
Barany, Zsofia L and Siegel, Christian (2021) Engines of Sectoral Labor 
Productivity Growth.  Review of Economic Dynamics, 39 . pp. 304-343. 
ISSN 1094-2025. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/82263/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.red.2020.07.007

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/82263/
https://doi.org/10.1016/j.red.2020.07.007
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Engines of Sectoral Labor Productivity Growth∗
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Abstract

We study the origins of labor productivity growth and its differences across

sectors. In our model, sectors employ workers of different occupations and vari-

ous forms of capital, none of which are perfect substitutes, and technology evolves

at the sector-factor cell level. Using the model we infer technologies from US data

over 1960-2017. We find that sectoral differences in labor productivity growth are

largely due to sectoral differences in the growth rate of routine labor augment-

ing technologies. Neither capital accumulation nor the occupational employment

structure within sectors explains much of the sectoral differences in labor produc-

tivity growth.
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1 Introduction

The fact that labor productivity growth is different across sectors is well known. Aver-

age annual labor productivity growth between 1960 and 2017 in the US, for instance,

was 2.5% in the goods sector, much higher than the 1.5% in low-skilled and the 0.7% in

high-skilled services. However, it is not clear what the origins of these differences are.

Several explanations are possible, such as differences in technological progress across

sectors or across production factors, or differential trends in capital deepening or in

the use of other inputs. We study the drivers of sectoral labor productivity growth in a

production-side framework. What sets our framework apart from the literature is that

(i) we consider various types of occupational labor as distinct production factors, (ii)

technological change is sector-and-factor specific, and (iii) we infer the evolution of the

sector-and-factor specific technologies over time directly from the data. Essentially, we

perform model-based sectoral growth accounting.

In our model we consider different occupations as distinct production factors for

a variety of reasons.1 First, given that occupations entail very different tasks, they are

most likely not perfect substitutes. This implies that using the simple summation of

hours worked within a sector might not capture labor’s true contribution to a sector’s

output. The second reason is that occupations are likely to use different technologies,

which might grow at different rates. Third, the effects of new technologies and of the

accumulation of (different types of) capital on the various occupations might depend

on the tasks performed by that occupation, in particular on their routine content and

cognitive requirements. In our analysis we therefore differentiate between manual,

routine and abstract labor. We also distinguish between Information and Commu-

nication Technology (ICT) capital and non-ICT capital, allowing for different substi-

tutability with the various types of occupational labor. Altogether we thus have five

factors of production: three types of occupational labor, and two types of capital.

The second key feature of our framework is that we allow technologies to evolve

in a very flexible way, at the sector-factor level. It is common to think about sector-

1Our analysis is based on the firm side of the economy and on a production function where firms
hire workers into distinct occupations. We therefore think of different occupational labor inputs as
distinct production factors, irrespective of the fact that workers might be able to choose their occupation.
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specific technological change and factor-augmenting technologies. However, on the

one hand, technological change can occur differentially within sectors across factors

of production, even within labor and within capital factors. For example in the auto-

mobile manufacturing industry various tasks performed by routine workers (on the

production line) have been largely automated, without a direct impact on the pro-

ductivity of manual workers (e.g. cleaners and janitors) or of abstract workers (e.g.

accountants or managers). Thus technologies augmenting the different occupations in

this industry did not evolve in the same way. On the other hand, technological change

can occur differentially across sectors for a given factor. Production line workers, as

we discussed above, have seen large changes in technologies, with many tasks auto-

mated. Workers in material moving occupations in the shipping industry used to lift

heavy objects by hand or by hand-operated equipment. Now these occupations re-

quire operating cranes and forklifts to move containers around. Sales workers in real

estate nowadays can communicate more information and more easily with clients, but

still need to do viewings in person. These examples show how different the evolution

of technology of routine occupations can be across sectors. To accommodate for all

of these possible cases, we allow technological change to be sector-and-factor specific.

Note as we infer from the data these sector-and-factor specific technologies, the data

could suggest any pattern. For example technology could improve at the same rate

either for all factors within a sector (i.e. sector-specific productivity improvements), or

for a given factor across all sectors (i.e. factor-biased technological change).

In order to infer factor-augmenting technologies we need to make assumptions

about the structure of production.2 Similarly to Katz and Murphy (1992) and Krusell,

Ohanian, Rı́os-Rull, and Violante (2000) we assume a (nested) CES production func-

tion.3 Taking values for the substitution elasticities from the literature, we infer sector-

specific factor-augmenting technologies in each period from firm optimality condi-

tions. This approach is similar to Caselli (2005), Caselli and Coleman (2006), and
2Observing factor inputs and output allows the computation of a neutral productivity. This is how

total factor productivity (for instance at the sectoral level) is extracted; note that changes in measured
TFP might actually be driven by technological change augmenting only one individual factor of pro-
duction.

3These papers impose a specific process for factor-biased technological change, allowing them to
estimate the elasticity of substitution. In contrast, we do not impose any restrictions on technological
change.
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Buera, Kaboski, Rogerson, and Vizcaino (2018). In order to infer technologies we need

data on the occupations of workers within each sector, which we take from the US

Census and American Community Survey (ACS). Further, we combine data from the

U.S. Bureau of Economic Analysis (BEA) and EU KLEMS 2017 to obtain value added,

labor income shares, prices, employment and capital of different types by sector.

Our results show that allowing for technologies to be sector-and-factor specific is

crucial. Technologies have evolved at very differential rates, both across factors within

each sector and across sectors for a given factor (occupation or type of capital), echo-

ing the general conclusions of Caselli (2016).4 In particular, technologies augmenting

routine occupations have been growing the fastest in all sectors, but at very different

rates across sectors: at 5.6% per year in goods, at 2.9% in low-skilled services and at

1.3% in high-skilled services.

Through a series of counterfactual simulations, we study the role of technological

change and of inputs in labor productivity growth. We find that the single most impor-

tant driver of sectoral labor productivity growth differences is sector-specific routine

labor augmenting technological change. Without this type of technological change,

labor productivity growth would have been almost equalized across sectors. Specif-

ically, sector-specific routine labor augmenting technological change explains at least

59 percent of labor productivity growth in low-skilled services, 74 percent in goods

and 21 percent in high-skilled services.

As we found such an important role for sector-specific routine labor augmenting

technological change, we want to assess to what extent this can be assigned to overall

routine labor augmenting technology growth or to sectoral components in technologi-

cal progress. Therefore, we conduct a factor model decomposition of the growth rates

of all sector-specific occupational labor-augmenting technologies (or sector-occupation

specific technologies for short). With this, we establish that these growth rates are well

described as the sum of sector-specific and occupation-specific components, and both

types of components are required.5 Moreover, we show through counterfactuals that

4While Caselli investigates technological biases across labor and capital, and across workers of dif-
ferent education or experience, we consider biases across different factors of production (including
occupations and different types of capital).

5While these components of technological change have important equilibrium implications for the
labor market, the analysis of these effects is beyond the scope of this paper. In Bárány and Siegel (2019)
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the occupation-specific components do not explain sectoral differences in labor pro-

ductivity growth. This suggests that sector heterogeneity in routine labor augment-

ing technological change is the key driver of sectoral differences in labor productivity

growth rates.

Further counterfactuals allow us to evaluate the role of various other channels pro-

posed in the literature for sectoral productivity growth differences. As suggested by

Acemoglu and Guerrieri (2008), differential capital intensities and capital accumula-

tion could be driving the faster productivity growth in the goods sector. While we find

that capital accumulation contributes to labor productivity growth (without it growth

would have been 39 percent lower on average), it does not generate the sectoral dif-

ferences in labor productivity growth observed in the data. Instead, we confirm the

finding of Herrendorf, Herrington, and Valentinyi (2015), that differences in labor-

augmenting technological progress across sectors are crucial. They do not differentiate

labor by occupation, and as such cannot identify the sources of the sectoral differences

in labor-augmenting technological change. In principle, these could be driven by dif-

ferences in sectoral intensities of occupational employment and technological change

specific to occupations, as suggested by Duernecker and Herrendorf (2016) and by Lee

and Shin (2017). However, in our framework we find that differences in occupational

employment structure across sectors do not contribute much to sectoral labor produc-

tivity growth differences. Instead our results indicate that the sectoral differences in

the growth rate of routine labor augmenting technologies themselves are crucial.

We conduct our analysis at the sectoral level, and it also has implications for aggre-

gate productivity growth, as emphasized in Duarte and Restuccia (2010), Duernecker,

Herrendorf, and Valentinyi (2017), and Duarte and Restuccia (2019). We find that in

our context, i.e. taking into account five factors of production and their technologies,

technological change is much more important than input use for labor productivity

growth also in the aggregate. A novel finding of our paper is that the contribution of

routine labor augmenting technological change is large and increasing over time. In its

absence aggregate growth would have been lower by about a third between 1960-1990,

and there would have been hardly any growth over 1990-2017.

we use a simplified production function to study these effects in general equilibrium.
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The paper proceeds as follows: section 2 shows the facts about sectoral production

on which we base our analysis. Section 3 introduces the production-side framework

used to infer technologies and explains its implementation. In section 4 we analyze

the role of inputs and technologies in labor productivity growth through counterfac-

tuals. In section 5 we verify that our results are very robust to alternative substitution

elasticities, to a different nesting of the production function, to controlling for workers’

human capital, and to different treatments of the data. The final section concludes.

2 Factor use and factor income shares by sector

In this section we describe the data used to inform our specification of the sectoral

production functions. From this data we will also infer – using our model’s opti-

mality conditions – the evolution of the sector-specific factor augmenting technolo-

gies. We combine data from the U.S. Bureau of Economic Analysis (BEA) on sectoral

value added and its components, on sectoral prices, on sectoral employment, and on

fixed assets, with data on the allocation of capital across sectors from EU KLEMS 2017.

To get more detailed information on the occupations of workers within each sector,

we use US Census and American Community Survey (ACS) data between 1960 and

2017 from IPUMS, provided by Ruggles, Alexander, Genadek, Goeken, Schroeder, and

Sobek (2010). Since we draw on various data sources which are based on different in-

dustry classification systems, we map the fine industries of each system into our broad

sector categories, as explained in detail in Table A1 in the appendix.

We use annual data on nominal value added, real value added and prices by indus-

try from the BEA.6 We group all non-service industries into the goods sector, and sim-

ilarly to much of the recent literature on structural transformation, we break services

into two, based on the skill or education level of workers in the industry.7 It is com-

mon to split services, as already in 1947 the service industries as a whole constituted
6The industry categories in this dataset are based on the North American Industry Classification

System (NAICS)).
7Services are split based on whether they are high- or low-skilled in Buera and Kaboski (2012),

whether they are low- or high-productivity growth in Duernecker et al. (2017), or whether they are
traditional/modern services in Duarte and Restuccia (2019). While these splits are based on different
criteria, in practice the overlap between such classifications is substantial. In appendix E.5 we also
report results when dividing the goods sector into agriculture and industry.
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around 60 percent of total value added. We aggregate real value added and price data

on fine industry categories into our three broad sectors – low-skilled services, goods,

and high-skilled services – using the cyclical expansion procedure, as for example in

Herrendorf, Rogerson, and Valentinyi (2013). The left panel of Figure 1 shows the

1960 1980 2000
0

1

2

3

4

5

6

7
Real VA quantity indices

1960 1980 2000
0

0.2

0.4

0.6

0.8

1

1.2
Price indices

1960 1980 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7
Value added (VA) shares

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Allocation of computer capital across sectors

Low-skilled services Goods High-skilled services

Figure 1: Nominal value added, real value added and prices
Notes: Authors’ own calculations based on Value Added by Industry data from the BEA for the years
1947-2017. The left panel shows the evolution of nominal value added shares across sectors (summing
to 1 in each period). The middle panel shows the evolution of real value added quantity indices by
sector (these are normalized to be 1 in 1960 on the graph). The right panel shows the evolution of
sectoral price indices (normalized to 1 in 2009).

evolution of (nominal) value added shares, which displays structural transformation:

the share of value added produced in high-skilled services increased steadily from the

1940s, the share produced in goods steeply declined, and in low-skilled services it also

declined albeit at a lower rate. The evolution of real value added by sector (depicted

in the middle panel) together with the evolution of sectoral employment gives us sec-

toral labor productivity growth. The steady increase in the nominal value added share

in high-skilled services can be reconciled with its lower growth in real terms vis-a-vis

low-skilled services by the steep increase in the relative price of high-skilled services,

as shown in the right panel.

We next investigate the use of various factor inputs and their income shares in each

sector. As a first step, we calculate the share of sectoral income paid to capital (ΘJ ) and

to labor (1−ΘJ ), using data on the Components of Value Added by Industry from the
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Figure 2: Labor income share by sector
Notes: Compensation of employees relative to gross value added in a sector calculated from Compo-
nents of Value Added by Industry data provided by the BEA for 1947-2017.

BEA. We calculate the labor income share as:8

1−ΘJ =
Compensation of employees in sector J

Gross value added in sector J
.

The difficulty is that for the period before 1987 this data is only available based on

the Standard Industrial Classification (SIC), whereas for the period post 1997 it is only

available based on the NAICS classification of industries. Therefore we have to com-

bine these two data sources based on different industry classification systems. While

the individual industries are not the same in these two classifications, when we ag-

gregate them up to our three broad sectors, the two give similar results for the period

of the overlap. As the NAICS data was introduced in 1997, we use the (native) SIC

data until 1997, and the NAICS data from that point onwards.9 Figure 2 plots the evo-

lution of the labor income share by sector as well as for the aggregate economy. The

8This definition of the labor income share excludes proprietors’ income. We choose to do this for two
reasons. First, Elsby, Hobijn, and Şahin (2013) call this the unambiguous part of the labor income share.
Second, we take data on workers from the Census and the ACS, and there we only include employees,
which makes this definition of labor income share consistent with our approach there. However, in an
extension we include the self-employed in our analysis. While there are some differences in the sectoral
labor income shares, our main results still carry through, see appendix E.4 for details.

9Herrendorf et al. (2015) also combine data on the labor income and employment shares across
different industries based on the SIC and the NAICS classification.
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labor income share in the economy as a whole increased until the early 1970s, which

was followed by a virtually equal reduction thereafter.10 There are two important ob-

servations. First, there are substantial sectoral differences in the labor income share.

For most of the period between 1947 and 2017 the goods sector had the highest labor

income share, while high-skilled services had the lowest labor income share. The sec-

ond thing to note is that these labor income shares are far from constant: following a

common increasing trend until the 1970s, the labor income share declined steeply in

the goods sector, declined slightly in low-skilled services, whereas it stayed roughly

constant in high-skilled services. Thus to be able to replicate these patterns, we need

sectoral production functions which allow the labor income share to change over time,

e.g. not of the Cobb-Douglas form.

We next analyze the use of capital. In our analysis we distinguish between two

types of capital, ICT and non-ICT, as discussed in the introduction. The BEA Fixed

Asset Accounts contains annual data on the nominal stock and on chain-type quantity

indices of various types of capital for the entire period of our analysis. When construct-

ing ICT capital from the BEA we include Information processing equipment and Software,

while non-ICT capital comprises of all other non-residential capital.11 Starting from

data on these finer categories of capital we calculate quantity and price indices for our

two aggregates using the cyclical expansion procedure. Figure 3 in the left and middle

panel shows the evolution of the real quantity and price of ICT and non-ICT capital in

the US economy between 1960 and 2017. The left panel shows that ICT capital grew

much faster over this period than non-ICT capital. The huge improvement in ICT tech-

nology is reflected in the steep fall of ICT prices from the 1980s and the steep increase

in ICT capital from the 1990s onwards.

