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ABSTRACT
In this study, a novel integrated fault estimation (FE) and fault tolerant control
(FTC) design approach is developed for a system with time-varying delays and ad-
ditive fault based on a dynamic event-triggered communication mechanism. The
traditional static event-triggered mechanism is modified by adding an internal dy-
namic variable to increase the inter-event interval and decrease the amount of data
transmission. Then, a dynamical observer is designed to estimate both the system
state and the unknown fault signal simultaneously. A fault estimation-based FTC
approach is then given to remove the effects generated by unknown actuator faults,
which guarantees that the faulty closed-loop systems are asymptotical stable with
a disturbance attenuation level γ. By theory analysis, the zeno phenomenon is ex-
cluded in this study. Finally, a real aircraft engine example is provided to illustrate
the feasibility of the proposed integrated FE and FTC method.
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1. Introduction

Feedback control systems for engineering applications including power systems, man-
ufacturing systems, and chemical processes strongly depend on actuator, sensor and
data acquisition/interface components to ensure proper interactions between the phys-
ical controlled systems and control devices. Faults in some components of these system
may lead to a drastic reduction of system performance or loss of stability, which even
cause the physical system damage. Therefore, there is a growing demand for reliability,
safety and fault tolerance in control systems ‘(Boem, Ferrari, Parisini, & Polycarpou,
2013; Guan, Yang, & Jiang, 2019)’. It is necessary to design control systems which are
capable of tolerating potential faults in order to improve the reliability and availabil-
ity, while providing a desirable performance. These types of control systems are often
known as fault tolerant control systems, which are able to accommodate component
faults automatically. They are capable of maintaining the overall system stability and
acceptable performance even in the presence of faults. In other words, a closed loop
control system which could tolerate component malfunctions while maintaining desir-
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able performance and system stability, is said to be a fault tolerant control system
‘(Du, Cocquempot, & Jiang, 2019; Shao, Yang, & Jiang, 2018)’. Moreover, actuator
faults frequently occur in practical engineering due to saturation, bias, stuck or loss of
effectiveness. Thus, fault diagnosis and FTC against actuator faults are of extensive
application and practical significance.

Generally speaking, a fault tolerant control (FTC) system can be divided into two
categories: passive and active. In the past few decades, much attention has been paid
to these two types of different FTC methods. In ‘(Yang, Shi, Li,& Li, 2014)’, an active
FTC method is proposed for a class of T-S fuzzy systems based on the delta operator
approach, which guarantees that the closed-loop fuzzy delta operator system is asymp-
totically stable. In ‘(Liu, Ho, & Shi, 2015)’, an adaptive backstepping control-based
FTC strategy is developed for a class of continuous-time Markovian jump systems
with matched and mismatched external disturbances, and the stochastic stability of
the faulty closed-loop system is guaranteed. In ‘(Chen, Shi, & Liu, 2019)’, the fault
estimation (FE) problem is investigated for a class of Markovian jump systems by us-
ing two types of adaptive observer methods, which avoids the sliding surface switching
problem for jumping systems based on sliding mode observer approaches. In ‘(Yoo,
2016)’, a distributed fault detection and accommodation scheme is proposed for a
class of large-scale nonlinear systems with unknown interaction time delay fault to
guarantee that the state tracking errors of each subsystem converge to a small neigh-
borhood of the origin. In ‘(Zhang, Jiang, Shi, & Pan, 2019)’, a novel distributed fault
estimation approach is developed for the interconnected systems with external dis-
turbances by using unknown input observer (UIO) technique, in which the external
disturbance is completely decoupled to improve the fault estimation performance. In ‘(
Li, & Yang, 2014; Yan, & Edwards, 2007, 2008; Yang, & Wang, 2015)’, fault detection
and isolation (FDI) strategies are proposed for a class of nonlinear control systems
with uncertainties using a bank of FDI observers, where FTC is not considered. In the
aforementioned work, various components of the controlled system including actuator,
controller, filter and sensor are all linked directly.

With the rapid development of digital network technology, networked control sys-
tems (NCSs) have obtained considerable research interests and extensive applications
due to the advantages of simple installation, low cost and flexibility ‘( Li,& Yang,
2015)’. It is very important to study the fault diagnosis and FTC approach for net-
worked control systems. In ‘(Mao, Jiang, & Shi, 2010)’, the nonlinear NCSs are trans-
formed into two subsystems by decoupling the system faults. Then a FTC strategy
is designed for the NCSs by using impulsive system technique. The authors in ‘(Qiu,
Jiang, Wen, & Mao, 2015)’ investigate the problem of fault estimation and accom-
modation for a class of networked control systems with nonuniform sampling time
intervals. An observer-based reliable adaptive output tracking control scheme is de-
signed in ‘(Sakthivel, Selvaraj, Lim, & Karimi, 2017)’ for a class of networked control
systems with external disturbance and actuator failure by utilizing the equivalent-
input disturbance technique. The fault estimation problem is studied in ‘(Song, Hu,
Chen, Ji, & Liu, 2016)’ for NCSs in the simultaneous presence of packet dropouts
and stochastic nonlinearity via recursive approach. The co-design of fault detection
filter and controller is addressed for networked unmanned surface vehicles in ‘(Wang,
& Han, 2016)’.

It should be noted that the system information in communication architecture of
NCSs is exchanged and transmitted through a shared communication network, and the
sampling/communication mechanism plays a critical role in the analysis and synthesis
of networked systems ‘(Liu, & Yang, 2018)’. Generally, control/filtering tasks of NCSs
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are executed in a periodic way, which paves an effective way to analyze and design
networked systems by applying the fruitful sample data system theory ‘(Su, Liu, Shi,
& Song, 2018)’. Nevertheless, time-triggered mechanism increases the burden of com-
munication network and the consumption of system energy because a large number of
redundant data packets are transmitted over shared communication network ‘( Chen,
Sun,& Karimi, 2019; Ryan, Heffernan, & Leen, 2006; Saha, Roy, & Ramesh, 2016)’.
As an attractive alternative to time-driven scheme, the static event-triggered mecha-
nism (ETM) has been developed recently and obtained persistent research attention
due to its effective performance in reducing the amount of data transmission ‘(Liu,
Su, Shi, Nguang, & Shen, 2019; Liu, Wang, He, & Zhou, 2017; Pan, & Yang, 2019;
Wu, & Zhang, 2018)’. The authors in ‘(Liu, Su, Shi, Nguang, & Shen, 2019)’ design a
nonlinear fault detection filter for networked switched control systems with repeated
scalar nonlinearities and stochastic disturbances based on an event-triggered scheme.
A sliding mode controller is designed for uncertain systems with time-varying state de-
lays and unmatched nonlinearities in ‘(Coutinho, Oliveira, V. S. Cunha, 2013)’, which
guarantees finite-time convergence of the tracking error to zero. In ‘(Cunha, Costa,
Hsu,& Oliveira, 2015)’ an output-feedback control algorithm is presented based on
output-feedback sliding-mode control for systems subjected to actuator and internal
dynamics failures. The authors in ‘(Liu, Wang, He, & Zhou, 2017)’ design a novel
filter for a class of stochastic nonlinear systems under sensor saturation case by using
a recursive algorithm and the event-triggered measurement transmissions. In ‘(Wu, &
Zhang, 2018)’, a scheduling and FTC co-design approach is developed for a nonlinear
networked control system with the Markovian delay and packet disordering by using
the adaptive approximation technique. Nevertheless, to the best of authors’ knowl-
edge, the existing research results on event-triggered fault estimation and FTC are
still quite limited in the literature, and the available results on event-triggered FTC
mainly focus on passive FTC. It needs to be mentioned that passive FTC strategy has
limited fault-tolerant capacities since reconfiguration of controller is not utilized.

