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Summary 

Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of 

nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing 

(NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is 

unclear how serological tests designed to detect anti-Spike antibodies perform against this 

variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) 

and nucleic acid assays for suspected COVID-19 disease due to either wild type or the 

D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 

57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is 

not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with 

very high specificity. 

  

Introduction 

As of the 2nd of August 2020, more than 18.0 million people have been infected with SARS-

CoV-2 with over 690,000 deaths1. The unprecedented numbers requiring SARS-CoV-2 

testing has strained healthcare systems globally. There is currently no gold standard for 

diagnosis of COVID-19. Detection of SARS-CoV-2 by nucleic acid amplification testing 

(NAAT) is largely done by real time RT-PCR on nose/throat swabs in centralised 

laboratories. RT-PCR specimens are often batch analysed and the turnaround time for this 

test can be as long as 2- 4 days in real world settings2. NAAT tests from a single nose/throat 

swab are negative in up to 50% in patients who have CT changes consistent with COVID-19 

and/or positive antibodies to SARS-CoV-2 3-5. The lack of detectable virus in upper airway 

samples is not only a serious barrier to making timely and safe decisions in the emergency 

department, but also leads to multiple swab samples being sent, frequently from the same 

anatomical site, leading to additional strain on virology laboratories. Nonetheless, NAAT 

remains important in identifying infectious individuals. Additionally, in severely ill patients 
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tracheo-bronchial samples might be NAAT positive even when the nose/throat swab is 

negative4,6.  

 

Multiple factors might contribute to negative results by NAAT, including test sensitivity, 

sampling technique and timing of the sampling in the disease course6. The viral load in the 

upper respiratory tract is detectable from around 4 days before symptoms7 and frequently 

wanes after a week post symptom onset8 9. Similarly, a case series from Germany found the 

detection rate by RT-PCR was <50% after 5 days since onset of illness10. A proportion of 

patients develop a secondary deterioration in clinical condition requiring hospitalisation and 

respiratory support, at a time when immune pathology is thought to be dominant rather than 

direct pathology related to viral replication 9,11.  

 

An antibody response to SARS-CoV-2 is detectable 6 days from infection and is almost 

always neutralising 12,13. Antibody based diagnosis of COVID-19 shows increasing 

sensitivity in the latter part of the infection course when NAAT testing on nose/throat 

samples is more likely to be negative14-17. As a result, diagnosis of infection as well as 

identification of infectivity would benefit from a combination of virologic and immunologic 

markers to inform patient initial triage and subsequent management. It is critical to determine 

whether a rapid point of care combined antibody and nucleic acid testing strategy could 

improve diagnosis. 

 

We previously evaluated the diagnostic accuracy of the SAMBA II SARS-CoV-2 rapid test 

compared with the standard laboratory RT-PCR and found similar accuracy with a 

turnaround time of 2-3 hours even in real world settings 18. Several studies have now reported 

head-to-head comparisons of immuno-chromatographic lateral flow immunoassays (LFAs)15-

17,19. These assays are cheap to manufacture and give a binary positive/negative result, 

thereby lending themselves well to point of care (POC) testing. Even though they have 

variable performance and in general are negative in the early phase of infection, they become 

highly sensitive in the later stage of illness15-17,19 and some are also highly specific.  

 

In this study we evaluated the diagnostic performance of a POC combination comprising 

NAAT and antibody testing against a composite reference standard of laboratory RT-PCR 

and a serum neutralisation assay. Notably, SARS-CoV-2 viruses with a D to G mutation in 

Spike at position 614 have increased in prevalence globally20. Cryo EM studies suggest that 
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D614 may play a role in Spike inter-molecular stability 21, potentially contributing to 

increased infectivity 20. Given POC antibody tests were designed to detect antibodies to wild 

type S protein, we also aimed to investigate whether SARS-CoV-2 infections with D614G 

Spike mutant virus could be diagnosed by POC antibody tests. 

 

Results  

In phase one, 45 prospectively recruited participants in the COVIDx study with suspected 

COVID-19 disease had nose/throat swabs specimens tested for nucleic acid as well as stored 

sera for antibody testing. Samples at hospital admission were collected at a median of 7 (IQR 

7-13) days after illness onset. The sera from 42.2% (19/45) participants showed neutralising 

antibody response against SARS-CoV-2 Spike protein pseudotyped virus infection in a 

neutralisation assay using a cut-off of 50% inhibition at 1:4 dilution (Figure 1A). 26 

participants’ sera showed no neutralising response (Figure 1B). The neutralisation ability of 

participants’ sera was compared with an in house ELISA IgG assay for Spike specific 

antibodies based on a recently reported method22 (Supplementary Figure 1), and significant 

association between positive results in both assays was demonstrated (Figures 1C, p<0.0001). 

Figures 1D-G shows significant associations between the point of care antibody test result 

and both ELISA (p<0.0001) and neutralisation assays, p<0.0025. POC antibody testing 

showed no cross reactivity in sera obtained before the pandemic (Supplementary table 1). 

The neutralisation assay also demonstrated lack of cross-reactivity with SARS-CoV-1 on a 

limited subset of sera (Supplementary Figure 2).  

 

Results from the four IgG antibody assays utilised in this study were confirmed (4 or 3 

concordant) in 38/45 samples and, against this classification, neutralisation (Figure 1A-C), 

spike ELISA (22 Figure C,D,F and Supplementary Figure 1), Surescreen and COVIDIX 

Healthcare assays gave a correct result in 100%, 97.4%, 92.1% and 86.8%, respectively, 

justifying the choice of the neutralisation assay as part of a composite reference standard.  

