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MINIMAL DIMENSIONAL REPRESENTATIONS OF REDUCED
ENVELOPING ALGEBRAS FOR gln

SIMON M. GOODWIN AND LEWIS TOPLEY

Abstract. Let g = glN (k), where k is an algebraically closed field of characteristic p > 0,
and N ∈ Z≥1. Let χ ∈ g∗ and denote by Uχ(g) the corresponding reduced enveloping
algebra. The Kac–Weisfeiler conjecture, which was proved by Premet, asserts that any finite
dimensional Uχ(g)-module has dimension divisible by pdχ , where dχ is half the dimension
of the coadjoint orbit of χ. Our main theorem gives a classification of Uχ(g)-modules of
dimension pdχ . As a consequence, we deduce that they are all parabolically induced from
a 1-dimensional module for U0(h) for a certain Levi subalgebra h of g; we view this as
a modular analogue of Mœglin’s theorem on completely primitive ideals in U(glN (C)). To
obtain these results, we reduce to the case χ is nilpotent, and then classify the 1-dimensional
modules for the corresponding restricted W -algebra.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0, and N ∈ Z≥1. Let G :=
GLN(k) and g := glN(k) = LieG. For x ∈ g, we write x[p] for the pth power of x as a
matrix, and recall that x 7→ x[p] is the p-power map for the restricted Lie algebra structure
on g. Also we write xp for the pth power of x in the universal enveloping algebra U(g) of g.
Then the elements xp − x[p] are central elements in U(g), and the p-centre Zp(g) of U(g) is
defined to be the subalgebra generated by {xp − x[p] | x ∈ g}. It is well-known that Zp(g) is
G-isomorphic to the Frobenius twist S(g)(1) of the symmetric algebra on g and that U(g) is
free of rank pdim g over Zp(g).

For an irreducible U(g)-module M , the central elements xp − x[p] act on M as χ(x)p for
some χ ∈ g∗, thanks to Quillen’s lemma. We define the ideal Jχ of U(g) to be generated
by {xp − x[p] − χ(x)p | x ∈ g}, and the reduced enveloping algebra associated to χ to be
Uχ(g) := U(g)/Jχ. Then we have seen that any irreducible U(g)-module factors through
Uχ(g) for some χ ∈ g∗, and that dimUχ(g) = pdim g.

Reduced enveloping algebras Uχ(g), are defined more generally for the Lie algebra g of a
reductive algebraic group G over k, and their representation theory attracted a great deal of
research interest from leading mathematicians including Friedlander–Parshall, Humphreys,
Jantzen, Kac and Premet in the late 20th century, we refer to the survey articles [Ja] and [Hu]
for an overview. There has been continued interest and progress in the representation theory
of reduced enveloping algebra, a notable advance being the proof by Bezrukavnikov–Mirkovic
in [BM] of a conjecture of Lusztig regarding irreducible modules, for p sufficiently large.
An important conjecture of Kac–Weisfeiler stated in [VK] asserts that, for G simple, the
dimension of a Uχ(g)-module has dimension divisible by pdχ , where dχ is half the dimension
of the coadjoint orbit of χ, and was proved by Premet in [Pr1, Theorem I] (under some mild
restrictions on G and p). The case g = glN(k) can be deduced directly if p - N ; also the
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case p | N can now be obtained from an alternative proof by Premet in [Pr2, §2.6]. We
also mention that Friedlander–Parshall previously proved the conjecture for g = slN(k) and
p - N in [FP3, Theorem 5.1]. Consequently pdχ is smallest dimension of a Uχ(g)-module,
so we refer to pdχ-dimensional modules for Uχ(g) as minimal dimensional modules. We note
that there is a relatively straightforward way, via parabolic induction, to construct minimal
dimensional Uχ(g)-modules for g = glN(k), as was first observed by Friedlander–Parshall in
[FP3, Corollary 5.2].

In this paper we classify the minimal dimensional Uχ(g)-modules (for g = glN(k)), as
stated in Theorem 1.1. As a consequence we show that they all can be obtained by parabol-
ically inducing a 1-dimensional U0(h)-module for a certain Levi subalgebra h of g, as stated
in Corollary 1.2. Both of these results are formulated for χ ∈ g∗ nilpotent, but as explained
in §2.1 there is a reduction to this case. We note that Corollary 1.2 can be viewed as a mod-
ular analogue of Mœglin’s theorem, from [Mœ] on completely prime ideals of U(glN(C)).
Further, we remark some of our methods adapt those of Brundan in [Br], in which he gives
an alternative proof of Mœglin’s theorem.

We require some notation to state our main results. This is all set out in detail in Section 2,
and here we only point out the necessary parts for the statements of Theorem 1.1 and
Corollary 1.2.

The trace form on g := glN(k) is denoted (· , ·) and allows us to identify g ∼= g∗. Conse-
quently, we can talk about Jordan decomposition of elements of g∗ and nilpotent elements
of g∗. We let b be the Borel subalgebra of upper triangular matrices and t the maximal toral
subalgebra of diagonal matrices.

Let p = (p1 ≤ p2 ≤ · · · ≤ pn) be a partition of N , and let π be a pyramid associated to
p. This means that π is diagram with N boxes organised in rows, with row lengths given
by p as defined in §2.2; further the boxes in π are labelled from 1 to N along rows starting
from the top row. There is some choice of the pyramid π, and much of the notation below is
dependant on this choice; as the results are all valid for any choice of π, we choose to work in
this generality, and just note that the left justified pyramid is one choice that can be made.

From π we define the nilpotent element e ∈ g as in (2.3), and let χ := (e, ·) ∈ g∗. Then
χ ∈ g∗ is nilpotent and as we range over all partitions p of N , we get representatives of all
coadjoint G-orbits of nilpotent elements of g∗. As explained in §2.2, we have that χ is in
standard Levi form with respect to b. A good grading of g for e is defined in (2.4), and from
this we can define the parabolic subalgebra p with Levi factor h as in (2.5). We note that t
is contained in p and h, but that b * p.

Let Fp ⊆ k denote the field of p elements. We define Tabk(π) to be fillings of the boxes of
π with elements from k; and we define TabFp(π) ⊆ Tabk(π) to be the filling with elements
from Fp. We refer to elements of Tabk(π) as π-tableau. Given A ∈ Tabk(π), we denote the
entry in the box labelled i in π by ai. Let ε1, . . . , εN be the standard basis of t∗ and define
λA =

∑N
i=1 aiεi ∈ t∗ for A ∈ Tabk(π). We say that A ∈ Tabk(π) is column connected if

ai = aj + 1 whenever box i is directly above box j in π.
The weight ρ ∈ t∗ is defined in (2.6): it is a convenient renormalization of the half sum

of positive roots corresponding to b. Also we define ρ ∈ t∗ in (2.7), which is the half sum of
positive roots for a Borel subalgebra of p, with a convenient renormalization.

We recap some established representation theory of Uχ(g) and interpret it in our notation,
see for example [Ja, Section 10], more detail is given in §2.5. Since e ∈ b, we have that
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χ(b) = 0. Given A ∈ TabFp(π) we define kA to be the 1-dimensional U0(b)-module on which
t acts via λA−ρ, and the baby Verma module to be Zχ(A) = Uχ(g)⊗U0(b)kA. It is known that
Zχ(A) has a unique maximal submodule, and we denote the simple head of Zχ(A) by Lχ(A).
Further, any irreducible Uχ(g)-module is isomorphic to Lχ(A) for some A ∈ TabFp(π), and
for A,A′ ∈ TabFp(π), we have Lχ(A) ∼= Lχ(A′) if and only if A is row equivalent to A′. We
recall that we say that A is row equivalent to A′ if we can obtain A′ from A by reordering
the entries in rows.

We are now in a position to state our main theorem giving a classification of minimal
dimensional Uχ(g)-modules.

Theorem 1.1. Let g = glN(k), let π be a pyramid corresponding to a partition p of N ,
and let χ be the nilpotent element of g∗ determined by π. For A ∈ TabFp(π), we have that
Lχ(A) is a minimal dimensional Uχ(g)-module if and only if A is row equivalent to a column
connected π-tableau.

To state Corollary 1.2, we have to define certain 1-dimensional U0(p)-modules. As ex-
plained in §2.5, given A ∈ TabFp(π), we have that λA − ρ is the weight of a 1-dimensional
U0(h)-module if and only A is column connected. For column connected A ∈ TabFp(π), we

define kA to be the one dimensional U0(p)-module obtained by inflating the 1-dimensional
U0(h)-module with weight λA − ρ. In Theorem 2.2, we show that Lχ(A) ∼= Uχ(g) ⊗U0(p) kA

for column connected A ∈ TabFp(π). Combining this with Theorem 1.1, we immediately
deduce.

Corollary 1.2. Let g = glN(k), let π be a pyramid corresponding to a partition p of N , let
χ be the nilpotent element of g∗ determined by π, and let p be the parabolic subalgebra of g
determined by π. Let L be a minimal dimensional Uχ(g)-module. Then L ∼= Uχ(g)⊗U0(p) kA

for some column connected A ∈ TabFp(π).

We give an outline of the main ideas in the proof of Theorem 1.1. The key step is to
rephrase the problem in terms of W -algebras through Premet’s equivalence. Let U(g, e) be
the finite W -algebra as in [GT, Definition 4.3]; in fact we use an equivalent definition in this
paper as a subalgebra of U(p) as explained in §2.6. The restricted W -algebra U0(g, e) is as in
[GT, Definition 8.5], though as explained in §2.6 our notation in this paper differs from that
in [GT] and we view U0(g, e) as a subalgebra of U0(p). The definitions of these W -algebras in
[GT] are inspired by work of Premet, where U(g, e) has appeared for p sufficiently large and
is obtained from a characteristic 0 finite W -algebra via reduction modulo p, see for example
[Pr3, §2.5].

