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Abstract

To study the drivers of the employment reallocation across sectors and occu-

pations between 1960 and 2017 in the US we present a model where technology

evolves at the sector-occupation cell level. Drawing on key equations of the pro-

duction side we infer technologies directly from the data. We assess the mag-

nitude of neutral, sector-, and occupation-specific components in technological

change and study their consequences for labor market outcomes in general equi-

librium where occupational choice and demands for sectoral outputs change en-

dogenously with technology. Our findings indicate a major role for occupation-

specific technological changes.
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1 Introduction

There have been substantial changes in the structure of employment over recent decades

in most developed countries. Most economies are undergoing structural change, whereby

labor reallocates across sectors, while at the occupational level labor markets have

been polarizing, with employment shifting out of middle-earning routine jobs to low-

earning manual and high-earning abstract jobs. There is a wide consensus in the

literature that one of the main drivers of each of these patterns separately is biased

technological change. Technological change biased across sectors is a key mechanism

for structural change, technological change biased across production factors (occu-

pations/tasks) is a prominent explanation for job polarization.1 The benefits of such

non-neutral technological progress are not equally distributed, with some workers dis-

placed or their skills becoming less valuable in the labor market. These distributional

impacts have generated an interest in policies to counteract the adverse effects of tech-

nological change. To devise and implement such policies, the biases of technological

change and their implications for the labor market needs to be understood.

Figure 1 shows that the evolution of sectoral and of occupational employment

shares are closely connected. Virtually all of the decline in the goods-producing sec-

tor’s employment share is due to a decline in routine employment in this sector. Con-

versely, most of the increase in high-skilled service employment is a rise in employ-

ment in abstract occupations in that sector.2 Because of this tight connection between

employment reallocations across sectors and across occupations, models that do well

in matching sectoral outcomes do also quite well in replicating certain aspects of oc-

cupational outcomes, and vice versa. However, this also poses a challenge for es-

tablishing what the true drivers of these phenomena are; is it technological change

1Baumol (1967) and Ngai and Pissarides (2007) argue that productivity growth differences lead to
structural change. Other mechanisms have been proposed such as income effects in Kongsamut, Re-
belo, and Xie (2001) and Boppart (2014), as well as differential factor intensities across sectors as in
Caselli and Coleman (2001) and Acemoglu and Guerrieri (2008). Autor, Katz, and Kearney (2006),
Goos and Manning (2007), Autor and Dorn (2013), Goos, Manning, and Salomons (2014), Michaels,
Natraj, and Van Reenen (2014) argue that differences in technological progress across occupations (rou-
tinization) lead to polarization. Other mechanisms for polarization include offshoring (Grossman and
Rossi-Hansberg (2008)) and consumption spill-overs (Manning (2004), Mazzolari and Ragusa (2013)).

2We show in Figure A2 in the appendix that even for a finer classification of occupations and sec-
tors there is a clear, though somewhat less tight, link between occupational and sectoral employment
changes.
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Figure 1: sector-occupation hours worked shares 1960-2017
Notes: The data is taken from IPUMS US Census data for 1960, 1970, 1980, 1990, 2000 and the American
Community Survey (ACS) for 2010 and 2017. For three broad sectors, low-skilled services (L), goods
(G) and high-skilled services (H) and three occupational categories (manual, routine, abstract), this
figure plots the evolution of the share of hours supplied in sector-occupation cells, as well as in sectors
in the US between 1960 and 2017. The dark grey lines show the share of hours supplied in each sector,
which are broken down into occupations within the sector in each panel. See Appendix A.1 for the
classification of occupations and industries.

biased across industrial sectors or across tasks/occupations? Sector-specific techno-

logical change can reflect, for example, product innovations, and occupation-specific

technological change can capture innovations in processes, i.e. in how tasks are com-

pleted. We believe that the technology used by workers depends on both their sector

and their occupation. Hence we allow for technologies to evolve at the sector-and-

occupation level.3 Next we identify patterns common to sectors and to occupations.

With this at hand we can study which type of technological biases are responsible for

the observed changes in market outcomes. We view our model as an important and

useful first step towards evaluating policies responding to the rapid changes in the

labor market.

In this paper we shed light on the types of technological change that drive the ob-

served changes in (labor) market outcomes, without imposing any restrictions a priori

on how technological change is biased. Specifically, we take a simplified version of

3For example consider an accountant in the healthcare sector. An improvement in general ac-
counting software (process-innovation) is likely to translate into improvements in accounting soft-
ware in healthcare. Equally, changes in the range of services offered in the healthcare sector (product-
innovation) is likely to affect the accountant’s productivity. But potentially there is an interaction be-
tween the two: the more wide-ranging or complex the set of services are, the larger the potential gain
of a better software is. Such interactions are what make technology sector-and-occupation specific.
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the model in our previous work, Bárány and Siegel (2020), and use the same method-

ology as there to identify technologies. As in that paper, we decompose the changes

in these technologies into occupation- and sector-specific components using a factor

model. The novelty of this paper is that we study the contribution of these compo-

nents to labor market outcomes. To do this, we specify a general equilibrium model,

where individuals’ occupational choice and the demand for sectoral output responds

endogenously to changing technologies. We use this general equilibrium model to

quantify the role of the various components via counterfactual simulations in the re-

allocation of employment across sectors and occupations, as well as in the evolution

of occupational wages and of sectoral prices.

We assume a CES production function in manual, routine, and abstract labor in

each sector. This is a simplified version of the sectoral production function we use

in Bárány and Siegel (2020). As in that paper, we draw on key equations of the pro-

duction side of the model together with data from the US Census and from the U.S.

Bureau of Economic Analysis between 1960 and 2017 to extract sector-and-occupation

specific technologies. We decompose the changes in the inferred sector-occupation cell

technologies using a factor model into neutral, sector- and occupation-specific compo-

nents.4 We find that these components jointly explain around 90 percent of the vari-

ation in cell technology growth. We then construct the following counterfactual cell

technology series: a sector-only path where technology is allowed to be biased only

across sectors, an occupation-only path allowing for a bias only across occupations,

and a neutral technology path that shuts down all biases of technological change. This

approach is more rigorous than calibrating sector- and occupation-specific growth

rates, as those would depend on the normalizations implemented.5

The goal of this paper is to evaluate the role of neutral, sector- and occupation-

specific components of technological change in labor market outcomes. In order to

4Factor models have been used for instance in Stockman (1988), Ghosh and Wolf (1997) and Koren
and Tenreyro (2007). While all these papers run a factor model at the country-sector level, they use
their estimates to decompose the volatility of a series at a higher level of aggregation. We, however, not
only study a very different question, but build counterfactual cell technology series based on our factor
model estimates.

5Each separately cannot be calibrated, some sector-specific growth rates and/or some occupation-
specific growth rates need to be normalized. It can be shown that different normalizations have different
implications in terms of the role of sector- and occupation-specific technology growth.
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conduct counterfactual exercises we specify a general equilibrium model. We assume

that a representative household chooses sectoral consumption in order to maximize

a non-homothetic CES utility and that individuals optimally choose their occupation

subject to idiosyncratic entry costs. We feed the counterfactual technology paths into

the model to determine how important each component of technological change is in

explaining various outcomes of interest. We find that qualitatively all counterfactual

technology series generate employment and wage paths in line with the data. Quan-

titatively however, the occupation-specific component is needed to get close to the

data. To explain the evolution of sectoral prices, all components are needed. For oc-

cupational income shares within sectors and employment shares at the cell level, the

neutral and the sector-specific component have almost no effect, whereas the technol-

ogy component idiosyncratic to the sector-occupation cell has a significant role.

There are many papers on the impact of technological change biased across tasks

(occupations) or across sectors, but there is no consensus in the literature about the

true nature of technological biases, potentially due to the trends shown in Figure 1.

