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13 Abstract

14 Recent studies have suggested that intransitive competition, as opposed to hierarchical 

15 competition, allow more species to coexist. Furthermore, it is recognized that the 

16 prevalent paradigm, which assumes that species interactions are exclusively pairwise, 

17 may be insufficient. More importantly, whether and how habitat loss, a key driver of 

18 biodiversity loss, can alter these complex competition structures and therefore species 

19 coexistence remain unclear. We thus present a new simple yet comprehensive 

20 metapopulation framework which can account for any competition pattern and more 

21 complex higher-order interactions (HOIs) among species. We find that competitive 

22 intransitivity increases community diversity and that HOIs generally enhance this 

23 effect. Essentially, intransitivity promotes species richness by preventing the 

24 dominance of a few species unlike hierarchical competition, while HOIs facilitate 

25 species coexistence through stabilizing community fluctuations. However, variation in 

26 species vital rates and habitat loss can weaken or even reverse such higher-order 

27 effects, as their interaction can lead to a more rapid decline in competitive 

28 intransitivity under HOIs. Thus, it is essential to correctly identify the most 

29 appropriate interaction model for a given system before models are used to inform 

30 conservation efforts. Overall, our simple model framework provides a more 

31 parsimonious explanation for biodiversity maintenance than existing theory.

32 Keywords: habitat loss, higher-order interactions, intransitive competition, 

33 metapopulation model, pairwise competition, site-occupancy dynamics.
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34 1. Introduction

35 Despite interspecific differences in competitive ability, the high levels of biodiversity 

36 present in ecological communities is a long standing mystery in community ecology 

37 [1-4]. Classical modelling approaches demonstrate that competition between species 

38 pairs often drives one species to extinction (competitive exclusion). Furthermore, 

39 theoretical studies for large communities predict that community stability declines as 

40 the number of species increases [5]. Consequently, established explanations for 

41 community diversity rely in large part on exogenous factors which shape the 

42 community. Such factors include niche-structured habitats, which permit species to 

43 coexist through inhabiting different niches (niche theory [3]), or the existence of a 

44 global metacommunity, in which all species coexist and from which local 

45 communities are assembled by dispersal processes (neutral theory [6]). However, 

46 empirical evidence that classical resource-based niche differences are essential for 

47 coexistence is rare [7-9], and the species equivalence assumptions of neutral theory 

48 are hard to reconcile with nature [10, 11]. 

49 An alternative coexistence mechanism is competitive intransitivity within the 

50 community [12, 13]. This means that the competitive abilities of the species cannot be 

51 ordered into a strict hierarchy (hierarchical competition [14]) instead forming 

52 competitive cycles (e.g. the rock-paper-scissors game [15, 16]). Recent studies have 

53 returned to this concept, noting that it could explain biodiversity maintenance as no 

54 single species can outcompete all others [17-22]. More and more empirical evidence 

55 of intransitive competition has been found in bacterial, phytoplankton, plant, 
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56 vertebrate and invertebrate communities [16, 21, 23-27]. For example, Kerr et al. [16] 

57 showed that intransitive interactions occur between engineered strains of the 

58 bacterium Escherichia coli, whereas Cameron et al. [24] found the parasite-grass-forb 

59 intransitive competition, with the dynamics of the system conforming to a 

60 rock-paper-scissors game. Additionally, Soliveres et al. [21] specifically documented 

61 a positive relationship between the degree of intransitivity and species richness. Thus, 

62 competitive intransitivity is suggested to play an important role in maintaining species 

63 diversity in communities of varying types.

64 Additionally, the focus in most theoretical studies has been to use the species pair 

65 as the fundamental unit of study (pairwise competition). However, in practice 

66 complex community patterns and dynamics often cannot be explained solely by 

67 pairwise interactions even with competitive intransitivity [28, 29]. This lack of 

68 explanatory power has recently been attributed, at least partially, to higher-order 

69 interactions (HOIs), i.e. interactions between more than two species simultaneously 

70 [29-32]. Theoretical studies suggest that HOIs stabilize the dynamics of species-rich 

71 communities [33, 34] and, as such, may promote community diversity in their own 

72 right [33-36]. Such interactions have often been ignored previously because there was 

73 little empirical evidence for their existence. However, more recent field studies, with 

74 superior statistical techniques [37], have shown that HOIs are actually abundant in 

75 nature [35]. For instance, a shrub can provide indirect benefits to a grass through 

76 suppressing a forb in a shrub-forb-grass interaction chain [35], while Mayfield & 

77 Stouffer [37] used direct statistical tests to find that HOIs significantly affect the 
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78 fecundity of three of six focal plant species by weakening the suppressive effect of 

79 neighbours (e.g. from resource/space competition). Although both factors, including 

80 intransitive competition and HOIs, play a vital role in maintaining biodiversity, 

81 habitat loss, a key driver of biodiversity loss, greatly threatens ecological 

82 communities. More importantly, little is known about whether and how habitat loss 

83 can alter the effects of intransitive higher-order competition on species coexistence.

84 Building on classical site-occupancy models [14], we construct a new 

85 comprehensive modelling framework for competitive communities encompassing 

86 these factors. Specifically, the outcomes of competitive interactions between any pair 

87 of species are encoded in a tournament matrix [17-20], allowing any possible 

88 competitive structure to be represented. Higher-order interactions are incorporated by 

89 permitting a fixed number of pairwise interactions to occur within each time unit, 

90 providing a relatively simple representation of such interactions [34]. Finally, the 

91 underlying site-occupancy model provides a straightforward way to introduce habitat 

92 loss, one of the primary drivers of biodiversity loss worldwide. Using this extended 

93 model, we explore how these factors: competitive intransitivity, HOIs, and habitat 

94 loss, interact to influence community diversity. We show that, while competitive 

95 intransitivity always has a positive effect on community diversity, the effect of HOIs 

96 depends on other factors.

