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ABSTRACT Receiver Operating Characteristic (ROC) surfaces have been studied in the literature essentially
during the last decade and are considered as a natural generalization of ROC curves in three-class problems.
The volume under the surface (VUS) is useful for evaluating the performance of a trichotomous diagnostic
system or a three-class classifier’s overall accuracy when the possible disease condition or sample belongs
to one of three ordered categories. In the areas of medical studies and machine learning, the VUS of a new
statistical model is typically estimated through a sample of ordinal and continuous measurements obtained
by some suitable specimens. However, discrete scales of the prediction are also frequently encountered
in practice. To deal with such scenario, in this paper, we proposed a unified and efficient algorithm of
linearithmic order, based on dynamic programming, for unbiased estimation of the mean and variance of
VUS with unidimensional samples drawn from continuous or non-continuous distributions. Monte Carlo
simulations verify our theoretical findings and developed algorithms.

INDEX TERMS Volume under the surface (VUS), variance, discrete measurements, dynamic programming,
receiver operating characteristic (ROC).

I. INTRODUCTION
After decades of development since early 1950s, receiver
operating characteristic (ROC) analysis has found abundant
applications in a wide spectrum of scientific and engineering
areas [1]–[3], including data mining [4], computer vision [5],
[6], signal processing [7]–[10], machine learning [11]–[13],
medical decision making [14], psychology [15], and biomed-
ical informatics [16], among others. Traditionally, ROC anal-
ysis can only deal with the two-class problems. Given the
prior knowledge of the sample membership (abnormal vs.
normal), a two-dimensional ROC curve, which is a plot of
false positive rate against true positive rate, can be traced
out based on various decision threshold settings [17]. The
area under the curve (AUC) can then be estimated, in either
parametric [18], [19] or nonparametric ways [20]–[23], as a
figure of merit for various purposes [24], [25].
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However, three-class tasks are frequently encountered in
practice, where the conventional ROC analysis falls short as
twomutually exclusive outcomes is no longer applicable [26],
[27]. In medicine, for example, the heart signal is sometimes
categorized as Bradycardia (slower rhythm), normal, and
Tachycardia (faster rhythm); and the blood pressure is clas-
sified as Hypertension (lower pressure), normal, and Hyper-
tension (higher pressure). In communication, the amplitudes
of transmitted signals fall into three categories, as negative
(binary ‘‘0’’), idle (baseline), and positive (binary ‘‘1’’).
Fortunately, the concept of ROC curve analysis has been
extended to accommodate trichotomous problems thanks to
the efforts of many researchers [28]–[36]. Similar to the
dichotomous case, ROC analysis for three-class problems
is also a supervised methodology requiring prior knowledge
of the sample membership (abnormal, intermediate, normal,
say). Given such knowledge, a three-dimensional surface
can be traced out by a series of triplets associated with two
various decision threshold choices [37]. The volume under
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the surface (VUS), in parallel to AUC in two-class problems,
is usually employed for measuring the overall accuracy of
the test. Following this direction, other researchers have
proposed various methods to estimate the mean and vari-
ance of VUS in the case of ordered multi-class [33], [34],
[38]–[40], a setting which is also referred to as ordinal
regression [41]–[44]. Besides the above-mentioned meth-
ods focusing on one-dimensional ordered three-class
measurements, other techniques for ROC analysis of
high-dimensional data have also been proposed, includ-
ing Mossman’s three-way method [30], He’s likelihood
ratio based framework [35], Dreiseitl’s nonparametric algo-
rithms [31]. From the viewpoint of computation, these meth-
ods are unsatisfactory because the time complexity of them
is polynomial, ranging from quintic order [30], [31], [33],
[34], [38] to quadratic order [39]. To avoid such excessive
computational load, recently, Liu et al. developed an unbiased
and linearithmic algorithms for estimating the variance of
VUS with continuous measurements.

It is worth noting that most of the existing nonparametric
methodologies are proposed for samples drawn from con-
tinuous distributions. However, in practice, outcomes of the
statistical models (their names vary with different fields, e.g.
classifiers in machine learning, diagnostic in medicine, detec-
tor in signal processing), will sometimes be discrete, in other
words, the parental distributions of outputs are determined
by probability mass functions (pmfs) instead of probability
density functions (pdfs). For example, the probability that a
sample being categorized into three different classes via k
nearest neighbor (KNN) will sometimes be the same, espe-
cially when the hyperparameter k is small [11]. In the case of
decisionmaking, observers who participate in a three-interval
discrimination task are usually required to classify targets into
a certain range rather than a specific value [28].

For two-class problem, methods to estimate area under
the curve (AUC) and its variance by means of dis-
crete measurements have been developed, for instance,
in Kaufmann et al. [20], Neubert and Brunner [21], Koni-
etschke et al. [22], Xu et al. [23]. Recently, the study
of Duc et al. under discrete sample condition attracted
researchers attention, but their work mainly focused on the
nonignorable verification bias when achieving estimation.
To the best of our knowledge, the point estimation of VUS
established by discrete data has not been explicitly presented
in literature, not to mention its variance. Issues of estimating
the mean and variance of VUS based on discrete measure-
ments are still scarcely considered in the statistical literature.
Only Mossman’s boostrap method [30] and the tie breaking
used in Liu et al. [45] gave contribution in this direction, but
the former algorithm is biased and time-consuming, while
the latter combined with any existing algorithms based on
continuous measurements, e.g. Waegeman et al. [39], also
suffers sever bias (see Section V for more details).

Motivated by such unsatisfactory situation, in this paper,
we developed a linearithmic algorithm for unbiased esti-
mation of the mean and variance of VUS with three ordi-

nal continuous or discrete measurements that are under the
unidimensional assumption. Our algorithm possesses four
advantages as follows. Firstly, our algorithm is unified, that
is, it can simultaneously work for samples drawn from both
continuous and discrete populations. Secondly, it is unbiased,
in other words, the mean of its output is equivalent to the
population version of VUS’s variance, which is always a
necessary feature in statistical inference. Thirdly, it is only in
linearithmic time, that is, the time complexity is in the order
of the product of sample size and its logarithm, which is a
favorite property in big data trials [46], [47]. Last but not least,
the derived algorithm is nonparametric since it depends only
on samples, eliminating the need for considering any other
parametric model assumptions regarding the functional form
of cumulative distributional functions (cdfs hereafter).

The rest of this paper is constructed as follows. Section II
gives the basic definition of an unbiased estimator of VUS
and the related general formulation regarding its variance
with discrete measurements based on the U-statistic theory.
Section III derives the unbiased expression of the variance
of the VUS’s estimator with discrete measurements. A lin-
earithmic algorithm for computing VUS and its correspond-
ing variance based on dynamic programming is presented in
Section IV. In Section V, simulation experiments are under-
taken to demonstrate our theoretical and algorithmic findings.
Finally, we arrive at conclusions in Section VI.