In Bárány and Siegel (2018) we show that differences in productivity growth across

sectors lead to polarization of wages and employment at the sectoral level, which in

turn imply polarization in occupational outcomes because of differences in occupa-

tion intensities across sectors. Goos et al. (2014) argue conversely that differences in

productivity growth across occupations together with differences in occupation in-

tensity across sectors can lead to employment reallocation across sectors. In a simi-

lar vein, Duernecker and Herrendorf (2016), Lee and Shin (2017) and Aum, Lee, and

Shin (2018) show that differences in occupational productivity growth can generate

both structural transformation and changes in occupational employment consistent

with the data.6 In contrast, we take a fully flexible approach to technological change,

where it is sector-and-occupation specific. This is what allows us to evaluate the role

of sector- and occupation-biases in technological change on an equal footing. An over-

arching conclusion of our analysis is that occupation-biases in technological change

are quantitatively more important. One implication of this finding is that if one wants

6Lee and Shin (2017) and Aum et al. (2018) also consider sector-bias in technology, but not sector-
occupation bias, and differently from us, calibrate all technological processes.

5



to introduce biases in technological change into models, the most important bias to in-

troduce is across occupations. Another implication is that policies targeting workers’

occupational choice might be better at improving labor market outcomes than indus-

trial policies.7

The paper proceeds as follows: section 2 introduces the model. Section 3 presents

the data and the model parameterization. In section 4 we first identify neutral, sector-

and occupation-specific components of technological change, and then analyze the

role that each of these components play in our general equilibrium model. The final

section concludes.

2 Model

We assume that there is a continuum of measure one of heterogeneous workers in

the economy. Workers optimally select their occupation and can freely choose which

sector of the economy to supply their labor in. This implies that in equilibrium there

is a single wage rate in each occupation which is common across sectors. We further

assume that the different types of labor are imperfect substitutes in the production

process in each sector, and that each sector values these types of workers differently in

production.

The three types of workers are organized into a stand-in household, which derives

utility from consuming all types of goods and services, and maximizes its utility sub-

ject to its budget constraint. The economy is in a decentralized equilibrium at all times:

firms operate under perfect competition, prices and wages are such that all markets

clear.

We use this parsimonious static model to pin down how the sector-occupation-

specific technologies change over time, which we then decompose into common fac-

tors, as described in section 4.1. This is similar to the approach we take in Bárány

and Siegel (2020). Note, here we do not model non-labor inputs but the technology

7In our analysis we focus on the technology side of the economy. There are no frictions or exter-
nalities in our model which would justify policy interventions. Given that we find a large role for the
occupation-bias in technological change, models with occupation-bias in technology and with a fric-
tional labor market or job specific human capital accumulation would be well suited to study policies.
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parameters subsume effects stemming from changes in inputs other than labor. Not

modeling capital as a distinct input to labor-augmenting technologies is consistent

with the view that technological change is embodied into capital. While the focus of

our work in Bárány and Siegel (2020) is to account for sources of sectoral productivity

growth, here we study the implications of various forms of technological change for

labor market outcomes. To do this we specify a general equilibrium model allowing us

to conduct counterfactual exercises where occupational choice and demands for goods

and services respond endogenously to changing technologies.

2.1 Sectors and production

There are three sectors in the economy which respectively produce low-skilled services

(L), goods (G), and high-skilled services (H). All goods and services are produced

in perfect competition. Each sector uses only labor as input in its production, but

each combines all three types of occupations (manual, routine and abstract), with the

following CES production function:

YJ =
[
(αmJ lmJ)

η−1
η + (αrJ lrJ)

η−1
η + (αaJ laJ)

η−1
η

] η
η−1

for J ∈ {L,G,H}, (1)

where loJ is occupation o labor used in sector J , αoJ > 0 is a sector-occupation spe-

cific labor augmenting technology term for occupation o ∈ {m, r, a} in sector J , and

η ∈ [0,∞] is the elasticity of substitution between the different types of labor.8 In the

initial year αoJ reflects the initial level of technology as well as the intensity at which

sector J uses occupation o, whereas any subsequent change over time reflects sector-

occupation specific technological change. We do not make any assumptions about

whether technological change occurs at the occupation or the sector level, but instead

allow for αoJ to evolve freely over time without imposing any restrictions.9

8We assume the same elasticity of substitution in all sectors as sector-specific estimates are not avail-
able.

9Given the close link between the sectoral and the occupational reallocation of employment, which
we discussed in the introduction, had we set up the production function allowing only for sector-
specific or only for occupation-specific terms we would potentially have attributed changes to this one
factor which are actually due to the other factor. Our approach circumvents this problem as we do not
impose any a priori restrictions on the evolution of technologies.
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All firms take prices and wages as given, and profit maximization implies that the

optimal relative labor demand within a sector has to satisfy:

ldoJ
ldrJ

=

(
wr
wo

)η (
αoJ
αrJ

)η−1

for o ∈ {m, a}. (2)

This equation shows that it is optimal to use less of one occupational labor input com-

pared to routine labor if that occupation’s wage relative to routine is higher. In ad-

dition, the occupational labor inputs’ technologies within a sector matter. The larger

the term
(
αoJ
αrJ

)η−1

is in a sector, the more occupation o compared to routine labor the

sector employs optimally. So for example routinization, i.e. the replacement of routine

workers by certain technologies, would be captured by an increase in
(
αmJ
αrJ

)η−1

and in(
αaJ
αrJ

)η−1

in all sectors J .

The firm first order conditions also pin down the price, equal to the marginal cost,

of sector J output in terms of wage rates:

pJ =

[
αη−1
mJ

1

wη−1
m

+ αη−1
rJ

1

wη−1
r

+ αη−1
aJ

1

wη−1
a

] 1
1−η

. (3)

Finally using (2) and (3) to express sector J output, optimal occupation o labor use in

sector J can be expressed as:10

ldoJ =

[
pJαoJ
wo

]η
YJ
αoJ

. (4)

2.2 Households – occupational choice and demand for goods

The economy is populated by a unit measure of workers, who each have an idiosyn-

cratic cost for entering each occupation, but can freely move between the three sectors,

low-skilled services, goods, or high-skilled services, implying that in equilibrium, oc-

cupational wage rates must equalize across sectors. The cost that individuals pay for

entering an occupation is redistributed in a lump-sum fashion. Since the consumption

decisions are taken by the stand-in household, individuals choose the occupation that

10The full derivations can be found in appendix A.2.
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provides them with the highest income. Thus an individual i chooses occupation o if

woχ
i
o ≥ wkχ

i
k for any k 6= o, k, o ∈ {m, r, a},

where wo is the unit wage in occupation o and χio ≥ 0 is a net-of-cost multiplier for

individual i when entering occupation o. It is convenient to define χ̃io = ln{χio}. Then

an equivalent formulation to the above is

ln

(
wo
wk

)
≥ χ̃ik − χ̃io for any k 6= o, k, o ∈ {m, r, a}.

Note, since only χ̃ik − χ̃io matter, we define occupational cost differences as χ̃i1 ≡

χ̃ia − χ̃ir and χ̃i2 ≡ χ̃ia − χ̃im. The optimal occupational choice is summarized in Figure

2.

la
lr

lm

ln(wm/wr) + χ̃a − χ̃r

ln(wr/wa)

ln(wm/wa)
χ̃a − χ̃r

χ̃a − χ̃m

Figure 2: Optimal occupational choice
Notes: The graph shows the optimal selection of individuals into manual, routine and abstract occu-
pations in terms of their idiosyncratic occupational cost differences as a function of occupational unit
wages wm, wr, wa.

Given the optimal occupational choice the fraction of labor supplied in the three
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occupations is given by:

lsm =

∫ ∞
−∞

∫ min{ln(wm/wr)+χ̃1,ln(wr/wa)}

−∞
f(χ̃1, χ̃2)dχ̃1dχ̃2, (5)

lsr =

∫ ln(wr/wa)

−∞

∫ ∞
ln(wm/wr)+χ̃1

f(χ̃1, χ̃2)dχ̃1dχ̃2, (6)

lsa =

∫ ∞
ln(wr/wa)

∫ ∞
ln(wm/wa)

f(χ̃1, χ̃2)dχ̃1dχ̃2, (7)

where f(χ̃1, χ̃2) is the joint probability density function of occupational cost differ-

ences.

