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Continued Fractions and Hankel Determinants
from Hyperelliptic Curves

ANDREW N. W. HONE
University of Kent

This work is dedicated to the memory of Jon Nimmo.

Abstract

Following van der Poorten, we consider a family of nonlinear maps that are gen-
erated from the continued fraction expansion of a function on a hyperelliptic
curve of genus g. Using the connection with the classical theory of J -fractions
and orthogonal polynomials, we show that in the simplest case g D 1 this pro-
vides a straightforward derivation of Hankel determinant formulae for the terms
of a general Somos-4 sequence, which were found in a particular form by Chang,
Hu, and Xin. We extend these formulae to the higher genus case, and prove that
generic Hankel determinants in genus 2 satisfy a Somos-8 relation. Moreover,
for all g we show that the iteration for the continued fraction expansion is equiv-
alent to a discrete Lax pair with a natural Poisson structure, and the associated
nonlinear map is a discrete integrable system. © 2020 the Authors. Communi-
cations on Pure and Applied Mathematics is published by the Courant Institute
of Mathematical Sciences and Wiley Periodicals LLC

1 Introduction
The Somos-4 recurrence is given by

(1.1) �nC4�n D � �nC3�nC1 C � �2nC2:

The surprising observation of Somos was that when � D � D 1 and the four
initial values �0; �1; �2; �3 are all 1, the recurrence (1.1) generates a sequence of
integers [51], beginning with

(1.2) 1; 1; 1; 1; 2; 3; 7; 23; 59; 314; 1529; 8209; 83313; 620297; : : : :

A proof of this fact was eventually published [38], but a better understanding of the
mechanism by which such rational recurrences can yield integer sequences came
from the observation that (1.1) exhibits the Laurent property [21, 22]: the iterates
are Laurent polynomials in the initial values with integer coefficients, that is to say

�n 2 Z
�
��1
0 ; ��1

1 ; ��1
2 ; ��1

3 ; �; �
�
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2 A. N. W. HONE

for all n, which makes it obvious why (1.2) consists entirely of integers. The
Laurent phenomenon [19] eventually appeared as a key property of the distin-
guished generators (cluster variables) in Fomin and Zelevinsky’s cluster algebras
[18], which are constructed by a recursive process called mutation, and Fordy and
Marsh showed how the Somos-4 recurrence and various higher-order analogues
arise from cluster mutations starting from quivers of a particular type [20].

Cluster algebras fit within a broader setting of Laurent phenomenon algebras
[35], leading to a wide variety of nonlinear recurrences that exhibit the Laurent
property [2], and it is always possible to reverse engineer a rational recurrence
to generate an integer sequence [15]. However, Somos-4 sequences have some
very special features that are a consequence of the fact that each such sequence
is associated with a sequence of points P0 C nP on an elliptic curve E, and this
leads to an analytic formula for the terms of the sequence. The following result
was proved in [24, 25].

THEOREM 1.1. The terms of a Somos-4 sequence, generated by (1.1) from four
nonzero initial values �0; �1; �2; �3, nonzero �, and arbitrary � 2 C, are given by

(1.3) �n D yaybn
�.´0 C n´/

�.´/n
2

;

where �.´/ D �.´Ig2; g3/ is the Weierstrass sigma function associated with the
elliptic curve EW y2 D 4x3 � g2x � g3 over C with period lattice �, with ´0 DR P0

1
dx
y

, ´ D
R P
1

dx
y
2 C mod � corresponding to points P0; P 2 E, and ya; yb are

certain nonzero constants.

The formula (1.3) also makes sense in the degenerate case when the discriminant
g32�27g

2
3 D 0. Although the above result is formulated over the complex numbers,

its algebraic content—associating a solution of (1.1) with a sequence of points on
an elliptic curve—is valid in any field over which the initial values and coefficients
�; � are defined (up to appropriate adjustments in characteristic 2 or 3); this was de-
scribed independently by Swart [53], and also, in terms of a quartic model forE, by
van der Poorten [46]. This underlying algebraic structure has many consequences,
including the existence of higher-order relations between the terms [26,36,48] and
more refined versions of the Laurent property that produce large families of integer
sequences [30]. From this point of view, Somos-4 sequences are natural exten-
sions of Ward’s elliptic divisibility sequences [57], which correspond to the special
case P0 D 1 (the identity element in the group law of E), and generalize the
arithmetical properties of Fibonacci or Lucas sequences to a nonlinear setting [16].
Aside from their intrinsic interest for certain problems of an arithmetical [50] or
Diophantine nature [9], Somos sequences and their higher-order analogues appear
in discrete integrable systems, underlying many integrable maps [29], especially
via reductions of the discrete Hirota equation (bilinear discrete KP, also known as
the octahedron recurrence) [28] or Miwa’s equation (bilinear discrete BKP, or the
cube recurrence) [17]. They also arise in solvable models of statistical mechanics
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and quantum field theory, such as the hard hexagon model, as mentioned in [49],
or dimer models and quiver gauge theory [14].

It was conjectured by Somos, and later proved by Xin [58], that the terms of the
sequence (1.2) have another explicit expression that is rather different from (1.3),
being given by the Hankel determinants

(1.4) Dn D det.zsiCj�2/i;jD1;:::;n;

where the entries zsj are obtained from the function � D �.x/ satisfying the alge-
braic equation

(1.5) � � �2 D x � x3:

To be precise, solving (1.5) for � with a fixed choice of square root, one should
take the function zG D �=x � 1 and expand it as

(1.6)
�

x
� 1 D

X
j�1

zsj�1x
j D x C x2 C 3x3 C 8x4 C 23x5 C � � � ;

which gives

(1.7) D0 D D1 D 1; D2 D

����1 1

1 3

���� D 2; D3 D

������
1 1 3

1 3 8

3 8 23

������ D 3;

and so on, where the matrix entries are generated by the recursion

(1.8) zsj D z�zsj�1 C z�zsj�2 C z


j�2X
iD0

zsizsj�2�i ; j � 2;

with z� D 2, z� D 0, z
 D 1, and zs0 D zs1 D 1. It was further conjectured
by Barry [4] that the Hankel determinants Dn formed from a particular family
of sequences .zsj /, defined by the recursion (1.8) with zs0 D 1, zs1 D z�, satisfy the
Somos-4 recurrence (1.1) with coefficients � D z�2z
2, � D z
2. z�Cz
/2�z�2z
3, and
this was proved by Chang and Hu using identities for block Hankel determinants
[10]. The latter result does not overlap with that of Xin, since the conditions on
the coefficients and initial conditions do not include the original sequence (1.2).
However, it was subsequently shown by Chang, Hu, and Xin that, for any Somos-4
sequence with two adjacent initial values equal to 1, the terms with positive index
n are given by a Hankel determinant of the form (1.4), where the entries zsj satisfy
a recursion of the form (1.8), for a suitable choice of z�; z�; z
; zs0; zs1 [11].

In this paper we start from van der Poorten’s construction in [46] for Somos-4,
based on the continued fraction expansion of a function on a quartic curve of
genus 1, and the results of [45, 47]. In the latter work, the continued fraction
approach was extended to hyperelliptic curves of higher genus g, defined by a
polynomial of even degree 2g C 2, with partial success: a Somos-6 relation was
obtained in genus 2, but only in a special case. The continued fraction expansion
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of a hyperelliptic function of a certain type is described in Section 2 (for other re-
lated results, and the connection with the geometry of the Jacobian of the curve,
see [1, 5, 6, 23, 44]). Next, in Section 3, the recursion for the continued fraction
is reformulated as a discrete dynamical system defined by a matrix linear problem
(a discrete Lax pair), and we state the first main result, Theorem 3.1, which says
that this nonlinear dynamical system is integrable in the sense that it satisfies a
discrete analogue of the Liouville-Arnold theorem from classical mechanics [3],
having an invariant symplectic structure and a sufficient number of first integrals
in involution with respect to the corresponding Poisson bracket (see [8, 37, 55] for
the precise definition of a discrete integrable system). We present explicit details
of the symplectic map and first integrals for the cases g D 1 and g D 2, while the
complete proof for any g is deferred until Section 6.

Section 4 is concerned with the derivation of Hankel determinant formulae for
the solutions of the nonlinear system, based on the classical theory of J -fractions
and orthogonal polynomials, which are presented in a uniform fashion for any
genus g. (Note that Hankel determinants and continued fractions have appeared
in the solutions of many other integrable systems, particularly those of Toda type
and Painlevé equations [12,33,52], and there are more recent results in the broader
context of Padé approximants associated with isomonodromic deformations [39].)
Subsequently, in Section 5, we show how the Hankel formulae obtained generalize
the results of Chang, Hu, and Xin on Somos-4 sequences: even in the elliptic case
g D 1, the results are more general than [11], since the Hankel determinants de-
pend on an additional free parameter, and the formulae from the previous section
extend to negative indices n. In genus 2 we prove that, for generic parameter val-
ues, the corresponding Hankel determinants satisfy a Somos-8 relation (Theorem
5.5), and indicate how van der Poorten’s Somos-6 recurrence arises as a special
case. We also present a precise conjecture that provides an analytic formula anal-
ogous to (1.3) for the Hankel determinants in genus 2, and briefly explain how
an appropriate higher genus analogue of this conjecture implies the existence of
Somos recurrences for all values of g.

