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 7 

Abstract: This paper analyzes the optimal strategies for an attacker and a defender in 8 

an attack-defense game on a network consisting of interdependent subnetworks. The 9 

defender moves first and allocates its resource to protect the network nodes. The 10 

attacker then moves and allocates its resources to attack the network nodes. The binary 11 

decision diagram is employed to obtain all potential states of the network system after 12 

attack. Considering each of its opponent’s strategies, the game player tries to maximize 13 

its own cumulative prospect value. The backward induction method is employed to 14 

obtain the game players’ optimal strategies, respectively. Different resource 15 

relationships are analyzed to testify the robustness of the main conclusions and players’ 16 

risk attitudes are also investigated. Numerical examples are used to illustrate the 17 

analysis. 18 

Keywords: attack-defense game; interdependent network; nodes; binary decision 19 

diagram; prospect value 20 

 21 

1. Introduction 22 

Reliability analysis of complex networks has gained popularity in the literature, 23 

which is especially the case in recent years. Existing research has analyzed the 24 

reliability of networks of different structures (Albert et al. 2000, Archibald et al. 2010, 25 

Levitin & Hausken, 2009, Chopra & Khanna, 2015). Most authors, however, restrict 26 

their assumptions to a single network such as an electrical network or a computer 27 

network. In practice, node failures in different networks may be interdependent. For 28 

example, Buldyrev et al. (2010) investigated the blackouts of a power gird, occurred in 29 
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Italy on 28 September 2003, which is composed of an electrical subnetwork and an 30 

Internet subnetwork. These two subnetworks function interdependently since the 31 

Internet subnetwork serves as communication nodes to control the actions of the 32 

electrical subnetwork and the electrical subnetwork supplies power to the Internet 33 

subnetwork. Some researches investigate maintenance policies of interdependent 34 

subnetworks, considering the unintentional impact such as natural aging (Mo et al. 35 

2015). Little research, however, has analyzed risk analysis of intelligent adversaries on 36 

interdependent networks, which motivates the research of this paper. 37 

This paper analyzes the attack-defense game with one attacker and one defender, 38 

where the defender defends the nodes in a network consisting of interdependent 39 

subnetworks and the attacker attacks these nodes, both players needing to allocate their 40 

resources. It represents the states of the network with the binary decision diagram (BDD) 41 

and assumes the survivability of each node depends on the protection/attack resources 42 

allocated by the players. The cumulative prospect theory (CPT), a model for descriptive 43 

decisions under risk and uncertainty (Tversky & Kehneman, 1992), is employed to 44 

obtain the players’ cumulative prospect value (CPV).  45 

Our work is relevant to three streams of literature: the attack-defense game, 46 

interdependent networks, and reliability modelling. The attack-defense game typically 47 

involves a strategic attacker who aims to destroy the defender’s targets. Levitin & 48 

Hausken (2010) analyzed the defense and attack strategies of systems considering 49 

different system structure detection probabilities by the attacker. Hausken & Bier (2011) 50 

studied the defending issue against multiple different attackers, which was further 51 

studied by Zhang & Ramirez-Marquez (2013), who consider incomplete information. 52 

Bier & Hausken (2013) conducted an attack-defense analysis to study intentional 53 

attacker’s impact on transportation systems. Zhai et al. (2016) studied the defense and 54 

attack strategies for a system with a common bus performance-sharing mechanism. Wu 55 

et al. (2018) considered an attack-defense game where the defender allocates its 56 

resource to preventive strike and false targets. Peng et al. (2018) considered both 57 

intentional and unintentional impact on a typical attack-defense game. Li et al. (2018) 58 

analyzed the attack-defense game from a network science perspective.  59 
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Research on the attack-defense game in a complex interdependent system is scarce. 60 

Hausken (2017a) proposed a framework to numerically analyze the strategic defense of 61 

a complex and dependent system with one strategic attacker. They assume that the 62 

defender minimizes the expected damage and costs while the attacker maximizes the 63 

difference between the cost due to the expected damage and the attack costs. Hausken 64 

(2017b) considered a similar problem of attack and defense strategies on two 65 

interdependent targets. Hausken (2019) theoretically showed the optimal defense and 66 

attack strategies, and discussed the impact of contest intensity, unit effort costs, and 67 

target values. Nonetheless, in reality, the game players’ strategies may depend not only 68 

on their expected losses but also on their risk attitudes. The present paper employs the 69 

players’ CPVs as their respective objective functions such that their risk preferences are 70 

considered. 71 

As for the interdependent network, Kunreuther & Heal (2003) constructed a 72 

framework of interdependent security. Later on, Hausken (2006) considered the security 73 

investment problem and substitution effects. Zhuang et al. (2007) further constructed a 74 

subsidy problem with discount rates in interdependent security. Nganje et al. (2008) 75 

extended the interdependent security model through a case-study on a real-world 76 

example of a milk supply chain. Hardy et al. (2007) and Xing (2007) studied the 77 

reliability of networks with multiple terminals using the BDD technique. Zio & 78 