II. PRELIMINARIES
For completeness and ease of later discussion, this section
presents some preliminaries concerning the probabilistic
interpretation of VUS (population version), sample version of
VUS and an unbiased estimator for the variance of the sample
version. These results are mandatory for later development of
fast algorithms.

A. PROBABILISTIC INTERPRETATION OF VUS
Let {X1i}

n1
i=1,{X2j}

n2
j=1,{X3k}

n3
k=1 be sample sets drawn from

three independent distributions with discrete cdfs F1, F2 and
F3, respectively. As illustrated in [33], the following linear
combination of four probabilities

θ , Pr(X3 > X2 > X1)+
1
2
Pr(X3 = X2 > X1)

+
1
2
Pr(X3 > X2 = X1)+

1
6
Pr(X3 = X2 = X1) (1)

can be interpreted as the VUS corresponding to distributions
F1, F2 and F3. From (1), it follows that θ = 1/6 when X1,
X2 and X3 are identically distributed, i.e., F1 = F2 = F3;
whereas θ = 1 if, from left to right, X1, X2 and X3 are per-
fectly separable, i.e., there is no overlap between any two of
the three class distributions. Therefore, VUS can characterize
the extend of separation of the three classes. For continuous
measurements, that is, the distributions of X1, X2 and X3 are
all continuous, (1) will degenerate to the familiar form

θ = Pr(X3 > X2 > X1). (2)
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B. SAMPLE VERSION OF VUS
Based on (1), a nonparametric estimator of VUS (sample
version) can be constructed readily, as [33]

θ̂ =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

H(X3k ,X2j,X1i), (3)

where

H(X3,X2,X1) ,


1, X3 > X2 > X1
1/2, X3 = X2 > X1

or X3 > X2 = X1
1/6, X3 = X2 = X1.

(4)

Note that the sample version (3) just defined is an unbiased
estimator of θ , i.e., E(θ̂ ) = θ . See [28], [29], [31], [34] for
the justification.

C. VARIANCE OF θ̂
Given the sample version θ̂ in (3), it is of crucial importance
to estimate its variance if one needs to infer the confidence
interval or perform a hypothesis test. According to the argu-
ments of Nakas and Yiannoutsos [33] and Dreiseitl et al. [31],
the variance of θ̂ , denoted by V(θ̂ ), can be expressed as in
Lemma 1 below.
Lemma 1: The variance of θ̂ that is defined in (3) is

V(θ̂ ) =
1

n1n2n3
[q0 − θ2 + (n3 − 1)(q12 − θ2)

+(n2 − 1)(q13 − θ2)+ (n1 − 1)(q23 − θ2)

+(n2 − 1)(n3 − 1)(q1 − θ2)

+(n1 − 1)(n3 − 1)(q2 − θ2)

+(n1 − 1)(n2 − 1)(q3 − θ2)], (5)

where

q0 = E
[
H(X3,X2,X1)2

]
, (6)

q12 = E
[
H(X3,X2,X1)H(X ′3,X2,X1)

]
, (7)

q13 = E
[
H(X3,X2,X1)H(X3,X ′2,X1)

]
, (8)

q23 = E
[
H(X3,X2,X1)H(X3,X2,X ′1)

]
, (9)

q1 = E
[
H(X3,X2,X1)H(X ′3,X

′

2,X1)
]
, (10)

q2 = E
[
H(X3,X2,X1)H(X ′3,X2,X

′

1)
]
, (11)

q3 = E
[
H(X3,X2,X1)H(X3,X ′2,X

′

1)
]
, (12)

with X ′ being an i.i.d. copy of X.
Proof: WriteHijk , H(X3k ,X2j,X1i). Let C(·, ·) be the

covariance of two variables. It follows that

V(θ̂ ) = C(θ̂ , θ̂ )

= C(
1

n1n2n3

∑
i

∑
j

∑
k

Hijk ,

1
n1n2n3

∑
i

∑
j

∑
k

Hi′j′k ′ )

=
1

n21n
2
2n

2
3

∑
i

∑
j

∑
k

∑
i′

∑
j′

∑
k ′

C(Hijk ,Hi′j′k ′ ).

(13)

From (3), it follows that E(Hijk ) = θ . Then

C(Hijk ,Hi′j′k ′ )

= E(Hijk ·Hi′j′k ′ )− E(Hijk ) · E(Hi′j′k ′ )

= E(Hijk ·Hi′j′k ′ )− θ
2. (14)

Since the triplets (X1i,X2j,X3k ) and (X1i′ ,X2j′ ,X3k ′ ) are inde-
pendent, we have C(Hijk ,Hi′j′k ′ ) = 0 for i 6= i′, j 6= j′, k 6=
k ′. Then, the sixfold sum in Eq.(13), with the assistance
of (14), can be rewritten into the summation of seven terms,
as:∑
i

∑
j

∑
k

∑
i′

∑
j′

∑
k ′

C(Hijk ,Hi′j′k ′ )

=

∑
i

∑
j

∑
k

[
E(Hijk ·Hijk )− θ2

]
︸ ︷︷ ︸

=n1 n2 n3(q0−θ2)

+

∑
i

∑
j

∑
k

∑
k 6=k ′

[
E(Hijk ·Hijk ′ )− θ

2
]

︸ ︷︷ ︸
=n1 n2 n3(n3−1)(q12−θ2)

+

∑
i

∑
j

∑
j6=j′

∑
k

[
E(Hijk ·Hij′k )− θ

2
]

︸ ︷︷ ︸
=n1 n2(n2−1)n3(q13−θ2)

+

∑
i

∑
i6=i′

∑
j

∑
k

[
E(Hijk ·Hi′jk )− θ

2
]

︸ ︷︷ ︸
=n1(n1−1)n2 n3(q23−θ2)

+

∑
i

∑
j

∑
j6=j′

∑
k

∑
k 6=k ′

[
E(Hijk ·Hij′k ′ )− θ

2
]

︸ ︷︷ ︸
=n1 n2(n2−1)n3(n3−1)(q1−θ2)

+

∑
i

∑
i6=i′

∑
j

∑
k

∑
k 6=k ′

[
E(Hijk ·Hi′jk ′ )− θ

2
]

︸ ︷︷ ︸
=n1(n1−1)n2 n3(n3−1)(q2−θ2)

+

∑
i

∑
i6=i′

∑
j

∑
j6=j′

∑
k

[
E(Hijk ·Hi′j′k )− θ

2
]

︸ ︷︷ ︸
=n1(n1−1)n2(n2−1)n3(q3−θ2)

. (15)

The result (5) thus follows upon substitution of (15)
into (13).

