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Abstract: In this study, a closed loop brain stimulation control system scheme for epilepsy seizure

abatement is designed by brain-machine interface (BMI) technique. In the controller design process,

the practical parametric uncertainties involving cerebral blood flow, glucose metabolism, blood oxygen

level dependence and electromagnetic disturbances in signal control are considered. An appropriate

transformation is introduced to express the system in regular form for design and analysis. Then

sufficient conditions are developed such that the sliding motion is asymptotically stable. Combining

Caputo fractional order definition and neural network (NN), a finite time fractional order sliding

mode (FFOSM) controller is designed to guarantee reachability of the sliding mode. The stability and

reachability analysis of closed loop tracking control system gives the guideline of parameter selection,

simulation results based on comprehensive comparisons are carried out to demonstrate the effectiveness

of proposed approach.
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1. Introduction

Brain-machine interface (BMI) technology has a wide range of applications for various neural system

diseases therapy. The purpose of brain-machine interface or brain-computer interface (BCI) is to

decode motion-related neural signals into control signals for driving output to guide computer cursors,

prosthetics and other auxiliary equipment. The ultimate goal of research in this area is to rehabilitate

patients who have paralyzed or lost their limbs due to neurological disease or trauma [1]-[3]. In the

past ten years, advances in neural recording technology have greatly promoted the development of BMI

technology and successfully carried out relevant human clinical experiments [4]-[5]. The development

of BMI technology has greatly promoted the application of neuroscience in rehabilitation medicine

[6]. Based on the above research basis, BMIs or BCIs technology has been widely used in multiple
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aspects, such as the closed-loop brain-computer interface technique for the treatment of refractory

epilepsy [7], and wireless brain-computer interface-controlled exoskeleton [8], the application in stroke

rehabilitation [3] and so on. Therefore, the research on brain-machine interface technology has a very

broad prospect.

Epilepsy is a serious neurological disease characterized by unprovoked recurrence and about 50

million people suffer from epilepsy in the world [9]. More than 30% of patients with epilepsy continue

to relapse after receiving treatment even if much related research work has been carried out in many

countries for the treatment of epilepsy [10]. Moreover, various aspects of social life of patients with

epilepsy are seriously affected by epilepsy [12]. Therefore epilepsy has been considered as a serious

public health problem [13]. According to some surveys, patients with epilepsy are more likely to

be divorced and discriminated against [11]-[12]. At present, there are four types of seizure patterns:

focal, systemic, comprehensive and unknown [14]. Absence epilepsy(AE) is a form of systemic epilepsy,

which has features including sudden arrest in activity, awareness and responsiveness and the body is

possibly accompanied by some slight motor characteristics [15]. Thus the research of absence epilepsy

is significant and far-reaching.

The most common treatment for epilepsy now remains in drug-assisted or surgical resection [16].

In some investigations, it has shown that long-term service of epilepsy drugs may lead to liver decline

or even damage due to epilepsy is a long-term chronic disease [17]-[18]. On the other hand, neuro-

surgical resection of the epileptic area cannot be applied to patients with systemic epilepsy [19]-[20].

Therefore, it urgently needs an alternative method for absence epilepsy to solve the above problems

due to limitations of the above drugs and surgical treatment [17]-[20]. The existing study shows that

appropriate brain stimulation techniques can greatly reduce the frequency of seizures, that is, inhibit

seizures [21]-[25]. Based on existing studies, it follows that brain stimulation is a promising treatment

for epilepsy [21]-[23]. Brain stimulation for epilepsy has many methods, and open-loop brain stimula-

tion and closed-loop brain stimulation are two typical stimulation methods [23]. Although open-loop

brain stimulation is used more widely, compared with its effect, closed-loop brain stimulation can

avoid the side effects of continuous stimulation brought and achieve the good effect of eliminating

seizures [22]-[24]. When the closed loop brain stimulation for epilepsy is carried out by BMI, the brain

is connected to computer for monitoring continuously the patient’s EEG, which reflects the patient’s

neurological condition. After data processing and model analysis, stimulation therapy is then derived

to alleviate or eliminate epilepsy symptoms. Thus, different thalamic models are crucial in the study

of seizures [26]-[27]. Cortical computational models of the thalamus have been developed [27]-[30] and

the lumped model has been built [31]. The thalamic-cortical circuits computational model has also

been developed [32]. Specially Taylor has established a neural cluster model for seizures [33]. However,

the closed loop brain stimulation based on BMI for epilepsy is still in the early stages of research, and

there is no a mature and complete system design scheme, which motivates us to undergo this research.

