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Abstract: In this paper, we propose a flexible semiparametric additive frailty hazard model under clustered
failure time data, where frailty is assumed to have an additive effect on the hazard function. When there
is no frailty, this model degenerates to semiparametric additive hazard model. Our method can deal with
time-varying covariate effect and constant covariate effect simultaneously and the estimate of the covariate
effects will not rely on the frailty distribution. The time-varying coefficient is estimated by utilizing the local
linear technique, while

√
n-consistency convergence rate of constant coefficient estimate can be obtained by

integration. Another advantage of the estimator is that it has a closed-form and can be easily implemented
in practice. The large sample properties of the estimator have been established and simulation studies under
various scenarios are conducted to demonstrate the performance of the proposed methods. A real data is
applied for illustration purpose. The Canadian Journal of Statistics xx: 1–23; 2020 © 2020 Statistical
Society of Canada

Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t prepare it
themselves. La revue canadienne de statistique xx: 1–23; 2020 © 2020 Société statistique du Canada

1. INTRODUCTION

The clustered failure time data is frequently encountered in biomedical and clinical studies re-
cently. A common feature of this kind of data is that they are often correlated within the same
cluster, for example, in the well known Diabetic Retinopathy Study, which begun in 1971 and
aimed to study whether laser photocoagulation was effective in delay the onset of blindness in
patients with diabetic retinopathy, the failure times for the two eyes of a patient were proved to
be strong positive associated (Huster, Brookmeyer, & Self, 1989). In addition, when study the
survival time of those who suffer from heart disease, individuals from the same family are also
correlated with each other.

Several attempts of modelling have been made for this type of data on regression analysis, one
straightforward approach is to build a marginal model, which ignores the dependence structure
among individuals within a cluster, for example the marginal proportional hazard model (Lin,
1994; Spiekerman & Lin, 1998; Lu & Wang, 2005; Cai et al., 2007), as well as the marginal
additive hazard model (Yin & Cai, 2004; Martinussen & Scheike, 2007). Marginal approach can
model hazard function directly, is robust to dependence structure, and is suitable when we only
care the population level covariate effects. However, it cannot address the joint quantities, and
the assumed ‘working independence’ can not reflect the true underlying correlation structure.
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Some techniques have been proposed to integrate the correlation structure, for example, Li &
Yin (2009) developed a generalized method of moment approach to handle marginal acceler-
ate failure time model, while took the dependence structure into consideration by incorporating
an unknown weight matrix. A more general and intuitive way to introduce the intra-cluster de-
pendence is the frailty, which represents an unobserved random effect that could lead to hidden
heterogeneity of the mortality in a study population (Vaupel, Manton, & Stallard, 1979). In clus-
tered failure time data, the unobserved random effect in frailty model explains the individual
variations. One popular example is the gamma-frailty Cox model, where the frailty item is in-
cluded in the intensity of Cox regression, and is assumed to follow gamma distribution with an
unknown parameter (Murphy, 1994, 1995; Parner, 1998; Nielsen et al., 1992; Fan & Li, 2002).

It is well known that the Cox model focuses on modelling the ratio of the intensities, how-
ever, the multiplicative structure may not model data well in practical situations. In addition,
the multiplicative frailty term in the Cox model will make the estimating procedure and asymp-
totic theory hard to obtain. The additive model provides an alternative to the Cox model, due to
the reason that additive effect instead of multiplicative could be a more reasonable association
in some applications (Aalen, 1989). Cai & Zeng (2011) extended the additive hazard model to
clustered failure time data by including an additive frailty term on the hazard, their model can
be seen as an parallel development of the well known gamma-frailty model in additive model
structures. Different from gamma-frailty model, their model still induces an marginal additive
model so that the estimators for covariate effects are also straightforward by constructing estima-
tion equations. However, in Cai & Zeng (2011)’s model, their covariate effect is constant, which
may be violated in practice (Hastie & Tibshirani, 1993). Martinussen, Scheike, & Zucker (2011)
proposed the Aalen time varying coefficient additive gamma frailty hazard model which allows
non-constant covariate effect, however, the frailty acts multiplicative on the hazards. In addi-
tive mixed effect model, no similar results have been developed to incorporate the time-varying
covariate effect, we intend to fill this gap.

In this paper, we propose a partial linear additive frailty hazard model, in which some of the
covariate effect are time-varying and the rest are constant. The hazard function is defined as:

λij(t|Xij ,Zij) = λ(t) +X>ij(t)β(t) +Z>ijγ + ξi, i = 1, · · · , n, j = 1, · · · , ni, (1)

where ξi is the additive frailty term. This model has three major advantages: First, it serves as an
additive counterpart with the usual gamma-frailty Cox model; Second, the frailty term does not
need to be gamma distribution, and more importantly, estimating procedure for covariate effects
will not change while other frailty distributions are assumed, while for gamma-frailty Cox model,
the estimating procedure need to be changed for non-gamma distribution (Nielsen et al., 1992);
Third, it includes existing additive mixed effect model (Cai & Zeng, 2011) and is therefore more
flexible.

One of the motivating example for model (1) is the western Kenya parasitemia study (McEl-
roy et al., 1997). In this study, 542 children from 309 households were enrolled, and the failure
time was defined as the time from an individual’s enrollment to the infection of parasitemia. Ob-
servations from the same household were extremely likely to be correlated, due to the fact that
they are exposed to similar environment and share similar gene, thus we can treat this data as
clustered failure time data. Frailty can be introduced to incorporate those genetic and environ-
mental factors within each family. The covariates included baseline parasitemia density (BPD)
and exposure to mosquito bites (BITE), Age and Gender. Recent studies such as Yu & Lin (2010)
indicated that the effect of BPD was diminishing over time, while those of BITE, Age and Gen-
der were constant. In model (1), we utilize the local linear method (Li, Yin, & Zhou, 2007) to
deal with the time-varying coefficient. The asymptotic consistency and normality of the proposed
estimator have been established. Meanwhile, by the weight technique (Yin, Li, & Zeng, 2008),
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we establish the
√
n-consistency of the weighted estimate of constant coefficients.

This paper is organized as follows. In Section 2, we introduce some notations and give the
details of the inference procedure. The large sample properties are shown in Section 3 and sim-
ulation results are provided in Section 4. Section 5 applies the proposed method to the western
Kenya parasitemia data. Section 6 contains the discussion and the paper closes by the Appendix
which contains all technical proof details.

