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Abstract

Two key parameters of broadcast encryption (BE) schemes are the transmission size and the user storage.
Naor-Naor-Lotspiech (2001) introduced the subset difference (SD) scheme achieving a good trade-off between
these two parameters. Halevy-Shamir (2002) introduced the idea of layering to reduce user storage of the
NNL scheme at the cost of increased transmission overhead. Here, we introduce several simple ideas to obtain
new layering strategies with different trade-offs between user storage and transmission overhead. We define the
notion of storage minimal layering and describe a dynamic programming algorithm to compute layering schemes
for which the user storage is the minimum attainable using layerings. Further, the constrained minimization
problem is considered. A method is described which yields BE schemes whose transmission overhead is not
much more than the SD scheme but, whose user storage is still significantly lower.

Finally, an O(r log2 n) algorithm is obtained to compute the average transmission overhead for any layering
based scheme where r out of n users are revoked. This algorithm works for any layering strategy and also for
arbitrary number of users. The algorithm has been used here to generate all data for the average transmission
overhead.

Keywords: Broadcast encryption; subset difference; layering; transmission overhead; user storage

1 Introduction

Digital rights management systems like Pay-TV and content protection in HD-DVD and Blu-Ray discs can
be modelled as follows. There is a set of users and a centre which broadcasts messages. For each message,
the centre decides on a set of privileged users which should be able to access the message while the other users
(revoked) should not be able to do so. A cryptographic system achieving such a functionality is called a broadcast
encryption scheme [1, 2].

In a BE scheme, the key pre-distribution centre provides secret information to the users during a set-up phase.
A user can derive its keys from this secret information. Each such key corresponds to a subset of users. During
transmission in a symmetric key based BE system, a session key is generated and the message is encrypted using
the session key. Next the session key is encrypted using several user keys which are determined by the set of
privileged users. The additional encryptions of the session key constitute the header while the actual encryption
of the message is called the body. To decrypt, a privileged user can use its secret information to obtain one of
the keys with which the session key has been encrypted. Decrypting the appropriate component of the header
with this key yields the session key and then decrypting the body with the session key yields the message. The
two important parameters of a BE scheme are the length of the header (as given by the number of encryptions
of the session key) and the size of secret information to be stored by a user. It is desirable to decrease both as
far as possible, but, in most schemes it turns out that decreasing one increases the other.
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Naor, Naor and Lotspiech (NNL) [3] introduced an important BE scheme called the subset difference (SD)
method. This scheme has been adopted as a standard for content protection in HD-DVD and Blu-ray discs [4].
The NNL-SD scheme is defined for n users where n is a power of two, i.e., n = 2`0 for some `0 ≥ 0. The users
are considered to be the leaves of a full binary tree having `0 levels. Each user needs to store `0(`0 + 1)/2 k-bit
strings where k is the key length of the underlying symmetric key cryptosystem. If r users are revoked, then the
worst case header length (i.e., the number of encryptions of the session key) is 2r − 1 [3], while the average case
header length turns out to be at most 1.25r for practical situations (see [5] for a detailed analysis). The header
length and the user storage for the SD scheme have been discussed in details in Section 2. The trade-off between
user storage and average header length turns out to be very well suited for real-life applications. Further, the
scheme itself is quite elegant and reasonably easy to implement.

A later work by Halevy and Shamir [6] introduced a variant of the SD method called the layered subset
difference (LSD) scheme. The basic idea is to partition the tree into several layers which gives the name of the

scheme. A different trade-off is obtained. User storage is reduced in the LSD method to `
3/2
0 but, the maximum

possible header length grows to 4r−3. In [6], based on simulation results, it is remarked that the average header
length is around 2r. Compared to the SD method, the LSD method reduces the user storage at the cost of
increasing the header length.

1.1 Our Contributions

We work within the ambit of the NNL-SD scheme [3] and the idea of layering introduced in [6]. The Halevy-
Shamir (HS) layering works for n = 2`0 users where `0 is a perfect square. This limits its usage to very specific
number of users (24, 29, 216, 225). Two natural extensions of the HS layering strategy that work for values of `0
that may not be a perfect square (and hence subsume the HS layering strategy) are considered. While both have
the same storage requirement, one of them is experimentally seen to have lower average header length. We call
this the extended HS or e-HS layering.

The first problem that we tackle is whether the user storage can be lowered further than the e-HS layering
strategy. To this end, we introduce the notion of storage minimal layering. For such a strategy, the user storage
requirement is the minimum possible that can be obtained from 2-way splitting of SD subsets using layerings. An
O(`30) time and O(`20) space dynamic programming algorithm is presented to compute storage minimal layerings.
In the HS layering strategy, the root node of the user tree is treated as a special level. We show that removing
this condition yields a scheme where the user storage is significantly reduced while the effect on the average
header length is negligible. The resulting storage minimal schemes result in user storages which are between
18% to 24% lower than that required by the (extended) Halevy-Shamir layering scheme. We note that our work
does not provide any asymptotic improvement in user storage compared to the Halevy-Shamir scheme. Rather,
our work provides concrete improvement in user storage for all practical values of n and also an algorithm to
compute the corresponding layering strategies.

Simply minimizing user storage is only one aspect of the problem. We consider the constrained minimization
problem whereby one tries to minimize the user storage but, without increasing the actual values of the average
header length significantly beyond that achieved by the SD scheme. This is a difficult problem to solve analyti-
cally. Instead, we show how to tackle the problem empirically. Given some idea about the number of users that
would be revoked, we show how one may use this information to design a layering strategy for which the average
header length is almost as small as the SD scheme. The user storage for such a layering scheme is significantly
less than that of the SD scheme. Concrete practical examples are provided and it is shown how to tackle this
problem for any practical value of the number of users.

We describe an algorithm to compute the expected header length of the layering based SD schemes. This
algorithm works for all possible values of the number of users (and not only those values which are powers of
two). Assuming that r out of n users are revoked uniformly at random, our algorithm computes the expected
header length in O(r log2 n) time and O(log n) space. A simulation based approach can also be used to estimate
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the average header length. In this approach, for a fixed n and r, a set of r users are randomly revoked and
the cover generation algorithm is applied to compute the corresponding header length. This process is repeated
many times and the average of the different header lengths is taken to be an estimate of the actual value of the
expected header length. Each run will require O(n) space (and hence also O(n) time) to compute the cover and
hence the header length. In contrast, our algorithm does away with the need of performing such a simulation
study. Given n and r, it directly computes the expected header length when r out of n users are uniformly
revoked. Since r will be much smaller than n for practical scenarios, our algorithm will be faster and require
much lesser space. The algorithm is of interest in its own right as it will be a useful tool to practitioners who
may wish to quickly calculate the average header length for different broadcast scenarios.

1.2 Previous and Related Works

Before [3] and [6], BE schemes using resilient functions and their analysis were proposed in [7, 8]. Subsequent
to [3] and [6], there have been some follow-up work analyzing the average header lengths of the SD and LSD
schemes. In [9], a generating function is obtained for counting the number of ways p users out of n can be
given access privilege so that the header length will be h. For a given n and p, the generating function was
used to obtain equations to compute the expected header length. The authors however mentioned that their
equations were “complex to compute and difficult to gain insight from”. Consequently, they went forward to
find approximations for the same. In [10], this analysis of the expected header length was continued and it was
shown that the standard deviations are small compared to the expected values, as the number of users gets large.
Combinatorial analysis of the worst case header length of the SD method has been done in [11]. Lower bounds
on the header length of the SD and LSD schemes were found in [12]. All of these works considered the number
of users to be a power of two. In [5], this condition was relaxed and the SD method was extended to the CTSD
method. A detailed combinatorial and probabilistic analysis of the CTSD method was carried out.

Several works [13, 14] on the combinatorics behind broadcast encryption schemes and different generic bounds
on the efficiency parameters have been done. In [15], a generic method for constructing BE schemes from pseudo-
random generators was proposed. While NNL [3] and most follow-up works consider BE for stateless user devices,
BE schemes for low-state devices were proposed in [16].

Several other BE schemes have been proposed. Linear algebraic techniques have been used in [17] to find a
family of broadcast encryption schemes called linear broadcast encryption schemes. The same authors had also
proposed key pre-distribution methods based on linear algebraic techniques in [18]. Another interesting work on
BE is [19], that works on the idea of “one key per punctured interval”. In [19], the worst case header length has
been brought down to r or below for the first time, but at the cost of increasing user storage. For n = 228 and
r = 210, the header length is below r at the cost of 3.4× 108 times the storage of the SD scheme. Moreover, the
method is more complicated than the SD scheme.

BE schemes have also been proposed in the public key setting. In a public-key based BE, anybody can
broadcast to a group of users in the system. We do not consider public key BE in this work and instead refer
the reader to relevant work such as [20, 21]. For this paper, by BE we will mean symmetric key BE.

2 Subset Cover Framework

Suppose there are n users. In the subset cover revocation framework, a collection S of subsets of {1, . . . , n} is
defined in a manner such that any set S ∈ S has an associated key and any subset of {1, . . . , n} which is not
in S does not have any key associated with it. For a user u, let Su = {S ∈ S : u ∈ S}. User u is given secret
information Iu such that it can construct the key associated with any set in Su.

