
Wang, Pan, Wang, Shuo, Peng, Danlin, Wu, Chao, Wei, Zhen, Childs, Peter, 
Guo, Yike and Li, Ling (2020) Neurocognition-inspired Design with Machine 
Learning.  Design Science, 6 (e33). 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/82586/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1017/dsj.2020.23

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/82586/
https://doi.org/10.1017/dsj.2020.23
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


For Peer Review

Neurocognition-inspired Design with Machine Learning

Journal: Design Science

Manuscript ID DS-RA-2019-0043.R4

Manuscript Type: Research Article

Date Submitted by the 
Author: 15-Aug-2020

Complete List of Authors: Wang, Pan; Imperial College London, dyson school of design 
engineering; Imperial College London,  Data science institute
Wang, Shuo; Imperial College London
Peng, Danlin; Imperial College London, Computing
Chen, Liuqing; Imperial College London, Dyson School of Design 
Engineering
Wu, Chao; Zhejiang University, Management
Wei, Zhen; Imperial College London
Childs, Peter; Imperial College London, Dyson School of Design 
Engineering
Guo, Yike; Imperial College London, Computing, Data Science Institute; 
Hong Kong Baptist University
Li, Ling; University of Kent, computing

Keywords: AI design, Machine learning, Design process, Neurocognition, Generative 
adversarial networks

Abstract:

Generating design via machine learning has been an on-going challenge 
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applied to randomly generate images in fashion, furniture and product 
design. However, such deep generative methods usually require a large 
number of training images and human aspects are not taken into 
account in the design process. In this work, we seek a way to involve 
human cognitive factors through brain activity indicated by 
electroencephalographic measurements (EEG) in the generative process. 
We propose a neuroscience-inspired design with machine learning 
method where EEG is used to capture preferred design features. Such 
signals are used as a condition in generative adversarial networks 
(GAN). Firstly, we employ a recurrent neural network (LSTM - Long 
Short-Term Memory) as an encoder to extract EEG features from raw 
EEG signals; this data is recorded from subjects viewing several 
categories of images from ImageNet. Secondly, we train a GAN model 
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Abstract 

Generating designs via machine learning has been an on-going challenge in computer-aided 

design. Recently, deep learning methods have been applied to randomly generate images in 

fashion, furniture and product design. However, such deep generative methods usually require 

a large number of training images and human aspects are not taken into account in the design 

process. In this work, we seek a way to involve human cognitive factors through brain activity 

indicated by electroencephalographic measurements (EEG) in the generative process. We 

propose a neuroscience-inspired design with a machine learning method where EEG is used to 

capture preferred design features. Such signals are used as a condition in generative 

adversarial networks (GAN). Firstly, we employ a recurrent neural network (LSTM - Long 

Short-Term Memory) as an encoder to extract EEG features from raw EEG signals; this data 

is recorded from subjects viewing several categories of images from ImageNet. Secondly, we 

train a GAN model conditioned on the encoded EEG features to generate design images. 

Thirdly, we use the model to generate design images from a subject’s EEG measured brain 

activity. To verify our proposed generative design method, we present a case study, in which 

the subjects imagine the products they prefer, and the corresponding EEG signals are recorded 

and reconstructed by our model for evaluation. The results indicate that a generated product 

image with preference EEG signals gains more preference than those generated without EEG 

signals. Overall, we propose a neuroscience-inspired AI (artificial intelligence) design method 

for generating a design taking into account human preference. The method could help 

improve communication between designers and clients where clients might not be able to 

express design requests clearly. 

 

 

Keywords: Deep learning, Neurocognition-inspired design, Neuromarketing, Cognitive 

understanding, Generative adversarial networks, Personalised design 

 

INTRODUCTION 

Automatically generating a design with preferences has been an on-going challenge in the 

design domain. Many deep learning methods have been proposed to generate designs. For 

example, image style transfer (Gatys et al. 2016; Efros & Freeman 2001; Dosovitskiy & Brox 

2016; Isola et al. 2017a) can be used to generate an image with the original content but 

different style features. Generative bionics design (Yu et al. 2018) employs an adversarial 

learning approach to generate images containing both features from the design target and 

biological source. However, these AI image generation methods do not consider human 

aspects, which means the results are generated in variations but lack human cognition input. 

Consideration of human aspects in a design process is vital in the design field (Vicente 2013; 

Carroll 2002; Cooley 2000). A person’s preference for a design can be significant and 

intuitive, and sometimes an individual may not precisely know what their real preferences are. 

