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The Effects of Risk and Ambiguity Aversion on
Technology Adoption: Evidence from Aquaculture in

Ghana

Christian Crentsil, Adelina Gschwandtner∗ and Zaki Wahhaj

Abstract

Small-scale farmers in developing countries frequently make production decisions in
situations of uncertainty. There is growing evidence that ambiguity - and not just risk -
affects farming decisions, limiting the adoption of new farming practices and technolo-
gies. We study the adoption of three new technologies, designed to be risk-reducing,
among smallholder aquafarmers in Ghana. We conduct a set of field experiments
designed to elicit farmers’ risk and ambiguity preferences and combine it with survey-
based information on their technology adoption decisions. We find, as expected, that
aquafarmers who are more risk-averse are quicker to adopt the new technologies but
ambiguity aversion has no effect on the adoption of two out of the three technologies
(a fast-growing breed of tilapia fish, and extruded feed). Ambiguity-averse farmers are
slower to adopt the third technology which entail large fixed costs (floating cages), but
its effect is diminishing in the number of prior adopters in the village. We argue that
the evidence highlights the specific situations in which ambiguity is an impediment to
technology adoption: when large fixed costs prevent small-scale experimentation, and
there are limited sources of information available to potential adopters.
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1 Introduction

Small-scale farmers in developing countries frequently make production decisions in a sit-

uation of uncertainty because of the prospect of weather-related shocks, crop failure, price

fluctuations, etc. In the absence of well-functioning systems of credit and insurance, they

are compelled to make choices that reduce consumption risk at the cost of future expected

profits (Rosenzweig and Binswanger 1993; Morduch 1995; Dercon and Christiaensen 2011).

The adoption of productivity-enhancing technologies is a domain where these trade-offs

can become particularly important. New technologies may be inherently more risky, require

additional investments that increase the risk exposure of farmers, or generate uncertainty

because of the imperfect knowledge of early adopters (Foster and Rosenzweig 2010; Feder,

Just and Zilberman 1985). Recent evidence supports this hypothesis. Dercon and Christi-

aensen (2011) find, for Ethiopian farmers, that consumption risk due to rainfall variability

has a negative impact on the adoption and application of fertilizers. Liu (2013) studies

Chinese farmers’ decision whether or not to adopt genetically modified Bt cotton, and finds

that more risk averse farmers adopt the technology later.

Nevertheless, the relation between uncertainty and technology adoption is not a settled

question. Uncertainty may stem not only from risk – i.e. the future state of the world is

unknown – but also ambiguity – i.e. the probabilities associated with these different states

may themselves be unknown (Klibanoff, Marinacci, Mukerji 2005). Barham et al. (2014)

find evidence that farmers in the US Midwest with a higher aversion to ambiguity adopt

new GM corn seeds sooner, suggesting that the GM crop’s insect-resistance trait reduces

ambiguity. More generally, understanding whether and how ambiguity affects technology

adoption decisions by farmers is important as it may have policy implications distinct from

those implied by risk. While improving access to insurance – or services that facilitate risk-

sharing – can speed up adoption of risky new technologies, access to information about the

distribution of returns from adoption – or services that facilitate information-sharing among

farmers – may play an equally important role if ambiguity impedes technology adoption.

To isolate and understand better the effects of ambiguity – as opposed to risk – on the
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adoption of new technologies, we study adoption decisions, among smallholder aquafarm-

ers in Ghana, of three distinct technologies that are all designed to be risk-reducing: (i)

the Akosombo strain of Tilapia (AST), a fast-growing breed of tilapia fish; and the use of

(ii) floating cages; and (iii) extruded feed for the fish under cultivation. The AST is more

disease-resistant than existing local breeds of tilapia, the extruded feed reduces the risk of

water pollution and contamination associated with the conventional sinking feed which can

pose a threat to the health of the fish, while floating cages protect the cultivated fish from

their natural predators in the environment. We combine data from a survey of farmers with

information on production choices and technology adoption, and field experiments with the

same farmers designed to elicit their risk and ambiguity preferences. In the experimental

design, we follow Tanaka, Camerer and Nguyen (2010) and Liu (2013) so that risk aversion

may be represented both within an Expected Utility (EU) and Prospect Theory (PT) frame-

work. To measure ambiguity preferences, we replicate the classic experiments conducted by

Ellsberg (1961) with our sample of aquafarmers.

The experiments indicate that our sample of farmers are, on average, averse to both

risk and ambiguity. We use duration/survival models to study determinants of the speed of

adoption of the new technologies and find, as expected for these technologies – but contrary

to most of the existing literature – that farmers that exhibit greater risk-aversion adopt the

AST, extruded feed and floating cages sooner. We find no difference in adoption behaviour

according to our measure of ambiguity aversion with regard to AST and extruded feed but

we find that ambiguity aversion slows down the adoption of floating cages. We argue that

this is because floating cages require a substantial initial investment (while the AST and

extruded feed do not) and, thus, precludes small-scale experimentation by the farmer that

would enable learning and reduce ambiguity.

We hypothesize that prior use of the technology by one’s neighbours may reduce ambi-

guity about the distribution of returns. Therefore, the negative effects of ambiguity aversion

on the adoption of floating cages should decline as adoption of the technology increases in

the locality. To test this hypothesis, we interact our measure of ambiguity aversion with the

number of prior adopters of the technology within one’s own village. Consistent with the
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prediction, we find that the estimated effects of ambiguity aversion on floating cages declines

as the number of prior adopters increases. By contrast, the interaction term has no effect

on the adopton of the AST and extruded feed. The evidence highlights the specific situa-

tions in which ambiguity is an impediment to technology adoption: when large fixed costs

prevent small-scale experimentation, and there are limited sources of information available

to potential adopters.1

Our findings add to the growing evidence of the effects of risk and ambiguity preferences

on farming choices in developing countries. Warnick, Escobal and Laszlo (2011) find that,

while risk aversion among Peruvian farmers increases crop diversification, ambiguity aversion

reduces crop and varietal diversification. Ross, Santos and Capon (2012) find that ambiguity

aversion among Laotian farmers limits the adoption of a new crop even though risk aversion

does not affect adoption decisions. Bryan (2019) shows that index insurance (with basis

risk) and access to credit (with limited liability) has a negative effect on the adoption of

new crops by ambiguity-averse farmers in Malawi and Kenya respectively. Compared to

this literature, the present study is distinctive in that it focuses on three new technologies

that, by design, are intended to reduce the risk exposure of farmers. Our finding that risk-

aversion among farmers accelarates adoption for all three technologies confirms this feature.

We find, for these farming technologies, that ambiguity aversion does not hinder technology

adoption except in the case where large fixed costs are involved and that prior adoption in

one’s locality mitigates the problem.

Thus, our findings suggest that, in a developing country setting, the adverse effects of

ambiguity aversion on risk-reducing technologies may be mitigated if resources are made

available for experimentation and knowledge-transmission. This reasoning is supported by

Barham et al.’s (2014) finding that ambiguity aversion among grain farmers in the United

States – who have ‘greater access to information regarding new technologies from exten-

1These findings echo a literature in industrial organisation which shows, using theoretical models of
dynamic competition, that entry (and exit) are lower in industries characterized by high fixed/sunk costs
(Dixit, 1989; Lambson, 1991 & 1992; Hopenhayn, 1992; Lambson and Jensen, 1998) and hence there may be
less opportunity for experimentation. At the same time, empirical studies have shown that profitability in
these industries are more volatile (Gschwandtner and Lambson 2006), potentially making experimentation
financially less feasible.
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sion agents, field trials, and seed dealers’ than farmers in developing countries – speeds up

adoption of new ambiguity-reducing GM crops. This interpretation of the results also im-

plies a coordination failure: if farmers were able to pool resources to experiment with –

and collectively learn about the distribution of returns from – a new technology, this could

potentially increase the pace of adoption, but existing institutions may not be equipped to

solve the coordination problem. Such a coordination failure may justify government support

for the purpose of experimentation and knowledge transmission for agricultural technologies

characterised by sizeable fixed costs and ambiguity in potential returns.

It is important to note that there are potentially multiple explanations that are consistent

with our findings. This is due to the fact that our main results make use of the variation in

risk and ambiguity aversion among farmers (elicited using lottery choice field experiments)

that may be correlated with other farmer characteristics important for the adoption decision.

In the discussion above, we highlight one possible interpretation, consistent with our empir-

ical results, as it has important policy implications for technology adoption among farmers

in developing countries. Validating the hypothesis will require further investigation, a task

we leave to future work. In Section 8.3 of the paper, we discuss alternative explanations and

explore whether and to what extent they can account for the empirical findings.

The rest of the article is organised as follows. Section 2 lays out the conceptual framework

and shows that the effects of risk and ambiguity aversion on adoption can be positive or

negative depending on the specificities of the technology. Section 3 provides a description of

the three technologies considered. We describe the survey and field experiments in Section

4, and discuss descriptive statistics and the construction of variables in Section 5. In Section

6, we present the econometric specification. We present the results in Section 7 and and

discuss our findings in Section 8. Conclusions are provided in Section 9.

2 Theoretical Framework

In this section, we provide a simple framework for considering how aversion to risk and

ambiguity affects a farmer’s technology adoption decisions. For this purpose, we use the
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formulation of ambiguity aversion introduced by Klibanoff et al. (2005) and follow Barham

et al.(2014) in our modelling and choice of notation.

We represent a farmer’s technology adoption decision as a choice θ ∈ Θ with payoff π (θ, e)

where e is a stochastic vector. The vector e captures factors that affect the returns to different

technologies, unknown to the farmer when making the technology adoption decision. The

distribution of e is described by the cumulative distribution function F (e|v), where v is a

parameter that may also be unknown to the farmer when making the technology adoption

decision. If v is unknown, its distribution is described by the cumulative distribution function

G (v) (the distribution being known to the farmer).

The farmer’s preferences over payoffs are given by the von Neumann-Morgenstern utility

function U (.). If v is known, then the farmer’s welfare from choice x is defined as the

expected utility:

W (θ|v) ≡ Ee|vU (π (θ, e))

where Ee|v is the expectations operator using the conditional distribution F (e|v). If v is

unknown, then the farmer’s welfare from choice x is as follows:

W (θ) ≡ Evh
(
Ee|vU (π (θ, e))

)
where h (.) is a strictly increasing function. If the function h (.) is linear, then the farmer’s

welfare is unaffected by the presence of ambiguity; but if h (.) is concave, then the farmer

achieves lower welfare when v is uncertain.

Barham et al.(2014) show that the welfare function can be written as follows:

W (θ) ≡ U (M (θ)−Rr (θ)−Ra (θ)) (1)

where M (θ) is the ex-ante mean payoff from choice θ, Rr (θ) is the standard Arrow-Pratt

risk premium, and Ra (θ) is the ‘ambiguity premium’ – the maximum the farmer is willing

to pay for the uncertainty associated with v to be replaced by Ev. From the last equation

above, it is evident that the welfare-maximising choice of θ also maximises the expression

M (θ)−Rr (θ)−Ra (θ). It follows that a higher expected return (thus, higher M (θ)) makes

a technology more attractive; increased risk (higher Rr (θ)) or increased ambiguity (higher
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Ra (θ)) makes a technology less attractive; for technologies that introduce risk and ambiguity,

higher risk aversion (leading to higher Rr (θ)) or higher ambiguity aversion (leading to higher

Ra (θ)) also makes the technology less attractive.

