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RECURSION AND HAMILTONIAN OPERATORS FOR
INTEGRABLE NONABELIAN DIFFERENCE EQUATIONS

MATTEO CASATI AND JING PING WANG

Abstract. In this paper, we carry out the algebraic study of integrable
differential-difference equations whose field variables take values in an
associative (but not commutative) algebra. We adapt the Hamiltonian
formalism to nonabelian difference Laurent polynomials and describe
how to obtain a recursion operator from the Lax representation of an in-
tegrable nonabelian differential-difference system. As an application, we
propose a novel family of integrable equations: the nonabelian Narita-
Itoh-Bogoyavlensky lattice, for which we construct their recursion op-
erators and Hamiltonian operators and prove the locality of infinitely
many commuting symmetries generated from their highly nonlocal re-
cursion operators. Finally, we discuss the nonabelian version of several
integrable difference systems, including the relativistic Toda chain and
Ablowitz-Ladik lattice.
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1. Introduction

This paper is devoted to the study of hidden structures for integrable
differential-difference equations when their field variables take their values
in an associative algebra. Typical examples are matrix or operator algebras.
Matrix versions of integrable equations appeared in the early days of the
modern theory of integrable systems, when matrix KdV was introduced by
Lax [28]. The main observation is that there exist many equations of this
type which are integrable regardless of the dimension of the matrices [47,
Chapter 6, 7]; even more impressively, symmetries and conserved quantities
for these systems do not depend on the single entries of these matrices, but
are defined in terms of matrix polynomials. This allows us to regard the
matrices (or, more precisely, the matrix-valued functions) in the systems
“simply” as the generators of an associative but not commutative algebra:
the structures we present in this paper for differential-difference systems are
then independent from the matrix spaces where the problem was originally
set.

Nonabelian integrable systems are not only an interesting generalisation
and “abstraction” of matrix systems; this theory can be applied to operator
algebras, and the equations we obtain may be regarded as quantised version
of classical integrable systems. For example, the nonabelian KdV equation
can be obtained promoting the classical fields to a quantum version and
replacing Poisson brackets with commutators [14].

Integrable partial differential evolution equations on associative algebras
were studied by Olver and Sokolov [42]. The authors developed the basic
theory of Hamiltonian structures for associative algebra-valued differential
equations and presented a list of integrable one-component evolution equa-
tions of such type. The completeness of this list was proved in [43]. In 2000,
Mikhailov and Sokolov successfully brought the concepts of symmetries,
first integrals, Hamiltonian and recursion operators to integrable ODEs on
associative algebras [35]. These were used to prove the integrability of the
Kontsevich nonabelian system [52].

Historically, nonabelian integrable differential-difference equations ap-
peared as the discrete analogs of matrix integrable partial differential equa-
tions. The matrix Toda lattice is originated from a discrete version of the
principal chiral field model proposed by Polyakov [9, 24, 34]. Its quanti-
sation was studied in [22]. Recently, the non-abelian Toda lattice emerged
in the study of Matrix valued Hermite polynomials [37]. Despite some
specific nonabelian differential-difference equations have appeared in the
literature, for example the nonabelian Volterra chain [35] and the aforemen-
tioned Toda lattice, so far a systematic study of such equations has not been
carried out.

In Section 2 we extend the Hamiltonian formalism to a noncommutative
(nonabelian) difference field by adapting the language introduced by Olver
and Sokolov [42] for systems of PDEs to the difference case. Differential-
difference nonabelian equations we are going to consider are evolutionary
equations for functions of a discrete spatial variable and of continuous time.
Their Hamiltonian description is obtained in terms of a formal (difference)
calculus of variations similar to the one introduced by Kupershmidt [26],
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but for a space of noncommutative local densities: that means that we must
distinguish between operators of multiplication on the left and on the right
– that we denote la f := a f , ra f := f a. A local functional is written as “the
integral of the trace of a local density”

F =

∫
Tr f .

The formal definition is thoroughly discussed in Paragraph 2.1; however, if
our noncommutative algebra is an algebra of matrices, the trace operation is
the standard one. Moreover, the operation of integral denotes the (possibly
infinite) sum over all the lattice sites; in our approach we disregard the
issue of convergence and identify it with the equivalence relation up to
rigid shifts. Despite the formalism is better tailored for the local case, we
use it to prove the Hamiltonian property for both local and certain non-local
difference operators. We give a detailed concrete example of this.

In Section 3 we begin with describing the method to construct recursion
operators using Lax representation. This method was first proposed in
[18] and extended to the case when Lax representations invariant under
reduction groups [50, 21, 10]. We then present two basic examples of non-
abelian integrable lattices systems: the Volterra and the Toda lattice. They
are obtained promoting the Lax representation of the corresponding com-
mutative systems to the nonabelian case. We construct their Hamiltonian
and recursion operators.

In Section 4 we introduce and study in detail the nonabelian version of
Narita-Itoh-Bogoyavlensky lattice. This is an evolutionary equation for a
real-valued function u(n, t), n ∈ Z, t ∈ R, such that

ut =

p∑
k=1

(uku − uu−k) , p ∈N, (1.1)

where with uk (resp., u−k) we denote the function evaluated on the translated
lattice u(n + k, t) (resp., u(n − k, t)).

Equation (1.1) is Hamiltonian for the operator

H =

p∑
k=1

(
ruS

kru − luS
−klu − rulu + r2

u + cu(1 − S)−1cu
)
,

where we have introduced the notation cu := ru− lu for the commutator and
the shift operator Sku = uk. The Hamiltonian functional is

h =

∫
Tr u.

To the best of our knowledge, this system has not appeared in the litera-
ture. We construct its recursion operator for arbitrary p and show that this
nonlocal recursion operator generates infinitely many local symmetries.

Finally, in Section 5 we present more examples of nonabelian integrable
systems, obtained from their commutative counterparts studied in [21].
We give their Hamiltonian structures, Lax representations and recursion
operators, which are computed using the methods in sections 3 and 4. We
believe that the equations in section 5.2–5.7 are new.
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2. Nonabelian Hamiltonian equations: the θ formalism

In this section we present the language introduced by P. Olver and
V. Sokolov [42] to describe Hamiltonian equations defined on an associa-
tive (but not commutative) algebra. However, such a formalism is adapted
to deal with differential difference systems, rather than partial differential
ones.

A differential-difference system is a set of equations describing the time
evolution of ` functions of two variables {ui(n, t)}`i=1 = u(n, t), where n ∈ Γ ⊆
Z and t ∈ R; In this paper we consider the infinite case n ∈ Z. The shift
operator S acts on the functions u(n, t) and gives the function evaluated on
shifted variables n, by

S
ju(n, t) = u(n + j, t),

that we denote as u j.
As for the formal calculus of variations introduced by Kupershmidt [26],

we replace the functions {ui(n, t)}with a (formal) algebra of difference poly-
nomials.

2.1. The space of nonabelian difference Laurent polynomials. Let A be
the linear associative algebra (over R) of the Laurent polynomials in the
variables ui

n, i = 1, . . . , ` and n ∈ Z. We denote the (nonabelian) product inA
by simple juxtaposition; each monomial possesses an inverse by (ui

n)−1ui
n =

ui
n(ui

n)−1 = 1 and

(ui1
n1

ui2
n2
· · · uip

np
)−1 = (uip

np
)−1
· · · (ui2

n2
)−1(ui1

n1
)−1.

In this formal setting, the shift operator is an automorphism ofA, namely a
linear map S : A → A such that S(ab) = S(a)S(b) for all a, b ∈ A. Its action
on the generators is given by

Sui
n = ui

n+1.

We call the elements of A the difference (Laurent) polynomials. Let [a, b] =
ab − ba denote the commutator onA.

Moreover, we introduce an equivalence relation in A, up to cyclic per-
mutations of the product, and we call the canonical projection the trace – it
obviously vanishes on commutators Tr[a, b] = 0.

The basic example of A is given by regarding the generators {ui
n} as

elements of glN; the trace is then the standard trace of matrices.
The elements of the quotient space

F =
A

(S − 1)A + [A,A]

are called local functionals. We denote the projection from A to F as
∫

Tr ·,
which satisfies∫

TrS f =

∫
Tr f ,

∫
Tr f g =

∫
Tr g f

for all f , g ∈ A.
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Note in particular that we have a difference version of the integration by
parts, namely∫

Tr(S f )g =

∫
TrS−1 ((

S f
)

g
)

=

∫
Tr f

(
S
−1g

)
.

2.2. Vector fields and difference operators.

Definition 1. An evolutionary difference vector field X is a derivation ofA that
commutes with S.

