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A B S T R A C T

A new three-dimensional, finite deformation Cosserat continuum model for the elastic response of uncured
carbon fibre composites is presented. The new composite process model captures the bending contribution
of bundles of fibres at the microscale within a mesoscale continuum description of a composite ply. This
is achieved by introducing higher-order, independent rotational degrees of freedom into the continuum
formulation. This paper demonstrates the inclusion of such mechanics is essential to accurately model various
bending responses induced during typical composite manufacturing processes. This includes large deformation
forming, finite strain consolidation and wrinkling (the formation of an unwanted defect). If such mechanics are
not included, the literature demonstrates the resulting finite element solutions have a pathological dependence
on the mesh size. As a result, simulations require users to fit mesh-dependent material parameters, which
limits confidence in their predictive capabilities. The Cosserat continuum, which can be seen as a form of
the regularised continuum model, overcomes these challenges. In particular, this paper presents details of the
finite element formulation of the new continuum model within a nonlinear Taylor–Hood Cosserat Element.
Implementation details of embedding this new element within the commercial code Abaqus are given, alongside
a series of increasingly complex validation simulations. Notably, the examples include modelling the formation
of internal fibre wrinkles and large deformation forming, which involves complex ply-to-ply and tool-to-
ply contact. The paper concludes by describing: (1) how the elastic Cosserat model can be integrated into
existing large deformation process models in the literature. The approach set out readily allows researchers to
include the important effects of resin flow, cure kinetics and temperature distribution, not considered in this
contribution, and (2) how it is envisaged that the ply scale model can be naturally scaled up to large laminate
scale simulation using mathematical upscaling techniques.
. Introduction

.1. Motivating industrial challenge in composite manufacturing and pro-
ess modelling

In order to meet demands for increased production rates of com-
osite components, manufacturers are forced towards highly automated
roduction processes; of which the most common are Hot Drape or Dou-
le Diaphragm Forming (HDF or DDF) and Automated Fibre Placement
AFP). However, such processes come with an increase in the likelihood
f severe manufacturing induced defects (e.g. wrinkles Dodwell, 2015;
andhu et al., 2018; Belnoue et al., 2016; Varkonyi et al., 2019,
olds Lightfoot et al., 2013; Hallander et al., 2016 and in-plane wavi-
ess Dodwell et al., 2019) which compromise the structural integrity
f the as-manufactured component (Sutcliffe, 2013). A recent strategic
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government paper on Composite Strategy (Composites Leadership Fo-
rum, 2016), highlights the need for the high-value manufacturing
industry to ‘reduce time, cost and risk to market through the use of validated
simulation tools’. The industrial drive is to utilise simulation tools to
predict and design-out defects, preventing long-development cycles,
reducing time to market and increasing profitability.

Various studies in the literature investigate the effect of processing
parameters such as stacking sequence, cure time, and bagging config-
uration on the quality of the final product of autoclave process (Wang
et al., 2009; Li et al., 2009; Fernlund et al., 2002). Gutowski et al.
(1987) observed from the experimental measurements of the defor-
mation mechanism of the uncured fibre composites that the uncured
fibre-network can be modelled as a nonlinear anisotropic elastic ma-
terial, leading to a one-dimensional compaction model for predicting
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the transverse stiffness of the uncured unidirectional fibre bed. Later,
Hubert et al. (1999) and Li and Tucker III (2002) used Gutowski’s
approach and developed a finite element formulation to simulate the
multiple physical phenomena of resin flow, fibre bed consolidation
and cure during a consolidation/autoclave manufacturing process of
composite laminates. Both papers assumed the fibre bed as a bi-phasic
region and developed one model for solid stress and another for resin
pressure which are coupled together. Separately, Belnoue et al. (2016)
developed a hyper-viscoelastic model for consolidation of prepregs
motivated from biological models of muscles (Limbert and Middleton,
2004). Rather than modelling the coupled system of the resin flow and
solid state deformation, the effect of the resin is captured by including
a visco-elastic response of the solid material model. This model has
been extended to explore the influence of defects and differential
consolidation (Belnoue et al., 2017, 2018; Varkonyi et al., 2019).

1.2. Higher order continuum models for composite manufacturing

A fundamental assumption of the above mentioned models is that
the materials exhibit a characteristic length scale of the variations in
the stress field much greater than the size of a representative volume
of that material (Dodwell, 2015). For such cases, stresses may be
considered uniform over that element, and homogenised properties
can be rigorously derived as the length scale of the heterogeneity
vanishes (Pavliotis and Stuart, 2008). Yet, by design, a composite
material consists of stiff, finite size, elastic inclusions, within a rel-
atively compliant resin matrix. In their uncured (pre-manufactured)
state the contrast between fibre and matrix is very large. As a result,
under a general deformation state the stress field varies over a length
scale proportional to the fibres. In other words, the individual fibres
(or a collection/bundle of them) to some degree deform and bend
independently, and with this carry localised bending moments. The
consequence of not including the local contributions of fibres bending
is that the resulting bending mechanics become pathologically mesh
dependent when discretised. In particular this is highlighted by Li
and Tucker III (2002). They observed the formation of wrinkles in
the corner radius of a thick composite part under consolidation. Yet,
as shown in Li and Tucker III (2002, Fig. 7), they predicted wrinkle
wavelengths precisely equal to the finite element mesh size.

Classically a number of approaches have been proposed which
enrich the continuum description to capture the internal bending me-
chanics. Perhaps the most classical of which is the theory of the
Cosserat brothers (Cosserat and Cosserat, 1909). In a Cosserat continua,
continuum models are enriched with three additional, independent
rotational degrees-of-freedom. The spatial gradients of these rotations
give internal curvature measures, which form work conjugates to the
resulting internal bending moments. In the mathematical formulation
this requires equilibrium of not only forces, but also of bending mo-
ments within any finite size volume (Dodwell, 2015, Eq. 6). Therefore,
the connection between curvatures and bending moments per unit
volume introduces an internal ‘bending modulus’ to the material de-
scription. Since this represents a bending stiffness per unit volume,
such continuum models inherit a characteristic length into the three
dimensional constitutive formulation.

Experimental tests by the authors (Erland, 2017), characterised the
elastic ‘bending stiffness’ of a single composite ply. Tests demonstrate
the length dependency of the material parameters. Single plies of
three different lengths were tested in a single cantilever (i.e. clamped–
clamped) Dynamic Mechanical Analysis (DMA) setup. In each case, one
end of the ply is clamped and cyclically displaced whilst the other is
clamped and fixed. The load is recorded over a sweep of increasing
temperatures and using standard DMA analysis a temperature depen-
dent elastic storage modulus for the material is obtained. The output of
these experiments are shown in Fig. 1. The results clearly show a length
dependent material modulus which is counter intuitive. The key point
is that if this characteristic length and internal bending mechanic is
2

Fig. 1. Dynamic Mechanical Analysis (DMA) experiment results showing a length de-
pendency material storage modulus, inset shows experimental setup with 𝐿 representing
sample length and 𝑤 vertical deformation of sample.

not included, the choice of material parameters will become dependent
on the mesh (or length of sample). This renders a mesh convergence
study meaningless, and the parametrisation of a model is intricately
coupled to the discretisation. This pathological mesh dependence for
materials with internal length scales is well documented in other fields,
most notability in modelling of shear bands, kink bands and folding of
layered and granular media (Forest, 1998; Forest et al., 2000; Tejchman
and Wu, 1993; Adhikary and Dyskin, 1997; Mühlhaus et al., 2002;
Froiio et al., 2006; Hunt et al., 2013; Bigoni and Gourgiotis, 2016).