97 2. Methods

98 2.1. Metapopulation model for pairwise competition
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99 On the landscape scale, the dynamics of populations are typically modelled using the 

100 site occupancy, or metapopulation, framework [14, 38-40]. It is assumed that the 

101 landscape is divided into a finite number of colony sites and that population sizes can 

102 be measured in terms of the number of sites that a species occupies. Implicitly, this 

103 means that each colony site can only accommodate one single individual of a species. 

104 Population growth occurs when new colony sites are established (colonization) and 

105 the population decreases when an individual dies out (mortality). Each individual 

106 produces colonizers (e.g. seeds or excess individuals) which can establish new 

107 colonies. Thus, a species can be regarded as exerting a colonization pressure 

108 proportional to its population size on the other colony sites within the landscape.

109 There are a variety of ways to model competition between species. In this study, 

110 we assume that, on the time scale of the model, coexistence between species within a 

111 colony site is impossible. Thus, competition is represented by allowing colonizers of 

112 one species to displace an individual of another species (competitive invasion). The 

113 probability (or rate) of competitive invasion is determined by comparing the relative 

114 competitive strength of the species involved.        

115 With these assumptions in mind, a community of  species can be modeled 𝑛

116 using a system of equations of the following form (electronic supplementary material, 

117 Model derivation in Appendix A)

118 .       (1)
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑖𝑝𝑖(1 ― 𝑈 ― ∑𝑛
𝑗 = 1𝑝𝑗)

Colonization

― 𝑒𝑖𝑝𝑖
Mortality

+ ∑𝑛
𝑗 = 1(𝑐𝑖𝑝𝑖𝐻𝑖𝑗𝑝𝑗 ― 𝑐𝑗𝑝𝑗𝐻𝑗𝑖𝑝𝑖)

Competitive invasion
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119 Here , , and  represent: the fraction of sites occupied by species i; the rate at 𝑝𝑖 𝑐𝑖 𝑒𝑖

120 which an individual of this species produces colonizers (colonization rates); and the 

121 rate at which individuals of this species die out (mortality rates), respectively. The 

122 terms in Eq. (1) describe how the population changes due to the three processes: 

123 colonization, mortality, and competitive invasion described above. Species mortality 

124 occurs at a constant rate , thus the expected change in site occupancy is given by  𝑒𝑖

125 multiplying this rate by the fraction of occupied sites . Similarly, colonizers are  𝑝𝑖

126 produced at a constant rate , so the colonization pressure is given by . However, 𝑐𝑖 𝑐𝑖𝑝𝑖

127 not all sites are available for colonization, thus we multiply by the rate at which a 

128 colonizer moving at random would find an unoccupied site. This is expressed in terms 

129 of the fraction of sites occupied by any species  and, possibly, the fraction (∑𝑛
𝑗 = 1𝑝𝑗)

130 of habitat sites that are unsuitable for any species establishment (U - habitat loss). 

131 Finally, competitive invasions occur when a colonizer from one species finds a 

132 site occupied by a species and displaces it. The terms  and  are the 𝐻𝑖𝑗 𝐻𝑗𝑖

133 probabilities that species i displaces species j and that species j displaces species i 

134 respectively, and are typically regarded as mutually exclusive, e.g. and 𝐻𝑖𝑗 + 𝐻𝑗𝑖 = 1 

135 Hii=0.5 if i=j [19, 34]. The probabilities for the whole system can be encoded in a 

136 tournament matrix H. Thus, the invasion term is given by a sum of the net result of 

137 pairwise competition events, where species i displaces or is displaced by another 

138 species j, which in turn depend on the competition pressure exerted by, and the 

139 population size of, these species.   
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140 If the vital rates of all species are assumed to be the same (  and ), Eq. 𝑐𝑖 = 𝑐  𝑒𝑖 = 𝑒

141 (1) simplifies to

142 .              (2)
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑝𝑖(1 ― 𝑈 ― ∑𝑛
𝑗 = 1𝑝𝑗) ―𝑒𝑝𝑖 +𝑐𝑝𝑖∑

𝑛
𝑗 = 1(𝐻𝑖𝑗 ― 𝐻𝑗𝑖)𝑝𝑗

143 After some straightforward algebra (see electronic supplementary material, Appendix 

144 A), Eq. (2) can be rearranged to obtain

145  ,                           (3)
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑝𝑖(1 ― 𝑈 ― 𝑝𝑖 + ∑𝑛
𝑗 ≠ 𝑖𝑀𝑖𝑗𝑝𝑗) ―𝑒𝑝𝑖

146 with the matrix M having elements . Thus, the site occupancy of 𝑀𝑖𝑗 = 𝐻𝑖𝑗 ― 𝐻𝑗𝑖 ―1

147 species i at equilibrium is given by  if𝑝 ∗
𝑖 = (1 ― 𝑈 ―

𝑒
𝑐) + ∑𝑛

𝑗 ≠ 𝑖𝑀𝑖𝑗𝑝 ∗
𝑗  ∑𝑛

𝑗 ≠ 𝑖𝑀𝑖𝑗𝑝 ∗
𝑗 >

148 . Otherwise,  and the model predicts the extinction of species i. 
𝑒
𝑐 ― (1 ― 𝑈) 𝑝 ∗

𝑖 = 0

149 Classical analytical results for two- or three-species systems [13, 14, 38] can be 

150 reproduced in this system (electronic supplementary material, Appendix A).