Therefore, based on the above-mentioned achievements of seizures model, we will further study and

explore the closed loop control scheme of brain stimulation, and then develop a new controller to

promote the effectiveness of epilepsy seizure abatement.

With the development of seizures control technique, Taylor proposed a single-pulse stimulation

control requiring optimal stimulation time and amplitude [33]. Considering the high nonlinearity,
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Figure 1: Brain structure

unmodeled dynamics and ubiquitous disturbance in the nervous system, seizure oscillations, noise

and disturbance changes are not be accurate, therefore the method in [33] can not deal with epilepsy

seizures very well [34]-[35]. Based on the above problems, Ge proposed a robust closed-loop control

which adapts to high nonlinearity, unmodeled dynamics and ubiquitous disturbance of nervous system

and has stable control for seizures [20], but slow convergence rate is its biggest drawback. The finite

time sliding mode control technique can accelerate system convergence and is an effective strategy for

nonlinear systems with high nonlinearity, unmodeled dynamics and unknown disturbances [36]-[39].

Considering this problem, a finite time sliding mode controller is proposed with radial basis function

neural networks and fractional order sliding manifold based on a well-established thalamocortical

neural mass model. The designed closed loop control system scheme based on BMI in this paper

can guarantee the output of thalamocortical system converge to the desired value more quickly and

accurately.

2. Problem Statement

The structure of brain is shown as Figure 1. Deep brain stimulation (DBS) is an effective treatment of

a variety of neuropsychiatric disorders, including medication intractable Parkinson’s disease, epilepsy,

primary dystonia, essential tremor and so on [1]-[2]. The DBS method mainly inserts the electrodes

into a specific nucleus in the brain through stereotactic technology and microelectrode recording

technology, and suppresses the abnormal brain nucleus discharge by continuous high-frequency pulse

electrical stimulation, thereby achieving the therapeutic effect. Since it is unreliable to utilize open loop

brain neural stimulation to eliminate the pathological spike-and-wave discharges when absence epilepsy

seizures, it is required to seek a more comprehensive closed-loop stable control scheme. However,

epilepsy seizure abatement based on closed loop control system has not been studied very well and the

existing results are very few [12], [20]. Therefore, this paper focus on a closed loop control strategy for
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Figure 2: Closed loop brain stimulation control system scheme based on BMI for epilepsy

Figure 3: Electroencephalogram test cap for epilepsy

epilepsy seizure abatement based on DBS [18]-[20], which can adjust the stimulus signal in real time

by the controller in computer. Certainly, the connection between the brain and the computer can be

wireless, as shown in Figure 2, or wired as Figure 3.

The high-frequency pulse stimulation string in deep brain stimulation (DBS) can not only shorten

the duration of seizures but also reduce the intensity of seizures [21]-[25], based on which a sliding

mode control scheme is developed for epilepsy seizure abatement. It is assumed that there exists a

cortical area exhibiting normal background activities before absence epilepsy seizures happen. The

normal neural electrical signals collected by the recording electrodes are defined as the desired brain

signal yd, and then a controller could be developed to force the brain cortical areas with pathological

characteristics to behave in a similar way as the dynamics of the normal brain signal. The smaller

difference between the pathological brain signal dynamics y and the normal one yd, the better the

effect of epilepsy seizure abatement. Thus, the seizure abatement problem can be transformed to a

tracking control problem and our control target is to make abnormal brain activity signal y quickly

and accurately track desired normal brain activity signal yd.
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Considering extensive nonlinear term owing to uncertainties in cerebral blood flow, glucose metabolism,

blood oxygen level dependence (BOLD) and electromagnetic disturbances, which may affect network

connectivity and neural electrical signal, the interaction within the thalamocortical system of epilepsy

is modeled by the following differential equations [20]:{
v̇(t) = Avv(t) +Bvu(t) + Ψ(v(t)) + Ξ(v, t)

w(t) = Hv(t)
(1)

where v = [v1, v2, v3, v4]
T = [TC,RE, IN, PY ]T is the system state variable and v ∈ R4×1, u ∈