The workers are organized into a stand-in household, which collects all income,

and makes utility maximizing choices in terms of sectoral consumption. The stand-in

household solves the following problem:

max
CL,CG,CH

(
aL(CL + cL)

ε−1
ε + aGC

ε−1
ε

G + aH(CH + cH)
ε−1
ε

) ε
ε−1

s. t. pLCL + pGCG + pHCH ≤ lmwm + lrwr + lawa

where cL and cH allow for non-homotheticity in consumption demands, and ε < 1,

implying that goods and services are complements in consumption. We further as-

sume that aL + aG + aH = 1. The price of low-skilled services is denoted by pL, that

of goods by pG, and that of high-skilled services by pH . Assuming that the household

is rich enough to consume all types of goods and services (i.e. an interior solution),

optimality implies the following demand schedule:

CS =

(
aS
pS

)ε
fmwm + frwr + fawa + pLcL + pHcH

aεLp
1−ε
L + aεGp

1−ε
G + aεHp

1−ε
H

− cS for S ∈ {L,H}, (8)

CG =

(
aG
pG

)ε
fmwm + frwr + fawa + pLcL + pHcH

aεLp
1−ε
L + aεGp

1−ε
G + aεHp

1−ε
H

. (9)

2.3 Equilibrium

There are six markets in this economy: three labor markets, that of manual, routine

and abstract labor; and three goods markets, that of low-skilled services, goods, and

high-skilled services. There are six corresponding prices, out of which we normalize

10



one without loss of generality, wr = 1. The equilibrium is then defined as a set of

prices, wm, wa, pL, pG, pH , for which all markets clear.

Goods market clearing requires that YL = CL, YG = CG, and YH = CH . Note

that sectoral prices depend on the endogenous occupational wage rates, wm and wa,

through (3), and hence can be written as pJ = pJ(wm, wa). Using this in (8) and (9),

sectoral demands also only depend on occupational wage rates, CJ = CJ(wm, wa).

Then (4) shows that optimal occupation o labor use in sector J can be expressed as

a function of manual and abstract wage rates. The equilibrium then boils down to

finding wage rates wm and wa such that the labor markets clear.

3 Extracting technologies and calibrating the worker side

To evaluate how sector-occupation-specific technology evolved over time and to study

their implications for labor markets, we parameterize the model. In our model setup,

there is a dichotomy that allows to back out the sector-occupation cell technologies

from the data using only the production side. We therefore proceed in the following

steps, similarly to Buera, Kaboski, Rogerson, and Vizcaino (2018). First, we compute

cell technologies taking as given the occupational wage rates and employment shares,

as well as the sectoral income shares, in order to match in each period the income

share of different occupations within each sector, the relative sectoral prices, and the

overall growth rate of the economy (similarly to Bárány and Siegel (2020)). Second, we

calibrate the distribution of costs such that it allows us to match occupational employ-

ment shares and wages in the initial and final period. Finally, we calibrate the utility

function such that the model matches the sectoral income shares in the initial and final

period.

3.1 Data targets

We use US Census and American Community Survey (ACS) data between 1960 and

2017 from IPUMS, provided by Ruggles, Alexander, Genadek, Goeken, Schroeder,

and Sobek (2010), to calculate occupational wage rates and occupational labor income

11



shares within sectors, as well as each sector’s share in labor income.11 For these cal-

culations, we categorize workers into our three sectors based on their industry code

(ind1990), and into our three occupations based on a harmonized and balanced panel

of occupational codes as in Autor and Dorn (2013) and Bárány and Siegel (2018).

We calculate the labor income share of occupation o in sector J as the ratio of total

labor income of workers in occupation o and sector J relative to the total labor income

of all workers in sector J :

θoJ ≡
earnings of occupation o workers in sector J

earnings of sector J workers
.

To get measures for the occupational wage rates we employ the following Mincer

wage regression to control for workers’ observable skills,

logwiot = δot + β′Xit + εiot, (10)

where δot are occupation-time effects andXit is a vector of worker characteristics. From

this regression we back out for each year t a wage for occupation o that is not con-

founded by changes in composition of worker characteristics, Xit. In particular, we

run this regression on the Census/ACS data where the vector of worker i character-

istics Xit is comprised of a third-order polynomial in potential experience (defined as

age minus years of schooling minus 6), interacted with a gender dummy, as well as

a dummy for foreign-born and non-white race. From the estimates of this regression

we construct for each year the manual wage rate as wmt = exp{δmt − δrt} and abstract

wage rate as wat = exp{δat− δrt}, maintaining the normalization of wr = 1 in all years.

We measure wages in this way – rather than as the average hourly wage of all workers

within an occupation – to limit the potential influence of compositional changes, for

example due to differential changes in the demographic composition or in educational

attainment of workers across occupations. This is similar to Buera et al. (2018), and it

implies that all differences within an occupational group in hourly wages are due to

11In our model the share of each sector in labor income and in value added is the same as there are no
other factors of production. As our main focus in this paper is on labor market outcomes, we calibrate
the model to match the each sector’s share in labor income, rather than in value added.
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differences in the endowment of efficiency units of labor.

We can express occupational labor supply shares as:

lo ≡
earnings of workers in occupation o

wo∑
õ

earnings of workers in occupation õ
wõ

,

these are equivalent to occupational labor supplies in the model, as total labor supply

is normalized to one.12

Finally, we calculate sectoral income shares as

ΨJ ≡
earnings of workers in sector J

total earnings
.

We use data from the U.S. Bureau of Economic Analysis (BEA) between 1960 and

2017 to get sectoral prices and the growth rate of GDP per full-time equivalent worker

between periods.13 Table A2 in the appendix contains all the calibration targets, and

these are also plotted along with the model outcomes in section 4.

3.2 Extracting sector-occupation cell technologies

As mentioned before, given the structure of the model we can infer the technology

parameters using key equations from the model’s production side directly from the

data, without having to rely on a parameterization of the model’s household side.

We can do this conditional on a value for the elasticity of substitution in production

between different types of labor, following similar steps as in Bárány and Siegel (2020).

We set the elasticity of substitution in production to 0.6 in our baseline and conduct

robustness checks around this value. While there is no consensus on the value of this

in the literature, there seems to be wide agreement that occupations are complemen-

tary, implying a value of η less than one. To our knowledge the only estimate of this

12Note that these are not exactly the same as the share of hours worked by occupation in the data.
Figure A1 in the appendix shows the evolution of the model implied sector-occupation employment
shares over time in the same format as Figure 1. Comparing these two figures reveals that the trends in
actual hours and in implied employment shares are very similar.

13The industry classification system changed from SIC to NAICS in the middle of our sample, both
systems are different from the classification used in the IPUMS Census/ACS. Table A1 in the appendix
shows the mapping of fine industries of each system into our broad sector categories.

13



elasticity is in Goos et al. (2014), who estimate this for 21 occupation to be 0.53, 0.66,

and 0.8 depending on the specification and the sample of countries; it is worth to note,

however, that they estimate in partial equilibrium not taking into account aggregate

effects. Duernecker and Herrendorf (2016) calibrate a value of 0.56 for 2 occupations,

while Lee and Shin (2017) calibrate a value of 0.70, and Aum et al. (2018) a value of 0.81

for this same parameter for 10 occupations. With fewer, coarser occupations this elas-

ticity is likely to be smaller, and we hence, as in Bárány and Siegel (2020), set η = 0.6

for our 3 occupations.

We calculate the nine cell-specific technologies, the αs, in each period. We back

these out directly from nine targets: the labor income share of different occupations

within each sector, the relative sectoral prices, and the overall growth of the economy.

We also take for now as given occupational wage rates, occupational labor supplies,

and the sectoral distribution of income. However, the calibration of the household

side of our model guarantees that these are matched in general equilibrium in the

initial and final period (1960 and 2017). Our model allows us to express cell-specific

technologies as a function of the above data targets and the elasticity of substitution in

production.

In particular, given occupational wages the labor income share of different occupa-

tions within a sector pin down the ratios of αs within sectors in each period from the

firm’s optimality condition (2):

αoJ
αrJ

=

(
θoJ
θrJ

) 1
η−1 wo

wr
for o ∈ {m, a}. (11)

The relevant wages in the above equation are wages per effective unit of labor. As

we explained earlier we measure occupational wage rates from the Mincer wage re-

gression (10). This procedure accounts for workers’ observable characteristics, and

assuming that there are no other unobservable skills, this gives us the relevant wages

per efficiency units of labor. However, if workers are self-selecting on unobservable

skills, this would confound our measured wage rates. Then, if the selection changes

over time, our framework would assign it to changing technologies. In our analysis

we abstract from such self-selection and hence we can utilize wage data to infer tech-
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nologies. Note, our modeling of occupational choice satisfies the requirement of no

selection on unobservable skills.

