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Summary

In this paper, a class of nonlinear interconnected systems with uncertain time vary-
ing parameters (TVPs) is considered. Both the interconnections and the isolated
subsystems are nonlinear. The differences between the unknown TVPs and their cor-
responding nominal values are assumed to be boundedwhere the nominal value is not
required to be known. A dynamical system is proposed and then, the error systems
between the original interconnected system and the designed dynamical system are
analysed. A set of conditions is developed such that the augmented systems formed by
the error dynamical systems and the designed adaptive laws are uniformly ultimately
bounded. Specifically, the state observation errors are asymptotically convergent to
zero based on the LaSalle’s Theorem while the parameter estimation errors are uni-
formly ultimately bounded, and the classical condition of persistent excitation is not
required. A case study on a coupled inverted pendulum system is presented to demon-
strate the developed methodology, and simulation shows that the proposed approach
is effective and practicable.
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1 INTRODUCTION

The development of advanced technologies has produced corresponding growth in the scale of engineering systems, and thus
the scale of many practical systems becomes large in order to satisfy the increasing requirement for system performance. Such
systems are called large scale systems and usually can be modelled by sets of lower-order ordinary differential equations which
are linked through interconnections. These systems are typically called large scale interconnected systems (see e.g.1,2,3,4,5).
Interconnected systems widely exist in the real world, for example, coupled inverted pendula, energy systems and biological

systems etc (see e.g.1,3,6). Study on interconnected systems has received great attention and many results have been obtained
(see e.g.1,3,7). Much of the existing work assumes that all system states are available in control design. However, for a practical
system, only a subset of system states is usually available. In order to implement state feedback control schemes, one of possible
choices is to design an observer to estimate system states, and then use the estimated states to form the feedback control loop.
Observer design has been studied for many years, and the early work can be dated back to the well known Luenberger observer.

The majority of the early work about observer design is mainly for linear systems and the robust problem against various
uncertainties was not considered (see8 and references therein). However, due to the mechanical wearing and modelling errors,
many practical control systems involve unknown parameters.
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Recently, much literature has devoted to design adaptive observers for nonlinear systems and many different methods have
been developed in order to obtain high estimation performance in the presence of parametric uncertainty and/or unstructural
uncertainty. Boizot et al in9 developed an adaptive observer by using extended Kalman filter to reduce the effect of perturba-
tions. However, in terms of the parameter estimation for nonlinear systems, it is usually very difficult to analysis the stability of
the extended Kalman filter. Sliding mode techniques have been applied in10 to enhance the performance of the adaptive observer
proposed by11. It should be noted that unknown parameters considered in these papers are constant. An observer for linear time-
varying systems with known time-varying matrices affected by unknown input is designed in12 to estimate the systems states
using high order sliding mode techniques. Adaptive observer has been considered in13 to estimate just the synthetical pertur-
bation with unknown bounds in order to achieve a fast and accurate reusable launch vehicle attitude tracking with chattering
attenuation in presence of knowing the system states and its parameters. The authors in14 designed a state observer and an adap-
tive disturbance observer to estimate the system state and the disturbance, simultaneously. However, the unknown parameters
and interconnected systems are not considered. An adaptive redesign of reduced order nonlinear observers is presented in15

where the solution of a partial differential equation is required, which may not be possible in most of cases. In order to improve
the quality of the current drawn from the utility grid, an adaptive nonlinear observer is designed in16 to estimate the inductor
current which is required in the closed-loop control system of power factor correction as an essential part of AC/DC converters.
An adaptive observer is designed for a class of MIMO uniformly observable nonlinear systems with linear and nonlinear

parametrizations in17 and the exponential convergence of the error dynamics for both types of parametrization is guaranteed
under the persistent excitation condition. Tyukin et al in18 considered the problem of asymptotic reconstruction of the state and
parameter. However, in both17 and18, it is required that the unknown parameters are constant. The literature in19 proposed an
adaptive state estimator for a class of multi-input and multi-output non-linear systems with uncertainties in the state and the
output equations, in which the systems considered are not interconnected systems. The work in20 proposed an adaptive observer
which expands the extended state observer to nonlinear disturbed systems. However, the adaptive extended state observer is
linear and requires that the error dynamics can be transformed into a canonical form.
Observer design for interconnected systems has been widely studied. Observers have been proposed in21 for linear large scale