We recall that Premet’s equivalence, which is stated in Theorem 2.4, gives an equivalence
of categories between Uχ(g)-mod and U0(g, e)-mod. Moreover, through this equivalence a
U0(g, e)-module of dimension m corresponds to a Uχ(g)-module of dimension mpdχ . There-
fore, in order to prove Theorem 1.1, we want to classify the 1-dimensional U0(g, e)-modules.

In fact we classify all 1-dimensional U(g, e)-modules and determine which ones factor
through the quotient map U(g, e) � U0(g, e). We show that U(g, e) is a modular truncated
shifted Yangian, see Theorem 4.3. This is proved by following the methods of Brundan–
Kleshchev in [BK1], but now using the PBW theorem for U(g, e) given in [GT, Theorem
7.3] and reduction modulo p arguments. In particular, this allows us to determine the
abelianisation U(g, e)ab of U(g, e), by observing that a calculation by Premet from [Pr3,
Theorem 3.3] applies in characteristic p. As mentioned above we view U(g, e) as a subalgebra
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of U(p). Thus we obtain 1-dimensional U(g, e)-modules by restricting 1-dimensional U(p)-
modules. Rather than using the labelling of 1-dimensional U(p)-modules as kA for column

connected A in Tabk(π) above, we in fact consider U(p)-modules k̃A, where a different shift
is used. Using the description of U(g, e)ab, we are able to deduce that the restriction of the

modules k̃A for column connected A ∈ Tabk(π) give all of the 1-dimensional U(g, e)-modules.

Moreover, for column connected A,A′ ∈ Tabk(π) we deduce that the restrictions of k̃A and

k̃A′ are isomorphic if and only if A is row equivalent to A′. We denote k̃A restricted to U(g, e)

by k̃A. Our methods for this classification of 1-dimensional U(g, e)-modules are similar to
those used by Brundan in [Br, Section 2].

Our next step is to show, for column connected A ∈ Tabk(π), that k̃A factors to a module
for U0(g, e) if and only if A ∈ TabFp(π). This deduction is not immediate and is given in
Theorem 6.1. From here we are in a position to apply Premet’s equivalence to determine the
minimal dimensional Uχ(g)-modules. A key step for this is given by Theorem 2.2, which says

that Lχ(A) ∼= Uχ(g)⊗U0(p)kA for column connectedA ∈ TabFp(π). This requires us to identify

a vector in Uχ(g) ⊗U0(p) kA, which spans a 1-dimensional U(b)-module with weight λA − ρ.
From this we can deduce that Lχ(A) is minimal dimensional if A is column connected. By
applying our classification of 1-dimensional U0(g, e)-modules and Premet’s equivalence, we
are thus able to conclude that the set Lχ(A) for A ∈ TabFp(π) column connected (up to row
equivalence) gives all of the minimal dimensional Uχ(g)-modules, which proves Theorem 1.1.

In fact it is possible to show that through Premet’s equivalence k̃A corresponds to Lχ(A);
this is discussed in Remark 7.1.

We end the introduction with some remarks about minimal dimensional modules for re-
duced enveloping algebras Uχ(g) for g the Lie algebra of a reductive algebraic group over k.
The assertion that there is a Uχ(g)-module of dimension pdχ is now known as Humphreys’
conjecture, see [Hu, §8], though we note that the question was asked earlier by Kac in his
review of [Pr1] on the Mathematical Reviews. There has been lots of progress on this con-
jecture recently and thanks to the results of Premet in [Pr4] it is now known to be true
for p sufficiently large; further Premet states that in forthcoming work he will give an ex-
plicit lower bound on p. The questions of whether the minimal dimensional modules can
be classified, and whether they are parabolically induced are also of great interest. We plan
to consider these in future work, and note that the characteristic 0 version of the latter is
addressed in work of Premet and the second author in [PT].

Acknowledgments. Both authors would like to thank the University of Padova and the
Erwin Schrödinger Institute, Vienna, where parts of this work were carried out. The first au-
thor is supported in part by EPSRC grant EP/R018952/1. The second author gratefully ac-
knowledges funding from the European Commission, Seventh Framework Programme, Grant
Agreement 600376, as well as EPSRC grant EP/N034449/1. We thank Alexander Premet
for helpful correspondence about this work, and the referee for useful comments.

2. Preliminaries

2.1. The general linear Lie algebra and reduced enveloping algebras. Let k be an
algebraically closed field of characteristic p > 0 and let N ∈ Z≥1. Throughout this paper
G := GLN(k) and g := glN(k) is the Lie algebra of G, which is spanned by the matrix units
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{ei,j | 1 ≤ i, j ≤ N}. Let (· , ·) : g × g → k denote the trace form associated to the natural
representation of G, which we use to identify g ∼= g∗ as G-modules. The universal enveloping
algebra of g is denoted U(g).

We occasionally need to call on some results from characteristic zero and so we fix some
more notation. We let gZ denote the general linear Lie Z-algebra glN(Z) and we write gC
for glN(C). Throughout we use the identifications g ∼= gZ ⊗Z k and gC ∼= gZ ⊗Z C, and by
a slight abuse of notation we view the matrix units ei,j as elements of gZ or gC when it is
convenient to do so. We often consider subalgebras of g, which are spanned by matrix units,
so have analogues inside gZ and gC and we denote them by decorating with subscripts Z and
C. We mention that since gZ is a free Z-module the PBW theorem holds for U(gZ), so that
U(gZ) is a free Z-module with a basis consisting of ordered monomials in the matrix units
with respect to any choice of total order.

Let g ∈ G, x ∈ g and χ ∈ g∗. We write g · x for the image of x under the adjoint action
of g, so as matrices g · x = gxg−1; this action extends to an action on U(g) by algebra
automorphisms. The centralizer of x in G is denoted Gx := {g ∈ G | g · x = x} and the
centralizer of x in g is denoted gx := {y ∈ g | [y, x] = 0}; we note that we have gx = Lie(Gx).
We write G · χ for the coadjoint orbit of χ. It is well-known that dim(G · χ) is even and we
define dχ := 1

2
dim(G · χ).

Let T ⊆ B ⊆ G be the maximal torus and Borel subgroup consisting of diagonal matrices
and upper triangular matrices respectively, and let t := Lie(T ), b := Lie(B). We use the
notation diag(d1, . . . , dn) to denote the element of T with di in the ith entry of the diagonal.
We write X∗(T ) for the group of characters, and let {ε1, . . . , εN} be the standard basis of
X∗(T ) defined by εi(diag(d1, . . . , dn)) = di. Let Φ ⊆ X∗(T ) be the root system of G with
respect to T , so Φ = {εi − εj | 1 ≤ i, j ≤ n, i 6= j}. We write ei,j for the matrix unit that
spans the root space corresponding to εi − εj. The root subgroup corresponding to εi − εj
is the image of ui,j : k → G defined by ui,j(s) := 1 + sei,j, and the adjoint action of ui,j(s)
on ek,l is given by the formula

ui,j(s) · ek,l = ek,l + sδj,kei,l − sδl,iek,j − s2δj,kδl,iei,j. (2.1)

Where it is convenient we allow ourselves to view a character α ∈ X∗(T ) as an element of
t∗ by writing α for dα : t → k; this is a slight abuse of notation, because dα = 0 for any
α ∈ pX∗(T ).

There is a natural restricted structure on g, where the p-power map x 7→ x[p] is given

by taking the pth power of x as a matrix. In particular, we note that e
[p]
i,j = δi,jei,j for

1 ≤ i, j ≤ N . The p-centre of U(g) is the subalgebra of the centre of U(g) generated by

{epi,j − e
[p]
i,j | 1 ≤ i, j ≤ N}. It follows from the PBW theorem that U(g) is a free Zp(g)-

module of rank pdim g. Further, there is a natural identification Zp(g) ∼= k[(g∗)(1)], where
(g∗)(1) denotes the Frobenius twist of g∗. Given χ ∈ g∗ we define Jχ to be the ideal of U(g)
generated by {xp − x[p] − χ(x)p | x ∈ g}, and the reduced enveloping algebra corresponding
to χ to be Uχ(g) := U(g)/Jχ.

As stated in the introduction, the Kac–Weisfeiler conjecture, which is a theorem of Premet,
states that pdχ is a factor of the dimension of any Uχ(g)-module. We refer to Uχ(g)-modules
of dimension pdχ as minimal dimensional modules, and note that such modules are clearly
irreducible.
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Let χ ∈ g∗. There is unique x ∈ g such that χ = (x, ·). We have a Jordan decomposition
x = xs + xn of x, and thus a corresponding decomposition χ = χs + χn. We say that χ is
nilpotent if χ = χn. Next we recall the “reduction” to the case χ nilpotent in the represen-
tation theory of Uχ(g) from [FP1, Section 3]; as is noted in [FP1, Section 8], this reduction
can also be deduced from [VK, Theorem 2]. Let l = gxs , let q be a parabolic subalgebra
of g with Levi factor l and let u denote the nilradical of q. We can parabolically induce a
Uχ(l)-module M , to obtain the Uχ(g)-module Uχ(g)⊗Uχ(q)M , where M is the Uχ(q)-module
on which u acts trivially. This gives a functor Uχ(l)-mod → Uχ(g)-mod and it is proved in
[FP1, Theorem 3.2] that this is an equivalence of categories; in turn there is an equivalence
Uχ(l)-mod ∼= Uχn(l)-mod as follows from [FP1, Corollary 3.3]. Further, the theory of Jor-
dan normal forms implies that dim(G · χ) = dim(L · χn) + 2 dim u. Therefore, through the
equivalence of categories Uχn(l)-mod ∼= Uχ(g)-mod, minimal dimensional modules for Uχn(l)
correspond to minimal dimensional modules for Uχ(g)-mod. This justifies our restriction to
nilpotent χ in the statements of Theorem 1.1 and Corollary 1.2.

