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Abstract

We investigate the combinatorial data arising from the classification of equivariant homotopy
commutativity for cyclic groups of order G = Cp1···pn for pi distinct primes. In particular,
we will prove a structural result which allows us to enumerate the number of N∞-operads for
Cpqr, verifying a computational result.

2000 Mathematics Subject Classification. 00A00. 03E05 03E10.
Keywords. Sets, ordinals, cardinals.

1 Introduction

A (symmetric topological) operad is a sequence of spaces O(n) for n ≥ 0, equipped with an action
of the symmetric group Σn and compatibility conditions, where O(n) encodes the possibilities of
n-ary operations. An O-algebra is then a topological space X together with maps

O(n)×Σn X
n −→ X

plus compatibility conditions. If O(n) is Σn-contractible for each n, we speak of an E∞-operad.
This type of operad governs homotopy commutativity, as the contractibility implies that all the
different choices of multiplying n elements are homotopic. There are many different E∞-operads
which all have their own technical advantages, but as the homotopy theory of operads depends on
the homotopy type of the underlying spaces, all E∞-operads are equivalent in this sense, meaning
that there is one notion of homotopy commutativity.

Equivariantly, this is a different story. If we move on from spaces to G-spaces for a finite group
G, we do not just have Σn acting on Xn in the usual way but we also have to consider G permuting
the factors of any product indexed over G-sets. This G-action needs to be compatible with the
Σn-action. This then leads to the notion of N∞-operads. Unlike in the nonequivariant case, not all
N∞-operads are weakly equivalent to each other. Instead, those equivalence classes are determined
by so-called transfer systems, which are combinatorial data consisting of pairs of subgroups of G
satisfying some conditions. Conversely, every such transfer system also determines an N∞-operad.
In particular, transfer systems can be depicted as graphs satisfying certain conditions, which we
call an N∞-diagram.
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It then becomes an intriguing question to see how many different types of equivariant homotopy
commutativity are possible for a finite group G, and how these are related. For a cyclic group of
order pn−1, an answer was given in [BBR19], namely, the number of N∞-diagrams for Cpn−1 is the
nth Catalan number. Moreover, the set of N∞-diagrams for a fixed group is a lattice, which in the
case of G = Cpn−1 is isomorphic to the n-Tamari lattice (the vertex set of the n-associahedron).
Therefore, types of equivariant homotopy commutativity have interesting links with well-studied
combinatorial objects.

Having thus covered cyclic groups of order equal to a prime power, one might be tempted to
think that there would be a similarly neat answer for any finite abelian group. However, one would
soon find out that this is not the case as strange “mixed” diagrams appear whenever one considers
products of groups. For example, for Cp there are two possible N∞-diagrams, for Cpq, p 6= q, there
are ten, and we will show that for Cpqr for distinct primes p, q and r there are 450. We will also
explain why the number grows very rapidly for Cp1···pn and present some structural insights into
the general case.

Below we outline the main result of the paper, which gives a structural result on the collection
of N∞-operads, and suggests a more economical method to compute them.

Theorem 1.1. The set Nn of N∞-diagrams for G = Cp1···pn admits a decomposition into (n+ 1)
disjoint subsets

Nn =

n⊔
d=0

Compd(G).

Moreover, there is an involution Φn on Nn such that

Φn(Compd(G)) = Compn−d(G)

for any 0 ≤ d ≤ n. In particular, we have

|Compd(G)| = |Compn−d(G)|.

2 N∞-operads and N∞-diagrams

Given a topological space X equipped with a multiplication m : X × X −→ X, we would like to
say that its multiplication is homotopy commutative if the diagram

X ×X

τ

��

m
// X

X ×X

m

77

commutes up to homotopy, where τ is the twist map permuting the two factors. With this in place
one would now have to take care of coherence, that is, the chosen homotopy between m and m ◦ τ
needs to be compatible with multiplying three or more copies of X. Such coherence issues are
neatly packaged in the theory of operads [May72].