1.3. The contribution of this paper

Whilst there is an increasing realisation that higher-order mechanics
should play an integral role in composite process modelling, the uptake
has been relatively slow. The authors in part believe this is because
existing studies in the literature are mainly mathematical (Spencer
and Soldatos, 2007; Dodwell, 2015), rather than considering the prac-
tical challenges of developing and implementing models for real 3D
manufacturing processes. For example, Spencer and Soldatos (2007)
developed a model for fibre-composites by incorporating the fibre
bending stiffness effect through a new strain–energy functional depen-
dent on the gradient of the fibre direction. Yet, this contribution did
not develop a higher order finite element discretisation to perform
numerical simulations for general three-dimensional cases. Moreover, it
was benchmarked for only significantly simplified analytical cases. The
other researchers such as Belnoue and Hallett (2020) and Sachs and
Akkerman (2017) also explained about the importance of bending be-
haviour of single/stack of plies during the composite forming process.
They presented different methods to characterise this behaviour and
implemented this effect though the constitutive model of the composite.
Dodwell (2015), developed a weakly nonlinear Cosserat model at the
laminate scale (multiple plies), which demonstrated its suitability for
efficiently capturing the formation of wrinkling defects. However, the
material formulation was simplified to a small strain, elasto-plastic be-
haviour, and therefore not directly applicable to the large deformations
observed under forming and consolidation processes. Most recently,
Madeo et al. (2015), Boisse et al. (2018b) and Boisse et al. (2018a)
have proposed adding local fibre bending stiffness to the finite element
model of textile composites. The approach results in a second-gradient
constitutive law for forming of thin woven textile composites embedded
within a shell element. Whilst there are clear connections between the
approach presented in this paper and of the approaches of Madeo et al.
(2015) and Boisse et al. (2018b), their shell element formulation has
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reduced applications in cases which either undergo significant through-
thickness compaction, or seek to model the complex poro-mechanics
mechanism of flowing resin, cure and temperature redistribution.

In this contribution we addresses some of the limitations in the
literature:

• The paper derives a full 3D large deformation Cosserat model
for an uncured composite material. The model which builds on
a constrained Cosserat theory, is designed in a way that it can be
added to the strain energy functional of any composite process
model within the literature, for example Belnoue et al. (2016) or,
as in this paper, the model proposed by Li and Tucker III (2002)
based on the seminal work by Gutowski et al. (1987).

• This paper provides details of a practical implementation within
the commercial finite element software Abaqus (Abaqus, 2014).
This is achieve by developing a user defined element (UEL)
(Section 3). In particular we design a Taylor-Hood, hexahedral
finite element with an appropriate integration scheme, to ensure
interpolation of the new Cosserat degrees of freedom and the
resulting finite elements are both consistent and stable.

• The resulting class of novel finite deformation Cosserat model for
composite processing modelling is demonstrated, parametrised
and validated with four examples of increasing complexity (Sec-
tions 4 and 5). In these studies we consider both forming and con-
solidation based processes. Each study aims to highlight particular
aspects which the new formulation overcomes. In particular, the
new formulation demonstrates no pathological mesh dependency
in predicting the bending and internal wrinkling mechanics of an
uncured composite layer.

2. A finite deformation Cosserat continuum model for uncured
composite materials

In this section we describe the new finite deformation Cosserat
continuum model for elastic response of an uncured composite material
during general manufacturing processes.

2.1. Preliminaries: Finite deformation models for composite process mod-
elling

Large deformation composite process models are primarily split
between two approaches. The first proposed by Li and Tucker III
(2002), models the composite as a poro-elastic medium coupled with
thermo-chemical equations to describe the curing process of the resin.
In this case the model accounts for the interaction between resin
flow, described by Darcy’s law, and the consolidation of a hyper-
elastic fibrous bed. Alternatively, Belnoue et al. (2016), model the
uncured composite as a large deformation visco-elastic material, which
is coupled to a similar thermo-chemical equation. This visco-elastic
behaviour and the bending effect in continuous fibre reinforced ther-
moplastic composites is comprehensively characterised and assessed
by Ropers et al. through DMA and proposed rheometer-based bending
experiments (Ropers et al., 2016). Independent of this choice, both
approaches neglect the bending effects of fibres, and the results of
both demonstrate the dependence of results to the mesh sizes. In this
contribution we describe how the hyper-elastic formulation of the fibre
bed of either of such models can be adapted to overcome this scientific
challenge. Since this does not effect the formulation of the resin part
of the models we focus solely on the elastic effects. A discussion of the
extension to account for all relevant physics (flow, cure kinetics and
temperature) is given in Section 6.

Consider the material coordinates in the reference configuration
as 𝐗 ∈ 𝛺0 and the spatial coordinates in the current (deformed)
configuration as 𝐱 ∈ 𝛺 then 𝐱 = 𝐗 + 𝐮, where 𝐮 is the displacement
ector. Furthermore, 𝐅 = 𝜕𝐱∕𝜕𝐗 describes the deformation gradient

T

3

tensor and 𝐂 = 𝐅 𝐅 the Cauchy–Green tensor. Li and Tucker III (2002) h
assumed that the solid stress depends on material deformation 𝐂 and
the fibre direction in the reference configuration 𝐞0, and propose the
strain energy functional

𝑊 = 𝑊 (𝐂, 𝐞0) = 𝑊0(L)+
𝐸𝑠𝜙0
4

(𝐿−ln 𝐿)+ 𝐺
2
(𝐼1−3)−𝐺(ln 𝐽 )+𝐾

2
(ln 𝐽 )2.

(1)

Here, the model parameters are: 𝐸𝑠 the axial fibre stiffness, 𝜙0 the
nitial fibre volume fraction, 𝐺 the shear modulus and 𝐾 the bulk
odulus. Furthermore, the constitutive law is defined in terms of
eformation measures 𝐼1 = tr(𝐂) and 𝐽 = det(𝐅), alongside 𝐿, and
, which are additional invariants which characterise the anisotropic
ehaviour in the fibre direction and through-thickness directions. These
inal two invariants are described as

=
(

𝐞0 ⊗ 𝐞0
)

⋅ 𝐂 and L =
(

𝐧0 ⊗ 𝐧0
)

⋅ 𝐂−1. (2)

here, 𝐧0 is a unit vector normal to the plane of the undeformed sheet.
inally, the term 𝑊0(L) is a separate energy functional that captures
he nonlinear response transverse to the fibres. This term is explained
omprehensively in Li and Tucker III (2002), is derived from Gutowski
t al. (1987), and is defined by the functional

𝜕𝑊0
𝜕L

=
𝐴𝑠
2

L −
√

L
(

1
𝜙0

−
√

L

𝜙𝑎

)4
+

𝐺 − 𝐺0
2

( 1
L2

− 1
L

)

. (3)

This energy functional comes with additional model parameters: 𝐴𝑠 a
spring constant, 𝜙𝑎 is the maximum possible fibre volume fraction and
𝐺0 is parameter which according to Li and Tucker III (2002) is a small
portion of 𝐺 introduced for numerical stability.

As for any hyper-elastic material model, the solid Cauchy stress and
fourth-order Lagrangian elastic tensors can be computed from the strain
energy functional, where

𝝈𝑠 =
2
𝐽
𝐅 𝜕𝑊
𝜕𝐂

𝐅T and C = 4𝜕2𝑊
𝜕𝐂2

. (4)

The derivation of these terms is included within Appendix.

2.2. The inclusion of higher-order bending effects within a composite process
model

To present a model that incorporates the local bending effect of
fibres, it is necessary to include the gradient of fibre direction in the
model and hence the coupled stress at each material point (Maugin,
2017; Lakes, 1995; Askes and Aifantis, 2011). To do this we introduce
a vector of Cosserat rotations 𝜽(𝐗) at each material point. This internal
rotation describes the re-orientation of the fibre direction 𝐞0 under
deformation, allowing the introduction of the fibre curvature measure

Λ = 𝜕𝜽
𝜕𝐗

. (5)

To capture the internal, independent bending of the fibres the strain
energy functional can be supplemented with an additional term, so that

𝑊 = 𝑊0(L) +
𝐸𝑠𝜙0
4

(𝐿 − ln 𝐿) + 𝐺
2
(𝐼1 − 3) − 𝐺(ln 𝐽 )

+𝐾
2
(ln 𝐽 )2 + 𝛽

⎛

⎜

⎜

⎜

⎝

𝐞0 ⋅ΛTΛ ⋅ 𝐞0
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

∶=𝐼6

⎞

⎟

⎟

⎟

⎠

(6)

Where in addition to the parameters already defined in (1), 𝛽 is a
aterial parameter which captures the internal bending stiffness. The

djacent term, 𝐼6, is an invariant in terms of the fibre curvature with
respect to the original fibre direction 𝐞0.