 

53.3% (24/45) of participants had COVID-19 disease, as determined by the composite 

reference standard (lab RT-PCR and neutralisation assay). Median age was 73.5 (IQR 54.0-

86.5) years in those with SARS-CoV-2 infection by our composite reference standard and 

63.0 (IQR 41.0-72.0) years in those without disease (Table1). CRP and procalcitonin were 

significantly higher in confirmed COVID-19 patients and ‘classical’ chest radiograph 

appearances were more common in confirmed COVID-19 patients (Table1, p<0.001). 

Jo
urn

al 
Pre-

pro
of



However, 6/24 (25%) had normal or indeterminate chest radiographs in the confirmed 

COVID-19 group.  

 

As expected from the clinical study inclusion criteria, more than 80% of patients presented 

with influenza like illness (ILI) with documented fever and approximately one third had 

clinical or radiological evidence of pneumonia (Table 1). Highly experienced internal 

medicine physicians were caring for suspected COVID-19 cases at our institution, and this 

was partly due to the significant co-morbidities in the local population that mandated a broad 

differential diagnostic approach in hospitalised individuals (Table 1). Amongst patients with 

COVID-19 one suffered from rheumatoid arthritis and was currently immunosuppressed with 

Prednisolone. Amongst patients without COVID-19, five were immunosuppressed for the 

following conditions: psoriatic arthritis - Usekinumab (anti IL-12, IL-23); multiple myeloma 

- Lenalidomide and dexamethasone; Lymphoma – ciclosporin; hypersensitivity pneumonitis - 

mycofenalate and prednisolone; renal transplant - mycofenalate and tacrolimus. No patients 

in the study were under treatment with the anti-B cell monoclonal antibody rituximab. 

 

During the peak of the first wave routine respiratory virus testing was halted at our institution 

due to the demands of SARS-CoV-2 testing and low seasonal prevalence of these pathogens. 

Multiplex PCR for other respiratory viral pathogens was performed in only 8 participants. 

Seven of these participants were negative and one participant tested positive for influenza A.  

 

The overall COVID-19 diagnosis rate (positive predictive agreement) by rapid nucleic acid 

testing was 79.2% (95% CI 57.8-92.9), decreasing from 100% (95% CI 65.3-98.6%) for days 

1-4 to 50.0% (95% CI 11.8-88.2) for days 9-28 post symptom onset (Table 2 and 

Supplementary Figure 3). When IgG/IgM rapid tests were combined with NAAT, the overall 

positive predictive agreement increased to 100% (95% CI 85.8-100) (Table 2). Additional 

cases of COVID-19 detected in NAAT negative patients were identified by POC tests under 

investigation (Figure 2). Among 21 COVID-19 negative individuals, there were three false 

positive results for one POC antibody test and one false positive result for the other, resulting 

in positive predictive values of 88.9% and 96.0% for the two POC antibody/ SAMBA II 

NAAT combinations. 

 

Those with positive NAAT and sequence available were predominantly infected with strains 

containing the D614G mutation in Spike, downstream of the receptor binding domain and 
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located on the Spike surface (Figure 3A, B). 14/24 (58.3%) patients deemed to be COVID-19 

positive by the reference composite standard were positive by both rapid NAAT and antibody 

testing and 14/14 were infected with strains bearing D614G, indicating that point of care 

serological tests were able to detect infections with this variant.  

 

To understand the relationship between POC band intensity and neutralisation activity 

further, we identified three participants (all infected with D614G Spike mutant) with stored 

samples at multiple time points in their illness (Figure 4). Two individuals were sampled 

from early after symptom onset and the third presented three weeks into illness. In the first 

two cases (Figure 4A-F), we observed an increase in neutralisation activity over time that was 

mirrored by band intensities on rapid POC antibody testing. As expected IgM bands arose 

early on with IgG following closely. Of note in patient 1 there was a weakly detectable IgM 

band by rapid test with no serum neutralisation activity (Figure 4A, B). Over time the band 

intensity for IgM and IgG increased along with serum neutralisation activity. In the 

individual presenting 21 days into illness (Figure 4G-I), only IgG was detected with rapid 

POC antibody testing and as expected band intensity did not increase over the following 

days.  

 

In phase 2, we performed a prospective evaluation of combined testing in 128 patients 

presenting with possible COVID-19 from July 13th to 27th 2020. Their clinical presentation 

was less severe and diagnoses broader than in phase 1 (Table 3), with cardiovascular and 

gastrointestinal disease significantly represented and respiratory disease representing just 

60% of cases - likely as a result of the increased appreciation of diverse presentations of 

COVID-19 disease 23. Patients did have significant comorbidities and around 10% were 

immune suppressed, though without B cell depleting agents (Table 3). By this time the POC 

NAAT test had been validated in a head to head study against the lab RT-PCR and entered 

routine use (Collier et al., 2020), replacing the RT-PCR. Given the need to further assess the 

specificity of the POC antibody tests in routine clinical practice and with fresh blood rather 

than serum, we compared the performance of POC antibody tests on finger prick blood 

against serum neutralisation (Figure 5A and B).  

 

In this second phase there was only one NAAT positive case, who was also positive by both 

POC antibody tests and serum neutralisation. There were three NAAT negative individuals 

presenting with respiratory symptoms who had positive POC antibody tests by both 
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COVIDIX and SureScreen, along with serum neutralisation activity. The POC antibody tests 

showed 100% negative predictive agreement with serum neutralisation and the kappa 

correlation between POC antibody tests and serum neutralisation was extremely high at 0.97. 