Definition 2.1. A (topological) symmetric operad is a collection O = {O(n)}n≥0 of topological
spaces O(n) equipped with a (right) Σn-action together with maps

O(n)×O(i1)× · · · × O(in) −→ O(i1 + · · ·+ in)
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such that the expected coherence diagrams hold with regards to associativity, unitality and the
symmetric group actions.

An algebra over an operad O is a space X together with multiplication maps

O(n)×Σn
Xn −→ X

satisfying the expected coherence diagrams. Here, Σn acts on Xn by permuting factors. This
information is equivalent to a morphism of symmetric operads O −→ End(X) where End(X)
denotes the endomorphism operad of X, i.e.,

End(X)(n) = Hom(Xn, X).

We can think of the space O(n) as the different possibilities of multiplying n elements in our space.
For instance, if O(n) = ∗ for all n, then there is a unique way of multiplying n elements

∗ ×Σn
Xn ∼= Xn/Σn −→ X.

In particular, this means that our space X is a strictly commutative object.
If instead we suppose that O(n) ' ∗ for all n, then there is one way of multiplying n elements

“up to homotopy”, which leads to the following definition.

Definition 2.2. An E∞-operad is a symmetric operad O such that the action of Σn on each space
is free, and every O(n) is Σn-equivariantly contractible.

There are many different E∞-operads, each of them having their own technical advantages and
disadvantages. Thankfully, all E∞-operads are weakly equivalent, indeed, there is a Quillen model
structure on the category of topological symmetric operads where the weak equivalences are those
maps that are levelwise homotopy equivalences of spaces [BM03]. In particular, we can think of
this as having one unique (up to homotopy) notion of homotopy commutativity.

Now that we have outlined the theory of homotopy commutativity in the non-equivariant case,
we move towards to the more complex setting of G-spaces for G some finite group. We now need
to consider multiplication maps of the form∏

T

X −→ X

where T is a G-set with n = |T | elements. The G-action induces a group homomorphism G→ Σn.
This means that the O(n) spaces should not be thought of merely as Σn-spaces, but as (G× Σn)-
spaces. Note that simply putting a trivial G-action on the O(n) would not allow for multiplications
of the above kind for any T with more than one element.

We shall now work towards the theory of N∞-operads, which allows us to fix this issue.

Definition 2.3. A graph subgroup Γ of G × Σn is a subgroup such that Γ ∩ (1 × Σn) is trivial.
(Here 1 denotes the trivial group.)

Any graph subgroup is of the form

Γ = {(h, σ(h)) | h ∈ H},
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with H ≤ G and σ : H −→ Σn a group homomorphism. Moreover, given a finite H-set T with n
elements we obtain a graph subgroup

Γ(T ) = {(h, σ(h)) | h ∈ H},

where σ : H −→ Σn represents the H-action on T . Conversely, we can view any graph subgroup as
one of the form Γ(T ), as for

Γ = {(h, σ(h)) | h ∈ H},

we can set T to be a set of n elements with the H-action given by σ.

Definition 2.4. An N∞-operad is a symmetric operad O in the category of G-spaces (that is, a
collection of G× Σn-spaces O(n), n ≥ 0) satisfying the following conditions.

� For all n ≥ 0, O(n) is Σn-free.

� For every graph subgroup Γ of G× Σn, the space O(n)Γ is either empty or contractible.

� O(0)G and O(2)G are both nonempty.

The last condition ensures that the operad possesses an equivariant multiplication and an equiv-
ariant ‘point’.

The second point together with the operad structure implies that each O(n) is a classifying
space for a family of subgroups which satisfy some further properties forced by operad structure.
This information can be distilled into the theorem below.

Theorem 2.5. Up to weak equivalence, every N∞-operad determines and is determined by a
set X = {NH

K }, where K < H are subgroups of G, satisfying the following properties and their
conjugacies.

� (Transitivity) If NH
K ∈ X and NL

H ∈ X, then NL
K ∈ X.

� (Restriction) If NH
K ∈ X and L ≤ G, then NH∩L

K∩L ∈ X.

We will call such a set a transfer system and the objects NH
K will sometimes be referred to as norm

maps.