151 2.2. Extension for higher-order competition

152 Given that colonization pressure is applied globally within a landscape, it is 

153 reasonable to assume that competitive invasions are not necessarily strict pairwise 

154 events. For example, it is possible that different species might simultaneously invade 

155 a site occupied by another species. The simplest resolution of such a case is to 

156 determine the final state of the site from sequential pairwise competition between the 

157 species involved [34]. Note, in particular, that this approach does not model the 

158 typical HOI paradigm [33] where interspecific interactions vary depending on which 

159 species are present. In our setting, the higher-order aspect arises simply from the 

160 necessity of tracking a sequence of competitive events, i.e. where two species 
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161 compete and the winner then competes with a third, which does not affect the final 

162 competitive outcome. Thus, these HOIs summarize the outcomes of processes that 

163 occur on faster time scales than the overall timescale of the metapopulation 

164 framework, emphasizing effects of discordances in the temporal scales of competitive 

165 processes.

166 It is relatively straightforward to incorporate three-way sequential pairwise 

167 competition [34] into the existing framework obtaining

168
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑖𝑝𝑖(1 ― 𝑈 ― ∑𝑛
𝑗 = 1𝑝𝑗) ― 𝑒𝑖𝑝𝑖 + ∑𝑛

𝑗,𝑘 = 1(2𝑐𝑖𝐻𝑖𝑗𝐻𝑖𝑘 ― 𝑐𝑗𝐻𝑗𝑖𝐻𝑗𝑘 ― 𝑐𝑘𝐻𝑘𝑖𝐻𝑘𝑗)𝑝𝑖𝑝𝑗𝑝𝑘

169 .(4)

170 The only difference between this equation and Eq. (1) is in the competitive invasion 

171 term where we now consider the outcomes of invasions of sites occupied by species i, 

172 j, and k in a similar way to that explained above. The asymmetry in the numerical 

173 coefficients of the invasion term (2,1,1) arises from the fact that species i could 

174 compete with species j to invade a site occupied by species k or vice versa with 

175 species k to invade a site occupied by species j. As such, there are more sequential 

176 contests in species-richer communities because of more combinations of the 

177 triple-wise interaction.

178 As previously, if the vital rates of all species are assumed to be equal, Eq. (4) 

179 simplifies to give

180 ,(5)
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑝𝑖(1 ― 𝑈 ― ∑𝑛
𝑗 = 1𝑝𝑗) ―𝑒𝑝𝑖 +𝑐𝑝𝑖∑

𝑛
𝑗,𝑘 = 1(2𝐻𝑖𝑗𝐻𝑖𝑘 ― 𝐻𝑗𝑖𝐻𝑗𝑘 ― 𝐻𝑘𝑖𝐻𝑘𝑗)𝑝𝑗𝑝𝑘

181 and, furthermore, can simplified to obtain
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182 ,                      (6)  
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑝𝑖(1 ― 𝑈 + ∑𝑛
𝑗,𝑘𝑇𝑖𝑗𝑘𝑝𝑗𝑝𝑘 ― 𝑝𝑖 ― ∑𝑛

𝑗 ≠ 𝑖𝑝𝑗) ―𝑒𝑝𝑖

183 where the matrix T has elements  (see electronic 𝑇𝑖𝑗𝑘 = 2𝐻𝑖𝑗𝐻𝑖𝑘 ― 𝐻𝑗𝑖𝐻𝑗𝑘 ― 𝐻𝑘𝑖𝐻𝑘𝑗

184 supplementary material, Appendix A). Thus the site occupancy for species i at 

185 equilibrium is given by , if  𝑝 ∗
𝑖 = (1 ― 𝑈 ―

𝑒
𝑐) + ∑𝑛

𝑗,𝑘𝑇𝑖𝑗𝑘𝑝 ∗
𝑗 𝑝 ∗

𝑘 ― ∑𝑛
𝑗 ≠ 𝑖𝑝

∗
𝑗 ∑𝑛

𝑗,𝑘𝑇𝑖𝑗𝑘𝑝 ∗
𝑗

186  and is 0 otherwise. 𝑝 ∗
𝑘 ― ∑𝑛

𝑗 ≠ 𝑖𝑝𝑗 >
𝑒
𝑐 ―(1 ― 𝑈)

187 2.3. Measurement of competition within a community

188 In two-species communities, either one species is a stronger competitor than the other, 

189 i.e.  denoted i > j, or the species have equal competitive ability (𝐻𝑖𝑗 >  𝐻𝑗𝑖 𝐻𝑖𝑗 = 𝐻𝑗𝑖

190 ). This is a simple hierarchical pattern. However, when a third species is added, = 0.5

191 a fundamentally new possibility is created. In particular, it is possible for the 

192 competition to be hierarchical, e.g. i > j > k, or competition can be cyclic, e.g. i 

193 outcompetes j which outcompetes k which outcompetes i, denoted i > j > k > i (similar 

194 to the rock-paper-scissors game). These patterns are described as transitive or 

195 intransitive competition respectively.