2. MODEL AND INFERENCE PROCEDURE

2.1. DATA AND MODEL
The data is observed from n i.i.d. clusters, ni observations are contained in ith cluster, which lead
to the total sample size being

∑n
i=1 ni, where each ni do not need to be same. For jth individual

in ith cluster, T ∗ij is the failure time,Xij(t) andZij are associated covariate vectors of dimension
equal p× 1 and q × 1. Here we useXij(t) instead ofXij to emphasize the time-varying covari-
ate effects, instead of time-dependent covariates, because the time-dependent covariates may be
internal or externel which will end in completely different estimating procedures (Kalbfleisch &
Prentice, 2002). The covariate effects are β(t) and γ, which are p× 1 and q × 1 column vectors,
respectively. The observed data are the i.i.d. quadruples {(Tij = T ∗ij ∧ Cij ,Xij(t),Zij ,∆ij =
I(T ∗ij ≤ Cij)), j = 1, · · · , ni, i = 1, · · · , n}, where Cij is the censoring time. The study dura-
tion is denoted as τ . The frailty term ξi in model (1) is assumed to have a zero mean and a finite
moment generating function, while the density function of ξi is f(·; θ0), here θ0 is an unknown
one-dimension parameter.

2.2. NOTATIONS AND INFERENCE PROCEDURE
The parameters of interest in model (1) are (β(t), γ), the baseline hazard function λ(t) as well
as θ0. To estimate them, a start point is the marginal survival function:

P (T ∗ij > t|Xij ,Zij)

= Eξi

[
exp

{
−Λ(t)−

∫ t

0

Xij(u)>β(u)du−
∫ t

0

Z>ijγdu− ξit
}∣∣∣∣Xij ,Zij

]
(2)

= exp

{
−Λ(t)−

∫ t

0

Xij(u)>β(u)du−
∫ t

0

Z>ijγdu−G(t; θ0)

}
,

where Λ(t) =
∫ t
0
λ(s)ds is the cumulative hazard function, exp {−G(t; θ0)} =∫

e−xtf(x; θ0)dx. LetNij(t) = ∆ijI(Tij ≤ t) be the counting process and Yij(t) = I(Tij ≥ t)
be the at-risk process. Then Equation (2) is equivalent to

E [dNij(t)|Xij ,Zij , Tij ≥ t] = Yij(t)
[
dH(t) +Xij(t)

>β(t)dt+Z>ijγdt
]
, (3)

where H(t) := H(t; θ0) = Λ(t) +G(t; θ0) is strictly increasing.

Let dMij(t) = dNij(t)− Yij(t)
[
dH(t) +Xij(t)

>β0(t)dt+Z>ijγ0dt
]
, by Equation (3)

and assumptions C2), C3), C4), C6) in the Appendix, Mij(·) is a local square integrable martin-
gale. Use the idea in Lin & Ying (1994), following estimating equations can be easily constructed

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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from Equation (3):

1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Yij(t)I(t ≤ s)
[
dNij(t)− dH(t)−Z>ijγdt−Xij(t)

>β(t)dt
]

= 0, s > 0(4)

1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Yij(t)

(
Xij(t)

Zij

)[
dNij(t)− dH(t)−Z>ijγdt−Xij(t)

>β(t)dt
]

= 0. (5)

Due to the time-varying coefficient β(t), it is difficult to estimate the parameters from Equations
(4)− (5). The idea of local linear technique is that we can approximate β(t) by a linear function
β(t0) + (t− t0)β′(t0) given t0 is close to t. Thus localized version of Equation (5) at a pre-
specified time point t0 (Li, Yin & Zhou, 2007) can be obtained, then the new parameter β(t0)
can be estimated. The localized version of Equation (5) at t0 (t0 ∈ [0, τ ]) is:

1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)

 Xij(t)

Zij

Xij(t)(t− t0)

 (6)

×
{
dNij(t)− dH(t)−Z>ijγdt−Xij(t)

> [β(t0) + β′(t0)(t− t0)] dt
}

= 0.

whereKh(·) = h−1K(·/h),K(u) is the kernel function satisfies
∫
K(u)du = 1. From Equation

(4) we have

dH(t) =

1
n

n∑
i=1

ni∑
j=1

Yij(t)
[
dNij(t)−Z>ijγdt−Xij(t)

>β(t)dt
]

1
n

n∑
i=1

ni∑
j=1

Yij(t)

(7)

= dN̄(t)− Z̄(t)>γdt− X̄(t)>β(t)dt,

where

X̄(t) =

∑n
i=1

∑ni

j=1 Yij(t)Xij(t)∑n
i=1

∑ni

j=1 Yij(t)
, Z̄(t) =

∑n
i=1

∑ni

j=1 Yij(t)Zij∑n
i=1

∑ni

j=1 Yij(t)
, N̄(t) =

∑n
i=1

∑ni

j=1 Yij(t)Nij(t)∑n
i=1

∑ni

j=1 Yij(t)
.

Let ζ0(t0) = [β0(t0); γ0(t0); (β′0(t0))] be the true parameter vector and ζ̂(·) the correspond-
ing estimate. Incorporate Equation (7) into Equation (6) and substitute β(t) with β(t0) +
β′(t0)(t− t0), ζ0(t0) can be estimated by

ζ̂(t0) =

 β̂(t0)

γ̂(t0)

β̂′(t0)

 =

 1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)

 Xij(t)− X̄(t)

Zij − Z̄(t)

(Xij(t)− X̄(t))(t− t0)


⊗2

dt


−1

×

 1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)

 Xij(t)− X̄(t)

Zij − Z̄(t)

(Xij(t)− X̄(t))(t− t0)

 dNij(t)

 .(8)

Notice that here the estimate of γ0 is written as γ̂(t0) instead of γ̂, due to the reason that the
estimate of γ use local data points. Given Equation (7), it’s natural to estimate H(t0) by (notice

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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that θ0 in H(t; θ0) is dropped because when estimate H , θ0 is not needed):

Ĥ(t0) =

∫ t0

0

1
n

n∑
i=1

ni∑
j=1

Yij(t)
[
dNij(t)−Z>ij γ̂(t)dt−Xij(t)

>β̂(t)dt
]

1
n

n∑
i=1

ni∑
j=1

Yij(t)

. (9)

Since H(t0) = Λ(t0) +G(t0; θ0), we only need to estimate θ0 to obtain the baseline hazard
estimator, where Λ̂(t0) = Ĥ(t0)−G(t0; θ̂0).