Using the expression for relative αs within sectors (11) in the expression for sectoral

prices (3) allows us to express relative αs across sectors within each period as:

αmJ
αmK

=
pK
pJ

(
θmJ
θmK

) 1
η−1

. (12)

This equation gives the relative αs across sectors such that relative marginal costs,

given optimal labor use, are equal to relative prices in the data.

Finally, the overall growth rate of output per (full-time-equivalent) worker pins

down the evolution of the αs over time, given the distribution of income across sectors

and occupational labor supplies. Appendix A.2 shows the full derivations.14

Thus, we have shown how to extract sector-occupation specific technologies from

the data conditional on the elasticity of substitution across occupations.

3.3 Calibration of the cost distribution and of the consumption side

To close the model we need to parameterize the household side. In calibrating the

distribution of the occupational cost differences, we assume that f(χ̃1, χ̃2) is a time-

invariant bivariate normal distribution,15 and in our baseline we assume that the two

cost differences are uncorrelated, i.e. ρ = 0. Given this ρ, we calibrate the two means

(µ1, µ2) and the diagonal elements of the variance-covariance matrix (σ2
1, σ

2
2) such that

in the initial and final period for given unit wages the occupational cost difference

distribution is able to match the employment shares. While all these parameters are

calibrated jointly, we can infer which moments of the data are more informative about

which parameter. The intuition can be gained by inspecting Figure 2. The initial em-

ployment shares given the wages are informative about the means of these cost differ-

14Note that we only rely on relative wages and relative prices within a period, not changes over time.
This is important, as in our data prices are subject to a different normalization than wages, implying
that changes in prices are not directly comparable with changes in wages.

15For simplicity we assume that the distribution is time invariant. Allowing for a changing distribu-
tion of cost differences (for example as in Caselli and Coleman (2001)) would require more parameters
to be calibrated, and it would not affect the sector-occupation cell technologies, neither their decompo-
sition into various components, nor the results from the baseline model.
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ences, while changes in employment given the change in wages are informative about

the variance of these cost differences.16

Finally we calibrate the preference parameters of the model. Following Ngai and

Pissarides (2007), we set the elasticity of substitution in consumption between the dif-

ferent sectoral outputs to ε = 0.2, implying that goods and the two types of services

are complements. Given all the production side parameters and the distribution of

costs we calibrate cL, cH , aL, and aH (with aG = 1 − aL − aH) to match the sectoral

income shares in the initial and final year, i.e. in 1960 and 2017. This also guarantees

that the relative occupational wages in 1960 and 2017 are met in equilibrium. These

four parameters are calibrated jointly in the general equilibrium model, but the change

in expenditures given the change in prices between 1960 and 2017 informs the mag-

nitude of the non-homotheticity terms, cJ , and the level of expenditures in 1960 are

informative about the weights, aJ . One way to understand the magnitude of the non-

homotheticity terms is to calculate their share in the total consumption of the good,

i.e. cJ/(cJ + CJ,t). We show these values for 1960 and 2017 in Table 1. In 1960 over 80

percent of the consumption value of low- and high-skilled services comes from the en-

dowment values, and while the share of consumption value coming from the endow-

ment falls for both types of services, it still represents a large fraction in 2017. These

high shares imply that there are sizable and important non-homotheticities. This in

line with the results of Boppart (2014) and Comin, Lashkari, and Mestieri (2020) who

find a substantial role for income effects as drivers of structural change. Table 1 con-

tains the calibrated parameters of the model which, together with the evolution of the

αs as backed out from the data, fully specify the calibrated model.

We conduct robustness checks on the importance of the correlation parameter, ρ,

and the elasticity of substitution in consumption, ε, and find neither to matter much;

see appendix A.5. This is partly due to the calibration procedure, as the initial and final

period outcomes are guaranteed to be the same in the baseline across all calibrations.

16This procedure can be implemented for any value of the correlation parameter, ρ. This means that
the moments that we target are not informative about the value of this correlation. However, this value
turns out to have hardly any impact on any (counterfactual) model outcome, see appendix A.5.
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Table 1: Calibrated parameters

Description Value
η elasticity of substitution in production 0.6
ε elasticity of substitution in consumption 0.2
ρ correlation of χ̃ distribution 0
µ1, µ2 mean of χ̃ distribution (-0.3364, 1.0003)
σ2

1, σ
2
2 variance χ̃ distribution (0.0649, 2.0789)

cL non-homotheticity term in L 0.0034
implying cL/(cL + CL,t) in 1960 and 2017 0.82 & 0.59

cH non-homotheticity term in H 0.0120
implying cH/(cH + CH,t) in 1960 and 2017 0.88 & 0.73

aL weight on L 0.00550
aH weight on H 0.99448

Notes: The table shows the calibrated parameters of the model. The first panel shows the parameters
set outside the model. The next panel shows the parameters of bivariate normal distribution of (χ̃1, χ̃2),
calibrated separately based on occupational relative wages and employment shares in 1960 and 2017,
conditional on ρ. The final panel shows the parameters of the utility function calibrated in general
equilibrium conditional on all other parameters, including the sector-occupation specific technologies,
αoJ,ts. We also show the implied value of purchased consumption relative to the total consumption
value, cS/(cS + CS,t), in the two service sectors, S = L,H and for t = 1960 and t = 2017.

4 The role of technological biases

In this section we first decompose the change in the extracted cell level technolo-

gies into neutral, sector- and occupation-specific components, similarly to Bárány and

Siegel (2020). We then use our general equilibrium model to quantify the role of each

component of technological change for various outcomes of interest. It is important

to note that in order to correctly assess the impact of various technological biases, we

need to consider the endogenous response of sectoral demands and of occupational

labor supplies to technological change.

4.1 Decomposition of technological change

We decompose the change in the extracted series of sector-occupation specific tech-

nologies into neutral, sector- and occupation-specific components using a factor model.

In particular, we run the following regression on the log difference of the cell technolo-

gies,

∆ lnαoJ,t ≡ lnαoJ,t − lnαoJ,t−1 = βt + γJ,t + δo,t + εoJ,t. (13)
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In the regression we use each cell’s average labor income share between period t − 1

and t as weights ωoJ,t to reflect the relative importance of the sector-occupation cell.17

We restrict the average sector effect (
∑

o

∑
J ωoJ,tγJ,t) and the average occupation effect

(
∑

o

∑
J ωoJ,tδo,t) across all cells to be zero. These restrictions imply that βt, the time

effect, is the average technological change between period t − 1 and t in all cells. The

time-varying sector effects, γJ,t, capture sector-wide innovations that affect the tech-

nology of all workers in that sector equally regardless of their occupation. Technologi-

cal change that is common to workers of a given occupation, but are independent from

the sector, are assigned to the time-varying occupation effects, δo,t. The residual εoJ,t

reflects technological changes idiosyncratic to workers in a sector-occupation cell. The

R2 of this regression is 89.4% meaning that neutral, sector- and occupation-specific

components jointly describe the evolution of cell technologies very well, and that only

around 10% of the variation is idiosyncratic to the sector-occupation cell.

To asses how much of the evolution of cell technologies is explained by the neu-

tral, the sector-specific and the occupation-specific components respectively, we build

counterfactual cell technology series which in turn shut down various components.

All series are constructed starting from the extracted initial cell technology lnαJo,t.

We then add to this in turn counterfactual series for ∆ lnαJo,t constructed from the

neutral component only (β̂t, ‘neutral’ ), from neutral and sector-specific components

only (β̂t + γ̂J,t, ‘sector-only’ as there are biases only across sectors), from neutral and

occupation-specific components only (β̂t + δ̂o,t, ‘occupation-only’), and from neutral,

sector- and occupation-specific components (β̂t + γ̂J,t + δ̂o,t, ‘all factors’ ).