196 Thus, competition within an n-species community has at least two measurable 

197 aspects. Firstly, there is the degree to which the elements of the tournament matrix H, 

198 i.e. the competition strengths , vary within the community. At one extreme, all  𝐻𝑖𝑗

199 species are competitively equal (neutral competition with .5); at the other, any 𝐻𝑖𝑗 = 0

200 pairwise competition event has a certain winner and loser (i.e.  or 1). This is 𝐻𝑖𝑗 = 0

201 summarized by the coefficient of variation  with  being the standard 𝐶.𝑉.(𝐻) =
𝜎𝐻

𝐻 𝜎𝐻

202 deviation for all elements  and  the mean of these elements. 𝐻𝑖𝑗 𝐻
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203 Secondly, the degree of intransitivity can be quantified using the relative 

204 intransitivity (RI) index of the tournament matrix H. This is given by [20]

205 .                                             (7)𝑅𝐼 = 1 ―
𝑉𝑎𝑟𝑜𝑏𝑠 ― 𝑉𝑎𝑟𝑚𝑖𝑛

𝑉𝑎𝑟𝑚𝑎𝑥 ― 𝑉𝑎𝑟𝑚𝑖𝑛

206 Here,  denotes the variance of the row sums,  or score 𝑉𝑎𝑟𝑜𝑏𝑠 ℎ𝑖 = ∑𝑛
𝑗 = 1𝐻𝑖𝑗

207 sequence, of the tournament matrix H.  and  are the maximum and 𝑉𝑎𝑟𝑚𝑎𝑥 𝑉𝑎𝑟𝑚𝑖𝑛

208 minimum possible variances for the row sums of a competitive tournament matrix 

209 with the same number of species as the observed tournament matrix respectively. The 

210 minimum variance  for the score sequence is obtained when the row sums are 𝑉𝑎𝑟𝑚𝑖𝑛

211 as uniform as possible. High row sum variance means that a few species win the 

212 majority of competitions, and hence corresponds to transitive competition. Low row 

213 sum variance means all species have similar numbers of species that they can 

214 outcompete, i.e. intransitive competition. When  is close to , a low RI 𝑉𝑎𝑟𝑜𝑏𝑠 𝑉𝑎𝑟𝑚𝑎𝑥

215 index is obtained, indicating that transitive competition is prevalent in the community. 

216 When  is close to , a high RI index is obtained. Note that when 𝑉𝑎𝑟𝑜𝑏𝑠 𝑉𝑎𝑟𝑚𝑖𝑛

217  is low, all rows are similar and thus a high RI index is always obtained.   𝐶.𝑉.(𝐻)

218 2.4. Numerical simulations

219 Numerical methods (ODE45, Matlab 2016a) were used to determine the non-trivial 

220 steady states (and hence the system diversities) for multi-species competitive systems 

221 (see electronic supplementary material, figures S1-S4 in Appendix B and Matlab 

222 codes in Appendix C). Simulations were run until initial transients had dissipated and 

223 the long term system state had been reached (e.g. either reaching a fixed point or a 
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224 periodic cycle). Species were assumed to be functionally extinct if the minimum site 

225 occupancy at steady state (normally from 10,000~20,000 time steps) fell below 10-4. 

226 Each system was run for 20 replicates to establish the generic behaviour of the system 

227 as opposed to that which could emerge from a specific set of initial conditions.

228 To further test the robustness of these steady states, a continuous stochastic 

229 environmental perturbation , with  being the 𝑊𝑖(𝑡) = 𝛺 × [1 ― 2 ∙ 𝛿(𝑡)] ∙ 𝑝𝑖(𝑡) 𝛺

230 perturbation size/amplitude ( ),  a uniform random variate that varies 𝛺 = 0.1 𝛿(𝑡)

231 temporally between 0 and 1 (i.e. ), and  the site occupancy of 𝛿(𝑡)~𝑢𝑛𝑖𝑓[0, 1] 𝑝𝑖(𝑡)

232 species i at time t, was incorporated directly as a stochastic component of the 

233 deterministic systems described above (i.e. stochastic differential equations, SDEs), 

234 similar to Grilli et al. [34]. As shown in figures S5-S7 (electronic supplementary 

235 material, Appendix B), both stochastic and deterministic models yield qualitatively 

236 similar trajectories in most cases; with stochastic fluctuations around the deterministic 

237 dynamics. Only for neutral models (equal vital rates and either no competition or 

238 equal competition ability for all species) do stochastic perturbations produce 

239 non-trivial effects. In particular, while the deterministic model predicts high species 

240 diversity in such cases, stochastic perturbations eventually lead to dominance by a 

241 single species.

242 The effect of the following factors: variation in competition strength ;  𝐶.𝑉.(𝐻)

243 intransitivity of competition (RI); the degree of habitat loss (U); and the number of 

244 species in the initial community (n), on community diversity was then explored. 

245 Specifically, distinct systems were generated by systematically varying these 
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246 parameters. The resulting community diversity was then found and related to the 

247 controlled parameter. This is straightforward for U and n, but C.V.(H) and RI require 

248 more explanation (see below). Additionally, cases where all species within the 

249 community had the same vital rates and cases where these vital rates were permitted 

250 to differ between species were considered separately.

251 The effect of variation in competition strength C.V.(H) was explored (see figure 1) 

252 by randomly generating tournament matrices H subject to the condition that 

253 Hij+Hji=1. Each matrix H was randomly constructed using the given two elements 

254 {0.5, 0.5}, {0.49, 0.51}, {0.48, 0.52}… {0, 1} respectively with 0.01 increments 

255 around the mean competition strength =0.5. The coefficient of variation C.V.(H) 𝐻

256 was computed for each realized system. Note that, in such randomly-structured 

257 matrices, competitive intransitivity is generally very high (0.9 < RI < 0.98) (see 

258 electronic supplementary material, figure S8 in Appendix B). To verify the generality 

259 of the outcome, we additionally constructed another type of random tournament 

260 matrices H (electronic supplementary material, figure S9 in Appendix B), where one 

261 element in each pair of competitors i-j was produced randomly from a uniform 

262 distribution with range varying from [0.49, 0.51] to [0, 1] (with 0.01 increments) and 

263 the second determined from it (Hij+ Hji=1). 

