
Adedipe, Tosin, Shafiee, Mahmood and Zio, Enrico (2020) Bayesian Network 
Modelling for the Wind Energy Industry: An Overview.  Reliability Engineering 
and System Safety, 202 . ISSN 0951-8320. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/81891/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.ress.2020.107053

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/81891/
https://doi.org/10.1016/j.ress.2020.107053
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


 

Journal Pre-proof

Bayesian Network Modelling for the Wind Energy Industry: An
Overview

Tosin Adedipe , Mahmood Shafiee , Enrico Zio

PII: S0951-8320(20)30554-8
DOI: https://doi.org/10.1016/j.ress.2020.107053
Reference: RESS 107053

To appear in: Reliability Engineering and System Safety

Received date: 9 August 2019
Revised date: 5 May 2020
Accepted date: 25 May 2020

Please cite this article as: Tosin Adedipe , Mahmood Shafiee , Enrico Zio , Bayesian Network Mod-
elling for the Wind Energy Industry: An Overview, Reliability Engineering and System Safety (2020),
doi: https://doi.org/10.1016/j.ress.2020.107053

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ress.2020.107053
https://doi.org/10.1016/j.ress.2020.107053


RESEARCH HIGHLIGHTS 
 To review the state-of-the-art and future developments on adoption of BN 

models in wind energy; 

 To identify relevant academic publications, best practice documents and 

software user guides;  

 To identify and evaluate various applications of BNs in wind energy; 

 To discuss the applications of BNs to risk management, degradation analysis, 

fault diagnosis, reliability analysis, and O&M planning and updating; 

 To analyse a number of case studies to show the applicability of BNs in practice. 
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Abstract 

Wind energy farms are moving into deeper and more remote waters to benefit from availability of 

more space for the installation of wind turbines as well as higher wind speed for the production of 

                  



electricity. Wind farm asset managers must ensure availability of adequate power supply as well as 

reliability of wind turbines throughout their lifetime. The environmental conditions in deep waters 

often change very rapidly, and therefore the performance metrics used in different life cycle phases of 

a wind energy project will need to be updated on a frequent basis so as to ensure that the wind energy 

systems operate at the highest reliability. For this reason, there is a crucial need for the wind energy 

industry to adopt advanced computational tools/techniques that are capable of modelling the risk 

scenarios in near real-time as well as providing a prompt response to any emergency situation. 

Bayesian network (BN) is a popular probabilistic method that can be used for system reliability 

modelling and decision-making under uncertainty. This paper provides a systematic review and 

evaluation of existing research on the use of BN models in the wind energy sector. To conduct this 

literature review, all relevant databases from inception to date were searched, and a total of 70 sources 

(including journal publications, conference proceedings, PhD dissertations, industry reports, best 

practice documents and software user guides) which met the inclusion criteria were identified. Our 

review findings reveal that the applications of BNs in the wind energy industry are quite diverse, 

ranging from wind power and weather forecasting to risk management, fault diagnosis and prognosis, 

structural analysis, reliability assessment, and maintenance planning and updating. Furthermore, a 

number of case studies are presented to illustrate the applicability of BNs in practice. Although the 

paper details information applicable to the wind energy industry, the knowledge gained can be 

transferred to many other sectors. 

Keywords: Wind energy; Bayesian network (BN); Reliability; Probabilistic methods; Operation and 

maintenance (O&M); Fault diagnosis and prognosis; Structural analysis; Risk assessment. 

1. Introduction 

Wind energy is one of the fastest-growing and most cost-effective means of power generation 

worldwide. A large number of wind energy farms are currently being built or are planned to be built – 

either on land (onshore) or at sea (offshore) – in different countries throughout the world. As reported 

by the Global Wind Energy Council (GWEC), the global capacity of onshore wind energy reached 

over 600 GW at the end of 2019, with China contributing the highest proportion of the total, followed 

by the USA and Germany (Global Wind Energy Council, 2020). In the offshore wind sector, the 

United Kingdom has the highest installed capacity of 9.95 GW, followed by Germany with the 

cumulative installed capacity of 7.45 GW. The total capacity of onshore and offshore wind power in 

Europe has increased from 77GW, as of the end of 2009, to more than 205GW, as of the end of 2019 

(see Figure 1). Among the European countries, the UK ranked first in terms of new installations in 

2019 (with 16% of the total installed capacity), followed by Spain (with 15%), Germany (with 14%) 

and Sweden (with 10%) (WindEurope, 2020). The total wind power capacity in Europe is estimated 

to reach 342GW and 840GW by 2030 and 2050, respectively. 

In recent years, there has been a significant growth in the number of wind energy projects 

deployed in remote, deep-water locations (Presencia and Shafiee, 2018). These locations have more 

space available for installation of large-scale wind turbines as well as larger wind resources for 

production of electricity. Nevertheless, wind energy projects in deepwaters often involve a lot more 

complexities than their onshore or shallow water counterparts. The operating conditions in deepwater 

environments are highly dynamic and often change very rapidly over time. Any variation in 

operational and environmental conditions may alter the behaviour of offshore wind turbines or their 

support structures, and also impact the accessibility of operation and maintenance (O&M) personnel 

                  



to offshore sites. Therefore, the performance metrics used in different life cycle phases of a wind 

energy project must be updated on a very frequent basis. 

According to the European Technology and Innovation Platform on Wind Energy (2018), O&M 

is a key priority for improvement in the European wind energy sector in order to reduce the levelised 

cost of energy (LCOE). Wind farm O&M is attracting more and more attention from industry and 

policy-making organizations due to its huge potential in increasing safety, efficiency, and power 

production. In general, there are two strategies adopted for O&M of wind energy farms: corrective 

and preventive. The corrective maintenance (CM) is a type of maintenance carried out after a failure 

has occurred. This strategy may lead to large production losses due to potentially long system 

downtime when a failure occurs. The preventive maintenance (PM) strategy, on the other hand, refers 

to scheduled maintenance (SM) and condition-based maintenance (CBM). The former requires 

scheduling of maintenance activities at predetermined time intervals, as estimated based on system’s 

reliability, environmental conditions and other factors. The latter uses equipment condition – as 

assessed based on inspection reports, interpreted Supervisory Control and Data Acquisition (SCADA) 

data, or information gathered by sensors embedded in different parts of the wind turbines – to identify 

maintenance requirements. The sensor readings are recorded, inspection information is analysed, and 

a maintenance decision is made to address degradation before it causes a failure within the system 

(Shafiee, 2015).  

The reliability analysis and O&M planning of wind energy farms, in particular in deep water 

locations, is a complicated task as it is a function of several contributing factors such as 

meteorological conditions (e.g. wind speed, wave height, visibility, and sea state), failure rate of wind 

turbine components, distance to shore and water depth, availability of resources required to execute 

maintenance tasks (e.g. transport vessels, service crew, spare parts and special tools), etc. In order to 

optimise availability of wind energy farms at the lowest operating cost, an efficient planning and 

reporting system is crucial. Correspondingly, several quantitative and qualitative decision-making 

methods for reliability analysis and O&M planning of wind energy farms have been developed in 

recent years. The most common methods include: Failure Mode and Effects Analysis (FMEA), Fault 

Tree Analysis (FTA), Event Tree Analysis (ETA), Markov Chain Analysis (MCA), Monte-Carlo 

Simulation (MCS), Petri Net (PN) and Fuzzy Logic (FL) (for more see Shafiee and Sørensen, 2019). 

Advanced methods for prediction of reliability and remaining useful life (RUL) of various wind 

farm assets (including turbines, foundations and transition pieces, export and inter-array cables, 

offshore substations, etc.) can contribute to the strategic O&M planning and efficient resource 

allocation in wind energy farms. Thus far, reliability assessment and RUL modelling have been 

performed using accelerated life testing (ALT) data and failure mode analysis. However, with the 

development of advanced sensor technologies and condition monitoring systems in the wind energy 

industry, a great volume of information about the mechanical loadings to wind turbine structures as 

well as conditions of the surrounding environment (such as temperature, humidity, wind speed, etc.) 

has been made available in continuous time (Shafiee and Finkelstein, 2015; Martinez-Luengo and 

Shafiee, 2019). Therefore, it is necessary to develop advanced computational tools/techniques that are 

capable of incorporating (near) real-time data obtained from inspection results, condition-monitoring 

sensors or SCADA systems in order to optimise reliability and improve O&M planning of wind 

energy farms. In this context, the use of Machine Learning (ML) algorithms in various applications 

has grown enormously in the past few years. 

ML methods are capable to learn from training datasets, capture complex interactions that are 

difficult to model through analytical methods, as well as to predict possible outcomes based on new 

observations. Of all the ML tools and techniques, the Bayesian Network (BN) seems to be the most 

promising framework for updating the information in the event of any changes. This can be useful in 

situations where there is limited information about a complex system at early stage but more 

                  



information becomes available at later stages of development and the decision makers will need to 

update their estimates. BNs have been adopted in many industries, particularly because of their ability 

to cope with uncertainties present in organizational operations and decision-making. As wind turbines 

are complex machines functioning under a high degree of uncertainty, the wind energy industry can 

benefit from employing BN models by a significant reduction in inherent uncertainties of the wind 

turbines’ operational conditions or their surrounding environment. It is proposed that the use of 

Bayesian models in assessment of wind turbines’ reliability or scheduling of wind farm O&M 

activities can bring benefits in terms of increase of power production and thereby reduction of LCOE 

(levelized cost of energy).   

The aim of this paper is to review the state-of-the-art of BN models and identify and classify 

their application areas in the onshore and offshore wind energy sectors, with a focus on the areas 

related to risk analysis and reliability assessment. Relevant databases have been searched using 

appropriate keywords and the studies investigating the use of BNs in the wind energy industry have 

been identified and reviewed. The researches included in this review range from journal articles and 

conference papers to university dissertations, industry reports, best practice documents and software 

user guides. Our review findings show that the applications of BN modelling in the wind energy 

industry are quite diverse and involve a number of areas such as: system design, wind speed 

forecasting, power output modelling, data analytics, risk management, degradation modelling, fault 

diagnosis, cost optimisation, system reliability evaluation, and O&M planning and updating. Further 

supporting evidence will be provided via a number of case studies found in the literature. 

The organisation of this paper is as follows. Section 2 presents an overview of BNs and describes 

different tools that can be used for Bayesian model development and analysis. In Section 3, we 

discuss the review methodology adopted in this study to identify the most and least researched areas 

to date. Section 4 describes the case studies reported in the literature. Section 5 discusses the BN 

models and their application areas in the wind energy sector and, finally, Section 6 concludes the 

review with a discussion of major findings and additional suggestions of future research.  

2. Overview of BN 
 

2.1. Fundamentals of BN 

Bayesian networks (BNs) are directed acyclic graphs (DAGs) which encode relationships among 

random variables represented by nodes and links (Jensen and Nielsen, 2007; Baraldi et al., 2015). The 

mathematical background of a BN relies on Bayes’ theorem. This theorem supports the fact that the 

belief regarding the outcome of a system has to change when new evidence (to make probabilistic 

inference based on available information and quantify uncertainty when information) becomes 

available. Thus, BNs are also known as Belief networks (Pearl, 1988). BNs are used to solve decision-

making problems based on recorded or prior knowledge about the system dynamics and their resultant 

effects. Bayes’ theorem can be expressed in terms of prior probability, likelihood function and a 

normalisation constant to produce the posterior probability. With reference to the probability of 

occurrence of events, this can be expressed mathematically as: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴) ∙  𝑃(𝐴)

𝑃(𝐵)
 ,                                                         (1) 

where 𝑃(𝐴|𝐵) is the posterior probability (it is the conditional probability of event A given the 

observation of evidence B), 𝑃(𝐴) is the prior probability distribution of event A, and 𝑃(𝐵|𝐴) is the 

likelihood function of observing evidence B when event A has occurred. 

A simplified BN model for events A and B is presented in Figure 2. The prior probability 

distribution is dependent on the inputs provided by experts or collected from inspection reports, 

                  



SCADA or condition monitoring systems, that represent stochastic or uncertain variables. Hence, the 

accuracy of the model depends on the quality of the input data and for updating terms, on the quality 

of the newly acquired data. BNs also offer a graphical way to represent a problem space in which 

conditional relationships exist between two or more parameters of a system. This is also useful for 

making informed inferences based on the output information (i.e. posterior probability distribution). 

For further reading, the readers can refer to some useful references in the literature, e.g. Compare et 

al. (2017); Li et al. (2017) and Fan et al. (2019). 

When developing a BN structure, some important steps should be followed. These steps include: 

identifying the key variables and classifying the variables, obtaining prior data, and establishing links 

between different nodes to construct the model. The development of a BN can be facilitated using 

some well-established techniques such as systematic requirements engineering, ontologies, design 

patterns, refactoring, object-oriented and component-based techniques (Baclawski, 2004). Different 

BN structures can be developed that are explained below. 

2.1.1. BN structure and learning 

In principle, a BN is made up of nodes and arrows which represent the system states/events and their 

relationships with one another, but not necessarily causality. The quantitative part of a BN is made up 

of conditional probability tables (CPTs) which express the quantitative relationships between the 

events. These CPTs represent the dependence structure within a system. The nodes in a BN represent 

random variables, which can be either discrete or continuous but mutually exclusive in nature. A node 

may take the form of a parent node (referred to as a root if it has no preceding nodes) or a child node 

(it will be referred to as a leaf node if it is the last node in the chain of events). The arrows, on the 

other hand, depict the direction of relationships within the system, where the child node is 

conditionally dependent on the parent node with the CPT showing the conditional relationship 

between a child node and a parent node (Cai et al., 2016). The nodes are connected via links to form 

different structures, including serial, converging, and diverging. Fundamentally, Bayesian reasoning 

is used to revise beliefs based on updated evidence; thus, when a variable/node receives an evidence, 

it is said to be instantiated. There are two stages involved in the BN learning process (i.e., learning the 

manner in which BN distributions can be obtained from complete or incomplete datasets): (i) learning 

the network structure, and (ii) learning the parameters of the distributions. Further details about BN 

structures can be found in the following references: Ibe, 2011; Boudali and Dugan (2005a) and Jensen 

and Nielsen (2007). 