Derivations onAmust be treated carefully because of the non-commutative
product. A generic derivation onA has the form

X =
∑̀
i=1

∑
n∈Z

φi,n ∂

∂ui
n
,

φi,n
∈ A. Imposing the commutation rule with S we find as a necessary

and sufficient condition
φi,n = Sn Xi,

where {Xi
}
`
i=1 is called the characteristic of the evolutionary vector field.

Since X is by definition a derivation, the Leibniz’s rule applies:

X( f g) = X( f )g + f X(g).

Note that f X(g) , X(g) f ; using the Leibniz’s rule for monomials in A we
obtain

X(ui1
n1

ui2
n2
· · · uik

nk
) =

(
S

n1Xi1
)

ui2
n2
· · · uik

nk
+ ui1

n1

(
S

n2Xi2
)
· · · uik

nk
+

· · · + ui1
n1

ui2
n2
· · ·

(
S

nkXik
)
.

and
X((ui

n)−1) = −ui
nX(ui

n)ui
n.

Definition 2. A local scalar difference operator is a linear map K : A→A that
can be written as a linear combination of terms of the form r f lgS

p for p ∈ Z,
f , g inA, where r and l denote, respectively, the multiplication on the right
and the multiplication on the left. Namely, we have

r f lgS
ph = g (Sph) f .

The multiplication operators have the obvious properties

l f lg = l f g r f rg = rg f r f lg = lgr f .

Moreover, we define the commutator c f := r f − l f , that is, [ f , g] = cg f and c f
is a derivation. Indeed, we have

c f (gh) = (c f g)h + g(c f h).

The Fréchet derivative of f ∈ A is a difference operator f∗ : A`
→ A

defined so that

f∗[P] :=
d
dε

f (ui + εPi)
∣∣∣∣
ε=0
.

for P = {Pi
}
`
i=1, Pi

∈ A. With the notation f (ui + εPi) we denote the element
of A[ε] obtained by replacing the generators ui (and their shifts ui

n) in the
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expression of f with ui + εPi (and corresponding shifts), where ε = Sε is
a formal constant parameter. It is closely related to evolutionary vector
fields, namely for any f ∈ A and P we have f∗[P] = XP( f ), where with XP
we denote the evolutionary vector field with characteristic {Pi

}.
For a monomial h = ui1

n1
ui2

n2
· · · uik

nk
, we have

h∗[P] =

k∑
p=1

ui1
n1

ui2
n2
· · · u

ip−1
np−1

(
S

npPip
)

u
ip+1
np+1
· · · uik

nk

=

k∑
p=1

l
ui1

n1

l
ui2

n2
· · · l

u
ip−1
np−1

r
u

ik
nk

r
u

ik−1
nk−1

· · · r
u

ip+1
np+1

S
npPip .

The formal adjoint of the difference operator K = l f rgS
p is

K† := S−pr f lg,

and it is defined from the identity∫
Tr (a (Kb)) =

∫
Tr

(
(K†a) b

)
We say that a (scalar) difference operator is skewsymmetric if K† = −K.

In the multi-component case, namely when ` > 1, we consider ` × `
matrices (K)i j whose entries are scalar difference operators. They define
difference operators K : A`

→ A
`. In this setting, the formal adjoint of K is

(K†)i j = (K)†ji. To avoid making the notation too heavy, we denote the entry

(K)i j as Ki j.
Given a local functional F ∈ F , we use the Fréchet derivative to define

its variational derivative in a fashion which is consistent with the non
commutativity of the setting.

Taken a generic evolutionary vector field of characteristic v = {vi
}
`
i=1, we

define the variational derivative by the formula∫
Tr

∑̀
i=1

δF
δui vi :=

∫
Tr F∗[v].

In the commutative case, this is equivalent to the standard form

δF
δui =

∑
n∈Z

S
−n ∂F
∂ui

n
.

A differential-difference system

ui
t = Xi(u,Su,S2u, . . .) i = 1, . . . , ` (2.1)

is identified, in this formal setting, with an evolutionary vector field of
characteristic {Xi

}
`
i=1. The time evolution of a local functional F is, then,

given by
dF
dt

=

∫
Tr F∗[X].



RECURSION AND HAMILTONIAN OPERATORS FOR INTEGRABLE NONABELIAN DIFFERENCE EQUATIONS7

2.3. Hamiltonian operators and functional vector fields. The notion of
functional vector field was introduced in the context of Hamiltonian (com-
mutative) PDEs [25, 40, 23]. It was then generalised to the nonabelian case
[42] and to the commutative difference one [26, 11].

In this paper we follow closely Olver and Sokolov’s treatment of the
subject, while a broader geometrical description will be discussed in a
forthcoming work.

We define basic uni-vectors θi,n, where θi,n = Snθi. Since the variables ui
n

to which they are “duals” (more precisely, they should be regarded as dual
objects of dui

n) are not commutative with respect to the product, they do
not have any particular parity under it (as opposite as in the commutative
case, where they are Grassmann variables).

Let Â := A[{θi,n}
`
i=1,n∈Z] be the space of polynomials inθ’s with difference

functions as coefficients. We call the elements of Â the densities of (functional)
poly-vector fields. The space Â is a graded algebra where degθ θi,n = 1,
degθ ui

n = 0. Homogeneous elements of Â of degree p in θ are densities of
p-vector fields. Functional vector fields are elements of the quotient space

F̂ =
Â

(S − 1)Â + [Â, Â]
.

The trace form (and as a consequence the quotient operation Â � F̂ ) is
graded commutative, namely

Tr (a b) = (−1)|a||b| Tr (b a) ,

where we denote |a| := degθ a. To make the notation lighter, we denote
θi = θi,0 in the multi-component case, and – when we move to the scalar
` = 1 case – θn = θ1,n, θ = θ1,0. To avoid confusion between unshifted basic
univectors in the multi-component case and shifted ones in the scalar case,
in the following Sections we will introduce different Latin and Greek letters
denoting, respectively, different ui’s and θ j’s.

To any difference operator K : A`
→ A

` we associate a formal vector
field prKθ whose characteristics is {

∑
j Ki jθ j}. Such a formal vector field is

a graded derivation (of degree 1), namely it satisfies the graded Leibniz’s
property

prKθ(ab) = prKθ(a)b + (−1)|a|a prKθ(b).

To any difference operator K we can associate the functional bivector

P =
1
2

∫
Tr

∑̀
i, j=1

θi Ki jθ j

 . (2.2)

Note that the operator K acts on the variable on its right. Similarly, for K
a skewsymmetric difference operator we can define a bracket between local
functionals

{F,G} :=
∫

Tr

∑̀
i, j=1

δF
δui Ki j δG

δu j

 . (2.3)
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The skewsymmetry of the bracket is equivalent to the skewsymmetry of K;
the graded commutativity of the trace and the integral in (2.2) imply that
only the skewsymmetric part of K is involved in the definition of P.

Definition 3. We say that a skewsymmetric difference operator H is Hamil-
tonian if the bracket defined via (2.3) is a Lie algebra bracket on F , namely
it satisfies Jacobi’s identity

{A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0

for all A,B,C ∈ F .

Definition 4. We say that an evolutionary system (2.1) is a Hamiltonian
system if and only if

Xi =
∑̀
j=1

Hi j δ

δu j

(∫
Tr h

)
,

with H a Hamiltonian operator and for a local functional
∫

Tr h which is
called “the Hamiltonian” of the system.

A statement to determine whether a differential operator is Hamiltonian
is given by Olver [41, Chapter 7] for the commutative case. The same
statement and proof are valid in nonabelian difference case. However, its
proof relies on the properties of the variational derivative and of the graded
vector field prHθ. We only present the statement.

Theorem 5. A difference operator H is Hamiltonian if and only if

prHθP =
1
2

∫
Tr

∑̀
i, j=1

prHθ(θiHi jθ j)

 = 0. (2.4)

We say that the corresponding bivector P is a Poisson bivector.

Example 6. Let ` = 2. We denote by a, b the generators ofA and by θ and
ζ the corresponding basic vectors in Â. The matrix operator

H =

(
0 raS − la

ra − la−1S
−1 rb − lb

)
(2.5)

is Hamiltonian.
Let us denote Θ the two-component vector (θ, ζ). We have

HΘ =

(
0 raS − la

ra − la−1S
−1 rb − lb

) (
θ
ζ

)
=

(
ζ1a − aζ

θa − a−1θ−1 + ζb − bζ

)
and

P =
1
2

∫
Tr ΘiHi jΘ j =

∫
Tr (aθζ1 + aζθ + bζζ) .

