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Crystal structure

Polycrystalline Zr3Ir samples were prepared by arc
melting of Zr and Ir metals in a water-cooled copper
hearth under high-purity argon atmosphere. The as-cast
ingots were then annealed at 600◦C over two weeks. The
crystal structure and the purity of Zr3Ir were checked
via x-ray powder diffraction (XRD) at room temperature.
Rietveld refinements indicate a tiny amount (< 3%) of
a Zr impurity phase. As shown in Fig. S1, the XRD
pattern of Zr3Ir can be adequately indexed by a tetrago-
nal α-V3S-type noncentrosymmetric structure with space
group I42m (No. 121). The resulting lattice parameters
are a = b = 10.78628(5)Å and c = 5.65891(4)Å. The
twice as large in-plane vs. out-of-plane lattice parame-
ter hints at an anisotropic crystal structure. As shown
in the inset, the refined Zr3Ir crystal structure includes
three different Zr sites and a single Ir site in the unit cell.
The detailed atomic positions presented in Table SI are
consistent with previously reported values [1].
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FIG. S1. Room-temperature x-ray powder diffraction pattern
and relevant Rietveld refinements for Zr3Ir. Black symbols
refer to the experimental data, while the red line to the refined
profile. The rows of green and purple ticks under the pattern
indicate the positions of Bragg reflections for Zr3Ir and Zr,
respectively, while the blue line shows the residuals (difference
between the refined and experimental patterns). The inset
shows the crystal structure of Zr3Ir.

Table SI. The refined crystal-lattice parameters and atomic
coordinates of Zr3Ir at room temperature. The derived profile
reliability factor is Rp = 3.77% and the weighted-profile R-
factor is Rwp = 5.14%.

Structure α-V3S-type tetragonal
Space group I42m (No. 121)
a(Å) 10.78628(5)
c(Å) 5.65891(4)
Vcell(Å3) 658.378(6)

Atomic coordinates
Atom Wyckoff Occ. x y z

Ir 8f 1 0.29122(7) 0 0
Zr1 8g 1 0.35316(11) 0 0.5
Zr2 8i 1 0.09685(13) 0.09685(13) 0.25874(35)
Zr3 8i 1 0.29163(11) 0.29163(11) 0.25595(72)
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FIG. S2. Electrical resistivity vs. temperature for Zr3Ir, mea-
sured in the 1–300 K temperature range in absence of mag-
netic fields. The inset expands the low-T region, with the
arrows indicating the onset- and the zero superconducting-
transition temperatures, respectively.

Electrical resistivity

Figure S2 shows the temperature dependence of the
zero-field electrical resistivity ρ(T ) for Zr3Ir. In the cov-
ered temperature range, ρ(T ) suggests a metallic behav-
ior, characterized by a residual resistivity of 27µΩ cm



and a residual resistivity ratio RRR ∼ 6.3. The mod-
erately large RRR value indicates a good Zr3Ir sample
quality. The inset expands the low-temperature region
to better show the superconducting transition. As high-
lighted by the arrows, Zr3Ir becomes a superconductor
below T onset

c ∼ 2.8K and its electrical resistivity drops
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FIG. S3. Temperature dependence of the zero-field heat
capacity of Zr3Ir in the 1.9–300 K temperature range. The
solid line represents a combined Debye-Einstein fit to the ex-
perimental data.

to zero at T zero
c ∼ 2.4K. The latter value is consistent

with the onset of superconductivity as determined from
magnetic susceptibility measurements (see Fig. 1 in the
main text).

