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ABSTRACT
The Lyness map is a birational map in the plane which provides

one of the simplest discrete analogues of a Hamiltonian system

with one degree of freedom, having a conserved quantity and an

invariant symplectic form. As an example of a symmetric Quispel-

Roberts-Thompson (QRT) map, each generic orbit of the Lyness

map lies on a curve of genus one, and corresponds to a sequence of

points on an elliptic curve which is one of the fibres in a pencil of

biquadratic curves in the plane.

Here we present a version of the elliptic curve method (ECM)

for integer factorization, which is based on iteration of the Lyness

map with a particular choice of initial data. More precisely, we give

an algorithm for scalar multiplication of a point on an arbitrary

elliptic curve over Q, which is represented by one of the curves in

the Lyness pencil. In order to avoid field inversion (I), and require

only field multiplication (M), squaring (S) and addition, projective

coordinates in P1 × P1
are used. Neglecting multiplication by curve

constants (assumed small), each addition of the chosen point uses

2M, while each doubling step requires 15M. We further show that

the doubling step can be implemented efficiently in parallel with

four processors, dropping the effective cost to 4M.

In contrast, the fastest algorithms in the literature use twisted

Edwards curves (equivalent to Montgomery curves), which cor-

respond to a subset of all elliptic curves. Scalar muliplication on

twisted Edwards curves with suitable small curve constants uses

8M for point addition and 4M+4S for point doubling, both of which
can be run in parallel with four processors to yield effective costs

of 2M and 1M + 1S, respectively. Thus our scalar multiplication

algorithm should require, on average, roughly twice as many multi-

plications per bit as state of the art methods using twisted Edwards

curves. In our conclusions, we discuss applications where the use

of Lyness curves may provide potential advantages.

CCS CONCEPTS
•Mathematics of computing→Nonlinear equations; • Com-
putingmethodologies→ Parallel algorithms; • Security and pri-
vacy→Mathematical foundations of cryptography.
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1 INTRODUCTION
In 1942 it was observed by Lyness [24] that iterating the recurrence

relation

𝑢𝑛+2𝑢𝑛 = 𝑎𝑢𝑛+1 + 𝑎2
(1)

with an arbitrary pair of initial values 𝑢0, 𝑢1 produces the sequence

𝑢0, 𝑢1,
𝑎(𝑢1 + 𝑎)

𝑢0

,
𝑎2 (𝑢0 + 𝑢1 + 𝑎)

𝑢0𝑢1

,
𝑎(𝑢0 + 𝑎)

𝑢1

, 𝑢0, 𝑢1, . . . ,

which is periodic with period five. The Lyness 5-cycle also arises

in a frieze pattern [11], or as a simple example of Zamolodchikov

periodicity in integrable quantum field theories [31], which can be

explained in terms of the associahedron 𝐾4 and the cluster algebra

defined by the 𝐴2 Dynkin quiver [16], leading to a connection with

Abel’s pentagon identity for the dilogarithm [26]. Moreover, the

map corresponding to 𝑎 = 1, that is

(𝑥,𝑦) ↦→
(
𝑦,
𝑦 + 1

𝑥

)
, (2)

appears in the theory of the Cremona group: as proved by Blanc

[8], the birational transformations of the plane that preserve the

symplectic form

𝜔 =
1

𝑥𝑦
d𝑥 ∧ d𝑦, (3)

are generated by 𝑆𝐿(2,Z), the torus and transformation (2).

More generally, the name Lyness map is given to the birational

map

𝜑 : (𝑥,𝑦) ↦→
(
𝑦,
𝑎𝑦 + 𝑏
𝑥

)
, (4)

which contains two parameters 𝑎, 𝑏 (and there are also higher order

analogues [29]). The parameter 𝑎 ≠ 0 can be removed by rescaling

(𝑥,𝑦) → (𝑎𝑥, 𝑎𝑦), so that this is really a one-parameter family,

referred to in [15] as “the simplest singular map of the plane.” How-

ever, we will usually retain 𝑎 below for bookkeeping purposes.

Unlike the special case 𝑏 = 𝑎2
, corresponding to (1), in general

the orbits of (4) do not all have the same period, and over an infinite

field (e.g. Q,R or C) generic orbits are not periodic. However, the
general map still satisfies 𝜑∗ (𝜔) = 𝜔 , i.e. the symplectic form (3) is

preserved, and there is a conserved quantity 𝐾 = 𝐾 (𝑥,𝑦) given by

𝐾 =
𝑥𝑦 (𝑥 + 𝑦) + 𝑎(𝑥 + 𝑦)2 + (𝑎2 + 𝑏) (𝑥 + 𝑦) + 𝑎𝑏

𝑥𝑦
. (5)

https://doi.org/10.1145/3373207.3404044
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Since 𝜑∗ (𝐾) = 𝐾 , each orbit lies on a fixed curve 𝐾 = const. Thus

the Lyness map is a simple discrete analogue of a Hamiltonian

system with one degree of freedom, and (4) also commutes with the

flows of the Hamiltonian vector field ¤𝑥 = {𝑥, 𝐾}, ¤𝑦 = {𝑦, 𝐾}, where
{, } is the Poisson bracket defined by (3). Moreover, generic level

curves of 𝐾 have genus one, so that (real or complex) iterates of

the Lyness map can be expressed in terms of elliptic functions [7].