Therefore, being able to capture human preference (as an embodiment of design solution) and 

integrate the preference into the generation process may lead to a significant improvement in 

AI-aided generative design. Recent advancements in neuroscience, especially deep learning-
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based brain decoding techniques (Tirupattur et al. 2018; Shen et al. 2017; Palazzo et al. 2017) 

show potential for reconstructing a seen or imagined image from brain activities recorded by 

electroencephalogram (EEG), functional magnetic resonance imaging (fMRI) and Near-

Infrared Spectroscopy (NIRS). This has provided the impetus to explore a novel 

neurocognition-inspired AI design method as presented in this paper by filling the gap 

between human being’s brain activity and AI visual design. 

 

In this study, we explore whether the brain signal (EEG)-informed generative method could 

capture human preference. An attempt has been made to add an aspect of human cognition 

into a deep learning design process to generate design images taking account of a person’s 

preference. As human cognition involves many factors, to limit the scope of cognition here, 

only human preference for potential styles has been explored. A neuroscience-inspired AI 

design method is proposed, with a generative adversarial networks (GAN) (Goodfellow et al. 

2014) framework conditioned on brain signals. This framework enables cognitive visual-

related styles to be reconstructed. Figure 1 illustrates a schematic of the proposed process. 

The framework is composed of two stages, a model training stage and a utilising stage. In the 

training stage, firstly, an image presentation experiment is used to explore the relationship 

between the presented image and corresponding brain signals when viewing the image. An 

encoder is trained to extract the features from raw EEG data. Secondly, a generator is trained 

using a GAN framework conditioned on the encoded brain signal features to reconstruct the 

presented image. After we obtain a fully converged model, in the utilising stage, the trained 

model is then used to reconstruct the preferred design images in an imagery experiment. 

Given the brain signals related to the imagination of preferred design, the trained model could 

be used to generate images that probably contain the preferences. 

Both visual examination and quantitative experiments were conducted for a case study and it 

was shown that the proposed neuroscience-inspired AI design method could generate some 

design images people preferred. The experiment successfully demonstrated that desired 

design images can be generated using the brain activity signals recorded when subjects are 

imagining a product they prefer. The neuroscience-inspired design approach could be 

embedded directly into other design processes with the understanding of design cognition 

incorporated. For example, by using this approach in fashion and product design, one could 

explore the cognition of possible preference on materials, patterns and shapes. Such learned 

brain states could contribute to better design choices. This approach could potentially also 

provide a new way for personalised design, for example, a personalised gift design with 

customisation for the recipient.  

 

The main contributions of this paper are summarised as follows. 

1) A neuroscience-inspired AI design method to generate designs taking into account the 

subject’s preference by employing EEG measured brain activity. To verify whether the 

generated product images with preference EEG signals gain more preference than those 

generated without EEG signals. 

2) A new framework for communicating the cognitive understanding of customer 

requirements, enabling, for example, designers to have a visual understanding of what their 

clients want or their ideas through pictures not words.  
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Figure 1. Overview of the process of brain signal conditioned design image generation. 

2 RELATED WORK 

Three scientific areas have inspired this research. In the first section, machine learning 

technology for generating art and design works have been reviewed, and the problem of 

current methods are described. Secondly, to solve the current AI generative design problem, 

neuroscience-inspired design methods are explored. Current neuroscience methods do provide 

some means and potential for capturing a human brain’s activities and representing design 

cognition. In order to transform brain signals into visual designs, the third area considered 

concerns using deep neural networks to classify, generate and reconstruct visual images from 

brain activities (EEG & fMRI). Taking inspiration from these three areas of study, a 

framework is proposed where brain activities are adopted as input to introduce human 

cognition in a GAN-based generative design process.  

2.1 Deep learning for design 
 

Regarding the purpose of this study, it is worth discussing the overlap between design science 

and computational creativity. Computational creativity refers to a system that exhibits 

behaviours that unbiased observers would deem to be creative (Colton and Wiggins, 2012). 

Since deep learning has become more prevalent and powerful in the computer science field, 

systems have become more intelligent and able to complete creative tasks, such as visual art, 

poetry, music and design (Loughran and O’Neill, 2016; Chen et al., 2019). By summarising 

perspectives from psychology, philosophy, cognitive science, and computer science as to how 

creativity can be measured both in humans and in computers, Lamb et al. make 

recommendations for how to evaluate computational creativity from perspectives including 

person, process, product and press (Lamb et al., 2018). This is in line with the purpose of our 

research, as we attempt to reveal the implicit connection between person and product by 

investigating whether a human’s preference can be embodied in AI designs. In previous GAN 

based AI design research, for example, the approach for design ideation by Chen (2019), 

human’s judgement is mainly involved in the post process of AI generation, which results in 

inappropriate evaluation in terms of computational creativity.  