During the actual broadcast, some users are revoked and some are privileged. Suppose that a subset T of the
users are privileged. A cover finding algorithm determines a collection of pairwise disjoint subsets of S whose
union is T . This collection of subsets is called the subset cover. The actual message is encrypted with a session
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Figure 1: The subset S(i) \ S(j) of users.
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Figure 2: Key for S(i) \ S(j) is Li,j =
GM (GR(GL(GL(LABELi)))).
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Figure 3: The subset S(i) \ S(j) split into S(i) \ S(k) and
S(k) \ S(j).
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Figure 4: Key for S(i) \ S(k) is Li,k =
GM (GL(LABELi)) and for S(k) \ S(j) is Lk,j =
GM (GR(GL(LABELk))).

key and the session key is encrypted with the keys associated with the subsets in the cover. The encrypted
message forms the body while the different encryptions of the session key forms the header. So, the number of
subsets in the cover determine the header length of the broadcast. Loosely speaking, this number itself is called
the header length of the transmission.

To decrypt, a user first determines to which subset of the cover it belongs. Then, using its secret information,
it generates the key associated with this subset. Decrypting the appropriate component of the header with this
key, the user obtains the session key and then decrypting with the session key the user obtains the actual message.

Two parameters are of crucial interest. The size of the secret information Iu that is to be stored by a user u
and the average or expected length of a broadcast header. Basic intuition tells us that as the number of elements
in S grows, it should be possible to cover a privileged set T with lesser number of elements and so the average
header length will decrease. On the other hand, as S grows, the size of Su also grows and this should lead to an
increase in the size of Iu. Thus, the average header length and the user storage are two competing parameters.

2.1 The Subset Difference Scheme

The SD scheme introduces a major novelty in defining S such that there is a compact way of representing Iu. In
the original SD scheme, the number of users n is a power of 2, say n = 2`0 . Consider the users to be the leaves
of a full binary tree. Each node in the tree represents the users at the leaf level of the tree rooted at that node.
Suppose i is a node of the tree and let S(i) denote the leaves of the subtree rooted at i. Let j be a node in the
subtree rooted at i. Then for the SD scheme, the set S consists of the subsets S(i) \ S(j) for all possible choices
of node i and all possible nodes j 6= i in the subtree rooted at i as shown in Figure 1. These subsets are called
SD subsets.

A clever algorithm is used to define the key associated with an SD subset S(i) \ S(j). First each node i in
the tree is assigned an independent and uniform random label LABELi. A cryptographically strong pseudo-
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random generator (PRG) G : {0, 1}k → {0, 1}3k is used. Let G(seed) be written as the concatenation of 3 k-bit
strings GL(seed), GM (seed) and GR(seed). Suppose that a node j in the subtree rooted at node i is reached
from node i by the moves ‘left’, ‘left’ and ‘right’. Then the label of j derived from LABELi is LABELi,j =
GR(GL(GL(LABELi))) and the key associated with the set S(i) \ S(j) is Li,j = GM (GR(GL(GL(LABELi)))) as
shown in Figure 2. This easily extends to any appropriate pair of nodes i and j. The string Li,j is a k-bit string
and the value of k is determined by the key size of the underlying encryption algorithm.

Recall that users are at the leaf level of the tree. The leaf level is numbered 0 and level numbers increase
up to `0 which is the level number of the root. For any user u, the user storage Iu is defined in the following
manner. Consider the path from the node u to the root and let i be a node on this path at level ` > 0 of the
tree. Let i1, . . . , i` be the siblings of the nodes on the path from u to i (including u but not including i). Then
for each such i, user u gets the labels LABELi,i1 , LABELi,i2 , . . . , LABELi,i` . The value of ` varies from 0 to `0
and so each user gets `0(`0 + 1)/2 labels. The total size of Iu is k`0(`0 + 1)/2 bits where k is the size of the seed
of the PRG. Since k is fixed, it is enough to consider only the number of labels as determining the size of user
storage.

The labels provided to a user are sufficient for the user to construct the key corresponding to any element in
Su. To see this suppose that i is a node on the path from u to the root and j is a node in the subtree rooted at
i such that u ∈ S(i) \ S(j). Since u is not in S(j) and both u and j are in the subtree rooted at i, the paths to
root from these two nodes intersect for the first time at some node v which is also in the subtree rooted at i. Let
v1 be the first node in the path from v to j. Then v1 is the sibling of some node v2 in the path from u to i and
so u has LABELi,v1 . From this label, u can generate LABELi,j by applying GL and GR appropriately and so
can generate Li,j = GM (LABELi,j). This Li,j is the key corresponding to the set S(i) \ S(j). So, u can generate
keys for any subset in Su.

It is also required to argue that u cannot generate keys for any other subset in S. In the SD scheme, any
subset in S is of the form S(i) \ S(j). If u is not in such a subset, then u is either not in S(i) or it is in S(j).
In either case, it is not too difficult to see that u does not obtain information which allows it to generate Li,j .
See [3] for more details.

2.2 The Layered Subset Difference Scheme

The point of the LSD scheme is to reduce the user storage in the SD scheme at the cost of increasing the header
length. Reduction in the user storage is achieved by reducing the size of S. As in the SD scheme, the LSD
scheme also considers the number of users to be of the form 2`0 where the users form the leaves of a full binary
tree. The major difference between the SD and the LSD schemes is that in the LSD scheme the levels of the
tree are partitioned into layers. Some of the levels are marked as “special”. The collection of levels between (and
including) two consecutive special levels is called a layer. The levels are numbered with the bottom-most level
having the number 0, increasing to the top. The length of a layer is the difference between the numbers of the
special levels enclosing the layer.

2.2.1 The Halevy-Shamir Layering Strategy

The layering strategy described in [6] is as follows:

“The root is considered to be at a special level, and in addition we consider every level of depth
k ·
√

log (n) for k = 1 . . . log (n) as special (wlog, we assume that these numbers are integers).”

We call this the Halevy-Shamir (HS) layering strategy. It assumes
√
`0(=

√
log n) to be an integer and hence

`0 to be a perfect square. The “wlog” in the above statement is valid when one is interested in asymptotic
analysis. For concrete values of n, the paper does not describe how to choose a layering scheme. This restricts
the use of the scheme to very limited values of n (of the form 2`0 where `0 = 4, 9, 16, 25). On the other hand, the
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authors of [6] consider the case of n = 228 users and suggest a layering strategy with layers of size 6, 6, 6, 5 and
5. However, they do not give any general description of how to choose the layer lengths when `0 is not a perfect
square. We take up this issue later.

As a consequence of layering, an SD subset S(i) \ S(j) is defined to be in S if either of the following two
conditions hold:

• node i is at a special level;

• or, node i is not at a special level but, node j is in the same layer as level i.

This reduces the size of S and consequently of Su. As a result, the size of Iu also reduces as we explain below.
The distribution of labels is done as follows. Suppose that u is a user (i.e., a leaf node) and i is a node at level `
in the path from u to the root and i1, . . . , i` are the siblings of the nodes in the path from u to i. If ` is a special
level, then u is given LABELi,i1 , . . . , LABELi,i` as in the SD scheme. Suppose ` is not a special level. Let `′

be the first special level below i and consider the segment of the path from u to i which lies between `′ and `.
Suppose im, . . . , i` are the siblings of the nodes on this segment. Then u gets LABELi,im , . . . , LABELi,i` . The
net effect is that if i is not at a special level, it generates labels only up to the next special level (and not up to
the bottom-most level). This leads to the reduction in the user storage.

The reduction in user storage is achieved at the cost of an increase in the header length. Suppose i is not
at a special level and j is in the sub-tree rooted at i but not in the same layer as i. The SD scheme would
associate the set S(i) \ S(j) to such an (i, j) pair. In the LSD scheme, this set is not present. Instead, the header
computation algorithm will cover this set in the following manner. Let k be the node in the first special level as
one moves down the path from i to j. The sets S(i) \ S(k) and S(k) \ S(j) are both present in the LSD scheme
and it is easy to see that

S(i) \ S(j) =
(
S(i) \ S(k)

)⋃(
S(k) \ S(j)

)
.

This can be viewed as a two-way split of the set S(i) \ S(j). Figure 3 shows the splitting of the subset S(i) \ S(j)
of Figure 1. The key assignment to the subsets in Figure 3 is shown in Figure 4. The work [6] also consider the
possibility of multi-way split. But, the authors conclude that this leads to further reduction in user storage only
for impractical values of the number of users. In this paper, we will not consider multi-way split.

As mentioned earlier, [6] does not mention how to generate a layering strategy when `0 is not a perfect square.
Later in Sections 3(3.1) and 3(3.2) below we look at two natural extensions of the HS layering strategy that can
be adopted for 2`0 users for values of `0 which may not be perfect squares.

3 General Layering Strategy

In general, a layering strategy ` is denoted by the numbers of the special levels `0 > `1 > ... > `e−1 > `e = 0. Let
` = (`0, . . . , `e). The layering strategy has (e+ 1) special levels. It is sometimes more convenient to use another
formulation to denote the layering. For 1 ≤ i ≤ e, define di = `i−1 − `i so that di’s are positive integers whose
sum is `0. Conversely, given any sequence of positive integers d = (d1, . . . , de) whose sum is `0, it is possible to
define a layering scheme where `i = `0 −

∑i
j=1 dj .