2.2. Pyramids. We require the combinatorics of pyramids to set up some notation. For
more details on this we refer to [BK1, Section 7].

We fix a partition p = (p1, . . . , pn) on N with p1 ≤ · · · ≤ pn. A pyramid π associated to p
is a diagram with pn boxes in the bottom row, pn−1 boxes in the row above it, and so forth,
stacked in such a way that every box which is not in the bottom row lies directly above a
box in the row beneath it, and boxes occur consecutively in each row. The boxes in the
pyramid are numbered along rows from left to right and from top to bottom. For example,
the pyramids associated to the partition p = (2, 5) are

1 2
3 4 5 6 7 ,

1 2
3 4 5 6 7 ,

1 2
3 4 5 6 7 and

1 2
3 4 5 6 7 . (2.2)

Let l = pn. The columns of π are labelled 1, 2, ..., l from left to right and the rows are labelled
1, 2, ..., n from top to bottom. We denote the heights of the columns in π by q1, q2, ..., ql. The
box in π containing i is referred to as the ith box, and we write row(i) and col(i) for the row
and column of the ith box respectively.

We fix a pyramid π corresponding to p for the rest of this paper. From π, we define the
shift matrix σ = (si,j) as follows. For 1 ≤ i < j ≤ n we let sj,i be the left indentation of the
ith row of π relative to the jth row, and we let si,j be the right indentation of the ith row
of π relative to the jth row; also we set si,i = 0. For example the shift matrices associated
to the pyramids in (2.2) are(

0 3
0 0

)
,

(
0 2
1 0

)
,

(
0 1
2 0

)
and

(
0 0
3 0

)
.

2.3. The nilpotent element and subalgebras. We define the nilpotent element

e :=
∑

row(i)=row(j)
col(i)=col(j)−1

ei,j ∈ g. (2.3)

For example for each of the pyramids in (2.2), we have e = e1,2 + e3,4 + e4,5 + e5,6 + e6,7.
Observe that e has Jordan blocks of size p1, p2, ...., pn. We define χ := (e, ·) ∈ g∗. We also
note that χ is in standard Levi form (in the sense of [FP2, Definition 3.1]) with respect to
the simple roots corresponding to the Borel subalgebra b.
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The first part of the following lemma gives a basis of ge, and can be verified by observing
that the proof of [BK1, Lemma 7.3] is also valid in positive characteristic. The second part
of the lemma is verified by direct calculation.

Lemma 2.1. Let
c

(r)
i,j :=

∑
1≤h,k,≤N

row(h)=i,row(k)=j
col(k)−col(h)+1=r

eh,k

for 0 ≤ i, j ≤ n and r > si,j.

(a) The centralizer ge of e in g has basis

{c(r)
i,j | 0 ≤ i, j ≤ n, si,j < r ≤ si,j + pmin(i,j)},

(b) We have

[c
(r)
i,j , c

(s)
k,l ] = δj,kc

(r+s−1)
i,l − δi,lc(r+s−1)

k,j .

Consider the cocharacter µ : k× → T ⊆ G defined by µ(t) = diag(tcol(1), . . . , tcol(n)). Using
µ we define the Z-grading

g =
⊕
k∈Z

g(k) where g(k) := {x ∈ g | µ(t)x = tkx for all t ∈ k×}. (2.4)

Since the adjoint action of µ(t) on a matrix unit is given by µ(t) · ei,j = tcol(j)−col(i)ei,j, we
have g(k) = span{ei,j | col(j)− col(i) = k}. From the classification of good gradings in [EK,
Section 4], we see that the grading in (2.4) is a good grading for e. In fact to get a good
grading we should scale the grading by a factor of 2, as we have e ∈ g(1). We refer also
to [GT, Section 3] where good gradings are considered in positive characteristic, and it is
shown that the “same classification” of good gradings holds. Since the grading in (2.4) is
good we have that ge ⊆

⊕
k≥0 g(k), which can also be seen directly from Lemma 2.1, Now

it follows from [EK, Theorem 1.4] that dim ge = dim g(0); this can also be verified directly
from the basis given in Lemma 2.1.

We define the following subalgebras of g

p :=
⊕
k≥0

g(k), h := g(0) and m :=
⊕
k<0

g(k). (2.5)

Then p is a parabolic subalgebra of g, and h is the Levi factor of p containing t. Further, m
is the nilradical of the opposite parabolic to p. We recall that the heights of the columns in
π are q1, q2, ..., ql, and we see that h is isomorphic to glq1(k) ⊕ glq2(k) ⊕ · · · ⊕ glql(k). Also
m is the Lie algebra of the closed subgroup M of G generated by the root subgroups ui,j(k)
with col(j) < col(i).

We recall that dχ denotes half the dimension of the coadjoint G-orbit of χ. So we also have
that dχ is half the dimension of the adjoint G-orbit of e, and thus we see that dχ := dimm,
because dim ge = dim g(0).

2.4. Tableaux and weights. We require various weights in t∗, which are used as shifts and
to label certain modules. These weights can be encoded by fillings of π as we explain below,
then we move on to give the weights we need.

A π-tableau is a diagram obtained by filling the boxes of π with elements of k. The set
of all tableau of shape π is denoted Tabk(π), and we write TabFp(π) ⊆ Tabk(π) for those
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tableaux with entries in Fp. For A ∈ Tabk(π), we write ai for the entry in the ith box of A.
Two tableaux are called row-equivalent if one can be obtained from the other by permuting
the entries in the rows. A tableau A ∈ Tabk(π) is column-connected if whenever the jth box
of π is directly below the ith box we have ai = aj + 1.

For A ∈ Tabk(π) we define a weight λA ∈ t∗ by

λA :=
N∑
i=1

aiεi.

To understand the required weights it helps for us to give a decomposition of Φ. We define

Φ+ := {εi − εj ∈ Φ | row(i) < row(j)},
Φ0 := {εi − εj ∈ Φ | row(i) = row(j)} and

Φ− := {εi − εj ∈ Φ | row(i) > row(j)}.
Also we define

Φ(+) := {εi − εj ∈ Φ | col(i) < col(j)},
Φ(0) := {εi − εj ∈ Φ | col(i) = col(j)} and

Φ(−) := {εi − εj ∈ Φ | col(i) > col(j)}.
Then for η, ξ ∈ {−, 0,+}, we define

Φ(η)ξ = Φ(η) ∩ Φξ.

We note that Φ(0)0 = ∅ and that Φ+∪Φ(+)0 is the system of positive roots corresponding to
b. Further, Φ(+)∪Φ(0)+ is the system of positive roots corresponding to a Borel subalgebra
contained in p, and Φ(−) ∪ Φ(0)+ is another system of positive roots.

Having set up this notation we are in a position to give the weights that we require. First
we define

ρ := −
N∑
i=1

iεi (2.6)

this is a shifted half sum of positive roots for b, and is given by

ρ =
1

2

 ∑
α∈Φ+∪Φ(+)0

α

− δ,
where

δ =
N + 1

2

N∑
i=1

εi.

We note that we should be careful in the above formulas when p = 2, though as the final
value of ρ only involves integer coefficients this is not a problem.

We also require a “choice of ρ” corresponding to the system of positive roots Φ(+)∪Φ(0)+,
and we define

ρ :=
1

2

 ∑
α∈Φ(+)∪Φ(0)+

α

− δ (2.7)
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More explicitly, we have

ρ = −
N∑
i=1

((q1 + · · ·+ qcol(i)−1) + row(i)− (n− qcol(i)))εi.

The weight

γ :=
∑

α∈Φ(−)+

α,

is important for Theorem 2.2, because

ρ = ρ+ γ. (2.8)

We define

η :=
N∑
i=1

(n− qcol(i) − · · · − · · · − ql)εi, (2.9)

and

ρh := −
N∑
i=1

row(i)εi,

which is a shifted choice ρ for the Borel subalgebra b ∩ h of h. Further, we define

β :=
N∑
i=1

(((q1 + · · ·+ qcol(i)−1)− (qcol(i)+1 + · · ·+ ql))εi =
∑

α∈Φ(−)

α.

and
ρ̃ := ρ+ β.

We note that ρ̃ is a shifted choice of ρ for the system of positive roots Φ(−) ∪ Φ(0)+. An
important identity for us is

ρ̃ = ρ+ β = η + ρh =
∑

α∈Φ(−)∪Φ(0)+

α. (2.10)

2.5. Some modules for Uχ(g). The weights introduced in the previous subsection are
required to define some modules for h and for g. In what follows it is helpful to note that
χ|p = 0, so that we can view U0(h) ⊆ U0(p) ⊆ Uχ(g).

We note that λ ∈ t∗ is the weight of 1-dimensional U(h)-module if and only if λ(ei,i) =
λ(ej,j) whenever col(i) = col(j), and also that ρ̃(ei,i) = ρ̃(ej,j)− 1, when the ith box in π is
directly above the jth box. Thus we deduce that, for A ∈ Tabk(π), we have λA − ρ̃ is the
weight of a 1-dimensional U(h)-module if and only if A is column connected. For column

connected A we denote this 1-dimensional U(h)-module by k̃A.
Similarly, given A ∈ Tabk(π), we have λA − ρ is the weight of a 1-dimensional U(h)-

module if and only if A is column connected. In this case we denote the 1-dimensional U(h)-
module by kA, and note that it factors to a module for U0(h) if and only if A ∈ TabFp(π).