Sansavini (2011) modeled interdependent network systems to identify cascade-safe 79 

operating margins. Li & Sansavini (2013) investigated the multi-objective optimization 80 

of cascading failure protection in complex networks. Johansson & Hassel (2010) 81 

proposed an approach to modelling interdependent infrastructures in the context of 82 

vulnerability analysis. Wu et al. (2016) modeled cascading failures in interdependent 83 

infrastructures under terrorist attacks. Mackenzie et al. (2016) analyzed the static and 84 

dynamic resource allocation models for recovery of interdependent systems with a case 85 

study on the Deepwater Horizon oil spill to illustrate it. Peng (2018) studied the 86 

reliability of a network consisting of interdependent subnetworks, with the focus on the 87 

internal failure of the nodes, rather than on the impacts from the strategic attackers. 88 

Traditionally, the Tullock model is widely employed in the reliability modelling in 89 
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the attack-defense game and has been adapted to different scenarios by many 90 

researchers (see Tullock, 2001; Hausken & Zhuang, 2011, for example). Nonetheless, 91 

the Tullock model cannot properly depict players’ risk attitudes in the game. To fill in 92 

this gap, Liu et al. (2014) proposed a risk-decision analysis method based on the 93 

cumulative prospect theory to predict defender’s emergency response confronting with 94 

unintentional impact, say that, natural disasters.  95 

This paper uses the BDD to represent the different combinations of destructed 96 

nodes, where each node has binary states being “destructed” and “not destructed”. The 97 

state of a system is assumed to depend on not only the system structure but also the 98 

players’ strategies and their risk attitudes. 99 

The novelty and main contributions of this paper are summarized in the following: 100 

 The novelty is: We utilize cumulative prospect theory to investigate the attack-101 

defense strategy of a network composed of interdependent subnetworks. 102 

 The main contributions include: (1) Different resource relationships and different 103 

cost relationships are considered, respectively, in seeking the optimal attack and 104 

defense strategies, and (2) Cumulative prospect theory is combined with the 105 

traditional Tullock model to obtain the players’ CPVs, which can better depict the 106 

players’ risk preferences and reflect their risk attitudes than merely considering their 107 

expected system losses. 108 

The remainder of this paper is organized as follows. Section 2 describes the model 109 

setup. Sections 3 analyzes the optimal attack strategies for the attacker. Section 4 110 

employs the backward induction method to solve the optimal defense strategies for the 111 

defender. Section 5 analyzes the impact of risk preferences. Section 6 discusses the case 112 

for complex system with amounts of nodes. Section 7 concludes the paper and proposes 113 

future research suggestions. 114 

 115 

2. Model Foundation 116 

Consider a network composed of a power subnetwork and a control subnetwork. 117 

The nodes in the control subnetwork require power supply from the power subnetwork 118 

whilst the nodes in the power subnetwork are controlled by the nodes in the control 119 
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subnetwork. Suppose that an intelligent adversary, or the attacker, intends to attack the 120 

nodes in the network and the owner of the network is regarded the defender who 121 

protects the network from damage. Both players need resources for their actions.  122 

Assume that the defender allocates an amount, 𝑟 , of its limited resource to 123 

protecting the nodes in the network and the attacker spends an amount, 𝑅, of its limited 124 

resource on attacking the nodes. Due to the interdependence, the failure of a node in 125 

one subnetwork may cause some nodes in other subnetwork to fail. Once a node fails, 126 

no matter whether the destruction is due to the attacker or the failure propagation from 127 

other nodes, the node and its connections with other nodes will be removed from the 128 

network it belongs to. After the removal, if the number of the connected nodes in a 129 

cluster in a subnetwork is smaller than a pre-specified number, the cluster will fail. In 130 

particular, we consider the case where a node fails if it stands alone from any other 131 

nodes within a subnetwork, that is, any single node cannot survive but any cluster with 132 

no smaller than 2 nodes can survive. Since the failure of a node in one subnetwork may 133 

cause several nodes in the other subnetwork to fail, more nodes in the first subnetwork 134 

may fail. Such cascading failures may have a catastrophic effect on the network.  135 

Notations 

,R r  Resource for the attacker and the defender, respectively 

, , [1,6]j jA B j  Nodes of the two subnetworks of the network, respectively 

, , { , }, [1,6]ij ijr R i A B j   Resource allocation on different nodes, respectively 

,c C  Unit cost for protection and attack effort, respectively 

ijm  Contest intensity parameters 

ijp  Survivability of each node of the network, respectively 

,dk aku u  Utility for the defender and the attacker, respectively 

kp  Probability of the different outcomes, respectively 

,a dV V  CPVs of the attacker and the defender, respectively 
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( )lkv u  Value of the potential outcome 

