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Abstract

In this thesis, we present four manuscripts, described in the second to fifth chapter. Chapter 2 presents
a Bayesian nonparametric model for capture-recapture (CR) data collected at different sites and for
several years. To estimate arrival and departure patterns at the different sites and years, we build an
extension of the Dirichlet process, the Hierarchical Dependent Dirichlet process, which allows us to
perform density estimation jointly across different sites and in the presence of covariates. In this case,
we use a year-specific covariate, and model the correlation structure of the covariate across years
using a multivariate Gaussian process. In Chapter 3, we present a model for estimating entry and exit
patterns, as well as the population size, using count data (CD), by employing a Polya Tree (PT) prior.
In Chapter 4 we present several extensions of chapter 3. More specifically, we extend the model to
CR and to ring-recovery data and develop a joint model for CR and CD. In addition, we consider the
case when multiple data-sets are modelled at the same time, by defining a hierarchical extension of
the PT, which we define as Hierarchical Logistic PT. Finally, we extend the model to the case of long
time series, by borrowing ideas from the Optional PT. Chapter 5 presents a spatial model to estimate
interactions between multiple species using CR data. The model uses a vector of interaction point
process (IPP), which allows us to estimate interactions between and within species. The use of an
IPP leads to an intractable ratio of normalising constants (RNC), and hence we use the Monte Carlo
Metropolis Hastings algorithm to approximate the RNC with an importance sampling estimate. The
supplementary material for each paper is presented in the appendix.
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Chapter 1

Introduction

This thesis considers the results from four papers considering novel Bayesian methods and their
applications to statistical ecology, more specifically, the study of wildlife populations. The study
of wildlife populations is becoming increasingly important as in this period of rapid environmental
change it is paramount to be able to monitor the changes in populations using statistical models that
utilise the data arising from different sampling protocols.

When modelling wildlife populations, several quantities are of interest to conservation scientists
and researchers. One of the main quantities of interest is usually population size. In the case of closed
populations, that is, when individuals are assumed to remain at the study area for the entire duration
of the study, population size corresponds to the number of individuals present at the site during the
study. For open populations, that is, when individuals are allowed to enter and leave the study area,
population size is interpreted as the number of individuals that become available for detection at
least once. In addition, when considering open populations, researchers may also be interested in
estimating the arrival/departure or birth/death patterns of the population, that is, when individuals are
expected to enter or exit the study area and their corresponding length of stay or lifespan, depending
on the application. In the four manuscripts, the terms arrival/departure and entry/exit or birth/death
are used interchangeably, as according to the data considered births (deaths) are indistinguishable
from entry (exit). Throughout this introductory chapter we use the terms entry and exit, which is also
the terminology used in the fourth chapter. We always assume throughout the thesis that individuals
are only allowed to enter and exit the study area once so that emigration is permanent. Also, when
sampling is performed in more than one locations, the data can be used to estimate the spatial patterns
of individuals. The term spatial pattern encompasses more generally the density of the individuals
in the site area, or how the density changes according to the characteristics of the site, which can be
expressed by covariates. However, spatial data have also been used recently to estimate the interactions
between individuals [74].

The type of sampling protocol used depends on the time and funding constraints and on the
characteristics of the population. One of the most used sampling protocols, which we consider
in three of the manuscripts, is capture-recapture (CR). CR data are collected by visiting a site on
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several occasions, called sampling occasions, and each time capturing a number of individuals and
marking the individuals never caught before. However, as physically marking individuals is often
difficult, in the case where the individuals can be individually identified using natural marking, the
CR protocol can be performed via camera-traps, by taking pictures of individuals. The other two
sampling protocols considered in our work are count data (CD) and ring-recovery (RR). The CD
protocol is similar to CR, but in each sampling occasion, a number of individuals is counted without
individually identifying the individuals. The RR protocol relies on marking a number of individuals in
each sampling occasion and recovering them only when they are dead without attempting to recapture
them alone. The advantage of the CR protocol over CD and RR is the information available at the
individual level, which allows for more precise estimates of population size, capture probability and
arrival and departure patterns. In fact, as opposed to CR, it is more difficult to separately estimate
all three quantities in the case of CD and RR [2]. In fact, in the third chapter we use CD to estimate
arrival and departure patterns by relying on informative prior distributions, while in the fourth chapter
we use RR to estimate age-specific survival patterns by using two data-sets, where for one of the two
data-sets the individuals have known age at the time of marking.

The first three papers focus on the study of entry and exit patterns. In particular, we assume a
density for the individual arrival and departure times and we use a Bayesian nonparametric (BNP)
approach for modelling this density. BNP is an increasingly popular field in Bayesian statistics and a
vast literature is present especially for BNP approaches to density estimation. According to the BNP
approach, a prior is defined on an infinite dimensional space, as the number of parameters is infinite
compared to the parametric case, where this number is finite. The benefit of the BNP approach is its
flexibility, as the complexity of BNP grows with the number of observations.

The second chapter relies on the popular Dirichlet process (DP) prior [28], which can be seen
as the start of the nonparametric literature. Although this prior is of limited use on its own because
its draws are discrete, it is common to use the DP as the mixing measure of the parameters of a
continuous kernel to define a nonparametric prior on continuous densities. The DP has been extended
in many directions. Two of the most notable extensions are the Dependent Dirichlet process (DDP),
which allows us to introduce covariates in the process [51], and the Hierarchical Dirichlet process
(HDP) [84], which allows us to model different data-sets hierarchically. In the second chapter, we are
interested in performing density estimation at different sites and in presence of covariates, and hence
to achieve this we combine the idea of the DDP and the HDP and define the Hierarchical Dependent
Dirichlet process (HDDP).

The third and the fourth chapter use the Polya tree (PT) prior [29, 48], which is another common
prior for distributions in the nonparametric literature. The PT prior is an extension of the DP and the
advantage over the DP is that it allows us to model continuous distributions. The PT works by defining
a prior distribution on the masses of sets of nested partitions on the sample space. Inference with the
PT prior is usually performed by truncating the process using only a finite number of sequences of
these sets, until a given level of resolution is required. This is especially suited in statistical ecology,
as it is not possible to obtain information at resolutions finer than the one defined by the sampling
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occasions, and hence the sampling occasions provide a natural way to define the resolution of the PT.
The third chapter is concerned with the estimation of arrival and departure patterns using CD, while
the fourth chapter extends these ideas to the case of CR, RR and to data collected at different sites or
different years. In this paper, we also define two extensions of the PT: the replicate PT (RPT), which
allows us to set constraints on the distributions, and the Hierarchical Logistic PT (HLPT), which
allows us to model different distributions hierarchically, in a similar fashion to the HDP.

In the fifth chapter, we are concerned with estimating interactions between different wildlife
populations. To model the interactions between individuals, we rely on the theory of spatial point
processes (PP) and consider the latent locations of the individuals as realizations from a PP. PPs are a
vast area of research in statistics and they are a modelling tool when the objects of interest are the
positions of points in space [75, 16]. The starting point for modelling point patterns is the Poisson
process, which is simply characterised by an intensity function that determines the number of points
in each subset of the space. The Poisson process serves as a model class for the no interaction case in
spatial PPs. In fact, even if more flexible approaches need to be considered, the Poisson process is a
useful reference process to rely on to build other processes. One extension of the Poisson process is
the class of Cox processes, which are processes for clustered or aggregated point patterns and are
obtained by taking the realization of a random field as the intensity function of a Poisson process.
Examples of Cox processes are Neyman-Scott processes [63], shot noise Cox processes [7] and Log
Gaussian Cox processes [60]. Another extension of point processes is the class of interaction PPs
(IPP), and are a useful modelling tool when interactions between points are considered. The study of
IPPs started with Markov PPs in statistical physics for studying particle interaction systems [80, 70].
Markov PPs are a special case of IPPs, which are defined by constructing a process with a density
function with respect to a Poisson process and letting the density function determine the interaction
between points. Inference for IPPs is usually difficult as the normalising constant of the likelihood
is unknown except for trivial cases (such as the Poisson processes). In frequentist settings, the most
common approach is to use a maximum pseudo-likelihood estimator (MPLE) in the place of the
classic maximum-likelihood estimator (MLE). This procedure is justified by convergence theorems
for MPLE estimators. In Bayesian settings, the use of IPPs leads to inference in the presence of an
intractable ratio of normalising constants. A vast literature is present on inference procedures that
allow to deal with intractable ratios of normalising constants in the Bayesian setting, as this problem
arises also when working with exponential random graph models. The most notable method is the
Exchange sampler algorithm [62], while other popular methods are path sampling [64] and the Monte
Carlo Metropolis-Hastings algorithm [50].





Chapter 2

A hierarchical dependent Dirichlet
process prior for modelling bird
migration patterns in the UK





Abstract

Environmental changes in recent years have been linked to phenological shifts, which in turn are
linked to the survival of species. The work in this paper is motivated by capture-recapture data on
blackcaps collected by the British Trust for Ornithology as part of the Constant Effort Sites monitoring
scheme. Blackcaps overwinter abroad and migrate to the UK annually for breeding purposes. We
propose a novel Bayesian nonparametric approach for expressing the bivariate density of individual
arrival and departure times at different sites across a number of years as a mixture model. The
new model combines the ideas of the hierarchical and the dependent Dirichlet process, allowing
the estimation of site-specific weights and year-specific mixture locations, which are modelled as
functions of environmental covariates using a multivariate extension of the Gaussian process. The
proposed modelling framework is extremely general and can be used in any context where multivariate
density estimation is performed jointly across different groups and in the presence of a continuous
covariate.

2.1 Introduction

Describing abundance, distribution and phenology of wild animals is key to understanding the drivers
of populations and therefore to designing effective conservation strategies. During this period of
rapid environmental change and degradation of the natural world, it is important to develop statistical
methods that utilise currently available data to provide increased understanding of species dynamics
and the impact of climate change on species. The annual cycle of migratory species makes them
particularly sensitive to impacts of climate change, but also makes them challenging to study. In this
paper we study the phenology and abundance of migratory birds in Great Britain, in order to better
understand their populations and the impacts of climate. Phenology has been linked to the survival of
species, with populations that did not show a phenological response to climate change declining, as
birds fail to breed at the time of maximal food abundance [6, 58].

Capture-recapture (CR) is one of the most commonly employed protocols in ecology to estimate
the main demographic parameters of a wildlife population. CR is performed by visiting a site several
times and capturing and marking a subset of the individuals before releasing them back into the
population. The work in this paper is motivated by CR data on birds, collected by the British Trust for
Ornithology (BTO) at different sites since 1983 as part of the Constant Effort Sites (CES) monitoring
scheme, described in Peach et al. [66]. Specifically, we consider data on blackcaps, that are known to
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breed in the UK but overwinter in Africa. The CES scheme has been already adopted across Europe.
For instance, [26] used data from constant effort ringing protocols in Western Europe to assess the
productivity of several bird species, while [43] estimated annual survival from similar data.

Individuals of the same species are expected to share many of their migratory behaviours even if
breeding at different sites. This led us to adopt a joint modelling approach for their migration pattern
across different sites. Such a modelling approach is also motivated from the fact that fewer than
15 birds were captured at least once and fewer than 5 were captured more than once in 80% of the
sites. Such small sample sizes prohibit us from studying phenology or estimating population sizes
at these sites when modelling data at each site separately, as for example using the approach of [55]
(MC17). Instead, a joint modelling approach enables us to study migration patterns across the UK
without being limited to only using sites where large numbers of individuals are caught. There is
also considerable interest in determining the effect of changes in environmental conditions due to
climate change on the migration patterns of animals, including birds. In order to link phenological
changes to environmental conditions, we introduce a year-specific weather covariate, specifically the
average North-Atlantic Oscillation (NAO), in modelling phenology, expressed through the arrival and
departure density of individuals at the different sites.

In ecological applications, parametric models often entail assumptions on the population studied
that are difficult to assess in practice. In particular, as wildlife populations typically present consider-
able heterogeneity, the use of parametric models in ecology can be prone to model misspecification.
As a result, Bayesian nonparametric models have recently been more frequently adopted. The most
popular nonparametric prior employed in these applications is the Dirichlet Process (DP) prior of [28].
The DP is a prior for densities that can be centered around any continuous distribution. However, as
samples from the DP are always discrete distributions, the DP is often convolved with a continuous
kernel when used as a prior for continuous distributions. The result of this convolution is called
a DP mixture and gives rise to a mixture distribution with an a-priori infinite number of mixture
components. Thanks to this flexibility, this prior has been adopted in several ecological applications.
First, Dorazio et al. [22] extended the N-mixture model of [77] with the DP mixture of normals to
allow for a variable number of mixture components in the prior distribution of population sizes. Ford
et al. [30] used a DP mixture to model heterogeneity in capture and survival probabilities in a closed
population of whales. Manrique-Vallier [54] used a DP mixture of product-Bernoulli distributions to
estimate the size of a closed population in multiple CR data. Finally, MC17 used the Gamma process
[47], which can be expressed in terms of the DP, to model the arrival intensity of a population given a
CR dataset.

Our model extends MC17 by borrowing ideas from two other popular nonparametric priors, the
Hierarchical Dirichlet process (HDP) of Teh et al. [84] and the single-p Dependent Dirichlet process
(DDP) of MacEachern [51]. The former is an extension of the DP for data collected in several groups,
while the latter is an extension of the DP that allows the introduction of covariates. Combining these
two models, we define the Hierarchical Dependent Dirichlet process (HDDP), which can be used
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as the mixing measure of a continuous kernel to estimate densities as functions of continuous and
categorical covariates.

As a result, our model is completely flexible in the sense that it assumes a mixture distribution
with an a-priori infinite number of mixture components for the arrival and departure distribution at
each specific site and in each year. Moreover, as a result of the clustering properties of the model,
these mixture components can be shared across different sites. The ecological interpretation is that
birds at different sites can belong to the same cohort, sharing similar migration behaviour, which in
the model equates to one of the mixture components. Thus, even if there is no information available
on the number of cohorts of birds with similar migratory behaviour, the model can naturally adapt to
any number of cohorts, by varying the number of mixture components in each site-specific density.

The paper is organized as follows. In Section 2.2 we describe the existing model of MC17. In
Section 2.3 we introduce the mathematical concepts necessary to define the model presented in this
paper. In Section 2.4 we define the new model proposed. The results of fitting the model to simulated
data and to the BTO data are presented in Section 2.5. Section 2.6 concludes the paper and introduces
some potential future directions. The details of the sampler are presented in the appendix.

2.2 The existing model

The model of MC17 performs inference from a single CR dataset. As mentioned in the introduction,
CR data are collected by capturing individuals present at the site during K repeated sampling occasions.
The data can be summarised in the form of a matrix H, with individual capture histories of the D
caught individuals represented in the rows and the K capture occasions represented in the columns
of the matrix. The capture history of individual i, Hi, corresponding to the i-th row of H, has k-th
element equal to 1 if the individual was caught at the k-th sampling occasion, and equal to 0 otherwise.

The probability of capturing an individual that is present, p, is assumed to be constant across
sampling occasions and common between individuals. The population size, which corresponds to the
overall number of individuals that visited the site, is denoted by N.

Moreover, the model assumes that birds can enter the site at any continuous time, ζ , called the
arrival time, and stay for a time δ , referred to as length of stay. The arrival time of each individual
is sampled from a Poisson process with intensity ν(ζ ), which is taken to be a mixture of normal
distributions ν(ζ ) =

∫
∞

−∞

∫
∞

0 N(ζ |µ,σ2) G(dµ,dσ2), where G is a Gamma process with shape αG0

and scale τ , where α,τ > 0 and G0 is a distribution function. The Gamma process is a completely
random measure [46], whose Levy intensity is given by ν(ds,dx) = exp(− s

τ
)s−1ds αG0(dx). It is

closely related to the more popular DP, as the latter arises as normalisation of the Gamma process
[28, 47], since the normalised random measure P(·)= G(·)

G(Ω) , where Ω is the sample space, is distributed
as a DP. Thanks to this property, the Gamma process can be decomposed as G = ωP, where P is
distributed as a DP with concentration parameter α and corresponds to the normalized density of
the process and ω ∼ Gamma(α,τ) is the overall intensity of the process. The intensity ν(ζ ) can be
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expressed as
ν(ζ ) = ω

∫
∞

−∞

∫
∞

0
N(ζ |µ,σ2) P(dµ,dσ

2)︸ ︷︷ ︸
fX

(2.2.1)

Given G, the sample size N is distributed as a Poisson(ω) and the arrival times ζ1, . . . ,ζN are i.i.d.
from fX . The previous representation motivates the use of the intensity function, as it allows us to
sample the population size and the arrival times conditionally independent on each other, as used for
example in Wolpert and Ickstadt [88].

The length of stay is modelled by a survival function with piecewise constant hazard rate fY . The
model can be expressed through latent variables in a hierarchical form as

Hik|ζi,δi, p ∼ Bernoulli(pzik) i = 1, . . . ,N k = 1, . . . ,K

ζi
i.i.d.∼ fX i = 1, . . . ,N

δi
i.i.d.∼ fY i = 1, . . . ,N

N|ω ∼ Poisson(ω)

ω|α,τ ∼ Gamma(α,τ)

(2.2.2)

where zik is 1 if individual i is available at sampling occasion k (if ζi < tk < ζi +δi) and 0 otherwise.

In this paper, we jointly model arrival and lengths of stay non-parametrically and extend the work
of MC17 by defining the Hierarchical Dependent Dirichlet process, which allows us to jointly model
data collected

• at different sites, while sharing information between sites, using the properties of the HDP, and

• across different years, accounting for the effect of a continuous covariate on migration patterns,
with correlation over time modelled using a multivariate Gaussian process.

2.3 Theory

2.3.1 Hierarchical Dependent Dirichlet Process mixtures

Before introducing the Hierarchical Dependent Dirichlet Process (HDDP) we present some standard
models from the Bayesian nonparametrics literature.

The Dirichlet Process (DP), already mentioned in the introduction, is a random measure F with
two parameters: a distribution G0, called the base measure, and a positive real number α , called the
concentration parameter, which tunes the variability of F around the base measure. It is denoted by
DP(α,G0) and it can be represented as ∑

∞
i=1 φiδθi , with θi ∼ G0 and the φis generated according to the

stick-breaking process [82]. According to this process, given a sequence of variables vi ∼ Beta(1,α),
the weights are generated as φi =

(
∏

i−1
j=1 v j

)
vi. The θi are often referred to as cluster locations, while

the φi are called weights.
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A popular extension of the DP, designed to work with data collected in different groups, is
the Hierarchical Dirichlet process of [84]. In order to model data from different groups, the HDP
assumes a random measure, Fj, for the j-th group, and a global random probability measure F0. The
global measure is assumed to have a DP prior F0 ∼ DP(γ,G0), while the group-specific random
measures have independent DP prior Fj ∼ DP(α,F0). Parameter γ tunes the variability of F0 around
G0 and α tunes the variability of Fj around F0. According to the stick-breaking representation,
F0 = ∑

∞
i=1 φiδθi and Fj = ∑

∞
i=1 πi jδθi , and the distribution of the weights π. j can be obtained in closed

form as πk j =
(
∏

k−1
i=1 vi j

)
vk j where vk j | (α,φ1, . . . ,φk)∼ Beta

(
αφk,α

(
1−∑

k
l=1 φl

))
. Hence, every

Fj is essentially obtained by keeping the same atoms of F0 but redistributing the weights. No variation
is induced in the cluster locations of the group-specific DPs.

The HDP is often conveniently described via the Chinese restaurant franchise (CRF) representation.
According to the CRF representation, every observation in a group corresponds to a customer in a
restaurant. In addition, the cluster locations of F0 θ1, . . . ,θK

i.i.d.∼ G0, represent the dishes that can be
served in the restaurant. To link the customers to the dishes, customer i in restaurant j is assigned to
a table ti j, while table t in restaurant j is assigned to dish k jt . As a consequence, the dish served to
customer i in restaurant j is k jti j , which we define as ci j. In addition, following the notation established
in the literature, n jt denotes the number of customers sitting at table t in restaurant j, mk the number
of tables serving dish k and M the total number of tables.

Thanks to the CRF representation, we can express the distribution of the allocations ci j of
customers to dishes by first defining the distribution of allocations ti j of customers to tables and then
the distribution of the allocations k jt of tables to dishes. We can generate a sample from the CRF by
sampling iteratively according to the following scheme. A new customer is assigned to an

existing table t with probability n jt
n jt+α

new table t⋆ serving existing dish θk with probability α

n jt+α

mk
M+γ

new table t⋆ with new dish θk⋆ ∼ G0 with probability α

n jt+α

γ

M+γ

Likewise, a table is assigned to anexisting dish θk with probability mk
M+γ

new dish θk⋆ ∼ G0 with probability γ

M+γ

The implied distribution on the ci j is defined as CRF(α,γ).
In the application to the BTO dataset, the birds are represented by the customers and the dishes

correspond to the same migratory behaviour. Thanks to the CRF, groups of birds belonging to different
sites can still share the same migratory behaviour if they are assigned to tables serving the same dish.

Another extension of the DP, designed to work with general covariates, is the Dependent Dirichlet
Process (DDP) of MacEachern [51]. The DDP is a random measure Fx that can be written as
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Fx =
∞

∑
k=1

φkδθi(x)

where the cluster locations θi(x) are drawn independently from a stochastic process Gx, allowing Fx

to depend on continuous covariates, if a continuous process, such as a GP, is assumed for Gx. The
weights φi are drawn from the stick-breaking process as in the standard DP. More information on
other nonparametric priors can be found in Hjort et al. [37].

In this paper, we perform density estimation conditionally on general covariates in a context where
we have several groups. To achieve this, we combine the idea of the HDP and the DDP defining
the Hierarchical Dependent Dirichlet Process (HDDP) as a HDP where the DP F0 in the top level is
replaced by a DDP.

Definition 2.3.0.1. Let Gx be a stochastic process. The measures Fjx are said to follow a HDDP prior
if, for each group j and each value x of the covariateFx = ∑

∞
k=1 φkδθk(x) θk(x)∼ Gx

Fjx = ∑
∞
k=1 πk jδθk(x)

(2.3.1)

where the weights φk and πk j follow the same distribution as the weights of the HDP.

As we can see, the covariate, x, is introduced in the top-level and not in the group-specific DPs,
which implies that the effect of the covariate is assumed to be the same across groups. However, as
the DDP is assumed as a prior distribution for the group-specific measures, the weights are constant
for each value of the covariate.

As opposed to a standard dataset analysed in [84], our data have an additional third dimension,
given by the covariate x. However, as mentioned above, the covariate only affects the cluster locations.
As a result, the CRF representation of the HDP can be used to describe the HDDP, since the covariate
does not play a role when assigning the observations to clusters.

To conclude, we term as Hierarchical Dependent Dirichlet process mixtures the process obtained
when the HDDP is used as the mixing measure of the parameters of a continuous kernel.

2.3.2 Multivariate Gaussian Process (MGP)

Before introducing the MGP we start by describing the univariate version. A GP is a prior distribution
on a function f : Rq → R, defined by the distribution of f evaluated on any finite collection of points
(x1, . . . ,xn). Specifically, we write f ∼ GP(0,k) if, for any (x1, . . . ,xn) : xi ∈ Rq

( f (x1), . . . , f (xn))∼ N(0,K((x1, . . . ,xn),(x1, . . . ,xn))

where {K((x1, . . . ,xn),(x1, . . . ,xn))}i j = σ2k(xi,x j) and k is a correlation function. In our case, we

consider the Gaussian radial basis function k(x,x′) = exp
(
− |x−x′|2

l2

)
, with l > 0. For more information

on Gaussian processes, see Rasmussen [73].
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In the case of multivariate data, that is, if f is a function from Rq to Rp, the MGP prior is defined
based on the matrix normal distribution. A variable X is said to follow a matrix normal distribution
MN(M,U,V ) if vec(X)∼ N(vec(M),V ⊗U), where U is called the among row covariance matrix, V
is called the among column covariance matrix and ⊗ is the Kronecker product.