For A ∈ TabFp(π), we can inflate kA to a U0(p)-module and consider the induced module

Nχ(A) := Uχ(g) ⊗U0(p) kA. We have that Nχ(A) ∼= Uχ(m) as a Uχ(m)-module, so that
dimNχ(A) = pdimm = pdχ and Nχ(A) is a minimal dimensional Uχ(g)-module.

Let A ∈ TabFp(π). We define kA to be the 1-dimensional U0(b)-module where t acts by
λA − ρ, and the nilradical of b acts trivially. The baby Verma module Zχ(A) is defined to
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be Zχ(A) := Uχ(g) ⊗U0(b) kA. Since χ is in standard Levi form for the Levi subalgebra g0

with basis {ei,j | row(i) = row(j)}, Zχ(A) has a simple head, which we denote by Lχ(A);
this essentially follows from the results in [FP2, Section 3], see also [Ja, Proposition 10.7].
Moreover, we have that Lχ(A) ∼= Lχ(A′) if and only if A is row equivalent to A′, see [FP2,
Corollary 3.5] or [Ja, Proposition 10.8]. To see this we note that the shift by ρ in our labelling
of the simple modules, transforms the dot action of the W0 on t∗ in [FP2] to the standard
action, where W0 is the Weyl group of g0 with respect to T ; and then this action corresponds
to permutations of entries in rows of tableau. Given a Uχ(g)-module M we say v ∈ M is
a highest weight vector (for b) of weight λ ∈ t∗ if bv ⊆ kv and tv = λ(t)v for all t ∈ t;
so if v ∈ M is a highest weight vector of weight λA − ρ, then there is a homomorphism
Zχ(A)→M sending 1⊗ 1A to v, where 1A denotes the generator of kA.

The following theorem is key to this paper and gives a compatibility between the modules
Lχ(A) and Nχ(A).

Theorem 2.2. For column connected A ∈ TabFp(π) we have Lχ(A) ∼= Nχ(A) and has
dimension pdχ. In particular, for column connected A,A′ ∈ TabFp(π), we have Nχ(A) ∼=
Nχ(A′) if and only if A is row equivalent to A′.

Proof. From the discussion above, we know Nχ(A) has dimension pdχ , so it is a minimal
module for Uχ(g) and thus simple. It follows that if we can find a highest weight vector
v ∈ Nχ(A) for b of weight λA − ρ, then Lχ(A) ∼= Nχ(A) as required. This can be seen by
noting that the homomorphism Zχ(A) → Nχ(A) will factor to give this isomorphism. The
claim regarding row equivalence was justified in the remarks preceding the statement of the
theorem.

We observe that the root vectors corresponding to roots in Φ(−)+ span a p-nilpotent
subalgebra a of g. We let

I = {(i, j) | εi − εj ∈ Φ(−)+} = {(i, j) | col(i) > col(j), row(i) < row(j)} ⊆ {1, ..., N}2,

so that a has basis {ei,j | (i, j) ∈ I}. Since all of the elements of this basis have nonzero te

weight, we see that the restriction of χ to a is zero. Hence, the restricted enveloping algebra
U0(a) embeds in Uχ(g), and consequently epi,j = 0 in U0(a) ⊆ Uχ(g) for (i, j) ∈ I.

There is an action of T on U0(a), and

u =
∏

(i,j)∈I

ep−1
i,j , (2.11)

is in the unique weight space of maximal weight (with respect to the positive roots for b).
Further, this weight space is 1-dimensional, which implies that the product in (2.11) can be
taken in any order (up to rescaling).

Let 1A denote the generator of kA. Observe that under the adjoint action t acts on u with
weight (p − 1)γ = −γ = ρ − ρ by (2.8). Therefore, v := u ⊗ 1A is a weight vector for t
with weight λA − ρ + (ρ − ρ) = λA − ρ. In order to complete the proof we must show v is
a highest weight vector for the action of b, which requires us to show that ei,i+1v = 0 for
i = 1, ..., N − 1.
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We first deal with the case where row(i) = row(i + 1) and we let r := row(i). We begin
by decomposing I into four subsets:

I1 := {(j, k) ∈ I | row(j) = r};
I2 := {(j, k) ∈ I | row(k) = r};
I3 := {(j, k) ∈ I | row(j) < r, row(k) > r}; and

I4 := {(j, k) ∈ I | (j, k) /∈ I1 ∪ I2 ∪ I3}.
We record three facts about commuting elements which are straightforward to verify directly.
Fact (i). ei,i+1 commutes with ej,k for (j, k) ∈ I3 ∪ I4.
Fact (ii). The elements {ej,k | (j, k) ∈ I1 ∪ I3} pairwise commute.
Fact (iii). The elements {ej,k | (j, k) ∈ I2 ∪ I3} pairwise commute.

For s = 1, 2, 3, we see that {ej,k | (j, k) ∈ Is} is the basis of an abelian subalgebra of a.

Therefore, the element us :=
∏

(j,k)∈Is e
p−1
j,k does not depend on the order of the product. We

choose an arbitrary ordering of I4 and let u4 :=
∏

(j,k)∈I4 e
p−1
j,k .

We proceed with three claims, which we use to show that ei,i+1v = 0.

Claim 1. (ad(ei,i+1)u1)⊗ 1A = 0.
Observe that ad(ei,i+1)u1 is a sum of expressions of the form

u
(i+1,l)
1 := ei,l(e

p−2
i+1,l)

∏
ep−1
j,k . (2.12)

where (i+ 1, l) ∈ I1, and the product is taken over all (j, k) 6= (i+ 1, l) ∈ I1. Since all matrix
units occurring in (2.12) are of the form ea,b with row(a) = r and row(b) > r all of these
factors commute so can be reordered.

We consider two cases to complete the proof of Claim 1. The first case is when (i, l) ∈ I1.

Then u
(i+1,l)
1 contains a factor of epi,l, so that u

(i+1,l)
1 = 0. The second case is when col(i) =

col(l) and so ei,l ∈ [h, h]. In this case ei,l1A = 0 and so u
(i+1,l)
1 ⊗ 1A = 0.

Claim 2. u3ej,ku1 ⊗ 1A = 0 whenever col(j) = col(k) and row(j) < row(k) = r.
We have ej,k ∈ [h, h] so ej,k1A = 0. Thus it suffices to show that u3(ad(ej,k)u1) = 0. Observe
that ad(ej,k)u1 is a sum of monomials of the form

ej,l(e
p−2
k,l )

∏
ep−1
k′,l′ (2.13)

where (k, l) ∈ I1 and the product is taken over (k′, l′) 6= (k, l) ∈ I1. Similar to the comments
following (2.12) the matrix units occurring in (2.13) all commute and so can be reordered.
Since row(j) < r and row(l) > row(k) = r we have ej,l ∈ I3. Applying Fact (iii) above we

see that u3ej,le
p−2
k,l

∏
ep−1
k′,l′ contains a factor of epj,l, hence is equal to 0. This proves Claim 2.

Claim 3. u3(ad(ei,i+1)u2)u1 ⊗ 1A = 0.
Observe that ad(ei,i+1)u2 is a sum of expressions of the form

u
(l,i)
2 := −el,i+1(ep−2

l,i )
∏

ep−1
j′,k . (2.14)

where (l, i) ∈ I2 and the product is taken over all (j, k) ∈ I2 with (j, k) 6= (l, i). The matrix
units occurring here all commute, so can be reordered. We consider two cases. The first

case is when (l, i + 1) ∈ I2. Then u
(l,i)
2 contains a factor of epl,i+1 and u

(l,i)
2 = 0. The second
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case is when col(l) = col(i+ 1). Then we can use Claim 2 along with Fact (iii) to show that

u3u
(l,i)
2 u1 ⊗ 1A = 0. This completes the proof of Claim 3.

We now combine these claims to prove that ei,i+1v = 0. Since ei,i+1 lies in the nilradical of
p we have that ei,i+11A = 0. Thus it suffices to prove ad(ei,i+1)(u4u3u2u1)⊗1A = 0. Applying
Fact (i) we only need to check u4u3(ad(ei,i+1)u2)u1⊗1A = 0 and u4u3u2(ad(ei,i+1)u1)⊗1A = 0,
which are given by Claim 3 and Claim 1 respectively.

We move on to deal with the case row(i) < row(i+ 1), and show that ei,i+1v = 0.
For this case first suppose that col(i) > col(i + 1). Then we have ei,i+1 ∈ a. By the

remarks following (2.11) we can write u = ep−1
i,i+1u0 for some u0 ∈ U0(a) and so ei,i+1u = 0,

which implies that ei,i+1v = 0.
The case where col(i) = col(i + 1), which only happens when prow(i) = 1 and si+1,i = 0.

Then we have ei,i+1 ∈ [h, h] and ei,i+11A = 0, so we are just required to show that [ei,i+1, u] =
0. This is done with commutator arguments similar to those used above, so we omit the
details. �

2.6. The W -algebra U(g, e) and its p-centre. Since e ∈ g(1), we have that χ vanishes
on g(k) for k 6= −1. Therefore, χ restricts to a character of m. We define mχ := {x− χ(x) |
x ∈ m} ⊆ U(g), which is a Lie subalgebra of U(g). By the PBW theorem there is a direct
sum decomposition

U(g) = U(g)mχ ⊕ U(p)

We let pr : U(g) → U(p) be the projection onto the second factor. Also we abbreviate and
write I := U(g)mχ, and define Q := U(g)/I.