Figure 1: A family of rational orbits of (4) in the positive
quadrant, iterated for 𝑎 = 1, 𝑏 = 2 with initial values (𝑥,𝑦) =
(2 + 0.2𝑘, 2 + 0.2𝑘) for 𝑘 = 0, . . . , 9.

The origin of the conserved quantity (5) may seem mysterious,

but becomes less so when one observes that (4) is a particular

example of a symmetric QRT map [27, 28], and as such it can be

derived by starting from a pencil of biquadratic curves, in this case

𝑥𝑦 (𝑥 + 𝑦) + 𝑎(𝑥 + 𝑦)2 + (𝑎2 + 𝑏) (𝑥 + 𝑦) + 𝑎𝑏 + 𝜆𝑥𝑦 = 0, (6)

which by symmetry admits the involution 𝜄 : (𝑥,𝑦) ↦→ (𝑦, 𝑥). On
each curve 𝜆 = −𝐾 = const there are also the horizontal/vertical

switches, obtained by swapping a point on the curve with the

other intersection with a horizontal/vertical line. Using the Vieta

formula for the product of roots of a quadratic, the horizontal switch

can be written explicitly as the birational involution 𝜄ℎ : (𝑥,𝑦) ↦→
(𝑥−1 (𝑎𝑦+𝑏), 𝑦), and then the Lyness map (4) is just the composition

𝜑 = 𝜄 ◦ 𝜄ℎ . Standard results about elliptic curves then imply that

applying the map to a point P0 = (𝑥,𝑦) corresponds to a translation
P0 ↦→ P0 + P in the group law of the curve, where the shift P is

independent of P0.

There is an associated elliptic fibration of the plane over P1
,

defined by (𝑥,𝑦) ↦→ 𝜆 = −𝐾 (𝑥,𝑦), so that each point (𝑥,𝑦) lies in
one of the fibres, apart from the base points where 𝑥𝑦 (𝑥 +𝑦) +𝑎(𝑥 +
𝑦)2 + (𝑎2 + 𝑏) (𝑥 +𝑦) + 𝑎𝑏 and 𝑥𝑦 vanish simultaneously. (For more

details on the geometry of QRT maps see [20, 21, 30], or the book

[13], where the Lyness map is analysed in detail in chapter 11.)

Part of one such fibration can be seen in Figure 1, which for the

case 𝑎 = 1, 𝑏 = 2 shows points on the fibres corresponding to the

values

𝐾 =
2(𝑘3 + 40𝑘2 + 575𝑘 + 2875)

5(10 + 𝑘)2
(7)

for 𝑘 = 0, . . . , 9.

In the next section we describe the group law on the invariant

curves of the Lyness map. Section 3 describes an algorithm, first out-

lined in [19], for carrying out the elliptic curve method (ECM) for

integer factorization using the Lyness map in projective coordinates.

There is a long history of finding speedups and improved curve

choices for the ECM, e.g. using Montgomery curves [6, 10, 25], Hes-

sian curves [17] and Edwards curves [14] or their twisted versions

(see [1–5, 18] and references therein). In section 4 we explain how

the ECM algorithm with Lyness curves can be implemented more

efficiently in parallel, although this is still roughly twice as slow

as the fastest parallel algorithm in [18]. The final section contains

some conclusions.

2 LYNESS CURVES AS ELLIPTIC CURVES
The affine curve defined by fixing 𝐾 in (5), that is

𝑥𝑦 (𝑥 + 𝑦) + 𝑎(𝑥 + 𝑦)2 + (𝑎2 + 𝑏) (𝑥 + 𝑦) + 𝑎𝑏 = 𝐾𝑥𝑦. (8)

is both cubic (total degree three) and biquadratic in 𝑥,𝑦, and (subject

to a discriminant condition, described below) it extends to a smooth

projective cubic in P2
, or a smooth curve of bidegree (2, 2) in P1×P1

.

See Figure 2 for a plot of a smooth Lyness curve in R2
. An example

of a singular Lyness curve is given by

𝑥𝑦 (𝑥 + 𝑦) + (𝑥 + 𝑦)2 + 3(𝑥 + 𝑦) + 2 =
23

2

𝑥𝑦,

which is the case 𝑘 = 0 of (7), and contains the fixed point at

(𝑥,𝑦) = (2, 2) in Figure 1.

In order to consider a Lyness curve (8) as an elliptic curve, we

must define the group law, in terms of addition of pairs of points,

with a distinguished point O as the identity element. For what fol-

lows, we will make use of the fact that a Lyness curve is birationally

equivalent to a Weierstrass cubic, as described by the following

(which paraphrases a result from [19]).