The straightforward application of the formula for prHΘ, together with the
graded commutativity of the trace, gives

prHΘP =

∫
Tr [(ζ1a − aζ) (θζ1 + ζθ) + (θa − a−1θ−1 + ζb − bζ) ζζ]

=

∫
Tr (aθζ1ζ1 − a−1θ−1ζζ) =

∫
Tr ((S − 1)a−1θ−1ζζ) = 0.
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The Hamiltonian operator H of equation (2.5) is the local Hamiltonian struc-
ture of the nonabelian Toda system [16], presented in Section 3.3.

The formalism we have defined so far is tailored on local Hamiltonian
operators. However, many of the local Hamiltonian structures which have
been discovered in the commutative case are replaced, in the nonabelian
setting, by nonlocal ones. For a given nonlocal operator, many of the routine
computations needed to check whether it is Hamiltonian can be performed
using the same technique as in the local case, relying on the properties
of the integral and trace operations. For instance, if the nonlocal part of
an operator is of form F(S − 1)−1G, with F and G multiplication operators,
namely of the form larb, the new element is the introduction of formal nonlocal
variables

θ′ := (S − 1)−1Gθ;
the parity and properties of these new variables are the same as the ones
for θ, but obviously we have the additional relation (S − 1)θ′ = Gθ. Some
details about how to use these formal variables in the computations are
provided in the proof of the following proposition.

Proposition 7. The operator

H = ruSru − luS
−1lu + rucu − cu(1 − S)−1cu (2.6)

is Hamiltonian.

Proof. We are in the scalar case, namely ` = 1. We denote θ the basic density
of uni-vectors corresponding to the generator u ofA.

We compute the expression for the Poisson condition as in (2.4), where
P is the functional bivector defined in terms of the operator H. Moreover,
for the sake of compactness, we will split operator and bivector in local and
nonlocal part. Namely, we have

Hθ = HLθ + HNθ,

with

HLθ = θ1u1u − uu−1θ−1 − uθu + θu2

HNθ = (ρ − λ)u − u(ρ − λ).

We have introduced the nonlocal (densities of) uni-vectors

ρ = (S − 1)−1 θu, λ = (S − 1)−1 uθ

and denote Snρ = ρn, Snλ = λn.
The bivector defined by H as P = 1

2

∫
TrθHθ is P = PL + PN with

PL =
1
2

∫
Trθ

(
θ1u1u − uu−1θ−1 − uθu + θu2

)
=

1
2

∫
Tr(θθ1u1u − θuu−1θ−1 − θuθu + θθu2)

=
1
2

∫
Tr

(
2u1uθθ1 + u2θθ

)
,

where we have used the trace graded commutativity to conclude that
Tr(θuu−1θ−1) = Tr(−uu−1θ−1θ) and Tr(θuθu) = 0, and

∫
f =

∫
S f .
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For the nonlocal part, we have

PN =
1
2

∫
Tr

(
θ(ρ − λ)u − θu(ρ − λ)

)
=

1
2

∫
Tr

(
(ρ − λ)(θu − uθ)

)
=

1
2

∫
Tr(ρ − λ)(ρ1 − λ1),

where the last passage follows from the observation that

θu − uθ = (S − 1)ρ − (S − 1)λ = ρ1 − λ1 − ρ + λ,

Tr((ρ − λ)(λ − ρ)) = 0.

The Hamiltonian condition for the operator prH1θ
P = 0 can be, for sim-

plicity, computed in four parts

prH1θ
P = prHLθ

PL + prHNθ
PL + prHLθ

PN + prHNθ
PN.

The computation of prHLθ
PL is a straightforward application of the defini-

tion of evolutionary vector field; we use the graded commutativity on the
terms we obtain to move “most” of the variables u’s on the left. We have

2prHLθ
PL =

∫
Tr

(
−4u1uθuθθ1 + u2

1uθθ1θ1 + u1u2θθθ1 + 2u2θθ1u1θ

−uu1θ−1uθθ + u3θθθ + u1uθθuθ1 − u2θuθθ
)
. (2.7)

Some subtler operation must be performed when dealing with expres-
sion including the nonlocal terms. First, we compute prHNθ

PL from the
definition, and exploit the graded commutativity and the properties of
the integral to collect the nonlocal term (ρ − λ) in front of the expression.
The straightforward application of the formula produces terms of the form
a(ρ1 − λ1)b that we replace with a−1(ρ− λ)b−1 thanks to the definition of the
integral. Finally, expressions of the form (ρ− λ)(a−1 − a) can be arranged as
[(S − 1)(ρ − λ)]a, which is local.

We obtain

2prHNθ
PL =

∫
Tr

(
2u1uθuθθ1 − 2u2θθ1u1θ+

+
(
ρ − λ

) (
2uu−1θ−1θ − 2θθ1u1u + u2θθ − θθu2

))
. (2.8)

To compute the expressions prHLθ
PN and prHLθ

PN, we first examine how
to compute the evolution of PN along a generic vector v such that degθ v = 1.
We have

2prvPN =

∫
Tr prv[(ρ − λ)(ρ1 − λ1)]
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The formal evolutionary vector field prv is a graded derivation; this fact,
together with the graded commutativity, allows us to rewrite

2prvPN =

∫
Tr

[
(ρ1 − λ1)prv(ρ − λ) − (ρ − λ)prv(ρ1 − λ1)

]
=

∫
Tr(ρ − λ)prv((S−1

− S)(ρ − λ))

=

∫
Tr(ρ − λ)prv((1 + S−1)(uθ − θu))

=

∫
Tr(ρ − λ)(1 + S−1)prv(uθ − θu)

=

∫
Tr

[
(2 + S − 1)(ρ − λ)

]
prv(uθ − θu)

=

∫
Tr 2(ρ − λ)prv(uθ − θu) + (θu − uθ)prv(uθ − θu).

Using this formula to compute prHLθ
PN and prHNθ

PN we obtain

2prHLθ
PN =

∫
Tr

[
2(ρ − λ)

(
θu2θ − uu−1θ−1θ − uθuθ − θuθu + θθu2

)
− u1uθθuθ1 − u2u−1θ−1θθ + 2u2θθuθ − u2θuθθ (2.9)

−u1u2θθθ1 + uu−1θ−1uθθ − u3θθθ + 2u1uθuθθ1

]
.

2prHNθ
PN =

∫
Tr

[
(ρ − λ)(2uθθu − θθu2

− u2θθ)

− 2(ρ − λ)(ρ − λ)(θu − uθ)
]
. (2.10)

To deal with the “double non-local term” in (2.10) we first observe that∫
(S − 1)AAA =

∫
(A1A1A1 − AAA) = 0 for any element A. Moreover, if we

denote A1 − A = B we have∫
Tr ((B − A)(B − A)(B − A) − AAA) =

∫
Tr(B3 + 3B2A + 3A2B) = 0,

so that we can replace in the integral and trace operation AAB with −ABB−
1
3 BBB. Performing this substitution for A = ρ − λ, B = θu − uθ we obtain

2prHNθ
PN =

∫
Tr

[
(ρ − λ)(2θuθu − 2θu2θ + 2uθuθ − θθu2

− u2θθ)

+ 2u2θuθθ − 2u2θθuθ
]
.

(2.11)

The summation of all the terms obtained in (2.7), (2.8), (2.9), and (2.11) gives

2prHθP =

∫
Tr

(
u2

1uθθ1θ1 − u2u−1θ−1θθ
)

= 0.

This proves that H is a Hamiltonian difference operator. �

3. Integrable difference equations

We say that an evolutionary differential-difference system

ut = F(um,um+1, . . .un), m < n ∈ Z, u ∈ Al, (3.1)
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is (Lax) integrable if one can associate to (3.1) a pair of linear operators

L = S −U(u;λ), A = Dt − B(u;λ),

which is conventionally called the Lax pair.
Here U,B are square matrices, whose entries are functions of the depen-

dent variable u and its shifts and certain rational (in some cases elliptic)
functions of the spectral parameter λ, such that equation (3.1) is equivalent
to the compatibility of of these operators

Dt(U) = S(B)U −UB. (3.2)

The latter is often called a Lax representation of equation (3.1). Systems
admitting a Lax representation can be solved via the spectral transform
method [1, 2, 39].

Symmetries of an evolutionary equation are its compatible evolutionary
flows. An integrable equation (3.1) has an infinite sequence of commuting
symmetries

utk = Fk, k ∈N , (3.3)

which can be associated with a commutative algebra of linear operators

Atk = Dtk − Btk(u;λ), [Ati , At j] = 0.

Operator A and equation (3.1) can be considered as members in the sequence
of operators {Atk} and symmetries (3.3) respectively, for particular values of
k.

A recursion operator R is a linear pseudo-difference operator mapping a
symmetry of the evolutionary equation to a new symmetry. If the evolu-
tionary equation is biHamiltonian and the first Hamiltonian structure is
invertible, the operator

R := H2H−1
1

is a recursion operator, and utk = Rkut0 . We call ut0 the seed of the integrable
hierarchy.