The MPG prior on f is defined in the following way.

Definition 2.3.0.2. Let Σ be a p× p positive definite matrix and µ an n× p matrix. We say that
f = ( f1, . . . , fp)∼ MGP(µ,K,Σ) if

(( f1(x1), . . . , fp(x1)), . . . ,( f1(xn), . . . , fp(xn)))∼ MN(µ,K((x1, . . . ,xn),(x1, . . . ,xn)),Σ).

This construction of the multivariate Gaussian process is also presented in [12]. By defining
the MGP in terms of the matrix normal distribution, we have implicitly assumed that the cross-
covariance matrix of the vector (( f1(x1), . . . , fp(x1)), . . . ,( f1(xn), . . . , fp(xn))) is separable, that is, it
can be factorised as Σ⊗K((x1, . . . ,xn),(x1, . . . ,xn)).

The advantage of this construction is that if we assume that the observations yi = (yi1, . . . ,yip) are
generated according to

yi ∼ N(( f1(xi), . . . , fp(xi))
T ,Σ)

the posterior predictive distribution of new observations is available in closed form. Assuming we
have available observations (x,y), the posterior predictive distribution for new observations with
covariates x⋆ is:

y⋆ ∼ N(vec(µ2)+(K⋆(K + I)−1 ⊗ I)(y− vec(µ1),((K(x⋆,x⋆)+ I)−K⋆(K + I)−1K⋆
T ),Σ)

where K := K(x,x), K⋆ := K(x,x⋆).
In addition, we can account for the effect of covariates on the mean. If we have R covariates

arranged in an n×R matrix X and coefficients β =


β 1

1 . . . β
p
1

...
...

β 1
R . . . β

p
R

, we define the MGP as:

(( f1(x1), . . . , fp(x1)), . . . ,( f1(xn), . . . , fp(xn)))∼ MN(Xβ ,K((x1, . . . ,xn),(x1, . . . ,xn)),Σ)

A useful property of this construction is that, if a prior distribution MN(b,B,Σ) is assumed for
β , the marginal distribution of f is still a MGP prior of the form MGP(K⋆(K−1XB⋆)B−1b,K⋆,Σ),
with K⋆ = (K +XBXT )−1 and B⋆ = K−1X(XT K−1X +B−1)−1. The calculations can be found in the
supplementary material [21].
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2.4 Bayesian nonparametric model for CR data collected at multiple
sites and multiple years

The data can be expressed in the form Hi jy, where Hi jy is the capture history, defined in Section 2.2,
of individual i at site j in year y, and we perform sampling at J sites in Y different years. At site j
and year y, captures take place on C jy sampling occasions at times t jy

1 , . . . , t jy
C jy

. Sampling times and
the number of sampling occasions may differ across sites and years. We denote by xy the value of
the year-specific environmental covariate associated with year y. The site and year specific covariate
associated with capture probability at site j and year y is denoted by λ jy.

2.4.1 Sampling scheme

Capture probabilities are modelled using a logistic mixed effects model, where the site-specific
intercept is assumed to be constant across years in the same group and all intercepts share a common
prior distribution. The model for capture probability at site j in year y can be written as

logit(p jy) = α
p
j +λ jyβ p

β p ∼ N(0,Bp)

α
p
j ∼ N(ap

0 ,A
p
0)

where Bp is the prior variance of β p and ap
0 , Ap

0 are chosen according to expert knowledge.
The choice of a mixed effects model is motivated by the study design of the CES scheme,

according to which, sampling at the different sites is performed with the same effort. However,
additional site characteristics, such as habitat and structure of the site, present an additional source of
variation affecting capture probability that is not explained by the covariate, but instead modelled by
the site-varying intercepts.

2.4.2 Arrival and Departure Process

We denote by ζi jy and δi jy respectively the arrival time and length of stay of individual i at site j in
year y. We do not work directly with arrival and departure times because these two quantities do not lie
in R2 (departure is obviously always later than arrival) and this would imply the need to work with a
bivariate truncated normal, for which conjugate schemes are not available, resulting in computationally
intensive inference. Instead, we choose to work with arrival times and a transformation of the length
of stay, η := h(δ ), in order to make the latter lie in R. Although the logarithm is the common choice,
it would lead to a lognormal behaviour in the right tail once we assign a normal prior distribution to
h(δ ), as the tails of the DP mixture behave approximately as the tails of the kernel. In order to have a

normal behaviour also in the right tail, we choose h(x) =

log(x) x ≤ 1

x−1 x > 1
.
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Borrowing ideas from MC17, we assume that for each site, arrival times and transformed lengths
of stay are drawn from a Poisson process with non-homogeneous intensity ν jy, modelled as

ν jy(ζ ,η) = ω j

∫
N(ζ ,η |µxy ,Σ)dPjy(µxy ,Σ) (2.4.1)

where Pjy is the year and site-specific mixing measure of the parameters µxy and Σ of the normal
distribution, and ω j is the site-specific intensity. The link with MC17 is clear if we compare (2.4.1)
with (2.2.1). The bivariate density ν jy of arrival times and lengths of stay is allowed to be site and
year dependent, by replacing the DP with a HDDP, unlike MC17, who use a univariate DP mixture.

To achieve this, we define θ = (µ,Σ,β ), where µ is the Y × 2 matrix of all the means µxy of
arrival and departure times for each covariate value, Σ is the 2×2 covariance matrix, β is an R×2
matrix expressing the trend of the means across the years and R is the dimension of the year-specific
covariate (including the intercept). The prior distributions for these quantities are

µ ∼ MGP(Xβ ,K(y,y),Σ)

Σ ∼ IW(ν0,Σ0)

β ∼ MN(b,B,Σ)

(2.4.2)

where IW is the inverse-Wishart distribution, ν0 is the number of degrees of freedom, E[IW(ν0,Σ0)] =

1
ν0−3 Σ0, X =

[
1 . . . 1
x1 . . . xY

]T

, y = (1, . . . ,Y ), b is an R×2 matrix and B is an R×R matrix.

The measure Pjy(θ) is allowed to be year and site dependent by assuming the HDDP prior defined
in (2.3.1), where Pjy has the same prior as the Fjx. As shown in the appendix, the choice of such prior
distribution for θ will allow us to make straightforward posterior inference when the measure Fjx is
convolved with a bivariate Gaussian kernel, as in our case. Keeping in mind the explicit expression of
the DP, the resulting model for a specific year and site can be written as

f jy(ζ ,η) =
∞

∑
k=1

πk jN(ζ ,η |(µk)y,Σk)

where the (µk,Σk) are shared between groups.
Every cluster has its own regression coefficient β with a common prior distribution MN(b,B,Σ).

However, in order to estimate the overall trend across all clusters, we assign an additional hyperprior
distribution b ∼ MN(b0,B0,Σb). The posterior distribution for b will give the overall trend of arrival
and length of stay for all groups across the years.

For the overall intensity of the process, ω j, we keep the same prior distribution as in the Gamma
process case but in order to share information between sites and years, we assume that intensities
now have a prior distribution ω j|α,τ j ∼ Gamma(α, α

τ j
) where α is the standard shape and τ j is the

mean of the Gamma distribution. The parameters τ j, α and γ are assumed to have Gamma prior
distributions, which is a standard choice.

The model can be summarised with the introduction of latent variables.
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Hi jyl | ζi jy,ηi jy, pi j ∼ Bernoulli(pi jzi jyl) i = 1, . . . ,N jy j = 1, . . . ,J y = 1, . . . ,Y l = 1, . . . ,C jy

zi jyl =

1 if ζi jy < t jy
l < ζi jy +δi jy

0 otherwise
i = 1, . . . ,N jy j = 1, . . . ,J y = 1, . . . ,Y l = 1, . . . ,C jy

(ζi jy,ηi jy) | ci jy,{µk},{Σk} ∼ N((µci jy)xy ,Σci jy) i = 1, . . . ,N jy j = 1, . . . ,J y = 1, . . . ,Y

µk ∼ MGP(Xβk,K(x,x),Σk) k = 1, . . . ,K

Σk ∼ IW(ν0,Σ0) k = 1, . . . ,K

βk ∼ MN(b,B,Σk) k = 1, . . . ,K

b ∼ MN(b0,B0,Σb)

ci jy ∼ CRF(α,γ) i = 1, . . . ,∑Y
y=1 N jy j = 1, . . . ,J y = 1, . . . ,Y

N jy|ω j ∼ Poisson(ω j) j = 1, . . . ,J y = 1, . . . ,Y

ω j|α,τ j ∼ Gamma
(

α, α

τ j

)
j = 1, . . . ,J

where K is the total number of clusters and in the CRF assignments of ci jy the variable j indexes the
groups and i and y index the observations.

2.5 Application

2.5.1 Simulations

In order to assess the performance of the model, we have simulated several sets of data and compared
the posterior distributions of the main quantities of interest with the true values used to simulate the
data. The simulated data consist of 2 sites and 16 years, with 10 sampling occasions in each year. In
order to have population sizes similar to the ones in the CES data, the site-specific intensities ω j of
the prior distribution of the population sizes are sampled from a Gamma distribution with mean 60
and variance 200, population sizes for each year are then sampled from a Poisson with the intensity
ω j sampled above. Arrival times and lengths of stay are sampled keeping in mind the CES data,
which consist of a mixture of individuals with different patterns of arrival and stay. In particular, it is
known [43] that there are two groups of birds that use the sites; “residents” that breed at the sites and
may return in subsequent years, and “transients” that pass through the site on the way to breeding
grounds further north, or wintering grounds further south. To model this behaviour, we sample from
the following mixture distribution[

ζi jy

δi jy

]
∼ 0.8

[
N(6+1 xy,1.5)
Gamma(25,10)

]
+0.2

[
N(1+1 xy, .5)

Gamma(210,30)

]
where y indexes the year. The values xy of the covariate are sampled from a N(0,1).
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Simulation 1: p = 0.73 Simulation 2: p = 0.5 Simulation 3: p = 0.26

Fig. 2.1 Arrival times - Posterior densities for the three sets of simulations, shown for 2 sites (columns)
and a subset of 4 years (rows). The solid line represents the posterior mean, the dashed line represents
the true distribution used to simulate the data and the grey area represents the 95% posterior credible
interval (PCI).

Simulation 1: p = 0.73 Simulation 2: p = 0.5 Simulation 3: p = 0.26

Fig. 2.2 Lengths of stay - Posterior densities for the three sets of simulations, shown for 2 sites
(columns) and a subset of 4 years (rows). The solid line represents the posterior mean, the dashed line
represents the true distribution used to simulate the data and the grey area represents the 95% PCI.



18 A hierarchical dependent Dirichlet process prior for modelling bird migration patterns in the UK

Si
m

.1
:

p
=

0.
73

Si
m

.2
:

p
=

0.
5

Si
m

.3
:

p
=

0.
26

Arrival coefficient LOS Coefficient

Fig. 2.3 Posterior distributions of the regression coefficients of arrival times, b21, and length of stay,
b22, for the three sets of simulations, with the solid line representing the posterior mean. The true
value is fixed at 1.5 for the arrival times and 0 for the lengths of stay.

We performed three sets of simulations, each of them with different values of the capture proba-
bilities. We sample values from a logistic-normal with scale 0.1 and location equal to, respectively 1,
0 and −1 for the three sets of simulations, which corresponds to capture probabilities centred around,
respectively, 0.73, 0.5 and 0.26.

In order to choose the value of the length scale parameter l of the MGP, we have performed a
sensitivity analysis considering the values 0.1, 0.3 and 0.5, obtaining practically identical results.
Thus we fixed the value to 0.3, as values outside the range considered would give a correlation
between close points which is either too large or too small for our application.

The posterior distributions of the arrival densities and lengths of stay for the three sets of simula-
tions are shown (for a subset of 4 years), respectively, in Fig. A.2 and A.3. In the case of the arrival
densities, the posterior mean densities closely resemble the true densities. As capture probability
decreases, the estimates present, as expected, more variance and the model splits one of the modes
in two separate clusters. In the case of the lengths of stay, for all simulated data the posterior mean
density is smoother than the true distribution, a fact that becomes progressively more evident as
capture probability decreases.

The posterior distributions of the regression coefficients b21 and b22 are shown in Fig. 2.3.
The estimates of the posterior means are similar and close to the true values, but the cases with
lower capture probabilities exhibit more variance in the estimates. The posterior distributions of
the population sizes are shown in Fig. 2.4, where it can be seen that, aside from the case with
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Simulation 1: p = 0.73 Simulation 2: p = 0.5 Simulation 3: p = 0.26

Fig. 2.4 Population sizes - Posterior densities for the three sets of simulations, shown for 2 sites
(columns) and a subset of 4 years (rows). The solid line represents the posterior mean, the dashed line
represents the true population size.

Simulation 1: p = 0.73 Simulation 2: p = 0.5 Simulation 3: p = 0.26

Fig. 2.5 Capture probabilities - Posterior densities for the three sets of simulations. The solid line
represents the posterior mean, the dashed line represents the true capture probability.

lowest capture probability, the posterior mean is generally close to the true value, which is always
included in the corresponding 95% PCI. Clearly, population size is consistently either over-estimated
or under-estimated at some site. This is due to the model assuming that mean population size at each
site is constant over time. The posterior distributions of the capture probabilities are shown in Fig. 2.5.
As was the case when inferring population size, the posterior variance increases as capture probability
decreases.

2.5.2 BTO’s Constant Effort Sampling Scheme Data

We apply the model to CR data of blackcaps collected by the BTO at several breeding and stopover
sites across the UK. We discarded all the juvenile birds as, being born at the site in the same year they
are captured, they do not provide any information on the arrival density. Even though the complete
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Fig. 2.6 Map of the CES sites used in the analysis, with site ID shown above the sites.

data consist of more than 100 sites for more than 20 years, we work on a subset of 10 sites across 16
consecutive years, from 1998 to 2013, with a total of 3401 birds caught, as working with the entire
data would not be feasible in terms of computational time. We selected these 10 sites by choosing
the subset where sampling occurred for the highest number of consecutive years, because we are
interested in estimating the regression coefficient for the year-continuous covariate. The locations of
the sites are indicated on the map shown in Fig. 2.6.

The prior specification is based on previous studies [66, 43]. Arrival times and lengths of stay
are modelled in weeks, and their prior distribution is chosen to have 95% of the mass of the arrival
distribution from three weeks before the start of the sampling period up to the end of it, and 95%
of the mass of the departure distribution from the start of the sampling period, up to three weeks
after the end. The prior on the capture probability and the prior on the mean τ j of the intensity of the
population size are shown in the supplementary material [21].

As a year-specific covariate, we use the average North-Atlantic Oscillation (NAO) in the months
from January to April, as these are the months preceding the sampling period. This choice is motivated
by the fact that the NAO is thought to represent the overall trend of global temperatures. The covariate
λ jy used to model the capture probability is the length of the net placed at each site.

We present results for 5 sites, out of the 10 shown in Fig. 2.6, for years 2003, 2005, 2007, 2009
and 2011. Additional plots can be found in the supplementary material [21]. Between these sites, we
chose two sites in the South, two in the center and one in the North, in order to highlight differences in
the densities for sites at several latitudes. We first focus on the arrival distributions, shown in Fig. 2.7.
All of the distributions present a mode before the first sampling occasion, which can be interpreted as
the result of the many individuals arriving before sampling has begun. In fact, all of the data show a
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SE3 SW2 C2 C1 N1

Fig. 2.7 Arrival times - Posterior distribution for a subset of 5 sites, with site names given on top of
each column, and 5 years. The black line shows the posterior mean density and the grey area shows
the 95% PCI. The sampling occasions are shown in bold on the x-axis and the black line shows the
first sampling occasion.

high number of captures in the first and second sampling occasions, while the number decreases in the
middle of the sampling period. The remainder of the peaks are likely to correspond to the transient
birds arriving at the sites later in the season only for feeding. It can also be noticed that northern sites
(e.g. N1 and N2) present a higher number of birds arriving later in the season, suggesting that the
birds arriving in the UK stop first at the southern sites before reaching the sites in the north. The
length of stay densities, presented in Fig. 2.8, also exhibit several peaks because of the presence of
the breeding birds and transient birds. However, due to the lack of data in some of the sites, the two
modes are likely to merge in some cases.

Population sizes for the same sites and years as those considered in Fig. 2.7 are presented in
Fig. 2.9. Comparison with the posterior densities of capture probabilities in Fig. 2.10 shows that, as
expected, smaller estimates of the capture probability are generally associated with greater variance
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SE3 SW2 C2 C1 N1

Fig. 2.8 Lengths of stay - Posterior distribution for a subset of 5 sites, with site names given on top of
each column, and 5 years. The black line shows the posterior mean density and the grey area shows
the 95% PCI.

in population size estimates. Moreover, northern sites present overall lower population sizes than
southern sites.

The posterior distributions of the coefficients are shown in Fig. 2.11. The 95% PCIs of the arrival
time and length of stay components of the regression coefficient b include 0, suggesting that the NAO
has no effect on the patterns of arrival and length of stay, which agrees with previous findings [76, 34].
However, this does not necessarily imply that the arrival and length of stay distributions in the clusters
do not exhibit trends across the years, but it might be that some clusters have positive shifting trends
while others have negative shifting trends, which would imply an overall posterior close to 0.
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Fig. 2.9 Posterior densities of the population sizes for a subset of 5 sites, with site names given on top
of each plot. The bars show the 95% credible intervals, while the dots show the posterior means.

SE3 SW2 C2 C1 N1

Fig. 2.10 Posterior densities of the capture probabilities for a subset of 5 sites, with site names given
on top of each column. The black vertical line shows the posterior mean.
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Fig. 2.11 Posterior distribution of the arrival time and length of stay components of the regression
coefficient b. The black line represents the posterior mean.

2.6 Discussion

In this paper we have developed a model to estimate arrival and departure distributions in a multi-site
and multi-year capture-recapture data set with annual environmental covariates and site-specific
variation, and applied this model to real data. Moreover, we have performed a simulation study to
assess the validity of the model on simulated data with similar features, obtaining encouraging results
even when capture probability is low.

The dataset used in our application consists of a mixture of breeding and transient birds. Although
breeding birds tend to return to the same site in different years, transient birds change the site they
visit from year to year. As a result, changes in population sizes at each given site across the years do
not reflect an actual change in the number of birds of the population. For this reason, in section 2.4.2,
we chose not to adopt a model for the evolution of population sizes over time but we only assume that
population sizes are sampled from the same common distribution. Because of the lack of site-fidelity
of blackcaps, changes in the populations’ behaviour are not evaluated by analyzing the evolution of
population sizes but instead by observing the changes in phenology, summarised in the arrival and
departure distribution for each site and year, in relation to an indicator of global temperature, as the
NAO in our case.

In this model, we did not track the same individuals across the years. The choice is motivated by
the fact that the number of recaptures of the same individuals in different years is too low to motivate
such a modelling approach. However, the model could be further extended in the cases of species
exhibiting higher longevity and site-fidelity than the blackcaps.

We have followed the approach of MC17, using a Bayesian nonparametric approach to estimate
the arrival and departure densities. However, MC17 only allow the estimation of the arrival density
for a single site and year. In our work, we first added an additional level of complexity modelling
nonparametrically both the arrival and departure density. Then, as our goal was to perform density
estimation in several sites conditional on year-specific covariates, we extended their model to account
for these additional effects. The starting point to achieve a joint modelling of data collected at
different sites is the use of the Hierarchical Dirichlet Process (HDP) of Teh et al. [84] in place of
the DP. However, since this model does not allow the introduction of continuous covariates, we
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further extend the HDP defining the Hierarchical Dependent Dirichet Process. Lastly, to introduce a
correlation structure over time, we started from the idea of the Gaussian process (GP) and, as we are
modelling arrival and length of stay jointly and the GP can only give univariate outputs, we adopted
an extension of the GP to the case of p-dimensional outputs. Another interesting definition of the
GP with multiple outputs can be found in Álvarez and Lawrence [1]. However, the advantage of our
construction is that we still maintain the useful conjugacy properties of the GP, which allows us to
straightforwardly use the sampling schemes available for the HDP.

The Bayesian nonparametric model defined here is extremely general and can be used in a generic
context where multivariate density estimation is to be performed jointly across different groups and in
the presence of a continuous covariate, which extends the model presented in De Iorio et al. [17].

As it is clear from equation (2.3.1), the model can account for covariates only in the cluster
locations, however Griffin and Leisen [35] have defined a nonparametric model, known as compound
random measures, which can account for covariates in the cluster weights. However, in the case of
compound random measures, inference is more difficult as the sampling scheme based on the CRF
cannot be used anymore. Moreover, our model allows the introduction of covariates only across time,
while in some scenarios it could be useful to adopt spatial covariates, for example the latitude of the
site, in order to account for differences in arrival patterns according to site-specific covariates. Even if
our model accounts for additional random effects from site to site, explaining the variation through
covariates would require a change to the structure of the model.

In Section 2.5.2, we mention that we choose a subset of the data in order to be able to run
the algorithm in a feasible computational time. In fact, given the large number of observations,
one of the challenges of the model is the computational complexity, which scales linearly with
the number of observations. This is a common drawback of all algorithms based on the Chinese
Restaurant representation, as the sampler requires to update the cluster allocations of each individual
by computing the probability of belonging to each cluster, which is a computationally expensive
operation. Sampling from the posterior of DP mixtures without having to update the cluster allocations
as in Escobar and West [27] is still an open problem, and it goes beyond the scope of this paper. A
potentially faster algorithm to sample from a DP mixture model, based on parallel computation, has
been proposed by Ge et al. [32]. Moreover, inference for the HDDP mixtures is performed on the
space of the latent arrival times and lengths of stay, which further slows down the mixing, making
necessary to run the MCMC for more iterations. An alternative algorithm to speed up the mixing has
been proposed by Jain and Neal [39].

We note that we have not used any spatial information on the sites and, as a result, sites are
assumed to be exchangeable, in the sense that permuting the site labels has no effect on our inference.
This is generally the case when data are collected at a number of sites but the models employed are
not spatially-explicit. See for example the occupancy model by MacKenzie et al. [52] and extensions
as well as the N-mixture model by Royle [77] and extensions. Since there is only a small number of
sites, which are not in close proximity to one another, any spatial autocorrelation in our application is
expected to be low.
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The code used to generate results has been written in R [71], while the most computationally
expensive part of the algorithm, such as the Gibbs sampler for the clusters allocation, has been written
integrating C++ and R using the Rcpp package of Eddelbuettel et al. [23]. The code is available upon
request.

Appendix

2.6.1 MCMC Algorithm

The vector of unknown parameters is:

({ζi jy},{δi jy},{ci jy},µk,Σk,b,{N jy},{p jy},α,γ,{τ j},{ω j}) .

Clearly the posterior distribution is intractable and we obtain samples from it using the following steps
in a Gibbs sampler: cluster allocations {ci jy} are sampled using the update in [84] that makes use of
the CRF representation, while cluster locations {µk,Σk} are updated conditional on the allocations.
The population sizes N jy are updated using the rejection algorithm employed in MC17. The arrival
times and lengths of stay (ζi jy,δi jy) are sampled jointly using a simple MH update. To update b, first
we sample the βk and then we sample b from its full conditional. Finally, capture probabilities are
updated using a MH step. For the remaining hyperparameters α , γ , τ j and ω j, we can sample directly
from the full conditional.

A detailed description of each Gibbs sampler can be found below.