When evaluating the explanatory power of the sector-only and the occupation-

only predictions, it is important to bear in mind that these series are not equivalent

to the predictions of a factor model with a time and a sector or respectively a time

and an occupation component only. Those series would pick up differential techno-

logical change across sectors (or occupations) that originates from the sectors using

occupations at different intensities (or the occupations being used at different intensi-

ties across sectors).
17To be precise, we use as weights ωoJ,t = (ΨJ,tθoJ,t + ΨJ,t−1θoJ,t−1)/2, where the values are given

in Appendix Table A2. The results are very robust to alternatives, such as using employment shares, or
using year t− 1 or year t shares, rather than averages.
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To assess how well the various counterfactual series describe the extracted tech-

nologies, we calculate the following distance measure:

D =

∑
o,J,t ωo,J,t(

̂∆ lnαJo,t − lnαJo,t)
2∑

o,J,t ωo,J,t(∆ lnαJo,t − lnα)2
. (14)

The smaller this number, the closer the prediction is to the data; a value of zero implies

a perfect fit. Note that 1 − D = R2 for the predictions generated from all factors

and from time-specific components. Table 2 shows this distance measures for our

baseline classification with 3 sectors and 3 occupational groupings in the top row. The

occupation-only prediction with a distance of 0.168 is close to the prediction based

on all factors (0.106). These small numbers imply these predictions are quite close to

the data. In contrast, the distance of the sector-only prediction is much larger and

quite close to that of the neutral prediction. Nonetheless, the difference in the distance

measure between the all factors and the occupation-only predictions indicates that

there is a role for the sector-bias in technological change as well.

Table 2: Distance measures

neutral sector-only occ-only all factor
3 sectors – 3 occupations 0.944 0.906 0.168 0.106
12 industries – 3 occupations 0.964 0.782 0.555 0.302
12 industries – 10 occupations 0.980 0.914 0.616 0.445

Notes: The table shows the distance measure defined in (14) for the four counterfactual predictions in
the columns. Each row represents an alternative classification of industries and occupations, with our
baseline in the first row. See appendix A.4 for the details of the classifications.

The table also shows distance measures for finer classifications with 12 industries,

as well as with 10 occupations. For a finer classification of industries and occupations

the fit of the factor model gets worse (the distance measure of all factors increases

from 0.106 to 0.445), indicating that the relevance of technological change specific to

the industry-occupation pair increases. This suggests that there is a more significant

role for technologies that affect more narrowly defined occupations within a given

industry than in our more aggregated analysis with the 3 industrial sectors and 3 oc-
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cupations.18 However, whatever the slicing of the data, the extracted technologies are

very far from neutral (with the distance measure close to 1, the R2 of neutral tech-

nologies is close to 0). Moreover, also in the partition with 12 industries and 3 or 10

occupations, occupational shocks still drive most of the variation in cell technologies

relative to sectoral shocks.19
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Figure 3: Baseline and counterfactual cell technologies

In Figure 3 we show the path of cell technologies as extracted from the data, as well

as the different predicted technology paths as explained above. The red solid lines

show the baseline cell technologies, the green solid lines show the prediction based

on all factors, the pink dotted lines with the x-marker the neutral, the blue dashed

lines the sector-only, while the yellow dashed-dotted lines show the occupation-only

18Across the different specifications there are more cells (as there are more industries and more occu-
pations), and hence the number of observations (changes in log cell technologies) increases. While the
number of cells is the product of the number of occupations and industries, the number of regressors is
linear in the sum of the number of occupations and industries. Therefore, the reduction in theR2 across
these regressions is partly to be expected: the number of observations increases much more than the
number of regressors. It is important to note, however, that the extracted cell technologies itself change,
and this by itself could affect the explanatory power of neutral, occupation and industry components.

19This echoes the findings in Lee and Shin (2017) who consider 2 industries and 11 occupations and
find a more important role for occupation-specific technological change.
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counterfactuals. The figure confirms the findings of Table 2. The all factors and the

occupation-only predictions are quite close to each other and to the baseline, whereas

the neutral and the sector-only predictions are close to each other, but further away

from the baseline.

Figure 3 reveals that in some cells the extracted technologies show a regress, i.e. a

decline in the sector-occupation specific technology.20 While this might seem surpris-

ing, it is not uncommon to see some technological regress when considering sector-

specific factor-augmenting technologies.21 Could this finding be an artifact of omitting

capital from the sectoral production functions? In Bárány and Siegel (2020) we con-

sider two types of capital, and still find technological regress in some sector-occupation

cells, so it cannot be entirely due to omitting capital.22 There are three different expla-

nations for the technological regress revealed in Figure 3. First, this might reflect a

compositional change in the tasks performed within a sector-occupation cell, perhaps

towards more time consuming ones. Second, it is possible that technological change

does not only take a factor-augmenting form, but also directly alters the relative im-

portance of occupational labor inputs (see for instance Acemoglu and Autor (2011) or

Acemoglu and Restrepo (2019)). In particular, one could imagine that in the sectoral

CES production functions there are also weights on the effective input of different

occupations, and that these weights also change over time.23 In our framework we

20Note, we assume that wages differ only across occupations. As a robustness check we have also
extracted technologies with sector-occupation specific wages and the resulting technology series are
very similar to our baseline results.

21For instance, Herrendorf, Herrington, and Valentinyi (2015) find negative capital-augmenting tech-
nological change in the manufacturing and service sectors, and Antràs (2004) finds in aggregate U.S.
data decreasing capital-augmenting technology as well.

22It is not hard to show that with the simplest modeling of capital, where it is combined with the la-
bor aggregate in a CES fashion, equation (11) would be unchanged, implying the same relative change
in technologies within a sector. This also implies that including capital in such a way would change
all technologies within a sector proportionally. In fact, in Bárány and Siegel (2020) we find very simi-
lar technology growth patterns within sector across occupations, but the differences across sectors are
much more pronounced. This is due to differential paths in capital accumulation and in capital income
shares across sectors.

23For example the following variant of equation (1) could describe sectoral production:

YJ =
[
βmJ(α̃mJ lmJ)

η−1
η + βrJ(α̃rJ lrJ)

η−1
η + βaJ(α̃aJ laJ)

η−1
η

] η
η−1

for J ∈ {L,G,H}.

In this formulation the βoJs are share parameters or weights, and the α̃oJs are factor-augmenting tech-
nologies. In all first order conditions these two show up together as βoJ α̃

(η−1)/η
oJ which is equivalent to

α
(η−1)/η
oJ in our original formulation.
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implicitly assume that such weights are constant. Thus what we infer as a decline

in a factor-augmenting technology could in fact be an increase in the corresponding

weight. There is nothing that would allow us to distinguish between changes in the

weights and changes in the factor-augmenting technologies. However, the two types

of changes have the same implications in our model. Third, selection into occupations

based on unobservable skills potentially could explain part of the technological regress

that we found. If there is selection on unobservable skills, then the average efficiency

typically declines in expanding occupations and increases in shrinking occupations.

As we discussed in relation to (11), such changes in average worker efficiency would

be picked up in the changes of our extracted technologies. Indeed Figure 3 shows

that it is mainly in the expanding cells, where worker efficiency might have fallen due

to selection, that we find technological regress. However, it is difficult to assess the

magnitude of such a selection effect. In Bárány and Siegel (2018) we found that selec-

tion across sectors accounts for only about 10% of observed sectoral labor productivity

growth. In light of this, it seems unlikely that selection could explain a large part of

the technological regress.

4.2 The role of technologies in equilibrium outcomes

We now study the role of the different components of technological change in the evo-

lution of various outcomes in our general equilibrium model. Figure 4 shows occupa-

tional employment and wages, Figure 5 sectoral employment and prices, and Figure 6

occupational income shares within sectors. In all figures we show the evolution of the

data in solid grey, contrasted with the model’s predictions for the various counterfac-

tual technology paths color coded as before: the baseline in solid red, the all factors in

solid green, the neutral in pink dotted lines marked with x, the sector-only in dashed

blue, and occupation-only in dashed-dotted yellow lines.

It is worth to note in Figures 4 to 6 is that our baseline model does very well in

matching the data. It is important to recall that our baseline model matches the data

exactly in the initial and final period by construction, but not in the interim periods.