It is possible to show the same decomposition using a Prospect Theory (PT) framework,

rather than an Expected Utility framework. For this purpose, we would replace the von

Neumann-Morgenstern utility function U (.) by a value-function V (.) that allows for loss-

aversion, and the expectations operators Ee|v and Ev by Ep
e|v and Ep

e|v that incorporate

probability weights, potentially varying with the size of the probability. In Section 6, we

indicate the specific functional forms used for U (.), V (.) and the probability weighting

function in our empirical analysis.

The three acquaculture technologies we consider in this study – extruded feed, the AST,

and floating cages – are all, arguably, risk-reducing (see Section 3) . On the other hand, the

farmers may not have known – when they first heard about these technologies – the values

of all the parameters relevant for determining the distribution of payoffs associated with

each one (represented by v above), in which case adopting these technologies may involve

increased ambiguity.

If technology adoption involves a low fixed cost, it may be possible to experiment with

it on a small scale to determine the value of v without suffering a significant loss. If this

is the case, then the farmer’s ambiguity aversion should not be a significant determinant of

technology adoption. On the other hand, if introducing the technology involves a substantial

fixed cost, then small scale experimentation is infeasible and, therefore, ambiguity aversion

should be a more important factor. In describing the acquaculture technologies in more

detail in the next section, we show that the adoption of floating cages involved high fixed

costs while the extruded feed and the AST did not.

We can also hypothesize that the level of ambiguity associated with a particular tech-

nology is not constant over time but declines as adoption by neighbours reveals information

about the relevant parameters. In particular, if a new technology introduces ambiguity then,

ceteris paribus, it would be adopted first by farmers who have the lowest levels of ambiguity

aversion. Their experience with the technology would reveal information about the relevant
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parameters, which reduces the perceived ambiguity of the technology for farmers considering

adoption at a later date, and so on.

We can summarise this discussion in terms of the following observations:

1. If a technology is risk-reducing, then risk-averse farmers will be more likely to adopt

it.

2. If a technology introduces ambiguity, then farmers who are more ambiguity-averse will

be less likely to adopt it.

3. For technologies that introduce ambiguity, ambiguity-aversion is a determinant of adop-

tion if the technology involves a high fixed cost but not if it allows small-scale experi-

mentation.

4. If a technology introduces ambiguity, then the adoption rate should increase with the

number of prior adopters in the neighbourhood.

5. If a technology introduces ambiguity, then the adoption rate becomes less sensitive to

ambiguity-aversion as the number of prior adopters in the neighbourhood increases.

Observations 1 and 2 have previously been noted in the literature (see, for example,

Barham et al., 2014) and provide a useful way of assessing how a new technology affects

risk and ambiguity. While Observation 4 may be important in the context of ambiguity, we

acknowledge that alternative models of technology adoption would generate similar predic-

tions, such as learning spillovers (Foster and Rosenzweig 1995) and network effects (Bandiera

and Rasul 2006). However, the predictions in Observations 3 and 5 would be difficult to ac-

count for under alternative models. Hence, we argue that they provide an important test to

investigate whether ambiguity and ambiguity aversion play a role in technology adoption.

3 Description of Technologies

In this section, we describe the three technologies for which we analyse adoption practices

among Ghanaian aquafarmers: extruded or floating feed, the Akosombo strain of Tilapia
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(AST), and floating cages.

Extruded or floating feed is an alternative to the conventional feed used in aquafarming.

The latter is usually prepared as a mixture of agricultural and food industry waste (e.g.

corn meal, peanut husks and wheat or rich bran) that is milled into powder. The powder

sinks to the bottom of the pond quickly making it difficult for fish to find the feed. The

feed accumulates at the bottom of the pond, where it decomposes to set off physio-chemical

reactions and increase the risk of disease outbreaks. Extruded feed is prepared with a balance

of macro- and micro-nutrients considered essential for fish growth (Bell and Waagbo 2008).

The commercial processing of this feed removes anti-nutritional factors, thus making it more

suitable for consumption by fish (Drew et al. 2007; Hardy 2010). The feed is extruded

(pressed) and palletized, allowing it to float on the water surface and remain available to fish

for long periods. The product is considered to be more hygienic than the conventional feed

because of the sterilisation of pathogens in the extrusion process. As the fish need to float

near the surface to access the extruded feed, this facilitates monitoring their growth and

health and adjust feeding amounts as necessary. Fish raised on extruded feed grow to nearly

twice the size achieved with conventional feed (Ansah et al. 2014). However, the extruded

feed is also more expensive, with a unit cost that is nearly six times higher than that of

conventional feed (Frimpong et al. 2014). Commercial extruded feed became available in

Ghana in 2005 when it was imported via an Israeli firm, Ranaan (Kassam 2014). However,

Ghanaian farmers also manufacture extruded feed on-farm (Frimpong and Anane-Taabeah

2017).

AST is a relatively new and improved strain of tilapia (Oreochromis niloticus) developed

in 2003 by the Aquaculture Research and Development Centre (ARDEC) in Ghana. The

growth rate of the AST is about 30-50% higher than that of the conventional tilapia in the

region (Lind et al. 2012). AST requires just 6 months to reach the size at which it is ready

for the market, compared to 8 months for the conventional breed. As a result, farmers who

cultivate the new breed can harvest it twice a year on average as opposed to just once a

year for the conventional breed (Ansah et al. 2014). Apart from its fast-growing properties,

the AST can tolerate a wide range of environmental conditions, is resistant to stress, disease

8



and poor water quality and, as a result, enjoys higher survival rates than the conventional

breed. AST fingerlings cost about one-and-half times that of conventional fingerlings.

Floating cages have a number of advantages over conventional rearing systems: protec-

tion of fish from potential predators, better hygienic conditions than traditional ponds and

use of already existing water bodies (Beveridge 2004). They also provide a quick way to

relocate fish in response to unfavourable weather or other environmental conditions (Pillay

and Kutty 2005). The cage system is typically used in combination with extruded feed,

and the combination presently accounts for about 90% of Ghana’s aquaculture production

(Ainoo-Ansah 2013; Awity 2013). However, this technology also involves substantial costs.

Ofori et al. (2010) reports a typical size of 48 cubic meters for floating cages in the Volta

Lake, and a cost of USD 1000 per cage, nearly half the average cost of production over a

six month cycle. The first cage farm was established in Ghana in 2000 (Kassam 2014). But

the technology has been in use in other parts of the world for a much longer period. For

example, in neighbouring Côte d’Ivoire the technology has been used since the 1980s (Hem

1982).

All three technologies – extruded feed, AST, and floating cages – are, arguably, risk-

reducing: extruded feed because it lowers the risk of disease outbreaks; AST because it is

disease-resistant; and floating cages because they enable farmers to maintain better hygiene

than in traditional ponds and to respond quickly to changes in environmental conditions.

Among the type of information that aquafarmers most commonly seek from agricultural

extension officers relate to water quality assessment and management, and the identification

and control of diseases (Ayisi et al 2016), which suggests that there is a demand for risk-

reducing technologies among aquafarmers.

The existing literature also indicate that these technologies are substantially more prof-

itable than their conventional alternatives, but these studies are typically conducted under

ideal conditions that do not take into account resource constraints of small-holder farm-

ers along other dimensions. Small-holder farmers in Ghana typically have limited access

to agricultural extension officers, and therefore may lack knowledge about the distribution

of returns from the adoption of the new technology, especially under local farming condi-
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tions and resource constraints (Frimpong and Anane-Taabeah, 2017). Therefore, technology

adoption may initially lead to increased ambiguity.

Engaging in small-scale experimentation with the new technology may provide farmers

with better knowledge about the distribution of potential returns under local conditions and

resource constraints. There is evidence that at the early stages of adoption of the three

aquaculture technologies in Ghana, small-holder farmers were engaged in such small-scale

experimentation with aquaculture, while allocating the major part of their land to other

farming activities. For example, in a survey of fish farms in southern Ghana in 2006, fewer

than 10% of the farmers named aquaculture as their main economic activity; and the median

size of fish farm was about 0.06 hectares, compared to median farmer land ownership of 1

hectare (Asmah, 2008). But the three aquaculture technologies under consideration all

involve higher costs – with floating cages having the highest cost among them – which

may limit the ability of small-holder farmers to experiment with them. As such, ambiguity

aversion may be an important constraint to the adoption of the new technologies.

4 Data Sources and Experimental Procedures

The data for this study come from two sources: a survey of households engaged in aquafarm-

ing in four regions in southern Ghana (Greater Accra, Volta, Ashanti and Western regions);

and a set of field experiments involving lottery choices with the survey respondents designed

to elicit their risk and ambiguity preferences. The survey and field experiments were con-

ducted between March and April 2014, and included 120 participants with thirty farmers

from each of the four regions. The respondents were randomly selected from a represen-

tative sample of 320 aquafarms (80 from each of the four regions), included in an earlier

agricultural survey conducted by the University of Ghana (see Onumah et al. 2018). The

sampling design ensured that each aquafarmer in any village in these four regions of south-

ern Ghana had the same ex-ante probability of being selected into the sample. The final

sample of 120 aquafarmers were located in 34 different villages, thus an average of about 3.5

farmers per village. The selected farmers were all either the owner or main decision-maker
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on their respective aquafarms. The interviews and experiments were conducted on the same

day, when the selected farmers were instructed to gather in predesignated areas, such as a

church, under a tree, or an open area within the village within easy access of their homes.

4.1 Survey Data

Prior to the start of the experiments, the farmers were interviewed individually to obtain

information on their demographic and socio-economic characteristics, experience of adverse

shocks and risk management strategies, use of financial services and adoption of aquafarming

technologies. In particular, they were asked about whether they had ever used any of the

three aquafarming technologies considered in this study. Farmers were also asked to recall

the year they first heard about each technology, and the year they started using it, as well as

the reasons for doing so. The interviews lasted between 20 and 25 minutes each. Following

Dohmen et al.(2011), the farmers were also asked to assess their own risk preferences using an

11-point scale, based on the following question: ‘How do you see yourself: are you generally

a person who is fully prepared to take risks or do you try to avoid taking risks? Please rank

on a scale where the value 0 means unwilling to take risks and the value 10 means willing to

take risks.’ We use the farmers’ responses to construct a self-reported risk attitude (SRRA)

measure.

4.2 Experimental Design

Each experiment session involved five farmers, which took place immediately after these

farmers had concluded their interviews. The design of the field experiments for eliciting

risk preferences were modelled after Brick, Visser and Burns (2012), and Tanaka, Camerer

and Nguyen (2010) (henceforth abbreviated as BVB and TCN respectively). Ambiguity

preferences were elicited using a version of Ellsberg’s (1961) two-colour urn experiment.

Both the BVB and TCN experiments involved giving participants a series of choices between

lottery pairs, designed to elicit their risk-related preference parameters. As advocated by

Holt and Laury (2002), real stakes were used in the experiments – discussed in more detail

below – to ensure that the participants took the choices seriously and were incentivised to
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reveal their true preferences. In addition, each participant received GhC 10 (Ghanaian cedis)

at the end of the experiment as a reward for participation, which was two-and-half times the

daily minimum wage in the study areas at the time of the experiment.