Denote Xi· and Zi· as (Xi1, · · · ,Xini) and (Zi1, · · · ,Zini), respectively. For ith cluster,
denote the maginal residual process as dεij(t) = dNij(t)− dH(t)−Z>ijγdt−Xij(t)

>β(t)dt.
Then for j 6= l (j, l ∈ {1, · · · , ni}):

E [dεij(t)dεil(s)|Tij ≥ t, Til ≥ s,Xi·,Zi·]

=
E [(−dG(t; θ0) + ξidt) (−dG(s; θ0) + ξids) I (Tij ≥ t) I (Til ≥ s) |Xi·,Zi·, ]

E [I (Tij ≥ t) I (Til ≥ s) |Xi·,Zi·]

=
P (Cij ≥ t, Cil ≥ s|Xi·,Zi·)

P (Cij ≥ t, Cil ≥ s|Xi·,Zi·)P
(
T ∗ij ≥ t, T ∗il ≥ s|Xi·,Zi·

) (10)

×E
[
(−dG(t; θ0) + ξidt) (−dG(s; θ0) + ξids) I

(
T ∗ij ≥ t

)
I (T ∗il ≥ s) |Xi·,Zi·

]
=
E
[
(−dG(t; θ0) + ξidt) (−dG(s; θ0) + ξids) I

(
T ∗ij ≥ t

)
I (T ∗il ≥ s) |Xi·,Zi·

]
P
(
T ∗ij ≥ t, T ∗il ≥ s|Xi·,Zi·

) .

The numerator of Equation (10) equals:

E
[
(−dG(t; θ0) + ξidt) (−dG(s; θ0) + ξids) I(T ∗ij ≥ t)I(T ∗il ≥ s)|Xi·,Zi·

]
= E

[
(−dG(t; θ0) + ξidt) (−dG(s; θ0) + ξids)EI(T ∗ij ≥ t|Xi·,Zi·)EI(T ∗il ≥ s|Xi·,Zi·)

]
= Eξi

[
(−dG(t; θ0) + ξidt) (−dG(s; θ0) + ξids) e

−ξi(t+s)
]

(11)

× exp

{
−
[
Λ(t) +

∫ t

0

Z>ijγdv +

∫ t

0

Xij(v)>β(v)dv

]
−
[
Λ(s) +

∫ s

0

Z>ijγdv +

∫ s

0

Xij(v)>β(v)dv

]}
.

The denominator of Equation (10) equals:

P
(
T ∗ij ≥ t, T ∗il ≥ s|Xi·,Zi·

)
(12)

= Eξi

{
exp

[
−Λ(t)−

∫ t

0

(Z>ijγ +Xij(v)>β(v))dv − ξidt

− Λ(s)−
∫ s

0

(Z>ilγ +Xil(v)>β(v))dv − ξids
]}

.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Combine Equations (10)− (12), we have

E [dεij(t)dεil(s)|Tij ≥ t, Til ≥ s,Xi·,Zi·]

=
Eξi

[
(−dG(t; θ0) + ξidt) (−dG(s; θ0) + ξids) e

−ξi(t+s)
]

Eξi
(
e−ξi(t+s)

) . (13)

Through simple calculations, we have:

E
(
ξie
−tξi

)
= G′(t; θ0) exp [−G(t; θ0)] , (14)

E
(
ξi

2e−tξi
)

=
(
G′(t; θ0)2 −G′′(t; θ0) exp [−G(t; θ0)]

)
,

where G′(t; θ0) and G′′(t; θ0) are the first and second derivatives of G(t; θ0) with respect to t.
Substitute Equation (14) into Equation (13), then

E [dεij(t)dεil(s)|Tij ≥ t, Til ≥ s,Xi·,Zi·] (15)

= dG(t; θ0)dG(s; θ0)−G′(t+ s; θ0)dG(t; θ0)ds−G′(t+ s; θ0)dG(s; θ0)dt

+
[
G′(t+ s; θ0)2 −G′′(t+ s; θ0)

]
dtds.

Based on Equation (15), we can construct another estimating equation to estimate θ0:

1

n

n∑
i=1

ni∑
j 6=l,j,l=1

∫ τ

0

∫ τ

0

Yij(t)Yil(s) [dε̂ij(t)dε̂il(s)−Q(t, s; θ)dtds] = 0, (16)

where

dε̂ij(t) = dNij(t)− dĤ(t)−Z>ij γ̂dt−Xij(t)
>β̂(t)dt,

Q(t, s; θ) = G′(t; θ)G′(s; θ)−G′(t+ s; θ) [G′(t; θ) +G′(s; θ)] +G′(t+ s; θ)2 −G′′(t+ s; θ).

Denote the solution of Equation (16) by θ̂, then Λ(t0) can be estimated by Λ̂(t0) = Ĥ(t0)−
G(t0; θ̂).

3. ASYMPTOTIC PROPERTIES

In this section we will derive the asymptotic properties of proposed estimator. First we give some
notations that is needed in the following theorems.

Let W
(1)
ij (t) = Xij(t), W̄

(1)
(t) = X̄(t), W

(2)
ij (t) = Zij , W̄

(2)
(t) = Z̄(t). Denote

aij(t|Xij ,Zij)dt = dAij(t|Xij ,Zij) = Xij(t)
>β(t)dt+Z>ijγdt+ dH(t). For p, q = 1, 2,

define:

c(pq)(t) = E[

ni∑
j=1

Yij(t)(W
(p)
ij (t)− W̄ (p)

(t))(W
(q)
ij (t)− W̄ (q)

(t))>],

d(pq)(t) = E[

ni∑
j=1

Yij(t)(W
(p)
ij (t)− W̄ (p)

(t))(W
(q)
ij (t)− W̄ (q)

(t))>aij(t|Xij ,Zij)].

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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For p = q = 0, define:

c(00)(t) = E[

ni∑
j=1

Yij(t)],d
(00)(t) = E[

ni∑
j=1

Yij(t)aij(t|Xij ,Zij)],

at last, we define

Σ(t) =

d
(11)(t)κ20 d

(12)(t)κ20 d
(11)(t)κ21

d(21)(t)κ20 d
(22)(t)κ20 d

(21)(t)κ21

d(11)(t)κ21 d
(12)(t)κ21 d

(11)(t)κ22

 .
Then we have following theorems:

Theorem 1. Let M be a (2p+ r)× (2p+ r)-diagonal matrix with the first p+ r elements
equal to 1 and the remaining p elements equal to h, let κij =

∫
K(u)iujdu, where i, j =

0, 1, 2, · · · . Under conditions A1)-A3), B1)-B2) and C1)-C6) in the Appendix, we have that, for
any t0 ∈ (0, τ):

√
nh{M(ζ̂(t0)− ζ0(t0))− 1

2
h2κ12D

−1(t0)b(t0)} D→ N(0,D−1(t0)Σ(t0)D−1(t0)).

where

D(t0) =

c
(11)(t0)κ10 c

(12)(t0)κ10 c
(11)(t0)κ11

c(21)(t0)κ10 c
(22)(t0)κ10 c

(21)(t0)κ11

c(11)(t0)κ11 c
(12)(t0)κ11 c

(11)(t0)κ12

 , b(t0) =

c
(11)(t0)

c(22)(t0)

0p

β′′0(t0),

with 0p denoting a zero column vector of length p. Furthermore, since κ11 = 0, we can obtain
[D(t0)]−1b(t0) = [β′′0 (t0); 0p+r]. Thus for the constant part, the bias of the kernel estimator is
0.