 

Discussion 

 

Here we have shown that POC NAAT testing in combination with antibody detection can 

significantly improve diagnosis of COVID-19. Overall positive predictive agreement against 

the composite reference standard under clinical trial conditions was around 79% for rapid 

NAAT testing of nose/throat swab samples, reaching 100% with a combined approach of 

rapid NAAT testing and either of the two POC lateral flow-based antibody tests. The 

specificity of the combined approach was 85-95% on stored serum under clinical trial 

conditions and 100% on fingerprick blood in routine clinical care. 

 

As expected, nucleic acid detection in nose/throat samples was highest in those presenting 

within the first few days (100% in samples taken in the first 4 days after symptom onset). 

Conversely antibody detection by LFA increased with time since symptom onset with 100% 

efficacy beyond 9th day post-symptoms. One study reported that combined lab based RT-

PCR with lab based antibody testing could increase sensitivity for COVID-19 diagnosis from 

67.1% to 99.4% in hospitalised patients24. However, in that study this assessment of 

sensitivity was made using clinical diagnosis. A major strength of this study is the use of an 

objective reference standard that included NAAT and serum neutralisation - a phenotypic test 

for functionality of antibodies. This assay was shown to be robust and accurate, using a 

recently described ELISA method for SARS-CoV-2 IgG detection that is now used 

globally22.  

 

The D614G Spike mutant has spread globally. Wild type Spike protein antigen is used in the 

development and validation of POC antibody tests, including those tested here. Of critical 

importance is the fact that both POC antibody tests (and ELISA) were able to detect antibody 

responses in patients infected with the D614G Spike mutant and that band intensity of POC 

testing increased with neutralisation activity in these individuals. Given that POC antibody 

tests are far cheaper and simpler to deploy, they will likely be used in low resource settings 

that do not have access to NAAT25. Demonstration that POC antibody LFA tests can detect 

the D614G spike mutant is therefore of importance. 
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Use of antibody tests for COVID-19 diagnosis in hospitals has been limited for a number of 

reasons. Firstly, we know from SARS-CoV-1 that previous humoral immunity to HCoV 

OC43 and 229E can elicit a cross-reactive antibody response to N of SARS-CoV-1 in up to 

14% of people tested in cross-sectional studies26, and previous exposure to HCoV can rarely 

elicit a cross-reactive antibody response to the N and S proteins of SARS- CoV-2 16,27. 

Secondly, antibody tests do not achieve the same detection rates as nucleic acid based tests 

early in infection, as humoral responses take time to develop following viral antigenic 

stimulation. However, by day 6 post symptom onset detection of IgG to Spike protein has 

been reported to reach 100% sensitivity 12 and this is useful in cases with immune mediated 

inflammatory disease where RT-PCR on respiratory samples is often negative, for example in 

the recently described Kawasaki-like syndrome named PIMS (paediatric inflammatory multi-

system syndrome) 28.  

 

In phase one (COVIDx trial) we tested stored sera rather than whole blood finger prick, 

though this was intentional given the caution needed in interpreting LFAs and concern 

regarding potential cross-reactivity of antibodies and poor specificity. Although SARS-CoV-

2 ELISA testing of our pre-pandemic sera did reveal occasional N reactivity to SARS- CoV-

2, likely due to cross reactivity with seasonal CoV, these samples were negative on POC 

antibody testing. However, the specificity of the COVIDIX test was estimated at only 85%, 

compared to a more acceptable 95% for SureScreen. We therefore carried out prospective 

evaluation of POC antibody testing on finger prick blood in 128 suspected cases of COVID-

19 in order to further evaluate specificity of both tests in routine clinical practice. We found 

no false positives in patients whose sera were non-neutralising. This is consistent with an 

estimated specificity of above 99% with the SureScreen assay observed in an independent 

analysis using stored pre-pandemic sera29. The greater incidence of false positive POC 

antibody tests, predominantly with COVIDIX, on stored sera as compared to fresh finger 

prick blood may be due to processing and storage of sera, contamination of sera with other 

blood products, or other causes, including patient factors that differed between the two 

phases. Nevertheless, now that we are in a low incidence period it is advisable to perform 

confirmation testing using an alternative platform for either a single positive antibody or 

NAAT test, as is now the policy at our institution. One should note in particular that antibody 

tests may be negative in patients with immune suppression, highlighting that patient factors 

can influence interpretation of results and that alternative diagnoses should be considered. 
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We envisage a deployment approach whereby both test samples, finger prick whole blood 

and nose/throat swab, are taken at the same time on admission to hospital. The finger prick 

antibody test result is available within 15 minutes. Due to the possibility of false positive 

results from POC serology testing, a positive POC antibody test result as the only positive 

marker should ideally be confirmed with a second rapid POC test / laboratory IgG/IgM test 

before movement to a COVID-19 area, or recruitment into a clinical treatment study. At our 

institution further diagnostic data from chest imaging and blood indices such as lymphocyte 

count and C-reactive protein when assessing patients for COVID-19 and clinical decision 

making. Further swabs for NAAT testing are also taken where possible.  

 

A confirmed positive NAAT result remains critical not only to identify early infection but, 

more importantly to triage infectious patients to be isolated from other patients and be 

handled with particular care by staff. NAAT is also valuable in milder and asymptomatic 

cases given severity appears to correlate with magnitude of antibody responses 16,30. In 

conclusion rapid combined testing could be important in diagnosis and management of 

COVID-19, particularly given the pandemic is not well controlled in many parts of the world 

and as diverse manifestations of disease emerge. 