As explained in [GT, §4.3] the adjoint action of M on U(g) gives an adjoint action of M
on Q. In [GT, Definition 4.3] the W -algebra associated to e is defined to be

{u+ I ∈ Q | g · u+ I = u+ I for all g ∈M}.
In this paper, we prefer to work with an equivalent realization of U(g, e) as a subalgebra of
U(p). For this we require the twisted adjoint action of M on U(p), which is defined by

tw(g) · u := pr(g · u),

for g ∈ M and u ∈ U(p). By using pr to identify U(g)/I with U(p), we can equivalently
define the W -algebra associated to e to be the invariant subalgebra

U(g, e) := U(p)tw(M) = {u ∈ U(p) | tw(g) · u = u for all g ∈M}.
We want to recast some of the material from [GT, Section 8] in our setting where U(g, e) =

U(p)tw(M). We begin with the p-centre of U(g, e), and to define this we note that the p-centre
Zp(p) of U(p) is stable under the twisted adjoint action of M of U(p). The p-centre of U(g, e)
is defined in [GT, Definition 8.1], and in our setting, it is given by

Zp(g, e) := Zp(p)tw(M) ⊆ U(g, e).

Let ψ ∈ p∗ ⊆ g∗. We write Jp
ψ for the ideal of U(p) generated {xp − x[p] − ψ(x)p | x ∈ p},

the reduced W -algebra corresponding to ψ as

Uψ(g, e) := U(g, e)/(Jp
ψ ∩ U(g, e)).

We note that our notation here differs from that used in [GT, Definition 8.5] by a shift of χ,
i.e. Uψ(g, e) here would be denoted Uχ+ψ(g, e) there (to make sense of χ+ψ ∈ g∗ we identify
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p∗ = Anng∗(m) ⊆ g∗). This change in notation is partly justified by the fact that the kernel
of the restriction of the projection U(p) � Uψ(p) to U(g, e) is Jψ ∩ U(g, e). Consequently,
we can identify Uψ(g, e) with the image of U(g, e) in Uψ(p).

It turns out that for ψ 6= ψ′ we can have Jp
ψ ∩ U(g, e) = Jp

ψ′ ∩ U(g, e), so that Uψ(g, e) =
Uψ′(g, e). To explain precisely when this happens we need to translate some of the material
from [GT, §8.2] to our setting. We write m⊥ ⊆ g for the annihilator of m with respect to
(· , ·), and note that we can identify p∗ ∼= e + m⊥ via (· , ·). There is an adjoint action of M
on e+ m⊥, and this translates through the identification p∗ ∼= e+ m⊥ to an action of M on
p∗, which we refer to as the twisted action of M on p∗. For φ ∈ p∗, g ∈ M and x ∈ p this
twisted adjoint action is given by (tw(g) · φ)(x) = χ(g−1 · x− x) + φ(g−1 · x).

Now we state the required part of [GT, Lemma 8.6] in our notation.

Lemma 2.3. We have that Uψ(g, e) = Uψ′(g, e) if and only if ψ and ψ′ are conjugate under
the twisted M-action on p∗.

Thanks to Quillen’s lemma, an irreducible U(g, e)-module L factors to a module for
Uψ(g, e) for some ψ ∈ p∗. Further, it is clear from the definitions that, for ψ, ψ′ ∈ p∗, the
module L factors to a module for both Uψ(g, e) and for Uψ′(g, e) if and only if Jp

ψ ∩U(g, e) =

Jp
ψ′ ∩ U(g, e), which by the previous lemma occurs if only ψ and ψ′ are conjugate under the

twisted M -action.
We also recall Premet’s equivalence in Theorem 2.4 below. This theorem is based on

[Pr2, Theorem 2.4], and the statement here can be deduced from [Pr3, Lemma 2.2(c)] and
[GT, Proposition 8.7 and Lemma 8.8], see also [GT, Remark 9.4]. For the statement, we
view ψ ∈ p∗ as an element of g∗ via the identification p∗ = Anng∗(m) ⊆ g∗. Also we define
Qψ = Q/Jχ+ψQ, and recall that as explained in [GT, §8.3] Qψ is a left Uχ+ψ(g)-module and
a right Uψ(g, e)-module

Theorem 2.4. Let ψ ∈ p∗. We have

(a) Uχ+ψ(g) ∼= Matpdχ Uψ(g, e);
(b) the functor from Uψ(g, e)-mod to Uχ+ψ(g)-mod given by

M 7→ Qψ ⊗Uψ(g,e) M (2.15)

is an equivalence of categories with quasi-inverse given by

V 7→ V mχ := {v ∈ V | mχv = 0}. (2.16)

(c) dim(Qψ ⊗Uψ(g,e) M) = pdχ dimM, for a finite dimensional Uψ(g, e)-module M .

We also recall that U(g, e) has a PBW basis, which is described in [GT, Theorem 7.3]. We
summarize the properties that we require in Proposition 2.5 below and adapt the statement
to the case g = glN(k). For this we first have to give some notation. We fix a basis x1, ..., xr
of ge, chosen so that xi ∈ g(ni), where ni ∈ Z≥0. Let Ip = {(i, j) | 1 ≤ i, j,≤ N, ei,j ∈ p} and

fix an order on Ip. For a = (ai,j) ∈ ZIp≥0 we write

ea :=
∏

(i,j)∈Ip

e
ai,j
i,j ∈ U(p), (2.17)

and define |a| =
∑

(i,j)∈Ip ai,j and |a|e =
∑

(i,j)∈Ip(col(j)− col(i) + 1)ai,j.
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We can now state our proposition about the PBW basis of U(g, e); it is a consequence of
[GT, Lemma 7.1 and Theorem 7.3]. We remind the reader that the graded degrees in this
paper differ from those in loc. cit. by a factor of 2.

Proposition 2.5.

(a) There are elements Θ(x1), . . . ,Θ(xr) of U(g, e) of the form

Θ(xi) = xi +
∑

|a|e≤ni+1

λa,ie
a (2.18)

where λa,i ∈ k satisfy λa,i = 0 whenever |a|e = ni + 1 and |a| = 1.
(b) Given any elements Θ(x1), . . . ,Θ(xr) ∈ U(g, e) of the form in (2.18) the ordered

monomials in Θ(x1), . . . ,Θ(xr) form a basis of U(g, e).

Let Θ(xi),Θ(xj) be elements of U(g, e) of the form (2.18). Then a commutator calculation
shows that

[Θ(xi),Θ(xj)] = [xi, xj] +
∑

|a|e≤ni+nj+1

µae
a, (2.19)

where µa ∈ k satisfy µa = 0 whenever |a|e = ni +nj + 1 and |a| = 1. The key ingredient for

this calculation is to observe that if we take the commutator [ea, eb] for a, b ∈ ZIp≥0, then we
get a linear combinations of terms ec with |c|e = |a|e + |b|e − 1 and |c| = |a|+ |b| − 1, plus
a linear combination of terms ed with |d|e < |a|e + |b|e − 1.

3. Modular truncated shifted Yangian

In this section we consider the modular shifted Yangian Yn(σ) and its truncation Yn,l(σ).
The algebras Yn(σ) have been studied in recent work of Brundan and the second author,
[BT]. Here we recall some of the results in loc. cit. and move on to verify that the truncation
Yn,l(σ) has structure theory similar to that in characteristic 0. In the next section we
exploit formulas from [BK1, Section 9] to show that the modular finite W -algebra U(g, e) is
isomorphic to the shifted truncated Yangian Yn,l(σ) of level l = pn.

We recall that σ is the shift matrix for the pyramid π. The modular shifted Yangian Yn(σ)
is the k-algebra with generators

{D(r)
i | 1 ≤ i ≤ n, r > 0} ∪ {E(r)

i | 1 ≤ i < n, r > si,i+1}
∪ {F (r)

i | 1 ≤ i < n, r > si+1,i}
(3.1)
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and relations [
D

(r)
i , D

(s)
j

]
= 0, (3.2)[

E
(r)
i , F

(s)
j

]
= −δi,j

r+s−1∑
t=0

D
(r+s−1−t)
i+1 D̃

(t)
i , (3.3)

[
D

(r)
i , E

(s)
j

]
= (δi,j − δi,j+1)

r−1∑
t=0

D
(t)
i E

(r+s−1−t)
j , (3.4)

[
D

(r)
i , F

(s)
j

]
= (δi,j+1 − δi,j)

r−1∑
t=0

F
(r+s−1−t)
j D

(t)
i , (3.5)

[
E

(r)
i , E

(s)
i

]
=

s−1∑
t=r

E
(t)
i E

(r+s−1−t)
i if r < s, (3.6)

[
F

(r)
i , F

(s)
i

]
=

r−1∑
t=s

F
(r+s−1−t)
i F

(t)
i if r > s, (3.7)[

E
(r+1)
i , E

(s)
i+1

]
−
[
E

(r)
i , E

(s+1)
i+1

]
= E

(r)
i E

(s)
i+1, (3.8)[

F
(r)
i , F

(s+1)
i+1

]
−
[
F

(r+1)
i , F

(s)
i+1

]
= F

(s)
i+1F

(r)
i , (3.9)[

E
(r)
i , E

(s)
j

]
= 0 if |i− j| > 1, (3.10)[

F
(r)
i , F

(s)
j

]
= 0 if |i− j| > 1, (3.11)[

E
(r)
i ,
[
E

(s)
i , E

(t)
j

]]
+
[
E

(s)
i ,
[
E

(r)
i , E

(t)
j

]]
= 0 if |i− j| = 1, r 6= s, (3.12)[

F
(r)
i ,
[
F

(s)
i , F

(t)
j

]]
+
[
F

(s)
i ,
[
F

(r)
i , F

(t)
j

]]
= 0 if |i− j| = 1, r 6= s (3.13)[

E
(r)
i ,
[
E

(r)
i , E

(t)
j

]]
= 0 if |i− j| = 1, (3.14)[

F
(r)
i ,
[
F

(r)
i , F

(t)
j

]]
= 0 if |i− j| = 1, (3.15)

for all admissible i, j, r, s, t. In the relations, the shorthand D
(0)
i = D̃

(0)
i := 1 is used, and the

elements D̃
(r)
i for r > 0 are defined recursively by D̃

(r)
i := −

∑r
t=1D

(t)
i D̃

(r−t)
i .