Obviously, we only utilize the local data to estimate the constant coefficients, as a result, the
convergence rate of the constant coefficients is slower than

√
n-consistency. However, we can

circumvent this drawback and still achieve
√
n-consistency for the following term:

γ̃ =

∫
Γ(t)γ̂(t)dt, (17)

where the weight matrix satisfies
∫

Γ(t)dt = Ir×r, and Ir×r is an identity matrix of size r × r
(Yin, Li, & Zeng, 2008).

Theorem 2. Under conditions A1)-A3), B1)-B2) and C1)-C6) in the Appendix,
√
n(γ̃ − γ0)

converges in distribution to a mean-zero normal distribution.

In the following, we will show the uniform consistency of Ĥ(t):

Theorem 3. Under conditions A1)-A3), B1)-B2) and C1)-C6) in the Appendix, we have that,
for all t ∈ [0, τ ]:

Ĥ(t)
P→ H(t).

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Last theorem establishes the consistency of estimator in frailty distribution as well as the
baseline hazard:

Theorem 4. Under conditions A1)-A3), B1)-B2) and C1)-C6) in the Appendix, uniformly for
t ∈ (0, τ):

{θ̂, Λ̂(t)} P→ {θ0,Λ(t)}.

4. SIMULATION

In this part, we perform various simulation studies to assess the performance of the proposed
method. Through out the simulation, we use the Gaussian kernel function. To choose the optimal
bandwidth, we minimize the asymptotic weighted mean squared error (Yin, Li, & Zeng, 2008).
To be specific, for kth component of ζ̂(t0), let φk(t0) be the kth component ofD−1(t0), σkk be
the kth diagonal element of D−1(t0)Σ(t0)D−1(t0), and Ψ(·) is a nonnegative and integrable
weighted function. Theoretically, we choose the optimal bandwidth by minimizing the following
quantity with respect to h:∫ τ

0

(
1

4
h4κ212φk(t0)2 +

1

nh
σkk(t0))Ψ(t0)dt0,

which lead to the optimal h as

hopt,k =

[ ∫
σkk(t0)Ψ(t0)dt0∫
κ212φ

2
k(t0)Ψ(t0)dt0

]1/5
n−1/5. (18)

However, since (18) involves unknown parameters σkk(t0), φk(t0) and Ψ(t0), practically, we use
the rule of thumb to choose the bandwidth, where h = σ̂∗n−1/5, and σ̂∗ stands for the standard
deviation of the observed failure time.

For all the simulation scenarios, the estimation procedure was repeated 500 times and h is
chosen as the optimal bandwidth according to rule of thumb. To estimate the asymptotic variance,
the clusters are selected by random sampling with replacement but leave the observations for each
cluster unchanged. The bootstrap cluster size is 100.

The first model is

λij(t|Xij) = λ0(t) +Xijβ(t) + ξi, (19)

which only contains one covariate. Let λ0(t) = 1, Xij(t) obeys uniform distribution from 0 to 1,
β(t) = t, ξi + θ obeys exponential distribution with mean θ, the true value for θ is 1. The censor-
ing variable follows uniform distribution from 0 to τ , here τ is set to be 5 to result in moderate
censoring rate between 10% to 20%. The number of clusters are set as 20, 50 and 100, respec-
tively. Within each cluster, the cluster size is randomly generated between 2-4. As suggested by
one of the referees, we also performed simulation under the setting that the cluster size is large,
in order to figure out whether the cluster size or the number of clusters will be more sensitive
to the outcome. In the large cluster size setting, we choose cluster size as 25, while the number
of clusters are set as 5,10 and 20, respectively. The results are shown in Table 1. From the table,
we can see that under the small cluster size scenario the biases for parameter β̂n(t) and Ĥn(t)
are both small, and the SEs (the empirical standard deviation based on the observed sample) and
SDs (the average of the estimated standard errors based on the asymptotic distribution) are close,
the coverage probabilities are close to the nominal level 95%. However, when the cluster size
is large, the estimator’s behavior will be more sensitive, the coverage probabilities is lower than
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TABLE 1: Simulation results for model (19) under independent censoring

t n Cluster Size β̂(t) bias SE SD cov(%) Ĥ(t) bias

20 2-4 0.157 -0.043 0.915 0.910 92.8 0.187 0.005

0.20 50 2-4 0.135 -0.065 0.502 0.520 94.2 0.189 0.007

100 2-4 0.199 -0.001 0.347 0.362 94.8 0.184 0.002

20 2-4 0.463 -0.037 0.697 0.735 94.0 0.423 0.017

0.50 50 2-4 0.481 -0.019 0.443 0.428 94.8 0.424 0.018

100 2-4 0.508 0.008 0.292 0.302 95.0 0.408 0.003

20 2-4 0.784 -0.017 0.847 0.929 93.6 0.615 0.027

0.80 50 2-4 0.815 0.015 0.520 0.527 94.4 0.641 0.026

100 2-4 0.826 0.026 0.353 0.372 95.2 0.593 0.005

5 25 0.210 0.010 0.523 0.482 89.6 0.189 0.007

0.20 10 25 0.194 -0.006 0.366 0.344 92.0 0.185 0.003

20 25 0.182 -0.018 0.249 0.247 93.0 0.189 0.006

5 25 0.508 0.008 0.448 0.449 89.2 0.428 0.023

0.50 10 25 0.490 -0.010 0.324 0.304 92.8 0.414 0.008

20 25 0.497 -0.003 0.228 0.224 94.8 0.418 0.012

5 25 0.837 0.037 0.564 0.686 93.2 0.627 0.039

0.80 10 25 0.794 -0.006 0.392 0.381 91.4 0.602 0.014

20 25 0.800 0.000 0.267 0.272 93.2 0.606 0.018

the nominal level 95% when number of clusters is small, though it can be improved when the
number of clusters is increased.