264 As such, to assess the effect of RI, it is necessary to choose a tournament matrix 

265 H with high variation in competition strength (Hij = 0 or 1) and permute it [20]. First a 

266 matrix with purely hierarchical competition was constructed (1>2>3>…>n), 

267 containing all ones above the diagonal and all zeros below the diagonal. Then, the 
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268 interaction between each pair of species (i, j) was reversed with probability f, a 

269 random perturbation of the tournament matrix. This probability f was taken from the 

270 following set of values {0, 0.05, 0.1, 0.15…0.95, 1}, yielding a broad range of RI 

271 values.

272 In systems where vital rates were permitted to vary within the community, the ci’s 

273 and ei’s were drawn randomly from uniform distributions with ranges unif[0.6,1] and 

274 unif[0,0.2] respectively. To test the robustness of these outcomes, a broad range of 

275 biologically reasonable parameter combinations were explored (electronic 

276 supplementary material, figures S8-S14 in Appendix B) and found to yield 

277 qualitatively similar outcomes (e.g. effects of variation in species vital rates in 

278 electronic supplementary material, figure S11 in Appendix B), thus allowing us to 

279 present our general results in figures 1-4 by choosing a single reference case. In this 

280 study, we attempt to check whether there is any difference in the competitive outcome 

281 between pairwise and higher-order competition in landscapes with habitat loss by 

282 varying species vital rates.

283 3. Results

284 3.1. Intransitive competition promotes diversity when differences in competitive 

285 ability are large

286 In the long term, a community where all species have identical vital rates and equal 

287 competition strength (a neutral community), will be dominated by a single species 

288 (figure 1 V-VIII; electronic supplementary material, figure S5 in Appendix B and 
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289 system analysis in Appendix A). However, introducing a small random variation in 

290 competition strength allows a coexisting sub-community to emerge. Community 

291 diversity declines, to a greater or lesser extent depending on other factors, but 

292 eventually saturates at higher levels than can be obtained in the neutral community. If 

293 the colonization and mortality rates of species within the community differ, the effect 

294 of a small variation in competition strength is less dramatic (figure 1I-IV). Instead, 

295 community diversity increases gradually as variation in competition strength increases, 

296 saturating at levels slightly lower than those seen in communities with no variation in 

297 vital rates.

298 As noted previously, in order to investigate the full range of possible relative 

299 intransitivity (RI) values, it is necessary to fix variation in competition strength at a 

300 high level. If the outcome of any competitive interaction is certain (Hij = 0 or 1), 

301 increasing the RI degree also increases community diversity (figure 2). The 

302 relationship contains two ranges where diversity increases quickly, for low levels of 

303 relative intransitivity and then for high levels of relative intransitivity, separated by an 

304 intermediate range where diversity increases slowly, although note that these ranges 

305 become more or less distinct depending on other factors. This relationship can be well 

306 described by a degree 3 polynomial. Thus, this suggests that intransitivity in 

307 competition between species enables greater diversity within the community. Note 

308 that random community structures display very high RI levels (electronic 

309 supplementary material, figure S8 in Appendix B) and, as such, ecological 

310 communities are likely to have this property.
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311 However, competitive intransitivity is not sufficient to ensure high community 

312 diversity. When all species are equal competitors, i.e. variation in competition 

313 strength is 0 (figure 1), competition is intransitive yet community diversity is low. 

314 Furthermore, when variation in competition strength is low, the effect of intransitive 

315 competition can be overwhelmed by variation in the other vital rates of species (cf. 

316 figure 1 I & V). In this case, as variation in competition strength increases, 

317 community diversity increases. These trends suggest that the effect of intransitive 

318 competition on diversity depends on the degree to which competition strength varies 

319 within the community. 

320 3.2. Predictions of community diversity are dependent on the complexity of 

321 competition 

322 There are pronounced differences in the effects of competition on community 

323 diversity dependent on whether competition occurs pairwise or as a three-way 

324 interaction (figures 1 & 2). Specifically, for models with no variation in vital rates, 

325 there is a pronounced increase in community diversity when HOIs are included. 

326 However, this difference is significantly reduced when other vital rates are chosen 

327 randomly for each species (figures 1 & 2; electronic supplementary material, figures 

328 S9 & S11 in Appendix B); although the overall trends are preserved.

329 As can be expected, increasing levels of habitat loss, decreasing habitat 

330 availability, reduce community diversity. However, again differences emerge 

331 depending on whether pairwise or higher-order competition is considered (figures 2 & 

332 3). When vital rates are permitted to vary, higher-order competition produces higher 
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333 diversity than pairwise competition for low levels of habitat loss, but this reverses for 

334 high levels of habitat loss. This switch in predicted outcome is not observed if all 

335 species have the same vital rates, where HOIs always maintain higher species 

336 diversity than pairwise competition (electronic supplementary material, figure S14 in 

337 Appendix B).  

338 3.3. Community diversity declines with initial community size 

339 Finally we test the effect of initial community size on the fraction of species that can 

340 coexist in the competitive system (figure 4). Regardless of variation in vital rates, the 

341 fraction of survival species declines as the initial number of species increases. This 

342 decline is approximately linear with respect to the log-scale of the initial number of 

343 species, indicating a simple reciprocal relationship. This outcome can be explained as 

344 a combination of two factors. Firstly, a finite number of species can coexist 

345 (determined by the other factors discussed), and the observed decline is a natural 

346 consequence of computing diversity relative to the initial number of species in the 

347 community. Secondly, the more species the initial community has, the less likely it is 

348 that a transitive competitor will be present at a higher position in the competitive 

349 hierarchy than species that are part of a stable intransitive sub-network (see figure S8 

350 in Appendix B). Thus, larger communities favor an intransitive competition structure 

351 and hence lower diversity.