In this Section, we provide the Lax representation and then compute the
recursion operator for the nonabelian Volterra and Toda systems, following
the general procedure detailed in Section 3.1.

3.1. From the Lax representation to the recursion operator. In general, it
is not easy to construct a recursion operator for a given integrable equation
although we have the explicit formula for its definition. The difficulty lies
in the nonlocality of the operators. The case of recursion operators with
a special form for the nonlocal terms, called weakly nonlocal [31], has been
widely investigated; see, for example, [15, 45].

If the Lax representation of an evolutionary equation is known, an amaz-
ingly simple approach to construct a recursion operator was proposed in
[18] and later applied for lattice equations [7]. This idea can also be used
for Lax pairs that are invariant under a reduction group [50, 21, 10]. In
this case, we are able to construct recursion operators of form of rational
difference operators [10].

The main idea to derive a recursion operator using a Lax representation is
based on the fact that matrices Btk(u, λ) of the operators Atk = Dtk −Btk(u, λ)
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corresponding to a hierarchy can be related as

Btk+1(u, λ) = µ(λ)Btk(u, λ) + Wtk(u, λ), (3.4)

where µ(λ) is a rational (elliptic in the some cases, e.g., the Landau-Lifshitz
equation) multiplier and Wtk(u, λ) is a rational matrix with a fixed (i.e. k
independent) divisor of poles. If the system and its Lax representation is
obtained as a result of a reduction with a reduction group G [33], then the
multiplier µ(λ) is a primitive automorphic function [30] of a finite reduction
group, or in the elliptic case is one of the generators of the G-invariant
subring of the coordinate ring [12]. The matrix Wtk(u, λ) also depends on
the dependent variables u and its shifts.

The substitution of (3.4) in the Lax representation (3.2) results in

Dt(U) = µ(λ)Dτ(U) + S(W)U −UW, (3.5)

where we denote tk+1 = t, tk = τ, and Wtk = W. Equation (3.5) enables
us to express the entries of the matrix W in terms of u,ut,uτ and their S-
shifts. It enables us to find a linear pseudo-difference operator R such that
ut = R(uτ), i.e. a recursion operator for a differential-difference hierarchy of
commuting symmetries. From this construction it follows that a matrix U
and a multiplier µ(λ) defines a recursion operator completely and uniquely.

In Section 4.1 we present the detailed computation for the recursion
operator of the Narita-Itoh-Bogoyavlensy lattice. Here we show the simpler
procedure for the recursion operator of the Volterra chain, which is the
simplest special case of the former. For other examples, we’ll only present
the corresponding forms of (3.4).

3.2. Nonabelian Volterra. The Nonabelian Volterra chain

ut = u1u − uu−1 (3.6)

admits a Lax representation

U =

(
λ u
−1 0

)
B =

(
λ2 + u λu
−λ u−1

)
.

Note that both U and B admit Z2 as a reduction group, suggesting the
symmetry condition (

1 0
0 −1

)
B(−λ)

(
1 0
0 −1

)
= B(λ). (3.7)

The ansatz for the auxiliary matrix Bt in terms of Bτ must then be of the
form

Bt = λ2Bτ + W = λ2Bτ + λ2W(2) + λW(1) + W(0)

= λ2Bτ + λ2
(
e 0
0 f

)
+ λ

(
0 p
q 0

)
+

(
s 0
0 t

)
;

the symmetry of the matrices W(s) is determined by condition (3.7).
From (3.5), we have(

0 ut
0 0

)
= λ2

(
0 uτ
0 0

)
+ S(W)U −UW,
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which leads to the system of equations (here p1 = Sp)

λ2 : 0 = e1 − e
0 = − f1 + q1

uτ = p + u f − e1u

λ1 : 0 = s1 − s − uq − p1

0 = q1u + p

λ0 : 0 = −t1 + s
ut = s1u − ut

The first equation implies that e must be a constant, that we set equal to 0.
Our aim is to obtain the operator< such that ut =<uτ.

The system can be solved observing that

ut = (ruS − luS
−1)s,

(S − 1)s = (lu − SruS)q,
(lu − ruS)q = uτ,

from which the recursion operator reads

< =
(
ruS − luS

−1
)

(S − 1)−1 (lu − SruS) (lu − ruS)−1 . (3.8)

The nonabelian Volterra chain is Hamiltonian with respect to the Hamil-
tonian difference operator (2.6) and the Hamiltonian functional

h0 =

∫
Tr u. (3.9)

3.3. Nonabelian Toda. The Nonabelian Toda systemat = b1a − ab
bt = a − a−1

(3.10)

is Hamiltonian with respect to the Hamiltonian difference operator (cf. (2.5))

H1 =

(
0 raS − la

ra − la−1S
−1 rb − lb

)
and the Hamiltonian functional

h0 =

∫
Tr

(
a +

1
2

b2
)
.

System (3.10) admits a Lax pair representation given by

U =

(
λ + b1 a
−1 0

)
B =

(
0 −a
1 λ + b

)
.

Take as the ansatz
Bt = λBτ + λW(1) + W(0)

with W(1) and W(0) generic 2 × 2 matrices; using (3.5), we get the recursion
operator< for the system

< =

(
lb1raS − larb raS

2
− la

raS − la−1S
−1 rbS − lb

) (
(la − raS)−1 0

0 (1 − S)−1

)
.
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The second Hamiltonian structure H2, obtained by H2 = <H1, is given by
a matrix with the following entries [29]:

(H2)11 = laS
−1la − raSra − raca + ca(1 − S)−1ca

(H2)12 = larb − racb − raSrb + ca(1 − S)−1cb

(H2)21 = −rab + lbS
−1la + cb(1 − S)−1ca

(H2)22 = S−1la − raS − rbcb + cb(1 − S)−1cb.

The system (3.10) is Hamiltonian with respect to H2 and the Hamiltonian
functional h−1 = −

∫
Tr b, which is a Casimir of H1. Moreover, the constant

change of coordinates b 7→ b + η induces for H2 the transformation

H2 7→ H2 − ηH1.

This means that (H1,H2) form a biHamiltonian pair.

Note 8. The nonabelian two-component Volterra equation{
ut = v1u − uv
vt = uv − vu−1

can be obtained from Volterra chain wt = w1w − ww−1 introducing u and
v as the even and odd elements of the lattice u(n, t) := w(2n, t), v(n, t) :=
w(2n − 1, t), or from the Toda lattice with the Miura transformation

a = uv b = u−1 + v.

A Lax pair for the system is

L = λS − u − v1 + λ−1uvS−1; A = λ−1uvS−1.

4. Integrable nonabelian Narita-Itoh-Bogoyavlensky lattice

In this section, we consider a family of nonabelian differential difference
equations (1.1). It is the nonabelian version of the Narita-Itoh-Bogoyavlensky
lattice [8, 38, 20] known as an integrable discretisation for the Korteweg-de
Vries equation:

ut = u
p∑

k=1

(uk − u−k) . (4.1)

For the Narita-Itoh-Bogoyavlensky lattice of arbitrary p ∈ N, its recursion
operator and Hamiltonian structures have been extensively studied in [51].
Note that for p = 1 the equation reduces to the equation for the Volterra
chain (see Section 3.2). Remarkably there are explicit expressions for all its
symmetries. In this section, we show that the method used for the com-
mutative case can be extended to the nonabelian case in a straightforward
manner. We are going to present their recursion operators and to prove that
these operators generate local symmetries.
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4.1. Construction of recursion operators. In this section, we use the ideas
presented in Section 3.1 to construct a recursion operator of system (1.1)
from its Lax representation.

The Lax operator of (1.1) for any p ∈N is given in [8] as follows:

L = S + uS−p . (4.2)

We can compute its hierarchy of symmetry flows using the formula

Ltk = [B(k), L], B(k) = (L(p+1)k)>0,

where > 0 means taking the terms with non-negative power of S in L(p+1)k.
We rewrite (4.2) into the following matrix form

L(λ) = S − λU(0)
−U(1) := S − C(λ), (4.3)

where U(0) = (u(0)
i, j ) and U(1) = (u(1)

i, j ) are (p+1)×(p+1) matrices. The matrices

U(0) and U(1) are given by

U(0) =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
0 0 · · · 0

 and U(1) =


0 0 · · · 0 −u
1 0 · · · 0 0
...

. . .
...

...
0 · · · 1 0 0
0 · · · 0 1 0


respectively, that is, their non-zero entries are

u(0)
11 = 1, u(1)

1,p+1 = −u and u(1)
i+1,i = 1, i = 1, 2, · · · , p.