FIGURE 1: Estimation of β(t) and H(t) curves in [0, 0.45] with 25 grid points. The cluster size is 100 and
censor rate is 12%. The true curves are solid lines with black color, the estimate curves are dash lines with

red color, h = 0.15

We did further simulation study under model (19), in order to study the estimator’s behavior
when censoring is dependent on the failure time. All the parameter settings are the same as before
except the way of censoring time generation. The censoring time variable c for jth individual in
ith cluster is generated according to the following model:

λij(c|Xij) = λ̄(c) exp(Xij γ̄),
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TABLE 2: Simulation results for model (19) under dependent censoring

t n Cluster Size β̂(t) bias SE SD cov(%) Ĥ(t) bias

20 2-4 0.186 -0.014 1.008 0.970 92.4 0.186 0.004

0.20 50 2-4 0.135 -0.065 0.538 0.553 93.2 0.189 0.007

100 2-4 0.193 -0.007 0.376 0.388 96.0 0.184 0.002

20 2-4 0.480 -0.020 1.040 1.196 92.6 0.418 0.013

0.50 50 2-4 0.498 -0.002 0.617 0.634 93.8 0.423 0.018

100 2-4 0.504 0.004 0.426 0.439 94.4 0.408 0.003

20 2-4 0.860 0.060 1.644 2.223 93.0 0.615 0.027

0.80 50 2-4 0.885 0.085 0.951 0.978 93.6 0.610 0.022

100 2-4 0.849 0.049 0.592 0.645 94.6 0.597 0.009

5 25 0.208 0.008 0.557 0.514 87.8 0.189 0.006

0.20 10 25 0.198 -0.002 0.398 0.371 90.8 0.186 0.004

20 25 0.178 -0.022 0.263 0.267 93.2 0.189 0.006

5 25 0.515 0.015 0.688 0.692 85.0 0.432 0.026

0.50 10 25 0.504 0.004 0.445 0.444 91.2 0.412 0.006

20 25 0.496 -0.004 0.331 0.322 92.4 0.419 0.014

5 25 0.887 0.087 1.179 1.419 83.0 0.633 0.045

0.80 10 25 0.807 0.007 0.672 0.658 89.2 0.598 0.011

20 25 0.804 0.004 0.440 0.453 93.6 0.608 0.020

where λ̄(c) = 1 is the baseline, γ̄ is set to be 0.2 which lead to heavy censoring rate around 53%.
Since both Cij and Tij rely on the covariate Xij , thus the censoring is dependent under this
scenario. Both small and large cluster size are considered here. The results are shown in Table
2. The behavior of the estimator is still good, except that the coverage probabilities are more
sensitive when cluster size is large and number of clusters is small, but it can also be improved
when number of clusters is increased. In Figure 1, we aim to show that the performance of the
estimator is uniform consistent along the interval, here a fixed bandwidth of 0.15 is chosen,
while λ0(t) = 4t+ 3, β(t) = 4(t− 1)2 + 2, ξi and Xij is the same as model (19). We estimate
the parameters at 25 pre-specified uniform grid points in [0, 0.45], then draw a line connecting the
25 points sequentially. From this figure, it can be seen that the estimated and true curves for β(t)
are close to each other uniformly, and the behavior for SE and SD curves are also similar, while
the true coverage probabilities fluctuated slightly around the nominal coverage probabilities 95%,
the difference for estimated and true H(t) curves is also very small along the whole interval. In
Figure 1(B), it is shown that the variances are small in the middle, and large at the two tails due
to lack of data.

The second model we consider is

λij(t|Xij) = λ0(t) +Xijβ(t) + Zijγ + ξi, (20)

which contains one time-varying coefficient and one constant coefficient. Here λ0(t) = 1, Xij

obeys uniform distribution from 0 to 1, β(t) = t, Zij obeys binomial distribution with P (Zij =
1) = P (Zij = 0) = 0.5, γ = 1, ξi + θ obeys exponential distribution with mean θ, the true value
for θ is 1. The censoring variable follows uniform distribution from 0 to τ , here we choose
the light censoring rate about 11%. Both small cluster size and large cluster size settings are
considered here, for the former setting, cluster size was randomly chose between 2-4 and number
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TABLE 3: Simulation results for model (20)

t n Cluster
Size

β̂(t) bias SE SD cov(%)γ̂ bias SE SD cov(%)

20 2-4 0.278 0.078 1.107 1.173 92.6 1.041 0.041 0.636 0.632 92.8

0.20 50 2-4 0.225 0.025 0.634 0.662 94.8 0.918 -0.082 0.426 0.381 96.2

100 2-4 0.197 -0.003 0.410 0.441 96.8 0.898 -0.102 0.391 0.286 95.0

20 2-4 0.642 0.142 1.037 1.127 94.6 1.046 0.046 0.630 0.619 94.0

0.50 50 2-4 0.528 0.028 0.585 0.598 96.0 0.921 -0.079 0.409 0.370 94.6

100 2-4 0.489 -0.011 0.414 0.418 95.2 0.907 -0.093 0.373 0.279 94.6

20 2-4 0.999 0.199 1.569 1.745 92.4 1.049 0.049 0.717 0.744 92.2

0.80 50 2-4 0.845 0.045 0.726 0.770 96.4 0.942 -0.058 0.456 0.435 95.4

100 2-4 0.796 -0.004 0.546 0.531 94.0 0.956 -0.044 0.372 0.328 92.2

5 25 0.220 0.022 0.656 0.594 87.6 0.986 -0.014 0.413 0.338 84.8

0.20 10 25 0.230 0.030 0.416 0.425 93.2 0.926 -0.074 0.372 0.271 92.2

20 25 0.196 -0.004 0.281 0.297 94.4 0.831 -0.170 0.420 0.234 93.2

5 25 0.486 -0.014 0.594 0.619 87.0 0.976 -0.024 0.397 0.336 85.4

0.50 10 25 0.506 0.006 0.414 0.424 93.4 0.930 -0.070 0.362 0.271 91.2

20 25 0.492 -0.008 0.288 0.304 94.8 0.848 -0.152 0.364 0.226 93.0

5 25 0.785 -0.015 0.824 0.942 83.0 1.001 0.001 0.482 0.444 82.8

0.80 10 25 0.782 -0.019 0.595 0.559 90.2 0.971 -0.029 0.382 0.325 89.8

20 25 0.800 0.000 0.396 0.380 92.2 0.940 -0.060 0.287 0.246 92.0

of clusters equals 20, 50, 100, respectively, while for the latter setting, cluster size was fixed at
25 with number of clusters equal to 5, 10, 20 respectively. The results are shown in Table 3,
from this table, we can see that the biases for time-varying and constant coefficient are small, the
corresponding SEs and SDs are close, the empirical coverage probabilities are close to nominal
level 95% for small cluster size setting, when cluster size is large and number of clusters is small,
the empirical coverage probabilities tend to be smaller than 95%, however, it can be improved
when increasing the number of clusters. Due to the space limit, we omit the biases for estimator
of H(t), they are still very small and the results can be obtained upon request.