The user storage for any such layering strategy ` in general can be calculated as follows. Corresponding to
each special level `i, a user has to store `i labels. Now consider the nodes in the layer bordered by `i and `i+1.
Corresponding to any non-special level j in this layer a user has to store j − `i+1 labels. So, the total number
of labels that is required to be stored by a user considering both special and non-special levels is given by the
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following formula.

storage0(`) =
e−1∑
i=0

`i +
e−1∑
i=0

`i−1∑
j=`i+1+1

(j − `i+1)

=
e−1∑
i=0

`i +
e−1∑
i=0

`i−`i+1−1∑
j=1

j

=

e−1∑
i=0

`i +
1

2

e−1∑
i=0

(`i − `i+1)(`i − `i+1 − 1). (1)

A recursive description can be obtained as follows.

storage0(`0, `1, . . . , `e)

= `0 + `1 + · · ·+ `e +
(`0 − `1)(`0 − `1 − 1)

2

+
(`1 − `2)(`1 − `2 − 1)

2

+ · · ·+ (`e−1 − `e)(`e−1 − `e − 1)

2

= `0 +
(`0 − `1)(`0 − `1 − 1)

2
+ storage0(`1, . . . , `e). (2)

Equation (1) can be formulated in terms of the layer lengths d = (d1, . . . , de) as follows.

storage0(`) = `0(e+ 1)−
e∑
i=1

(e− i+ 1)di

+
1

2

e∑
i=1

di(di − 1). (3)

If all the di’s are equal to d and `0 = e × d, then storage0(`) is given by `0(e + d)/2. This shows that the
user storage using e layers of length d each is the same as the user storage using d layers of length e each. If
all the layer lengths are equal, then the problem of minimizing the user storage is that of minimizing the sum
e + d subject to the constraint ed = `0. From this it is easy to see that the minimum value is attained for

e = d =
√
`0 and the corresponding value of user storage is `

3/2
0 . This justifies the choice made in [6]. Note that

the minimization here is in the context of all the layer lengths being equal.
It is easy to note that the layering strategy with each di = 1 or with e = 1 results in the SD scheme. The

supplementary material provides some further combinatorial results on general layering strategies.

3.1 The HS Layering with residual bottom layer

Let `0 be any positive integer and d ≤ `0. We write `0 = d(e− 1) + p where 1 ≤ p ≤ d. Then the special levels
are

`0, `0 − d, `0 − 2d, . . ., `− d(e− 1), 0.

So, the tree will have a total of e+ 1 special levels (including the root level `0 and the leaf level 0) and e layers
out of which e − 1 layers are of length d each and the last layer is of length p. Note that the length p of the
bottom-most layer can equal d which will lead to e layers each of length d. We find it convenient to always have
level 0 (leaf level) as a special level as this does not have any effect on either the user storage or the header
length. The Halevy-Shamir (HS) layering strategy is a special case where `0 is a perfect square with d =

√
`0

and layer lengths d, d, . . . , d, p = d.
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3.2 The e-HS Layering Strategy

We now consider a layering strategy where the layer lengths are balanced. Write `0 = d(e − 1) + p = (e − d +
p)d + (d − p)(d − 1) and define d′ = (d, . . . , d︸ ︷︷ ︸

e−d+p

, d− 1, . . . , d− 1︸ ︷︷ ︸
d−p

). Let ` be the layering strategy with a residual

bottom layer and `′ be the balanced layering strategy. Then, one can show that storage0(`) = storage0(`
′). (The

proof is given in the supplementary material.) So there is no difference between these two strategies in terms
of user storage. Experimental results show that the average header lengths for both strategies are similar with
that corresponding to the balanced strategy being slightly smaller. As an example, for `0 = 18, d′ = (5, 5, 4, 4)
yields lesser expected header lengths than d = (5, 5, 5, 3) for all r between 256 and 16384 while the user storage
75 is the same for both. We call the balanced strategy to be the extended HS or e-HS layering strategy. This
strategy coincides with the layering scheme given in [6] for n = 28.

Using (3), it can be verified that storage requirement is O(log3/2 n) for both the e-HS and the residual bottom
layer strategies.

3.3 Root at a non-special level

In the HS layering [6] as well as its extensions given in Section 3(3.1) and Section 3(3.2), the root level `0 is
always taken as a special level. It is possible to obtain further reduction in user storage if we allow the root level
to be a non-special level. Having the root as a special level contributes `0 labels to the user storage. If instead the
root level is made non-special, then its contribution to the user storage will be `0 − `1 labels. Given a sequence
of level numbers `, let storage1(`) be the number of labels required to be stored when the root (top-most) level
is not special (and so, `1 is the first special level). Then the following relation holds.

storage1(`) = storage0(`)− `1. (4)

Combining this with (2) we get the following relation.

storage1(`0, . . . , `e) =
(`0 − `1)(`0 − `1 + 1)

2
+storage0(`1, . . . , `e). (5)

So, not having the root at a special level reduces the storage requirement by `1 labels. This can be quite
significant. Consider the e-HS layering strategy where `0 = d × e and so ` = (`0, `1, . . . , `e) where `i − `i+1 = d

for 0 ≤ i < e. In this case, storage0(`) = `
3/2
0 and storage1(`) = `

3/2
0 − (`0 − `1/20 ).

It is important to understand the effect on the header length when the root level is not special. During the
computation of the cover, suppose that the root generates an SD subset, i.e., the SD cover finding algorithm
returns a subset of the form S(0) \ S(j). Since the root is not at a special level, this subset may be split into two
if j is not in the first layer. We argue that for reasonable values of r (the number of revoked users), this effect is
negligible. In fact, the argument is that the probability of the root generating an SD subset itself is small.

The root generates an SD subset only if exactly one of the two subtrees of the root node contains all
the revoked users. Intuitively this probability is low even for moderate values of r. We provide some more
justification. Suppose the revoked users are uniformly distributed, i.e., r users are uniformly sampled one-by-one
without replacement and revoked. Then the probability that the left subtree does not have any revoked user
(and consequently the right subtree contains all of them) is(

1− n/2

n

)(
1− n/2

n− 1

)
· · ·
(

1− n/2

n− r + 1

)
=

(
1− 1

2

)(
1− 1

2
(
1− 1

n

)) · · ·(1− 1

2
(
1− r−1

n

))
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The probability that the right subtree does not have any revoked user is also equal to this value. So, the total
probability that the header generates a subset is twice this value. For practical applications of BE, the number
of users n will be usually be much larger than the number of revoked users r and so the ratio r/n will be small.
Then the above expression can be approximated by 2−r. This is negligible even for values of r as small as 20 or
so. Consequently, for practical situations, there will be almost no effect on the header length if the root level is
not made special.

3.4 Storage Minimal Layering

For a given value of `0, let SML0(`0) denote a layering strategy ` (or equivalently is given by the sequence of
differences d), such that storage0(`) takes the minimum value among all possible layering strategies for a tree
with `0 levels and having the root as a special level. Let #SML0(`0) denote storage0(`) where ` is a storage
minimal layering strategy. Similarly define SML1(`0) and #SML1(`0) that exclude the root level from being
special.

We describe a dynamic programming based algorithm to compute SML0(`0) (and subsequently SML1(`0)).
The idea of the algorithm is explained as follows. For a fixed value of `0, the number of layers e can vary from 1
to `0. The cases e = 1 and e = `0 correspond to the SD scheme and in these two cases the user storage is known
to be equal to `0(`0 + 1)/2. Let SML0(e, `0) denote a storage minimal layering using exactly e layers. Clearly,
the following relation holds.

#SML0(`0) = min
1≤e≤`0

#SML0(e, `0). (6)

Also,

#SML0(e, `0) = min
(`0,...,`e)

storage0(`0, `1, . . . , `e) (7)

where the minimum is over all possible layering strategies (`0, `1, . . . , `e). Using (2)

#SML0(e, `0) =

min
1≤`1<`0

(
`0 +

(`0 − `1)(`0 − `1 − 1)

2
+ #SML0(e− 1, `1)

)
.

(8)

This relation is the basis for the algorithm. Let Tab be an `0 × `0 table such that Tab[e][`0] = #SML0(e, `0). A
simple O(`30) time dynamic programming algorithm can fill up this table as given in Algorithm 1.

Using (6) provides #SML0(`0) as the minimum value in column number `0 of Tab. Note that the minimum
may occur for more than one possible value of e. These values of `1 are reported during the computation. Let
Λ(e, `0) be the list of all possible values of `1 for which (8) holds. The above method can be extended to generate
all possible layering strategies for which user storage is minimized.

An SML0 layering strategy ` can be generated as follows. Start with ` as the list containing only `0 and
keep on appending in the following manner to obtain the complete sequence. Let e be one of the possibilities for
which Tab[e][`0] takes the minimum value; choose `1 as any one value from Λ(e, `0) and append to `; choose `2
as any one value from Λ(e− 1, `1) and append to `; continue until 0 is appended to the list. All SML0 strategies
can be generated by looping over all possible values of e, all possible values of `1, all possible values of `2 and so
on.
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ALGORITHM 1: Dynamic Programming Algorithm to find Tab

Input: `0.

Output: An `0 × `0 table Tab where Tab[e][`] contains the value of #SML0(e, `).

for ` = 1 to `0 do
Tab[1][`] = Tab[`][`] = `(`+ 1)/2;

end
for ` = 2 to `0 do

for e = 2 to `− 1 do

Tab[e][`] = min
1≤`1<`

(
`+

(`− `1)(`− `1 − 1)

2
+ Tab[e− 1][`1]

)
end

end

Once Tab is prepared, computing #SML1(`0) using (5) is easy.