 

Several deep neural network approaches for image generation have been proposed recently, 

such as natural image generation (Brock et al. 2018), human face generation (Karras et al. 

2018), and the neural style transfer model (Gatys et al. 2016;  Johnson et al. 2016; Li & Wand 

2016; Zhu et al. 2017) which can generate images which contain the content of the given 
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image with style features from the artistic images. Isola et al. (Isola et al. 2017b) investigated 

the image transfer problem which generates new images from photos and applied also to 

human-drawn sketches. Karras et al. (2018) (Karras et al. 2018) proposed an image-to-image 

translation method which translated an image from a source domain X to a target domain Y 

(using unpaired examples). An image compositing method was proposed by Laun et al. 

(2018) (Luan et al. 2018). This copied an element from a photo and pasted it into a painting 

while maintaining spatial and inter-scale statistical consistency. Dong et al. (Dong et al. 2017) 

explored semantic image manipulation by generating realistic images from an input source 

and a target text description that not only match the content of the description but also 

maintain text-irrelevant features of the source image. Elgammal et al. (Elgammal et al. 2017) 

used creative adversarial networks to automatically generate artwork by maximising the 

deviation from established styles and minimising the deviation from art distribution. In a more 

high-level exploration, researchers have started to apply deep learning in auto design 

generation. Yu et al. (2018) (Yu et al. 2018) proposed DesignGAN to generate a shape-

oriented bionic design that maintains the shape of the design target and combines the features 

from the biological source domain. Also inspired by bionic design, Duncan et al. (Duncan et 

al. 2015) presented a method for generating zoomorphic shapes by merging a man-made 

shape and an animal shape. One method employed by Bernhardsson (Bernhardsson 2016) 

generates font designs by walking through their latent space. Sbai et al. (Sbai et al. 2018) use 

a generative adversarial learning framework to generate inspirations for fashion design, 

creating original and compelling fashion designs to serve as an inspirational assistant.  

 

In addition to the direct image generation technology summarised above, there are also some 

methods considered to improve the quality of an image, such as the image inpainting method 

investigated by Liu et al. (Liu et al. 2018), which could fill in ‘holes’ in an image. This uses 

partial convolutions, where the convolution is masked and renormalised to be conditioned on 

only valid pixels. Also, the image colourisation method was investigated by Nazeri et al. 

(Nazeri et al. 2018), which could generate an image with plausible colours, based on the 

adversarial learning framework. Some approaches have enabled the development of design 

applications, for example, Prisma (Anon n.d.), a photo editor that turns a photo to an artwork.  

 

However, these approaches mainly focus on automatically generating new art and design 

images with the features from input images. A problem with this type of generative creativity 

is the post-generation evaluation since the generation is completely random. How to make a 

selection from a large number of automatically generated designs remains a challenge. The 

user is a crucial part of the traditional design process; therefore, consideration of human 

aspects in the design process is essential, which is missing in the current auto AI design 

generation approaches. How to generate a desirable design with the preference from clients is 

a key question in our research. To integrate human aspects into the design process, we 

explored neuroscience-inspired design and a deep learning framework conditioned on brain 

signals is described in the next two subsections. 

2.2 Current Neuroscience-Inspired Design 
Non-invasive methods for measuring human brain activity that have been developed include 

Electroencephalograph (EEG), Functional Magnetic Resonance Imaging (fMRI) and Near-

Infrared Spectroscopy (NIRS). EEG measures subcranial electrical signals from electrodes in 

contact with the scalp. Neuroscience has inspired many developments in design, such as 

understanding cognitive neurofeedback from clients, building and developing new products 

and evaluating advertising. For example, neuroimaging has been used in understanding 

packaging design to help explain how packaging design confuses the consumer (Basso et al. 

2014). Velasco et al. have presented an experimental research programme on evaluating the 
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impact of different orientation of design elements in product packaging (Velasco et al. 2015). 

Furthermore, to understand the consumer psychology of a brand, Plassmann et al. have 

reviewed the applications of marketing and also describe issues for future research 

(Plassmann et al. 2012). In a review of neuroscience-inspired design (Spence 2016), one 

problem of commercial neuromarketing was noted that the results provided by neuroimaging 

are a clear answer to a ‘black-and-white’ question rather than a discriminating analysis of a 

‘shades of grey’ question. Inspired by this review, the potential of introducing neuroscience 

into a deep learning framework has been explored, where the machine could not only provide 

a response to a ‘black-and-white’ question but also show other potential visualisations relating 

to a ‘shade of grey’ intuition.  