�

III. UNBIASED ESTIMATORS
A. UNBIASED ESTIMATOR OF θ – SLOW VERSION
As remarked before, (3) is an unbiased estimator of the VUS
θ defined by (1). However, a direct implementation of (3) is
computationally rather inefficient, since the time complexity
is cubic. Nevertheless, as illustrated later on, a linearithmic
algorithm is available by means of dynamic programming.

B. UNBIASED ESTIMATOR OF V(θ̂) – SLOW VERSION
Based on Lemma 1, an unbiased estimator of V(θ̂ ) can be
established, as stated in the following Lemma 2.
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Lemma 2: Let θ̂ be defined as in (3) associated with three
i.i.d. samples {X1i}

n1
i=1, {X2j}

n2
j=1 and {X3k}

n3
k=1 drawn from

three discrete distributions respectively. Let σ̂ 2
θ̂
be the esti-

mator ofV(θ̂). Denoted by n[2]i = ni(ni−1), i = 1, 2, 3. Then
an unbiased estimator of V(θ̂ ) can be formulated as

σ̂ 2
θ̂
=

1
(n1 − 1)(n2 − 1)(n3 − 1)
×[q̂0 − θ̂2 + (n3 − 1)(q̂12 − θ̂2)

+(n2 − 1)(q̂13 − θ̂2)+ (n1 − 1)(q̂23 − θ̂2)

+(n2 − 1)(n3 − 1)(q̂1 − θ̂2)

+(n1 − 1)(n3 − 1)(q̂2 − θ̂2)

+(n1 − 1)(n2 − 1)(q̂3 − θ̂2)] (16)

where

θ̂ =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

H(X3k ,X2j,X1i), (17)

q̂0 =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

[
H(X3k ,X2j,X1i)

]2
, (18)

q̂12 =
1

n1n2n
[2]
3

n1∑
i=1

n2∑
j=1

n3∑ n3∑
k 6=k ′=1

[H(X3k ,X2j,X1i)

×H(X3k ′ ,X2j,X1i)], (19)

q̂13 =
1

n1n
[2]
2 n3

n1∑
i=1

n2∑ n2∑
j6=j′=1

n3∑
k=1

[H(X3k ,X2j,X1i)

×H(X3k ,X2j′ ,X1i)], (20)

q̂23 =
1

n[2]1 n2n3

n1∑ n1∑
i6=i′=1

n2∑
j=1

n3∑
k=1

[H(X1k ,X2j,X1i)

·H(X3k ,X2j,X1i′ )], (21)

q̂1 =
1

n1n
[2]
2 n[2]3

n1∑
i=1

n2∑ n2∑
j6=j′=1

n3∑ n3∑
k 6=k ′=1

[H(X3k ,X2j,X1i)

×H(X3k ′ ,X2j′ ,X1i)], (22)

q̂2 =
1

n[2]1 n2n
[2]
3

n1∑ n1∑
i6=i′=1

n2∑
j=1

n3∑ n3∑
k 6=k ′=1

[H(X3k ,X2j,X1i)

×H(X3k ′ ,X2j,X1i′ )], (23)

q̂3 =
1

n[2]1 n[2]2 n3

n1∑ n1∑
i6=i′=1

n2∑ n2∑
j6=j′=1

n3∑
k=1

[H(X3k ,X2j,X1i)

×H(X3k ,X2j′ ,X1i′ )]. (24)
Proof:

To demonstrate that E(σ̂ 2
θ̂
) = σ 2

θ̂
, it suffices to verify the

unbiasedness of the q̂-terms with the corresponding q-terms
in the numerator of (16). Based on the definitions of q-terms,
it follows readily that

E(q̂ζ ) = qζ , (25)

where ζ ∈ {0, 12, 13, 23, 1, 2, 3} stands for the subscript of
q-terms. Using the relationship σ 2

θ̂
= E(θ̂2)− θ2, we have

E(θ̂2) = θ2 + σ 2
θ̂
. (26)

Taking expectation of both sides of (16) and (26), it follows
that

E(q̂0) = θ (1− θ )− σ 2
θ̂

(27)

and

E(q̂ζ − θ̂2) = qζ − θ2 − σ 2
θ̂
. (28)

A substitution of (27)–(28) into the expectation of (16) along
with some straightforward algebra, we have

E(σ̂ 2
θ̂
) = σ 2

θ̂
,

and the theorem thus follows. �

IV. FAST ALGORITHMS
A. UNBIASED ESTIMATOR OF V(θ̂) – FAST VERSION
It is noticeable that a direct implementation based
on (16)–(24) in Theorem 2 is very time-consuming for large
n1, n2, and n3, due to the quintic summations involved in
the q̂-terms. Fortunately, however, following our previous
work [23], [40], a linearirthmic algorithm can be conveniently
applied via rewriting (17)–(24) in terms of the quantities S
illustrated in Table 3, which stand for the number of events
satisfying the relation inside the corresponding brackets.
As shown below, these S-terms can all be computed with
dynamic programming. Note that in Table 3, X ′1, X

′

2 and X ′3
stand for i.i.d copies of X1, X2 and X3, respectively.
Theorem 1: Let θ̂ be defined as in (3) with respect

to three i.i.d. samples, X11, . . . ,X1n1 , X21, . . . ,X2n2 , and
X31, . . . ,X3n3 respectively. Denoted by n

[2]
= ni(ni − 1),

i = 1, 2, 3. Then the estimator σ̂ 2
θ̂
in Lemma 2 is equivalent

to

σ̂ 2
θ̂
= ς̂2

θ̂
=

1
(n1 − 1)(n2 − 1)(n3 − 1)

[Q̂0 − θ̂
2

+(n3 − 1)(Q̂12 − θ̂
2)+ (n2 − 1)(Q̂13 − θ̂

2)

+(n1 − 1)(Q̂23 − θ̂
2)

+(n2 − 1)(n3 − 1)(Q̂1 − θ̂
2)

+(n1 − 1)(n3 − 1)(Q̂2 − θ̂
2)

+(n1 − 1)(n2 − 1)(Q̂3 − θ̂
2)], (29)

where

θ̂ =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

H(X3k ,X2j,X1i)

=
1

n1n2n3
(S(1)0 +

1
2
S(2)0 +

1
2
S(3)0 +

1
6
S(4)0 ), (30)

Q̂0 =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

[
H(X3k ,X2j,X1i)