In order to measure the allocation of ICT capital across sectors we use data from

EU KLEMS 2017. The EU KLEMS 2017 release contains annual data on various types

10When comparing this series with the widely noted decline in the labor income share (Elsby et al.
(2013) and Karabarbounis, Loukas and Neiman, Brent (2014) for example), it is important to bear in
mind that we exclude proprietors’ income from labor income. Since proprietors’ income has been falling
throughout this period, and especially until the 1970s, it roughly offsets the increase in the aggregate
labor income share until the 1970s, and makes the subsequent decline slightly more pronounced.

11Non-ICT capital consist of Industrial equipment, Transportation equipment, Other equipment, Nonresi-
dential structures, Research and development and Entertainment, literary, and artistic originals, as well as all
non-residential government fixed assets except for Software, which is included in ICT capital.
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Figure 3: Real quantity and price of ICT and non-ICT capital, and allocation of ICT
capital across sectors
Notes: The left panel shows real quantity indices, while the middle panel shows the price indices of ICT
and non-ICT capital (all indices are normalized to 1 in 2009), both are computed based on data from
the BEA Fixed Asset Accounts. The right panel shows the evolution of the share of ICT capital across
sectors (summing to 1), calculated from EU KLEMS data.

of capital by industry (based on the International Standard Industrial Classification

of All Economic Activities (ISIC)) from 1970 onwards. When constructing the alloca-

tion of ICT capital across sectors from the EU KLEMS data we include the following

categories: Computing equipment, Communications equipment, and Computer software and

databases. The right panel in Figure 3 shows the fraction of nominal ICT capital stock in

each sector, and shows that most of the ICT capital stock is in the high-skilled service

sector, with a roughly equal quantity in low-skilled services and goods. Note that data

on the allocation of ICT capital across sectors is only available between 1970 and 2015.

To infer technologies from the data, as detailed in the next section, we impute values

for this allocation in 1960 and in 2017. Since the allocation across sectors seems quite

flat between 1970 and 1978 and between 2010 and 2015, we impose the 1970 values for

1960, and the 2015 values for 2017.

Finally, we break down employment and labor income within each sector by oc-

cupation. As discussed in the introduction, we believe that in order to understand

what is driving sectoral labor productivity growth it is crucial to differentiate between

occupations. Since the national accounts do not contain any information on the oc-

cupation of workers within industries, we turn to the decennial US Census and ACS

data between 1960 and 2017 from IPUMS, provided by Ruggles et al. (2010), which

contains information on the occupation of workers. We follow the classification of oc-
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cupations into three categories by Acemoglu and Autor (2011): manual (non-routine

non-cognitive), routine (both cognitive and non-cognitive) and abstract (non-routine

cognitive). We implement this classification by relying on a harmonized and balanced

panel of occupational codes as in Autor and Dorn (2013) and Bárány and Siegel (2018).

We then classify each worker into one of these three broad occupations and into one

of the three sectors defined earlier.12 Given this classification we can calculate the

share of hours worked by occupation o workers within a sector J . We measure sec-

toral employment shares and overall employment growth using Full Time Equivalent

(FTE) employees by industry provided by the BEA.13 To get the employment share of

a sector-occupation cell, loJ , we multiply the within-sector hours share of occupation

o (from the Census/ACS) by the employment share of sector J in the economy (from

the BEA). We also calculate the labor income share of occupation o in sector J as:

θoJ ≡
earnings of occupation o workers in sector J

earnings of sector J workers
. (1)

Relative average occupational wages within sectors can then be calculated as

woJ
wrJ

=
θoJ
θrJ

lrJ
loJ
. (2)

Figure 4 shows the employment share of each sector (lJ ) and of each sector-occupation

cell (loJ , in the top row), as well as within each sector the labor income share of each

occupation (θoJ , in the middle row) and the average wage of abstract and manual rel-

ative to routine occupations (waJ/wrJ and wmJ/wrJ in the bottom row).14

Clearly, the share of labor income earned by routine workers declined in each sec-

tor (as seen in the middle row). This is driven by the falling employment share of

routine workers (plotted in the top row), and by their wages which tend to fall relative

to the other occupations (bottom row). Note that the relative average occupational

12See appendix A for more details on the classification of occupations and Table A1 for industries.
13As for the data on the components of value added, we again have to combine data based on two

different industry classification systems (SIC until 1998, NAICS afterwards).
14In section 5.3 we consider a variant of this framework where we control for observable character-

istics of workers (as one might be concerned that these are confounding the patterns of average wages).
Note, the income shares we show here are informative even if there is heterogeneity amongst workers
in terms of their human capital.
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Figure 4: Sector-occupation income shares, hours shares, and relative wages
Notes: Sectoral employment shares are based on BEA data on full time equivalent workers. The data
on occupational employment, income and wages is taken from IPUMS US Census data for 1960, 1970,
1980, 1990, 2000 and the American Community Survey (ACS) for 2010 and 2017. For three broad sectors
(low-skilled services, goods, high-skilled services) and three occupational categories (manual, routine,
abstract), this figure plots in the top row the evolution of employment shares in sector-occupation cells,
as well as in sectors (dark gray dotted lines), in the middle row each occupation’s share in sectoral labor
income, and in the bottom row the ratio of manual to routine wages and of abstract to routine wages
within the given sector.

hourly wages are not equalized across sectors. This is an important observation, and

we want to allow for sectoral differences in occupational wages in our model and

when extracting technologies.

The top row of Figure 4 demonstrates that all of the three sectors employ workers

in each of the three occupations, but at different intensities. It is therefore a possibility

that the observed sectoral differences in labor productivity growth are due to differ-

ences in occupational labor use. Note that the goods sector is the most intensive in

routine workers, while high-skilled services is the most intensive in abstract workers.
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Now suppose that technological change increased routine workers’ productivity the

most, but equally across sectors. It is then conceivable that the differences in occu-

pational intensities generate the sectoral differences in measured labor productivity

growth (in terms of all workers), especially the high growth in goods. Moreover, the

observed slowdown in aggregate productivity growth could be driven by the contrac-

tion of routine employment in all sectors. We evaluate the role of these mechanisms in

section 4.

3 A production side framework

In order to study the drivers of sectoral labor productivity growth, we specify a pro-

duction side framework. We assume a relatively flexible CES functional form for sec-

toral production, which allows matching the data – especially the time varying factor

income shares – we documented in the previous section. Note that with CES pro-

duction functions relative factor prices in equilibrium depend both on relative sup-

plies and on relative productivities. This means the framework does not hard-wire

where changes in relative wages are stemming from. Another advantage of the CES

framework is that it is relatively simple and does not require too many parameters

(as argued in Krusell et al. (2000)). As discussed in the introduction, we consider as

inputs manual, routine and abstract occupational labor, as well as ICT and non-ICT

capital. We back out the path of factor-augmenting technologies from each sector’s

optimality conditions, conditional on values for the various elasticities of substitution,

using data on sectoral growth rates, value added, quantities and prices of factor in-

puts. It is important to note that we conduct this exercise making assumptions about

the production side of the economy only. We do not need to take a stance on where the

demand for goods and services stem from, since observing the sectoral value added

is sufficient. Similarly, observing the quantities and prices of factors employed in pro-

duction is sufficient and we do not need to model capital accumulation or labor supply

choices. The method in this exercise is similar to Buera et al. (2018), but with a very

different focus. We allow for heterogeneity in labor across occupations and want to

identify the drivers of sectoral labor productivity growth.
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3.1 Sectoral production

Firms in sector J combine occupational labor (manual, routine and abstract), ICT cap-

ital and non-ICT capital as inputs according to a nested CES production function. The

inner most nest gives the routine aggregate:

RAJ,t =
[
αrJ(ArJ,tlrJ,t)

σc−1
σc + αcJ(AcJ,tcJ,t)

σc−1
σc

] σc
σc−1

, (3)

where lrJ,t is routine labor, cJ,t is ICT capital used in sector J , ArJ,t and AcJ,t are sector-

specific routine labor- and respectively ICT capital-augmenting technologies, all at time

t. We denote the time-invariant factor intensities in sector J by αrJ and αcJ , where

αrJ +αcJ = 1. This inner nest combines routine labor and ICT capital with an elasticity

of substitution σc.

The middle nest gives the labor aggregate:

LAJ,t =

(
αmJ(AmJ,tlmJ,t)

ρ−1
ρ + αaJ(AaJ,tlaJ,t)

ρ−1
ρ + αRAJRA

ρ−1
ρ

J,t

) ρ
ρ−1

. (4)

In this formulation loJ,t is occupation o ∈ {m, a} labor used in sector J , and AoJ,t > 0 is

a sector-specific factor-augmenting technology term for manual and abstract occupations,

all in period t. We denote the factor weights by αmJ , αaJ and αRAJ , with αmJ + αaJ +

αRAJ = 1. This nest essentially combines the different types of labor, including the

most inner routine aggregate, with an elasticity of substitution ρ.

The output in sector J is produced according to:

YJ,t =
[
αLAJLA

σ−1
σ

J,t + αkJ(AkJ,tkJ,t)
σ−1
σ

] σ
σ−1

(5)

In this formulation kJ,t is non-ICT capital used in sector J in period t and AkJ,t > 0 is

a sector-specific non-ICT capital-augmenting technology in period t. We denote the time-

invariant factor weights in sector J by αkJ and αLAJ ; these sum to 1. This outer-most

layer combines aggregate labor and non-ICT capital with a substitution elasticity σ.

Each CES-layer of the production function allows for factor income shares (at the

sectoral level) to change over time which is one of the salient features we have doc-
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umented in the data in the previous section. The most inner nest of the production

function for σc > 1 reflects the idea that ICT is a good substitute for routine work-

ers (which is the consensus in the literature, e.g. Autor, Levy, and Murnane (2003),

Autor and Dorn (2013)). The aggregator of occupational labor inputs is based on the

notion that workers in different occupations perform different tasks and are thus im-

perfect substitutes in production, as for instance emphasized in a task-based model of

the labor market (see Acemoglu and Autor (2011)). For ρ ∈ (0, 1) occupational inputs

are complements, and if ICT capital substitutes for routine workers, it complements

workers of other occupations, as in Autor and Dorn (2013).15

Notice that the AfJ,t terms capture sector-specific factor-augmenting technologies

in sector J in period t. The time-invariant αfJ capture the intensity at which sector J

uses an input factor (or input aggregate) f in production. Without further assumptions

or normalization regarding the weights, these are not separately identifiable. It is the

following combination of the weights and the factor-augmenting technologies which

we can extract from the data relying on key equations of the model:

ZkJ,t = α
σ
σ−1

kJ AkJ,t, (6)

ZoJ,t = α
σ
σ−1

LAJα
ρ
ρ−1

oJ AoJ,t for o ∈ {m, a}, (7)

ZnJ,t = α
σ
σ−1

LAJα
ρ
ρ−1

RAJα
σc
σc−1

nJ AnJ,t for n ∈ {r, c}. (8)

It is precisely theseZfJ,t terms that matter for labor productivity growth. Since ∆ logZfJ,t =

∆ logAfJ,t, any change in the inferred ZfJ,t over time reflects sector-specific factor-

augmenting technological change. We refer toZfJ,t as sector-specific factor-augmenting

technologies.

The evolution of sectoral output is entirely driven by changes in the amount of

effective factor inputs over time. How large the impact of a change in a given factor

is depends on the initial importance of this factor. Below we express the gross growth

rate in each nest of the production function as a weighted average of the growth in

15Since there is no hard evidence on elasticities of substitution between occupational labor inputs,
for simplicity we assume that they are combined in the CES aggregator in this ‘symmetric’ way with a
common elasticity. Our framework can easily accommodate other nestings of occupational labor inputs
and capital, and we explore one particular alternative as a robustness check in section 5.2.

15



each effective input raised to the relevant power.

RAJ,t

RAJ,0
=

[
(ZrJ,0lrJ,0)

σc−1
σc

(ZrJ,0lrJ,0)
σc−1
σc + (ZcJ,0cJ,0)

σc−1
σc︸ ︷︷ ︸

≡ωrJ

[
ZrJ,tlrJ,t

ZrJ,0lrJ,0

]σc−1
σc

+
(ZcJ,0cJ,0)

σc−1
σc

(ZrJ,0lrJ,0)
σc−1
σc + (ZcJ,0cJ,0)

σc−1
σc︸ ︷︷ ︸

≡ωcJ

[
ZcJ,tcJ,t

ZcJ,0cJ,0

]σc−1
σc

] σc
σc−1

LAJ,t

LAJ,0
=

[
(ZmJ,0loJ,0)

ρ−1
ρ

(ZmJ,0lmJ,0)
ρ−1
ρ +(ZaJ,0laJ,0)

ρ−1
ρ +RA

ρ−1
ρ

J,0︸ ︷︷ ︸
≡ωmJ

[
ZmJ,tlmJ,t

ZmJ,0lmJ,0

] ρ−1
ρ

+
(ZaJ,0laJ,0)

ρ−1
ρ

(ZmJ,0lmJ,0)
ρ−1
ρ +(ZaJ,0laJ,0)

ρ−1
ρ +RA

ρ−1
ρ

J,0︸ ︷︷ ︸
≡ωaJ

[
ZaJ,tlaJ,t

ZaJ,0laJ,0

] ρ−1
ρ

+
RA

ρ−1
ρ

J,0

(ZmJ,0lmJ,0)
ρ−1
ρ +(ZaJ,0laJ,0)

ρ−1
ρ +RA

ρ−1
ρ

J,0︸ ︷︷ ︸
≡ωRAJ

[
RAJ,t

RAJ,0

] ρ−1
ρ

] ρ
ρ−1

YJ,t

YJ,0
=

[
LA

σ−1
σ

J,0

LA
σ−1
σ

J,0 + (ZkJ,0kJ,0)
σ−1
σ︸ ︷︷ ︸

≡ωLAJ

[
LAJ,t

LAJ,0

]σ−1
σ

+
(ZkJ,0kJ,0)

σ−1
σ

LA
σ−1
σ

J,0 + (ZkJ,0kJ,0)
σ−1
σ︸ ︷︷ ︸

≡ωkJ

[
ZkJ,tkJ,t

ZkJ,0kJ,0

]σ−1
σ

] σ
σ−1

(9)

This formulation shows that the impact of a change in each effective input depends on

the relative initial amount of the given effective input (to the relevant power) within

the given nest. These weights depend on a combination of initial technology levels and

the initial quantity of inputs. The weights ωrJ and ωcJ , for example, determine how

large an impact a change in the effective routine labor and in the effective ICT capital

has on the growth of RAJ . These weights play an important role when evaluating the

impact of changes in factor quantities and in factor-augmenting technologies.

3.2 Inferring factor-augmenting technologies

The assumptions about the production side of the economy allow us to infer sector-

specific factor-augmenting technologies (sector-factor specific technologies for short,

the ZfJ,ts) from observables. In addition to the sectoral production functions, we as-

sume that there is perfect competition in all markets, such that firms take prices as

given.

Here we describe in detail how we can back out the factor-augmenting technolo-

gies from the data. First, using optimality conditions for production in each sector we

express relative factor-augmenting technologies within a sector and period. Second,

we derive how the growth of sectoral value added pins down the evolution of tech-
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nologies within each sector over time.16 In what follows, where possible, we omit the

time t subscripts to simplify the notation.