2.3 Brain signal conditioned deep learning framework 
 

Machine learning methods have been applied to both EEG and fMRI to help understand 

visual images, for example, Bashivan et al. (Bashivan et al. 2015) proposed an approach for 

learning the representation from multi-channel EEG time-series. Spampinato et al. 

(Spampinato et al. 2017) have developed a visual object classifier driven by human brain 

signals. Distinct from Spampinato et al. who used EEG data, Horikawa et al. explored object 

decoding from fMRI patterns (Horikawa & Kamitani 2017), which shows that the latent 

representation of real images (CNN1-8, HMAX1-3, GIST and SIFTbBOF) can be predicted 

from the fMRI signals. Both of these EEG and fMRI results show the potential of brain-based 

information retrieval. Furthermore, researchers have tried to generate related visual 

information from the decoded information of brain signals. To decode a brain image from 

EEG signals, Palazzo et al. have combined generative adversarial networks with a recurrent 

neural network model to process EEG signals and reconstructed the viewing images of 

participants (Palazzo et al. 2017). Kavasidis et al. (Kavasidis et al. 2017) proposed a method 

for generating images using visually-evoked signals recorded through EEG. In addition to 

EEG, fMRI signals are also widely used. Shen et al. have successfully demonstrated that 

visual images can be reconstructed from decoded fMRI signals (Shen et al. 2017; Shen et al. 

2018). An unsupervised model using variational autoencoder (VAE) to model and decode 

fMRI activity in the visual cortex was proposed by Han et al. (Han et al. 2019). This work 

showed the possibility of projecting both images and corresponded fMRI signals into latent 

spaces.  

These generative brain decoding methods provide inspiration to explore a new method for 

design cognitive analysis which takes into account human brain activity. However, these 

methods are focusing on a brain decoding approach, aiming at reconstructing the mental 

image of what people think about. There is a lack of exploration of generating a design image 

with consideration of human cognition. Previous research has explored reconstruction of seen 

images, but the principles could also be relevant to explore human imagination.  

3 METHOD: HUMAN-IN-THE-LOOP DESIGN WITH MACHINE 

LEARNING FRAMEWORK 

How to involve human cognition into AI design process to generate a design considering 

personalised preference is the focus of the research presented here. Human preference can be 

captured by measuring EEG signals. The process includes two phases: a training phase to 

learn a generating function 𝐺𝐵𝐷: 𝐵 → 𝐷 which maps the EEG measured brain activity 𝐵 to the 

corresponding design image 𝐷, and a design phase to utilise the learned generating function 

and particular brain signal to generate a product involving human preference. 
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Figure 2. Training an EEG conditioned generative model 

In the training stage, EEG signals were recorded when subjects were viewing the ‘ground-

truth’ images of a design. Subsequently, the brain signals 𝐵 are encoded into the EEG features 

related to the design semantic of the seen image by an LSTM-based EEG encoder. The EEG 

features are embedded into the GAN-based generator as the generation condition, which 

forces the generative model to reconstruct images 𝐷 that contain the same design semantic of 

the original seen image. In the utilising stage, the subjects are asked to imagine an example of 

a product or a design they prefer, and the measured EEG signal which may contain favoured 

design features of the subjects will then be encoded as the input of the trained generator. The 

design containing the design features that correspond to the subject’s imagination will then be 

created by the generator. Figure 2 illustrates how the EEG encoder and image generator can 

be trained. Details about how this framework is implemented will be introduced in the 

following sections.  

4. EXPERIMENT IMPLEMENTATION 

Details of the experiments for the model training process are presented in this section. 

4.1 Participants and equipment 
The EEG study included 6 right-handed student volunteers (3 females and 3 males) aged 

between 17-30 years old, with normal or corrected-to-normal vision. All participants gave 

informed consent to take part in the EEG experiment and had considerable training in EEG 

experiments. Our EEG recordings were performed using an electrode cap with 64 Ag/AgCI 

electrodes which were mounted according to the extended international 10/20 system. An 

online 50 Hz notch filter was added to avoid power line signal contamination. 

 

Signals were recorded by using a Neuroscan Synamp2 Amplifier (Scan 4.3.1; Neurosoft Labs 

Inc., Sterling, Virginia, USA) and sampled at 1000 Hz. Eye blinks were recorded from left 

supra-orbital and infra-orbital electrodes, whereas the horizontal eye movement EEG was 

recorded from electrodes placed 15 mm laterally to the left and right external canthi. The 

forehead (AFZ) was used for the ground electrode, and the reference electrode was attached to 

the left mastoid. All electrode’s impedances were maintained below 5 kΩ. 
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4.2 Visual stimuli 
In this experiment, the stimuli consisted of 5 different categories of product images (handbag, 

headset, mug, watch and guitar) from ImageNet (Fei-Fei et al. 2010), which are widely 

recognisable and common products to help ensure the participants had similar familiarity with 

the stimuli; each category included 50 images. The size of the pictures was resized to 

500x500 pixels and cropped to the centre of the screen.  