Theorem 1. Given a fixed choice of rational point (𝜈, 𝜉) ∈ Q2 on
a Weierstrass cubic

𝐸 (Q) : (𝑦′)2 = (𝑥 ′)3 +𝐴𝑥 ′ + 𝐵 (9)

over Q, a point (𝑥,𝑦) on a Lyness curve (8) is given in terms of
(𝑥 ′, 𝑦′) ∈ 𝐸 (Q) by 𝑥 = −𝛽 (𝛼𝑢 + 𝛽)/(𝑢𝑣) − 𝑎, 𝑦 = −𝛽𝑢𝑣 − 𝑎, where
𝑢 = 𝜈 −𝑥 ′, 𝑣 = (4𝜉𝑦′ + 𝐽𝑢 −𝛼)/(2𝑢2) and the parameters are related
by

𝑎 = −𝛼2 − 𝛽 𝐽 , 𝑏 = 2𝑎2 + 𝑎𝛽 𝐽 − 𝛽3, 𝐾 = −2𝑎 − 𝛽 𝐽 , (10)

with 𝛼 = 4𝜉2, 𝐽 = 6𝜈2 + 2𝐴, 𝛽 = 1

4
𝐽 2 − 12𝜈𝜉2. Conversely, given

𝑎, 𝑏, 𝐾 ∈ Q, a point (𝑥,𝑦) on (8) corresponds to (𝑥,𝑦) ∈ 𝐸 (Q), a
twist of 𝐸 (Q) with coefficients 𝐴 = 𝛼2𝛽4𝐴, 𝐵 = 𝛼3𝛽6𝐵, and the point
P = (∞,−𝑎) on (8) corresponds to (𝜈, ¯𝜉) =

(
1

12
(𝛽 𝐽 )2 − 1

3
𝛽3, 1

2
𝛼2𝛽3)

on 𝐸 (Q).
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Figure 2: The Lyness curve𝑥𝑦 (𝑥+𝑦)+(𝑥+𝑦)2+3(𝑥+𝑦)+2 = 109

8
𝑥𝑦

in R2.

By rewriting 𝐴, 𝐵 in terms of 𝑎, 𝑏, 𝐾 via the above relations, one

can compute the discriminant Δ = −16(4𝐴3 + 27𝐵2), such that

Δ ≠ 0 gives the condition for the curve (8) to be nonsingular. The

j-invariant of the Lyness curve is

𝑗 =
(𝐾 + 𝑎)−2 (𝐾𝑎 + 𝑏)−3 (𝑔2)3

(𝐾𝑎3 − 8𝑎4 + 𝐾2𝑏 − 10𝐾𝑎𝑏 + 13𝑎2𝑏 − 16𝑏2)
,

where the numerator has the cube of

𝑔2 = 𝐾4 − 8𝐾3𝑎 + 16𝐾𝑎3 + 16𝑎4 − 16𝐾2𝑏 − 8𝐾𝑎𝑏 − 16𝑎2𝑏 + 16𝑏2 .

With the above equivalence, the group law on the Lyness curve,

with identity element given by the point O = (∞,∞), can be

found by translating the standard Weierstrass addition formulae

for (𝑥 ′, 𝑦′) into the corresponding expressions for the coordinates

(𝑥,𝑦). Alternatively, since the curve (8) is cubic, the usual chord
and tangent method can be applied directly, yielding the formula

for affine addition as

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥3, 𝑦3), (11)

𝑥3 =
(𝑎𝑦1 − 𝑎𝑦2 − 𝑥1𝑦2 + 𝑥2𝑦1) (𝑎𝑥1𝑦2 − 𝑎𝑥2𝑦1 − 𝑏𝑦1 + 𝑏𝑦2)

𝑦1𝑦2 (𝑥1 − 𝑥2) (𝑥1 − 𝑥2 + 𝑦1 − 𝑦2)
,

𝑦3 =
(𝑎𝑥1 − 𝑎𝑥2 + 𝑥1𝑦2 − 𝑥2𝑦1) (𝑎𝑥2𝑦1 − 𝑎𝑥1𝑦2 − 𝑏𝑥1 + 𝑏𝑥2)

𝑥1𝑥2 (𝑦1 − 𝑦2) (𝑥1 − 𝑥2 + 𝑦1 − 𝑦2)
.

The elliptic involution that sends any point P to its inverse −P is

the symmetry 𝜄 : (𝑥,𝑦) ↦→ (𝑦, 𝑥).
The above addition law is not unified, in the sense that it cannot

be applied when the two points to be added are the same; nor does

it make sense if one of the points is O. However, for adding (𝑥1, 𝑦1)
to either of the other two points at infinity, which are P = (∞,−𝑎)

and −P = (−𝑎,∞), this addition formula does make sense: taking

the limit 𝑥2 →∞ with 𝑦2 → −𝑎, we see that

(𝑥1, 𝑦1) + (∞,−𝑎) = 𝜑
(
(𝑥1, 𝑦1)

)
, (12)

so on each level curve 𝐾 = const an iteration of the Lyness map (4)

corresponds to addition of the point P.
In the case (𝑥1, 𝑦1) = (𝑥2, 𝑦2), either by transforming the dou-

bling formula for theWeierstrass curve (9), or by computing the tan-

gent to (8), the formula for doubling (𝑥,𝑦) to (𝑥,𝑦) + (𝑥,𝑦) = 2(𝑥,𝑦)
is found to be

𝜓 : (𝑥,𝑦) ↦→
(
𝑅(𝑥,𝑦), 𝑅(𝑦, 𝑥)

)
, (13)

where

𝑅(𝑥,𝑦) = (𝑥𝑦 − 𝑎𝑦 − 𝑏) (𝑥
2𝑦 − 𝑎2𝑥 − 𝑏𝑦 − 𝑎𝑏)

𝑥 (𝑥 − 𝑦) (𝑦2 − 𝑎𝑥 − 𝑏)
, (14)

and satisfies 𝜓∗ (𝜔) = 2𝜔 , so that the symplectic form is doubled

by this transformation.