In the BVB design, participants make a lottery choice from each of 10 different lottery

pairs. In each pair, lottery B involved a 50% probability of winning GhC 10, and a 50%

probability of winning nothing; while in lottery A, the participant receives GhC X with

certainty, with X varying from 10 to 1 monetary units across the different pairs. Thus, the

expected payoff is fixed at 5 in lottery B and varies between 10 and 1 in lottery A. The lottery

pairs were arranged in rows, in decreasing order according to the potential winnings in lottery

A (see Table A1). The field-workers recorded the row in which a participant switched from

lottery A to B, with only one switch permitted in choosing among the 10 pairs. Within

the expected utility framework, for each participant, the switching row provides a range

of possible values of the risk-aversion parameter, as shown in Table A1. Participants who

switch before the fifth row would be classified as risk-loving and those who do not switch till

after the fifth row would be classified as risk-averse.

In the TCN design, participants make a lottery choice from each of 35 different lottery

pairs, arranged into three series as shown in Table A2. Series 1 and 2 involve positive win-

nings only with a maximum possible payoff of GhC 1700.2 However, the average gain in the

lotteries was much smaller, approximately GhC 6.68 (or US$3.07) which is roughly equiva-

lent to the daily minimum wage.3 Series 3 involves possible losses, but these are restricted to

be smaller than the participation fee that the farmers received for taking part in the experi-

ments. Following Tanaka, Camerer and Nguyen (2010), the winnings and probabilities were

carefully chosen to elicit three preference parameters within a Prospect Theory framework:

σ (curvature of the value function), λ (loss aversion) and α (parameter for the probability

weighting function). In stating their preferences for each lottery pair, participants were able

to indicate at most one switching row in each series. The switching rows in Series 1 & 2

together provide a range of possible values for σ and α. This is illustrated in Table A3 which

2This was equivalent to US$ 782, about half of Ghana’s average annual income per capita of US$1,605
in 2012, according to Kassam (2014).

3Farmers also got the participation fee which was about 2.5 the daily minimum wage.
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shows the switching row implied by different combinations of values for σ and α. For a given

value of σ, the switching row in Series 3 determines a range of possible values for λ as shown

in Table A3. For each lottery series, all the lottery pairs were presented to the participant

simultaneously, and the participant was instructed to indicate his or her ”switching point”

from the safer to the riskier lottery.

At the start of the session, the participants were informed that one of them (out of the

five participating in the session) would be randomly selected to play the lottery for cash.

This real incentive design was implemented in the following manner. After all the session

participants had indicated their lottery preferences, five balls were placed in a bag, numbered

according to identification numbers assigned to each farmer at the beginning of the session.

The field-worker picked a ball at random from the bag, and the farmer with the identification

number imprinted on the ball was selected for the cash lottery. Next, the farmer was asked

to pick a ball at random from another bag of 45 balls numbered one through forty-five.

Finally, the lottery corresponding to the row indicated by the ball and the participant’s

stated preference for lottery A or B in that row was implemented using a bag with 10 balls.

As mentioned above, we used a version of Ellsberg’s (1961) two-colour urn experiment

to elicit farmers’ ambiguity aversion. Participants in the experiment were presented with

two bags, each consisting of 20 balls. Participants were told the total number of balls in

each bag, and that each ball was either black and white. In the case of one bag, they were

also told the number of balls of each colour while, in the case of the other bag, they were

not informed about the colour composition of the balls. Next a lottery was described to the

participant whereby he/she would be asked to pick a colour – black or white – and receive

GhC 100 if a ball picked at random from one of the bags matched that colour. Finally, the

participant was asked how much he/she would be willing to pay to play such a lottery using

(i) the bag with the known colour composition, and (ii) the bag with the unknown colour

composition. As explained by Keller et al. (2007), the difference in willingness to pay in the

two instances provides us with a measure of the participant’s aversion to ambiguity.

We used the same ordering of the experiments for all participants as follows. Participants

were presented with the BVB lottery series first, followed by the TCN lottery series 1, 2 and
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3. The BVB lottery series is similar in appearance to the three TCN lottery series, but the

average stakes are easier to calculate. The rationale for presenting participants with the

BVB lottery series first was to give them the opportunity to work with a relatively easy

set of figures before being presented with a more complex set of alternatives. The TCN

lottery series have been presented in the same order in previous experiments reported in

the literature (see, for example, Tanaka, Camerer and Nguyen 2010, and Liu 2013), and our

aim was to make our risk preference measures comparable to these to the extent possible.

The experiment to elicit ambiguity preferences was conducted after the participants were

presented with the BVB and TCN lottery series. We opted for this ordering to ensure that

participants had already had some experience reflecting on such choices (with real financial

stakes) before answering a question on willingness to pay on a similar hypothetical game.

5 Description of Variables and Summary Statistics

In this section, we describe the variables we construct using the survey and experimental

data to study technology adoption decisions by aquafarmers. Summary statistics for these

variables are presented in Table 1.

5.1 Technology Adoption Variables

We define time for technology adoption for the different technologies as follows. In the

case of AST, we measure time to adoption from the year 2003, when it was developed in

Ghana. The extruded feed and floating cage technologies have been available for much

longer periods and it is difficult to identify a specific date when the technologies became

accessible to farmers in Ghana. For these technologies, we measure time to adoption from

the year 1994, which is the earliest year – in both instances – that any farmer in our sample

reported learning about the technology.4 A large fraction of the farmers adopt at least one

of three aquaculture technologies in the same year that they start aquaculture (52.5%) or

within a year of starting (18.3%). These figures suggest that it is often the availability of

4In Section 7, we discuss robustness checks using alternative start dates for these two technologies.
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the technology that induces a farmer to start aquaculture production.5 There is significant

variation in adoption rate across the three technologies: at the time of the survey, about

96% of the farmers had adopted extruded feed, 75% had adopted the AST and only about

58% had adopted floating cages.

5.2 Measures of Risk and Ambiguity Aversion

In the BVB experiments, as shown in Table A1, switching from lottery A to lottery B in

any particular row is consistent with a range of values of r, the coefficient of relative risk

aversion. To each farmer, we assign a value of r corresponding to the mid-point of the range

corresponding to his or her switching row. This procedure yields a mean value of r equal to

2.4, implying that the average farmer is risk-loving. For the purpose of comparison, Bricks,

Visser and Burns (2012) finds, for a sample of South African fishers, that average farmer

is moderately risk-averse. The median farmer in our sample has a value of r in the range

(0.756, 1.000), which is identical to that obtained for the South African fishers. The average

self-reported risk attitude value in our survey is 5.4 (on an 11 point scale), which suggests

neither a strong aversion to risk nor a strong preference for it.6

In the case of the TCN experiments, we use Table A3 (for series 1, 2 and 3) to obtain,

for each farmer, values of the parameters σ, α and λ. We obtain mean values of 0.9, 0.7

and 1.9 respectively, implying the average farmer has a concave value function, overweighs

small probabilities and is loss averse. Table 2 reports the correlation coefficients between

all possible pairs of the risk-preference parameters. We find a strong correlation between

r and σ (coefficient of 0.524). This is reassuring as both parameters affect an individual’s

willingness to take risk (in the EU and PT frameworks respectively). On the other hand,

there is only a weak correlation between the self-reported risk aversion measure and either

r or σ, implying that there was little relation between how farmers assessed their own risk

preferences and how they behaved in an experimental setting. We argue that, as the self-

5Given the potential endogeneity of the start date of aquaculture, we do not consider the time to adoption
from starting aquaculture as a dependent variable.

6Note that values near the middle of the scale need not correspond to risk neutrality as the farmers were
not explicitly instructed to interpret the 11 point scale in this manner.
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reported risk measure is based on a hypothetical question, it may be subject to hypothetical

bias.7 Therefore, to estimate the effects of risk preferences on technology adoption, we make

use of the experimental measures only.

The fact that the average farmer is risk-loving according to the BVB experiments but

risk-averse according to the TCN experiments requires some comment. Unlike the TCN

experiments, in the BVB experiments the farmer had no possibility of suffering a loss. As

such, the BVB experiments may have been somewhat removed from decisions faced by small-

holder farmers in a developing country setting where potentially profitable investments would

typically carry a risk of financial loss. If some of the participants perceived these experiments

to be a game designed for their entertainment, they may have been more willing to take

gambles than they would have otherwise. However, as the CRRA parameter r and the

PT parameter σ are strongly, positively correlated (Table 2), the two sets of experiments

generate roughly the same ordering of farmers in terms of risk preferences.

We measure ambiguity aversion using the difference between a farmer’s willingness to

pay to play the risky lottery and the corresponding amount for the ambiguous lottery. On

average, farmers have a higher willingness to pay for the former compared to the latter (GhC

7.07 versus GhC 5.87), and the difference is statistically significant (p-value = 0.013). Thus,

on average, farmers are more averse to the ambiguous gamble than the lottery with known

probabilities.

5.3 Prior Adopters in the Village

In response to a survey question about the reasons for technology adoption, the response

given by the farmers most frequently was ‘because everyone uses it’ for each of the aquacul-

ture technologies (47.83% for floating cages, 26.32% for extruded feed and 56.04% for the

AST). This suggests that prior adoption by other farmers in the locality was an important

driver of technology adoption. This may be because farmers were encouraged by high re-

7Previous studies have found that survey-based measures of risk preferences correlate well with measures
based on incentivised lottery experiments. However, our respondents are drawn from a sample (smallholder
farmers in a developing country) that differs substantially from those typically used in these studies; e.g. the
general population in a developed country (Dohmen et al. 2011), university students (Vieider et al. 2015).
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turns achieved with the new technologies by their neighbours but also, arguably, because

prior adoption by others provided better information about the distribution of returns and

thus lowered ambiguity.

Using data on the year of adoption of the different technologies by farmer, we construct

a measure of prior adoption of the technology as follows. For each technology, village and

year, we count the number of farmers in our sample in that village who reported having used

the technology in a previous year. Thus, the variable is farmer-technology-year specific and

equals the number of other farmers from the same village (in the sample) who have adopted

that technology in a previous year. This count measure serves as a proxy for the number

of distinct, independent sources of information about the technology in question within a

specific village in a specific year.8

From the perspective of any farmer, prior adoption of a technology within one’s own

village may yield information about its yield distribution that, over time, lowers or eliminates

ambiguity about the returns to the technology. Therefore, if ambiguity is a limiting factor,

the extent of prior adoption may affect an individual farmer’s own decision whether or not

to adopt.

In Figure 1, we plot the total number of prior adopters in the sample for each technology,

by year. We note that the number of prior adopters in the village is consistently lower for

floating cages – the technology with the largest fixed costs – compared to AST and extruded

feed.

5.4 Other Explanatory Variables

The other explanatory variables used in our analysis can be divided, broadly, into three cate-

gories as follows: demographic characteristics (age, gender, years of schooling, marital status,

household size); farm-related characteristics (farmer’s main occupation, farming experience,

property rights over farmland, farm size, contact with extension agents, access to credit,

8We do not adjust for the size of the village as we lack this information in the dataset. Therefore,
interpreting our measure as the availability of information about the technology in question is based on the
assumption that the villages in the sample are of similar size. This is a plausible assumption given that the
villages are all located in four closely situated regions in southern Ghana.
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membership of fish farmers’ association, previous experience of weather-related shocks), and

wealth indicators (home ownership, number of rooms in the house).

The summary statistics for these variables are provided in Table 1. The demographic

characteristics all relate to the farmer who is responsible for the technology adoption decision.