systems, where the unknown parameters are not considered. Sliding mode observers have been presented for interconnected
systems in22 where a few coordinates are required to obtain the regular form, and the parameter uncertainty is not considered.
Adaptive sliding mode observer based fault reconstruction for nonlinear systems with parameters uncertainties is proposed
in23, where the unknown parameters vector considered is constant. Recently, sliding mode observers are designed in24 for a
class interconnected systems with time-varying parameters. However, it is required that the change rates of the parameters are
bounded with known bounds. Moreover, the results obtained in24 can not guarntee that the observation errors convergae to
zero asymptotically. An adaptive interconnected observer is proposed for sensorless control of a synchronous motor in25 where
the system considered includes only two subsystems. In addition, the observer designed is mainly used to implement a special
control task. Therefore, strong limitation is unavoidably imposed on the considered interconnected systems. Moreover, in most
of the existing work, it is required that either the unknown parameters are constant (see e.g10,26) or the nominal values of the
unknown parameters are known27. The corresponding observation results for large scale nonlinear interconnected systems are
very limited, particularly when uncertain time varying parameters are involved.
In this paper, observers are designed for a class of nonlinear interconnected systems with uncertain time varying parameters

(TVPs), in which both the isolated subsystems and the interconnections are nonlinear. The designed observers are variable
structure interconnected systems but may not result in sliding motion. Under the condition that the difference between the
unknown TVPs and the corresponding uncertain nominal values are bounded by constants, adaptive updating laws are proposed
to estimate the parameters. The persistent of excitation condition is not required. A set of sufficient conditions are proposed such
that the error dynamics formed by the system states and the designed observers are asymptotically stable while the parameters
estimation errors are uniformly ultimately bounded using the LaSalle’s Theorem. The results obtained are applied to a coupled
inverted pendula systems, and simulation results are presented to demonstrate the effectiveness and feasibility of the developed
results. The main contribution includes:

(i) Both the interconnections and isolated subsystems take nonlinear forms, which makes the developed results applicable to
a wide class of interconnected systems.

(ii) The unknown parameters considered in the system are time varying and the corresponding nominal values are not required
to be known. This makes the developed results are different from much of the existing work where it is required that the
unknown parameters are constant.
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(iii) Under a set of developed mild conditions, the asymptotic convergence of the observation error between the states of
the considered systems and the states of the designed observers is guaranteed while the estimate errors of the TVPs are
uniformly ultimately bounded.

2 SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider a nonlinear interconnected system composed ofN subsystems described as follows

ẋi = Aixi + fi(xi, ui) + Bi�i(t)�i(t) +
N
∑

j=1
j≠i

Hij(xj) (1)

yi = Cixi (2)

where xi ∈ Rni , ui ∈ Ui ∈ Rmi (Ui are the admissible control set) and yi ∈ R are the state variables, inputs and outputs of the i-th
subsystem respectively. The functions fi(⋅) are known continuous, the scalars �i(t) ∈ R are unknown time varying parameters.
The matrices Ai ∈ Rni×ni , Bi ∈ Rni×1 and Ci ∈ R1×ni are constants, and Ci are of full rank. The terms

N
∑

j=1
j≠i

Hij(xj)

are the known interconnections of the i-th subsystems for i = 1,⋯ , N . The signals �i(t) ∈ R are known regressor signals which
are explained in28,29.

Assumption 1. The matrix pairs (Ai, Ci) are observable for i = 1,⋯ , N .
From Assumption 1, there exist matrices Li such thatAi−LiCi are Hurwitz stable. This implies that, for any positive-definite

matrices Qi ∈ Rni×ni , the Lyapunov equations

(Ai − LiCi)TPi + Pi(Ai − LiCi) = −Qi (3)

have unique positive-definite solutions Pi ∈ Rni×ni .
Assumption 2. There exist matrices Fi ∈ R such that solutions Pi to the Lyapunov equations (3) satisfy the constraints

BTi Pi = FiCi (4)

where Bi and Ci are given in system (1)-(2) for i = 1,⋯ , N .
Remark 1. To solve the Lyapunov equations (3) in the presence of the constraints (4) is the well known constrained Lyapunov

problem (CLP)30. Although there is no general solution available for this problem, associated discussion and an algorithm can
be found in31 which may help to solve the CLP for a specific system.