Remark. The equation for 𝑊 (6) defines an energy density. 𝑊 there-
fore has units of 𝑁𝑚 per volume, i.e. 𝑁∕𝑚2. Since 𝛬 is a curvature, with
nits of 1∕𝑚, this implies that the Cosserat bending stiffness 𝛽, has the
nits 𝑁 . Like any bending stiffness (e.g. that of a beam) the parameter

as encoded in it some intrinsic internal length scale.
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Alongside this additional term to the energy functional, in our
model the simplifying kinematic constraint connecting shear strains
and Cosserat rotations is imposed

𝝎 = 1
2
𝝐∇𝐯. (7)

This is according to constrained Cosserat theory (Fedorova et al., 2016)
which states that the spin vector (rotation rate) 𝝎 is related to the
displacement rate vector 𝐯. Here, for a shorthand notation, 𝝐 defines
the perturbation tensor. This is a third order tensor 𝝐𝑖𝑗𝑘, which takes
the values either 𝝐123 = 𝝐312 = 𝝐231 = 1 or 𝝐213 = 𝝐132 = 𝝐321 = −1
otherwise the tensor returns the value 0. This modelling assumption has
be shown to be valid in the cases where the shear stiffnesses parallel
and orthogonal to the fibres are in high contrast, and the length scale
of the thickness of individual fibres is relatively small compared to the
material definition at the individual layers scale (Dodwell, 2015). For
the case of uncured carbon composite plies, the fibres are extremely
stiff compare with the resin, and the fibres or bundles of them are thin,
so this assumption seems reasonable and is supported by the numerical
results in this contribution.

By introducing the fibre curvature measure Λ the work conjugate,
the couple stress tensor 𝐦 can also be introduced. Therefore, the
onstitutive equations which define the symmetric part of Cauchy stress
nd the deviatoric part of couple stress are given by

𝑠𝑦𝑚 = 2
𝐽
𝐅 𝜕𝑊
𝜕𝐂

𝐅T and 𝐦 = 1
𝐽
𝐅 𝜕𝑊
𝜕Λ

𝐅T. (8)

y finding the first and second derivatives of the strain energy func-
ional (6) (given in Appendix), the stress is given by

𝝈(𝑖𝑗) =
2
𝐽
F𝑖𝑚

{

−

⎡

⎢

⎢

⎢

⎣

𝐴𝑠
2

L −
√

L

( 1
𝜙0

−
√

L

𝜙𝑎
)4

+
𝐺 − 𝐺0

2

( 1
L2

− 1
L

)

⎤

⎥

⎥

⎥

⎦

𝐧0𝑝𝐧
0
𝑞C

−1
𝑝𝑚C

−1
𝑛𝑞 +

𝐸𝑠𝜙0
4

(

1 − 1
𝐿

)

𝐞0𝑚𝐞
0
𝑛 +

1
2
𝐺
(

𝛿𝑚𝑛 − C−1
𝑚𝑛
)

+ 𝐾
2

ln(𝐽 )C−1
𝑚𝑛

}

F𝑗𝑛,

(9)

whilst the couple stress is defined as

m𝑖𝑗 =
2𝛽
𝐽

F𝑖𝑚(𝛬𝑚𝑘e0𝑘e
0
𝑛)F𝑗𝑛. (10)

y imposing equilibrium of moments the anti-symmetric part of the
auchy stress can be calculated as

[𝑖𝑗] =
1
2
𝜀𝑘𝑗𝑖

𝜕𝑚𝑙𝑘
𝜕𝑥𝑙

. (11)

Therefore, following calculations provided in the Appendix, the fourth-
order Lagrangian elastic tensor C𝜎 , which connects 𝜎 and 𝐂 is computed
using (4), so that

C𝜎 = 4
( 𝜕2𝑊0

𝜕L2

( 𝜕L
𝜕𝐂

⊗ 𝜕L
𝜕𝐂

)

+
𝜕𝑊0
𝜕L

𝜕
𝜕𝐂

(

𝜕L
𝜕𝐂

)

+
𝐸𝑠𝜙0
4

(

𝜕2𝐿
𝜕𝐂2

− 1
𝐿

𝜕2𝐿
𝜕𝐂2

+ 1
𝐿2

( 𝜕𝐿
𝜕𝐂

⊗ 𝜕𝐿
𝜕𝐂

)

)

+ 𝐺
2
𝜕2𝐼1
𝜕𝐂2

− 𝐺
(

1
𝐽
𝜕2𝐽
𝜕𝐂2

− 1
𝐽 2

( 𝜕𝐽
𝜕𝐂

⊗ 𝜕𝐽
𝜕𝐂

)

)

+𝐾
(

1 − ln 𝐽
𝐽 2

( 𝜕𝐽
𝜕𝐂

⊗ 𝜕𝐽
𝜕𝐂

)

+ 1
𝐽
𝜕2𝐽
𝜕𝐂2

)

)

,

likewise the fourth-order Lagrangian elastic tensor C𝐦, which connects
coupled stress 𝐦 to our curvatures measure 𝛬 is given by

𝐦 = 𝜕2𝑊
𝜕Λ2

= 2𝛽
(

𝐞0 ⊗ 𝐞0
)

⊗ 𝐈. (12)

3. Large deformation, finite strain finite element implementation
in Abaqus

In this section we provide details of the finite element procedure
we have implemented and used in the numerical test cases presented
4

in Sections 4 and 5. The starting point is the derivation of the weak
formulation of the Cosserat model, followed by the finite dimensional
discretisation using the finite element method and finally the practical
implementation details within the commercial package Abaqus (Abaqus,
2014).

3.1. Weak formulation

The starting point is to apply the principle of virtual work to derive
the weak formulation of the Cosserat Continuum model by finding
stationary states of the total potential energy of the system in the
current (or deformed) configuration, V = W − P (strain energy minus
work done by loads/moments). In order to obtain the week statement
of the static equilibrium of the body, we use the virtual work equation
according to Fedorova et al. (2016) and Bonet and Wood (1997) by
assuming 𝛿𝐯 as an arbitrary virtual velocity and 𝛿𝝎 as an arbitrary
virtual spin vector:

𝛿V = 𝛿W−𝛿P = ∫𝛺

(

𝜎(𝑖𝑗)
𝜕𝛿𝑣𝑖
𝜕𝑥𝑗

+ 𝑚𝑖𝑗
𝜕𝛿𝜔𝑖
𝜕𝑥𝑗

)

d𝐱−∫𝜕𝛺
(

𝑡𝑖𝛿𝑣𝑖 + 𝑙𝑖𝛿𝜔𝑖
)

d𝐬 = 0.

(13)

ere 𝑡𝑖 and 𝑙𝑖 are tractions and couples (moment per unit area),
espectively, acting on a surface 𝐬 of the deformed configuration 𝛺.

We take a total Lagrangian formulation, in which we consider the
ndeformed state as a reference for computations. Therefore, to take
he volume integral over the initial configuration 𝛺0, we rewrite (13)
y defining the symmetric Kirchhoff stress tensor 𝜏(𝑖𝑗) and deviatoric
ouple stress 𝜇𝑖𝑗 as 𝜇𝑖𝑗 = 𝑗𝐦 and 𝜏(𝑖𝑗) = 𝑗𝜎(𝑖𝑗), and therefore it follows

that

𝛿V = ∫𝛺0

(

𝜏(𝑖𝑗)
𝜕𝛿𝑣𝑖
𝜕𝑋𝑚

F−1𝑚𝑗

)

d𝐗 + ∫𝛺0

(

𝜇𝑖𝑗
𝜕𝛿𝜔𝑖
𝜕𝑋𝑛

F−1𝑛𝑗

)

d𝐗

−∫𝜕𝛺0

(

𝑡𝑖𝛿𝑣𝑖 + 𝑙𝑖𝛿𝜔𝑖
)

d𝐒, (14)

nd for simplicity we call the first and second terms in the right hand
ide of Eq. (14) as 𝛿W1 and 𝛿W1 and we have 𝛿V = 𝛿W1+𝛿W2−𝛿P. This
s a system of nonlinear equations with respect to both the material and
he geometry, therefore the linearisation of these equations is found in
rder to exploit Newton based methods. To do this we handle each of
he strain energy terms 𝛿W1 and 𝛿W2 independently.