#SML1(`0)

= min
e

min
`1

(
#SML0(e− 1, `1) +

(`0 − `1)(`0 − `1 + 1)

2

)
= min

e
min
`1

(
Tab[e− 1][`1] +

(`0 − `1)(`0 − `1 + 1)

2

)
. (9)

The first minimization is over the number of layers and the second minimization is over the value of the first
special level. The possible corresponding layering strategies can also be easily recovered. It is to be noted that the
SML1(`0) layerings are due to the minimization of the user storage by assuming the root to be at a non-special
level. It can be seen from (8) and (9) that in an SML0(`0) layering, if the root is made non-special, it might not
necessarily result in an SML1(`0) layering and vice versa.

Table 1 shows values of user storage for SML strategies for some `0. For comparison, we also show the storage
requirements for the SD scheme and the e-HS layering strategy. Compared to the SD scheme, the e-HS layering
strategy reduces the storage requirement very significantly (both asymptotically as well as in practical numbers).
Compared to the e-HS scheme the value of #SML0(`0) is slightly smaller and the value of #SML1(`0) is about
18% to 24% lower for the newly suggested values of `. So, given a value of `0, if the requirement is to minimize
the user storage, then the SML strategies offer better alternatives. They also guarantee that using 2-way splitting
of SD subsets with layering, further lowering of storage cannot be achieved.

The effect of SML0(`0) and SML1(`0) strategies on the average header length is also shown in Table 1. For
computing the average header lengths, we have considered ten values of r equally spaced between rmin and rmax.
The reported values are the average header lengths of the different schemes normalized by the average header
length of the SD scheme. As an example, the first value 1.69 corresponding to the row for e-HS and `0 = 28
means that with n = 228 users out of which r = 210 are uniformly revoked, the average header length of the e-HS
layering strategy is 1.69 times that of the SD scheme.

One may note the following points.

1. For a fixed `0, there may be more than one SML0(`0) (resp. SML1(`0)) strategy which achieves storage of
#SML0(`0) (resp. #SML1(`0)). Table 2 gives the number of SML strategies for several values of `0. For
`0 = 12, Table 3 lists all possible SML0(`0) and SML1(`0) strategies for `0 = 12. There, however, need
not be a single layering strategy which minimizes expected header length for all possible values of r. Out
of these, one would be interested in the layering that would give the minimum expected header length for
most values of r under consideration. The SML strategies reported in Table 1 have this feature.
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`0 rmin rmax scheme special levels storage normalized header lengths for (rmin, . . . , rmax)

12 22 26

SD 12, 0 78 (1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
e-HS 12, 8, 4, 0 42 (1.69, 1.59, 1.56, 1.56, 1.57, 1.57, 1.57, 1.56, 1.55, 1.53, 1.52)
SML0 12, 8, 5, 3, 1, 0 40 (1.68, 1.57, 1.54, 1.54, 1.54, 1.55, 1.55, 1.54, 1.54, 1.53, 1.52)
SML1 8, 5, 3, 1, 0 32 (1.68, 1.57, 1.54, 1.54, 1.54, 1.55, 1.55, 1.54, 1.54, 1.53, 1.52)

16 23 28

SD 16, 0 136 (1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
HS 16, 12, 8, 4, 0 64 (1.63,1.65, 1.66, 1.64, 1.62, 1.60, 1.58, 1.57, 1.57, 1.56)
SML0 16, 11, 7, 4, 2, 1, 0 61 (1.69,1.60, 1.63, 1.65, 1.65, 1.64, 1.63, 1.62, 1.60, 1.59)
SML1 12, 8, 5, 3, 1, 0 50 (1.63,1.64, 1.65, 1.63, 1.60, 1.58, 1.57, 1.56, 1.55, 1.54)

20 24 210

SD 20, 0 210 (1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
e-HS 20, 15, 10, 5, 0 90 (1.64, 1.72, 1.69, 1.66,1.64, 1.62, 1.61, 1.61, 1.60, 1.60)
SML0 20, 15, 10, 6, 3, 1, 0 85 (1.64, 1.72, 1.69, 1.66,1.63, 1.62, 1.61, 1.60, 1.60, 1.60)
SML1 15, 10, 6, 3, 1, 0 70 ((1.64, 1.72, 1.69, 1.66,1.63, 1.62, 1.61, 1.60, 1.60, 1.60)

24 25 212

SD 24, 0 300 (1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
e-HS 24, 19, 14, 9, 4, 0 116 (1.62, 1.64, 1.62, 1.64,1.67, 1.69, 1.71, 1.71, 1.72, 1.72)
SML0 24, 18, 12, 7, 3, 1, 0 112 (1.65, 1.74, 1.70, 1.67,1.65, 1.63, 1.63, 1.62, 1.62, 1.63)
SML1 18, 12, 8, 5, 3, 1, 0 94 (1.65, 1.74, 1.69, 1.66,1.63, 1.62, 1.61, 1.60, 1.60, 1.60)

25 25 212

SD 24, 0 325 (1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
HS 25, 20, 15, 10, 5, 0 125 (1.62, 1.64, 1.62, 1.64,1.67, 1.69, 1.71, 1.71, 1.72, 1.72)
SML0 25, 19, 13, 9, 6, 3, 1, 0 119 (1.65, 1.74, 1.69, 1.66,1.63, 1.62, 1.61, 1.60, 1.60, 1.60)
SML1 19, 13, 9, 6, 3, 1, 0 100 (1.65, 1.74, 1.69, 1.66,1.63, 1.62, 1.61, 1.60, 1.60, 1.60)

28 26 214

SD 28, 0 406 (1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
e-HS 28, 22, 16, 10, 5, 0 146 (1.64, 1.65,1.63, 1.66, 1.69, 1.71, 1.73, 1.74, 1.75, 1.75)
SML0 28, 21, 15, 10, 6, 3, 1, 0 140 (1.65, 1.70, 1.65,1.63, 1.62, 1.63, 1.64, 1.66, 1.67, 1.68)
SML1 22, 16, 11, 7, 4, 2, 0 119 (1.64, 1.65,1.62, 1.64, 1.67, 1.69, 1.70, 1.71, 1.72, 1.72)

Table 1: Comparison of user storage and expected header lengths between e-HS LSD and SML. The tuples
contain header lengths normalized with the SD header lengths corresponding to the values of r in (rmin, . . . , rmax)
respectively.

`0 no. of SML0(`0) layerings no. of SML1(`0) layerings

12 10 10
16 6 15
20 6 1
24 35 35
25 35 21
28 1 8

Table 2: The number of SML0(`0) and SML1(`0) layer-
ing strategies for various values of `0.

10 Special levels for SML0(12) 10 Special levels for SML1(12)

12,7,4,2,1,0 8,4,2,1,0
12,8,4,2,1,0 8,5,2,1,0
12,8,5,2,1,0 8,5,3,1,0
12,8,5,3,1,0 9,5,2,1,0
12,7,3,1,0 9,5,3,1,0
12,7,4,1,0 9,6,3,1,0
12,7,4,2,0 8,4,1,0
12,8,4,1,0 8,4,2,0
12,8,4,2,0 8,5,2,0
12,8,5,2,0 9,5,2,0

Table 3: List of SML0(`0) and SML1(`0) layering strate-
gies denoted by the special levels for `0 = 12.
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2. For `0 = 32, Tab has been computed and reported in Table I of the supplementary material. It gives the
values of the minimum storage for every 1 ≤ `0 ≤ 32 and 1 ≤ e ≤ `0. For a particular `0 and e, it also gives
the values of `1 for which (8) holds. As an example, we see that for `0 = 32 and e = 8, #SML0(e, `0) = 172
and the values of `1 are 24 and 25. All possible SML0(`0) strategies for 1 ≤ `0 ≤ 32 can be obtained from
this table and the SML1(`0) strategies can subsequently be found using (9).

3. As discussed earlier, if the root level is made non-special in an SML0 strategy, it may not lead to an SML1

strategy and vice versa. Table 3 shows that while the SML0 strategy ` = (12, 8, 4, 2, 1, 0) gives rise to an
SML1 strategy ` = (8, 4, 2, 1, 0) by making the root level non-special, the SML0 strategy ` = (12, 7, 4, 2, 1, 0)
does not. On the other hand, the SML1 strategy ` = (9, 5, 2, 1, 0) is not generated from an SML0 strategy.

4. Extensive experimentation have shown that for practical values of r, there is no significant difference
between the average header lengths of SML0 and SML1 strategies that differ at only the root being at a
special level or not. For `0 = 12 and 16, the reported SML0 strategy with the root level made non-special
turns out to be an SML1 strategy (as reported in Table 1) with minimum expected header lengths. This
supports the theoretical justification described before. However, for `0 = 20, it turns out that making the
root level of the SML0 strategy non-special does not give rise to an SML1 strategy. For `0 = 24 and 28, it
is again true that making the root level of the reported SML0 strategy non-special gives rise to an SML1

strategy. But there are other SML1 strategies that further reduce the expected header lengths and hence
we report those strategies in Table 1.

5. In general, the header length of the e-HS scheme is smaller than that of SML0 and SML1. This is somewhat
expected, since user storage in SML is smaller. On the other hand, the user storage is not the only
determining factor. The actual layering strategy also plays a role and in some cases it turns out that the
average header length in SML turns out to be smaller than that in e-HS. We do not have an analytical
justification for this. Intuitively, it appears that for the number of revoked users that have been considered,
the SML assigns keys to SD subsets which are more probable to occur in the header. As a result, in such
cases, we see that both user storage and average header length are reduced. These are marked in bold and
are particularly noticeable for `0 = 24 and `0 = 28. In the context of AACS standard [4], SML1 for `0 = 28
is of particular significance.

