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The Detectable Subspace for the Friedrichs
Model: Applications of Toeplitz Operators
and the Riesz–Nevanlinna Factorisation
Theorem

S. Naboko and I. Wood

Abstract. We discuss how much information on a Friedrichs model op-
erator (a finite rank perturbation of the operator of multiplication by
the independent variable) can be detected from ‘measurements on the
boundary’. The framework of boundary triples is used to introduce the
generalised Titchmarsh–Weyl M -function and the detectable subspaces
which are associated with the part of the operator which is ‘accessible
from boundary measurements’. In this paper, we choose functions aris-
ing as parameters in the Friedrichs model in certain Hardy classes. This
allows us to determine the detectable subspace by using the canonical
Riesz–Nevanlinna factorisation of the symbol of a related Toeplitz oper-
ator.

Mathematics Subject Classification. Primary 47G10, Secondary 34L05,
47B35.

1. Introduction

This paper continues the study of the so-called detectable subspace of an oper-
ator in Hilbert space started in [7–10]. The detectable subspace of a (generally)
non-self-adjoint operator is defined in terms of boundary triples [5,12,21]. The
problem of its determination is physically motivated, as it addresses the im-
portant inverse problem of determining the part of the physical model which
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is ‘visible’ from boundary measurements. Therefore, it determines what par-
tial information on the system is available in many standard experimental
settings. Roughly speaking, the detectable subspace is the reducible subspace
corresponding to the part of the operator which is ‘visible’ from the boundary
behaviour of the solutions of the formal spectral equations (see the rigorous
definition below). The analysis of its structure, in particular the question of de-
tectability (the coincidence of the detectable subspace with the whole Hilbert
space), is very important in the study of various types of inverse problems.

By the nature of the problem, finding the detectable subspace is very tech-
nically involved. Therefore, consideration of particular examples, such as the
Friedrichs model considered here, is relevant and important in understanding
the phenomena of ‘visibility’ or ‘cloaking’ in various fields such as in quantum
mechanics, wave propagation theory and questions related to metamaterials
and homogenisation.

Friedrichs model operators are perturbations of the multiplication opera-
tor by an integral operator. They were introduced by Friedrichs in 1948 [15] as
a first rigorous model for scattering theory and enabled L.D. Faddeev’s famous
results on multi-particle Schrödinger operators [14]. Via the Fourier transform,
Friedrichs model operators allow the study of Schrödinger operators with so-
called separable potentials, see [11] for a detailed discussion of the scattering
theory for such operators. Moreover, according to L.D. Faddeev, they provide
a simple model for renormalisation theory in physics.

In the previous papers [7,9,10], the analysis of Friedrichs model operators
showed how complicated the structure of the detectable subspace may be, even
in the seemingly simple case of a rank one perturbation. Therefore, considering
various special cases for the perturbation can provide an important step in
understanding the nature of the whole problem. In [10], the technique of Hankel
operators was used for the analysis of the detectable subspace under special
conditions on the rank one perturbation in terms of Hardy classes [20]. In the
current paper, we consider another wide class of perturbations, again of rank
one, where the theory of Toeplitz operators appears as the main tool. We stress
that the paper does not add any new results in the theory of Toeplitz operators,
but shows a new application of the theory to the detectable subspace problem
for a class of operators.

The paper is organised as follows. Section 2 contains a collection of basic
facts on the generalised Weyl–Titchmarsh function (or Dirichlet-to-Neumann
map), the abstract boundary triple approach and the definition of the de-
tectable subspaces. Section 3 briefly discusses the main properties of the Fried
richs model, including its boundary triple set-up. The main results are pre-
sented in Sect. 4, where, using the canonical factorisation of a Toeplitz oper-
ator’s symbol, the indices (the codimensions of the detectable subspaces) are
explicitly calculated (Theorem 4.7). The section also contains a few examples
illustrating the main theorems.
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2. Background: Boundary Triples and the Detectable Subspace

For the convenience of the reader and to keep this article as self-contained as
reasonably possible, in this section and the next, we give an introduction to
concepts and notation that will be used throughout the article. We make the
following basic assumptions.
(1) A, ˜A are closed, densely defined operators in a Hilbert space H.
(2) A and ˜A are an adjoint pair, i.e. A∗ ⊇ ˜A and ˜A∗ ⊇ A.