 

Limitations of study 

This study was limited by the fact that it was conducted at a single centre with relatively 

small numbers of individuals in the clinical study (phase 1), largely due to a lack of available 

stored serum. Phase 1 of the study used stored serum where there was a higher false positive 

rate than phase 2 where whole blood was used. The implementation study (phase 2) had 

greater numbers and was able to effectively demonstrate the high specificity of POC antibody 

tests and very low false positive rate for both POC antibody tests on whole blood, though 

itself was hampered by the low incidence of COVID-19 infection during the period it was 

undertaken. This low incidence rate in phase 2 limited further evaluation of the sensitivity of 

the combined approach. There was also a lack of data on repeated sampling and sampling 

from deeper respiratory sites in those suspected cases who were NAAT negative. Future 

larger studies are warranted.  
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Table 1: Characteristics of participants in diagnostic accuracy study. COVID-19 status is 
based on composite reference standard test of nose/throat swab SARS-CoV-2 RT-PCR + 
serum neutralisation of pseudovirus bearing SARS-CoV-2 Spike. § Wilcoxon rank sum test 
used except where indicated. a Chi-square test. 
 
 COVID-19 Pos 

N=24 
COVID-19 Neg 
N=21 

P value § 

Male sex (%) 14 (58.3) 9 (42.9) 0.30a 
Median age (IQR) years 73.5 (54.0-86.5) 63.0 (41.0-72.0) 0.03 
Influenza-like illness with 
documented fever 

20 (83.3) 17 (81.0) 0.84 

Clinical or radiological evidence of 
pneumonia 

10 (41.7) 7 (33.3) 0.57 

Immunosuppressed 
   Yes 
   No 

 
1 (4.2) 
23 (95.8) 

 
5 (23.8) 
16 (76.2) 

 
 
0.053 

Cardiovascular disease 6 (25.0) 2 (9.5)  0.25 
Chronic Respiratory disease 5 (20.8) 6 (28.6) 0.73 
Chronic Renal disease 4 (16.7) 2 (9.5) 0.67 
Diabetes Mellitus 6 (25.0) 3 (14.3) 0.47 
Median SpO2 (IQR) % 95.0 (92.5-96.0) 96.0 (94.0-98.0) 0.09 
Median FiO2 (IQR) 0.21 (0.21-0.24) 0.21 (0.21-0.21) 0.40 
Median PaO2 (IQR) Kpa 5.0 (3.0-9.1) 7.2 (3.8-9.0) 0.30 
Median PaO2:FiO2 ratio (IQR) 20.5 (13.3-32.9) 30.9 (18.1-36.2) 0.09 
Median Respiratory rate (IQR) 
breaths/min 

22.0 (19.0-27.5) 20.0 (17.0-23.0) 0.06 

Median heart rate (IQR) beats/min 86.0 (77.5-99.5) 88.0 (78.0- 107.0) 0.44 
Median Systolic BP (IQR) mmHg 139.5 (117.5-149.0) 135.0 (119.0-152.0) 0.90 
Median duration of illness (IQR) 
days  

7 (1-8) 10 (3-14) 0.10 

Jo
urn

al 
Pre-

pro
of



Median Hb (IQR) g/dL 12.9 (12.0-13.8) 13.1 (11.6-14.1) 0.46 
Median WCC (IQR) x109/L 7.0 (5.0-8.0) 9.0 (7.0-14.0) 0.08 
Median lymphocyte count (IQR) 
x109/L 

0.8 (0.5-1.2) 1.2 (0.8-1.5) 0.12 

Median platelet count (IQR) x109/L 213.5 (188.5-303.5) 271.0 (186.0-305.0) 0.59 
Median Ferritin (IQR) µg/L 684.7 (206.2-1059.1) 112.3 (49.6-323.6) 0.02 
Median CRP (IQR) mg/L 72.0 (28.5-214.5) 12 (4.0-53.0) 0.004 
Median procalcitonin (IQR) ng/mL 0.2 (0.1-0.6) 0.0 (0.0-0.1) 0.03 
Radiological findings 
    Normal   
    Indeterminate 
    Classic 
    Non-COVID 

 
2 (8.3) 
4 (16.7) 
18 (75.0) 
0 (0.0) 

 
9 (42.9) 
3 (14.3) 
3 (14.3)  
6 (28.5) 

 
<0.001 a 
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Table 2. Individual and combined diagnostic accuracy of point of care rapid NAAT-
based and antibody tests according to time from initial symptoms. Positivity predictive 
agreement is the percentage of positive test results in samples deemed positive by the 
composite reference standard. Negative predictive agreement is the percentage of negative test 
results in samples deemed negative by the composite reference standard. *43 out of 45 
patients had SureScreen antibody results 
 

% (95% CI) Days 1-4 
N=14 

Days 5-8 
N=14 

Days 9-28 
N=17 

Overall 
N=45* 

SAMBA II NAAT 
   Positive predictive agreement 
   Negative predictive agreement 
    
 

 
100 (65.3-98.6) 
100 (69.2-100) 

 

 
81.8 (48.2-97.8)  
100 (29.2-100) 

 

 
50.0 (11.8-88.2) 
100 (71.5-100)) 

 

 
79.2 (57.8-92.9) 
100 (83.9-100) 

 

COVIDIX Ig M & IgG   
   Positive predictive agreement 
   Negative predictive agreement 
    
 

 
100 (59.0-100) 
100 (59.0-100) 

 

 
90.9 (58.7-99.8) 
66.7 (9.4-99.2) 

 

 
100 (54.1-100) 
81.8 (48.2-97.7) 

 