Nonetheless, even in the interim periods the differences with the data turn out to be
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small for almost all outcomes of interest, implying that in all periods the baseline

model’s predictions are extremely close to the data except for occupational relative

wages, where they do not pick up the (short-lived) drop in the 1980 values.24
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Figure 4: The evolution of occupational outcomes

We quantify for each counterfactual technology series how well the model predic-

tions match the data in terms of the 1960-2017 change by averaging the following:∣∣∣∣∆xmk∆xdk
− 1

∣∣∣∣ , (15)

where ∆xjk is the change between 1960 and 2017 in our outcome of interest, in the

data for j = d and in the model for j = m. In other words, we report the average

of the absolute value of the percent deviation of the change in the model from the

change in the data. We average over k ∈ {m, r, a} for occupational employment shares,

over k ∈ {m, a} for occupational wages relative to r, over k ∈ {L,G,H} for sectoral

24Our model’s failure to match these paths can be understood by looking at Figure 4b, where the
dark grey solid line shows the data and the red solid line the values predicted by our baseline model.
The data, as our model, displays a strong upward trend in both manual and abstract wages relative to
routine. In the data however, the 1980 values of these relative wages seem to be outliers, which might
correspond to the compression of the skill premium during the 1970s. Our model stays silent about
what generated these.

23



employment shares, over k ∈ {L,H} for sectoral prices relative to G, and over k ∈

{m, r, a} × {L,G,H} for occupational income shares within sectors.

Table 3: Average percent deviation from 1960–2017 changes

Outcomes
occupational sectoral cell

empl. rel. wages empl. rel. prices θ
all factors 0.03 0.03 0.05 0.65 0.28
occ. 0.05 0.06 0.16 0.67 0.28
sector 0.69 0.69 0.42 0.83 1.00
neutral 0.65 0.66 0.25 0.91 1.00

Notes: The table shows the average of the absolute value of the percent deviation of the model from
the 1960-2017 change in the data, as in (15), for 5 outcomes of interest in the columns: occupational
employment shares and relative wages, sectoral employment shares and relative wages, and occupa-
tional income shares within sectors. Each row shows this model outcome for a different counterfactual
technological change (based on all factors, occupation-only (occ.), sector-only (sector), and neutral).

Table 3 contains the resulting numbers, which show the percent by which on aver-

age the model is off compared to the data. As our baseline model perfectly matches

the data in the initial and the final year, it gives a deviation of 0 (for each outcome

and each k, i.e. on average as well), and hence we do not show the deviation for the

baseline model in the table.

The first row shows that the model based on the all factors technology series does

almost as well as the baseline model for occupational employment and wages and

for sectoral employment, as the average deviation is at most 5 percent from the data.

The only difference between this and the baseline model is that the former does not

contain the change in technology that is idiosyncratic to the sector-occupation cell.

The fact that these two models perform equally well for occupational employment

and wages and for sectoral employment implies that the component of technological

change idiosyncratic to the cell is not the key driver of these outcomes. However, for

sectoral prices and for occupational income shares within sectors (θoJ ), the discrepancy

between the all factors model prediction and the data (and thus the baseline model) is

on average 65 and 28 percent respectively. This highlights that technological change

idiosyncratic to the sector-occupation cell plays a more important role in these out-

comes.

Before analyzing in detail the predictions based on the different components sepa-

rately, it is worth to point out what channels operate in our general equilibrium model.

24



The first channel is that relative technologies within a sector impact optimal relative

occupational labor demand within the sector, as shown in (2). The second channel

is that all technologies within a sector impact the sectoral prices, as in (3). The third

channel is that changing technologies affect the stand-in household’s income. Both

changes in prices and in income impact the sectoral consumption demands through

(8) and (9). In turn, this impacts how much employment needs to re-allocate across sec-

tors. The price effect and the income effect together with the first channel determine by

how much occupational labor demands and thus market-clearing occupational wages

change. The occupation-only counterfactual technological change works through all

of these channels. The sector-only technology path, which scales all αoJ within sector

J by the same factor, exerts a price and an income effect, but does not alter the rela-

tive labor demands within a sector. Neutral technological change works only through

the income effect, as it does not directly alter relative sectoral prices or relative labor

demands within a sector.
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Figure 5: The evolution of sectoral outcomes

Figure 4 shows (i) that the predictions based on occupation-only technological

change are very close to the data for all occupational outcomes (with average devi-
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ations around 5 percent, see Table 3), and (ii) that while the predictions of sector-only

and of neutral technological change are qualitatively in line with the data, quantita-

tively they fall short (with average deviations above 60 percent). Figure 5 shows (i)

that for sectoral employment the predictions of occupation-only, of sector-only and

of neutral technological change are close to the data (with average deviations of 16,

42 and 25 percent respectively), and (ii) that for sectoral prices neither the occupation-

only nor the sector-only prediction does very well, and the neutral technology predicts

virtually no changes (with average deviations of 67, 83 and 91 percent respectively).25

Figure 4 and 5a demonstrate that occupation-only, sector-only, and even neutral

technological change by itself, generate occupational employment and wage, as well

as sectoral employment paths qualitatively in line with the data. However, it is evident

that the occupation-component plays a much larger role for labor market outcomes.

That neutral technological change by itself moves employment and wage outcomes in

the direction of the changes seen in the data, highlights the importance of the income

effect. The non-homothetic terms in the utility function are large, as can be seen in

Table 1, which explains why even neutral technological change leads to large realloca-

tions across sectors, and in turn across occupations as well.26

The fact that neutral and sector-only technological change have almost identical

implications in general equilibrium should not be surprising given that sectoral shocks

are almost identical across sectors, as can be seen from Figure 3. Note, that this does

not mean that the goods sector did not experience more rapid technological progress.

Our sector components capture common trends within a sector once having accounted

for the occupation components. In our data productivity growth was faster in the

goods sector, but according to our decomposition this was mostly because it used

25Note that qualitatively the path for sectoral income shares in the data and in the various counter-
factuals are very similar to those of sectoral employment shares.

26To quantify the role of non-homotheticities, we calibrated a homothetic version of the utility func-
tion (imposing cS = 0 for S ∈ {L,H}) to match sectoral employment shares in 1960. Comparing it
to the baseline model we conclude that non-homotheticities explain in terms of sectoral employment
about two thirds and in terms of occupational employment about a sixth of the changes in the data.
Specifically, the homothetic model generates a 7.5 percentage point decrease in employment (out of
24.8 in the data) in the goods sector, and a 9.9 percentage point increase in the high-skilled service sec-
tor (out of 21.5 in the data), consequently predicting a small decrease in the low-skilled service sector
(as opposed to a small increase in the data). In terms of occupational employment shares it predicts a
1.4 percentage point increase in manual employment (2.9 in the data), a 21.7 decrease in routine (26 in
the data) and a 20.2 increase in abstract (23.2 in the data).
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routine occupations more intensively.27

That occupation-only technological change implies effects very similar to the all

factors prediction is not surprising, given that Figure 3 already established that occupation-

only technological change mimics most of the evolution of sector-occupation cell tech-

nologies. As mentioned above, neutral and sector-only technological change generates

dynamics consistent with the data as it induces shifts in consumption demands and

thus in sectoral employment towards the service sectors, i.e. structural transformation,

in line with the data. Since the high-skilled service sector is the most intensive in ab-

stract and the low-skilled service sector in manual occupations, these sectoral shifts

also lead to a decline in the relative demand for routine occupations, leading to the

polarization of occupational employment and wages. However, as relative technolo-

gies across occupations within a sector have not changed, neither neutral nor sector-

only technological change induces a decline of routine employment within a sector.28

Therefore they both understate the overall changes in occupational outcomes. More-

over, they also somewhat understate the sectoral reallocations, reflecting the fact that

some of the technological improvements within a sector are occupation-specific (as

established by (13)).

Figure 6 shows the predicted changes in labor income shares within sectors. This

figure shows that neutral or sector-only technological change predicts hardly any change

in the θs. This can be understood from equation (16) in the appendix: labor income

shares change if relative occupational wages or relative cell technologies within a sec-

tor change. The neutral and the sector-only predictions shut down the second channel,

and predict quantitatively small changes in relative occupational wages, thus imply-

ing changes in the θs that are in line with the data, but which are quantitatively very

small. The figure also reveals that in general the implications of the occupation-only

and of the all factors technological change are virtually identical and are quite close

to the data (with an average deviation of 28 percent). For manual occupations and in

low-skilled services there are larger discrepancies which highlight that the component

27As we discussed earlier, here we do not account for capital accumulation or for capital-augmenting
technological change. In Bárány and Siegel (2020) we account for both of these and find more pro-
nounced sector components which resemble the patterns of sectoral labor productivity growth.