We have shown in Figure 4 that average occupational wages are not equalized

across sectors, and we want to allow for this in our model. We therefore assume that

wages are sector-occupation specific and denote them by woJ . Assuming further that

the rental rates of ICT (Rc) and non-ICT capital (Rk) are equalized across sectors, the

profit maximization problem of firms in each sector is

max
{loJ},cJ ,kJ

pJYJ −
∑
o

woJ loJ −RccJ −RkkJ ,

subject to (5), where pJ denotes the price of sector J output. Optimal input use in each

sector has to satisfy the following first order conditions:

∂πJ
∂loJ

= pJY
1
σ
J LA

σ−ρ
ρσ

J Z
ρ−1
ρ

oJ l
− 1
ρ

oJ − woJ = 0 for o ∈ {m, a}, (10)

∂πJ
∂lrJ

= pJY
1
σ
J LA

σ−ρ
ρσ

J RA
ρ−σc
σcρ

J Z
σc−1
σc

rJ l
− 1
σc

rJ − wrJ = 0, (11)

∂πJ
∂cJ

= pJY
1
σ
J LA

σ−ρ
ρσ

J RA
ρ−σc
σcρ

J Z
σc−1
σc

cJ c
− 1
σc

J −Rc = 0, (12)

∂πJ
∂kJ

= pJY
1
σ
J Z

σ−1
σ

kJ k
− 1
σ

J −Rk = 0. (13)

Inferring technologies within sectors. We can express the relative optimal demand

for factor inputs from the first order conditions as a function of relative factor prices

and relative technologies. We invert these to express relative technologies in terms of

relative wages, rental rates and relative factor incomes within sectors.

The first order conditions on manual and abstract labor, (10), pin down the optimal

relative labor use as:

laJ
lmJ

=

(
wmJ
waJ

)ρ(
ZaJ
ZmJ

)ρ−1

. (14)

It is optimal to use more abstract relative to manual labor in sector J if the relative

manual wage, wmJ/waJ , is higher. Additionally, if the term (ZaJ/ZmJ)ρ−1 is larger it

is optimal to use relatively more abstract labor in that sector. Multiply the above by
16The full derivations can be found in appendix C.
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waJ/wmJ and re-arrange to get:

ZmJ
ZaJ

=
wmJ
waJ

(
wmJ lmJ
waJ laJ

) 1
ρ−1

=
wmJ
waJ

(
θmJ
θaJ

) 1
ρ−1

, (15)

where θmJ = (wmJ lmJ)/(
∑

owoJ loJ) is the share of labor income in sector J that is

going to manual workers. Equation (15) shows that conditional on ρ, observing the

relative wage and the relative income share of manual and abstract workers within

a sector, both shown in Figure 4, allows us to infer relative occupation-augmenting

technologies in that sector at a given point in time. This equation thereby also implies

the relative growth rates of these technologies over time.

Similarly, from the first order conditions on routine labor and ICT capital, (11) and

(12), we can express the relative demand for these factors, and consequently their rel-

ative Z as well:

ZcJ
ZrJ

=
Rc

wrJ

(
ΘcJ

(1−ΘJ)θrJ

) 1
σc−1

, (16)

where ΘcJ = (RccJ)/(pJYJ) is the share of income in sector J paid to ICT capital, and

ΘJ = (RccJ + rkkJ)/(pJYJ) is the share of income in sector J paid to both types of

capital. This expression is very similar to the one in (15), except that it is a different

elasticity of substitution that is relevant.

Expressing the remaining two relative technology levels within sectors, ZrJ/ZmJ

and ZkJ/ZmJ , follows a similar principle, but is slightly more convoluted, and we del-

egate the details of these derivations to appendix C. Here we only explain the intuition.

First, from the optimal use of routine labor relative to ICT capital, we express RAJ , the

routine aggregate, in terms of routine labor only. This then allows us to express the

optimal use of manual relative to routine labor within a sector, which, multiplied by

wrJ/wmJ , gives us the relative technologies as:

ZmJ
ZrJ

=
wmJ
wrJ

(
θmJ
θrJ

) 1
ρ−1
[
1 +

ΘcJ

(1−ΘJ)θrJ

] ρ−σc
(σc−1)(ρ−1)

. (17)

Next we express LAJ , the labor aggregate, in terms of manual labor only, which
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again allows us to express the optimal use of manual labor relative to non-ICT capital.

Multiplying this by relative factor prices and re-arranging we get:

ZkJ
ZmJ

=
Rk

wmJ

(
1

θmJ

) 1
ρ−1
(

ΘJ −ΘcJ

1−ΘJ

) 1
σ−1
(

1 +
ΘcJ

1−ΘJ

) σ−ρ
(ρ−1)(σ−1)

. (18)

Thus, we showed how to infer all relative technologies within a sector and a period

from observables, conditional on the elasticities ρ, σc and σ. Taking for example ZkJ as

the base technology, all other factor-augmenting technologies in sector J are propor-

tional to ZkJ , where the proportionality depends on observables in the data, and on

the values of the three substitution elasticities.

Inferring technologies over time. The last step is to pin down the evolution of the Zs

over time in each sector, as well as the initial values of the technologies. Until now we

did not index any variable by time, as we explained how to infer the relative Zs within

a period. Plugging all the optimal relative input use expressions in (5) sectoral output

can be expressed as:

YJ,t = ZkJ,tkJ,t

(
1

ΘJ,t −ΘcJ,t

) σ
σ−1

.

The evolution of the ZkJ,t over time is then given by:

ZkJ,t
ZkJ,0

=
YJ,t
YJ,0

kJ,0
kJ,t

(
ΘJ,t −ΘcJ,t

ΘJ,0 −ΘcJ,0

) σ
σ−1

. (19)

Again in equation (19) all right-hand side variables can be observed in the data, and

hence, conditional on σ, this equation gives us the growth rate of ZkJ,t over time. In-

tuitively, the change in the capital-augmenting technology reflects by how much the

sector’s value-added per unit of capital changed (the first two factors) and how this

value-added is split between the production factors taking into account the substitu-

tion elasticity (the third factor).

Finally, we need to pin down the initial level of Zs. It is important to note that

these have no impact on our conclusions regarding the drivers of sectoral labor pro-

ductivity growth; they only matter for the growth rate of labor productivity in the

aggregate economy.17 We infer these initial Zs from initial sectoral prices. Using the

17Even for this, only the relative initial Zs matter, i.e. we could normalize one of the sectors’ ZfJ,0
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above expression for sectoral output in the first order condition on non-ICT capital we

get:

ZkJ,0 =
Rk,0

pJ,0
(ΘJ,0 −ΘcJ,0)

1
σ−1 . (20)

Equations (15), (16), (17), (18), (19) and (20) describe how to infer factor-augmenting

technologies in each sector and in all periods. Note that equations (15) to (19) are im-

plied by firms’ cost minimization and therefore would still hold if there were imperfect

competition in product markets. As such, our conclusions about the drivers of sec-

toral labor productivity growth would also hold if firms were charging – potentially

time-varying – mark-ups. It is worth to point out that as the observed path of income

shares, factor prices and quantities does not evolve the same way across sectors, there

is no reason why the technologies of a given factor should evolve the same way across

sectors. Thus these technologies in general will be sector-factor specific.

3.3 Implementation

To infer the sector-specific factor-augmenting technologies from the data using equa-

tions (15) to (20), we need the value of three elasticities. First, we need the elasticity

of substitution between non-ICT capital and the labor aggregate, σ. The overwhelm-

ing majority of studies which estimate the elasticity of substitution between capital

and labor from aggregate data finds values below one, see Table 1 in León-Ledesma,

McAdam, and Willman (2010) for a recent summary.18 Lawrence (2015) obtains esti-

mates ranging from 0.27 to 0.96 for this elasticity in the (total) manufacturing sector.

Oberfield and Raval (2014) follow a more micro approach, and estimate the elasticity

of substitution between capital and labor in the US manufacturing sector by aggregat-

ing the actions of individual plants, and find a value around 0.7. Closest to our setup

with sectoral CES production functions is Herrendorf et al. (2015), though we differen-

tiate between various types of occupational labor. While they find differences across

sectors, they report for the aggregate economy an elasticity of 0.84. We take this value

without loss of generality.
18These studies estimate jointly the elasticity of substitution and a constant growth rate of (either

Hicks-neutral or factor-augmenting) technological change. As discussed in the introduction, since we
do not impose any restrictions on how technologies evolve over time we cannot identify both technolo-
gies and elasticities from the data.
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for our baseline parametrization, but in the robustness checks of section 5.1.1 we also

explore model variants with sector-specific elasticities.

Second, we need the elasticity of substitution between ICT capital and routine la-

bor, σc. While the literature has argued that routine labor and ICT capital are very

good substitutes, there are surprisingly few estimates of this elasticity. Eden and Gaggl

(2018) estimate a CES production function differently nested to ours, where the elastic-

ity of substitution between ICT capital and routine labor is not constant, but it ranges

between 2.1 and 3.3. Aum, Lee, and Shin (2018) calibrate industry specific elasticities

between ICT capital and all types of occupational labor and find values between 1.2

and 1.8. As our baseline we set σc = 2, in the mid-range of these estimates.

Third, we need the elasticity of substitution between the different occupations and

the routine aggregate, ρ. Goos, Manning, and Salomons (2014) estimate an elasticity of

substitution of 0.9 between 21 occupations, Lee and Shin (2017) calibrate ρ = 0.7 and

Aum et al. (2018) calibrate 0.81 both among 10 occupations, and Duernecker and Her-

rendorf (2016) calibrate an elasticity of 0.56 between 2 occupations. It is likely that the

more coarse the occupation categories are, the lower is the elasticity of substitution.

In our model with three occupational categories we therefore set ρ = 0.6. We summa-

rize these values for the substitution elasticities in Table 1. While we use these values

for the three elasticities as our baseline, we conduct in section 5 extensive robustness

checks, also with respect to these elasticities.

Table 1: Calibrated substitution elasticities

capital – labor, σ ICT capital – routine labor, σc different occupations, ρ
Value 0.84 2 0.6

To infer the evolution of technologies over time we need the following measures

from the data for every period: sector-occupation specific wage rates (woJ,t), rental

rates for non-ICT and ICT capital (Rk,t and Rc,t), the income share of occupations

within sectors (θoJ,t), the share of sectoral value added paid to ICT capital (ΘcJ,t), and

to both types of capital together (ΘJ,t), the quantity of non-ICT capital by sector (kJ,t),

the per worker growth rate of sectoral value added (YJ,t/YJ,0), as well as sectoral prices

in the initial period (pJ,0). In section 2 we showed θoJ,t, ΘJ,t, pJ,t, and γJ,t, calculated
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as the growth rate of real value added in sector J (shown in Figure 1) divided by the

growth rate of full time equivalent workers from the BEA. Note that without loss of

generality we normalize all our quantity measures by the FTE workforce, i.e. we use

employment shares, the stocks of ICT and non-ICT capital per worker, growth of real

value added in each sector per worker, and nominal value added per worker. In the

quantitative analysis rather than using workers’ self-reported income from the Cen-

sus/ACS, we use the following accounting identity to obtain sector-occupation wage

rates, woJ,t:

woJ,tloJ,t = Y nom
t · V AJ,t(1−ΘJ,t)θoJ,t,

where Y nom
t is nominal GDP per worker in year t and V AJ,t is the share of value added

produced in sector J (shown in Figure 1). This accounting identity ensures that the

sum of all income paid to workers of different occupations within a sector is equal to

the nominal labor income in that sector. Note that relative occupational wages within

a sector are the same as those calculated from the micro data (see equation (28) and

the discussion that follows in appendix B). Using similar accounting identities and a

no arbitrage condition, we obtain Rk,t, Rc,t and ΘcJ,t from the data shown in Figure 2

and 3 as explained in appendix B. These accounting identities ensure that the sum of

all factor incomes is equal to nominal value added.

4 The role of changing technologies and input use

Table 2 shows the average annual growth rate of sector-factor specific technologies be-

tween 1960 and 2017. Technological change has been uneven, within each sector across

factors, as well as across sectors for a given factor (i.e. for a given occupation or a type

of capital). Nonetheless some patterns can be discerned. It is obvious that among

the three occupations routine labor had the highest growth rate in all sectors, roughly

between 1.3 and 5.6 percent annually. Technological change augmenting manual la-

bor was much more modest and less dispersed across sectors. Finally, technological

change augmenting abstract labor varied across sectors, with negative growth rates in
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low- and in high-skilled services.19 In terms of capital-augmenting technologies we

find that those related to ICT increased rapidly in low-skilled services and in goods

and fell in high-skilled services, while those augmenting non-ICT capital increased

at a lower rate in low- and in high-skilled services and they fell in goods.20 Our re-

sults highlight that routine workers became more productive over and beyond what

is embodied in ICT capital, in line with what Aum et al. (2018) find. Technologies

augmenting routine workers increased the most in all sectors, even after accounting

for the increase in ICT capital (cJ ) and in its productivity (ZcJ ). In terms of sectoral

patterns, the growth rates of all factor-augmenting technologies were the highest in

goods, followed by low-skilled services, except for manual labor and non-ICT capital,

which had the highest growth in high-skilled services. Thus beyond the factor-specific

patterns, there also seem to be sector-specific components to technological progress.

Table 2: Average annual growth rate of Zs between 1960 and 2017

occupations capital
manual routine abstract non-ICT ICT

Low-skilled services 0.26% 2.93% -0.69% 0.85% 2.02%
Goods 0.59% 5.61% 0.98% -1.61% 4.43%
High-skilled services 0.72% 1.32% -2.38% 1.78% -1.94%

These growth rates are inferred from the data using equations (15)-(19) conditional

on the elasticities summarized in Table 1. For example, to understand the origins of

the growth rate of non-ICT capital-augmenting technologies by sector consider the

following expression (from equation (19)):

ZkJ,tkJ,t/YJ,t
ZkJ,0kJ,0/YJ,0

=

[
ΘJ,t −ΘcJ,t

ΘJ,0 −ΘcJ,0

]
︸ ︷︷ ︸
non-ICT capital share

σ
σ−1

. (21)

In the goods sector the share of income paid to non-ICT capital increased substantially,

which with an elasticity of substitution smaller than 1 (σ = 0.84 is our baseline) implies

that effective capital relative to real output decreased in this sector. As real output

19These negative growth rates might be explained by a compositional change within abstract occu-
pations in these sectors, towards more time-consuming tasks.

20These negative growth rates are in line with what previous literature has found. Both Antràs (2004)
and Herrendorf et al. (2015) find negative capital-augmenting technological change at the aggregate
level, and respectively in the manufacturing and service sectors.
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increased, in turn this implies that effective non-ICT capital fell. Putting this together

with the slight increase in non-ICT capital in the goods sector over time (see Table 3

for the evolution of inputs and the middle panel of Figure 1 for real sectoral value

added), we obtain the result that the technology augmenting non-ICT capital in the

goods sector had to fall.