,k k  
 Decision weight for the value of the potential gain and loss, 

respectively 

, ,g l   Risk parameters 

,w w   Weighting functions for gains and losses, respectively 

,   Weighting function parameters 

Consider an illustrative network that has been analyzed by several researchers 136 

(Buldyrev et al. 2010; Peng 2018), as shown in Figure 1 (a). There are two 137 

interdependent subnetworks A and B, each of which consists of six nodes, denoted by 138 

, {1,2,3,4,5,6}jA j  and , {1,2,3,4,5,6}jB j , respectively, and the connections of 139 

these nodes are shown with arcs. Besides, the failure of jA  always causes jB  to fail, 140 

and vice versa. Suppose that subnetwork A is the power subnetwork in which each 141 

electricity station jA  is controlled by jB , which is powered by jA . Therefore, either 142 

the failure of jA  or that of jB  causes the other one to fail. 143 

Suppose that A5 fails, then B5, which is connected with A5, will fail. The failures 144 

of A5 and B5 will then cause their connections with other nodes to be removed. After 145 

the removals, the network will become the one shown in Figure 1 (b), where both A4 146 

and A6 then become isolated. Thus, A4 and A6 will fail and then cause B4 and B6 to fail 147 

as well. B3 is then isolated and thus causes A3 to fail. Finally, the network will 148 

degenerate to the one shown in Figure 1 (c). 149 

 150 

Figure 1 An Illustrative Network Consisting of Interdependent Networks  151 
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As for the defender, as assumed, it spends the amount, r  , of its resources on 152 

protecting the twelve nodes. We further denote that the defender will spend the amount, 153 

𝑟𝑖𝑗 of its resources on protecting each node in the network and the attack will spend the 154 

amount, 𝑅𝑖𝑗 , of its resources on attacking each node, where 𝑖 ∈ {𝐴, 𝐵} , 𝑗 ∈155 

{1,2,3,4,5,6}, 
6

1

( )Aj Bj

j

r r r


  , and 

6

1

( ) .Aj Bj

j

R R R


    156 

Employing the traditional Tullock model, we can obtain the survivability of each 157 

node of the subnetworks 158 

( / )
, { , }, {1,2,3,4,5,6}.

( / ) ( / )

ij

ij ij

m

ij

ij m m

ij ij

r c
p i A B j

r c R C
  


        (1) 159 

Among, ( / )ijr c  represents the contest effort (resource spent on the node divided 160 

by the unit cost) that the defender takes by spending the resource on defending the ij -161 

th node, and ( / )ijR C   denotes the contest effort of the attacker on the ij  -th node. 162 

Additionally, ijm  is the contest intensity on the ij -th node where low intensity occurs 163 

if neither players get a significant advantage and vice versa. 164 

To formulate the utility of both players, we should note that each node in the 165 

subnetworks can either be destroyed or survive, which ultimately forms many different 166 

cases for the final state of the network. The probability for each case can be calculated 167 

and the CPVs for both players can be obtained for all the cases, for which we employ 168 

the BDD. Typically, a BDD is a directed acyclic graph in which all paths start at the 169 

root vertex and terminate in one of two states, either representing a system failure or a 170 

system success. A BDD is composed of terminal and non-terminal vertices, which are 171 

connected by branches, where the non-terminal vertices correspond to all the potential 172 

events of the fault tree (Bartlett & Andrews, 2001; Peng et al. 2016). 173 

Take the network in Figure 1 for illustration, the BDD is as constructed as in Figure 174 

2. Note that the left branch of each BDD node represents that both network nodes in the 175 

BDD node are undestroyed by the attacker and the right branch represents that at least 176 

one network node in the BDD node is destroyed by the attacker. The terminal BDD 177 
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constructed for each branch contains all failed network nodes no matter whether the 178 

nodes are destroyed by attackers or fail due to their own failure propagation.  179 
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Figure 2. The Binary Decision Diagram for Figure 1
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Starting from the nodes {A1, B1}, and then iteratively considering {A2, B2}, …, {A6, 200 

B6}, we represent all the possible final states of the network. Take the first two layers 201 

as an example. The binary decision diagram starts from the first concerned nodes {A1, 202 

B1}. On the left branch, both nodes survive and then we should consider the possible 203 

cases for {A2, B2}. However, on the right branch, since at least one of the nodes in {A1, 204 

B1} fails, leading to the failure of {A2, B2}, then we should not add the BDD node {A2, 205 

B2} but consider {A3, B3} as the next possible nodes to fail after the failure of A1, B1, 206 