In Section 6 we employ a space of 2 � 2 Lax matrices, related to those in Sec-
tion 3 by a gauge transformation, which admits a natural Poisson structure, and
construct a completely integrable system on this phase space, given by a set of
commuting flows defined by suitable Hamiltonian functions. We then show how
the nonlinear map coming from the continued fraction arises from a Poisson map
on this phase space, which preserves the same Hamiltonians and Casimirs as the
continuous system. The map we obtain is somewhat reminiscent of the Bäcklund
transformation (BT) for the even Mumford systems, introduced in [34], except that
the entries of the Lax pair have a different degree structure, and (in contast with
the BT, which is a multivalued correspondence) it is an explicit birational map.
Some determinantal identities that directly yield the formulae for the coefficients
of J -fractions are also presented in an appendix.
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2 Continued Fractions for Hyperelliptic Functions
Following van der Poorten [45–47], we consider a hyperelliptic curve defined

by

(2.1) CW Y 2 D F.X/;

where

(2.2) F.X/ D A.X/2 C 4R.X/

for a pair of polynomials

A.X/ D XgC1 C � � � ; R.X/ D uXg C � � � :

In addition to the affine points .X; Y / 2 C2 satisfying (2.1), one can adjoin two
points at infinity, 11 and 12, such that, in terms of a local parameter t at each of
these points, X D 1=t and Y � �1=tgC1, respectively. Thus, in the generic case
that all the roots of F.X/ are distinct, one obtains a compact Riemann surface of
genus g, also denoted C. In the associated function field

F D C.X; Y /=.Y 2 D A.X/2 C 4R.X//;

we pick

(2.3) Y0 D
Y C P0

Q0
2 F

for certain polynomials P0;Q0 in X of degrees g C 1; g, respectively, taking the
form

(2.4) P0.X/ D A.X/C2d0X
g�1C� � � ; Q0.X/ D u0X

gC� � � ; u0 ¤ 0;

and we impose the additional requirement that, in C�X�,

(2.5) Q0.X/jY
2 � P0.X/

2 D F.X/ � P0.X/
2:

To compute the continued fraction of any element Y0 2 F , we take its expansion
in the neighbourhood of the point 11 2 C given by a power series in X�1; this
can be viewed as an element of C..X�1//. Then the continued fraction is

(2.6) Y0 D a0 C
1

a1 C
1

a2 C � � �

D bY0c C remainder;

where, for any element of C..X�1//, the floor symbol denotes the polynomial
part, and the remainder is a series in positive powers of X�1. Thus, by iterating
the standard recursion

(2.7) Yn D an C
1

YnC1
; an D bYnc

for n D 0; 1; 2; : : : , one obtains the successive partial quotients an.X/ in the con-
tinued fraction (2.6) above, which are polynomials in X .
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Now let us describe in detail the form of the continued fraction expansion for
the particular type of function Y0 specified by (2.3). Because the neighbourhood
of 11 is being considered, with X ! 1, it follows that Y � A.X/ � XgC1, so
Y C P0 � 2A.X/ and hence Y0 � 2X=u0. Thus a0 is linear in X . Moreover, by
(2.5), there is some polynomialQ�1.X/ of degree g such that Y 2�P 2

0 D Q0Q�1,
so

Y0 D a0 C
1

Y1
D
Y C P0

Q0
D

Q�1

Y � P0
:

If a polynomial P1.X/ of degree g C 1 is defined by

P1 D �P0 C a0Q0;

then it follows from (2.5) that Q0jY
2 � P 2

1 , so there is some polynomial Q1.X/

of degree g such that

(2.8) Y1 D
Y C P1

Q1
D

Q0

Y � P1
;

and also Q1jY
2 � P 2

1 . Then by induction, at each stage of the recursion (2.7) we
find linear partial quotients

(2.9) an.X/ D 2.X C vn/=un

and

(2.10) Yn D
Y C Pn

Qn
D

Qn�1

Y � Pn

for a sequence of polynomials Pn, Qn of degrees g C 1 and g, respectively, with

(2.11) Pn.X/ D A.X/C 2dnX
g�1 C � � � ; Qn.X/ D unX

g C � � � :

Note from (2.9) that un ¤ 0 is required for the recursion to make sense at each
stage. Moreover, at each stage, Yn has positive degree in X , and

xYn D .�Y C Pn/=Qn

(its image under the hyperelliptic involution) has negative degree; in the terminol-
ogy of van der Poorten, Yn is reduced [47].

Observe that in the equation (2.1) for C there is always the freedom to shift
X ! X C const, which replaces F.X/ by another monic polynomial of the same
degree. Henceforth we will exploit this freedom in order to remove the coefficient
at order Xg in F , which means that

(2.12) A.X/ D XgC1 C

g�1X
jD0

k.j /Xj

for some constants k.j /. This choice is convenient because in the continued frac-
tion expansion it means that

(2.13) Qn.X/ D un
�
Xg � vnX

g�1 CO.Xg�2/
�
:
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In other words, modulo factors of 2 and un, the next to leading-order term in Qn

completely fixes the constant term in the partial quotient (2.9), and we will always
assume that A has the form (2.12) so that this is the case. (We will make another
comment about this later, when we discuss Poisson brackets.)

As we shall see in the next section, the recursion (2.7) and the relations (2.10)
together yield a set of coupled nonlinear recurrences for the coefficients appearing
in Pn and Qn. For the time being we derive just one such relation, by considering
the second equality in (2.10), which is equivalent to the identity

(2.14) Y 2 D P 2
n CQnQn�1:

If we make use of (2.1) together with (2.11), and cancel A2 from both sides, then
we have

4R.X/ D 2A.X/
�
2dnX

g�1 CO.Xg�2/
�
C
�
4d2nX

2g�2 CO.X2g�3/
�

C unun�1
�
Xg CO.Xg�1/

��
Xg CO.Xg�1/

�
;

(2.15)

so the leading-order term, at order X2g, gives the formula

(2.16) 4dn C unun�1 D 0:

The above identity can be used to eliminate all prefactors involving un wherever
they appear, so that the interesting dynamical relations that remain will only involve
coefficients of Pn and Qn=un. Note also that, from (2.9), the recursion breaks
down if dn vanishes at some stage.

There is a natural geometrical interpretation of the iteration that produces the
continued fraction expansion (2.6) for (2.3), which goes back to work by Adams
and Razar on the elliptic case [1], and was further generalized by Bombieri and
Cohen in the setting of Padé approximation of functions on algebraic curves of
general type [6]. Let us consider the function

(2.17) G D Y0 � a0 D Y �11 ;

and denote by x.1/0 ; : : : ; x
.g/
0 and x.1/1 ; : : : ; x

.g/
1 the roots of Q0.X/ and Q1.X/,

respectively. If we also set

y.j /n D Pn
�
x.j /n

�
; j D 1; : : : ; g;

for n D 0; 1, then under the Abel map each of the degree g divisors

D0 D
�
x
.1/
0 ; y

.1/
0

�
C � � � C

�
x
.g/
0 ; y

.g/
0

�
; D1 D

�
x
.1/
1 ; y

.1/
1

�
C � � � C

�
x
.g/
1 ; y

.g/
1

�
corresponds to a point on the Jacobian variety Jac.C/ � Symg.C/, identified with
the g-fold symmetric product of the curve [40]. From its expression as Y0�a0, the
poles of G lie at the points .x.1/0 ; y

.1/
0 /; : : : ; .x

.g/
0 ; y

.g/
0 / and 12, and it vanishes

precisely at .x.1/1 ; y
.1/
1 /; : : : ; .x

.g/
1 ; y

.g/
1 / and 11, where Y1 has poles. Therefore

D0 and D1 are related by the linear equivalence

(2.18) D1 �lin D0 C12 �11;
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and by the same argument the shift n! nC1 in each line of the continued fraction
is equivalent to a translation in the Jacobian by the divisor class of 12 �11.

3 Lax Pair and Nonlinear System
The recursion (2.7) and the relations (2.10) can be reformulated in terms of a

linear system, which makes their structure much more transparent. To do this, it
suffices to introduce projective coordinates, setting

Yn D  n=�n; �n D . n; �n/
T;

and substituting into (2.10), which leads to the eigenvalue problem

(3.1) Ln.X/�n D Y�n

for the Lax matrix

(3.2) Ln D

�
Pn Qn�1

Qn �Pn

�
:

Upon substituting the ratio of the projective coordinates into (2.7) and fixing an
arbitrary multiplier, the fractional linear relation between Yn and YnC1 separates
into two linear equations, which can be written as

(3.3) Mn.X/�nC1 D �n;

where, taking the standard formula from the classical theory of continued fractions
for real numbers, we may set

(3.4) Mn D

�
an 1

1 0

�
:

(The choice of multiplier means that the matrix Mn is only defined up to overall
scaling Mn ! �nMn for some arbitrary n-dependent quantity �n.)

The compatibility condition for the linear system consisting of (3.1) and (3.3) is
the discrete Lax equation

(3.5) LnMn D MnLnC1;

which produces two nontrivial conditions, namely,

.X C vn/.PnC1 � Pn/ D
1

2
un.Qn�1 �QnC1/

.X C vn/Qn D
1

2
un.PnC1 C Pn/;

(3.6)

where we have substituted the expression (2.9) for the partial quotient an. Note also
that, because it is equivalent to conjugation by the nonsingular matrix Mn, (3.5) is
an isospectral evolution, preserving the spectral curve det.Y 1�Ln.X// D 0, which
reproduces the formula (2.14) for all n.
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Now, from the terms in the continued fraction, we can expand

(3.7) Pn.X/ D A.X/C

g�1X
jD0

�.j /
n Xj ; Qn.X/ D un

 
Xg C

g�1X
jD0

�.j /n Xj

!
;

with two particular coefficients being specified as

(3.8) �.g�1/
n D 2dn; �.g�1/n D �vn;

in terms of the notation used previously. Upon substituting (3.7) into (3.6), the
terms involving un can be replaced using (2.16) in the first relation, and cancelled
from the second relation, to yield a set of recurrences for the coefficients �.j /

n , �.j /n

in (3.7), namely

.X C vn/

g�1X
jD0

�
�
.j /
nC1 � �

.j /
n

�
Xj D 2.dnC1 � dn/X

g(3.9)

C 2

g�1X
jD0

�
dnC1�

.j /
nC1 � dn�

.j /
n�1

�
Xj ;

.X C vn/

 
Xg C

g�1X
jD0

�.j /n Xj

!
D A.X/C

1

2

g�1X
jD0

�
�
.j /
nC1 C �.j /

n

�
Xj :(3.10)

Let us introduce the g-tuples

�n D
�
�.0/
n ; : : : ; �

.g�1/
n

�
; �n D

�
�.0/n ; : : : ; �

.g�1/
n

�
;

of affine coordinates. Due to (2.12) and (3.8), the coefficients at order Xg in
(3.9) and at orders XgC1 and Xg in (3.10) provide only tautologies, so that al-
together there are 2g nontrivial relations between the components of �n;�nC1,
and �n;�n�1. To be precise, these relations mean that the 2g quantities �nC1 and
�nC1 can be calculated as rational functions of the components of �n, �n�1, and
�n, which (together with the relation (2.16) for the prefactors) shows how the en-
tries of LnC1 are determined from those of Ln. Similarly, in the reverse direction
nC 1! n, these relations mean that the entries of Ln can be obtained as rational
functions of the entries of LnC1.