1. Sample the cluster means and covariance matrices (µ j,Σ j):

For each cluster k = 1, . . . ,K, we sample (µk,Σk) from the posterior distribution:

p(µk,Σk|{ζi jy},{δi jy},{ci jy},b,B,ν0,Σ0) ∝

p(µk|{ζi jy},{δi jy},{ci jy},Σk,b,B) p(Σ j|{ζi jy},{δi jy},{ci jy},B,ν0,Σ0)

As shown in the supplementary material [21], the posterior distribution for µk is still a MN
distribution, while the posterior distribution for Σk is still an inverse-Wishart. In our application,
to efficiently compute the posterior distributions, we rely on the fact that the covariate, being
year-specific, takes only as many values as the number of years, Y . Thus, instead of building
the covariance matrix of the MGP using all the individuals in the cluster, we calculate the
covariance computed using only the value of the covariates at the observed points. Moreover,
as these points are fixed in the model, the inverse of the covariance matrix of the GP can be
precomputed.

2. Sample the allocation {ci jy} of individuals to the different clusters:
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Following Teh et al. [84] and the notation of section 2.3.1, the variables ci jy are updated using
the CRF representation defined in Section 2.3.1, by first sampling the allocations ti j of the
customers to the tables and then the allocations k jt of the tables to the dishes.

We use the superscript −i j to indicate that the quantities are computed removing customer i
from restaurant j and − jt when removing table t from restaurant j.

At each step of the Gibbs sampler, individual i in group j having covariate y is assigned to
either an existing table in the current restaurant, a new table serving an existing dish or a new
table serving a new dish


existing table t with probability

n−i j
jt

n−i j
jt +α

p((ζi jy,δi jy)|xy,µk jt ,Σk jt )

new table t⋆ with existing dish k with probability α

n−i j
jt +α

m−i j
k

M−i j+γ
p((ζi jy,δi jy)|xy,µk,Σk)

new table t⋆ with new dish k⋆ with probability α

n−i j
jt +α

γ

M−i j+γ
p((ζi jy,δi jy)|xy,b,Σ0,ν0)

Similarly, tables are allocated to

existing dish k with probability m− jt
k

M− jt+γ
p({(ζi jy,δi jy)}ti j=t |{xy},µk jt ,Σk jt )

new dish k⋆ with probability γ

M− jt+γ
p({(ζi jy,δi jy)}ti j=t |xy,b,Σ0,ν0)

As opposed to the original algorithm of [84], instead of computing the posterior distribution
of (ζi jy,δi jy) conditional on the current elements in the cluster, which would excessively slow
down the algorithm if repeated for each point, we compute the update conditional on the cluster
locations (µk,Σk) computed in the previous step.

3. Sample the population sizes {N jy}:

Following MC17, for each site j and year y, conditional on the measure Pjy, the arrival times
and length of stay

ζ(D jy+1):N jy, j,y,δ(D jy+1):N jy, j,y of the uncaptured birds are distributed from a non-homogeneous
Poisson process with intensity

ν0(ζ ,δ ) = ν(ζ ,δ ) P(H = (0, . . . ,0)|ζ ,δ , p)

It follows that samples from the posterior distribution of

(
N jy,c(D jy+1):N jy, j,y,ζ(D jy+1):N jy, j,y,δ(D jy+1):N jy, j,y

)
can be obtained with a rejection algorithm in the following way. First, sample N0 ∼ Poisson(ω j),
then, for i = 1, . . . ,N0 sample:



28 A hierarchical dependent Dirichlet process prior for modelling bird migration patterns in the UK

{ci jy}i=1,...,N0 | CRF(α,γ)

(ζi jy,ηi jy)∼ N(µci jy ,Σci jy)

Hi jy ∼ Pr(ζi jy,ηi jy, p jy)

and accept the individual if capture history Hi jy has no non-zero entries. The new population
size is given by D jy + Ñ0 where D jy is the number of captured individuals at site j in year y and
Ñ0 is the number of accepted individuals.

4. Sample the hyperparameters (α,γ,{τ j},{ω j}):

τ j and ω j are updated as

ω j ∼ Gamma

(
α +

Y

∑
i=1

N ji,
α

τ j
+Y

)

p(τ j|α,ω j) ∝ p(τ j)p(ω j|α,τ j) ∝ Gamma(ατ ,βτ)τ
−α

j e
−α

ω j
τ j

The posterior distributions for α and γ are found by adapting the update for the concentration
parameter of the DP presented in Escobar and West [27]. Details are presented in the supple-
mentary material [21]. An exact expression of the likelihood of α and γ given an allocation of
individuals to the cluster can be found in Camerlenghi et al. [10].

5. Sample the mean b of the prior distribution of the cluster-specific regression coefficients:

In order to improve the mixing for the posterior distribution of b, we introduce the variables
δk := βk −b. After sampling the δk from their posterior distribution (which can be found in the
supplementary material [21]), the posterior distribution of b given δk can be computed as

p(b|{βk}k=1,...,K ,B,b0,B0,{Σk}k=1,...,J) ∝

p({βk}k=1,...,K |b,B)p(b|b0,B0) ∝

K

∏
k=1

MN(βk|b,B,Σk)MN(b|b0,B0,Σ0) ∝

The complete formulas can be found in the supplementary material.

6. Sample the latent arrival times and length of stay {ζi jy},{δi jy}:

Given the continuous arrival time and length of stay of each individual, if we consider the
partition defined by the sampling occasions t jy

1 , . . . , t jy
C jy

, we can define as bi jy and di jy the
intervals where individual i jy respectively arrives and departs. Given these intervals, the
posterior distribution for (ζi jy,δi jy) is:
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p(ζi jy,δi jy|µci jy ,Σci jy ,H jy, p jy) ∝ p(ζi jy,δi jy|µci jy ,Σci jy)p(H jy|p jy,ζi jy,δi jy) =

N(ζi jy,ηi jy|µci jy ,Σci jy) p∑
Cjy
k=1 Hi jyk

jy (1− p jy)
di jy−bi jy−∑

C jy
k=1 Hi jyk

7. Sample the coefficient {α
p
jy} and β p of the capture probabilities {p jy}:

Although not available in analytic form, the posterior distribution can be computed as

p({α
p
j },β

p|{ζi jy},{δi jy},{x jy}) ∝ p(β p|bp
0 ,B)p({α

p
j }|a

p
0 ,A

p
0)p({H jy}|{ζi jy},{δi jy}, p jy) =

N(β p|bp
0 ,B)∏

j
N(α p

j |a
p
0 ,A

p
0) ∏

j,y

N jy

∏
i=1

p∑
Cjy
k=1 Hi jyk

jy (1− p jy)
di jy−bi jy−∑

Cjy
k=1 Hi jyk





Chapter 3

A Polya Tree Based Model for Unmarked
Individuals in an Open Wildlife
Population





Abstract

Many ecological sampling schemes do not allow for unique marking of individuals. Instead, only
counts of individuals detected on each sampling occasion are available. In this paper, we propose a
novel approach for modelling count data in an open population where individuals can arrive and depart
from the site during the sampling period. A Bayesian nonparametric prior, known as Polya Tree, is
used for modelling the bivariate density of arrival and departure times. Thanks to this choice, we can
easily incorporate prior information on arrival and departure density while still allowing the model to
flexibly adjust the posterior inference according to the observed data. Moreover, the model provides
great scalability as the complexity does not depend on the population size but just on the number of
sampling occasions, making it particularly suitable for data-sets with high numbers of detections. We
apply the new model to count data of newts collected by the Durrell Institute of Conservation and
Ecology, University of Kent.

3.1 Introduction

Monitoring wildlife populations presents particular challenges. For example, it is typically not
possible to perform a census of the population of interest by encountering all of the individuals. One
of the most cost and time effective ways to monitor a wildlife population is to collect counts of the
population on repeated sampling occasions (SO). This protocol is considerably easier to perform than
a capture-recapture (CR) scheme as it does not require physical capture or unique identification of
the individuals in the population. The most popular model for analysing count data in a frequentistic
setting is the N-mixture model introduced in [77], which allows the estimation of population size and
capture probability when the population is closed, that is the same individuals are present throughout
the study period. However, when the data are sparse or detection probability is low, N-mixture models
are known to suffer from parameter identifiability issues and may give rise to infinite estimates for
population size [18]. In a Bayesian setting, the natural way to solve issues of parameter identifiability
is to assume informative prior distributions on detection probability or on population size in order to
obtain sensible posterior distributions.

In this paper we work in a Bayesian framework and we relax the assumption of population closure,
allowing for individuals to enter and leave the site (and thus become available or unavailable for
detection) at random times, but still assuming that emigration is permanent. These random arrival
and departure times are sampled from a distribution with unknown parameters. However, the absence
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Fig. 3.1 Scheme of the partitions at the first three levels of the Polya tree.

of closure makes it more challenging to separately estimate capture probability, population size and
density of arrival/departure times. Hence, it is of primary importance to assume informative prior
distributions in order to obtain ecologically sensible posterior distributions.

In order to allow for the posterior distribution to correctly adjust to the data without relying
on parametric assumptions, we use a Bayesian nonparametric (BNP) approach to choose the prior
distribution of the bivariate distribution of arrival and departure times. In particular, we work with
Polya Trees, which in the BNP framework are the main alternative to Dirichlet process mixture models
for modelling continuous distributions. More information on other nonparametric priors can be found
in [37].

3.2 The Polya Tree Prior

We model the joint density of arrival and departure times, using the Polya tree (PT) prior, defined in
[48]. A PT has two parameters: the first is a sequence of nested partitions Π of the sample space Ω

(Ω = R2 in our case), while the second parameter, α , is a sequence of positive numbers associated
with each set of each partition.

The partition at the first level, π1, is obtained by splitting the sample space in two sets, B0 and B1.
Then for the partition at the second level, π2, we split each of the two sets in two additional sets B00,
B01 and B10, B11, respectively.

π2 = {B00,B01,B10,B11}, B00 ∪B01 = B0, B10 ∪B11 = B1.

The same process is repeated to generate the partitions at the remaining level. A visual representation
of the scheme for Ω = [0,1] is given in Fig. 3.1.

The PT prior is defined in terms of the (random) mass associated with each set of each partition.
By defining ε1 . . .εm as a generic sequence of 0s and 1s, Bε1...εm as a generic set of the partition and
αε1...εm as the associated parameter, the mass associated to Bε1...εm by the Polya Tree is

G(Bε1...εm) =
m

∏
i=1

Yε1...εi (3.2.1)

where Yε1...εi−10 is a Beta(αε1...εi−10,αε1...εi−11) random variable and Yε1...εi−11 = 1 −Yε1...εi−10. For
example, G(B01) = Y0(1−Y00) where Y0 ∼ Beta(α0,α1) and Y00 ∼ Beta(α00,α01).

A conjugate scheme for a PT can be constructed if we assume a PT prior for a distribution G, and
we have observations y1, . . . ,yn ∼ G, since the posterior distribution G | y1, . . . ,yn is still a PT. The
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parameters α⋆
ε of the posterior distribution can be computed as α⋆

ε = αε +nε where nε is the number
of observations falling into set Bε .

A common choice is to center the PT on a pre-specified distribution G0, which means that, for
every set B of the partition, E[G(B)] = G0(B). In this paper we will set the αε1...ε j−10 and αε1...ε j−11

associated with the sets Bε1...ε j−10 and Bε1...ε j−11 to be proportional to the mass assigned to these sets
from G0, that is αε = cε ×G0(Bε), where cε is a scaling parameter tuning the overall variance around
the mean distribution. Finally, we assume that G0 has random parameter η and we let this vary by
placing an additional prior on it, leading to what is known as Mixtures of Polya Trees (MPT), as
defined in [36].

3.3 Model

The data consist of the number of individuals, Dk, detected on SO k, with k = 1, . . . ,K. We denote by
Nk the (latent) number of individuals available for detection at SO k and by p the detection probability,
assumed to be constant for each individual and each SO. Clearly Dk ∼ Binomial(Nk, p).

We do not assume that individuals are present throughout the study period but we instead assume
that their arrival and departure times are random. These times are assumed to be sampled from a
Poisson process, with intensity that can be written as ω × ν̃ where ω is the overall mass of the process
and ν̃ is a probability density function. The MPT is employed as a prior for ν̃ and we call P0 the prior
distribution on the hyparameters of the centring distribution G0, which we define later. As departure
is always greater than arrival, ν̃ is defined on {(x,y) ∈ R2|x < y}.

Although the data depend only on the latent number of individuals Nk, we introduce additional
latent variables to make the inference of the PT more efficient. Let {tk}k=1,...,K be the times when
samples are collected and take by convention t0 = −∞ and tK+1 = ∞. Additionally, let ni j be the
number of individuals having arrival times between ti and ti+1 and departure times between t j and
t j+1 (with ni j = 0 for i > j). The Nk can easily be obtained from the ni j as Nk = ∑

K
j=k ∑

k−1
i=0 ni j.

We make the standard choices of a Beta prior distribution for detection probability and a Gamma
prior distribution for the overall intensity of the process. The hierarchical structure of the model is the
following:

Dk ∼ Binomial(Nk, p), Nk =
K

∑
j=k

k−1

∑
i=0

ni j, k = 1, . . . ,K,

ni j ∼ Poisson(ω ×ωi j), i = 0, . . . ,K, j = 0, . . . ,K i ≤ j,

ωi j =
∫ ti+1

ti

∫ t j+1

t j

ν̃(x,y) dx dy, i = 0, . . . ,K, j = 0, . . . ,K, i ≤ j,

ω ∼ Gamma(aω ,bω), p ∼ Beta(a0,b0),

ν̃ ∼ PT(Π,αη), η ∼ P0.
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Fig. 3.2 Partitions of the Polya Tree. Observation occur only in the region above the diagonal. At
step k, the set of individuals departing after the k-th sampling occasion is split into the individuals
departing between the k-th and (k+1)-th sampling occasion and the individuals departing after the
(k+1)-th sampling occasion. After having reached level K, each set is split according to the same
procedure but with respect to the other dimension (arrival times).

In order to center the PT on a pre-specified distribution, we use the approach explained in Section
3.2 of using a fixed partition and choosing the α according to the value η of the parameters of the
centring distribution. The dependence on η is thus only in the α .

The process used to create the partition is explained in Fig. 3.2. The last level corresponds to the
partition defined by the sampling occasions. Since we use the latent variables ni j and not the exact, on
a continuous scale, individual arrival and departure times, it is not meaningful to build a finer level of
the partitions, as no information is available about them.

We center the PT on a bivariate distribution with independent double exponential marginal
distributions, with probability density function (pdf)

G0(x1,x2; µ1,µ2,λ1,λ2) =
1

2λ1
exp
(
−|x1 −µ1|

λ1

)
1

2λ2
exp
(
−|x2 −µ2|

λ2

)
,

with the constraint that G0(x1,x2; µ1,µ2,λ1,λ2) = 0 if x1 > x2.
The sets of the partition are squares and triangles, as shown in Fig. 3.2. The choice of the double

exponential is motivated by the fact that integrals of this distribution on squares and triangles can be
computed analytically, without resorting to numerical techniques. The hyperparameters (µ1,µ2) are
given a bivariate normal prior distribution and λ1 and λ2 two independent Gamma prior distributions.
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3.4 Computational Notes

Posterior inference is performed using a Gibbs sampler. While this is straightforward for some
parameters, such as the detection probability p and the intensity ω of the Poisson process thanks to
conjugacy, for other parameters posterior inference is not straightforward given that we are working
with a PT.

The conditional distribution of the parameters ({ni j},{ωi j},η) given p and ω can be written as

p({ni j},{ωi j},η |{Dk}, p,ω) ∝ p({Dk}|{Nk}, p) p({ni j}|ω,{ωi j}) p({ωi j}|Π,αη) p(η)

∝

K

∏
k=1

Binomial(Dk|Nk, p)
K+1

∏
i=1

i

∏
j=1

Poisson(ni j|ω ×ωi j) p({ωi j}|Π,αη) p(η)

where the distribution p({ωi j}|Π,αη) is given from the PT.
When writing the posterior distribution of the parameter η , we can integrate out the parameter ωi j,

by employing a different parametrisation of the PT. First, we define as nε the number of observations
in set Bε and as qε0 the probability of assigning an observation in set Bε0 given that we are in Bε

which, according to the structure of the PT, has a Beta(αε0,αε1) prior distribution. The marginal
likelihood of the nε can be expressed as

p({nε}|{αε}) = ∏
ε

∫
Bin(nε0|nε ,qε0)Beta(qε0|αε0,αε1)dqε0.

Integrating out the probabilities qε0 gives as a result a beta-binomial distribution. Since the probability
mass function of the beta-binomial is

f (k|n,α,β ) =

(
n
k

)
B(k+α,n− k+β )

B(α,β )
,

the marginal likelihood of the latent variable nε given the hyperparameter η is

p({nε}|η) ∝ ∏
ε

B(αε0 +nε0,αε1 +nε1)

B(αε0,αε1)
.

The posterior distribution for the latent variable ni j can be written as

p(ni j|{Dk}, p,ω,ωi j) ∝ Poisson(ni j|ω ×ωi j)
K

∏
k=1

Binomial(Dk|Nk, p).

The parameter is updated with a random walk with uniform proposal over (ni j −Ki j, . . . ,ni j +Ki j),
where Ki j is chosen according to the value of the ni j chosen as a starting point for the MCMC. In our
case, we choose Ki j to be 1/5 of the starting point of ni j.

The parameters ωi j correspond to the masses assigned by the distribution ν̃ to the sets in the
partition of the last level of the Polya tree. Hence, they can be sampled as a product of Beta
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distributions as in (3.2.1). The parameters of the PT are updated at each iteration conditional on the
latent variable ni j, using the standard update explained in Section 3.2.

3.5 Application

The data used in our application consist of weekly detections of great crested newts (GCN) (Triturus
cristatus). This species generally start to migrate to ponds in late winter in order to breed. Subse-
quently, they leave the breeding site at the end of the summer and hibernate on land. Sampling took
place in ponds located at the University of Kent with data collected between the end of February 2016
until the beginning of September of the same year, which covers a large part of the breeding period of
the newts. Samples were collected on weeks 1−22, 24−27 and 29 of the season.

GCN are uniquely identifiable and hence individual capture histories of this population exist. A
total of 69 individuals were captured during the study. However, in this case, the individual CR data
have been collapsed to simple count data, which are obtained by recording the number of individual
newts caught on each of the sampling weeks. It is believed that the population size is close to the
sample size, and we choose a prior distribution for ω with mean 76 to represent our belief that around
90% of the individuals have been detected at least once. The variance has been chosen in order to have
a relative weakly informative prior, as the 95% prior mass includes up to 135 individuals. Finally, 95%
of the prior mass for detection probability is placed on the (0.05,0.35) interval, based on previous
analyses of data on the same population.

Prior knowledge suggests that a considerable number of individuals tend to arrive at the site
between the beginning of March and the end of April. Additionally, individuals depart between the
end of May and the end of July. In order to translate this knowledge into our prior distributions, we
choose hyperpriors for η = (µ,λ ) such that 95% of the prior mass of the arrival and departure density
is in the aforementioned ranges.

The posterior mean estimate of the population size is 89, while the posterior mean of the detection
probability is 0.33. The two posterior distributions are shown in Fig. 3.3. The posterior distribution of
the population size is different from the prior distribution, as more individuals are estimated to be at the
site than expected by the ecologists. Moreover, in Fig. 3.4 we display the posterior mean of the latent
number of individuals available at each sampling occasion together with the number of individuals
counted. For some sampling occasions, the empirical estimated detection probability, estimated as the
ratio between the estimated number of individuals available and the counted individuals, is outside
the 95% posterior credible interval for detection probability. This suggests that detection probability
is not constant across sampling occasions, as we have assumed in our model. According to expert
knowledge, changes in detection probability might be due to differences in environmental conditions
between sampling occasions, which affect behaviour of newts.

The posterior cumulative distribution functions of arrival and departure are also shown in Fig. 3.4.
As 95% of the individuals are estimated to arrive before any individual has departed, the number of
individuals is estimated to be fairly constant between sampling occasions 9 and 14.
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Fig. 3.3 Posterior distributions of population size (a) and detection probability (b), with the red vertical
lines showing the posterior means and the black line showing the prior distribution in each case.

Fig. 3.4 (a) 95% posterior credible interval of the latent number of individuals available for detection
each week, shown in black, and the number of individuals detected each week shown in red. (b)
Posterior mean of the cumulative distribution function of arrival times (in red) and departure times (in
green).
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3.6 Conclusion

In this paper we have presented a BNP model for count data on an open wildlife population consisting
of individuals entering and exiting the site at random times. By assuming a PT prior, we make
no parametric assumptions on the shape of the arrival and departure distribution. Moreover, the
implementation is fast as the computational complexity does not depend on the number of individuals
but on the levels of the PT, which depends on the number of sampling occasions. However, given
the small amount of information provided in count data, it is important to assume meaningful and
informative prior distributions in order to have sensible posterior distributions. In this paper, we
assume informative prior distributions for detection probability and for population size, available
thanks to expert knowledge.

As we mentioned in the introduction, another common sampling protocol is CR which, as opposed
to count data, provides individual information that can improve estimation. Hence, a possible extension
is to model count data and CR data jointly. Another useful extension is to model data collected at
different sites, by replacing the Polya tree prior with a hierarchical Polya tree prior, defined in [13].
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Abstract

Wildlife population monitoring can be performed using a number of different survey methods. Each
survey method gives rise to a type of data. In the last five decades, a large number of associated
statistical models have been developed for analysing these data. Although these models have been
parameterised and fitted using different approaches, they have all been designed to model the pattern
with which individuals enter and exit the population and to estimate population size. In this paper,
we propose a novel Bayesian nonparametric framework for modelling ecological data based on
the Polya Tree (PT) prior. We demonstrate how existing models for capture-recapture, count and
ring-recovery data can be expressed within our proposed framework, and how different constraints on
the parameters of these models can be imposed within our framework by introducing the replicated
PT prior. Additionally, we introduce the Hierarchical Logistic PT prior for jointly modelling related
data, for example collected at different sites or across different years and we consider the Optional
PT prior for modelling long time series of data. Our work provides a unifying flexible framework
for modelling the most commonly collected types of ecological data and we demonstrate our new
approach using five different case studies on birds, amphibians and insects.

4.1 Introduction

In recent years, there has been an increased interest in monitoring wildlife populations due to
the ongoing effects of climate change and habitat destruction [38]. However, monitoring wildlife
populations is challenging because the observation process of animals in the wild is prone to errors.
Therefore, statistical models need to be employed in order to infer population sizes [77], migration
[68], phenological [19] or survival patterns [57] from ecological data at one or more sites.

Although these models are developed for data collected using different sampling protocols, they
all focus on the estimation of the entry, exit and length of stay (LOS) patterns of populations, where
entry can correspond to arrival/birth, exit to departure/death and LOS to retention/survival at the site.
In this paper, we develop a general framework for building models to infer entry, exit and LOS patterns
in a Bayesian setting and demonstrate that a number of existing statistical models for ecological data
can be expressed within our new framework.

Several sampling schemes exist for monitoring wildlife populations. The choice of the sampling
scheme to be employed in each case depends on the characteristics of the species of interest and of
the study site, time and funding constraints and the research question(s) that each survey is looking
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to answer. In this paper, we focus our attention on three of the most common sampling schemes,
namely the collection of capture-recapture (CR) data, count data (CD) and ring-recovery (RR) data.
Nevertheless, we note that our approach is not limited to these types of data and could easily be
extended for example to removal data [65] or occupancy data [53]. Furthermore, we note that we only
consider data collected on open populations, with individuals entering, by immigration or birth, and
exiting, by emigration or death, the population during the study.