A2, B2. Continuing in this way until all the nodes are considered, Figure 2 can be 207 

obtained. It can be seen that there are thirteen different possible final states for the 208 

network. We specifically illustrate the thirteen cases and their corresponding failed 209 

nodes as below. 210 

 Case 1: No failure.  211 

 Case 2: A1 or B1 fails, leading to the failure of A1, A2, B1, and B2, then no other node 212 

fails. 213 

 Case 3: A1 or B1 fails and A3 or B3 fails, leading to the failure of A1, A2, A3, B1, B2, 214 

and B3, then no other node fails.  215 

 Case 4: A1 or B1 fails, A3 or B3 fails, and A4 or B4 fails, leading to the failure of A1, 216 

A2, A3, A4, B1, B2, B3, and B4, then no other node fails.  217 

 Case 5: A1 or B1 fails, A3 or B3 fails, and A6 or B6 fails, leading to the failure of A1, 218 

A2, A3, A6, B1, B2, B3, and B6, then no other node fails.  219 

 Case 6: A1 or B1 fails and A6 or B6 fails, leading to the failure of A1, A2, A6, B1, B2, 220 

and B6, then no other node fails. 221 

 Case 7: A2 or B2 fails, leading to the failure of A2 and B2, then no other node fails. 222 

 Case 8: A3 or B3 fails, leading to the failure of A3 and B3, then no other node fails.  223 

 Case 9: A3 or B3 fails and A4 or B4 fails, leading to the failure of A3, A4, B3, and B4, 224 

then no other node fails. 225 

 Case 10: A3 or B3 fails, A4 or B4 fails, A5 or B5, and A6 or B6 fails, leading to the 226 

failure of A3, A4, A5, A6, B3, B4, B5, and B6, then no other node fails.  227 

 Case 11: A3 or B3 fails and A6 or B6 fails, leading to the failure of A3, A6, B3, and B6, 228 

then no other node fails.  229 
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 Case 12: A6 or B6 fails, leading to the failure of A6 and B6, then no other node fails.  230 

 Case 13: Network destruction. More than four nodes in each network are destroyed. 231 

For each case, we denote , {1,2,...,12,13}dku k   and , {1,2,...,12,13}aku k   as 232 

the utility of the defender and the attacker and , {1,2,...,12,13}kp k  as the probability 233 

of the occurrence of each case, respectively. The destruction of each pair of nodes in 234 

the networks is assumed to deal 5 units of utility damage to the defender. The survival 235 

of each pair of nodes is assumed to cause 10 units of utility bonus while the network is 236 

still operating since the defender cares more about the safety of the network. Similarly, 237 

each pair destruction will let the attacker gain 10 units of utility and the survival of each 238 

pair will deal 5 units of utility when the network is not under destruction. Specifically, 239 

if the network is destroyed by the attacker, the attacker will obtain 60 units of utility 240 

and the defender will obtain -30 units of utility. We perform the value under each case 241 

in Table 1. 242 

Table 1 Players’ utility under Different Cases 243 

Number of failed pairs of nodes 
dku  

aku  Case 

0 60 -30 1 

1 45 -15 7,8,12 

2 30 0 2,9,11 

3 15 15 3,6 

4 0 30 4,5,10 

(5)6 -30 60 13 

The probability of each outcome can be calculated through basic permutation and 244 

combination and we directly perform the results here. 245 

6

1

1

,Aj Bj

j

p p p


                          (2) 246 

6

2 1 1

2

(1 ) ,A B Aj Bj

j

p p p p p


                       (3) 247 

6

3 1 1 3 3 2 2

4

(1 )(1 ) ,A B A B A B Aj Bj

j

p p p p p p p p p


                  (4) 248 
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6

4 1 1 3 3 4 4 2 2

5

(1 )(1 )(1 ) ,A B A B A B A B Aj Bj

j

p p p p p p p p p p p


              (5) 249 

5

5 1 1 3 3 6 6 2 2

4

(1 )(1 )(1 ) ,A B A B A B A B Aj Bj

j

p p p p p p p p p p p


              (6) 250 

5

6 1 1 6 6

2

(1 )(1 ) ,A B A B Aj Bj

j

p p p p p p p


                      (7) 251 

6

7 2 2 1 1

3

(1 ) ,A B A B Aj Bj

j

p p p p p p p


                     (8) 252 

2 6

8 3 3

1 4

(1 ) ,A B Aj Bj Aj Bj

j j

p p p p p p p
 

                     (9) 253 

2 6

9 3 3 4 4

1 5

(1 )(1 ) ,A B A B Aj Bj Aj Bj

j j

p p p p p p p p p
 

                 (10) 254 

6 2

10

3 1

(1 ) ,Aj Bj Aj Bj

j j

p p p p p
 

                       (11) 255 

2 5

11 3 3 6 6

1 4

(1 )(1 ) ,A B A B Aj Bj Aj Bj

j j

p p p p p p p p p
 

                (12) 256 

5

12 6 6

1

(1 ) ,A B Aj Bj

j

p p p p p


                        (13) 257 

and 258 

12

13

1

1 .i

i

p p


                            (14) 259 

To obtain the players’ CPV, we introduce the concept of weighting functions 𝑤+ 260 

and 𝑤− for gains and losses as below. 261 

1/
( ) ,

[ (1 ) ]

p
w p

p p



  

 
 

                    (15) 262 

and 263 

1/
( ) .