In the above form, the map corresponding to the shift n ! n C 1 from one
line of the continued fraction to the next can be interpreted as a discrete dynamical
system, where (ignoring the prefactors un) this can be viewed as a birational map
.�n;�n�1;�n/ 7! .�nC1;�n;�nC1/ in dimension 3g. However, at the expense of
introducing more parameters, one can use the equation for the spectral curve (2.14)
to eliminate g coordinates and rewrite this in terms of a birational map in dimension
2g. In particular, in the explicit formula (2.15) the leading-order (X2g) term gives
(2.16), while the coefficients at each order from X2g�1 down to Xg can be used
to rewrite �.0/n�1; : : : ; �

.g�1/
n�1 in terms of the components of �n, �n, as well as the
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coefficients in appearing in A.X/, and also u, the leading coefficient of R.X/ on
the left-hand side. The remaining g coefficients of R.X/, which appear at orders
Xj , j D 0; : : : ; g � 1, can then be written as rational functions of the components
of �n, �n, and the other parameters, and these g quantities are independent of n.
In this way, we arrive at a birational map

(3.11) 'W .�n;�n/ 7! .�nC1;�nC1/

which has g conserved quantities. In fact, there is more that one can say about this
map: it turns out to be symplectic, and integrable in the sense of a suitable discrete
analogue of Liouville’s theorem [8, 37, 55].

THEOREM 3.1. The birational map (3.11) corresponding to the iteration for the
continued fraction expansion (2.6) of the function (2.3) is an integrable symplectic
map in dimension 2g.

Observe that the expression (2.14) is symmetrical in Qn�1 and Qn, so one can
just as well use it eliminate the components of �n from (3.9) and (3.10) to obtain a
birational map

(3.12) y'W .�n;�n�1/ 7! .�nC1;�n/:

Clearly the latter map is conjugate to ' in the sense that there is a birational trans-
formation � such that y' D ��1 � ' � �, and the above theorem applies equally
well to y'. The general proof for this theorem is given in Section 6, where we make
use of a Poisson structure for the Lax matrices (3.2). For now, we just give explicit
details for g D 1 and 2.

Example 3.2. THE CASE g D 1: In the genus 1 case, following [46], we write

(3.13)
A.X/ D X2 C f; Pn D A.X/C 2dn;

R.X/ D u.X � v/; Qn D un.X � vn/;

for arbitrary parameters f; u; v defining the quartic curve

Y 2 D .X2 C f /2 C 4u.X � v/

in the .X; Y /-plane. There are only two nontrivial relations from (3.9) and (3.10),
given by

(3.14) dnC1 C dn C v2n C f D 0; dnC1.vnC1 C vn/ D dn.vn C vn�1/;

which define a birational map in three dimensions, that is,
.dn; vn�1; vn/ 7! .dnC1; vn; vnC1/

D

�
�dn � v

2
n � f; vn;�vn �

dn.vn C vn�1/

.dn C v2n C f /

�
:

However, using the equation for the curve and removing an overall factor of 4, the
formula (2.15) becomes

(3.15) u.X � v/ D dn.X
2 C f / � dn.X � vn�1/.X � vn/C d2n :
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The first nontrivial relation, at order X , gives

vn�1 D �vn C
u

dn
;

which allows vnC1 to be rewritten as a function of dn; vn, and the parameters f; u.
Hence, making use of (3.14), this yields a map in the plane, that is,

'W .dn; vn/ 7! .dnC1; vnC1/

D

�
�dn � v

2
n � f;�vn �

u

.dn C v2n C f /

�
:

(3.16)

The above map preserves the symplectic form

! D ddn ^ dvn;

or in other words '�! D ddnC1 ^ dvnC1 D !. Furthermore, the lowest-order
(X0) term in (3.15) provides the relation

�uv D dn.f C dn � vn�1vn/;

so replacing vn�1 as before and setting H D �uv we see that

(3.17) H D dnv
2
n � uvn C d2n C fdn

is a conserved quantity for ', so it is an integrable symplectic map in two dimen-
sions.

Example 3.3. THE CASE g D 2: In the genus 2 case, adopting the notation in [45],
we write

(3.18)
A.X/ D X3 C fX C g; Pn D A.X/C 2dn.X C en/;

R.X/ D u.X2 � vX C w/; Qn D un.X
2 � vnX C wn/;

for arbitrary parameters f; g; u; v; w defining the sextic curve

(3.19) CW Y 2 D .X3 C fX C g/2 C 4u.X2 � vX C w/:

From (3.9) and (3.10) there are four relations that define a birational map in six
dimensions, namely,

dnC1.enC1 C vnC1 C vn/ D dn.en C vn C vn�1/;(3.20)

vn.dnC1enC1 � dnen/ D dnC1wnC1 � dnwn�1;(3.21)

dnC1 C dn C f D wn � v
2
n;(3.22)

dnC1enC1 C dnen C g D vnwn:(3.23)

To be precise, we have the map

.dn; en; vn�1; vn; wn�1; wn/ 7! .dnC1; enC1; vn; vnC1; wn; wnC1/;

where (3.22) is used to obtain dnC1, and then (3.23) produces an expression for
enC1, which allows vnC1 and wnC1 to be calculated from (3.20) and (3.21), re-
spectively. In order to obtain a map in four dimensions, one can use (2.15) to
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eliminate vn�1 and wn�1, giving (3.11), or instead eliminate vn and wn, to ob-
tain (3.12); here we take the latter option. To be precise, compared with the
quantities used in (3.12) we have made an invertible change of coordinates, that
is .�.0/

n ; �
.1/
n ; �

.0/
n�1; �

.1/
n�1/ D .dnen; dn; wn�1;�vn�1/, but by a slight abuse of

of notation we will use the same symbol y' to denote the map that describes the
shift n ! nC 1 in terms of the coordinates .dn; en; vn�1; wn�1/. There are four
nontrivial relations coming from (2.15), given by

dn.en C vn C vn�1/ D 0;(3.24)

u D dn.dn � vnvn�1 � wn � wn�1 C f /;(3.25)

�uv D dn.2dnen C vnwn�1 C vn�1wn C fen C g/;(3.26)

uw D dn.dne
2
n � wnwn�1 C gen/:(3.27)

Using (3.24) and (3.25), together with (3.22) and (3.23), we find the map

(3.28) y'W .dn; en; vn�1; wn�1/ 7! .dnC1; enC1; vn; wn/;

where the shifted variables are given explicitly in terms of the previous ones by

dnC1 D �e2n � envn�1 � wn�1 �
u

dn
DW �d�1n D;

enC1 D D�1
�
vn�1

�
d2n C dn.en C vn�1/

2 � dnwn�1 C fdn � u
�

C en
�
2d2n � dnwn�1 C fdn � u

�
C gdn

�
;

vn D �vn�1 � en;

wn D �wn�1 C v2n�1 C vn�1en C dn � ud
�1
n C f:

This four-dimensional map preserves a nondegenerate Poisson bracket, given by

fdn; eng D fdn; vn�1g D fvn�1; wn�1g D 0;

fdn; wn�1g D �1; fen; vn�1g D
1

dn
; fen; wn�1g D

vn�1 C en

dn
I

hence it is symplectic. (As we shall see in Section 6, in a different set of coor-
dinates, with en replaced by �.0/

n D dnen, this bracket has only linear and con-
stant terms.) Upon eliminating vn�1 and wn�1, one can also rewrite this as a map
.dn�1; dn; vn�1; vn/ 7! .dn; dnC1; vn; vnC1/, so that it takes a simpler form as a
pair of coupled recurrence relations of second order, that is,

dnC1 C dn C dn�1 C u=dn C v2n C vnvn�1 C v2n�1 C f D 0;

.2vn C vn�1/dn C .2vn C vnC1/dnC1 C v3n C f vn � g D 0;
(3.29)

and in these coordinates (up to an overall choice of scaling) the symplectic form is

! D ddn�1 ^ ddn C .2vn�1 C vn/ dvn�1 ^ ddn C dn dvn�1 ^ dvn:

By construction, both of the quantitiesH1 D �uv andH2 D uw defined by (3.26)
and (3.27) are conserved, and it can be verified directly that fH1;H2g D 0; hence
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FIGURE 3.1. The 3D projection .dn�1; dn; vn�1/ of 2000 points on
the orbit of the 4D map (3.29) with f D �5, g D u D �1, and
.d0; d1; v0; v1/ D .5=4; 2;�1=2; 0/.

the map is integrable in the Liouville sense. A particular orbit of this map is plotted
in Figure 3.1.

4 Orthogonal Polynomials and Hankel Determinants
After removing the first term a0, the continued fraction expansion (2.6) becomes

(4.1) G D
1

a1 C
1

a2 C � � �

D
1

2u�11 .X C v1/C
1

2u�12 .X C v2/C � � �

:

A continued fraction of this form, where each partial quotient aj D aj .X/ is a
linear function ofX , is called a J -fraction [56]. If we multiply the main numerator
and denominator by u1=2 and apply (2.16), then this can be rewritten in its more
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classical form, that is

(4.2) G D
� 2u�10 d1

X C v1 �
d2

X C v2 �
d3

X C v3 � � � �

;

from which we see that, up to an overall prefactor of �2=u0, it is completely de-
termined by the quantities dn and vn. In this section we apply standard results on
J -fractions and associated orthogonal polynomials, which lead directly to formu-
lae for the quantities dn and vn in terms of ratios of Casorati determinants, and
Hankel determinants in particular. This generalizes certain results obtained for
g D 1 by Chang, Hu, and Xin [11] to hyperelliptic curves of any genus g.