Then, see [21], there exist ‘boundary spaces’ H, K and ‘trace operators’

Γ1 : Dom ( ˜A∗) → H, Γ2 : Dom ( ˜A∗) → K,

˜Γ1 : Dom (A∗) → K and ˜Γ2 : Dom (A∗) → H
such that for u ∈ Dom ( ˜A∗) and v ∈ Dom (A∗) we have an abstract Green
formula

〈

˜A∗u, v
〉

H
−

〈

u,A∗v
〉

H
=

〈

Γ1u, ˜Γ2v
〉

H
−

〈

Γ2u, ˜Γ1v
〉

K
. (2.1)

The trace operators Γ1, Γ2, ˜Γ1 and ˜Γ2 are bounded with respect to the graph
norm. The pair (Γ1,Γ2) is surjective onto H×K and (˜Γ1, ˜Γ2) is surjective onto
K × H. Moreover, we have

Dom (A) = Dom ( ˜A∗) ∩ ker Γ1 ∩ ker Γ2 and Dom ( ˜A) = Dom (A∗) ∩ ker ˜Γ1∩
ker ˜Γ2.

The collection {H ⊕ K, (Γ1,Γ2), (˜Γ1, ˜Γ2)} is called a boundary triple for the
adjoint pair A, ˜A.

Remark 2.1. There has been an explosion of interest in boundary triples in
the last decade, in particular around their application to partial differential
equations usually in the self-adjoint case (see, e.g. [1–3,5,12,16–19,22,23]).
Generalisations to relations have been studied in [13].

We next define Weyl M -functions associated with boundary triples (see,
e.g. [5,12]). Given bounded linear operators B ∈ L(K,H) and ˜B ∈ L(H,K),
consider extensions of A and ˜A (respectively) given by

AB := ˜A∗|ker(Γ1−BΓ2) and ˜A
˜B := A∗|ker(˜Γ1− ˜B˜Γ2)

.

In the following, we assume the resolvent set ρ(AB) �= ∅, in particular AB is a
closed operator. For λ ∈ ρ(AB), define the M -function via

MB(λ) : Ran (Γ1−BΓ2) → K, MB(λ)(Γ1−BΓ2)u=Γ2u for all u ∈ ker( ˜A∗−λ)

and for λ ∈ ρ( ˜A
˜B), we define

˜M
˜B(λ) : Ran (˜Γ1− ˜B˜Γ2) → H, ˜M

˜B(λ)(˜Γ1− ˜B˜Γ2)v=˜Γ2v for all v ∈ ker(A∗−λ).

For λ ∈ ρ(AB), the linear operator Sλ,B : Ran (Γ1 − BΓ2) → ker( ˜A∗ − λ)
given by

( ˜A∗ − λ)Sλ,Bf = 0, (Γ1 − BΓ2)Sλ,Bf = f (2.2)
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is called the solution operator. For λ ∈ ρ( ˜A∗
B), we similarly define the linear

operator ˜Sλ,B∗ : Ran (˜Γ1 − B∗
˜Γ2) → ker(A∗ − λ) by

(A∗ − λ)˜Sλ,B∗f = 0, (˜Γ1 − B∗
˜Γ2)˜Sλ,B∗f = f. (2.3)

The operators MB(λ), Sλ,B , ˜M
˜B(λ) and ˜Sλ,B∗ are well defined for λ ∈

ρ(AB) and λ ∈ ρ( ˜A
˜B), respectively.

We are now ready to define one of the main concepts of the paper, the
detectable subspaces, introduced in [7]. Fix μ0 �∈ σ(AB). Then, define the
spaces

SB := Span δ �∈σ(AB)(AB − δI)−1Ran(Sμ0,B), (2.4)

TB := Span μ�∈σ(AB)Ran(Sμ,B), (2.5)

and similarly the ‘adjoint’ pair of linear sets
˜SB∗ := Spanδ �∈σ(ÃB∗ )(ÃB∗ − δI)−1Ran(S̃μ0,B∗), (2.6)

˜TB∗ := Spanμ�∈σ(ÃB∗ )Ran(S̃μ,B∗). (2.7)

Remark 2.2. In many cases of the Friedrichs model, we will be considering, the
spaces SB and TB coincide and are independent of B. This follows from [7] or
[9, Proposition 2.9]. To avoid cumbersome notation, in many places we shall
denote all these spaces by S. We will refer to S as the detectable subspace.

In [7, Lemma 3.4], it is shown that S is a regular invariant subspace of the
resolvent of the operator AB : that is, (AB − μI)−1S = S for all μ ∈ ρ(AB).
From (2.4) and [5, Proposition 3.9], we get that the orthogonal complement of
S is

S⊥ =
⋂

B∈L(K,H)

⋂

λ∈ρ(AB)

ker(S∗
λ,B) =

⋂

B∈L(K,H)

⋂

λ∈ρ(AB)

ker
(

˜Γ2( ˜AB∗ − λ)−1
)

.

3. Basic Properties of the Friedrichs Model

In this section, we briefly introduce the Friedrichs model and collect some
results. More details and proofs of the results can be found in [7].