 
95.8 (78.9-99.9) 
85.7 (63.7-97.0) 

 

SAMBA II NAAT &  
COVIDIX IgM &IgG  
   Positive predictive agreement 
   Negative predictive agreement 
 

 
 

100 (59.0-100) 
100 (59.0-100) 

 

 
 

100 (71.5-100) 
66.7 (9.4-99.2) 

 

 
 

100 (54.1-100) 
81.8 (48.2-97.7) 

 

 
 

100 (85.8-100) 
85.7(63.7-97.0) 

 

SureScreen IgM & IgG* 
   Positive predictive agreement 
   Negative predictive agreement 
    
 

 
42.9 (9.9-81.6) 
100 (54.1-100) 

 

 
90.9 (58.7-99.8) 
66.7 (9.4-99.2) 

 

 
100 (54.1-100) 
100 (69.2-100) 

 

 
79.2 (57.8-92.9) 
94.7 (74.0-99.9) 

 

SAMBA II NAAT &  
SureScreen IgM & IgG*  
   Positive predictive agreement 
   Negative predictive agreement 
    
 

 
 

100 (59.0-100) 
100 (54.1-100) 

 

 
 

100 (71.5-100) 
66.7 (9.4-99.2) 

 

 
 

100 (54.1-100) 
100 (69.2-100) 

 

 
 

100 (85.8-100) 
94.7(74.0-99.9) 

 

 
. 

 

 

 

 

 

Table 3: Characteristics of 128 individuals hospitalised with suspected COVID-19 
during implementation of combined POC testing. *testing done on stored serum due to 
fingerprick test failure. NIV- non invasive ventilation; LTOT–long term oxygen therapy; 
NEWS- national early warning score; NAAT - nucleic acid amplification testing 
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Male gender (%) 42.2 

Median age (IQR) yrs 67 (50.8-80.0) 

Median SpO2 (IQR) % 96 (95-97) 

Median fiO2 (IQR) 0.21 (0.21-0.21) 

Maximal Additional Ventilatory Support 
 

nasal cannulae 24 

facemask 7 

LTOT/NIV 4 

Intubation 1 

Median duration of illness (IQR) days 2.5 (1-7) 

NAAT positive (%) 2 (1.6)  

Neutralisation positive (%, n=101) 8(7.9)  

COVIDIX Healthcare IgG/M positive (%)* 6 (3.9) 

SureScreen IgG/M positive (%)* 6 (3.1) 

Median lymphocyte count (IQR) x109/L 1.3(0.76-1.76) 

Median CRP (IQR) mg/L 46 (15-129) 

Comorbidities  

Cardiovascular disease 44 (34.3) 

Chronic respiratory disease 62 (48.4) 

Chronic kidney disease 11 (8.6) 

Diabetes Mellitus 24 (18.8) 

Immune suppression 13 (10.2) 

Diagnosis 
 

1. Respiratory 61 

2. Cardiovascular 16 

3. Gastrointestinal 13 

4. Genitourinary 7 

5. Other 30 

NEWS score 2 (1-5) 

Chest radiograph findings (n=114) 
 

    Normal  59 

    Indeterminate 31 

    Classic 0 

    Non-COVID-19 24 

CT findings (n=24) 
 

    Normal  3 

    Indeterminate 7 

    Classic 1 

    Non-COVID-19 13 
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Figure titles and legends 

Figure 1: Antibody detection for SARS-CoV-2: cross validation of lateral flow 

diagnostic tests (POC antibody tests) with ELISA and SARS-CoV-2 pseudotype virus 

neutralisation assays. A, B. Serum from COVID-19 suspected participants inhibited (n=19) 

(A) or did not inhibit (n=26) (B) SARS-CoV-2 pseudotype virus infection in a neutralisation 

assay. Serum from a healthy donor was used and a negative control. Error bars represent 

SEM. C. Comparison between ELISA and positive/negative results from neutralisation assay. 

n=37, p<0.0001. D. Comparison between ELISA Spike protein reactivity and 

positive/negative POC antibody test results (COVIDIX SARS-CoV-2 IgM/IgG Test). n=38, 

p<0.0001. E. Comparison between EC50 dilution titre from neutralizing assay and 

positive/negative POC antibody test results (COVIDIX SARS-CoV-2 IgM/IgG Test). n=44, 

p=0.0025. F. Comparison between ELISA IgG and positive/negative POC IgG band results 

for SureScreen SARS-CoV-2 IgM/IgG test. n=38, p<0.0001. G. Comparison between EC50 

dilution titre from neutralisation assay and positive/negative SureScreen SARS-CoV-2 

IgM/IgG antibody band test results. n=43, p=0.005. The assays were performed in duplicate. 
 

Figure 2: Venn diagrams comparing positive and negative diagnostic test results in 

hospitalised patients by NAAT (SARS-CoV-2 nucleic acid amplification testing) and point of 

care (POC) antibody testing by A. COVIDIX Healthcare IgM/IgG kit (n=45) and B. 

SureScreen IgM/IgG kit (n=43).  
 

Figure 3. A. Spike D614G characterisation in clinical cohort. Genome map of SARS-

Jo
urn

al 
Pre-

pro
of



CoV-2, with overall topography of Spike expanded. NTD- N-terminal domain; RBD- 

receptor binding domain; FP- fusion peptide; HR1- heptad repeat 1; HR2- heptad repeat 2; 

TM- transmembrane region; IC- intracellular domain. The aligned sequence of 10 amino 

acids on either side of D614 is shown for 16 participants for whom sequence data were 

available.  A dot represents where the amino acid is unchanged from wildtype, the mutant 

glycine is represented by G. B. Top view of SARS-CoV-2 Spike glycoprotein trimeric 

structure in a closed state, with position 614 in yellow in each protomer. Structure determined 

by cryogenic electron microscopy.  RCSB PDB 6VXX. 