In the neighbourhood of the point 11 2 C, the functionG defined by (2.17) has
the series expansion

(4.3) G D
X
j�1

sj�1X
�j D s0X

�1 C s1X
�2 C s2X

�3 C � � � ;

which can be used to define a linear functional h�iW F ! C according to

(4.4) h�i D
1

2� i

I
11

�G dX;

for any function � 2 F where the integral is taken along any sufficiently small
closed contour around 11 (oriented anticlockwise in the X -plane corresponding
to the projection .X; Y / 7! X ) that does not encircle the poles of G at the points
.x

.1/
0 ; y

.1/
0 /; : : : ; .x

.g/
0 ; y

.g/
0 / and 12. In other words, G can be regarded as a mo-

ment generating function with moments

(4.5) hXj i D sj ; j D 0; 1; 2; : : : ;

although in general, for complex sj , this may not be associated with some positive
measure. The linear functional (4.4) also defines a scalar product between any pair
of functions �;�, that is,

(4.6) h�;�i WD h��i:

The convergents of (4.1) are the sequence of rational functions of X given by

p0

q0
D 0;

p1

q1
D

1

a1
;

p2

q2
D

1

a1 C
1

a2

;
p3

q3
D

1

a1 C
1

a2 C
1

a3

; : : :

where by convention one can take

(4.7) p0 D 0; q0 D 1;
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followed by

(4.8) p1 D s0 D
u1

2
; q1 D X C v1 D X �

s1

s0
;

and for all j � 1, pj .X/ and qj .X/ are polynomials of degrees j � 1 and j in X ,
respectively, where without loss of generality each qj is taken to be monic. The
recursion for the convergents is essentially controlled by the same matrix (3.4) that
appears in the classical theory of continued fraction expansions of numbers in R.
However, the entries of this matrix must be scaled in order to ensure that the qj are
monic, making use of (2.16) to remove dependence on the prefactors uj , to yield�

pn qn
pn�1 qn�1

�
D

�
X C vn �dn
1 0

��
pn�1 qn�1
pn�2 qn�2

�
;

which is equivalent to the three-term linear recurrence relation

(4.9) qn D .X C vn/ qn�1 � dn qn�2; n � 2;

for the sequence of polynomials .qn/, and the same for the sequence .pn/, with the
initial conditions (4.7) and (4.8). From the linear recurrence it is clear that pn=s0
is monic for each n.

Due to the fact that each aj D
�
Yj
�

is linear in X , it is straightforward to see
by induction that the nth approximant pn=qn satisfies

G �
pn

qn
D

1

a1 C
1

� � � C
1

an C Y �1nC1

�
1

a1 C
1

� � � C
1

an

D O
�
X�.2nC1/

�
;

and since qn has degree n this implies that

(4.10) pn �Gqn D O.X�.nC1//; n D 0; 1; 2; : : : :

Given the requirement on the degrees of pn and qn, by considering the terms at
orders Xn�1; Xn�2; : : : ; X�n, the equation (4.10) provides n linear equations that
determine the nontrivial coefficients of qn in terms of the coefficients sj in (4.3),
and a further n linear equations for the nontrivial coefficients of pn in terms of
those of qn and the sj . This leads to a standard formula for qn, given explicitly in
determinantal form as

(4.11) qn.X/ D
1

�n

������������

s0 s1 � � � sn�1 sn

s1 : :
: :::

::: : :
: :::

sn�1 � � � � � � � � � s2n�1
1 X X2 � � � Xn

������������
;
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where �n is the n � n Hankel determinant

(4.12) �n D

����������

s0 s1 � � � sn�1

s1 : :
: :::

::: : :
: :::

sn�1 � � � � � � s2n�2

����������
D det.siCj�2/i;jD1;:::;n:

(The corresponding expression for the associated polynomial pn will not be needed
here.) For what follows, we also need to introduce another determinant of Casorati
type, obtained from the coefficients sj in (4.3) by shifting the last column of the
Hankel matrix, namely

(4.13) ��n D

������������

s0 s1 � � � sn�2 sn

s1 : :
: :::

:::
::: : :

: :::
:::

sn�2 � � � � � � s2n�4 s2n�2
sn�1 � � � � � � s2n�3 s2n�1

������������
:

We call the latter a shifted Hankel determinant. By convention we set �0 D 1 and
��0 D 0.

We can now state our main result about Hankel determinants and orthogonal
polynomials.

THEOREM 4.1. The quantities dn and vn that appear under iteration of the J -frac-
tion expansion (4.2) of the function (2.17), which provide the two components (3.8)
of the iterates of the birational map (3.11), are given in terms of Hankel and shifted
Hankel determinants by

(4.14) dn D
�n�n�2

�2
n�1

for n � 2; vn D
��n�1
�n�1

�
��n
�n

for n � 1;

where the entries are determined recursively by s0 D u1=2 and, for j � 1,

sj D �

gC1X
iD2

.k.gC1�i/ C �
.gC1�i/
1 /sj�i

C
d1

s0

0
@j�2X
iD0

sisj�2�i C

gC2X
`D3

j�`X
iD0

�
.gC2�`/
0 sisj�`�i

1
ACxsj

(4.15)

where

xsj D

(
s0�

.g�j /
1 for 1 � j � g;

0 for j � g C 1:

Furthermore, the polynomials qj that appear as the denominators of the conver-
gents of the J -fraction are orthogonal with respect to the scalar product (4.6)
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associated with the series (4.3), that is,

(4.16) hqn; qmi D hn�nm;

where

hn D
�nC1

�n
:

PROOF. The formulae in (4.14) are classical expressions for the coefficients
appearing in the linear recurrence (4.9) for orthogonal polynomials. A direct proof
is obtained by substituting (4.11) into the three-term recurrence and expanding in
powers ofX : the determinantal expression for vn appears immediately at orderXn,
while at order Xn�1 one finds a formula for dn as a combination of four terms that
can be condensed into a single ratio by applying various identities for determinants
(which are collected in an appendix for completeness). To find the entries of the
Hankel determinants recursively, note from (2.8) that G D 1=Y1 D .Y �P1/=Q0;
hence Y D Q0G C P1 and

Y 2 D Q2
0G

2 C 2Q0P1G C P 2
1 D P 2

1 CQ0Q1;

using (2.14), so that G satisfies the quadratic equation

(4.17) P1G C
1

2
Q0G

2 D
1

2
Q1:

Upon substituting the series (4.3) for G and expanding the polynomial coefficients
in (4.17) with the notation in (2.12) and (3.7), and making use of (2.16) to re-
place u0, the recursion (4.15) results. Finally, the orthogonality of the sequence
of polynomials .qn/ follows by a standard inductive argument using the three-term
recurrence, also making use of the moments (4.5) with (4.11) to expand�2

nhq
2
ni as

a sum of nC1 products of determinants, only one of which is nonvanishing, which
yields hqn; qni D �nC1=�n D hn. �

Example 4.2. RECURSION FOR MOMENTS IN THE ELLIPTIC CASE: For g D 1 we
use the same notation as in Example 3.2, and for the recursion (4.15) we have

s0 D u1=2; s1 D �s0v1

and

(4.18) sj D �.2d1 C f /sj�2 C s�10 d1

0
@j�2X
iD0

sisj�2�i � v0

j�3X
iD0

sisj�3�i

1
A

for all j � 2. To illustrate this with a particular numerical example, let us pick the
curve

(4.19) Y 2 D .X2 � 3/2 � 4.X C 2/;
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so that f D �3, u D �1, v D �2, and set u0 D �2, d0 D 1, v0 D �1. This fixes
the function

(4.20)
G D Y0 � a0 D

1C 1
2
.X2 � 3 � Y /

X C 1

D X�1 C 2X�3 CX�4 C 6X�5 C � � � :

Then (3.16) produces the values d1 D 1, v1 D 0, which gives s0 D u1=2 D
�2d1=u0 D 1 and s1 D �s0v1 D 0, and the coefficients of the series expansion
(4.20) are obtained from the particular recurrence

sj D sj�2 C

j�2X
iD0

sisj�2�i C

j�3X
iD0

sisj�3�i ; j � 2:

This produces the sequence of moments

1; 0; 2; 1; 6; 7; 24; 41; 115; 236; 613; 1380; : : : I

the corresponding sequence of Hankel determinants begins with �0 D �1 D 1,

�2 D

����1 0

0 2

���� D 2;

(4.21) �3 D

������
1 0 2x

0 2 1

2 1 6

������ D 3; �4 D

��������
1 0 2 1

0 2 1 6

2 1 6 7

1 6 7 24

��������
D 7; : : : ;

which should remind the reader of (1.2).