Let φ, ψ be in L2(R). We consider in L2(R) the operator A with domain

Dom (A)=

{

f ∈ L2(R)
∣

∣

∣ xf(x) ∈ L2(R), lim
R→∞

∫ R

−R

f(x)dx exists and is zero

}

,

given by the expression

(Af)(x) = xf(x) + 〈f, φ〉ψ(x). (3.1)

Observe that since the constant function 1 does not lie in L2(R) the domain
of A is dense. The adjoint of A is given on the domain

Dom (A∗) =
{

f ∈ L2(R) | ∃cf ∈ C : xf(x) − cf1 ∈ L2(R)
}

, (3.2)

by the formula

(A∗f)(x) = xf(x) − cf + 〈f, ψ〉φ(x). (3.3)
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Note that Dom (A) ⊆ Dom (A∗) and that cf = 0 for f ∈ Dom (A).
We introduce an operator ˜A in which the roles of φ and ψ are exchanged:

Dom ( ˜A) = Dom (A) and

( ˜Af)(x) = xf(x) + 〈f, ψ〉φ(x). (3.4)

We immediately see that Dom ( ˜A∗) = Dom (A∗) and that

( ˜A∗f)(x) = xf(x) − cf + 〈f, φ〉ψ(x). (3.5)

Thus, ˜A∗ is an extension of A, while A∗ is an extension of ˜A.
Since cf = limR→∞(2R)−1

∫ R

−R
xf(x) dx is uniquely determined, we can

define trace operators Γ1 and Γ2 on Dom (A∗) as follows:

Γ1u = lim
R→∞

∫ R

−R

u(x)dx, Γ2u = cu. (3.6)

Note that the limit in (3.6) always exists and that Γ1u =
∫

R
(u(x) − cusign(x)

(x2 + 1)−1/2)dx, which is the expression used in [7].
Then,

A = ˜A∗
∣

∣

∣

ker(Γ1)∩ker(Γ2)
and ˜A = A∗|ker(Γ1)∩ker(Γ2)

; (3.7)

moreover, the following Green’s formula holds

〈A∗f, g〉 − 〈f, ˜A∗g〉 = Γ1fΓ2g − Γ2fΓ1g, (3.8)

showing that we have constructed a boundary triple for the pair A, ˜A.
We can now determine the M -function and the resolvent. Suppose that

λ �= 0. Then, f ∈ ker( ˜A∗ − λ) if

f(x) = (Γ2f)
[

1
x − λ

− 〈(t − λ)−1, φ〉
D(λ)

ψ(x)
x − λ

]

. (3.9)

Here, the perturbation determinant D is the function

D(λ) = 1 +
∫

R

1
x − λ

ψ(x)φ(x)dx, λ �∈ R. (3.10)

Moreover, the Weyl-function MB(λ) is given by the scalar function

MB(λ) =
[

sign(λ)πi − 〈(t − λ)−1, ψ〉〈(t − λ)−1, φ〉
D(λ)

−B

]−1

, λ �∈ R.(3.11)

For the resolvent, we have that (AB − λ)f = g if and only if

f(x) =
g(x)
x − λ

− 1
D(λ)

ψ(x)
x − λ

〈

g

t − λ
, φ

〉

+cf

[

1
x − λ

− 1
D(λ)

ψ(x)
x − λ

〈

1
t − λ

, φ

〉]

, (3.12)

in which the coefficient cf is given by

cf = MB(λ)
[

−
〈

1
t − λ

, g

〉

+
1

D(λ)

〈

g

t − λ
, φ

〉 〈

1
t − λ

, ψ

〉]

. (3.13)
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Remark 3.1. There is another approach to the Friedrichs model via the Fourier
transform, which turns the perturbed multiplication operator into a rank one
perturbation of a first-order differential operator with an appropriate matching
condition at 0. See [10] for more details.

4. Spectra of Toeplitz Operators and Detectability

In our previous paper on detectable subspaces for Friedrichs model operators
[10], Hankel operators played a special role in the analysis of determining the
detectable subspace. However, for another class of examples of the Friedrichs
model, the theory of Toeplitz operators is the main instrument of our analysis.
We will discuss this type of examples and the related detectability problem
here.

We first introduce some notation. Let H+
p (C+) and H−

p (C−), 1 ≤ p ≤ ∞,
denote the Hardy spaces of p-integrable functions, analytic in the upper and
lower half-plane, respectively, where the norm is given by

‖f‖H±
p

= sup
y>0

(∫

R

|f(x ± iy)|p dx

)1/p

for p < ∞ and ‖f‖H±∞ = sup
z∈C±

|f(z)|.

Functions in the Hardy spaces can be identified with their boundary values
on the real line which lie in Lp(R) (see [20] for more details). In what follows
we will use this identification without further comment and denote the Hardy
spaces simply by H+

p and H−
p .

The operators P± : L2(R) → H±
2 given by

P±f(k) = ± 1
2πi

lim
ε→0

∫

R

f(x)
x − (k ± iε)

dx (4.1)

are the Riesz projections where the limit is to be understood in L2(R) (see
[20]).