For 𝛿W1, we utilise the symmetric properties of 𝜏(𝑖𝑗) so that we can
rewrite the first component of (14) as

𝛿W1 =
1
2 ∫𝛺0

(

𝜏 ∶
(

∇0𝛿𝑣𝐅−1 + 𝐅−𝑇 (∇0𝛿𝑣)𝑇
))

d𝐗 (15)

= 1
2 ∫𝛺0

(

𝐅−1𝜏𝐅−𝑇 ∶
(

𝐅𝑇∇0𝛿𝑣 + (∇0𝛿𝑣)𝑇𝐅
))

d𝐗 = ∫𝛺0

(

𝐒 ∶ 𝛿�̇�
)

d𝐗.

ere 𝐒 is the second Piola–Kirchoff stress and 𝐄 the Lagrangian strain.
he Frèchet derivative in the direction of the displacement degrees
f freedom 𝐮 gives the first stationary condition of equilibrium states,
iven by
(

𝛿W1
)

[𝐮] = ∫𝛺0

1
2
(

𝐅𝑇∇0𝛿𝑣 + (∇0𝛿𝑣)𝑇𝐅
)

∶ C𝜎 ∶ (16)
( 1
2
𝐅𝑇 (

∇0𝐮 + (∇0𝐮)𝑇
)

𝐅
)

d𝐗

+ ∫𝛺0

𝐒 ∶ [(∇0𝐮)𝑇∇0𝛿𝑣] d𝐗

onet and Wood (1997, Ch. 6) provide all the intermediate steps of this
alculation, and therefore it is not repeated here. Similarly, we should
inearise the second term on the right hand side of Eq. (14), 𝛿W2, by
aking the Fréchet derivative in the direction of the rotation degree of
reedom, 𝜃, therefore

(

𝛿W2
)

[𝜃] = 𝐷

(

∫
(

𝜇 ∶ ∇0𝛿𝜔𝐅−1) d𝐗
)

[𝜃]

𝛺0



Mechanics of Materials 151 (2020) 103611A.H. Sakhaei et al.
= ∫𝛺0

𝐷𝜇[𝜃] ∶ ∇0𝛿𝜔𝐅−1 + 𝜇 ∶ 𝐷
(

∇0𝛿𝜔𝐅−1) [𝜃] d𝐗. (17)

This can expands further to

𝐷
(

𝛿W2
)

[𝜃] = ∫𝛺0

∇0𝜃 ∶ C𝐦 ∶ ∇0𝛿𝜔𝐅−1 + 𝜇 ∶
[

𝐷
(

∇0𝛿𝜔
)

[𝜃]𝐅−1

+∇0𝛿𝜔𝐷
(

𝐅−1) [𝜃]
]

d𝐗, (18)

where 𝐷
(

𝐅−1) [𝜃] = 0 and as the virtual spin is not a function of the
configuration the term ∇0𝛿𝜔 remains constant and 𝐷

(

∇0𝛿𝜔
)

[𝜃] = 0.
Therefore, the second stationary condition for equilibrium states is
found by

𝐷
(

𝜕W2
)

[𝜽] = ∫𝛺0

∇0𝜃 ∶ C𝐦 ∶ ∇0𝛿𝜔𝐅−1d𝐗. (19)

The derivation of the weak form for the Neumann boundary conditions
(𝛿P), and the resulting finite element discretisation, is given explicitly
by Bonet and Wood (1997, Eq. 6.23). We avoid repeating that formu-
lation here since within our implementation in Abaqus (Abaqus, 2014)
these terms are not required, and boundary conditions are implemented
in an alternative way. Further details are provided in Section 3.2.

Finally, it remains to formulate the Cosserat constraint (7) in a large
deformation Lagrangian framework

𝝎 − 1
2
𝝐∇𝐯 = 0. (20)

This Cosserat constraint could be imposed in a number of ways, the
classical way using Lagrange multipliers resulting in a classical saddle
point problem. In this contribution, due to implementation constraints
in the commercial package Abaqus (Abaqus, 2014) a simpler penalty
method is used. To implement this penalty approach, we add an addi-
tional term to the strain energy function which penalises differences
in the constraint over the domain in the 𝐿2 norm. Therefore, the
augmented energy is defined Ŵ = W+W𝑐 , where the virtual constraint
energy 𝛿W𝑐 in the initial configuration is

𝛿W𝑐 = 𝐾𝑐 ∫𝑉

(

𝜽 − 1
2
𝝐∇0𝐮𝐅−1

)

⋅
(

𝛿𝝎 − 1
2
𝝐∇0(𝛿𝒗)𝐅−1

)

d𝐗 = 0 (21)

the above form then is extended, and since 𝜕𝛿𝑣 and 𝜕𝛿𝜔 are indepen-
dent and arbitrary, we obtain two conditions

𝐾𝑐 ∫𝑉

(

𝜽 ⋅ 𝛿𝝎 − 1
2
𝝐∇0𝐮𝐅−1 ⋅ 𝛿𝝎

)

d𝐗 = 0 (22)

and

𝐾𝑐 ∫𝑉

(

−1
2
𝜽 ⋅ 𝝐∇0(𝛿𝒗)𝐅−1 + 1

4
(𝝐∇0𝐮𝐅−1) ⋅ (𝝐∇0(𝛿𝒗)𝐅−1)

)

d𝐗 = 0. (23)

3.2. Finite element formulation and implementation in Abaqus

In this section, we describe the implementation of the constrained
Cosserat continuum model using the finite element method in Abaqus.
The undeformed domain 𝛺0 is discretised into a conforming finite
element grid Tℎ. To implement within Abaqus, a User Defined Element
(UEL) is written. Internally, Abaqus assembles the global matrices and
residuals, and the system of nonlinear equations are solved using a
Newton scheme. To implement the UEL, the user requires to assemble
the element stiffness matrices and residuals on each element 𝜏 ∈
Tℎ. The full implementation of the finite element code will be made
available on request.

In summary of the approach taken, a finite element space is intro-
duced on each element 𝜏 ∈ Tℎ, so that

𝐮(𝐱) =
20
∑

𝑖=1
𝐮(𝑖)𝜏 𝐍(𝑖)

𝑢 (𝐱) and 𝜽(𝐱) =
8
∑

𝑖=1
𝜽(𝑖)𝜏 𝐍(𝑖)

𝜃 (𝐱). (24)

Here 𝐮(𝑖)𝜏 and 𝜽(𝑖)𝜏 give the nodal displacements and rotations (in local
numbering) on a given element 𝜏 ∈ Tℎ. In this contribution the
displacement degrees of freedom are interpolated across each element
with 20-node serendipity (quadratic) shape functions 𝐍(𝑖)(𝐱), whilst
5

𝑢

Fig. 2. 3D Cosserat finite element in their reference frame. All Cosserat rotations are
interpolated with linear shape functions, whilst displacements with quadratic functions.
This ensures consistency when imposing Cosserat constraint conditions (20).

rotational degrees of freedom are interpolated by 8-node linear shape
functions, 𝐍(𝑖)

𝜃 (𝐱). The definition of these shape functions are defined in
many classical text books, for example Zienkiewicz and Taylor (1994)
and a graphical representation of the Cosserat element is shown in
Fig. 2. The choice of different finite element spaces for displacements
and rotations is important. This is because it guarantees that within
an element, rotations due to the displacements (derivatives of the
displacements itself) and the Cosserat rotations are approximated with
the same order of polynomial, which avoids numerical instabilities and
classical issues with shear locking. This is discussed in more detail in
the context for 2D Cosserat models by Dodwell (2015).