The majority of farmers in our sample are male (92%), married (75%), and engaged in

aquafarming as his primary occupation (71%). On the other hand, only a minority own the

land on which they are farming (33%), and belongs to a fish farming association (32%). On

average, the farmers have completed nearly 10 years of schooling, and have been engaged in

aquafarming for more than 5 years.

In our econometric model (presented in the next section), we control for the farmer’s

age, gender, education and marital status as the existing literature shows that these factors

can influence stated or measured preferences regarding uncertainty. We use an indicator for

home ownership and the number of rooms in the house as proxies for household wealth. We

control for farm size and property rights as these factors can affect the farmer’s incentives

to invest in the farm, including the adoption of new technologies. An indicator for prior

experience of weather-related shocks is included in the model as it can affect the farmer’s

beliefs regarding the probability of future shocks and, therefore, affect technology adoption

decisions.

We also include in the model indicators for membership in a fish farming association,

and access to an extension agent, as these are potential sources for obtaining information

about new aquafarming technologies. The inclusion of these variables is motivated by a

large literature which shows that the farmer’s social network can affect technology adoption

decisions (Burton et al. 2003; Bandiera and Rasul 2006; Di Falco and Bulte 2011; Beyene

and Kassie 2015; Nazli and Smale 2016).

A concern about including these farm and farmer characteristics in the econometric

model is that they are potentially endogenous to the technology adoption decision and we

lack historical information on these variables. We address this issue after presenting the

results from our base specification in Section 7.
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5.5 Representativeness of the Data

In this section, we provide a discussion of the representativeness of our sample of farmers. At

the start of the the survey, 30 farmers were randomly selected from four regions in Ghana,

from a representative sample of 320 aquafarmers included in an earlier agricultural survey

conducted by the University of Ghana. However, there was some attrition and replacement

from this original list. In the Volta Region, three of the farmers opted not to participate in

the survey and experiment, citing religious reasons (prohibition against gambling). In the

Western Region, four farmers could not participate due to other obligations. In the Ashanti

Region, ten farmers on the original list could not be surveyed as they were participating in

a training programme conducted by the Ministry of Fisheries at the same time. In order

to maintain a sample of 120 aquafarmers, 17 additional farmers were randomly selected

and subsequently surveyed in the Greater Accra Region. This potentially undermines the

representativeness of the final sample of aquafarmers included in the survey and experiments.

However, we can check the representativeness of our sample by comparing it to other

studies which use random samples drawn from the population of all registered aquafarmers

in Ghana. The proportion of smallholder aquafarmers that are male is 91% in the sample

used by Onumah and Acquah (2010); 95% in Asmah (2008) and 88% in Asamoah et al.

(2012). By comparison, 92% of the farmers in our sample are male. Asmah (2008) and

Asamoah et al. (2012) report averages of 10 years and 9.1 years of formal education for the

farmers in their respective samples. By comparison, the average farmer in our sample has

9.8 years of formal education.

No data on income or wealth was collected during our survey and the proxy variables (such

as land ownership, plot/pond size, number of rooms in the house) are measured differently or

were not included in previous studies, thus preventing a meaningful comparison. However,

we are able to provide comparions on the basis of farm output. The average output for

our sample of farmers was 1557 kilograms of fish per annum, similar to the figure of 1518

kg/annum reported in Asmah (2008) for farms with an average size of 0.25 ha (farm type 5),
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which is similar to the average pond/plot size in our sample (0.16 ha).9 These comparisons

suggest that the present sample is not very different from other, representative, samples of

aquafarmers in Ghana.

6 Econometric Specification

To investigate how the risk and ambiguity preferences of aquafarmers affect their technology

adoption decisions, we employ survival/duration models. In each model, the outcome of

interest is the timing of adoption of a particular technology. There is a long tradition of using

duration models to investigate determinants of unemployment spells (Kiefer 1988; Devine

and Kiefer 1991); and has also been adopted in the macroeconomics literature to study

business cycles (Diebold and Redbush 1990) and in the marketing literature to investigate

the timing of household purchases (Jain and Vilcassim 1991; Boizot, Robin and Visser 2001).

More closely related to our work is a growing literature that employs duration models to

investigate technology adoption in agriculture (Fuglie and Kascak 2001; Burton et al. 2003;

Abdulai and Huffman 2005; Liu 2013; Barham et al. 2014).

We denote by Xi(t) a vector of observable, potentially time-varying, characteristics of

farmer i at time t that are relevant for the technology adoption decision. We define the

hazard function – the probability of adopting the technology in question for the first time in

period t, conditional upon no adoption up to period t− 1 – as follows:

hi(t|X(t), β) = h0(t) exp [X′i(t)β] (2)

where β is a vector of parameters to be estimated and h0(t) is the baseline hazard rate.

Following Liu (2013) and Barham et al. (2014), we use a Weibull baseline hazard speci-

fication: h0 (t) = ptp−1 exp (β0). This specification allows the baseline hazard rate to be

time-dependent and nests the exponential model as a special case. The shape parameter p

determines whether the hazard rate is decreasing (p < 1), increasing (p > 1) or constant

(p = 1).

9The total weight of fish harvested at the end of the 2012/2013 fish farming season. This included the
fish sold, consumed, and given as gift to family and friends.
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The term X′i(t)β is the empirical equivalent of the expression W (1) −W (0) where the

function W (θ) is as defined in Section 2 and θ indicates the adoption status of the new

technology (1=adoption, 0=non-adoption). Thus, the hazard model defined in (2) posits that

the technology adoption decision depends on the gain in expected utility or prospect value,

with larger gains being associated with higher probabilities of adoption. In our empirical

analysis, we estimate two versions of the hazard model. In the first version, we adopt the

Expected Utility framework and assume a von Neumann-Morgenstern utility function with

constant relative risk aversion: U (x) = 1
r
xr. In the second version, we adopt the Prospect

Theory framework and, following Tanaka, Camerer and Nguyen (2010), assume a value

function of the form V (x) = xσ for gains x > 0 and V (x) = −λ (−x)σ for losses x < 0; and

a probability weighting function π (ρ) = [exp {ln (1/ρ)}α]
−1

where probability ρ ∈ (0, 1]. In

these expressions, r, σ, λ and α are parameters to be estimated.

Following the reasoning provided in Section 5, we also include in vector Xi(t) farmer

i’s demographic characteristics (age, gender, years of schooling, marital status, household

size), farm-related characteristics (main occupation, farming experience, land rights, farm

size, extension contact, access to credit, membership of fish farmers’ association, previous

experience of weather shocks), and wealth indicators (home ownership, number of rooms in

the house). In each specification, we also include region fixed-effects.

We estimate the hazard model using Maximum Likelihood as follows. Using (2), the

probability density function of the time to adoption can be written as follows:

f(t|X (t) , β) = exp (β0 + X′i(t)β) tp

If we denote by Di a censoring dummy, taking a value of 1 if a farmer has adopted the

technology in question by the end of the period of observation and 0 otherwise, then the

likelihood contribution of a farmer who has adopted the technology at time ti can be written

as

Li = f(ti|X (ti) , β)Di [1− F (T |X, β)]1−Di

where Fi(T |X, β) is the corresponding cumulative distribution funciton and T is the final

period observed in the data. Then the Maximum Likelihood Function is given by L (β,p) =
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∏N
i=1 Li.

In estimating the hazard model for each technology, we include among the explana-

tory variables the adoption status of the other two technologies. Specifically, we include

time-varying dummy variables indicating whether the farmer had adopted the two other

technologies prior to the date in question (for a similar approach, see Butler and Moser

2010; Colombo and Mosconi 1995; Stoneman and Kwon 1994). We also include regional

dummies to capture region-specific characteristics not captured by the other variables, with

Greater Accra as the reference region.

Where possible, we include farmer characteristics in the model as time-varying charac-

teristics, including age and experience. We introduce education as a time-invariant charac-

teristic – equal to years of formal education at the time of the survey in 2014 – given that

most farmers would have completed their formal schooling before becoming responsible for

key farming decisions such as technology adoption.

7 Results

The estimates from our regression models on the adoption of AST, extruded feed and floating

cages are reported in Tables 3, 5 and 7 respectively. For each variable, we report hazard

ratios, with values greater (smaller) than 1 indicating that larger values of the variable in

question speeds up (slows down) adoption. For each technology, we estimate three models:

a model with the farmer’s ambiguity aversion, demographic characteristics, farm-related

characteristics and region dummies (column 1); a model where we add the farmer’s risk

aversion, based on a CRRA utility function (column 2); a model where we add the farmer’s

risk aversion based on a PT utility function (column 3).

First, we note that the farmer’s ambiguity aversion has no effect on the adoption of

AST and extruded feed (Table 3 and Table 5), but slows down adoption of floating cages.

Specifically, in the case of floating cages, we obtain a hazard ratio smaller than one (Table

7). A test of the null hypothesis that the coefficient is equal to one is rejected in all three

specifications used for floating cages at the 5% level. By contrast, for AST the corresponding
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hazard ratio is larger than one across all three models and we cannot reject the null hypothesis

that it is equal to one at standard levels of statistical significance (Table 3). Similarly, for

extruded feed, the hazard ratio is larger than one (Table 5). While the estimate is statistically

significant at the 10% in column (1), it is no longer so when we introduce risk aversion into

the specification.

Second, we note that the number of prior adopters in the village has a strong, positive

effect on the speed of adoption for all three technologies, across all three models (statistically

significant at the 1% level). The estimated coefficient of the corresponding squared term is

also significantly different from one for all three technologies, implying that the relation

between the number of prior adopters and the speed of adoption is non-linear. For AST,

the estimated coefficient is larger than one, implying a convex relationship between prior

adoption in the village and the current speed of adoption, while it is smaller than one for

extruded feed and floating cages, implying a concave relationship between the same variables.

In each specification, we interact ambiguity aversion with the number of prior adopters

in the village, to investigate whether the effect of ambiguity aversion on technology adoption

evolves as others in the village adopt the same technology. We find that the hazard ratio

for the interaction term is close to one (and statistically insignificant) in the case of AST

and extruded feed, implying that the effect of ambiguity aversion on the adoption of these

technologies does not depend on prior adoption in the village. By contrast, the hazard

ratio is larger than one and statistically significant (at the 10% level) in the case of floating

cages across all three specifications. Thus, while ambiguity averse farmers are less inclined

to adopt floating cages, this reluctance is diminished if other farmers in the village have

already adopted the technology.

For all three technologies, we find that the farmer’s risk aversion plays a significant role

in the speed of technology adoption. The hazard ratio for the CRRA parameter is shown

in column (2) in tables 3, 5 and 7. In each instance, we find that the hazard ratio is less

than one, implying that higher values of the CRRA parameter are associated with slower

adoption. As higher values of the CRRA parameter imply lower risk aversion, these estimates

imply that more risk-averse farmers adopt these technologies more quickly. In column (3),
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where we replace the CRRA parameter with the PT parameters σ, α and λ, the results

are less clear-cut but broadly consistent. In particular, the estimated hazard ratio of σ –

which determines the curvature of the value function – is smaller than one, suggesting that

the farmer is less likely to adopt the technology when the value function is more concave,

i.e. when the farmer is more risk-averse. In the case of all three technologies, we reject the

hypothesis that the hazard ratio is equal to one at the 10% level. For none of the three

technologies do we find any evidence that loss aversion affects the speed of adoption (the

estimated hazard ratio for λ is statistically indistinguishable from one).