352 4. Discussion

353 In this study we present a general framework for modelling the landscape scale 

354 dynamics of a community with direct competitive interactions. Metapopulation 
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355 models were initially developed to investigate community assembly arising from the 

356 interplay of colonization and mortality processes in finite habitats [41]. Since then the 

357 framework has often been used to describe direct competition between species with a 

358 specific, typically hierarchical, structure [14]. These studies have shown that a 

359 tradeoff between colonization and competition ability can maintain community 

360 diversity within the landscape. However, an increasing number of empirical studies 

361 have observed intransitive competition structures in natural communities [16, 21, 

362 23-27], suggesting that an alternative paradigm is required. The more general 

363 framework used in this study readily allows a broad range of different competition 

364 structures to be explored. In doing so we find that intransitive, e.g. cyclic, competition 

365 structures, associated with HOIs, facilitate species coexistence (figures 1 & 2). 

366 Essentially, intransitivity promotes species richness by reducing interspecific 

367 difference in cumulative interactions (including positive and negative) and therefore 

368 mitigating competitive exclusion, as those species subject to decreased negative 

369 cumulative interactions remain viable in the system. In addition, HOIs facilitate 

370 species coexistence through decreasing population fluctuations and thus stabilizing 

371 community dynamics compared to pairwise competition (electronic supplementary 

372 material, figures S1-S4 in Appendix B), similar to Grilli et al. [34].

373 Intransitive, rather than hierarchical, competition structures mean that there is no 

374 single dominant species, or group of species, which outcompete the others. Instead, 

375 each species outcompetes some species and is outcompeted by others. As such, 

376 decreasing the abundance of any competitor in the intransitive loop propagates 
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377 through the competitive network in a manner that feeds back to favor the recovery of 

378 the perturbed species. This creates dynamic species-specific niches within the 

379 landscape; sites occupied by species that a given species can outcompete represent 

380 opportunities for that species to expand. If all species have similar competition ability, 

381 with only small advantages and disadvantages, these niches are only weakly 

382 differentiated, while, if differences in competition ability are large, these niches 

383 become more pronounced. Thus, the effects of competitive intransitivity can be 

384 understood in terms of niche theory, in that clearly defined niches promote 

385 community diversity. However, this niche creation is actually a result of the interplay 

386 of species interactions and environmental constraints [42]. Competitive intransitivity 

387 could, for example, arise in a situation with three limiting resources and three 

388 consumers, and each consumer is superior in competing for a different resource [43, 

389 44]. By manipulating the relative resource supply rates, the phenomenological 

390 competitive pattern could easily shift from a transitive to an intransitive one, 

391 determined by the external environment. As such, it presents a welcome unification of 

392 neutral and niche theories, allowing the assembly of diverse communities. Besides the 

393 niche difference, the outcome of intransitive competition promoting species 

394 coexistence can also be explained by the fitness difference among species in the 

395 context of Chesson’s coexistence theory [3, 45, 46]. There exists a large difference in 

396 species fitness in strict hierarchical competitive communities, in contrast to the 

397 intransitive competition structures in which all species have similar fitness. Thus, 

398 differences in the fitness of those species drive competitive exclusion, with large 
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399 differences suppressing coexistence. Recently, an increasing number of empirical 

400 studies have observed competitive intransitivity in natural communities [16, 21, 

401 23-27], supporting the conclusion that intransitive competition may be an alternative 

402 mechanism driving community diversity. However, we should note that intransitive 

403 rather than hierarchical structure is considerably more probable in random 

404 competition matrices (electronic supplementary material, figure S8 in Appendix B) 

405 and so it is possible these patterns arise by chance.

406  Perhaps more significantly for ecological applications, community diversity 

407 responds differently to habitat loss depending on which type of competition is used in 

408 the model. Recent studies have suggested that the existence of HOIs allow more 

409 species to coexist than purely pairwise interactions [33, 34, 47]. We demonstrate that, 

410 while this holds for low levels of habitat loss, at high levels of habitat loss HOIs 

411 reduce community diversity. Essentially, an increase of habitat loss associated with 

412 variation in species vital rates can lead to a more rapid decline in competitive 

413 intransitivity under HOIs (see figure S12 in Appendix B). In other words, habitat loss 

414 and demographic variation interact to damage intransitive structures and shape more 

415 hierarchical competitive communities, thereby accelerating species exclusion. 

416 Consequently, it is important to determine which type of interaction is most 

417 appropriate for a particular system, prior to basing conservation activities on the 

418 predictions of a mathematical model. 

419 We suggest that the relatively long timescales implicit in site-occupancy 

420 modelling mean that higher-order competition is more likely to be appropriate. In 
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421 particular, it is likely that colonizers from multiple species may interact before a new 

422 sub-population establishes itself on a specific site. However, pairwise competition 

423 may be appropriate for specific ecological systems. It should be noted that previous 

424 studies have suggested that higher-order effects may be comparatively rare [30], since 

425 it has been commonly argued that effects of pairwise competition are likely to 

426 counteract each other in higher-order combinations such that they essentially cancel 

427 out [48]. However, this observation does not relate directly to sequential pairwise 

428 competition of the type modelled here [34]. Furthermore, given that variation in vital 

429 rates can reduce the difference between pairwise and higher-order competition, it may 

430 be difficult to distinguish these cases in empirical studies. Interestingly, Worthen & 

431 Moore [49] provided some empirical support for this inference, as they documented a 

432 significant higher-order effect among mycophagous drosophilids and suggested that 

433 the multigenerational laboratory studies may underestimate or obscure the importance 

434 of HOIs for community stability.