28In fact, as wm/wr and wa/wr increase, it leads to a small (and counterfactual) rise in the routine
employment share of each sector.
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Figure 6: Income shares within sectors

of technological change idiosyncratic to the cell is important for the evolution of θoJ .29

5 Conclusion

In this paper we use a general equilibrium model to infer and study the consequences

of biased technological change in labor market reallocations. Drawing on key firm

side equations we infer sector-occupation-specific technologies from the data, which

we then decompose into neutral, sector- and occupation-specific components, as well

as sector-occupation cell specific residuals. This decomposition shows that neutral,

sector- and occupation-specific components jointly explain about 90 percent of the

variation in cell level technological change. We evaluate the role of these components

by feeding these as counterfactual technological paths into the model. We find that

qualitatively any counterfactual technological change series would generate structural

transformation, the observed sectoral reallocation of employment, as well as polar-

29Note, the behavior of the sector-occupation cell employment shares in response to the evolution of
the various components of technological change is very similar to Figure 6, and not shown for brevity.
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ization of occupational employment and wages. This suggests an important role for

income effects working through non-homotheticities in preferences. However, quanti-

tatively we find a major role for occupation-bias in technological change as the driver

of these reallocations. Moreover we find that occupation components and cell-specific

elements are important drivers of occupational income shares within sectors. To ex-

plain the evolution of sectoral prices over time both sector and occupation components

are needed.

While our model does not allow for any frictions, and therefore does not warrant

any policy interventions, the finding that virtually all of labor market outcomes are

explained by the occupation component suggests that if policymakers wanted to re-

spond to the observed reallocations, they should not focus on industrial policies but

consider active labor market policies, including training programs that help workers

switch occupations.
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A Appendix

A.1 Classification

The classification of workers into occupational categories and into industrial sectors is

identical to the assignments in Bárány and Siegel (2020). For ease of reference, these

mappings are listed below.

We combine three different industry classification systems, the NAICS, the SIC,

and the ind1990. Table A1 summarizes our categorization in terms of each system.

Table A1: Classification of industries into sectors

NAICS SIC ind1990
Low- •Wholesale trade •Wholesale trade •Wholesale & retail trade
skilled • Retail trade • Retail trade
services • Transportation & warehousing • Transportation • Transportation

• Arts, entertainment, recreation, • Amusement & recreation serv. • Entertainment
accommodation & food serv. •Motion pictures • Low-skilled business serv.

• Hotels & other lodging places
• Other serv., except government • Personal serv. • Personal serv.

• Auto repair, serv. & parking
•Miscellaneous repair serv.
• Private households

Goods • Agriculture, forestry, fishing • Agriculture, forestry, & fishing • Agriculture, forestry
& hunting & fishing
•Mining •Mining •Mining
• Construction • Construction • Construction
•Manufacturing •Manufacturing •Manufacturing

High- • Utilities • Electric, gas, & sanitary serv. • Utilities
skilled • Information • Communications • Communications
services • Finance, insurance, real estate, • Finance, insurance, & real estate • Finance, insurance

rental & leasing & real estate
• Professional & business serv. • Legal serv. • Professional serv.

• Business serv. High-skilled business serv.
•Miscellaneous professional serv.
•Membership organizations

• Educational serv., health care • Educational serv.
& social assistance • Health serv.

• Social serv.
• Government • Government • Public administration

We classify occupations based on their routine task content and cognitive require-

ments, similarly to Acemoglu and Autor (2011), into the following three categories:

Manual (low-skilled non-routine): housekeeping, cleaning, protective service, food

preparation and service, building, grounds cleaning, maintenance, personal appear-
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ance, recreation and hospitality, child care workers, personal care, service, healthcare

support;

Routine: farm workers, construction trades, extractive, machine operators, assem-

blers, inspectors, mechanics and repairers, precision production, transportation and

material moving occupations, sales, administrative support;

Abstract (skilled non-routine): managers, management related, professional specialty,

technicians and related support.

A.2 Derivations

In this subsection we show how the αs can be expressed as a function of observables.

The labor income shares of different occupations within a sector pin down the αs

within a sector. To see this multiply (2) with wo/wr to get:

θoJ
θrJ

=

(
wr
wo

)η−1(
αoJ
αrJ

)η−1

for o ∈ {m, a}. (16)

Re-arrange to get:

αoJ
αrJ

=

(
θoJ
θrJ

) 1
η−1 wo

wr
for o ∈ {m, a}.

The relative prices across sectors pin down the relative αs across sectors. To see this,

use (3) for sectors J and K to get:

pJ
pK

=
αmK
αmJ

 1

wη−1
m

+
(
αrJ
αmJ

)η−1
1

wη−1
r

+
(
αaJ
αmJ

)η−1
1

wη−1
a

1

wη−1
m

+
(
αrK
αmK

)η−1
1

wη−1
r

+
(
αaK
αmK

)η−1
1

wη−1
a


1

1−η

.

Using the above expression on the relative αs within sector and re-arranging we get:

αmJ
αmK

=
pK
pJ

(
θmK
θmJ

) 1
1−η

.

The growth rate of the economy pins down the evolution of the αs over time. First,

note that we express the evolution of cell technologies over time conditional on the sec-

34



toral income shares. The sectoral income shares, using equation (4), can be expressed

as:

ΨJ

ΨK

=
pJYJ
pKYK

=
lmJp

1−η
J wηmα

1−η
mJ

lmKp
1−η
K wηmα

1−η
mK

.

Re-arranging and using the above expressions to substitute out αmJ/αmK :

lmJ
lmK

=
ΨJ

ΨK

(
pK
pJ

)1−η (
αmK
αmJ

)1−η

=
ΨJ

ΨK

θmJ
θmK

.

Using that lmL + lmG + lmH = lm, we can express

lmH =
lm

ΨL
ΨH

θmL
θmH

+ ΨG
ΨH

θmG
θmH

+ 1
.

We can express sector-H price as a function of observables by plugging (16) into (3),

and using that the θs sum to 1 within sector:

pH =

[(
αmH
wm

)η−1

+

(
αrH
wr

)η−1

+

(
αaH
wa

)η−1
] 1

1−η

=
wm
αmH

(
1

θmH

) 1
1−η

.

Similarly using (2) and the relative αs within sectors as expressed above, as well as

that within sectors the θs sum to 1, sectoral output can be expressed as:

YL =
[
(αmLlmL)

η−1
η + (αrLlrL)

η−1
η + (αaLlaL)

η−1
η

] η
η−1

= αmLlmL

[
1 +

(
αrLlrL
αmLlmL

) η−1
η

+

(
αaLlaL
αmLlmL

) η−1
η

] η
η−1

= αmLlmL

(
1

θmL

) η
η−1

= αmH
pH
pL

(
θmH
θmL

) 1
1−η
(

1

θmL

) η
η−1

lmH
ΨL

ΨH

θmL
θmH

= αmH lmHθ
η

1−η
mH

pH
pL

ΨL

ΨH

,

YG = αmH lmHθ
η

1−η
mH

pH
pG

ΨG

ΨH

,

YH = αmH lmHθ
η

1−η
mH .

Using the above and the expressions for pH and lmH we can then write the value of
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output at current prices as:

pLYL + pGYG + pHYH = wmlm

ΨL
ΨH

+ ΨG
ΨH

+ 1
ΨL
ΨH
θmL + ΨG

ΨH
θmG + θmH

.

We can express the value of output at initial prices, where we denote by 0 the initial

period and we omit the subscript t in all other periods for brevity, as:

pL,0YL + pG,0YG + pH,0YH

=
αmH
αmH,0

wm,0

(
θmH
θmH,0

) 1
1−η lmL

ΨL
ΨH
θmL + ΨG

ΨH
θmG + θmH

(
pL,0
pH,0

ΨL

ΨH

pH
pL

+
pG,0
pH,0

ΨG

ΨH

pH
pG

+ 1

)
.

The equivalent of output growth in our model is:

1 + γ =
pL,0YL + pG,0YG + pH,0YH

pL,0YL,0 + pG,0YG,0 + pH,0YH,0
.