In all the aforementioned sampling protocols, data are collected at discrete times, typically referred
to as sampling occasions. Every pair of consecutive sampling occasions defines an interval, during
which individuals may enter or exit the study area. This suggests that an appropriate modelling
approach for the individual entry and exit intervals should consider the grid defined by the sampling
occasions in the bivariate space of entry and exit. This idea is exploited in Diana et al. [20] (D18),
who defined a model for CD that allows the modelling of the entry and exit patterns. Their modelling
approach is based on the Polya Tree (PT) prior [29], a popular nonparametric prior for densities, that
is also a natural choice when modelling distributions defined on a grid.

The PT defines a prior on a distribution by defining an infinite sequence of nested partitions of the
sample space, and recursively assigning the masses of the subsets of these partitions. Although the
number of partitions is in principle infinite, the PT prior is usually defined only up to a specified level,
which corresponds to defining a highly flexible parametric model instead of a nonparametric model.
A good description of the PT and of related applications is given in [37].

Our modelling approach relies on defining a finite partition, where the last level corresponds to
the grid defined by the sampling occasions, as explained above. In this way, we are defining a prior
distribution for the probabilities of an individual to fall in each cell of the grid and there is no need to
build a finer partition, as no information exists for partitions finer than the one defined by the grid.
Once this grid is defined, we do not model individual entry and exit intervals but instead we work with
the number of individuals in each cell of the grid. The advantage of the grid is that the computational
complexity of our model depends on the number of sampling occasions instead of the number of
individuals, which can lead to substantially faster inference when the number of individuals is much
larger than the size of the grid.

We extend the approach of D18 by defining a model for CR, CD and RR, either in isolation or
in combination by jointly modelling data collected using different sampling schemes. In addition,
we develop the following two extensions of the PT: the replicate PT (RPT), which shares random
variables (r.v.s) across different PTs, allowing us to impose constraints on model parameters, and
the Hierarchical Logistic PT (HLPT), that allows us to model r.v.s across different distributions
in a hierarchical fashion implying exchangeability across the different units. Finally, we consider
a scenario when data are collected repeatedly and in high frequency. In this case, choosing the
partition at which the data are analysed raises problems from a parsimony perspective, as choosing an
excessively fine partition considerably increases the number of parameters. To overcome this problem,
we use the Optional Polya Tree (OPT) of Wong et al. [89], which is an extension of the PT that allows
us to infer the partition structure.
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The paper is structured in the following way. In Section 4.2.1 we provide an overview of the
sampling schemes considered as case studies in the paper. In Section 4.2.2 we describe the main
features of the PT prior. In Section 4.3 we present and motivate the univariate partitions of the PT
used in the paper and demonstrate the concept using CR data. The RPT prior is defined in Section 4.4.
In Section 4.5.1 we define the bivariate partitions of the PT and define the joint model for CR data
and CD and the model for RR data. The HLPT is defined in Section 4.6.1 and the use of the OPT is
described in Section 4.6.2, with both sections presenting an application to CD collected across several
sites or years. Section 4.7 concludes the paper and introduces some potential future directions.

4.2 Background

4.2.1 Sampling schemes of population surveys

In this paper, we consider models for data resulting from three types of ecological sampling schemes:
CR, CD and RR. In all the three cases, we assume sampling is performed on K sampling occasions at
times t1, . . . , tK .

In the case of CR data, on each sampling occasion, a sample of the individuals is caught, and
newly caught individuals are uniquely marked. If D is the total number of captured individuals, the
captures can be summarised in a D×K matrix, H, where Hik is 1 if the i-th individual was captured
on sampling occasion k and 0 otherwise. Each row of the matrix is called a capture history. It is
common to assume that there are no losses on capture so that all of the captured individuals are
returned to the population after each sampling occasion. The starting point for modelling CR data is
the Cormack-Jolly-Seber (CJS) model [14, 44, 81]. The CJS model is built conditional on the time of
first capture of each individual. After the first capture, alive individuals of age a at time t j are assumed
to remain alive at the site until the following sampling occasion at time t j+1 with probability φ j,a and,
conditionally on being present at the site, they can be recaptured (or resighted) with probability p. In
the following, we will always use the indexes f , k and l to indicate the times of first possible capture,
first capture and last possible capture, respectively. As the model conditions on first capture, it does
not allow the estimation of the population size but only of φ j,a and p. We express the CJS model in a
PT framework in Section 4.3.1.

In order to simultaneously model entry and exit from the population, Jolly-Seber [44, 81] type
models, which estimate individual entry and exit intervals, have recently been developed [55]. These
individual entry and exit intervals give rise to inferred individual presence histories, with entries
equal to 1 on sampling occasions when the individual was available for capture and 0 otherwise. It is
generally assumed that exit is permanent, that is, once an individual leaves the site it does not return.

CD are collected by visiting the site and simply detecting a number of individuals, without
attempting to individually identify them. Similarly to CR data, detection probability in this case is
less than 1 so that the counts do not constitute a complete census of the population. The data can
be summarised in a vector (C1, . . . ,CK), where C j denotes the number of individuals detected on
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sampling occasion j. This protocol is less costly and less disturbing for wildlife than collecting CR
data, and hence CD have been widely used for monitoring purposes, and particularly for estimating
the size of populations [77]. However, CD are not as informative as CR data because of the lack of
information at the individual level.

Finally, according to the RR protocol, a subset of the population is captured and marked each year.
In addition, individuals marked in previous years may be recovered after they die with probability λ .
The data are usually summarised in an upper-triangular K ×K matrix, R, where cell (i, j) denotes the
number of individuals marked in year i and recovered dead in year j, and in a vector (m1, . . . ,mK)

where mk denotes the total number of individuals marked in year k. RR data are typically used to
estimate annual survival probabilities. [31] proposed a modelling strategy for birds of known age.
Thereafter, several models have been proposed to circumvent the problem of unknown age [57, 42].
In this paper, we consider a model where individuals are of known age if caught at an age less than 1
year and jointly model data on individuals of known and unknown age, but greater than 1 year when
unknown.

A more detailed description of these sampling schemes, as well as related sampling schemes, is
provided in McCrea and Morgan [56].

4.2.2 The Polya Tree prior

The Polya tree (PT) prior [29, 48] is a nonparametric prior for probability distributions. It has two
parameters: the first is a sequence of nested partitions Π of the sample space Ω, while the second
parameter, α , is a sequence of positive numbers associated with each set of each partition. The PT is
a more general case of the Dirichlet process (DP) [28], but as opposed to the DP the PT can induce
positive correlation between adjacent sets [29], which instead always assigns negative correlation.

The partition at the first level, π1, is obtained by splitting the sample space in KΩ sets {B0, . . . ,BKΩ−1}.
Subsequently, to build the partition at the second level, π2, each set Bi is split into Ki sets {Bi0, . . . ,BiKi−1},
next each set Bi j is split into Ki j sets {Bi j0, . . . ,Bi jKi j−1} and so on. A visual representation of the
scheme for dyadic splits (Kε1...εm = 2 ∀m), is presented in Fig. 4.1.

By defining ε1 . . .εm as a generic sequence of positive integers (such that εi ∈ {0, . . . ,Kε1...εi−1 −1})
and Bε1...εm as the correspondent set of the partition, the random mass associated to Bε1...εm by the PT
is given by

G(Bε1...εm) =
m

∏
i=1

Vε1...εi (4.2.1)

where (V0, . . . ,VKΩ−1) ∼ Dirichlet(α0, . . . ,αKΩ−1) and (Vε1...εi−10, . . . ,Vε1...εi−1Kε1...εi−1−1) ∼
Dirichlet(αε1...εi−10, . . . ,αε1...εi−1Kε1 ...εi−1−1) for i > 1. For example, in the case where splits are dyadic,
G(B02)=V0V02 where (V0,V1,V2)∼ Dirichlet(α0,α1,α2) and (V00,V01,V02)∼ Dirichlet(α00,α01,α02).
The V ’s can be interpreted as the conditional probabilities of falling in a particular set in the next level
of the tree, that is, given y ∼ G, where G ∼ PT, P(y ∈ Bε1...εm |y ∈ Bε1...εm−1) =Vε1...εm .
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Ω

B0 B1

B00 B01 B10 B11

B000 B001 B010 B011 B100 B101 B110 B111

V0

V00 V10

V000 V010 V100 V110

Fig. 4.1 Levels of partition of a PT with dyadic splits. Following Eq. 4.2.1, the mass in each set B is
assigned by starting from Ω and multiplying the total mass by Vε for a left split or 1−Vε for a right
split along the path until B is reached.

The PT is a conjugate prior for a distribution G if we have observations y1, . . . ,yn
i.i.d.∼ G, since

the posterior distribution G | y1, . . . ,yn is a PT with parameters Π and α⋆, where α⋆
ε = αε +nε and

nε is the number of observations falling into set Bε . Hence, the posterior distribution of a PT can be
calculated without using MCMC techniques. In the following, we use the PT mainly with dyadic
splits, which leads to a Beta distribution for the masses assigned in each split instead of a Dirichlet
distribution.

The PT can be centered on any distribution G0 in the sense that, for every set B of the partition,
E[G(B)] = G0(B). This can be achieved by choosing the α such that αε1 ...εm

∑
Kε1 ...εm−1
i=1 αε1 ...εi

=
G0(Bε1 ...εm )

G0(Bε1 ...εm−1 )

where ∑
Kε1 ...εm−1
i=1 αε1...εi tunes the variance of the V s.

In what follows, we will generally center the PT on a Laplace distribution, as the cumulative
distribution function of the Laplace, required for computing the masses G0(Bε1...εm), can be calculated
analytically without having to perform numerical integration.

If we assume that the centering distribution G0 has a parameter η on which an additional prior
P0 is assumed, we obtain what is known as Mixtures of Polya Trees (MPT), as defined in Hanson
[36]. Hanson [36] originally used the MPT to obtain absolutely continuous draws from a PT with
probability 1, which is achieved by obtaining a partition that varies according to the parameter η . In
our case, we choose a fixed partition and hence we use the MPT only as a way to allow uncertainty in
the value of the parameter η .

4.3 Univariate PT models

The partition of the PT can be chosen according to the specific application. To define a prior for
the distribution of a time-to-event on the real line, Lavine et al. [49] (L94) proposed the following
partition. Assume we have sampling times t1, . . . , tK ∈ R and we only observe the interval where each
time-to-event x happens, that is, we observe whether x < t1, t1 < x < t2 and so on. L94 proposed to
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define Π such that B0 = (−∞, t1), B1 = (t1,∞), with B1 further split into B10 = (t1, t2), B11 = (t2,∞)

and so on. A representation is shown in Fig. 4.2. Following the notation of Section 4.2.2, this structure
is obtained when KB0 = KB10 = KB110 = · · ·= 1 and KΩ = KB1 = KB11 = KB111 = · · ·= 2 .

Ω

B0 B1

B10 B11

B110 B111

V0

V1

V2

Fig. 4.2 Sequence of splits (left) and structure (right) of the L94 partition. The r.v. assigning the ratio
of the masses of two sets for each branch is represented on the left branch. The mass assigned to the
set in each right branch is always one minus the mass assigned to the set in the corresponding left
branch.

Samples from a PT with the partition defined above have decreasing variance starting from the
earlier sampling times. This follows easily from the following lemma, proven for simplicity for Beta
r.v.s with mean 1/2.

Lemma 1. Given X1 ∼ Beta(α,α) and X2 ∼ Beta(β ,β ), if β ≥ α then Var(X1X2)≤ Var(X1).

The previous lemma shows that if the r.v.s V0,V1, . . . , assigning the mass to the sets B0, B1, . . . ,
have parameters whose sum is not decreasing, the variance of V0, V0V1, V0V1V2, . . . is decreasing.
Conversely, we can assume the variance is decreasing starting from the last sampling times by
reversing the order of the split and splitting the partition using first tK , then tK−1 and so on. We term
the two partitions defined above as the forward LOS partition (FLP) and backward LOS partition
(BLP), respectively. The idea of L94 is useful when modelling ecological data since, as mentioned
above, sampling is typically performed only at discrete times, t1, . . . , tK . An application of this partition
is presented in Section 4.3.1.

In some cases, it is useful to build the partition in a single step by splitting using all the sampling
times simultaneously. That is, we define (B0, . . . ,BK) such that Bi = (ti, ti+1), where t0 = −∞,
tK+1 =+∞, and the masses are assigned according to a Dirichlet distribution. As mentioned before,
this choice implies negative correlation between probabilities of any two disjoint sets. This partition
is termed the uniform partition (UP).

4.3.1 Example: Cormack-Jolly-Seber

In this section we demonstrate how the CJS model can be expressed in a PT framework. As in the
original CJS model, we define the model for the data conditioning on the time of first capture.
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We first arrange all the marked individuals in a set of vectors nk = (nk
1, . . . ,n

k
K−k+1), where nk

j

indicates the number of individuals with first capture at time tk and remaining at the site for j sampling
occasions or, equivalently, with last possible capture at time tk+ j−1. Next, we assume a distribution
Gk on the time of last possible capture for the individuals with first capture at time tk or, equivalently,
on the individuals belonging to vector nk. The sample space for Gk is Ωk = (tk,∞), as exit time is left
truncated by the time of first capture. Next, we assume a PT prior for each Gk, with partition taken to
be the FLP. According to the FLP, the sample space Ωk is split into Bk

0 = (tk, tk+1) and Bk
1 = (tk+1,∞),

next Bk
1 is further split into Bk

10 = (tk+1, tk+2) and Bk
11 = (tk+2,∞) and so on. The last level of the

partition corresponds to the grid defined by the capture times, (tk, tk+1, . . . , tK), and thus it uniquely
determines the probabilities of each cell. A visual representation of the sets of the sample space is
shown in Fig. 4.3. We note that the K partitions have different depths as for the individuals with first
capture at time tk, the partition is built only for K − k+1 levels.

Fig. 4.3 Partitions of the PT in the CJS case. The first level corresponds to the sample spaces
Ωk = (tk,∞), consisting of the individuals with first capture at time tk. In the second level, each sample
space is split into Bk

0 = (tk, tk+1) and Bk
1 = (tk+1,∞) and so on. The sets Bk

1 j0 and Bk
1 j1 correspond

to the individuals first caught at time tk that are present at the site at time tk+ j and exit and remain,
respectively, at the site until the next sampling time, tk+ j+1.

For illustration purposes, we are going to assume that individuals are of age 1 when first caught
at time tk but will later show how to relax this assumption. We define V k

j to be the probability of an
individual aged 1 when first caught at time tk exiting before time tk+ j conditional on being present

and of age j at the site at time tk+ j−1. The V k
j can also be seen as the ratio of masses

Gk(B1 j0)

Gk(B1 j )
(where

1 j = (1, . . . ,1︸ ︷︷ ︸
j times

)) in the PT, as in Eq. 4.2.1, and hence they are assigned a Beta prior distribution, where

the parameters are determined by centering the PT on a truncated Laplace distribution.
As mentioned in Section 4.2.1, in the standard CJS model, φ j,a corresponds to the probability that

an individual present and aged a at time t j remains until time t j+1. As individuals first caught at time
tk are of age j at time tk+ j−1, according to our model V k

j = 1−φk+ j−1, j.
The advantage of using a PT prior is that different assumptions regarding the model for parameter

φ can be considered by sharing the r.v.s V k
j across the different PTs. We list below a number of

assumptions that can be made and demonstrate the concept by writing the probability of capture
history 0101, P(0101), according to each assumption.
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• Constant case: φl,a ≡ φ ⇒V k
j ≡V ∀k, j. P(0101) = φ 2 p(1− p).

• Age-dependent case: φl,a ≡ φa ⇒V k
j ≡Vj ∀k, that is equivalent to assuming that Gk ≡ G ∀k.

P(0101) = φ1φ2 p(1− p).

• Time-dependent case: φl,a ≡ φl ⇒V k
j ≡Vk+ j. This is equivalent to assuming that the distribution

of Gk(x) is the same as the distribution of Gk−1(x|x ∈ Bk−1,1) ∀k. P(0101) = φ2φ3 p(1− p).

• Unconstrained case: The most general case is obtained by assuming that all the V k
j are different.

Although this model is never fitted in practice because it is overparametrised, we can still write
P(0101) as φ2,1φ3,2 p(1− p).

These assumptions are also depicted in Fig. 4.4.

Ω1

B1
0 B1

1

B1
10 B1

11

B1
110 B1

111

B1
1110 B1

1111

V 1
1 /V1/V1

V 1
2 /V2/V2

V 1
3 /V3/V3

V 1
4 /V4/V4

Ω2

B2
0 B2

1

B2
10 B2

11

B2
110 B2

111

V 2
1 /V1/V2

V 2
2 /V2/V3

V 2
3 /V3/V4

Ω3

B3
0 B3

1

B3
10 B3

11

V 3
1 /V1/V3

V 3
2 /V2/V4

Ω4

B4
0 B4

1

V 4
1 /V1/V4

Fig. 4.4 Structure of the trees for the CJS model. The r.v. assigning the ratio of the masses of two
sets for each branch is represented on the left branch. The r.v.s are in the order unconstrained/age-
dependent/time-dependent case. The mass assigned to the set in each right branch is always one minus
the mass assigned to the set in the corresponding left branch.

Assuming independence between sampling occasions and between individuals, the probability
of observing the CR data, H, given the vectors nk can be written explicitly. Although the nk provide
the frequencies of all possible presence histories, they do not give us a way to associate individuals
and their capture histories to presence histories. For example, an individual with capture history 011
might have presence history 111 or 011. Therefore, we cannot simply express the probability of
each observed individual capture history conditional on the corresponding inferred presence history
to construct the likelihood function, but we need to compute the number of possible ways that the
capture histories can be assigned to the inferred presence histories. The complete likelihood function
is given in the supplementary material.
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We note that, as opposed to the standard PT case where the observations, in this case the exit
intervals, are observed, in our model we need to infer the exit intervals for each individual and
therefore we need to employ an MCMC algorithm. The MCMC algorithm is used to sample from the
posterior distributions of the latent vectors nk, the probability p of capturing an available individual
and the r.v.s V . The details are given in Section 3.1 of the supplementary material.

The computational complexity of the algorithm is of order K2, where K is the number of sampling
occasions, as the dimension of the set of vectors {nk} is K2 (up to a proportionality constant).
Alternatively, when the number of caught individuals D is smaller compared to K2, an alternative
scheme is to consider the individual exit intervals of each individual instead of the set of vectors {nk}.
That is, we model directly the exit interval di of each marked individual, as for example in [55] and
Diana et al. (in press).

4.4 Replicate PT

In the CJS model defined in the previous section, different models are obtained by assuming that parts
of different trees are “replicated” across different branches. The same idea will also be used in the
next sections, and hence we provide here a formal definition of the RPT. The definition we provide is
for a single tree but it can easily be extended to the case of multiple trees.

Let Σ be a rule to generate a sequence of partitions from an initial seed set. For example, in the
CJS example the rule Σ corresponds to FLP and the seed sets are Ω1, . . . ,ΩK . If G is a distribution
having a PT prior with partition Π, we say that G has a replicate PT (RPT) structure across two sets
Bε and Bε ′ of the partition Π if the following constraints hold:

• The partitions of the trees starting from Bε and Bε ′ are generated according to the same rule Σ,
although the two partitions could be stopped after a different number of steps;

• For all ε1, . . . ,εm , Vε,ε1,...,εm =Vε ′,ε1,...,εm .

The first condition states that the partitions of the trees starting from Bε and Bε ′ are the same for a
number of steps, while the second condition states that the r.v.s in the two trees are the same. The
second condition is motivated by the CJS example, where the trees have different lengths, but it is
also required in the models defined later in the paper. The definition is easily extended to the case
where more than two parts of a tree are shared.

We can now express some of the assumptions of the CJS model in terms of the RPT just defined.

• The age-dependent case is obtained assuming that the trees have a replicate structure across the
sets Ω1, . . . ,ΩK .

• The time-dependent case is obtained assuming a replicate structure across the pairs of trees
with seed sets: Ω2 and B1

1, Ω3 and B2
1, Ω4 and B3

1 and so on.
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For ease of exposition, in all the case studies shown later, we only consider the most commonly
employed constraint in each case. However, similarly to the CJS case described above, different RPT
structures can be employed in order to assume different constraints if required.

We note that assuming that the r.v.s are shared across different parts of the tree does not change
the conjugate scheme described in Section 4.2.2. In fact, the conjugacy of the PT comes from the
conjugacy of the Dirichlet prior with a multinomial likelihood, and replicating different parts of the
trees corresponds to having more than one multinomial distributions in the likelihood, which does not
affect the conjugacy of the model.

4.5 Bivariate PT models

4.5.1 Bivariate partitions

In this section, we extend the model for CR data conditional on the time of first capture of Section
4.3.1 to two scenarios: CR without conditioning on first capture and RR. To highlight the connection
with D18, we briefly describe their model here. D18 define a model for count data by introducing a
matrix {n f l} of the individuals with first possible detection at time t f and last possible detection at
time tl . Therefore, inferring matrix n f l , which also includes information on the latent entry intervals,
gives rise to an estimate of the entry pattern and the size of the population.

In the CR and RR extensions, we do not condition on first capture as in the CJS but we model
the entry intervals of the individuals, and thus instead of working with a set of vectors {nk

j} we will
introduce a set of matrices {nk

f l}, similarly to D18. We note that, as opposed to D18, in the case of
uniquely identifiable individuals, as in CR and RR data, the time of first capture tk is also needed to
obtain an analytical expression for the likelihood function. However, the downside of adding another
dimension is that it increases the number of parameters of the model. Hence, we share information
between individuals with different times of first capture by using the RPT structure, in a similar
fashion as this was performed for the CJS.

Although both the RR and the CR models are built in principle by using the same set of matrices
{nk

f l} to summarise the individuals, the main difference between the two models is that the priors
are elicited on different quantities. In particular, in the case of CR data, the prior is elicited on the
entry and exit pattern in the case of CR, while in the case of RR data, the prior is elicited on entry and
LOS patterns. This is because the CR data we consider here are of the type collected at migratory and
breeding sites, where prior information is available on when the individuals are expected to arrive and
depart. On the other hand, RR data are collected over multiple years, and hence prior information in
this case is available on how long individuals are expected to live.

In order to define the aforementioned models, we need to define partitions for distributions on R2,
as we consider joint distributions on entry and exit or on entry and LOS. Partitions for distributions
on R2 can be defined by using the schemes defined in Section 4.3 separately for each dimension.
For example, a bivariate partition can be constructed by applying first FLP in one dimension and
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next BLP in the other. If B1
ε1,...,εk

and B2
ε1,...,εk

are the sets generating with the FLP and BLP partition,
respectively, the bivariate partition is defined in the following way:

• For the first K levels, we define the partition at the k-th level as (B̃k
0, . . . , B̃

k
k) where

B̃k
i = B1

1i−1,0 × (−∞,∞) i = 1, . . . ,k−1

B̃k
k = B1

1i−1,1 × (−∞,∞) i = k
.

This scheme is depicted in the first K levels of Fig. 4.5.

• For the remaining K levels, we define the partition at the k-th level as

(B̃k
0,0, . . . , B̃

k
0,k, . . . , B̃

k
K,0, . . . , B̃

k
K1,k,) where

B̃k
i, j = B1

1K
×B2

1 j−1,0 j = 1, . . . ,k−1

B̃k
i, j = B1

1K
×B2

1 j−1,1 j = k
.

This is depicted in the last K levels of Fig. 4.5.

We note that the previous construction is possible as both partitions used for splitting are finite, as
is the case for all the applications considered in this paper. To simplify the notation, we will later use
B instead of B̃ to indicate the sets of the bivariate partition. We denote this partition as entry and exit
length of stay partition (EELP).