Apart from combinations involving exceptional points like O,
the formulae (11) and (13) define the abelian group law on the curve

(8).

3 ECM USING LYNESS
In order to factor a composite integer 𝑁 , for finding small factors

one can use trial division, Pollard’s rho method or the 𝑝 − 1 method,

while for the large prime factors of a modulus 𝑁 used in RSA

cryptography the number field sieve (NFS) is most effective [12].

However, for finding many medium-sized primes, the ECM is the

method of choice, and is commonly used as a first stage in the NFS.

To implement the original version of the ECM, due to Lenstra

[22], one should pick a random elliptic curve 𝐸, defined over Q by a

Weierstrass cubic (9), and a random point P ∈ 𝐸, then compute the

scalar multiple 𝑠P in the group law of the curve, using arithmetic

in the ring Z/𝑁Z. The method succeeds if, at some stage in the

computation of this scalar multiple 𝑠P, the denominator 𝐷 of the

coordinate 𝑥 ′ has a has a non-trivial common factor with 𝑁 , that is

𝑔 = gcd(𝐷, 𝑁 ) with 1 < 𝑔 < 𝑁 .

Typically 𝑠 is chosen as a prime power less than some bound 𝐵1,

or the product of all such prime powers. For composite 𝑁 , the curve

is no longer a group, but rather is a group scheme (or pseudocurve

[12]) over Z/𝑁Z, meaning that the addition law P1 + P2 does

not give a point in (Z/𝑁Z)2 for every pair of points P1,P2. The

success of the method is an indication that, for some prime factor

𝑝 |𝑁 , 𝑠P = O in the group law of the genuine elliptic curve 𝐸 (F𝑝 ),
which happens whenever 𝑠 is a multiple of the order #𝐸 (F𝑝 ).

The computation of the scalar multiple 𝑠P is usually regarded as

the first stage of the ECM. If it is unsuccessful, then a second stage

can be implemented, which consists of calculating multiples ℓ𝑠P for

small primes ℓ less than some bound 𝐵2 > 𝐵1. If the second stage

fails, then one can either increase the value of 𝐵1, or start again

with a new curve 𝐸 and point P. Here we are primarily concerned

with calculating the scalar multiple 𝑠P in stage 1. Stage 2 requires

an FFT extension [9], and the cost of the elliptic curve arithmetic

involved is negligible in that context.
1

1
The author is grateful to one of the reviewers for pointing this out.
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The 𝑥-coordinate on a Weierstrass curve can be replaced with

any rational function on the curve with a pole at O. In particular,

the 𝑥-coordinate on the Lyness curve (8) has a pole at O. Since,
from (12), any sequence of iterates (𝑢𝑛, 𝑢𝑛+1) of the Lyness map (4),

satisfying the recurrence

𝑢𝑛+2𝑢𝑛 = 𝑎𝑢𝑛+1 + 𝑏, (15)

corresponds to a sequence of points P𝑛 = P0 + 𝑛P lying on a

curve (8) with a value of 𝐾 fixed by P0 = (𝑢0, 𝑢1) and P = (∞,−𝑎),
we can implement the ECM by choosing an orbit that starts with

P0 = O = (∞,∞).
The point (∞,∞) is not a suitable initial value for the affine map

(4), but by using the isomorphism with a Weierstrass curve, as in

Theorem 1, which identifies the point (𝜈, 𝜉) on (9) with P on (8),

or by using elliptic divisibility sequences, as mentioned in [19], we

can compute the first few multiples of P as

P = (∞,−𝑎) = (𝑢1, 𝑢2), 2P = (−𝑎, 0) = (𝑢2, 𝑢3),

3P = (0,−𝑏/𝑎) = (𝑢3, 𝑢4),
and

4P =

(
−𝑏
𝑎
,−𝑎 − 𝑏 (𝐾𝑎 + 𝑏)

𝑎(𝑎2 − 𝑏)

)
= (𝑢4, 𝑢5) (16)

The points O,±P,±2P,±3P are precisely the base points in the

pencil (6), where the Lyness map is undefined, but the point 4P
(which depends on the value of 𝐾) is a suitable starting point for

the iteration.