]2
=

1
n1n2n3

(S(1)0 +
1
4
S(2)0 +

1
4
S(3)0 +

1
36
S(4)0 ), (31)

VOLUME 8, 2020 136209



S. Liu et al.: Fast and Unbiased Estimation of Volume Under Ordered Three-Class ROC Surface (VUS)

Q̂12 = q̂12 =
1

n1n2n
[2]
3

(2S(1)12 + S
(2)
12 + S

(3)
12 +

1
2
S(4)12

+
1
4
S(5)12 +

1
4
S(6)12 +

1
6
S(7)12 +

1
36
S(8)12

−n1n2n3Q̂0), (32)

Q̂13 = q̂13 =
1

n1n
[2]
2 n3

(2S(1)13 + S
(2)
13 + S

(3)
13 + S

(4)
13

+
1
2
S(5)13 +

1
4
S(6)13 +

1
4
S(7)13 +

1
36
S(8)13

−n1n2n3Q̂0), (33)

Q̂23 = q̂23 =
1

n[2]1 n2n3
(2S(1)23 + S

(2)
23 + S

(3)
23 +

1
2
S(4)23

+
1
4
S(5)23 +

1
4
S(6)23 +

1
6
S(7)23 +

1
36
S(8)23

−n1n2n3Q̂0), (34)

Q̂1 = q̂1 =
1

n1n
[2]
2 n[2]3

(4S(1)1 + 3S(2)1 + 2S(3)1 + 2S(4)1

+2S(5)1 + 2S(6)1 +
3
2
S(7)1 + S

(8)
1 + S

(9)
1 + S

(10)
1

+S(11)1 + S(12)1 + S(13)1 + S(14)1 +
1
2
S(15)1 +

1
2
S(16)1

+
1
2
S(17)1 +

1
2
S(18)1 +

1
3
S(19)1 +

1
4
S(20)1 +

1
4
S(21)1

+
1
6
S(22)1 +

1
6
S(23)1 +

1
36
S(24)1 − n1n2n

[2]
3 Q̂12

−n1n
[2]
2 n3Q̂13 − n1n2n3Q̂0), (35)

Q̂2 = q̂2 =
1

n[2]1 n2n
[2]
3

(4S(1)2 + 2S(2)2 + 2S(3)2 + 2S(4)2

+2S(5)2 + S
(6)
2 + S

(7)
2 + S

(8)
2 +

5
6
S(9)2 +

1
2
S(10)2

+
1
2
S(11)2 +

1
4
S(12)2 +

1
4
S(13)2 +

1
6
S(14)2 +

1
6
S(15)2

+
1
36
S(16)2 − n1n2n

[2]
3 Q̂12 − n

[2]
1 n2n3Q̂23

−n1n2n3Q̂0), (36)

Q̂3 = q̂3 =
1

n[2]1 n[2]2 n3
(4S(1)3 + 3S(2)3 + 2S(3)3 + 2S(4)3

+2S(5)3 + 2S(6)3 +
3
2
S(7)3 + S

(8)
3 + S

(9)
3 + S

(10)
3

+S(11)3 + S(12)3 + S(13)3 + S(14)3 +
1
2
S(15)3 +

1
2
S(16)3

+
1
2
S(17)3 +

1
2
S(18)3 +

1
3
S(19)3 +

1
4
S(20)3 +

1
4
S(21)3

+
1
6
S(22)3 +

1
6
S(23)3 +

1
36
S(24)3 − n1n

[2]
2 n3Q̂13

−n[2]1 n2n3Q̂23 − n1n2n3Q̂0). (37)
Proof: See Appendix. �

B. FAST COMPUTING STRUCTURE FOR QUANTITIES S
Let Z1, · · · ,ZN , N = n1 + n2 + n3 be a com-
bined sequence consist of X11, · · · ,X1n1 , X21, · · · ,X2n2 ,
X31, · · · ,X3n3 . We yield the sequence of order statistic by

FIGURE 1. Counter matrix C(1)
0 and its diagram for computing

S(1)
0 =

∑K
k=3

∑k−1
j=2

∑j−1
i=1 ck bj ai , where K = 7 is for purpose of

visualizing.

sorting the Z-sequence in ascending order [48]–[50]

Z(1) = · · · = Z(1)︸ ︷︷ ︸
Block1

< · · · < Z(J ) = · · · = Z(J )(= Zi)︸ ︷︷ ︸
BlockJ

< · · · < Z(K ) = · · · = Z(K )︸ ︷︷ ︸
BlockK

. (38)

Suppose that the elements of BlockJ are all equal to Zi.
Let ai, bi, ci be the number of X1’s, X2’s and X3’s equaling to
Zi, respectively, for i = 1, . . . ,K . Then three count vectors
corresponding to X1, X2 and X3 can be attained, each is
based on Z-sequence (38), denoted by CX1 , [a1 . . . aK ],
CX2 , [b1 . . . bK ] and CX3 , [c1 . . . cK ]. As shown in
literature [40], Z-sequence can be attained in a linearithmic
time, i.e., O(N logN ), by means of some well-known and
efficient sorting algorithms in the textbook [51]. Having the
three count vectors, all the S-terms of Table 3 can be com-
puted up to linear time O(5K ), where K ≤ N . In the fol-
lowing, we intend to comprehensively explain the computing
structure by investigating the definitions of S(1)0 , S(2)0 , S(5)12
and S(7)1 , respectively.

We first start from analysis of S(1)0 . According to Table 3,
the definition of S(1)0 is

S(1)0 = E(X3 > X2 > X1)

=

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X1i)

=

K∑
k=3

k−1∑
j=2

j−1∑
i=1

ckbjai, (39)

where I(·) is an indicator function that equals to 1(0) when
the condition in bracket is True(False). It follows that (39)
can be readily implemented via dynamic programing. Put
more specially, we first stack CX3 (Row1), CX2 (Row2) and
CX1 (Row3) aforementioned to construct a 3× K matrix C(1)

0 ,
then further set C(1)

0 [2,1] and C(1)
0 [1,2] to be 0. As depicted

in Figure. 1, the programming path goes from the lower left
corner towards the upper right one in a linear time O(3K ),
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FIGURE 2. Counter matrix C(2)
0 and its diagram for computing

S(2)
0 =

∑K
j=2

∑j−1
i=1 cj bj ai , where K = 7 is for purpose of visualizing.

with the update rule:

C[I ,J ]

=


C[I ,J ]+C[I ,J−1] I=3, 2≤J≤K−2
C[I ,J ] · C[I+1,J−1]+C[I ,J−1] I=2, 2≤J≤K−1
C[I ,J ] · C[I+1,J−1]+C[I ,J−1] I=1, 3≤J≤K .

