in reflecting changes in forest structure 

Point count sound-recorder sample indices were related with 
changes in canopy height for Acoustic Complexity (negatively), 
Bioacoustic Index (positively) and Acoustic Diversity (positively) 
(Table 1). Only Acoustic Diversity was (positively) associated with 
changes in canopy height for autonomous sound-recorders. Controlling 
for the effect of habitat type within linear mixed models did not in
fluence any of the relative results. For point count recordings the range 
of canopy height was 6–68 m, for autonomous recorders canopy height 
varied from 9 to 37 m. 

3.6. Performance of acoustic indices in reflecting modelled species richness 

Only Acoustic Complexity from point count sound-recordings was 
related to modelled bird species richness (negatively) (Table S2). 
Controlling for the effect of habitat type did not affect this finding. 
However, none of the between habitat type patterns derived from 
acoustic indices reflected estimated species richness from the occu
pancy models (Fig. 2i, 2j). 

3.7. Performance of acoustic indices in reflecting raw point count species 
richness 

Raw species richness derived from the point counts was significantly 
related to all acoustic indices derived from simultaneous sound-re
cordings (Table 3). Positive relationships with the strongest coefficient 
was evident for Acoustic Complexity, followed by Acoustic Evenness, 
Bioacoustic Index and Normalised Difference in Soundscape Index. The 
relationship with Acoustic Diversity was negative and weak. Acoustic 
Complexity and Bioacoustic Index were negatively related to time-of-day 
(Table 3), with the highest values observed shortly after dawn. Nor
malised Difference in Soundscape Index showed the inverse relationship. 

4. Discussion 

Given an appropriate sampling design and analytical framework, 
acoustic indices can reflect bird diversity patterns across tropical 
landscapes and, therefore, serve as a viable method to characterise and 
monitor avian biodiversity. We found Acoustic Diversity was positively 
related to canopy height, used as a proxy for forest structure, based on 
relatively limited spatial replication (n = 24) of autonomous sound- 
recordings. However, this relationship was not detected from point 
count sound-recordings (n = 296), despite greater spatial replication. 
Conversely, no association between canopy height and Acoustic 
Complexity was identifiable from automated recordings (despite greater 
temporal sampling), although a negative association existed with point 
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Fig. 2. Boxplots showing the variation between habitats in: a) Acoustic Complexity (AC) from point count sound-recordings; b) Acoustic Complexity (AC) from 
automated sound-recordings; c) Acoustic Diversity (AD) from point count sound-recordings; d) Acoustic Diversity (AD) from automated sound-recordings; e) Bioacoustic 
Index (BI) from point count sound-recordings; f) Bioacoustic Index (BI) from automated sound-recordings; g) Normalised Difference in Soundscape Index (NDSI) from 
point count sound-recordings; h) Normalised Difference in Soundscape Index (NDSI) from automated recordings; i) species richness derived from occupancy modelling; 
j) the raw mean number of species recorded per visit during point counts. 
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count sound-recordings. This highlights the need for sufficient spatial, 
as well as temporal, replication in studies examining potential re
lationships between acoustic indices, patterns of biodiversity and en
vironmental gradients. 

4.1. The influence of habitat context on acoustic indices 

Acoustic indices varied dramatically within habitats, but these dif
ferences did not always follow the same patterns as those evident from 
either raw or modelled richness data. Across multiple forest habitats, 

Table 1 
Linear mixed models comparing two different survey methods (point count and autonomous sound-recordings) in capturing associations with time-of-day and canopy 
height. Indices assessed were: Acoustic Complexity (AC); Acoustic Diversity (AD); and Bioacoustic Index (BI).          

Recording method Acoustic index Variable Coefficient Standard error Degrees of freedom t-value p-value  

Automated BI Intercept 51.37 12.85 590 3.998  < 0.001   
Canopy height −0.47 0.49 16 −0.964 0.349   
Time-of-day 0.13 0.17 590 0.739 0.460  

AC Intercept 22394.70 749.36 590 29.885  < 0.001   
Canopy height −46.35 28.87 16 −1.606 0.128   
Time-of-day −68.90 6.62 590 −10.407  < 0.001  

AD Intercept 1.66 0.15 590 10.923  < 0.001   
Canopy height 0.01 0.00 16 2.247 0.039   
Time-of-day 0.01 0.00 590 3.967  < 0.000 

Point count BI Intercept 5.26 0.30 593 17.155  < 0.001   
Canopy height 0.01 0.01 293 1.925 0.050   
Time-of-day −0.00 0.00 593 −3.565  < 0.001  

AC Intercept 26407.42 60.87 593 433.824  < 0.001   
Canopy height −15.37 1.70 293 −9.045  < 0.001   
Time-of-day −1.65 0.20 593 −7.912  < 0.001  

AD Intercept 1.65 0.07 593 23.108  < 0.001   
Canopy height 0.01 0.00 293 2.107 0.036   
Time-of-day 0.01 0.00 593 0.468 0.640 

Table 2 
Linear mixed models comparing two different survey methods (point count and autonomous sound-recordings) in capturing relationships with time-of-day and 
modelled species richness. Indices assessed were: Acoustic Complexity (AC); Acoustic Diversity (AD); and Bioacoustic Index (BI).          