2.1.2. Dynamic BNs and influence diagrams 

A dynamic Bayesian network (DBN) is a type of graphical model applicable to time-varying 

probabilistic inference and causal analysis under system uncertainty. The DBN was developed to 

overcome the limitations of the static networks. A time stamp is used to model a time domain (either 

finite-horizon or infinite-horizon) at any given time point t; this is referred to as a time slice (Jensen 

and Nielsen, 2007). The two processing alternatives used to model continuous variables include 

discretisation and direct use of continuous variables. Also, BNs can be amended to form influence 

diagrams by including utility and decision nodes. A node representing a random variable in an 

influence diagram is called a chance node. The influence diagram also contains decision nodes, which 

have direct influence on other chance nodes. These decisions, represented by the nodes, can have cost 

implications which can be represented by utility nodes. For further reading, refer to Yang and 

Frangopol (2018). 

2.2. Bayesian inference 

                  



Bayesian inference is the use of BNs to compute the posterior distribution within a problem space 

when new observations or data are available. Owing to the flexibility of Bayesian modelling, a BN 

can be used to study system behaviour while incorporating new information as they become available. 

Therefore, the network will be updated whenever any changes are made to the system. The new 

information may be provided from different sources, including regular inspection measurements or 

continuous monitoring systems on critical machines. For instance, when a wind turbine is inspected, 

the information collected from the inspection is inputted into the network and the posterior 

distribution will be updated. In a problem space where updates are made on only one variable, the 

influence of other uncertain variables also will change within the network. This will cause a 

corresponding change in CPTs which quantify the interactive relationships between nodes/variables. 

In order to model continuous variables, which are inherent in dynamic processes, approximation 

methods/techniques will be useful. It is also quite challenging to input feedback loops to a BN model 

as they are fundamentally acyclic in nature. In addition, Bayesian inference can become restrictive 

when the number of nodes is very large, which can result in a lower level of accuracy in the model. 

The need to accommodate larger system interdependencies has, therefore, led to algorithmic 

development in the form of approximations.  

When computing the posterior distribution in Bayesian updating, inference algorithms are 

needed. These algorithms can be of two types: exact or approximate. The exact inference algorithms 

(such as junction tree algorithm, variable elimination algorithm, arc reversal method, etc.) are used for 

static BNs with discrete variables; whereas the approximate inference algorithms (such as loopy belief 

propagation algorithm, etc.) are particularly used for dynamic processes. The approximate inference 

algorithms are in general divided into two major categories: time-slice methods and event-based 

methods (Li and Mahadevan, 2018). The time-slice methods include temporal BN, DBN, network of 

dates, and modifiable temporal BN; whereas, the event-based methods include Temporal Nodes BN 

(TNBN) and the Net of Irreversible Events in Discrete Time (NEIDT) (Borunda et al., 2016; Boudali 

and Dugan, 2005b). Different inference approximation techniques have been proposed in literature. 

These include discretisation, mixtures of truncated exponents, variational approximations, Bayesian 

search algorithms (BSA), etc. One of the advantages of BN is that it represents systems’ behaviour 

and their interactions including both explicit and implicit connections. By using approximation 

inference algorithms for continuous variable inputs, two objectives are achieved: the integrity of the 

BN is maintained, and the model remains capable of making inferences when it is updated with new 

information. Nevertheless, there still remains gaps in the approximate inference methods applicable to 

BNs. For further reading on some of these gaps, the readers are referred to Friis-Hansen (2000); 

Langseth et al. (2009) and Luque and Straub (2016). 

2.3. BN software tools 

A number of software packages have been developed to date for BN modelling. These include: 

Microsoft MSBNx, Netica, Hugin, WinBUGS, BayesiaLab, OpenBayes, AgenaRisk and Bayesfusion. 

Some of these software tools have gained more popularity in real life applications, depending on the 

context for which they are used and the scale to which they can be applied. The most widely used 

tools are briefly described in the following paragraphs. 

2.3.1. Microsoft MSBNx 

This is a component-based Windows application for creating, assessing, and analysing BNs (Horvitz 

et al., 2001). The tool is used to extract information from input database patterns as well as to show 

dependencies (conditional probabilities) between variables in a network. It can be used to take 

inspection measurements into account to help asset managers perform fault diagnosis and analyse the 

costs and benefits of repair actions in a more timely and precise manner. An advantage it offers is that 

                  



it can be integrated with other programmes to help with inference and decision-making when 

uncertain parameters or variables are involved. It uses Value of Information (VOI) analysis to 

estimate the benefit of obtaining improved posterior probabilities (Friis-Hansen, 2000). In the context 

of the wind energy sector, this software tool was used in Li et al. (2015). 

2.3.2. Netica 

The Netica application is useful for developing belief networks and influence diagrams, which add 

decision and utility nodes to the Bayesian belief networks. The conditional probabilities in the 

network nodes can be inputted in two possible ways: either as individual conditional probabilities 

using equations or from data file inputs. The software uses some fast and modern algorithms to 

perform Bayesian inference and can help optimise decision-making when influence diagrams are set 

up (for more see https://www.norsys.com/netica.html). 

2.3.3. HUGIN 

HUGIN, which stands for Handling Uncertainty in General Inference Network, is used to model 

conditional dependence in observed data. It has different modules to develop, edit and analyse the 

BNs. These modules include a graphic user interface (GUI) module, an editor module and a compiler 

module. HUGIN develops a causal probabilistic network in such a way to support updating with new 

information for creating improved posterior probability distribution results (Andersen et al., 1989). In 

the context of the wind energy sector, this software tool was used in Ciobanu et al. (2017). 

2.3.4. WinBUGS 

WinBUGS is an offshoot of the BUGS (Bayesian inference Using Gibbs Sampling) software tool 

(https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/). It was developed for 

processing DAGs such as BNs. It is a user-friendly software that uses different simulation methods or 

algorithms to analyse the Bayesian models. With Gibbs sampling, when there is new information, 

each node is assigned an updated value based on the conditional dependence structure of the network. 

The modules can be extended by adding more components to the network and inputting new 

distribution functions within the system. The models can be presented by codes (written in BUGS 

language) or in a graphical form. The modules making up the WinBUGS include graph, updater, 

monitors, BUGS, samples and Doodle. In the context of the wind energy sector, this software tool was 

used in Li and Shi (2010). 

2.3.5. BayesiaLab 

BayesiaLab is a desktop application that uses a GUI to support modelling, diagnosis, evaluation, 

simulation and optimisation of decision problems (http://www.bayesia.com/). This application is 

made up of optimised learning algorithms that can execute both exact and approximate inferences 

with a property called observational inference. It also updates conditional probabilities of variables 

and analyses how this update may affect the network propagations, allowing the analyst to find 

explanations of the observations within the network. BayesiaLab discretises all the continuous data 

inputted by the user. It has the capability to capture the conditional probability of all variables even 

when the inputs are not defined, no matter how large they are. It has a ‘clustering’ feature which 

allows for data and parameter grouping, and this is useful for large input datasets (Conrady and 

Jouffe, 2013).  

2.3.6. AgenaRisk 

The AgenaRisk software is used to build BN models for qualitative risk assessment problems 

(https://www.agenarisk.com/). In order to produce the posterior probabilities, it uses algorithms such 

as dynamic discretisation algorithm and the ranked nodes method (RNM) which are both useful for 

modelling the continuous as well as ranked variables, respectively. The software can be used for 

‘what-if’ simulations and sensitivity analysis, because new observations (from, for instance, the 

                  



inspections) can be inputted into any of the nodes within the network. Even when there is insufficient 

data, the model can be updated with new information. It is possible that both forward and backward 

inferences are made for new probability distributions. The output can also show the risk impact of 

different variables considered in the model. A major advantage of this tool is that it eliminates the 

need for user-defined discretisation of the continuous variables through its dynamic discretisation 

feature. This improves the model accuracy for improved risk assessment outputs. It also has an 

interactive feature, which makes it easy to use. A major drawback to its widespread use is that 

individual licenses are restricted and they are only available on a large scale for multi-user access 

(Fenton and Neil, 2004). In the context of the wind energy sector, this software tool was used in 

Ashrafi et al. (2015) and Su and Fu (2014). 

3. BN applications in wind energy industry 
 

3.1. Review methodology 

In this study, the literature from academic and industry sources including journal articles, conference 

proceedings, PhD dissertations, industry reports, best practice documents and software user guides 

was collated for review. Different databases such as Scopus, Web of Science, IEEE Xplore Digital 

Library and Google scholar were searched to identify relevant studies published on the subject. The 

search was based on two keywords of “Bayesian network” and “wind energy” and also some 

inclusion and exclusion criteria were defined to streamline the search content to relevant literature for 

the review. After reviewing the titles, abstracts and the full texts, 70 documents were eventually 

considered for detailed analysis. Our review reveals that there has recently been a significant increase 

in the number of studies applying BNs in the wind energy industry sector. Figure 3 shows the number 

of studies published between the years 2000 and 2019.  

The largest number of publications (13 papers) has appeared in the year 2017, followed by the 

year 2018 with 12 publications. Among the academic journals, the “Renewable Energy” and 

“Reliability Engineering & System Safety” journals contained the largest number of articles. Also 

among the conference proceedings, the “International Conference on Ocean, Offshore and Arctic 

Engineering” was the most represented conference. 

3.2. Applications 

BNs have been applied to different areas within the wind energy industry. These areas include: wind 

speed forecasting, wind power generation forecasting, risk assessment, fault diagnostic and 

prognostic, system reliability studies, structural analysis, O&M planning, etc. These application areas 

can all come under the umbrella of improved wind energy systems availability. A brief description of 

these application areas is provided below. 

3.2.1. Wind speed forecasting 

Wind speed forecasting is very important to the operation of wind energy farms as it provides 

information that can help wind farm managers make better-informed decisions about energy 

production as well as resource planning for maintenance activities. In order to characterise stochastic 

parameters such as wind speed, different kinds of techniques such as Bayesian model selection and 

Bayesian model averaging (BMA) can be used. These techniques have been adopted in criteria 

selection based on input data as well as model selection by taking into account uncertainties. BMA 

has the capability to predict the maximum attainable wind speed using sparse training data to generate 

posterior probability distributions. Numerical forecasts, and not raw wind speeds, have been used for 

generating the prior probability distributions (Sloughter, 2010). The posterior distribution obtained 

                  



with BMA has an advantage in that it can incorporate parameter uncertainty and model uncertainty 

from different sets of distributions. This allows BMA to be used for creating models that can show the 

long-term wind speeds, while maintaining its reliability. Li and Shi (2010) applied the Markov chain 

Monte-Carlo (MCMC) method as a sampling method for generating wind speed distributions that 

may be used for wind speed forecasting. The BMA method was used to obtain the weighted average 

of different probabilistic wind speed forecasting models. The study demonstrated that a model 

generating the largest relative posterior probability would be the most ideal model to adopt for wind 

power forecasting.  

The hybrid Bayesian-Kalman filtering and sparse Bayesian learning have also been researched 

for wind speed modelling. In a study by Wang et al. (2019b), a sparse Bayesian-based robust 

functional regression model was proposed to forecast future wind speed for power generation 

estimation in wind energy farms. The input parameters were optimised using Bayesian inference 

algorithms for multi-steps ahead wind forecasting in a wind turbine site. The Bayesian learning and 

variational inference were found to be useful for reduction of ‘noise’ implication variables in wind 

forecast outputs and parameter optimisation in wind turbines, respectively. In Du (2019), an ensemble 

wind forecast was performed by combining three ML algorithms using BMA. This was aimed at 

improving the grid reliability by improving the forecasting accuracy. Some comparative studies 

between Bayesian and other methods for wind speed forecasting have been performed in literature. 

Kumar and Sahay (2018) showed that the BN regularisation algorithm is the best method for wind 

speed forecasting. Other research papers on this subject are Galanis et al. (2017); Pobočíková et al. 

(2017); and Han et al. (2018). 

3.2.2. Wind power generation forecasting 

Although stochastic in nature, accurate wind power generation forecasting in the electric grid supply 

is essential to reduce operating costs and maximise the revenue from wind energy projects. The power 

output from a wind farm can be estimated for both the short and long run. Carta et al. (2011) used BN 

classifiers for wind speed and energy output estimation in long-term. Neural Network (NN) combined 

with Bayesian learning, DBN, advanced Bayesian methods and Bayesian-based regression models 

have also been applied to wind power generation forecasting. Some studies in this regard include 

Blonbou (2011); and Wang et al. (2017). 

Some Bayesian methods such as sparse Bayesian learning can be used in conjunction with 

numerical methods to improve accuracy and evaluation capacity of wind power generation forecasting 

(Pan et al., 2015). Park and Law (2016) developed a Bayesian Ascent algorithm composing of two 

iterative stages: learning stage and optimisation stage. The authors tested their method on a case study 

to show its capability for improving the targeted power output from a wind farm. In another study, 

Xie et al. (2019) used BNs to forecast the short-term wind power generation by taking into account 

the uncertainty in stochastic behaviour of wind and also in the model for operational decision-making 

applications. A review on the applications of BN models to wind energy conversion systems was 

conducted by Li and Shi (2012). In Otero-Casal et al. (2019), the authors used a hybrid Bayesian 

Kalman filter for improved wind power production forecasting. Other papers on this subject include: 

Ciobanu et al. (2017); Yang et al. (2017); Afshari-Igder et al. (2018); and Wang et al. (2019a). 