 

Figure 4: Longitudinal antibody responses in patients infected with D614G mutant 

SARS-CoV-2 detected by rapid lateral flow and neutralisation assays. A, D, G. 

An immune-chromatographic lateral flow rapid diagnostic test (POC antibody test -

COVIDIX SARS-CoV-2 IgM IgG Test) on longitudinal samples in individual 

patients detecting SARS-CoV-2 IgM and IgG bands. Band intensities were 

acquired using ChemiDoc MP Imaging System and quantified using Image Lab software. B, 

E, H. SARS-CoV-2 pseudotyped virus neutralisation assay from longitudinal serum samples 

in individual patient examples. The assays were performed in duplicate. Error bars represent 

SEM. C, F, I. Comparison of IgG band intensities from lateral flow rapid diagnostic test with 

EC50 neutralisation titres from SARS-CoV-2 pseudotyped virus neutralisation assay in 

individual patients. Correlations were estimated by linear regression analysis.  

 

Figure 5: Distribution of serum neutralisation activity against SARS-CoV-2 in 

hospitalised patients during implementation phase (A) Neutralisation EC50 dilution titre 

interpreted as positive or negative using a cut off for positive neutralisation of 1:4 dilution 

(B) Neutralisation data for individual patients stratified by POC antibody test result (both 

tests were fully concordant in phase 2). Data points represent reciprocal dilution of serum 

required to inhibit 50% of infection by lentivirus pseudotyped with SARS-CoV-2 Spike 

glycoprotein. The assays were performed in duplicate. Line represents mean and bar 

represents standard deviation (n=101 sera tested).  
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STAR Methods 

 

RESOURCE AVAILABILITY 

 
Lead Contact 
 

Further information should be directed to and will be fulfilled by the Lead Contact, Ravindra 

K. Gupta rkg20@cam.ac.uk. 

 

Materials Availability 
 

This study did not generate new unique reagents. 
 
 
Data and Code Availability 
 
Raw anonymised data are available from the lead contact without restriction. 
 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
 

Clinical Study 

 

The study was conducted in two phases; a clinical validation phase followed by an 

implementation phase. The study participants in phase one were part of the COVIDx trial18, a 

prospective analytical study which compared SAMBA II SARS-CoV-2 point of care test to 

the standard laboratory RT-PCR test for the detection of SARS-CoV-2 in participants 

admitted to Cambridge University Hospitals NHS Foundation Trust (CUH) with a possible 

diagnosis of COVID-19. Consecutive participants were recruited during 12-hour day shifts 

over a duration of 4 weeks from the 6th of April 2020 to the 2nd of May 2020. We recruited 

adults (>16 years old) presenting to the emergency department or acute medical assessment 

unit as a possible case of COVID-19 infection. This included any adult requiring hospital 

admission and who was symptomatic of SARS-CoV-2 infection, demonstrated by clinical or 

radiological findings 18. 45 participants who had available stored sera were included in this 

sub-study and underwent further antibody testing. Phase 2, from July 13th to 27th 2020, 

comprised a service evaluation of clinical practice whereby adults (>16 years old) presenting 

to the emergency department or acute medical assessment unit as a possible case of COVID-
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19 infection were included. This included any adult requiring hospital admission and who 

was symptomatic of SARS-CoV-2 infection, demonstrated by clinical or radiological 

findings. 

 

Cell lines  

 

293T cells were cultured in DMEM complete (DMEM supplemented with 100 U/ml 

penicillin, 0.1 mg/ml streptomycin, and 10% FCS) and maintained at 37OC in %% CO2. 

 

Ethical approval 

 

COVIDx (NCT04326387) was approved by the East of England - Essex Research Ethics 

Committee (REC ref: 20/EE/0109). Serum samples were obtained from patients attending 

Addenbrooke’s Hospital with a suspected or confirmed diagnosis of COVID19. Prospective 

combined point of care testing of suspected COVID-19 cases was done under CUH NHS 

Trust service evaluation 3163. 

 

 
METHOD DETAILS 
 

Test methods 

 

NAAT tests 

The standard laboratory RT- PCR test, developed by public health England (PHE), targeting 

the RdRp gene was performed on a combined nose/throat swab. This test has an estimated 

limit of detection of 320 copies/ml. In parallel, SAMBA II SARS-CoV-2 testing was 

performed on a combined nose/throat swab and inactivated in a proprietary buffer at the point 

of sampling. SAMBA II SARS-CoV-2 targets 2 genes- Orf1 and the N genes and uses 

nucleic acid sequence based amplification to detect SARS-CoV-2 RNA, with limit of 

detection of 250 copies/ml.31 

 

Pseudotype virus preparation 

Viral vectors were prepared by transfection of 293T cells by using Fugene HD transfection 

reagent (Promega) as follows. Confluent 293T cells were transfected with a mixture of 11ul 
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of Fugene HD, 1µg of pCAGGS_SARS-CoV-2_Spike or pCDNA∆19Spike-HA, 1ug of 

p8.91 HIV-1 gag-pol expression vector32,33, and 1.5µg of pCSFLW (expressing the firefly 

luciferase reporter gene with the HIV-1 packaging signal). Viral supernatant was collected at 

48 and 72h after transfection, filtered through 0.45um filter and stored at -80˚C. The 50% 

tissue culture infectious dose (TCID50) of SARS-CoV-2 pseudovirus was determined using 

Steady-Glo Luciferase assay system (Promega).  