The direct use of fault estimation (FE) without the need of fault detection procedure
and controller switching mechanism provides the great convenience, which has a very
broad application prospect in the design of FTC system. To the best of our knowledge,
the results about the integrated FE/FTC design for the faulty time delay system are
limited, which remains challenging and motivates us to do this study. Recently, Lan and
Patton, et. al. propose an integrated FE/FTC strategy for a 3-DOF helicopter system
in actuator fault case, such that the reliability and desirable control performance are
achieved. Motivated by the result in ‘(Lan, Patton, & Zhu, 2017)’ and the discussion
above, the integrated FE/FTC approach for a class of linear time delay systems is
investigated by employing dynamic event-triggered mechanism. The method proposed
in this paper not only improves the reliability and security of the system with time-
varying delays and additive actuator fault, but also need much less communication
resources than traditional static event-triggered mechanisms. The main contributions
of this paper are stated as follows:

(i) By modifying the static event-triggered mechanism, a dynamic event-triggered
communication scheme is introduced in the framework of integrated FE and FTC to
save the limited communication resources.

(ii) A fault/state estimation observer design method is proposed to estimate the
state variable and unknown actuator fault simultaneously. Meanwhile, an observer-
based fault tolerant controller is developed to offset the negative impact of actuator
fault in the closed loop system, and achieve the target of integrated FE/FTC design.

(iii) The inter-event intervals of dynamic event generator are proved to have a
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positive lower bound, which guarantees the zeno phenomenon is excluded in the closed-
loop system.

It should be noted that Zeno phenomenon exists in hybrid systems, which can be de-
scribed informally as the system making an infinite number of jumps in a finite amount
of time. It has been discussed in the existing work, see for example ‘( Abdelrahim,
Postoyan, Daafouz, & Nesic, 2016)’.

The rest of this work is organized as follows. In Section 2, the framework of in-
tegrated FE and FTC is formulated for linear time delay systems under dynamic
event-triggered communication case. In Section 3, the integrated design criteria of
state/fault estimation observer, fault tolerant controller and dynamic ETM are given.
Meanwhile, the existence of a positive lower bound on inter-event intervals ensures
that zeno behavior is excluded. Section 4 demonstrates the simulation results and
Section 5 concludes the paper.

2. Problem Formation

Consider the following continuous-time linear time delay system ‘(Ge, Frank & Lin,
1996; Wu, Weng, Tian, & Shi, 2008)’ ẋ(t) = (A+∆A)x(t) +Aτx(t− τ(t)) +B(u(t) + f(t)) +Dd(t)

y(t) = Cx(t)
x(t) = φ(t), t ∈ [−τ̄ , 0]

(1)

where x(t) ∈ Rn is the state vector, x(t − τ(t)) ∈ Rn is the delayed state vector.
y(t) ∈ Rp is the measurable output, u(t) ∈ Rm is the control input, f(t) ∈ Rm denotes
the time varying function produced by unknown additive actuator fault. d(t) ∈ Rl

denotes the unknown disturbance, which belongs to L2[0,+∞). A, Aτ , B, C and D are
known constant matrices with appropriate dimensions. ∆A = E∆HT is the considered
parameter uncertainty where ∆H represents uncertainty satisfying ∆HT∆H ≤ I, E
and T are two known matrices with appropriate dimensions. τ(t) is the known time-
varying delay that satisfies 0 < τ(t) ≤ τ̄ and τ̄ is a known positive constant. φ(t) is the
initial condition related to time delay, which is a continuous vector-valued function
defined in [−τ̄ , 0].

Define the output error of system (1) as follows

ey(t) = y(tk)− y(t) (2)

Here ey(t) is introduced to trigger the output update inside of the event generator
(see Figure 1). It is not the observation error. In order to save the communication
and energy resources, an event generator is adopted in this study, see Figure 1, where
ZOH denotes the zero order hold. When only the event-triggered condition is satisfied,
the sampling measurement is transmitted through the shared communication network.
Let tk (k ∈ N, t0 = 0) be the triggering instants of event generator. Then, consider
the dynamic ETM described by ‘(Girard, 2015)’

tk+1 = inf{t > tk | µ(t) + α[βyT (t)Ξy(t)− eTy (t)Ξey(t)] ≤ 0} (3)

where the constants α > 0 and 0 < β < 1 are the design parameters, Ξ > 0 is a
symmetric positive definite matrix. µ(t) ∈ R is the internal dynamic variable with the
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following dynamics ‘(Girard, 2015)’

µ̇(t) = −λµ(t) + βyT (t)Ξy(t)− eTy (t)Ξey(t) (4)

where λ > 0 is a positive scalar and initial condition µ(0) = µ0 ≥ 0.

Figure 1. The diagram of event-triggered integrated FE and FTC strategy

The parameters α, β and λ of (3) and (4) are determined later. After the appropriate
parameters are designed, the ideal event-triggered time intervals can be obtained.

According to the property of the zero order hold (ZOH), the input signal of FE
observer is described by

ȳ(t) = y(tk), t ∈ [tk, tk+1) (5)

Notice that ȳ(t) is the latest sample value of y(t) at time tk. For the purpose of the
integrated FE/FTC scheme design, a state/fault estimation observer designed using
the event-triggered input for t ∈ [tk, tk+1) is described by ‘(Wang, Fei, Wang, & Liu,
2019)’

˙̂x(t) = Ax̂(t) +Aτ x̂(t− τ(t)) +Bu(t) + Lêy(t) +Bf̂(t) (6)

˙̂
f(t) = E1êy(t) + E2

˙̂ey(t) (7)

ŷ(t) = Cx̂(t) (8)

where êy(t) = ȳ(t)− ŷ(t), x̂(t) ∈ Rn is the estimated state, x̂(t− τ(t)) ∈ Rn represents

the estimated delayed state, f̂(t) ∈ Rm is the estimated fault function, ŷ(t) ∈ Rp

denotes the observer output. L, E1 and E2 are unknown gain matrices to be designed
later.