3.2.3. Risk assessment 

The purpose of risk assessment is to systematically identify all hazards which can potentially lead to 

major incidents, assess the risks arising from the hazards, and decide on suitable measures for 

eliminating or reducing the risks. Several researchers have conducted risk assessment studies using 

either a single tool or a combination of two or more tools in order to combine the advantages of 

different tools and make up for areas in which one of them may fall short. For example, Hazard 

                  



Identification (HAZID), Failure Mode, Effects and Criticality Analysis (FMECA) and BN have been 

combined for risk assessment studies, as reported in Kougioumtzoglou and Lazakis (2015).  

In order to carry out a well-detailed risk assessment and determine an effective risk management 

strategy, wind energy managers employ advanced tools and techniques for decision-making regarding 

system safety (Shafiee et al., 2019). BNs have been adopted in recent years to assess the risks and 

make strategic O&M decisions in the wind energy industry. Real-time risk assessment and 

management analytics can be developed using BNs. A BN model has the capability to take into 

account dependences of structural, electrical, mechanical components of wind turbines as well as 

complex interactions between natural, political, social and environmental factors. BNs can also 

provide information on the effect of changes in one of these factors when there is an update in another 

factor, e.g. the changes in conditional reliability when there is a change in safety factors (Ashrafi et 

al., 2015). An observed limitation to BNs’ ability to combine as many complex factors as possible lies 

in the presentation / graphic user interface (GUI), which has had very limited improvement thus far. 

Safety assessment needs to be made without the difficulties related to the GUIs in order to ensure 

improved wind turbine reliability. 

In hybrid Bayesian Network (HBN) models, the variables associated with both static and 

dynamic systems can be considered. The AgenaRisk is a useful tool for creating HBN models, which 

provides posterior probability distribution of the wind turbine system reliability based on some 

information such as time to failure of different components within the system. Different factors 

affecting the wind turbine reliability can be incorporated in a HBN model and the risks associated 

with different elements can be quantified (Ashrafi et al., 2015). 

3.2.4. Fault diagnosis and prognosis 

In order to ensure wind energy system reliability, faults must be effectively diagnosed and corrected. 

The faults found in wind turbines can be caused by inherent material defects in components, cyclic 

fatigue or mechanical damage. Some wind turbine components such as generator and drivetrain 

components are more failure-prone than others and it is crucial to adequately diagnose faults in these 

components for optimal maintenance planning. When a fault occurs, it can be detected either by 

inspection techniques such as non-destructive testing (NDT) or using advanced analytics on SCADA-

based condition-monitoring data. Critical components whose failure can lead to significant downtime 

on a wind farm, especially the mechanical and electrical subsystems, are often continuously 

monitored.  

With the growing use of condition monitoring and predictive maintenance for wind turbines, 

there has been an increasing interest in the use of BNs for fault detection and diagnosis (see 

Asgarpour and Sørensen, 2018a). BNs are useful in detection and diagnosis of faults in different wind 

turbine components. One of the early studies done on the subject of fault diagnosis and prognosis of 

wind turbine gearboxes using BNs is Chen and Hao (2011). BNs can also be applied to train SCADA 

data in order to perform fault diagnosis with the aim of lowering O&M costs. Plumley et al. (2012) 

conducted a fault diagnosis and prognosis study on wind turbine gearboxes by means of DBN. The 

authors used the lubricant condition as an input data to model the gearbox degradation. Chen et al. 

(2012) applied BNs for diagnosis of failures within the pitch system of a wind turbine. They utilised 

SCADA data to train the BN model for determining root-causes of service failures in the wind turbine 

pitch system.  

In a study by Stutzmann et al. (2017), BNs were used to improve the detectability of fatigue 

cracks in an offshore wind monopile support structure using the inspection outcomes. The fatigue life 

after each inspection was estimated using a Bayesian updating method. In another study, Sinha and 

Steel (2015) proposed a BN model to incorporate qualitative information into the estimation of failure 

probability. They considered four major factors, namely, system faults, operational factors, human 

                  



factors and external factors (environment) in the analysis. Jing et al. (2017) matched possible fault 

modes with the outputs of a BN model to detect anomalies in a faster and more accurate manner. The 

model was a two-layer Probabilistic Signed Directed Graph (PSDG), which was made up of sensor 

data input and a possible-fault list input. Two sets of possible fault rankings were collected from the 

two layers of data input until they match. The authors used stochastic techniques to convert qualitative 

data into quantitative data, for ease of running the model. The method, then, uses a ranking technique 

to select the main faults from both layers to select the most appropriate fault type. These steps are 

iterated for a number of times to ensure a right fault is selected. Using real-time data collected from 

the wind turbine operation leads to a significant improvement in fault diagnosis and prognosis. This 

will in turn improve the safety assessments, especially if it leads to less false positives or false 

negatives. Other references in this field include: Asgarpour and Sørensen (2018b); Fernández-Cantí et 

al. (2015); De Bessa et al. (2016); Joshuva and Sugumaran (2018); Zhong et al. (2019); Moghaddass 

and Sheng (2019); and Cai et al. (2016). 

3.2.5. Reliability assessment 

BNs have garnered attention in recent years as an efficient tool for assessing the reliability of wind 

turbine systems. Reliability improvement is closely linked with lowering O&M costs of wind turbines 

and thereby reduction of LCOE. In one of the studies reviewed, Mardfekri and Gardoni (2013) used 

the BN technique for reliability assessment of offshore wind turbine support structures. The analysis 

showed that fatigue life estimation of support structures would benefit from Bayesian updating. BNs 

have found applications also as a RUL estimation tool. Accurate estimation of RUL is important for 

wind farm owners and operators as well as wind turbine manufacturers. RUL estimation must be 

updated when inspection data is collected or new information from wind turbines is provided. DBNs 

are useful for incorporating updates when new information is obtained from inspections. An 

application of such model to wind turbine blades can be found in Nielsen and Sørensen (2017). BNs 

can also be used as a decision-making tool for cost-benefit analysis as well as reliability analysis of 

repair/replacement actions on different wind turbine components. They can be used either as a 

standalone tool or in conjunction with other tools such as FTA (see Herp et al., 2018; Lazakis and 

Kougioumtzoglou, 2019; Reder and Melero, 2018). The application of Bayesian classification 

methods to wind turbine health state monitoring has also been studied in Song et al. (2018).  

Reliability assessments are dependent on the quality of NDT techniques, which have inherent 

uncertainties. These techniques will not be able to detect cracks within structural members if the 

length of cracks is below a certain limit. Reliability assessments are also dependent on the type of 

system’s deterioration mechanisms, environmental factors, etc. These all will pose uncertainties to the 

reliability assessment, making BNs the most ideal method to quantify and update decisions when 

there is additional information. Condition monitoring data can be incorporated into structural 

reliability analysis by fatigue failure models. Rangel-Ramírez and Sørensen (2009) presented a BN 

model to incorporate information from the second year of operation of an offshore wind turbine 

support structure into fatigue life assessment. The fatigue life updates helped operators improve their 

risk-based inspection (RBI) plans for fatigue prone components of offshore wind turbine structures. 

The wind turbine components that have mostly been studied in the past include: generator, blade, 

gearbox and support structure. Other papers that addressed reliability assessment of wind farms 

include: Sørensen and Toft (2010); Wang et al. (2013); Su and Fu (2014); Li et al. (2015); Mardfekri 

and Gardoni (2015); Tatsis et al. (2017); Ding et al. (2018); Song et al. (2018); and Valeti and Pakzad 

(2019). 

3.2.6. Structural analysis 

                  



The wind turbines should be designed with sufficient strength and stiffness to withstand the forces to 

which they may be subjected during operation. The typical forces on wind turbines include: wind and 

wave forces, forces due to current acting on the sea, tides, temperature forces, ice forces, and 

earthquakes. During wind turbine design, advanced tools are required to model the components’ 

behaviour under real environmental conditions. These models are often subject to uncertainties due to 

inputted data, assumptions, or prediction errors. BNs can therefore be used as a tool for structural 

analysis of wind turbines during the design phase to compare different alternatives. This potential of 

BNs as a decision-support tool is seen in studies on damage growth modelling for structural reliability 

analysis, which have been carried out using Bayesian updating in order to analyse the impact of new 

inspection data on structural integrity (Garbatov and Soares, 2002). 

Bayesian analysis methods and Bayesian spline models can be applied to compute the effects of 

potential extreme events on wind turbines (see Cheng et al., 2002; Lee et al., 2013). Bayesian analysis 

has also been applied to study the effect of uncertainty in lifetime distribution parameters on structural 

integrity of wind turbines so as to select the most suitable distribution model for use in extreme 

response analysis (Cheng et al., 2002). The design of wind turbines will benefit from the use of 

probabilistic methods such as BNs. The ultimate limit state (ULS) and fatigue limit state (FLS) of 

wind turbine components can be modelled by Bayesian updating methods. Bayesian methods have 

been used to update the ULS and FLS estimates for wind turbine blades. Also, Bayesian statistics and 

maximum-likelihood (ML) methods have been applied to update the reliability of wind turbine 

components (such as blades) after obtaining design data or inspection test results (Toft and Sørensen, 

2008; Toft and Sørensen, 2011). Bayesian updating has been studied and shown to have the potential 

to help decision makers improve RUL predictions (see Nabdi et al., 2017; Ziegler, 2018). 

Improvements in RUL prediction will lead to increased reliability and safety of wind energy system 

operations.  

3.2.7. O&M planning and updating 

O&M planning has a significant impact on avrbiailability as well as operating expenditure (OPEX) of 

wind farms (Shafiee et al., 2016). Effective O&M planning is not only crucial for increasing the 

power generation of wind farms but also plays a key role in reducing the cost of electricity 

production. Risk-based O&M planning using Bayesian decision theory and DBNs have been studied 

in the offshore wind energy industry (see Nielsen and Sørensen, 2010a; Florian and Sørensen, 2017). 

Sørensen (2009) proposed a framework for risk-based O&M planning of wind farms using BNs. This 

framework is illustrated in Figure 4.  

As can be seen, there are three types of decisions, namely, the initial design z, 

inspection/monitoring S, and maintenance/repair plan d(S). This corresponds to a pre-posterior 

decision problem, where the state of nature at one point is affected by previous decisions. For 

instance, the reliability of components is influenced by the decision on initial design, z, and the O&M 

cost of wind turbines is influenced by the decision on how and when to carry out repair tasks, given 

by the decision rule d(S). 

Some Bayesian methods such as Bayesian Ascent algorithms have also been applied in order to 

maximise wind energy production from improved O&M (Park and Law, 2016). Bayesian classifiers 

have been used in conjunction with multivariate higher order moments to assess the performance of 

wind turbines. Herp et al. (2016) showed possible application of Bayesian classifiers in performing 

reliability assessment whilst updating inspection plans to make risk-informed O&M decisions 

(Pattison et al., 2016). Wind farm power optimisation can also be performed using Bayesian method 

and Bayesian inference functions, as proposed in Park et al. (2017) and Mahmoud and Oyedeji 

(2018). The O&M planning of wind turbines can also be carried out by combining subjective 

techniques such as expert judgment with BNs (see Uzunoǧlu, 2018). Additional references on O&M 

                  



planning using BNs are: Sørensen (2009); Nielsen and Sørensen (2011a); Nielsen and Sørensen 

(2011); Nielsen and Sørensen (2014); Florian and Sørensen (2017); and Nielsen and Sørensen (2017). 

3.3. Comparison between BNs and other tools 

In some reviewed papers, the results obtained from BNs were compared with those determined by 

other methods. In Fernández-Cantí et al. (2013), the performance of Bayesian approaches in fault 

detection of wind turbines was compared to a set-membership model and it was found out that the BN 

method performed better in terms of runtime. Wang et al. (2019b) also compared the performance of 

conventional models in wind speed forecasting with functional regression models. The conventional 

models included the linear regression (LR), multi-output least square support vector machine 

(MLSSVM) and variational Bayesian-based linear regression (VBLR), whereas the functional 

regression models included Bayesian robust functional regression (R-FR) and sparse Bayesian-based 

functional regression (S-FR). The Bayesian robust functional regression model was shown to have the 

best performance rating compared to the other techniques. 

In Galanis et al. (2017), the performance of Kalman-Bayesian (K-B) filtering was compared with 

the conventional Kalman filter and it was found out that the K-B model produced more reliable 

predictions. In Carta et al. (2011), the performance of BNs were compared with linear regression (LR) 

and vector regression (VR) methods. BNs were found to be more superior to the other two methods 

because the output from BN had the least line of best fit with the cumulative wind frequency 

histograms. In Wang et al. (2017), the accuracy of Bayesian models was compared with prediction 

interval forecasts and it was shown that BNs performed much better due to their ability to generate an 

interval forecast at any confidence level. The authors concluded that variational Bayesian methods 

can be used to optimise variables and generate continuous probability density functions (PDFs) for 

wind power forecasting. In Friis-Hansen (2000), the results for risk analysis using the BN model were 

compared with those obtained using FTA and ETA and it was concluded that the BN model is more 

efficient and flexible method. BN was also found to be a good technique for inspection planning. 

Influence diagrams (IDs) are found to be superior to decision trees, as they do not require a 

supplementary tool when performing probabilistic fatigue crack growth and probabilistic risk 

modelling. BN was also compared with neural network (NN) and linear regression models for vessel 

design. It was observed that BNs, being iterative in nature, reduce the solution space for design 

parameters. Also, compared to NNs, the BN does not need to be relearned when new queries are 

made.  

4. Relevant case studies 

In this section, a number of relevant case studies from the reviewed literature are identified and 

described in detail. Some authors demonstrated BN applications with software tools using input data 

from different sources. Other authors focused on generating posterior probability density distributions 

based on large datasets. 