The complete weak formulation of the Cosserat model is defined
by the collection of Eqs. (16),(19), (22) and (23). To formulate as
a system of nonlinear finite element equations, the lengthy algebraic
calculations involve substituting the finite dimensional representation
(24) into each of these equations. If required, the specific terms can
be identified in the code which can be provided at on request. The
resulting element stiffness matrix 𝐊𝜏 ∈ R84×84 therefore has the form

𝐊𝜏 =
[

𝐊𝑢𝑢 0
0 𝐊𝜃𝜃

]

+𝐊𝑐 (25)

Where 𝐊𝑢𝑢 is the stiffness contribution from the classical Li & Tucker
model (Li and Tucker III, 2002) as given by (16), 𝐊𝜃𝜃 is the sub-
matrix arising from additional Cosserat bending terms defined by (19)
and finally 𝐊𝑐 are the finite element representation of the constraint
Eqs. (22) and (23). The element residual of internal forces and moments
is therefore the action of 𝐊𝜏 on the solution vector for that element. It
should be noted that boundary conditions are not implemented with
the residual defined within the UEL. In a general finite element imple-
mentation they would be, yet in Abaqus, the simplest way to implement
boundary conditions is to introduce ‘ghost elements’ which overlay
the Cosserat elements. The ‘ghost elements’ are assigned near zero
stiffness properties, and the nodes are constrained/tied to the nodes of
the Cosserat elements. This way boundary conditions are implemented,
as in any other Abaqus simulation. Furthermore, it becomes simple to
implement standard contact algorithms available in Abaqus (important
for forming simulations as shown in results) by using this approach.
This simple work around also provides a means to visualise the solution
afterwards, where visualising UEL’s is not directly possible.
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Table 1
Material parameters used in the simulations.
𝐸𝑠 𝐺 𝐾 𝜙0 𝜙𝑎 𝐴𝑠 𝐺0 𝛽 𝐾𝑐

200 GPa 1 MPa 1 MPa 0.5 0.75 0.8 MPa 0.3 MPa 1 2𝑒12

4. Benchmark examples for Cosserat formulation

This section demonstrates the new finite deformation Cosserat
model for a series of increasingly complex examples. This proposed
user-defined element is only used in complex three-dimensional anal-
ysis after performing careful tests for simple deformation scenarios
including pure compression, tension and shear as well as observing the
performance of this element under rigid body motion and rotation. This
states that the balance laws are invariant under superposed rigid-body
rotations. The results in this section, demonstrate the ability to capture
the length dependency in the mechanics of uncured composites under
bending and internal buckling deformations.

4.1. Bending mechanics of a single composite ply

The first example revisits the experimental tests which motivated
this study, as presented in Fig. 1. To re-cap, the output shows the
storage modulus (an elastic material constant) derived from a Dy-
namical Mechanical Analysis tested on a single ply. In this test, a
rectangular sample is held as a cantilever, clamped at both ends with
fibres running along the sample. A cyclic vertical deflection is imposed
on the sample, whilst the vertical force required is recorded. The setup
is shown in the inset of Fig. 1. Samples are mounted with quick curing
polyurethane tabs to ensure the boundary conditions are maintained
during a test. The polyurethane is demoldable within 30 minutes and
mixed with milled carbon fibre to ensure it is sufficiently stiff and
thermally stable. The sample length 𝓁 is measured between the points
at which the carbon fibre sample enters the resin tab. The free-end
is vertically displaced by 𝑤 = 𝑤max sin(𝜔𝑡) and the required cyclic
force 𝑃 = 𝑃max sin(𝜔𝑡 + 𝛿) where the force lags a time 𝛿 behind the
displacement due to the viscous effects. Therefore, the rate-independent
or elastic part of the force is the in-phase contribution given by 𝑃𝑒 =
𝑃max cos 𝛿 sin(𝜔𝑡).

A three-dimensional model of the DMA setup is constructed in
baqus. The ply is modelled using the new Cosserat finite element as

he user-defined elements (UEL) on the ply geometry before apply-
ng the same displacement and rotational boundary conditions as the
xperimental test (clamped–clamped and vertical displacement at one
nd). To investigate the effect of length on the bending mechanics of
ncured ply samples, experimental tests (using AS4-8552 composite
aterial) and numerical simulations with three samples of different

engths (𝓁1 = 15.13 mm, 𝓁2 = 10.65 mm, and 𝓁3 = 5.32 mm) are
erformed. For the numerical simulations, the single-ply is discretised
y approximately square elements in the plane, 13 across the width,
hilst 4 through-thickness. This gives 1976, 1404, and 676 user-defined
osserat elements for samples of lengths 15.13 mm, 10.65 mm, and
.32 mm respectively. Material parameters for AS4-8852 are taken
rom other studies as provided in Erland et al. (2015) and Erland
2017), and are summarised in Table 1. This study seeks to find a
uitable value of 𝛽, the Cosserat bending stiffness, which shows the new
odel formulation captures the experimental results accurately.

To make a comparison, the DMA output for the storage modulus,
hich assumes simple bending theory, is considered. Here the storage
odulus is 𝐸 = 𝑃max cos 𝛿𝓁3∕3𝐼𝑤max where 𝓁 is the length, 𝐼 the

second moment of area and tan 𝛿 the dissipation factor describing
how viscous the material response is. The value 𝑃max cos 𝛿, as given
by the experiment, is the elastic component of the force required to
produce a deformation 𝑤max at one end. Since the computational model
ccounts for the purely elastic response of a composite ply, this term
6

c

Fig. 3. Plot Cosserat bending stiffness 𝛽 against maximum absolute error (%) 𝑒(𝛽).

s equivalent to the vertical reactive load 𝑅 which can be calculated
rom the numerical simulations. From the numerical simulations, for
omparison, an approximation of storage modulus �̂�(𝓁𝑖) = 𝑅𝓁3

𝑖 ∕3𝐼𝑤max
an be calculated. Whilst it is clear that the assumption of simple bend-
ng theory is wrong, since if valid the storage modulus of the material
ould be independent of sample length, the quantity �̂� provides a

imple metric by which the outputs from simulations and experiments
an be compared.

To make this comparison the storage modulus from the simulations
̂ (𝓁𝑖, 𝛽) are calculated for a range of values of 𝛽 ∈ [0, 10] and each
ample length 𝓁𝑖. For each 𝛽 the maximum absolute error 𝑒(𝛽) over all
amples is calculated, given by

(𝛽) = max
𝑖

|

|

|

𝐸(𝓁𝑖) − �̂�(𝓁𝑖, 𝛽)
|

|

|

. (26)

o account for experimental measurement uncertainty, a 1D Gaussian
rocess with a squared exponential kernel and free length scale pa-
ameter is fitted to the simulation/experiment comparison data. Fig. 3
hows the predict trend, confidence bounds and simulation outputs of
against 𝑒(𝛽). The results show that for a value 𝛽 ≈ 1.2N minimises

he maximum absolute error between simulations and the experimental
ata set. This result highlights the new Cosserat formulation accurately
aptures the length dependency demonstrated by the experiments,
chieving a small error percentage of < 5%. This error is within
he expected tolerance/variability of experimental measurements and
ould be refined further optimising other parameters in the model.
or a non-Cosserat formulation, the error is significant (> 30%), yet
aturally this measure would increase further with more experiments of
ifferent length scales since the model’s inability of capture the length
ependency.

This numerical test also highlights another important aspect of the
ew Cosserat formulation. With the same setup a mesh convergence
tudy for a single DMA sample of length 𝓁 = 5.32 mm is performed
or a Cosserat simulation with 𝛽 = 1N and the non-Cosserat formu-
ation. Fig. 4 demonstrates the superior converge rate of the Cosserat
inite element solutions. This is expected, and represents the difference
etween quadratic (non-Cosserat) and cubic (Cosserat) converge. Im-
ortantly in larger scale manufacturing simulation, a single Cosserat
lement can be effectively used per ply/layer, because of the ability to
ccurately account for the bending response of the material. Therefore
given error, the superior converge properties of the element, mean

hat the additional Cosserat freedom (24 per element) are worth the

omputational investment.
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Fig. 4. A comparison showing the rate of superior rate of convergence of the Cosserat
formula for DMA bending scenario over refinement of a standard quadratic element.

4.2. Internal fibre waviness/buckling

In the original composite process models, for example Li and
Tucker III (2002), the mechanical response to compression and tension
of a ply in the fibre direction was consider to be very stiff (propor-
tional to the fibre stiffness) and symmetric (same in compression and
tension). In practice whilst the tensile stiffness of ply in very high, if
loaded in compression the fibres would become quickly buckle and
causing the fibre waviness. Hence the response in compression and
tension in practise is not symmetric. In this section, it is demonstrated
how the Cosserat formulation accounts for this mechanics, where the
original formulations fails, leading to pathological mesh dependent of
the resulting waviness profiles.