We next give a characterisation of the space S, or, more precisely, its or-
thogonal complement for the Friedrichs model which is taken from [9, Propo-
sition 7.2]. The proof is based on the definition of S using (2.5) and the results
from Sect. 3.

Proposition 4.1. Let P± be the Riesz projections defined in (4.1) and D(λ) be
as in (3.10). Denote by D±(λ) its restriction to C± and by D± the boundary
values of these functions on R (which exist a.e., cf. [20,24]).

(1) Let φ, ψ ∈ L2(R). Then, g ∈ S⊥
if and only if

P+g − 2πi

D+
(P+φ)P+(ψg) = 0 and P−g +

2πi

D−
(P−φ)P−(ψg) = 0, (4.2)

if and only if
{

(i) (P+φ)P+(ψg)
D+

∈ H+
2 , (ii) (P−φ)P−(ψg)

D−
∈ H−

2 ,

(iii) g − 2πi
D+

(P+φ)P+(ψg) + 2πi
D−

(P−φ)P−(ψg) = 0 (a.e.).
(4.3)
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(2) If φ ∈ L2(R), ψ ∈ L2(R) ∩ L∞(R) or φ, ψ ∈ L2(R) ∩ L4(R), then g ∈ S⊥

if and only if any of the following three equivalent conditions holds:
[

D+ − 2πi(P+φ)ψ
]

g = 2πiφ[ψP−g − P−(ψg)] (a.e.), (4.4)
[

D+ − 2πi(P+φ)ψ
]

g = 2πiφ[−ψP+g + P+(ψg)] (a.e.), (4.5)
[

D+ − 2πi(P+φ)ψ
]

g = 2πiφ[P+(ψP−g) − P−(ψP+g)] (a.e.). (4.6)

We see from the proposition, e.g. from (4.2), that the operator u �→
(P+φ)P+(ψu) will play an important role in determining the detectable sub-
space. Therefore, under the assumption that φ ∈ H+

2 , we will study the oper-
ator

T : L2(R) → L2(R), Tu := φP+(ψu).

It is closely related to the Toeplitz operator

Ta : H+
2 → H+

2 , Tau := P+(au),

with symbol a := ψφ which can be found, e.g. in [4].
Throughout this section, we will make the following assumptions.

Assumption 4.2. Let φ, ψ ∈ L2(R) be such that
(i) for k ∈ R, a(k) := ψ(k)φ(k) ∈ H−

1 \{0},
(ii) φ ∈ H−

2 and
(iii) φ, ψ ∈ L∞(R).

Remark 4.3. (1) All three assumptions are independent of each other.
(2) From (i), it follows from the Uniqueness Theorem [20,24] that both φ

and ψ are nonzero a.e. on R.
(3) Under the above assumptions, we have D+(λ) ≡ 1 and P+φ = φ, P−φ =

0. In particular, from (3.12), we get that the corresponding Friedrichs
model operator has no spectrum in C+.

(4) The majority of functions a ∈ H−
1 can be decomposed as in assumption

(i). To see this, choose φ = (x − i)− 1
2−ε for some ε > 0 and a suitable

choice of the branch cut. Then, we have φ ∈ H−
2 . To satisfy the first

assumption, we then require ψ(x) := a(x)(x + i)
1
2+ε ∈ L2(R), or a ∈

L2(R; (1+x2)
1
2+ε). Therefore, the assumption that φ ∈ H−

2 only imposes
a mild extra condition on the decay of a at infinity.

(5) The third assumption is only introduced for the sake of convenience and
may be significantly relaxed. However, this would introduce more techni-
cal details which would obscure the main results. It means that a ∈ H−

∞,
that the operator T is a bounded operator in L2(R) and Ta in H+

2 , in
particular, the operators are defined on the whole space.

(6) Under the first assumption, we can express the operator Ta by Tau =
P+(aP+u).

We will now analyse the spectral properties of the operators T and Ta; by
σp we denote the set of eigenvalues of an operator. The proofs of parts (1)–(4)
are very similar to the corresponding proofs for Toeplitz operators, e.g. in [4].
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Proposition 4.4. Let φ, ψ satisfy Assumptions 4.2. Define the operators T on
L2(R) and Ta : H+

2 → H+
2 as above. Then,

(1) σp(T ) ⊇ Ran z∈C−a(z).
(2) σp(T ) = {μ ∈ C | (a − μ) is not an outer function in C−} ∪ {0}.
(3) μ �∈ Ran z∈C−a(z) implies μ belongs to the resolvent set ρ(T ).
(4) The spectrum of T is given by σ(T ) = σp(T ) = Ran z∈C−a(z).
(5) σp(T ) \ {0} = σp(Ta) \ {0}.
(6) 0 ∈ σp(Ta) if and only if a is not an outer function in C−.