Example 4.3. THE RECURSION FOR MOMENTS IN GENUS 2: With the notation of
Example 3.3, the recursion (4.15) for g D 2 has initial values

s0 D u1=2; s1 D �s0v1; s2 D s0.w1 � d1 � f /;

and subsequent coefficients in the series expansion (4.3) are determined for j � 3

by

sj D �.2d1 C f /sj�2 � .2d1e1 C g/sj�3

C s�10 d1

�j�2X
iD0

sisj�2�i � v0

j�3X
iD0

sisj�3�i C w0

j�4X
iD0

sisj�4�i

�
:

(4.22)

As a particular example, consider the curve

Y 2 D .X3 � 5X � 1/2 � 4.X2 C 2X C 3/;

with f D �5, g D u D �1, v D �2, w D 3, and choose u0 D �4, d0 D 5=4,
e0 D 3=5, v0 D �1=2, w0 D �3=2, corresponding to the orbit of the map (3.29)
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plotted in Figure 3.1, which gives

G D Y0 � a0 D
X C 1

2
C 1

4
.X3 � 5X � 1 � Y /

X2 C 1
2
X � 3

2

D X�1 C 2X�3 C 7X�5 C 2X�6 C � � � ;

and the recursion for the coefficients (moments) in the above expansion is

sj D sj�2 � sj�3 C 2

j�2X
iD0

sisj�2�i C

j�3X
iD0

sisj�3�i � 3

j�4X
iD0

sisj�4�i ; j � 3;

with initial values s0 D 1, s1 D 0, s2 D 2. In this case, the sequence of moments
.sj / begins with

1; 0; 2; 0; 7; 2; 31; 21; 159; 168; 900; 1246; 5455; 9040; 34731; 65328; : : : ;

yielding the corresponding sequence of Hankel determinants

(4.23) .�j /W 1; 1; 2; 6; 31; 319; 5810; 147719; 8526736; : : : ;

as well as the sequence of shifted Hankel determinants

.��j /W 0; 0; 0; 4; 16; 200; 6987; 161401; 11022617; : : : :

The map (3.11), or equivalently (3.12), corresponds to the recursion for the con-
tinued fraction expansion, and since this map is birational, it is also possible to
reverse the direction of iteration and extend to all negative indices n (again, this is
always possible subject to the condition that dn does not vanish for some n). This
immediately leads to a J -fraction expression for Y0, that is

(4.24) G� D Y0 D
2u�10 d0

X C v�1 �
d�1

X C v�2 �
d�2

X C v�3 � � � �

;

which corresponds to a power series expansion around 12,

(4.25) G� D
X
j�1

s
�
j�1X

�j D s
�
0X

�1 C s
�
1X

�2 C s
�
2X

�3 C : : : :

This means that the quantities dn, vn can also be written in terms of ratios of
determinants when n is negative, but involving the Hankel determinant

��
n D det

�
s
�
iCj�2

�
i;jD1;:::;n

;

as well as the associated shifted Hankel determinant ���
n , which is just the ana-

logue of (4.13) built from the coefficients in the series (4.25).
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THEOREM 4.4. For negative indices n, the quantities dn, vn that appear under
iteration of the J -fraction expansion (4.24) of the function (2.3), which provide the
two components (3.8) of the iterates of the birational map (3.11), are given in terms
of Hankel and shifted Hankel determinants by

(4.26) d1�n D
�
�
n�

�
n�2

.�
�
n�1/

2
for n � 2; v�n D

�
��
n�1

�
�
n�1

�
�
��
n

�
�
n

for n � 1;

where the entries are determined recursively by s�0 D �u�1=2 and, for j � 1,

s
�
j D �

gC1X
iD2

.k.gC1�i/ C �
.gC1�i/
0 /s

�
j�i

C
d0

s
�
0

0
@j�2X
iD0

s
�
i s

�
j�2�i C

gC2X
`D3

j�`X
iD0

�
.gC2�`/
0 s

�
i s

�

j�`�i

1
ACxs

�
j

(4.27)

where

xs
�
j D

(
s
�
0�

.g�j /
�1 for 1 � j � g;

0 for j � g C 1:

PROOF. Since G� D Y0 D .Y C P0/=Q0, the generating function for the
moments s�j satisfies the quadratic equation P0G� � 1

2
Q0.G

�/2 D �1
2
Q�1, anal-

ogous to (4.17), and the recurrence (4.27) follows immediately after substituting
in the series (4.25). Subject to suitable relabeling of indices, the derivation of the
formulae is the same as in the proof of Theorem 4.1. �

Example 4.5. MOMENTS FOR NEGATIVE n IN GENUS 2: Using the notation of
Example 3.3 once again, the recursion (4.27) for g D 2 has initial values

s
�
0 D �u�1=2; s

�
1 D �s

�
0v�1; s

�
2 D s

�
0.w�1 � d0 � f /;

and subsequent coefficients in the series expansion (4.3) are determined for j � 3

by

s
�
j D �.2d0 C f /s

�
j�2 � .2d0e0 C g/s

�
j�3

C
d0

s
�
0

�j�2X
iD0

s
�
i s

�
j�2�i � v0

j�3X
iD0

s
�
i s

�
j�3�i C w0

j�4X
iD0

s
�
i s

�
j�4�i

�
:

(4.28)

In particular, taking the specific curve Y 2 D .X3 � 5X � 1/2 � 4.X2 C 2X C 3/

that was used for illustration in Example 4.3, with the same function Y0, as before
we have f D �5, g D u D �1, u0 D �4, d0 D 5=4, e0 D 3=5, v0 D �1=2,
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w0 D �3=2, and also v�1 D �1=10, w�1 D �3=2, which gives

G� D Y0 D �
1

4

 
Y CX3 � 5

2
X C 1

2

X2 C 1
2
X � 3

2

!

D �
5

8
X�1 �

1

16
X�2 �

45

32
X�3 �

25

64
X�4 �

757

128
X�5 �

801

256
X�6 � � � � ;

with X ! 1 and Y � �X3, and the recursion for the coefficients (moments) in
the above expansion is

s
�
j D

5

2
s
�
j�2 �

1

2
s
�
j�3 � 2

j�2X
iD0

s
�
i s

�
j�2�i �

j�3X
iD0

s
�
i s

�
j�3�i C 3

j�4X
iD0

s
�
i s

�
j�4�i ; j � 3;

with initial values s�0 D �5=8, s�1 D �1=16, s�2 D 45=32. In this case, the sequence
of moments .s�j / beginning with

�
5

23
;�

1

24
;�
45

25
;�
25

26
;�
757

27
;�
801

28
;�
14749

29
;�
24361

210
;�
316037

211
;�
714865

212
; : : :

yields the corresponding sequence of Hankel determinants

(4.29) .�
�
j /W 1;�

5

23
;
7

23
;�
303

27
;
4091

29
;�
63805

210
;
3496637

212
; : : : ;

which has alternating signs.

Remark 4.6. Given the two sets of formulae (4.14) and (4.26), it is natural to want
to write dn and vn in the form

(4.30) dn D
�n�n�2

�2n�1
; vn D

��n�1
�n�1

�
��n
�n
;

for all n 2 Z, for some set of quantities �n; ��n . However, in general one cannot just
take �n D �n for nonnegative n and �n D �

�
�n�1 for negative n (and similarly for

��n ) , because there will be a mismatch at the values of d0, d1, and v0 that are left
unspecified by Theorems 4.1 and 4.4. Nevertheless, one can make use of the fact
that the expressions for dn and vn in (4.30) are left invariant by the three-parameter
group of gauge transformations given by

(4.31) �n ! abn�n; ��n ! abn
�
��n C c�n

�
;

for arbitrary a; b; c with ab ¤ 0. In particular, the choice

�n D

(
�n for n � 0;

.�1/n
�
2
u0

�2nC1
�
�
�n�1 for n � �1;

ensures that the values of d0 and d1 match up, and a similar choice can be made
for ��n to fix v0. For instance, applying this choice to glue together the sequences
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(4.23) and (4.29) in a consistent fashion yields the doubly infinite sequence

(4.32) .�n/W : : : ; 562196701; 6993274; 127610; 4091;

303; 28; 5; 2; 1; 1; 2; 6; 31; 319; 5810; 147719; : : : :

5 The Somos Connection
In this section, we explain how Somos sequences naturally arise from the con-

tinued fraction expansion, as quadratic relations for the Hankel determinants �n.
This is most straightforward to describe in the genus 1 case, as it follows from the
fact that, for a fixed value of the first integralH D �uv given by (3.17), each orbit
of (3.16) coincides with an orbit of a symmetric QRT map, and, as was already
noted in [49] in an example related to the hard hexagon model, the bilinear form
of the latter is precisely (1.1). (For a detailed discussion of normal forms of QRT
maps restricted to fixed invariant curves, see [31, 32].)

PROPOSITION 5.1. For a fixed value of the first integral H D �uv, on each orbit
of the map (3.16) the quantity dn satisfies the second-order recurrence

(5.1) dnC1dn�1 D
� dn C �

d2n
;

with coefficients � D u2, � D u2.v2 C f /.

PROOF. Putting X D vn into (3.15) and then applying the first equation in
(3.14) yields

u.vn � v/ D dn.dn C v2n C f / D �dndnC1:

Then putting X D v into (3.15) and using the above result gives

0 D dn.v
2 C f � .v � vn�1/.v � vn/C dn/

D dn.v
2 C f � u�2dnC1d

2
ndn�1 C dn/;

so that (5.1), which is an example of a symmetric QRT map [49], follows immedi-
ately. �

The connection with Somos-4 is almost immediate, since if

dn D �n�n�2=.�n�1/
2;

then �n satisfies (1.1) whenever dn satisfies (5.1). So in particular, by Theorem 4.1,
the Hankel determinants for g D 1 satisfy a Somos-4 relation, and since the latter
is invariant under gauge transformations of the form (4.31), any Somos-4 sequence
can be expressed in terms of Hankel determinants. More precisely, starting from
any Somos-4 sequence, one can always make a gauge transformation to a sequence
with �0 D 1, and then use the coefficients � and � and the other initial conditions
�1; �2; �3 to specify the values of s0 D �1 D �1 and v0; v1; d1; f , so that the
values of s1 and the coefficients in (4.18) are fixed. (In fact, since the gauge trans-
formation for �n involves two parameters a and b, there is also the freedom to fix
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�1 D 1, which corresponds to taking s0 D 1.) Thus we arrive at the following
result.

THEOREM 5.2. In the case g D 1, the Hankel determinants (4.12) with moments
defined recursively by (4.18) satisfy the Somos-4 recurrence

(5.2) �nC4�n D ��nC3�nC1 C ��2
nC2;

with

(5.3) � D u2; � D u2.v2 C f /:

Moreover, every solution of the Somos-4 recurrence (1.1) can be written in the form

�n D

(
yaybn�n for n � 0;

a�.b�/n�
�
�n�1 for n � �1;

where ��
n is constructed from moments that satisfy (4.27) with g D 1 for suitable

constants ya; yb; a�; b�.