We can obtain similar expressions for the growth of the technologies augmenting

all other factors. For manual labor augmenting technologies combine expression (18)

with (21) to obtain:

ZmJ,tlmJ,t/YJ,t
ZmJ,0lmJ,0/YJ,0

=

[
1−ΘJ,t + ΘcJ,t

1−ΘJ,0 + ΘcJ,0

]
︸ ︷︷ ︸

LA share

ρ−σ
(ρ−1)(σ−1)

[
(1−ΘJ,t)θmJ,t
(1−ΘJ,0)θmJ,0

]
︸ ︷︷ ︸

manual labor share

ρ
ρ−1

. (22)

The growth in effective manual labor intensity in sector J depends on the growth in

the income share of the labor aggregate (LA) and the growth in the income share of

manual labor within sectoral value added.21 This expression is similar to the one for

non-ICT capital, except it contains two terms on the right hand side. This is because

manual labor enters the production function through the middle nest. Manual labor-

augmenting technologies impact the trade-off between manual labor and the other

inputs within the labor aggregate, and they also impact the trade-off between the labor

aggregate and non-ICT capital. The two terms on the right hand side of expression (22)

represent these two margins. What the evolution of these two income shares reveal

about the evolution of the effective manual labor input relative to output depends on

the two relevant elasticities. As ρ < 1, an increase in the manual income share implies

a reduction in the effective manual labor input intensity. If ρ < σ < 1, then an increase

in the share of income going to the labor aggregate implies a decrease in the effective

manual labor input intensity. Netting out the actual growth in manual labor input

intensity (lmJ/YJ ), we obtain the growth in manual labor-augmenting technology by

sector. Table A2 in the appendix contains by sector the income share in value added

of each factor in 1960 and in 2017; these values together with the evolution of factor

inputs and of sectoral real value added pin down the growth rate of technologies.

21A similar expression can be obtained for abstract labor-augmenting technologies by combining
(22) with (15).
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For the growth of sector-specific routine-augmenting technologies by combining

(22) with (17) we obtain:

ZrJ,tlrJ,t/YJ,t
ZrJ,0lrJ,0/YJ,0

=

[
1−ΘJ,t + ΘcJ,t

1−ΘJ,0 + ΘcJ,0

]
︸ ︷︷ ︸

LA share

ρ−σ
(ρ−1)(σ−1)

[
(1−ΘJ,t)θrJ,t + ΘcJ,t

(1−ΘJ,0)θrJ,0 + ΘcJ,0

]
︸ ︷︷ ︸

RA share

σc−ρ
(σc−1)(ρ−1)

[
(1−ΘJ,t)θrJ,t
(1−ΘJ,0)θrJ,0

]
︸ ︷︷ ︸

routine labor share

σc
σc−1

.

(23)
As routine labor enters the production in the inner-most nest, the evolution of three in-

come shares is informative about the evolution of the effective routine intensity. These

three income shares are: that of the labor aggregate (LA), of the routine aggregate

(RA) and of routine labor.22 Let us consider the evolution of all three of these income

shares. The first one, the LA share, is the labor income share plus the share of income

going to ICT capital. The evolution of this is very similar to the evolution of the labor

income share, as the quantity of ICT capital and the share of income paid to it is very

low (albeit increasing rapidly). The LA share decreased in low-skilled services and in

goods, while it increased slightly in high-skilled services between 1960 and 2017. As

the share of labor income going to routine labor decreased steeply in all sectors (see

Figure 4) the second and third income shares decreased in all sectors quite substan-

tially. As our baseline is that ρ < σ < 1 < σc, the exponents on the first two income

shares are negative, while on the last one it is positive. The last two terms in (23) thus

go in opposite directions, but the increase implied by the middle term more than off-

sets the decrease implied by the last term in all sectors. Moreover routine employment

declined in all sectors, which implies that routine labor-augmenting technologies had

to increase substantially in all sectors.

In the above discussion we made use of how inputs changed between 1960 and

2017. Most of these numbers can be seen in Figure 4, for completeness we summarize

all of these in Table 3. We also add a column which contains the gross growth rate

of total employment in the sector, as these changes are important in the calculation of

labor productivity growth.

Output and labor productivity in each sector increased over time because of changes

in effective factor inputs. As discussed in section 3.1 the impact of a change in the

22A symmetric expression can be obtained for ICT capital by combining (23) with (16).
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Table 3: Gross growth rate of inputs between 1960 and 2017

total occupations capital
labor manual routine abstract non-ICT ICT

Low-skilled services 1.107 1.443 0.834 1.945 1.393 192.820
Goods 0.406 1.115 0.324 0.867 1.002 94.280
High-skilled services 1.582 1.274 0.897 2.500 1.985 80.410

Notes: The numbers are the ratio of the 2017 to the 1960 input quantity (per full time equivalent worker),
so for example, the second cell shows lmL,2017/lmL,1960.

amount of effective input on sectoral output depends on the weight that the given fac-

tor receives in the initial period, as defined in equation (9). Table 4 shows the weights

for 1960. Weights within a nest are informative; a larger weight implies that a change

in the effective input, due to changes in the technology or in the quantity of the input,

has a larger impact on the evolution of the given nest.

Table 4: Initial factor weights

ωkJ ωLAJ ωmJ ωaJ ωRAJ ωrJ ωcJ
Low-skilled services 0.413 0.587 0.113 0.203 0.684 0.994 0.006
Goods 0.368 0.632 0.012 0.199 0.789 0.995 0.005
High-skilled services 0.501 0.499 0.101 0.458 0.441 0.916 0.084

In what follows we study the drivers of sectoral labor productivity growth in de-

tail, by computing average sectoral labor productivity growth rates between 1960 and

2017 for various counterfactual scenarios. First, we assess the importance of the var-

ious forms of technological change. To do this, we take factor inputs from the data

and fix technologies at counterfactual values. In addition, we use a factor model to

identify common sector and occupation components in the sector-occupation-specific

labor-augmenting technologies. Second, to quantify the role of changing input use and

of differences in occupational employment shares across sectors, we use the Zs as ex-

tracted from the data, and fix factor inputs at counterfactual levels. Comparing these

two sets of counterfactuals to each other sheds light on whether changing inputs or

evolving technologies are more important. The comparison within a set of counterfac-

tuals where we fix just some of the inputs or just some of the technologies informs us

which particular inputs and types of technological change matter the most. Finally we

evaluate the implications of these channels for aggregate labor productivity growth.
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4.1 The role of technological change

Figure 5 shows the average annual labor productivity growth in the three sectors over

1960-2017. The first set of bars is the actual data, which is perfectly reproduced by our

baseline model, showing that the goods sector had with 2.5% the highest labor pro-

ductivity growth, whereas it was 1.5% in low-skilled services and 0.7% in high-skilled

services. The subsequent sets of bars show the results of various counterfactuals in

which we fix some of the factor-augmenting technologies (the ZfJ,t) at their 1960 val-

ues, but let inputs and other technologies vary over time as extracted from the data.

Comparing the implied sectoral labor productivity growth (and their differences) to

the data informs us about the importance of the technological change that we shut

down, which is described below each set of bars.
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Figure 5: Average sectoral labor productivity growth with fixed technologies
Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017
for the three sectors (low-skilled services in pink solid, goods in gray striped, and high-skilled services
in yellow patterned). The first set of bars shows the growth rates in the data, and the subsequent sets
show counterfactual growth rates when holding technologies augmenting the factors listed below the
bars at their 1960 level, with all inputs as well as all other technologies evolving as in the data.

Absent any change in factor-augmenting technologies, but just due to capital ac-

cumulation and employment reallocation, as the second set of bars (‘all technologies
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fixed’) shows, there is hardly any growth in labor productivity in low-skilled services

and in goods production and only very small differences across sectors. Evolving tech-

nologies explained at least 75% of labor productivity growth in low-skilled services,

55% in goods and 24% in high-skilled services.23 This clearly demonstrates that tech-

nological progress was crucial for the level of labor productivity growth as well as for

its sectoral differences. High-skilled services seem to be somewhat of an exception; in

this sector changes in factor input use must have been crucial.

To see whether this is due to capital-augmenting technological change, we next fix

just the productivity parameters of ICT and non-ICT capital. Comparing the results

of the third set (‘all capital technologies fixed’) to the data reveals that (sector-specific)

capital-augmenting technological change has increased labor productivity growth in

low- and high-skilled services, but lowered it in goods, thus acting to reduce differ-

ences in labor productivity growth across sectors. This demonstrates that capital-

augmenting technological change was not the driver of the differences across sec-

tors observed in the data. When distinguishing further between technological change

in the two types of capital (the next two sets of bars), we see that these results are

mainly driven by the evolution of non-ICT capital’s productivity, and not by ICT cap-

ital. These results can be understood from Table 2 and Table 4. As the weight on ICT

capital is very low in each sector, what happens to ICT capital augmenting technolo-

gies has little impact in all sectors. The weight on non-ICT capital is much higher, and

thus the evolution of this type of technological change is more important. As non-ICT

capital augmenting technologies decreased in the goods sector, fixing them at their

1960 level would imply an increase in labor productivity growth in goods, while the

opposite holds in the other two sectors, with a much larger magnitude in high-skilled

services since it has the highest growth in ZkJ as well as the highest weight, ωkJ .

In the last four counterfactuals we first fix all labor-augmenting technologies at

their 1960 level, and then in turn fix only manual, only routine or only abstract labor

augmenting technologies (within each sector). The results show that without any im-

provements in labor-augmenting technologies the magnitude of and the differences

23These numbers are the minimum of the fraction of the data predicted when fixing all inputs, and
of one minus the fraction predicted when fixing all technologies.
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between sectoral labor productivity growth would have been very far from the data.

This highlights that technological change augmenting labor is key. We break this up

further to study the role of technologies augmenting the various occupations. We find

that routine labor augmenting technological change was a first-order determinant of

labor productivity growth in low-skilled services and in goods, explaining at least

59 and 74 percent respectively. It explains at least 21 percent of labor productivity

growth in high-skilled services, again pointing to the importance of changing factor

input use in this sector, which we investigate in section 4.2.24 Sector-specific routine

labor augmenting technological change is also the single most important driver of

sectoral differences; without it labor productivity growth would have been almost

equalized across sectors. While changes in abstract labor augmenting technologies

have contributed to sectoral differences in labor productivity growth to some extent,

manual labor augmenting technologies hardly had any impact on the level of and on

the differences in sectoral labor productivity growth. These results as well can be un-

derstood from Table 2 and Table 4. Both the weight on manual labor and the growth

in technologies augmenting manual labor are quite low in all sectors, thus shutting

down this technological change has only a small impact on labor productivity growth.

Shutting down abstract labor-augmenting technologies has the largest impact in high-

skilled services, as there the weight on and the change in the technology augmenting

abstract labor are both large. The weight on routine labor, as well as the growth rate

of technologies augmenting it, are high in all sectors, implying that shutting down

routine-augmenting technological change has a large impact in all sectors. However,

its impact is smallest in high-skilled services, which compared to the other two sec-

tors has the lowest weight on this component and experienced the slowest growth in

routine-augmenting technologies.

24To obtain these numbers we conducted an additional counterfactual, where we fixed everything at
the 1960 level except for ZrJ,t which evolved as extracted from the data. We report the minimum of the
fraction of the data predicted by this additional counterfactual, and of one minus the fraction predicted
when shutting down only the change in ZrJ,t (the ‘routine tech. fixed’ counterfactual of Figure 5).
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4.1.1 The role of sector and occupation components in labor-augmenting techno-

logical change

As we found such an important role for labor – and in particular for routine labor –

augmenting technological change we investigate this further. In light of the sector and

factor patterns visible in Table 2, we want to understand whether the effect of labor-

augmenting technologies can be assigned to occupation-specific or to sector-specific

components. We want to know, for example, where exactly the effects of sector-specific

routine labor augmenting technological change are stemming from; is it the differences

across sectors or the growth differential relative to the other occupations that is more

important?

To decompose the changes of technologies augmenting labor in all sector-occupation

cells, we set up a factor model.25 In particular we regress the change in log cell tech-

nologies between each consecutive period on a (time-varying) sector effect (γJ,t), an

occupation effect (δo,t), and a time effect (βt) in the following way

∆ lnZoJ,t ≡ lnZoJ,t − lnZoJ,t−1 = βt + γJ,t + δo,t + εoJ,t, (24)

where we use weights ΩoJ,t to reflect the relative importance of the sector-occupation

cell.26 We restrict both the average sector effect and the average occupation effect

to be zero, which effectively implies that βt captures the average labor augmenting

technological change across all cells between period t− 1 and t.27

Based on the results of (24), we compute counterfactual series for ∆ lnZoJ,t, from (i)

the neutral component alone (β̂t), (ii) the neutral and sector-specific components (β̂t +

γ̂J,t) which we call ‘sector-only’, (iii) the neutral and occupation-specific components

(β̂t + δ̂o,t) which we call ‘occupation-only’, and (iv) from all components (everything

but ε̂oJ,t), to which we refer as the ‘full factor’ prediction. In the appendix we show

25In macroeconomics factor models have been also used to study how country-level outcomes de-
pend on sector and country factors, for instance in Stockman (1988), Ghosh and Wolf (1997) and Koren
and Tenreyro (2007).

26The weights we use are the cells’ average labor income between period t − 1 and t, ΩoJ,t =
V AJ,t(1−ΘJ,t)θoJ,t+V AJ,t−1(1−ΘJ,t−1)θoJ,t−1∑
o,J (V AJ,t(1−ΘJ,t)θoJ,t+V AJ,t−1(1−ΘJ,t−1)θoJ,t−1) . The results are very robust to alternatives, such as us-

ing cell employment shares, or using year t− 1 or year t shares, rather than averages.
27To be more precise these restrictions are:

∑
o

∑
J ΩoJ,tγJ,t = 0 and

∑
J

∑
o ΩoJ,tδo,t = 0 for every t.
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in Figure A1 the path of sector-occupation technology changes over time as extracted

from the data as well as those predicted from the various components.

To gauge how much of the variation in cell productivities the neutral, sector- and

occupation-specific components can explain jointly and separately, we calculate the

following distance measure between the extracted and the various predicted ∆ lnZoJ :

D =

∑
o,J,t ΩoJ,t(∆̂ lnZoJ,t −∆ lnZoJ,t)

2∑
o,J,t ΩoJ,t(∆ lnZoJ,t −∆ lnZ)2

.

This measure captures the variation in the extracted productivity changes that the

various components cannot account for. It is always positive and the smaller it is, the

closer the predictions are to the data. It is worth to note that this measure is closely

related to the R2, and in certain cases, including the ‘full factor’ and the ‘neutral’ pre-

diction, it exactly equals 1−R2.28

neutral full factor sector occupation

Distance measure 0.703 0.033 0.228 0.407

The above table shows the distance measure for the alternative series. It is immediately

clear that the neutral prediction explains rather little of the variation (29.7 percent),

while the full factor prediction explains almost all of the variation (96.7 percent) in the

extracted technologies. The latter also implies that the part that is idiosyncratic to the

sector-occupation cell accounts for only 3.3% of the variation. The distance measures

of both the ‘sector-only’ and of the ‘occupation-only’ predictions are much larger than

that of the ‘full factor’ prediction, whose explanatory power hence comes from both

types of components.29

28The R2 is defined as

R2 =

∑
o,J,t ΩoJ,t(∆̂ lnZoJ,t −∆ lnZ)2∑
o,J,t ΩoJ,t(∆ lnZoJ,t −∆ lnZ)2

,

and R2 = 1 − D if the predictor is unbiased,
∑
o,J,t ΩoJ,t∆̂ lnZoJ,t = ∆ lnZ, and if the independent

variables are uncorrelated with the error term, corr(∆ lnZ − ∆̂ lnZ,∆ lnZ) = 0. These conditions only
hold for the ‘full-factor’ and the ‘neutral’ series, and in these cases D = 1−R2.