In each specification, we include time-varying binary variables indicating whether the

farmer had adopted the other two technologies by that date. The inclusion of these vari-

ables allows us to explore for the presence of complementarity and substitutability between

technologies. We find that the hazard ratios are consistently below one, suggesting substi-

tutability between technologies. However, the coefficients are imprecisely estimated, with

large standard errors such that, in most instances, we cannot reject the null hypothesis that

the hazard ratio is equal to one. The effect of prior adoption of extruded feed on the like-

lihood of AST adoption is the exception: the hazard ratio is close to zero and significantly

different from one (at the 1% level) across all three specifications (Table 3) implying that a

farmer who has adopted extruded feed is subsequently very unlikely to adopt AST. We also

find that the estimated hazard ratios for AST in the adoption equation for extruded feed are

below one and statistically significant (at the 10% level), implying that the adoption of AST

slows down the adoption of extruded feed (Table 5). Thus, the two the two technologies are,

arguably, substitutes.10

The hazard ratios for the region dummies show significant variation in the speed of

adoption of the three aquafarming technologies in different parts of Ghana. For instance,

the hazard ratio for the Volta Region is significant for both the extruded feed and the floating

cages: it is less than one in the former and greater than one for the latter technology (the

10The results do not show that floating cages and extruded feed are complements because, even when
the hazard ratio is greater than 1, it is statistically insignificant. In other words, we donâet find evidence
that having adopted one technology accelerates the adoption of the other. The reason for this could be that
while the two technologies are technological complements (i.e. adopting one technology raises the marginal
product of the other), they may be substitutes in peopleâes choices because of credit constraints.
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excluded, reference region is Greater Accra). Thus, while farmers in the Volta Region have

a higher proclivity to adopt floating cages, they are less likely to adopt the extruded feed,

than farmers in Greater Accra. These patterns may be explained by the fact that the Volta

region is characterised by a large river system and and lakes, suitable for the use of floating

cages.11 Farmers in the Western Region have a higher probability of adopting the AST, but

there is no significant difference in the adoption rates of the other two technologies between

farmers in this region and the reference region (Greater Accra).

A potential concern with the estimates reported in tables 3, 5 and 7 is that the farm and

farmer characteristics are endogenous to the technology adoption decisions. In tables 4, 6

and 8, we report on alternative specifications where these farmer and farm characteristics

are removed from the model. The estimated effects of the risk and ambiguity preferences

are broadly similar – in terms of magnitude and statistical significance – to those obtained

with our base specifications. The one exception to this pattern is that, for the Akosombo

Strain of Tilapia, the hazard ratio of the risk aversion parameters are no longer statistically

different from 1 when farmer and farm characteristics are removed from the hazard model

but the ratio is below 1 as in the base specifications. This suggests that the estimated effects

of risk and ambiguity preferences on the technology adoption are not substantially affected

by the potential endogeneity of the farm and farmer characteristics.

A potential concern with the estimates obtained for the adoption of extruded feed and

floating cages is that the start date used in the hazard model – i.e. the date from which

there is positive hazard of adoption – is incorrect. For this reason, we provide alternative

estimates for these technologies with alternative start dates in the time period 1995-2000 in

Tables A4 and A5. As these tables show, the estimated effects of risk and ambiguity aversion

do not change substantially when we use a later start date.

11The Volta River is the main river system in Ghana and the Volta Lake is one of the largest man made
reservoirs in the world.
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8 Discussion

8.1 Risk Aversion and Technology Adoption

We find that, in general, risk averse farmers are more likely to adopt all three technologies

sooner. This finding is consistent with the hypothesis that these technologies are risk-

reducing, as discussed in Section 3 or, at least, perceived as such by the farmers. This

finding contrasts with Liu (2013), a study which finds that risk averse farmers in China

are slower to adopt genetically modified cotton seeds. More precisely, the cotton seeds

are modified genetically with the Bacillus thuringiensis (Bt) bacteria, which enables cotton

plants to produce phytotoxins to kill pests. The subjective risks posed by these phytotoxins

to the farmers themselves may be an additional source of uncertainty and a likely reason for

the delayed adoption by risk averse farmers.

In the present study, the AST is also genetically modified and it is more disease-resistant

than local breeds. But it does not produce any toxins. Therefore, it is plausible that farmers

perceive it as a risk-reducing technology. In the same vein, extruded feed reduces the risk

of water pollution and contamination associated with the conventional sinking feed, which

could pose a threat to the health of the fish and the environment; and floating cages provide

an enclosure for the farmed fish, and thus reduce the threat posed by natural predators to

fish in conventional ponds.

8.2 Ambiguity Aversion and Technology Adoption

We find that ambiguity aversion has no effect on the adoption rate of AST and extruded

feed but slows down the adoption rate of floating cages (estimated coefficient is below one

and statistically significant at the 1% level). In Section 2, we argued that ambiguity aversion

would slow down adoption of a new technology if it entails large fixed costs. If not, small

scale experimentation enable farmers to reduce ambiguity associated with new technologies.

In Section 3, we highlighted that while the adoption of floating cages require aquafarmers to

make substantial investments, the AST and the extruded feed do not. Therefore, farmers can

learn about the AST and extruded feed, and their respective payoff distributions, through
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small-scale trials but the same approach is not practical in the case of floating cages. There-

fore, the estimated effects of ambiguity aversion on the adoption of the three technologies

are consistent with the theoretical predictions.

As discussed in Section 2 the adoption of a new technology by other farmers in the

locality also provide a means of learning about a new technology and, in particular, resolve

ambiguities in the payoff distribution of the technology. Therefore, the prior adoption of a

technology by other farmers in the locality should accelerate the rate of adoption. Consistent

with this reasoning, we find that the rate of adoption of a technology increases with the

number of prior adopters of that technology.

But more importantly, we find that the negative effect of ambiguity aversion on the

adoption of floating cages declines as the number of other adopters in the village increases

(interaction term statistically significant at the 10% level). This is consistent with our

theoretical reasoning that ambiguity aversion should not matter for technology adoption

if the farmer has access to sufficient information – from other adopters – to resolve the

ambiguity in the distribution of payments. For the other two technologies, the estimated

effect of ambiguity aversion on technology adoption does not vary with the number of other

adopters.

8.3 Alternative Explanations

In this section we consider whether and to what extent alternative explanations can account

for our empirical results.12

Trust in Strangers: There is, potentially, heterogeneity among farmers in terms of

their level of trust in strangers. If farmers were uncertain about whether the experimenter

would make payment for large winnings in the lottery choice experiments, then they would

undervalue large winnings and, thus, appear more risk-averse than they are. If so, the risk

aversion measures elicited using the lottery choice experiments may be proxying for lack of

trust in strangers. The same lack of trust in strangers may lead farmers to discount infor-

mation provided by agricultural extension officers and thus slow down the pace of adoption

12We thank an anonymous referee for proposing some of these alternative explanations.
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of new agricultural technologies. Under these assumptions, our measures of risk preferences

would be correlated with technology adoption decisions even if, in reality, risk aversion did

not matter for technology adoption. Prior adoption by other farmers within the village would

increase the rate of adoption as they would provide more trustworthy sources of informa-

tion. However, under these assumptions, farmers with high measured risk aversion should

be slower to adopt a new technology while our hazard model estimates imply the opposite

for all three technologies under consideration.

Prudence: Prudence, by definition, can induce farmers to save for the future rather

than make costly investments in the present. Thus, prudent farmers may be slower to adopt

new technologies. Prudence may also induce farmers to prefer sure payments (that can be

saved for the future) over risky gambles. If so, the risk aversion measures elicited using the

lottery choice experiments may be proxying, at least in part, for prudence. Under these

assumptions, our measures of risk preferences would, again, be correlated with technology

adoption decisions even if, in reality, risk aversion does not matter for technology adoption.

However, under these assumptions, farmers with high measured risk aversion would be slower

to adopt a new technology while we obtain the opposite result for all three technologies.

Unobserved Wealth: Poorer farmers are likely to be more risk-averse. If there is

unobserved heterogeneity in wealth among farmers, then the experimental measures of risk

aversion may be proxying for wealth. These farmers are also more likely to be credit-

constrained, which may slow down their adoption of new agricultural technologies compared

to richer farmers. This would lead to a negative relationship between measured risk aversion

and technology adoption. However, this explanation based on ubobserved wealth heterogeity

and credit constraints cannot account for our results as the hazard model estimates imply

that risk aversion accelerates technology adoption for all three technologies.

Effect of Technology Adoption on Risk and Ambiguity Preferences: It is impor-

tant to note that the experiments for eliciting the risk and ambiguity preferences of farmers

were conducted in 2014, while the analysis focuses on technology adoption decisions at pre-

vious points in time. If risk and ambiguity preferences change over time, then the hazard

model estimates may be affected by reverse causality. In particular, if farmers who adopt new
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farming technologies subsequently become less risk-averse, then this would account for the

estimated ‘effects’ of the risk-aversion parameters. However, other studies using the same the

experimental measures of risk aversion and recall data on technology adoption have found

that risk aversion slows down the adoption of certain new agricultural technologies (e.g. Liu

2013). If this method was simply revealing a causal relationship from technology adoption

to risk preferences, it would be difficult to explain why the risk aversion measures have a

positive relationship with certain technologies and a negative relationship with others.

Geographical Variation in Returns: There is potentially geographical variation in the

returns from the adoption of a new technology. Where the expected returns are higher, there

may also be less ambiguity regarding the distribution of returns. In these areas, farmers will

adopt the technology more quickly. This would lead to a positive relationship between prior

adoption and adoption probability. Also, ambiguity aversion would not have a ”dampening

effect” on adoption probability in areas where prior adoption is high, consistent with the

effects we obtain for the adoption of floating cages. However, the hazard model estimates

indicate a correlation between probability of adoption and prior adoption of the technology

in the area (with a larger effect for ambiguity-averse individuals) not just in the cross-section

but also over time. For example, our estimates imply that the effect of ambiguity aversion

on the adoption of floating cages in the Volta region (where the technology is likely to be

more beneficial) is negative and large at the early stages of adoption and dampened only

after the use of the technology in the region has become widespread. A negative relation

between the benefits of the technology and its ambiguity across areas cannot, on its own,

account for such a pattern.

9 Conclusion

The present study examines how risk and ambiguity aversion influence the adoption of three

aquafarming technologies in rural Ghana using data from a survey of farmers and field

experiments. Two of the technologies are relatively inexpensive and contribute to a rapid

growth in fish production (extruded feed and the Akosombo strain of Tilapia) while the third
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one is relatively expensive but helps protect fish from natural predators (floating cages). The

results show that, for all three technologies, risk aversion accelerates their adoption. This

is in contrast with most of the literature which finds that risk aversion delays the adoption

of new technologies. We explain this result by arguing that all three technologies under

consideration are risk reducing.

On the other hand, we find differential effects of ambiguity aversion on the adoption of the

three technologies: ambiguity aversion among farmers slows down the adoption of floating

cages but has no effect on the rate of adoption of the two other technologies. Additionally,

we find that the presence of other adopters in the locality attenuates the negative effect of

ambuity aversion on the adoption of floating cages. Compared to traditional aquaculture

ponds, floating cages allow better hygiene practice and, as the fish are placed in enclosed nets,

better protection from their natural predators. Moreover, these cages can be moved relatively

easily if the weather or environmental conditions deteriorate. Thus, they provide strong

protection against a variety of adverse shocks. On the other hand, as they are significantly

more expensive than farming in a conventional pond, they provide little scope for small-

scale experimentation by farmers. Therefore, initial adopters are faced with ambiguity in

the distribution of payoffs from floating cages, which may slow down the rate of adoption.