In terms of the choice of elliptic curve data, there are two ways

to implement the ECM using the Lyness map: one can pick a Weier-

strass curve (9) defined over Q (most conveniently, with 𝐴, 𝐵 ∈ Z)
together with a choice of rational point (𝑥 ′, 𝑦′) = (𝜈, 𝜉), and then

use the birational equivalence in Theorem 1 to find the correspond-

ing point P on a Lyness curve with parameters specified by (10);

or instead, one can just pick the parameters 𝑎, 𝑏, 𝐾 at random and

proceed to calculate 𝑠P starting from the point 4P given by (16). In

fact, as already mentioned, it suffices to set 𝑎 → 1 before carrying

out the iteration, since orbits with other values of 𝑎 are equivalent

to the case 𝑎 = 1 by rescaling. In the first case, starting with a

point on a Weierstrass cubic, one can calculate 𝑎, 𝑏, 𝐾 from (10)

and then replace these values by 1, 𝑏/𝑎2, 𝐾/𝑎, respectively; while
in the second case it is sufficient to set 𝑎 = 1 and just choose 𝑏, 𝐾 at

random, or (even more simply) just pick 𝑏,𝑢5 at random and then

iterate from the point 4P = (−𝑏,𝑢5).
In order to have an efficient implementation of scalar multiplica-

tion, one should use an addition chain to calculate 𝑠P from 4P by

a sequence of addition steps 𝑛P ↦→ (𝑛 + 1)P, corresponding to (4),

and doubling steps 𝑛P ↦→ 2𝑛P, corresponding to (13), so that 𝑠P
can be obtained in a time 𝑂 (log 𝑠). One can also subtract P using

the inverse map

𝜑−1
: (𝑥,𝑦) ↦→

(
𝑎𝑥 + 𝑏
𝑦

, 𝑥

)
. (17)

The affine maps 𝜑 and𝜓 are not computationally efficient because

they both involve costly inversions (I), but inversions can be avoided
by working with projective coordinates, as is commonly done with

Montgomery curves using the Montgomery ladder [6, 10], or with

twisted Edwards curves in EECM-MPFQ [3]. In the ECM this means

that the only arithmetic needed is multiplication (M), squaring

Table 1: 2-Processor Lyness addition

Cost Step Processor 1 Processor 2
1C 1 𝑅1 ← 𝑎 · 𝑌 𝑅2 ← 𝑏 · 𝑍

2 𝑅1 ← 𝑅1 + 𝑅2 𝑖𝑑𝑙𝑒

3 𝑋 ∗ ← 𝑌 𝑊 ∗ ← 𝑍

1M 4 𝑌 ∗ ←𝑊 · 𝑅1 𝑍 ∗ ← 𝑋 · 𝑍

(S), multiplication by constants (C), and addition in Z/𝑁Z. These
operations are listed in order of decreasing cost: S is cheaper thanM,

multiplication by constants is even cheaper and may be neglected

if they are suitably small, while the cost of addition is negligible

compared with the rest.

For an addition chain starting from 4P, we may write

𝑠 = 2
𝑘𝑚 (2𝑘𝑚−1 (· · · (2𝑘1 (4 + 𝛿0) + 𝛿1) · · · ) + 𝛿𝑚−1) + 𝛿𝑚, (18)

corresponding to 𝛿0 steps of adding P, followed by 𝑘1 doubling

steps, then |𝛿1 | steps of adding or subtracting P, etc. To avoid the

base points we require 𝛿0 ≥ 0, and typically one might restrict

to 𝛿 𝑗 = ±1 for 1 ≤ 𝑗 ≤ 𝑚 − 1, with 𝛿𝑚 = 0 or ±1, if subtraction

of P is used, or only allow addition of P and take 0 ≤ 𝛿0 ≤ 3,

𝛿 𝑗 = 1 for 1 ≤ 𝑗 ≤ 𝑚 − 1 and 𝛿𝑚 = 0 or 1 only. So for instance

we could use 28 = 2
2 × (2 × 4 − 1) in the former case (𝑚 = 2,

𝛿0 = 𝛿2 = 0, 𝛿1 = −1, 𝑘1 = 1, 𝑘2 = 2), or 2
2 × (4 + 1 + 1 + 1) in

the latter (𝑚 = 1, 𝛿0 = 3, 𝛿1 = 0, 𝑘1 = 2). As we shall see, the

cost of each projective addition or subtraction step is so low that

using both addition and subtraction as much as possible may lead

to savings in the total number of operations: finding an optimal

addition/subtraction chain for Lyness scalar multiplication is an

interesting open problem for future research.

To work with projective coordinates in P1 × P1
, we write the

sequence of points generated by (15) as

𝑛P = (𝑢𝑛, 𝑢𝑛+1) =
(
𝑋𝑛

𝑊𝑛
,
𝑋𝑛+1
𝑊𝑛+1

)
,

and then each addition of P or doubling can be written as a poly-

nomial map for the quadruple

(𝑋,𝑊 ,𝑌, 𝑍 ) = (𝑋𝑛,𝑊𝑛, 𝑋𝑛+1,𝑊𝑛+1),
where an addition step sends

(𝑋𝑛,𝑊𝑛, 𝑋𝑛+1,𝑊𝑛+1) ↦→ (𝑋𝑛+1,𝑊𝑛+1, 𝑋𝑛+2,𝑊𝑛+2),
and doubling sends

(𝑋𝑛,𝑊𝑛, 𝑋𝑛+1,𝑊𝑛+1) ↦→ (𝑋2𝑛,𝑊2𝑛, 𝑋2𝑛+1,𝑊2𝑛+1).
Taking projective coordinates in P1 × P1

, the Lyness map (4)

becomes (
(𝑋 :𝑊 ), (𝑌 : 𝑍 )