This presentation of Yn(σ) is given in [BT, Theorem 4.15] and is modelled on the Drinfeld
presentation of the shifted Yangian defined over C, as introduced in [BK1, Section 2]. It is
proved in [BT, Theorem 4.14] that there is a PBW basis for Yn(σ), whose description does
not depend on the characteristic p. Before stating this result it is necessary to introduce
some additional elements. We define

E
(r)
i,i+1 := E

(r)
i ,

F
(r)
i,i+1 := F

(r)
i
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for i = 1, . . . , n− 1, and inductively define

E
(r)
i,j := [E

(r−sj−1,j)
i,j−1 , E

(sj−1,j+1)
j−1 ] for 1 ≤ i < j ≤ n and r > si,j, (3.16)

F
(r)
i,j := [F

(sj,j−1+1)
j−1 , F

(r−sj,j−1)
i,j−1 ] for 1 ≤ i < j ≤ n and r > sj,i. (3.17)

Then [BT, Theorem 4.14] says that monomials in the elements

{D(r)
i | 1 ≤ i ≤ n, r > 0} ∪ {E(r)

i,j | 1 ≤ i < j ≤ n, r > si,j}
∪ {F (r)

i,j | 1 ≤ i < j ≤ n, r > sj,i}
(3.18)

in any fixed order give a basis of Yn(σ).
The shifted Yangian has the canonical filtration which we denote Yn(σ) =

⋃
r≥0FrYn(σ)

and is defined by declaring that D
(r)
i , E

(r)
i,j , F

(r)
i,j ∈ FrYn(σ), i.e. that FrYn(σ) is the spanned

by the monomials in these elements of total degree ≤ r. It is immediate from the relations
(3.2)–(3.14) that the associated graded algebra grYn(σ) is commutative.

The truncated shifted Yangian of level l is denoted Yn,l(σ) and defined to be the quotient of

Yn(σ) by the ideal generated by {D(r)
1 | r > p1}; this definition is taken from [BK1, Section

6] where it is given for characteristic 0. We recall that l = pn, so that p1 = l − s1,n − sn,1.
The truncated shifted Yangian inherits the canonical filtration from Yn(σ) and we write
Yn,l(σ) =

⋃
i≥0FiYn,l(σ). The associated graded algebra grYn,l(σ) is certainly commutative,

as it is a quotient of grYn(σ). When working with Yn,l(σ) we often abuse notation by using

the same symbols D
(r)
i , E

(r)
i,j , F

(r)
i,j to refer to the elements of Yn(σ) and their images in Yn,l(σ).

The next lemma gives a spanning set for Yn,l(σ) and should be viewed as a modular version
of [BK1, Lemma 6.1]; though we note that it is less general as we do not deal with parabolic
presentations here. We recover the full PBW theorem for Yn,l(σ), i.e. that the spanning
set given in the next lemma is actually a basis, once we have clarified the connection with
U(g, e) in Theorem 4.3.

Lemma 3.1. The monomials in the elements

{D(r)
i | 1 ≤ i ≤ n, 0 < r ≤ pi} ∪ {E(r)

i,j | 1 ≤ i < j ≤ n, si,j < r ≤ si,j + pi}
∪ {F (r)

i,j | 1 ≤ i < j ≤ n, sj,i < r ≤ sj,i + pi}
(3.19)

in any fixed order form a spanning set of Yn,l(σ).

Proof. Our proof uses the arguments in the proof of [BK1, Lemma 6.1]. As we are not using
the more general parabolic presentations of the Yangian as in that proof, we outline the
arguments required for the convenience of the reader.

During the proof we frequently refer to degree, by which we always mean filtered degree for
the canonical filtration; on occasion we speak about the total degree of a monomial to make
the intended meaning clearer. Until the final paragraph we use the word monomials to mean
unordered monomials, as this simplifies the exposition. We frequently use that grYn(σ) is
commutative, so for u ∈ Yn,l(σ) of degree r and v ∈ Yn,l(σ) of degree s, the commutator
[u, v] has degree ≤ r + s− 1.

For 1 ≤ k ≤ n and s ≥ 1, we let:

• Ωk be the set of generators given in (3.19) with i, j ≤ k;

• Ωk,E be the generators in Ωk along with the generators E
(r)
i,k+1 with 1 ≤ i ≤ k and

si,k+1 < r ≤ si,k+1 + pk+1; and
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• Ω̂k be the set of generators from (3.18) with i, j ≤ k.

A key observation for us is:

(∗) if X ∈ Ωk with degree r−sk,k+1, then [X,E
sk,k+1+1

k ] can be written as a linear combination
of monomials in Ωk,E with total degree r.

This can be checked directly from the relations, and the definition of E
(r)
i,j in (3.16). A similar

statement holds with “F replacing E”. Further, we have:

(†) if X ∈ Ωk,E with degree r − sk+1,k, then [X,F
sk+1,k+1

k ] can be written as a linear combi-

nation of monomials in Ωk+1 ∪ {D̃(s)
k | s = pk + 1, . . . , pk+1} with total degree r.

Again this is checked directly from the relations, and we note that D̃
(s)
k can be written in

terms of D
(t)
k for t ≤ s.

We show by induction on k that any element in Ω̂k of degree r ≥ 0 can be written as a
linear combination of monomials in the elements of Ωk of total degree r.

To start the induction we note that the case k = 1 is trivial, because D
(r)
1 = 0 for r > p1

in Yn,l(σ). So suppose inductively we have proved the claim for Ω̂k and we consider elements

of Ω̂k+1.

First consider an element E
(r)
i,k+1 for r > si,k+1 + pi. For i < k, we use the definition of

E
(r)
i,k+1 in (3.16) to write E

(r)
i,k+1 = [E

(r−sk,k+1)

i,k , E
(sk,k+1+1)

k ]. Using the inductive hypothesis

E
(r−sk,k+1)

i,k can be written as a sum of monomials in Ωk of total degree r− sk,k+1. Now using

(∗) we deduce that E
(r)
i,k+1 can be written as a sum of monomials in Ωk,E with total degree r.

For i = k, we have E
(r)
i,k+1 = E

(r)
k and we can use the relation (3.4) to write

E
(r)
k =

[
D

(r−sk,k+1)

k , E
(sk,k+1+1)

k

]
−

r−sk,k+1−1∑
t=1

D
(t)
k E

(r−t)
k .

The right hand side of the above is an expressions in elements of Ω̂k+1 of degree r. We use
property (∗) to deduce that the first term above can be written as a sum of monomials in
Ωk,E with total degree r. To deal with the second term we do an induction on r.

We can deal with the elements F
(r)
i,k+1 similarly.

We are left to consider the elements D
(r)
k+1. Using (3.3), we write

D
(r)
k+1 = −

[
E

(r−sk+1,k)

k , F
(sk+1,k+1)
i

]
+

r∑
t=1

D
(r−t)
i+1 D̃

(t)
i ,

For the first term on the right hand side we use the above to write E
r−sk+1,k

k as a linear
combination of monomials in Ωk,E or total degree r − sk+1,k. Using (†) we rewrite this in

terms of monomials in Ωk+1 ∪ {D̃(s)
k | s = pk + 1, . . . , pk+1}. Now we can use the inductive

hypothesis to write this as linear combination of monomials in Ωk+1. The second term can
be dealt with by induction on r.

To finish the proof, we have to observe that for a fixed order on the elements given in
(3.19), an unordered monomial can be written as a linear combination of ordered monomials.
This is easily done using that grYn(σ) is commutative, an induction on degree, and what
has already been proved. �
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Let Yn,l(σ)ab denote the maximal abelian quotient of Yn,l(σ) obtained by factoring out the
ideal generated by all commutators {[u, v] | u, v ∈ Yn,l(σ)}. So the isomorphism classes of
one dimensional representations of Yn,l(σ) are in one-to-one correspondence with maximal
ideals of Yn,l(σ)ab. A calculation due to Premet within the proof of [Pr3, Theorem 3.3]
shows that Yn,l(σ)ab is generated by a particular subset of the elements (3.19) as stated in
the following lemma. Although [Pr3, Theorem 3.3] is only stated in the characteristic 0 case,
the required calculation works directly from the relations and we can observe that it is valid
in characteristic p.

Lemma 3.2. The algebra Yn,l(σ)ab is generated by the l elements

{Ḋ(r)
i | i = 1, ..., n, 0 < r ≤ pi − pi−1},

where Ḋ
(r)
i denotes the image of D

(r)
i in Yn,l(σ)ab.

4. U(g, e) as modular truncated shifted Yangian

We proceed with the notation in Section 2 and recall that U(g, e) is the invariant algebra
U(p)tw(M) for the twisted adjoint action of M on U(p). The goal of the current section is to
show that U(g, e) is isomorphic to the truncated shifted Yangian Yn,l(σ) of level l.