Based on (6)-(8), a fault compensation-based integrated fault tolerant controller is
designed as ‘(Wang, Fei, Wang, & Liu, 2019)’

u(t) = Kx̂(t)−B†Bf̂(t) (9)

where K ∈ Rm×n is the gain matrix to be designed later, and B† ∈ Rm×n is the
pseudo inverse matrix of B.
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Remark 1. It should be noted that the term ˙̂ey(t) is used in equation (7), where
êy(t) = ȳ(t) − ŷ(t). It is clear to see from (5) that êy(t) is usually not continuous

at tk which results in that ˙̂ey(t) does not exist at tk. Therefore, the right hand side
of equation (7) is not continuous. In this case, the derivative of êy(t) as well as the
solution of the equation (7) are defined in Filippov sense ‘(Filippov, 1983)’. It should be
emphasized that the equation (7) is only used for analysis. In practical implementation,

only f̂(t) is required which, from (7), can be obtained by

f̂(t) = E1

∫ t

0
êy(s)ds+ E2 (êy(t)− êy(0))

so this does not pose a problem.
Define the following new error variables and the augmented variables

x̃(t) = x(t)− x̂(t), x̃τ (t) = x(t− τ(t))− x̂(t− τ(t))

f̃(t) = f(t)− f̂(t), ỹ(t) = y(t)− ŷ(t), G(t) = [∆Ax(t), 0, ∆Ax(t)]T

h(t) = [x̃T (t), f̃T (t), xT (t)]T , d̄(t) = [dT (t), ḟT (t), ėTy (t), ˙̃yT (t)]T

Then, from (1)-(9), the following augmented system is obtained after some manipula-
tions ‘(Dong, Wang, Ding, & Gao, 2015; Onyeka, Yan, Mao, Jiang & Zhang, 2019)’{

ḣ(t) = Āh(t) + Āτh(t− τ(t))+G(t) + D̄d̄(t) + F̄ ey(t)
z(t) = h(t)

(10)

where z(t) is the output of augmented system,

Ā =

[
A1 0
A2 A3

]
, A1 = Ā1 − L̄C̄, Ā1 =

[
A B
0 0

]
, A2 =

[
−BK B

]
A3 = A+BK, F̄ =

[
−L̄
0

]
, D̄ =

[
D1

D2

]
=

[
D11 D12

D21 D22

]
, L̄ =

[
L
E1

]
D11 =

[
D 0
0 I

]
, D12 =

[
0 0
−E2 −E2

]
, D21 =

[
D 0

]
, D22 =

[
0 0

]
C̄ =

[
C 0

]
, Āτ =

[
Āτ1 0

0 Aτ

]
, Āτ1 =

[
Aτ 0
0 0

]
The main objective of this paper is to design an integrated FE/FTC strategy for the
continuous-time linear time delay systems (1) using dynamic event-triggered commu-
nication mechanism, namely, to design fault estimation observer (6)-(8), fault-tolerant
controller (9), and dynamic event-triggered mechanism (3) such that ‘(Gao, Jiang, Shi,
Liu, & Xu, 2012)’

(i) the derived augmented systems (10) are asymptotical stable when d̄(t) = 0;
(ii) under the zero initial state condition and for arbitrary non-zero d̄(t) ∈

L2[0,+∞), z(t) satisfies the following H∞ disturbance attenuation level γ∫ ∞
0

zT (t)z(t)dt ≤ γ2

∫ ∞
0

d̄T (t)d̄(t)dt (11)

Some necessary Assumptions and Lemmas are given at first, which will be used to
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further analysis and design.
Assumption 1 ‘( Ma, Jin, & Gu, 2015; Wang, Fei, Wang, & Liu, 2019)’

It is assumed that the fault function and its derivative are uniformly bounded, i.e.,
‖f(t)‖ ≤ f0, ‖ḟ(t)‖ ≤ f1 for all t ≥ 0, where f0 and f1 are two known positive
constants.

Assumption 2 ‘(Yang, Huang, Jiang, & Polycarpou, 2019)’ It is assumed
that (A,B) is controllable.

It should be noted that in Assumption 1, it is required that the fault and its deriva-
tive are bounded, which is reasonable in reality. It should be emphasized that the
bounds are not required to be known in this work. The Assumption 2 is essential for
a control system.

Lemma 1 ‘(Wang, & Yang, 2015)’. It is supposed that there exist two continuous
functions ν1(t) and ν2(t), and function g(t, ν(t)) is continuously differentiable for t > 0
and monotonous increasing for ν(t). If the following conditions are satisfied

ν̇1 = g(t, ν1(t)), ν1(t0) = ν10, ν̇2(t) ≤ g(t, ν2(t)), ν2(t0) ≤ ν10

then ν2(t) ≤ ν1(t) for t > 0.
Lemma 2 ‘(Fei, Guan, & Gao, 2018)’. For a given full-column rank matrix

S ∈ Rn×m, there exist two orthogonal matrices M ∈ Rn×n and N ∈ Rm×m such that
the following condition holds

MSN =

[
M1

M2

]
SN =

[
Π
0

]
(12)

where M1 ∈ Rm×n , M2 ∈ R(n−m)×n, Π = diag{κ1, · · · , κm}, κj (j = 1, 2, · · · ,m) are
the nonzero singular values of matrix S. If matrix G ∈ Rn×n has the following form

G = MT

[
G1 0
0 G2

]
M = MT

1 G1M1 +MT
2 G2M2 (13)

where G1 > 0 and G2 > 0, there is a nonsingular matrix H ∈ Rm×m satisfying
GS = SH.

Lemma 3. Consider µ(t) in (3) being a locally Lipschtiz continuous K∞ function,
β ∈ (0, 1), α > 0, Ξ > 0, let y, ey, µ be given by (1)-(4). Then, for t > 0, µ(t) +
α[βyT (t)Ξy(t)− eTy (t)Ξey(t)] ≥ 0 and µ(t) ≥ 0.

Proof: By construction, the ETM (3) ensures µ(t)+α[βyT (t)Ξy(t)−eTy (t)Ξey(t)] ≥
0 for t > 0. If α = 0, µ(t) ≥ 0 holds. Then, assume that α 6= 0, the first inequality

gives us βyT (t)Ξy(t)− eTy (t)Ξey(t) ≥ −µ(t)
α . From (4), one has that for t > 0

µ̇(t) ≥ −(λ+
1

α
)µ(t), µ0 ≥ 0

Then by the solution of first-order linear differential equation and Lemma 1, it follows
that µ(t) ≥ µ0e

−(λ+ 1

α
)t. Therefore µ(t) ≥ 0 holds for t > 0.

Remark 2. The internal dynamic variable µ(t) in (3) can be considered as a filtered
value of βyT (t)Ξy(t) − eTy (t)Ξey(t). If the internal dynamic variable µ(t) is removed,
the dynamic ETM in (3) will be transformed into the traditional static ETM as follows
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‘(Wang, Fei, Wang, & Liu, 2019)’:

tk+1 = inf{t > tk | βyT (t)Ξy(t)− eTy (t)Ξey(t) ≤ 0}

which means that the static event-triggered strategy is regarded as a special case of
dynamic ETM (3) as α → +∞. Compared with static event-triggered scheme, it is
not needed for dynamic ETM that βyT (t)Ξy(t) − eTy (t)Ξey(t) remains nonnegative
by means of internal dynamic variable µ(t). Therefore, the introduction of internal
variable µ(t) will be helpful for enlarging the time intervals between two consecutive
triggering events.