We rewrite the operator B in a matrix form denoted by B(λ), so that the
symmetry flows can be obtained by the zero curvature equation

C(λ)t = S(B(λ)) C(λ) − C(λ)B(λ). (4.4)

Make the Ansatz

B̄(λ) = λp+1B(λ) + W(λ), where W(λ) =

p+1∑
i=0

λp+1−iA(i), (4.5)

where A(i) = (a(i)
kl ) are (p + 1)× (p + 1) matrices with the only non-zero entries

being a(i)
j+i, j for 1 6 j 6 p + 1. Here we read i + j as (i + j) mod (p + 1). For

simplicity, we shall continue to denote the index l when l > p + 1 instead of
l mod (p + 1). So both A(0) and A(p+1) are diagonal matrices.

The Ansatz W is invariant under the following transformation

r : W(λ) 7→ PW(σλ)P−1,

where P is a diagonal (p+1)×(p+1) matrix given by Pii = σi and σ = e2πi/(p+1)

since we have P−1A(i)P = σiA(i). The transformation satisfies rp+1 = id.
The zero curvature condition (4.4) for B̄(λ) leads to a formula for com-

puting a recursion operator as follows:

Ctn+1 = S(B̄(λ)) C(λ) − C(λ)B̄(λ) = λp+1Ctn + S(W)C − CW. (4.6)
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Substituting (4.3) and (4.5) into (4.6) and collecting the coefficients of this
λ-polynomial, we obtain

λp+2 : S(A(0))U(0)
−U(0)A(0) = 0; (4.7)

λp+1 : U(1)
tn

+ S(A(1))U(0)
−U(0)A(1) + S(A(0))U(1)

−U(1)A(0) = 0; (4.8)

λp+1−i : S(A(i+1))U(0)
−U(0)A(i+1) + S(A(i))U(1)

−U(1)A(i) = 0, 1 6 i 6 p;

λ0 : U(1)
tn+1

= S(A(p+1))U(1)
−U(1)A(p+1). (4.9)

Lemma 9. Assume that p > 2 and 1 6 i 6 p − 1. The matrix equations

S(A(i+1))U(0)
−U(0)A(i+1) + S(A(i))U(1)

−U(1)A(i) = 0 (4.10)

are equivalent to

S(a(i+1)
i+2,1) + S(a(i)

i+2,2) − a(i)
1+i,1 = 0; (4.11)

− a(i+1)
1,p+1−i + S(a(i)

1,p+2−i) + lua(i)
p+1,p+1−i = 0; (4.12)

− ruS(a(i)
i+1,1) − a(i)

i,p+1 = 0; (4.13)

S(a(i)
l+i+1,l+1) − a(i)

l+i,l = 0, 2 6 l 6 p, l , p + 1 − i . (4.14)

Proof. . We directly compute the multiplications of matrices and write out
their non-zero entries, respectively:

(S(A(i+1))U(0))i+2,1 = S(a(i+1)
i+2,1)u(0)

11 = S(a(i+1)
i+2,1);

(U(0)A(i+1))1,p+1−i = u(0)
11 a(i+1)

1,p+1−i = a(i+1)
1,p+1−i;

(S(A(i))U(1))i+1,p+1 = S(a(i)
i+1,1)u(1)

1,p+1 = −ruS(a(i)
i+1,1);

(S(A(i))U(1))l+i+1,l = S(a(i)
l+i+1,l+1)u(1)

l+1,l = S(a(i)
l+i+1,l+1), 1 6 l 6 p;

(U(1)A(i))1,p+1−i = u(1)
1,p+1a(i)

p+1,p+1−i = −lua(i)
p+1,p+1−i;

(U(1)A(i))l+i+1,l = u(1)
l+i+1,l+ia

(i)
l+i,l = a(i)

l+i,l, 1 6 l 6 p + 1, l , p + 1 − i;

We are now ready to write out the entries for the matrix equations, which
leads to the formulas stated in the lemma. �

Specifically, when i = 0, using the proof of Lemma 9 we obtain the
equivalent conditions for the matrix equation (4.10) as follows:

S(a(1)
2,1) + S(a(0)

2,2) − a(0)
1,1 = 0; (4.15)

− a(1)
1,p+1 + S(a(0)

1,1) + lua(0)
p+1,p+1 = 0; (4.16)

S(a(0)
l+1,l+1) − a(0)

l,l = 0, 2 6 l 6 p . (4.17)

In the similar way, the matrix equation (4.10) for i = p is equivalent to

S(a(p+1)
1,1 ) − a(p+1)

1,1 + S(a(p)
1,2) + lua(p)

p+1,1 = 0; (4.18)

− ruS(a(p)
p+1,1) − a(p)

p,p+1 = 0; (4.19)

S(a(p)
l,l+1) − a(p)

l−1,l = 0, 2 6 l 6 p . (4.20)
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Notice that formula (4.15), (4.16), (4.18) and (4.19) are valid for p = 1.
Using formula (4.11)–(4.14) in Lemma 9, we can now find the relation

between a(i+1)
i+2,1 and a(i)

i+1,1.

Lemma 10. Assume that p > 2 and 1 6 i 6 p − 1. We have

a(i+1)
i+2,1 = S−1(Siru − luS

i−p)−1(Siru − luS
i−p−1)S(a(i)

i+1,1). (4.21)

Proof. First using formula (4.14), we can show that

a(i)
1,p+2−i = Si−1(a(i)

i,p+1). (4.22)

Indeed, if we take l = p + 2 − i + r in (4.14), it follows that

a(i)
1+r,p+2−i+r = S(a(i)

2+r,p+3−i+r), 0 6 r 6 i − 2.

Thus we recursively obtain (4.22), that is,

a(i)
1,p+2−i = S(a(i)

2,p+3−i) = · · · = Si−1(a(i)
i,p+1).

From (4.13), it leads to a(i)
i,p+1 = −ruS(a(i)

i+1,1). Substituting it into to (4.22), we
get

a(i)
1,p+2−i = −Si−1ruS(a(i)

i+1,1). (4.23)

Similar as the proof of (4.22), by taking l = 2 + r, where 0 6 r 6 p − 2 − i in
(4.14) when p > 2, we recursively show that

a(i)
2+i,2 = S(a(i)

3+i,3) = · · · = Sp−1−i(a(i)
p+1,p+1−i). (4.24)

Now we substitute (4.24) into (4.11) and it leads to

S(a(i+1)
i+2,1) + Sp−i(a(i)

p+1,p+1−i) − a(i)
1+i,1 = 0. (4.25)

Formula (4.23) is valid for different values of 1 6 i 6 p − 1. Thus we
have a(i+1)

1,p+1−i = −SiruS(a(i+1)
i+2,1). We substitute it and (4.23) into (4.12) and it

becomes
S

iruS(a(i+1)
i+2,1) − SiruS(a(i)

i+1,1) + lua(i)
p+1,p+1−i = 0. (4.26)

From (4.25) and (4.26), we eliminate a(i)
p+1,p+1−i and obtain the relation be-

tween a(i+1)
i+2,1 and a(i)

i+1,1, that is,

a(i+1)
i+2,1 = (SiruS − luS

i+1−p)−1(SiruS − luS
i−p)(a(i)

i+1,1),

which is equivalent to (4.21) as written in this lemma. �

From (4.19)) and (4.20), we can see that (4.23) is also valid for i = p.
Substituting it into (4.18), we obtain

(S − 1)a(p+1)
1,1 = −S(a(p)

1,2) − lua(p)
p+1,1 = (SpruS − lu)(a(p)

p+1,1).

Therefore,
a(p+1)

1,1 = (S − 1)−1(Spru − luS
−1)S(a(p)

p+1,1). (4.27)

We are now ready to compute the recursion operators for any p ∈N.
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Theorem 11. A recursion operator of Narita-Itoh-Bogoyavlensky lattice (1.1) is

< = (ruS − luS
−p)(S − 1)−1

→p∏
i=1

(Sp+1−iru − luS
−i)(Sp−iru − luS

−i)−1 . (4.28)

Since the difference operators are not commuting, here we use the nota-
tion

∏→p
i=1 to denote the order of the value i, from 1 to p, that is,

∏→p
i=1 ai =

a1a2 · · · ap and
∏←p

i=1 ai = apap−1 · · · a1. Later we use the same notation for
difference polynomials.

Proof. First from (4.17), we can show that

a(0)
ll = Sp+1−l(a(0)

p+1,p+1), 2 6 l 6 p + 1. (4.29)

The next identity (4.7)) leads to (S− 1)a(0)
11 = 0. Here we choose the solution

a(0)
11 = 0, which makes it possible to find the relation between utn+1 and utn .

We now substitute this into (4.15) and using (4.29) we obtain

a(1)
2,1 = −a(0)

2,2 = −Sp−1(a(0)
p+1,p+1). (4.30)

It follows from (4.8) and (4.16) that

−utn − a(1)
1,p+1 + lua(0)

p+1,p+1 = 0.