- Case studies in wind speed forecasting 

Li and Shi (2010) used the BMA method for wind speed forecasting in nine wind farm sites. They 

applied eight distribution functions (including Weibull, Log-Normal, etc.) to generate the prior 

distribution sample data. In order to generate samples for the posterior inference estimation, the 

MCMC simulations were performed. The samples were then used for each distribution model to 

calculate the average posterior probability distribution for all the models, the combined likelihood of 

the prior distribution data to fit each model, and the posterior mean and variance of the BMA 

posterior probability model. The BMA posterior probability distribution curve was found to have a 

                  



greater standard deviation than when only one model was considered. The posterior probability of 

each distribution for the nine sites was also calculated. The results included curves and histograms 

showing the best fitted model as well as the PDF of the BMA model. The PDF when superimposed 

with the individual PDFs for each site showed a complete overlap with the appropriate distribution 

model(s). This makes the method a reliable and robust tool for modelling the wind speed 

distributions. 

- Case studies in wind power forecasting 

In a study by Xie et al. (2019), the wind power output was forecasted using hourly input data from a 

wind farm, and then the results were compared with those obtained by other models. Gibbs sampling 

was used to produce different data scenarios for probabilistic wind power forecasts, in order to 

quantify the estimation uncertainty. The authors used two step-by-step algorithms to generate the 

posterior probability samples for the forecasting model and also scenarios to quantify the estimation 

uncertainty. Posterior probability distributions were estimated using different approaches. The non-

parametric Bayesian method was found to perform better than other models when there is additional 

prior distribution data. The R software was used to execute the algorithms and the average runtime 

was calculated for different volumes of data. In a dataset containing 100 variables, the average 

runtime was 6 seconds and standard deviation was 0.6 seconds, whereas a dataset with 500 variables 

had an average runtime of 29 seconds and a standard deviation of 1.6 seconds. The Bayesian method 

was found to be a more accurate forecasting tool when considering wind speed fluctuations. 

- Case studies in risk assessment 

In a case study about risk assessment of wind turbines, Ashrafi et al. (2015) captured both continuous 

and discrete parameters using the AgenaRisk BN software and presented several factors for a more 

robust analysis. The environmental, organisational, human and technical factors were considered to 

improve the conditional probabilistic output. The continuous nodes represented the time to failure 

whereas the discrete nodes represented the system states. The BN technique was used to make 

inference regarding the system’s reliability given the different contributing factors. The case study 

showed that the BN analysis is a useful tool for monitoring the risk level and calculating the system’s 

reliability and safety in continuous time. Kougioumtzoglo (2015) performed a study where BNs were 

used for ranking the criticality of wind turbine components based on their probability of failure. The 

results generated by the HUGIN software were compared with the results obtained by the FMECA 

analysis and some differences were observed. A reason for such difference may be because the BN 

model permits adding more details when performing the analysis. Based on the study outcome, the 

authors further proposed applying BNs to HAZID analysis. 

- Case studies in fault diagnosis and prognosis 

In a study, Plumley et al. (2012) applied the BN method to diagnose failures in wind turbines. The 

method was tested by simulating different failure modes of a wind turbine gearbox using the 

LabVIEW software (http://www.ni.com/en-gb/shop/labview.html). The input variables included the 

parameters associated with lubricant condition within the system, e.g. temperature, ferrous particle 

count and viscosity. Three sensors were used for data collection, which underpinned a condition 

monitoring method for estimating the system condition given input data. The reporting was done 

based on a traffic light system to help maintenance decision-makers. The second case study generated 

a DBN to determine the degradation rate of a wind turbine gearbox system under different conditions. 

The GeNIe software tool (https://www.genieonline.com/program/) was used to create the DBN 

model. The condition monitoring data from the sensors were used to estimate the degradation state of 

the gearbox. The DBN probability estimates were updated with new measurements (temperature and 

                  



particle count), which were fed into new time slices of the continuous model. It presented the 

application of probabilistic model updating to PM scheduling and decision-making. 

In another study by Stutzmann et al. (2017), the fatigue crack size distribution of an offshore 

wind turbine monopile structure was calculated based on inspection data collected by eddy current 

(EC) technique. An analysis was performed to reduce the uncertainty posed by the inspection method. 

The probability of detection (POD) of a defect by EC technique was found to be higher than that by 

other NDT techniques. A Bayesian analysis was then performed to estimate the fatigue crack 

propagation based on the crack size distribution and inspection results. From the distributions 

generated, the fatigue life of the structure with crack sizes between 0.03–0.06mm was estimated to be 

about 30 to 40 years. The median and the standard deviation of the fatigue life were estimated as 33 

years and 47 years, respectively. The standard deviation of the fatigue life estimation was compared 

for two cases, including: (i) when the defect is detected, and (ii) when the defect is not detected. The 

standard deviation showed a large decrease when the defect is detected irrespective of the inspection 

method. The study, therefore, concluded that the inspection reduces or eliminates the failure risks 

only when the crack length on the structure is sufficiently large. 

- Case studies in reliability assessment 

Song et al. (2018) applied a Bayesian approach to assess the health state of two 1.5MW wind 

turbines. The 10-minutes data was obtained from SCADA system for a period of two month. The 

three input variables of the model included wind speed, power output and generator speed. Two case 

studies were provided – including a classical case involving the use of wind speed and power output 

variables and another case involving all three input variables – to evaluate how reliable and robust the 

results from Bayesian approach are. The second case involved splitting the dataset into five subsets. 

Four subsets were used to develop the model, and the fifth one was used to test the model accuracy. 

The models were run five times and their performances were compared with each other. The collected 

input data was pre-processed to identify abnormal data points. Three methods were used for this 

purpose, namely, the bin method, the multivariate normal distribution, and the copula method. The 

copula method was found to be the most robust of the three. The BN model demonstrated good health 

state monitoring capacity; however, the authors focused on binary health state monitoring (i.e., 

normal and abnormal states). Since the accuracy of BN method is dependent on the input data, the 

authors applied Bayesian updating to reduce uncertainty arising due to lack of data. The study 

concluded that the multivariate and copula methods are best to be used for 1-hour ahead predictions. 

- Case studies in structural analysis 

In order to illustrate the use of Bayesian analysis in studying the wind turbine’s rotor blade 

displacement, Cheng et al. (2002) presented a case study of conditional probability distribution for 

blade tip deflection caused by vibration. Four distribution functions including a Gumbel distribution, 

a three-parameter Weibull distribution, a log-normal distribution and a generalised extreme value 

(GEV) distribution were used in the study to estimate the posterior probability values. It was observed 

that after plotting the probability of deflection by each of the distribution functions, the three-

parameter Weibull distribution and GEV distribution were the best fitted models to the input 

deflection data. The authors argued that the accuracy of the results would improve if well-fitted 

conditional distributions were used to estimate the maximum deflection of wind turbine blades. The 

authors estimated the deflection probability over 100 years using different distribution functions and 

compared the results with those calculated by Bayesian analysis. The blade tip deflection was found 

to be larger when a deterministic method is used. This was mainly because the Bayesian approach 

accounted for data uncertainty and distribution model uncertainty. 

- Case studies in O&M planning 

                  



In a case study that compared the efficiency of CBM with risk-based maintenance (RBM) strategy, 

Florian and Sørensen (2017) adopted BN updating to model the degradation of wind turbine blades 

subjected to fatigue cracking. Random input variables were generated for the BN model for a period 

of 25 years (the expected lifetime of a typical wind turbine system). The maintenance decision-

making parameters included: the time to first inspection, time interval between inspections, and the 

repair threshold. MCS was used to generate the cost estimate distribution by taking into account 

different factors. The simulation procedure entailed identifying the maintenance strategies based on 

different inputs and then estimating the probabilities of failure and the associated repair/replacement 

costs. The expected number of blade failures under a CBM strategy was evaluated and the failure 

categories with the highest potential impact were identified. The number of preventive repair required 

during the blades lifetime was also calculated. The total lifecycle cost was estimated using a pre-

posterior Bayesian decision tree, assuming that an inspection is carried out only when the risk of 

failure is high. The RBM strategy, on the other hand, was chosen to determine an optimal repair 

policy after each inspection. Two hundred simulations were run to estimate the average annual cost of 

O&M. It was shown that CBM and RBM strategies resulted in different number of preventive repairs 

on wind turbine blades. It was estimated that under CBM strategy about 96% of the wind turbine 

blades required a preventive repair during their expected lifetime, whereas this percentage under 

RBM strategy was 62%. This led to a reduction in total lifecycle cost by 23%.  

Dinwoodie (2013) presented a case study on an offshore wind farm consisting of 60 wind 

turbines deployed at 45m water depth. The failure rate distributions for wind turbine components such 

as gearbox, generator, blade and bearings were calculated. Three decision points during the lifecycle 

were considered: (i) early life strategy, (ii) strategy at year seven, and (iii) strategy for the remaining 

lifetime. In the case study, the uncertainties upon which the BN was built were primarily the failure 

rate and the electricity price. The analysis relied on both the inspection data as well as subjective 

expert opinions. A risk profile was also generated and the variables causing the highest level of risk 

were identified. 

Table 1 presents the case studies of different wind turbine components that have adopted 

Bayesian inference techniques. As can be seen, in the reviewed literature the wind turbine blades and 

gearbox have been studied the most (each with 8 papers). This is followed by pitch system with 7 

papers, generator with 6 papers, and support structure with 5 papers. 

5. Results and discussion 

Table 2 presents the classification of reviewed literature according to their application areas, 

including: structural analysis, reliability, wind power forecasting, wind speed forecasting, O&M, fault 

diagnosis and prognosis, and risk assessment. All the classifications are centred around a common 

theme: improving the availability of wind farms. 

As can be seen, the field of fault diagnosis and prognosis has received the most attention in the 

literature. This is closely followed by wind power generation forecasting, reliability analysis, O&M 

planning, and structural analysis. The field of risk assessment with two publications has been 

researched the least. In what follows, the results of the literature review for some of the most 

addressed application areas are briefly discussed. 

- Wind speed forecasting 

Wind speed forecasting is useful for estimating the annual energy production from wind farms. 

However, due to the stochastic nature of wind, it is difficult to estimate accurately a wind farm’s 

energy output. For this reason, it is required to design and develop short- and long-term wind speed 

forecasting tools. One of the ways to forecast wind speed is by looking into the data collected from 

                  



other geographically similar wind energy projects. In some cases, there is no historical data available 

for deepwater locations; thus, it is important to use tools through which wind farm managers can 

update their initial decisions when some information becomes available. This makes the case for the 

use of probabilistic models such as BNs. BNs have the capacity to learn based on new information 

inputted into the model and may be used in the BN classifier. Bayesian classifications help to 

determine the most probable value among a set of variables such as wind speed profile at a particular 

location. Beyond that, BNs also allow multiple locations to be accounted for in the estimation of wind 

speed and direction within the model. Although the results from BNs are found to be superior to those 

obtained using linear regression (LR) and vector regression (VR) models, it is still inconclusive as to 

whether BNs hold true when different correlation coefficients are considered (Carta et al, 2011). 

Thus, there is a need to do further research work about the accuracy of BN models in the case when 

different correlation coefficients are used. 

Wind speed forecasting can also be useful for predicting periods of energy shortfall, so as to have 

measures in place to compensate for low energy output from wind turbines. Given that BNs are used 

as a training tool, there is huge potential for use in a wide range of hybrid applications. Generating a 

probability distribution of weights is valuable for probabilistic modelling, but one key reservation 

regarding the applicability of this model lies in the fact that the prediction is expected to operate in 

real-time (Blonbou, 2011). However, the majority of the existing prediction models use pre-recorded 

wind speed data and evaluate the power output offline. Therefore, further research needs to be 

conducted on real-time based BN prediction models. Also, since the power predictions can only be 

reliable when there are no abrupt changes, it is difficult to state how ready this technology is to be 

applied to real scenarios outside of the modelling environment. If this can be improved, assumptions 

need to be validated for accurate results in practical terms for wind farm managers.  

BNs are useful for short-term probabilistic wind power forecasting and are also suitable for 

optimising model parameters when other tools are used to forecast the wind speed. The Bayesian 

models can easily incorporate both unimodal and bimodal wind speed frequency distributions. One 

key benefit of adopting Bayesian models is that they increase computational efficiency, which may 

promote their applicability to wind energy systems. The only limitation is that to maintain 

computational efficiency, there is a trade-off in the power curve used in the estimations. The use of 

deterministic power curves is known as a way to make BNs more computationally efficient. This 

reasoning is flawed, however, the technologies using BNs have not been developed to manage the 

problem yet and more research needs to be conducted in this area (see Bracale and De Falco, 2015; 

Wang et al. 2017). 

- Risk assessment 

Risk assessment is at the heart of reliability and availability improvement in wind farms as wind 

turbines can only be efficient and available if they maintain high reliability and safety levels. Risk 

assessment is carried out in order to estimate the likelihood of occurrence and severity of hazards that 

may damage the integrity of wind farms or cause harm to the life of personnel. A number of tools and 

techniques are used for risk assessment, e.g. FMECA, HAZID, etc. In order to carry out risk 

assessments, it is more suitable to use a HBN, which has the capability to model dynamic states 

within the nodes. Some particular properties of BNs as they relate to risk assessment are as follows 

(Ashrafi et al., 2015): 

 Additional information and data about the maintenance activities can be implemented in BNs. 

This will be useful when there is a need to include other parameters that have to be analysed for 

risk assessment.  

 BNs can be used for both the forward (top-to-bottom) and backward (bottom-up) risk assessment 

approaches. 

                  



 Risk analysis can be performed to quantify the system’s reliability conditioned on the impacts of 

environmental factors, human activities, and the selected maintenance strategy. This shows how 

different factors interact with each other and provides optimal strategies for resource deployment 

by risk analysts and O&M planners. 

 The BN tool also allows for updating the system’s reliability when there is an improvement in 

any of the factors considered in the network. 

 Depending on the parameters to be quantified, a continuous or discrete node may be used. 

 BNs can be used to represent and quantify conditional probabilities with considering different 

situations. 