Blumberg and Hill showed that every operad determines an “indexing system” [BH15]. Ru-
bin [Rub17], Gutierrez-White [GW18] and Bonventre-Pereira [BP17] independently showed that for
every such indexing system one can construct a corresponding operad. Further, Barnes-Balchin-
Roitzheim [BBR19] showed that indexing systems are equivalent to the transfer systems given in
the above version of this theorem.

Corollary 2.6. There are as many homotopy types of N∞-operads for a fixed finite group G as
there are transfer systems for G. q.e.d.

In particular, there can be only finitely many N∞-operads for a finite group G, and as such, it
makes sense to count them. We will denote by N∞(G) the set of all N∞-operads on G. For G = Cpn ,
the number of N∞-operads plus some additional structure has been determined in [BBR19].

Before continuing, let us assess the first non-trivial case. We will choose to display indexing
systems as graphs whose vertices are the subgroups of G, and there is an edge H → K if NK

H ∈ X.
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Example 2.7. Let G = Cp for some prime p, then there are two N∞-operads which have the
following graph representations.

Cp1Cp0( ) Cp1Cp0( )

The key ingredient in the result of [BBR19] is an operation

� : N∞(Cpi)×N∞(Cpj )→ N∞(Cpi+j+2).

In particular it is proved that every N∞-operad for Cpi+j+2 is of the form X�Y for X ∈ N∞(Cpi)
and Y ∈ N∞(Cpj ). This then allows an inductive strategy of proof of the main result.

Theorem 2.8 ([BBR19, Theorem 1]). For n ≥ 1 we have

|N∞(Cpn)| = Cat(n+ 1)

where Cat(n) is the nth Catalan number.

The result goes a bit further than just an enumeration result. We can put a partial order on the
set of all N∞-diagrams for a fixed group by saying that one N∞-operad X is smaller than another
N∞-operad Y if it is a subset of Y . On the other side, there is a wealth of objects enumerated
by Catalan numbers. One of them is the set of rooted binary trees. We can put a partial order
on the set of rooted binary trees with n leaves by saying that one tree is larger than another if it
can be obtained from the latter by rotating a branch to the right. Balchin-Barnes-Roitzheim found
that, indeed, N∞-diagrams for G = Cpn and rooted binary trees with n + 2 leaves are isomorphic
as posets [BBR19]. However, we do not wish to elaborate on this result here.

The goal of this paper is to study the set N∞(G) for G a group of the form Cp1···pn for pi distinct
primes where the situation is somewhat more complicated. Note that, in particular, the subgroup
lattice is an n-dimensional cube.

3 Classifying N∞-operads for G = Cp1p2

In this section we explore the structure of N∞-operads for G = Cp1p2 as it will illuminate the theory
that we present in the rest of the paper. Specifically, it is the only non-trivial case where one can
visualise the entire situation. One can check that there are ten such N∞-operads as follows.
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Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Figure 1. The ten possible N∞-operad structures for G = Cp1p2 .

Note that there is an odd one out in these diagrams, namely the following diagram, which has
a diagonal which is not forced by the transitivity rule. It is this type of N∞-operad, which we call
a “mixed diagram”, that causes the complexity in this problem.

Cp11

Cp1p2Cp2

Figure 2. The mixed N∞-operad for G = Cp1p2 .

Now, we will explore the structure of this collection of ten operads, which we denote by N2. Let
us consider three subsets of N2. First, denote by Comp2(Cp1p2) those N∞-operads which contain

the norm map N
Cp1p2
1 , i.e. the diagonals in Fig. 1.

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Figure 3. The collection Comp2(Cp1p2).

Next, we consider the collection Comp0(Cp1p2) of those N∞-operads which do not contain the

norm maps N
Cp1p2

H for H any of the two proper subgroups of Cp1p2 .
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Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Figure 4. The collection Comp0(Cp1p2).

We then define Comp1(Cp1p2) to consist of those N∞-operads which have the norm map N
Cp1p2

Cp1

or N
Cp1p2

Cp2
but not N

Cp1p2
1 .