(40)

Finally, the desired value of S(1)0 is stored in the cell
C(1)
0 [1,K ] as the index I , J iterating from 3 to 1 and 2 to K ,

respectively.
Regard to S(2)0 described in Table 3, it follows that

S(2)0 = E(X3 = X2 > X1)

=

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k=X2j>X1i)

=

K∑
j=2

j−1∑
i=1

cjbjai. (41)

We need to construct another counter matrix same as C(1)
0 ,

denoted by C(2)
0 , and set C(2)

0 [1,1] to be 0. As illustrated
in Figure 2, the programming path goes from the southwest
corner towards the northeast corner in a linear time O(3K )
with the update rule

C[I ,J ]

=


C[I ,J ]+C[I ,J−1] I=3, 2≤J≤K−1
C[I ,J ] · C[I+1,J−1] I=2, 2≤J≤K
C[I ,J ] · C[I+1,J ]+C[I ,J−1] I=1, 2≤J≤K .

(42)

Eventually, when the updating finished, the value of S(2)0
that we desired is saved in cell C(2)

0 [1,K ].

As to S(5)12 , the definition of which follows that

S(5)12 = E(X3 = X ′3 > X2 = X1)

=

n1∑
i=1

n2∑
j=1

n3∑
k=1

n3∑
l=1

I(X3l = X3k > X2j = X1i)

=

K∑
l=2

l−1∑
j=1

c2l bjaj, (43)

in this case, to begin with, we stack two CX3 (Row1 and Row2
respectively), CX2 (Row3) and CX1 (Row4) to form a brand new

FIGURE 3. Counter matrix C5
12 and its diagram for computing

S5
12 =

∑K
l=2

∑l−1
j=1 c2

l bj aj , where K = 7 is for purpose of visualizing.

FIGURE 4. Counter matrix C7
1 and its diagram for computing

S7
1 =

∑K
k=3

∑k−1
j=2

∑j−1
i=1 ck cj bj bi ai , where K = 7 is for purpose of

visualizing.

counter matrix, denoted by C(5)
12 . We further appoint 0 into

cell C(5)
12 [1,1]. Then the desired output of S(5)12 is saved in cell

C(5)
12 [1,K ] after the indexes I and J run from 1 to 3 and 1 to K

respectively in a linear time (O(4K )) with update rule

C[I ,J ]

=


C[I ,J ] · C[I+1,J ] I=3, 1≤J≤K − 1
C[I ,J ] + C[I ,J−1] I=3, 2≤J≤K − 1
C[I ,J ] · C[I+1,J−1] I=2, 2≤J≤K
C[I ,J ] · C[I+1,J ] + C[I ,J−1] I=1, 2≤J≤K .

(44)

At last we concentrate on S(7)1 , the definition of which is

S(7)1 = E(X3 > X ′3 = X2 > X ′2 = X1)

=

n1∑
i=1

n2∑
j=1

n2∑
k=1

n3∑
l=1

n3∑
m=1

I(X3m > X3l = X2k>X2j = X1i)

=

K∑
k=3

k−1∑
j=2

j−1∑
i=1

ckcjbjbiai. (45)
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FIGURE 5. Comparison of unbiasedness, in terms of REM, between the estimator in (30) and the
rank-based method proposed in [45]. 1) Non-null case under Poisson distribution, where X1, X2 and X3
follow P(10), P(12) and P(14), respectively. 2) Null case under Poisson distribution, where X1, X2 and X3
all follow P(15). 3) Non-null case under Geometric distribution, with pmfs of
Pr(X1 = k) = (1− 0.3)k−10.3,k = 1,2,3, . . . ,∞, Pr(X2 = k) = (1− 0.2)k−10.2,k = 1,2,3, . . . ,∞ and
Pr(X3 = k) = (1− 0.1)k−10.1,k = 1,2,3, . . . ,∞. 4) Null case under Geometric distribution, where X1, X2
and X3 all follow Poisson distribution with pmfs of Pr(X3 = k) = (1− 0.1)k−10.1,
k = 1,2,3, . . . ,∞.

In order to form the paths for programming S(7)1 , a 5 × K
counter matrix, denoted by C(7)

1 , should be created. In this
matrix, the first two rows are both CX3 , the next two lines, i.e.
Row2 and Row3, are CX2 , and the last row is equal to CX1 .
We further put 0 into cells C(7)

1 [1,2], C
(7)
1 [2,1] and C(7)

1 [3,1],

respectively. Then the desired value of S(7)1 will be stored in
cell C(7)

1 [1,K ] after operating the indexes I and J with update
rule

C[I ,J ]

=



C[I ,J ] · C[I+1,J ] I=4, 1≤J≤K − 2
C[I ,J ] + C[I ,J−1] I=4, 2≤J≤K − 2
C[I ,J ] · C[I+1,J−1] I=3, 2≤J≤K − 1
C[I ,J ] · C[I+1,J ] + C[I ,J−1] I=2, 2≤J≤K − 1
C[I ,J ] · C[I+1,J−1] + C[I ,J−1] I=1, 3≤J≤K .

(46)

The algorithms for the rest S-terms can be constructed in a
similar and straightforwardmanner according toAlgorithm 1,
and thus omitted for brevity.

V. NUMERIC RESULT
To evaluate our theoretical and algorithmic findings, in this
section, we compare our dynamic programming based algo-
rithm (Theorem 1) with the state-of-the-art algorithms for
calculating the mean and variance of VUS [33], [39], [45],
in terms of unbiasedness and computational efficiency. With-
out losing generality, throughout this section, the Monte
Carlo simulation is undertaken for sample sizes from 10 to
100 with an increment of 10. Moreover, we set the sample
sizes of each class to be the same, i.e. n1 = n2 = n3,
for simplicity. The number of trials is specified to be 105

for inhibiting experimental fluctuation if there is no addi-
tional statement. All samples of random variables following
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FIGURE 6. Comparative results of CPU time between the algorithms
based on (3), (30) and the rank-based method in [45]. For simplicity,
the sample sizes of X1, X2 and X3 are set to be equal. A log scale is used
for better visualization.

various distributions are generated by functions in Matlab
Statistics ToolboxTM.

A. COMPARISON OF ALGORITHMS FOR ESTIMATION OF
MEAN OF VUS
We first compare the capacity of our algorithm for cal-
culating the mean of VUS (30), denoted by θ̂DP, with its
slow version (3) and the state-of-the-art rank-based algo-
rithm [45], denoted by θ̂SLOW and θ̂RB respectively. Ties
between classes or within class lead to θ̂RB cannot be
applied directly. To settle this problem, i.e. to break the
tie, we add a zero-mean Gaussian noise with a tiny vari-
ance (10−5 in this work) while the parental distribution
are discrete, which is a tie-breaking technique suggested
in [17].