[ (1 ) ]

p
w p

p p



  

 
 

                    (16) 264 

where both    and    are weighting parameters, which are usually determined 265 
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through the experiments. The decision weights can therefore be represented by  266 

1

( ) ( ),
n n

k j j

j k j k

w p w p   

  

                        (17) 267 

and 268 

1

1 1

( ) ( ),
k k

k j j

j j

w p w p


  

 

                         (18) 269 

respectively. 270 

The value of the potential outcome can be denoted by  271 

0,
( ) , { , }.

( ) ,

g

lk ik

lk l

lk

u u
v u l d a

u otherwise

 
 

 

               (19) 272 

where both g  and l  are the exponent parameters (risk-seeking and risk-averse) and 273 

   is the sensitivity parameter, which measures the sensitivity to losses than gains. 274 

Therefore, the CPV is given by  275 

12

13

1

= ( ) ( ) ,d dk k d k

k

V v u v u  



                      (20) 276 

and 277 

2,3,4,5,6,9,10,11,13 1,7,8,12

= ( ) ( ) .a ak k ak k

k k

V v u v u  

 

                (21) 278 

respectively. 279 

In this paper, it is assumed that the defender allocates the resource evenly into the 280 

network nodes, thus the defender’s CPV depends only on the attacker’s strategy. On the 281 

other hand, the attacker knows the defender’s allocation and chooses its resource 282 

allocation to maximize its own CPV as represented by Eq. (8). Thus, the attacker has 283 

*( ) ( ( )), { , }, {1,2,3,4,5,6}ij a ijR ArgMax V r i A B j   . As for the defender, there should 284 

be 
* *( ) ( ( )), { , }, {1,2,3,4,5,6}ij d ijr ArgMax V R i A B j   . 285 

 286 

3. Optimal Attack Strategies 287 

Without loss of generality, we first assume that the resources of both players are 288 

the same, 12r R   , for instance, and will relax this assumption in the extension. 289 
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Further, in the benchmark, we assume that both the unit cost of protection and the unit 290 

cost of attack equal to one, i.e., 1c C  . Moreover, we set the risk parameters as 291 

0.85, 0.85, 4.10, 0.60g l       and 0.70  , and conduct sensitivity analysis to 292 

study the influence of risk preferences. First, we calculate the situation where both the 293 

attacker and the defender evenly spend their resources on each node and the results go 294 

to 51dV    and 24.1aV  . Later, the backward induction is employed to obtain the 295 

optimal attack and defense strategies. For a given defense strategies combination 296 

1 1 6 6( , ) ( , ,..., , )Aj Bj A B A Br r r r r r  , the attacker will choose the optimal attack strategies 297 

combination 
1 1 6 6( , ) ( , ,..., , )Aj Bj A B A BR R R R R R   to maximize its CPV, say that, 298 

* *( , ) argmax( ( , ))Aj Bj a Aj BjR R V r r . 299 

In this section, we assume that the defender will evenly allocate all its resource 300 

into all nodes in the interdependent networks, that is, 1ijr   . For simplicity, it is 301 

assumed that the resource allocation on each node must be integer. Thus, the optimal 302 

attack strategy combination can be obtained, as performed in Table 2. Note that the 303 

entries without any number equal to zero by default. 304 

Table 2 The Optimal Attack Strategies when Defender Evenly Distribute the Resource 305 

*

4AR  
*

5AR  
*

4BR  
*

5BR  aV  dV  

3 3 3 3 32.13 -73.5 

In Table 2, variables such as 
*, { , }, 1,2,3,6ijR i A B j    are not assigned any 306 

values, and similarly hereinafter. It is interesting to point out that in Table 2, the optimal 307 

attack strategies require the attacker to spend all resource into A4, B4, A5, and B5, 308 

respectively. In fact, when the defender evenly distributes the resource into all nodes, 309 

the optimal strategies for the attacker is to allocate all resource evenly into four nodes: 310 