3. Main Results

3.1. Integrated FE/FTC scheme design

In this section, the first result of this study is given to ensure asymptotical stabil-
ity with a prescribed H∞ disturbance suppression level for the resulting augmented
systems (10).

Theorem 1. For a givenH∞ disturbance attenuation level γ > 0, and the integrated
FE and FTC in (6)-(9), if there exist three positive definite symmetric matrices P , Q
and Ξ with a given scalar 0 < β < 1/2 such that the following inequality holds

Ῡ =


Ῡ11 PĀτ PD̄ P F̄ P Ē
∗ −Q 0 0 0
∗ ∗ −γ2I 0 0
∗ ∗ ∗ −Ξ 0
∗ ∗ ∗ ∗ −I

 < 0 (14)

where Ῡ11 = PĀ+ĀTP + T̄ T T̄ +I+Q+β ~CTΞ~C, ~C = [0 0 C], I is a unit matrix with
appropriate dimension. Then, the augmented systems (10) are asymptotically stable
with a prescribed H∞ disturbance attenuation level γ.

Proof. Firstly, let’s analyze the dynamic characteristics of the internal dynamic
variable µ(t) for t > 0. It is easy to know from (3)-(4) that

µ̇(t) + λµ(t) = βyT (t)Ξy(t)− eTy (t)Ξey(t) ≥ −
µ(t)

α

with µ(0) = µ0 ≥ 0.
According to Lemma 3, the following inequalities hold

µ(t) ≥ µ0e
−(λ+ 1

α)t, µ(t) ≥ 0 (15)

Construct the Lyapunov-Krasovskii functional as follows

V (t) = hT (t)Ph(t) +

∫ t

t−τ(t)
hT (s)Qh(s)ds+ µ(t) (16)

where P > 0 and Q > 0 are two positive definite matrices, and µ(t) ≥ 0 is guaranteed
by (15).
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Consider systems (10). Taking the first derivative of V (t) yields

V̇ (t) = hT (t)(PĀ+ ĀTP )h(t) + 2hT (t)PĀτh(t− τ(t))

+2hT (t)PG(t) + 2hT (t)PD̄d̄(t)

+2hT (t)PF̄ey(t) + hT (t)Qh(t)− hT (t− τ(t))Qh(t− τ(t)) + µ̇(t)

According to ∆A = E∆HT and ∆HT∆H ≤ I, it is easily known that

2hT (t)PG(t) = 2hT (t)P

 E
0
E

∆HTx(t)

≤ hT (t)P

 E
0
E

 E
0
E

T Ph(t) + xT (t)T T∆HT∆HTx(t)

≤ hT (t)P

 E
0
E

 E
0
E

T Ph(t) + xTT TTx(t)

, hT (t)PĒĒTPh(t) + hT T̄ T T̄ h(t) (17)

where Ē = [ET , 0, ET ]T and T̄ = [T, 0, 0].
Substituting (17) into V̇ (t), the following inequality could be obtained that

V̇ (t) ≤ hT (t)(PĀ+ ĀTP + PĒĒTP + T̄ T T̄ )h(t) + 2hT (t)PĀτh(t− τ(t))

+2hT (t)PD̄d̄(t) + 2hT (t)PF̄ey(t) + hT (t)Qh(t)

−hT (t− τ(t))Qh(t− τ(t))− λµ+ βyT (t)Ξy(t)− eTy (t)Ξey(t) (18)

where equation (4) is used to obtain the last expression above.
When d̄(t) = 0, it follows from (18) that

V̇ (t) ≤ ξT (t)Υξ(t)

where ξ(t) = [hT (t), hT (t− τ(t)), eTy (t)]T and

Υ =

 PĀ+ ĀTP + PĒĒTP + T̄ T T̄ +Q+ β ~CTΞ~C PĀτ PF̄
∗ −Q 0
∗ ∗ −Ξ


It is easy to see that Υ < 0 if Ῡ < 0 in (14). According to the Lyapunov stability
analysis, from condition (14), the resulting augmented systems (10) are asymptotically
stable.

In order to analyze the disturbance suppression performance, an H∞ performance
function J(t) is defined as

J(t) =

∫ ∞
0

(zT (t)z(t)− γ2d̄T (t)d̄(t))dt (19)

where γ is a positive constant.
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From the above proof, we know that systems (10) are asymptotically stable if Υ are
negative-definite. So we can conclude that d̄(t) ∈ L2[0,+∞), and for any nonzero d̄(t)
the following equation can be obtained under zero initial condition

J(t) =

∫ ∞
0

(V̇ (t) + zT (t)z(t)− γ2d̄T (t)d̄(t))dt− V (∞)

≤
∫ ∞

0
(V̇ (t) + zT (t)z(t)− γ2d̄T (t)d̄(t))dt (20)

Substituting (18) into (20), the following inequality is derived

J(t) ≤ 2hT (t)Pḣ(t) + hT (t)Qh(t)− hT (t− τ(t))Qh(t− τ(t))− λµ+ βyT (t)Ξy(t)

−eTy (t)Ξey(t) + hT (t)h(t)− γ2d̄T (t)d̄(t) ≤ ξ̄T (t)~Υξ̄(t) (21)

where ξ̄(t) = [hT (t), hT (t− τ(t)), d̄T (t), eTy (t)]T and

~Υ =


Ῡ11 + PĒĒTP PĀτ PD̄ P F̄

∗ −Q 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −Ξ


with Ῡ11 is defined in (14).

By applying the Schur complement into the inequality Ῡ < 0 in (14), it could be

seen that J(t) ≤ ξ̄T (t)~Υξ̄(t) < 0. It is known from (21) that the H∞ disturbance
suppression performance (11) is satisfied. The proof of Theorem 1 is completed.

Note that, Theorem 1 only analyzes the stability of the augmented systems (10),
but the unknown gain parameters of the integrated FE and FTC scheme (6)-(9) can
not be solved from (14) directly. In the following, the feasible design procedures are
given by Theorem 2 and Theorem 3.