We now show that a(1)
1,p+1 = −uS(a(1)

2,1) for all p ∈ N. When p > 2, we have

a(1)
1,p+1 = −ruS(a(1)

2,1) by taking i = 1 in (4.13). With p = 1, this is a result from

(4.19). Therefore for all p ∈ N, using (4.30) we have a(1)
1,p+1 = ruS

p(a(0)
p+1,p+1) .

This leads to

utn + (ruS
p
− lu)a(0)

p+1,p+1 = 0.

Therefore, we have
a(0)

p+1,p+1 = (lu − ruS
p)−1utn . (4.31)

Form (4.9), we find that −utn+1 = −ruS(a(p+1)
1,1 ) + lua(p+1)

p+1,p+1;

S(a(p+1)
l+1,l+1) = a(p+1)

l,l , 1 6 l 6 p .

This implies that

utn+1 = (ruS − luS
−p)(a(p+1)

1,1 ).

Using (4.27) we rewrite it as

utn+1 = (ruS − luS
−p)(S − 1)−1(Spru − luS

−1)S(a(p)
p+1,1).

Using Lemma 10 when p > 2, we obtain

utn+1 = (ruS−luS
−p)(S−1)−1(Spru−luS

−1)
→(p−1)∏

i=1

(Sp−iru−luS
−i)−1(Sp−iru−luS

−i−1)S(a(1)
2,1) .

This is also valid for p = 1 under the convention that the empty product
is equal to 1. Finally, using (4.30) and (4.31), we get the relation between
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utn+1 and utn , which gives rise to the recursion operator as stated in this
theorem. �

When p = 1, it follows from Theorem 11 that

< = (ruS − luS
−1)(S − 1)−1(Sru − luS

−1)(ru − luS
−1)−1 ,

which is the recursion operator for the Nonabelian Volterra chain we have
already computed in Section 3.2 (compare with (3.8)).

4.2. Locality of symmetries. The recursion operators we have obtained in
Theorem 11 have nonlocal terms. One important question is whether the
operator is guaranteed to generate local symmetries starting from a proper
seed. Sufficient conditions for weakly nonlocal Nijenhuis differential oper-
ators are formulated in [45, 46], which are also valid for weakly nonlocal
Nijenhuis difference operators [36]. This result is generalised to Nijenhuis
operators, which are the product of weakly nonlocal Hamiltonian and sym-
plectic operators [50]. However, the recursion operator given in Theorem
11 is not weakly nonlocal. In this section, we are going to directly prove the
locality of symmetries by induction.

To do so, we first introduce a family of homogeneous difference polyno-
mials of degree l with respect to the dependent variable u and its shifts

P
(l,k) =

∑
06λl−16···6λ06k

←(l−1)∏
j=0

uλ j+ jp

 , (4.32)

where k > 0, l > 1 and p > 1 are all integers. In particular, for any p ∈N we
have

P
(1,k) =

k∑
j=0

u j and P
(l,0) = u(l−1)pu(l−2)p · · · upu .

Equation (1.1) can be written in terms of these polynomials as follows:

ut = (ruS − luS
−p)P(1,p−1). (4.33)

This family of polynomials was first defined in [48], where the author
amazingly gave the explicit expressions for the hierarchy of symmetries
of equation (1.1) in terms of it. We are going to show that the recursion
operator (4.28) generates the same symmetries as in this paper modulo a
sign.

It is easy to see that the polynomials (4.32) possess the following proper-
ties [48, 49]:

P
(l,k)
− P

(l,k−1) = rukS
p(P(l−1,k)); (4.34)

P
(l,k)
− S(P(l,k−1)) = lu(l−1)pP

(l−1,k). (4.35)

These immediately lead to

(S − 1)P(l,k) =
(
SrukS

p
− lu(l−1)p

)
P

(l−1,k). (4.36)

We now prove another important property.
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Proposition 12. For all l, p ∈N, we have

(Sp−iru−luS
−i)S−lp+i

P
(l,(l+1)p−i) = (Sp−iru−luS

−(i+1))S−lp+i+1
P

(l,(l+1)p−i−1), 0 6 i 6 p.
(4.37)

Proof. . Let us compute the difference between the left-hand side and the
right-hand side of the identity (4.37) using the properties (4.34) and (4.35):

(Sp−iru − luS
−i)S−lp+i

P
(l,(l+1)p−i)

− (Sp−iru − luS
−(i+1))S−lp+i+1

P
(l,(l+1)p−i−1)

= rup−iS
−lp+p

(
P

(l,(l+1)p−i)
− SP

(l,(l+1)p−i−1)
)
− luS

−lp
(
P

(l,(l+1)p−i)
− P

(l,(l+1)p−i−1)
)

= rup−iS
−lp+p

(
lu(l−1)pP

(l−1,(l+1)p−i)
)
− luS

−lp
(
ru(l+1)p−iS

p
P

(l−1,(l+1)p−i)
)

= rup−i luS
−lp+p
P

(l−1,(l+1)p−i)
− lurup−iS

−lp+p
P

(l−1,(l+1)p−i) = 0.

We proved the statement. �

Notice that we can rewrite the recursion operator (4.28) in the form

< = (ruS − luS
−p)(S − 1)−1(Spru − luS

−1) ·
→(p−1)∏

i=1

(Sp−iru − luS
−i)−1(Sp−iru − luS

−(i+1))

· (ru − luS
−p)−1 . (4.38)

Using it, we are able to prove the following result:

Theorem 13. For Narita-Itoh-Bogoyavlensky lattice (1.1), starting from the equa-
tion itself, its symmetries Ql = <l(ut) generated by recursion operator (4.28) are
local and

Ql =<l(ut) = (ruS − luS
−p)S−lp

P
(l+1,(l+1)p−1) for all 0 6 l ∈ Z.

Proof. First the statement is clearly true for l = 0 from (4.33). Assume the
statement is true for l−1 > 0. Let us compute the next symmetry Ql. Taking
i = p in (4.37) and using the induction assumption, we have

(ru − luS
−p)S−lp+p

P
(l,lp) = (ru − luS

−(p+1))S−lp+p+1
P

(l,lp−1) = Ql−1.

Hence

Ql =<(Ql−1) = (ruS − luS
−p)(S − 1)−1(Spru − luS

−1)

·

→p−1∏
i=1

(Sp−iru − luS
−i)−1(Sp−iru − luS

−(i+1)) · S−lp+p
P

(l,lp),

where we used formula (4.38). We now recursively apply formula (4.37) for
i from p − 1 to 1 and obtain

Ql =<(Ql−1) = (ruS − luS
−p)(S − 1)−1(Spru − luS

−1)S−lp+1
P

(l,lp+p−1)

= (ruS − luS
−p)(S − 1)−1

(
rupS

−lp+p+1
P

(l,lp+p−1)
− luS

−lp
P

(l,lp+p−1)
)

= (ruS − luS
−p)S−lp(S − 1)−1

(
ru(l+1)pS

p+1
P

(l,(l+1)p−1)
− lulpP

(l,(l+1)p−1)
)

= (ruS − luS
−p)S−lp

P
(l+1,(l+1)p−1).

Here we used formula (4.36) for l being l + 1 and k being (l + 1)p− 1, that is,

(S − 1)P(l+1,(l+1)p−1) = ru(l+1)pS
p+1(P(l,(l+1)p−1)) − lulpP

(l,(l+1)p−1).

We completed the induction proof of the statement. �



22 MATTEO CASATI AND JING PING WANG

4.3. Hamiltonian structure. The Volterra chain (see Section 3.2) is a special
case of Narita-Itoh-Bogoyavlensky lattice for p = 1. The Hamiltonian for-
mulation of Volterra chain is given by equations (2.6) and (3.9). The natural
generalisation to the generic case p > 1 is

H = ru

p∑
i=1

S
iru − lu

p∑
i=1

S
−ilu + rucu + cu(S − 1)−1cu. (4.39)

Theorem 14. The operator H defined in (4.39) is Hamiltonian. It produces the
Narita-Itoh-Bogoyavlensky lattice equation for the Hamiltonian functional

h =

∫
Tr u.

Proof. The theorem is made of two statements. The second one is a straight-
forward computation. We have

ut = H
δh
δu

= H(1) =

p∑
i=1

(uiu − uu−i)

The first statement is proved by induction. Let us denote Hp the operator
(4.39) when the upper bound of the sums is p. We have proved in Propo-
sition 7 that H1 is Hamiltonian. We show here that, if Hp−1 is Hamiltonian,
Hp = ruS

pru − luS
−plu + Hp−1 is Hamiltonian too. For simplicity we denote

Hp = Hp −Hp−1 the added terms, and use

Pp =

∫
Tr upuθθp,

Pp−1 =
1
2

∫
Tr

2
p−1∑
k=1

ukuθθk + u2θθ + (ρ − λ)(ρ1 − λ1)

 ,
Pp = Pp + Pp−1

for the corresponding bivectors. In the remaining part of the proof, we will
omit the summation symbol and adopt the convention that any expression
including k is summed for k = 1, . . . , p − 1.