 

Pseudotype neutralisation assay 

Spike pseudotype assays have been shown to have similar characteristics as neutralisation 

testing using fully infectious wild type SARS-CoV-234.Virus neutralisation assays were 

performed on 293T cell transiently transfected with ACE2 and TMPRSS2 using SARS-CoV-

2 Spike pseudotyped virus expressing luciferase. Pseudovirus was incubated with serial 

dilution of heat inactivated human serum samples from COVID-19 suspected individuals in 

duplicates for 1h at 37˚C. Virus and cell only controls were also included. Then, freshly 

trypsinized 293T ACE2/TMPRSS2 expressing cells were added to each well. Following 48h 

incubation in a 5% CO2 environment at 37°C, the luminescence was measured using Steady-

Glo Luciferase assay system (Promega).  

 

Enzyme-linked immunosorbent assay (ELISA)  

We developed an ELISA targeting the SARS-CoV-2 Spike and N proteins. Trimeric spike 

protein antigen used in the ELISA assays consists of the complete S protein ectodomain with 

a C-terminal extension containing a TEV protease cleavage site, a T4 trimerization foldon 

and a hexa-histidine tag. The S1/S2 cleavage site with amino acid sequence PRRAR was 

replaced with a single Arginine residue and stabilizing Proline mutants were inserted at 

positions 986 and 987. Spike protein was expressed and purified from Expi293 cells (Thermo 

Fisher). N protein consisting of residues 45-365 was initially expressed as a His-TEV-

SUMO-fusion. After Ni-NTA purification, the tag was removed by TEV proteolysis and the 

cleaved tagless protein further purified on Heparin and gel filtration columns.  

The ELISAs were in a stepwise process; a positivity screen was followed by endpoint titre as 

previously described22. Briefly, 96-well EIA/RIA plates (Corning, Sigma) were coated with 

PBS or 0.1µg per well of antigen at 4°C overnight. Coating solution was removed, and wells 

were blocked with 3% skimmed milk prepared in PBS with 0.1% Tween 20 (PBST) at 

ambient temperature for 1 hour. Previously inactivated serum samples (56°C for 1 hour) were 
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diluted to 1:60 or serially diluted by 3-fold, six times in 1% skimmed milk in PBST. 

Blocking solution was aspirated and the diluted sera were added to the plates and incubated 

for 2 hours at ambient temperature. Diluted sera were removed, and plates were washed three 

times with PBST. Goat anti-human IgG secondary antibody-Peroxidase (Fc-specific, Sigma) 

prepared at 1:3,000 in PBST was added and plates were incubated for 1 hour at ambient 

temperature. Plates were washed three times with PBST. ELISAs were developed using 

3,5,3′,5′- tetramethylbenzidine (TMB, ThermoScientific); reactions were stopped after 10 

minutes using 0.16M Sulfuric acid.  

 

COVIDIX 2019 SARS-CoV-2 IgG/IgM Test (COVIDIX Healthcare, Cambridge, UK). 

This colloidal-gold lateral flow immunoassay is designed to detect IgG and IgM to SARS-

CoV-2. The test is CE marked. It was used according to the manufacturer’s instructions. 10µl 

of serum was added to the test well followed by 2 drops of the manufacturer’s proprietary 

buffer. In order to rule out cross reactivity of this test with seasonal coronavirus antibodies 

we tested 19 stored specimens from before 2020, some of which had N and S protein SARS-

CoV-2 cross reactivity (Supplementary table 2).  

 

SureScreen SARS-CoV-2 IgG/IgM Test (SureScreen Diagnostics Ltd, Derby, UK). This 

colloidal-gold lateral flow immunoassay is designed to detect IgG and IgM to SARS-CoV-2. 

It was used according to the manufacturer’s instructions. The test has been CE marked and 

previously validated against a large panel of negative historical controls and in serum from 

confirmed PCR positive COVID-19 cases16. 10µl of serum was added to the test well 

followed by 2 drops of the manufacturer’s proprietary buffer.  

 

Next generation sequencing of SARS-CoV-2 isolates in nose/throat swabs 

Samples with CT values above 33 were sequenced with a multiplex PCR approach according 

to the ARTIC version 2 protocol with version 3 primer set. Amplicons were sequenced using 

MinION flow cells version 9.4.1 (Oxford Nanopore Technologies, Oxford, UK). Genomes 

were assembled as previously described35. The sequences are freely available from GISAID 

EpiCoVTM under accession IDs: EPI_ISL 433757, 433754, 433792, 433850, 433751, 

433778, 433869, 433875, 433874, 433917, 433962, 433956, 434034, 438681, 438711 and 

444331. The submitting laboratory is the COVID-19 Genomics UK (COG-UK) Consortium 

and the originating laboratory is Department of Pathology, University of Cambridge. 
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QUANTIFICATION AND STATISTICAL ANALYSIS 
 

Enzyme-linked immunosorbent assay (ELISA) quantification 

The optical density at 450 nm (OD450) was measured using a Spectramax i3 plate 

reader. The absorbance values for each sample were determined by subtracting OD values 

from uncoated wells.  All data analyses were performed using Prism 8 version 8.4.2 

(GraphPad). An OD cut off of 0.3 was used to define a positive IgG response to full length 

Spike protein. 