Assumption 3. The uncertain time varying parameters �i(t) satisfy

|�i(t) − �0i | ≤ �0i (5)

where �0i are unknown constant, and �0i are known constant for i = 1,⋯ , N .
Remark 2. Assumption 3 is to specify a class of uncertainties tolerated in the observer design. The unknown constants �0i

given in (5) are called the nominal value of the uncertain TVPs �i(t) throughout this paper. Different from the existing work (see
e.g.27,11), the unknown parameters �i(t) are time varying and the nominal values �0i are not required to be known.
For further analysis, the terms Bi�i(t)�i(t) in system (1) are rewritten as

Bi�i(t)�i(t) = Bi[�0i + �i(t)]�i(t) (6)

where the scalers �i(t) = �i(t) − �0i .
Assumption 4. The nonlinear terms fi(xi, ui) satisfy the Lipschitz condition with respect to xi ∈ Rni , and uniformly for

ui ∈ Ui ∈ Rmi , and Hij(xj) satisfy the Lipschitz condition in xj ∈ Ωj for i = 1, 2,⋯ , N and i ≠ j, that is, there exist
nonnegative function lfi and constant lHij

such that

‖fi(x̂i, ui) − fi(xi, ui)‖ ≤ lfi(ui)‖x̂i − xi‖ (7)
‖Hij(x̂j) −Hij(xj)‖ ≤ lHij

‖x̂j − xj‖ (8)
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for i = 1, 2,⋯ , N and i ≠ j.
For further analysis, the matrixW =

[

wij
]

N×N is introduced where its entries wij are defined by

wij =

⎧

⎪

⎨

⎪

⎩

�min(Qi) − 2lfi‖Pi‖, i = j

−2‖Pi‖lHij
, i ≠ j

(9)

where Pi and Qi satisfy Lyapunov equation in (3) and �min(Qi) represents the minimum eigenvalue of the matrix Qi for i =
1, 2,… , N .

Remark 3. The Assumption 4 is the limitation to the nonlinear terms and the interconnections which is necessary to achieve
the asymptotic stability of the observation error dynamics. It should be noted that in the Assumption 4, it is required that fi(xi, ui)
satisfy the Lipschitz condition with respect to the variable xi only. Furthermore, in order to obtain rigorous results, limitations
on the matrixW defined in (9) are to be given later. It is clear to see thatW involves the parameters lfi and lHij

. Thus further
limitation on the functions fi(⋅) andHij(xi) will be provided later.
For nonlinear interconnected system (1)–(2) satisfying Assumptions 1-4, the objective of this paper is to design an observer

with appropriate adaptive laws such that the states of the system (1)–(2) can be estimated asymptotically, and the estimation
errors of the unknown parameters �i(t) in (1) are uniformly ultimately bounded.

3 ADAPTIVE OBSERVER DESIGN WITH PARAMETERS ESTIMATION

In this section, an asymptotic observer is to be designed and the proposed adaptive laws are to be presented.
From equation (6), system (1) can be rewritten as

ẋi = Aixi + fi(xi, ui) + Bi[�0i + �i(t)]�i(t) +
N
∑

j=1
j≠i

Hij(xj) (10)

yi = Cixi (11)

For system (10)-(11), construct dynamical systems
̇̂xi = Aix̂i + fi(x̂i, ui) + Li(yi − ŷi) + Bi�̂i(t)�i(t) − 2P −1i (FiCi)T |�i(t)| �0i i(ŷi, yi)

−Bi�̂i(t)�i(t) +
N
∑

j=1
j≠i

Hij(x̂j) (12)

ŷi = Cix̂i (13)

where Pi and Ci satisfy equations (3) and (4) and the known constant �0i satisfies the inequality in Assumption 3.

 i(ŷi, yi) =
{

Fi(ŷi−yi)
‖Fi(ŷi−yi)‖

, Fi(ŷi − yi) ≠ 0
0, Fi(ŷi − yi) = 0

(14)

for i = 1, 2,⋯ , N , and �̂i(t) is given by the adaptive law as follows
̇̂�i(t) = −2�i(Fi(ŷi − yi))T �i(t) (15)

where �i is a positive constant which is design parameter and �̂i(t) is defined by

�̂i(t) = −
1
�i
�̂i(t) (16)

for i = 1, 2,⋯ , N .
Remark 4. Adaptive laws are the backbone of every adaptive control scheme. The essential idea behind adaptive law is the

comparison of the measured system output with the output of observer whose structure is the same as that of the plant model.
The adaptive law is formulated as a stability problem where the differential equation of the adaptive law is chosen so that certain
stability conditions based on Lyapunov theory are satisfied to facilitate the analysis and design.