1) VERIFICATION OF UNBIASEDNESS
It suffices to analysis the unbiasedness of θ̂DP and θ̂RB with
baseline θ̂SLOW only if there exist ties between classes or
within the same class, because the expectation of θ̂SLOW
and θ̂DP will be naturally degenerated from (1) to (2). In
the following, we produce the three samples X1, X2 and
X3 based on Poisson distribution with parameter λ and
Geometric distribution with parameter P, denoted by P(λ)
and G(P) respectively, in four scenarios, which is listed as
follows:

Under the four scenarios mentioned above, we evaluate the
two methods by exploiting Relative Error of Mean (REM ),
which is defined by

REM ,
E(θ̂ζ − θ̂SLOW)

θSLOW
(47)

where the subscript ζ ∈ {DP, RB} indicates one of the
two methods mentioned above and θ̂SLOW is an unbiased
estimator of VUS, which is used for verifying the correctness
of derivation in (30).

Algorithm 1 Procedure of Computing S in General Case
Input : Counter matrix C of size m×K and relation

vectorR of size 1×(m−1) holding either ‘>’
or ‘=’

Output: S corresponding to C andR
1 begin
2 m←− the number of rows in C;
3 K ←− the number of columns in C;
4 CountL ←− the number of‘>′inR;
5 StartInd ←− 0;
6 ComputeLen←− K − CountL;
7 L ←− a zero vector of length ComputeLen;
8 for i = 1, 2, . . . ,ComputeLen do
9 Li←− Cm,i;

10 end
11 for i = m− 1,m− 2, . . . , 1 do
12 ifRm−i = ‘=’ then
13 for j = 1, 2, . . . ,ComputeLen do
14 Lj←− Lj × Ci,StartInd+j;
15 end
16 else
17 StartInd ←− StartInd + 1;
18 for k = 2, 3, . . . ,ComputeLen do
19 Lk ←− Lk + Lk−1;
20 end
21 for l = 1, 2, . . . ,ComputeLen do
22 Ll = Ll × Ci,StartInd+l ;
23 end
24 end
25 end
26 S ←− sum of all elements in L ;
27 end

Figure 5 shows the comparison results, in terms of REM
over sample sizes, with respect to the two methods under
four scenarios illustrated in Table 1. The top two panels are
results corresponding to Poisson distribution, whereas the
bottom panels are belonging to Geometric distribution. It is
clear that θ̂DP outperforms θ̂RB, in the sense that REMs of
θ̂DP completely fits the line REM = 0, which confirms the
unbiasedness of (30). On the other hand, it is of no surprise
that all the curves of θ̂RB fluctuate around zero as the sample
size increases since we have added a tiny value to break the tie
of eachmeasurement, which indicates that the combination of
θ̂RB and tie breaking technique is biased if input data follows
discrete distribution.
TABLE 1. Parameters of the distributions followed by X1, X2 and X3 for
computing the mean of VUS under four scenarios.
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FIGURE 7. Comparison of unbiasedness, in terms of REV , among the estimator in (29), the boostrap
technique and the combination of work in [39] and tie breaking. 1) Non-null case under Poisson
distribution, where X1, X2 and X3 follow P(10), P(20) and P(30), respectively. 2) Null case under Poisson
distribution, where X1, X2 and X3 all follow P(15). 3) Non-null case under Geometric distribution, with
pmfs of Pr(X1 = k) = (1− 0.2)k−10.2,k = 1,2,3, . . . ,∞,
Pr(X2 = k) = (1− 0.15)k−10.15,k = 1,2,3, . . . ,∞ and Pr(X3 = k) = (1− 0.1)k−10.1,k = 1,2,3, . . . ,∞.
4) Null case under Geometric distribution, where X1, X2 and X3 all follow Geometric distribution with pmfs
of Pr(X3 = k) = (1− 0.1)k−10.1,k = 1,2,3, . . . ,∞.

2) COMPARISON OF COMPUTATIONAL LOADS
To demonstrate the computational efficiency of our new
method, we generate three sample sets following Poisson dis-
tribution, each being i.i.d., i.e. {X1i}

n1
i=1 ∼ P(1), {X2j}

n2
j=1 ∼

P(2) and {X1k}
n3
k=1 ∼ P(3). Since the parameter λ has little

if no effect on the computational speed comparison, they
are chosen arbitrary. Figure 6 compares the computational
loads among three algorithms based on (3), (30) and the rank-
based approach in [45] respectively over the sample sizes
n1 = n2 = n3 starting from 10 to 100 with an increment
of 10. Each of the algorithms runs 103 times for stability.
According to Figure 6, our method θ̂DP runs a little bit faster
than θ̂RB. However, since the difference is too tiny, we con-
sider both linearithmic algorithms are comparable in terms of
computational efficiency. And it is no doubt that the version
established in (3) is the slowest one since its time complexity
is in a cubic order.

B. COMPARISON OF ALGORITHMS FOR ESTIMATION OF
VARIANCE OF VUS
In the following we investigate the capacity of our algorithm
for computing the variance of VUS in (29), denoted by V̂DP,
with the algorithm based on graph theory (state-of-the-art)
proposed by Waegeman et al. [39] and boostrap, a widely
used technique in many literature [30], [33], [35], denoted by
V̂GT and V̂Boostrap respectively, in the aspects of unbiasedness
and computational efficiency. Tie-breaking technique is also
employed in V̂GT, because its original version is only estab-
lished for continuous inputs. Regarding to the prevalent boos-
trap technique V̂Boostrap, we set the number of replications
to be 200, which was suggested in [30], [35]. Furthermore,
for purpose of fairness and efficiency of the experiment,
the fast implementation of (30) is used in each replication
of V̂Boostrap.
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FIGURE 8. Comparison of unbiasedness, in terms of REV , among the estimator in (29), the boostrap
technique and a method proposed in [39]. 1) Non-null case under Normal distribution, where X1, X2 and
X3 follow N (0,1), N (1,1) and N (2,1), respectively. 2) Null case under Normal distribution, where X1, X2
and X3 all follow distribution N (0,1). 3) Non-null case under Rayleigh distribution. X1 follows Rayleigh

distribution with pdfs Pr(X1 = x) = x exp(− x2
2 ), X2 follows Rayleigh distribution with pdfs

Pr(X2 = x) = x
4 exp(− x2

8 ) and X3 follows Pr(X3 = x) = x
9 exp(− x2

18 ), where x ≥ 0. 4) Null case under
Rayleigh distribution, where X1, X2 and X3 all follow Rayleigh distribution with pdfs of

Pr(X1 = x) = Pr(X2 = x) = Pr(X3 = x) = x exp(− x2
2 ), where x ≥ 0.