Rm, 0 < m < 4 is the control input variable, the output variable w ∈ Rm, the output matrix

H = [h1, h2, h3, h4] ∈ Rm×4 is determined later. The control matrix is Bv ∈ R4×m, Ξ(v, t) =

[Ξ1,Ξ2,Ξ3,Ξ4]
T is the synthetic unknown effect of uncertainties and disturbances, Ψ(v) = [Ψ1,Ψ2,Ψ3,Ψ4]

T

is the known nonlinear terms as given in follows.

Ψ(v) =


τt(ht − ctrβ + cte(1 + ε−v4)−1)

τr(hr + (crt − crr)β + cre(1 + ε−v4)−1)

τi(hi + cie(1 + ε−v4)−1)

τe(he + cet(1 + ε−v1)−1 + cei(1 + ε−v3)−1

+cee(1 + ε−v4)−1)

 ,

Av =


−τt −τtctrα 0 0

τrcrtα −(τr + τrcrrα) 0 0

0 0 −τi 0

0 0 0 −τe

 .

Noting that IN , TC, PY andRE are all the state variables, representing the fractional firing activity

in each neuronal population. τi, τt, τe, τr are time scale constants mediated by different excitatory and

inhibitory neuro-transmitters. cie, cte, ctr, cee, cei, cet, cre, crt, crr are the connectivity strengths between

different neuronal populations. While appropriate constants α, β are the linear activation function

describing the thalamic subsystem, the appropriate constant ε > 0 describes the cortical dynamics.

The specific meaning and values of parameter used in this paper are given in [20]. The desired output

yd ∈ Rm can be measured from a normal minicolumn.

Assumption 1 [20] The matrix pair (Av, Bv) is controllable and rank(Bv) = m.

Under the condition of Assumption 1, there exists an invertible matrix T ∈ R4×4 such that the

coordinate transformation x = Tv holds, then the matrix pair (Av, Bv) with respect to the new

coordinate x have the following form

A =

[
A11 A12

A21 A22

]
= TAvT

−1, B =

[
0

B2

]
= TBv

where A11 ∈ R(4−m)×(4−m) and matrix B2 ∈ Rm×m is nonsingular. It is noticed that the matrix T

can be obtained using basic matrix transformation theory.
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Then in the new coordinate system, system (1) is rewritten by
ẋ1 = A11x1 +A12x2 + g1 + η1

ẋ2 = A21x1 +A22x2 +B2u+ g2 + η2

y = Cx2

(2)

where x = col(x1, x2) with x1 ∈ R4−m and x2 ∈ Rm, g(x) = [g1, g2]
T = TΨ(T−1x) with g1 ∈ R4−m

and g2 ∈ Rm. η(x, t) = [η1, η2]
T = TΞ(T−1x, t) with η1 ∈ R4−m and η2 ∈ Rm. A12, A21, A22 are

appropriate matrices. The system output y ∈ Rm is determined by simulated EEG and C ∈ Rm×m is

a positive definite invertible diagonal matrix, C = diag{c1, . . . , cm}.

Noting that |Λ| denotes the norm of Λ in this paper, where Λ is a matrix or a constant.

3. Controller Design for Epilepsy

In this position, some definition and lemma are introduced to derive the main results of this study.

Definition 1 [41] The Caputo fractional calculus of the continuous integrable function f is uni-

formly defined as,

bD
a
t f(t) =

[
1

Γ(m−a)

∫ t
0

f (m)(τ)
(t−τ)a−m+1dτ, m− 1 < a < m
dm

dtm f(t), a = m

where m is the minimum integer larger than a, the definition of Γ(·) is Γ(q) =
∫ t
0 e

−ttq−1dt and dm

dtm

represents for traditional differential. When a > 0, sign bD
a
t represents fractional order differential

(FOD), while a < 0, it represents fractional order integral (FOI) on the interval [b, t]. FOD operation

can change a special FOI, which possesses a certain characteristic of memory. For simplicity and

convenience, symbol Da is used instead of 0D
a
t in this paper.