A4, B4 A5, and B5 and the corresponding CPV for both players will go to 73.5dV    311 

and 32.13aV  . Since the failure of A5 and B5 will finally lead to the failure of A3-A6 312 

and B3-B6, the network will be destructed, as shown in Figure 1. Moreover, the failures 313 
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of A4 and B4 will lead to the failure of A4 and B4, which divides the original network 314 

into two parts with each part combining two interdependent pairs of nodes. Any further 315 

node failure will result in the destruction of the network, which makes the whole 316 

network more vulnerable than before. 317 

 318 

4. Optimal Defense Strategies 319 

For the defender who moves first, the optimal defense strategies go to the case 320 

where the CPV of the defender is maximized. Since the attacker can observe the action 321 

of the defender, it will always take the strategy that benefits itself most. Thus, the 322 

defender should compare the CPVs under all possible combinations of defense 323 

strategies and choose the largest one among them. That is, 324 

* * * *( , ) argmax( ( , ))Aj Bj d Aj Bjr r V R R .  325 

Solving the optimal defender strategy needs a two-fold optimization scheme where 326 

the optimal attack strategy needs to be solved for any fixed defense strategy, based on 327 

which the optimal defense strategy should be solved. It would be time consuming to 328 

use enumeration to solve the two-fold optimization, thus we employ an improved 329 

algorithm to simplify the calculation of the optimal defense strategy. 330 

Two methods are applied to decrease the complexity of the problem: memory 331 

search and spiritually pruning (Polyn et al. 2005; Ng et al. 1998). From the system 332 

structure, it can be seen that the CPV of both players remain the same if the defender 333 

and the attacker simultaneously swap the resource spent on a node in subnetwork A and 334 

the corresponding node in subnetwork B. Therefore, without loss of generality, we 335 

assume that the resource the defender spends into the network of A will always be less 336 

than or equal to those spent into B, for instance, Aj Bjr r . Moreover, it is easy to notice 337 

that: if the defender spends no resource on one node, the attacker will never spend more 338 

than 1 unit of its resource into attacking the node. This is because 1 attack resource is 339 

enough to destroy an unprotected node. We can therefore use spiritually pruning to 340 

eliminate the irrational cases. 341 

Hence, the optimal defense strategy, the responsive attack strategy and their 342 
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corresponding CPVs are performed in Table 3. 343 

Table 3 Optimal Strategies under Benchmark 344 

*

2Ar  
*

4Ar  
*

5Ar  
*

1Br  
*

2Br  
*

3Br  
*

4Br  
*

5Br  
*

6Br  dV  

2 2 2  2  2 2  -68.4 

*

2AR  
*

4AR  
*

5AR  
*

1BR  
*

2BR  
*

3BR  
*

4BR  
*

5BR  
*

6BR  aV  

  4 1  1  5 1 30.15 

In Table 3, variables such as 
* , 1,3,6Ajr j    and 

* , 1,3,6AjR j    are not assigned 345 

any values. We now obtain the optimal defense and attack strategies under the 346 

benchmark. The defender moves first and allocates 2 units of resource into each node 347 

of A2, B2, A4, B4 and A5, B5. The attacker, having observed the defender’s action, will 348 

now choose to spare 4 units of resource for A5, 5 units of resource into B5, and 1 unit of 349 

resource into each of the nodes of B1, B3, and B6. The CPV of the defender under this 350 

case is higher than the case in Table 2 where the defender evenly distributes the resource 351 

and the CPV of the attacker decreases. The results here again prove the significance of 352 

the node A4, B4 and A5, B5. 353 

There are two additional cases that deserve mentioning: the attacker moves first, 354 

and both players move simultaneously. For the former scenario, the attacker and the 355 

defender in backward induction should be exchanged, as well as their decision variables. 356 

The defender first chooses the optimal strategy to maximize its CPV, i.e., 357 

* *( , ) argmax( ( , ))Aj Bj d Aj Bjr r V R R . The attacker then compares all possible outcomes and 358 

chooses the dominating strategy, i.e., * * * *( , ) argmax( ( , ))Aj Bj a Aj BjR R V r r . The specific 359 

calculating approach is exactly the same as the case where the defender moves first. As 360 

for the latter scenario, there will be no need for the application of backward induction. 361 

For each player, it independently chooses its strategy through maximizing its CPV. In 362 

general, one can obtain the optimal attack and defense strategies through repetitively 363 

going through Section 3, introducing the attacker’s and the defender’s decision 364 

variables, respectively. The reader is referred to Hausken et al. (2009) and Hausken 365 

(2011) for more details on the simultaneous game. 366 
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 367 

5. Impact of Risk Preferences 368 

For the sake of distinguishing our proposed CPT model from the traditional 369 

Tullock model, we concentrate on the analysis of risk preferences in this section. We 370 

also conduct sensitivity analysis on the resource held by the defender and the attacker 371 

as well as the unit cost of each player. To facilitate the exposition, the expressions, 372 

proofs, and relevant figures are given in the online appendix.  373 

The comparative analysis on resource shows that: if the defender owns more 374 

resource than the attacker and evenly distributes it into all nodes, then the optimal attack 375 

strategy is to centralize fire, say that, attack the most vulnerable nodes. In contrast, 376 

when the attacker owns more resource than the defender, then the optimal strategy for 377 

the attacker is to spend all resource into four vulnerable nodes: A4, B4 and A5, B5. In 378 

addition, if the defender evenly distributes resource into all nodes, then the summation 379 