The deterministic risk analysis methods are limited in being able to incorporate environmental, 

organisational and human reliability factors. Although these factors are subjective in nature, a closed 

system is needed to capture them within the nodes. In an attempt to increase objectivity, the BNs can 

be combined with other risk analysis tools to create a hybrid method. In the BNs, the subjective 

elements like the organisational factors can practically be inputted as a binary variable (best mode or 

worst mode), because it takes a long time for changes in these factors to take effect. However, this 

may be one of the limitations of BNs in practice because organisational/cultural changes take place 

gradually and are not easily measurable. 
 

- Fault diagnosis and prognosis 

Depending on the wind turbine subsystem being analysed, different failure mechanisms may be 

involved. Using BNs, the failure mechanisms can be represented by nodes along with their probability 

of occurrence, considering other nodal probability distributions. Improved fault diagnosis and 

prognosis will have a positive impact on wind farm maintenance since the available resources can be 

effectively deployed to address any concerns based on continuously updated information. Some of the 

advantageous properties of BNs related to fault diagnosis and prognosis include (Chen et al, 2012; 

Plumley et al., 2012): 

 BNs can be used to effectively determine the fault position (location). 

 Component/system faults can be detected once the posterior probabilities of nodes are 

calculated. It is helpful to model the most critical stochastic parameters that are required for 

performing fault diagnosis and prognosis on the wind turbine subcomponents. 

 BN is a flexible tool for online fault diagnosis and prognosis, for which the O&M planners aim 

to embrace in large-scale wind farms in the future. This shows the potential of Bayesian 

methods in real-time decision-making and updating. 

 BNs have the potential to lower O&M costs in the long term as they can help wind farm asset 

managers quantify different variables and their relationships so as to make risk-informed O&M 

decisions. 

 BNs can be used to develop real-time condition-monitoring systems, which will be very useful 

for PM planning across the wind farm. 

 Data regularisation can be used to train prediction models and improve their accuracy, and this 

can be achieved using HBNs. Also, if updates are carried out at a higher frequency, fault 

diagnosis and prognosis can be improved. 

 The components that have been studied for fault diagnosis and prognosis in the reviewed 

literature include gearbox, pitch system, bearing and support structure. 
 

- Reliability assessment 

High reliability of wind turbines ensures continuous system operation for energy production to meet 

the growing demand for electricity and to lower the LCOE. When performing reliability assessment, 

                  



there might be some unknown parameters or parameters with little to no prior information involved in 

the analysis. Reliability assessment can benefit from the Bayesian updating approaches in cases where 

there are unknown parameters, uncertain assumptions or latent variables. In such situations, the 

estimations can be obtained using the pre-obtained data from SCADA or monitoring systems 

(Mardfekri and Gardoni, 2013). Depending on the number of parameters involved in the reliability 

assessment, the BNs may be sufficient to accurately compute the overall conditional probability. 

When the problem becomes too complex, the BNs can be used in combination with other models for 

reliability studies. BNs can also be used as a validation tool for other reliability assessment 

techniques. Since the main limitation in using the BNs is on the presentation of the nodal relationships 

and model uncertainties, one of the improvements is related to the GUI of the Bayesian modelling 

tool. In terms of the computational efficiency, the BN is believed to have capacity for updating, which 

should be an addition for its use in reliability assessment (Li et al., 2015). The Bayesian reasoning can 

show any weak connections within the system when calculating reliability at the design stage. The 

weak connections are identified by the BNs’ backward reasoning capability (see Jin and Liu, 2017). 

Besides using BN as a verification tool, other tools and techniques such as FMECA can be used to 

verify the results. When there is new information, the BN model will be updated to show the most 

accurate state of the system, thus making more informed maintenance decisions. Even though BNs 

have the capacity to update the results, there has to be more efficient means of data collection and 

processing so as to maximise the BN capacity (Lazakis and Kougioumtzoglou, 2019). The 

components that have been studied for reliability assessment in the reviewed literature include 

generator, blade and gearbox.  

- O&M planning 

Improving the O&M practices is vital to optimise wind farm availability as well as maximise wind 

power output. Many tools are used by wind farm asset managers to optimise O&M strategies, but 

Bayesian methods have shown huge potential for improvement in O&M planning. Some of the 

properties that make BNs attractive for use in O&M planning include (Nielsen and Sørensen, 2010b; 

Cheng et al., 2002): 

 Both logical and stochastic nodes can be incorporated by BNs. This results in a more robust 

O&M planning model. 

 Continuous nodes can be included in BNs when an approximate inference is used (e.g. 

discretisation of distribution parameters). 

 Condition monitoring data and inspection outputs can be incorporated by BNs to update the 

O&M decisions when needed. 

 Bayesian learning approaches can be used to incorporate different parameters such as defect 

(crack) size into predicting the degradation rates. This informs O&M planners about the 

optimal time to repair or replace the failed parts, especially in deepwater locations where 

accessibility is restricted. 

 Besides being able to model stochastic processes with limited information and very minimal 

data points, approximation methods such as Bayesian Ascent algorithm can model complex 

relationships between system components, and when more information is obtained, more data 

points can be added to improve the estimation accuracy. 

 The prediction of probability of failure will be more accurate if all observations are 

incorporated into the model. Thus, a strong case is made for when monitoring results are 

included in a model, as it will increase the confidence levels of failure predictions. 

BN-based O&M planning tools can be useful for more accurate estimation of RUL using real-

time updates of critical subsystems. This will result in reduced cost of repairs as well as improved 

                  



availability of wind turbines. As BNs have the capability to process limited data and to update the 

results when new information becomes available, they prove to be very useful for deepwater sites 

where floating wind farms will be developed in the future.  

A detailed analysis of the reviewed studies in terms of their model inputs, outputs, specifications, 

challenges of the solutions, advantages and limitations is presented in Table A in Appendix. 

6. Conclusion and future work 

Wind energy systems often operate in highly dynamic and ever-changing environments; thus, their 

condition may change very rapidly over time. In such environments, reliability becomes a major 

concern and it is receiving more and more attention from wind farm owners and operators. It is crucial 

for decision makers to update their reliability predictions and maintenance actions continuously, 

taking into account changes in operational/environmental conditions and/or newly collected data. The 

new data is usually provided from the inspection reports, Supervisory Control and Data Acquisition 

(SCADA) systems or the sensors fitted to different parts of the wind turbines. Among all data-driven 

techniques that allow to update probabilistic estimates, Bayesian networks (BNs) are the most 

promising method for real-time decision making and optimization. This is because BNs can be used to 

quantify uncertainty when solving a decision-making problem, based on recorded or prior knowledge 

about the system dynamics and their resultant effects. BNs are useful in situations where there is 

limited information about a complex system (e.g. at design stage) but more information becomes 

available at later stages of development (e.g. operation) and the decision makers need to update their 

reliability estimates, is the case for the majority of wind energy systems.  

In this paper, we conducted a systematic literature review on the use of BN models in the 

onshore and offshore wind energy industry sectors. Several documents were identified and analysed 

for the purpose of this review. It was found that the major applications of BNs in the wind energy 

industry include: wind speed forecasting, wind power generation forecasting, risk assessment and 

management, fault diagnosis and prognosis, system reliability studies, structural analysis, and 

operation and maintenance (O&M) planning. An overarching theme was observed in all these 

applications and it was the need for improved availability of wind farms. If the wind speed forecasting 

and power output prediction are improved using an updating method such as BNs, there will be more 

reliable grid supply data to adequately meet energy demand and at the same time to reduce the cost of 

electricity produced by wind energy. Also, improving risk assessment and management protocols will 

ensure increased system availability and better O&M planning and decision-making. Improved fault 

diagnosis and prognosis and structural analysis are also central to wind energy system reliability. A 

detailed review of the publications showed that the areas of fault diagnosis and prognosis, reliability 

analysis, O&M planning, wind power generation forecasting and structural analysis were the most 

researched areas, whereas the risk assessment field is least researched.  

In spite of various applications of BN modelling in the wind energy industry, future work is 

needed to improve the prediction performance of BN algorithms, particularly the newly developed 

cyclic Bayesian approximation models. BNs and their approximation models have the potential to 

help wind farm asset managers move towards ‘real-time’ predictive analytics. The uncertainties lying 

within the system performance, stochastic environmental conditions and model can be quantified and 

subsequently modified with field information to facilitate improved decision-making processes. 

Hybrid models like the Bayesian-Kalman filtering, sparse Bayesian learning, etc. were more common 

in different studies, in order to compensate for the current limitations of BNs. A common trend in 

Bayesian method applications are seen in its use because of its good optimisation and model 

averaging properties during wind forecasting, to improve the confidence levels of posterior 

                  



probability outputs. Although BNs have the capacity to combine different complex combinations of 

wind turbines’ structural, electrical, mechanical, natural, political and social environmental factors, 

the GUI development of BN tools have not improved at the same rate.  

The uncertainty caused by the selection of the inspection technique can also be incorporated into 

BNs, which shows a usefulness of the method, especially because not all inspection methods have 

100% detectability in every instance. BN model demonstrated good health state monitoring capacity 

and because the reliability of BN method depends on the input data, Bayesian updating will help 

manage issues arising due to insufficient data. An advanced reliability and RUL prediction tool like 

BNs will be able to take advantage of the real-time data from condition monitoring improvements in 

the wind energy industry. The potential that Bayesian updating can have on decision-support 

optimisation for improved system structural analysis, RUL and reliability predictions has also been 

discussed; this can address issues in predictions caused by insufficient data. When data can be 

updated using BNs, it will be easier to estimate with higher confidence levels the reliability, 

risks/safety associated with the wind turbine systems and structures. Some areas that show potential 

for future research direction include: 

 More models need to be developed using BN algorithms in order to make tools more robust, 

reliable and efficient for different wind energy applications; 

 Damage growth models using Bayesian statistics still require improvements, especially, for 

small size defects on wind turbine structures; 

 A future outlook in fault diagnosis and prognosis is expected to bring application improvements 

when monitoring data is collected in real-time; 

 Bayesian inference techniques must be improved in order for models to combine corrosion 

effects along with fatigue deterioration in reliability studies; 

 Because wind power predictions with BNs to-date are reliable when there are no abrupt 

changes, the technology readiness is difficult to state for application in real scenarios outside of 

the modelling environment. For this to be improved, assumptions for wind power predictions 

using BNs need to be validated for accurate results in practical terms for O&M managers 

(Blonbou, 2011). 

 BNs can be used as a decision support tool for modelling life extension strategies in wind farms 

(for more see Shafiee and Animah, 2017). 
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Figure 1. Total installed capacity of onshore and offshore wind power in Europe between 2009 and 2019. 

 

 

 

 

Figure 2. A simplified BN model for events A and B. 
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Figure 3. Number of publications about BNs in the wind energy industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A BN decision model for risk-based O&M planning (Sørensen, 2009). 

 

 

Table 1. Case studies that have adopted BN model (note: some wind turbine components have been studied in 

more than one paper). 

Component References 

Bearing Asgarpour and Sørensen (2018a); Asgarpour and Sørensen (2018b); Herp et al. (2018); 

Reder and Melero (2018) 

Support 

structure 

Asgarpour and Sørensen (2018a); Kougioumtzoglou and Lazakis (2015); Lazakis and 

Kougioumtzoglou (2019); Mardfekri and Gardoni (2013); Stutzmann et al. (2017) 

Gearbox Chen and Hao (2011); Ding et al. (2018); Jin and Liu (2017); Kougioumtzoglou and 

Lazakis (2015); Lazakis and Kougioumtzoglou (2019); Nabdi et al. (2017); Plumley et 

al. (2012); Reder and Melero (2018); Zhong et al. (2019). 

Sensors Fernández-Cantí et al. (2015); 
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Pitch system Chen et al. (2012); Fernández-Cantí et al. (2013); Fernández-Cantí et al. (2015);  

Kougioumtzoglou and Lazakis (2015); Nabdi et al. (2017); Nielsen and Sørensen 

(2014); Uzunoǧlu (2018) 

Blade Florian and Sørensen (2017); Kougioumtzoglou and Lazakis (2015); Lazakis and 

Kougioumtzoglou (2019); Lee et al. (2013); Nabdi et al. (2017); Nielsen and Sørensen 

(2017); Reder and Melero (2018); Sørensen and Toft (2010); Van Buren et al. (2013). 

Converter Nabdi et al. (2017) 

Nacelle Nabdi et al. (2017) 

Control systems Mahmoud and Oyedeji (2018) 

Tower Kougioumtzoglou and Lazakis (2015) 

Generator Fernández-Cantí et al. (2015); Kougioumtzoglou and Lazakis (2015); Nabdi et al. 

(2017); Reder and Melero (2018); Song et al. (2018); Wang et al. (2013). 

Rotor Fernández-Cantí et al. (2015) 

Cables Kougioumtzoglou and Lazakis (2015); 

Yaw system Kougioumtzoglou and Lazakis (2015); Reder and Melero (2018) 

Hub Kougioumtzoglou and Lazakis (2015) 

Main frame Kougioumtzoglou and Lazakis (2015) 
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Table 2. Classification of BN applications to the wind energy industry sector. 