Lemma 1 [36] Consider the following system:

ẋ = f(x, t), f(0, t) = 0, x ∈ U ⊂ Rn (3)

where f : U × R+ → Rn is continuous on an open neighborhood U of the origin. Assume that there

exists a Lyapunov function V (x) defined on a neighborhood of the origin, which satisfies an extended

Lyapunov description with the form of fast terminal sliding mode (FTSM) as

V̇ (x) + λ1V (x) + λ2V
α(x) ≤ 0

Then system (3) is locally finite-time stable, and the settling time can be determined as

Treach ≤ 1

λ1(1− α)
ln

λ1V
(1−α)(x0) + λ2

λ2

where λ1 > 0, λ2 > 0, α ∈ (0, 1).

Lemma 2 Consider the fractional order equation

Daz + Lz = 0 (4)
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where a ∈ (0, 1) is an arbitrary real constant, z ∈ Rm is an unknown vector to be solved and

z = [z1, . . . , zm]T , L denotes the constant diagonal matrix and L = diag{li}(i = 1, . . . ,m), li > 0.

Then the solution of equation (4) is

zi = µit
−a, i = 1, . . . ,m

where µi is a positive constant.

Proof: See the proof of Theorem III.2 in [42].

3.1. Design of Sliding Mode Surface

In this section, a sliding surface is designed for the system (2) and the stability of the corresponding

tracking control system is analyzed.

For system (2), assume that the desired output yd is differentiable. Then the tracking error e = y−yd,

and its derivative with respect to time is

ė = C(A21x1 +A22x2 +B2u+ g2 + η2 − C−1ẏd) (5)

To make the dynamics of the thalamocortical system of epilepsy (2) to track the desired normal

activities, namely y → yd, a sliding mode surface will be developed to make the dynamical error

system stable.

The composite sliding surface for system (2) using fractional order sliding mode technique can be

selected as follows.

s = λ1D
a1e+ λ2C

−1e (6)

where s ∈ Rm, λ1 > 0, λ2 > 0, 0 < a1 < 1 are designed constants, respectively.

Assumption 2 The system output y = [y1, . . . , ym]T , then its initial value yi(0)(i = 1, . . . ,m) is a

positive constant.

Theorem 1 Consider the control system (5). On the Assumptions 1-2, the sliding motion of

system (5) corresponding to the sliding surface (6) is asymptotically stable.

Proof: During sliding motion s = 0, the following equation can be obtained from (6)

Da1e+Πe = 0 (7)

where Π = λ2
λ1
C−1 is a diagonal matrix, Π = diag{πi} (i = 1, . . . ,m) and πi > 0.

Under Lemma 2, the solution of above equation is as follows

ei = µit
−a1 , µi > 0

Consider the Lyapunov function candidate

V1 =
1

2
eT e
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Figure 4: NN-FFOSM control scheme for epilepsy seizure abatement

Then the derivative of V1 along the trajectory of system (7) is

V̇1 = eT ė = Σm
i=1 − a1µ

2
i t

−2a1−1

Thus V̇1 < 0 for t ∈ (0,∞). It is shown that the sliding motion of system (5) corresponding to the

sliding surface (6) is asymptotically stable, namely, limt→∞ ei = limt→∞(yi − yid) = 0. Therefore, it

is guaranteed that the output of system (2) tracks the desired signal after the system is driven to the

designed sliding surface (6). Proof is completed.

Necessary conditions to ensure this sliding motion is attained and maintained will further be devel-

oped.

3.2. Reachability Analysis

It is extremely important to track desired signal with the rapidity and accuracy [43]-[44], which

determines the therapeutic effect. However, the conventional sliding mode control usually results in

low precision and convergence rate problems. To solve these problems, a finite time fractional order

sliding mode (FFOSM) control scheme for epilepsy seizure abatement is designed as shown in Fig. 4.