TABLE 2. Parameters of the distributions followed by X1, X2 and X3 for
computing the variance of VUS under four scenarios.

1) VERIFICATION OF UNBIASEDNESS
In order to proof that, in contrast to V̂GT and V̂Boostrap,
our method in (29) is an unified and unbiased estimator
of the variance of VUS, we also generate data that follow

continuous distributions, e.g. normal distribution (denoted
by N (µ, σ 2) with mean µ and variance σ 2) and Rayleigh
distribution (denoted byR(σ ) with parameter σ ), for demon-
stration. The eight scenarios we considered in the experiment
are summarized as follows,

Similar to the procedure aforementioned, we defined
Relative Error of Variance (REV ) of each method for com-
puting the variance of VUS as

REV ,
E(V̂ξ − V̂E)

VE
, (48)

where suffix ξ ∈ {DP,GT,Boostrap} and V̂E stands for the
empirical variance calculated based on Monte Carlo simula-
tion.

Figure 7 depicts the comparison results, in terms of REV ,
with respect to the three methods under four discrete distribu-
tion scenarios. The top two graphs are attained when the three
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TABLE 3. Quantities needed in the fast algorithm (29).
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FIGURE 9. Comparative results of CPU time among three algorithms
based on (29),the boostrap involves 200 times of replications and the
method proposed by Waegeman et al. in [39], respectively. For simplicity,
the sample sizes of X1, X2 and X3 are set to be equal. A log scale is used
for better visualization.

sample sets follow Poisson distribution, and the remaining
graphs are results corresponding to Geometric distribution.
It is obvious that our dynamic programming based method
V̂DP outperforms the other two, in the sense that V̂DP’s REVs
are all approximately zero, which confirms the unbiasedness
of our algorithm. Besides, all the curves of V̂GT and V̂Boostrap
deviate from zero, especially when the sample sizes are small.
As the sample sizes increase, the curves of both V̂GT and
V̂Boostrap tend to convergence. The latter’s REV gradually
decreases towards zero, which validates that V̂Boostrap is only
an asymptotically unbiased estimator of the variance of VUS;
while though convergence, the large gap between REVs of
V̂GT and line REV = 0 announces that V̂GT with tie breaking
is not a rigorous solution for computing the variance of VUS
when there exist ties, since the accuracy of variance must
be explicitly controlled when estimating confident interval or
performing hypothesis test.

Figure 8 is an experimental result when the class dis-
tributions are continuous. With respect to the comparison
of unbiasedness, a conclusion similar to the discrete case
in Figure 7 above can also be drawn. Better than the other
two methods, the proposed algorithm based on dynamic pro-
gramming remains unbiased. Interestingly, the performance
of VGT is improved and close to that of VBoostrap, due to
the removal of tie breaking. However, both of them are only
asymptotic unbiased estimators.

2) COMPARISON OF COMPUTATIONAL LOADS
Finally, we examine the computational speed of V̂ξ . Since
the generation of sample has little effect on the calculation
time, we remain using the data produced in section V-A2 for
comparison. As shown in Figure 9, it is observed that, our
method V̂DP based on (29) always outperforms the other two
approaches, running around 100 times faster than the boost-

rap approach V̂Boostrap that is also of linearithmic time order
O[(n1+n2+n3) log(n1+n2+n3)] as well. When the sample
sizes are small (less than 50), V̂Boostrap is more time consum-
ing than V̂GT with tie breaking. However, as described in [39],
REVs of V̂GT with tie breaking soars up dramatically with
the increase of sample sizes, since its time complexity is in a
quadratic order.

VI. CONCLUSION
In this paper, we proposed an efficient and unified algorithm,
based on dynamic programming for computing the mean and
variance of VUS with continuous or non-continuous mea-
surements. Theoretical and experimental derivations suggest
that (a) it can act as an unbiased estimator for the mean
and variance of VUS, (b) it is simultaneously applicable for
continuous and discrete inputs, and (c) its time complexity
is of linearithmic order, comparable with the state-of-the-
art methods for computing the mean of VUS, and much
lower than the state-of-the-art methods proposed by Waege-
ment et al. in the case of computing the variance of VUS.
Besides these advantages, the structure of this algorithm can
be easily extended to the multi-class cases [47]. The method-
ology established in this work might shed new light on the
topic of ROC analysis, which is an indispensable tool in many
scientific and engineering areas.

APPENDIX. TABLE OF S
The basic events employed in Theorem 1 are summarized
in Table 3.

APPENDIX. PROOF OF THEOREM 1
Let I(·) be a indicator function that equals to unity(zeros)
if the statement in bracket is True(False) and E(·) defined
in Table 3 be the number of times that events in the bracket are
established, respectively. Based on (1)(3)(4) and the indicator
function, we get

θ̂ =
1

n1n2n3

[ n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X1i)

+
1
2

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k = X2j > X1i)

+
1
2

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j = X1i)

+
1
6

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k = X2j = X1i)
]

=
1

n1n2n3

[
E(X3 > X2 > X1)+

1
2
E(X3 = X2 > X1)

+
1
2
E(X3 > X2 = X1)+

1
6
E(X3 = X2 = X1)

]
=

1
n1n2n3

(S(1)0 +
1
2
S(2)0 +

1
2
S(3)0 +

1
6
S(4)0 ),
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which is (30). From (21) and (22), we have Q̂23, as shown
at the bottom of this page and Q̂1, as shown at the bottom
of the next page which confirm the results of (34) and (35),

respectively. In a similar manner, the rest Q̂-terms in (29) can
also be obtained by referring to Table 3. This completes the
proof.