Reference Year Structural 

Analysis 

Reliability Wind Power 

Forecasting 

Wind Speed 

Forecasting 

O&M Fault Diagnosis and 

Prognosis 

Risk Assessment 

Cheng et al. 2002 √       
Garbatov and Soares 2002  √      
Rangel-Ramírez and Sørensen 2009 √    √   

Sørensen  2009     √   
Li and Shi  2010    √    
Nielsen and Sørensen 2010a     √   
Nielsen and Sørensen  2010b     √   
Sloughter et al. 2010    √    
Sørensen and Toft 2010 √       
Blonbou  2011   √     
Carta et al. 2011   √     
Chen and Hao 2011      √  
Nielsen and Sørensen 2011     √   
Toft et al. 2011  √      

Toft and Sørensen 2011 √       
Chen et al. 2012      √  

Li and Shi 2012   √     
Plumley et al. 2012      √  
Fernández-Cantí et al. 2013      √  
Lee et al. 2013 √       
Mardfekri and Gardoni 2013  √      
Van Buren et al. 2013 √       

Wang et al. 2013  √      

Nielsen and Sørensen 2014     √   
Su and Fu  2014  √      

Ashrafi et al. 2015       √ 

Bracale and De Falco  2015   √     

Fernández-Cantí et al. 2015      √  
Kougioumtzoglou and Lazakis 2015       √ 

Li et al. 2015  √      

Mardfekri and Gardoni 2015 √       

Pan et al. 2015   √     

Sinha and Steel 2015      √  

Cai et al. 2016      √  

de Bessa et al. 2016        

Herp et al. 2016     √   
Pattison et al. 2016   √     

Ciobanu et al. 2017   √     

Florian and Sørensen  2017     √   
Galanis et al. 2017    √    
Jin and Liu 2017  √      
Jing et al. 2017      √  

Nabdi et al. 2017 √       
Nielsen and Sørensen 2017  √      
Park et al.  2017     √   
Pobočíková et al 2017    √    
Tatsis et al. 2017 √       

Wang et al. 2017   √     
Yang et al. 2017   √     
Afshari-Igder et al. 2018   √     
Asgarpour and Sørensen 2018a      √  
Asgarpour and Sørensen 2018b      √  
Ding et al. 2018  √      

Han et al. 2018    √    
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Herp et al. 2018     √   
Joshuva and Sugumaran 2018      √  

Kumar and Sahay 2018    √    

Mahmoud and Oyedeji 2018     √   
Reder and Melero 2018  √      
Song et al. 2018  √      
Uzunoǧlu  2018     √   
Du 2019    √    

Lazakis and Kougioumtzoglou 2019  √      

Moghaddass and Sheng 2019      √  

Otero-Casal et al. 2019   √     

Valeti and Pakzad  2019  √      

Wang et al. 2019a    √      
Wang et al. 2019b      √    

Xie et al. 2019   √     
Zhong et al. 2019      √  

 
 

 

                  



32 

 

APPENDIX 

Table A. A detailed analysis of the reviewed studies about BN application in wind energy. 

Reference Year 
Mathematical 

Problem 
Input Output Specifications Challenges of solution Advantages Limitations 

Cheng et al. 2002 Estimation of 

uncertainties in 

displacement of WT 

blades 

Sample data of 

extreme flap 

moment from 50 

simulations 

100-year estimate of 

blade response 

using different 

distribution 

functions 

Bayesian Averaging (BA) 

method is used 

 

Simulation results still have to 

be analysed statistically 

Compared to Maximum 

deflection theory, BN 

produced more accurate 

results 

Data was obtained 

from simulations and 

not real measurements 

Garbatov 

and Soares 

2002 Bayesian updates of 

model parameters 

for floating 

structure fatigue 

reliability 

assessment 

Material constants, 

initial crack size, 

geometry parameter 

Posterior probability 

function of time to 

crack initiation, and 

reliability of 

structure 

Uncertainties are 

associated with time to 

crack initiation, 

inspection quality and 

material properties 

There is a need to improve 

reliability analysis techniques 

by considering anticipated 

degradation and accounting 

for estimation uncertainties 

Bayesian updating improves 

O&M decision-making 

based on system reliability 

Accuracy of BN 

updating method 

depends on the 

posterior function 

used for the 

estimation 

Rangel-

Ramírez and 

Sørensen 

2009 Integration of CM 

with BN inference 

Model uncertainty 

from wind load 

effects, posterior 

density function, 

design parameters 

Accumulated 

reliability index, 

lifecycle reliability, 

RBI information 

Fatigue prone hot-spots 

on WT support structures 

are analysed. Reliability is 

assessed by the S-N 

approach 

Offshore WFs require 

improved maintenance 

planning methods due to the 

extreme conditions 

Inspection plans are 

updated with better 

informed reliability data 

N.A 

Sørensen 2009 CBM using pre-

posterior Bayesian 

decision theory 

Updated damage 

accumulation 

model, Design 

parameters 

Probability of 

failure at a 

particular time, 

overall O&M cost 

Lifetime probability of 

failure for WT gearbox 

was simulated using 

FORM software 

It is complicated to calculate 

costs, failure rates, and 

damage models for WT 

gearbox 

Risk-based Bayesian 

method can be used to make 

decisions under uncertain 

conditions 

N.A. 

Li and Shi  2010 Wind speed 

modelling with 

taking into account 

parameter and 

model uncertainties 

2-year wind speed 

records at 10m 

height, prior 

distributions for 

each parameter 

Posterior mean and 

variance of BMA 

predictions given 

the observed data 

WinBUGS is used to 

obtain the parameter 

samples for the prior 

distribution. BMA and 

MCMC are used for wind 

speed distributions 

Conventional statistical 

models are not applicable as 

they only focus on parameter 

uncertainty but not model 

uncertainty 

The uncertainty can be 

better accounted for by 

using an averaged model. 

BMA produced more robust 

long-term wind speed 

distributions for all sites  

Candidate models still 

need to be selected to 

perform BMA. It is 

difficult to visually 

analyse plots from 

BMA 

Nielsen and 

Sørensen 

2010a Damage size and 

failure probability 

updating with new 

information for RBI 

planning using BN 

Wind load, prior 

distribution of 

number of cycles, 

material parameters, 

load measurements 

Failure 

probabilities, 

posterior 

distribution of 

damage size 

It generates 30,000 

samples to calculate 

posterior distribution. 

Damage sizes are entered 

annually in the model 

Damage models are used to 

describe damage 

development. The uncertain 

parameters are described 

using stochastic models 

Incorporating inspection 

results and load monitoring 

produces more reliable 

damage models and failure 

estimates 

N.A. 

Nielsen and 

Sørensen  

2010b Probabilistic 

modelling to update 

damage size / 

SCADA data, wind 

loads  

Updated failure 

probability, damage 

size estimates, 

Only fatigue cracking 

failure mechanism is 

considered. Crack 

Damage models have many 

uncertainties which have to be 

quantified for more reliable 

Incorporating CM and 

inspection results improves 

the accuracy of reliability 

N.A. 
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failure probability 

with  CM / 

inspection data 

expected annual 

cost of repair 

propagation follows Paris’ 

law 

and accurate damage size 

estimation 

estimations 

Sloughter et 

al. 

2010 Explicit wind speed 

modelling of full 

predictive PDF 

using BMA 

Wind speed dataset 

of observation 

stations 

Verification rank 

for a raw ensemble 

forecast histogram 

and probability 

integral transform 

(PIT) histogram 

Data is available for 340 

days from 35,230 station 

observations. Discretised 

wind speed data is 

rounded to the nearest 

whole knot 

When sparse data is available, 

fitting of predictive PDF is 

challenging 

BMA produces bias-

corrected forecasts. It can 

produce 48-hour ahead 

wind speed forecasts by 

improving predictive PDF 

sharpness 

BMA may not 

perform well if there 

is substantial 

topography at sub-

grid scales 

Sørensen 

and Toft 

2010 Use of probabilistic 

models and 

reliability estimates 

to improve design 

based on new test 

information 

Design variables 

(rotor height, tower 

diameter and 

thickness, 

foundation radius, 

etc.), stochastic 

variables (maximum 

wind pressure, 

turbulence intensity) 

WT design is 

optimised based on 

reliability levels. 

The damage at 

failure is estimated 

during amplitude 

testing 

An integrated uncertainty 

modelling is proposed for 

optimum WT design 

based on optimal 

reliability estimates. 

Application case study 

was a model for local 

buckling failure of 

support structures 

Uncertainties must be 

incorporated into WT design 

Test results and uncertainty 

can be included in the 

design process. Both 

physical and statistical 

uncertainty and expert 

judgement can be 

incorporated into the design 

N.A. 

Ye et al. 2010 Improved fault 

detection using 

three tests to detect 

the system states 

SCADA data, 

power output, rotor 

speed, blade pitch 

angle 

WT performance 

features 

Tests from the Multi-

dimensional Scaling 

(MDS) method are used 

as inputs to BN for 

improved decision-

making 

N.A. This method produces 

better fault detection results 

because different matrices 

are used in the fault 

detection 

N.A. 

Blonbou 2011 Short term (15-

minute ahead) wind 

power prediction 

using adaptive 

Bayesian learning 

Wind speed data, 

wind power 

production data 

Future values of 

electrical power 

generated 

Wind speed and power 

production are measured 

at sampling rate of 1Hz. 

Neural networks are 

trained with Bayesian 

procedure 

N.A. Bayesian framework helps 

to forecast the interval 

within which generated 

power should be observed. 

It allows for control of the 

network complexity 

N.A. 

Carta et al. 2011 Estimation of long-

term wind speed 

frequency 

distribution for a 

WF site with limited 

measurements 

10-year mean 

hourly wind speed 

and direction data 

from 4 weather 

stations 

Cumulative relative 

frequency histogram 

of wind speed, 

mean wind power 

density, mean 

annual energy 

output 

Two commercial WTs of 

330 and 800kW were 

chosen. Model evaluation 

technique uses 10-fold 

(cross-validation) method 

to evaluate the errors 

Insufficient data makes it 

difficult to predict wind 

behaviours at WF sites. 

Allows for the use of wind 

speed data from different 

reference stations. Less 

error between real and 

estimated energy outputs is 

obtained 

N.A. 

Chen and 

Hao 

2011 Gearbox fault 

diagnosis 

Sample data, types 

of fault (e.g. tooth 

profile error, broken 

gear tooth, shaft 

imbalance, etc.), 

fault feature 

Marginal 

probability density 

of a fault node 

Sample data is described 

by a n-dimensional 

vector. Fault features, e.g. 

RMS, kurtosis, mean are 

selected and BN is used to 

calculate the conditional 

There are six forms of fault in 

WT gearbox and it is difficult 

to correctly recognise and 

diagnose these faults using 

traditional methods 

Less computation time, 

good convergence and 

strong real-time property. 

State identification and fault 

diagnosis under uncertainty 

can be made with BN 

N.A. 
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probability 

Nielsen and 

Sørensen 

2011 Optimal O&M 

planning based on 

Bayesian pre-

posterior decision 

theory 

Weather data, 

failure rate data 

Framework for 

reliability modelling 

of WT blades 

A decision is made on 

when and how to maintain 

and repair WT 

components. Damage 

models are associated 

with uncertainties 

Corrective maintenance in 

O&M is flawed because it 

may lead to failures occurring 

at times of limited 

accessibility to the assets 

Information from NDI 

techniques can be used to 

update reliability model 

using Bayesian methods 

N.A. 

Toft et al. 2011 Updating reliability 

assessments with 

NDI data from WT 

blades using BN 

Data from blade 

NDI 

Updated reliability 

or probability of 

failure 

Defect positions are 

generated randomly 

within the model. Defects 

are repaired when 

detected 

NDI techniques are still prone 

to many uncertainties 

Reliability can be improved 

by updating with NDI 

information 

The reliability is 

dependent on POD  of 

the NDI technique 

used for inspection 

Toft and 

Sørensen 

2011 Probabilistic design 

and reliability 

updating of WT 

blades with test data 

using BN and ML 

methods 

Material strength 

coefficient of 

variation, number of 

tests 

Reliability index in 

a year given number 

of tests 

Bayesian method was 

used to estimate ULS 

function. Only one failure 

mode was considered in 

the reliability estimation 

Design uncertainties are 

inherent in WT blades. Full-

scale tests contain 

uncertainties 

Estimation of uncertainty of 

material strength is possible 

even with little test data. 

Data from past full-scale 

tests may be used for prior 

data used in the analysis 

The Bayesian method 

is dependent on the 

number and quality of 

prior test data 

Chen et al. 2013 Detection and 

location of faults 

SCADA data, 

outputs from a Venn 

diagram analysis 

Fault probability, 

root causes 

depending on the 

input data 

The BN modelled the 

relationships between the 

condition of pitch system 

and sensor readings. 

SCADA data was used to 

train the BN 

There is a gap for automatic 

use of SCADA data in failure 

diagnosis 

BNs can make inference 

about the probabilities of all 

connected events. The 

sensor readings are 

collected online and used to 

update the BN in fault 

diagnosis 

BN can become too 

complex. The 

accuracy of the BN 

model depends on the 

quantity of input data 

Plumley et 

al. 

2012 Degradation 

modelling of WT 

systems to 

determine optimal 

O&M  

N.A.  Probability density 

functions and 

updates 

The BN was tested by 

running different failure 

mode scenarios using 

changes in temperature 

and metal particles within 

the lubricant. LabVIEW 

was used to show how 

BNs can be used. 

Although condition 

monitoring systems are 

effective, false positives 

increase O&M cost. Thus, a 

method is required to improve 

the accuracy and robustness 

of the results 

BN allows evidence to be 

propagated in the model in 

order to update the posterior 

probability of the model 

N.A.  

Fernández-

Cantí et al. 

2013 Non-linear set 

membership model 

estimation and fault 

detection 

N.A. Feasible dataset and 

verification that 

model matches 

dataset 

The faults of pitch system 

were detected using 

50000 sample data 

generated by a Simulink 

model 

There are some challenges for 

executing Bayesian 

estimations  

The Bayesian set-

membership approach 

requires less run-time than 

statistical methods 

N.A. 

Lee et al. 2013 Wind turbine 

extreme load 

estimation 

N.A. N.A. Bayesian spline method is 

used to extrapolate 

extreme loading response 

of WTs. The results are 

compared with the 

The binning method cannot 

accurately estimate the 

uncertainty of extreme loads. 