of both players’ CPV only depends on the risk parameter. Results on the analysis of 380 

resource vary from the traditional wisdom proposed in previous literature. The 381 

traditional Tullock model, used by many researchers, i.e., Wu et al. (2018), showed that 382 

the reliability of the defender, will be severely damaged if the counterpart owns resource 383 

advantage. The CPT model, through taking the risk attitude into account, demonstrated 384 

the existence of another equilibrium. The advantageous player in our proposed model 385 

will allocate the majority of its resource to the most vulnerable nodes within the 386 

subnetwork and the passive player will allocate the majority of its resource to defending 387 

these nodes, leading to a higher summation of CPV than the benchmark. In other words, 388 

when players are risk-sensitive, their strategies will change and the second mover 389 

benefits more. The players can therefore assess the risk parameters for the counterpart 390 

from the historical data, precisely deduce the action that is going to take, and then 391 

respond in a more efficient way. 392 

We continue our analysis through concentrating on two different risk behaviors: 393 

risk-seeking or risk-averse. When 0 1g  , the value function exhibits risk aversion 394 

over gains and when 0 1l  , the function favors risk seeking over risk losses. In fact, 395 
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the CPV is influenced by the risk preferences, which makes the changes on the 396 

attacker’s risk parameters may not only alter the attacker’s CPV but also 397 

correspondingly change the optimal attack strategies. As the defender should anticipate 398 

the optimal attack strategy when choosing its defense strategies, the optimal defense 399 

strategies will change accordingly. Therefore, to analyze the influence of risk 400 

preferences on the attack-defense game, we now alter the parameters of ,g l  and  , 401 

respectively, to analyze the behavior of each party under the case where the players 402 

become more risk-averse, risk seeking or more sensitive to losses than gains.  403 

In the online Appendix 1, we prove the optimality of optimal attack strategies and 404 

the invariance of the summation of CPV of both players. Therefore, we directly show 405 

that the optimal attack strategies when the defender evenly allocate the resource are 406 

4 3ir    and 5 3ir   . The CPV of each player are presented in Figure 3 and the 407 

summation of CPVs under the alteration of g  and l  are performed in Figure 4. 408 

 409 
Figure 3 CPVs of Both Players under Different Risk Preferences 410 

Observation 1. The CPV of the attacker depends the majority on g  while the 411 

CPV of the defender depends the majority on l . When the attacker becomes more risk-412 

averse than its attitude in benchmark, its CPV increases. When the attacker becomes 413 

more risk-seeking, its CPV slowly decreases. Additionally, the summation of the CPV 414 

decreases with the increase of l  and increases with the increase of g . 415 

It is easy to understand the relationship between CPV and the risk parameters from 416 

the equations. We can therefore conclude that: when the defender evenly distributes the 417 
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resource into all nodes, the attacker should choose the most conservative method in 418 

order to maximize the CPV. Note that we do not discuss the influence of risk preferences 419 

on the CPV of the defender here since we have already fixed the defending strategy. 420 

From the blue plane shown in Figure 3, when both players become more risk-averse, 421 

then the CPV of defender increases faster than the decrease of the CPV of the attacker. 422 

In reality, when the attacker cares more about the risk, then the strategy will become 423 

more conservative than before and thus increase the social welfare. Interestingly, we 424 

find that the attacker has the incentive to become risk-averse, which may finally 425 

increase the social welfare. This is counterintuitive since the reliability model applied 426 

in previous literature demonstrates that the attacker’s radical strategies will lead to a 427 

lose-lose situation. In contrast, for the interdependent network, the design of attacking 428 

strategy is more challenging than the normal system without interdependency since the 429 

resource should be divided. In effect, a more risk-averse attacker and its conservative 430 

strategy increases the summation of CPV. 431 

Now we perform the results under the alteration of   in Figure 4. 432 

  433 

Figure 4 CPVs under the Alteration of   434 

Observation 2. If the players become more sensitive to losses than gains, the 435 

attacker’s CPV will decrease indistinctively. However, the defender’s CPV will greatly 436 

decrease, thus lower down the summation of CPVs.  437 

Observation 2 is easy to understand based on Eqs. (20) and (21). In reality, if the 438 

players care more about its losses, then the strategy will alter to a conservative way, 439 

which reaches the same effort as shifting g . 440 

Interestingly, we find the same optimal attack and defense strategy as shown in 441 

Table 3 under the alteration of the risk preferences, for instance, no matter whether both 442 
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players become more risk-averse or risk-seeking, the optimal strategy for both players 443 

remain the same. Therefore, we now directly perform the CPV for both players when 444 

the defender is dynamic allocating its resource in Figure 5. 445 

 446 
Figure 5 CPVs of Both Players under Different Risk Preferences 447 

Observation 3. The defender’s CPV only depends on the risk preference of l  448 

and the attacker’s CPV only depends on the risk preference of g . Additionally, the 449 

summation of the CPV decreases with the increase of l  and increases with the increase 450 

of g . 451 

Since the attacker will always choose the strategy to maximize its CPV after 452 

observing the action of the defender, then for the attacker, cases 1, 7, 8, or 12 will never 453 

occur. Therefore, the terms conclude parameter l  in the expression of the attacker’s 454 