Q̂23 =
1

n[2]1 n2n3

[ n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

H(X3k ,X2j,X1i) ·H(X3k ,X2j,X1i′ )

−

n1∑
i=1

n2∑
j=1

n3∑
k=1

H(X3k ,X2j,X1i)2
]

=
1

n[2]1 n2n3

[ n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X1i) · I(X3k > X2j > X1i′ )︸ ︷︷ ︸
E(X3>X2>X1>X ′1)+E(X3>X2>X ′1>X1)+E(X3>X2>X1=X ′1)⇒2S(1)23 +S

(2)
23

+
1
2

n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X1i) · I(X3k > X2j = X1i′ )︸ ︷︷ ︸
E(X3>X2=X ′1>X1)⇒S(3)23

+
1
4

n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

I(X3k = X2j > X1i) · I(X3k = X2j > X1i′ )︸ ︷︷ ︸
E(X3=X2>X1>X ′1)+E(X3=X2>X ′1>X1)+E(X3=X2>X1=X ′1)⇒2S(4)23 +S

(6)
23

+
1
12

n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

I(X3k = X2j > X1i) · I(X3k = X2j = X1i′ )︸ ︷︷ ︸
E(X3=X2=X ′1>X1)⇒S(7)23

+
1
2

n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j = X1i) · I(X3k > X2j > X1i′ )︸ ︷︷ ︸
E(X3>X2=X1>X ′1)⇒S(3)23

+
1
4

n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j = X1i) · I(X3k > X2j = X1i′ )︸ ︷︷ ︸
E(X3>X2=X1=X ′1)⇒S(5)23

+
1
12

n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

I(X3k = X2j = X1i) · I(X3k = X2j > X1i′ )︸ ︷︷ ︸
E(X3=X2=X1>X ′1)⇒S(7)23

+
1
36

n1∑
i=1

n1∑
i′=1

n2∑
j=1

n3∑
k=1

I(X3k = X2j = X1i) · I(X3k = X2j = X1i′ )︸ ︷︷ ︸
E(X3=X2=X1=X ′1)⇒S(8)23

−n1n2n3Q̂0

]
=

1

n[2]1 n2n3
(2S(1)23 + S

(2)
23 + S

(3)
23 +

1
2
S(4)23 +

1
4
S(5)23 +

1
4
S(6)23 +

1
6
S(7)23 +

1
36
S(8)23

−S(1)0 −
1
4
S(2)0 −

1
4
S(3)0 −

1
36
S(4)0 )
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Q̂1 =
1

n1n
[2]
2 n[2]3

[ n1∑
i=1

n2∑ n2∑
j6=j′=1

n3∑ n3∑
k 6=k ′=1

H(X3k ,X2j,X1i) ·H(X3k ′ ,X2j′ ,X1i)
]

=
1

n1n
[2]
2 n[2]3

[ n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

H(X3k ,X2j,X1i) ·H(X3k ′ ,X2j′ ,X1i)

−

n1∑
i=1

n2∑
j=1

n3∑ n3∑
k 6=k ′=1

H(X3k ,X2j,X1i) ·H(X3k ′ ,X2j,X1i)

−

n1∑
i=1

n2∑ n2∑
j6=j′=1

n3∑
k=1

H(X3k ,X2j,X1i) ·H(X3k ,X2j′ ,X1i)

−

n1∑
i=1

n2∑
j=1

n3∑
k=1

H(X3k ,X2j,X1i)2
]

=
1

n1n
[2]
2 n[2]3

[ n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j > X1i) · I(X3k ′ > X2j′ > X1i)︸ ︷︷ ︸
4S(1)1 +2S

(2)
1 +2S

(3)
1 +2S

(4)
1 +2S

(5)
1 +S

(8)
1

+
1
2

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j > X1i) · I(X3k ′ = X2j′ > X1i)︸ ︷︷ ︸
S(2)1 +S

(8)
1 +S

(10)
1 +S

(11)
1 +S

(12)
1

+
1
2

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j > X1i) · I(X3k ′ > X2j′ = X1i)︸ ︷︷ ︸
2S(6)1 +S

(7)
1 +S

(13)
1 +S

(14)
1

+
1
6

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j > X1i) · I(X3k ′ = X2j′ = X1i)︸ ︷︷ ︸
S(19)1

+
1
2

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k = X2j > X1i) · I(X3k ′ > X2j′ > X1i)︸ ︷︷ ︸
S(2)1 +S

(9)
1 +S

(10)
1 +S

(11)
1 +S

(12)
1

+
1
4

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k = X2j > X1i) · I(X3k ′ = X2j′ > X1i)︸ ︷︷ ︸
2S(15)1 +S

(20)
1

+
1
4

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k = X2j > X1i) · I(X3k ′ > X2j′ = X1i)︸ ︷︷ ︸
S(7)1 +S

(16)
1 +S

(17)
1

+
1
12

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k = X2j > X1i) · I(X3k ′ = X2j′ = X1i)︸ ︷︷ ︸
S(22)1

+
1
2

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j = X1i) · I(X3k ′ > X2j′ > X1i)︸ ︷︷ ︸
2S(6)1 +S

(7)
1 +S

(13)
1 +S

(14)
1

VOLUME 8, 2020 136219



S. Liu et al.: Fast and Unbiased Estimation of Volume Under Ordered Three-Class ROC Surface (VUS)

+
1
4

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j = X1i) · I(X3k ′ = X2j′ > X1i)︸ ︷︷ ︸
S(7)1 +S

(16)
1 +S

(17)
1

+
1
4

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j = X1i) · I(X3k ′ = X2j′ > X1i)︸ ︷︷ ︸
S(7)1 +S

(16)
1 +S

(17)
1

+
1
4

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j = X1i) · I(X3k ′ > X2j′ = X1i)︸ ︷︷ ︸
2S(18)1 +S

(21)
1

+
1
12

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k > X2j = X1i) · I(X3k ′ = X2j′ = X1i)︸ ︷︷ ︸
S(23)1

+
1
6

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k = X2j = X1i) · I(X3k ′ > X2j′ > X1i)︸ ︷︷ ︸
S(19)1

+
1
12

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k = X2j = X1i) · I(X3k ′ = X2j′ > X1i)︸ ︷︷ ︸
S(22)1

+
1
12

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k = X2j = X1i) · I(X3k ′ > X2j′ = X1i)︸ ︷︷ ︸
S(23)1

+
1
36

n1∑
i=1

n2∑
j=1

n2∑
j′=1

n3∑
k=1

n3∑
k ′=1

I(X3k = X2j = X1i) · I(X3k ′ = X2j′ = X1i)︸ ︷︷ ︸
S(24)1

−n1n2n
[2]
3 Q̂12 − n1n

[2]
2 n3Q̂13 − n1n2n3Q̂0

]
=

1

n1n
[2]
2 n[2]3

(4S(1)1 + 3S(2)1 + 2S(3)1 + 2S(4)1 + 2S(5)1 + 2S(6)1 +
3
2
S(7)1 + S

(8)
1 + S

(9)
1 + S

(10)
1

+S(11)1 + S(12)1 + S(13)1 + S(14)1 +
1
2
S(15)1 +

1
2
S(16)1 +

1
2
S(17)1 +

1
2
S(18)1 +

1
3
S(19)1

+
1
4
S(20)1 +

1
4
S(21)1 +

1
6
S(22)1 +

1
6
S(23)1 +

1
36
S(24)1 − n1n2n

[2]
3 Q̂12 − n1n

[2]
2 n3Q̂13 − n1n2n3Q̂0),
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