Heat capacity

The high-temperature heat-capacity data presented in
Fig. S3 show the clear dominance of phonon contribution.
The solid line suggests that experimental data are well
fitted by a combined Debye- and Einstein model, respec-
tively describing the acoustic and optical phonon modes:

C = γn + nDCD(T,ΘD) + nECE(T,ΘE). (1)

Here γn is the normal-state electronic specific-heat coef-
ficient, fixed to the value derived from the normal-state
data just above Tc [see Fig 2(c) in the main text]. CD

and CE represent the Debye- and Einstein phonon con-
tributions, with weights nD = 0.81 and nE = 0.19, and
with Debye- and Einstein temperatures ΘD = 220(5)K
and ΘE = 297(10)K, respectively. The Debye temper-
ature is similar to that calculated using the β value
[ΘD = (12π4 Rn/5β)1/3 = 190(3)K] in Fig. 2(c) of the
main text, with R the molar gas constant and n = 4 the
number of atoms per formula unit.

The density of states at the Fermi level N(εF) can
be estimated from the expression N(εF) = 3γn/(2π2k2B)
(accounting for spin degeneracy), where kB and γn
are the Boltzmann constant and the normal-state elec-
tronic specific-heat coefficient, respectively [2]. For
Zr3Ir, a γn = 17.9(1)mJ/mol-K2 gives N(εF) =
3.80(1) states/(eV f.u). The electron-phonon coupling
constant λep can be further estimated from ΘD and Tc

by applying the empirical McMillan formula [3]:

λep =
1.04 + µ∗ ln(ΘD/1.45Tc)

(1− 0.62µ∗)ln(ΘD/1.45Tc)− 1.04
. (2)

With a bulk Tc = 2.2(1) K, ΘD = 220(5) K, and by con-
sidering the Coulomb-repulsion strength µ∗ in the typical
0.09–0.18 range, the estimated λep = 0.47–0.67 implies
a weak-coupling superconductivity in Zr3Ir. Such weak
coupling is further confirmed by the superconducting gap
to critical temperature ratio (2∆/kBTc ∼ 3.24) and by
the specific-heat jump at Tc (∆C/γTc ∼ 1.32), both of
which are comparable with BCS values.
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FIG. S4. Temperature dependence of (a) specific heat, and
(b) electrical resistivity of Zr3Ir in various magnetic fields up
to 1.5 T. (c) Upper critical field µ0Hc2 vs. normalized tem-
perature T/Tc. Dashed-dotted lines represent fits to the GL
model, while dashed-lines are fits to the WHH model consid-
ering only the orbital limit.

Upper critical field

To calculate the magnetic penetration depth from the
µ0Hc1 and µSR depolarization data, the upper critical
field µ0Hc2 had also to be determined. This was done
by measuring the specific heat C(T )/T and the electrical
resistivity ρ(T ) at various magnetic fields up to 1.5 T. As
shown in Fig. S4(a), C(T )/T data at zero field indicate
a bulk Tc of 2.2 K, consistent with the magnetic suscep-
tibility results. Upon increasing the magnetic field, the
superconducting transition in both cases shifts towards
lower temperatures. Similar to other Ir-based intermetal-
lic compounds [4], the remarkable specific-heat upturn
at low temperatures is due to nuclear Schottky contri-
butions. The derived upper critical fields µ0Hc2 vs. the
normalized temperature T/Tc were further analyzed by
using the Ginzburg-Landau- (GL) and the Werthamer-
Helfand-Hohenberg (WHH) model [5, 6]. The remarkable
agreement of the GL model with the data is clearly seen
in Fig. S4(c). Both models fit very well the experimen-
tal data at low fields. However, at high applied fields,
the WHH model deviates significantly from the experi-
ments, thus underestimating the critical-field values as
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determined from C/T and ρ [µ0H
WHH
c2 (0) = 0.49(1) T

and 0.76(1) T, respectively]. At the same time, the GL
model is a good fit over the entire field range, provid-
ing µ0H