Remark 5. The fifth term in (12) includes a variable structure term which works as a controller to enforce the error signal to
reach the designed sliding surface and achieve the stability.
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Let exi = x̂i − xi. Then, from systems (10)-(11) and (12)-(13), the error dynamical systems can be described by

ėxi = (Ai − LiCi)exi + [fi(x̂i, ui) − fi(xi, ui)] +
N
∑

j=1
j≠i

[Hij(x̂j) −Hij(xj)] + Bi�̃i(t)�i(t)

−Bi�̂i(t)�i(t) − Bi�i(t)�i(t) − 2P −1i (FiCi)T |�i(t)|�0i i(ŷi, yi) (17)

where �̃i(t) is defined by

�̃i(t) = �̂i(t) − �0i (18)

for i = 1, 2,⋯ , N .
For the convenience of further analysis , let

�̃i(t) = �̂i(t) − �0i (19)

where the known constant �0i satisfies the inequality (5) in Assumption 3 and �̂i(t) is defined in (16), for i = 1, 2,⋯ , N .
The following result is ready to be presented:
Theorem 1. Under Assumptions 1 − 4, the error dynamical systems (17) with adaptive law (15) are uniformly ultimately

bounded if the matrix W T +W is positive definite, where the matrix W =
[

wij
]

N×N and its entries wij are defined in (9).
Further, the error exi given in (17) satisfies

lim
t→∞

‖exi(t)‖ = 0, i = 1, 2,… , N (20)

Proof. For system (15) and (17), consider the candidate Lyapunov function

V =
N
∑

i=1
eTxiPiexi +

1
2

N
∑

i=1
( 1
�i
�̃2i (t) + �̃

2
i (t)) (21)

where �i > 0 are design parameters given in (15) for i = 1, 2,⋯ , N . Note that, in (21) �̃i(t) is dependent on �̃i(t). From (16),
(18) and (19) it can be seen that the relationship between �̃i(t) and �̃i(t) is given by

�̃i(t) = �̂i(t) − �0i
= − 1

�i
�̂i(t) − �0i

= − 1
�i
(�̃i(t) + �0i) − �0i

Then, from (17)

V̇ =
N
∑

i=1
(ėTxiPiexi + e

T
xi
Piėxi) +

N
∑

i=1
( 1
�i
�̃i(t) ̇̃�i(t) + �̃i(t) ̇̃�i(t))

=
N
∑

i=1

{

eTxi[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi + 2e

T
xi
Pi[fi(x̂i, ui) − fi(xi, ui)]

+2eTxiPi
N
∑

j=1
j≠i

[Hij(x̂j) −Hij(xj)] + 2eTxiPiBi�̃i(t)�i(t) − 2e
T
xi
PiBi�i(t)�i(t)

−2eTxiPiBi�̂i(t)�i(t) +
1
�i
�̃i(t) ̇̃�i(t) + �̃i(t) ̇̃�i(t) − 4eTxiPiP

−1
i (FiCi)T |�i(t)|�0i i(ŷi, yi)

}

(22)

By using condition (4) and Ciexi = ŷi − yi,

eTxiPiBi = ((PiBi)T exi)
T = (BTi Piexi)

T

= (FiCiexi)
T = (Fi(ŷi − yi))T (23)
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Substituting (23) into (22), it follows that

V̇ =
N
∑

i=1

{

eTxi[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi + 2e

T
xi
Pi[fi(x̂i, ui) − fi(xi, ui)]

+2eTxiPi
N
∑

j=1
j≠i

[Hij(x̂j) −Hij(xj)] + [2(Fi(ŷi − yi))T �i(t) +
1
�i
̇̃�i(t)]�̃i(t)

−2(Fi(ŷi − yi))T �i(t)�i(t) − 2(Fi(ŷi − yi))T �̂i(t)�i(t)

+�̃i(t) ̇̃�i(t) − 4(Fi(ŷi − yi))T |�i(t)|�0i i(ŷi, yi)
}

(24)

From (18), it can be seen that ̇̃�i(t) =
̇̂�i(t) because �0i is constant. Substituting (14) and (15) into (24) gives

V̇ =
N
∑

i=1

{

eTxi[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi + 2e

T
xi
Pi[fi(x̂i, ui) − fi(xi, ui)]

+2eTxiPi
N
∑

j=1
j≠i

[Hij(x̂j) −Hij(xj)] − 2(Fi(ŷi − yi))T �i(t)�i(t)

−2(Fi(ŷi − yi))T �̂i(t)�i(t) + �̃i(t)) ̇̃�i(t) − 4‖Fi(ŷi − yi)‖ |�i(t)|�0i
}

From (19), it can be seen that ̇̃�i(t) = ̇̂�i(t).