When the binning method is 

used, there is an overestimate 

The Bayesian spline method 

produces less parameters 

than the binning method for 

extreme response 

estimation. It is also more 

N.A.  
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binning method of load 

estimation 

of the extreme loading on WT flexible in data handling 

Mardfekri 

and Gardoni 

2013 Fragility estimation 

for a WT support 

structure using 

probabilistic models 

Deformation 

capacity, shear 

capacity (yield 

stress and ultimate 

stress), wind speed, 

wave height 

Fragility estimates 

(in relation to 

serviceability, yield 

and ultimate limits) 

based on wind 

speed 

Fragility estimates were 

developed for three 

failure modes: drift, shear 

and bending failure, based 

on the wave heights at 

different wind speeds 

Deterministic methods do not 

account for uncertainties and 

have inherent biases 

Bayesian methods can 

update the model based on 

newer information from 

FEA of the structure 

N.A. 

Van Buren 

et al. 

2013 Reduction of model 

uncertainty in WT 

blade dynamics 

modelling 

FE model 

parameters (trailing 

edge, spar cap and Z 

spring) 

Posterior 

predictions of the 

blade model 

The posterior probabilities 

of five parameters were 

obtained 

N.A. Parameter uncertainty can 

be included in the model 

using Bayesian inference 

N.A. 

Wang et al. 2013 Identification of 

uncertain and fuzzy 

vibrational 

generator fault 

signals 

Data about 

generator state 

Failure rate of 

generator, 

mechanical drive 

system 

Feature recognition and 

Bayesian methods are 

used to detect faults. The 

BN structure is created 

with the fault symptoms 

and fault layer. 

Conventional methods cannot 

accurately identify fault types 

and their location in generator 

BN has the capacity to 

estimate system reliability 

under uncertainty 

Bayesian inference 

quality is dependent 

on an accurate 

selection of fault 

signal events 

García et al. 2014 Wind power 

forecasting using 

DBN for more than 

5 hours ahead 

2-year wind farm 

data, including: 

wind speed and 

direction, 

temperature, 

humidity, pressure 

Wind power 

forecasts from the 

BN are compared 

with time-series 

method 

10-minute input data is 

used for training and 

testing the model 

Classical techniques of wind 

power forecasting do not 

account for many variables. 

Thus, their precision is 

limited 

Methodology for DBN can 

be used for different 

forecasting problems. The 

average error is more 

acceptable than with other 

techniques 

Daily variable data 

are not considered 

Nielsen and 

Sørensen 

2014 O&M decision 

updating 

N.A. Optimal O&M 

decision 

Probability of failure and 

accuracy of monitoring 

results are calculated 

The decisions about repair 

affect the associated costs of 

O&M. A method for O&M 

updating is required 

Pre-posterior decision 

analysis using Bayesian 

methods can be used to 

determine the best O&M 

planning option 

Approximation 

techniques still need 

to be used in Bayesian 

analysis 

Su and Fu

  

2014 Reliability model 

using BN to 

incorporate 

uncertain wind 

speed effects 

10-year failure data 

records 

Reliability of WT 

with varying speed 

BN is mapped from a WT 

submodule fault tree. 

AgenaRisk tool was used 

for model reliability 

Conventional reliability 

estimation methods do not 

account for component 

interrelationships and 

dynamic wind speed 

The BN method includes 

the advantages of fault tree, 

uncertainty and 

environmental factor impact 

N.A. 

Bracale and 

De Falco  

2015 Improved accuracy 

in wind power 

forecasting with a 

Bayesian method 

Shape and scale 

parameters for the 

wind speed 

distribution 

More accurate time 

series model  

A mixture Weibull 

distribution (MWD) was 

used to model the wind 

speed  

Uncertainties associated with 

the wind power resource 

availability were modelled by 

probabilistic methods 

Probabilistic wind power 

forecasting is improved 

with Bayesian inference 

with incorporating changing 

environmental conditions 

The model used the 

deterministic power 

curve provided by the 

WT OEM 

Fernández-

Cantí et al. 

2015 Fault detection and 

isolation using 

Bayesian set-

membership 

Residuals, fault 

indicator vector and 

associated indexes 

Distributions for the 

residuals, posterior 

probabilities of 

different fault 

The errors in the model 

are bounded by the 

Bayesian Set-membership 

framework 

Other models use very large 

detection thresholds, which 

increase the likelihood of 

false detections 

The method combined the 

advantages of reduction in 

model error and false 

positive. False alarms were 

N.A. 
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approach scenarios given the 

alpha-coefficients  

reduced. There was an 

improved detection time 

Kougioumtz

oglou and 

Lazakis 

2015 Risk and cost 

assessments for 

improved decision 

making in WT 

installation and 

O&M 

Probability of 

failure (from 

OREDA Handbook) 

FMECA and 

HAZID matrix, total 

probability of 

failure, total cost of 

failure 

The most critical 

components of WTs were 

identified. BN was used 

for the risk assessment 

and cost analysis for WT 

O&M strategy 

In order to incorporate all risk 

factors and model uncertainty, 

a more robust tool has to be 

developed 

BNs can be used for 

HAZID analysis and 

include the utility (cost) 

associated for most critical 

events 

N.A. 

Li et al. 2015 Reliability 

assessment of WTs 

Initial conditional 

probabilities of WT 

states 

Predicted WT state 

and absolute error 

BN was used to validate 

the proposed Goal Tree, 

Success Tree and Master 

Logic Diagram (GTST-

MLD). BN was modelled 

in MSBNx 

Conventional reliability 

models do not account for 

logical and functional 

relationship between WT 

components 

N.A. N.A. 

Mardfekri 

and Gardoni 

2015 WT structural 

performance 

assessment in the 

event of multiple 

hazards 

Virtual experiment 

data (obtained from 

FEM in extreme 

wind and seismic 

loads), spectral 

acceleration, wind 

speed 

Estimation of 

fragility (as a 

function of spectral 

acceleration and 

mean wind speed), 

annual probabilities 

of structural damage 

MCS is used to estimate 

the fragility of WT 

support structures. All 

potential hazards are 

taken into account. 

Probabilistic seismic 

demand models are 

updated. 

There are few works taking 

foundation stiffness into 

account in WT structural 

response. The conventional 

models are computationally 

expensive and may produce 

inaccurate structural 

responses 

This assessment can help 

decision makers optimally 

design WTs. Uncertainties 

can be incorporated to 

reduce result bias. Faster 

processing time with 

improved accuracy 

N.A. 

Pan et al. 2015 Presentation of 

errors in 

probabilistic wind 

power forecasting 

Wind speed, wind 

direction, 

temperature, air 

pressure and 

humidity 

Predicted wind 

power curve 

Sparse Bayesian Learning 

(SBL) is used to develop 

a probabilistic forecasting 

method for wind power. 

Parameters of the kernel 

functions are optimised in 

order to improve SBL 

model by using the 

modified-Gaussian kernel 

function and Particle 

Swan Optimisation (PSO) 

Probabilistic models focused 

on non-parametric methods, 

which need more data and are 

computational-intensive. 

Previous methods cannot 

provide full probability 

density functions. In order to 

forecast by minutes, the 

Gaussian distribution cannot 

represent the error 

distributions 

With SBL, there is no need 

to estimate some parameters 

and thus there is less 

computation time. The 

model has better 

performance than others 

The method performs 

poorly with large 

datasets. The accuracy 

of the model is not the 

best for very short-

term or very long-

term wind power 

forecasts 

Sinha and 

Steel 

2015 Failure prediction 

and maintenance 

planning and 

execution 

Online CM data, 

inspection reports, 

service records, 

component 

manuals, wind farm 

information, etc. 

Key performance 

indicators of 

maintenance 

regimes in operation 

A failure dependency 

model is developed based 

on BN taking into account 

relationships between 

failures and failure root 

causes 

 

Failure prediction is difficult 

because of inadequate 

understanding of WT 

behaviour under stochastic 

conditions. There is a need for 

a dedicated software tool and 

relational database for O&M 

planning 

The failure dependency 

database design is useful for 

O&M planning when 

different failures, root 

causes and their likelihoods 

of occurrence are 

interconnected 

More failure data is 

required to improve 

the reliability of the 

model 

de Bessa et 

al. 

2016 Use of time-series 

and data analysis to 

Wind speed, sensor 

signal database, 

Probability 

indication of each 

A two-part fault detection 

and isolation (FDI) 

Using existing data and 

model-based methods, not all 

Fuzz Bayesian method was 

able to detect and isolate 

In some instances, the 

fuzzy-Bayesian model 
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detect and isolate 

faults in a WT 

system 

probability of fault 

occurrence from 

Gibbs sampling 

detected and 

isolated fault 

system was used. The 

fuzzy Bayesian module is 

used for classifying the 

detected faults 

faults within a WT system 

can be identified and isolated 

multiple faults occurring at 

the same time by extracting 

information through Gibbs 

sampling 

confused a wind 

variation with a fault 

Herp et al. 2016 Continuous 

monitoring and 

performance 

evaluation of WTs 

using multivariate 

statistical model 

SCADA data Prediction of 

bearing failure (by 

over-temperature) 

Continuous monitoring as 

a maintenance strategy 

was used 

Threshold detection has been 

used in the past for WT 

monitoring. It does not take 

into consideration the 

probabilistic events within the 

system. BN was used because 

the Hotelling’s T2 approach 

did not consider the 

likelihood of the classification 

The BN method takes into 

account the likelihood of 

the classification, making 

supervised controls more 

flexible 

Misclassification rates 

are still high with 

Bayesian methods, 

even though reduced 

Park and 

Law 

2016 Solving the wind 

farm control 

problem by 

maximising wind 

power output using 

the BA algorithm 

Wind speed, wind 

direction, number of 

turbines, yaw set 

angles, induction 

factors 

Wind farm power 

production 

The BA method is made 

of two parts: learning and 

optimisation. The non-

cooperative control 

solutions are used as the 

prior data for the BA 

algorithm. Simulation was 

performed for validation 

Conventional wind farm 

control strategies are non-

cooperative in which the 

wake effects cannot be 

accounted for to maximise a 

collective power output. The 

proposed method in this study 

is based on cooperative WF 

control 

The BA algorithm can find 

improved output values for 

every input. This method 

requires limited amounts of 

data for optimum control 

estimations. Noisy function 

values can also be used. 

Although BA 

algorithms can use 

noisy function values, 

increased noise levels 

in data reduces the 

rate of convergence, 

slowing down the 

iteration process 

Pattison et 

al. 

2016 WT reliability 

estimation taking 

into account 

environment 

factors, 

accessibility, failure 

modes, etc. 

SCADA data, CM 

indications 

Probability of 

failure of WT 

gearbox, impact of 

maintenance 

actions, short-term 

degradation forecast 

DBM method was used 

for risk assessment and 

maintenance scheduling 

of WT gearboxes 

Conventional techniques do 

not account for WT dynamic 

behaviours 

Bayesian methods can help 

capture the dynamic 

degradation over time. 

System state can be 

estimated based on different 

maintenance scenarios 

N.A. 

Ciobanu et 

al. 

2017 Power supply 

reliability 

assessment using 

BNs for WTs 

Minute-by-minute 

meteorology 

parameters such as 

wind speed and 

solar radiation 

Reliability 

estimation 

Hugin software was used 

to process the data. The 

variables used were 

discretised 

BNs are very complex and 

difficult to synthetically 

explain and the number of 

possible structures is 

exponential 

It is a useful tool for 

monitoring and state 

diagnosis of the wind power 

supply network. It has the 

capacity to predict future 

availability conditions 

More variables need 

to be included in the 

probabilistic 

estimation to ensure 

robustness 

Florian and 

Sørensen  

2017 Impact of using 

risk-based 

maintenance on 

optimal O&M 

planning of WT 

blades 

Initial crack size, 

material parameters, 

mean turbulence 

intensity 

Posterior 

distributions for 

mean initial crack 

size, material 

parameters, total 

risk/cost during 

blade lifetime 

Reliability estimates for 

blade degradation were 

updated using BNs. Load 

distribution was obtained 

by Rainflow counting and 

fitted to Weibull 

distribution. Failure time 

was estimated by MCS 

Current maintenance 

strategies cause higher WT 

downtimes and increase the 

LCOE 

The degradation model can 

be updated with inspection 

results 

The method has not 

taken into account 

weather prediction for 

O&M schedules 
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Galanis et 

al. 

2017 Improved numerical 

wind simulations to 

reduce systematic 

biases, error and 

forecast uncertainty 

4-year 

meteorological 

station data from 9 

stations 

Time series and 

percentiles for real 

and ideal data for 

different 

meteorological 

stations 

Tests were performed for 

both actual and ideal 

datasets (to test data in a 

controlled space). Weibull 

prior distributions were 

used for the Bayesian-

Kalman filter model 

Current solutions to wind 

speed modelling have 

limitations with errors when 

performing forecasts 

 

Reduced CPU memory, 

elimination of systematic 

prediction errors, reduction 

of mean bias and real 

convergence of the 

modelled probability 

density function to the 

observations 

Severe changes in 

data used leads to 

unexpected 

discontinuities. 

Difficulty in matching 

the modelled and 

observed data easily 

Jin and Liu 2017 Reliability 

improvement of WT 

gearbox 

Historical gearbox 

data and expert 

opinion 

Failure probability 

of each element of 

the faulty gearbox 

Two gearbox failures 

were considered: tooth 

surface contact fatigue 

pitting and toot root 

bending fatigue fracture 

Minimum cut sets need to be 

solved when using fault trees 

as the method for reliability 

calculations 

BNs are more suitable than 

fault trees for reliability 

analysis as they do not need 

to solve minimum cut sets 

for reliability estimations, 

avoiding the non-cross-

computing process 

N/A 

Jing et al. 2017 Fault diagnosis 

improvement to 

improve wind 

energy output 

Fault data records Conditional 

probability of 

candidate faults and 

their diagnosis 

First, a sensor data layer 

is established and then a 

fault list is used to create 

the BN. The method was 

tested using WF fault data 

Current approaches focus on 

data from different 

components and are difficult 

to apply to the entire WT. It is 

challenging to obtain 

quantitative diagnostic results 

Faster fault searches. 