GL
c2 (0) = 0.62(1) T (C/T ) and 1.08(1) T (ρ), re-

spectively. We note that while both data sets agree
well at low fields (< 0.08 T), at high fields the transition
temperatures determined from ρ(T ) data are systemat-
ically higher than those derived from C(T )/T . A simi-
lar behavior has been found also in other NCSCs, e.g.,
LaPtSi, BiPd, or LaTSi3(T = Pd, Pt, and Ir) [7–11].
Here, surface/filamentary superconductivity above bulk
Tc, or a strong anisotropy of the upper critical field due
to a significant c/a crystal anisotropy, have been pro-
posed to justify the differing Tc values. In the main text,
the bulk µ0Hc2 value determined from specific heat was
used. The coherence length ξ can be calculated from ξ =
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FIG. S 5. Time-domain TF-µSR spectra in the supercon-
ducting state of Zr3Ir measured at (a) 30 and (b) 110 mT.
(c) Above the lower critical field µ0Hc1 (12.7 mT), the field-
dependent Gaussian relaxation rate decreases continuously.
The arrow indicates the field value used in the temperature-
dependent TF-µSR studies. The solid line is a guide to the
eyes.√

Φ0/2πHc2, where Φ0 = 2.07×10−3 T µm2 is the quan-
tum of magnetic flux. With a bulk µ0Hc2 = 0.62(1) T,
the calculated ξ(0) is 23.0(2) nm. By using the expression
µ0Hc1 = (Φ0/4πλ

2)[ln(κ) + 0.5)], where κ = λ/ξ is the
GL parameter, the resulting penetration depth is λGL =
182(2) nm, somewhat smaller than 294(2) nm, the experi-
mental value from TF-µSR data. Such discrepancy most
likely reflects the anistropy of Zr3Ir.

TF-µSR

The optimal field value to employ in the TF-µSR
studies of Zr3Ir was determined via preliminary field-
dependent µSR depolarization-rate measurements at
1.5 K. Figures S5(a) and (b) show the TF-spectra in an
applied field of 30 and 110 mT, respectively. The solid
lines represent fits using the same model as that in Eq. (1)
of the main text. The resulting Gaussian relaxation rate
σ(H) [see Fig. S5(c)] exhibits a clear decrease above
20 mT, which is close to the lower critical field µ0Hc1

= 12.7 mT (see Fig. 1 in the main text). By considering
the decrease of intervortex distance with the field and
the vortex-core effects, a field of 30 mT was chosen for
the temperature-dependent TF-µSR studies.

ZF-µSR

To clearly explain the difference ZF-µSR results be-
tween present and previous work, we plot the temper-
ature dependence of ZF-µSR relaxation rates Λ(T ) in
Fig. S6. As can be seen in Fig. S6, the deviation of
the refined relaxation rates Λ(T ) from Ref. 12, with typ-
ical value of ∼0.01µs−1, is even greater than the small
yet systematic increase in the relaxation rate reported in
present work. The largest difference below and above Tc

in our data sets is less than 0.008µs−1. Therefore, the
subtle signature of TRS breaking would not have been
seen in the previous studies due to a lack of sufficient
time resolution.
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FIG. S6. ZF-µSR relaxation rate Λ(T ) vs. temperature for
Zr3Ir. Circles and squares are data from present work, while
triangles are data adopted from recently published paper [12].
Our data sets were shifted by a constant value 0.05µs−1. The
dashed lines are guides to the eye.
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FIG. S7. Total- and single-atom projected DOS (in units
of states/eV) of Zr3Ir within a ±4 eV energy range across EF.
The results shown here do not consider the SOC.
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Electronic band structure

The electronic band structure of Zr3Ir, as shown in
Fig.4 of the main text, was calculated by the density
functional theory (DFT) within the generalized gradient
approximation (GGA)[13] with Perdew-Burke-Ernzerhof
(PBE) realization as implemented in the Vienna ab-
initio Simulation Package (VASP)[14, 15]. The projec-
tor augmented wave (PAW)[16, 17] pseudopotentials are
adopted for the calculation. We set 9 electrons (5d76s2)
for Ir, and 4 electrons (4d25s2) for Zr as valence electrons.
The kinetic energy cutoff is fixed to 500 eV. The Brillouin
zone integration was performed on a Γ-centered mesh of
10 × 10 × 10 k-points for the bulk calculation. The spin-
orbit coupling (SOC) effect is taken into account by us-
ing a scalar relativistic approximation. The experimental
lattice parameters and atomic positions determined from
the Rietveld refinements (see Fig. S1) are used in our
calculation.