In this numerical example, a single ply of composite is model which
occupies the undeformed domain 𝛺0 = 40 × 8 × 20 mm, the domain
is discretised into 10 × 5 × 4 Cosserat elements. The same material
parameters are used as the previous section with 𝛽 = 1. The single
ply, as shown in Fig. 5 is constrained with the following boundary
conditions
⎧

⎪

⎨

⎪

⎩

𝑢𝑥 = 0, 𝜃𝑥 = 0

𝑢𝑦 = 0, 𝜃𝑦 = 0

𝑢𝑧 = 0, 𝜃𝑧 = 0

at 𝑥 = 0 and

⎧

⎪

⎨

⎪

⎩

𝑢𝑥 = −𝛥(𝑡), 𝜃𝑥 = 0

𝑢𝑦 = 0, 𝜃𝑦 = 0

𝑢𝑧 = 0, 𝜃𝑧 = 0

at 𝑥 = 𝐿 (27)

𝑢𝑦 = 0, 𝜃𝑥 = 0 𝜃𝑧 = 0 at 𝑦 = 0 and 𝑦 = ℎ

𝑢𝑧 = 0, 𝜃𝑥 = 0 𝜃𝑦 = 0 at 𝑧 = 0 and 𝑧 = 𝑏.

These boundary conditions incrementally loads the ply in the fibre
direction through a controlled displacement boundary condition.

Fig. 5 shows the load against strain response, as an internal wrin-
kling or buckling develops within constrained composite material when
subjected to a compressive strain. The results show the response for
𝛽 = 0 (Non-Cosserat) and 𝛽 = 1. Both responses show a clear
bifurcation/instability from a common fundamental compressive path
(as highlighted by a dash response line). The clear difference between
the two cases is the wavelength of the developed wrinkle. For the non-
Cosserat formulation the wavelength complete coupled the mesh size,
yet for 𝛽 = 1 the introduction of a bending energy into the strain energy
functional, means the profile develops are wavelength. This wavelength
7

is independent of the mesh size.
The simulations are solutions of a complex nonlinear finite element
scheme. To understand the mechanics behind the internal wrinkling,
and the reasons for the mesh dependent wrinkle profiles observed in the
non-Cosserat formulation, a simpler continuum model can be analysed.
In this vein, a plane strain (𝑥, 𝑧) section of a fibrous layer is considered
of length 𝐿 and height 𝐻 . For simplicity of analysis, it is assumed all
fibres align in the 𝑥 direction, and the medium is in effect inextensible
in 𝑥. The laminate is subject to a state of initial stress 𝜎11 = −𝜆.
Incremental displacements 𝑤(𝑥, 𝑧) in the 𝑧-direction away from the pre-
stress state, give increments in stresses 𝑠𝑖𝑗 = 𝛥𝜎𝑖𝑗 and stress-couples
𝜇 = 𝛥𝑚12.

For a block of material of length 𝐿 and height 𝐻 is considered. Both
vertical force and moment equilibrium can be written down, so that
𝑑𝑠21
𝑑𝑥

+
𝑑𝑠22
𝑑𝑧

= 𝜆𝑑𝑤
𝑑𝑥

and 𝑠12 − 𝑠21 =
𝑑𝜇
𝑑𝑥

. (28)

By rearranging and substituting one into the other we obtain the
following differential equation

𝑑𝑠12
𝑑𝑥

−
𝑑2𝜇
𝑑𝑥2

+
𝑑𝑠22
𝑑𝑧

= 𝜆𝑑𝑤
𝑑𝑥

. (29)

For demonstration purposes it is possible to consider a much sim-
pler, heuristic linear constitutive law which ignores Poisson effects. It
therefore follows that

𝜇 = 𝑏𝑑
2𝑤
𝑑𝑥2

, 𝑠12 = �̂� 𝑑𝑤
𝑑𝑥

and 𝑠22 = �̂� 𝑑𝑤
𝑑𝑧

, (30)

where 𝑏 is a Cosserat like bending stiffness, equivalent to 𝛽 in the full
nonlinear model. The parameters �̂� and �̂�, are linear approximations of
the shear stiffness and through-thickness compression. The equilibrium
equations can be rewritten as

𝑏𝑑
4𝑤
𝑑𝑥4

+ (𝜆 − �̂�)𝑑
2𝑤
𝑑𝑥2

− �̂� 𝑑2𝑤
𝑑𝑧2

= 0. (31)

To simplify the calculations we assume the incremental vertical dis-
placement has the separable form

𝑤(𝑥, 𝑧) = 𝑊 (𝑥) sin
(𝜋𝑧
𝐻

)

.

Substituting this approximation into (31) and integrated 𝑧 from 0 to 𝐻 ,
we obtain the linear fourth-order ordinary differential equation

𝑏𝑑
4𝑊
𝑑𝑥4

+ (𝜆 − �̂�)𝑑
2𝑊
𝑑𝑥2

+ 𝑘𝑊 = 0 (32)

where 𝑘 = �̂�𝜋2∕𝐻2. Inserting the general solution 𝑊 (𝑥) = 𝑄 cos𝜔𝑥, a
characteristic equation is derived

2𝑏𝜔2 = (𝜆 − �̂�) ±
√

(𝜆 − �̂�)2 − 4𝑘𝑏 (33)

The Eq. (33) represent a curve in the (𝜔, 𝜆) plane, which obtains a
minimum at the critical load value

𝜆𝑐 = 2
√

𝑘𝑏 + �̂�. (34)

This is the compressive stress 𝜆 = 𝜆𝑐 at which a wrinkle defect will first
initiate (a bifurcation), and has a corresponding half-wavelength of

𝜉𝑐 =
𝜋
𝜔𝑐

=

√

2𝜋2𝑏
𝜆𝑐 − �̂�

= 𝜋
( 𝑏
𝑘

)1∕4
. (35)

Therefore the general form of the wrinkle at initiation is

𝑤(𝑥, 𝑧) = 𝑄 cos
(

𝜋𝑥
𝜉

)

sin
(𝜋𝑧
𝐻

)

, for 𝑥 ∈ [0, 𝐿] and 𝑧 ∈ [0,𝐻].

The important observation in this paper is the relationship between
𝑏 and 𝜉𝑐 . As 𝑏 → 0, equivalent to 𝛽 → 0 in the fully-nonlinear
Cosserat formulation, then the half-wavelength of the wrinkle 𝜉𝑐 →

0 as well. This is why, in the non-Cosserat formulation, the finite
element solution attempts to replicate a wrinkle with infinitely small
wavelength. With this, as the mesh is refined, the approximation on
the finite element grid reduces accordingly, demonstrating a solution
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Fig. 5. Axial load against 𝜇-strain curves for internal wrinkle for 𝛽 = 0 (non-Cosserat) and 𝛽 = 1. Inset plots shows, wrinkle profiles (scaled up) at 200 𝜇-strain. Importantly
non-Cosserat solution, shows wavelength equal to mesh size, demonstrating clear mesh dependence.
with a wrinkle wavelength exactly matching the mesh . This is precisely
what is observed in the solutions demonstrated by Li and Tucker III
(2002, Fig. 10). With finite 𝑏 > 0, a well-defined wrinkle wavelength is
observed independent of the mesh size.

5. Composite manufacturing processes : Forming and consolida-
tion

In this section, we present the application of the Cosserat model
for two, small-scale manufacturing based scenarios of forming and
consolidation examples. The results aim to demonstrate the capability
of the new approach to model industry relevant cases. The scaling up
of simulations to full scale components and manufacturing processes is
discussed in Section 6.

5.1. Forming of L-shaped coupon

This example demonstrates the capability the new Cosserat element
in Abaqus has to model a typical forming process. In doing so, various
complex modelling challenges are introduced, including finite rotations
and contact conditions between adjacent plies and with a tool surface.
The simulation considers the forming of a L-shaped coupon over a
rigid tool, for which the general setup and results are shown in Fig. 6.
The rigid tool has a corner radius of 2.5 mm and is modelled by
200 linear, rigid, quadrilateral elements of type R3D4 in Abaqus. The
three-dimensional deformable part is a block of 8 × 2 × 0.625 mm
dimension, and consists of three composite plies which are connected
together with cohesive elements. Each ply is 0.2 mm thickness, and
modelled by 56 user-defined Cosserat elements and accompanied by
56 quadratic hexahedral ghost elements of type C3D20. As highlighted
above these are included for visualisation and implementation of con-
tact algorithms. The material behaviour of the composite plies is the
same as the problems in Section 4, and the initial fibre direction is along
the length of the composite (forming around the corner). Each cohesive
layer connecting the adjacent plies together has thickness of 0.0125 mm
and is modelled using 224 linear 8-nodes hexahedral elements of type
COH3D8 in Abaqus. The stiffness of cohesive material is 1 GPa in the
normal direction to ply surface, while it is very compliant in shear
with stiffness 0.1 MPa. The suggested value is inline with inter-ply shear
experiments carried out by the authors (Erland et al., 2015). One end of
8

the composite part is then fixed in all the directions, 1 atmos is applied
to the top surface and the surface-to-surface frictionless contact was
assumed at the interface between the bottom surface of composite and
rigid tool surface.