3.5 Constrained Minimization of User Storage

From the viewpoint of minimizing communication bandwidth it is of interest to minimize the average header
length. This is minimized when the number of keys is maximized which happens for the SD scheme, i.e., when
all the levels are considered to be special levels or there is only a single layer. Taking the average header
length for the SD scheme as a benchmark, one may ask the question as to how much the user storage can be
reduced from that required by the SD scheme without significantly increasing the corresponding values for the
average header length? The expression for the average header length (as can be derived from (11), (13) and
Proposition 2 given later) is rather complicated and it appears quite impossible to have an analytical solution
to this question. Instead, we use our average header length computation program (developed in Section 4.3) to
study this behaviour for concrete practical values of n, r and layering strategies `. It turns out that it is indeed
possible to significantly reduce the user storage values with minimal increase in the average header length values.

Our approach is the following. The increase in header length due to layering occurs because of the fact that
certain SD subsets are split into two. If we can avoid making too many splits, then we can ensure that the
header length does not increase by too much in comparison to the SD scheme. Consider an SD subset of the
form S(i) \ S(j) where node i is at level `. We say that this subset is generated from the node i. Now, consider
the expected number of SD subsets that will be generated from all the nodes at level `. If this number is ‘large’,
then we make the level ` special. This ensures that SD subsets originating level ` will not be split. Overall, the
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strategy is to ensure that SD subsets originating from levels which contribute most to the header are not split.
This mitigates the effect of splits.

Suppose there are n users and r of them are revoked. In [5] it has been shown that the probability that a
particular node at level ` generates a subset in the header is 2(ηr(n, 2

`−1) − ηr(n, 2 × 2`−1) − ηr(n, 3 × 2`−1) +
ηr(n, 4× 2`−1)) where ηr(n, x) = (1− x/n)(1− x/(n− 1)) · · · (1− x/(n− r + 1)) if n > r − 1 else 0. Since there
are 2`0−` nodes at level `, the expected number of subsets arising from all nodes at level ` is

2`0−`+1(ηr(n, 2
`−1)− ηr(n, 2× 2`−1)

−ηr(n, 3× 2`−1) + ηr(n, 4× 2`−1)). (10)

This expression gives the expected contribution of a level to the header size for a given r.
For a fixed n and r, one can consider the problem of finding ` for which (10) is maximized. Analytically, this

seems to be very difficult to do. Instead we have done extensive experimentation. Empirical values suggest that
the maximum occurs for some level ` ≤ `0 − blog2 rc. Also, for ` > `0 − blog2 rc, the value of (10) is quite small.

Based on this empirical evidence we suggest the following layering strategy.

• Make level `0 − blog2 rc special. Level 0 is also special.

• No level 0 < ` < `0 − blog2 rc is made special. In terms of user storage and expected header length this is
equivalent to making all levels ` < `0 − blog2 rc to be special.

• The root level is not made special.

• At most one level that is midway between `0 and `0 − blog2 rc is made special. While this does not
significantly affect header size, it can reduce the storage requirement.

We call this the constrained minimization layering (CML) strategy. This strategy will ensure that if ` ≤ `0 −
blog2 rc, then no SD subset generated from level ` or below will be split. Splits will occur only for SD subsets
originating from levels above `. But, the expected number of such subsets is small and so, splits will occur only
for a small number of SD subsets.

One issue with this strategy is that the value of r will not be known a priori while the layering scheme will
have to be decided upon during the design phase itself. A way out is to make an assumption about the minimum
number of revoked users that will occur in the steady state operation of the BE scheme. For example, in AACS
with 228 users one may assume that in the steady state at least 210 users will be revoked due to equipment piracy
problems.

Suppose that rmin is the minimum number of users that will be revoked during each broadcast. The above
layering strategy is used with rmin. Suppose now that during a broadcast, the number of users r that is actually
revoked is greater than rmin. Then from our empirical evidence the level for which the average header length is
maximized will be `0 − blog2 rc. Since this value is less than `0 − blog2 rminc, none of the subsets generated from
this level will be split. So, the feature of not splitting a large number of SD subsets is still retained.

Table 4 shows a comparison between the SD scheme, the e-HS layering scheme and a constrained minimization
layering scheme as described above, in terms of both their user storage requirement and the expected header
length normalized with respect to the SD scheme. The average header length depends on the number r of revoked
users. So, for a given n = 2`0 , we computed the expected header lengths for 10 equispaced values of r between
and including rmin and rmax. The values in the table illustrate the point that compared to the SD scheme, the
constrained minimization layering scheme substantially reduces the user storage with a small increase in the
average header length.

The layering scheme is designed assuming that the number of revoked users is at least rmin. What happens if
the number of revoked users in an actual broadcast is smaller than rmin? Clearly, we cannot expect the average
header length to still be almost equal to that of the SD scheme. This effect is shown for some values of r in
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`0 rmin rmax scheme special levels storage normalized header lengths for (rmin, . . . , rmax)

12 22 26
SD 12, 0 78 (1, . . . , 1)
e-HS 12, 8, 4, 0 42 (1.69, 1.59, 1.56, 1.56, 1.57, 1.57, 1.57, 1.56, 1.55, 1.53, 1.52)
CML 10, 0 58 (1.15, 1.01, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)

16 26 28
SD 16, 0 136 (1, . . . , 1)
HS 16, 12, 8, 4, 0 64 (1.66, 1.64, 1.62, 1.61, 1.59, 1.58, 1.58, 1.57, 1.57, 1.56)
CML 10, 0 76 (1.14, 1.08, 1.05, 1.03, 1.01, 1.01, 1.00, 1.00, 1.00, 1.00)

20 28 210
SD 20, 0 210 (1, . . . , 1)
e-HS 20, 15, 10, 5, 0 90 (1.68, 1.66, 1.64, 1.63, 1.62, 1.61, 1.61, 1.60, 1.60, 1.60)
CML 16, 12, 0 110 (1.14, 1.08, 1.04, 1.03, 1.01, 1.01, 1.00, 1.00, 1.00, 1.00)

24 210 212
SD 24, 0 300 (1, . . . , 1)
e-HS 24, 19, 14, 9, 4, 0 116 (1.63, 1.64, 1.66, 1.68, 1.69, 1.71, 1.71, 1.72, 1.72, 1.72)
CML 19, 14, 0 149 (1.14, 1.08, 1.04, 1.03, 1.01, 1.01, 1.00, 1.00, 1.00, 1.00)

25 210 212
SD 25, 0 325 (1, . . . , 1)
e-HS 25, 20, 15, 10, 5, 0 125 (1.63, 1.64, 1.66, 1.68, 1.69, 1.71, 1.71, 1.72, 1.72, 1.72)
CML 20, 15, 0 165 (1.14, 1.08, 1.04, 1.03, 1.01, 1.01, 1.00, 1.00, 1.00, 1.00)

28 210 214
SD 28, 0 406 (1, . . . , 1)
e-HS 28, 22, 16, 10, 5, 0 146 (1.69, 1.63, 1.64, 1.67, 1.69, 1.72, 1.73, 1.74, 1.75, 1.75)
CML 23, 18, 0 219 (1.14, 1.08, 1.04, 1.03, 1.01, 1.01, 1.00, 1.00, 1.00, 1.00)

Table 4: Comparison of user storage and average header length for SD, e-HS LSD and the constrained minimiza-
tion layering. The tuples contain header lengths normalized with the SD header lengths corresponding to the
values of r in (rmin, . . . , rmax) respectively.

Table 5. Again the values of the average header length are normalized by that of the corresponding SD scheme.
For comparison, we have also provided the average header lengths of the e-HS layering strategy. It is to be noted
that the expected header lengths of the CML scheme are mostly better than the e-HS scheme. As an example,
for n = 224, for r > 6, the CML strategy gives smaller expected header lengths than the e-HS layering strategy.
Table 5 shows that for any value of n, the CML strategy leads to smaller expected header lengths for all r > 15.

To summarize, the constrained minimization layering strategy requires significantly lesser user storage than
the SD scheme. In terms of the expected header length, it is as good as the SD scheme for r ≥ rmin. If r < rmin,
then it is better than e-HS layering but inferior to the SD scheme. It is to be noted that if r is small, then the
absolute size of the header itself is not too large. As a result, the effective transmission overhead of the scheme
will never be too high compared to the actual body of the message.

4 Header Length

The main point of the discussion in this section is to obtain an efficient algorithm for computing the expected
header length for the layered SD schemes including the LSD scheme. The algorithm we obtain works for all
possible values of the number of users. To ensure this, we first need to extend the scheme to handle arbitrary
number of users. For the SD scheme, this was done in [5] by using the notion of complete binary trees. Here, we
extend the scheme of [5] to handle layering as well.

4.1 Tackling Arbitrary Number of Users

In [3] and [6], the number of users has been taken to be a power of two, i.e., n = 2`0 . One has to consider dummy
users in the system to make the number of users a power of two. The inclusion of dummy users (considered
revoked or privileged) increase the expected header length in the system. Hence, this is not always convenient
as has been argued in details in [5].