V̇ =
N
∑

i=1

{

eTxi[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi + 2e

T
xi
Pi[fi(x̂i, ui) − fi(xi, ui)]

+2eTxiPi
N
∑

j=1
j≠i

[Hij(x̂j) −Hij(xj)] − 2(Fi(ŷi − yi))T �i(t)�i(t)

−[2(Fi(ŷi − yi))T �i(t) − ̇̃�i(t)]�̂i(t) − �0i ̇̃�i(t) − 4‖Fi(ŷi − yi)‖ |�i(t)|�0i
}

(25)

Substituting (16) and (19) into (25) yields

V̇ =
N
∑

i=1

{

eTxi[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi + 2e

T
xi
Pi[fi(x̂i, ui) − fi(xi, ui)]

+2eTxiPi
N
∑

j=1
j≠i

[Hij(x̂j) −Hij(xj)] − 2(Fi(ŷi − yi))T �i(t)�i(t)

−2�0i(Fi(ŷi − yi))
T �i(t) − 4‖Fi(ŷi − yi)‖|�i(t)|�0i

}

It is clear from (3) that

V̇ ≤
N
∑

i=1

{

− eTxiQiexi + 2‖exi‖‖Pi‖[fi(x̂i, ui) − fi(xi, ui)] + 2‖exi‖‖Pi‖
N
∑

j=1
j≠i

[Hij(x̂j) −Hij(xj)]

−2(Fi(ŷi − yi))T �i(t)[�i(t) + �0i] − 4‖Fi(ŷi − yi)‖ |�i(t)|�0i
}

≤
N
∑

i=1

{

− eTxiQiexi + 2‖exi‖‖Pi‖[fi(x̂i, ui) − fi(xi, ui)] + 2‖exi‖‖Pi‖
N
∑

j=1
j≠i

[Hij(x̂j)

−Hij(xj)] + 4‖Fi(ŷi − yi)‖|�i(t)|�0i − 4‖Fi(ŷi − yi)‖|�i(t)|�0i}
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≤
N
∑

i=1

{

− eTxiQiexi + 2‖exi‖‖Pi‖[lfi‖x̂i − xi‖] + 2‖exi‖‖Pi‖
N
∑

j=1
j≠i

[lHij
‖x̂j − xj‖]

}

≤ −
N
∑

i=1

{

(�min(Qi) − 2‖Pi‖lfi)‖exi‖
2 −

N
∑

j=1
j≠i

(2‖Pi‖lHij
‖exi‖‖exj‖)

}

(26)

Then, from the definition of the matrixW in (9) and the inequality above, it follows that

V̇ ≤ −1
2
XT [W T +W ]X (27)

where X = [‖ex1‖, ‖ex2‖,⋯ , ‖exN‖]
T . From the LaSalle’s Theorem (see. e.g.32), all the solutions of (17) are uniformly

ultimately bounded and satisfy

lim
t→∞

XT [W T +W ]X = 0 (28)

Further, from the facts
�min(W T +W )‖X‖

2 ≤ XT (W T +W )X
and

‖X‖

2 = ‖ex1‖
2 + ‖ex2‖

2 +⋯ + ‖exN‖
2

it is straightforward to see from (28) and the conditionW T +W > 0 that

lim
t→∞

‖exi(t)‖ = 0, i = 1, 2,… , N

Hence the conclusion follows. △.
Remark 6. It should be noted that the constructed Lyapunov function (21) is a function of variables exi , �̃i and �̃i while the

right hand side of inequality (27) is a function of variables exi only. Therefore, the condition W
T +W is positive definite in

Theorem 1 implies that V̇ is semi-positive definite instead of positive definite.
Remark 7. Theorem 1 shows that the augmented systems formed by (17) and the adaptive law (15) are uniformly ultimately

bounded. It should be noted that the estimated states x̂i given by the observer (12) converge to the system states xi in (1)
asymptotically although the estimate error for the parameters may not be asymptotically convergent. As the uncertain parameters
�i in system (1) are time-varying, the approaches developed in23,11 cannot be applied to the systems considered in this paper.