29In appendix E.1 we conduct this analysis for a range of the elasticity of substitution between the
occupational labor inputs. For larger values of ρ the distance measure of the neutral, the sector and the
full factor component is larger, while of the occupation component it is smaller.
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The results from this decomposition imply that the growth of labor-augmenting

technologies is very well described as the sum of neutral, sector-specific and occupation-

specific components. This holds not only in terms of explained variation of ZoJ , but

also for the components’ contributions to sectoral labor productivity growth. Figure 6
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Figure 6: Role of occupation and sector components in sectoral labor productivity
Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017 for
the three sectors (low-skilled services in pink solid, goods in grey striped, and high-skilled services in
yellow patterned). The first set of bars shows the growth rates in the data, and the subsequent sets show
growth rates when feeding in counterfactual labor-augmenting technologies obtained from (24) based
on the components listed below the bars, with all inputs as well as all capital augmenting technologies
evolving as in the data.

shows the results for counterfactuals that evaluate the role of the different components

of labor-augmenting technological change for sectoral labor productivity growth. Here

all inputs and capital-augmenting technologies evolve as in the data, but we feed in

the counterfactual technologies based on the components listed below the bars. In this

bar chart, the closer is a set of bars to the data, the better the given component explains

the growth rates of sectoral labor productivity, and the less important are the omitted

components. Not surprisingly, neutral labor-augmenting technological change does

not reproduce the data. The counterfactual based on the ‘full factor’ prediction, on the

other hand, replicates the observed labor productivity growth rates well. The last two

counterfactuals show that neither the sector nor the occupation components by them-
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selves are enough to generate all aspects of the data. The occupation component alone

fails to generate the level and the differences of growth rates across sectors, whereas

the sector component alone gets closer in terms of these aspects but quantitatively

falls short. The fact that the occupation-only model does not reproduce sectoral la-

bor productivity growth differences suggests that differences in technological change

across sectors are important, supporting the mechanism of Ngai and Pissarides (2007).

Occupation-specific components of technological change (emphasized in Duernecker

and Herrendorf (2016) and Lee and Shin (2017)) – once accounting for the possibility

of sector-specific changes – alone are not enough. Overall this analysis reveals that

both sector and occupation components are important drivers of labor productivity

growth at the sectoral level.

4.2 The role of changing input use

We now turn our attention to the role of production factors. Figure 7 shows the results

of various counterfactuals in which we fix some inputs at their 1960 values, but let all

other inputs and the factor productivities (ZfJ,t) vary over time as extracted from the

data between 1960 and 2017. The last set of bars shows a different type of counterfac-

tual. Here we assign in each period identical occupational employment shares to all

sectors, thus both their initial level and their evolution over time is the same. Again

comparing the results implied by the counterfactual to the actual data gives a sense of

the importance of the changing use of the fixed input(s).

In the second set of bars (‘all inputs fixed’) we fix all inputs at their 1960 level.

Keeping all inputs at their initial level results in lower labor productivity growth in

all sectors. This implies that the reallocation of labor and the accumulation of capital

had a positive effect on labor productivity growth in all three sectors. While the size

of this effect varied across sectors, the ranking of sectors in terms of labor productivity

growth was not affected by changing input use. However, absent capital accumulation

and employment reallocation across sector-occupation cells, there would have been

hardly any difference between the productivity growth in goods and in low-skilled

services. This highlights that changing input use is important for the level of labor
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Figure 7: Average sectoral labor productivity growth with fixed factor inputs
Each set of bars shows the average annual labor productivity growth rate (in percent) over 1960-2017
for the three sectors of the economy (low-skilled services in pink solid, goods in gray striped, and high-
skilled services in yellow patterned). The first set of bars shows the growth rates in the data, and the
subsequent sets show counterfactual growth rates when holding the inputs listed below the bars at their
1960 level (or share), and with all other inputs as well as technologies evolving as in the data. In the
last set of bars we assign identical occupational employment shares to all sectors and let everything else
evolve as in the data.

productivity growth, as well as for its differences across sectors. On the other hand,

comparing these results to those of fixed technologies in Figure 5 (second set of bars)

highlights that evolving technologies matter much more than changing inputs for sec-

toral growth rates, except in the high-skilled service sector. In this sector changing

input use is more important.

The next three counterfactuals shed light on the role of capital accumulation. With

both types of capital inputs fixed at their 1960 level (‘all capital inputs fixed’), the

growth rate in all sectors falls short of the data, on average by 39 percent.30 This effect

is the most pronounced in high-skilled services, where absent capital accumulation

there would have been hardly any growth in labor productivity. Capital accumula-

30Labor productivity growth in low-skilled services would have been 80% of its actual value, in
goods 98%, and in high-skilled services 5%, the simple average of this is 61%, i.e. 39 % lower than in the
data.
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tion resulted in smaller sectoral differences in labor productivity growth, but without

altering the ranking of sectors. This suggests that capital deepening, which was dif-

ferential across sectors, was important for the level of labor productivity growth, but

was not the main driver of sectoral differences. In particular, if capital deepening was

the source of structural transformation, as argued in Acemoglu and Guerrieri (2008),

then shutting it down should result in a larger reduction in productivity growth in

the goods sector compared to services, which is not what we find. Comparing the

counterfactual where we shut down only non-ICT capital with the one where we shut

down only ICT capital accumulation shows that non-ICT capital had a larger and less

uniform effect on labor productivity growth across sectors. These results can be un-

derstood from Table 3, which shows the gross growth of each input between 1960 and

2017, and Table 4, which shows the weight that a change in any effective input car-

ries. While ICT capital increased tremendously, its weight is very small in each sector,

explaining the relatively small impact it had on labor productivity growth. Both the

weight on and the increase in non-ICT capital input was the largest in high-skilled

services and the smallest in goods. This explains why the impact of fixing non-ICT

capital at its 1960 level has a very small impact on labor productivity growth in goods

and a much larger impact in high-skilled services.

In the last three counterfactuals we study the role of labor allocation across sector-

occupation cells. We first fix all labor inputs at their 1960 values (‘all labor inputs

fixed’). The resulting productivity growth rate falls considerably short of the data in

goods, in low-skilled services only marginally, whereas in high-skilled services it is

slightly higher than in the data. Hence, absent employment reallocations, sectoral dif-

ferences in labor productivity growth are not in line with the data. Overall this high-

lights that changing labor use was important for the level of growth in goods and for

sectoral differences in labor productivity growth. To understand where these results

come from note that fixing all labor inputs at the 1960 levels shuts down two margins:

(i) changes in total sectoral employment and (ii) reallocations between occupational

employment within sectors.

We investigate this second channel in the penultimate set of bars where we fix the

share of occupations within each sector at initial ratios (‘occ. emp. shares within sec.

35



fixed’) but let the overall employment share of each sector (as well as all other inputs

and technologies) evolve as in the data. This counterfactual yields growth rates that

are lower than, but quite close to, the actual data. This shows that shifts in the occupa-

tional employment structure within sectors had positive, yet only very modest, effects

on sectoral labor productivity growth, but hardly any effect on sectoral differences. In

contrast, changes in overall sectoral employment, the first channel, play a large role

and are thus the dominating channel in the counterfactual fixing all labor inputs. As

can be seen in Table 3, the total employment share in goods declined to less than half

the initial value, while it increased by about 10 and 60 percent in low- and high-skilled

services respectively. These changes clearly impact both the numerator (sectoral out-

put) and the denominator (sectoral employment) of labor productivity, but –holding

the other inputs fixed– have a larger impact on the denominator. Thus, shifts in em-

ployment from goods to services increased labor productivity growth in goods and

lowered it in the two service sectors.

In the last set of bars we impose the same occupational structure in each sector,

which we let evolve in the same way as the occupational composition of the aggre-

gate economy. The results of this counterfactual hardly differ from the data. This

implies that the differences in occupational intensities across sectors did not generate,

nor contribute to, the sectoral differences in labor productivity growth observed in the

data. Our findings from the last two counterfactuals make it unlikely that occupational

productivity growth differences and sectoral differences in occupational employment

structure are driving structural transformation, as implied by Duernecker and Herren-

dorf (2016), Lee and Shin (2017).

To summarize our findings so far, both changing inputs and changing technolo-

gies have been important for the observed sectoral labor productivity growth, with

technologies playing a larger role. We find that both capital accumulation and capital-

augmenting technological change acted to reducing differences in labor productivity

growth across sectors. When isolating the effects of changing technologies by produc-

tion factors, we see that labor-augmenting technological change had the largest role,

and in particular (sector-specific) routine labor-augmenting technological change.
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4.3 Implications for aggregate labor productivity growth

Table 5: Average annual growth rate of Zs between 1960-1990 and 1990-2017

occupations capital
manual routine abstract non-ICT ICT

1960-1990
Low-skilled services 0.32% 1.08% -1.51% 2.86% 3.38%
Goods -2.40% 3.69% -1.73% 0.63% 4.97%
High-skilled services -0.79% -1.18% -4.13% 3.94% -3.47%
1990-2017
Low-skilled services 0.19% 5.01% 0.23% -1.33% 0.54%
Goods 4.01% 7.78% 4.08% -4.04% 3.84%
High-skilled services 2.43% 4.18% -0.40% -0.58% -0.21%

We established that while capital accumulation was important for the level of labor

productivity growth, especially in the high-skilled service sector, technological change

seems to have been a more important determinant of both the level of and the sectoral

differences in labor productivity growth. We also showed that the key driver was

sector-specific routine-augmenting technological change. In what follows we study

whether these findings hold for labor productivity growth in the aggregate economy.

In addition, we investigate whether the importance of the various drivers changed

over time. First, however we show in Table 5 the average annual growth rate of sector-

factor augmenting technologies for two sub-periods, 1960-1990 and 1990-2017. The

sector-specific and factor-specific patterns are very similar to those shown in Table

2. Comparing the earlier to the more recent period shows that technological change

augmenting each type of labor accelerated over time (for all occupations in all sectors

but for ZmL, the growth rate of which remained virtually constant), while technologi-

cal change augmenting either type of capital decelerated (except for ICT-augmenting

capital in high-skilled services). This suggests that the relative importance of capital-

vs labor-augmenting technologies for labor productivity growth has changed over the

last decades.

In Figure 8 we show average annual labor productivity in the whole economy be-

tween 1960-2017 and in two sub-periods, 1960-1990 and 1990-2017 in the data and for

several counterfactuals. Note that a larger difference between data and counterfactual

implies a larger role for the component that we shut down. Comparing the ‘all inputs
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Figure 8: The role of inputs and technology in aggregate labor productivity growth
Each set of bars shows the average annual labor productivity growth rate of the economy (in percent)
over 1960-2017 (solid), and over two sub-periods, 1960-1990 (vertically striped) and 1990-2017 (horizon-
tally striped). The first set of bars shows the growth rates in the data, and the subsequent sets show
counterfactual growth rates when holding the inputs or the technologies augmenting the factors listed
below the bars at their initial level, and allowing all other inputs as well as all other technologies to
evolve as in the data.

fixed’ and the ‘all technologies fixed’ counterfactual with the data, it is evident that

technological change was more important for labor productivity growth than chang-

ing input use for the entire period (with technologies explaining at least 59%, and

inputs at least 33%), as well as for both sub periods. In terms of input use, capital

accumulation (‘capital inputs fixed’) played a larger role than labor reallocation across

sector-occupation cells (‘labor inputs fixed’). In particular, without capital accumula-

tion labor productivity growth would have been about a third lower over the entire

period, as well as in both sub-periods. This is in line with the findings of the growth

accounting literature for GDP per worker (i.e. labor productivity) growth, see for exam-

ple Aghion and Howitt (2007).

Analyzing the effect of different technologies for aggregate labor productivity growth

it becomes clear that capital augmenting technologies were more important between
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1960-1990, while labor augmenting technologies played a larger role in 1990-2017.31

Finally, looking at the respective role of sector-specific technologies augmenting the

three occupations, routine-augmenting technological change stands out as the one

contributing the most to aggregate labor productivity growth, explaining at least 54%

of labor productivity growth. Moreover, its role became substantially more pronounced

over the time period studied. Absent routine labor augmenting technological change

growth would have been about 30% lower between 1960 and 1990, while between 1990

and 2017 there would have been hardly any growth.

5 Robustness checks and extensions

In this section we show that our results are very robust to alternative values for the

various substitution elasticities, including a model variant with sector-specific substi-

tution elasticity between capital and the labor aggregate. Furthermore, we establish

that our main results are robust to changing the production function to a different

nesting of inputs. We also describe how to control for observable worker characteris-

tics in our framework and demonstrate that our conclusions are robust to accounting

for worker efficiency. Finally, we note that the results are robust to including the self-

employed in the analysis and that the results for the aggregate goods sector are very

similar to the one for an industry sector that does not include agriculture.

5.1 Alternative substitution elasticities

So far we showed results from our framework based on three elasticities, σ = 0.84,

σc = 2 and ρ = 0.6. In this subsection we briefly summarize how our results are

affected when we change these elasticities to alternative values. We consider all com-

binations of σ ∈ {0.65, 0.75, 0.84}, σc ∈ {1.5, 2, 2.5} and ρ ∈ {0.5, 0.6, 0.7}.32 The general

31That in the period 1960-1990 labor productivity growth would have been higher absent labor aug-
menting technological change, and that between 1990-2017 it would have been higher without capital
augmenting technological change, reflects the numbers smaller than 1 in Table 2.

32As discussed in section 3.3 the majority of studies finds values less than one for the elasticity of sub-
stitution between capital and labor, and our baseline of σ = 0.84 is towards the upper end of estimates.
Therefore, we discuss how our results change with lower values, 0.75 and 0.65. For σc we consider two
alternative values: 1.5 in the midrange of values calibrated in Aum et al. (2018), and 2.5 in the midrange
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conclusions are that all of our results are extremely robust. It is important to keep in

mind that our baseline framework under any parameterization matches all data tar-

gets perfectly. As such, alternative values for these elasticities of substitution lead to

different series of the inferred technologies. We show in Table A3 in the appendix

the range of the annual growth rates of the various extracted sector-specific factor-

augmenting technologies for all combinations of the different elasticities that we con-

sider. This table shows that the general patterns described in section 4 for Table 2

remain the same, with similar patterns arising both across factors and across sectors.33

Looking at equations (21) and (22) and (23), it is easy to understand why this is the

case. In all of these equations what changes on the right hand side are the elasticities,

and the only thing that adjusts on the left hand side are the technology terms, the Zs.

For the growth in non-ICT capital augmenting technologies, as seen in (21) the key is

the sign of σ − 1, which is negative for all σ values considered, thus implying similar

results. For manual and abstract labor augmenting technologies, which are pinned

down by (22) (and its analogue), the signs of ρ − 1 and of σ − 1 matter. For routine

labor-augmenting technologies and ICT capital-augmenting in addition also ρ − σ all

matter, as can be seen in (23) (and its analogue). The sign of the first two is negative for

all elasticities considered, while the sign of ρ−σ is mostly negative, except for the case

when ρ = 0.7 and σ = 0.65. Yet since in all sectors the changes in the LA-share is small

compared to the changes in the occupational labor income shares and the RA-share

(see Table A2), changes in the sign of ρ − σ have only a limited effect on our results.

This discussion demonstrates that beyond the specific elasticity values considered in

this robustness analysis, our results are robust to a wider range of elasticities. These

ranges encompass most of the values which have been considered in the literature.