)
↦→

(
(𝑋 ∗ :𝑊 ∗), (𝑌 ∗ : 𝑍 ∗)

)
, (19)

where

𝑋 ∗ = 𝑌, 𝑊 ∗ = 𝑍, (𝑌 ∗ : 𝑍 ∗) = ((𝑎𝑌 + 𝑏𝑍 )𝑊 : 𝑋𝑍 )
with 𝑎 included for completeness. If we set 𝑎 → 1 for convenience

then each addition step, adding the point P using (19), requires

2M + 1C, that is, two multiplications plus a multiplication by the

constant parameter 𝑏. One can also try to choose 𝑏 to be small

enough, so that the effective cost reduces to 2M. If one wishes to

include subtraction of P, i.e. 𝑛P ↦→ (𝑛 − 1)P, then this is achieved
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using the projective version of the inverse (17), for which the cost

is the same as for 𝜑 .

The doubling map𝜓 for the Lyness case, given by the affine map

(13) with 𝑅 defined by (14), lifts to the projective version(
(𝑋 :𝑊 ), (𝑌 : 𝑍 )

)
↦→

(
(𝑋 : 𝑊̂ ), (𝑌 : 𝑍 )

)
, (20)

where

𝑋 = 𝐴1𝐵1, 𝑌 = 𝐴2𝐵2, 𝑊̂ = 𝐶1𝐷1, 𝑍 = 𝐶2𝐷2,

with

𝐴1 = 𝐴+ +𝐴−, 𝐴2 = 𝐴+ −𝐴−,
𝐵1 = 𝐵+ + 𝐵−, 𝐵2 = 𝐵+ − 𝐵−,
𝐶1 = 2𝑋𝑇, 𝐶2 = −2𝑌𝑇,

𝐷1 = 𝑍𝐴2 +𝐶2, 𝐷2 =𝑊𝐴1 +𝐶1,

𝐴+ = 2𝐺 − 𝑎𝑆 − 2𝐻 ′, 𝐴− = 𝑎𝑇,

𝐵+ = 𝑆 (𝐺 − 𝑎2𝐻 − 𝐻 ′) − 2𝑎𝐻𝐻 ′, 𝑆 = 𝐸 + 𝐹,
𝐵− = 𝑇 (𝐺 − 𝑎2𝐻 + 𝐻 ′), 𝑇 = 𝐸 − 𝐹,
𝐸 = 𝑋𝑍, 𝐹 = 𝑌𝑊 , 𝐺 = 𝑋𝑌, 𝐻 =𝑊𝑍, 𝐻 ′ = 𝑏𝐻 .

Setting 𝑎 → 1 once again for convenience, and using the above

formulae, we see that doubling can be achieved with 15M + 1C, or
15M if multiplication by 𝑏 is ignored. (Note that multiplication by

2 is equivalent to addition: 2𝑋 = 𝑋 + 𝑋 .)
We can illustrate the application of the ECM via the Lyness map

with a simple example, taking

𝑁 = 3595474639, 𝑠 = 28, 𝑎 = 1, 𝑏 = −𝑢4 = 2, 𝑢5 = 17.

From (16) this means that

𝐾 =

(
1 − 𝑎

2

𝑏

)
(𝑢5 + 𝑎) −

𝑏

𝑎
= 7,

but we shall not need this. Writing 𝑠 as 28 = 2
2 (2 × 4 − 1), we

compute 28P via the chain 4P ↦→ 8P ↦→ 7P ↦→ 14P ↦→ 28P. As
initial projective coordinates, we start with the quadruple

(𝑋4,𝑊4, 𝑋5,𝑊5) = (−2, 1, 17, 1),
and then after one projective doubling step using (20), the quadruple

(𝑋8,𝑊8, 𝑋9,𝑊9) is found to be

(3595467431, 43928, 80648, 3595455259).
To obtain 7P we use the projective version of the inverse map (17),

which gives

𝑋𝑛−1 = (𝑎𝑋𝑛 + 𝑏𝑊𝑛)𝑊𝑛+1, 𝑊𝑛−1 = 𝑋𝑛+1𝑊𝑛

for any 𝑛, so we get

(𝑋7,𝑊7) = (2032516399, 3542705344) .
Then applying doubling to the quadruple (𝑋7,𝑊7, 𝑋8,𝑊8) we find
that (𝑋14,𝑊14, 𝑋15,𝑊15) is

(160913035, 3261908647, 3049465821, 760206673),
and one final doubling step produces the projective coordinates of

28P, that is (𝑋28,𝑊28, 𝑋29,𝑊29) given by

(558084862, 1754538456, 252369828, 1216214157) .
Now we compute gcd(𝑊28, 𝑁 ) = 6645979, and the method has

succeeded in finding a prime factor of 𝑁 . The projective coordinate

𝑊29 has the same common factor with 𝑁 , but here we do not need

the coordinates 𝑋29,𝑊29 at the final step; but if the method had

failed then thesewould be needed for stage 2 of the ECM (computing

multiples ℓ𝑠P for small primes ℓ).