This partition is useful when the entry and exit distribution (which is defined on {(x,y) : (x,y) ∈
R2,y > x}) is of interest, as the marginal distribution of entry is expected to have more variance in
the left tail, while for the marginal exit distribution more variance is assumed in the right tail. This
is especially the case when modelling stopover data [55] because entries into the population are
concentrated at the start of the sampling period while exits from the population are concentrated at
the end. This partition is used in D18, who built a model for CD based on a PT. The model is further
extended to CR data in Section 4.5.2.

When no prior information is available on the variance of the entry or exit distributions, the length
of stay splits can be replaced by the uniform split described in Section 4.3, as shown in Fig. 4.6. A
partition built in this way is termed as uniform partition (UP) and is used in Section 4.6.2.

The previous partitions allow us to elicit prior information on the entry and exit distribution.
However, as mentioned above, in some applications, prior information is available on the LOS
distribution instead and hence it is useful to build a partition that allows us to elicit prior information
on LOS instead of exit. For eliciting a prior on the LOS distribution, we define a bivariate partition
based on the idea of L94 but split the sample space with respect to the LOS instead of the exit intervals.
This is done by splitting the sample space in the set B0 = {(x,y) : tk < x < y < tk+1}, consisting of the
individuals exiting before the next sampling occasion, and the set B1 = {(x,y) : tk < x < tk+1 < y},
consisting of the individuals exiting after the next sampling occasion. Next, we split B1 in the set
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Fig. 4.5 Partition of a PT prior for a distribution defined on {(x,y) : (x,y) ∈ R2,y > x}, built first
using FLP and next using BLP. For simplicity, we have used the notation B for the sets of the bivariate
partition instead of B̃ and omitted the superscripts.

B10 = {(x,y) : tk < x < tk+1 < y < tk+2} of individuals staying for only one sampling occasion and
the set B1 = {(x,y) : tk < x < tk+1,y > tk+2} of individuals remaining for more than one sampling
occasions. The process is repeated K times for the remaining sampling occasions. Next, each set is
split according to a uniform split using the entry intervals. This partition is termed as bivariate LOS
partition (BivLP). A visual representation of this scheme is shown in Fig. 4.7 and an application is
presented in Section 4.5.3.

4.5.2 Joint analysis of capture-recapture and count-data

Recent work [2] casted doubt on whether CD alone can be used to provide reliable estimates of
population size and suggests that analysis of CD should be augmented by other types of data, such
as CR. Therefore, in this section, we demonstrate how to extend D18 to perform a joint analysis
of CR and CD using an RPT. As introduced in the previous section, we define the set of matrices
{nk} = {nk

f l} f=1,...,K+1,l=1,...,K+1, where nk
f l denotes the number of individuals with first possible

capture at time t f , first capture at time tk and last possible capture at time tl . For k = 0, we define n0

as the matrix containing the individuals never captured, but possibly detected and hence contributing
to the CD.

For each matrix nk, we define a distribution Gk on the probabilities ωk
f l of an individual belonging

to each cell of the matrix {nk
f l}, and we assume a PT prior for each Gk using the EELP partition of

Section 4.5.1. We make the assumption that the distribution of entry and exit intervals is the same
for each matrix nk. If Ωk is the sample space for the individuals with first capture at time tk, this is
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Fig. 4.6 Partition of a PT prior for a distribution defined on {(x,y) : (x,y) ∈ R2,y > x} built using the
uniform split twice.

achieved by assuming a RPT prior across the sets Ω1, . . . ,ΩK , as in Section 4.3.1. Moreover, we also
assume that the exit distribution is independent of the entry interval. This is achieved by assuming,
for each slice k, a RPT structure across the sets B0 = {(x,y) : x < t1}, B1 = {(x,y) : t1 < x < t2}, . . . ,
Bk−1 = {(x,y) : tk−1 < x < tk}. Similarly to the CJS model of Section 4.3.1, the parameters of the Beta
r.v.s assigning the mass in each split of the entry and exit distribution are centered on two independent
Laplace distributions.

We note that each matrix is defined on a different sample space, as nk is defined only for
f ≤ k, l > k, because individuals in the k-th slice have to enter before the k-th sampling occasion and
exit after. A representation of one slice is shown in the supplementary material.

We define the sum of the elements of matrix nk as Dk. However, while Dk is known for k = 1, . . . ,K
(as it is equal to the number of individuals with first capture at time tk), D0 is unknown as it includes the
number of individuals never captured. Given the number of individuals Dk, the number of individuals
in each cell of the matrix is distributed as a multinomial with sample size Dk and vector of probabilities
ωk

f l . The total number of individuals N is equal to D0+∑
K
k=1 Dk, where D = ∑

K
k=1 Dk is the number of

caught individuals. Assuming a Poisson(ω) prior distribution for N, the model for the latent matrices
nk

f l can be summarised as nk
f l ∼ Multinomial(Dk,ω

k
f l)

D0 +D ∼ Poisson(ω)

Conditional on the latent matrices nk
f l , we can easily express the distribution of the counts C and the

CR matrix H. Defining as Nk the number of individuals available for capture/detection at time tk the
model for the CD, conditional on the latent matrices nk

f l , can be expressed asC j ∼ Binomial(N j, pD)

N j = ∑
j
k=0 ∑

K
l= j ∑

l−1
f=1 nk

f l
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Fig. 4.7 Partition of a PT prior for a distribution defined on {(x,y) : (x,y) ∈ R2,y > x} built using
BivLP.

where the last equation expresses the relationship between the Nk and nk
f l and pD and pC are the

probability of detecting and capturing an individual, respectively.
The probability of the capture histories of the individuals with first capture at time tk, conditional

on the matrix nk, is presented in the supplementary material.
As in the CJS model, we can reformulate this model using individual entry and exit intervals, as

performed also in Matechou et al. [55] and Diana et al. (in press). We reformulate the model using the
following variables. The D captured individuals are summarised with the variables (t i

1, t
i
2), describing

the latent entry and exit interval, respectively, of the i-th captured individual, while the individuals
never captured are summarised in a matrix {n f l}, where cell ( f , l) is the number of individuals with
first possible capture at time t f and last possible capture at time tl .

The model presented using the set of matrices {nk} has computational complexity K3 (as the
dimension of the set of matrices nk is K3 up to a proportionality constant), while modelling the
individual entry and exit intervals leads to an order of computational complexity equal to the maximum
between the number of captured individuals D and the dimension K2 of the matrix {ni j}.
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Case study

We apply our model to a dataset of counts and resights of a population of Italian spoonbills (Platalea
leucorodia) collected in the southern Po Delta (NE Italy). Birds captured as chicks in previous years
are resighted as adults through photographs obtained using camera traps and by visiting their nests
on eight separate sampling occasions, summarised in two capture-recapture matrices H1 and H2,
respectively. No attempt is made to mark new adult individuals and instead only previously marked
individuals can be resighted. In addition, unmarked birds are detected on each sampling occasion.
The matrix of individual resight histories in this case corresponds to the matrix of presence histories
in the standard CR protocol described in Section 4.2.1.

In this case, there are fewer than 40 resighted individuals, so we choose to perform inference
by modelling individual entry and exit intervals for all the marked individuals resighted. However,
as opposed to the model described in the previous section, we have two different populations of
individuals, the ones already marked and the unmarked, and hence we have to modify the model that
has been introduced in the previous section. Similarly to the case with one population, we model the
marked individuals resighted using the variables (t i

1, t
i
2), while the marked individuals never resighted

and the unmarked individuals are summarised in two matrices {nM
f l} and {nU

f l}, respectively, where
cell ( f , l) corresponds to the number of individuals first available for capture at time t f and last
available at time tl .

The number of marked birds NM and the number of unmarked birds NU are assigned two Poisson
prior distributions NM ∼ Poisson(ωM) and NU ∼ Poisson(ωU), respectively. We assume that each
marked individual can be resighted by visiting its nest with probability pC and through camera traps
with probability pR. As the unmarked birds are also detected through camera traps, we assume they
can be detected with the same probability pR of resighting an already marked bird. We note that this
is a realistic, but also necessary assumption in this case, as otherwise the CD do not include enough
information to separately estimate the population size NU of unmarked birds and the probability of
resighting an unmarked bird, pR, if that is different to marked birds.

The prior distributions and the MCMC scheme are discussed in Section 3.2 of the supplementary
material.

The posterior distribution of the entry and exit cumulative distribution functions (cdf) are shown in
Fig. 4.8a. The cdf of the departure does not reach 1 within the study period since some birds remain at
the site using the colony as a roost. Similarly, the cdf of the arrival intervals is at around 0.4 at the start
of the study, suggesting that a large proportion of individuals are present at the site when sampling
starts, with over 80% of individuals estimated to have arrived by the second sampling occasion towards
the end of April. The posterior distributions of the two population sizes and resighting probabilities
are shown in Table 4.8b. The camera trap resight probability, pC, is slightly lower than the resight
probability through nest visits, pR, since cameras are pointed toward the nest, where it is unlikely to
see floaters and prospectors. The difference between the population sizes of marked and unmarked
birds is due to the fact that only a small proportion of chicks are marked each year, and out of those
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(a)

2.5% Mean 97.5%
NM 39 48 59
NU 45 65 91
pR .30 .38 .48
pC .21 .29 .38

(b)

Fig. 4.8 Posterior mean of the cumulative distribution function of entry intervals (dashed line) and
exit intervals (solid line), with confidence bars show the 95% PCIs. The ticks on the x-axis represent
the sampling occasions (a). Posterior summaries for the spoonbills data-set (b).

marked, only a small proportion return to breed as adults. In fact, local recruitment rate is thought
to be around 0.12, while the proportion of immigrants on total number of recruits is known to range
from 0.49 to 0.83 [85].

4.5.3 Ring-Recovery

In this section, we show how to build a model for RR data using a RPT prior. Similarly to what
was mentioned in Section 4.5.1, in order to jointly model entry and exit patterns we work with a
set of matrices nk = {nk

u f ul
}, where in this case nk

u f ul
represent the number of individuals marked on

sampling occasion k that remained in the population for u f sampling occasions before being marked
and ul sampling occasions after being marked. We assume that individuals marked at time k could
have entered the population for up to U sampling occasions before they were marked and could have
stayed for up to U sampling occasions after being marked, and thus we assume the dimension of each
matrix nk is (U +1)× (U +1).

For each matrix nk, we assume a PT prior for the probabilities ωk
u f ul

for an individual to belong
to each cell nk

u f ul
, with partition taken to be the BivLP partition built in Section 4.5.1. A visual

representation of the partition for a matrix is presented in the supplementary material.
Similarly to Section 4.3.1, we make the assumption that the survival probability is age-dependent,

that is, the probability of an individual surviving until the next sampling occasion depends only on
the age of the individual and not on calendar time. If we define Ωk to be the sample space for the
individuals marked at time tk, this assumption can be achieved by assuming an RPT across Ω1, . . . ,ΩK .
This forces the probabilities ωk

u f ul
to be the same for each k, that is ωk

u f ul
≡ ωu f ul . Similarly to the CJS



4.5 Bivariate PT models 59

model, if we define φ j,a as the probability of an individual of age a that is present at time t j to remain
until the following sampling occasion, assuming an RPT prior over the different slices is equivalent to
assuming that φ j,a ≡ φa.

For the tree corresponding to the first U survival splits the masses are assigned according to Beta
distributions, with parameters that are determined by centering the tree on a truncated Laplace distribu-
tion. For the remaining U splits, each set B j, corresponding to the individuals surviving for j sampling
occasions, is split into the sets of individuals arriving in the intervals (tk− j, tk− j+1), . . . ,(tk−1, tk) and
the masses are sampled from a Dirichlet(α0, . . . ,α0) distribution.

The number of individuals marked at time tk which can be recovered that at time tk+ j can be
obtained by the matrix nk

u f ul
as ∑

U
u f =0 nk

u f j. Hence, the number of individuals marked in year tk
recovered dead in year tk+ j, Rk,k+ j, is distributed as a Binomial(∑U

u f =0 nk
u f j,λ ). Assuming also a Beta

prior for the recovery probability λ , the model can be summarised as

Rk,k+ j ∼ Binomial(∑U
u f =0 nk

u f j,λ )

nk
u f ul

∼ Multinomial(mk,ωu f ul )

{ωu f ul} ∼ PT(Π,{α})

λ ∼ Beta(a0,b0)

(4.5.1)

.

Case study

We apply our model to a dataset collected in Minnesota, USA. A total of 100127 female mallards
have been banded throughout the course of the study, which lasted 51 years. Marking occurs from
July to September each year, while recoveries occur during the hunting season immediately following
marking, from September to January. Newly caught individuals can be recognized as juveniles if
their age is less than 1 year at the time of capture and as adults otherwise. As we can recognize the
juveniles at the time of capture, the age at time of death of the recovered juveniles is known. The
entry and exit of the individuals corresponds in this case to births and deaths, while the sampling
occasions corresponds to the markings and recoveries.

We summarise the data in two K ×K matrices, RA and RJ , for adults and juveniles, respectively.
The total number of juveniles and adults marked in year k, are denoted by mJ

k and mA
k , respectively.

The first row of the matrix nk, {nk
0ul

}ul=0,...,U , consists of the juveniles, and its sum is thus equal
to mJ

k , while the rows from 2 to U +1 consist of the individuals marked as adults, and their sum is
equal to mA

k . Assuming a Beta prior for the recovery probability, λ , the model can be summarised as
Ry

k,k+l ∼ Binomial(nk
0ul

,λ ) Ra
k,k+l ∼ Binomial(∑U

u f =1 nk
u f ul

,λ )

nk
0ul

∼ Multinomial(mJ
k,ω0ul ) {nk

u f ul
} f>0 ∼ Multinomial(mA

k ,ωu f ul )

{ωu f ul} ∼ PT(Π,{α}) λ ∼ Beta(a0,b0)

(4.5.2)
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As opposed to Eq. 4.5.1, the first row of the matrix nk
u f ul

contributes to the recoveries Ry for the
juveniles and the rest of the matrix contributes to the recoveries Ra of the adults.

We perform inference by updating the random matrices nk
u f ul

, the probabilities ωu f ul and the
recovery probability λ . The prior specifications and details of the MCMC sampler are presented in
the supplementary material.

The posterior mean of the survival probabilities is presented in Fig 4.9. The result agrees with the
general pattern observed for bird populations, with survival being lower in very young and older ages.
A similar pattern was observed by [57] when analysing RR data for mallards (Anas platyrhynchos)
and by [42] for blackbirds (Turdus merula). As expected, uncertainty increases for older age because
of the sparseness of the data. The 95% PCI of the recovery probability is (0.1209,0.1250).

Fig. 4.9 Posterior means of the probabilities φ j of surviving to the age j+1 conditional on being alive
at age j.

4.6 The hierarchical Logistic PT

The RPT defined in Section 4.4 allows us to impose constraints across different distributions or
conditional distributions by assuming the same r.v.s across different trees or across different branches
of the same tree, which in the case of density estimation forces the different distributions to be
the same. This assumption is however too restrictive in many real applications, as for example
when jointly modelling data collected across different years or sites. In these cases, it may be more
reasonable to employ a hierarchical approach, which enables us to borrow strength across the different
data-sets but without assuming that the distributions describing the different data-sets are exactly the
same.

In the context of data collected at different units, Christensen and Ma [13] propose a Hierarchical
PT by assuming a PT prior in each unit, where each PT is centered on a common baseline PT prior.
However, because of the lack of conjugacy of a Beta prior with a Beta likelihood, the sampling scheme
relies on quadrature techniques. To employ a hierarchical approach while still performing inference
with a Gibbs sampler, we suggest an alternative based on the logistic PT (LPT) of Jara and Hanson
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[40]. The LPT is defined by replacing the Dirichlet distributions for the Vε1...εi in (4.2.1) with logistic
multinomial distributions.

We define a hierarchical model for distributions in the following way. If we have distributions
G1, . . . ,GS, we assume an LPT prior for each distribution, where the r.v.s of each distribution G j

assigning the mass in each split, β
j

ε1...εm , are centered on a common prior N(µ0
ε1...εm

,σ2
ε1...εm

), where
µ0 are the parameters of a PT centered on a distribution G0(·|η) and an additional hyperprior P0 is
assumed on η . The model can be summarised hierarchically as

log
(

Yε1 ...εm,i1
Yε1 ...εm,i2

)
=

βε1...εm,i1 −βε1...εm,i2 i1, i2 = 0, . . . ,K −2

βε1...εm,i1 i2 = K −1

β
j

ε1...εm ∼ N(µ0
ε1...εm

,σ2
ε1...εm

) j = 1, . . . ,S

µ0
ε1...εm

= logit
(

G0(Bε1 ...εm |η)

G0(Bε1 ...εm−1 |η)

)
η ∼ P0

The first equation expresses how the masses are assigned according to the LPT structure. A set of PTs
following this structure will be termed as Hierarchical Logistic PT (HLPT). If σ2

ε → 0 ∀ε , we have
β

j
ε ≡ µ0

ε and hence the distributions for each group are the same.
As we mentioned above, the LPT is defined in terms of logistic transform of normal distri-

butions and hence a Gibbs sampler, based on the Polya-Gamma scheme of Polson et al. [69], is
available to sample from the posterior distribution, details of which can be found in Section 3.4 of the
supplementary material.

4.6.1 A hierarchical model across different data-sets

In this section we extend D18 by defining a model for data collected at different sites using the HLPT
defined in the previous section. The data consist of S different datasets which, for ease of exposition,
we take to be CD, but the same rationale applies for any other sampling schemes described before.
We define C js to be the number of individuals detected at time t j in the s-th data-set.

We arrange all the individuals in S matrices ns = {ns
f l} f=0,...,K,l=0,...,K , where ns

f l is the number of
individuals in data-set s having first and last possible detection at times t f and tl , respectively. For
the s-th data-set, individuals entry and exit times are drawn from a Poisson process with intensity
νs = ωs ×Gs, where ωs is the overall intensity and Gs is the normalized density. In order to borrow
information between different data-sets, the normalized densities (G1, . . . ,GS) are assumed to follow
a HLPT prior, where the partition is taken to be the EELP of Section 4.5.1.

Assuming also that each individual in dataset s can be detected with probability ps and assuming a
Gamma prior distribution for the overall intensities ωs, the model can be summarised in the following
hierarchical structure
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Fig. 4.10 Posterior c.d.f.s of the entry (dotted line) and exit (solid line) distribution for great crested
newts (C), palmate (P) and smooth (S). The male are represented in black and the female in grey.


C js ∼ Binomial(N js, ps) N js = ∑

K
l= j ∑

j−1
f=0 ns

f l

ns
f l ∼ Poisson(ωs ×ωs

f l) {ωs
f l} ∼ HLPT(η ,σ)

η ∼ P0 ωs ∼ Gamma(aω ,bω)

where Nks is the number of individuals available for sampling on occasion k and data-set s.

Case study

We consider a data-set of weekly detections of 3 species of newts separated for gender, for a total
of 6 different sets of counts, performed at a local site at the University of Kent in 2014. Newts are
usually sampled weekly during their breeding period using aquatic traps. However, some visits might
be missed on occasion because of weather conditions. All three species migrate to ponds in late
winter-early spring for breeding, and leave the breeding site in late spring or summer to spend the rest
of the year on land. The data are shown in Section 1 of the supplementary material.

The posterior estimates of the entry and exit distributions for the 6 data-sets are shown in Fig.
4.10. From the plots, a slight pattern showing males arriving earlier and females departing later can be
detected, which could be due to female staying longer to complete egg-laying. Moreover, it seems that
among the three species, great crested newts tend to arrive and depart later than smooth or palmate
newts.

4.6.2 Modelling long time-series of ecological data

The last scenario we consider is a long time series of counts collected daily. Difficulties arise in this
case as individuals are not present during the whole sampling period but only for a small part of the
sampling period. Therefore, building a partition by considering all K intervals would increase the
computational complexity without necessarily providing a better description of the data. A naive
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modelling approach is to merge sampling occasions in order to obtain a shorter time series. However,
the decision of how to merge is arbitrary and the same merging may not be meaningful for the duration
of the study period. Instead, we let the model infer which sampling occasions to merge using the
Optional Polya Tree of Wong et al. [89].

As in the model of Section 4.6.1, we build a prior distribution on the number of individuals present
in each sampling occasions by defining a prior distribution on the number of individuals arriving and
departing in each sampling occasion, which is done by assuming a PT prior on the individual entry
and exit intervals. The partition of the PT is built using the UP of Section 4.5.1, where the splits are
performed according to some nested periods of time, which for example can be taken as the natural
scales at which data are collected, such as months, weeks and days. Clearly, the periods of time of the
partition are defined up to the resolution at which the data are collected, in order to define a prior on
the number of individuals arriving and departing in each sampling occasion. As the OPT allows us to
stop further partitioning, the choice of the UP will lead the partition to end in one of these periods of
time.

We divide the overall study period in K0 periods of time of equal length, Ω1, . . . ,ΩK0 , called
0-periods, and we assume that individuals enter and exit only in the same 0-period. Next, for each
0-period, Ωi0 , we define a distribution Gi0 on the entry and exit intervals of the individuals. The
0-periods can be thought of as the periods of time in which the migration patterns seasonally repeat,
such as the years. Next, as mentioned above, we define a set of splitting rules according to which
the sample space of Gi0 , Ωi0 is first split into the sets I1 = {I1

1 , . . . , I
1
K1
}, and next, each set at level

i, Ii
j, is split into I i+1

j = (Ii+1
1 , . . . , Ii+1

Ki+1
). The sets in I i are called i-periods. Given ε = (ε1, . . . ,εm),

we define as Tε the set obtained by taking first the ε1-th 1-period, then the ε2-th 2-period and so on.
For example, the years can be taken as the 0-periods and the splitting rules can be built using first the
months as 1-periods, weeks as 2-periods and so on.

Next, given two sequence of indexes ε and η , we define as ni0(ε,η) the number of individuals
in the 0-period Ωi0 entering in Tε and exiting in Tη . We also define as Ni0

ε and Ci0
ε the number of

individuals available for sampling and detected, respectively, in Tε and in the i0-th 0-period. Even
if an explicit formula is cumbersome to present, we note that it is straightforward to obtain the
latent individuals Ni0

ε from the ni0(ε,η). Thanks to this construction, we have defined a prior on the
probabilities ω i0(ε,η) of an individual to belong to the cell ni0(ε,η).

Having defined this set of splitting rules, we define the partition of sample space Ωi0 by first
splitting Ωi0 in (Bi0

1 , . . . ,B
i0
K1
) where Bi0

i = {(x,y) ∈ Ωi0 ,x ∈ I1
i }, that is, the sample space is split using

the dimension of entry according to the 1-periods. Next, each Bi0
i is split into (Bi0

i,1, . . . ,B
i0
i,K1

), where
Bi0

i, j = {(x,y) ∈ Bi0
i ,y ∈ I1

j }, that is, each set is now split using the dimension of exit according to again
the 1-periods. Analogously, in the next steps, given two sequences of indexes ε = (ε1, . . . ,εn) and
η = (η1, . . . ,ηm), each set Bi0

ε,η is split into(Bi0
ε1,η , . . . ,B

i0
εKn,η

) where Bi0
εi,η = {(x,y) ∈ Bi0

ε,η ,x ∈ In
i } if n = m

(Bi0
ε,η1, . . . ,B

i0
ε,ηKm

) where Bi0
ε,η i = {(x,y) ∈ Bi0

ε,η ,y ∈ Im
i } if n = m+1
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A representation of this scheme is shown in the supplementary material. We also denote by β
i0
ε,η

the r.v.s assigning the masses in each level of the partition, that is, Gi0(β
i0
εi,η) =

e
β

i0
εi,η

1+∑
K−2
k=0 e

β
i0
εk,η

and

Gi0(β
i0
ε,η j) =

e
β

i0
ε,η j

1+∑
K−2
k=0 e

β
i0
ε,ηk

. We also make the following assumptions on the r.v.s Gi0 :

• We assume an HLPT structure across the distributions Gi0 . This implies that the r.v.s β
i0
ε,η have

a common prior β
i0
ε,η ∼ N(µε,η ,σ

2).