Considering the synthetic effect of uncertain change in cerebral blood flow, glucose metabolism,

BOLD and electromagnetic disturbances, the upper bound of the synthetic effect may be unknown.

Then, the uncertainty term η2 affected by external stimulation can be approximated by employing an

ideal RBFNN as

η2(x,W ) = W Tφ(x) + ϱ, |ϱ| ≤ ζ (8)

where W ∈ R1×m is an ideal weight vector from the hidden layer to the output layer, φ(x) is the basis

function, ϱ ∈ Rm×1 is the approximation error vector and ζ is an unknown positive constant.

Let Ŵ be the estimation of W , we have

η̂2(x, Ŵ ) = Ŵ Tφ(x)
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Let W̃ = W − Ŵ be the weighting estimation error of W , we have

η2(x,W )− η̂2(x, Ŵ ) = W̃ Tφ(x) + ϱ (9)

Assumption 3 [41] The estimation error ϱ is norm-bounded as |ϱ| ≤ ζ, where ζ > 0 is an unknown

constant.

Remark 1 Since ϱ should be very small when η̂2(x) approximate η2(x) well, along with the control

command u bounded in any practical system, it is feasible to assume ϱ in (9) is norm-bounded.

However, it is not required that the bound ζ is known.

For system (2), differentiating (6) and using (5), it follows that

ṡ = λ1D
a1+1e+ λ2C

−1ė = λ1D
a1+1e+ λ2(A21x1 +A22x2 +B2u+ g2 + η2 − C−1ẏd) (10)

The fractional order controller can be designed as

u = B−
2 [C

−1ẏd − η̂2(x, Ŵ )− λ1

λ2
Da1+1e−A21x1 −A22x2 −

k2
λ2

s− k3
λ2

|s|b2sign(s)− g2 − Imζ̂] (11)

where B−
2 is the generalized inverse matrix of B2. a1, b2, k2, k3 are designed constants with 0 <

a1, b2 < 1, k2 > 0, k3 > 0. Im ∈ Rm×1 is m-dimensional unit vector.

Theorem 2 Consider the control system (5). On the Assumptions 1-3, the fractional order sliding

mode control law (11) can drive the system (5) to the composite sliding mode surface (6) in finite time

and maintain a sliding motion on it thereafter if the adaptive update laws are chosen as

˙̂
W = πwλ2s

Tφ(x, Ŵ ) (12)

˙̂
ζ = πζλ2I

T
ms (13)

where ζ̂ is the estimation of ζ, πw > 0 and πζ > 0 are the designed constants.

Proof: The Lyapunov candidate function is chosen as

V =
1

2
sT s+

1

2
W̃π−1

w W̃ T +
1

2
ζ̃π−1

ζ ζ̃T (14)

Taking its time derivative, we have

V̇ = sT ṡ− W̃π−1
w

˙̂
W T − ζ̃π−1

ζ
˙̂
ζT

= sT [λ1D
a1+1e+ λ2(A21x1 +A22x2 + g2 +Bu+ η2 − C−1ẏd)]− W̃ Tπ−1

w
˙̂
W − ζ̃Tπ−1

ζ
˙̂
ζT (15)

Substituting (11) into (15), one can obtain

V̇ = sT [−λ2η̂2(x, Ŵ )− k3|s|b2sign(s)− λ2Imζ̂ + λ2η2 − k2s]− W̃π−1
w

˙̂
W T − ζ̃π−1

ζ
˙̂
ζT

According to Assumptions 3, and using (12)-(13), yields

V̇ = sT [λ2W̃
Tφ(x, Ŵ ) + λ2ϱ− λ2Imζ̂ − k3|s|b2sign(s)− k2s]− W̃λ2sφ(x, Ŵ )− ζ̃λ2s

T Im

≤ −k3|s|b2+1 − k2|s|2 (16)
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Therefore V̇ ≤ 0, namely s and the estimation error W̃ , ζ̃ all converge to zero asymptotically.

Let k1 = 1
2V (π−1

w |W̃ |2 + π−1
ζ |ζ̃|2), it will be known that 0 < k1 < 1 and 0 < 1 − k1 < 1 for t > 0.