First we recall some remarkable formulas from [BK1, §9] for elements of U(p), which are
actually invariants for the twisted adjoint action of M as proved in Lemma 4.1. We refer
also to [BK2, §3.3], as our notation is closer to the notation used there. The weight η ∈ t∗

from (2.9) is required to define these invariants, and we note that η extends to a character
of p. For ei,j ∈ p we define

ẽi,j := ei,j + η(ei,j).

Now for 1 ≤ i, j ≤ n, 0 ≤ x < n and r ≥ 1, we let

T
(r)
i,j;x :=

r∑
s=1

(−1)r−s
∑
i1,...,is
j1,...,js

(−1)|{t=1,...,s−1|row(jt)≤x}|ẽi1,j1 · · · ẽis,js ∈ U(p) (4.1)

where the sum is taken over all 1 ≤ i1, . . . , is, j1, . . . , js ≤ N such that

(a) col(j1)− col(i1) + · · ·+ col(js)− col(is) + s = r;
(b) col(it) ≤ col(jt) for each t = 1, . . . , s;
(c) if row(jt) > x, then col(jt) < col(it+1) for each t = 1, . . . , s− 1;
(d) if row(jt) ≤ x then col(jt) ≥ col(it+1) for each t = 1, . . . , s− 1;
(e) row(i1) = i, row(js) = j;
(f) row(jt) = row(it+1) for each t = 1, . . . , s− 1.

Now define

D
(r)
i := T

(r)
i,i;i−1 for 1 ≤ i ≤ n, r > 0 (4.2)

E
(r)
i := T

(r)
i,i+1;i for 1 ≤ i < j ≤ n, r > si,j (4.3)

F
(r)
i := T

(r)
i+1,i;i for 1 ≤ i < j ≤ n, r > sj,i. (4.4)

These elements are denoted by the same symbols as the generators of the truncated shifted
Yangian and this will be justified later. First we prove that they are invariants for the twisted
adjoint action of M and thus are elements of U(g, e).
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Lemma 4.1. The elements D
(r)
i , E

(r)
i and F

(r)
i of U(p) defined in (4.2), (4.3) and (4.4) are

all invariant under the twisted adjoint action of M .

Proof. Recall from §2.1 that gC = glN(C) and gZ = glN(Z); and we have the subalgebras pC,
mC, pZ and mZ.

Let X
(r)
i ∈ U(p) be one of the elements defined by (4.2), (4.3) or (4.4). Throughout this

proof we abuse notation slightly by simultaneously viewing X
(r)
i also as an element of U(pZ)

and of U(pC).

According to [BK1, Lemma 10.12], we have that X
(r)
i ∈ U(pC) is invariant under the

twisted adjoint action of mC. This twisted adjoint action is defined by

tw(x)u := pr(ad(x)u)

for x ∈ mC and u ∈ U(pC). We see that the twisted adjoint action of mC exponentiates to

give the twisted adjoint action of MC as defined in (2.6). Thus we deduce that X
(r)
i is an

invariant for the twisted adjoint action of MC.
Now let 1 ≤ i, j ≤ N such that ei,j ∈ mC. Let t be an indeterminate and consider the

homomorphism U(gC)[t]→ U(gC)[t] determined by ek,l 7→ ek,l+tδj,kei,l−tδl,iek,j−t2δj,kδl,iei,j,
which “gives the action of ui,j(t) on ek,l” as in (2.1). This preserves the integral form U(gZ)[t]
of U(gC)[t] and, composing with the projection U(gZ)[t] → U(pZ)[t] along the direct sum
decomposition U(gZ)[t] = U(pZ)[t] ⊕ U(gZ)[t]{x − χ(x) | x ∈ mZ}, we obtain a Z-module
homomorphism ψi,j : U(pZ)[t] → U(pZ)[t]. By the observations of the previous paragraph,

ψi,j(X
(r)
k ) − X

(r)
k ∈ (t − s)U(pC)[t] for every s ∈ C. It follows that ψi,j(X

(r)
k ) − X

(r)
k = 0

in U(pC)[t]. Note that
⋂
s∈C(t − s)U(pC)[t] = 0 follows from the fact that U(pC)[t] is a free

C[t]-module, and
⋂
s∈C(t− s)C[t] = 0.

Now consider the equation

ψi,j(X
(r)
k )⊗ 1−X(r)

k ⊗ 1 = 0,

valid in U(pZ)[t] ⊗Z k ∼= U(p)[t]. Examining the image in U(p) ∼= U(p)[t]/(t − s)U(p)[t] for

all s ∈ k, we deduce that X
(r)
k ∈ U(p) is invariant under the twisted adjoint action of the

root subgroup ui,j(k). Hence, X
(r)
k ∈ U(p) is invariant under the twisted adjoint action of

M , and this completes the proof. �

We define elements E
(r)
i,j ∈ U(p) for 1 ≤ i < j ≤ n and r > si,j from the expressions

for E
(r)
i ∈ U(p) given in (4.3) and the recursive formula in (3.16); we define F

(r)
i,j ∈ U(p)

similarly. From these definitions and Lemma 4.1, we have that these E
(r)
i,j and F

(r)
i,j are

actually elements of U(g, e). For the next lemma we recall the basis for ge from Lemma 2.1,
and the notation for elements ea in U(p) given in (2.17).

Lemma 4.2.

(a) For 1 ≤ i ≤ n, and 1 ≤ r ≤ pi, we have D
(r)
i = (−1)r−1c

(r)
i,i + u, where u is a linear

combination of terms ea satisfying either |a|e = r and |a| > 1, or |a|e < r.

(b) For 1 ≤ i < j ≤ n, and si,j < r ≤ pi+si,j, we have E
(r)
i,j = (−1)r−1c

(r)
i,j +u, where u is

a linear combination of terms ea satisfying either |a|e = r and |a| > 1, or |a|e < r.

(c) For 1 ≤ i < j ≤ n, and sj,i < r ≤ pi + sj,i, we have F
(r)
i,j = (−1)r−1c

(r)
j,i +u, where u is

a linear combination of terms ea satisfying either |a|e = r and |a| > 1, or |a|e < r.
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(d) The monomials in

{D(r)
i | 1 ≤ i ≤ n, 1 ≤ r ≤ pi} ∪ {E(r)

i,j | 1 ≤ i < j ≤ n, si,j < r ≤ pi + si,j}
∪{F (r)

i,j | 1 ≤ i < j ≤ n, sj,i < r ≤ pi + sj,i}
taken in any fixed order form a basis of U(g, e).

Proof. We begin by proving (a). Consider the expression given for D
(r)
i given by (4.1) and

(4.2). We can verify that the terms for s > 1 are a linear combination of terms ea satisfying
|a|e = r and |a| > 1, or |a|e < r. So we are left to show that the s = 1 part is precisely

(−1)r−1c
(r)
i,i , and this follows directly from the definitions.

The cases of (b) and (c) for j = i+1 are proved similarly to (a). Then using the definitions
in (3.16) and (3.17) along with Lemma 2.1(b), and (2.19), we deduce the statement for all i
and j.

Part (d) is now an immediate consequence of Lemma 2.1(a) and Proposition 2.5. �

We are now in a position to prove the main result of the section, showing that Yn,l(σ) is
isomorphic to U(g, e), which is a modular analogue of [BK1, Theorem 10.1]

Theorem 4.3. The map from Yn,l(σ) to U(g, e) determined by sending each element of
Yn,l(σ) in

{D(r)
i | 1 ≤ i ≤ n, r ≥ 1} ∪ {E(r)

i | 1 ≤ i < n, r > si,i+1} ∪ {F (r)
i | 1 ≤ i < n, r > si+1,i}

to the element of U(g, e) denoted by the same symbol defines an isomorphism

Yn,l(σ)
∼−→ U(g, e).

Proof. Consider the elements D
(r)
i , E

(r)
i , F

(r)
i defined in U(pC) by formulas (4.1), (4.2), (4.3),

(4.4). It follows from [BK1, Theorem 10.1] that these elements satisfy relations (3.2)–(3.13).
Also they satisfy (3.14) and (3.15) as these follow, over C from [BK1, (2.14), (2.15)]. Since
all of these relations have integral coefficients they hold in U(pZ), and thus also in U(p) ∼=
U(pZ) ⊗ k. In addition it is clear from the definition of D

(r)
1 ∈ U(g, e) given in (4.1) and

(4.2), that D
(r)
1 = 0 for r > p1.

Hence, the map described in the statement does give a homomorphism Yn,l(σ)→ U(g, e).
By Lemma 4.2(d), we see that this homomorphism is surjective, and using Lemma 3.1, we
deduce that it is injective. �

As mentioned before Lemma 3.1, we are now able to deduce a PBW theorem for Yn,l(σ), as
given in [BK1, Corollary 6.3]. This says that the monomials in the elements given in (3.19)
taken in any fixed order form a basis of Yn,l(σ), and follows immediately from Lemma 4.2
and Theorem 4.3.

5. 1-dimensional modules for U(g, e)

We follow similar methods to those in [Br, Section 2] to classify the 1-dimensional modules
for U(g, e). Before stating this in Theorem 5.1 we require some notation, and we also use the
generators and relations for U(g, e) given by Theorem 4.3 to make some initial deductions
about 1-dimensional modules for U(g, e).
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It follows from (3.2) and Lemma 4.2 that {D(r)
i | i = 1, . . . , n, 1 ≤ r ≤ pi} generates

a subalgebra of U(g, e) isomorphic to a polynomial algebra in N variables; we denote this
subalgebra by U(g, e)0.