The Hamiltonian condition reads

prHpθ
(Pp) = prHpθPp + prHp−1θ

Pp + prHpθPp−1 + prHp−1θ
Pp−1

= prHpθPp + prHp−1θ
Pp + prHpθPp−1 = 0,

where we have dropped the last term because of the inductive hypothesis.
The computation of each term follows the lines of the aforementioned proof
of Proposition 7. Observe that the nonlocal terms are present only in H0
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and are the same as in (2.6). For each of the summands we obtain

prHpθ(Pp) =

∫
Tr

(
upuθθpupθp − upuθuθθp

)
,

prHp−1θ
(Pp) =

∫
Tr

(
uk+pupuθθpθp+k + u2

puθθpθp − upuu−kθ−kθθp

+ ukuθθpupθk − upuθθpupθp − upup−kθp−kuθθp

− upuθuθθp + u2θθpupθ

+(ρ − λ)(uu−pθ−pθ − θθpupu) − [(Sp
− 1)(ρ − λ)]uθθpup

)
that, using (Sp

−1)(ρ−λ) =
∑p−1

k=0(θkuk−ukθk) (note the different summation
boundary), gives

=

∫
Tr

(
uk+pupuθθpθp+n + u2

puθθpθp − upuu−kθ−kθθp

−upuθθpupθp + (ρ − λ)(uu−pθ−pθ − θθpupu)
)
, (4.40)

prHpθ(Pp−1) =

∫
Tr

(
up+kukuθθkθp+k − ukuu−pθ−pθθk − u2u−pθ−pθθ

− ukuk−pθk−puθθk + upuθuθθp + upuθukθkθp

+(ρ − λ)(θθpupu − uu−pθ−pθ)
)
.

The sum of the three terms, using the properties of the integral, yields

prHpθ
(Pp) =

∫
Tr

(
upuθukθkθp − ukuk−pθk−puθθk

)
.

A similar expression appeared in the computations of (4.40). We first shift
the second summands by p − k, obtaining

prHpθ
(Pp) =

∫
Tr upuθ

(
ukθk − up−kθp−k

)
θp,

and then observe that the (implicit) summation runs from 1 to p − 1, so
that the terms in the bracket cancel out when summed over k. We can then
conclude that prHpθ

(Pp) = 0, proving our first claim. �

5. More nonabelian integrable equations

In this section we present some examples of integrable nonabelian inte-
grable systems. They are the nonabelian counterparts of integrable systems
in the list in [21]. We provide their Lax representations and recursion op-
erators without giving the computational details. Moreover, we are able to
obtain the Hamiltonian structure and functional for some of them. To the
best of our knowledge, this is the first collection of such systems and their
recursion operators are new.
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5.1. Nonabelian modified Volterra. The nonabelian modified Volterra equa-
tion

ut = u1u2
− u2u−1 (5.1)

is obtained from the Volterra equation (3.6) with the Miura transformation
w = u1u. More precisely, if u is a solution of modified Volterra then w is a
solution of Volterra equation. Indeed,

wt = w1w − ww−1 = u2u2
1u − u1u2u−1 = u1tu + u1ut.

Applying the Miura transformation, from the Volterra chain (3.6) we
obtain the Hamiltonian structure for (5.1)

H = w−1
∗

(
ru1uSru1u − lu1uS

−1lu1u + cu1uru1u + cu1u(S − 1)−1cu1u
)

w†∗
−1

=
(
ru − luS

−1
)

(S − 1)−1 (Sru − lu) +
(
ruS + lu1

)−1 lu1u
(
S
−1lu − ru

)
with the Hamiltonian functional

h =

∫
Tr u1u.

and the recursion operator<

< =
(
ru − luS

−1
)

(S − 1)−1 (
lu1u − Sru1uS

) (
lu1u − ru1uS

)−1 (
ruS + lu1

)
.

Here we used the identity(
ruS + lu1

) (
ru − luS

−1
)

= ru1uS − lu1uS
−1

to simplify the expressions of H and<.

Note 15. We can consider the nonabelian version of a more general Volterra-
like equation (see [5] for the commutative case)

ut = u1P(u) − P(u)u−1,

for P(u) = αu2 + βu + γ, with α, β, γ ∈ C. Similarly to the commutative case,
such a system can be reduced to the Volterra one if α = 0, β , 0 with the
change of coordinates u 7→ β−1(u − γ); when α , 0, a change of coordinates
t 7→ α−1t, u 7→ u − β/2α produces the same equation with P(u) = u2 + c,
c = γ/α − β2/(4α2). The Lax pair representation of this system is the same
as for the commutative case [21]

U =

(
cλ−1 u
−u λ

)
B =

(
c2λ−2 + uu−1 cλ−1u + λu−1
−cλ−1u−1 − λu λ2 + uu−1

)
,

5.2. Nonabelian relativistic Toda. The nonabelian version of the relativis-
tic Toda system [27, 17]ut = u (u−1 + v) − (u1 + v1) u

vt = vu−1 − uv

is Hamiltonian with respect to the Hamiltonian operator

H1 =

(
0 lu − ruS

S
−1lu − ru ruS − S

−1lu − cv

)
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and the Hamiltonian functional

h0 =

∫
Tr

(1
2

(
u2 + v2

)
+ uv + u1u + uv1

)
.

As for the non-relativistic Toda lattice, the proof that H1 is a Hamiltonian
difference operator is obtained by a direct computation, after deriving

H1Θ =

(
uζ − ζ1u

u−1θ−1 − θu + ζ1u − u−1ζ−1 − ζv + vζ

)
,

P = −

∫
Tr (uζθ + uθζ1 − uζζ1 + vζζ) .

The hierarchy shares the same Lax representation of the commutative case

U =

(
λv − λ−1 u−1
−1 0

)
B =

(
−λ−2

− u−1 λ−1u−1
−λ−1

−u−2 − v−1

)
from which we can compute the recursion operator

< =

(
lurv − ruSlv lu − ruS

2

0 lv − rvS

)
·

(
1 0

(1 − S)−1
(
S
−1lu − ruS

)
1

)
·

(
(lu − ruS)−1 0

0 (1 − S)−1

)
through the ansatz

Bt = λ−2Bτ + λ−2C(−2) + λ−1C(−1) + C(0), (5.2)

where C(−2) and C(0) are diagonal matrices and C(−1) is off-diagonal.
We are able to write down the inverse recursion operator<−1 in the same

way as in the commutative case [21]; it can be obtained in a similar way,
replacing the role of t and τ in the ansatz (5.2). We get

<
−1 =

(
ruS − lu 0(
S
−1lu − ruS

)
1 − S

)
·

(
1 (ruSlv − lurv)−1

(
ruS

2
− lu

)
0 1

)
·

·

(
(ruSlv − lurv)−1 0

0 (lv − rvS)−1

)
The recursion operator<−1 has a different seed than<, namely(

uv−1
− v1

−1u
v−1

1 u − u−1v−1
−1

)
.

Using the recursion operator<, we obtain the second Hamiltonian structure
for the relativistic Toda system, namely we have H2 =<H1 and

(H2)11 = luS
−1lu − ruSru − rucu + cu(1 − S)−1cu

(H2)12 = lurv − rucv − ruSrv + cu(1 − S)−1cv

(H2)21 = lvS
−1lu − ruv + cv(1 − S)−1cu

(H2)22 = −cvrv + cv(1 − S)−1cv
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Note 16. In the commutative case, the Relativistic Toda equation [44], written
in variables ū and v̄ is related to the Relativistic Volterra Lattice by the Miura
transformation ū = −vu and v̄ = −(u + v−1 + 1) [21]. For the nonabelian case,
this transformation produces the nonabelian Relativistic Volterra lattice{

ut = vu(1 + u) − uv−1(1 + u−1)
vt = (1 + v1)u1v − (1 + v)vu.