4.3 Experiment design 

 

Figure 3. Image presentation experiment. Images were presented in the centre of the display with a 

central fixation cross. Ten images were shown per-block with one repeated image which required 

subjects press button when saw this image to maintain their attention.  

 

Figure 4. Preference imagery experiment. The onset of each block was started by a central fixation 

cross. The 8000 ms imagery periods were signalled by auditory beeps. Before the first beep, subjects 

were required to visualise the preferred product for 4000 ms as the preparation of the imagery after. In 

the end of each block, subjects were required to evaluate the vividness of their imagination by 

pressing the button.  

Two separate data collection sessions were conducted consisting of an image presentation 

experiment and the preference imagery session. The data collected from image presentation 

session are used for model training and those collected from preference imagery session are 

used in the model utilisation stage. In order to ensure the quality of the data, an electrode 

connection checking session was added before each run. During the experiment, the subject 

was accommodated in a sound-attenuated and electrically shielded room and seated 

comfortably. The stimuli images were presented in the centre on the screen and at a fixed 

distance. In addition, a press button pad was provided for the subjects to give feedback during 

the experiment. Subjects were able to stop the experiment at any time.  

 

In the image presentation session (Fig. 3), 5 categories of images were presented in 5 runs, 

each run consisting of 1 category of 50 images and separated in 5 blocks, each block with 10 

different images and 1 repeated image. The subjects were required to view the images and 
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press the button on the board when they saw the repeated images to maintain their attention. 

At the beginning of each block, a fixation red cross was presented in the central of the screen 

for 1000 ms. At the end of each run, 3000 ms were added as a rest time. In the preference 

imagery session (Fig. 4), the subjects were required to visually imagine their preferred 

products with a prompt such as ‘Imagine a bag you like.’ and follow the instructions that 

appear on the screen. This session consisted of 5 runs and each run contained 10 blocks. 

Firstly, a fixation red cross was shown in the centre of the screen for 1000 ms. After this, the 

instruction was presented in the middle of the screen, and the subjects were asked to visualise 

the preferred visual look of the product. Following an audible beep, they were asked to close 

their eyes for an 8 s imagination period. After this, the subjects were required to evaluate the 

correctness and vividness of their mental imagery on a five-point scale (Very vivid, Fairly 

vivid, Rather vivid, Not vivid, and Cannot correctly recognise the target) by pressing the 

button of the box. The items evaluated as ‘Cannot correctly recognize the target’ are removed 

from the dataset. In the end, subjects were also required to draw down the image they 

imagined after each block. 3000 ms refreshing time was added before and after each block. 

The subjects could stop the experiment at any time during the experiment.  

 

After we obtained the raw data, the data were preprocessed by EEGLAB. The preprocessing 

procedure includes 4 stages, the channel selection stage, the epoch extraction and remove 

baseline stage, the rejecting artefacts stage, and a data filtering stage. The channel selection 

was aimed at rejecting some bed signal channels which may influence data analysis. Then we 

extracted epoch according to the event markers and removed the baseline by subtracting the 

value of the first data from the original data. In the rejecting artefacts stage, we run both 

artefact correction (Zeng et al. 2013) and independent component analysis (ICA) (Zeng et al. 

2013) to reject the irrelevant noise artefact such as ocular artefacts and muscle artefacts. In the 

end, we applied some filters to remove the unwanted frequency and to maintain meaningful 

waves for visual recognition and mental imagination. 

4.4 Generative model 

4.4.1 Training stage one - EEG feature encoder 

The objective of this work is to map the stimulated brain signals into the corresponding latent 

representation of seen images, and thus to build a model to extract EEG features as correlated 

to the image features as possible. 

 

Figure 5. EEG feature encoder 
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A recurrent neural network using a Long Short-Term Memory (LSTM) (Hochreiter and 