Figures A2, A3, A4 and A5 are analogues to our main result figures. We show for

each counterfactual the ranges of labor productivity growth implied by all combina-

tions of elasticities considered. Most of our results qualitatively do not depend on the

parameterization of the elasticities, and are even quantitatively very similar, except

of the values implied by the estimation in Eden and Gaggl (2018). For ρ we consider a value below
and one above the baseline value, but below one, thus continuing to assume complementarity between
occupational labor inputs.

33In fact, beyond the ranges shown in Table A3, across the different sets of parameterizations even
the ranking of technology growth rates within each sector is by large the same.
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for the role of sector- vs. occupation-components. As Table A4 in the appendix shows,

the larger is ρ,34 the larger is the distance measure both of the full factor and of the

sector-only technologies, and the smaller is the distance measure of the occupation-

only technologies. For larger elasticities, the ranking of sectors in terms of labor pro-

ductivity growth under ‘sector-only’ technologies is less in line with the data, and

under ‘occupation-only’ technologies it is more in line with the data. Thus we find

that the respective role of sector- and occupation-components is sensitive to this elas-

ticity, but the observation that we need both type of components to match the data

holds for all elasticities, as Figure A3 demonstrates.

5.1.1 Sectoral heterogeneity in elasticities between capital and labor

We also consider a model variant where the elasticity of substitution between capi-

tal and the labor aggregate differs across sectors, as papers estimating this elasticity

have found differences across industries (e.g. Oberfield and Raval (2014), Lawrence

(2015)). Most papers focus however only on non-service industries. One exception is

Herrendorf et al. (2015) which finds 0.75 for services. As such we set σL = σH = 0.75

for both of our service sectors. Our goods sector contains both agriculture and man-

ufacturing, therefore we set a value of σG = 0.9, in between their estimates of 0.8 for

manufacturing and 1.58 for agriculture.

As we infer the technologies by sector and we just showed that our results are

robust to altering the common σ parameter, one should not expect large differences

compared to our baseline. Indeed the table mimics the patterns of our baseline quite

closely. Appendix Figure A6 compares the effects of the various channels with those

in the baseline for sectoral labor productivity growth, showing that our results are

very robust. The only noticeable difference is quantitative: the effect of technologies is

somewhat more pronounced, and in particular with sector-specific elasticities it seems

that the role of labor-augmenting technologies in aggregate labor productivity growth

is slightly larger.

34Note, changing the value of ρ does not affect the growth rate of the ZkJs at all.
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5.2 Different Nesting

In our baseline we assumed that manual and abstract workers and the routine aggre-

gate are combined in a symmetric fashion in the sectoral production. As a further ro-

bustness check we consider a different nesting, proposed by vom Lehn (2019), where

the routine aggregate is first combined with abstract labor according to elasticity of

substitution ρa, giving the abstract aggregate:

AAJ,t =

(
(ZaJ,tlaJ,t)

ρa−1
ρa +RA

ρa−1
ρa

J,t

) ρa
ρa−1

, (25)

and the abstract aggregate is then combined with manual labor under a constant elas-

ticity of substitution ρm, which gives the labor aggregate:

LAJ,t =

(
(ZmJ,tlmJ,t)

ρm−1
ρm + AA

ρm−1
ρm

J,t

) ρm
ρm−1

. (26)

This labor aggregate is then combined with non-ICT capital exactly as in our baseline.

Based on this production structure, we repeat our exercise, following the steps de-

scribed in appendix E.2 and setting the additional elasticities ρa = 0.31 and ρm = 1.49,

following from vom Lehn (2019).

While the growth rates for factor-augmenting technologies under this alternative

nesting naturally are different (see Table A6), their implications in the counterfactuals

are very similar to our baseline, both for sectoral and for aggregate labor productivity

growth, as shown in Figure A7. While there are some small quantitative differences,

for example shutting down routine-augmenting technological change implies a larger

reduction in labor productivity growth in the goods sector but a smaller reduction in

the two service sectors, the qualitative predictions are exactly the same. This demon-

strates that our conclusions are very robust to alternative assumptions about the pro-

duction structure.
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5.3 Allowing for efficiency units of labor in production

In our baseline framework we measured occupational labor inputs as (shares of) hours

worked, implicitly assuming that all workers are equally efficient, both within and

across periods. A potential concern with this setup is that the evolution of workers’

human capital over time might confound the growth rates of technologies that we

inferred. To address this, we estimate each worker’s efficiency units from a Mincer

log wage regression on worker characteristics, including a polynomial in potential

experience, education, gender and race, using the IPUMS Census/ACS data. From

the estimates we construct average efficiency units of labor in each sector-occupation

cell, eoJ,t and wages per efficiency units of labor, as we explain in appendix E.3.35

To incorporate efficiency units of labor into the model, we assume that firms choose

noJ,t ≡ eoJ,tloJ,t in each period, instead of just hours worked (loJ,t). This implies that

we need to use wages per efficiency unit of labor in equations (15) to (20) to infer

sector-factor technologies, whereas the measurement of all other variables remains

unchanged.

Figure A8 in the appendix plots the alternative series for the relative wages within

sectors. The resulting patterns for relative occupational wages within a sector are very

similar,36 whether accounting for efficiency units or not, though their levels are some-

what different. Since we identify the within-sector ratios of occupational productiv-

ities precisely from these relative wages, the general conclusions about the inferred

technological change are very similar, as shown in Table A8. Given that the series of

the factor-augmenting technologies (by sector) in the model with efficiency units of

labor are so similar to the baseline model, and in fact for the capital inputs coincide,

the implications for sectoral labor productivity are very similar too. Figure A9 in the

appendix shows the role of individual inputs and technologies in this model variant

alongside the baseline results. While there are very small quantitative differences,

qualitatively they have the very same implications.

35We construct this in two different ways, by including/not-including the residuals from the Mincer
wage regression in eoJ,t. Note that, even though we calculate sector-occupation wage rates from our
accounting identity (see equation (41) in the appendix) as before, the relative wages within sectors are
the same as those implied by the the Mincer wage regression.

36From 2000 onwards, in high-skilled services there is somewhat of a divergence between relative
average (‘raw’) wages and relative wages controlling for workers’ characteristics.
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5.4 Further Robustness Checks

Finally we establish that our results are robust to handling two aspects of the data dif-

ferently. First, we show in appendix E.4 that including self-employed in the analysis,

which in our baseline were dropped from the micro data on employment shares and

wages and excluded from the computation of the sectoral labor income shares, does

hardly matter for the results (see Figure A11 in particular). Second, in appendix E.5

we break up the broad goods sector and differentiate between agriculture and ‘indus-

try’, i.e. manufacturing, mining and construction. Here we find that the results for the

engines of labor productivity growth in industry are very similar to what we found for

the overall goods sector, while the agricultural sector looks somewhat different with

a much larger role for improvements in non-ICT capital technology. However, as the

results for industry are so similar to those for goods and agriculture accounts only for

a very small share of goods and of GDP, the implications for aggregate labor produc-

tivity growth allowing for a separate agricultural sector are virtually identical, again

pointing to the robustness of our main results.

6 Conclusion

In this paper we analyze the drivers of sectoral labor productivity growth in the United

States over 1960–2017, combining detailed Census/ACS data with sectoral data from

the BEA and EU KLEMS. We propose and implement a novel approach to extract

sector-specific factor-augmenting technologies from observed changes in factor prices,

factor shares, value added shares and sectoral growth in real value added over time.

Key in our approach is that we distinguish between occupational labor inputs and that

we do not impose a priori assumptions about whether technological change occurs

at the sector or at the factor level. Our results show that the growth rates of factor-

augmenting technologies differed not only across the various occupations and types

of capital, but also for given production factors across sectors. Had we not taken this

very flexible approach of allowing technologies to evolve at the sector-factor level, we

would not have been able to identify these patterns.
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Through a range of counterfactual exercises we find that most of labor produc-

tivity growth, both at the sector level and in the aggregate, was due to technological

change. In particular we show that sector-specific routine labor augmenting techno-

logical change was crucial, explaining at least 54% of labor productivity growth in

the aggregate. Changing occupational employment shares within sectors and capital

accumulation both had a positive effect on the level, but neither contributed to the

sectoral differences in labor productivity growth observed in the data. Furthermore,

differences in occupational structure across sectors did not explain any of the sectoral

patterns of labor productivity growth.

While we establish that the rate at which occupational labor-augmenting technolo-

gies evolved differs both across sectors and occupations, we also identify common

components using a factor model. We find that occupation and sector components

jointly explain 96.7 percent of occupational labor-augmenting technological changes,

and that in measured sectoral labor productivity growth both components of tech-

nological change are crucial. One implication of this finding is that the growth rate of

sector-occupation technologies is well approximated by the sum of the relevant sector-

and occupation-component.

Overall, our results highlight that sector-specific routine-augmenting technological

change has been the key determinant of labor productivity growth over 1960-2017 in

the US economy, and that its contribution has accelerated in more recent decades.

Our finding that occupation-specific technological change varies across sectors is

novel. As such there are no theories for this, but we believe there are at least three

possible, complementary, explanations. First, as we discussed in the introduction, an

occupation’s productivity and its evolution may very naturally depend on the sector

of work. Second, sectoral differences in firm size or organizational structure might

result in differential effects of new technologies across sectors. Finally, as we consider

relatively broad occupational categories, there still might be some compositional dif-

ferences across sectors left in terms of finer occupational categories.

In this paper we did not investigate the reasons for sectoral differences in occupation-

augmenting technologies, but rather evaluated their role in labor productivity growth.

Our analysis highlights the need to better understand why routine labor-augmenting
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technologies have been growing at different rates across sectors.
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Appendix

A Classification

We classify occupations based on their routine task content and cognitive require-

ments, similarly to Acemoglu and Autor (2011), into the following three categories:

Manual (low-skilled non-routine): housekeeping, cleaning, protective service, food

preparation and service, building, grounds cleaning, maintenance, personal appear-

ance, recreation and hospitality, child care workers, personal care, service, healthcare

support;

Routine: farm workers, construction trades, extractive, machine operators, assem-

blers, inspectors, mechanics and repairers, precision production, transportation and

material moving occupations, sales, administrative support;

Abstract (skilled non-routine): managers, management related, professional specialty,

technicians and related support.

We combine four different industry classification systems, the NAICS, the SIC, the

ISIC and the IND1990. Table A1 summarizes our categorization in terms of each sys-

tem.

B Data Appendix

Capital targets. To back out all Zs we need the rental rate of non-ICT, Rk, and of ICT

capital, Rc, the share of income going to both types of capital, ΘJ , and to ICT capital

alone, ΘcJ , as well as the amount of non-ICT capital in each sector, kJ . As discussed

in the main text, we obtain the labor income share in each sector, 1 − ΘJ , from the

BEA as the compensation of employees over gross value added. Starting from data on

current-cost net stock and quantity indices for fine capital categories from the BEA, we

calculate for non-ICT and ICT capital real quantity (qk and qc) and price indices (pk and

pc) using the cyclical expansion procedure. Due to the quantity index normalization

of the BEA, these are both normalized to be 1 in 2009. Thus, we assume that the real

quantity of non-ICT and ICT capital in 2009 is equal to the share of non-ICT and ICT
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capital in the current-cost net stock of capital in 2009. Multiplying these 2009 values

with the quantity indices (qk, qc) we get the time series of the real quantity of non-ICT

and ICT capital. Dividing both by the number of full-time equivalent workers we get

the model equivalent of k and c. We calculate annual depreciation rates for both types

of capital δk and δc from the BEA data by dividing the sum of current-cost depreciation

of fixed assets of all non-ICT (or ICT) capital with the sum of current cost net stock of

these same fixed assets. The depreciation rate of non-ICT capital is fairly stable at

around 5.5 percent annually, whereas of ICT capital the depreciation rate increases

from 15.5 percent to 28 percent.

Nominal sectoral value added multiplied by the sector’s capital income share should

be equal to the value of total sectoral capital income. This results in the following ac-

counting identity:

Rkk +Rcc = Y nom ·
∑
J

V AJΘJ , (27)

where Y nom denotes nominal GDP per full-time equivalent worker, V AJ is sector J ’s

nominal value-added share, and ΘJ is sector J ’s capital income share, all obtained

from the BEA. Furthermore, we assume a no-arbitrage condition on the rate of returns

to non-ICT and ICT capital:

Rc + (1− δc)p′c
pc

=
Rk + (1− δk)p′k

pk
,

where p′k denotes the price of non-ICT capital in the next year. From these two equa-

tions we can calculate in each period the rental rates of non-ICT and of ICT capital, Rk

and Rc.

We calculate the allocation of ICT capital across sectors from EU KLEMS between

1970 and 2015, as the share of nominal capital stock in millions of national currency in

each sector, c̃J , with
∑

J c̃J = 1. The amount of real ICT capital (per worker) in each

sector is then obtained as cJ = c · c̃J . The share of income going to ICT capital in each

sector, ΘcJ , is then pinned down by the accounting identity: RccJ = Y nom · V AJΘcJ .

The amount of non-ICT capital in each sector, kJ , can then be calculated from (27).
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Sector-occupation cell wages. In our quantitative model, we use workers’ self-reported

income in the Census/ACS to compute θoJ as in (1), but do not use it to calculate

hourly wages. Instead we use an accounting identity to back out wages. This is to

ensure that in the model the sum of all factor income is equal to value added, which

we get from the BEA data. Nominal sectoral value added multiplied by the sector’s

labor income share should be the value of total sectoral labor income. This income in

turn is split across the various occupations. The accounting identity therefore is that

labor income of occupation o workers in sector J satisfies

woJ loJ = Y nom · V AJ(1−ΘJ)θoJ , (28)

where Y nom, V AJ and ΘJ are as defined earlier, and θoJ denotes the share of sector J

labor income that occupation o workers earn. Note that within sectors relative wages

depend only on the relative θs and occupational employment shares, and therefore is

equal to the relative wage observed in the Census/ACS data.

Income shares. Table A2 contains by sector the income share of each factor from

sectoral value added in 1960 and in 2017.

Table A2: Share of income in value added in 1960 and in 2017

occupations capital aggregates
manual routine abstract non-ICT ICT LA RA

1960
Low-skilled services 0.066 0.399 0.119 0.413 0.002 0.587 0.402
Goods 0.007 0.496 0.126 0.368 0.002 0.632 0.499
High-skilled services 0.050 0.201 0.228 0.501 0.019 0.499 0.220
2017
Low-skilled services 0.094 0.264 0.200 0.425 0.017 0.575 0.281
Goods 0.012 0.270 0.219 0.483 0.015 0.517 0.286
High-skilled services 0.041 0.103 0.392 0.429 0.035 0.571 0.138
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C Derivations

In this subsection we show how the Zs can be expressed as a function of observables.

In the first step we show the derivation of Zs within a period, and hence we omit the

time subscripts. In the main text we showed the derivation of ZmJ/ZaJ and ZcJ/ZrJ .

Here we show the derivation of ZmJ/ZrJ and ZkJ/ZmJ .

In these derivations we repeatedly use that at the optimum relative effective input

use can be expressed as
ZcJcJ
ZrJ lrJ

=

(
ΘcJ

(1−ΘJ)θrJ

) σc
σc−1

, (29)

which follows from multiplying the relative optimal input use with the relative Zs.