By contrast, farmers can experiment with the Akosombo strain of Tilapia and extruded feed

and consequently learn about their payoff distributions. Based on this reasoning, we argue

that, at the early stages of the adoption process, ambiguity aversion should play a larger

role in the adoption of floating cages compared to the two other technologies.

Our findings add to the growing evidence of the effects of risk and ambiguity preferences

on farming choices in developing countries. The present study is distinctive in that it focuses

on three distinct technologies that, by design, are all intended to reduce the risk exposure

of farmers. Our finding that risk-aversion among farmers accelarates adoption for all three

technologies confirms this feature. It suggests that, in an environment where farmers have

limited access to credit and insurance, informing them about new technologies that reduce the

risk of adverse shocks may help to accelarate the adoption of new agricultural technologies.

Our findings on ambiguity aversion suggest that, in a developing country setting, the
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adverse effects of ambiguity aversion on risk-reducing technologies may be mitigated if re-

sources are made available for experimentation and knowledge-transmission. In particular,

providing practical information about new agricultural technologies and information about

the distribution of returns from adoption – with the help of extension agents and exist-

ing farmers in neighbouring villages – may mitigate the effects of ambiguity and ambiguity

aversion on technology adoption. Additionally, government support that enables potential

adopters to coordinate expermentation with new technologies under local conditions, and

thus share experimentation costs, can accelerate adoption. This reasoning is supported by

Barham et al.’s (2014) finding that ambiguity aversion among grain farmers in the United

States – who have greater access to information regarding new technologies than farmers in

developing countries – speeds up adoption of new ambiguity-reducing GM crops.

It is important to note that there are potentially multiple explanations that are consistent

with our findings. Validating the hypothesis we propose will require further investigation.

Future work may examine how interventions that deal specifically with the problem of ambi-

guity in new agricultural technologies – for example by providing farmers information about

the distribution of returns from adoption – affect the speed of adoption for technologies with

low versus high fixed costs.
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Table 1: Summary Statistics 

Variable Definition  Mean Standard  

Deviation 

    

Technology Adoption       
Time to adoption for Extruded Feed  Years between learning about technology and first use 16.62 2.28 
Time to adoption for AST  Years between learning about technology and first use  9.33 1.46 

Time to adoption of Floating cages Years between learning about technology and first use 17.76 2.53 

    

Risk and Ambiguity Aversion    

Risk aversion (r)  Constant Relative Risk Aversion Coefficient  2.35 2.45 

Risk aversion (σ)  Value Function Curvature (Prospect Theory) 0.89 0.52 

Loss aversion (λ)  Loss aversion Parameter (Prospect Theory) 1.92 2.40 

Probability weighting (α) Probability weighting Parameter (Prospect Theory) 0.74 0.30 

Self-reported risk attitude (SRRA) Self-reported risk attitude on a scale from 0-10 (0 = 

unwilling to take risks, 10 = very willing to take risks)  

5.39 3.22 

Ambiguity Aversion Ambiguity Aversion measured as difference in the WTP 

between risky and ambiguous prospects  

1.20 5.86 

Farmer Characteristics       
Age of farmer at adoption of 

technology 

Age of respondent at the time of adopting technology 38.55 13.15 

Gender = 1 if farmer is male  0.92 0.28 
Education Years of formal education attained by farmer 9.83 4.62 
Marital Status = 1 if farmer is married  0.75 0.44 
Experience Number of years a farmer has engaged in fish production  5.47 5.37 
Past weather shocks = 1 if farmer experienced flooding in the past 0.73 0.44 
Main occupation = 1 if fish farming is main occupation  0.71 0.46 
    

Household Characteristics       
Household Size Farmer + number of people who eat from the same pot 6.08 3.03 
Own House = 1 if farmer owns his house 0.63 0.48 
Number of rooms  Number of rooms in the famers’ house 4.23 2.68 
Freehold tenure = 1 if farmer owns the farm land 0.33 0.47 
    

Access to Services        
Extension Services  = 1 if farmer has access to extension services 0.48 0.50 
Access to Credit = 1 if farmer has access to credit 0.78 0.42 
FFA = 1 if farmer is a member of a fish farmers’ association 0.32 0.47 

    

Regional Variables        
Western = 1 if farmer is resident in the Western Region  0.22 0.41 
Ashanti = 1 if farmer is resident in the Ashanti Region  0.17 0.37 
Volta = 1 if farmer is resident in the Volta Region 0.23 0.41  
    



Table 2: Correlation Matrix for Risk Aversion Variables 

 SRRA CRRA (r) TCN (σ) TCN (α) TCN (λ) 

          SRRA   1.000     

  CRRA (r)   0.053     1.000    

TCN (σ) -0.012 0.524***   1.000   

TCN (α)  0.016    -0.212  -0.045  1.000  

TCN (λ) -0.010     0.000 0.241*** -0.115 1.000 

Notes: Statistical significance is denoted by *** (1% level), ** (5% level) and * (10% level). 

 

  



Table 3: Hazard Model Estimates for Adoption of the Akosombo Strain Tilapia (AST) 

VARIABLE Ambiguity CRRA and Ambiguity  Ambiguity and TCN Parameters 

σ (value function curvature)    0.588* 
                         (0.164) 

α (probability weighting)   0.997 

   (0.437) 

λ (loss aversion)   1.055 

   (0.066) 

CRRA              0.818***  

             (0.050)  

#Adopters in village  2.860*** 3.037***       2.802*** 

        (0.704)            (0.751) (0.687) 

#Adopters2  0.863*** 0.854***       0.866*** 

        (0.040)            (0.040) (0.040) 

#Adopters*Ambiguity         1.004             1.005 1.004 

        (0.005)            (0.005) (0.005) 

Ambiguity Aversion          1.024             1.007 1.018 

        (0.030)            (0.034) (0.031) 

Age         1.013             1.006 1.014 

        (0.013)            (0.013) (0.013) 

Male         0.758             0.597 0.613 

        (0.344)            (0.270) (0.294) 

Education 1.104** 1.125***       1.113*** 

         (0.044)            (0.045) (0.046) 

Married          1.534             1.810 1.392 

         (0.538)            (0.663) (0.505) 

Experience    1.116*** 1.114***       1.112*** 

         (0.021)            (0.020) (0.026) 

Experienced Past Weather Shock          1.398              1.939** 1.337 

         (0.438)             (0.644) (0.432) 

Main Occupation          1.030              1.079 1.110 

         (0.343)             (0.370) (0.379) 

Household Size          1.070              1.071 1.078 

         (0.051)             (0.051) (0.054) 

Owns house          1.520 1.830**  1.693* 

         (0.426)              (0.528)                       (0.481) 

Number of Rooms 1.105* 1.107* 1.092 

          (0.061)              (0.059) (0.063) 

Farm Size    2.065**    2.570***     2.325** 

          (0.746)              (0.923) (0.850) 

Freehold           0.959               0.856 0.875 

          (0.312)              (0.270) (0.294) 

Extension Contact 0.553  0.446**     0.394** 

 (0.204)              (0.167)   (0.1708) 

Access to Credit      2.237** 1.873*     2.169** 

 (0.788)               (0.663) (0.775) 

Floating Cages  1.081 1.031 0.970 

 (0.670) (0.621) (0.592) 

Extruded Feed Technology         0.046***       0.039***       0.046*** 

 (0.026) (0.022) (0.025) 

FFA     0.374**       0.288***   0.425* 

 (0.177) (0.133) (0.200) 

Ashanti 1.774 2.759 2.728 

 (1.174) (1.844) (1.909) 

Western 1.670 1.794 1.787 

 (0.689) (0.757) (0.764) 

Volta 0.984 1.477 1.142 

 (0.540) (0.785) (0.605) 

P       9.323***       9.818***       9.433*** 

 (0.915) (0.959) (0.920) 

Constant       0.000***       0.000***      0.000*** 

 (0.000) (0.000) (0.000) 

Observations 984 984 984 

Notes: The dependent variable is the time to adoption in years since 2003 when the technology was first developed. Hazard ratios and standard 

errors (in parentheses) are reported in the table. All regressions assume a Weibull survival distribution. Statistical significance is denoted by *** 

(1% level), ** (5% level), and * (10% level). P is the shape parameter. If P<1, the hazard decreases monotonically with time, P>1 implies hazard 

increases monotonically with time and P = 1 implies the hazard is independent of time. 



 

 

 

 

Table 4: Alternative Estimations for Akosombo Strain of Tilapia 
VARIABLE Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

σ (value function curvature)     0.585*  0.971 0.917 

    (0.162) (0.208) (0.198) 

α (probability weighting) 

 

    1.034  0.820 0.777 

    (0.450) (0.303) (0.290) 

λ (loss aversion) 

 

    1.089  1.006 0.976 

    (0.061) (0.044) (0.047) 

CRRA  0.812***  0.921*  0.926    

 (0.048) (0.044) (0.045)    

Adopters in village  3.163***  3.460***  3.386***  2.899***  3.415*** 3.355*** 

 (0.772) (0.773) (0.763) (0.696) (0.768) (0.764) 

#Adopters2  0.850***  0.837***  0.840***  0.862***  0.839*** 0.841*** 

 (0.039) (0.037) (0.037) (0.039) (0.037) (0.038) 

Ambiguity Preference    1.013   1.021 

   (0.021)   (0.024) 

#Adopters*Ambiguity Preference    1.002   1.003 

   (0.004)   (0.004) 

       

Other Farm/Farmer Characteristics   Yes    No   No   Yes   No No 

       

Regional Controls   Yes   Yes   Yes   Yes   Yes Yes 

       

       

P  9.824***  6.900***  6.923***  9.414***  6.873***  6.905*** 

 (0.957) (0.690) (0.690) (0.914) (0.688) (0.691) 

Constant  0.000***  0.000***  0.000***  0.000***  0.000***  0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Observations 984 984 984 984 984 984 

Notes: The dependent variable is the time to adoption in years since 2003 when the technology was first developed. Hazard ratios and 

standard errors (in parentheses) are reported in the table. All regressions assume a Weibull survival distribution. Statistical 

significance is denoted by *** (1% level), ** (5% level), and * (10% level). P is the shape parameter. If P<1, the hazard decreases 

monotonically with time, P>1 implies hazard increases monotonically with time and P = 1 implies the hazard is independent of 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Hazard Model Estimates for Adoption of Extruded Feed 
VARIABLE Ambiguity CRRA and Ambiguity  Ambiguity and TCN Parameters 

σ (value function curvature)    0.628* 
   (0.150) 

α (probability weighting) 

 

    1.833* 

   (0.633) 

λ (loss aversion) 

 

  0.979 

   (0.050) 

CRRA Parameter     0.893**  

  (0.043)  

# Prior Adopters in Village        3.173***        3.343***      3.120*** 

 (0.599) (0.640) (0.590) 

# Prior Adopters Squared       0.846***       0.838***       0.849*** 

 (0.031) (0.031) (0.031) 