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Figure 5. The collection Comp1(Cp1p2).

We can see, purely by inspection, that these three (= 2 + 1) subsets form a partition of N2.
This will be the first part of the general strategy for understanding Nn. We will prove that we can
partition the set Nn into (n+ 1) disjoint subsets.

However, there is still some extra structure on the collection {Compi(Cp1p2)}i, which we will
now investigate. Indeed, it is no coincidence that |Comp0(Cp1p2)| = |Comp2(Cp1p2)|. In particular,
there exists an involution Φ2 : N2 → N2. Instead of giving a formal definition (which will appear in
the following section) we simply illustrate it by giving the correspondence and inviting the reader
to understand the relationship in Figure 6. We have grouped the elements in coloured blocks to
distinguish the Compi(Cp1p2). Note that Φ2 : Compi(Cp1p2)→ Comp2−i(Cp1p2). Also observe that
the long diagonal is affected only in the case where i = 0, 2.

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Cp11

Cp1p2Cp2

Figure 6. The involution Φ2 : N2 → N2.
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4 Higher dimensions

We now introduce the general theory of N∞-diagrams for G = Cp1···pn , where p1, . . . , pn are distinct
primes. We will denote by Nn the set of N∞-operads for such a G. The goal of this section is to
prove that there is an intuitive decomposition of Nn into (n+ 1) disjoint subsets, which, as hinted
at in Section 3, admits an involution Φn : Nn → Nn. We then use this result in Section 5 to prove
that |N3| = 450.

4.1 Decomposition

Definition 4.1. Let D be an N∞-diagram for G. If H < K are subgroups of G we denote by DK
H

the graph induced by D on the vertices corresponding to subgroups of K containing H.

Example 4.2. If we have G = Cp1p2 and

D =


Cp11

Cp1p2Cp2


then D

Cp1
Cp2

Cp2
=
(
Cp2 // Cp1p2

)
.

The set of N∞-diagrams for G = Cp1···pn admits a decomposition into (n + 1) disjoint subsets
as follows. Let D ∈ Nn, and consider the set of all arrows (H → G) contained in D. Let G0 be
the intersection of all the initial vertices of such arrows; clearly, the induced diagram D0 := DG

G0

contains all the arrows with final vertex G, and it is minimal for this property. (Note that in the
case of there being no arrows ending in G, we have G0 = G.) Therefore, denoting by Compd(G)
the set of diagrams G with G0 = Cpi1pi2 ...pin−d

for any 0 ≤ d ≤ n, we obtain a decomposition:

Nn =

n⊔
d=0

Compd(G).

Example 4.3. In Figure 6, the blue (top left) box of diagrams is Comp0(Cp1p2), the yellow (bottom
left) box is Comp2(Cp1p2), and the pink (rightmost) box is Comp1(Cp1p2).

Remark 4.4. Note that by restriction and composition, if D is in Compd(G) then D0 is sup-
ported on (and contains the big diagonal of) a d-dimensional face, namely the arrow from G0 =
Cpi1pi2 ...pin−d

to G. In particular we see that Comp0(n) consists of those N∞-diagrams which do

not contain a norm map to the group itself, and Compn(G) consists of those N∞-diagrams which
contain the long diagonal NG

1 .

To prove the next result we need to introduce some notation for the facets (codimension one
faces) of the n-dimensional cube. Any facet has one of the following forms:

� bottom facet Bi, i.e., facet containing the 1 vertex and a vertex of the form Cp1...p̂i...pn (p̂i
means removing pi),

� top facet Ti, i.e., facet containing a vertex of the form Cpi and the G vertex.
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Proposition 4.5. If D ∈ Compd(G), then there exist n−d facets adjacent to 1 and not intersecting
D0 such that all arrows of D are either arrows of D0 or contained in these n− d facets.

Proof. First notice that if D ∈ Compn(G), then D0 = D so the result is trivially true. Now assume
d < n and D ∈ Compd(G). Clearly, as D0 contains a diagonal of a d-dimensional face ending in G,
D0 is then contained in the intersection of n− d top facets, say T1, T2, . . . , Tn−d. This implies that
the intersection G0 of all initial vertices of arrows with final vertex G is given by

G0 = Cp1p2...pn−d
.