And (16) can be rewritten by

V̇ = −2
b2+1

2 k3(|s|2/2)
b2+1

2 − 2k2
|s|2

2
= −2

b2+1
2 k3(1− k1)

b2+1
2 V

b2+1
2 − 2k2(1− k1)V (17)

where 0 < b2+1
2 < 1.

Then (17) can be simplified into

V̇ ≤ −κ1V − κ2V
b2+1

2 ≤ 0 (18)

where κ1 = 2k2(1− k1) and κ2 = k3(2− 2k1)
b2+1

2 , it is easily known that κ1 > 0 and κ2 > 0.

Therefore, from Lemma 1 the tracking error system (5) is finite time asymptotically stable. The

system (5) can be driven to the sliding mode surface (6) in finite time and maintains a sliding motion

on it. Moreover, the reaching time satisfies

tc ≤
2

κ1(1− b2)
ln
κ1V

(1−b2)/2 + κ2
κ2

From sliding mode control theorem, Theorem 2 together with Theorem 1 shows that the tracking error

e of closed loop system (2) is asymptotically stable, that is y accurately tracks desired signal yd when

t ≥ tc. The proof is completed.

Remark 2 The normal sliding mode control (SMC) technique has just been applied in controller

design for epilepsy seizure abatement [20]. Instead of normal sliding mode (NSM) control in [20], a

fractional order sliding mode (FOSM) technique are adopted in Theorem 2, which will provide more

accurate tracking and control performance before and after reaching sliding mode surface.

Remark 3 In [40] an integer order sliding mode (IOSM) control scheme based on exponential

approaching law is developed. Although the finite time fractional order sliding mode (FFOSM) in

this paper also adopts the power exponential approaching law, different from [40], this controller

combining fractional order sliding mode control with neural networks (NN-FFOSM) technique, can

provide higher tracking precision and control performance.

Remark 4 In [41] a fractional order sliding mode controller is designed based on neural networks.

Compared with [41], a finite time approaching law is employed instead of constant velocity one in this

paper. Combined with a finite time characteristics, the NN-FFOSM controller can drive system to

reach the sliding mode surface in finite time from arbitrary initial states. Therefore Theorem 2 can

be considered as an extension and promotion of [41] and can guarantee output y tracks the desired

signal yd in shorter time.

4. Simulation

As an illustrative example, the thalamocortical model (1) with uncertainties and disturbances is

employed for the study of NN-FFOSM controller. To verify the effectiveness of the proposed controller
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scheme, the simulation results are carried out by utilizing three comparisons between NN-NSM in [20],

IOSM in [40], NN-FOSM in [41] and our NN-FFOSM controller in this section.

The initial value of (IN, TC, PY,RE)T = (0.05, 0.05, 0.05, 0.05)T , matrix H = [0, 0, 0, 0.5], coeffi-

cients he = −0.35, hi = −3.4, ht = −2, hr = −5, τe = 26, τi = 32.5, τt = 2.6, τr = 2.6, cee = 1.8,

cei = 1.5, cet = 1, cie = 4, cte = 3, ctr = 0.6, cre = 3, crt = 10.5, crr = 0.2, ε = 2 · 105, a = 2.8, b = 0.5.

Here, the control variable is the subpopulations on PY and IN, simulating external stimulations on

the cortical area, that is B = [1, 0, 1, 1]T . According to the expected dominant frequency around

12Hz, the desired output is set as yd(t)
1 = 0.2 + 0.02sin(75.36t), while the frequency of output y(t)2

is around 3Hz when patient’s absence epilepsy seizures happen. The other relevant parameters of

thalamocortical model are referred to [20]. After basic transformation, the system (1) is transformed

into closed loop control system (2) in the new coordinate system, the transformation matrix T and

its inverse matrix are as follows.

T =


1 0 0 −1

0 1 0 0

0 0 1 −1

0 0 0 1

 , T−1 =


1 0 0 1

0 1 0 0

0 0 1 1

0 0 0 1


Regarding the model uncertainties, for simulation purpose, it is assume that there are 10% parameter

variations for the pyramidal neuronal population PY and specific relay nucleus TC with respect to

their nominal values due to blood flow change of celebral cortex. The unknown disturbance is assumed

as d(t), which includes randomly distributed pulses dp(t) and a Gaussian noise dn(t) with standard

deviation 0.01 and mean 0. Simulation time duration is 15 seconds in total and simulation step is

0.01 second. During the simulation two abnormal brain nucleus discharge scenarios are implemented

as follows.