Figure 2 shows the estimator’s behavior along a whole curve. In this curve, 40 grid points
are uniformly distributed in [0, 0.4], the bandwidth is fixed at 0.2. We estimate the parameters
at the grid points and draw a line connecting them sequentially. The parameter setting is the
same as the previous simulation for model (20) except for the values of λ0(t) and β(t), here
λ0(t) = 4t+ 3 and β(t) = 4(t− 1)2 + 3. From Figure 2, we can see that all the estimated curves
closely match the true curves, and SE and SD curves close to each other as well, the empirical
coverage probabilities curves are also close to the nominal 95% level, and the biases for Ĥ(t) are
also uniformly small. It indicates that the estimator’s empirical performance is uniformly good.
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FIGURE 2: Estimation of β(t), γ(t) and H(t) curves in [0, 0.4] with 40 grid points under model (20). The
cluster size 200 and censor rate is 12% . The true curves are solid lines with black color, the estimate curves

are dash lines with red color, h = 0.2
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5. REAL DATA

In this section, we apply the proposed method to the Kenya parasitemia data set. 607 children
were recruited in the study. At the date of recruitment, each child was received therapies no
matter whether being infected by parasitemia or not. Then the researchers examined the blood
of these children, those with positive blood films were exclude from the study. As a result, the
data contains 542 children from 309 families. The time we concern is from the examination to
infection of parasitemia. The risk factors include Age, Gender, Daily Mean Bite, and Baseline
Parasitemia Density (BPD). Following Yu & Lin (2010), we log-transform the baseline para-
sitemia density and denote the new variable as LNBPD, and also take the quartic root of Daily
Mean Bite and denote new variable as BITE. The censoring rate for this data is about 11%. Figure
3 shows the histogram of Age, BITE, Gender, LNBPD, Tij , and Number of Clusters in Kenya
parasitemia dataset. About a half of the clusters contain more than 2 individuals, which suggests
that marginal approach may not be appropriate here.
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FIGURE 3: Histogram of Age, BITE, Gender, LNBPD, Tij , and Number of Clusters in the Kenya para-
sitemia data

As being mentioned in Section 1, we choose to set the coefficient of LNBPD as time varying
and the coefficients of Age, Gender and BITE as constant, which results in the following model:

λij(t|·) = λ(t) + LNBPD× β1(t) + Age× β2 + Gender× β3 + BITE× β4 + ξi, (21)
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TABLE 4: Constant estimate for model (21) under the Kenya parasitemia data

t Age sd Gender sd BITE sd

15 .0006 .0006 .0008 .0020 -.0005 .0003

20 .0007 .0006 .0008 .0020 -.0005 .0003

25 .0007 .0006 .0008 .0020 -.0003 .0004

30 .0007 .0006 .0007 .0020 -.0001 .0004

35 .0006 .0007 .0005 .0025 -.0001 .0005

here λ(t) is the baseline hazard function, β1(t), β2, β3 and β4 represent the covariate effect of
LNBPD, Age, Gender and BITE, respectively, ξi represents the frailty. For the time varying part,
we choose bandwidth h = 15 because we found it fits data well. Figure 4 represents the estimated
curve of coefficients of LNBPD using the initial estimator as time varies from 0 to 80. This figure
indicates that the LNBPD is significantly positively associated with the risk of parasitemia before
approximately day 24, however, after day 24, the association is not significant any more, finally,
the effect of LNBPD decreases to zero at day 80.

FIGURE 4: Kernel estimate and 95% confidence interval of the time varying coefficient of LNBPD for the
Kenya parasitemia data, h=15

Table 4 shows the estimates of constant coefficients calculated under different t, where
t = 15, 20, 25, 30, 35. The reason that we choose those time points is due to observation of the
Histogram of Tij in Figure 3, which contains sufficient amount of data around those points. We
can see that the estimate do not differ too much at different time point (also notice that sd for
each covariate at different time t are close to each other as well), thus the constant covariate effect
assumption is reasonable, all the results are not significant, which means there is no difference
between boys and girls, older children and younger children to catch parasitemia, as well as num-
ber of daily mean bite. Though Yu & Lin (2010)’s results can not be simply compared with ours
due to different model settings, there are still some aspects that can point out. Both methods can
capture the same trend of effect of LNBPD, which provides evidence to the common sense that
the effect of baseline parasitemia density on the time of onset of parasitemia is likely to decrease
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TABLE 5: Comparison of model (22) and (23) for the Kenya parasitemia data

LNBPD sd Age sd Gender sd BITE sd

frailty Cox model .0520 .0006 .0380 .0010 .0160 .0090 -.0420 .0003

frailty Additive model .0010 .0004 .0007 .0006 .0001 .0020 -.0008 .0004

over time. However, their method produces the result under a working independence assumption,
while our method takes the inner-cluster correlation into consideration. Our coefficients are much
smaller than Yu & Lin (2010), which is as expected due to intrinsic nature of additive hazards
(Yin & Cai, 2004), while Yu & Lin (2010) fit this data under a marginal semiparametric Cox
model.

We also compare our results with the gamma-frailty Cox model (Gorfine, Zucker, & Hsu,
2006) as requested by two anonymous referees and the Associate Editor, the gamma-frailty Cox
model has following form:

λij(t|·) = ξiλ(t) exp(LNBPD× β1 + Age× β2 + Gender× β3 + BITE× β4). (22)

The parameters λ(t), β1, β2, β3, β4 and ξi in model (22) have the same meanings as model (21).
The analysis was conducted under the R package ‘frailtySurv’ (Monaco, Gorfine, & Hsu, 2017).
Since no parallel semiparametric version under the frailty Cox model has been developed, here
we just treat all the covariates effect as constant. In addition, we also did the analysis under the
additive mixed effect model (Cai & Zeng, 2011):

λij(t|·) = λ(t) + LNBPD× β1 + Age× β2 + Gender× β3 + BITE× β4 + ξi, (23)

which is a special case of model (21). The results are shown in Table 5.
As can be seen from Table 5, both models produce estimates with the same signs, which

indicates the same direction of covariate effect, while the significance for covariate effect might
differ. However, we find that the effect of BITE is negative and significant for both methods,
which means that higher daily mean bite will lead to smaller hazard rate, which is a contradiction
to common knowledge. While in our model, the effect of BITE is not significant, which indicate
that our model is more reasonable to fit this data while can also capture the dynamic effect of
baseline parasitemia density to the hazard rate.