Proof. Proof of (1): Take u(k) = φ(k)
k−z1

, k ∈ R, z1 ∈ C−. Then, u ∈ H+
2 and

Tu(k) = φ(k)P+

( ψφ

k − z1

)

= φ(k)P+

( a(k)
k − z1

)

= φ(k)P+

(a(k) − a(z1)
k − z1

+
a(z1)
k − z1

)

=
a(z1)
k − z1

φ(k) = a(z1)u(k)

since the first term acted on by P+ is analytic in C−, in L2(R) and is easily
seen to lie in H−

2 , while the second is in H+
2 since z1 ∈ C−.

Proof of (2): We first consider μ = 0. Choosing g = φh for h ∈ H−
2 , we

get Tg = φP+ψφh = 0, since ψφh ∈ H−
2 , due to a ∈ H−

∞. Hence, all functions
in φH−

2 are eigenfunctions to the eigenvalue 0.
Now let μ �= 0 and assume that (a − μ) is an outer function in C− (see,

e.g. [20] for the definition). We use that if f ∈ H−
∞, then f is outer if and only

if the closure of the set fH−
2 is H−

2 (Beurling Theorem, see [20]) and that the
functions (k − z0)−1 for z0 ∈ C+ span H−

2 . Therefore,

clos
(

Span z0∈C+

a(k) − μ

k − z0

)

= H−
2 .

Now assume there exists g ∈ L2(R) \ {0} with Tg = μg and set h = ψg. Then,
h ∈ (L1 ∩ L2)(R) \ {0} and aP+h = μh, or (a − μ)P+h = μP−h. Let z ∈ C+,
then

∫

R

(a − μ)P+h
dk

k − z
= μ

∫

R

P−h
dk

k − z
≡ 0.

Therefore, P+h ⊥ a−μ
k−z for all z ∈ C+, i.e.

P+h ⊥ clos
(

Span z∈C−
a − μ

k − z

)

= H+
2 .

This implies P+h = 0, and since μ �= 0 we get P−h = 0, so h = 0. As ψ is
nonzero a.e., we have g = 0, so μ is not an eigenvalue of T .

Next let μ �= 0 and assume that (a − μ) is not an outer function in C−.
This implies that there exists h ∈ H−

2 \ {0} such that h ⊥ (a − μ)H−
2 . Now

h ⊥ (a − μ)H−
2 ⇐⇒ h ⊥ (a − μ)H+

2 ⇐⇒ (a − μ)h ∈ H−
2 ,

so P+((a − μ)h) = 0 and P+(ah) = μP+h = μh (as h ∈ H+
2 ). This implies

that T (φh) = φP+(ψφh) = μφh. As φ ∈ L∞(R), φh ∈ L2(R) and it is not
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identically zero (as φ �≡ 0 and h is nonzero a.e. by the uniqueness theorem, see
[20]), so μ ∈ σp(T ) with the nonzero eigenfunction φh.

Proof of (3): We first note that as a ∈ H−
1 we have that μ �∈ Ran z∈C−a(z)

implies μ �= 0 and that infz∈C− |a(z) − μ| > 0. We want to calculate the
resolvent of T at μ. Consider (T − μ)g = v with v ∈ L2(R). Since ψ �= 0
a.e. and (a − μ)|R is invertible we get (all equalities hold a.e.)

(T − μ)g=v ⇐⇒ ψφP+(ψg)−μψg=ψv ⇐⇒ (a − μ)P+(ψg) − μP−(ψg)=ψv

⇐⇒ P+(ψg)=
ψ

a − μ
v+

μ

a − μ
P−(ψg) in L2(R). (4.7)

Note that, as μ
a−μ ∈ H−

∞, the last term lies in H−
2 . Applying P+ and P− to

(4.7), we get

P+(ψg) = P+
ψv

a − μ
, 0 = P−

ψv

a − μ
+

μ

a − μ
P−(ψg).

Thus,

ψg = P+(ψg) + P−(ψg) = P+
ψv

a − μ
− a − μ

μ
P−

ψv

a − μ

and

g =
1
ψ

P+
ψv

a − μ
− a − μ

ψμ
P−

ψv

a − μ
=

v

a − μ
− a

μψ
P−

ψv

a − μ
.

Formally, we have for arbitrary v ∈ L2(R) that

g = (T − μ)−1v =
v

a − μ
− φ

μ
P−

ψv

a − μ
. (4.8)

Since φ, ψ ∈ L∞(R), the operator defined by the r.h.s. is bounded in L2(R).
Checking the formal calculation of the resolvent for any v ∈ L2(R),

(T − μ)
(

v

a − μ
− φ

μ
P−

ψv

a − μ

)

= φP+
ψv

a − μ
− μv

a − μ
− φ

μ
P+

(

aP−
ψv

a − μ

)

︸ ︷︷ ︸

=0

+φP−
ψv

a − μ

= φ
ψv

a − μ
− μv

a − μ
= v.