Remark 8. The designed observer is a variable structure interconnected system but it may not produce a sliding motion,
which is different from the work in11. In addition, the unknown parameters are considered as constants in11 while in this paper
they are TVPs. In addition, Assumption 3 in11 is a limitation on uncertain parameter distributions and it is necessary for the
parameter � to be estimated as it explained clearly in Remark 2 in11.

Remark 9. The technique used in this work to achieve stability is similar to the Vector Lyapunov Functions method explained
in33,34. Different from33,34, the considered systems are nonlinear with unknown time varying parameters.

Remark 10. Unlike Lyapunov stability theorems, LaSalle’s theorem does not require the function in (21) to be positive
definite35,32. The form of adaptive law (15), LaSalle’s theorem and the boundedness of the parameters variation (5) guarantee
that the error system (17) is uniformly ultimately bounded without the persistent excitation condition. LaSalle’s theorem has
been used in36 to develop a new adaptive law for robust adaptation without the persistent excitation condition.

4 CASE STUDY: A COUPLED INVERTED PENDULUM

In order to illustrate the method developed in this paper, case study on a coupled pendulum system is carried out in this section.
Consider a system formed by two inverted pendula connected by a spring as given in Figure 1 . There are two balls are attached at
the end of the two rigid rods respectively. The symbol u1 and u2 denote external torques imposed on the two pendula respectively
which are the control inputs. The distance b between the two pendulum hinges are assumed to be changeable with respect to
time t. Let '1 = x11, '2 = x21, '̇1 = x12, and '̇2 = x22. The coupled inverted pendulums can be modelled as (see e.g.37,38)
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FIGURE 1 Coupled inverted pendula

ẋ1 =
[

0 1
0 0

] [

x11
x12

]

+

[

0
(m1gr
J1

− kr2

4J1
) sin(x11) +

1
J1
u1

]

+

[

0
kr
2J1

]

(l − b) +

[

0
kr2

4J1
sin(x21)

]

(29)

y1 =
[

1 1
]

[

x11
x12

]

(30)

ẋ2 =
[

0 1
0 0

] [

x21
x22

]

+

[

0
(m2gr
J2

− kr2

4J2
) sin(x21) +

1
J2
u2

]

+

[

0
kr
2J2

]

(l − b) +

[

0
kr2

4J2
sin(x11)

]

(31)

y2 =
[

1 1
]

[

x21
x22

]

(32)

The end masses of pendula are m1 = 0.7 kg and m2 = 0.6 kg, the moments of inertia are J1 = 5 kg and J2 = 4 kg, the constant
of connecting spring is k = 90 N/m, the pendulum height is r = 0.25 m, and the gravitational acceleration is g = 9.81 m/s2.
In order to illustrate the developed theoretical results, it is assumed that (l − b(t)) = �1(t) = �2(t) is an unknown time varying
parameter for i = 1, 2 where l is the natural length of spring and b(t) is the distance between the two pendulum hinges.
In order to avoid system states going to infinity, and for simulation purposes, the following feedback transformation is

introduced

ui = −kixi + vi, i = 1, 2 (33)
k1 =

[

10 15
]

(34)
k2 =

[

8 12
]

(35)

Then with the given parameters above, the system (29)-(32) can be rewritten as

ẋ1 =
[

0 1
−2 −3

]

⏟⏞⏞⏟⏞⏞⏟
A1

[

x11
x12

]

+

[

0
0.06215 sin(x11) +

1
5
v1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f1(x1,u1)

+
[

0
2.25

]

⏟⏟⏟
B1

(l − b(t))
⏟⏞⏟⏞⏟

�1(t)

+
[

0
0.2813 sin(x21)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
H12(x2)

(36)

y1 =
[

1 1
]

⏟⏟⏟
C1

[

x11
x12

]

(37)

ẋ2 =
[

0 1
−2 −3

]

⏟⏞⏞⏟⏞⏞⏟
A2

[

x21
x22

]

+

[

0
0.01632 sin(x21) +

1
4
v2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f2(x2,u2)