There is an apparent mismatch between the Hankel determinants in (1.7), which
were shown by Xin to yield the terms of the Somos-4 sequence (1.2), and those
in (4.21) above. We now explain the relation between these two sets of Hankel
determinant formulae and see how the results of [11] are a consequence of the
continued fraction expansion for g D 1.

THEOREM 5.3. For n � 2, the quantity dn that satisfies (3.16) is given by

(5.4) dn D
DnDn�2

D2
n�1

;

in terms of the Hankel determinant (1.4) defined in terms of moments zsj that satisfy
the recursion (1.8) for j � 2, with

zs0 D u1=2; zs1 D �zs0.v0 C v1/; z� D �2v0; z� D d0 � d1; z
 D
d1

zs0
:

Moreover, the sequence .Dn/n�0 is identical to the sequence of Hankel determi-
nants .�n/n�0 with moments satisfying (4.18), hence satisfies the Somos-4 recur-
rence (5.2) with coefficients as in (5.3).

PROOF. By replacing X with the shifted variable zX D X � v0, and letting
zG. zX/ D G.X/, we obtain the J -fraction

(5.5) zG D
� 2zu�10

zd1

zX C zv1 �
zd2

zX C zv2 �
zd3

zX C zv3 � � � �

D
X
j�1

zsj�1 zX
�j ;
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where, from (4.17) in the case g D 1, the generating function zG satisfies

(5.6)
�
zX2 C 2v0 zX C

�
v20 C 2d1 C f

��
zG C

u0

2
zX zG2 D

u1

2
. zX C v0 � v1/:

In the first line of the continued fraction (5.5), we are at liberty to choose zu0 D u0,
which implies that zd1 D d1, and then in each subsequent line we have zvn D vnCv0
for n � 1, and also zdn D dn for n � 2. Hence, by the same argument as in the
proof of Theorem 4.1, the formula (5.4) holds for n � 2. The moments zsj are
obtained from the series expansion of zG in powers of zX , with the leading order
term (order zX ) in (5.6) giving zs0 D s0 D u1=2, and the next to leading order
term (order zX0) giving zs1 C 2v0zs0 D u1

2
.v0 � v1/, while at order zX�jC1 for

j � 2, upon noting that z� D �v20 � 2d1 � f D d0 � d1 from (3.16), we find the
recursion relation (1.8) with the stated values of z�; z�; z
 . By convention we have
D0 D �0 D 1, and also D1 D zs0 D s0 D �1, and then it follows by induction
from (5.4) that Dn D �n for all n � 0. �

Remark 5.4. In order to see how Xin’s result [58] follows from the above, it is suf-
ficient to note that the quartic curve (4.19) is isomorphic to (1.5) via the birational
equivalence Y D x�2.1 � 2�/, X D zX � 1 D x�1 � 1, so that the expansion
(1.6) in powers of x is equivalent to an expansion in powers of zX�1. Also, by
setting � D .1 � y/=2, the Weierstrass cubic y2 D 4x3 � 4x C 1 derived from
analytic formulae in [24, 25] is seen to be isomorphic to the curve (1.5); over Q,
this is known as 37a1, the elliptic curve of minimal conductor with positive rank.
(See www.lmfdb.org/EllipticCurve/Q/37/a/1 in the online database ofL-
functions, modular forms, and related objects.)

The analogue of Theorem 5.2 in genus 2 is more difficult to state explicitly due
to the size of the expressions for the coefficients; at present we are only able to
prove it with the use of computer algebra.

THEOREM 5.5. In the case g D 2, the Hankel determinants (4.12) with moments
defined recursively by (4.22) satisfy a Somos-8 recurrence of general type, that is

�1�nC8�n C �2�nC7�nC1

C �3�nC6�nC2 C �4�nC5�nC3 C �5�
2
nC4 D 0;

(5.7)

where the coefficients �1; : : : ; �5 are certain first integrals of the map (3.29).

PROOF. The recurrence (5.7) is equivalent to a relation for the iterates dn, that
is,

�1 dnC8d
2
nC7d

3
nC6d

4
nC5d

3
nC4d

2
nC3dnC2 C �2 dnC7d

2
nC6d

3
nC5d

2
nC4dnC3

C �3 dnC6d
2
nC5dnC4 C �4 dnC5 C �5 D 0;

along an orbit of the 4D map (3.29). Equivalently, writing a solution of this map
in the form (4.30), �n should satisfy the Somos-8 recurrence (5.7) with some coef-
ficients �j that are constant on each orbit. This requires the vanishing of a 5 � 5
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determinant, namely,

(5.8)

���������

�nC4�n�4 �nC3�n�3 �nC2�n�2 �nC1�n�1 �2n
�nC5�n�3 � � � � � � � � � �2nC1

:::
:::

�nC8�n � � � � � � � � � �2nC4

���������
D 0

for all n, and also that the ratios of certain 4�4minors should be independent of n.
In particular, denoting by yDj;n the minor formed from the first four rows in (5.8)
with the j th column removed, so that

yD1;n D

��������
�nC3�n�3 �nC2�n�2 �nC1�n�1 �2n
�nC4�n�2 � � � � � � �2nC1

�nC5�n�1 � � � � � � �2nC2

�nC6�n � � � � � � �2nC3

��������
;

and so on, the existence of the relation (5.7) for �n is equivalent to the requirement
that the ratios

�j

�1
D yDj;n= yD1;n; j D 2; 3; 4; 5;

are independent of n (noting the possibility of a vanishing denominator in the case
that �1 D 0). So in order to verify the statement, it is sufficient to check that

(5.9) yDj;n
yD1;nC1 � yDj;nC1

yD1;n D 0

holds for each j D 2; 3; 4; 5 and for all n. In fact, for each j , it is enough to check
that this holds for a single shift n ! n C 1 with arbitrary initial data in the map
(3.29), which guarantees that each of the ratios �j =�1 is a first integral, and then it
automatically holds for all n. Even with the help of computer algebra, this is not a
completely straightforward task, and in order to do it as efficiently as possible it is
convenient to make a gauge transformation (4.31) to fix s0 D 1, and then note that
there is a one-to-one correspondence between two sets of seven parameters: the
four initial values d0; d1; v0; v1 and three parameters f; g; u needed to iterate the
map (3.29), and the two initial values s1; s2 and five coefficients z�; z�; z
; z�; z� that
specify the genus 2 recursion (4.22) in the form

sj D z�sj�2 C z�sj�3 C z


j�2X
iD0

sisj�2�i C z�

j�3X
iD0

sisj�3�i C z�

j�4X
iD0

sisj�4�i :

Now, using the above recursion, one can calculate the sequence .sj /j�0, and
then compute the Hankel determinants �n D �n for n D 0; 1; 2; : : : , which are
polynomials in Z�s1; s2; z�; z�; z
; z�; z��, but this rapidly becomes very computation-
ally intensive as n increases. More efficient is to rewrite the map (3.29) as an equiv-
alent pair of coupled recurrence relations of degree 6 for �n; ��n , which are of over-
all order 7. To iterate the latter, one needs seven initial values (four adjacent �n and
three adjacent ��n ), and it is convenient to take �0 D �1 D 1, �1 D �0 D s0 D 1,
but also ��1 D d1 D z
 and ��2 D z
2d0 D z�z
 C z
3 � z�2 C z
z�, together with



26 A. N. W. HONE

��0 D ��0 D 0, ��1 D ��1 D s1, as well as ���1 D d1v0 D �z�, noting that
f D �z��2z
 , g D �z��2z
s1�2z�, u D �z
s2�z�s1�z�. The verification of (5.9)
requires 13 adjacent values of �n, but due to the size of the expressions involved it
is best to compute only up to �6 using five forward steps of the coupled recurrence
for �n; ��n , and then apply this recurrence in reverse, making four backward steps to
go back as far as ��6, so that the adjacent values ��6; ��5; : : : ; �5; �6 are obtained
as explicit polynomials in Z�s1; s2; z�; z�; z
; z�; z��. This means that the minors yDj;�2

and yDj;�1 can be computed explicitly, which allows (5.9) to be checked directly
when n D �2. The formulae for the first integrals �j =�1, j D 2; 3; 4; 5; as ra-
tional functions of s1; s2; z�; z�; z
; z�; z� are so large that they are difficult to display
even on a computer screen, but if �1 is regarded as the first integral that is the low-
est common denominator of these four quantities, then we arrive at the Somos-8
relation (5.7). �

Example 5.6. The doubly infinite sequence (4.32), which extends (4.23), satisfies
the Somos-8 relation

7�nC8�nC 137�nC7�nC1C 2504�nC6�nC2 � 43424�nC5�nC3 � 26959�
2
nC4 D 0:

Remark 5.7. As already noted, there is the possibility of a vanishing denomina-
tor �1 D 0 in the ratios �j =�1, j D 2; 3; 4; 5. Given that the map (3.29) only
has two independent first integrals, which can be specified by H1 D �uv and
H2 D uw as in (3.26) and (3.27), it follows that these four ratios are rational
functions of f; g; u;H1;H2, with coefficients in Q, so that �1 can be fixed as the
polynomial in Z�f; g; u;H1;H2� that is the lowest common denominator of these
four rational functions. Thus it can happen that �1 D 0 for certain combinations of
f; g; u;H1;H2, in which case �n (or �n) satisfies a Somos-6 relation, rather than
a Somos-8. Numerical experiments suggest that uj�1.f; g; u;H1;H2/, consistent
with a result of van der Poorten, who showed that there is a Somos-6 relation in the
special case u D 0 [45, 47].

Before concluding this section, we state a conjecture that is the genus 2 analogue
of Theorem 1.1.