Therefore, the r.h.s. of (4.8) is the right inverse of the operator (T − μ). Sim-
ilarly we see that the same expression gives the left inverse,

(T − μ)v
a − μ

− φ

μ
P−

ψ(T − μ)v
a − μ

=
φP+(ψv)

a − μ
− μv

a − μ
− φ

μ
P−

[

ψφP+(ψv)
a − μ

− μψv

a − μ

]

=
φP+(ψv)

a − μ
− μv

a − μ
− φ

μ
P−

[

aP+(ψv)
a − μ

− μ(P+(ψv) + P−(ψv))
a − μ

]
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=
φP+(ψv)

a − μ
− μv

a − μ
− φ

μ
P−

[

P+(ψv) − μP−(ψv)
a − μ

]

=
φP+(ψv)

a − μ
− μv

a − μ
+

φ

a − μ
P−(ψv)

=
φψv

a − μ
− μv

a − μ
= v,

so T − μ is invertible, proving (3).
Now, (4) follows from (1) and (3), as σ(T ) ⊆ Ran z∈C−a(z) ⊆ σp(T ) ⊆

σ(T ), so all three sets must coincide.
Proof of (5): We again solve Tg = μg. As ψ �= 0 a.e., this is equivalent to

aP+(ψg = μψg. Setting h = ψg this gives aP+h = μh.
Note that if h ∈ L2(R) and μ �= 0 with aP+h = μh, then h = ψ φP+h

μ ∈
ψL2(R), so g = h/ψ ∈ L2(R). Thus, for nonzero μ, Tg = μg is equivalent to
aP+h = μh. This reduces the problem to considering Toeplitz operators:

aP+h = μh ⇐⇒
{

P+(aP+h) = μP+h,
P−(aP+h) = μP−h,

⇐⇒
{

P+(aP+h) = μP+h,
P−h = 1

μP−(aP+h).

Thus, P+h determines P−h uniquely and we only need to consider the first
equation in H+

2 which shows equality of the point spectra of T and Ta away
from 0.

Proof of (6): Consider Tah = 0 for h ∈ H+
2 \ {0}. Then,

P+(ah) = 0 ⇐⇒ ah ⊥ H+
2 ⇐⇒ h ⊥ aH+

2 ⇐⇒ h ⊥ aH−
2 .

The existence of such a non-trivial h is then equivalent to a not being an outer
function in C−. �

Example 4.5. We illustrate Proposition 4.4 (4) with an example: We consider
a case where we have no nonzero eigenvalues on the boundary of σp(T ), as
(a − μ) is outer. Let φ(k) = (k + i)−1 and ψ(k) = (k + i)(k − i)−4. Then,
φ, ψ ∈ L2(R) ∩ L∞(R), φ ∈ H−

2 and a(z) = (z − i)−4 ∈ H−
1 , so Assumptions

4.2 are satisfied. To determine Ran z∈C−a(z), we consider a(t), t ∈ R and take
the inside of the curve (Fig. 1).

Let

x + iy :=
1

(t − i)4
=

(t + i)4

(t2 + 1)4
=

t4 − 6t2 + 1
(t2 + 1)4

+ i
4t(t2 − 1)
(t2 + 1)4

.

We first check that all nonzero points inside the inner curve are in the range.
If y = 0 and x is small and negative (so 4

√
−x > 0),

1
(z − i)4

= x ⇐⇒ (z − i)4 =
1
x

⇐⇒ z − i =
1

4
√

−x
e

i(π+2πm)
4 , m ∈ Z,

so, e.g. for m = 2, z = i+ 1
4√−x

e
5iπ
4 ∈ C− for |x| sufficiently small, so the point

x lies in Ran z∈C−a(z). Similarly, we see that all points between the inner
and outer curve lie in Ran z∈C−a(z). Next, we check the points on the inner
curve (corresponding to |t| > 1): Let t > 1 and (t − i)−4 = (z − i)−4. Then,
z−i = (t−i)ei 2πm

4 , m ∈ Z. With m = 3, z = i+(t−i)(−i) = −1+(1−t)i ∈ C−.
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Figure 1. The range of a(t) = (t − i)−4 for t ∈ R with the
section around the origin enlarged

Therefore, the boundary of the set Ran z∈C−a(z) consists of the outer
curve (|t| ≤ 1) together with the isolated point 0 (corresponding to t = ∞).
For these μ, the function (a−μ) is outer in C−. For μ = 0 this is clear. For all
other such μ, (a − μ) takes values outside a cone. This implies that (a − μ)k

is outer for some sufficiently small positive k which implies that (a − μ) is
outer, since any Herglotz function (i.e. analytic functions on C+ with positive
imaginary part) is outer.