Theorem 2. For a givenH∞ disturbance attenuation level γ > 0, and the integrated
FE and FTC scheme designed as (6)-(9), if there exist positive definite matrices P1,
P2, Q1, Q2 and Ξ, real matrices L̃, K̄, Ē2 and a nonsingular matrix H such that the
following conditions are satisfied

W =



W11 W12 P1Āτ 0 W15 W16 P1Ē1 0
∗ W22 0 P2Aτ W25 0 0 P2E
∗ ∗ −Q1 0 0 0 0 0
∗ ∗ ∗ −Q2 0 0 0 0
∗ ∗ ∗ ∗ −γ2I 0 0 0
∗ ∗ ∗ ∗ ∗ −Ξ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


< 0 (22)

P2B = BH (23)

where W11 = (P1Ā1 − L̃C̄) + (P1Ā1 − L̃C̄)T + In+r + Q1+diag{T TT, 0}, W12 =
[−BK̄ P2E1]T , W15 = [P1D11 D̄12], W16 = −L̃, W22 = (P2A + BK̄)T + (P2A +

BK̄) + βCTΞC + In +Q2, W25 = [P2D21 0], D̄12 =

[
0 0
Ē2 Ē2

]
, Ē1 =

[
E
0

]
. Then,

the augmented systems (10) are asymptotically stable with a given H∞ disturbance
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attenuation level γ. Meanwhile, the gain matrices of the designed FE/FTC scheme
(6)-(9) can be obtained by L̄ = P−1

1 L̃, K = H−1K̄, D12 = P−1
1 D̄21.

Proof. In (16), it is assumed that P and Q have the following forms respectively[
P1 0
0 P2

]
,

[
Q1 0
0 Q2

]
where P1 ∈ R(n+m)×(n+m), P2 ∈ Rn×n, Q1 ∈ R(n+m)×(n+r), Q2 ∈ Rn×n. Let L̃ = P1L̄,
K̄ = HK. Meanwhile, it is assumed that there exists a matrix H with appropriate
dimensions satisfying P2B = BH. After some calculations, it is not difficult to find
that the inequality (14) described in Theorem 1 is equivalent to the conditions (22) and
(23). Then Theorem 2 holds by applying the similar proof process used in Theorem 1.

Although Theorem 2 gives the design procedures about the unknown gain matrices
of the integrated FE and FTC (6)-(9), the equality constraint condition (23) is required
in Theorem 2, which makes (22) not to be a LMI and thus can not be solved directly
by LMI toolbox. For this problem, the equality constrain (23) should be converted
into a standard LMI by using Lemma 2.

Consider the fact that rank(B) = m. From Lemma 2, there exist two orthogonal
matrices M ∈ Rn×n, N ∈ Rm×m such that

MBN =

[
M1

M2

]
BN =

[
Γ
0

]
(24)

where M1 ∈ Rm×n, M2 ∈ R(n−m)×n, Γ = diag{ρ1, · · · , ρm} with ρj(j = 1, 2, · · · ,m)
the nonzero singular value of B. Then, according to Lemma 2, if the matrix P2 can be
represented by

P2 = MT

[
V1 0
0 V2

]
M = MT

1 V1M1 +MT
2 V2M2 (25)

where V1 > 0, V2 > 0. There is a nonsingular matrix H ∈ Rm×m satisfying P2B = BH.
Based on the description above, the integrated design procedures of fault estima-

tion observer, fault tolerant controller and dynamic ETM are to be developed by the
following theorem.

Theorem 3. For a givenH∞ disturbance attenuation level γ > 0, and the integrated
FE and FTC scheme designed as (6)-(9), if there exist positive definite matrices P1,
Ξ, V1 and V2, real matrices L̃, K̄, Ē2 such that the following inequality holds

W̄ =



W̄11 Ψ̄12 P1Āτ 0 W̄15 W̄16 P1Ē1 0
∗ W̄22 0 W̄24 W̄25 0 0 W̄28E
∗ ∗ −Q1 0 0 0 0 0
∗ ∗ ∗ −Q2 0 0 0 0
∗ ∗ ∗ ∗ −γ2I 0 0 0
∗ ∗ ∗ ∗ ∗ −Ξ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


< 0 (26)

where W̄24 = MT
1 V1M1Aτ + MT

2 V2M2Aτ , W̄28 = MT
1 V1M1 + MT

2 V2M2 and W̄ij is
derived from the corresponding Wij in (22) by replacing P2 with MT

1 V1M1 +MT
2 V2M2,
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Ē1 =

[
E
0

]
. Then, the augmented systems (10) are asymptotically stable with

a prescribed H∞ disturbance attenuation level γ. In addition, the gain parame-
ters of the designed FE and FTC scheme (6)-(9) can be obtained by L̄ = P−1

1 L̃,
K = NΓ−1V −1

1 ΓNT K̄, D12 = P−1
1 D̄21.

Proof. Similar to the proof in Theorems 1-2, Theorem 3 can be obtained directly.
Remark 3. Compared with the fault estimation observer design approaches devel-

oped in ‘(Chen, Shi, & Liu, 2019; Du, Cocquempot, & Jiang, 2019; Qiu, Jiang, Wen,
& Mao, 2015)’, the input signal ȳ(t) of fault estimation observer (7) is generated by
the event generator and ZOH. It increases the design difficulty of fault estimation ob-
server, and this will be a focus of this study. In addition, the developed results could
effectively alleviate network transmission and online computing pressure compared
with the designed observer in ‘(Chen, Shi, & Liu, 2019; Du, Cocquempot, & Jiang,
2019; Qiu, Jiang, Wen, & Mao, 2015)’.

Remark 4. In ‘(Wang, Fei, Wang, & Liu, 2019)’, the authors propose a fault esti-
mation and fault-tolerant control approach for linear networked control systems, the

fault estimation algorithm is designed as
˙̂
f = E1êy(t), which has poor fault estima-

tion accuracy and usually generates relatively large estimation error. Compared with
the fault estimation result obtained in ‘(Wang, Fei, Wang, & Liu, 2019)’, the fault
estimation algorithm (7) in this paper has been modified by introducing the differen-
tial term ˙̂ey(t), which enhances the fault estimation accuracy. In turn, the closed-loop
fault tolerant control performance has also been improved. It should be noted that
the static event-triggered mechanism is used to the data transmission in ‘(Wang, Fei,
Wang, & Liu, 2019)’, while the dynamic event-triggered mechanism is used to the data
transmission in this study.

The following procedure is used to implement the control scheme given by (1).
Step 1: Verify the full-column rank matrix B by using the criterion rank(B) = m

and find the pseudo inverse matrix B+.
Step 2: Verify the controllability of B by using the criterion rank(B,AB, . . . , An−1

B) = n, which guarantees that Assumption 2 holds.
Step 3: Apply Lemma 2 to remove the equality constraint (23) and then the matrix

P2 can be deduced as shown in (25).
Step 4: Select an appropriate γ such that (26) is resolvable and L̄, K̄ are obtained.

One should start with a large value of γ and then decrease this value incrementally.
Note that γ represents disturbance attenuation level of system and the choice of γ is
not unique.

Step 5: Compute the observer gain matrix L using the equation L̄ = P−1
1 L̃ and

L̄ = [L;E1] in (10).
Step 6: Compute the control gain matrix K using the equation K = NΓ−1V −1

1 Γ
NT K̄.

Step 7: Construct the fault tolerant controller u(t) = Kx̂(t)−B+Bf̂(t) in (9) with
parameters K obtained in step 6 and B+ in step 1.