Recording Method Acoustic index Variable Coefficient Standard error Degrees of Freedom t-value p-value  

Automated BI Intercept 42.675 8.038 1955 5.309  < 0.001 
Modelled richness −0.019 0.044 16 −0.429 0.673 
Time-of-day 0.103 0.097 1955 1.066 0.287  

AC Intercept 21140.75 455.578 6746 46.404  < 0.001 
Modelled richness −1.406 2.499 16 −0.563 0.581 
Time-of-day −3.475 0.632 6746 −5.494  < 0.001  

AD Intercept 1.916 0.104 1955 18.382  < 0.001 
Modelled richness 0.000 0.001 16 0.850 0.408 
Time-of-day 0.018 0.002 1955 7.723  < 0.001 

Point count BI Intercept 5.545 0.248 593 22.395  < 0.001 
Modelled richness 0.001 0.001 293 1.189 0.235 
Time-of-day −0.003 0.001 593 −3.548  < 0.001  

AC Intercept 26152.89 54.122 593 483.222  < 0.001 
Modelled richness −1.025 0.212 293 −4.822  < 0.001 
Time-of-day −1.663 0.212 593 −7.830  < 0.001  

AD Intercept 1.742 0.059 593 29.652  < 0.001 
Modelled richness 0.000 0.000 293 0.787 0.432 
Time-of-day 0.000 0.000 593 0.491 0.624    

Table 3 
Linear regression model statistics of raw point count species richness and time-of-day. Results listed for each acoustic index, with intercept, F-statistic, p value, R2, 
residual standard error, and degrees of freedom for each. Indices assessed were: Acoustic Complexity (AC); Acoustic Diversity (AD); Acoustic Evenness (AE); and 
Normalised Difference in Soundscape Index (NDSI).         

Linear Model Intercept F p-value R2 Residual standard error Degrees of freedom  

BI ~ Raw species richness 0.04 6.537 0.05 0.005 2.69 1145 
AC ~ Raw species richness 23.76 54.79  < 0.001 0.046 517.7 1132 
AD ~ Raw species richness −0.009 7.374  < 0.001 0.006 0.562 1132 
AE ~ Raw species richness 0.007 25.74  < 0.001 0.021 0.27 1145 
NDSI ~ Raw species richness 0.006 14.17  < 0.001 0.012 0.295 1145 
BI ~ Time-of-day −0.004 15.98  < 0.001 0.013 2.679 1145 
AC ~ Time-of-day −1.515 56.97  < 0.001 0.047 517.2 1132 
AD ~ Time-of-day 0.0001 0.487 0.485  < 0.001 0.563 1132 
AE ~ Time-of-day −0.0002 3.508 0.061 0.003 359.4 1132 
NDSI ~ Time-of-day 0.0009 58.71  < 0.001 0.049 0.289 1132    
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index values were associated with raw species richness derived from 
point counts. However, this was not the case in oil palm sites, where the 
highest levels of Bioacoustic Index and Acoustic Complexity of any habitat 
type were found, contrary to the lowest levels of raw bird diversity 
(Fig. 1; Fig S1). 

Bird communities in oil palm, as in other intensively managed 
farmland or urban systems, are species-poor, comprising only a few 
generalist species that occur at almost all sites sampled (Mitchell et al., 
2018; Edwards et al., 2010). In practice, this limits variation in both the 
raw diversity and acoustic indices, therefore lowering the statistical 
probability of detecting significant association between the two. This is 
supported by the fact that we observed only 3–16 species per point 
count in oil palm, compared to up to 29 species per point count in old 
growth forest. In addition, non-focal acoustic signals (e.g. anthro
pogenic and geophonic sounds) are likely to strongly influence the 
overall soundscape in this habitat context. In urban environments, for 
example, human speech is known to exert a significant bias upon 
acoustic indices, resulting in higher than expected value of Acoustic 
Complexity and Bioacoustic Index and lower than expected values of 
Acoustic Diversity and Normalised Difference in Soundscape Index 
(Fairbrass et al., 2017). Since workers could often be heard in oil palm 
sound-recordings, it is possible that these acoustic signals at least par
tially obscured differences in acoustic indices driven by bird vocalisa
tions. 