+
[

0
2.8125

]

⏟⏞⏞⏟⏞⏞⏟
B2

(l − b(t))
⏟⏞⏟⏞⏟

�2(t)

+
[

0
0.352 sin(x11)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
H21(x1)

(38)
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y2 =
[

1 1
]

⏟⏟⏟
C2

[

x21
x22

]

(39)

Choose
Li = [0 0] and Qi = 4I

for i = 1, 2. It follows that the Lyapunov equations (3) have unique solutions:

Pi =
[

5 1
1 1

]

, i = 1, 2 (40)

satisfying the condition (4) with
F1 = 2.25, and F2 = 2.8125

For simplicity, it is assumed that
�i(t) = 1, �0i = 1 and �i = 2

for i = 1, 2. By direct computation, it follows that the matrixW T +W is positive definite. Thus, all the conditions of Theorem
1 are satisfied. This implies that the following dynamical systems are the asymptotic observer of the nonlinear interconnected
system (36)–(39):

̇̂x1 =
[

0 1
−2 −3

] [

x̂11
x̂12

]

+

[

0
0.06215 sin(x̂11) +

1
5
v1

]

+
[

0
2.25

]

�̂1(t) −
[

0
0.4

]

(ŷ1 − y1)
‖ŷ1 − y1‖

−
[

0
2.25

]

�̂1(t) +
[

0
0.2813 sin(x̂21)

]

(41)

ŷ1 =
[

1 1
]

[

x̂11
x̂12

]

(42)

̇̂x2 =
[

0 1
−2 −3

] [

x̂21
x̂22

]

+

[

0
0.01632 sin(x̂21) +

1
4
v2

]

+
[

0
2.8125

]

�̂2(t) −
[

0
0.5

]

(ŷ2 − y2)
‖ŷ2 − y2‖

−
[

0
2.8125

]

�̂2(t) +
[

0
0.352 sin(x̂11)

]

(43)

ŷ2 =
[

1 1
]

[

x̂21
x̂22

]

(44)

The designed adaptive laws are given by
̇̂�1(t) = −4(2.25(ŷ1 − y1))T (45)
̇̂�2(t) = −4(2.8125(ŷ2 − y2))T (46)

For simulation purpose, v1 and v2 are chose as v1 = v2 = 0.1 sin t, and the unknown parameters �0i and �i(t) are chosen as
�0i = 0 and �i(t) = 0.6 sin t for i = 1, 2. Simulation in Figures 2 and 3 shows that the estimation error between the states of the
system (29)-(32) and the states of the observer (41)-(44) converges to zero asymptotically. Figure 4 shows that the estimation of
the parameters is uniformly ultimately bounded with satisfactory accuracy.

Remark 11. For a real system, the positions and/or the velocities are usually chosen as system output. However, some times,
the linear combination of the position and velocity are taken as system output. Physically, such an aggregation of the output
might arise in some real systems39,40, for example, certain remote-control applications where the number of transmission and
receive lines/frequencies are limited39. The proposed approach in this work is valid under Assumption 2. If only the positions
in system (29)-(32) are chosen as system outputs, Assumption 2 does not hold, and thus the Theorem 1 does not hold either. In
this case, the results developed in this paper are not applicable.

5 CONCLUSION

In this paper, an adaptive observer design for a class of nonlinear large scale interconnected systems with unknown time varying
parameters has been proposed. The unknown parameters vary within a given range. A set of sufficient conditions has been
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FIGURE 2 The time response of the 1st subsystem states x1 = col (x11, x12) and their estimation x̂1 = col (x̂11, x̂12).
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FIGURE 3 The time response of the 2nd subsystem states x2 = col (x21, x22) and their estimation x̂2 = col (x̂21, x̂22).

FIGURE 4 Upper: the time response of �̂1(t) (dashed line) and �1(t) (solid line); Bottom: the time response of �̂2(t) (dashed
line) and �2(t) (solid line).

developed to guarantee that the observation error system with the proposed adaptive law is uniformly ultimately bounded. The
states of the designed observer are asymptotically convergent to the original system states. Therefore, from the state estimation
point of view, the designed observers are asymptotic observers. Case study on a coupled inverted pendulum system shows the
practicability of the developed observer scheme for nonlinear interconnected systems. In the future, adaptive observer design
for interconnected systems in the presence of measurement noises will be considered.
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