In Case 1: Controller doesn’t work until 5s and continues to work until the end of the simulation.

dp(t) =

{
0.1, t = 0.75 ∗ k (s), k = 1, 2, . . . , 20.

0, others.

where dp(t) is small pulses injected, which is used to simulate a series of electrocardiographic (ECG)

disturbance signals and the heart rate is supposed as 80 beats per minute.

In Case 2: Controller works at the beginning and continues until the end of the simulation.

dp(t) =

{
30, t = 4, 10 (s).

0, others.

where dp(t) is randomly distributed pulses injected, which is used to simulate large electromyographic

(EMG) disturbance signals of blinking.

Parameters used in fractional order sliding mode control based on neural networks of Theorem 1

and Theorem 2 are listed in table 1. According to [20], the sliding mode surface of normal sliding

mode based on neural networks (NN-NSM) should be s = λ2e. Meanwhile, referring to [40], the sliding

1This normal brain signal was provided by China-Japan Union Hospital of Jilin University
2This abnormal brain discharge signal was provided by China-Japan Union Hospital of Jilin University
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manifold of integer order sliding mode (IOSM) can be chosen as s = λ1ė + λ2e + λ3

∫
e, λ3 = 0.02.

Correspondingly parameters concerning parts of three methods are also the same.

Table 1: The control performance comparisons under different control schemes

Controller λ1 λ2 a1 b2 k2 k3

NN-FFOSM 0.01 0.1 0.5 0.5 0.2 5

The control objective is to maintain the output y of thalamocortical model to track the desired

output yd. The following simulation results are to be carried out and discussed using different tracking

controllers.

In following figures, the randomly distributed pulse dp(t) is shown in red solid line, the output y(t)

and tracking error e(t) of system is in blue solid line and the desired trajectory yd(t) is in dark dashed

line. Moreover, the right side of each simulation figure is occupied by the results of NN-FFOSM, while

the left side is occupied by the results of NN-NSM, IOSM or NN-FOSM.

4.1.Comparisons between NN-NSM and NN-FFOSM

Comparisons of performances using normal sliding mode (NN-NSM) controller of [20] and the finite

time fractional order sliding mode (NN-FFOSM) controller of Theorem 2 are provided in Figs. 5-8.

In Case 1, Figs. 5 depicts control performance and output dynamic using NN-NSM and NN-FFOSM

respectively, while Figs. 6 displays tracking error and its transient performance using these two

methods. Similar to them, Fig. 7 and 8 illustrate the accommodation of system in Case 2. It can

be found that tracking error of NN-NSM can converge to a small region of origin within 0.5s and 5s

in CASE 1 and 2 while NN-FFOSM can converge to zero within 0.35s and 2.5s, respectively. Thus,

it is illustrated that the settling time brought by large pulse in Case 2 is longer than by distributed

small pulses in Case 1. The difference between NN-NSM and NN-FFOSM is that the latter has a

fractional order term in sliding manifold, and it is not included in NN-NSM. Adjusting the fractional

order in the sliding manifold can improve system dynamics as well as robustness. Adding fractional

derivative terms can improve the parameters adaptation process such that the errors utilizing NN-

FFOSM converge to zero more quickly and accurately, which is proved in Fig. 5-8.