435 For mathematical simplicity, we make several assumptions in our model. First, 

436 we assume that all species are able to access any site within the habitat. Although 

437 more limited dispersal paradigms could be used, it does not change the major 

438 qualitative predictions of the spatial competition model [50]. The second assumption 

439 used in our model is the division of habitat into suitable and unsuitable sites. In fact, 

440 real habitats rarely consist of neatly divided colony sites of “habitat” and 

441 “non-habitat”; instead habitat degradation coincides with reduction in habitat quality, 

442 so that most habitats show at least some levels of habitat variegation (varying 
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443 suitability for species). However, since we are less concerned with exogenous niches 

444 than those which emerge as a result of species interactions, this is not a significant 

445 limitation for this study. The third assumption is that pairwise competition is strictly 

446 hierarchical and that no coexistence is possible within a colony site. In practice, local 

447 coexistence is possible in many communities, which allows more complex forms of 

448 interaction between species [46, 51-53]. Such complexities are beyond the scope of 

449 this study, but they might form the basis of future work. Finally, a set of differential 

450 equations are used to draw conclusions about an intrinsically stochastic process. 

451 However, we find that stochastic perturbations of these systems do not significantly 

452 affect the results we present here. Furthermore, several stochastic individual-based 

453 simulations on intransitive competition yield qualitatively similar outcomes [20]. 

454 Thus, while the model presented here is a simplification of the complexity in nature, it 

455 can capture many essential features of competition among species in a physically 

456 homogeneous habitat.

457  The relative simplicity of this model presents the opportunity to use realized 

458 species abundance profiles to estimate vital rates and competition structure within 

459 communities. However, at present suitable empirical data for such tests does not exist. 

460 As such, detailed experimental work designed with these interactions in mind would 

461 be beneficial. We suggest that extensions to microcosm experiments [16, 54] or 

462 controlled field observations [21, 22, 37], could fill this gap. However, we note that 

463 higher-order competition may be difficult to distinguish from pairwise competition 

464 outside of highly controlled experiments, due to the confounding effect of variation in 
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465 other vital rates. Thus, true field studies would need to separate the effects of variation 

466 among species from that of the community competition structure. A practical reason 

467 why HOIs in general have received less attention than pairwise interactions is due to 

468 increasing experimental complexity imposed by collecting data for all subsets of 

469 species combinations in a factorial design [48]. However, the type of higher-order 

470 competition considered here, which is simply sequential pairwise competition, does 

471 not pose this difficulty. Specifically, one could simply assess pairwise interactions 

472 between species in a controlled setting and then compare relative abundances in field 

473 trials to those predicted by a parameterized model [35]. 

474  We introduce a flexible model for incorporating direct competition into the 

475 traditional metapopulation model. Our results suggest that this framework unifies 

476 aspects of neutral and niche theory, demonstrating that variation in competition 

477 between species can create dynamic niches that permit community diversity. 

478 Furthermore, to our knowledge, this is the first attempt to compare pairwise and 

479 higher-order competition in a metapopulation context. Intransitive competition 

480 structures may be an important unrecognized mechanism for community diversity 

481 maintenance, and, as such an important factor in future conservation efforts. 
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627 Figure legends

628 Figure 1. Effect of variation in competition strength on the fraction of surviving species 

629 (solid line plus shaded area: mean ± SDs of 20 replicates for each case) under both pairwise 

630 (red) and higher-order (blue) competition in a multispecies system (n=50) subject to habitat 

631 loss (U=0, 0.25, 0.5 and 0.75) at steady state, by considering both variation in vital rates (I-IV: 

632 colonization rates ci~unif[0.6, 1] & mortality rates ei~unif[0, 0.2]) and identical vital rates 

633 (V-VIII: c=0.8 & e=0.1). Each matrix H is randomly generated using the given two elements 

634 {0.5, 0.5}, {0.49, 0.51}, {0.48, 0.52} …{0, 1} respectively with 0.01 increments around the 

635 mean =0.5 (note Hij+Hji=1), and the corresponding values of relative intransitivity (RI) are  H

636 shown in figure S8 in Appendix B (electronic supplementary material). Variation in 

637 competition strength is represented by the coefficient of variation  with  𝐶.𝑉.(𝐻) = 𝜎𝐻/𝐻 𝜎𝐻

638 being the standard deviation for all elements  and (=0.5) the mean of these elements. 𝐻𝑖𝑗 𝐻 

639 Note that, only one species can survive in graphs (V-VIII) when there is no variation in 

640 competition strength in the systems incorporating a continuous stochastic environmental 

641 perturbation , with being the perturbation size, 𝑊𝑖(𝑡) = 𝛺 × [1 ― 2 ∙ 𝛿(𝑡)] ∙ 𝑝𝑖(𝑡) 𝛺 = 0.1 𝛿

642 a uniform random variate that varies temporally, and  the site (𝑡)~𝑢𝑛𝑖𝑓[0, 1] 𝑝𝑖(𝑡)

643 occupancy of species i at time t (see Methods).