It is worth comparing Lyness scalar multiplication with the most

efficient state of the art method, which uses twisted Edwards curves,

given by

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, (21)

with projective points in P2
, or with extended coordinates in P3

:

with standard projective points, adding a generic pair of points uses

10M+1S+2C, while doubling uses only 3M+4S+1C [3]; while with

extended Edwards it is possible to achieve 8M + 1C for addition of

two points, or just 8M in the case 𝑎 = −1, and 4M + 4S + 1C for

doubling [18].

Clearly addition using the Lyness map is extremely efficient,

compared with other methods. In contrast, Lyness doubling is ap-

proximately twice as costly as doubling with Edwards curves. More-

over, using (19) only allows addition of P to any other point, rather

than adding an arbitrary pair of points, which would be much more

costly using a projective version of (11). Since any addition chain

is asymptotically dominated by doubling, with roughly as many

doublings as the number of bits of 𝑠 , this means that, without any

further simplification of the projective formulae, scalar multiplica-

tion with Lyness curves should use on average roughly twice as

many multiplications per bit as with twisted Edwards curves.

However, as we shall see, using ideas from [18], it is possible to

make Lyness scalar multiplication much more efficient if parallel

processors are used, as described in the next section.

4 DOUBLING IN PARALLEL
In [18] it was shown that if four processors are used in parallel in

the case 𝑎 = −1 of twisted Edwards curves (21), then with extended

coordinates in P3
each addition step can be achieved with an algo-

rithm that has an effective cost of only 2M+1C, reducing to just 2M
if the constant 𝑑 is small - an improvement in speed by a full factor

of 4 better than the sequential case, while doubling can be achieved

with an effective cost of just 1M + 1S. (Similarly, versions of these

algorithms with two processors give an effective speed increase by

a factor of 2.) Practical details of implementing the ECM in parallel

with different types of hardware are discussed in [4].

Using two parallel processors, based on (19), each projective

addition or subtraction step can be carried out in parallel with an

effective cost of just 1M + 1C. An algorithm with two processors is

presented in Table 1 (where the parameter 𝑎 has been included for

reasons of symmetry, but can be set to 1). Spreading the addition

step over four processors does not lead to any saving in cost.

For Lyness curves, the large amount of symmetry in the doubling

formula (13) means that its projective version (20) can naturally be

distributed over four processors in parallel, resulting in the algo-

rithm presented in Table 2. This means that each Lyness doubling

step is achieved with an effective cost of 4M + 1C, or just 4M if 𝑏 is

small.

In an addition chain (18) for Lyness, starting from 4P with inter-

mediate 𝛿 𝑗 = ±1, each step of adding or subtracting P is followed

by a doubling. Thus a combined addition-doubling or subtraction-

doubling step can be carried out in parallel with four processors,

resulting in an effective cost of 5M + 2C, but no cost saving is

achieved by combining them.



ISSAC ’20, July 20–23, 2020, Kalamata, Greece Hone

Table 2: 4-Processor Lyness doubling

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1M 1 𝑅1 ← 𝑋 · 𝑍 𝑅2 ← 𝑌 ·𝑊 𝑅3 ← 𝑋 · 𝑌 𝑅4 ←𝑊 · 𝑍
1C 2 𝑅5 ← 𝑅1 + 𝑅2 𝑅6 ← 𝑅1 − 𝑅2 𝑅7 ← 𝑏 · 𝑅4 𝑖𝑑𝑙𝑒

1M 3 𝑅1 ← 𝑋 · 𝑅6 𝑅2 ← 𝑌 · 𝑅6 𝑅8 ← 𝑅4 · 𝑅7 𝑅9 ← 𝑅3 − 𝑅7

4 𝑅1 ← 2𝑅1 𝑅2 ← −2𝑅2 𝑅3 ← 𝑅3 + 𝑅7 𝑅10 ← 2𝑅9

5 𝑅3 ← 𝑅3 − 𝑅4 𝑅7 ← 𝑅10 − 𝑅5 𝑅8 ← 2𝑅8 𝑅11 ← 𝑅9 − 𝑅4

6 𝑅9 ← 𝑅7 + 𝑅6 𝑅10 ← 𝑅7 − 𝑅6 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

1M 7 𝑅3 ← 𝑅3 · 𝑅6 𝑅4 ←𝑊 · 𝑅9 𝑅7 ← 𝑍 · 𝑅10 𝑅11 ← 𝑅11 · 𝑅5

8 𝑅5 ← 𝑅2 + 𝑅7 𝑅6 ← 𝑅1 + 𝑅4 𝑅11 ← 𝑅11 − 𝑅8 𝑖𝑑𝑙𝑒

9 𝑅7 ← 𝑅11 + 𝑅3 𝑅8 ← 𝑅11 − 𝑅3 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

1M 10 𝑋 ← 𝑅7 · 𝑅9 𝑊̂ ← 𝑅1 · 𝑅5 𝑌 ← 𝑅8 · 𝑅10 𝑍 ← 𝑅2 · 𝑅6

It is also clear that the algorithm in Table 2 can be adapted to

the case of two processors in parallel. This leads to an effective cost

of 8M + 1C per Lyness doubling.