• We assume that β
i0
εi,η j is the same across the different entry periods, i.e. β

i0
εi,η j = γ

i0
ε,η j∀i.

• We assume that the masses in periods that are in close proximity are more strongly cor-
related than the mass of periods further away from each other, hence we assume that the
means (µε1,η , . . . ,µεK,η) of the common prior are drawn jointly from a Gaussian process
GP((µ0

ε1,η , . . . ,µ
0
εK,η),σ

2
0 kl), where kl is the Gaussian covariance function k(xi,x j)= exp(− (xi−x j)

2

l2 )

with parameter l.

As a result, σ2 tunes the variability across 0-periods, σ2
0 tunes the variability across i-periods and

l the correlation across i-periods.
Assuming a Poisson(ω) prior distribution on the number of individuals Ni0 in each 0-period, the

model can be summarised in the following hierarchical structure
Ci0

ε ∼ Binomial(Ni0
ε , p)

ni0(ε,η)∼ Poisson(ω ·ω i0(ε,η))

ω i0(ε,η)∼ HLPT(µ0,σ ,σ0)

where p is the probability of detecting an individual.
The downside of this model is that the partition is built for 1-period, 2-period, etc., even if no

observations are available in some periods. Ideally, we would like to use a modelling approach where,
instead of building the partition for each period, we keep partitioning the PT only in the periods
of time where the entry and exit density has significant variation. To do so, we change slightly the
definition of the PT and allow for different branches of the tree to not partition further, by borrowing
ideas from the OPT of Wong et al. [89].

Specifically, we assume that in each step, partitioning of the PT into the further level happens with
probability ρ which, as in the OPT, is a-priori the same for each level. We then introduce a variable
SBε

which is equal to 1 if Bε is not partitioned further and 0 otherwise. The distribution in the set Bε

can thus be expressed recursively from its descendant sets as

G(x|x ∈ Bε) = SBε
U(x|x ∈ Bε)+(1−SBε

)
Kε

∑
i=1

G(x|x ∈ Bε,εi)1(x ∈ Bε,εi)
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where U is the uniform distribution and (Bε,ε1 , . . . ,Bε,εKε
) are the Kε descendant set of Bε . Hence,

when no splitting is required we replace the PT distribution with a uniform distribution.
To perform inference with this new structure, we first sample the variables SBε

for all the sets in
the next level, as well as the parameters β , next we sample SBε

and β for all the sets in the upper level
and so on.

Case study

We consider a long series of daily CD of two species of moths, Canadian Melanolophia (Melanolophia
canadaria) and Signate Melanolophia (Melanolophia signataria), collected across 5 years [67]. The
data are shown in Section 1 of the supplementary materials. Detection of the individuals is possible
only during the flight period, which is known to happen only in a limited amount of time inside the
calendar year. Therefore, we consider the years to be the 0-periods. The year is then split into 13
periods of time of equal duration (1-periods), then each 1-period is split into 4 periods of time of equal
duration (2-periods) and finally each of these periods in 7 (8 for a leap year) equal periods of time
(3-periods), where each of these 3-periods corresponds to a day. In order to simplify the computation,
we summarise the data across the 2-periods by using the sum of the individuals captured in a 2-period
as the count.

Fig. 4.11 Posterior mean of the entry (dashed line) and exit (straight line) cumulative distribution
functions for the moths data. Each year is represented by a different symbol.

The posterior means of the entry and exit cumulative distribution functions are shown in Fig. 4.11.
The exit pattern is practically identical between the different years, with the c.d.f suggesting a smooth
exit pattern with a few bigger exit waves around weeks 36, 40 and 44 (start of September). On the
other hand, entry patterns present a bit more variation across years. The species is known to have two
broods [15, 87], which is evident by the two big entry waves each year around weeks 20 and 24 (mid
May) for all years apart from 2013, when the first brood emerged much earlier. This is likely due to
the unusual warm temperature at the start of 2013, as the table in the supplementary material suggests.
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4.7 Conclusion

We introduced a framework for defining models for ecological data based on the PT prior. The
advantage of this framework is that a wide variety of assumptions can be made on the model structure
by changing the tree structure, as a result of the flexibility of the PT. We have applied our framework
to different types of commonly collected ecological data, such as CR, CD and RR, either in isolation
or in combination by building joint models. We have also introduced the RPT, which allows us to
place constraints on the model parameters, and the HLPT, which allows us to impose a hierarchical
structure and share information when modelling different data-sets. We have also presented a way
to infer the partition of a PT using the OPT of Wong et al. [89], which allows us to build trees with
depth informed by the data.

It is easy to extend the model to other protocols, as for example removal data [65]. Removal
data are collected by repeatedly visiting the site and removing all caught individuals. In this case, an
approach similar to CR and RR can be employed, by assuming that the time of exit is known for the
removed individuals and estimating entry and exit of the individuals not removed.

We have used the HLPT to perform sharing because of its computational advantage over the HPT
of [13], which is due to the use of the logistic normal distribution in the place of the Beta distribution.
However, there are additional advantages in using a logistic normal distribution in place of a Beta
distribution. In fact, as the model relies on the normal structure, it is easy to extend the model while
keeping the same posterior inference strategy. For example, it is easy to introduce covariates across
the different units, extending the model from a standard exchangeable scenario to one of conditional
exchangeability, or extending the model to a scenario where the effect of the different units are
modelled using a time series. The model can also be easily extended to more levels, which can be
applied, for example, to scenarios when the data are collected on multiple species and at multiple sites
and a joint modelling is required across both levels.

In the OPT, although it is possible to sample from the full conditional thanks to a conjugacy
property, sampling from the posterior involves recursive calculations across the whole tree. This is
computationally inefficient if the tree is large and there are many layers and this has to be repeated for
each step of the MCMC. In that case, a more efficient scheme is to prune the tree and in each step of
the MCMC only propose to update/add/remove branches of the tree.

In our modelling framework, different ecological assumptions correspond to different trees or
changes in the dependence structure of the r.v.s on the tree. The question of evaluating evidence in
favour of different assumptions can be addressed using standard Bayesian model selection methods.
First, model selection can be performed by simply evaluating the evidence of each model by using
Bayes factors. Alternatively, as a change in the ecological assumption entails a change in the structure
of the trees, model selection can be performed by employing an additional prior on these different
tree structures and computing the posterior of the structure of trees as part of the parameter space.



Chapter 5

A vector of softcore processes for
modelling interactions between species
using capture-recapture data.





Abstract

Capture-recapture (CR) data and corresponding models have been used extensively to perform
inference on several quantities of interest of a wildlife population. When more than one traps is used,
CR models can be extended to spatial CR models to also provide information on the spatial patterns of
individual activity centres. Although the spatial patterns of the individual activity centres have usually
been assumed to be independent, recent work relaxes this assumption by considering interactions
between individuals of a single species. In this paper, we develop a model for CR data that can
take into account interactions between and within multiple species. This is achieved by considering
a vector of point processes from the general class of interaction point processes. These processes
present a challenge from an inferential perspective because of the untractability of the normalising
constant of the likelihood function, and hence standard MCMC procedures cannot be applied. Instead,
we adopt an inference procedure based on the Monte-Carlo Metropolis Hastings algorithm of [50],
which scales well also when the number of species is large. We apply the model two CR data-sets on
leopards and tigers.

5.1 Introduction

Conservation scientists, researchers and charities, as well as government organisations worldwide,
are interested in monitoring sizes of populations, distributions of species in the landscape and spatial
patterns of individuals in the wild. Capture-recapture (CR) is one of the most commonly employed
surveying tools to achieve this goal. According to the CR protocol, an attempt is made to capture
individuals on repeated sampling occasions at one or more traps, and all newly caught individuals are
uniquely marked. Several models have been developed for estimating population sizes [77], arrival
and departure patterns [68] or survival patterns [57] using CR data. When more than one trap is
used, CR data can also be used to infer the spatial pattern of the locations of centres of the activity
area (CAA), defined as the locations around which the individuals move when performing their daily
activity [79], using spatial capture-recapture (SCR) models [24, 5, 78]. Even in cases when the spatial
pattern is not of main interest, SCR models are still able to provide less biased estimates as they relax
some assumptions compared to standard CR models. Specifically, standard CR models assume that
all individuals are equally likely to be caught at each trap, which is often violated in practice [25]. On
the other hand, SCR models account for the fact that individuals are more likely to be caught in traps
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that overlap with their activity area. For a nice review of the literature for SCR models, see Royle
et al. [79].

When using SCR models, the locations of the individual activity centres are latent, which gives
rise to challenges from an inferential perspective. SCR models can be developed in a classical [5]
or Bayesian [79] framework. The classical approach relies on maximizing the marginal likelihood
computed by integrating out the activity centres, while the Bayesian approach relies on sampling
from the posterior distribution of the activity centres as well as of the other parameters of interest.
Estimation through marginal likelihood has been usually performed in the case where the activity
centres are assumed to come from a tractable distribution, which makes the computation of the
marginal likelihood analytically possible. As the processes considered in this paper are quite complex,
this computation cannot be performed analytically, and hence we consider the Bayesian approach.

A common assumption in SCR models is that the activity centres of the individuals are independent
of each other. An extension is the work by [74], who used a Strauss process [83] to model the activity
centres of a single species while accounting for interaction within the species. By interaction, we
mean that the probability density of a given point (i.e. the activity centre of one member of the
species) depends on the location of the other points (the activity centres of the other members). This
dependence can manifest either as repulsion, where the presence of a point at a particular location
decreases the probability of having another point at a nearby location, and as attraction, where the
opposite is true and points tend to be clustered. In our case, we are more interested in modelling
repulsion, as repulsion is more likely to be present in the species considered in our application. In
this paper, we extend the model of [74] by introducing a vector of spatial point processes (PPs) for
modelling the locations of the activity centres and build a multi-species SCR model that can account
for interaction within and between species.

Spatial PPs are a major area of research in spatial statistics and a useful modelling tool when
the objects of interest are locations of objects in space [75, 16]. The simplest example of a PP is
the Poisson process, where the locations of the individual points are drawn independently of each
other and they do not exhibit interaction. One extension of the Poisson process is the class of Cox
processes, which are processes for clustered or aggregated point patterns [63]. Another extension of
point processes is the class of interaction PPs (IPP) [80, 70], which are especially suited to modelling
interactions between points. We choose to work with interaction PPs, because they are better suited to
modelling repulsion between points.

The computational challenge that arises when working with interaction PPs is that the normalising
constant of the likelihood function, which is a function of the model parameters, is usually unavailable
in closed form apart from trivial cases [59]. Distributions of this kind are known in the literature as
doubly-intractable distributions, as both the marginal likelihood of the data, with parameters integrated
out, and the likelihood function are intractable, and a variety of methods have been proposed to perform
inference, as we describe next. In a frequentist setting, this is usually dealt with by replacing the
complete likelihood with a pseudo-likelihood [4], for which asymptotic results have been provided
[41]. In a Bayesian setting, the problem usually involves computing a ratio of normalising constants,
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as the ratio arises naturally when using a Metropolis-Hastings (MH) algorithm for sampling from the
posterior distribution of the parameters of the PP. Popular inference procedures include the auxiliary
variable method of [61], path sampling [64], exchange sampling [62] and the Monte Carlo MH
(MCMH) algorithm [50]. In this paper, we choose to use the MCMH algorithm, which essentially
approximates the ratio of normalising constants with an importance sampling estimate, because this
approach is easily scalable as the number of parameters grows.

As mentioned above, as we work with several species, we do not use a single PP but a vector of
PPs (VPP). Although an extensive literature exists for univariate interaction PPs, VPPs have only
recently gained attention in the literature [86, 72]. For example, Waagepetersen et al. [86] developed
a model that takes into account correlation between more than one species using a Log-Gaussian Cox
process, while Rajala et al. [72] proposed a model to take into account interactions between many
species using a Gibbs model, which is a particular case of IPP.

We apply our new model to two CR data-sets on tigers and leopards. However, for confidentiality
reasons, we cannot reveal the location where the data were collected. The main interest is in estimating
the population density of the individuals while accounting for interaction between and within species.
In fact, tigers and leopards are territorial animals and this leads to interaction both between and within
the species.

The paper is organised as follows. In Section 5.2 we briefly summarise the theory of PPs, as well
as the extension to VPPs and the main approaches available for performing inference. In Section 5.3
we define the spatial model for CR data. In Section 5.4 we present results of a simulation study and in
Section 5.5 we apply the model to the tigers and leopards CR data-sets. Section 5.6 concludes the
paper and introduces some potential future directions.

5.2 Interaction point processes

A spatial PP X on a space S ⊂ Rd is a random countable subset of S. It is usually assumed that the
realisations of X are locally finite and points are not duplicated, that is, for any subset B ⊂ S, the
number of points of X in B is finite or, equivalently, that X takes values in the space Nl f = {x ⊂
S | #(x∩B)< ∞ ∀B ⊂ S}. A nice review of PPs is presented in [59].

The most basic example of a PP is the Poisson process. A Poisson process is a PP with intensity
function ρ : S → [0,∞) if, for any B ⊂ S such that |B| < ∞, the number of points in B, N(B), is
distributed as a Poisson(µ(B)) with µ(B) =

∫
B ρ(x)dx. A Poisson process is said to be homogeneous

if ρ(x)≡ ρ , and inhomogeneous otherwise.
According to the Poisson process, points are independent to each other, in the sense that the

location of a point does not affect the location of another point. In order to introduce interaction
between points, a common strategy is to define a process with density f with respect to (w.r.t.) another
PP, for example the Poisson process, and let f determine the interaction between points. To this end,
we say that a PP X1 has density f w.r.t. another PP X2 if P(X1 ∈ F) = E[1(X2 ∈ F) f (X2)] for each
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F ∈ N f l . It can be shown that if X has density f w.r.t. a homogeneous Poisson process with density 1
it holds that

P(X ∈ F) =
∞

∑
n=0

exp(−|S|)
n!

∫
Sn

1[{x1, . . . ,xn} ∈ F ] f (x1, . . . ,xn)dx1, . . . ,dxn.

The normalising constant of f ,

P(X ∈ N f l) =
∞

∑
n=0

exp(−|S|)
n!

∫
Sn

f (x1, . . . ,xn)dx1, . . . ,dxn,

is not available in analytical form (except in the case of a Poisson process) and hence f is usually
expressed up to proportionality f ∝ h. Next, we consider the case of pairwise interaction PP, where f
is defined w.r.t. a unit rate Poisson process and is of the form

f ({x1, . . . ,xn}) ∝

n

∏
i=1

φ1(xi)∏
i< j

φ2(xi,x j|θ) (5.2.1)

where φ1 is called intensity function and φ2 is called interaction function. Whenever φ2 < (>) 1, there
is repulsion (attraction) between points. In the following, we set φ1 ≡ β .

Pairwise interaction PPs can thus be defined by simply specifying the function φ2 that deter-
mines the interaction between two points. For example, the Strauss process [83] is obtained when
φ2(x1,x2|λ ,R) ∝ λ 1[|x1−x2|<R]. The interpretation of this process is that points have an interaction only
if they are at a distance less than R. The Strauss process is well-defined only for λ ≤ 1 (for λ = 1 it
corresponds to the Poisson process), as for λ > 1 the number of points explodes. Another example of
interaction PP is the soft-core process [64], defined by the interaction function

φ2(x1,x2|γ) ∝ 1− exp
(
−(x1 − x2)

2

γ

)
(5.2.2)

which, as opposed to the Strauss process, has an infinite range of interaction, in the sense that points
interact with each other regardless of their distance. Examples of interaction functions for the two
processes are shown in Fig. 5.1.

5.2.1 Vectors of point processes

Similarly to a single PP, in the case of a vector of D PPs, a VPP can be defined as a random countable
set of SD. Analogously to a single PP, we can define a VPP (X1, . . . ,XD) with density f w.r.t. to another
VPP (Y1, . . . ,YD) if P((X1, . . . ,XD) ∈ (F1, . . . ,FD)) = E[1((X1, . . . ,XD) ∈ (F1, . . . ,FD)) f (X1, . . . ,XD)]

for each (F1, . . . ,FD) ∈ ND
f l .

If f can be factorised as f (X1, . . . ,XD) = f1(X1) . . . , fD(XD), the VPP reduces to a product of D
independent single PPs. We consider, as before, pairwise interaction functions w.r.t. a vector of
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Fig. 5.1 Interaction function φ2(x,0) for a Strauss process with parameters λ = .6, R = 1 (a) and for a
soft-core process with parameter γ = 1 (b).

independent unit rate Poisson processes, that is, we choose f as

f (x1, . . . ,xD) ∝

D

∏
d=1

Nd

∏
i=1

φ1(xd
i )︸ ︷︷ ︸

single point intensities

D

∏
d=1

Nd1

∏
i=1

Nd2

∏
j=i+1

φ2(xd
i ,x

d
j |θ 1

d )︸ ︷︷ ︸
within PP interactions

D

∏
d1=1

d1−1

∏
d2=2

Nd1

∏
i=1

Nd2

∏
j=1

φ2(x
d1
i ,xd2

j |θ
2
d1,d2

)︸ ︷︷ ︸
between PP interactions

.

where (x1, . . . ,xD) = ((x1
1, . . . ,x

1
N1
), . . . ,(xD

1 , . . . ,x
D
ND
)), θ 1

d is the parameter of the within-points inter-
actions of xd and θ 2

d1,d2
is the parameter of the between-points interaction of xd1 and xd2 . For example,

φ2 can be taken as the interaction function of the Strauss or soft-core process. Similarly to the Strauss
process, a sufficient condition to guarantee that the PP does not explode is φ2(x1,x2)< 1 ∀x1,x2.

In this paper, we choose to work with the soft-core process interaction function (5.2.2) as it is
summarised with a single parameter and thus it is easier to estimate than the Strauss process. In fact,
for D = 2 using a Strauss process would lead to a total of 8 parameters (each pair (λ ,R) is repeated
for the two between and the within species interaction plus the two intensities β ). Therefore, since in
the case of CR data the locations of the points correspond to the activity centres and hence are latent,
we need to limit the number of parameters to infer in the PP.

If D = 2 and the interaction function is taken to be the one of the soft-core process, we term the
resulting PP as a bivariate soft-core process and we use the notation BivSC(γ1,γ2,γ12,β1,β2) for the
distribution of this process. That is, we take f as
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f ({x1
1, . . . ,x

1
n},{x2

1, . . . ,x
2
m}|β1,β2,γ1,γ2,γ12) ∝

β
n
1 β

m
2 ∏

i< j

{
1− exp

(
−
(x1

i − x1
j)

2

γ1

)}
∏
i< j

{
1− exp

(
−
(x2

i − x2
j)

2

γ2

)}
∏
i, j

{
1− exp

(
−
(x1

i − x2
j)

2

γ12

)}
(5.2.3)

We note that γ1 and γ2 model the interaction within each of the two species and γ12 models the
interaction between the species. In Fig. 5.2 we show several sets of simulations from the process.
Increasing the interaction parameters leads to a reduction in the number of points that can be located
within a given area. Hence, to show how the pattern of points changes when the interaction parameters
vary, we show simulations from a conditional point process, which is constructed by fixing the number
of points and then sampling points with density proportional to (5.2.3). The realizations of the process
presented in the two plots on the diagonal of Fig. 5.2 are equivalent to realizations from a single
soft-core PP, as the interaction is the same for each pair of points, regardless of colour, with the only
difference that in the second row there is less chance of having points that are close to each other as the
interaction is stronger. As the parameter θ12 increases, the two colours of points become completely
separated (bottom-left plot), while if the within PPs interaction is stronger than the between PPs
interaction the two colours mix more, and it is less likely to observed clusters of points of the same
colour (top-right plot).

θ1 = θ2 = .001 θ1 = θ2 = .01

θ12 = .001

θ12 = .01

Fig. 5.2 Simulations from a conditional BivSC process with N1 = N2 = 100.
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5.2.2 Bayesian inference for interaction point processes

As mentioned in the introduction, posterior inference for the parameters θ =({θ d
1 }d=1,...,D,{θ

d1,d2
2 }d1,d2=1,...,D)

of a PP X is usually difficult in the case of an interaction PP as the normalising constant is not available
in closed form. Given a sample from a PP y ∼ X |θ and a prior π for θ , to make posterior inference
we can run a MH sampler to sample from the posterior distribution p(θ |y) = π(θ)h(y|θ)

Zθ
, where we

have written the likelihood of the PP in an unnormalized form f (y|θ) = h(y|θ)
Zθ

. The MH ratio for the
parameter θ takes the form

H(θ ′|θ) = π(θ ′)h(y|θ ′)q(θ |θ ′)

π(θ)h(y|θ)q(θ ′|θ)
Zθ

Zθ ′
(5.2.4)

where q is the proposal distribution. The unavailability of the ratio Zθ

Z
θ ′

makes the use of standard
Markov chain Monte Carlo (MCMC) techniques infeasible and thus a different sampling procedure
has to be used. For ease of notation, we sometimes express f (y|θ) and h(y|θ) as fθ (y) and hθ (y),
respectively.

An ingenious method to avoid calculating the ratio is the auxiliary variable method of Møller et al.
[61], which relies on the introduction of an auxiliary variable to simplify the ratio of normalising
constants (RNC) and essentially replaces the problem of computing the ratio with the problem of
simulating from the process. The downside of this approach is that the MCMC offers good acceptance
rates only if the marginal distribution density of the auxiliary variable has a known normalising
constant while being sufficiently close to the distribution of interest, which is a difficult task.

Another useful method is the exchange sampling (ES) algorithm of Murray et al. [62], which we
recall:

Algorithm 1: Exchange sampling algorithm

1. Sample θ ′ ∼ q(·|θ).

2. Sample x ∼ f (·|θ ′).

3. Accept θ ′ with probability min(1,H(θ ′|θ)) where

H(θ ′|θ) = π(θ ′)h(y|θ ′)q(θ |θ ′)

π(θ)h(y|θ)q(θ ′|θ)
h(x|θ)
h(x|θ ′)

The simplicity of the ES algorithm is both its strength and its weakness, as although being easy
to implement does not offer good mixing properties. Moreover, it obviously requires to be able to
simulate from the process of interest.

Another interesting inference procedure is path sampling [64], which is also used in the CR model
of [74]. Path sampling is based on the identity ∂ log(Zθ )

∂θi
= Ex∼Xθi

[
∂hθ (x)

∂θi

]
=: Gi(θ) where θi is the i-th
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component of θ . Using this identity, the ratio can be computed as

log

(
Zθi

Z′
θi

)
=
∫ 1

0
Gi(θ(s))s(t)dt

where s(t) is a path connecting θ and θ ′, that is, s is a differentiable function such that s(0) = θ ′

and s(1) = θ . By computing the function Gi(·) on a grid of values of θ in advance, the integral can
be approximated numerically and used in (5.2.4). However, this quickly become infeasible if the
dimension of the parameter θ is greater than 2, as for example in the case of an VPP, as the grid
becomes prohibitively large.