The evolution of αmH over time is therefore pinned down by:

αmH
αmH,0

=
(1 + γ)(

θmH
θmH,0

) 1
1−η lm

lm,0

ΨL,0
ΨH,0

θmL,0+
ΨG,0
ΨH,0

θmG,0+θmH,0

ΨL
ΨH

θmL+
ΨG
ΨH

θmG+θmH

pL,0
pH,0

ΨL
ΨH

pH
pL

+
pG,0
pH,0

ΨG
ΨH

pH
pG

+1

ΨL,0
ΨH,0

+
ΨG,0
ΨH,0

+1

.
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A.3 Calibration targets

Table A2: Calibration targets

1960 1970 1980 1990 2000 2010 2017
pL/pG 0.9360 1.0651 0.8604 0.9177 0.9658 0.9834 1.0369
pH/pG 0.4882 0.5769 0.5110 0.7301 0.9472 0.9831 1.0261
ΨL 0.2563 0.2606 0.2604 0.2747 0.2794 0.2805 0.2751
ΨG 0.4734 0.4121 0.3800 0.3068 0.2624 0.2120 0.2095
ΨH 0.2703 0.3274 0.3596 0.4186 0.4582 0.5075 0.5155
growth 1 1.2009 1.3410 1.5482 1.8230 2.1971 2.2489
wm/wr 0.6231 0.6993 0.7520 0.7947 0.8368 0.8335 0.8382
wa/wr 1.1936 1.2066 1.1438 1.2320 1.2969 1.4243 1.4370
θmL 0.1134 0.104 0.1183 0.126 0.1465 0.1697 0.1698
θrL 0.6827 0.6565 0.65 0.616 0.5522 0.4931 0.4748
θaL 0.2039 0.2395 0.2317 0.258 0.3013 0.3371 0.3554
θmG 0.0116 0.0177 0.0186 0.0202 0.0192 0.0236 0.0249
θrG 0.7887 0.7501 0.7419 0.6535 0.6184 0.5554 0.5421
θaG 0.1998 0.2323 0.2395 0.3264 0.3624 0.4211 0.4330
θmH 0.1051 0.1064 0.1082 0.0915 0.0863 0.0866 0.0788
θrH 0.4197 0.3709 0.3526 0.3075 0.2508 0.2134 0.1927
θaH 0.4752 0.5226 0.5392 0.6010 0.6629 0.7000 0.7284

Table A2 contains the targets used in the calibration. Based on these, occupational

employment shares are inferred from income shares and wages per efficiency unit as

described in section 3, and sector-occupation employment shares follow. Figure A1

shows these, and it is the analogue to Figure 1, which plots hours worked shares from

the data.
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Figure A1: Implied employment shares 1960-2017
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A.4 Finer industry and occupation classifications

We separate each of our three broad sectors into four industries each: We split low-

skilled services into wholesale trade, retail trade, transport, and the remaining low-

skilled service industries; the goods sector into agriculture, mining, construction, and

manufacturing; and high-skilled services into utilities, FIRE, government services, and

the remaining high-skilled services. Similarly, we break up the three broad occupa-

tional groups into a total of ten occupation categories. We divide manual occupations

into personal care, food and cleaning services, and protective services; routine occu-

pations into operators and laborers (incl. agricultural), production, office and admin.,

and sales; and abstract occupations into technicians, professionals, and managers.

Here, similar to Figure 1, we explore the connection between sectoral and occu-

pational employment patterns for these finer classifications of industries and occupa-

tions. Figure A2 shows the allocation of hours worked across cells defined by the 12

industries and the 3 or 10 occupations. The top row shows the low-skilled service in-

dustries, the middle row the industries in the goods sector, and the third row shows

the high-skilled service industries. The color coding of the occupations in the top

panel is the same as in Figure 1, blue is manual, red is routine and green is abstract.

In the bottom panel we maintain a similar color coding: the blueish lines show occu-

pations within the manual group, the reddish are occupations in the routine group,

and the greenish lines are occupations within the abstract group. First, we see that not

all industries follow in terms of employment the same path as the broader sector that

they are in: some low-skilled service industries (wholesale and transport) shrank, con-

struction in the goods sector was largely stable, and utilities (within the high-skilled

services) shrank. We further see that the contraction in all the goods sector indus-

tries happened through routine occupations (albeit not the same occupation within

the routine group), the expansion in high-skilled service industries happened through

abstract occupations, and in low-skilled service industries it happened mainly through

manual occupations. While the connection between industrial and occupational em-

ployment in this finer classification is not as tight, the link between reallocations across

these two dimensions is still clear.
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Figure A2: Allocation of hours worked across 12 industries and 3/10 occupations
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A.5 Robustness checks

Here we explore the robustness of our results to alternative values of the elasticity of

substitution in production, η, in consumption, ε, and to alternative correlation param-

eters in the distribution of in the occupational cost differences, ρ. In each of these ro-

bustness checks we recalibrate the model based on the alternative values of the fixed

parameters we consider. Note that from these three parameters, only the value of η

matters for the sector-occupation technologies that we infer from the data as these are

fully pinned down by the production side of the model. However, all three parameters

impact the general equilibrium outcomes of the model.

Table A3 summarizes the impact of changing each of these three parameters, one

by one, on our results, using the same as in Table 3. The numbers show the percent

by which on average the change in the model is off compared to the data. Within each

panel each row represents a different counterfactual technological change (based on all

factors, occupation-only (occ.), sector-only (sector), and neutral). Each column shows

for an outcome of interest the average deviation of the model, as shown in Figures

4 – 6. The top panel repeats Table 3 by showing the statistics based on the baseline

parameters. The subsequent panels show the same for alternative parameterizations.

This table shows that all our conclusions are maintained qualitatively, and are quite

robust quantitatively across the different parametrizations.
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Table A3: Average deviation from 1960–2017 changes under alternative parameters

Outcomes
occupational sectoral cell

empl. rel. wages empl. rel. prices θ
Baseline:
η = 0.6, all factors 0.03 0.03 0.05 0.65 0.28
ε = 0.2, occ. 0.05 0.06 0.16 0.67 0.28
ρ = 0 sector 0.69 0.69 0.42 0.83 1.00

neutral 0.65 0.66 0.25 0.91 1.00
Alternative η:
η = 0.5 all factors 0.03 0.03 0.03 0.51 0.28

occ. 0.03 0.03 0.06 0.25 0.28
sector 0.64 0.64 0.31 0.67 0.99
neutral 0.64 0.64 0.25 0.90 0.99

η = 0.7 all factors 0.03 0.03 0.09 0.88 0.28
occ. 0.09 0.10 0.33 1.47 0.28
sector 0.76 0.76 0.57 1.05 1.00
neutral 0.67 0.67 0.25 0.91 1.00

Alternative ε:
ε = 0.1 all factors 0.03 0.03 0.10 0.65 0.28

occ. 0.06 0.07 0.27 0.67 0.28
sector 0.74 0.74 0.96 0.84 1.00
neutral 0.69 0.70 0.65 0.92 1.00

ε = 0.3 all factors 0.03 0.03 0.05 0.65 0.28
occ. 0.04 0.05 0.05 0.66 0.28
sector 0.61 0.62 0.53 0.81 0.99
neutral 0.60 0.60 0.43 0.90 0.99

Alternative ρ:
ρ = 0.3 all factors 0.03 0.03 0.05 0.65 0.28

occ. 0.05 0.06 0.16 0.67 0.28
sector 0.69 0.68 0.42 0.82 1.00
neutral 0.66 0.64 0.25 0.90 1.00

ρ = −0.3 all factors 0.03 0.03 0.05 0.65 0.28
occ. 0.05 0.06 0.16 0.66 0.28
sector 0.68 0.70 0.42 0.83 1.00
neutral 0.64 0.67 0.25 0.91 0.99

Notes: The table shows the average of the absolute value of the percent deviation of the model from the
1960-2017 change in the data, as in (15), for 5 outcomes of interest in the columns, and for the baseline
and 6 other parametrizations in the panels. In each panel each row shows this model outcome for a
different counterfactual technological change (based on all factors, occupation-only (occ.), sector-only
(sector), and neutral). The 5 outcomes are: occupational employment shares and relative wages, sectoral
employment shares and relative wages, and occupational income shares within sectors.
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