Let us show that D0 must include an arrow (G0 → G). To do this let us enumerate the set of
arrows of D0 with final vertex G:

(H1 → G), (H2 → G), . . . , (Hk → G).

Since D contains the arrows (H1 → G) and (H2 → G), by the restriction condition it must have
an arrow (H1 ∩H2 → H1). But by the transitivity condition, the arrows

(H1 ∩H2 → H1) and (H1 → G)

imply the existence of an arrow (H1 ∩H2 → G). Repeating this argument, since G0 =
⋂k
i=1Hi, we

deduce that D0 has to contain the arrow (G0 → G).
Since D0 contains an arrow with initial vertex G0 = Cp1p2...pn−d

, there are exactly n−d bottom
faces which do not intersect D0, namely

B1, B2, . . . , Bn−d.

We need to show that any arrow of D is either an arrow of D0, or contained in one of the bottom
facets

B1, B2, . . . , Bn−d.

Assume by contradiction that it is not the case. Note that an arrow is not in D0 if and only if
its initial vertex does not contain G0, and an arrow is not in one of the bottom facets

B1, B2, . . . , Bn−d

if and only if its final vertex is not in the union of subgroups
⋃n−d
i=1 Cp1...p̂i...pn . Therefore, D must

have an arrow (K → L) with K 6⊃ G0 and

L 6⊂
n−d⋃
i=1

Cp1...p̂i...pn .

The latter condition implies that L must contain the subgroup Cp1...pn−d
= G0. By the restriction

condition, since D contains the arrow (K → L) it must also contain the arrow

(K ∩G0 → L ∩G0 = G0).

But we saw that D contains the arrow (G0 → G), so by transitivity D must contain the arrow

(K ∩G0 → G).
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Since K 6⊃ G0, the subgroup K ∩G0 is a strict subset of G0 with an arrow to G, which contradicts
the minimality of G0. Therefore, any arrow of D is either an arrow of D0, or contained in one of
the bottom facets

B1, B2, . . . , Bn−d,

which concludes the proof. q.e.d.

4.2 An involution of N∞-diagrams for G = Cp1···pn
In this section we introduce an involution Φn : Nn → Nn, which swaps the distinguished subsets
Comp0(G) and Compn(G). We construct the involution by induction on n ≥ 1 as follows.

� If n = 1, then we let Φ1 swap the empty N∞-diagram and the full N∞-diagram.

� Now assume that we constructed the map Φn for a fixed n ≥ 1, and consider a N∞-diagram
D on the (n+ 1)-dimensional cube, i.e., for

G = Cp1···pn+1
.

To define Φn+1, we apply Φn to D restricted to each facet and we reindex the vertices so that
in the image a vertex H is replaced with G/H (which requires also reversing the direction
of the arrows). In particular this means that Φn+1 sends a bottom facet Bi to the top facet
Ti, and vice-versa. Finally, the big diagonal (1 → G) belongs to Φn+1(D) if and only if
D ∈ Comp0.

We claim that this construction gives a well-defined map from the set of N∞-diagrams to the
set of graphs on the hypercube. Later we will prove that the image of a N∞-diagram is also a
N∞-diagram.

Proposition 4.6. For any n ≥ 1 the map Φn is a well-defined map from the setNn of N∞-diagrams
on the n-dimensional hypercube to the set of graphs on the hypercube.

Proof. First notice that Φn acts as the complement on cube edges, with vertices swapped as follows:

H 7→ G/H.

Thus, it is well-defined on cube edges, and we only need to check that it is well-defined on all
other arrows. If n = 1 all arrows are cube edges, so there is nothing to check. Now assume Φm is
well-defined for m ≤ n, and consider a N∞-diagram D on the (n+ 1)-dimensional hypercube. The
induction hypothesis shows that Φn+1(D) is well-defined on all the diagonals of the form (H → K)
when H 6= 1 or K 6= G. Indeed, those are diagonals of smaller hypercubes. So we only need to
consider the instructions for definining Φn on the big diagonal (1→ G), which is clear. q.e.d.