 

COVIDIX 2019 nCoV IgG/IgM Test band density 

For quantification of IgG and IgM band density in COVIDIX 2019 nCoV IgG/IgM Test, high 

resolution images of completed POC antibody test cassettes were acquired using ChemiDoc 

MP Imaging System (Bio-Rad) at 20min post-addition of the human serum. Band intensities 

were analysed using Image Lab software (Bio-Rad). 

 

Quantification of neutralisation sensitivity 

The 50% inhibitory dilution (EC50) was defined as the serum dilution at which the relative 

light units (RLUs) were reduced by 50% compared with the virus control wells (virus + cells) 

after subtraction of the background RLUs in the control groups with cells only. The EC50 

values were calculated with non-linear regression, log (inhibitor) vs. normalized response 

using GraphPad Prism 8 (GraphPad Software, Inc., San Diego, CA, USA). The neutralisation 

assay was positive if the serum achieved at least 50% inhibition at 1 in 3 dilution of the 

SARS-CoV-2 spike protein pseudotyped virus in the neutralisation assay.  The neutralisation 

result was negative if it failed to achieve 50% inhibition at 1 in 3 dilution. 

 

Assessment of neutralisation assay performance 

Four assays detecting IgG to COVID-19 were utilised in this study. 38 of the 45 samples 

were identified as concordant with at least three of the four assays and considered confirmed 

either negative or positive. Against this group of samples validated for content of COVID-19 

IgG, each individual assay was assessed. Neutralisation, ELISA, SureScreen and COVIDIX 

assays gave a correct result in 100%, 97.4%, 92.1% and 86.8%, respectively, justifying the 

choice of the neutralisation assay as standard. 
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Analyses 

The performance of SAMBA II SARS-CoV-2 test and COVIDIX SARS-CoV-2 IgG/IgM 

Test or SureScreen SARS-CoV-2 IgG/IgM Test for diagnosing COVID-19 were calculated 

alone and then in combination along with binomial 95% confidence intervals (CI). A 

composite reference standard was used -  standard lab RT-PCR and a neutralisation assay. 

Descriptive analyses of clinical and demographic data are presented as median and 

interquartile range (IQR) when continuous and as frequency and proportion (%) when 

categorical. The differences in continuous and categorical data were tested using Wilcoxon 

rank sum and Chi-square test respectively. Statistical analysis were conducted using Stata 

(version 13) and GraphPad Prism (version 8), with additional plots generated using GraphPad 

Prism.  Venn diagrams were prepared using Venny36. Structural modelling of location of 

D614G was done using Mol*: D. Sehnal et al (doi:10.2312/molva.20181103). 

 

 

ADDITIONAL RESOURCES  
 

COVIDx was registered with the ClinicalTrials.gov Identifier NCT04326387.  
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Goat anti-human IgG antibody Sigma Cat# A0170 

Bacterial and Virus Strains  

Biological Samples   

Participants combined nose and throat swab This study N/A 
Participants serum This study N/A 
   

Chemicals, Peptides, and Recombinant Proteins 

SARS-CoV-2 Spike protein  Laboratory of J. Briggs 37 
SARS-CoV-2 N protein Laboratory of J. Nathan N/A 

Critical Commercial Assays 

SAMBA II SARS-CoV-2 test Diagnostics for the real 
World 

Cat# 8500-12 

SARS-CoV-2 RT-PCR in-house test on was performed on 
Qiagen Roto gene platform 

Qiagen N/A 

COVIDIX 20019 SARS-CoV-2 IgG/IgM Test COVIDIX Healthcare Cat# ICOV-402 
SureScreen SARS-CoV-2 IgG/IgM Test  SureScreen Diagnostics  Cat# COVID19 

Deposited Data 

Mapping and structural mapping of D614G was done on S 
protein structure deposited in PDB 

PDB  RCSB PDB 6VXX. 

Sequences of SARS-CoV-2  GISAID EpiCoV
TM www.gisaid.org 

Experimental Models: Cell Lines 

Expi293 cells Laboratory of J. Briggs 
37 

293T Laboratory of Greg 

Towers 

N/A 

Experimental Models: Organisms/Strains 

Oligonucleotides 

Next generation sequencing 3 primer set Laboratory of I. 
Goodfellow 

35 

Recombinant DNA 

pCAGGS_SARS-CoV-2_Spike NIBSC 
 

#100976 

pCDNA∆19Spike-HA Laboratory of P. Lehner N/A 
 

pCSFLW Laboratory of G. Towers N/A 
 

pCAGGS/ACE2 Laboratory of N. 
Temperton 

N/A 
 

pCAGGS/ TPMPSS2 Laboratory of N. 
Temperton 

N/A 
 

Software and Algorithms 

STATA version 13 STATA https://www.stata.com

/order/download-
details/ 

R 2.6.3 The R project https://www.r-
project.org/ 

Image Lab Bio-Rad N/A 
GraphPad Prism 8 GraphPad Software N/A 
Venny Website  https://bioinfogp.cnb.c

sic.es/tools/venny/ 
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Highlights 

• Combined rapid antibody + nucleic acid detection correctly diagnoses SARS-CoV-2 

• Rapid antibody tests detect immune responses against SARS-CoV-2 bearing D614G  

• Rapid SARS-CoV-2 antibody tests do not cross react with antibodies to seasonal CoV 

• False positivity in SARS-CoV-2 finger prick blood antibody tests can be very low. 

 

ETOC blurb 

Mlcochova et al. report that combined rapid nucleic acid amplification testing (NAAT) and 
finger prick blood antibody tests can substantially improve diagnosis of COVID-19 as 
compared to NAAT alone and are able to detect the SARS-CoV-2 Spike D614G variant that 
dominates the pandemic.  
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