644 Figure 2. Effect of relative intransitivity (RI) on species coexistence in a multispecies (n=50) 

645 system subject to habitat loss (U=0, 0.25, 0.5 and 0.75), regarding variation in vital rates 

646 (I-IV: ci~unif[0.6, 1] & ei~unif[0, 0.2]) and identical vital rates (V-VIII: c=0.8 & e=0.1) 
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647 separately. Two types of competition are considered: pairwise (red circles) and higher-order 

648 (blue circles) competition, with 3-order polynomial fitting (solid lines, measured by R2). A 

649 broad range of RI values are generated randomly with 20 replicates for each perturbed 

650 fraction f (=0, 0.05, 0.1…, 0.95, 1), using elements Hij=0 or 1 in the tournament matrix H 

651 (note Hij + Hji=1; see Methods).

652 Figure 3. Effect of habitat loss on the fraction of surviving species (20 replicates for each 

653 case) in a multispecies competitive system (n=50) with variation in vital rates (ci~unif[0.6, 1] 

654 & ei~unif[0, 0.2]), fitted by 3-degree polynomial functions (solid lines, measured by R2). 

655 Three levels of relative intransitivity (RI) are considered for both pairwise (red circles) and 

656 higher-order (blue circles) competition, with Hij=0 or 1 in the tournament matrix H (note Hij 

657 + Hji=1; see Methods): (a) 0.55<RI<0.6, (b) 0.75<RI<0.8 and (c) 0.9<RI<0.95 (i.e. 

658 randomly-structured interactions).

659 Figure 4. Effect of initial species richness on the fraction of surviving species in a 

660 competitive system subject to habitat loss (U=0, 0.25, 0.5 and 0.75) at steady state, 

661 considering both variation in vital rates (I-IV: ci~unif[0.6, 1] & ei~unif[0, 0.2]) and identical 

662 vital rates (V-VIII: c=0.8 & e=0.1) at 0.9<RI<0.95 (with Hij=0 or 1 in the tournament matrix 

663 H: Hij + Hji=1; see Methods). Each case is run with 20 replicates for pairwise (red circles) and 

664 higher-order (blue circles) competition separately with linear fitting (but with the x-axis log 

665 scale; solid lines), measured by R2.  
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Figure 1. Effect of variation in competition strength on the fraction of surviving species (solid line plus 
shaded area: mean ± SDs of 20 replicates for each case) under both pairwise (red) and higher-order (blue) 

competition in a multispecies system (n=50) subject to habitat loss (U=0, 0.25, 0.5 and 0.75) at steady 
state, by considering both variation in vital rates (I-IV: colonization rates ci~unif[0.6, 1] & mortality rates 

ei~unif[0, 0.2]) and identical vital rates (V-VIII: c=0.8 & e=0.1). Each matrix H is randomly generated 
using the given two elements {0.5, 0.5}, {0.49, 0.51}, {0.48, 0.52} …{0, 1} respectively with 0.01 

increments around the mean H =0.5 (note Hij+Hji=1), and the corresponding values of relative intransitivity 
(RI) are shown in figure S8 in Appendix B (electronic supplementary material). Variation in competition 

strength is represented by the coefficient of variation C.V.(H)=σ_H/H  with σ_H being the standard deviation 

for all elements H_ij and H   (=0.5) the mean of these elements. Note that, only one species can survive in 
graphs (V-VIII) when there is no variation in competition strength in the systems incorporating a continuous 

stochastic environmental perturbation W_i (t)=Ω×[1-2∙δ(t) ]∙p_i (t), with Ω=0.1 being the perturbation 
size, δ(t)~unif[0,1]  a uniform random variate that varies temporally, and p_i (t) the site occupancy of 

species i at time t (see Methods). 
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Figure 2. Effect of relative intransitivity (RI) on species coexistence in a multispecies (n=50) system subject 
to habitat loss (U=0, 0.25, 0.5 and 0.75), regarding variation in vital rates (I-IV: ci~unif[0.6, 1] & 

ei~unif[0, 0.2]) and identical vital rates (V-VIII: c=0.8 & e=0.1) separately. Two types of competition are 
considered: pairwise (red circles) and higher-order (blue circles) competition, with 3-order polynomial fitting 

(solid lines, measured by R2). A broad range of RI values are generated randomly with 20 replicates for 
each perturbed fraction f (=0, 0.05, 0.1…, 0.95, 1), using elements Hij=0 or 1 in the tournament matrix H 

(note Hij + Hji=1; see Methods). 
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Figure 3. Effect of habitat loss on the fraction of surviving species (20 replicates for each case) in a 
multispecies competitive system (n=50) with variation in vital rates (ci~unif[0.6, 1] & ei~unif[0, 0.2]), 

fitted by 3-degree polynomial functions (solid lines, measured by R2). Three levels of relative intransitivity 
(RI) are considered for both pairwise (red circles) and higher-order (blue circles) competition, with Hij=0 or 
1 in the tournament matrix H (note Hij + Hji=1; see Methods): (a) RI=0.55~0.6, (b) RI=0.75~0.8 and (c) 

RI=0.9~0.95 (i.e. randomly-structured interactions). 
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Figure 4. Effect of initial species richness on the fraction of surviving species in a competitive system subject 
to habitat loss (U=0, 0.25, 0.5 and 0.75) at steady state, considering both variation in vital rates (I-IV: 
ci~unif[0.6, 1] & ei~unif[0, 0.2]) and identical vital rates (V-VIII: c=0.8 & e=0.1) at RI=0.9~0.95 (with 
Hij=0 or 1 in the tournament matrix H: Hij + Hji=1; see Methods). Each case is run with 20 replicates for 
pairwise (red circles) and higher-order (blue circles) competition separately with linear fitting (but with the 

x-axis log scale; solid lines), measured by R2.   
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