A more scalable approach is based on the MCMH algorithm of Liang and Jin [50] (LJ13), which
is based on replacing the RNC with an importance sampling estimate. LJ13 propose three versions of
the MCMH algorithm and we adopt here the following algorithm, termed as MCMH-I:

Algorithm 2: Monte Carlo MH algorithm-I

1. Sample θ ′ ∼ q(·|θ).

2. Accept θ ′ with probability min(1,H(θ ′|θ)) where

H(θ ′|θ) = π(θ ′)h(y|θ ′)q(θ |θ ′)

π(θ)h(y|θ)q(θ ′|θ)
RM(θ ,θ ′,X)

where RM(θ ,θ ′,y) = 1
M ∑

M
m=1

h(Xm|θ)
h(Xm|θ ′) and M is the number of samples used to compute the

Monte Carlo approximation.

3. If θ ′ is accepted, sample (X1, . . . ,Xm) from f (x|θ ′).

The MCMH algorithm can be seen as a generalization of the ES algorithm, as the latter is obtained
when M = 1 in the MCMH-III algorithm of LJ13. However, the advantage of the MCMH over the ES
algorithm is that by drawing the samples X1, . . . ,XM in parallel, the MCMH can run at comparable
speed to the ES, while providing a substantially better estimate of the RNC. A further advantage of
the MCMH is that it does not depend on the dimension of θ , which makes it useful for application to
VPPs.

The samples (X1, . . . ,Xm) in step 3 can be obtained through either MH [33] or through perfect
simulation [45]. A review of the existing algorithms for simulating interaction PPs is presented in
Møller and Waagepetersen [59]. We choose to use an MH algorithm as, when a new θ ′ is accepted, the
current samples (X1, . . . ,Xm) from f (x|θ) can be used as a warm start for the MH algorithm to sample
from f (x|θ ′), significantly reducing the burn-in period. In fact, if θ and θ ′ are sufficiently close,
we also expect samples from PPs with densities fθ ′ and fθ to be close. On the other hand, perfect
simulation is computationally very intensive and hence not feasible to perform at each iteration.
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5.3 Spatial capture-recapture model

We now define the spatial model for CR data collected on two or more species. To define the prior
for the activity centres of individuals, we are going to use the soft-core VPP model defined in the
previous section. For simplicity, we define here a model for two species but the definition for more
than two species is straightforward.

We assume that there are K traps, placed in the study area at locations (x1, . . . ,xK), and that
sampling is performed for T sampling occasions in each trap. For two species, the data can be
summarised in two matrices, H1 and H2, where H l

ik is the number of times individual i of species l is
captured at trap k.

p0 = 1 p0 = .2 p0 = .05

β1 = 150

β1 = 100

β1 = 50

Fig. 5.3 Simulation study: 95% PCI of the interaction parameters, with crosses indicating the true
values. The title indicates the number of uniquely captured individuals for each of the two species.

Each individual is assumed to have an activity center sl
i for the duration of the study. Given

the activity centre si
l , the probability of capturing individual i of species l at trap k is a decreasing
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function of the distance between the location of the activity centre of the individual, sl
i , and the

trap location xk. We choose here an exponential function, which leads to the probability of capture
p(s,x) = p0 exp(−α||s− x||2) between activity center s and trap location x, where p0 is the baseline
probability of detection if the distance is 0 and α is a scale parameter. We assume the two populations
are closed during the study, that is, individuals do not enter or leave the area, and we define by N1

and N2 the number of individuals in the first and second population, respectively. The two vectors
of activity centres (s1,s2) = (s1

1, . . . ,s
1
N1
),(s2

1, . . . ,s
2
N2
) are assumed to have a BivSC(β1,β2,γ1,γ2,γ12)

prior. We assume Gamma prior distributions for γ1,γ2 and γ12, and a Beta prior distribution and
truncated normal prior distribution for p0 and α , respectively. The model can be summarised
hierarchically as



H l
ik = Binomial(T, pl

ik) i = 1, . . . ,Nl, k = 1, . . . ,K l = 1,2

pl
ik = p0 exp(−α||sl

i − xk||2) i = 1, . . . ,Nl, k = 1, . . . ,K l = 1,2

(s1,s2)∼ BivSC(γ1,γ2,γ12,β1,β2)

β j ∼ Gamma(aβ ,bβ ) j = 1,2

γ j ∼ Gamma(aγ ,bγ) j = 1,2,12

p0 ∼ Beta(ap,bp)

α ∼ N(µα ,σ
2
α)

The MCMC sampler is presented in the Appendix.

5.4 Simulation study

In order to assess the performance of the model, we performed several simulations on the CR model,
varying the detection probabilities and the intensity of the population sizes. We simulated data from
the model of Section 5.3 with γ1 = γ2 = .02, γ12 = .005 and α = .5. The locations of the traps and the
size of the study area is the same as the case study of Section 5.5. We performed 9 sets of simulations,
where p0 takes values in {1, .2, .05} and β1 = β2 take values in {50,100,150}. We report in Fig. 5.3
the 95% posterior credible intervals (PCI) of interaction parameters (θ1,θ12,θ2). As expected, the
accuracy of the estimates decreases as the population sizes and/or the capture probability decrease.
The PCIs for the interaction parameter are quite wide in some cases, which is also due to the fact that
these parameters are strongly correlated with the intensities β1 and β2, which causes uncertainty in
the estimates as for a combination of values of (β1,β2,θ1,θ2,θ12) draws from the process are almost
identical. However, although the PCIs overlap, the model is almost always able to estimate that the
between interactions, θ1 and θ2, are larger than the within interaction θ12.
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5.5 Application: CR data on leopards and tigers

We apply the model to two CR data of leopards (Panthera pardus fusca) and tigers (Panthera tigris
tigris). Because of confidentiality, we cannot provide further information on the survey area. Camera
traps were placed in 253 locations covering an area of 925 km2. A total of 38 leopards and 24 tigers
have been detected during the study.

The posterior distributions of the interaction parameters are shown in Fig. 5.4. The distributions
suggest that leopards and tigers tend to repel within the same species more than they repel with the
other species, although the effect is not significant as the PCI overlap each other. The differences in
these interactions might be due to the fact that the two species hunt different prey. In fact, tigers prefer
larger prey such as sambar deer (Rusa unicolor) and gaur (Bos gaurus), while leopards prefer prey
such as chital (Axis axis) and wild pig (Sus scrofa). However, it is important to mention that given
these small sample sizes the posterior distributions are quite sensitive to prior specification, as shown
in the simulation study. The posterior distributions of the population densities are shown in Fig. 5.5.
The posterior mode is at the sample size for each species, that is, the number of individual detected at
least once, and then it sharply decreases as the number of individuals per kilometer squared increases.

Fig. 5.4 Case study: 90% posterior credible interval of the interaction parameters of the BivSC process,
with filled circles showing the posterior median in each case.

5.6 Discussion

We have developed a SCR model for capture-recapture data collected on two or more species
accounting for interactions between and within the species using a VPPs. Inference for the parameters
of the point process is performed using the MCMH algorithm of Liang and Jin [50], which in the
context of VPP we think provides the best balance in terms of speed, accuracy and scalability.
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Fig. 5.5 Case study: posterior distributions of the population densities of leopards (a) and tigers (b).

Although the model is developed for CR data, it is in theory possible to extend it to other
sampling protocols where individual information is not present. The most popular sampling method
for unmarked individuals is count data. [11] defined a Bayesian spatial model for count data, which
works by inferring the latent capture histories of individuals. However, this is highly inefficient in
practise as reconstructing all these latent variables is very difficult.

We used the soft-core process for modelling the interaction between individuals, as this process is
summarised using a single parameter and is able to model repulsion, although is not able to model
attraction between points. It is generally difficult to model attraction using interaction PPs as if the
interaction function φ2 in (5.2.1) is greater than 1 there is the potential for the number of points
to explode. Being able to model attraction and repulsion at the same time is useful in the case of
particular wildlife populations, as some species present attraction in small groups, such as for example
within a family of individuals, and repulsion in bigger groups, such as between different families. This
suggests for example a modelling approach where a pairwise and a triple-wise interaction function
are considered together in the interaction function, and hence the process is bounded from exploding
as the two interaction functions balance each other. Alternatively, a modelling approach is to work
with a conditional PP, where the number of points is sampled first from another distribution and then
the locations of the points are sampled conditional on the total number. However, assuming that the
number of points is independent of the spatial structure of the process is often unrealistic.

We have also chosen to assume that the locations of the activity centres were fixed over time, as
there is not enough information to estimate the evolution of the activity centres across time because
of the low number of recaptures of the individuals. However, in the case where more recaptures are
present, a spatio-temporal approach were the locations of the points are allowed to change over time
is worth considering. Although spatio-temporal models for log-Gaussian Cox process are available
[8, 9], analogous models for Markov point process are not available.



Chapter 6

Discussion

In this thesis, we have presented four manuscripts, described in the second to fifth chapter.
The second chapter presents a BNP model for CR data collected at different sites and for several

years. The idea of the paper is to build an extension of the DP, which we termed as HDDP. The new
structure developed allows to easily perform density estimation jointly across different units and in
the presence of covariates. The advantage of the construction is that the Chinese Restaurant Franchise
(CRF) process sampler of [84] can be used to perform inference easily. The drawback of using the
CRF and more generally Chinese Restaurant based samplers is that the Gibbs sampler has to update
the cluster allocations for all the observations, which can be computationally intensive when the
number of observations is large. In addition, as the clusters allocations are updated iteratively, the
algorithm is not parallelisable. Moreover, as the HDDP is based on the DDP, it allows to introduce
covariates only in the cluster locations but not on the cluster weights. To introduce covariates in the
cluster weights, a more flexible structure such as the compound random measures of [35] can be used.

An additional limitation of the MCMC scheme is the slow mixing, which is due to the fact that
the latent arrival and departure times of each individual have to be sampled at each iteration. A much
more efficient approach, although challenging, is to integrate out the latent times from the MCMC.

The simulation study shows that the model can accurately estimate the entry and exit density for
each year, even when capture probabilities are low. A limitation of the case study considered is that
for many sites sampling starts after individuals have already entered the site, which causes uncertainty
for most of the mass of the arrival density.

The third chapter presents a model for estimating entry and exit patterns, as well as the population
size, using a PT prior in the presence of CD. However, as CD do not provide information at the
individual level, we have used informative prior distributions to obtain estimates of the capture proba-
bility, population size and entry/exit patterns. The advantage of the model is that the computational
complexity does not depend on the number of individuals detected but only on the number of sampling
occasions, which is advantageous when large counts are considered.

The fourth chapter addresses the potential extensions of the third chapter. More specifically, we
extend the model to CR, RR and develop a joint model for CR and CD, and we build a joint model for
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different data-sets. The framework developed allows to easily build models for entry and exit patterns
using ecological data, as well as showing the connection between the existing models for the different
protocols.

To perform inference jointly across different data-sets, we introduce the HLPT, which is based on
the logistic normal distribution. The use of the logistic normal distribution has a twofold advantage
with respect to the use of Beta distributions. First, inference can be performed with a Gibbs sampler
using the Polya-Gamma scheme. Secondly, it is easy to extend the model, adding covariates or
considering a time-series model for the site-specific random effects, while keeping the same inference
procedure.

As was the case in the third chapter, inference can be performed with a computational complexity
that does not depend on the number of individuals but only on the number of sampling occasions.
However, for the CR case, implementing the inference procedure requires the computation of a
complex likelihood function. An alternative approach is to adopt a likelihood-free approach, such as
approximate Bayesian computation [3], which only requires us to simulate data from the model. If
the number of individuals is low, we also propose an inference procedure that considers the arrival
and departure interval of each individual, similarly to what is performed in the second chapter.

An additional limitation in the inference procedure arises when considering the OPT for the long
time series of counts. In fact, inference using the OPT requires to sample first from the full tree and
then pruning the tree, which can be inefficient if many prunings have to be performed. Instead, an
alternative idea is to work with an already pruned tree and in each iteration only propose to add, delete
or change a branch.

The fifth chapter presents a spatial model to estimate interactions between multiple species using
CR data. The model can be seen as an extension of the model of [74] through the use of a vector of
interaction point process (IPP), which allows us to estimate interactions between and within species.
As using an IPP leads to an intractable ratio of normalising constants (RNC), we use the Monte Carlo
MH algorithm to approximate the RNC with an importance sampling estimate. Although the model
can provide reliable estimates of the interaction parameters when the samples sizes are moderately
high, we found that with the sample sizes of our case studies the estimates of the effect are sensitive to
the choice of prior distributions. This suggests to potentially increase the number of uniquely captured
individuals by using a higher number of traps.

The sampling procedure scales linearly with the number of species as, according to the MCMH,
increasing the number of species only requires the computation of the unnormalised interaction
function. However, as the number of species increase, it is more difficult for the model to separately
estimate each interaction parameter.

Another downside of our approach is that the activity centres of each individual have to be sampled
from their posterior distribution, which causes the MCMC algorithm to mix poorly. This happens
especially if there are not many recaptures on each individual, as there is not enough information
in the data to estimate the activity centre. An alternative approach is to integrate out the latent
activity centres. However, this is not possible in our case as the integration with respect to the vector
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of interaction point processes is intractable. Instead, a possible approach which could be further
investigated is to use a likelihood-free approach for the inference, such as approximate Bayesian
computation.
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Appendix A

Supplementary material for A
hierarchical dependent Dirichlet process
prior for modelling bird migration
patterns in the UK

A.1 Posterior distributions

A.1.1 Posterior distributions for µ and Σ

The joint distribution p(µ,β ,Σ|y,b,B,K) can be computed as:

p(µ,Σ|y,b,B,K,ν0,Σ0) ∝ p(y|µ,Σ)p(µ|β ,K,Σ)p(β |b,B,Σ)p(Σ|ν ,Σ0) ∝

exp
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2

tr

Σ
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Completing the square and integrating over β , the marginal of µ and Σ is proportional to:

n

∑
i=1

(yi −µci)
T (yi −µci)+µK−1

µ +bT B−1b− (B−1b+XT K−1
µ)T

Λβ (B
−1b+XT K−1

µ) ∝

n

∑
i=1

(yi−µci)
T (yi−µci)+µK−1

µ+bT B−1b−(B−1b)T
Λβ (B

−1b)−2µ
T (XT K−1)T

Λβ B−1b−µ
T (XT K−1)T

Λβ (X
T K−1)µ ∝

n

∑
i=1

yT
i yi −2µ

T
n

∑
i=1

Vi +µ
T

n

∑
i=1

Diµ +µK−1
µ +bT B−1b− (B−1b)T

Λβ (B
−1b)−

2µ
T (XT K−1)T

Λβ B−1b−µ
T (XT K−1)T

Λβ (X
T K−1)µ ∝

n

∑
i=1

yT
i yi +bT B−1b− (B−1b)T

Λβ (B
−1b)︸ ︷︷ ︸

S

−2µ
T (

n

∑
i=1

Vi +(XT K−1)T
Λβ B−1b)︸ ︷︷ ︸

mµ

+µ
T (

n

∑
i=1

Di +K−1 − (XT K−1)T
Λβ (X

T K−1))︸ ︷︷ ︸
Λµ

µ

Summarising, we have:

p(y|µ,Σ)p(µ|β ,K,Σ)p(β |b,B,Σ) ∝

exp
{
−1

2
tr
(
Σ
−1 ((µ − (Λµ)

−1mµ)
T (Λµ)

−1(µ − (Λµ)
−1mµ))

))}
exp
{
−1

2
tr
(
Σ
−1 (S− (mµ)

T (Λµ)
−1(mµ)

)))

⇒

Σ|y ∼ IW (ν0 +n,Σ0 +S− (mµ)
T (Λµ)

−1(mµ)

µ|y,Σ ∼ MN(Λ−1
µ (mµ),Λ

−1
µ ,Σ)

A.1.2 Posterior for b

The conditional distribution p(b|{µ j},{δ j},{Σ j},b0,B,B0) can be computed as:

p(b|{µ j},{δ j},{Σ j},b0,B,B0) ∝ p(b|b0,B0,Σ0)

(
n

∏
i=1

p(δ j|µ j,b,Σ j,K)

)
=

MN(b|b0,B0,Σ0)
K

∏
k=1

MN(µk|X(b+δk),K,Σk) ∝ exp
{
−1

2
tr (⋆)

}
where

⋆=(vec(b)−vec(b0))
T (Σ0⊗B0)

−1(vec(b)−vec(b0))+∑
k
(vec(µ j)− vec(Xδ j)︸ ︷︷ ︸

vec(δ̃k)

−vec(Xb)))T (Σ j⊗K)−1(vec(µ j)−vec(X(b+δ j)))=

vec(b)T (Σ0⊗B0)
−1vec(b)−2vec(b)T

(
(Σ0 ⊗B0)

−1⃗(b0)
)
+∑

k
(vec(δ̃k)−(Ip⊗X)vec(b))T (Σ j⊗K)−1(vec(δ̃k)−(Ip⊗X)vec(b))=

vec(b)T ((Σ0⊗B0)
−1+∑

k
(Ip⊗X)T (Σk⊗K)−1(Ip⊗X))vec(b)−2vec(b)T

(
(Σ0 ⊗B0)

−1⃗(b0)+∑
k
(Ip ⊗X)T (Σk ⊗K)−1vec(δ̃k)

)
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from which it follows that the posterior distribution is a normal.

The posterior distribution p(δk|µk,B,Σk,b) can be written as

p(δk|B,Σk)p(µk|b+δk,K,Σk) ∝ MN(δk|0,B,Σk)MN(µk|b+δk,K,Σk) ∝ exp
{
−1

2
tr
(
Σ
−1
k (⋆)

)}
where

⋆= δ
T
k B−1

δk +(µk −Xb︸ ︷︷ ︸
δ̃k

−Xδk)
T K−1(µk −Xb−Xδk) = δ

T
k B−1

δk +δ
T
k XT K−1Xδk −2δ

T
k XT K−1

δ̃k +C

⇒ exp
{
−1

2
tr
(
Σ
−1
k (⋆)

)}
∝ exp

−1
2

tr

Σ
−1
k

δ
T
k (B−1 +XT K−1X)︸ ︷︷ ︸

Λβ

δk −2δ
T
k (XT K−1

δ̃k)︸ ︷︷ ︸
µδ





⇒ β ∼ MN(Λ−1
β

µδ ,Λ
−1
δ
,Σk)

A.2 Posterior update of α and γ

In a single DP, the probability of having k different clusters given the concentration parameter α and
the sample size n is

p(k|α,n) ∝ α
k−1(α +n)β (α +1,n)

In order to update the parameter γ of an HDP, we use the update presented in Escobar and West
[27], using the number of different dishes as the number of clusters, and the number of tables as the
sample size.

In the case of the parameter α of the HDP, if ki is the number of different tables in restaurant i,
the posterior is

p(α|{ki}) ∝ p(α)
J

∏
i=1

p(ki|α,ni) ∝ p(α)
J

∏
i=1

α
ki−1(α +ni)β (α +1,ni)

∝ p(α)
J

∏
i=1

α
ki−1(α +ni)

∫ 1

0
xα(1− x)ni

⇒ p(α|{ki},{ηi}) ∝ p(α)
J

∏
i=1

α
ki−1(α +ni)η

α
i

where ηi ∼ β (α +1,ni). Thus:
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p(α)
J

∏
i=1

α
ki−1(α +ni)η

α
i ∝ α

a−1e−bα
J

∏
i=1

α
ki−1(α +ni)eα log(ηi) =

α
a−1e−bα

α∑ki−Jeα ∑ log(ηi)
J

∏
i=1

(α +ni) = α
a−1+∑ki−Je−α(b−∑ log(ηi))

J

∏
i=1

(α +ni) =

α
a−1+∑ki−Je−α(b−∑ log(ηi))

(
α

J +α
J−1

(
J

∑
i=1

ni

)
+α

J−2

(
J

∑
i ̸= j

nin j

)
+ · · ·+

J

∏
i=1

ni

)
=

α
a−1+∑kie−α(b−∑ log(ηi))

(
1+α

−1

(
J

∑
i=1

ni

)
+α

−2

(
J

∑
i ̸= j

nin j

)
+ · · ·+α

−J
J

∏
i=1

ni

)
(A.2.1)

which reduces to the following mixture of gamma distributions:

π1G(a+∑ki,b−∑ log(ηi)) + π2G(a+∑ki−1,b−∑ log(ηi)) + . . . + πJ+1G(a+∑ki−J,b−∑ log(ηi))

The weights can be found equating the coefficient in A.2.1 to the coefficient of the mixture of
Gamma distributions. Defining as Ca = a+∑k and Cb = b−∑ log(ηi):

π1

(
CCa

b
Γ(Ca)

)
= 1

π2

(
CCa−1

b
Γ(Ca−1)

)
= ∑

J
i=1 ni

π3

(
CCa−2

b
Γ(Ca−2)

)
= ∑i ̸= j nin j

...

πJ+1

(
CCa−J

b
Γ(Ca−J)

)
= ∏

J
i=1 ni

⇒



π1

(
CCa

b
(Ca−1)...(Ca−J)Γ(Ca−J)

)
= 1

π2

(
CCa−1

b
(Ca−2)...(Ca−J)Γ(Ca−J)

)
= ∑

J
i=1 ni

π3

(
CCa−2

b
(Ca−3)...(Ca−J)Γ(Ca−J)

)
= ∑i̸= j nin j

...

πJ+1

(
CCa−J

b
Γ(Ca−J)

)
= ∏

J
i=1 ni

Observing that the term CCa
b

Γ(Ca−J) is common to all the terms, the weights are given by:
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π1 ∝ (a+∑ki −1) . . .(a+∑ki − J)

π2 ∝ (a+∑ki −2) . . .(a+∑ki − J)(b−∑ log(ηi))∑
J
i=1 ni

π3 ∝ (a+∑ki −3) . . .(a+∑ki − J)(b−∑ log(ηi))
2

∑i ̸= j nin j
...

πJ+1 ∝ (b−∑ log(ηi))
J

∏
J
i=1 ni

A.3 Results on Multivariate Gaussian process

As for the univariate Gaussian process, if we assume a matrix normal prior distribution β ∼
MN(b,B,Σ) this can be integrated out obtaining another multivariate Gaussian process:

(y1, . . . ,yn)∼ MGP(Xb,K + I +XBXT ,Σ)

If we consider the joint distribution of µ and β :

p(µ,β ) ∝ exp(−1
2

tr(Σ−1(µ −Xβ )T K−1(µ −Xβ )+(β −b)T B−1(β −b)))

= exp(−1
2

tr(Σ−1(µT K−1
µ)+β

T (XT K−1X)β −2β
T (XT K−1)µ+

β
T B−1

β +bT B−1b−2β
T B−1b))

∝ exp(−1
2

tr(Σ−1((µT K−1
µ)+β

T (XT K−1X +B−1︸ ︷︷ ︸
Λβ

)β −2β
T (XT K−1

µ +B−1b︸ ︷︷ ︸
mβ

)))

We now complete the square with respect to β

∝ exp(−1
2

tr(Σ−1((µT K−1
µ)−mT

β
Λ
−1
β

mβ +(β −Λ
−1
β

mβ )
T

Λβ (β −Λ
−1
β

mβ )) =

Integrating over β , the last term does not give any contribution as it is the integral of a matrix
normal distribution.

= (after integrating over β ) exp(−1
2

tr(Σ−1((µT K−1
µ)−

(XT K−1
µ +B−1b)T (XT K−1X +B−1)−1(XT K−1

µ +B−1b)) =

= exp(−1
2

tr(Σ−1(µT (K−1 − (XT K−1)T (XT K−1X +B−1b)−1(XT K−1))µ−

2µ
T (K−1X (XT K−1X +B−1)−1︸ ︷︷ ︸

B⋆

B−1b)) =

Using the Woodbury matrix identity on the matrix K−1 − (XT K−1)T B⋆(XT K−1), this will be
equal to K +XBXT =: (K⋆)−1, which thus correspond to the precision matrix.
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It thus follows that the marginal distribution of µ is MGP(K⋆(K−1XB⋆)B−1b,K⋆,Σ)

A.4 Prior distributions

Below we present the prior distributions for the capture probability and on the intensity of the
population size.