Improved fault diagnosis 

accuracy 

Limited training data 

and restricted 

conditions make 

diagnosis difficult 

Nabdi et al. 2017 Decision logic to 

choose preliminary 

WT concepts using 

probabilistic states 

estimation 

Variables of state of 

different 

components, failure 

rate of components, 

unavailability of 

components, repair 

rate of components 

Probability of 

failure of system 

components for two 

design concepts 

N.A. Current modelling tools rely 

primarily on expert 

judgement, surveys and 

manufacturing databases to 

build WT structural models 

BN can be used to 

incorporate numerous 

design knowledge into a 

model. BN has powerful 

analytical and modelling 

capacity. BN allows for 

system state to be 

determined for different 

operational scenarios 

The model presented 

did not fully account 

for more criteria for 

optimisation 

improvement. 

Nielsen and 

Sørensen 

2017 Optimal O&M 

planning with 

lifetime cost 

estimation using 

CBM 

Mean wind speed, 

wave height 

Cost of inspections, 

repairs and lost 

production over WT 

lifetime, power 

production for 1-

hour intervals 

Bayesian updating is used 

to determine posterior 

probability for the 

component state. Costs 

are due to inspection, 

repair and lost production 

in the event of a failure 

The conventional methods do 

not include inspection and 

monitoring information in 

decision making. Theoretical 

tools become difficult to 

handle because of increased 

decision parameters 

Online monitoring can be 

included into the model 

N.A. 

Pobočíková 

et al 

2017 Wind speed 

modelling using 

four probability 

distributions 

Wind speed Parameter 

estimation using 

ML method, 

histogram of PDF 

for wind speed 

Parameters were 

estimated with 

STATISTICA and wind 

speed was modelled in 

MATLAB 

N/A N/A N/A 

Tatsis et al. 2017 Fatigue damage Vibration data, Estimated and Modelled in FAST The conventional stress Improved accuracy of Using model-based 
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estimation (response 

prediction) of a WT 

mean wind speed actual fatigue 

damage 

software to generate the 

vibrational data. Bayesian 

filter was used for noisy 

data 

predictions do not account for 

uncertain behaviour and 

response of structures 

dynamic response 

estimation using CM data 

techniques for global 

response analysis is 

computationally 

intensive 

Wang et al. 2017 Wind power 

forecasting using 

both deterministic 

and probabilistic 

techniques 

Wind power dataset Wind power 

forecasts using 

Variation Bayesian 

method 

A new model (ARMKR) 

is used to process multi-

resolution wind power 

data. A Gaussian mixture 

model was used to model 

the error  

Conventional methods like 

quantile regression have 

discontinuities in the PDF for 

the wind power forecasts. 

They ignore some 

information when dealing 

with high-resolution data 

Bayesian methods produce 

continuous PDFs even for 

interval forecasts. The 

variational Bayesian 

method is used to optimise 

all parameters 

N.A. 

Yang et al. 2017 Prediction of wind 

power using Naïve 

Bayesian with 

particle swarm 

optimisation (PSO) 

and rough set (RS) 

Numerical wind 

power (NWP), wind 

speed 

Prediction intervals 

at different 

confidence levels, 

segmentation and 

non-segmentation 

optimisation 

prediction intervals 

Data (numerical wind 

power and wind speed) 

were recorded every 15 

minutes. RS theory was 

used to handle the 

datasets and Naïve 

Bayesian classifier was 

used to establish a power 

class 

The accuracy of conventional 

methods depends largely on 

the point forecasting value. 

Previous methods also require 

large computational capacity 

and can be limited for real 

applications 

Higher prediction 

performance, higher 

coverage and narrower 

average bandwidth for wind 

power forecasting intervals 

N.A. 

Afshari-

Igder et al. 

2018 Probabilistic wind 

forecasting 

Historical wind 

power data 

Optimal prediction 

intervals for 

different times 

Approximation methods 

for prediction 

uncertainties like 

Bayesian methods are 

used to obtain the PI 

Uncertainty in wind power 

forecasting cannot be solved 

by conventional methods 

More reliable PIs of wind 

power improve forecasting 

accuracy 

N.A. 

Asgarpour 

and 

Sørensen 

2018a Prediction of 

maintenance time 

using a Bayesian-

based prognostic 

model 

Average failure rate, 

operational data 

like: degradation 

data and RUL of the 

components, expert 

judgements 

Posterior 

degradation model 

of a component 

based on updated 

shape and scale 

parameters  

Posterior degradation 

model is updated based on 

updated shape and scale 

parameters from CM-

based observations 

Computational complexity 

limits the use of many 

prognostic approaches in 

practice 

BN allows more than one 

threshold and predictive 

maintenance strategy to be 

considered. It is applicable 

to different components and 

failure modes 

N.A. 

Asgarpour 

and 

Sørensen 

2018b Fault detection for a 

WT component 

using a hybrid 

multi-agent model 

Diagnostic model 

input/agents, 

SCADA data 

(vibration, 

temperature and oil 

particle), prognostic 

model input 

Posterior confidence 

levels of diagnostic 

agents for main 

bearing, short term 

O&M planning 

framework 

Both confidence matrix 

and diagnosis matrix were 

inputted in the decision 

model. Faults detected by 

the diagnosis agents are 

confirmed by inspections, 

and the initial confidence 

matrix is updated by BN 

There is no generic diagnostic 

model suitable for all WTs. 

Conventional methods result 

in high O&M costs due to 

unplanned failures of WT 

components 

 

 

Improved fault detection by 

Bayesian updating of the 

initial confidence matrix. It 

can help in short-term 

O&M planning with 

significant cost reduction 

N.A. 

Ding et al. 2018 Fatigue life 

prediction of WT 

gearbox using 

varying-load 

Material properties, 

teeth number, 

Young’s modulus, 

Poisson’s ratio, 

Fatigue life is 

predicted and 

updated with 

Bayesian methods 

CM data and uncertain 

parameter distributions 

are used to model the 

degradation process. 

Existing methods use constant 

loads to approximate external 

load during fatigue prognosis. 

When using model-based 

Uncertainty is reduced and 

life prediction is improved 

by Bayesian updating given 

the measured crack length 

N.A. 
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method diametral pitch, 

base circle radius, 

outer circle, 

pressure angle 

Crack is propagated based 

on stress analysis in 

FRANC2D programme 

methods, it is difficult to 

model complex components 

Han et al. 2018 Probabilistic wind 

speed forecasting 

with comparing 

post-processing 

methods 

Wind speed data Verification rank 

histogram of EMOS 

and BMA forecasts 

Six post-processing 

methods are used for 

ensemble model output 

statistics (EMOS) and 

Bayesian model averaging 

(BMA) models 

Current forecasting methods 

are subject to bias 

Among the forecasting 

methods, the BMA models 

had the highest accuracy 

Different prediction 

accuracies for 

different stations were 

observed 

Herp et al. 2018 Bearing failure 

prediction using 

Bayesian methods 

Temperature 

measurement 

residuals 

Failure state 

prediction, RUL 

prediction given 

run-to-failure time 

series 

Run-to-failure time of 

bearings is used to train 

the prior data used in the 

model. Hyperparameter 

are updated to train the 

model 

Other methods of fault 

estimation do not consider 

improvement of the model 

precision 

It predicts the bearing over-

temperature events. The 

accuracy improves on a 

daily timescale while 

precision improves on a 

weekly timescale 

Convergence is only 

possible with a large 

number of time series 

because of the strong-

data-driven nature of 

the model 

Joshuva and 

Sugumaran 

2018 Fault identification 

in WTs 

Vibration data 

obtained from 

accelerometer 

Classification 

results and accuracy 

of different 

classifiers 

Five blade failure features 

were identified using ML 

and statistical analysis. 

Six classifiers, including 

Lazy Bayesian Rules 

Classifier (LBRC), were 

applied 

Conventional methods require 

performance improvements 

for considering different types 

of fault parameters 

LBRC model requires little 

running time 

LBRC classifier was 

seen not to be 

superior to other 

classifiers. It may 

require more memory 

than non-lazy 

algorithms 

Reder and 

Melero 

2018 Predictive failure 

modelling for 

improved O&M of 

WTs 

Failure data for 

components, 

environmental data 

(wind speed, rain, 

temperature), WT 

data (hub height, 

diameter, etc.) 

Monthly predicted 

failures, conditional 

probabilities of 

failure for different 

components 

Naïve Bayesian classifier 

was used to incorporate 

uncertainty. Sensitivity of 

failures in WT 

subsystems was analysed 

based on accuracy and 

Matthews correlation 

coefficient 

Conventional failure 

prediction methods assume 

constant failure rates. 

Advanced WT reliability 

models do not always account 

for the variable environmental 

conditions of the WTs 

Improved prediction 

accuracy 

The technique for the 

pitch and yaw system 

had poor performance 

Song et al. 2018 WT health state 

monitoring using 

Bayesian methods 

10-minute SCADA 

data 

Distributions of 

normal and 

abnormal WT 

SCADA 

parameters, 

variations of 

SCADA parameter 

values for WTs 

Three Bayesian methods 

were used (bin, 

multivariate normal-

based, and copula). Data 

from two WTs were used 

from 10-minute data for 2 

months 

Higher resolution diagnosis is 

required for WT health state 

monitoring 

Bayesian methods are 

superior to power curve-

based monitoring method. 

The Bayesian-copula 

method was very effective 

in one-step ahead prediction 

It is challenging to 

determine the most 

useful criteria for 

identifying the normal 

and abnormal 

conditions using  

SCADA data 

Uzunoǧlu  2018 Development of a 

BN model for O&M 

planning using 

subjective expert 

SCADA data, 

expert opinions 

Posterior probability 

density function 

updates, fused 

subjective opinions, 

BN is updated with newly 

available SCADA data. 

The model is applied to 

data of pitch control 

Current methods do not 

quantify uncertainties from 

software reliability, control 

system reliability, and 

The model is updated with 

new information (SCADA 

data and expert opinion). 

Method can be extended to 

N.A. 
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opinions and cost assessment failures from 2009-2015 weather conditions different maintenance data 

Lazakis and 

Kougioumtz

oglou 

2019 Risk and cost 

analyses of different 

lifecycle phases of 

offshore WTs using 

BNs for installation 

and O&M 

Failure data for each 

WT subcomponent, 

failure cause data 

(from OREDA 

Handbook) 

Failure probabilities 

for different 

components, 

estimation of annual 

cost of failure 

Main system was divided 

into 11 subsystems. BN 

was used to validate 

FMECA and HAZID 

results 

 

 

Identifying hazards accurately 

is a key in decision-making 

 

 

 

BN is a more flexible 

method than FTA/ETA, as 

it can combine both 

objective and subjective 

data. BN improves 

reliability and criticality 

analysis for improved O&M 

planning 

N.A. 

Moghaddass 

and Sheng 

2019 Cost-sensitive 

anomaly detection 

using BN with 

limited data 

Real-time sensor 

data 

Percentage of 

anomalous sample 

data removed after 

parameter 

estimation 

2500 sample data were 

used (2000 for training 

and 500 for modelling). 

MCMC was used for data 

training 

Conventional data-driven 

anomaly detection methods 

are inefficient. A trade-of 

between misclassification 

errors and detection rates 

must be defined 

The cost sensitive BN 

decision tool allows for 

anomaly prediction with 

lower cost and risk. It can 

be used with limited data 

for training and modelling 

Intensive 

computations. During 

data training, not all 

anomalous samples 

can be found 

Wang et al. 2019a Improved accuracy 

in wind power 

forecasts using 

inconsistent datasets 

Historical wind 

power data, wind 

speed data 

It estimated power 

curves to show 

normal and 

inconsistent datasets 

HSRM and RSRM are 

optimised by BN 

methods. 6000 WT 

datasets are collected at 

different seasons of the 

year, collected every 10 

minutes 

There are inconsistencies in 

available wind power data. 

Parametric techniques are 

limited in modelling the 

dynamic characteristics of 

power curves 

HSRM and RSRM are 

considered good methods 

for improving the quality of 

wind power forecasts 

The methods require 

more training times 

for improved 

accuracy 

Wang et al. 2019b Use of sparse 

Bayesian-based 

method to improve 

wind speed 

forecasting 

Wind speed data The performance of 

different models 

was compared using 

the same datasets 

Sparse Bayesian-based 

robust functional 

regression model was 

developed to forecast 10-

minute ahead wind speed 

There are usually outliers in 

the dataset that affect 

accuracy of predictions. Pre-

processing accuracy depends 

on the quality of pre-

processed data 

The downsides of having 

outliers within the datasets 

are reduced. The method is 

also more robust because of 

high-resolution data 

N.A. 

Xie et al. 2019 Improved short-

term probabilistic 

wind power 

forecasting 

Historical wind 

power data, wind 

ramp datasets 

Prediction error for 

wind ramp datasets, 

posterior predictive 

wind power 

distributions, 

probabilistic wind 

power forecasts 

1000 datasets of hourly 

wind power were used. 

No performance 

improvement is observed 

when historical data 

increases 

Conventional methods 

underestimate uncertainty in 

wind power forecasts. They 

do not fully describe the 

predicted wind power 

distribution 

Reliable for informing 

regarding real-time risk 

management 

N.A. 

Zhong et al. 2019 Real-time fault 

diagnosis using 

efficient signal 

processing methods 

Vibration signals 

from online CM 

system of the 

gearbox  

Identification of 

faults more quickly 

and precisely than 

traditional 

techniques 

Signal data pre-processing 

and pattern recognition 

with ML techniques. WT 

gearbox fault features 

were extracted using 

Hilbert-Huang transforms 

and correlation methods 

Conventional fault diagnosis 

techniques lead to large costs 

due to big and noisy datasets 

Since this method is data-

driven, it does not require 

many parameters. This is a 

more adaptive and accurate 

fault diagnosis method 

The accuracy of 

diagnosis depends on 

quality of input data. 

It is only designed for 

binary classification 

problems (i.e. healthy 

or faulty) 
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