By modifying the structure of the tree, it is possible to handle arbitrary number of users. This modification
is based on the notion of complete binary trees. These are trees where the leaf nodes are at the last and maybe
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`0 rmin scheme special levels storage header lengths normalized with the SD scheme

12 22
r = (1,2, 3, 4)

e-HS 12, 8, 4, 0 42 (1.00,1.74, 1.72, 1.69)
CML 10, 0 58 (2.00,1.50, 1.26, 1.15)

16 26
r = (2, 4, 6, 8, 10,12, 14, 16, 18, 20)

HS 12, 8, 4, 0 64 (1.75, 1.70, 1.66, 1.63, 1.61,1.60, 1.60, 1.60, 1.60, 1.61)
CML 10, 0 76 (1.78, 1.74, 1.70, 1.66, 1.63,1.59, 1.56, 1.53, 1.50, 1.47)

20 28
r = (2,4, 6, 8, 10, 12, 14, 16, 18, 20)

e-HS 20, 15, 10, 5, 0 90 (1.77,1.75, 1.72, 1.70, 1.68, 1.66, 1.65, 1.64, 1.63, 1.63)
CML 16, 12, 0 110 (1.77,1.69, 1.64, 1.61, 1.59, 1.57, 1.56, 1.56, 1.56, 1.56)

24 210
r = (2, 4, 6,8, 10, 12, 14, 16, 18, 20)

e-HS 24, 19, 14, 9, 4, 0 116 (1.77, 1.75, 1.72,1.70, 1.68, 1.66, 1.65, 1.64, 1.63, 1.63)
CML 19, 14, 0 149 (1.79, 1.75, 1.72,1.69, 1.67, 1.65, 1.64, 1.63, 1.62, 1.61)

25 210
r = (2, 4, 6,8, 10, 12, 14, 16, 18, 20)

e-HS 25, 20, 15, 10, 5, 0 125 (1.77, 1.75, 1.72,1.70, 1.68, 1.66, 1.65, 1.64, 1.63, 1.63)
CML 20, 15, 0 165 (1.79, 1.75, 1.72,1.69, 1.67, 1.65, 1.64, 1.63, 1.62, 1.61)

28 210
r = (2,4, 6, 8, 10, 12, 14, 16, 18, 20)

e-HS 28, 22, 16, 10, 5, 0 146 (1.79,1.78, 1.76, 1.74, 1.73, 1.72, 1.71, 1.70, 1.69, 1.68)
CML 23, 18, 0 219 (1.79,1.75, 1.72, 1.69, 1.67, 1.65, 1.64, 1.63, 1.62, 1.61)

Table 5: Comparison of average header length for r < rmin between e-HS layering strategy and the constrained
minimization layering strategy.

the second last levels. The last level has all its nodes to the left side. An example of a complete subtree
accommodating 13 users is shown in Figure 5. In this case `0 = 4 and choosing d = 2 gives two layers and three
special levels as shown in the figure. When the number of users is a power of two, the corresponding tree is called
a full binary tree. This difference in terminology between full and complete has been taken from the literature
on data structures. We explain some terminology with respect to Figure 5. The left and the right subtrees of
node 3 are the subtrees rooted at nodes 7 and 8 respectively. The sibling subtree of node 3 is the subtree rooted
at node 4. The only non-full subtrees are those rooted at nodes 0, 2 and 5. We call the path labelled by the
nodes 0, 2 and 5 to be the dividing path.

In general given n with 2`0−1 < n ≤ 2`0 , it is possible to accommodate n users as the leaves of a complete
binary tree with n leaves. The root node is at level `0. The leaves and hence the users are either at level 0 or at
level 1. Suppose the sequence of special levels is ` = (`0, . . . , `e). For users at level 0, the storage requirement is
storage0(`) while for users at level 1, the storage requirement is storage0(`)− (e+ p− 2) where p is the number of
levels in the bottom-most layer. This reduction is due to the fact that these users need to store one less label for
each special level above it and for each level in its last layer. The distribution of labels using the PRG is done
as usual.

During a broadcast, the actual header generation is done in much the same way. First, as in the SD scheme,
the set of non-revoked users is covered exactly by subsets of the form Si \ Sj where i is a node in the tree and j
is a node in the subtree rooted at i. If i is at a non-special level and j is not in the same layer as i, then this set
is further split into

(
S(i) \ S(k)

)
∪
(
S(k) \ S(j)

)
where k is the first node appearing at a special level on the path

from i to j.
Complications for complete but non-full trees arise due to the following reason. For the internal nodes lying

on the dividing path, the subtree rooted at it may not be full. A node not on the dividing path and at level ` is
the root of a subtree having either 2` leaves or 2`−1 leaves accordingly as whether the node is to the left or to
the right of the dividing path. As an example, in Figure 5, nodes 3, 4, 5 and 6 are at level 2. Node 5 is on the
dividing path and the subtree rooted at node 5 is non-full; nodes 3 and 4 are to the left of 5 and are the roots
of subtrees having 22 = 4 leaves; node 6 is to the right of node 5 and the subtree rooted at 6 has 2 leaves.

The LSD scheme is based on full binary trees and this extension to complete binary trees gives rise to the
complete tree layered subset difference (CTLSD) scheme. The LSD scheme had improved upon the SD scheme by
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Figure 5: A complete tree with 13 leaf nodes. The levels 0, 2 and 4 are special levels and hence there are two
layers. The nodes 0, 2 and 5 are roots of non-full complete subtrees and hence they lie on the dividing path.

reducing the user storage at the cost of almost double the transmission overhead. The CTLSD scheme subsumes
all these schemes by accommodating arbitrary number of users and allowing appropriate choices of the layering
strategy ` for specific applications.

4.2 Maximum Header Length

Before considering the expected header length, we state the following bound on the worst case header length.
The proof is given in the supplementary material.

Proposition 1. The maximum header length in the CTLSD scheme for n users out of which r are revoked is
min (4r − 2,

⌈
n
2

⌉
, n− r). If the root is a special level, then the bound is min (4r − 3,

⌈
n
2

⌉
, n− r).

4.3 Expected Header Length

Assume that the layering strategy is given by ` = (`0, `1, . . . , `e). Additionally, the information as to whether the
root level is or is not special is also provided as a bit β. If β = 0, then the root node is special and if β = 1, the
root node is not special. So, (`, β) provides complete information about the layering strategy. For compactness,
we denote this as `β.

The expected header length is computed under the following random experiment. Out of n users, a set of
r users are chosen uniformly at random and these users are revoked. The corresponding header length is then
a random variable and let Yn,r denote this header length. We are interested in E[Yn,r]. Due to the random
revocation of the users, for each internal node i, there arise three possibilities: S(i) \ S(j) is added to the header;(
S(i) \ S(k)

)
∪
(
S(k) \ S(j)

)
is added to the header; or nothing is added to the header. So, corresponding to node

i, either 0 or 1 or 2 subsets are added to the header. Denote this number by Y i
n,r. Then Yn,r =

∑
Y i
n,r where the

sum is taken over all internal nodes i.
Computing this directly is not convenient. So, we simplify it further. Let Xi

n,r be a binary valued random
variable which takes the value 1 if and only if there is at least one subset generated from i and let Zin,r be another
binary valued random variable which takes the value 1 if and only if there are exactly two subsets generated from
i. (Note that if i is at a special level, then the probability Zin,r = 1 is 0.) Then it follows that Y i

n,r = Xi
n,r +Zin,r.

The reasoning is as follows. If i generates no subset, then both sides are zero; if exactly one subset is generated,
then Y i

n,r and Xi
n,r are both 1 but, Zin,r is 0; if exactly two subsets are generated then Y i

n,r is 2 and both Xi
n,r
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and Zin,r are 1. By linearity of expectation, we have

E[Yn,r] = E
[∑

Y i
n,r

]
=
∑

E
[
Xi
n,r + Zin,r

]
=

∑
E
[
Xi
n,r

]
+
∑

E
[
Zin,r

]
. (11)

The sum is over all internal nodes i of the tree. The quantity
∑
Xi
n,r is exactly the expected header length

obtained using the SD algorithm. This is because i generates at least one subset if and only if the SD algorithm
results in i generating a subset. Let Xn,r =

∑
Xi
n,r and Zn,r =

∑
Zin,r. So,

E [Yn,r] = E [Xn,r] + E [Zn,r] . (12)

An algorithm for computing E[Xn,r] has been already developed in [5]. So, it only remains to determine E[Zn,r].
Given n and a layering sequence `β we define the set SubsetsForSplit(n, `β) to consist of pairs of nodes (i, j)

such that i is not at a special level and j is in the subtree rooted at i but not in the same layer as i. So, whenever
an SD subset S(i) \ S(j) is such that (i, j) ∈ SubsetsForSplit(n, `β), it is split into two subsets. If i is at level `,
then there are at most `− 1 values of level for j such that (i, j) is in SubsetsForSplit(n, `β).

Let i be at a non-special level and let j be not in the same layer as i. Define the binary valued random variable
W i,j
n,r to take the value 1 if and only if the SD algorithm returns the subset S(i) \ S(j) to the header, in which

case the LSD algorithm will split this subset into two sets. So, we have Zin,r =
∑

(i,j)∈SubsetsForSplit(n,`β)W
i,j
n,r.