The association between Acoustic Complexity and raw bird richness 
also broke down in riparian forests (Fig. S1), where sites were typically 
steep stream gullies with substantial background noise from running 
water. Again, we suspect these sound signals undermined the capacity 
of this index to detect differences in bird diversity at these sites. As 
Acoustic Complexity is based upon absolute differences in signal power 
within each frequency band over time it should, in theory, account for 
constant background noise (Pieretti et al., 2011). However, if such noise 
is sufficiently loud to override signals of bird vocalisations, this would 
significantly dampen the variations in signal power over time and, 
therefore, reduce the capacity of the index to reflect overall Acoustic 
Complexity. 

By comparing patterns of acoustic indices across habitats from two 
different acoustic survey methodologies, we are able to highlight that 
these demonstrate broadly similar patterns of variation between habi
tats (Fig. 2), despite the two protocols using differing analytical sub
units, microphones and deployment regimes (Supplementary 
Materials). However, relationships to bird species richness across a 
whole gradient of forest degradation may not be effectively captured 
without sufficient spatial replication. This is highlighted by the fact that 
we found autonomous recorders did not detect any associations be
tween acoustic indices and species richness modelled from point counts, 
whereas point count recordings did (Table 2). One potential avenue for 
future exploration is whether it is possible to ‘calibrate’ recordings from 
different habitats and acoustic contexts to better reflect bird species 
richness. This could, in theory, be done using noise reduction proces
sing to remove the majority of extraneous acoustic signals prior to 
analysis.. 

4.2. Potential influence of cicada calls 

Across the entire dataset, we found a weak but significant associa
tion between the Bioacoustic Index and raw species richness (Table 3), 
yet when partitioned by habitat-type this was only statistically robust in 
riparian forest (and not in old growth, logged forest, riparian remnants 
or oil palm sites; Fig S1). A possible explanation is the influence of 
insect sounds, primarily from cicadas, which are common in Asian 
rainforests and can make a substantial contribution to the overall 
soundscape (Gogala & Riede, 1995). Cicadas tend to call at constant 
frequencies within the range of 2–8 kHz (e.g. Presern et al., 2004), 
which coincides with most bird vocalisations (Goller and Riede, 2013), 
and hence the frequency range applied in the calculation of the 

Bioacoustic Index (Boelman et al., 2007). Gasc et al. (2018) demon
strated that reductions in cicada abundance due to wildlife in the three 
Macrean habitats corresponded to significantly reduced Bioacoustic 
Index values during certain periods of the day. It is therefore difficult to 
discriminate between high Bioacoustic Index values arising from cicada- 
versus bird-derived sounds. Some endothermic species of tropical forest 
cicada are known to limit calls until a certain temperature is reached 
(Sanborn et al., 1995). Since old growth forests have a greater thermal 
buffering capacity than logged forests (Frey et al., 2016), it is possible 
that the onset of certain cicada calls is delayed in the former habitat. 

The cicada chorus may have also affected measures of Acoustic 
Diversity, leading to the lack of association with raw bird richness, 
contrary to expectations. Acoustic Diversity values can be affected by 
other sources of acoustic heterogeneity, such as the distance of the 
sound sources from sensors or the presences of variations in the in
tensity of animal vocalisations (Gasc et al., 2013). In our dataset more 
cicada taxa calling at frequencies coinciding with straddling multiple 
different 1 kHz frequency bands would increase evenness (and there
fore Shannon diversity across bands and resulting Acoustic Diversity 
values). 

Although some studies have attempted to exclude cicada choruses 
prior to analysis (Towsey et al., 2014), the uneven temporal distribu
tion of such signals means doing so adds new biases based on the time- 
of-sampling. Previous research has also found that temporal differences 
in cicada chorus introduced bias in entropic indices, resulting in higher 
index values in degraded than intact tropical forest (Sueur et al., 2008a; 
Sueur et al., (2008b). The loud insect chorus characteristic of Bornean 
rainforests is also thought to result in ‘jamming avoidance’, whereby 
some taxa sing less frequently during the loudest choruses of others 
(Riede, 1997). Therefore, understanding how changes in cicada 
choruses effect acoustic indices is therefore a major research priority for 
optimising their utility in tropical forests, particularly those in Asia. 