Using the above expression implies that at the optimum we can express the routine

aggregate as:

RAJ =
[
(ZrJ lrJ)

σc−1
σc + (ZcJcJ)

σc−1
σc

] σc
σc−1

= ZrJ lrJ

[
1 +

ΘcJ

(1−ΘJ)θrJ

] σc
σc−1

. (30)

Plugging this into the first order condition on routine labor, (11), and dividing with

the FOC on manual labor, (10), and re-arranging we get:

lrJ
lmJ

=

[
1 +

ΘcJ

(1−ΘJ)θrJ

] ρ−σc
σc−1

(
wmJ
wrJ

)ρ(
ZrJ
ZmJ

)ρ−1

.

Multiplying the above with wrJ/wmJ and substituting in θrJ/θmJ we obtain (17):

ZmJ
ZrJ

=
wmJ
wrJ

[
1 +

ΘcJ

(1−ΘJ)θrJ

] ρ−σc
(σc−1)(ρ−1)

(
θmJ
θrJ

) 1
ρ−1

.

Next we express the labor aggregate as:

LAJ =

[ ∑
o=m,a

(ZoJ loJ)
ρ−1
ρ +RA

ρ−1
ρ

J

] ρ
ρ−1

= ZmJ lmJ

[
1

θmJ

(
1 +

ΘcJ

1−ΘJ

)] ρ
ρ−1

, (31)

using (30) and substituting in
(

ZrJ lrJ
ZmJ lmJ

) ρ−1
ρ

= θrJ
θmJ

[
1 + ΘcJ

(1−θJ )θrJ

] σc−ρ
(σc−1)ρ

and
(
ZaJ laJ
ZmJ lmJ

) ρ−1
ρ

=

θaJ
θmJ

(obtained similarly to (29)), and that
∑

o θoJ = 1. Plugging the expression for LAJ
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into the FOC for manual labor, (10), and dividing by the FOC on non-ICT capital, (13),

and re-arranging we get:

kJ
lmJ

=

(
wmJ
Rk

)σ (
ZkJ
ZmJ

)σ−1 [
1

θmJ

(
1 +

ΘcJ

1−ΘJ

)] ρ−σ
ρ−1

.

Multiplying with Rk/wmJ and re-arranging we get equation (18):

ZkJ
ZmJ

=
Rk

wmJ

(
1

θmJ

) 1
ρ−1
(

ΘJ −ΘcJ

1−ΘJ

) 1
σ−1
(

1 +
ΘcJ

1−ΘJ

) σ−ρ
(ρ−1)(σ−1)

.

Finally we express sectoral output as a function of observables. Using the expression

on LAJ (31) and substituting that
(

ZkJkJ
ZmJ lmJ

)σ−1
σ

= ΘJ−ΘcJ
(1−ΘJ )θmJ

[
1

θmJ

(
1 + ΘcJ

1−ΘJ

)] σ−ρ
(ρ−1)σ

(ob-

tained similarly to (29)) we can express sectoral output as:

YJ =
(
LA

σ−1
σ

J + (ZkJkJ)
σ−1
σ

) σ
σ−1

= ZkJkJ

(
1

ΘJ −ΘcJ

) σ
σ−1

which is the expression in the main text.

D Decomposing labor-augmenting technological change

Figure A1 shows the path of sector-occupation technology changes (between each con-

secutive period) as extracted from the data, as well as the different predicted produc-

tivities based on the components derived from the factor model. The ‘full factor’ pre-

diction (green solid line) is quite close to the data (red solid line with marker), illustrat-

ing that the contribution of technological change idiosyncratic to the sector-occupation

cell is very small. For some cells, the ‘occupation-only’ predictions (the yellow dashed-

dotted line) gives a good account of the data, whereas for others the ‘sector-only’ pre-

dictions (the blue dashed line) are closer. The neutral predictions (gray dotted line)

give only minor changes for some cells (e.g. in the goods sector), whereas for others it

is relatively close to the data (rH cell for example).
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Figure A1: Baseline and counterfactual cell productivities
The solid red line with the marker shows the decennial change in the log of sector-occupation technolo-
gies, as calculated from the data. The other lines show the counterfactual paths, based on the neutral
(gray dotted), the sector-specific (blue dashed line), the occupation-specific (yellow dashed-dotted), or
sector- and occupation-specific (green solid line) components.

E Robustness checks and extensions

E.1 Alternative and heterogeneous substitution elasticities

We provide more detailed results for the robustness checks discussed in the main text,

by contrasting the results from our baseline analysis with those of the alternative elas-

ticity values. Table A3 shows in the top rows the average annual growth rates of the

factor augmenting technologies in each sector in our baseline (σ = 0.84, ρ = 0.6, σc =

2). The segments below shows the range of each of these growth rates across the 27 al-

ternative calibrations we run in our joint sensitivity analysis (σ ∈ {0.65, 0.75, 0.84}⊗ρ ∈

{0.5, 0.6, 0.7} ⊗ σc ∈ {1.5, 2, 2.5}). These ranges display similar key features to those

which we highlighted in the discussion of Table 2.

Similarly Figures A2, A3, A4 and A5 show the results for sectoral labor produc-

tivity growth in the baseline along with the range of predictions across the parame-

ters considered in the sensitivity analysis (shown as black error bars). These figures

demonstrate that all the results from the baseline are very robust across all the alter-
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Table A3: Average annual growth rate of Zs over 1960–2017 under alternative param-
eters

occupations capital
manual routine abstract non-ICT ICT

Baseline:
Low-sk. serv. 0.26 2.93 -0.69 0.85 2.02
Goods 0.59 5.61 0.98 -1.61 4.43
High-sk. serv. 0.72 1.32 -2.38 1.78 -1.94

Sensitivity Ranges:
Low-sk. serv. [-0.41, 0.59] [2.39, 3.47] [-1.59, -0.22] [0.85, 1.03] [0.17, 6.96]
Goods [-1.67, 1.24] [3.94, 6.19] [-1.31, 1.65] [-1.61, -0.01] [1.40, 9.63]
High-sk. serv. [0.43, 2.04] [0.43, 3.18] [-2.96, -1.24] [0.83, 1.78] [-3.09, 1.69]

Notes: All numbers are annualized growth rates in percent.

native parametrizations.
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Figure A2: Average sectoral labor productivity growth with fixed technologies
This figure shows the role of the different factor-augmenting technologies in sectoral labor productivity
growth for different elasticities, along with error bars that represent the range of results across the
sensitivity analysis.
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Figure A3: Average sectoral labor productivity growth with alternative technologies
This figure shows the role of the various components of labor-augmenting technologies in sectoral labor
productivity growth for our baseline calibration along with error bars that represent the range of results
across the sensitivity analysis.
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Figure A4: Average sectoral labor productivity growth with fixed inputs
This figure shows the role of changing factor input use in sectoral labor productivity growth for different
elasticities, along with error bars that represent the range of results across the sensitivity analysis.
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Figure A5: Counterfactual aggregate labor productivity growth in different periods
This figure shows the role of various inputs and technologies in aggregate labor productivity growth
between 1960-2017, 1960-1990 and 1990-2017 for our baseline calibration along with error bars that
represent the range of results across the sensitivity analysis.
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Additionally, Table A4 shows for the range of ρ values which have been consid-

ered in the literature the distance measure between the changes in sector-occupation

cell technologies inferred from the data and the predictions based on the various com-

ponents of the factor model. This table shows that the distance measures of the pre-

dictions based on the neutral, on the sector and on the occupation components vary

quite a bit with the value of ρ. If the elasticity of substitution between different occu-

pations is low then the sector components play a larger role, while if ρ is high, then

the occupation components are more important. However, the full factor prediction

reproduces the data quite well for all values of ρ considered.

Table A4: Distance measure of the different predictions

ρ neutral full factor sector occupation
0.5 0.674 0.024 0.151 0.455
0.6 0.703 0.033 0.228 0.407
0.7 0.751 0.049 0.361 0.339
0.8 0.833 0.076 0.590 0.247
0.9 0.943 0.111 0.914 0.168

Sector-specific substitution elasticity of non-ICT capital and labor aggregate

We also consider sector-specific values of the elasticity of substitution between non-

ICT capital and labor. The average annual growth rates of the impliedsector-specific

factor augmenting technologies are shown in Table A5. Both the sector- and the factor-

specific patterns that we found in our baseline analysis are maintained.

Table A5: Average annual growth rate of Zs 1960–2017, sector-specififc σJ

occupations capital
manual routine abstract non-ICT ICT

1960-2017
Low-skilled services 0.18% 2.84% -0.77% 0.97% 1.94%
Goods 1.92% 7.00% 2.32% -3.34% 5.81%
High-skilled services 1.26% 1.87% -1.86% 1.15% -1.42%

Figure A6 shows the robustness of the model to allowing for different σJ across

sectors in terms of its implications for sectoral labor productivity. In this figure the

column on the left shows the baseline results, and the one on the right the results with

heterogeneity across sectors.
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(e) Role of inputs, baseline
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(f) Role of inputs, σJ
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Figure A6: Baseline vs sector specific σJ

This figure shows the differences between the magnitude of the various channels when considering
sector-specific σs relative to the baseline. The values used are σL = σH = 0.75 and σG = 0.9. In the
baseline these are all set to 0.84.
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E.2 Different Nesting

Given the production structure described in section 5.2, the each sector’s representa-

tive firm’s problem is given by

max
{loJ},cJ ,kJ

pJYJ −
∑
o

woJ loJ −RccJ −RkkJ .

The first order conditions that optimal input use in each sector has to satisfy are:

∂πJ
∂lmJ

= pJY
1
σ
J LA

σ−ρm
ρmσ

J Z
ρm−1
ρm

mJ l
− 1
ρm

mJ − wmJ = 0, (32)

∂πJ
∂laJ

= pJY
1
σ
J LA

σ−ρm
ρmσ

J AA
ρm−ρa
ρaρm

J Z
ρa−1
ρa

aJ l
− 1
ρa

aJ − waJ = 0, (33)

∂πJ
∂lrJ

= pJY
1
σ
J LA

σ−ρm
ρmσ

J AA
ρm−ρa
ρaρm

J RA
ρa−σc
σcρa

J Z
σc−1
σc

rJ l
− 1
σc

rJ − wrJ = 0, (34)

∂πJ
∂cJ

= pJY
1
σ
J LA

σ−ρm
ρmσ

J AA
ρm−ρa
ρaρm

J RA
ρa−σc
σcρa

J Z
σc−1
σc

cJ c
− 1
σc

J −Rc = 0, (35)

∂πJ
∂kJ

= pJY
1
σ
J Z

σ−1
σ

kJ k
− 1
σ

J −Rk = 0. (36)

The first order conditions on routine labor and ICT capital give exactly the same

relative technology levels as in our baseline, (16), and the expression for the routine

aggregate under optimal input use is unchanged. The first order conditions on routine

and abstract labor using the expression on RAJ , (30), give:

lrJ
laJ

=

(
1 +

ΘcJ

(1−ΘJ)θrJ

) ρa−σc
σc−1

(
waJ
wrJ

)ρa (ZrJ
ZaJ

)ρa−1

.

Multiplying both sides by wrJ/waJ and re-arranging we get:

ZaJ
ZrJ

=
waJ
wrJ

(
1 +

ΘcJ

(1−ΘJ)θrJ

) ρa−σc
(σc−1)(ρa−1)

(
θaJ
θrJ

) 1
ρa−1

. (37)

Using optimal input use we can express the abstract aggregate as:

AAJ,t = ZaJ laJ

[
1 +

(
1 +

ΘcJ

(1−ΘJ)θrJ

)
θrJ
θaJ

] ρa
ρa−1

.

The first order conditions on manual and abstract labor (using the above expression
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for AAJ ) give:

lmJ
laJ

=

(
ZmJ
ZaJ

)ρm−1(
waJ
wmJ

)ρm [
1 +

(
1 +

ΘcJ

(1−ΘJ)θrJ

)
θrJ
θaJ

] ρa−ρm
ρa−1

.

Multiplying both sides by wmJ/waJ and re-arranging we get:

ZaJ
ZmJ

=
waJ
wmJ

[
1 +

(
1 +

ΘcJ

(1−ΘJ)θrJ

)
θrJ
θaJ

] ρa−ρm
(ρa−1)(ρm−1)

(
θaJ
θmJ

) 1
ρm−1

. (38)

Using optimal input use we can express the labor aggregate as:

LAJ,t = ZmJ lmJ

[
1

θmJ

(
1 +

ΘcJ

1−ΘJ

)] ρm
ρm−1

.

Again we use the FOCs of non-ICT capital and manual labor to get:

kJ
lmJ

=

(
ZkJ
ZmJ

)σ−1(
wmJ
RJ

)σ [
1

θmJ

(
1 +

ΘcJ

1−ΘJ

)] ρm−σ
ρm−1

Multiplying both sides by R/wmJ and re-arranging gives us:

ZmJ
ZkJ

=
wmJ
R

θ
1

ρm−1

mJ

(
(1−ΘJ)

ΘJ −ΘcJ

) 1
σ−1
(

1 +
ΘcJ

1−ΘJ

) ρm−σ
(ρm−1)(σ−1)

. (39)

Finally, we express sectoral output as

YJ = ZkJkJ

(
1

ΘJ −ΘcJ

) σ
σ−1

,

which pins down the growth rate of ZkJ in each sector as in our baseline, (19). Initial

technology levels are also pinned down exactly as before, (20). All sector-factor tech-

nologies can then be extracted from the data using expressions (16), (37), (38), (39),

(19), and (20), for given values for each elasticity of substitution. We take the values

of the new elasticities from vom Lehn (2019), these are ρa = 0.31, ρm = 1.49, while we

keep all other elasticities at their baseline values.

Table A6 shows the technology growth rates when nesting the labor inputs in a

different way. The growth rates for non-ICT capital are exactly the same as before,
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all other growth rates are different to some extent. Most of the sector and factor pat-

terns are maintained. However, technological progress in manual occupations is much

higher than before. This should not be surprising, as manual labor input is a good sub-

stitutes now for all other labor inputs, hence to obtain the same relative employment

and wage growth we need higher productivity growth than in our baseline.

Table A6: Average annual growth rate of Zs 1960–2017, with different nesting

occupations capital
manual routine abstract non-ICT ICT

1960-2017
Low-skilled services 3.31% 1.91% -0.07% 0.85% 1.00%
Goods 6.68% 4.83% 2.32% -1.61% 3.64%
High-skilled services -1.82% 0.39% -1.47% 1.78% -2.86%

The counterfactual sectoral and aggregate labor productivity growth numbers are,

however, very similar to our baseline. While there are some small quantitative differ-

ences, for example shutting down routine labor productivity growth implies a larger

reduction in labor productivity growth in the goods sector, but a smaller reduction in

the two service sectors, the qualitative predictions are exactly the same.
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Figure A7: Baseline vs different nesting of labor inputs
This figure shows the differences between the magnitude of the various channels with a different nest-
ing of labor inputs relative to the baseline.
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E.3 Allowing for efficiency units of labor

To control for workers’ skills, we employ the following Mincer wage regression

logwioJt = δoJt + β′Xit + εioJt, (40)

where δoJt are occupation-sector-time effects and Xit is a vector of worker character-

istics. From this regression we can back out both an occupation-sector wage in year

t that is not confounded by changes in composition of worker characteristics, Xit, as

well as an estimate of the average efficiency units a worker in occupation o and sector

J has in year t. In particular, we run this regression on the Census/ACS data where the

vector of worker i characteristics Xit is comprised of a third-order polynomial in po-

tential experience, interacted with a dummy for college education and with a gender

dummy, as well as a dummy for foreign-born and non-white race. Note that for our

model to match the average hourly wages by sector-occupation cell in every period

(woJ,t), we need to assign the cell-year average of the exponent of the residuals from

(40) to either the average wage per efficiency units or to the average efficiency units per

hour worked. Thus we have two options. Either we construct the sector-occupation

cell efficiency units per hour, e1
oJ,t, as the average of ê1

ioJt = exp(β′Xit) within the sector-

occupation-year cell. In this case the implied sector-occupation-year unit wages are

given as ŵ1
oJ,t = woJ,t/e

1
oJ,t. Alternatively we construct sector-occupation cell efficiency

wages per hour, ŵ2
oJ,t = exp(δoJt). The implied average sector-occupation-year effi-

ciency units per hour worked are then e2
oJ,t ≡ woJ,t/ŵ

2
oJ,t.