# Adopters × Ambiguity Aversion 0.997 0.996 1.000 

 (0.011) (0.011) (0.012) 

Ambiguity Aversion   1.054* 1.045 1.053 

 (0.032) (0.032)  (0.034) 

Age      1.056***       1.052***        1.055*** 

 (0.011) (0.011)  (0.011) 

Male       0.307***       0.272***        0.263*** 

 (0.089) (0.081)  (0.081) 

Education       1.101***       1.101***        1.095*** 

 (0.036) (0.035)  (0.037) 

Married 0.717 0.759 0.666 

 (0.179) (0.193) (0.170) 

Experience       1.166***       1.161***        1.174*** 

 (0.020) (0.020) (0.021) 

Experienced Past Weather Shock     2.032**       2.322***     1.874** 

 (0.571) (0.672) (0.535) 

Main Occupation 0.757 0.762 0.849 

 (0.180) (0.182) (0.208) 

Household Size 0.987 0.995 0.996 

 (0.048) (0.047) (0.049) 

Owns house      2.117***       2.192***       2.014*** 

 (0.475) (0.495) (0.458) 

Number of Rooms   1.096*     1.018** 1.082 

 (0.052) (0.051) (0.056) 

Farm Size  1.063 1.097 1.078 

 (0.386) (0.396) (0.405) 

Freehold 1.158 1.018 0.991 

 (0.308) (0.276) (0.273) 

Extension Contact     0.515**    0.457**  0.482* 

 (0.162) (0.145) (0.180) 

Access to Credit       2.463***       2.268***       2.295*** 

 (0.760) (0.696) (0.695) 

Akosombo Strain    0.454*  0.459*  0.466* 

 (0.201) (0.203) (0.209) 

Floating Cages 0.585 0.483 0.424 

 (0.354) (0.298) (0.263) 

FFA    0.475**       0.431***    0.440** 

 (0.148) (0.132) (0.145) 

Ashanti 0.799 1.076 1.154 

 (0.396) (0.546) (0.625) 

Western 1.061 1.135 1.106 

 (0.343) (0.372) (0.375) 

Volta       0.282***       0.362***     0.349** 

 (0.110) (0.142) (0.144) 

P      13.329***     13.536***     13.428*** 

 (1.013) (1.024) (1.018) 

Observations 1,989 1,989 1,989 

Notes: The dependent variable is the time to adoption in years since 1994, the earliest date in our sample that a farmer reports 

learning about the technology. Hazard ratios and standard errors (in parentheses) are reported in the table. All regressions assume 

a Weibull survival distribution. Statistical significance is denoted by *** (1% level), ** (5% level), and * (10% level). P is the 

shape parameter. If P<1, the hazard decreases monotonically with time, P>1 implies hazard increases monotonically with time and 

P = 1 implies the hazard is independent of time. 

 



Table 6: Alternative Estimations for Extruded Feed Technology  
VARIABLE Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

σ (value function curvature)     0.636*  0.679**  0.659** 

    (0.151) (0.118) (0.116) 

α (probability weighting)     1.916*  1.730*  1.658* 

    (0.659) (0.515) (0.500) 

λ (loss aversion)     0.998  1.033  1.010 

    (0.048) (0.042) (0.044) 

CRRA Parameter  0.884***  0.871***  0.872***    

 (0.042) (0.035) (0.036)    

# Prior Adopters in Village  3.377***  3.898***  4.048***  3.200***  3.832***  3.933*** 

 (0.626) (0.640) (0.678) (0.588) (0.628) (0.655) 

# Prior Adopters Squared  0.836***  0.828***  0.825***  0.845***  0.832***  0.831*** 

 (0.031) (0.029) (0.029) (0.031) (0.029) (0.029) 

# Adopters × Ambiguity Aversion   0.988    0.989  

   (0.008)   (0.008) 

Ambiguity Aversion    1.029    1.043** 

   (0.019)   (0.020) 

       

Other Farm/Farmer Characteristics   Yes    No   No   Yes   No   No 

       

Regional Controls   Yes   Yes   Yes   Yes   Yes   Yes 

       

       

       

P 13.405*** 10.240*** 10.216*** 13.236*** 10.099*** 10.093*** 

  (1.014)  (0.769)  (0.768)  (1.004)  (0.760)  (0.759) 

Observations 1,989 1,989 1,989 1,989 1,989 1,989 

Notes: The dependent variable is the time to adoption in years since 1994, the earliest date in our sample that a farmer reports 

learning about the technology. Hazard ratios and standard errors (in parentheses) are reported in the table. All regressions assume 

a Weibull survival distribution. Statistical significance is denoted by *** (1% level), ** (5% level), and * (10% level). P is the 

shape parameter. If P<1, the hazard decreases monotonically with time, P>1 implies hazard increases monotonically with time and 

P = 1 implies the hazard is independent of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7: Hazard Model Estimates for Adoption of Floating Cages 

VARIABLE Ambiguity CRRA and Ambiguity  Ambiguity and TCN Parameters 

σ (value function curvature)    0.520* 
   (0.195) 

α (probability weighting) 

 

  0.612 

   (0.296) 

λ (loss aversion) 

 

  0.988 

   (0.063) 

CRRA Parameter        0.824***  

  (0.055)  

# Prior Adopters in Village        3.136***       3.493***      3.153*** 

 (0.599) (0.691) (0.617) 

# Prior Adopters Squared       0.877***       0.859***       0.874*** 

 (0.028) (0.029) (0.029) 

# Adopters × Ambiguity Aversion   1.019*   1.018*   1.020* 

 (0.010) (0.010) (0.011) 

Ambiguity Aversion      0.931**     0.929**     0.938** 

 (0.028) (0.027) (0.029) 

Age 1.002 0.991 1.004 

 (0.014) (0.015) (0.015) 

Male 1.989 1.181 1.428 

 (1.213) (0.706) (0.969) 

Education 1.059 1.039   1.064* 

 (0.038) (0.039) (0.039) 

Married 1.362   2.054* 1.007 

 (0.545) (0.896) (0.445) 

Experience       1.119***       1.127***       1.115*** 

 (0.024) (0.025) (0.024) 

Experienced Past Weather Shock   1.910*   1.980*     2.299** 

 (0.688) (0.751) (0.962) 

Main Occupation 1.016 0.843 1.073 

 (0.376) (0.335) (0.419) 

Household Size 0.990 0.948 0.970 

 (0.063) (0.060) (0.066) 

Owns house 0.642 0.663 0.685 

 (0.205) (0.224) (0.235) 

Number of Rooms 1.077    1.116* 1.082 

 (0.062) (0.068) (0.068) 

Farm Size  0.521 0.459 0.518 

 (0.709) (0.677) (0.741) 

Freehold 0.796 0.623 0.857 

 (0.291) (0.232) (0.313) 

Extension Contact     0.427**       0.335***       0.325*** 

 (0.151) (0.122) (0.130) 

Access to Credit      1.935**   1.913*     2.342** 

 (0.650) (0.666) (0.861) 

Akosombo Strain  0.335   0.195* 0.308 

 (0.263) (0.172) (0.262) 

Extruded Feed 0.651 0.673 0.667 

 (0.786) (0.825) (0.808) 

FFA       0.107***       0.101***       0.160*** 

 (0.045) (0.045) (0.076) 

Ashanti 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) 

Western 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) 

Volta       4.212***       4.813***     3.095** 

 (2.114) (2.561) (1.634) 

P      8.036***       8.217***       8.077*** 

 (0.827) (0.841) (0.835) 

Observations 2,070 2,070 2,070 

Notes: The dependent variable is the time to adoption in years since 1994, the earliest date in our sample that a farmer reports 

learning about the technology. Hazard ratios and standard errors (in parentheses) are reported in the table. All regressions assume 

a Weibull survival distribution. Statistical significance is denoted by *** (1% level), ** (5% level), and * (10% level). P is the 

shape parameter. If P<1, the hazard decreases monotonically with time, P>1 implies hazard increases monotonically with time and 

P = 1 implies the hazard is independent of time. 



Table 8: Alternative Specifications for Adoption of Floating Cage Technology 
VARIABLE Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

σ (value function curvature)     0.493*  0.678*  0.675* 

    (0.178) (0.144) (0.146) 

α (probability weighting) 

 

    0.655  0.747  0.712 

    (0.313) (0.286) (0.279) 

λ (loss aversion) 

 

    1.000  0.997  1.000 

    (0.014) (0.041) (0.047) 

CRRA Parameter  0.826***  0.902*  0.897*    

 (0.055) (0.049) (0.005)    

# Prior Adopters in Village  3.412***  3.800***  3.809***  3.111***  3.625***  3.607*** 

 (0.663) (0.649) (0.656) (0.603) (0.618) (0.620) 

# Prior Adopters Squared  0.864***  0.859***  0.854***  0.878***  0.865***  0.6863*** 

 (0.029) (0.025) (0.025) (0.029) (0.026) (0.026) 

# Adopters × Ambiguity Aversion    1.018*    1.021** 

   (0.009)   (0.010) 

Ambiguity Aversion    0.930**    0.931** 

   (0.028)   (0.031) 

       

Other Farm/Farmer Characteristics   Yes    No   No   Yes   No   No 

        

Regional Controls   Yes   Yes   Yes   Yes   Yes    Yes 

       

       

P  7.997***  6.002***  6.045***  7.883***  5.995***  6.039*** 

 (0.819) (0.601) (0.600) (0.815) (0.600) (0.600) 

Observations 2,070 2,070 2,070 2,070 2,070 2,070 

Notes: The dependent variable is the time to adoption in years since 1994, the earliest date in our sample that a farmer reports 

learning about the technology. Hazard ratios and standard errors (in parentheses) are reported in the table. All regressions assume 

a Weibull survival distribution. Statistical significance is denoted by *** (1% level), ** (5% level), and * (10% level). P is the 

shape parameter. If P<1, the hazard decreases monotonically with time, P>1 implies hazard increases monotonically with time and 

P = 1 implies the hazard is independent of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1: Prior Adopters for extruded feed (EFT), Akosombo strain of Tilapia (AST) and
floating cages (FCT)
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Appendix 

Table A1: Pairs of Lottery Choices and Expected Values in the BVB Experiments 

Row Option A Option B Expected Payoff 

Difference (A-B) 

Range of CRRA 

Parameter 

1 10/10 of 10 5/10 of 10 and 5/10 of 0 5 Infinity<r<6.579 

2 10/10 of 9 5/10 of 10 and 5/10 of 0 4 6.579<r<3.106 

3 10/10 of 8 5/10 of 10 and 5/10 of 0 3 3.106<r<1.943 

4 10/10 of 7 5/10 of 10 and 5/10 of 0 2 1.943<r<1.357 

5 10/10 of 6 5/10 of 10 and 5/10 of 0 1 1.357<r<1.000 

6 10/10 of 5 5/10 of 10 and 5/10 of 0 0 1.000<r<0.756 

7 10/10 of 4 5/10 of 10 and 5/10 of 0 -1 0. 756<r<0.576 

8 10/10 of 3 5/10 of 10 and 5/10 of 0 -2 0. 576<r<0.431 

9 10/10 of 2 5/10 of 10 and 5/10 of 0 -3 0. 431<r<0.301  

10 and no Switch 10/10 of 1 5/10 of 10 and 5/10 of 0 -4 0.301<r<infinity 

Notes: The table, adapted from Brick, Visser and Burns (2012), describes the lottery choices in the BVB experiments and, for each 

row, the range of values of the CRRA parameter r consistent with switching from option A to option B in that row. 