Schmidhuber 1997) cell was employed to track the temporal dynamics in the EEG data which 

contains fundamental information for EEG activity comprehension. LSTMs are common 

techniques that have been developed to improve long-term dependency modelling. The brain 

signal is a long time sequence with very high time dependency, which means the 

interpretation of the brain activity is not only influenced by the previous 1-millisecond signal 

but also influenced by the brain signal long before. Therefore, the LSTM was used to learn a 

long-term dependency. Figure 5 illustrates the architecture of our EEG feature encoder. This 

is made up of a standard LSTM layer and two fully-connected layers (linear combinations of 

input, followed by ReLU nonlinearity). At each time step 𝑡, the data of all EEG channels at 

time 𝑡 is fed into the LSTM layer; The output of the LSTM layer at the last time step is used 

as the input of the fully-connected layers, ReLU nonlinearity is appended after the first fully-

connected layer and a Softmax layer is appended after the last fully-connected layer. The 

learning rate is initialized to 0.0001 and gradient descent is used to learn the model's 

parameters end-to-end. The dataset is split into 3 sets: 80% EEG data for training, 10% EEG 

data for validation, 10% EEG data for testing. Figure 6 illustrates the confusion matrix among 

five classes, with a total of 1500 EEG data points (300 per class), which includes 1200 data 

points for training, 150 data points for validation and 150 data points for testing.  The overall 

classification accuracy on the test set which contains 5 classes is 71.4%. A confusion matrix 

summarising the classification results is shown in (Fig. 6). It was observed that the error for 

headphone-watch was larger, possibly caused by the similar ‘round and ring shape’ of the two 

objects. Examples of images that a headphone is misclassified as watch have been illustrated 

on the right of the confusion matrix.  
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Figure 6. Confusion matrix for the EEG encoder and examples of misclassified images. The (𝑖, 𝑗) 

element in the confusion matrix represents the frequency product from the 𝑖-th class, classified as 𝑗-th 

class. 

4.4.2 Training stage two - Generator network 

The general view on model architecture is shown in Figure 7. The foundation of the generator 

framework is ACGAN (Odena et al. 2016). This generates images based on the input feature 

vector and also has the ability to generate images from the specific category. ACGAN 

consists of a generative model 𝐺 and two discriminative models 𝐷𝑎 and 𝐷𝑏. The generator 

𝐺(𝑥|𝑐) is trained to capture the target data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥) from the condition EEG 

feature 𝑐 of class 𝑦 and noise distribution 𝑝𝑧(𝑧) , and aims to generate images of the target 

class as real as possible to make the discriminator recognise the generated images are real. 

Whereas the discriminative model 𝐷𝑎(𝑥|𝑦) is a binary class classifier which distinguishes 

whether a sample image belongs to the real image set. The discriminative model 𝐷𝑏(𝑥|𝑦) is a 

multi-class classifier that identifies the image class.  Both the generative and discriminative 

models are trained simultaneously and play against each other to minimax the log-likelihood 

value function V (D, G). 

 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∈𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷𝑎(𝑥|𝑦) + 𝑙𝑜𝑔𝐷𝑏(𝑥|𝑦)]

+ 𝔼𝑧∈𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷𝑎(𝐺(𝑥|𝑐)|𝑦)) + 𝑙𝑜𝑔(1 − 𝐷𝑏(𝐺(𝑥|𝑐)|𝑦))] 

 

 

Figure 7. General view on model architecture. 

Generator      

The generator consists of 5 upsampling layers. Firstly, inputs of the EEG representation which 

is the element-wise product of the 64-dimensional EEG features and a random Gaussian noise 

have been made. The input vector is then spatially upsampled by four times by the first 

transposed convolutional layers and output 512 feature maps. After that, the number of feature 

map halves and the feature map size doubles after each remaining transposed convolutional 

layer. Finally, the final output has been obtained as the 64 x 64 pixel images with three 
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colour channels. Batch normalisation (Ioffe and Szegedy 2015) and LeakyReLU (Maas et al. 

2013) nonlinearities have been appended after each transposed convolutional layer.  

 

Table 1: Hyperparameters architecture of the generator. 

 

Discriminator 

The discriminator consists of two modules: a convolutional module used to extract the image 

feature and a classification module used to distinguish the generated image and identify the 

image category as well.  

Convolutional module. The convolutional part of the discriminator is made up of 10 

convolutional layers. This takes as input coloured 64 x 64 images. We have 64 feature maps 

after the first layer and the number of feature maps reaches 512 after being doubled at layer 3, 

5 and 8 respectively. The feature map size starts at 64 x 64 and is halved after each max-

pooling layer appended after the 2, 4, 7, 10 layers and become 4 x 4 after the final layer. 

Batch normalisation and LeakyReLU nonlinearities are appended after each convolutional 

layer. 

Classification module. After the convolutional module, a 4 × 4 × 512 sized data sample is 

obtained. The data is flattened and fed into two classifiers, a binary classifier to distinguish 

generated images from the real image and a multi-class classifier to identify the image 

category. The binary classifier consists of two fully connected layers. After the first layer, the 

output size is 1024 and 1 after the second layer. A ReLU activation function is appended after 

the first fully-connected layer, and a sigmoid layer is added after the second fully-connected 

layer. The multi-class classifier consists of three fully-connected layers. The first layer 

reduces the number of features to 1024 and the features number remains unchanged after the 

second layer. Then, the data is fed into the last layer where the number of features is reduced 

to the number of image categories. A ReLU activation function is appended after the first and 

the second layer and a Softmax layer is added after the last fully-connected layer.  