The calculated electronic density of states (DOS) is
presented in Fig. S7, without considering the spin-orbit
coupling (SOC). We note that the DOS near the Fermi
level consists mostly of Zr and Ir d-bands, the contribu-
tion of s-bands being negligible. Since the atomic ratio
between Zr and Ir is 3:1, the Zr d-bands are expected to
contribute most of the DOS at Fermi level and thus the
band splitting is relatively small. The Ir atom has much
stronger SOC strength to Zr, reflecting the fact that the
Ir is 5d metal while Zr is 4d metal. The estimated DOS at
EF is about 2 states/(eV f.u.) [= 16 states/(eV cell)/Z,
with Z = 8 the number of Zr3Ir formula units per unit
cell], which is comparable to the experimental results in
Fig. S3.

In Fig. S8, we show several representative Fermi sur-
faces of Zr3Ir, obtained without considering the SOC (see
above). Note that all the Fermi surfaces are open along
the two “poles”. Figure S9(a) shows the contribution
of these Fermi surfaces to the DOS near the Fermi level,
with the relative weights being summarized in Fig. S9(b).
Clearly, the Fermi surfaces in the panels (b), (c), (d), and
(e) of Fig. S8 contribute to the majority of the DOS near
the Fermi level EF.

FIG. S8. Representative Fermi surfaces of Zr3Ir neglecting
the effect of SOC.
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FIG. S9. (a) The contribution to the DOS of the individual
Fermi surfaces shown in Fig. S8 following the same color code.
(b) The relative weights of the DOS contributions of each
Fermi surfaces in Fig. S8 (a) to (f) to their total DOS at EF.

Table SII. Basis functions of D2d. A, B, and C are constants
independent of k.

D2d Basis functions
Irreps Scalar (even) Vector (odd)

A1 A+B(k2
x + k2

y) + Ck2
z A(kxx̂− ky ŷ) +Bkz(k

2
x − k2

y)ẑ

A2 Akxky(k
2
x − k2

y) A(kxx̂+ ky ŷ) +Bkxkykz ẑ

B1 A(k2
x − k2

y) A(kxx̂+ ky ŷ) +Bkz ẑ

B2 Akxky A(k2
z − k2

y)kyx̂− (k2
z − k2

x)kxŷ

E Akz

(
kx
ky

) (
Akzx̂+Bkxẑ

Akz ŷ +Bky ẑ

)

Symmetry analysis

In this section we provide details of the symmetry
analysis of possible superconducting order parameters in
Zr3Ir. Due to the nontrivial effect of SOC in such com-
pound, Zr3Ir shows a mixed singlet- and triplet pairing
in its superconducting state. The most relevant basis
functions of the corresponding point group D2d for this
case are listed in Table. SII. D2d has four non-degenerate
(1D) and one degenerate (2D) irreducible representations
(irreps). The singlet-dominated superconducting instabil-
ity, corresponding to the 2D irrep, can be obtained by
taking

∆0(k) = (η1kzkx + η2kzky) , (3)

where η1 and η2 are complex coefficients. Then, by mini-
mizing the corresponding GL free energy up to the quar-
tic order, we obtain the possible ground states: (η1, η2) =
(1, 0), (1, 1), and (1, i). As described in the main text, the
ground state corresponding to (η1, η2) = (1, i) breaks the

– 4 –



-0.5
	0
	0.5 -0.5 	0 	0.5

-0.5

	0

	0.5

(a)

-1
	0
	1 -1 	0 	1

-0.5

	0

	0.5

(b)

FIG. S10. Polar plots of the lowest excitation gaps singlet
dominated (a) and triplet dominated (b) TRS-breaking insta-
bilities. In both the cases point nodes appear at the “poles”,
while the singlet case has an additional line node at the “equa-
tor”.