4.3. Potential influence of species detection rates 

Bioacoustic Index values were greater in old growth forest, followed 
by logged forests, then riparian reserves and riparian forest (Fig. 2e, f). 
This pattern (excluding for oil palm) mirrored the aggregated habitat 
richness findings from our previous analysis of the landscape (Mitchell 
et al., 2018), and more broadly show that old growth forests support 
more bird species than logged forests (Edwards et al., 2014) or isolated 
fragments (Edwards et al., 2010). Associations between Bioacoustic 
Index values and observed richness from individual point counts may 
have been weak due to the raw species richness being a poor reflection 
of actual diversity patterns. This is because most birds in tropical forest 
are relatively uncommon, with some not calling every day (Robinson 
et al., 2018) and therefore, are more likely to be missed due imperfect 
detection. 

We found fewer and weaker associations between acoustic indices 
and modelled point count richness (Table 2), than between acoustic 
indices and raw species richness (Table 3), even when time of day was 
controlled for. This suggests that one issue acoustic indices have yet to 
overcome is accounting for imperfect detection to better capture avian 
species richness. It may be difficult to do this for indices that analyse 
acoustic variation across windows of a few seconds. However, indices 
the development of machine learning techniques and acoustic classi
fiers which identify individual species could potentially be used in 
conjunction with an occupancy modeling approach in order to control 
for detection probability.’ 

Incomplete sampling of some species due to imperfect detection 
contributes to the discrepancy between acoustic indices and raw rich
ness patterns. This is supported by the negative relationships found 
between several indices and time-of-day (Table 1). Similar patterns 
have been noted in previous studies (Wimmer et al., 2013). Since raw 
species richness from point counts can be based on upward of 95% 
aural encounters in tropical forests (Robinson et al., 2018), this metric 
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also decreases with time-after-dawn. However, the effect of time upon 
acoustic indices and raw species richness is not the same, since point 
counts do not rely solely upon vocalisations. This means that the dif
fering effects of time upon the two metrics introduces a further source 
of bias. We detected effects of time-of-day upon both acoustic indices 
(Table S1) and raw species richness (Table S2) and therefore included 
time as a covariate in the occupancy model we developed to estimate 
species richness (see Supplemental Methods). By modelling species 
richness from point counts whilst controlling for the influence of time- 
of-day upon the detection probability of each species, we were able to 
demonstrate an effect of time-of-day upon acoustic indices independent 
of the changes in detection probability (Table 2). We therefore re
commend controlling for time-of-day in any sampling designs that base 
their acoustic indices upon samples from different times of day, even in 
the case of stratified samples limited to particular part of the day. 

4.4. Acoustic indices as measures of biodiversity across landscapes 

Although previous studies have demonstrated the capacity of 
acoustic indices to reflect changes in species richness in response to 
landscape configuration (Fuller et al., 2015), their ability to reflect 
patterns associated with environmental or structural gradients across 
multiple habitats remains uncertain. In fact, we know of only one study 
to date (Farina & Pieretti, 2014) that has assessed the relationship be
tween vegetation structure and acoustic indices and even in this case, 
indices were applied to habitat categories, rather than using a con
tinuous gradient approach. 

The way in which correlations between vegetation metrics and 
acoustic indices are mediated by species richness is also still poorly 
understood, and may be contingent upon a number of other factors such 
as bird community composition or vegetation structure (Boelman et al., 
2007). For acoustic indices to be of similar utility to existing wildlife 
monitoring tools they must be able to reflect biological patterns at a 
comparable or improved level to conventional methodologies. Al
though the effect of canopy height upon Acoustic Complexity was weak 
(though significant), this effect was similarly weak between raw species 
richness and canopy height (Table S3). Associations between acoustic 
indices and raw bird diversity were stronger and more consistent across 
indices than those with canopy height, suggesting that the failure to 
detect strong associations between indices and canopy height was 
partly due to the weak association between canopy height and observed 
species 

Though recent studies have provided useful recommendations for 
how to design soundscape studies (Bradfer-Lawrence et al., 2019), these 
have focussed on the levels of sampling effort needed to fully capture 
spatial and temporal variation within soundscapes, rather than the ef
fort required to assess ecological patterns. A primary ecological appli
cation of ecoacoustic technologies is to document and monitor biodi
versity. Therefore, appropriate spatial and temporal scales can be 
considered as those that sample sufficiently to reveal biodiversity pat
terns. Our study demonstrates that despite a high level of temporal 
sampling from autonomous records, associations between both biodi
versity (as measured observed and estimate richness from point counts) 
and environmental gradients (as measured by LiDAR-derived canopy 
height) can be missed without sufficient levels of spatial replication. 
This issue should be kept in mind as acoustic approaches further de
velop, and as the field advances from community-level indices to spe
cies-level species identification. 
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