We now prove that the image of an N∞-diagram is an N∞-diagram.

Theorem 4.7. For any N∞-diagram D ∈ Nn we have Φn(D) ∈ Nn.

Proof. The case n = 1 is clear. Now assume Φm(Nm) ⊆ Nm for m ≤ n, and consider a N∞-diagram
D on the (n+ 1)-dimensional hypercube. We need to prove the following two properties:
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� (restriction condition) for any arrow (H → K) in Φn+1(D) and any subgroup L of G such
that H ∩ L 6= K ∩ L, the arrow (H ∩ L→ K ∩ L) is also in Φn+1(D);

� (transitivity condition) for any arrows (H → K) and (K → L) in Φn+1(D), the arrow
(H → L) is also in Φn+1(D).

Let us first check that Φn+1 preserves the restriction condition. Let (H → K) be any arrow
which is not the big diagonal. Then, by induction on the diagram DK

H , which is defined on a smaller
cube, we immediately see that the restriction condition is satisfied for all arrows, except maybe the
big diagonal. So we may assume that D is such that the arrow (1→ G) belongs to Φn+1(D), and
we need to show that the arrows (1 → L) for any subgroup L of G also belong to Φn+1(D). By
definition of Φn+1(D) we know that D has no arrow adjacent to the vertex G. Let K := G/L, and
consider the induced diagram DG

K , which has no arrows to G either. By the induction hypothesis
it follows that its image by Φ contains the ‘big’ diagonal (1→ G/K), that is, (1→ L). Therefore,
(1→ L) belongs to Φn+1(D) as claimed.

Let us now look at the transitivity condition, i.e., let us check that for any arrow (H → K) and
(K → L) in Φn+1(D), the arrow (H → L) is also in Φn+1(D). By induction on a smaller cube, it
is immediate to see that the transitivity condition holds when H 6= 1 or L 6= G. So we only need
to prove transitivity for arrows (1→ K) and (K → G).

First, note that the restriction condition on the (smaller) diagram DK
1 implies that all arrows

(1 → H) are in Φn+1(D) if H ⊂ K. So let us consider a subgroup H 6= G such that H ∩K 6= H.
By the restriction condition, since the arrow (K → G) is in Φn+1(D), so is the arrow (H∩K → H).
Since H ∩ K ⊂ K, the arrow (1 → H ∩ K) is in Φn+1(D). By transitivity in the diagram DH

1

it follows that the arrow (1 → H) is in Φn+1(D). So we have proved that Φn+1(D) contains all
arrows (1→ H), except maybe if H = G.

Now we are left with checking that Φn+1(D) contains the big diagonal. Indeed, if it did not,
then by definition of Φn+1 it would mean that D has an arrow (L→ G) for some subgroup L. This
would imply that Φn+1(D) has no arrow (1 → G/L), which contradicts the fact Φn+1(D) must
contain all arrows (1→ H) for H 6= G. So Φn+1(D) contains the big diagonal, which concludes the
proof that Φn+1 preserves the transitivity condition. q.e.d.

Proposition 4.8.

1. The map Φn interchanges the subsets Comp0(G) and Compn(G).

2. The map Φn is an involution.

3. Φn(Compd(G)) = Compn−d(G) for any 0 ≤ d ≤ n.

Proof.

1. This is immediate from the construction of Φn.

2. Recall from the proof of Proposition 4.6 that Φn acts as the complement on cube edges, with
vertices swapped as follows: H 7→ G/H. Therefore Φ2

n acts as the identity on cube edges.

We need to show that it acts the same way on diagonals. If n = 1, this is clear. Now assume
n ≥ 2 and consider D ∈ Nn. By induction, Φ2 is the identity on all diagonals, except maybe
the big diagonal (1→ G).