  



 

Table A2: Pairwise Lottery Choices and Expected Values in the TCN Experiments 

SERIES 1  

Row Option A Option B Expected Payoff Difference (A-B) 

1 3/10 of 40 and 7/10 of 10 1/10 of 68 and 9/10 of 5 7.7 

2 3/10 of 40 and 7/10 of 10 1/10 of 75 and 9/10 of 5 7 

3 3/10 of 40 and 7/10 of 10 1/10 of 83 and 9/10 of 5 6.2 

4 3/10 of 40 and 7/10 of 10 1/10 of 93 and 9/10 of 5 5.2 

5 3/10 of 40 and 7/10 of 10 1/10 of 106 and 9/10 of 5 3.9 

6 3/10 of 40 and 7/10 of 10 1/10 of 125 and 9/10 of 5 2 

7 3/10 of 40 and 7/10 of 10 1/10 of 150 and 9/10 of 5 -0.5 

8 3/10 of 40 and 7/10 of 10 1/10 of 185 and 9/10 of 5 -4 

9 3/10 of 40 and 7/10 of 10 1/10 of 220 and 9/10 of 5 -7.5 

10 3/10 of 40 and 7/10 of 10 1/10 of 300 and 9/10 of 5 -15.5 

11 3/10 of 40 and 7/10 of 10 1/10 of 400 and 9/10 of 5 -25.5 

12 3/10 of 40 and 7/10 of 10 1/10 of 600 and 9/10 of 5 -45.5 

13 3/10 of 40 and 7/10 of 10 1/10 of 1000 and 9/10 of 5 -85.5 

14 3/10 of 40 and 7/10 of 10 1/10 of 1700 and 9/10 of 5 -155.5 

 
SERIES 2  

15 9/10 of 40 and 1/10 of 30 7/10 of 54 and 3/10 of 5 -0.3 

16 9/10 of 40 and 1/10 of 30 7/10 of 56 and 3/10 of 5 -1.7 

17 9/10 of 40 and 1/10 of 30 7/10 of 58 and 3/10 of 5 -3.1 

18 9/10 of 40 and 1/10 of 30 7/10 of 60 and 3/10 of 5 -4.5 

19 9/10 of 40 and 1/10 of 30 7/10 of 62 and 3/10 of 5 -5.9 

20 9/10 of 40 and 1/10 of 30 7/10 of 65 and 3/10 of 5 -8 

21 9/10 of 40 and 1/10 of 30 7/10 of 68 and 3/10 of 5 -10.1 

22 9/10 of 40 and 1/10 of 30 7/10 of 72 and 3/10 of 5 -12.9 

23 9/10 of 40 and 1/10 of 30 7/10 of 77 and 3/10 of 5 -16.4 

24 9/10 of 40 and 1/10 of 30 7/10 of 83 and 3/10 of 5 -20.6 

25 9/10 of 40 and 1/10 of 30 7/10 of 90 and 3/10 of 5 -25.5 

26 9/10 of 40 and 1/10 of 30 7/10 of 100 and 3/10 of 5 -32.5 

27 9/10 of 40 and 1/10 of 30 7/10 of 110 and 3/10 of 5 -39.5 

28 9/10 of 40 and 1/10 of 30 7/10 of 130 and 3/10 of 5 -53.5 

 

SERIES 3 

29 5/10 of 25 and 5/10 of -4 5/10 of 30 and 5/10 of -21 6 

30 5/10 of 4  and  5/10 of -4 5/10 of 30 and 5/10 of -21 -4.5 

31 5/10 of 1  and  5/10 of -4 5/10 of 30 and 5/10 of -21 -6 

32 5/10 of 1  and  5/10 of -4 5/10 of 30 and 5/10 of -16 -8.5 

33 5/10 of 1  and  5/10 of -8 5/10 of 30 and 5/10 of -16 -10.5 

34 5/10 of 1  and  5/10 of -8 5/10 of 30 and 5/10 of -14 -11.5 

35 5/10 of 1  and  5/10 of -8 5/10 of 30 and 5/10 of -11 -13 

Notes: The table, adapted from Tanaka, Nguyen and Camerer (2010), describes the lottery choices in the TCN experiments. 

  



Table A3: Switching Point from Option A to Option B and Approximations of σ, α and λ 

 

Approximations of σ from Series 1 and 2 from TCN Lottery Pairs  

    Switching Point in Series 1 
S

w
it

ch
in

g
 P

o
in

t 
in

 S
er

ie
s 

2
 

σ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 NS 

1 1.50 1.40 1.35 1.25 1.15 1.10 1.00 0.95 0.90 0.85 0.80 0.75 0.65 0.55 0.50 

2 1.40 1.30 1.25 1.15 1.10 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60 0.55 0.50 

3 1.30 1.20 1.15 1.10 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.55 0.50 0.45 

4 1.20 1.15 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.50 0.45 0.40 

5 1.15 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.40 0.35 

6 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 

7 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 

8 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 

9 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 

10 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.20 

11 0.80 0.75 0.65 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.15 

12 0.75 0.65 0.60 0.55 0.50 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.20 0.15 0.10 

13 0.65 0.60 0.50 0.50 0.45 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.15 0.10 0.10 

14 0.60 0.50 0.45 0.45 0.40 0.35 0.35 0.30 0.25 0.20 0.15 0.10 0.10 0.10 0.05 

  NS 0.50 0.45 0.40 0.40 0.35 0.30 0.30 0.25 0.20 0.15 0.10 0.10 0.05 0.05 0.05 

 

Approximations of α from Series 1 and 2 from TCN Lottery Pairs  

    Switching Point in Series 1 

S
w

it
ch

in
g

 P
o
in

t 
in

 S
er

ie
s 

2
 

α 1 2 3 4 5 6 7 8 9 10 11 12 13 14 NS 

1 0.60 0.75 0.75 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.40 1.45 

2 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.35 1.40 

3 0.55 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 

4 0.50 0.60 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 

5 0.45 0.55 0.60 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 

6 0.45 0.50 0.55 0.60 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 

7 0.40 0.45 0.50 0.55 0.60 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 

8 0.35 0.40 0.45 0.50 0.55 0.60 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 

9 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

10 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.60 0.70 0.75 0.80 0.85 0.90 0.95 

11 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.60 0.70 0.75 0.80 0.85 0.90 

12 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 

13 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 

14 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

  NS 0.05 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.45 0.55 0.55 0.65 0.60 

Approximations of  from Approximated Values of σ   

Row σ=0.05 0.10 0.20 0.25 0.35 0.40 

1 infinity<λ<0.12 infinity<λ<0.13 infinity<λ<0.14 infinity<λ<0.14 infinity<λ<0.16 infinity<λ<0.17 

2 0.12<λ<1.23 0.13<λ<1.24 0.14<λ<1.26 0.14<λ<1.27 0.16<λ<1.30 0.17<λ<1.32 

3 0.23<λ<2.00 1.24<λ<1.96 1.26<λ<1.88 1.27<λ<1.84 1.30<λ<1.79 1.32<λ<1.77 

4 2.00<λ<2.41 1.96<λ<2.37 1.88<λ<2.31 1.84<λ<2.29 1.79<λ<2.26 1.77<λ<2.25 

5 2.41<λ<4.74 2.37<λ<4.58 2.31<λ<4.32 2.29<λ<4.21 2.26<λ<4.03 2.25<λ<3.95 

6 4.74<λ<5.89 4.58<λ<5.72 4.32<λ<5.43 4.21<λ<5.31 4.03<λ<5.11 3.95<λ<5.03 

7 5.89<λ<10.41 5.72<λ<10.17 5.43<λ<9.78 5.31<λ<9.62 5.11<λ<9.37 5.03<λ<9.29 

NS 10.41<λ<infinity 10.17<λ<infinity 9.78<λ<infinity 9.62<λ<infinity 9.37<λ<infinity 9.29<λ<infinity 

Notes: The table has been adapted from Tanaka, Nguyen and Camerer (2010). The first two panels show values of the preference 

parameters σ and α, approximated to the nearest increment of 0.05, consistent with each possible combination of switching points 

in Series 1 and Series 2 shown in Table A2. The third panel shows, for each row in Series 3, and specific σ values, the range of 

values of the preference parameter λ consistent with switching from option A to option B in that row



Table A4: Hazard Model Estimates for Extruded Feed Technology with Alternative Starting Dates 

Starting Year 1995 1996 1997 1998 1999 2000 

CRRA Parameter 0.893**  0.893**  0.892**  0.893**  0.891**  0.893**  

 (0.043)  (0.043)  (0.043)  (0.043)  (0.042)  (0.043)  

σ (value function  0.640*  0.639*  0.641*  0.635*  0.637

* 

 0.651* 

    curvature)  (0.151)  (0.151)  (0.151)  (0.150)  (0.150)  (0.153) 

Ambiguity Aversion 1.032 1.040 1.029 1.037 1.026 1.033 1.035 1.043 1.018 1.026 1.012 1.019 

 (0.033) (0.034) (0.033) (0.034) (0.033) (0.034) (0.033) (0.034) (0.033) (0.035) (0.034) (0.035) 

# Prior Adopters x 

Ambiguity Aversion 

0.997 1.001 0.997 1.001 0.998 1.001 0.997 1.001 0.998 1.002 1.000 1.003 

(0.011) (0.012) (0.011) (0.012) (0.011) (0.012) (0.011) (0.012) (0.012) (0.012) (0.012) (0.012) 

 
Notes: The table shows hazard ratios and standard errors (in parentheses) using alternative starting dates. All regressions 

assume a Weibull survival distribution. Statistical significance is denoted by *** (1% level), ** (5% level), and * (10% level). 

The specifications include the same controls as those listed in Table 5. 

 
  



 

Table A5: Hazard Model Estimates for Floating Cage Technology with Alternative Starting Dates 

Starting Year 1995 1996 1997 1998 1999 2000 

CRRA Parameter 0.832**

* 

0.832**

* 

 0.840***  0.847**  0.854**  0.860**  0.866**  
 (0.055)  (0.054)  (0.056)  (0.056)  (0.057)  (0.057)  

σ (value function  0.563  0.606  0.648  0.689  0.729  0.772 

   curvature)  (0.208)  (0.221)  (0.234)  (0.247)  (0.260)  (0.274) 

Ambiguity Aversion 0.930** 0.938** 0.930** 0.937** 0.930** 0.936** 0.930** 0.935** 0.929** 0.933** 0.927** 0.931** 

 (0.028) (0.029) (0.028) (0.029) (0.028) (0.030) (0.029) (0.030) (0.029) (0.030) (0.030) (0.031) 

# Prior Adopters x  

Ambiguity Aversion 

1.017* 1.019* 1.017* 1.019* 1.017* 1.018* 1.017* 1.018* 1.017* 1.018* 1.017* 1.018* 

(0.010) (0.011) (0.010) (0.011) (0.010) (0.011) (0.010) (0.011) (0.010) (0.011) (0.010) (0.011) 

Notes: The table shows hazard ratios and standard errors (in parentheses) using alternative starting dates. All regressions assume a 

Weibull survival distribution. Statistical significance is denoted by *** (1% level), ** (5% level), and * (10% level). The 

specifications include the same controls as those listed in Table 7.