 

Training Procedure 

To balance the generator and discriminator, we train the generator ten times per iteration 

unless the loss of the generator is less than the tenfold loss of the discriminator. The training 

procedure for each epoch is shown in Figure 8. We only have 50 EEG correlated images for 

each class. To avoid the overfitting problem on direct training GAN on a small dataset, we 

train our GAN model in two stages. In the first stage, we train the GAN with the larger dataset 

which is gathered manually based on the ImageNet. This dataset contains 10,000 images in 

total (2000 images per class with total 5 classes), only including images without EEG signals. 
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All conditioned EEG features are set to the average feature value of the class that the image 

belongs to. In the second stage, we retrain the GAN model for 50 more epochs on the small 

dataset that contains 50 EEG-available images per class, providing the correct EEG feature.  

 

 

Figure 8: Training procedure for each epoch. 

4.5 Utilising stage – Generating images with trained models with results 
verification.  
 

Following the method described above, the EEG data collected from the image presentation 

session was used to train the encoder, and then 10,000 images gathered manually from the 

ImageNet were used to train the generator. After we obtained a model where both the encoder 

and generator reached the performance mentioned above, we started to use the model in the 

design cases. In the model utilising stage, the data collected from preference imagery session 

was input into the model to generate the correlated mental image. 

To verify whether this EEG-driven generative method could have a higher chance to capture 

human preference, a questionnaire survey was conducted in order to provide a proof-of-

concept. The control group and intervention group of generated images (with preference EEG/ 

without EEG) were involved in this human study survey. During the survey experiment, 200 

generated images were randomly selected from the results generated from our model. Among 

them, 100 images were selected from the results generated with preference EEG signal, and 

the other 100 images were selected from these generated without EEG signals. Each set of 

100 images contains 5 classes of images and 20 images per class. 6 participants who had been 

involved in both the image presentation session and preference imagery session evaluated 

these images. Participants were required to rank the images by preference level 1 to 10 (10 

represents most preferred) from the selected images with 100 images from each group. For 

each trial of the evaluation experiment, the participants viewed a printed set of generated 

images and were required to rank the images. After this survey experiment, statistical analysis 

was performed for each category in two groups. The evaluation results indicated that the 

design images which are generated by preferred brain signals gained a higher chance to 

generate a preferred image.  
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5 RESULTS AND ANALYSIS 

5.1 Results 

 

Figure 9. Seen image reconstruction results in the grey frame (left) and imagery preference design 

image in red frame (right) reconstruction results. 

Generated mental image results from both the image presentation experiment and the 

preference imagery experiment are shown in Figure 9. In the figure, the seen image results 

from the image presentation experiment are shown in the grey frame, which is a baseline of 

the work to allow for subsequent evaluation of the performance of the visual image 

reconstruction model. After reconstructing the seen image from the image presentation 

experiment, the trained model which fully converged in the training process is used to 

reconstruct the imagery image from the preference imagery experiment, which is shown in the 

red frame in Figure 9.  

Visual examination and quantitative study for proof-of-concept 

 

Figure 10. Human study results of the design case study. 

 

To verify whether the participants preferred the generative design results conditioned on 

preference brain signal than those without brain signal, both visual examination and 

quantitative studies were performed. Visual examination was used for checking whether our 

model has achieved a meaningful quality, that the EEG encoder maintains a good 

classification accuracy and the image generator reaches the image generation requirement. A 

quantitative study was performed for comparing whether the score of controlled with 

preferred EEG ranked higher than the one without EEG from the questionnaire survey. The 

details of the questionnaire survey are described in the previous section 4.5.   
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In the qualitative study, the generated results demonstrated that the proposed approach 

successfully generates different designs with multiple colour and shape features from different 

product classes. As mentioned in section 4.4.1, the overall classification rate of the encoder is 

71.4%. To judge the realism and diversity of the produced image, we use the Inception score 

(Salimans et al. 2016) which is commonly used to evaluate the quality of images generated by 

GANs. An inception model, score measures two things simultaneously. The first concerns 

whether the images contain meaningful items, indicated by the distribution 𝑝(𝑦|𝑥) having low 

entropy. The other is whether the images have variety; the marginal ∫ (𝑦|𝑥 = 𝐺(𝑧))𝑑𝑧 have 

high entropy. Therefore, we obtain the final inception score as 𝑒𝑥𝑝(𝐸𝑥𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦))). 
An inception score of 4.9 was obtained on the generated images. This is similar to the 

inception score of 5.1 achieved in the study by Spampinato et al (2017) while we have much 

fewer classes of images for training. 