3.2. Exclusion on Zeno behavior

Note that an infinite times triggered phenomenon within a finite time is the Zeno
phenomenon ‘( Abdelrahim, Postoyan, Daafouz, & Nesic, 2016)’. Thus the minimum
inter-event intervals of the considered event-triggered dynamical systems should be
positive in order to prevent the Zeno phenomenon. The sections above have analyzed

12



the stability of the controlled augmented system (10), and sets of sufficient conditions
have been provided to guarantee that the controlled system (10) is asymptotically
stable. In this subsection, under the assumption that the system (10) is asymptotically
stable which implies that all the states of system (10) are bounded, the existence of a
positive lower bound on inter-event intervals of the considered dynamic event generator
will be investigated.

The following result is now ready to be presented.
Theorem 4. Consider the event-triggered linear time delay systems (1) with the

integrated FE and FTC scheme (6)-(9). Then, the inter-event intervals of dynamic
event-triggered mechanism (3) are bounded by a positive constant δ, which has the
following form

δ =

{
(1/a)ln

(
(a/b̄)ε+ 1

)
, a 6= 0

(1/b̄)ε, a = 0
(27)

where b̄ is a positive constant,

ε =

√√√√√ 2β λmax(Ξ)
λmin(Ξ)(

1− 2β λmax(Ξ)
λmin(Ξ)

)‖y(tk)‖, a = |λmax(A3)| (28)

The matrix A3 is defined in (10) and Ξ satisfies (26).
Proof. Note that ey(t) = y(tk)− y(t), t ∈ [tk, tk+1), it can be seen that

ėy(t) = −ẏ(t) = −C[Ax(t) +Aτx(t− τ(t))+∆Ax(t) +B(u(t) + f(t)) +Dd(t)]

Substituting FTC scheme u(t) = Kx̂(t)−B†Bf̂(t) into the above equality yields

ėy(t) = −C[A3x(t) +A2q(t) +Aτx(t− τ(t))+∆Ax(t) +Dd(t)]

where q(t) = [x̃T (t), f̃T (t)]T .
From Assumption 1, it follows that

‖ėy(t)‖ = ‖CA3x(t) + CA2q(t) + CAτx(t− τ(t)) + ∆Ax(t) + CDd(t)‖
≤ ‖A3‖‖y(tk)− ey(t)‖+ ‖CA2‖‖q(t)‖+ ‖E‖‖T‖‖x(t))‖

+‖CD‖d0 + ‖CAτ‖‖x(t− τ(t))‖
≤ ‖A3‖‖y(tk)‖+ ‖A3‖‖ey(t)‖+ ‖CA2‖‖q(t)‖+ ‖E‖‖T‖‖x(t))‖

+‖CAτ‖‖x(t− τ(t))‖+ ‖CD‖d0

≤ a‖ey(t)‖+ b̄ (29)

where a is given in (28), b = |λmax(A3)|‖y(tk)‖ + ‖CA2‖‖q(t)‖ + ‖CAτ‖‖x(t −
τ(t))‖+‖E‖‖T‖‖x(t))‖+ ‖CD‖d0 and b̄ is the upper bound of b.

Remark 5. Noting that the augmented systems (10) are proved to be asymptot-
ically stable with a prescribed H∞ disturbance attenuation level γ in Theorem 3,
namely, the original system (1), its error system and fault estimated error system
are all asymptotically stable with the H∞ performance. Therefore, y(tk), x̃(t), f̃(t),
x(t − τ(t)) and ey(t) are bounded, that is, there exist a positive constant b̄ and a
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nonnegative function ω(t) such that b ≤ b̄ and ‖ey(t)‖ ≤ ω(t).
Construct a dynamical system

ω̇(t) = aω(t) + b̄, t ∈ [tk, tk+1) (30)

where ω(tk) = 0, a and b are given in (28) and (29), respectively.
Then it is clear to see that

‖ey(t)‖ ≤ ω(t) (31)

where ω(t) is the solution to (30).
The solution of (30) is deduced as

ω(t) =

{
b̄
a(ea(t−tk) − 1), a 6= 0
b̄(t− tk), a = 0

(32)

Considering the dynamic ETM (3), for t ∈ [tk, tk+1), we have

µ(t) + α(βyT (t)Ξy(t)− eTy (t)Ξey(t)) > 0 (33)

From (33), it can be readily known that

‖ey(t)‖ <
1√

λmin(Ξ)

√
βyT (t)Ξy(t) +

‖µ(t)‖
α

≤ 1√
λmin(Ξ)

√
βλmax(Ξ)‖y(t)‖2 +

‖µ(t)‖
α

=

√
β
λmax(Ξ)

λmin(Ξ)
‖y(tk)− ey(t)‖2 +

‖µ(t)‖
λmin(Ξ)α

(34)

From (34), the following inequality holds,

‖ey(t)‖2 < β
λmax(Ξ)

λmin(Ξ)
(‖y(tk)− ey(t)‖)2 +

‖µ(t)‖
λmin(Ξ)α

= β
λmax(Ξ)

λmin(Ξ)
(‖y(tk)‖2 + ‖ey(t)‖2 − 2y(tk)ey(t)) +

‖µ(t)‖
λmin(Ξ)α

≤ 2β
λmax(Ξ)

λmin(Ξ)
‖y(tk)‖2 + 2β

λmax(Ξ)

λmin(Ξ)
‖ey(t)‖2 +

‖µ(t)‖
λmin(Ξ)α

(35)
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which leads to(
1− 2β

λmax(Ξ)

λmin(Ξ)

)
‖ey(t)‖2 ≤ 2β

λmax(Ξ)

λmin(Ξ)
‖y(tk)‖2 +

‖µ(t)‖
λmin(Ξ)α

(36)

or

‖ey(t)‖ ≤

√√√√√2β
λmax(Ξ)

λmin(Ξ)‖y(tk)‖2 + ‖µ(t)‖
λmin(Ξ)α(

1− 2β
λmax(Ξ)

λmin(Ξ)

) (37)

If a 6= 0, it follows from (32) and (37) that

t− tk ≥
1

a
ln

a
b̄

√√√√√2β
λmax(Ξ)

λmin(Ξ)‖y(tk)‖2 + ‖µ(t)‖
λmin(Ξ)α(

1− 2β
λmax(Ξ)

λmin(Ξ)

) + 1



>
1

a
ln

a
b̄

√√√√√2β
λmax(Ξ)

λmin(Ξ)‖y(tk)‖2(
1− 2β

λmax(Ξ)

λmin(Ξ)

) + 1

 =
1

a
ln

a
b̄

√√√√√ 2β
λmax(Ξ)

λmin(Ξ)(
1− 2β

λmax(Ξ)

λmin(Ξ)

)‖y(tk)‖+ 1

 , δ

(38)
If a = 0, it follows that

t− tk ≥
1

b̄

√√√√√2β
λmax(Ξ)

λmin(Ξ)‖y(tk)‖2 + ‖µ(t)‖
λmin(Ξ)α(

1− 2β
λmax(Ξ)