Thus we have seen that implementing scalar multiplication in

the ECM with Lyness curves can be made efficient if implemented

in parallel with two or four processors. In the concluding section

that follows we weigh up the pros and cons of using Lyness curves

for scalar multiplication, and briefly mention other contexts where

they may be useful.

5 CONCLUSIONS
We have presented an algorithm for scalar multiplication using

Lyness curves, which can be applied to any rational point on a

Weierstrass curve defined over Q, and have shown how it can be

implemented more efficiently in parallel with four processors.

Each step of addition (or subtraction) of a special point P, based
on the Lyness map, has a remarkably low cost: only 2M + 1C if

carried out sequentially, or an effective cost of just 1M + 1C in

parallel with two processors. The record for elliptic curve addition

in [18] using twisted Edwards curves (21) with the special param-

eter choice 𝑎 = −1 requires 8M, or an effective cost of 2M with

four parallel processors; but this is for adding an arbitrary pair of

points, whereas for Lyness we can only achieve such a low cost

by adding/subtracting the special point P. Nevertheless, for the
purposes of scalar multiplication, addition/subtraction of P and

doubling is all that is required.

At 15M + 1C, the cost of sequential Lyness doubling is much

higher, and essentially twice the cost of sequential doubling with

twisted Edwards curves [3]. Since asymptotically scalar multipli-

cation is dominated by doubling steps, it appears that on average

using Lyness curves for scalar multiplication should require about

twice as many multiplications per bit compared with the twisted

Edwards version.

However, if it is performed in parallel with four processors, as

in Table 2, then the effective cost of Lyness doubling is reduced to

4M + 1C, and this becomes only 4M in the case that the parameter

𝑏 is small. This is still higher than the speed record for doubling

with four processors (1M + 1S), which is achieved in [18] with the

𝑎 = −1 case of twisted Edwards curves. Nevertheless, performing

Lyness addition and doubling in parallel is still quite efficient, and

may have other possible advantages, which we now consider.

For the ECM it is desirable to have a curve with large torsion over

Q, since for an unknown prime 𝑝 |𝑁 this increases the probability

of smoothness of the group order #𝐸 (F𝑝 ) in the Hasse interval

[𝑝 + 1 − 2

√
𝑝, 𝑝 + 1 + 2

√
𝑝], making success more likely. Twisted

Edwards curves, which are birationally equivalent to Montgomery

curves, do not cover all possible elliptic curves over Q. In particular,

it is known from [3] that for twisted Edwards curves with the

special parameter choice 𝑎 = −1 (which gives the fastest addition

step) the torsion subgroups Z/10Z, Z/12Z, Z/2Z × Z/8Z are not

possible, nor is Z/2Z × Z/6Z possible for any choice of 𝑎.

For Lyness curves (8), there is no such restriction on the choice

of torsion subgroups over Q. It would be interesting to look for

families of Lyness curves having large torsion and rank at least one,

employing a combination of empirical and theoretical approaches

similar to [1, 2].

Another potentially useful feature of scalar multiplication with

Lyness curves is that, since there is no loss of generality in setting

𝑎 → 1, it requires only the two parameters 𝑏, 𝐾 (or, perhaps better,

𝑏,𝑢5) to be carried out, and these at the same time fix an elliptic

curve 𝐸 and a point P ∈ 𝐸. Moreover, both parameters can be

chosen small. This parsimony is aesthetically pleasing because

the moduli space of elliptic curves with a marked point is two-

dimensional.

On the other hand, if one wishes to start from a givenWeierstrass

curve (9) with a point on it, then in general the formula in (10)

produces a Lyness curve with a value of 𝑎 ≠ 1, so if the other

parameters are subsequently rescaled to fix 𝑎 → 1 then in general

the requirement of smallness will need to be sacrificed for the new

parameter 𝑏 so obtained.

We have concentrated on scalar multiplication in stage 1 of the

ECM, but for stage 2 one usually computes ℓ1𝑠P, ℓ2ℓ1𝑠P, etc. for
a sequence of primes ℓ1, ℓ2, . . . all smaller than some bound 𝐵2.

This can be carried out effectively using a baby-step-giant-step

method [3], requiring addition of essentially arbitrary multiples

of P. For the latter approach, using addition with the Lyness map

has the disadvantage that one can only add P at each step, so

to add some other multiple of P one would need to redefine the

parameters 𝑎, 𝑏, 𝐾 (and then rescale 𝑎 → 1 if desired), leading to

extra intermediate computations.

Scalar multiplication is an essential feature of elliptic curve cryp-

tography: in particular, it is required for Alice and Bob to perform

the elliptic curve version of Diffie-Hellman key exchange [23]. In
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that context, one requires a curve 𝐸 (F𝑞) with non-smooth order, to

make the discrete logarithm problem as hard as possible. Bitcoin

uses the arithmetic of the curve 𝑦2 = 𝑥3 + 7, known as secp256k1,

which is not isomorpic to a twisted Edwards curve. Also, the se-

quence of scalar multiples of a point on an elliptic curve over a

finite field or a residue ring can be used for pseudorandom num-

ber generation; the fact that the cost of addition of a point is so

low for Lyness curves may make them particularly well suited to

this. It would be interesting to see if Lyness curves can offer any

advantages in these and other cryptographic settings.
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