12 S. Balchin, D. Bearup, C. Pech, C. Roitzheim

Assume first (1 → G) ∈ D, i.e D ∈ Compn. Then by (1) we get that Φn(D) ∈ Comp0,
and again that Φ2

n(D) ∈ Compn, so that (1 → G) ∈ D. Now if (1 → G) 6∈ D, then
D 6∈ Compn. Then by (1) we get that Φn(D) 6∈ Comp0, and again that Φ2

n(D) 6∈ Compn, so
that (1→ G) 6∈ D.

3. Consider a diagram D ∈ Compd(G) for G = Cp1...pn . Without loss of generality we may
assume thatG0 = Cp1...pn−d

, and we know from Proposition 4.5 that arrows inD are contained
in the union of the facets B1, . . . , Bn−d and of D0 = DG

G0 . We also know that D contains the
arrow (G0 → G). Let E := Φn(D). We claim that E0 = EGG/G0 and that the arrows of E

are either arrows of E0 or contained in the bottom facets Bn−d+1, . . . , Bn. By definition, this
would imply that E ∈ Compn−d(G).This is equivalent to proving that E contains the arrow
(G/G0 → G), and contains no arrow (K → L) with L ⊃ G/G0 and K 6⊃ G/G0.

Consider the induced diagram DG0

1 . In this diagram, there are no arrows adjacent to G0.
Indeed, such an arrow would not be contained in D0, nor in the union of facets B1, . . . , Bn−d.

Therefore, the image E0 of DG0

1 by Φn must contain the big diagonal of E0, namely, the
arrow

(G/G0 = Cpn−d+1...pn → G).

Now assume by contradiction that it contains an arrow (K → L) with L ⊃ G/G0 and
K 6⊃ G/G0. Let M := K ∩ G/G0. As in the proof of Proposition 4.5, we deduce that E
contains an arrow (M → G). Therefore, D has no arrow to G/M . Now note that G/M
strictly contains G0. Since D contains the arrow (G0 → G), the restriction condition implies
that D also contains the arrow

(G0 ∩G/M = G0 → G/M),

which is a contradiction. This concludes the proof. q.e.d.

Corollary 4.9. Let G = Cp1···pn , then

|Nn| =



(n−1)/2∑
i=0

2× |Compi(G)| if n is odd,

n/2−1∑
i=0

2× |Compi(G)|+ |Compn/2(G)| if n is even.

5 Enumerating diagrams for G = Cpqr

We will now use the results of the previous section to enumerate the number of N∞-operads for
G = Cpqr. Using a code (which does not make use of any additional structure), we have calculated
that there are 450 such, however, we will now show this using the theory as opposed to naive
computational effort. From Proposition 4.8 we know that it is enough to compute the cardinalities
of Comp0(Cpqr) and Comp1(Cpqr), and then |N3| = 2(|Comp0(Cpqr)|+ |Comp1(Cpqr)|).

Lemma 5.1. The size of Comp3(Cpqr) is 198.
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Proof. Recall that Comp0(Cpqr) = Comp3(Cpqr) consists of all N∞-diagrams containing the arrow
(1→ Cpqr) and therefore, by restriction, all arrows (1→ H) for all H < Cpqr. Therefore, we must
count the possibilities of filling in the three two-dimensional facets containing Cpqr in a manner that
gives an N∞-diagram. We distinguish the different cases according to how many “edge” arrows
(Cij → Cpqr) there are in anN∞-diagram before considering the possibilities for the three top facets.
We will then view the N∞-diagram on a top facet as an N∞-diagram for the two-dimensional case
with top vertex Cpq, as we will also see in the figures that follow.

pqr

p

qr

pqpr

qr

Figure 7. The three facets of the three dimensional cube containing Cpqr. The arrows (Cij →
Cpqr), which are each shared by two facets, are indicated with solid lines.

Case 1. There are no arrows connecting to the vertex Cpqr from a Cij . This restricts the N∞-
diagrams that could occur on the three top facets to those which do not contain the top arrows
(Cp → Cpq) or (Cq → Cpq) when considered as N∞-diagrams for the two-dimensional case. There
are five such N∞-diagrams (Fig. 8.) and three faces to fill, thus 53 = 125 remaining options.