Fig. 6 shows the forming solution in undeformed and deformed
coordinates. The new higher-order Cosserat finite element has the
ability to simulate the large deformation and rotation of the composite
forming process. Qualitatively, the solutions clearly demonstrating the
book-ending effect as expected (Dodwell, 2015). Future work will
consider the upscaling of these simulations to large scale manufactur-
ing processes, and with that validation against experimental forming
demonstrators, each of which would be publications in their own right.

5.2. Large deformation consolidation of a corner radius

In this section, the three-dimensional Cosserat model is used to
simulate the consolidation behaviour of composite laminates under the
pressure from the autoclave process. The simulations use the same
geometry that Li and Tucker used in their study (Li and Tucker III,
2002). The geometry of the consolidation case includes a 90◦ corner,
as demonstrated in the results, Fig. 7. The initial configuration of the
laminates is made form 24 plies with total thickness of 5.076 mm,
each ply 0.2 mm thick and each cohesive layer 0.012 mm thick. The
radius of the tool corner is 5 mm, and the length of the limb region is
50 mm. Material properties are taken to be the same as the previous
sections (Table 1). In this study we demonstrate the flexibility of
the ABAQUS model to investigate different stacking sequences, and
therefore the simulations consider three different stacking sequences
which are summarised in Table 2. In this case 90◦ plies run around the
corner, 0◦ into the page and the normal directions is in the laminate
stacking direction outwards from the internal radius of the (male) tool.

To simplify the example half the consolidated corner is modelled
by apply symmetric boundary conditions at the apex of the corner.
At the interface between the laminate and the tool surface , sliding
boundary conditions are implemented. An autoclave pressure is applied
on the outer side of the laminates surface, which is linearly ramped
from 0 to 0.5 MPa (5 bar). At the free end a no-pressure (homogeneous
Neumann) boundary is applied on end of the laminate. The complete
model consists of 2392 linear hexahedral elements of type COH3D8 for
the cohesive layers, 624 user-defined Cosserat elements and a matching
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Fig. 6. Deformed configuration of bending the three-layer composite stack over 90 degree corner, (a) three dimensional view, and (b) side view.
Fig. 7. Consolidation profiles for three different stacking sequences as presented in Table 2. Stacking sequence shows clear effect on the shear profile (‘book-ending’) for each
case. Cosserat FEM formulation, displays no mesh dependent instabilities as presented in results for Li and Tucker III (2002).
Table 2
Three symmetric, 24 ply, quasi-isotropic stacking sequences consider in consolidation
simulations (◦ = 0◦, ∙ = 90◦, + = 45◦ and − = −45◦).

ID Stacking sequence

1 +∕ − ∕ + ∕ − ∕ + ∕ − ∕◦∕ ∙ ∕◦∕ ∙ ∕◦∕ ∙ ∕ ∙ ∕◦∕ ∙ ∕◦∕ ∙ ∕◦∕ − ∕ + ∕ − ∕ + ∕ − ∕+
2 +∕◦∕ − ∕ ∙ ∕ + ∕◦∕ − ∕ ∙ ∕ + ∕◦∕ − ∕ ∙ ∕ ∙ ∕ − ∕◦∕ + ∕ ∙ ∕ − ∕◦∕ + ∕ ∙ ∕ − ∕◦∕+
3 +∕◦∕ + ∕◦∕ + ∕◦∕ − ∕ ∙ ∕ − ∕ ∙ ∕ − ∕ ∙ ∕ ∙ ∕ − ∕ ∙ ∕ − ∕ ∙ ∕ − ∕◦∕ + ∕◦∕ + ∕◦∕+

624 quadratic hexahedral ghost elements of type C3D20. Each ply is
modelled with a single 3D Cosserat element, as shown in Fig. 2, through
thickness and approximately square in-plane. In total, a simulation has
3052 elements (with 54k degrees of freedom).

Fig. 7 shows the consolidation profiles of each of the three stacking
sequences. In general the response is similar, we observe consolidation
of approximately 18% around the corner radius, which increases to as
much as 35% at the free edge. An interesting observation is that in
the Li and Tucker III (2002) paper ‘wiggles’ are observed in the corner
region under a similar consolidation process. They suggest that it is
due to the generation of wrinkles in the fibrous laminates, similar to
the internal wrinkling mechanics reported in Section 4.2. However, as
they report, the wrinkles dependent (and exactly the size) of the mesh.
Using the regularised Cosserat formulation introduced in this paper, no
such mesh dependent wrinkles are observed, which is what one would
expect physically in a relatively thin laminate consolidation setup.

6. Conclusions and further avenues for research

This paper presents a new three dimensional, finite deformation
Cosserat continuum model for uncured carbon fibre composites. The
resulting continuum model captures the bending contributions of stiff
carbon fibres at the microscale within the continuum description of the
problem. The paper demonstrates the inclusion of such mechanics is
essential in order to accurately model various bending responses of the
9

material during typical manufacturing processes. This includes large
deformation forming, finite strain consolidation and wrinkling (the
formation of an unwanted defect). If such mechanics are not included at
the macroscale, the literature demonstrates the resulting finite element
solutions have a pathological dependence on the mesh size, requiring
researchers to fit mesh dependent material parameters, which limits
confidence in their predictive capabilities.

To include the effect of fibre bending stiffness in the ply level
material behaviour, a new anisotropic hyperelastic continuum model
for the material which includes a higher-order term dependent on the
curvature of the material in the fibre direction is developed. With this
a higher-order, Taylor-Hood Cosserat finite element is introduced, and
implemented within the commercial code Abaqus as a new User-Defined
Element (UEL) (and material model embedded within it). This will be
made available on request to the authors.

The paper then considers a series of simulations to demonstrate
and validate the new mechanics of the Cosserat element. Firstly, sim-
ulations are compared with Dynamical Mechanical Analysis tests of
the material to experimentally fit the new Cosserat bending stiffness
𝛽. The Cosserat model then demonstrates the ability to capture fibre
wrinkling mechanics under axial compression of the fibrous material,
without dependence on the finite element mesh. Finally, by implement-
ing the model within Abaqus and few implementation tricks (described
above) the new modelling framework can readily utilise more general
modelling capabilities which include complex geometry, boundary con-
ditions, cohesive ply-to-ply slip and non-local contact. This additional
flexible enables the paper to demonstrates two small-scale manufactur-
ing test cases (i) forming of an L-shape sample and (ii) consolidation
of an external radius. It is worth mentioning that the users of this
model should provide special attention to define the contact approach
and defining the mesh size for the contact region as using quadratic
element might cause special problems in Abaqus in some cases with
the node-to-surface formulation. This problem is due to generation
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of an ambiguous force on the corner nodes on the face of second-
order element without midface node. This is sometimes automatically
solved by Abaqus by converting the three-dimensional second-order
elements into the elements with midface nodes. However, when this is
not possible, the user should specify a penalty or augmented Lagrange
constraint enforcement method to approximate this behaviour.

The final results, which demonstrate the potential to model real
manufacturing processes, open new fruitful (both theoretical and ap-
plied) research to increase their applicability within the composite
industry and in general other research fields (e.g. geoscience). The
authors see three areas of mid-term development of the work presented
in this paper:

• Scaling up to large components. The formulation presented still
models an individual ply. As a results simulations quickly become
computationally expensive, since the thickness of an individual
layer (∼ 0.2 mm) is so much smaller than even a moderate
composite component. Therefore, a natural area to extend the
work presented in this paper is to upscale the Cosserat element,
to define a laminate scale (multiple plies) formulation. In a sim-
plified small strain setting this has been demonstrated by one
of the authors (Dodwell, 2015). Here, a simple approach worthy
of investigation is to use a basic upscaling scheme, akin to that
used in multiple composite elements for cured stress analysis. In
simple terms, integration points are placed at locations of plies
internal to that element, and the results macroscale element has
the approximate average stiffness at the macroscale. This basic
approach will come with approximation errors, and its validity
as a method will depend on how well the modes of deformation
of the stack are captured by a single higher-order element at the
macroscale.