λmin(Ξ)

)

>
1

b̄

√√√√√2β
λmax(Ξ)

λmin(Ξ)‖y(tk)‖2(
1− 2β

λmax(Ξ)

λmin(Ξ)

) =
1

b̄

√√√√√ 2β
λmax(Ξ)

λmin(Ξ)(
1− 2β

λmax(Ξ)

λmin(Ξ)

)‖y(tk)‖ , δ (39)

Consider 0 < β < 1
2
λmin(Ξ)

λmax(Ξ) < 1/2. It is easy to see that δ > 0, which means the Zeno

phenomenon is excluded.
Remark 6. The integrated FE and FTC problem for a linear 3-DOF helicopter

flight control system has been studied in ‘(Lan, Patton, & Zhu, 2017)’. However, the
delayed state variable and dynamic event-triggered mechanism are not considered in
‘(Lan, Patton, & Zhu, 2017)’. Inspired by the work in ‘(Lan, Patton, & Zhu, 2017)’, the
integrated design approach of state/fault estimation observer, fault tolerant controller
and dynamic ETM have been developed for linear time delay systems with actuator
faults in this study, which can be considered as an expansion of the results obtained
in ‘(Lan, Patton, & Zhu, 2017)’.

Remark 7. Compared with active FTC ‘(Qian, Jiang, & Liu, 2016; Qian, Zheng, &
Cheng, 2019; Wang, & Han, 2016; Yang, Lin, Chen, & Wang, 2019)’, the integrated FE
and FTC scheme developed in this paper does not need fault detection and isolation
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module. It will not lead to the time delay problem of fault accommodation, and the im-
pact of unknown fault could be eliminated as soon as possible. Compared with passive
FTC ‘(Gao, Jiang, Shi, Liu, & Xu, 2012)’, which has the limited fault acceptability
only for the small amplitude fault, the integrated FE and FTC scheme developed in
this paper provides more accurate fault estimation and the fault compensation-based
fault tolerant control algorithm for the considered plant, such that the closed loop
control performance is guaranteed even in the presence of large amplitude faults.

Remark 8. In ‘( Chen, Sun,& Karimi, 2019)’, an adaptive event-triggered mech-
anism (AETM) is investigated for discrete time-varying systems by using finite-time
generalized dissipative filter. To reduce the communication network resources, two
adaptive event-triggered mechanisms are taken into consideration in sensor-to-observer
and observer-to-controller channels in ‘( Chen, Karimi,& Sun, 2019)’. The thresholds
of both AETMs are adjusted according to the estimation error rather than some
fixed ones and an observer-based time-varying control are obtained, which ensure the
time-varying error system to be finite time stable. In ‘(Kommuri, Defoort, Karimi, &
Veluvolu, 2016)’, a robust observer-based sensor fault-tolerant control is designed for
PMSM in electric vehicles but the event-triggered mechanism is not considered. While
a dynamic event-triggered mechanism similar to AETM is proposed in this study,
which further considers the time-varying delays and actuator faults. Thus our control
scheme is an expansion and improvement of the existing work in ‘( Chen, Karimi,&
Sun, 2019; Chen, Sun,& Karimi, 2019; Kommuri, Defoort, Karimi, & Veluvolu, 2016)’.

Remark 9. Based on the work in ‘(Girard, 2015)’, a strategy for the choice of
parameters in (3) and (4) can be given as follows. Firstly, it should be noted that the
parameter λ in (4) affects the minimum inter-execution time of the dynamic ETM (3).
Assume that ς is an upper bound of the spectral radius ρ(A+BK). To exclude Zeno
behavior and guarantee a larger minimum inter-execution time, it needs λ = (1−β)κ ≤
2ς where 0 < κ ≤ 2ρ(A + BK) ≤ 2ς, 0 < β < 1. Then the value of β determines the
degradation of the decay rate of the Lyapunov function V̇1(t) = h(t)Th(t) with respect
to the “ideal” closed-loop system. Noting that the “ideal” closed-loop system is the
system (10) with V1(0) = J(0) and J(t) is the quadratic integral performance index
as shown in (19), we can tune the decay rate of the Lyapunov function by choosing
µ(0) = 0 and β = 1 − λ/κ. Finally, the parameter α directly affects the degradation
of the performance index (19). Simultaneously, the best lower bound on the minimum
inter-execution time is obtained for α ∈ [0, 1/(2ς − λ)]. In order to minimize the
degradation of the performance index, α should be chosen as large as possible. Thus,
it is reasonable to choose α = 1/(2ς − λ).

4. Simulation

In this section, an F-404 aircraft engine system, in ‘(Chen, Huang, & Fu, 2016)’ is em-
ployed to demonstrate the advantages of the designed integrated FE and FTC scheme
based on dynamic event-triggered communication mechanism. The matrix parameters
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of the considered linear time delay system are given by

A =

 −1.46 0 2.428
0.164 −0.4 −0.3788
0.3107 0 −2.231

 , Aτ =

 0.21 −0.1 0
0.11 −0.35 0
−0.2 0.1 0.76

 , D =

 0.5
1.5
1


B =

 0.11 0
0.14 −0.4
0.1 0

 , C =

 −0.1 0 1
0.15 −2 −0.1
0.1 0.2 0.1


E =

 0.1 0 0.15
0.15 0.1 0.2
0.2 0.1 0.1

 , T =

 0.1 0 0.1
0 0.1 0

0.1 0 0.1

 , ∆H = sin(t) (40)

In the F-404 aircraft engine system, x1(t) and x2(t) represent the horizontal position
of the aircraft, x3(t) is the altitude of the aircraft, u1(t) and u2(t) are the opening
angles of engine throttle. In simulation, it is assumed that an abrupt actuator fault
occurred in the second channel at the 10th second, namely,

f1(t) = 0, f2(t) =

{
0, 0 ≤ t < 10

0.3sin(0.4(t− 10)), otherwise

The state time delay τ̄ considered in this study is assumed to be 0.1s, and the initial
values of the observer and system are selected as x̂(0) = [0, 0, 0]T , f̂1(0) = f̂2(0) = 0,
respectively. φ(t) = cos(t)[0.2, −0.2, 0.1]T for t ∈ [−0.1, 0], d(t) = 0.2e−0.2tsin(0.2t).
The upper and lower bounds of control input are set as 8 and −5, respectively.

According to the above design procedure, we can implement the controller and esti-
mator design and simulation. First, it is clear that f1(t) and f2(t) are norm bounded.
Meanwhile ||ḟ1(t)|| = 0, ||ḟ2(t)|| ≤ 0.12, namely both the synthetic effects of time-
varying fault and its derivative are norm bounded for the real system (40), which
satisfy the Assumption 1. The given system is controllable as rank(B,AB,A2B) = 3,
which implies that Assumption 2 holds. All the assumption conditions of Theorem 1-3
are satisfied so the control scheme can be carried out.