CONJECTURE 5.8. When g D 2, the Hankel determinants (4.12) with moments
defined by (4.22) are given by

(5.10) �n D yaybn
�.z0 C nz/
�.z/n2

in terms of the genus 2 Kleinian sigma function �.z/ D �.zI zc0; zc1; zc2; zc3/ asso-
ciated with a quintic curve zCW y2 D 4x5 C

P3
jD0 zcjx

j with period lattice �,
isomorphic to the sextic C in (3.19), for z; z0 2 C2 mod � with

z D 2

Z zP2

1

�
dx
y
;
x dx
y

�T

;
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where 1 is the unique point at infinity on zC, zP2 2 zC is the point corresponding to
12 2 C, and ya; yb are certain nonzero constants.

A proof of the above result would follow from an analytic solution for the iter-
ates of the map (3.29), which we propose to consider elsewhere. However, to see
why this result is plausible we let zP1 2 zC be the point corresponding to 11 2 C,
and note that since the class of the divisor zP2� zP1 �lin 2. zP2�1/ in the Jacobian
of zC corresponds to that of the divisor 12 � 11 on C, each shift n ! n C 1

increases the argument of the numerator in (5.10) by z, which is consistent with
(2.18). Furthermore, if the formula (5.10) is correct, then, by essentially the same
analytical calculations as those in [7, 27], it follows immediately that �n satisfies
the Somos-8 relation (5.7), or a Somos-6 relation when a certain constraint on z
holds.

In the higher genus case, we further conjecture that there should be an analytical
formula analogous to (5.10). Equivalently, there should be an expression in terms
of the Riemann theta function associated with the Jacobian of the curve (2.1) of
the form �n D yaybnycn

2

�.v0 C nv/ for some ya; yb; yc 2 C� and v0; v 2 Cg. If this
expression holds, then by counting the dimension of the vector space of quasiperi-
odic functions of weight 2 with respect to the period lattice (see [41]), it follows
that �n satisfies a Somos-k relation for some k � 2gC1. We have verified this in
numerical examples for g D 3; 4.

6 Poisson Structure and Integrability
In this section we slightly change our notation and consider a modified family

of Lax matrices given by

(6.1) L.�/ D
�

P.�/ R.�/
Q.�/ �P.�/

�
;

where P and R are monic polynomials of degrees g C 1 and g in �, respectively,
and Q is a polynomial of degree g with nonconstant leading coefficient, which we
write as

Q D �4d0�
g CO.�g�1/:

The set of all such matrices forms an affine space of dimension 3g C 2, with co-
ordinates given by the nontrivial coefficients of P, Q, and R. We will endow this
space with a particular Poisson structure of rank 2g and show how this leads to the
construction of an associated set of Hamiltonian vector fields that are completely
integrable in the Liouville sense. Then we will present a compatible discrete in-
tegrable system on the same phase space and show that this is equivalent to the
iteration of the recursion for the continued fraction expansion of the hyperelliptic
function considered previously.
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The Poisson brackets between the entries of L are specified by

fP.�/;P.�/g D 0 D fR.�/;R.�/g;(6.2)

fP.�/;Q.�/g D 2

�
Q.�/ � Q.�/

� � �

�
;(6.3)

fP.�/;R.�/g D �2

�
R.�/ � R.�/

� � �

�
;(6.4)

fQ.�/;Q.�/g D �4.Q.�/ � Q.�//;(6.5)

fQ.�/;R.�/g D 4

�
P.�/ � P.�/
� � �

�
� 4R.�/:(6.6)

In terms of the coefficients appearing in L, this is a linear bracket, since the right-
hand sides are linear in P, Q, and R. In order for this to define a Poisson bracket, it
must satisfy the Jacobi identity, and although this can be verified directly, this re-
quires many tedious calculations; we set this question aside for now, and a simpler
argument will be presented in due course.

To begin with, we consider the function

(6.7) F.�/ D � detL.�/ D P.�/2 C Q.�/R.�/:

Using the above bracket relations, we find that

fP.�/; F .�/g D 2

�
Q.�/R.�/ � Q.�/R.�/

� � �

�
;(6.8)

fQ.�/; F .�/g D 4

�
P.�/Q.�/ � P.�/Q.�/

� � �

�
� 4Q.�/R.�/;(6.9)

fR.�/; F .�/g D 4

�
P.�/R.�/ � P.�/R.�/

� � �

�
C 4R.�/R.�/:(6.10)

It is straightforward to check that the right-hand sides of the above expressions are
polynomials in � of degrees g�2, g�1, and g�1, respectively. Thus, if we expand

(6.11) F.�/ D �2gC2 C

2gC1X
jD0

cj �
j ;

then these expressions imply that

f � ; cj g D 0 for j D g; g C 1; : : : ; 2g C 1;

or, in other words, the leading g C 2 nontrivial coefficients of F are Casimirs.
In fact, cg; : : : ; c2gC1 provide the full set of Casimirs, and the symplectic leaves

have dimension 2g. To see this, factorize R as

(6.12) R.�/ D
gY

iD1

.� � xi /
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and set

(6.13) yi D P.xi /; i D 1; : : : ; g:

Then

P.�/ D �gC1 C
1

2
c2gC1�

g C

g�1X
jD0

�j �
j ;

where, from (6.13), the g coefficients �j can be found explicitly as functions of
the xi , the yi , and the Casimir c2gC1 by solving a linear system. The two relations
in (6.2) then imply that

fxi ; xj g D 0 D fyi ; yj g

for all i; j , while from (6.4) it follows that

fyi ; xj g D 2�ij ;

so that (up to scaling) the pairs .xi ; yi /iD1;:::;g provide a set of canonical coordi-
nates on a symplectic manifold of dimension 2g, and by (6.7), for fixed values of
the coefficients cj in (6.11), each pair .�; �/ D .xi ; yi / is a point on the spectral
curve

(6.14) �2 D F.�/:

Then by using (6.12), (6.13), and the leading terms in (6.7) up to and including
order �g , all of the coefficients in L can be expressed as functions of the xi , yi ,
and the Casimirs, so the whole Poisson algebra is expressed in terms of these co-
ordinates.

The latter argument begs the question of whether the Poisson brackets for the
entries of L satisfy the Jacobi identity in the first place, but this is easily seen by re-
versing the direction of the preceding argument. Indeed, starting with the canonical
bracket between the xi and yj , one extends it with the Casimirs cg; : : : ; c2gC1 to
obtain a Poisson algebra of dimension 3gC2, where the entries of L are defined in
terms of these canonical coordinates as above, and by construction they satisfy the
linear bracket relations given before. Hence the Jacobi identity is trivially satisfied.

We now consider a family of vector fields on the space of Lax matrices, defined
by the flow

(6.15)
d
dt

L.�/ D fL.�/; F .�/g:

From the bracket relations (6.8), (6.9), and (6.10), it can be verified directly that
this can be written in the form of a Lax equation, that is,

d
dt

L.�/ D �P.�; �/;L.�/�;

with the matrix

(6.16) P.�; �/ D
2

� � �

�
P.�/C .� � �/R.�/ R.�/

Q.�/ �P.�/ � .� � �/R.�/

�
:
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Moreover, all the flows in this family commute with one another, because the same
bracket relations imply that the bracket fF.�/; F.�/g is equal to

(6.17) 2P.�/fP.�/; F .�/g C R.�/fQ.�/; F .�/g C Q.�/fR.�/; F .�/g D 0:

Thus it follows that all of the coefficients cj in (6.11) are in involution, and in order
to get nontrivial flows we can take the non-Casimir functions (Hamiltonians)

(6.18) Hj D cj D res
F.�/

�jC1

����
�D0

; j D 0; 1; : : : ; g � 1:

Then since fHj ;Hkg D 0 for all j; k, this gives g commuting flows, which can be
written in Lax form as

d
dtj

L.�/ D fL.�/;Hj g D �P.j /.�/;L.�/�;

where, for j D 0; : : : ; g � 1, the matrix P.j / is defined from (6.16) by

P.j /.�/ D res
P.�; �/
�jC1

����
�D0

:

Hence we have integrability in the sense of Liouville [3].

THEOREM 6.1. The Hamiltonians (6.18) define a completely integrable system on
the space of Lax matrices (6.1).

In fact, there is more that one can say: for fixed values of cj in (6.11), the set of
triples of polynomials P.�/;Q.�/;R.�/ of the specified form that satisfy (6.7) for a
fixed set of coefficients cj in (6.11) is an affine algebraic variety of dimension g that
is canonically isomorphic to the affine Jacobian of the corresponding hyperelliptic
spectral curve (6.14) by associating each such triple with the degree g divisor

D D .x1; y1/C � � � C .xg; yg/

defined by (6.12) and (6.13). As is explained in [42], the analogous construc-
tion of the Jacobian variety in the case of odd hyperelliptic curves goes back to
Jacobi and arises in the context of finite gap solutions of the Korteweg–deVries
equation. The Poisson brackets and first integrals Hj are all algebraic—in actual
fact, they are given by polynomial functions of the coefficients of the polynomials
P.�/;Q.�/;R.�/—and over C the generic common level set of these first integrals
is an affine part of a complex algebraic torus, with the Hamiltonian flows being lin-
ear on the torus; this is what is known as an algebraic completely integrable system
(see [54] and references for details).

We now proceed to describe how the Lax matrices (6.1) are related to the discrete
Lax pair and nonlinear map introduced in Section 3.

First of all, observe that completing the square in (6.11) means that

F D A2 C zcg�
g C zcg�1�

g�1 � � � C zc0; A.�/ D �gC1 C zc2gC1�
g C � � � C zcgC1;

where zc2gC1 D
1
2
c2gC1 and all the coefficients zc2gC2�j for j D 1; : : : ; g C 2 are

polynomial functions of the g C 2 Casimirs zc2gC2�j for the same range of j , and
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there is a bijection between these two sets of Casimir functions. In particular, all
of the coefficients of A are Casimirs, and from (6.7) we may write

P.�/ D A.�/C

g�1X
jD0

�
.j /
0 �j ;

and take the g nontrivial coefficients of R.�/ and the quantities �.j /
0 for j D

0; : : : ; g � 1 as coordinates on each symplectic leaf. We shall see shortly that
the latter is consistent with the notation in (3.7), but before getting to this we must
restrict to a particular set of symplectic leaves by fixing the value of the top Casimir
to be 0, i.e., c2gC1 D 0, so that zc2gC1 D 0, and the coefficients of F , A, and P at
next to leading order are 0; this slightly simplifies the formulae for the nonlinear
map, and agrees with our previous conventions for the continued fraction expan-
sion (but if necessary the case of nonzero c2gC1 can always be obtained by making
a shift in the spectral parameter �).