• Flexibility to add additional physics from other models in
the literature. A key aspect of the modelling approach is the
Cosserat component is a single additive term to the strain energy
functional alongside a quadratic constraint term. Therefore it’s
formulation, whilst demonstrate with Li and Tucker III (2002)
choice of anisotropic model could be adopted by other models.
This includes adding the important effects of resin fusion, cure
kinetics and temperature distribution.

• Industry-focused toolbox in Abaqus — Cae. Since the 1960s
Cosserat models have periodically re-appeared in various aca-
demic fields, most notably in geomechanics Adhikary and Dyskin
(1997) and Mühlhaus et al. (2002). However, often they have
obtained little traction long term, except for in more academic
modelling contributions. The authors believe the reason for this
is the lack of availability of implementations within commercial
finite element packages like Abaqus. Therefore large upfront in-
vestment is required by a research group to implement their own
code. This paper overcomes many of these hurdles, by providing
details (and code on request) of the required Abaqus user-defined
element UEL. Ongoing work is further increasing the usability of
the new model, by embedding the Cosserat element as a toolbox
with Abaqus-CAE. This will remove the need of engineering users
to detail with the Fortran code directly.
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ppendix. Detailed calculations for finite strains Cosserat mate-
ial model for uncured composites

This section provides the derivation of the symmetric part of Cauchy
tress, 𝝈𝑠𝑦𝑚, the deviatoric part of couple stress, 𝐦 and the fourth-order

Lagrangian elastic tensor C𝜎 and C𝐦. Starting from the strain energy
unctional (Eq. (6)) in Section 2:

= 𝑊0(L) +
𝐸𝑠𝜙0
4

(𝐿 − ln 𝐿) + 𝐺
2
(𝐼1 − 3) − 𝐺(ln 𝐽 )

+𝐾
2
(ln 𝐽 )2 + 𝛽

⎛

⎜

⎜

⎜

⎝

𝐞0 ⋅ΛTΛ ⋅ 𝐞0
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

∶=𝐼6

⎞

⎟

⎟

⎟

⎠

hich is a function of deformation invariants, 𝐼1 = tr(𝐂), 𝐽 = det(𝐅),
=
(

𝐞0 ⊗ 𝐞0
)

⋅𝐂, L =
(

𝐧0 ⊗ 𝐧0
)

⋅𝐂−1, and 𝐼6 = 𝐞0 ⋅ΛTΛ⋅𝐞0. In Section 2,
he Cauchy stress, 𝝈𝑠𝑦𝑚, and the deviatoric part of couple stress, 𝐦 are

related to strain energy functional through the following relationships

𝝈𝑠𝑦𝑚 = 2
𝐽
𝐅 𝜕𝑊
𝜕𝐂

𝐅T and 𝐦 = 1
𝐽
𝐅 𝜕𝑊
𝜕Λ

𝐅T. (36)

nd the fourth-order Lagrangian elastic tensor C𝜎 and C𝐦, which
onnects coupled stress 𝐦 to the curvatures measure Λ, are derived
rom

𝜎 = 4 𝜕2𝑊
𝜕𝐂𝜕𝐂

and C𝐦 = 𝜕2𝑊
𝜕Λ𝜕Λ

. (37)

The first derivative of strain energy function with respect to 𝐂 and
Λ are as follow s
𝜕𝑊
𝜕𝐂

=
𝜕𝑊0(L)

𝜕L
𝜕L
𝜕𝐂

+
𝐸𝑠𝜙0
4

(

1 − 1
𝐿

) 𝜕𝐿
𝜕𝐂

+ 𝐺
2
𝜕𝐼1
𝜕𝐂

−𝐺
𝐽

𝜕𝐽
𝜕𝐂

+ 𝐾
𝐽

ln𝐽 𝜕𝐽
𝜕𝐂

+ 𝛽
𝜕𝐼6
𝜕𝐂

, (38)

and
𝜕𝑊
𝜕Λ

=
𝜕𝑊0(L)

𝜕L
𝜕L
𝜕Λ

+
𝐸𝑠𝜙0
4

(

1 − 1
𝐿

) 𝜕𝐿
𝜕Λ

+ 𝐺
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𝜕𝐼1
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𝐽

𝜕𝐽
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𝐽
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L
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Therefore, by replacing the derivatives of invariants from Table 3 it
follows that

𝜕𝑊
𝜕C𝑖𝑗
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⎡

⎢
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and
𝜕𝑊
𝜕𝛬𝑖𝑗

= 2𝛽𝛬𝑖𝑘e0𝑘e
0
𝑗 . (41)

Furthermore by replacing the Eqs. (40) and (41) in (36), the 𝝈𝑠𝑦𝑚, and
𝐦 are given by
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and
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F (𝛬 e0e0)F . (43)
𝑖𝑗 𝐽 𝑖𝑚 𝑚𝑘 𝑘 𝑛 𝑗𝑛
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Table 3
First and second derivatives of invariants with respect to 𝐂 and Λ.
𝜕𝐼1
𝜕𝐂 = 𝐈 𝜕𝐼1

𝜕Λ
= 𝟎 𝜕2𝐼1

𝜕C𝑖𝑗 𝜕C𝑘𝑙
= 0𝑖𝑗𝑘𝑙

𝜕2𝐼1
𝜕𝛬𝑖𝑗 𝜕𝛬𝑘𝑙

= 0𝑖𝑗𝑘𝑙

𝜕𝐽
𝜕𝐂 = 1

2
𝐽𝐂−1 𝜕𝐽

𝜕Λ
= 𝟎 𝜕2𝐽

𝜕C𝑖𝑗 𝜕C𝑘𝑙
= 1

2

[

1
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𝑖𝑘 C
−1
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Similarly, to compute the fourth-order elastic tensors C𝜎 and C𝐦,
the second derivatives of the strain energy functional are calculated so
that
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, (44)

and
𝜕2𝑊
𝜕Λ𝜕Λ

= 𝜕2𝑊
𝜕Λ2

= 2𝛽
(

𝐞0 ⊗ 𝐞0
)

⊗ 𝐈. (45)

Finally, by replacing the first and second derivation of invariants from
Table 3 into Eqs. (44) and (45), following the form for C𝜎 and C𝐦 that
is implemented in the user-defined element in Abaqus, it follows that

C𝜎𝑖𝑗𝑘𝑙 =

{

𝐴𝑠
2

⎡

⎢

⎢

⎢

⎢

⎣

(1 − 1
2
√

L
)( 1

𝜙0
−

√

L

𝜙𝑎
) −

2
(

L−
√

L
)

𝜙𝑎
√

L

( 1
𝜙0

−
√

L

𝜙𝑎
)5

⎤

⎥

⎥

⎥

⎥

⎦

+
𝐺 − 𝐺0

2

( 1
L2

− 2
L3

)

}

(

𝐧0𝑝𝐧
0
𝑞C

−1
𝑝𝑖 C

−1
𝑗𝑞

)

(

𝐧0𝑚𝐧
0
𝑛C

−1
𝑚𝑘C

−1
𝑙𝑛
)

+

⎡

⎢

⎢

⎢

⎣

𝐴𝑠
2

L −
√

L

( 1
𝜙0

−
√

L

𝜙𝑎
)4

+
𝐺 − 𝐺0

2

( 1
L2

− 1
L

)

⎤

⎥

⎥

⎥

⎦

×
(

𝐧0𝑝𝐧
0
𝑞C

−1
𝑝𝑖 C

−1
𝑗𝑘 C

−1
𝑙𝑞 + 𝐧0𝑚𝐧

0
𝑛C

−1
𝑚𝑘C

−1
𝑙𝑖 C

−1
𝑗𝑛

)

+
𝐸𝑠𝜙0

4𝐿2

(

𝐞0𝑖 𝐞
0
𝑗 𝐞

0
𝑘𝐞

0
𝑙

)

+

𝐺
2
C−1
𝑖𝑘 C

−1
𝑙𝑗 + 𝐾

4
C−1
𝑖𝑗 C

−1
𝑘𝑙 − 𝐾

2
ln𝐽C−1

𝑖𝑘 C
−1
𝑙𝑗 (46)

nd

𝐦𝑖𝑗𝑘𝑙
= 2𝛽

(

𝐞0𝑖 𝐞
0
𝑗

)

𝛿𝑘𝑙 . (47)
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