We finally consider the behaviour at t = ±1 and t = ±∞. As t → ±∞,
x ∼ t−4 and y ∼ 4t−5, so y ∼ 4x5/4. At t = 1, x ∼ −4−8(t−1)

16 , y ∼ 8(t−1)
16 , so

y ∼ −x− 1
4 , and using symmetry of the range of a w.r.t. complex conjugation,

we get a cone of angle π/2 at this point.

Example 4.6. The next example shows that in statement (2) of Proposition
4.4, it is necessary to add the point {0}, as it is not always contained in the
set {μ : (a − μ) is outer}: Let α0 ∈ R and consider

ψ(z) =
(z − α0)(z + i)

(z − i)3
e

i
z , φ(z) =

1
z + i

, z ≤ 0.

Then, φ ∈ H−
2 , φ, ψ ∈ (L2 ∩ L∞)(R),

a(z) =
z − α0

(z − i)3
e

i
z ∈ H−

1 ∩ H−
∞
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and 0 /∈ Ran z∈C−a(z). Due to the singular exponential factor, a = (a − 0) is
not an outer function.

In our main theorem on detectability, we will make use of the canonical
Riesz–Nevanlinna factorisation theorem (see [20, Chapter IV]). The factorisa-
tion into inner and outer functions was actually first published in 1928 in a
paper by V.I. Smirnov (see [25]). For the reader’s convenience, we state it here
for functions in the lower half plane: If f �≡ 0, f ∈ H−

p for p ≥ 1, then up
to constant multiples, f can be factorised uniquely as f(z) = B(z)Σ(z)G(z),
where B(z) is a Blaschke product with

B(z) =
∏

k

(

eiθk
z − zk

z − zk

)

for z < 0,

where zk are all the roots of f in C− counted with their multiplicity and the
real θk are chosen so that eiθk(i − zk)/(i − zk) ≥ 0, i.e. eiθk is a normalising
factor; Σ(z) is the singular factor given by

Σ(z) = exp
(

1
π

∫ ∞

−∞

(

i

z − t
+

it

t2 + 1

)

dσ(t)
)

with dσ(t) ≥ 0 a singular measure (w.r.t. Lebesgue measure) satisfying
∫ ∞

−∞
dσ(t)
t2+1 < ∞; and G(z) is the outer factor given by

G(z) = exp
(

− i

π

∫ ∞

−∞

(

1
z − t

+
t

t2 + 1

)

log |f(t)| dt

)

.

We next introduce a scaling factor (or coupling constant) α ∈ C \ {0}
and replace ψ by αψ. We denote the corresponding detectable subspace by Sα.
This allows us to study the detectable subspace while we vary the parameter
α. Moreover, we introduce the defect def (Sα) to be the dimension of the
orthogonal complement S⊥

α , i.e.

def (Sα) := dimS⊥
α .

Theorem 4.7. Let φ, ψ satisfy Assumption 4.2. Define the operators T on L2(R)
and Ta : H+

2 → H+
2 as above and let μα = (2πiα)−1. Then,

(1) def (Sα) = dim ker (Ta − μα). Moreover,

S⊥
α = (ker(T − μα))∗ = [ψ−1(μαP+ + P−aP+) ker (Ta − μα))]∗.

Here, we use (ker(T − μα))∗ to denote the set of complex conjugates of
functions in ker(T − μα). This will be used to distinguish it from the
closure of a set in cases where the meaning may be ambiguous.

(2) We have that S⊥
α = φ

(

H−
2 � (a(z) − μα)H−

2

)

. In particular, this implies
that the space φ

(

H−
2 � (a(z) − μα)H−

2

)

is a closed subspace.
(3) Consider the canonical factorisation of (a(z) − μα) = Bα(z)Σα(z)Gα(z)

in C− for a fixed α ∈ C \ {0} where Bα is a Blaschke product containing
all zeros of (a(z) − μα) in C− counted with their multiplicity, Σα is the
singular part and Gα is an outer function. Then,

(a − μα)H−
2 = Bα(z)Σα(z)H−

2 ≡ Bα(z)Σα(z)H−
2 .
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and

def (Sα) =
{

∞ if Σα �≡ 1,
number of roots of Bα(z) if Σα ≡ 1.

(4.9)

Note that the number of roots of Bα(z) is counted with multiplicity and
may be infinite.

Proof. Proof of (1): As a(z) ∈ H−
1 \{0}, we have φ, ψ �= 0 a.e. Moreover, for

g ∈ L2(R) we have from (4.2) and using φ ∈ H+
∞

g ∈ S⊥
α ⇐⇒ P+g = 2πiαφP+(ψg) and P−g = 0 ⇐⇒ g = 2πiαφP+(ψg).