Again by linearity of expectation, the task reduces to computing E[W i,j
n,r]. Since this is a binary valued random

variable, E[W i,j
n,r] = Pr[W i,j

n,r = 1]. So,

E[Zn,r] =
∑
i

E[Zin,r]

=
∑
i

∑
(i,j)∈SubsetsForSplit(n,`β)

Pr[W i,j
n,r = 1]. (13)

Here the first sum is over all nodes i at non-special levels. For a fixed i and j, we show how to compute
Pr[W i,j

n,r = 1]. To do this, we need to characterize the event W i,j
n,r = 1 for a pair (i, j) ∈ SubsetsForSplit(n, `β).

This event occurs if and only if the following conditions hold.

• Node i is either the root (in which case it does not have any sibling tree) or the sibling tree of i has at least
one revoked user among its leaves.

• Either j is a leaf and is revoked or both subtrees of j have at least one revoked user among its leaves.

• There are no revoked users in the set S(i) \ S(j).

Define the following events:

1. Rjlt: there is at least one revoked user in the left subtree of j;

2. Rjrt: there is at least one revoked user in the right subtree of j;

3. Risb: there is at least one revoked user in the sibling subtree of i;

4. Ri,jrm: there is at least one revoked user in the set S(i) \ S(j).
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Let (i, j) ∈ SubsetsForSplit(n, `β). Suppose i is not the root. If j is not a leaf node, the event W i,j
n,r = 1 is

equivalent to the event Risb ∧ R
i,j
rm ∧ Rjlt ∧ R

j
rt. If j is a leaf node, the event W i,j

n,r = 1 is equivalent to the event

Risb ∧R
i,j
rm. Now suppose i is the root and is not special (i.e., β = 1). If j is not a leaf, then the event W i,j

n,r = 1

is equivalent to Ri,jrm ∧Rjlt ∧R
j
rt. If j is a leaf, then this can happen only if there is a single revoked user. So, for

r = 1, the probability of W i,j
n,r = 1 is 1 and for r ≥ 2, the probability of W i,j

n,r = 1 is 0.
Let λi (resp. λj ; λs) be the number of leaves in the subtree rooted at i (resp. j; the sibling subtree of

i). Similarly, let λ2j+1 and λ2j+2 respectively be the number of leaves in the left and right subtrees of j. So,
λj = λ2j+1 + λ2j+2. The number of leaves in the set S(i) \ S(j) is λi − λj . Note that since we are dealing with
arbitrary number of users, the subtrees that are being considered are not necessarily full. So, the values of the
λ’s are not necessarily powers of two.

Fix t users and consider the probability ηr(n, t) that in the random experiment none of these t users have
been chosen. Recall that the random experiment is to choose r users uniformly and without replacement from
the set of n users. As discussed earlier

ηr(n, t) =

(
1− t

n

)(
1− t

n− 1

)
· · ·
(

1− t

n− r + 1

)
.

This makes it convenient to express the probability that none among a set of users of certain size is revoked. For

example, the probability of Rjlt is ηr(n, λ2j+1). Similarly, the probability of the event Rjlt ∧R
i,j
rm is ηr(n, λ2j+1 +

λi − λj) = ηr(n, λi − λ2j+2). Such calculations will be used in what follows.

Proposition 2. Let i and j be nodes such that (i, j) ∈ SubsetsForSplit(n, `β).

• If i is the root and j is a leaf, then Pr[W i,j
n,r = 1] = 1 if r = 1 and Pr[W i,j

n,r = 1] = 0 if r ≥ 2.

• If i is the root and j is not a leaf, then

Pr[W i,j
n,r = 1] = ηr(n, λi − λj)− ηr(n, λ2j+1 + λi − λj)

−ηr(n, λ2j+2 + λi − λj)
+ηr(n, λ2j+1 + λ2j+2 + λi − λj). (14)

• If i is not the root and j is a leaf, then

Pr[W i,j
n,r = 1] = ηr(n, λi − λj)− ηr(n, λs + λi − λj). (15)

• If i is not the root and j is not a leaf, then

Pr[W i,j
n,r = 1] = ηr(n, λi − λj)− ηr(n, λs + λi − λj)

−ηr(n, λ2j+1 + λi − λj)
−ηr(n, λ2j+2 + λi − λj)
+ηr(n, λs + λ2j+1 + λi − λj)
+ηr(n, λs + λ2j+2 + λi − λj)
+ηr(n, λ2j+1 + λ2j+2 + λi − λj)
−ηr(n, λs + λ2j+1 + λ2j+2 + λi − λj).

(16)
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The proof of this proposition is given in the supplementary material.
Algorithm to compute Zn,r: For any fixed (i, j) ∈ SubsetsForSplits(n, `β), Theorem 2 provides a method for

computing Pr[W i,j
n,r = 1]. Each of the η expressions can be computed using r multiplications and since there are

a constant number of η’s, the value of Pr[W i,j
n,r = 1] can be computed using O(r) multiplications. Using (13) this

immediately gives a method for computing Zn,r. Doing this directly, however, is not very efficient. The first sum
in (13) is over all possible nodes i and the second sum is over the relevant j which are paired with i. Since the
number of nodes is O(n), a direct computation will lead to an algorithm whose running time is O(rn2).

This can be significantly improved. To explain the idea, first consider n to be a power of two so that the tree
is a full binary tree. Fix a non-special node i and consider all possible j for which the second sum in (13) has to
be evaluated. From the expression for Pr[W i,j

n,r = 1] it is easy to note that for a fixed (n and r and) i, the value of
Pr[W i,j

n,r = 1] is determined only by the number of leaves in the subtree rooted at j and consequently the number
of leaves in the left and the right subtrees of j. Since the tree is full, these values depend only on the value of
the level of node j. So, for each appropriate level below i, one can compute the value of Pr[W i,j

n,r = 1] for one
particular j at that level and then multiply by the number of nodes in the subtree rooted at i at the level of j.
As a result, the second sum in (13) can be computed in O(r log λi) time where λi is the number of leaves in the
subtree rooted at i so that log λi is the level number of i. Since λi ≤ n, the second sum in (13) can be computed
using O(r log n) time.

Consider now the first sum in (13) (and still assume that n is a power of two). Again, it is easy to note
that the value of E[Zin,r] is determined by the value of the level number of i. So, for each appropriate level, one
can compute E[Zin,r] for one i and then multiply by the number of nodes at that level. As a result, computing

E[Zn,r] requires a total of O(r log2 n) multiplications.
If n is not a power of two, then the tree is a complete but, non-full tree and we need to revise the above

description. The idea that all nodes at the same level contribute the same value does not hold any more. This is
because the number of leaves in the subtrees rooted at nodes at the same level can be different. There is however,
a way out which is based on the idea of the dividing path. One may recollect that the dividing path joins all
nodes that are roots of non-full subtrees. All nodes at the same level and on the same side of the dividing path
have the same number of leaf nodes. So, for each level, we compute separately for three cases: for nodes to the
left of the dividing path; for the node on the dividing path; and for nodes to the right of the dividing path. For
nodes at the same level and on the same side of the dividing path, we compute Pr[W i,j

n,r = 1] once and multiply
by the number of nodes satisfying this condition. Similarly the computation of E[Zin,r] is carried out. Overall,

the complexity of the algorithm is still O(r log2 n).
There is one complication that we have not explained. This is the problem of characterizing the dividing

path and counting the number of nodes at the same level and on the same side of the dividing path. It turns out
that given the value of n, this can always be done. The details are provided in [5] and so are omitted here. We
have incorporated these in our implementation of the algorithm to compute expected header length given any
value of n and r.

The expected header length of the CTLSD method is E[Yn,r]. As given in (12), this quantity is equal to the
sum of E[Xn,r] and E[Zn,r]. We have shown that E[Zn,r] can be computed in O(r log2 n) time. The quantity
E[Xn,r] is the expected header length of the CTSD scheme and can be computed in O(r log n) time [5]. So, the
overall complexity of the algorithm is O(r log2 n).

Table 6 provides some examples of running the algorithm for computing expected header length for non-full
trees using the CTSD and the CTLSD schemes. The chosen values of r are 10 equispaced values between rmin

and rmax for the respective n. The CTLSD method is run by adopting the constrained minimization layering
strategy where all levels including and below `0 − blog2 rminc are considered to be in one layer. The expected
header length of the CTLSD method is almost similar to the CTSD scheme while the user storage requirement is a
little more than half of the CTSD scheme. Hence, with an assumption on the minimum number of revoked users,
the CTLSD scheme with the constrained minimization layering strategy would be the more practical choice.
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n scheme special layers storage rmin rmax header length normalized by CTSD

103
CTSD 10,0 55 22 25 (1, . . . , 1)
CTLSD 8,0 39 22 25 (1.09, 1.02, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)

104
CTSD 14,0 105 24 27 (1, . . . , 1)
CTLSD 10,0 65 24 27 (1.04, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)

105
CTSD 17,0 153 26 28 (1, . . . , 1)
CTLSD 11,0 87 26 28 (1.08, 1.04, 1.02, 1.01, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)

106
CTSD 20,0 210 28 210 (1, . . . , 1)
CTLSD 16,12,0 110 28 210 (1.13, 1.07, 1.04, 1.02, 1.01, 1.01, 1.00, 1.00, 1.00, 1.00)

107
CTSD 24,0 300 210 212 (1, . . . , 1)
CTLSD 19,14,0 149 210 212 (1.04, 1.02, 1.01, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)

108
CTSD 27,0 378 210 213 (1, . . . , 1)
CTLSD 22,17,0 200 210 213 (1.08, 1.04, 1.02, 1.01, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)

109
CTSD 30,0 465 210 215 (1, . . . , 1)
CTLSD 25,20,0 260 210 215 (1.12, 1.07, 1.04, 1.02, 1.01, 1.01, 1.00, 1.00, 1.00, 1.00)

Table 6: Comparison of the storage and the expected header lengths for the CTSD and the CTLSD (with
constrained minimization layering) schemes.