TRS. The corresponding lowest excitation gap is shown
in Fig. S10(a). Similarly, the gap corresponding to the
triplet dominated TRS breaking described in the main
text is shown in Fig. S10(b). Note that the TRS break-
ing SC instability corresponding to these two ground
states requires additional crystalline symmetry breaking
and hence the pairing mechanism is necessarily uncon-
ventional (i.e., not phonon-mediated).

We compute the excitation spectrum for a general or-
der parameter of mixed parity by using the Bogoliubov-
de Gennes formalism. The relevant Hamiltonian can be
written as:

H =

(
ĥ(k) ∆̂(k)

∆̂†(k) −ĥT (−k)

)
, (4)

where ĥ(k) is the single-particle Hamiltonian. For a non-
centrosymmetric material, in general, we can write

ĥ(k) = (εk − µ) · 1+ γγγk · σσσ, (5)

where µ is the chemical potential of the system, εk is the
single-particle dispersion, and γγγk is the ASOC constant
which fulfills the condition γγγk = −γγγ−k. The simplest
form of the normal-state band structure compatible with
the symmetry of the crystal can be assumed to be:

εk = A3 +B3(k
2
x + k2y) + C3k

2
z , (6)

γγγk = A4(kxx̂− ky ŷ) +B4kz(k
2
x − k2y)ẑ, (7)

corresponding to the A1 irrep of D2d (see Table. SII) with
A3, B3, C3, A4 and B4 being constants independent of
k. The lowest excitation spectrum on the Fermi level in
general has two point nodes, at the “north” and “south”
poles, corresponding to θ = 0 and π, respectively. As
discussed in the main text, a line node at the “equa-
tor” (θ = π/2) is also possible when the system exhibits
mostly a singlet pairing (for A1 ≫ A2 and A1 ≫ B2).

A qualitatively different superconducting instability,
which can break TRS spontaneously at the superconduct-
ing transition, is given by the loop-super-current (LSC)
ground state [18]. This is possible in Zr3Ir because of
its multi-band nature and, more specifically, because its
bands are derived from several distinct but symmetry-
related sites within the unit cell. By considering on-site
singlet paring, with the possibility that the pairing poten-
tial can have different values at different symmetrically
distinct sites, we can construct the GL free energy in
the real space. By using the symmetry operations of the
point group D2d, we can construct the inverse pairing sus-
ceptibility matrix α̂ of the system. It can be parametrized
by three real parameters p1, p2, and p3:

α̂ =


p1 p2 p3 p3
p2 p1 p3 p3
p3 p3 p1 p2
p3 p3 p2 p1

 . (8)

This has two non-degenerate eigenvalues (p1 + p2 − 2p3)
and (p1 + p2 +2p3) and a two-fold degenerate eigenvalue
(p1 − p2), with corresponding eigenvectors

|1⟩ =


0

0

−1

1

 and |2⟩ =


−1

1

0

0

 . (9)

Here, we represent the order parameter by a real-space
state vector, where each row corresponds to the strength
of the pairing potential in one of the distinct, symmetry
related sites within the unit cell. We investigate the fate
of this doubly degenerate instability by writing the order
parameter as a linear combination |∆⟩ = η1|1⟩ + η2|2⟩
in the doubly degenerate subspace and consider the GL
free energy up to the quartic order. Here, η1 and η2 are
complex coefficients. By minimizing the GL free energy,
we find the three possible instabilities, corresponding to
(η2, η2) = (1, 0), (1, 1) and (1, i). The instability which
breaks the TRS corresponds to (η2, η2) = (1, i) and leads
to the pairing potential

|∆⟩ = |1⟩+ i|2⟩ =


−i

i

−1

1

 . (10)

This ground state has finite Josephson currents within a
unit cell of the system since the symmetry-related sites
have nontrivial phase differences between them. Hence,
the system spontaneously breaks TRS at the supercon-
ducting transition.
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