Next, in order to obtain (6.1), we wish to remove the multipliers un that appear
in the off-diagonal terms of (3.2), since although they provide an arbitrary choice
of scale in the continued fraction, they do not behave well from the point of view
of the Poisson structure. Thus we consider diagonal gauge transformations

�n 7! �n D Gn�n; Gn D

 
�
.1/
n 0

0 �
.2/
n

!
;

applied to the eigenvector in (3.1). These have the effect of changing the prefactors
in the off-diagonal entries of Ln while leaving the diagonal terms the same. Hence,
for a suitable choice of �.1/n ; �

.2/
n , upon setting n D 0 we obtain

L.�/ D G0L0.�/G�1
0

with L.�/ being given by (6.1), and from (3.3) we find

M.�/ D G0M0.�/G�1
1 D

�
� C v0 1=2

�2d0 0

�
;

where

(6.19) d0 D �
1

4
res

Q.�/
�gC1

����
�D0

; v0 D
1

4d0
res

Q.�/
�g

����
�D0

:

Comparing the effect of the gauge transformation with the notation used in Sec-
tion 3, it is apparent that

P.�/ D P0.�/; Q.�/ D u�1Q0.�/; R.�/ D Q�1.�/=u�1:

Finally, to rewrite the nonlinear map in terms of the new Lax matrices, we set

zL.�/ D G1L1.�/G�1
1 D

�
zP.�/ zR.�/
zQ.�/ �zP.�/

�
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and see that the discrete Lax equation (3.5) is transformed to

(6.20) LM D M zL;

which gives a set of equations equivalent to (3.6), namely,

.� C v0/.zP.�/ � P.�// D �2d0R.�/ �
1

2
zQ.�/;

2d0.zP.�/C P.�// D �.� C v0/Q.�/;

�4d0zR.�/ D Q.�/;

(6.21)

describing the transformation of the entries of L.
By considering the map defined by (6.21), we eventually arrive at a proof of

Theorem 3.1.

THEOREM 6.2. On the vanishing level set of the top Casimir, c2gC1 D 0, the map
(6.21) is an integrable Poisson map on the space of Lax matrices (6.1).

PROOF. From the discrete Lax equation (6.20) it is clear that the map given
by (6.21) is isospectral: it leaves the spectral curve (6.14) unchanged, and hence
preserves all the Casimirs (including the constraint c2gC1 D 0) and the g first
integrals Hj defined by (6.18). Thus, for integrability it only remains to show that
it is a Poisson map. This means that the same bracket relations (6.2), (6.3), (6.4),
(6.5), and (6.6), but with tildes, must hold between the entries of zL, so that

(6.22) fzP.�/; zP.�/g D 0 D fzR.�/; zR.�/g;

and so on. All six bracket relations can be checked directly by substituting for zP, zQ,
zR in terms of P, Q, R and then using the brackets between the original polynomials
(without tildes), but this is extremely tedious, and it is possible to bypass most of
these calculations.

To begin with note that, from (6.19) and the bracket (6.3), we have

(6.23) fd0;P.�/g D
1

4
res

fP.�/;Q.�/g
�gC1

����
�D0

D
1

4
res

Q.�/ � Q.�/
.� � �/�gC1

����
�D0

D 0;

since

Q.�/ � Q.�/ D �4d0.� � �/.�
g�1 CO.�g�2//;

and similar calculations show that

(6.24) fd0;Q.�/g D �4d0; fd0;R.�/g D �1:

So, substituting zR D �1
4
d�10 Q from (6.21), it follows that fzR.�/; zR.�/g is equal to

1

16

�
�d�30 Q.�/fd0;Q.�/g � d�30 fQ.�/; d0gQ.�/C d�20 fQ.�/;Q.�/g

�
D 0
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by (6.24) and the bracket (6.5), which verifies the second relation in (6.22). Note
that from (6.21) and (6.19) we may write

v0 D � res
zR.�/
�g

����
�D0

;

from which it follows that

(6.25) fv0; zR.�/g D 0;

and, making use of (6.23), we also have

(6.26) fP.�/; zR.�/g D �4d0fP.�/;Q.�/g D 2

�
zR.�/ � zR.�/
� � �

�
;

which then shows that

(6.27) fv0;P.�/g D res
2.zR.�/ � zR.�//
�g.� � �/

����
�D0

D 2:

Then from the second and third equations in (6.21) we may write
zP.�/ D �P.�/C 2.� C v0/zR.�/;

so that from the first bracket in (6.2) and the fact that all the entries of zR are in
involution, together with (6.25), we have

fzP.�/; zP.�/g D �2
�
fP.�/; .�C v0/zR.�/g C f.´C v0/zR.�/;P.�/g

�
;

and expanding this out and removing the overall prefactor �2 gives

fP.�/; v0gzR.�/C fv0;P.�/gzR.�/

C .´C v0/fzR.�/;P.�/g C .�C v0/fP.�/; zR.�/g D 0;

by (6.26) and (6.27); this verifies the first bracket in (6.22). Finally, using the same
set of bracket identities, we are able to check that

(6.28) fzP.�/; zR.�/g D �fP.�/; zR.�/g D �2

�
zR.�/ � zR.�/
� � �

�
;

corresponding to the shifted version of the bracket relation (6.4). It is not necessary
to verify directly that the remaining three bracket relations are preserved by the
map, since they follow from observing that, given the g pairs of coordinates .zxi ; zyi /
defined by

zR.�/ D
gY

jD1

.� � zxj /; zyi D zP.zxi /;

for i D 1; : : : ; g, the already verified relations (6.22) and (6.28) imply that

fzxi ; zxj g D 0 D fzyi ; zyj g; fzyi ; zxj g D 2�ij :

Hence the map defined by (6.21) restricts to a canonical transformation on each
symplectic leaf, and it preserves all the Casimirs, so it is a Poisson map. This
also proves Theorem 3.1, since �.j /

0 together with �.j /�1 (the coefficients of R) for



34 A. N. W. HONE

j D 1; : : : ; g also provide coordinates on each symplectic leaf, so that the map
(3.12) that is written in these coordinates is symplectic and has g first integrals in
involution, as in (6.18). Thus y' is integrable, as is the conjugate map ' given by
(3.11). �

Appendix: Identities for Determinants of Hankel Type
There are various ways to derive the classical formulae (4.14), and the expres-

sion for dn in particular. For instance, one way is to first prove the orthogonality
relation (4.16) and then consider products of the form hqm; X

ni; see the proof of
theorem A in [56]. However, here we present determinantal formulae that yield the
latter expression directly from the three-term relation (4.9).

For convenience, we introduce some notation: take the column vectors cj D

.sj ; : : : ; sjCn�2/
T, c0j D .sj ; : : : ; sjCn�1/

T of sizes n � 1 and n, respectively, and
let

���n D

����������

s0 s1 � � � sn�3 sn�1 sn

s1
:::

:::
:::

:::
:::

:::
:::

:::
:::

sn�1 sn � � � s2n�4 s2n�2 s2n�1

����������
D
��c00 � � � c0n�3c0n�1c0n

��

denote a size n determinant of Hankel type with the column c0n�2 omitted. Upon
using (4.11) to calculate the coefficient of order Xn�1 in (4.9), it follows that dn is
given as a linear combination of four terms, that is,

dn D
���n�1
�n�1

�
���n
�n

�
��n�1
�n�1

�
��n�1
�n�1

�
��n
�n

�
:

First of all, observe that the Desnanot-Jacobi identity, also known as Dodgson con-
densation [13], yields the formula

�n�n�2 D �n�1�
0
n�1 �

�
��n�1

�2
;

where�0n�1 is a matrix whose first principal minor of size n�2 is�n�2, namely ,

�0n�1 D

������������

s0 s1 � � � sn�3 sn�1

s1 : :
: :::

:::
::: : :

: :::
:::

sn�3 � � � � � � s2n�6 s2n�4
sn�1 � � � � � � s2n�4 s2n�2

������������
:

Then the above formula for dn implies that

dn �
�n�n�2

�2
n�1

D
�n�

��
n�1 ��

��
n �n�1 ��n�

0
n�1 C��n�

�
n�1

�n�1�n
;
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and this can be simplified further by introducing

�00n�1 D jc0 � � � cn�3cnj;

and then considering a determinant of size 2n � 1, namely,����c00 � � � c0n�3 c0n�2 c0n�1 c0n 0 � � � 0
0 � � � 0 cn�2 cn�1 cn c0 � � � cn�3

���� D 0;

which can be seen to vanish from elementary row operations. Performing the
Laplace expansion of the latter determinant into products of blocks of sizes n and
n � 1 gives just three nonzero terms, producing the identity

���n �n�1 ��
�
n�

�
n�1 C�n�

00
n�1 D 0;

which reduces the expression for dn to

�n�1

�
dn �

�n�n�2

�2
n�1

�
D �00n�1 ��

0
n�1 C���n�1:

Finally, to see that the right-hand side above vanishes, shift n ! nC 1, and then
note that

�00n D

���� c0 � � � cn�3 cn�1 cn
sn�1 � � � s2n�4 s2n�2 s2n�1

����; �0n D

����c0 � � � cn�2 cn
sn � � � s2n�2 s2n

����;
and

�n D

���� c0 � � � cn�1
snC1 � � � s2n

����;
so that the combination �00n � �

0
n C ���n yields the only three nonzero terms ap-

pearing in the sum
nX

jD0

.�1/j
���� c0 � � � ycj � � � cn
sjC1 � � � ys2jC1 � � � snCjC1

���� D 0

(with the hat denoting an omitted column), which is seen to be identically zero by
expanding about the last row.
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