It is clear that B is the full column rank since rank(B) = 2 and one yields the
pseudo inverse matrix of B

B+ =

[
5 0 5

1.75 −2.5 1.75

]
The following matrices can be calculated according to Lemma 2.

M1 =

[
−0.0953 −0.9917 −0.0867
0.7338 −0.1288 0.6671

]
, M2 =

[
−0.6727 0 0.7399

]
Γ =

[
0.4270 0

0 0.1393

]
, N =

[
−0.3700 0.9290
0.9290 0.3700

]
The dynamic event-triggered mechanism parameters are chosen as β = 0.25, α = 0.02,
λ = 10, µ(0) = 0. By selecting H∞ disturbance attenuation level γ = 1.3, the unknown
gain matrices of the integrated FE and FTC scheme can be solved using Matlab tool
box. Then the gain matrix K of the controller and the gain matrix L of the estimator
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can be obtained as follows.

K =

[
−76.0556 6.3110 −84.5783
−27.3250 72.4479 −30.5436

]
, L =

 1.8447 −0.1459 0.8225
−0.0850 −4.9284 0.4556
0.7750 −0.3503 0.3745


For the considered linear time delay systems (1) under the designed integrated
FE and FTC strategy (6)-(9), simulation results are obtained using Matlab. To be
more comprehensive, the disturbance effects should be discussed under different set-
tings. In connection with this, let d(t) be 0.05e−0.2tsin(0.2t), 0.2e−0.2tsin(0.2t) and
0.5e−0.2tsin(0.2t), respectively. Thus the state estimated error curves are depicted with
three different disturbance conditions in Figure 2. The simulation shows that the esti-
mation error increases with the increase of the magnitude of d(t), which shows that the
influence of disturbance on the system enhances with the increase of d(t). Moreover,
it is also proved that our robust control method is only effective for bounded distur-
bances. If the bound of disturbance exceeds the prescribed upper bound, the control
performance may not be guaranteed. Notice that the follow-up simulation results are
obtained based on the d(t) = 0.2e−0.2tsin(0.2t). The system state trajectories and their
estimated values are displayed in Figure 3, and the control input curves are shown in
Figure 4. It is clear to see that the closed loop time delay system under the integrated
FE and FTC approach proposed in this paper is almost not affected by the considered
actuator fault signal f2(t). Meanwhile, the actual actuator fault signal f2(t) and its

estimation f̂2(t) are depicted in Figure 5, which indicates that the proposed fault es-
timation algorithm (7) achieves a good fault estimation performance. Figure 6 shows
the dynamics of µ(t) and release instants intervals of event generator with dynamic
ETM (3). In order to illustrate the superiority of the proposed integrated FE and FTC
strategy, some simulation comparisons are discussed as follows. In ‘(Wang, Fei, Wang,
& Liu, 2019)’, a static ETM-based FE and FTC scheme is developed for a linearized
networked control system, it is used to stabilize the considered linear time delay sys-
tems (1) in actuator faulty case. The corresponding simulation results are displayed
in Figures 7-9. Figure 7 exhibits the system state estimation error curves, Figure 8
displays the system state trajectories and their estimated values curves, and Figure
9 shows the control input curves. It is easily seen from Figures 7-9 that the faulty
closed loop time delay system has poor control performance. Figure 10 shows the fault
estimation curve, which has obviously fault estimation error. Figure 11 is the release
instants and release intervals of event generator with static ETM. To demonstrate the
superiority of our control scheme, the integral of squared state estimated errors and
control inputs has been listed in Table 1 compared with the scheme in ‘(Wang, Fei,
Wang, & Liu, 2019)’, where ei = xi − x̂i (i=1,2,3). The difference between the two
schemes lies in the event-triggered mechanism and fault estimator. It is clear that the
integral of squared state estimated errors and control inputs is smaller using DETM,
which shows our control scheme has better control performance.

Table 1. The integral of squared state estimated errors and control inputs with two different schemes

Triggered Type e1 e2 e3 u1 u2

DETM 0.2167 0.3412 0.5565 861.663 810.8917
SETM 0.3344 0.4645 0.6883 972.9942 895.6125

By simulation comparisons, it can be seen that the static ETM-based FE and FTC
approach proposed in ‘(Wang, Fei, Wang, & Liu, 2019)’ does not completely offset the
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Figure 2. The time responses of the state estimated error using our FE/FTC scheme

Figure 3. The time responses of the state and its estimation using our FE/FTC scheme
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effects of actuator failure described above. The main reason is that the designed fault
estimation algorithm in ‘(Wang, Fei, Wang, & Liu, 2019)’ only uses the proportional

control algorithm, namely,
˙̂
f = E1êy(t), which may lead to a larger error between

the estimated fault and the actual fault, and further negative influence on the control
performance of the whole closed-loop systems. In this study, a modified fault estimation

algorithm is developed by adding one differential term in controller, namely,
˙̂
f =

E1êy(t) + E2
˙̂ey(t), such that the fault estimation performance is obviously improved.

On this basis, the closed-loop control performance is also greatly improved. It can be
concluded that the proposed FE and FTC strategy based on dynamic event-triggered
mechanism has provided better performance of fault estimation and accommodation.

Figure 4. The time responses of the control input signals using our FE/FTC scheme

5. Conclusion

In this study, an integrated FE and FTC strategy is developed for a class of linear
time delay systems with actuator faults using dynamic event- triggered mechanism.
The dynamic event-triggered mechanism is a modification of the one in ‘(Wang, Fei,
Wang, & Liu, 2019)’ by adding an internal dynamic variable, such that the inter-event
intervals increase while the number of transmission decreases. The integrated design
of FE and FTC approach is then given by linear matrix inequality technique and the
asymptotical stability of the whole closed loop systems is analyzed by the Lyapunov
approach. It has also shown that the zeno behavior is excluded by analyzing the bound
of inter-event intervals. Finally, an aircraft engine system simulation is given to show
the better control performance of the proposed approach by simulation comparison.
In addition, it is a challenge issue to consider sensor fault or obtain a delay-related
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Figure 5. The time responses of the actual fault and its estimation using our FE/FTC scheme

Figure 6. Triggering instants and intervals of event generator using our FE/FTC scheme
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Figure 7. The time responses of the state estimated error using FE/FTC scheme in ‘(Wang, Fei, Wang, &

Liu, 2019)’

Figure 8. The time responses of the state and its estimation using FE/FTC scheme in ‘(Wang, Fei, Wang,

& Liu, 2019)’

22



Figure 9. The time responses of the control input signals using FE/FTC scheme in ‘(Wang, Fei, Wang, &

Liu, 2019)’

Figure 10. The time responses of the actual fault and its estimation using FE/FTC scheme in ‘(Wang, Fei,
Wang, & Liu, 2019)’
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Figure 11. Triggering instants and intervals of event generator using FE/FTC scheme in ‘(Wang, Fei, Wang,

& Liu, 2019)’

stability analysis result, and this problem will be one of our main works in the future.
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