6. DISCUSSION

In this paper, we propose a semiparametric additive frailty hazard model for clustered failure time
data which can deal with time-varying covariate effect and constant covariate effect simultane-
ously. The model is flexible and computational simple when compared with many existing frailty
models. In the Kenya parasitemia dataset, we choose the effect of LNBPD as time dependent due
to previous studies (McEroy et al., 1997; Yu & Lin, 2010), practically, how to determine which
covariates effect is time dependent and which is constant? Normally speaking, it will depend on
expert’s opinion. However, we have an intuitive way to roughly determine: we can just set all the
covariates effect as time dependent at first, then fit an estimate curve for each covariate. If the
curve is close to a horizontal line, then we can set the covariate effect of this variable as constant.
Actually we have already did this in the simulation study, the sub-figure B2 of Figure 2 presents
the curve estimate of γ with respect to time t even if we know it is constant, and the curve is still
close to the true horizontal line of γ, which shows that our method is still promising to detect
the time dependency of covariate effect. Similar techniques have also been developed in partly
parametric Aalen’s additive model (McKeague & Sasieni, 1994). In the future, we will develop
a formal model checking procedure to determine which part of coefficients is constant. Notice in
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the simulation we did not report the results for θ̂, because it can be easily obtained following Cai
& Zeng (2011).
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APPENDIX
Assumptions for the proposed model:

A1). The true parameter H(t) = Λ(t) +G(t; θ0) is increasing, absolutely continuous and
satisfies H(τ) <∞.

A2). Σ(t) is positive definite for all t ∈ [0, τ ] and E[
∑ni

j=1 Yij(t)] > 0.
A3). β(t) has two order derivatives.
Assumptions for the kernel function:
B1). The kernel function K(·) is positive and has a bounded, symmetric density with a com-

pact bounded support, say [−1, 1].
B2). h→ 0, nh→∞, nh5 = O(1).
Assumptions for clustered failure time data:
C1). There exists at least one j ∈ {1, 2, · · · , ni}, such that P (Cij ≥ τ) > 0.
C2). Cluster size ni is bounded and independent of Xij(t), Zij , Yij(t) and ∆ij(t), where

t ∈ [0, τ ]. And (Ci1, Ci2, · · · , Cini
) are independent of (T ∗i1, T

∗
i2, · · · , T ∗ini

) and ξi given all the
covariates.

C3). The cluster specific random effect ξi is independent of covariatesXij(t) andZij , where
t ∈ [0, τ ].

C4). T ∗i1, T
∗
i2, · · · , T ∗ini

are conditionally independent given all the covariatesXij(t) andZij
(t ∈ [0, τ ]) and the random effect ξi.

C5). ξi follows a single parameter distribution with density function f(x; θ) which has mean
0 and a finite moment generating function.

C6).Xij(t) and Zij are locally bounded predictable processes.
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Lemma 1. For any t ∈ [0, τ ], let

en(t) =
1

n

n∑
i=1

ni∑
j=1

Yij(t)g(t,Xij(t),Zij), e(t) = E[

ni∑
j=1

(P (t|Xij(t),Zij)g(t,Xij(t),Zij))].

Define P (t|Xij(t),Zij) = P (Tij > t|Xij ,Zij), assume G = {Yij(t)g(t,Xij(t),Zij) : t ∈
[0, τ ]} is an Euclidean class with a constant envelop, and further define ϑ(t0, ε) as the ε-ball
of t0 for ε > 0 small enough, t0 ∈ [0, τ ], then we have

sup
t∈ϑ(t0,ε)

|en(t)− e(t)| = Op(n
−1/2).

Before prove our theorems, we firstly present a lemma. The proof of the following lemma
is an analogue to Corollary 7 in Sherman (1994), and a similar result can be seen in Lemma 1
of Cai & Sun (2003). In our paper, before we state the lemma, we assume that the readers are
familiar with the notions of Euclidean classes, as defined in Pakes & Pollard (1989):

Proof of Theorem 1. In this part we will prove Theorem 1. For the sake of convenience, we
first give some notations:

µ1(t) = E[

ni∑
j=1

Yij(t)Xij(t)]/E[

ni∑
j=1

Yij(t)],µ2(t) = E[

ni∑
j=1

Yij(t)Zij ]/E[

ni∑
j=1

Yij(t)].

V ij(t) = [Xij(t);Zij ; (Xij(t)(t− t0))], V̄ (t) = [X̄(t); Z̄(t); (X̄(t)(t− t0))], φ(t) =
[µ1(t);µ2(t); (µ1(t)(t− t0))] as the limit of V̄ (t),Gij(t) = M−1V ij(t), Ḡ(t) = M−1V̄ (t),
Ḡ
∗
(t) = M−1φ(t). Meanwhile, some other notations have been given in Section 2.2. By

Lemma 6, supt∈ϑ(t0,ε) |V̄ (t)− φ(t)| = Op(n
−1/2).

First, define

Un(ζ(t0)) =
1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)

 Xij(t)− X̄(t)

Zij − Z̄(t)

(Xij(t)− X̄(t))(t− t0)


× {dNij(t)− dH(t)−Z>ijγdt−Xij(t)

>β(t0)dt−Xij(t)
>(t− t0)β′(t0)dt}

=
1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[V ij(t)− V̄ (t)]{dNij(t)− dH(t)− V ij(t)
>ζ(t0)dt},

for an arbitrary ζ(t0). Since Un(ζ̂(t0)) = 0, we have

M−1Un(ζ(t0)) = Dn(t0)M [ζ̂(t0)− ζ(t0)] = D(t0)M [ζ̂(t0)− ζ(t0)] +Op(n
−1/2), (1)

where

Dn(t0) =
1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[Gij(t)− Ḡ(t)]⊗2dt.
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We will explain the limitD(t0) ofDn(t0) later. Similarly,

Un(ζ0(t0)) =
1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[V ij(t)− V̄ (t)]

× {dNij(t)− dH(t)− V ij(t)
>ζ0(t0)dt}

=
1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[V ij(t)− V̄ (t)]

× {dMij(t) + [Xij(t)
>β0(t)dt+Z>ijγ0dt− V ij(t)

>ζ0(t0)dt]}.

Combining Assumption A3), by Taylor expansion:

Xij(t)
>β0(t) +Z>ijγ0 = V ij(t)

>ζ0(t0) +Xij(t)
> 1

2
β′′0(t0)(t− t0)2 + op((t− t0)2).

It follows that

M−1Un(ζ0(t0))

=
1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[Gij(t)− Ḡ(t)]dMij(t)

+
1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[Gij(t)− Ḡ(t)][
1

2
Xij(t)

>β′′0(t0)(t− t0)2 + op((t− t0)2)]dt

=
1

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[Gij(t)− Ḡ(t)]dMij(t)

+
1

2n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[Gij(t)− Ḡ(t)]Xij(t)
>β′′0(t0)(t− t0)2dt+ op(h

2) (2)

, An(τ, t0) +Bn(τ, t0) + op(h
2).