We use the equivalent of (28) to get sector-occupation wages per efficiency unit

(w̃oJ,t):

w̃MoJ,tloJ,te
M
oJ,t = Y nom

t · V AJ,t(1−ΘJ,t)θoJ,t, (41)

where eMoJ,t is the average sector-occupation efficiency units per hour worked in period

t (according to method M = 1, 2). The within sector relative wages implied by the

accounting identity are:

w̃MoJ,t
w̃MrJ,t

=

θoJ,t
loJ,te

M
oJ,t

θrJ,t
lrJ,te

M
rJ,t

=

woJ,t
eMoJ,t
wrJ,t
eMrJ,t

=
ŵMoJ,t
ŵMrJ,t

,
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where the last equality follows as both our methods ensure that we match each cell’s

average hourly wage. Thus in this formulation – just as in the baseline – the within-

sector relative wages per efficiency units obtained from the accounting identity are the

same as those implied by the Mincer wage regression.

Table A7: Sector-occupation efficiency units of labor 1960–2017

Sector Occupation 1960 1970 1980 1990 2000 2010 2017
Low- manual 1.798 1.751 1.594 1.660 1.717 1.731 1.719

skilled routine 2.067 1.993 1.863 1.929 1.989 2.015 1.989
services abstract 2.310 2.248 2.117 2.168 2.246 2.272 2.245

manual 2.203 2.113 2.004 1.986 2.020 2.043 2.042
Goods routine 2.107 2.055 1.945 2.024 2.083 2.151 2.120

abstract 2.457 2.499 2.455 2.507 2.593 2.668 2.621
High- manual 2.032 1.978 1.892 1.994 2.043 2.052 2.043
skilled routine 1.943 1.877 1.819 1.900 1.953 2.011 2.048

services abstract 2.404 2.398 2.340 2.425 2.481 2.511 2.505
(a) fitted efficiency units, e1

Sector Occupation 1960 1970 1980 1990 2000 2010 2017
Low- manual 2.242 2.166 1.880 1.904 1.979 2.104 2.089

skilled routine 2.332 2.254 2.141 2.225 2.297 2.502 2.488
services abstract 2.799 2.685 2.539 2.577 2.663 2.795 2.819

manual 2.436 2.383 2.310 2.276 2.375 2.493 2.457
Goods routine 2.382 2.313 2.226 2.301 2.376 2.563 2.500

abstract 2.799 2.817 2.762 2.847 2.981 3.148 3.152
High- manual 2.290 2.249 2.168 2.286 2.360 2.512 2.512
skilled routine 2.091 2.078 2.065 2.177 2.272 2.479 2.585

services abstract 2.761 2.746 2.646 2.766 2.873 3.026 3.090
(b) residual efficiency units, e2

Table A7 shows efficiency units by sector-occupation over time for the two meth-

ods. While there is a level difference between the efficiency units directly fitted and the

ones backed out as a residual from wages, the two methods give very similar patterns

for the evolution of each sector-occupation cell’s average efficiency over time.

In the variant of the model with efficiency units of labor, firms choose noJ,t ≡

eoJ,tloJ,t in each period, instead of just hours worked (loJ,t). This implies that we need

to use wages per efficiency unit of labor in equations (15) to (20), but the measurement

of all other variables remains the same as in the baseline model. Figure A8 plots the

alternative series for the relative wages within sectors. The dotted lines show method

1 and the dashed lines show method 2 applied in (41), and the solid lines show our
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baseline (of wages per hour worked from (28)). Note that all alternative lines quali-

tatively show the same patterns, most are also quantitatively very close. Given that
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2.5
Low-skilled services

1960 1980 2000 2020
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High-skilled services

baseline m/r

baseline a/r

method 1 m/r

method 1 a/r

method 2 m/r

method 2 a/r

Figure A8: Comparison of relative wages
Notes: This figure plots the relative hourly wages of manual (blue with marker) and abstract (green)
compared to routine workers within each sector over time for three alternative ways to compute wages:
(i) from the baseline model without efficiency units (equation (28), solid lines), (ii) from fitted efficiency
units ((41) based on method 1, dotted lines), (iii) from fitted efficiency wages ((41) based on method 2,
dashed lines).

the relative wage path are similar to those in our baseline, it is not surprising that our

results are robust to controlling for skills.

Given the series of wages per efficiency unit of labor, w̃MoJ,t we constructed for the

two methods M = 1, 2, and all the other data we use in the main part of the paper, we

use again our methodology to infer the factor-augmenting technologies in each sector.

Table A8 shows the average annual change in the labor-augmenting technologies over

1960–2017. We do not report the results for the technology of ICT and of non-ICT

capital here, as these are exactly the same as in the baseline model because they are

independent of how labor income is split. Equations (15) to (19) imply that differences

in the measurement of wage growth over time result in differential growth rates in the

labor-augmenting technologies, but do not affect the growth rates of ZcJ or ZkJ .

Table A8: Average annual growth rate of Zs over 1960–2017 accounting for efficiency
units of labor

based on fitted effiency units, e1 based on residual effiency units, e2

manual routine abstract manual routine abstract
Low-sk. serv. 0.34% 2.99% -0.64% 0.38% 2.81% -0.70%
Goods 0.72% 5.60% 0.87% 0.57% 5.52% 0.77%
High-sk. services 0.71% 1.23% -2.45% 0.56% 0.95% -2.57%

Notes: The change in the capital inputs’ technologies (the ZcJs and ZkJs) is exactly the same as in Table
2 and not shown here.

Comparing Table A8 to Table 2 reveals that in both variants of the model with ef-
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ficiency units the resulting growth rates of labor-augmenting technologies are very

similar to the baseline model of the main text, both in terms of the ranking of growth

in ZoJ but also quantitatively. This is perhaps not that surprising given that we es-

tablished in Figure A8 already that the relative occupational wages within a sector

do not change much when we control for workers’ characteristics. Since we identify

the within-sector ratios of occupational productivities precisely from this ratio, but the

across-time changes from objects that do not depend on the measurement of wages or

efficiency units, the general conclusions about inferred technological change do not

change when we measure the labor inputs in terms of hours worked times efficiency

units.

Since the series of the factor-augmenting technologies (by sector) in the model with

efficiency units of labor are so similar to the baseline model, and in fact for the capital

inputs coincide, the implications for sectoral labor productivity are very similar too.

While there are very small quantitative differences when studying the role of individ-

ual inputs or technologies, qualitatively they have the very same implications. Figure

A9 shows this for the model variant based on fitted efficiency units, e1.

68



-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

data all 
technologies 

fixed

all capital 
technologies 

fixed

non-ICT cap. 
technologies 

fixed

ICT cap. 
technologies 

fixed

all labor 
technologies 

fixed

manual 
technologies 

fixed

routine 
technologies 

fixed

abstract 
technologies 

fixed

Low-skilled services Goods High-skilled services

(a) Role of technologies, baseline

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

data all 
technologies 

fixed

all capital 
technologies 

fixed

non-ICT cap. 
technologies 

fixed

ICT cap. 
technologies 

fixed

all labor 
technologies 

fixed

manual 
technologies 

fixed

routine 
technologies 

fixed

abstract 
technologies 

fixed

Low-skilled services Goods High-skilled services

(b) Role of technologies, efficiency units

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

data neutral           
technologies

full factor       
technologies

sector-only 
technologies

occupation-only 
technologies

Low-skilled services Goods High-skilled services

(c) Role of components, baseline

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

data neutral           
technologies

full factor       
technologies

sector-only 
technologies

occupation-only 
technologies

Low-skilled services Goods High-skilled services

(d) Role of components, efficiency units

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

data all inputs      
fixed

all capital     
inputs fixed

non-ICT      
capital inputs 

fixed

ICT capital 
inputs fixed

all labor     
inputs fixed

occ. emp.     
shares within 

sec. fixed

no occ. emp. 
share diff.    
across sec

Low-skilled services Goods High-skilled services

(e) Role of inputs, baseline

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

data all inputs      
fixed

all capital     
inputs fixed

non-ICT      
capital inputs 

fixed

ICT capital 
inputs fixed

all labor     
inputs fixed

occ. emp.     
shares within 

sec. fixed

no occ. emp. 
share diff.    
across sec

Low-skilled services Goods High-skilled services

(f) Role of inputs, efficiency units

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

data all         
inputs       
fixed 

capital       
inputs        
fixed

labor        
inputs         
fixed 

all 
technologies 

fixed

capital 
technologies 

fixed

labor 
technologies 

fixed

manual 
technologies 

fixed

routine 
technologies 

fixed

abstract 
technologies 

fixed

1960-2017 1960-1990 1990-2017 

(g) Aggregate labor prod., baseline

-0.50 

0.00

0.50

1.00

1.50

2.00

2.50

data all         
inputs       
fixed 

capital       
inputs        
fixed

labor        
inputs         
fixed 

all 
technologies 

fixed

capital 
technologies 

fixed

labor 
technologies 

fixed

manual 
technologies 

fixed

routine 
technologies 

fixed

abstract 
technologies 

fixed

1960-2017 1960-1990 1990-2017 

(h) Aggregate labor prod., efficiency units

Figure A9: Baseline vs efficiency unit model
This figure shows the differences between the magnitude of the various channels when considering the
model with efficiency units relative to the baseline.
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E.4 Including the self-employed

In our baseline specification we excluded the self-employed from (i) sectoral employ-

ment and (ii) sectoral labor income shares both calculated from BEA data, as well

as (iii) from hours worked and occupational labor income shares within sectors (as

well as the implied hourly wages) calculated from Census/ACS data. Our choice was

driven by the fact that in the data it is nearly impossible to distinguish the labor and

capital income of the self-employed, leading to problems in calculating (ii) and (iii).

A large fraction of the self-employed do not report their earnings in the Census/ACS,

and in the national accounts only the total proprietors’ income is reported without

specifying which part of it is labor and which is capital income. Below we detail how

we deal with each of these. We calculate sectoral employment (and sectoral employ-

ment shares) by including the number of self-employed by sector in addition to full

time equivalent employees.
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Figure A10: Labor income share adjusted with proprietors’ income by sector
Notes: Labor income share as in our baseline (dashed lines, as in 2) and adjusted with proprietors’
income (solid lines).

To calculate sectoral labor income shares including the self-employed, we split pro-

prietors’ income into capital and labor income in the same proportion as the rest of sec-

toral income is split between capital and labor income, as suggested in Gollin (2002)

and Elsby et al. (2013). To obtain proprietors’ income by our three sectors we com-
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bined data on Nonfarm Proprietors’ Income by Industry (downloaded directly from

the BEA, Tables 6.12.B, C, D, U.S. Bureau of Economic Analysis (2020b)) with Farm

Proprietors’ Income with inventory valuation and capital consumption adjustments

(downloaded from FRED U.S. Bureau of Economic Analysis (2020a)). In Figure A10

we plot our baseline labor income shares (compensation of employees/value added,

dashed lines) by sector and for the overall economy, 1−ΘJ , as well as the labor income

shares adjusted with the proprietors’ income (with solid lines), 1− Θ̃J .

The difference between the two sectoral labor income shares, ΘJ − Θ̃J gives the

fraction of income that accrues to the self-employed as labor income by sector. We

use the information from the Census/ACS on hours worked to impute the share of

this by occupation among the self-employed. To impute relative occupational labor

income shares of the self-employed, we make the assumption that the relative wage

of any two occupations within a sector is the same among employees and among the

self-employed:
θseoJ
θsemJ

=
lseoJ
lsemJ

woJ
wmJ

,

where lseoJ are the hours worked by self-employed in occupation o in sector J , and

woJ/wmJ are relative occupational employee wages within a sector as calculated in (2).

While similar, this assumption is slightly less restrictive than assuming that the wages

of employees and the self-employed are the same. The occupational share of labor

income within sectors, taking into account the self-employed, can then be calculated

as:

θ̃oJ =
(1−ΘJ)θoJ + (ΘJ − Θ̃J)θseoJ

1− Θ̃J

,

where θoJ is calculated as in (1) from the Census data for the employees only.

Table A9: Average annual growth rate of Zs 1960–2017, including the self-employed

occupations capital
manual routine abstract non-ICT ICT

1960-2017
Low-skilled services 0.53% 3.25% 1.32% -0.56% 2.45%
Goods -0.30% 5.37% 2.71% -2.58% 4.35%
High-skilled services 1.04% 1.59% -1.69% 1.24% -0.37%
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(h) Aggregate labor prod., including the SE

Figure A11: Baseline vs including the self-employed (SE)
This figure shows the differences between the magnitude of the various channels when including the
self-employed relative to the baseline.
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E.5 Separating Agriculture from Industry

In our main analysis we grouped various industries together into the goods sector. In

this subsection we break this up and differentiate between agriculture and industry,

comprising of manufacturing, mining and construction. and agriculture. We use the

same methodology and parameterization of elasticities as in our baseline model. The

results for low- and high-skilled services are identical to the baseline by construction,

so focus here only on those for industry and agriculture. The results for the industry

sector are very similar to what we found for the overall goods sector, while agricultural

looks somewhat different. While the growth rates for some of the factor-augmenting

technologies are different for industry and the broad goods sector (comparing Table

A10 to Table 2), these differences occur in factors that carry low initial weights (see

Table 4) and have therefore little consequence for the various drivers of labor produc-

tivity growth. As Figure A12 shows the role of technologies, including of their com-

ponents, and of inputs for productivity growth in the broad goods sector (left column)

and in the narrower goods sector (right column) are very similar. Moreover, the im-

plications for aggregate labor productivity growth allowing for a separate agricultural

sector are virtually identical.

Table A10: Average annual growth rate of Zs 1960–2017, separate agriculture

occupations capital
manual routine abstract non-ICT ICT

Industry 5.33% 6.00% 1.43% -3.02% 4.86%
Agriculture -11.17% 0.21% -5.57% 5.25% -4.67%
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(a) Role of technologies, baseline
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(b) Role of technologies, separate agriculture
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(c) Role of components, baseline

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

data neutral

technologies

full factor

technologies

sector-only

technologies

occupation-only

technologies

Low-skilled services Industry Agriculture High-skilled services

(d) Role of components, separate agriculture
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(e) Role of inputs, baseline
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(f) Role of inputs, separate agriculture
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(g) Aggregate labor prod., baseline
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(h) Aggregate labor prod., sep. agriculture

Figure A12: Baseline classification vs separate agriculture
This figure shows the differences between the magnitudes of the various channels when separating
agriculture relative to the baseline classification of sectors.
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