Fig. A.1 Prior distributions on the capture probability and on the intensity of the population size.

A.5 Results

In this section we present results for the remaining sites and year, not shown in the paper.
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Fig. A.2 Arrival distribution - Posterior distributions, with site names given on top of each column.
The black line shows the posterior mean density and the grey area shows the 95% PCI. The sampling
occasions are shown in bold on the x-axis.
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Fig. A.3 Length of stay - Posterior distributions, with site names given on top of each column. The
black line shows the posterior mean density and the grey area shows the 95% PCI.
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Fig. A.4 Posterior densities of the population size. The bars show the 95% credible interval and the
red dots show the posterior means.

Fig. A.5 Posterior densities of the capture probabilities. The black lines show the posterior means.





Appendix B

Supplementary material for A general
modelling framework for ecological data
based on the Polya Tree prior

B.1 Partitions

Fig. B.1 Entry and exit partition for the slice k = 3 consisting of the individuals first captured at time
tk.
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Fig. B.2 Partition of the PT in the case of RR data for the matrix nk corresponding to the individuals
marked at time tk. The sample space is split in the set of individuals staying for less than one year, B0,
and the set of individuals staying for more than one year, B1. After this process is repeated for 2U
years, each set is split according to the exit intervals.

B.2 Proof of Lemma 1

Var(X1X2) = Var(X1)Var(X2)+Var(X1)E[X2]
2 +Var(X2)E[X1]

2 =

=
α2

(2α)2(2α +1)
β 2

(2β )2(2β +1)
+

1
4

(
α2

(2α)2(2α +1)
+

β 2

(2β )2(2β +1)

)
=

=
α2β 2

(2α)2(2α +1)(2β )2(2β +1)
+

1
4

(
α2(2β )2(2β +1)+β 2(2α)2(2α +1)

(2α)2(2α +1)(2β )2(2β +1)

)
=

=
α2β 2 +α2β 2(2β +1)+α2β 2(2α +1)

(2α)2(2α +1)(2β )2(2β +1)
=

α2β 2(2α +2β +3)
(2α)2(2α +1)(2β )2(2β +1)

=

Var(X1)
2α +2β +3
4(2β +1)

and 2α+2β+3
4(2β+1) ≤ 1 as

2α +2β +3
4(2β +1)

≤ 1 ⇐⇒ β ≥ α

3
− 1

6

which holds true as β ≥ α .
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B.3 Likelihoods for capture-recapture data

B.3.1 Likelihood of the CJS

Before deriving the likelihood of the general model, we first present a simple case with only 2
sampling occasions. By definition, individuals with capture history 01 can only be assigned to n2

2,
from which it follows that the number of possible combinations for assigning the Z22 individuals
are
( n2

2
Z22

)
. The individuals with capture history 11 can only be assigned to n1

2, which gives
( n1

2
Z12

)
combinations, while the individuals with capture history 10 can be assigned to either n1

2 or n1
1, and as

Z12 are already assigned to n1
2, the number of combinations is equal to

((n1
2−Z12)+n1

1
Z11

)
. If we define as

Nk and Ck the individuals with first capture on sampling occasion k that are available for capture and
captured, respectively, the probability of the observed capture histories is

(
n12

Z12

)(
(n12 −Z12)+n11

Z11

)
pC1(1− p)N1−C1︸ ︷︷ ︸

individuals captured on the 1st sampling occasion

×
(

n22

Z22

)
pC2(1− p)N2−C2︸ ︷︷ ︸

individuals captured on the 2nd sampling occasion

Using the same rationale for the case with K sampling occasions, the likelihood for the individuals
with first capture on sampling occasion k, can be expressed as

fk(Hk|nk) =

(
nk

K−k
ZkK

)(
(nk

K−k −Zk,K)+nk
K−k−1

Zk,K−1

)
· · ·
(

nk
1 +∑

K−k
l=2 (n

k
l −Zl+k,K)

Zk,k

)
pCk(1− p)Nk−Ck

B.3.2 Likelihood of open-population CR

We write down the likelihood for the individuals with first capture on sampling occasion k.

• As the individuals in the cell ZkK have to arrive before the k-th sampling occasion and depart
after the K-th, they can only be assigned to the cells (nk

1K , . . . ,n
k
kK). Hence, their capture

histories can be assigned to the presence histories in
(

∑
k
l=1 nk

lK
ZkK

)
possible ways.

• Similarly, the individuals in cell Zk,K−1 have to arrive before the k-th sampling occasion and
depart after the K −1-th and can only be assigned to the cells (nk

1,K−1, . . . ,n
k
k,K−1) and to the

cells (nk
1K , . . . ,n

k
kK) not already assigned to the birds in the cells ZkK . Hence, the number of

combinations is

(([
∑

k
l=1 nk

lK

]
−ZkK

)
+∑

k
l=1 nk

l,K−1

Zk,K−1

)
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Applying the same rationale for each cell, the likelihood can be written as

fk(H|nk) =

(
∑

k
l=1 nk

lK
ZkK

)(([
∑

k
l=1 nk

lK

]
−ZkK

)
+∑

k
l=1 nk

l,K−1

Zk,K−1

)
· · ·(

∑
K
i=k+1

([
∑

k
l=1 nk

l,i

]
−Zki

)
+
(

∑
k
l=1 nk

l,k

)
Zk,k

)
pCk(1− p)Nk−Ck (B.3.1)

B.4 Case studies

B.4.1 Spoonbills

Prior specification

We choose a uniform prior distribution for the resighting probabilities and a Gamma prior distribution
with mean 50 and variance 4000 for the intensities ωM and ωU of the two population sizes. Inference
is performed using an MCMC algorithm by sampling from the posterior distribution of the individual
entry and exit intervals (t i

1, t
i
2), the two matrices {nM

f l} and {nU
f l}, as well as the probabilities ωi j of

the PT and the resighting probabilities.

B.4.2 Ring-Recovery

Prior specification

Instead of assuming a centering distribution on the tree, we assume uniform prior distributions directly
on the parameters of the Beta distribution assigning the masses in each split of the PT. Moreover, we
assume a Beta(1,1) prior distribution for the recovery probability λ and we set the upper bound U on
the age of the individuals to 18.

B.4.3 Newts

Prior specification

We center the HLPT on a bivariate distribution with double exponential marginal distributions, with
parameters µ = (µ1,µ2) and λ = (λ1,λ2). Prior information on the entry and exit distribution is
elicited through the prior on η = (µ,λ ). Prior knowledge suggests that a considerable number of
individuals tend to enter the site between the beginning of March and the end of April and exit between
the end of May and the end of July, and hence we choose hyperpriors for η = (µ,λ ) such that 95%
of the prior mass of the entry and exit density is in the aforementioned ranges.
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Fig. B.3 Number of newts detected on each sampling occasion shown for great crested newts, smooth
and palmate newts, respectively. In each plot, the male are represented in grey and the female in black.

Figures

B.4.4 Moths

Prior specifications

We center the PT for the entry and exit distribution on two normal distributions with parameter µ = 2
and 11, respectively, and variance λ = 4, where the unit is taken to be a month. We take a uniform
prior distribution for the detection probability p and for the mean ω of the population size we take a
Gamma(40, .2), where the parameters have been chosen so that the mean of the distribution is 200
and the variance is 1000. Moreover, we take σ0 = σ = l = 1 and the prior ρ on the probability of
stopping equal to 0.1.

Figures

Fig. B.4 Daily counts of moths detected at the site.
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Year 2011 2012 2013 2014 2015
Temperature 27.14 35.28 42.98 27.42 30.21

Table B.1 Average daily minimum temperature from the 1st to the 14th of January for each year,
measured in Farenheit.

B.5 Posterior inference

B.5.1 Cormack-Jolly-Seber model

The parameters to be updated are the latent number of individuals {nk
j}, the random variables V k

j and
the capture probability p.

To ease the computation, we introduce the probabilities ωk
j of an individual with first capture

at time tk to have the time of possible last capture at time t j. These probabilities can be computed
straightforwardly from the V k

j .
We remind that the capture histories of each individual are summarised in a matrix H, where Hik

is 1 if the i-th individual was captured on sampling occasion k and 0 otherwise.

• Update {nk
j}

We update each element of the vector with a MH. Reminding that the number of individual with
first capture at time tk, Fk, is fixed, the posterior distribution given the data H can be written as

p(nk
j|H,ωk

j , p) ∝ p(nk
j|Fk,ω

k
j )p(H|nk

j, p) ∝(
∏

j
Multinomial(nk

j|Fk,ω
k
j ))

)
fk(Hk|{nk

j})

where fk(Hk|{nk
j}) is shown in Section 4.3.1.

• Update V k
j

As mentioned in Section 4.3.1, these are the r.v.s assigning the masses in a PT, and therefore
they can be sampled from the posterior distribution of a PT.

• Update p

This parameter is sampled straightforwardly from its full conditional.

B.5.2 Joint model for capture-recapture and count data

The captures are arranged in the matrices H1 and H2, respectively. The parameters to be updated are
the entry and exit intervals of the already marked and captured individuals (t i

1, t
i
2), the latent number

of not resighted already marked individuals {nM
i j }, the latent number of unmarked individuals {nU

i j},
the detection and resightings probabilities pR and pC and the probabilities ωi j sampled from the PT.
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• Update (t i
1, t

i
2)

We update these variable with a random walk MH algorithm, where we for each individual we
propose a new elemement ((t i

1)
⋆,(t i

2))
⋆) from {t i

1 −1, t i
1, t

i
1 +1}×{t i

2 −1, t i
2, t

i
2 +1} .

The posterior distribution can be written as

p(t i
1, t

i
2|H1

i ,H
2
i ,{Dk},{ωi j), pR, pC}) ∝

p(H1
i |t i

1, t
i
2|pR) p(H2

i |t i
1, t

i
2|pC)

(
K

∏
k=1

p(Ck|Nk, pR)

)
p(t i

1, t
i
2|{ωi j)})

where p(H1
i |t i

1, t
i
2|p) = p∑

K
k=1 H1

ik(1− p)t i
2−t i

1+1−∑
K
k=1 H1

ik .

• Update {nM
i j } and {nU

i j}

These variables are updated with a MH algorithm, where for each cell the number of elements
we propose to add/remove is sampled from a geometric distribution.

The posterior distribution can be written similarly to the (t i
1, t

i
2).

• Update ωi j.

If we summarise all the individuals in a matrix ni j, where cell (i j) has the number of individuals
with first possible capture at time ti and last possible capture at time t j, the probabilities ωi j can
be sampled from the posterior of a PT given the variables ni j.

• Update pR and pC

These probabilities can be sampled directly from their full conditional.

B.5.3 Ring Recovery model

The parameters to be updated are the elements {nk
i j} in the entry and exit matrix, the probabilities

{ωi j} and the recovery probabilities pR.

• Update {nk
i j}

These variables can be updated with a MH algorithm. The posterior can be written as

p(nk
i j|HA,HJ,ωi j,mA

k ,m
J
k, pR) ∝ p(nk

i j|mk,ωi j) p(HJ
k j|nk

i j,λ )

where the first term is a multinomial distribution and the second term is a product of binomial
distributions.

• Update {ωi j}
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These parameter are sampled using the standard update of the PT. As we use a RPT across
the different matrices nk, in order to use the standard update of the PT we summarise all the
individuals in a single matrix ni j by collapsing the set of matrices nk

i j across the dimension k.

• Update µ and σ

It is useful, in order to write down the posterior distribution of these parameters, to introduce
the variables nε , representing the number of elements belonging to the set Bε of the partition.
The marginal likelihood of nε can be expressed as

p({nε}|{αε}) = ∏
ε

∫
Bin(nε0|nε ,qε0)Beta(qε0|αε0,αε1)dqε0.

Integrating out the probabilities qε0 gives as a result a beta-binomial distribution, from which it
follows that the marginal likelihood of the latent variable nε given the hyperparameter η is

p({nε}|η) ∝ ∏
ε

B(αε0 +nε0,αε1 +nε1)

B(αε0,αε1)
.

Given the marginal likelihood, the parameters can be updated using a random walk.

• Update λ

The parameter can be sampled easily from the full conditional as the prior is a Beta distribution
and the likelihood is a product of Binomial likelihoods.

B.5.4 Hierarchical model

The parameters to be updated are the latent number of individuals ns
i j, the parameters β s

ε assigning the
probabilities of entering and exiting for each site, the hyperparameters η and the capture probabilities
ps.

To write the posterior of the β s and the hyperparameter η (or equivalently of the parameters µ as
there is a deterministic relationship between the parameters µ and η) given the latent variable ns

i j, we
work with the variables ñs

ε1,...,εm
, representing the number of elements in the s-th dataset belonging to

the set Bε1...εm of the partition. The posterior can be written as:

p(β ,η |{ñ}) ∝ p(η)
S

∏
s=1

Pois(ns
Ω,ωs)

(
∏

ε

(eβ s
ε )ns

ε0

(1+ eβ s
ε )ns

ε

p(β s
ε |η)

)
where ns

Ω
is the number of elements in the s-th dataset. Now as in Polson et al. [69] we add a

variable ωε ∼ PG(ñε ,0) and write the joint posterior distribution of all the variables as:

p(β ,η |{ñ},ωs) ∝ p(η)

(
S

∏
s=1

Pois(ns
Ω,ωs)∏

ε

eks
ε β s

ε e−
ωs

ε (β
s
ε )

2

2 p(ωs
ε |ñs

ε ,0)p(β s
ε |µε)

)
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where ks
ε = ñs

ε0 −
ñs

ε

2

The MCMC sampling scheme is performed as follows.

• Update β

The posterior for (each) β given ω is a normal as:

p(βε |ωε ,{ñε}) ∝ ekε βε e−β 2
ε

ωε
2 e

βε
µε

σ2
ε e

− β2
ε

2σ2
ε =

e
− β2

ε
2 (ωε+

1
σ2

ε

)+βε (kε+
µε

σ2
ε

)

Thus:

βε |ωε ,{ñε} ∼ N(

(
kε +

µε

σ2
ε

)
1

ωε +
1

σ2
ε

,
1

ωε +
1

σ2
ε

)

• Update ω

As in Polson et al. [69], the posterior for (each) ω is:

p(ωε |βε ,{ñε}) ∝ e−
ωi jβ2

ε

2 p(ωε |ñε ,0)

Thus:

ωε |(βε ,{ñε})∼ PG(nε ,βε)

• Update η

In order to sample η more efficiently we integrate out β from the posterior (we drop the
subscripts for simplicity):

p(η |ω,{ñ})=
∫

∏
s=1,...,S

∏
ε1...εm

p(η |ω,β ,{ñ})p(β )dβ = p(η) ∏
s=1,...,S

∏
ε1...εm

∫
ekβ e−

ωβ2
2

e−
(β−µ)2

2σ2

√
2πσ2

dβ

where:

∫
ekβ e−

ωβ2
2

e−
(β−µ)2

2σ2

√
2πσ2

dβ =
e−

µ

2σ2

√
2πσ2

∫
e−

β2
2 (ω+ 1

σ2 )+β (k+ µ

σ2 )dβ ∝ e−
µ

2σ2 e

(k+ µ

σ2 )2

2(ω+ 1
σ2 )

However we can still write the posterior on η given the variables β as:
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p(η , |β ) ∝ p(η) ∏
ε1...εm

S

∏
s=1

p(β s
ε1...εm

|µε1...εm) ∝

N(µ|µ0,Σ0)Gamma(λ1|aλ ,bλ )Gamma(λ2|aλ ,bλ )︸ ︷︷ ︸
p(η)

∏
ε1...εm

S

∏
s=1

N(β s
ε1...εm

|µε1...εm ,(σε1...εm)
2)

• Update {ns
i j}

These variables can be updated with a MH algorithm. The posterior can be written as

p(ns
i j|Cks,ωsi j, ps) ∝ p(ns

i j|ωi j,ωs) p(Cks|ns
i j, ps)

where the first term is a Poisson distribution and the second term is a product of binomial
distributions.

• Update ps

The parameter can be sampled easily from the full conditional as the prior is a Beta distribution
and the likelihood is a product of Binomial likelihoods.

B.5.5 Long count data model

The parameters to be updated are the coefficient β i,a and β i,d assigning the masses to the entry and
exit distribution for 1-periods and 2-periods, the means µa and µd of the prior, the stopping variables
SBε

, the number of latent individuals ni0(i1, j1, i2, j2) and the detection probability p.

• Update β i
j (entry coefficients)

Each β i
j can be updated condition on the other parameters using the Polya-Gamma scheme for

multinomial outcomes. We define as ni the sample size for β i
j (which is equal to #(Ωi)) and as

ai j the number of successes (equal to #(Bi
j)).

Following Polson et al. [69], the posterior of β (we drop the index i in the following) can be
found as

p(β j|a j,n) ∝ p(a j|β j,n)p(β j) ∝
(eβ j)a j

(∑K
k=1 eβk)n

e
−

(β j−β0
j )

2

σ2
0 =

(eβ j)a j

(
K

∑
k=1,k ̸= j

eβk

︸ ︷︷ ︸
ec j

+eβ j)n

e
−

(β j−β0
j )

2

σ2
0 ∝

(eβ j−c j)a j

(1+ eβ j−c)n
e
−

(β j−β0
j )

2

σ2
0 =
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2−nek(β j−c j)e−
(β j−µ)2

σ2

∫
e−ω j

(β j−c j)
2

2 p(ω j)dω j

where ω j ∼ PG(n,0), k = a j − n
2 and c j = log(1+∑k ̸= j eβk), from which it follows that a Gibbs

sampler can be constructed as

ω j|β j ∼ PG(n,β j − c j)

β j|ω j ∼ N(( σ2

1+ω jσ2 )
−1(k+ω jc j +

β 0
j

σ2
0
),

σ2
0

1+ω jσ
2
0
)

• Update β i
j,k (exit coefficient)

If nk j is the number of elements in Bi
k, j, the likelihood of β i

k, j comes from assigning nk j elements
to the set Bi

k, j out of the ak elements in set Bi
k.

The posterior is (dropping the subscript i and k)

e
−

(β j−β0
j )

2

σ2
0

j

∏
k=1

p(β j|ni j,ai) ∝ e
−

(β j−β0
j )

2

σ2
0

j

∏
k=1

(eβ j)nk j

(∑13
l=k eβl )ak

∝

e
−

(β j−β0
j )

2

σ2
0

j

∏
k=1

2−ak ekk j(β j−c jk)
∫

e−ω
(β j−c jk)

2

2 p(ωk)dωk

where ωk ∼ PG(ak,0), kk j = nk j − ak
2 and c ji = log(∑K

k≥i,k ̸= j eβk). The posterior of β j can thus
be expressed as

e
−

(β j−β0
j )

2

σ2
0

j

∏
k=1

ekk j(β j−c jk)e−ωk
(β j−c jk)

2

2

from which it follows that a sample from the posterior can be performed by sampling

ωk ∼ PG(ak,β j − c jk) k = 1, . . . , j

β j|ωk ∼ N((
σ2

0
1+∑k ωkσ2

0
)−1(∑k kk j +∑k(ωkc jk)+

β 0
j

σ2
0
),

σ2
0

1+∑k ωkσ2
0
)

• Update µ

These parameters can be sampled straightforwardly from the full conditional, as the prior is
(µ1, . . . ,µK1)∼ GP((µ0

1 , . . . ,µ
0
K1
),σ2

0 kl) and the likelihood is β
j

i ∼ N(µi,σ
2).

• Update ρ

If G is the joint entry and exit distribution and SBε
is the indicator variable which is 1 if Bε is

not further partitioned and 0 otherwise, we have

G(x|x ∈ Bε) = SBε
UBε

(x)+(1−SBε
)

Kε

∑
i=1

G(x|x ∈ Bε,εi)1(x ∈ Bε,εi)
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To sample each SBε
, we first sample all the S and β for the “children” sets of B and then sample

SBε
from its posterior, which can be written as

p(SBε
= 1|β ,x) = p(SBε

p(x|β ,SBε
= 1)

p(x|β )
= 1) = ρ

UB1
i
(x)

ρUBε
(x)+(1−ρ)∑

Kε

i=1 G(x|x ∈ Bε,εi)1(x ∈ Bε,εi)

• Update nd,w,m,y

We update this parameter with a MH step, where the posterior distribution is

p(ni0(i1, j1, i2, j2)|ω i0(i1, j1, i2, j2),ω,{Ci0
i1,i2}, p) ∝

p(ni0(i1, j1, i2, j2)|ω,ω i0(i1, j1, i2, j2)) p({Ci0
i1,i2}|{Ni0

i1,i2}, p)

• Update p

This parameter is sampled straightforwardly from its full conditional



Appendix C

Supplementary material for A vector of
softcore processes for modelling
interactions between species using
capture-recapture data.

C.1 Simulation algorithm for interaction point processes

Theorem 2. Given Xm = {x1, . . . ,xn}, generate Xm+1|Xm by applying with equal probability one of
the following steps:

1. Move: Draw i ∼ Uniform({1, . . . ,n}), propose ξ ∼ qi(Xm, ·), where qi is the proposal distribu-
tion for the i-th point and set

Xm+1 =

{x1, . . . ,xi−1,ξ ,xi+1, . . . ,xn} if U([0,1])≤ ri(Xm,ξ )

Xm otherwise

where ri(X ,ξ ) is the Hastings ratio

ri(X ,ξ ) =
f ((X \ xi)∪ξ )qi({x1, . . . ,xi−1,ξ ,xi+1, . . . ,xn},xi)

f (X)qi(X ,ξ )

2. Add: Propose a new point ξ ∼ qb(Xm, ·) and set

Xm+1 =

Xm ∪ξ if U([0,1])≤ rb(Xm,ξ )

Xm otherwise

where ri(X ,ξ ) is the Hastings ratio
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rb(X ,ξ ) =
f (X ∪ξ )qd(Xm ∪ξ ,ξ )

f (X)qb(Xm,ξ )

3. Delete: Sample a point xi from qd(Xm, ·) and set

Xm+1 =

Xm \ xi if U([0,1])≤ rd(Xm,xi)

Xm otherwise

where rd(X ,ξ ) is the Hastings ratio

rd(X ,ξ ) =
f (X \ξ )qb(Xm \ξ ,ξ )

f (X)qd(Xm,ξ )

C.2 MCMC Algorithm

Update sil

Similarly to the previous Section, we update the pair of point processes (s1,s2)= (s1
1, . . . ,s

1
N1
),(s2

1, . . . ,s
2
N2
)

by using with equal probability a move/add/delete step for each of the two processes.
The posterior distribution of (s1,s2) can be written as

p(s1,s2|β1,β2,γ1,γ2,γ12,H1,H2, p0,α) ∝ p(s1,s2|β1,β2,γ1,γ2,γ12) p(H1|s1, p0,α)/p(H2|s2, p0,α)

where

p(s1,s2|β1,β2,γ1,γ2,γ12) ∝

β
N1
1 β

N2
2 ∏

i< j
1− exp

(
−
(s1

i − s1
j)

2

γ1

)
∏
i< j

1− exp

(
−
(s2

i − s2
j)

2

γ2

)
∏
i, j

1− exp

(
−
(s1

i − s2
j)

2

γ12

)
(C.2.1)

and p(H l|sl
i) is the probability of the captures locations.

Update γ j and β j

These variables are updated using the MCMH algorithm described in Section 5.2.2.

Update p0 and α

We update these variables using a simple Metropolis-Hastings update.
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