Then
√
nhAn(τ, t0) is a sum of local square-integrable martingales with the quadratic varia-

tion process given by

nh〈An,An〉(τ, t0)

=
h

n

n∑
i=1

ni∑
j=1

∫ τ

0

K2
h(t− t0)Yij(t)[Gij(t)− Ḡ(t)]⊗2aij(t|Xij ,Zij)dt.
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Then

|nh〈An,An〉(τ, t0)−Σ(t0)|

≤

∣∣∣∣∣∣nh〈An,An〉(τ, t0)− h

n

n∑
i=1

ni∑
j=1

∫ τ

0

K2
h(t− t0)Yij(t)[Gij(t)− Ḡ

∗
(t)]⊗2aij(t|Xij ,Zij)dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣hn
n∑
i=1

ni∑
j=1

∫ τ

0

K2
h(t− t0)Yij(t)[Gij(t)− Ḡ

∗
(t)]⊗2aij(t|Xij ,Zij)dt−Σ(t0)

∣∣∣∣∣∣ .
By Lemma 6 and Assumption B2), the last expression is of order op(1). Then utilize Theorem
5.1.1 in Flemming & Harrington (1991) we have,

√
nhAn(τ, t0)

D→ N(0,Σ(t0)).

In the following we will derive the limit of Bn(τ, t0) and Dn(t0). Through simple calcula-
tion, under Assumption B2), we have

1

h2
Bn(τ, t0)

→

 E[
∑ni

j=1 Yij(t0)(Xij(t0)− X̄(t0))Xij(t0)>]

E[
∑ni

j=1 Yij(t0)(Zij − Z̄(t0))Z>ij ]

E[
∑ni

j=1 Yij(t0)(Xij(t0)− X̄(t0))Xij(t0)>]h

 1

2
κ12β

′′
0(t0)

=

c
(11)(t0)

c(22)(t0)

0p

 1

2
κ12β

′′
0(t0)

≡ 1

2
κ12b(t0),

and

Dn(t0)

→

c
(11)(t0)κ10 c

(12)(t0)κ10 c
(11)(t0)κ11

c(21)(t0)κ10 c
(22)(t0)κ10 c

(21)(t0)κ11

c(11)(t0)κ11 c
(12)(t0)κ11 c

(11)(t0)κ12


≡ D(t0).

Thus,

√
nh{M(ζ̂(t0)− ζ0(t0))− 1

2
h2κ12D

−1(t0)b(t0)} D→ N(0,D−1(t0)Σ(t0)D−1(t0)).

In addition, since κ11 = 0, we can obtain [D(t0)]−1b(t0) = [β′′0 (t0); 0p+r].

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



22 PENG LIU, SHANSHAN SONG, YONG ZHOU Vol. xx, No. yy

Proof of Theorem 2. In the following we are ready to show the proof of Theorem 2. First,
combining Equations (1)-(2), we know that

√
nhM [ζ̂(t0)− ζ0(t0)]

=
√
nh[Dn(t0)]−1M−1Un(ζ0(t0))

=
√
nh[Dn(t0)]−1An(τ, t0) +

√
nh[Dn(t0)]−1Bn(τ, t0) + op(

√
nh5)

= [Dn(t0)]−1
√
h

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[Gij(t)− Ḡ(t)]dMij(t)

+
√
nh5[D(t0)]−1b(t0) +Op(h

2) + op(
√
nh5).

Let I = [Ikl] be a r × (2p+ r) matrix with Ikl = 1 for k = 1, · · · , r and l = p+ 1, · · · , p+ r,
then

√
nh(γ̂(t0)− γ0)

= I[Dn(t0)]−1
√
h

n

n∑
i=1

ni∑
j=1

∫ τ

0

Kh(t− t0)Yij(t)[Gij(t)− Ḡ(t)]dMij(t) + op(
√
nh5).

Taking integral on each side of the last equation by the same rule with Equation (17), we have
√
n(γ̃ − γ0)

=
√
n[

∫ τ

0

Γ(t0)γ̂(t0)dt0 − γ0]

=
1√
n

n∑
i=1

ni∑
j=1

∫ τ

0

∫ τ

0

Γ(t0)Kh(t− t0)Yij(t)I[Dn(t0)]−1[Gij(t)− Ḡ(t)]dt0dMij(t) + op(
√
nh4).

By Lemma 6 again, we get
√
n(γ̃ − γ0)

=
1√
n

n∑
i=1

ni∑
j=1

∫ τ

0

∫ τ

0

Γ(t0)Kh(t− t0)Yij(t)I[D(t0)]−1[Gij(t)− Ḡ
∗
(t)]dt0dMij(t) + op(1),

and ∫ τ

0

Γ(t0)Kh(t− t0)Yij(t)I[D(t0)]−1[Gij(t)− Ḡ
∗
(t)]dt0

= Γ(t)Yij(t)I[D(t)]−1

Xij(t)− µ1(t)

Zij − µ2(t)

0p

+Op(n
−1/2).

Thus,

√
n(γ̃ − γ0) =

1√
n

n∑
i=1

ni∑
j=1

∫ τ

0

Γ(t)Yij(t)I[D(t)]−1

Xij(t)− µ1(t)

Zij − µ2(t)

0p

 dMij(t) + op(1).
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By martingale central limit theorem, the proof is complete. Denote the variance function as Σ1,
then the variance function has the form

Σ1 = E

 ni∑
j=1

∫ τ

0

Yij(t)Γ(t)I[D(t)]−1

Xij(t)− µ1(t)

Zij − µ2(t)

0p


⊗2

[D(t)]−1I>[Γ(t)]>aij(t|Xij ,Zij)dt

 .

Proof of Theorem 3. In light of Theorem 1, we only know that γ̂(t)
P→ γ0(t) and β̂(t)

P→
β0(t) for all t ∈ (0, τ), so it’s not enough to establish the results of Theorem 2. However, similar
to Cai & Sun (2003), we can prove that the bias around the boundary point for β̂(t) is still of
order O(h2) , to be specific, define κ∗ij =

∫ 1

−cK(u)iujdu, then for 0 < c < 1

√
nh[β̂(c · h)− β0(c · h)− 1

2
h2κ∗12β

′′
0 (0+)− hκ∗11β′0(0+)] = Op(1).

Combining Theorem 3 and Equation (3), it is natural to show that β̂(t)
P→ β(t) and γ̂(t)

P→ γ

uniformly for all t ∈ [0, τ ]. Then from Equations (7), (9), we can know dĤ(t)
P→ dH(t) for all

t ∈ [0, τ ].

Proof of Theorem 4. Following the proof of the Theorem 2, we could conclude that

{β̂(t), γ̂(t), Ĥ(t)} P→ {β(t), γ(t), H(t)} uniformly.

Then, similar to the proof of Theorem 1 in Cai & Zeng (2011), it is easy to draw the conclusion.
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