We rewrite this as

Tg = φP+(ψg) = μαg, (4.10)

giving S⊥
α = (ker(T − μα))∗.

Next let g ∈ S⊥
α and set h = ψg. Then, as ψ ∈ L∞(R) and is nonzero

a.e., we have h ∈ L2(R) and

g ∈ S⊥
α ⇐⇒ ψφP+h = μαh, h ∈ L2(R) ⇐⇒ aP+h = μαh

⇐⇒
{

P+(aP+h) = μαP+h,
P−(aP+h) = μαP−h.

For the first equivalence, we note that any L2-solution h of ψφP+h = μαh
with μα �= 0 is divisible by ψ and h/ψ ∈ L2(R).

This shows that P+h uniquely determines P−h via P−h = 1
μα

P−(aP+h)
and it is sufficient to consider P+(aP+h) = μαP+h which gives S⊥

α ⊆ [ψ−1(μα

P+ + P−aP+) ker (Ta − μα)]∗. On the other hand, given h+ ∈ ker (Ta − μα),
set g = φh+. Then,

Tg = φP+(ψg) = φP+(ah+) = μαφh+ = μαg

gives the reverse inclusion, since S⊥
α = (ker(T − μα))∗.

Proof of (2): Using the characterisation (4.10), we need to study the
equation

(T − μα)g = φP+(ψg) − μαg = 0.

We consider the equation pointwise and multiply by ψ. Setting h = ψg, we get
h ∈ L2(R) and

aP+h − μαh = 0. (4.11)

By virtue of (4.11), the fact that a is divisible by ψ and μα �= 0, h/ψ =
g ∈ L2(R). Now, using h = P+h + P−h, we find (a − μα)P+h = μαP−h.
Thus, (a − μα)P+h ⊥ H+

2 , or P+h ⊥ (a − μα)H+
2 , which implies P+h ∈

H+
2 � (a − μα)H+

2 . From (4.11), this implies

h ∈ a

μα

(

H+
2 � (a − μα)H+

2

)

and dividing by ψ (which is nonzero a.e.), we get

g ∈ φ

μα

(

H+
2 � (a − μα)H+

2

)

= φ
(

H+
2 � (a − μα)H+

2

)

.
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Taking complex conjugates and using (H+
2 )∗ = H−

2 implies one set inclusion.
Conversely, let g ∈ φ

(

H+
2 � (a − μα)H+

2

)

. Then, g = φf+ for some f+ ∈
H+

2 � (a − μα)H+
2 . Then,

φP+(ψg) − μαg = φP+(ψφf+) − μαφf+ = φ(P+af+ − μαf+)

= φP+((a − μα)f+) = 0,

as (a − μα)f+ ∈ H−
2 . Hence, g ∈ S⊥

α by part (1).
Proof of (3): Since (a − μα) ∈ H−

∞, we have the canonical factorisation

a(z) − μα = Bα(z)Σα(z)Gα(z).

In C−, BαΣα is an inner function and Gα is an outer function. As Gα is outer,
by Beurling’s Theorem, the closure

(a − μα)H−
2 = Bα(z)Σα(z)H−

2 .

Thus, by part (2), S⊥
α = φ

(

H−
2 � Bα(z)Σα(z)H−

2

)

. This gives (4.9), since
φ �= 0 a.e. �

We conclude the paper by showing by an explicit construction that the
defect number def (Sα) may take any positive integer value, as well as zero
and infinity.

Example 4.8. We need to construct the parameters φ, ψ of our Friedrichs
model appropriately. In a first step, we construct the symbol a. For fixed
α ∈ C \ {0}, we consider a canonical decomposition of (a − μα) in C− of the
following form: Choose any Ba with zeroes in a finite box and the singular
measure in Σa with bounded support. Then, BaΣa → 1 at infinity. Choose

Ga(z) = −μα
(z − a1)(z + σ)

z2 + τz + ρ
,

where a1 ∈ C+, σ ∈ C−, τ ∈ C− and real ρ << −1.
Being contractive in C−, the product BaΣa behaves like e

b
z with b ∈ C+

at ∞. We can choose the constants above such that a1 − σ = b − τ ∈ C+.
Therefore, a(z) = O(1/z2) at ∞. Defining φ(z) = (z − i)−1 ∈ H−

2 , we have
φ ∼ 1/z at ∞ , so ψ := a/φ = O(1/z) belongs to L2(R).

Choosing ρ sufficiently negative, we get that both roots of z2 + τz + ρ,
approximately −τ/2±√−ρ, lie in C+. This gives Ga ∈ H−

∞ and since both its
roots a1 and −σ lie in C+, Ga is outer in C−. By Theorem 4.7, the number
of roots of Ba in C− equals def S provided Σa ≡ 1 and therefore all natural
numbers and infinity are possible as indices by proper choice of the Blaschke
factor Ba.
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