The quantitative study result is from the questionnaire survey, in which all participants were 

required to rank the image from 1-10 based on their preference. Figure 10 shows the mean 

value and its standard deviation of each category from the two groups of generated images 

(without EEG signal and with preferred EEG signal). The difference between the two groups 

is assessed using Wilcoxon signed-rank test. All group tested had statistically significant 

differences (p<0.05) in their means with the EEG being greater than the non-EEG for all 

cases, except for the Guitar class (p=0.07). Please refer to Figure 10 for more details. The 

analysis of the two study experiments (qualitative and quantitative) indicates that the images 

generated with preference EEG signals gained more preference than images generated by the 

generator itself. Comparing the scores from two controlled groups, the results also show that 

the generative model with the input of preference EEG signal had a higher chance to generate 

an image that people preferred. We observed that the reconstructed imagined images have a 

larger variety of colour and shape features than the reconstructed seen images. The preference 

imagery experiment results also show that these preferred products generated by the deep 

learning method through brain activities have combined multiple design features from various 

kinds of products which learned from previous designs. Also, we take the output from the 

LSTM layer as the EEG feature is not the final output, as we believe it may contain other 

features such as the shape or colour or products’ style. Therefore, it may be inferred that these 

generated designs contain mixed colour and shape features which have been filtered by 

human cognition by inputting brain signal into a deep generative model.  

6 DISCUSSION AND OBSERVATIONS 

The findings from this study show some potential of generating designs with human 

preference, which also indicate some future applications. For example, to apply in design 

cases, designers could have a prejudgment based on these generated images. One of the 

generated bags in our case study, for example, has multiple colours, from which we could 

predict that the user actually wants a ‘very lively bag’. Similarly, with the grey bag, we could 

infer that an office style bag is what they might prefer. Such a discriminating analysis of 

‘shades of grey’ design question could be applied to different design processes. Product 

designs dominated by the shape are more accepted than the designs dominated by function 

such as a guitar. This may reflect that the preference for shape is better captured by EEG 

signals. Further study of this hypothesis could provide additional evidence and insights into 

this finding. 

 

The limitations of current results include limited dataset and limited model control. To 

improve the accuracy of the model, a larger dataset would need to be collected. In this work, 

we only train the model with six participants. In future applications, different training datasets 

could be involved in training according to different application scenarios. For example, in a 

personalised design task, the EEG encoder could be trained by each client; to design a product 
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for a group of people, the EEG encoder could be trained by data collected from these focused 

group. The generation ability of model is depended on different, to choose the right model 

training strategy will be the key thing for further application. In addition, another limitation is 

the diversity of the participants, our participants are volunteers from our research group. 

Mixed background participants need to be considered in future research. As one of the main 

contributions, a neuroscience-inspired AI design framework is proposed in this research. The 

design application based on this framework could be applied in many design areas, such as 

verifying the effectiveness of design, user or marketing research, and any other user-focused 

design application. Furthermore, this method could also benefit to human-computer 

interaction, future robotics and wearable medical devices.  

7 CONCLUSIONS 

In this paper, a Neurocognition-inspired AI design method has been proposed with machine 

learning to automatically generate a design taking into account personalised information. The 

case study results have indicated that the images generated with preference EEG signal were 

more preferred than images generated by the generator itself. We are not focusing on 

decoding human preference in this study. Comparing with the traditional AI design generation 

method, adding brain signal EEG to the generation process helps machine to capture the 

human aspect, and had a higher chance to generate an image that people preferred. Although 

the proposed approach has only been applied for five product design cases, it could potentially 

be used in other design cases and for different design tasks such as design evaluation and 

branding strategy. In the research work to date, due to the limited data in the model training 

process, the case study only contains design semantics from these five categories. Data in 

additional categories can be collected in order to contain more features. The experiment 

indicates a new way of communicating human cognitive content. Embedding the proposed a 

Neurocognition-inspired AI design method into different design processes could help 

designers understand users’ requirements and preferences more accurately. A new approach 

to design synthesis has been demonstrated to be possible, based on existing neurocognitive 

techniques. The results may help designers think beyond user cases by having direct 

visualisation of what the user may like. The application of this neuroscience-inspired AI 

design method could, firstly, could be used as a method of user research; secondly, works as a 

primary method of user-computer interaction which could involve in any stage of the design 

process; thirdly, gives a new approach to traditional design evaluation.  
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