Let A ∈ Tabk(π). For i = 1, . . . , n, we write ai,1, . . . , ai,pi for the entries in the ith
row of A from left to right. We define the 1-dimensional U(g, e)0-module kA by saying

that D
(r)
i acts on kA by er(ai,1 + i, . . . , ai,pi + i); here er(x1, . . . , xpi) is the rth elementary

symmetric polynomial in the indeterminates x1, . . . , xpi . It is clear that kA depends only
on the row equivalence class of A. We note that given b1, . . . , bpi ∈ k, finding ci,1, . . . , ci,pi
such that er(c1, . . . , cpi) = br for each r is equivalent to finding solutions of the polynomial
tpi − b1t

pi−1 + · · ·+ (−1)pi−1bpi−1t+ (−1)pibpi . Therefore, since k is algebraically closed, we
see that any 1-dimensional U(g, e)0-module is isomorphic to kA for some A ∈ Tabk(π). Thus
we see that the restriction of any 1-dimensional U(g, e)-module to U(g, e)0 is isomorphic to
kA for some A ∈ Tabk(π), and that such A is defined up to row equivalence. Using the

relations (3.4) and (3.5) for r = 1, we see that the generators E
(s)
i and F

(s)
i act as 0 on any

1-dimensional U(g, e)-module, for all i and s. If the action of U(g, e)0 on kA can be extended

to a U(g, e)-module, on which E
(s)
i and F

(s)
i act as 0, then we denote this module by k̃A.

Our goal is thus to determine when k̃A exists, and this is achieved in the following theorem.

Theorem 5.1. Let A ∈ Tabk(π). There is a 1-dimensional U(g, e)-module k̃A, which extends
the action of U(g, e)0 on kA if and only if A is row equivalent to a column connected tableau.

Proof. First let A ∈ Tabk(π) be column connected, with entries in the ith row labelled

ai,1, . . . , ai,pi for i = 1, . . . , n. Recall the 1-dimensional U(h)-module k̃A defined in §2.5;

this can be inflated to a U(p) module, which we also denote by k̃A. Consider the action

of the explicit elements D
(r)
i ∈ U(p) given in (4.1) and (4.2) on the module k̃A. The only

summands in the expression for D
(r)
i that do not act as zero on k̃A are those which are

products ẽi1,j1 · · · ẽis,js such that i1 = j1, . . . , is = js: terms of this form only occur for s = r

and their sum is precisely er(ẽi1,j1 , . . . , ẽir,jr). The t-weight of k̃A is λA − ρ̃, and we have

ρ̃ = η + ρh by (2.10). Thus we see that each ẽi,i acts on k̃A by (λA + ρh)(ei,i), because of
the shift of η in the definition of ẽi,j. Combining all of these observations shows that the

action of D
(r)
i on k̃A is given by er(ai,1 + i, . . . , ai,pi + i). This proves that k̃A exists, under

the assumption that A is column connected.

We move on to prove that k̃A exists only if A is column connected. To do this first
note that the action U(g, e) on any 1-dimensional factors to an action of the abelianization
U(g, e)ab of U(g, e). By Lemma 3.2 and Theorem 4.3 we know that U(g, e)ab is generated by
the images of the l elements

{D(r)
i | i = 1, . . . , n, 0 < r ≤ pi − pi−1}.

So any 1-dimensional U(g, e)-module is determined uniquely by the action of these elements.

Thus to show that any one dimensional U(g, e)-module is of the form k̃A for some column
connected A ∈ Tabk(π), it suffices to show that for any set

{a(r)
i | i = 1, . . . , n, 0 < r ≤ pi − pi−1}.

where a
(r)
i ∈ k, there is a column connected A ∈ Tabk(π) such that the action of D

(r)
i on

k̃A is given by a
(r)
i for i = 1, . . . , n and 0 ≤ r ≤ pi − pi−1. This is proved “over the complex
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numbers” at the end of [Br, Section 2], and depends crucially on [Br, Lemma 2.6]. It can
be observed that the proof of this lemma is also valid over an algebraically closed field of
characteristic p. From this we can deduce that all 1-dimensional U(g, e)-modules are of the

form k̃A for some column connected A ∈ Tabk(π). �

As mentioned after the statement of Lemma 3.2, the abelianization of Yn,l(σ) is actually a
polynomial algebra on the generators given in that lemma. This can now be deduced imme-
diately from the proof of Theorem 5.1, which shows that there are 1-dimensional modules
for Yn,l(σ) on which these generators can act by arbitrary elements of k.

6. 1-dimensional modules for U0(g, e)

From Theorem 5.1 we have a classification of 1-dimensional U(g, e)-modules given by the

modules k̃A for A ∈ Tabk(π) ranging over a set of representatives of row equivalence classes of
column connected tableaux. Our next theorem determines for which of these 1-dimensional
modules the action of U(g, e) factors through the quotient U(g, e) � U0(g, e) to give a
1-dimensional U0(g, e)-module. Therefore, we obtain a classification of the 1-dimensional
U0(g, e)-modules.

Theorem 6.1. Let A ∈ Tabk(π) be column connected. Then k̃A factors to a module for
U0(g, e) if and only if A ∈ TabFp(π).

Proof. Let A ∈ Tabk(π) be column connected with entries labelled a1, . . . , aN as usual. We

see that k̃A factors through UψA(p), where ψA ∈ p∗ is defined by ψA(ei,j) = 0 for i 6= j, and

ψA(ei,i) = api − ai. Therefore, k̃A is a module for the reduced W -algebra UψA(g, e) as defined

in §2.6. From the discussion after Lemma 2.3, we see that k̃A factors to a module for U0(g, e)
if and only if 0 and ψA are conjugate under the twisted M -action.

We next show that ψA is conjugate to 0 under the twisted M -action only if ψA = 0. To do
this note that under the identification p∗ ∼= e+ m⊥ we have that 0 corresponds to e and ψA
corresponds to an element e+diag(ap1−a1, . . . , a

p
N−aN), where we recall that diag(d1, . . . , dN)

denotes the diagonal matrix with ith entry di. We have e + diag(ap1 − a1, . . . , a
p
N − aN) ∈ t

is nilpotent only if diag(ap1 − a1, . . . , a
p
N − aN) = 0. Therefore, e is not in the same M -orbit

as e+ diag(ap1 − a1, . . . , a
p
N − aN) unless api − ai = 0 for all i.

Hence, we deduce that k̃A factors to a module for U0(g, e) if only if api − ai = 0 for all i.
This is case if and only if ai ∈ Fp for all i, so that A ∈ TabFp(π). �

7. Minimal dimensional modules for Uχ(g)

Armed with Premet’s equivalence (Theorem 2.4), Theorem 2.2 and Theorem 6.1, we are
ready to prove our main theorem.

Proof of Theorem 1.1. Let cπ the number of row equivalence classes in TabFp(π) containing
a column connected tableau. By Theorem 6.1, we know that the number of isomorphism
classes of 1-dimensional modules for U0(g, e)-modules is cπ. Thus by Theorem 2.4 the number
of minimal dimensional Uχ(g)-modules is cπ.

Given column connected A ∈ TabFp(π), we have that Lχ(A) is pdχ-dimensional by The-
orem 2.2. Also up to isomorphism Lχ(A) depends only on the row equivalence class of A.
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Therefore, the modules Lχ(A) for A ranging over a set of row equivalence classes of col-
umn connected tableaux in TabFp(π) give all cπ isomorphism classes of minimal dimensional
modules. �

Now that Theorem 1.1 is proved, Corollary 1.2 follows, as explained in the introduction.

Remark 7.1. It is interesting to know the bijection given by Premet’s equivalence between

the sets of isomorphism classes of the 1-dimensional U0(g, e)-modules k̃A and those of the
minimal dimensional Uχ(g)-modules Lχ(A), as A ranges over a set of representatives of row
equivalence classes of column connected tableau in TabFp(π). It turns out that this bijection

sends k̃A to Lχ(A) and we briefly outline some steps that can be used to verify this.

Use the fact that Lχ(A) ∼= Nχ(A) = Uχ(g) ⊗U0(p) kA as is given in Theorem 2.2. Then

show that Nχ(A)mχ ∼= k̃A using the following arguments; we recall here that Nχ(A)mχ is
defined in (2.16).

Consider the dual Nχ(A)∗ viewed as a right module for Uχ(g). We observe that λA−ρ−β =
λ − ρ̃ is the weight of a 1-dimensional right U0(h)-module, which we denote by kλA−ρ−β.
Using that any Uχ(g)-module is free as a Uχ(m)-module, it can be proved that Nχ(A)∗ ∼=
kλA−ρ−β ⊗U0(p) Uχ(g). Note that it is more natural to consider weight λA − ρ + (p − 1)β to
prove this isomorphism, and use that this is the t-weight of

∏
α∈Φ(−) e

p−1
α 1A ∈ Nχ(A), where

1A is the generator of kA.
Next consider the Whittaker coinvariants ofNχ(A)∗. This is defined byNχ(A)∗/Nχ(A)∗mχ,

and is a right module for U(g, e). It is quite straightforward to show that the Whittaker
coinvariants of kλA−ρ−β ⊗U0(p) Uχ(g) is isomorphic to the restriction of right U0(p)-module
kλA−ρ−β to U(g, e), so the same is true for the Whittaker coinvariants of Nχ(A)∗. Stan-
dard arguments show that Nχ(A)mχ ∼= (Nχ(A)∗/mχNχ(A)∗)∗. Then it can be deduced that
Nχ(A)mχ is isomorphic to the restriction of the left U0(p)-module kλA−ρ−β to U0(g, e).

It just remains to just use the fact that ρ+ β = ρ̃ to deduce that Nχ(A)mχ ∼= k̃A.
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