1

p

q

pq

1

p

q

pq

1

p

q

pq

1

p

q

pq

1

p

q

pq

Figure 8. The two dimensional N∞-diagrams which can occur in a facet which contains no top
arrows.

Case 2. There is one arrow (Cij → Cpqr). Thus, one of the three top facets contains no top
arrows (Cp → Cpq) or (Cq → Cpq) while the other two contain one arrow of those two. There are
two N∞-diagrams of Cpq satisfying the latter condition (Fig. 9.), and there is a three-fold rotational
symmetry, thus we have 3 · 5 · 22 = 60 remaining options.

Case 3. There are two arrows of the form (Cij → Cpqr) connecting to the vertex Cpqr. Thus, one
of the three top facets contains both (Cp → Cpq) and (Cq → Cpq) while the other two facets contain
one such arrow. There is only one N∞-operad of Cpq satisfying the former condition (Fig. 10.), and
there is a three-fold rotational symmetry, thus we have 3 · 22 = 12 remaining options.
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1

p

q

pq

1

p

q

pq

Figure 9. The two dimensional N∞-diagrams which can occur in a facet which contains one top
arrow (thicker line).

1

p

q

pq

Figure 10. The two-dimensional N∞-diagrams which can occur in a facet which contains both
top arrows (thicker lines).

Case 4. All three arrows connecting to the vertex Cpqr are present. Thus all three top facets
must contain two arrows (Cp → Cpq) and (Cq → Cpq), and so there is only one remaining option.

These cases are disjoint and account for all possible N∞-diagrams, and the possibilities contained
therein sum to 198. q.e.d.

Lemma 5.2. The size of Comp1(Cpqr) = Comp2(Cpqr) is 27.

Proof. Without loss of generality, the only arrow adjacent to Cpqr is (Cpq → Cpqr). By restriction,
our N∞-diagram therefore also contains the parallel edges (Cq → Cqr), (Cp → Cpr) and (C1 → Cr).

The only other arrows that could occur are in the facets containing 1 and Cpr and 1 and Cqr.
We distinguish the possible cases according to how many of those facets contain a diagonal arrow
(C1 → Cpr) or (C1 → Cqr).

1 p

r

pq

qr pqr

Figure 11. The arrows induced by restriction (solid lines) if (Cpr → Cpqr) is present (thicker line).
An N∞-diagram containing (Cpr → Cpqr) in Comp1(Cpqr)can only include additional arrows in the
gray facets.

Case 1. None of the two facets contain a diagonal. There is only one such case.
Case 2. One facet contains a diagonal, and the other one does not. The one that does not

contain a diagonal can therefore contain no further arrows, whereas the other one is one of the two
possible diagrams in Figure 12. This therefore accounts for four possibilities.
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Case 3. Both facets contain their diagonal. Therefore, each of them is one of the two diagrams
in Figure 12. This gives us four possibilities.

�

�

�

�

�

�

�

�

Figure 12. The possible forms of an N∞-diagram containing the diagonal and two parallel arrows
(thicker lines).

In all, we see that we have nine possibilities for N∞-diagrams in Comp1(Cpqr) containing the
arrow (Cpq → Cpqr), so also nine for (Cpr → Cpqr) and nine for (Cqr → Cpqr). q.e.d.

Corollary 5.3. |N3| = 198× 2 + 27× 2 = 450.

Proof. By Corollary 4.9, we have |N3| = |Comp3(Cpqr)| × 2 + |Comp1(Cpqr)| × 2. q.e.d.

Remark 5.4. We finish this paper by the consideration for Nn for n > 3. Although we have
presented a way of decomposing the problem into enumerating dn/2e disjoint pieces, the way
forward is still not clear. Indeed, the reasoning to get the values of 198 and 27 in the n = 3 case
required studying in depth the cases appearing for n = 2. Therefore even for n = 4, one would
have to be able to analyse the 450 options for n = 3 on a case-by-case basis. Computationally, we
know that N4 = 5, 389, 480.

As such, the results appearing in this paper should be seen as a structural result as opposed to
an algorithm for computation.
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