Since the CTLSD scheme subsumes the HS LSD and the e-HS LSD schemes, this algorithm computes the
expected header length for these schemes too. In [6], it was mentioned that the expected header length for their
layering scheme, i.e; HS layering is around 2r. As we have seen earlier, by suitably placing the special levels, this
can be brought down significantly to about the expected header length of the SD scheme. On the other hand, for
the (e-)HS scheme, the expected header length can also be somewhat larger than 2r. For example, for l0 = 28
and r = 2, the expected header length is 2.23r.

5 Conclusion

In this work, we have suggested new layering strategies for the SD scheme. At one end we have shown that it
is possible to decrease the user storage below that obtained by Halevy and Shamir [6]. At the other end, we
have shown that it is possible to attain header length very close to that of the SD scheme while still requiring a
significantly smaller number of keys. The LSD scheme is extended to handle arbitrary number of users leading
to the CTLSD scheme. We have obtained an efficient algorithm to compute the expected header length in the
CTLSD scheme. Our analysis of different scenarios is made possible by using this algorithm.
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Supplementary Material

Further Results on Storage

Lemma 3. Let `0 = d(e− 1) + p with 1 ≤ p ≤ d and consider the layering strategies ` and `′ whose layer lengths
are respectively given by (d, . . . , d︸ ︷︷ ︸

e−1

, p) and (d, . . . , d︸ ︷︷ ︸
e−d+p

, d− 1, . . . , d− 1︸ ︷︷ ︸
d−p

). Then storage0(`) = storage0(`
′).

Proof. From (1)

storage0(`)− storage0(`
′)

= (d− p)− (d− p)(d− p+ 1)

2

−d(d− 1)

2
+
p(p− 1)

2
+ (d− 1)(d− p)

= −(d− p)2 − (d− p)
2

+
(d− p)2 − (d− p)

2
= 0.

We provide below some simple facts about storage.

1. Let d = (d1, . . . , de) and suppose that di = d+ δ and de−j+1 = d, i.e., the i-th layer length from the top is
d+ δ and the j-th layer length from the bottom is d. Suppose that d′ is obtained from d by incrementing
di (i.e., changing its value to d + δ + 1) and decrementing de−j+1 (i.e., changing its value to d − 1). Let
` and `′ be the corresponding sequences of special levels. A simple calculation based on (3) shows that
storage0(`) − storage0(`

′) = (e − i − j − δ). So, if e > i + j + δ, then it is possible to reduce storage by
incrementing di and decrementing de−j+1. This simple observation can be used to show that the storage
requirement of a layering scheme with unequal layer lengths can be reduced below a layering scheme with
equal layer lengths.

Let `0 be a positive integer and assume that d divides `0 such that `0 = d×e. Consider the layering scheme
with layer lengths d = (d, d, . . . , d). Let θ ≥ 1 be such that e > 2θ and define

d′ = (d+ 1, . . . , d+ 1︸ ︷︷ ︸
θ

, d, . . . , d, d− 1, . . . , d− 1︸ ︷︷ ︸
θ

).

Then storage0(`) = storage0(`
′) + θ(e− θ − 1). The gap θ(e− θ − 1) is positive.

2. Having a single layer of length de at the bottom of the tree is the same as having de + 1 layers of length 1
each at the bottom. A simple calculation based on (3) shows this.

3. Suppose d = (d1, . . . , de) with d1 ≥ d2 ≥ · · · ≥ de and d′ = (dπ(1), . . . , dπ(e)) where π is a permutation of
{1, . . . , e}. Let ` and `′ be the corresponding sequences of special levels. Then storage0(`) ≤ storage0(`

′).
The quantity `0(e + 1) and the quadratic terms in (3) are the same in both cases. A simple argument
then shows the required inequality. As an example, suppose `0 = 12 and fix e = 8. Then the scheme
having (d1, d2, . . . , d8) = (2, 2, 2, 2, 1, 1, 1, 1) requires a storage of 50 labels whereas the scheme having
(d1, d2, . . . , d8) = (1, 1, 1, 1, 2, 2, 2, 2) requires a storage of 66 labels.
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Proof of Proposition 1

Proof. The bound is independent of the actual layering strategy. The upper bound of 2r − 1 for the SD scheme
was already given in [3] and in [5] it was shown that this also holds for the CTSD scheme. Using the layering
strategy, each subset returned by the SD algorithm can split into at most two subsets. So, if the number of SD
subsets is at most 2r − 1, then there are at most 4r − 2 subsets.

Suppose the header consists of h subsets out of which h1 are singleton sets and h2 sets have 2 or more elements
each. For each node in a singleton privileged set, its sibling (if there is one) must be a revoked user. Among all
these leaves, there is only one which may not have a sibling that is also a leaf node (and this is the first privileged
user from the left at level 1, for odd n). So, for the h1 privileged users, there are at least h1 − 1 other revoked
users. This accounts for at least h1 +h1− 1 + 2h2 = 2h− 1 users. It is now easy to argue that if h > dn/2e, then
2h− 1 is greater than n. Since the total number users is n, this cannot happen. So h ≤ dn/2e.

Since each subset in the subset cover will have at least one privileged user, the maximum number of subsets
in the header is equal to the number of non-revoked users which is equal to n− r.

The bound of 4r− 2 holds for both the cases when the root is or is not a special level. If the root is a special
level the bound of 4r − 2 can be improved to 4r − 3. We first provide a short argument to justify that in the
SD scheme if the header length is 2r− 1, then there is a subset of the form S0 \ Sj in the header. As mentioned
earlier, such a subset is added to the header if and only if exactly one of the subtrees of the root node do not
contain any revoked user. So, if such a subset is not in the header, then both the subtrees of the root node
contain at least one revoked user. Suppose the number of revoked users in these two subtrees are r1 and r2 where
r = r1 + r2. Applying the bound on the maximum header length, we have the header to be of maximum length
2r1 − 1 + 2r2 − 1 = 2r − 2. So, if the header length is 2r − 1, then there must be a subset of the type S0 \ Sj
in the header. Using the layering strategy, each subset returned by the SD algorithm can split into at most two
subsets. So, if the number of SD subsets is at most 2r − 2, then there are at most 4r − 4 subsets. On the other
hand, if the number of SD subsets is equal to 2r− 1, then as argued above there must an SD subset of the form
S0 \ Sj in the header. Since the root node 0 is considered to be a special node, this subset will not split while
all other subsets may split into two. As a result, there can be at most 4r − 3 subsets in the header.

Proof of Proposition 2

Proof. We consider the case when i is not the root and j is not a leaf. The other cases are similar. When i is

not the root and j is not a leaf, the event W i,j
n,r = 1 is equivalent to the event Ri,jsb ∧ R

i,j
rm ∧ Ri,jlt ∧ R

i,j
rt . We now
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compute as follows.

Pr[Ri,jsb ∧R
i,j
rm ∧Ri,jlt ∧R

i,j
rt ]

= Pr[Ri,jsb ∧R
i,j
lt ∧R

i,j
rt |Ri,jrm]× Pr[Ri,jrm]

=
(

1− Pr[Ri,jsb ∧R
i,j
lt ∧R

i,j
rt |Ri,jrm]

)
× Pr[Ri,jrm]

= (1− Pr[Ri,jsb |R
i,j
rm]− Pr[Ri,jlt |R

i,j
rm]− Pr[Ri,jrt |Ri,jrm]

+ Pr[Ri,jsb ∧R
i,j
lt |R

i,j
rm] + Pr[Ri,jsb ∧R

i,j
rt |Ri,jrm]

+ Pr[Ri,jlt ∧R
i,j
rt |Ri,jrm]

−Pr[Ri,jsb ∧R
i,j
lt ∧R

i,j
rt |Ri,jrm])× Pr[Ri,jrm]

= (Pr[Ri,jrm]− Pr[Ri,jsb ∧R
i,j
rm]− Pr[Ri,jlt ∧R

i,j
rm]

−Pr[Ri,jrt ∧Ri,jrm] + Pr[Ri,jsb ∧R
i,j
lt ∧R

i,j
rm]

+ Pr[Ri,jsb ∧R
i,j
rt ∧Ri,jrm] + Pr[Ri,jlt ∧R

i,j
rt ∧Ri,jrm]

−Pr[Ri,jsb ∧R
i,j
lt ∧R

i,j
rt ∧Ri,jrm])

= ηr(n, λi − λj)
−ηr(n, λs + λi − λj)
−ηr(n, λ2j+1 + λi − λj)
−ηr(n, λ2j+2 + λi − λj)
+ηr(n, λs + λ2j+1 + λi − λj)
+ηr(n, λs + λ2j+2 + λi − λj)
+ηr(n, λ2j+1 + λ2j+2 + λi − λj)
−ηr(n, λs + λ2j+1 + λ2j+2 + λi − λj). (17)

The above expression is obtained by conditioning on the event Ri,jrm and so for the computation to go through
one needs to assume that the probability of this event is positive. In the case where this probability is zero, one
can directly verify that the probabilities on both sides are zero.
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