It possesses a Lax representation

U =

(
λ2 + 2u1 + 2v + 1 −λ(2v + 1) − λ−1(2u1 + 1)

−λ(2u1 + 1) − λ−1(2v + 1) λ−2 + 2u1 + 2v + 1

)
B =

(
−
λ2
−λ−2

8 + vu + u
2 + v

2
λ
4 (2v + 1) + λ−1

4 (2u + 1)
λ
4 (2u + 1) + λ−1

4 (2v + 1) λ2
−λ−2

8 + vu + u
2 + v

2

)
5.3. Nonabelian Merola-Ragnisco-Tu Lattice.{

ut = u1 − uvu
vt = −v−1 + vuv

Lax representation:

U =

(
−1 v
u −2λ − uv

)
; B =

(
−λ −v−1
−u λ

)
Hamiltonian structure:

H =

(
0 1
−1 0

)
; h = u1v −

uvuv
2

Recursion operator:

< =

(
S − luv 0

0 S
−1
− ruv

)
+

(
−ruS −lu

lv rvS

)
(S − 1)−1

(
rv lu
lv ru

)
5.4. Nonabelian Kaup Lattice.{

ut = (u1 − u)(u + v)
vt = (u + v)(v − v−1)

Lax representation

U =

(
u − λ uv + λ(u + v) + λ2

1 v − λ

)
; B =

(
u (u + λ)(v−1 + λ)
1 v−1

)
We compute its recursion operator with the ansatz

B(t) = λB(τ) +

(
λa + e λ2a + λb + c

a λa + d

)
and obtain

< =

(
−ruS −lu
−rv −lvS

−1

)
+

(
lu1−uru+vS

lu+vrv−v−1

)
(lu+v − ru+vS)−1

(
1 1

)
+

(
S

−1

)
(S − 1)−1

(
rv (1 − S) lu

(
1 − S−1

) )
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5.5. Nonabelian Ablowitz-Ladik Lattice.{
ut = α(u1 − u1vu) + β(uvu−1 − u−1)
vt = α(vuv−1 − v−1) + β(v1 − v1uv) α, β ∈ C

Its Lax representation is

U =

(
λ u
v λ−1

)
; B = α

(
λ2
− uv−1 λu
λv−1 0

)
+ β

(
0 λ−1u−1

λ−1v λ−2
− vu−1

)
We compute its recursion operator with the ansatz

Bt = λ2Bτ +

(
a λb
λc λ2d

)
and obtain

< =

(
S 0
0 S

−1

)
+

(
ruS

−lv

)
(1 − S)−1

(
rvS luS

−1
)

+

(
rvu−1Slu
−lvu−1rv−1

)
(lvu−1 − rvu−1S)−1

(
lv ru

)
We are able to write down the inverse recursion operator<−1 in the same

way as in the commutative case [21]; it can be obtained in a similar way,
replacing the role of t and τ in the ansatz. We get

<
−1 =

(
S
−1 0
0 S

)
+

(
lu
−rvS

)
(S − 1)−1

(
lvS
−1 ruS

)
+

(
−luv−1ru−1

ruv−1Slv

)
(luv−1 − ruv−1S)−1

(
rv lu

)
Note that the seed for< is the coefficient of α in the equation while the seed
for<−1 is the coefficient of β.

5.6. Nonabelian Chen-Lee-Liu lattice.{
ut = (u1 − u)(1 + vu)
vt = (1 + vu)(v − v−1)

Its Lax representation is

U =

(
λ + uv u

(1 − λ)v 1

)
; B =

(
λ − 1 + uv−1 u

(1 − λ)v−1 0

)
We compute its recursion operator with the ansatz

B(t) = λB(τ) +

(
a b

(1 − λ)c (1 − λ)d

)
and obtain

< =

(
r1+vuS − rvu + l(u1−u)v lu1−uru + luruS

−1

lvrv S
−1

)
+

(
ru
−lv

)
(1 − S)−1

(
rv(1 − S) lu(1 − S−1)

)
+

(
l(u−u1)(1+vu)
l1+vurv−1−v

)
(l1+vu − r1+vuS)−1

(
lv ru

)
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5.7. Nonabelian Blaszak-Marciniak Lattice.
ut = w1 − w−1
vt = w−1u−1 − uw
wt = wv − v1w

It is a Hamiltonian system with a Hamiltonian structure

H1 =

S − S
−1 0 0

0 lv − rv S
−1lw − rw

0 lw − rwS 0

 , h = uw +
1
2

v2

Its Lax representation is

L = S2 + u1S − v1 + wS−1, A = S2 + u1S − v1

from which we can compute the recursion operator< by

Lt = [L, At]

with the ansatz
At = LAτ + aS + b + cS−1.

The explicit form of the operator is rather big. In factorised form we have
< = KH−1

1 with

(K)11 = lvS
−1
− Srv + (luS − ru)(1 − S2)−1(Sru − lu)

(K)21 = S−1lwS
−1
− rwS − cv(1 − S2)−1(Sru − lu)

(K)22 = lurwS − S
−1lwru + rvcv − cv(1 − S2)−1cv

(K)31 = (lw − rwS)(1 − S2)−1(Sru − lu)

(K)32 = rwSrv − lwrv + (lw − rwS)(1 − S2)−1cv

(K)33 = rwSru − lwrw + (lw − rwS)(1 − S2)−1(rw − S
−1lw).

6. Discussion and further work

In this paper we have computed nonabelian Hamiltonian structures for
some difference system. It should be noted that in the scalar cases (Volterra
and modified Volterra, as well as Narita-Itoh-Bogoyavlensky) all the Hamil-
tonian operators we have identified are nonlocal, even when the nonlocal
terms do not contribute to the equation. On the other hand, the first Hamil-
tonian structures of the two Toda systems we have investigated are local.
We could not find local nonabelian Hamiltonian structures for the systems
5.4, 5.5, 5.6, despite their commutative counterparts are extremely simple.
For instance, the Hamiltonian structure for the Abelian Ablowitz-Ladik
lattice is [21]

H =

(
0 1 − uv

−(1 − uv) 0

)
A recent development in the study of nonabelian ODEs [6] suggests that
brackets of Loday type can play the same role as Hamiltonian structures,
satisfying weaker conditions.

A wider investigation (and, possibly, classification) of the nonabelian
difference Hamiltonian structures (on the lines of what has been done for
the commutative case in [13]) will be carried out in a forthcoming work,
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where we will also present the nonlocal structures for the aforementioned
systems 5.4, 5.5, and 5.6.

The generalisation from the Abelian case to the nonabelian case is not
straightforward. In Abelian case, the Narita-Itoh-Bogoyavlensky lattice
(4.1) has a product form

vt = v(
p∏

k=1

vk −

p∏
k=1

v−k), (6.1)

For fixed p, it transforms into (4.1) under the transformation u =
∏p−1

k=0 vk.
There is also the modified Bogoyavlensky chain given by

wt = w2(
p∏

k=1

wk −

p∏
k=1

w−k), (6.2)

which is related to (4.1) by the Miura transformation u =
∏p

k=0 wk. There
Miura transformations are not valid for the nonabelian case except when
p = 1.

In 2011, Adler and Postnikov introduced a family of integrable lattice
hierarchies associated with fractional Lax operators in [3, 4]. One simple
example is

ut = u2(up · · · u1−u−1 · · · u−p)−u(up−1 · · · u1−u−1 · · · u1−p), 2 6 p ∈N, (6.3)

which is an integrable discretisation for the Sawada-Kotera equation. No-
tice that equation (6.3) is a combination of equations (6.2) and (6.1) with
different p. For them, there are no direct generalisation to nonabelian case.
In differential case, the Sawada-Kotera equation possesses no nonabelian
version [42, 43]. It would be interesting to see whether there exists non-
abelian discretisation for the Sawada-Kotera equation. On the other hand,
there are two nonabelian discretizations of Burgers’ equation:

ut = (u1 − u)u and ut = u(u1 − u),

which can be transformed, by the Cole-Hopf transformation

u = v1v−1 and u = v−1v1

respectively, into the linear equation vt = v1.
In this paper, we present some new examples of nonabelian integrable

differential-difference systems with their Lax representations, Hamiltonian
and recursion operators. The list is by no mean to be complete. For example,
we didn’t include the nonabelian Belov-Chaltikian Lattice{

ut = v2u − uv−1
vt = v1v − vv−1 + u−1 − u

whose Lax representation is

U =

 λ λv λu−1
1 0 0
0 1 0

 ; B =

 v − λ −λv −λu−1
−1 v−1 0
0 −1 v−2

 .
In the Abelian case, it is the Boussinesq lattice related to the lattice W3-
algebra [19], and can be generalised to an m-component Boussinesq lattice
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related to the lattice Wm+1-algebra [32]. It deserves a further study on its
own right. The classification problem even for scalar case remains open.

The recursion operators for nonabelian integrable differential-difference
systems are highly nonlocal. For Abelian case, there are some general results
to prove that they generate local hierarchies under checkable conditions,
see for example [50]. In section 4.2, we proved that this is indeed true for
the nonabelian Narita-Itoh-Bogoyavlensky lattice. However, we haven’t
proved any general results for other integrable equations.
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