4.2. Comparisons between IOSM and NN-FFOSM

Control performance and input dynamic using integer order sliding mode (IOSM) in [40] and NN-

FFOSM controller in Theorem 2 are presented in Figs. 9-12. It can be seen from tracking performance

comparison shown in Figs. 10 and 12 that signal tracking error of NN-FFOSM scheme is larger than

that of IOSM. Both IOSM and NN-FFOSM controller can track given signal after 0.35s in Case 1

and 2.5s in Case 2. Although both IOSM and NN-FFOSM achieve signal tracking target, it can be

seen from comparison of tracking error in Fig. 10 that the error using NN-FFOSM asymtotically

converges to 0 while there are obvious oscillations in the tracking error using IOSM. It follows that

NN-FFOSM controller has better effect to eliminate the pathological spike-and-wave discharges than

12



IOSM. The main difference between IOSM and RBFNN-FFOSM is that the NN-FFOSM has an

adjustable fractional order factor in the design of sliding manifold, and neural networks technique is

also introduced in the FFOSM controller to estimate the disturbances and uncertainties. The adaptive

estimation of nonlinear term can online change the robust gain according to different situations and

thus offset the influence caused by disturbances and uncertainties. It is proved that the accuracy of

NN-FFOSM controller is satisfactory.

4.3. Comparisons between NN-FOSM and NN-FFOSM

In [41], NN-FOSM is developed based on a constant velocity approaching law, which is carried out

to restrain pathological spike-and-wave discharges firstly. Then NN-FFOSM in Theorem 2 by means

of the finite time power exponential approaching law is verified as well. Both have better robust

characteristics and tracking accuracy. Furthermore, equation (6) expresses the same sliding manifold

of NN-FOSM and NN-FFOSM. Due to the similarities and differences between two approaches, their

simulation results and control performance are evaluated here. Figs. 14 and 16 manifest tracking error

adaptation of system (2) in Case 1 and Case 2, respectively. It is revealed that system signal error

using NN-FFOSM converges to its desired value faster than that using NN-FOSM, which indicates the

effect of finite time function factor on convergence of system. Their energy consumption is depicted in

Figs. 13 and 15. Meanwhile, it can also be observed from Fig. 16 the steady state error of NN-FFOSM

is in the order of magnitude 10−4, while the steady state error of NN-FOSM is in 10−3. Therefore it

can be concluded that the NN-FFOSM can accelerate the parameters adaptation process and improve

tracking precision by adding finite time term in NN-FOSM controller.

Remark 5 Compared with the work in [34] and [35], it is clear to see that there is high frequency

switching in the control signals (e.g., Fig. 11) which is well known chattering in sliding mode control.

Chattering may result in unnecessary mechanical wear and tear on the actuator component. However,

one way of overcoming this drawback in real application is to introduce a boundary layer around

sliding surface (see reference [45]).

5. Conclusion

In this paper, the problem of tracking control against disturbances and uncertainties is investigated for

epilepsy seizure abatement by using brain machine interfaces technique. Firstly, the control system for

epilepsy therapy is designed, and the external device connected to brain detects the abnormal brain

spike discharge in patients with epilepsy and converts it into control signals to achieve stimulation

therapy for the brain. Then, the synthesis effect of parametric uncertainties is considered. To obtain

the estimated value of the synthesis effect of disturbance and uncertainty, the radial basis function

neural network is introduced and adaptive estimators are also designed. Based on the estimation

information, a novel finite time fractional order sliding mode controller is proposed to adjust the signal

of brain stimulation tracking control system of epilepsy. Meanwhile, the stability and reachability of

closed-loop control system are analyzed. Finally, simulation results are fully compared and verified to

demonstrate the effectiveness of the presented control scheme.
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Figure 5: Control performance of NN-NSM and NN-FFOSM in case 1
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Figure 6: Tracking error of NN-NSM and NN-FFOSM in case 1
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Figure 7: Control performance of NN-NSM and NN-FFOSM in case 2
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Figure 8: Tracking error of NN-NSM and NN-FFOSM in case 2
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Figure 9: Control performance of IOSM and NN-FFOSM in case 1
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Figure 10: Tracking error of IOSM and NN-FFOSM in case 1
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Figure 11: Control performance of IOSM and NN-FFOSM in case 2
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Figure 12: Tracking error of IOSM and NN-FFOSM in case 2
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Figure 13: Control performance of NN-FOSM and NN-FFOSM in case 1
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Figure 14: Tracking error of NN-FOSM and NN-FFOSM in case 1
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Figure 15: Control performance of NN-FOSM and NN-FFOSM in case2
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Figure 16: Tracking error of NN-FOSM and NN-FFOSM in case 2
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