CPV will be eliminated, making the CPV only depends on g  . Similar, since the 455 

strategy of the defender will be countered by the attacker, the network will fall in case 456 

13 with no doubt. Thus, the CPV of the defender will only depend on l . 457 

We continue our analysis by examining the impact of the sensitivity to loss than 458 

gains. The results of CPV are shown in Figure 6. 459 
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 460 

Figure 6 CPVs under the Alteration of   461 

Observation 4. If the players become more sensitive to losses than before, the 462 

CPV of the attacker will remain the same. However, the CPV of the defender will 463 

greatly decrease, thus lower down the summation of CPVs. 464 

Recall that the CPV of the attacker under this case does not depend on l  and  , 465 

making the reason behind is similar as the explanation of observation 2. Before ending 466 

this section, we summarize the impact of CPT model and how can the new model be 467 

applied in providing guidance to the attacker and the defender in interdependent 468 

network. Traditional reliability modelling techniques usually assume that all players are 469 

entirely reasonable and risk-neutral. However, in reality, some players are engaging risk 470 

and endeavoring to take radical strategy to destroy its enemy regardless of cost. On the 471 

contrary, some players are afraid of taking risk and will always choose the most 472 

conservative strategy to minimize the expected loss. The CPT model, benefits to the 473 

literature since it incorporates player’s risk attitude into concern. Taking the benchmark 474 

as an example. The Tullock model results in a static strategy set for both the attacker 475 

and the defender. However, the CPT model provides suggestions in a dynamic strategy 476 

set where more risky strategy, i.e., giving up some nodes, or more conservative strategy, 477 

i.e., evenly protection, can be employed based on different risk parameter combinations. 478 

Both the attacker and the defender, can always try to deduce the risk sensitivity for the 479 

other side, and make their decision more wisely and targeted. 480 

 481 

6. Discussion 482 

The preceding sections investigate the situation for a network that is composed of 483 

a small number of nodes. For complex networks composed of a large number of nodes, 484 

one can use simulation to estimate its reliability. In the literature, there are several 485 
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methods have been proposed.  486 

 Wandelt et al. (2018) proposed a new framework, referred to as quick robustness 487 

estimation, for assessing the robustness of a network in sub-quadratic time. Its 488 

computational speed is significantly faster than betweenness centrality.  489 

 One can consider the reorganization of data structure. For example, Benson et 490 

al. (2016) proposed a method to solve the large-scale complex networks through 491 

clustering the network on the basis of higher-order connectivity patterns. A 492 

series of meta-heuristic algorithms can also benefit the computational speed 493 

(Šenkeřík et al. 2018).  494 

To calculate the robustness of a complex system, one cannot theoretically derive 495 

the dominating strategies for all players (see the game theoretical approach in Li et al. 496 

(2019)). But it is possible to numerically investigate the optimal strategy based on the 497 

design of algorithms and simulation. Additionally, quantum computer and quantum 498 

computation are gaining extreme popularity these years. The construction of quantum 499 

system accelerates the computational efficiency and benefits all fields, i.e., machine 500 

learning and large-scale calculation. With the introduction of quantum computer, even 501 

for complex systems with amounts of node, BDD can produce accurate results in an 502 

acceptable time duration. 503 

 504 

7. Conclusions and Future Works 505 

This paper analyzes the attack-defense game of a network consisting of 506 

interdependent subnetworks. The defender moves first and allocates its limited resource 507 

to the nodes and the attacker then moves. Both players choose their strategies to 508 

maximize their own cumulative prospect values. The binary decision diagram is used 509 

to obtain the potential outcomes of the given network. Since the cumulative prospect 510 

theory is used, the risk preferences of both players can be depicted and the alterations 511 

of the optimal strategy combination are illustrated to find the influence under different 512 

cases. 513 

Our future work will consider a possible extension of the case where both players 514 

in the attack-defense game own unlimited resource. Then they should only optimize the 515 
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allocation and some close-formed solution may be obtained. Besides, our future 516 

research will incorporate the use of false targets of the defender to increase the 517 

survivability of each node in the networks. Additionally, as we mentioned in Section 4, 518 

our future work will also incorporate two different scenarios: the attacker moves first, 519 

and both players move simultaneously, and compare the result with our proposed model. 520 

Finally, one can consider the calculation efficiency optimization. Simulation methods, 521 

heuristic algorithms, and data reorganization are all potentially useful in employing 522 

BDD to solve a large-scale complex system. 523 
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